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FOREWORD

This volume represents the cooperative efforts of a number of
members of the staff of Engineering Research Associates, Inc.
C. B. Tompkins planned the report from which this volume has
evolved and prepared much of the initial draft. The report was
completed by the staff under the direction of J. H: Wakelin and
was edited for publication in its present form by W. W. Stifler, Jr.
Other contributing authors from the staff of this company were
W. R. Boenning, W. W. Butler, A. A. Cohen, E. C. Olofson,
L. R. Steinhardt, and Erwin Tomash.

The contents of this volume were first assembled in the form of
a report to the Office of Naval Research, prepared under a provi-
sion of contract N6-ONR-240, Task 1, which called for ‘“‘an
investigation and report on the status of development of comput-
ing machine components.” Publication in the present form came
about as a result of a suggestion of Dr. Mina Rees, then head of
the Mathematical Sciences Division of the Office of Naval
Research, who felt that publication over a wider range would be
worth while. The cooperation and assistance of the Mathe-
matical Sciences Division of ONR in bringing about the publica-
tion of this volume is gratefully acknowledged.

As those readers who are familiar with this field know, many
of the large-scale computing machines already built or under
construction have been under Government sponsorship. The
two principal all-electronic machines now in operation, the Har-
vard Mark IIT and the ENIAC, were sponsored by the Navy
Bureau of Ordnance and the Army Ordnance Department
respectively. Thenames of many of the men who have developed
computing components and machines are mentioned in this text.
Many of their developments have been made possible by those
representatives of the sponsoring agencies, both civilian and mili-
tary, whose foresight and whose confidence in the future of
computing have made them willing to support the necessary
research and development work.

H. T. EngsTROM
Vice-President

ArrINGTON, VA. Engineering Research Associates, Inc.

May, 1950






PREFACE

This volume is primarily a discussion of the mechanical devices
and electrical circuits which can be incorporated into computing
machines. It is not a detailed comparison of various machines.
However, we have included descriptions of a few computers, to
provide examples of the integration of techniques and compon-
ents into complete systems. Because the computers built in
this country are so much more familiar to the authors than those
which have been built or planned in England or in other coun-
tries, we have used American machines as examples.

A list of all those leaders in the computing machine field with-
out whose assistance this book could not have been written,
would assume the proportions of a separate bibliography. We -
are therefore omitting such a list, at the same time acknowledg-
ing with sincere thanks and appreciation the personal assistance
of many of the men whose names do appear in the various chapter
references and bibliography lists.

In the preparation of this manuscript and the correction of
the proofs the assistance of Bettie Frankl, Nancy Hall, Ann Kelley,
and Irene Painter has been vital. We are indebted to Francis X.
Kennelly for drawing most of the figures in this text, and to
Harvey L. Waterman for the circuit diagrams in some of the
earlier chapters. )
TeE AUTHORS

~ARLINGTON, Va.
May, 1950
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Part 1

THE BASIC ELEMENTS OF
MACHINE COMPUTATION






CHAPTER 1
INTRODUCTION

‘Many of the practical problems of science, business, and war-
fare are essentially computational. For example, scientific and
business conclusions may be drawn by subjecting large quantities
of observational data to appropriate statistical treatment. Mili-
tary plans may be based on calculations from quantitative
hypotheses involving numbers of men, numbers of items, numbers
of distance units, and the like. The need for extensive cal-
culations in the development of science has existed and con-
tinually expanded.

The existence and importance of these and an infinite number
of other general computational problems have fostered the
development of machine aids to computation. This volume
touches on numerical methods and introduces the reader to
existing computing techniques and machines. The presentation
is intended to show how to formulate computational problems
in ways related to the physical structure of machines. The final
chapters list both the physical components of which the present-
day computing instruments are comprised and other components
most likely to find uses in the near future. A discussion of factors
governing the choice of components is included also.

The term component is used throughout this survey to define
any physical mechanism or mathematical method which is used
as a tool in automatic computation. The term is applied either

to an abstract concept or to an item of physical equipment.
The scope of this survey includes not only a treatment of the
design and operation of physical mechanisms but also the arith-
metical and analytical procedures which form the basis of solution
of problems reduced to numerical form.

Computational machines are classified as either digital or
analog computers. A digital device, as the name implies, is
one which performs mathematical operations with numbers
expressed in the form of digits which can assume only discrete

3



4 THE BASIC ELEMENTS OF MACHINE COMPUTATION

values. The results yielded by such a device are expressed in
digits. The precision of the computed results from a digital
machine depends upon the number of digits it can handle, assum-
ing that the actual operations are all performed accurately.
(This is the equivalent.of assuming that the machine is not out
of order and that the operator makes no mistakes. A more
detailed discussion of the concepts of precision and accuracy is
included in Chap. 11.)

An analog computer is one in which numbers are converted
for purposes of computation into physically measurable quanti-
ties such as lengths, voltages, or angles of displacement. Com-~
puted results are obtained by the interaction of moving parts or
electrical signals related in such a manner as to solve an equation
or perform a given set of arithmetical or mathematical operations.

The precision of the results which can be expected from any
given analog device, as contrasted with a digital device, depends
upon the precision with which the device is fabricated, the skill
and uniformity with which it is operated (including its depend-
ence upon outside factors such as line-voltage variations), and
the precision with which the answer can be read if the final con-
version to digital form. is made by reading a calibrated scale.
In short, it is subject to the systematic and human errors which
are inherent in the use of any measuring apparatus.

A slide rule is an example of an analog computer. In this
device, lengths correspond to the logarithms of numbers. Loga-
rithms are added and subtracted, and numerical answers are read
from the scale. An example of a digital computer is the abacus.
The Chinese who uses this device assigns discrete numerical
values to the beads and obtains precise digital answers to his
problems by proper manipulation of the beads.

It is hoped that those readers who are familiar with the mathe-
matical background on which this survey has been based will
find the descriptions of physical elements and their interrelation-
ships of interest. For those well grounded in electrical engineer-
ing and particularly in electronics, it is hoped that the chapters
dealing with mathematical methods and with computing systems
will be sufficiently straightforward to require no unreasonable
special study for thorough understanding.

For those readers who are particularly interested in any
isolated phase (mathematical components, physical components,
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or computing systems), the following classification of the several
chapters will be found useful. The chapters in each class are
essentially independent of those in other classes.

A. General
Chapter 1.
Chapter 2.

Introduction
Preliminary Considerations

B. Mathematical Components

Chapter 6.
Chapter 7.

Arithmetic Systems
Numerical Analysis

C. Physical Components and M ethods

Chapter 3.
Chapter 4.
Chapter 13.
Chapter 14.
Chapter 15.
Chapter 16.

Chapter 17.

Counters as Elementary Components
Switches and Gates

Arithmetic Elements

Transfer Mediums

Data-conversion Equipment

Special Techniques and Equipment for Pos-
sible Use in Computing Systems

Factors Affecting Choice of Equipment

D. Computing Systems

Chapter 5.
Chapter 8.
Chapter 9.
Chapter 10.
Chapter 11.
Chapter 12.

A Functional Approach to Machine Design
Desk Calculators

Punched-card Computing Systems
Large-scale Digital Computing Systems
Analog Computing Systems

The Form of a Digital Computer

Additional introductory material on the subject of computa-~
tion both by analog and by digital methods will be found in the
following bibliography, containing three volumes all of which
have been published since most of the material in the following
pages was prepared. Hartree? is concerned primarily with the
mechanisms of computing, while Berkeley' and Wiener® devote
their efforts respectively to more popular discussion and to the

philosophy of the subject.

REFERENCES

1. Berkeley, E. C., Giant Brains (John Wiley and Sons, Inc., New York,

1949).

2. Hartree, D. R., Calculating Instruments and Machines (University of
Illinois Press, Urbana, Ill., 1949).
3. Wiener, Norbert, Cybernetics (John Wiley and Sons, Inc., New York,

1048).



CHAPTER 2
PRELIMINARY CONSIDERATIONS

2-1. Basic Components of Automatic Computation

The basic components required for a general-purpose comi-
puting machine consist of (1) the input system; (2) the arithmetic
techniques; (3) the system of operations, which includes arith-
metic elements, storage, and control; and (4) the output system.
Each of these components will be treated here in order to present
an introductory view of the fundamental requirements of auto-
matic computation.

2-1-1. Input Systems. This is a general term for the com-
ponents and processes by means of which problems are introduced
to the machine. For example, the input system associated with
a standard desk calculator is comprised of a manually operated
keyboard of decimal digits and commands (e.g., add, multiply).
The input more nearly defines the use to which a machine can
be put than does any other component; there is no universally
applicable input medium.

Machines can be divided roughly into two classes according
to their expected use, and each of these classes can be divided
further into two subdivisions according to versatility:

Class IA—Data-reduction equipment, general-purpose.
Class IB—Data-reduction equipment, special-purpose.
Class IIA—Mathematical equipment, general-purpose.
Class IIB—Mathematical equipment, special-purpose.

The input requirements of these four types differ radically.
Data-reduction machines typically receive voluminous data
from physical measurements. Usually manual transecription
time (the time spent in reading and transcribing the data from
the measuring instrument) exceeds manual reduction time (the
time spent on the ensuing arithmetic calculation). The use of
automatic computing equipment for large-scale reduction of data
will be strikingly successful only if means are provided for the
6



PRELIMINARY CONSIDERATIONS 7

automatic transcription of these data to a form suitable for
automatic entry into the machine. For some applications, of
which the most prominent are those in which the reduced data
are used to control the process being measured, the input must
be developed for on-line operation. In on-line operation the
input is communicated directly and without delay to the data-
reduction device. For other applications, off-line operation,
involving automatic transcription of data in a form suitable for
later introduction to the machine, may be tolerated. These
requirements may be compared with teletype operating require-
ments. For example, some teletype machines operate on line.
Their operators are in instantaneous communication. Other
teletype machines are operated off line, through the intervention
of punched paper tape. The message is preserved by means of
holes punched in the tape and is transmitted later by feeding the
tape to another machine. This method permits fast regular
transmission independent of operator variations. Line time is
thus conserved at the expense of elapsed communications time.
The typical mathematical machine, as contrasted with the
data-reduction machines, receives input data generated in a
human brain. These data are not likely to be numerous, and
automatic entry from the human brain is not presently feasible.
2-1-2. Arithmetic Techniques. When a project involving
extensive computation has reached the point in its development
where the use of large-scale computing equipment is being
planned, it is usually true that a fairly well defined field of prob-
lems has been formulated.” These are the problems the com-
puting equipment must solve. Between the general formulation
of this field and the production of solutions of problems from the
field come the specific arithmetic formulations of problems and
the development and construction of equipment which will
yield solutions economically. Roughly, then, the project can
be.thought of as including a mathematical aspect and an engi-
neering aspect. A precise definition of the boundary between
these aspects is not worth attempting; one merges into the other.
Neither part of the problem can be solved independently of the
~other. The solution must be evolved from a utilization of
mathematical processes (including arithmetic, logic, ete.) and
engineering processes which together yield the desired solution
with acceptable economy.
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The central meeting ground of these two aspects of the com-
puting program is an area which includes both the set of ele-
mentary operations which the device is capable of performing
and the general procedure for communicating to the device the
set of orders it must perform in solving a problem. The term
arithmetic techniques is used to describe this area. The term
denotes, therefore, those arithmetic and logical operations and
combinations of operations which are used by the machine opera-
tor in the application to any problem of abstract arithmetic
processes. Thus, when an operator uses a simple adding machine
to obtain a product of two numbers, he is performing the process
known as multiplication via the arithmetic technique of iterative
addition. .

The speed with which a given problem can be solved with a
particular machine depends primarily upon the number of opera-
tions (e.g., multiplications) which the machine must perform.in
solving the problem and upon the time spent by the operator
in preparing a program of commands ordering the machine to
perform the required operations. For maximum versatility
and speed, the machine must be capable of a maximum number
of different operations. Generally speaking, the more extensive
the variety of possible operations, the less complex will be the
program of operations for a given problem. On the other hand,
the variety of operations must be restricted to some extent for
practical and economic reasons. Ingénuity in preparing pro-
grams of operations must be substituted to some extent for
variety of available operations.

Therefore, in setting performance specifications for a machlne
the choice of an optimum set of available operations depends
upon the field of problems which the machine must solve, the
speed with which solutions are actually required, and the prac-
ticability of constructing physical components which will perform
the various mathematical processes which might be desirable.
These factors are related to the choice of an optimum set of
operations through the arithmetic techniques which will be
employed.

2-1-3. System of Operations. The portion of a computer
which actually performs the mathematical functions in the
solution of a problem may be termed the operations system.
It consists of arithmetic units, which perform the operations of
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addition, subtraction, multiplication, and division; storage
units, which provide means for holding information for reuse;
and control elements, which interpret commands and initiate
arithmetic processes.

The arithmetic units of the machine are only partially deter-
mined by the determination of the elementary arithmetic opera~
tions they are to carry out. The required accuracy, speed, and
versatility of the machine all affect the design of the arithmetic
units. If the operation has to be synchronized with outside
phenomena, which is the case frequently in on-line operation, -
this too must be taken into account in the design of the arith-
metic elements. Finally, it is true that the arithmetic elements
must be designed in such a way as to permit convenient informa-
tion transfer between the arithmetic units and the storage units
chosen for the machine. ,

It has already been stated that storage units are required to
hold information for later reuse. This implies a concept of time
which may be used to distinguish between types of storage:
quick-access, or high-speed, storage; slow-access, or low-speed,
storage; and intermediate storage. These terms, however,
~merely denote the form of the storage and omit any reference to

the actual purpose of storage.

A more descriptive definition of storage facilities may be
obtained by considering the use of storage in a typical example.
When a piece of paper, a pencil, the physical actions of writing,
and the mental processes of calculations are involved in the
solution of an arithmetic problem, it is readily seen that there
‘are four kinds of storage required: (1) storage of the original
data of the problem upon the paper; (2) mental storage of carry-
overs in processes of addition, subtraction, multiplication, and
division; (3) storage of intermediate results upon.the paper;
and (4) storage of the final solution upon the paper. Of these
four kinds of storage, all but the second require transfer to a
medium external to that in which the fundamental arithmetic
processes are performed. This suggests that storage may be
further defined as either internal or external; 7.e., either for
immediate automatic reuse in the arithmetic units, or for reuse
in the computation process at a time determined by the pro-
gramming of operational commands. For the former, quick
access time is convenient; for the latter, a lower speed is. per-
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missible. In fact, a lower speed may be preferable. The factors
influencing the choice of storage speeds, the amount of storage,
and storage mediums are more fully discussed in Chap. 14.

The third part of the system of operations is the device which
controls the computation process, ordering the arithmetic units
to perform their various functions upon various numbers in
proper sequence. These commands or orders to the arithmetic
units may be of two types: (1) orders included in a program of
such orders, drawn up by a human operator; or (2) orders derived
from previous machine operations. The complexity of the
program of orders required for the control of the machine depends
upon the type of application for which the machine was designed.
Consider, for example, a machine designed for solving a single
complex problem, requiring many basic operations to be per-
formed in a particular sequence. This is a special-purpose
machine. In theory, a machine may be so highly specialized
that after the values of parameters are specified, the only external
command required is star{. The rest of the commands are
permanently built into the machine in some manner or are
derived automatically from operations performed earlier in the
course of the machine’s solution. At the other extreme, a
machine may be so general that an infinite variety of sequences
of operations is possible, either by rearrangement of some
temporary wiring system, by revision of the program encoded
on the input medium, or by both.

For general-purpose machines, the present tendency is to
encode the commands in a numerical code. The machine reads
the coded commands inscribed in proper sequence on the input’
medium. The code is usually composed of groups of digits;
each group is composed of a part which has to do with the
operation involved and a part which has to do with the location
in storage of the number or numbers to be operated upon.
There may also be a part which has to do with the choice of the
next command to be carried out.

2-1-4. Output System. The output problem is similar to the
input problem. The output, as well as the input, must be care-
fully matched to the utilization expected of the machine. If
the instrument is to control a process, and if this process con-
tinues during the calculation, then the output may be some sort
of on-line device possibly including facilities for translating a
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digital output to continuously variable control signals. If the
output is a printing device, it is important to avoid letting this
printer retard the operation of the whole machine, as it will if
the output plans are overextensive. Another consequence of
overextensive output plans is the generation of more printed
material than anyone can read.



CHAPTER 3
COUNTERS AS ELEMENTARY COMPONENTS

3-1. Introduction

In effect, every high-speed computing machinc is composed of
an arrangement of fundamental components. It seems reason-
able here to study these elementary components in some detail;
later it will be seen how they may be assembled into a complete
equipment. It is fortunate that the number of different types
of such fundamental components is limited. This makes it
possible to deal with much of the subject by treating only one
general type of elementary potential digital computing component
(hereafter referred to as EPDCC).

We define an EPDCC as any system, mechanical, electrical,
electronic, electromechanical, electromagnetic, or other, which
has the following properties:

1. It may assume any one of a discrete set of stable states,
the number of stable states in the discrete set being fixed
in advance.

2. It may influence other components, including other
EPDCC’s, or be influenced by them in different ways,
depending upon the state in which the components are set.

The application of these components to computing has been
indicated in the introductory material; it will be more explicitly
indicated in later chapters. In this chapter, discussion will be
limited to a few elementary mechanical devices, to electrical
circuits involving vacuum tubes, and in particular, to those
circuits based on the flip-flop principle.

3-2. Mechanical and Electromechanical Devices

A common EPDCC is the 10-position adding-machine wheel
which is used in mechanical desk computers, and which satisfies
the definition of an EPDCC in all respects. This mechanical

12



. COUNTERS AS ELEMENTARY COMPONENTS 13

counter can be transformed into an electromechanical counter
by the addition of 10 position contacts and pickup wipers.
With this modification, the stable state of the wheel is deter-
mined electromechanically, and the influence of the wheel on
other components is completely electrical. An example of such
a device is the counter developed for card-tabulating purposes.
This device comprises a 10-position wheel, the exact position of
which is controlled by an electromechanically operated clutch.
The wheel position is read by means of a set of 10 contacts.
This type of electromechanical unit also fits the definition of an
EPDCC. Among the few existing large-scale computing
machines there is at least one, the IBM Automatic Sequence
Controlled Calculator presented to Harvard University in 1944
and generally referred to as the Mark I, the entire action of which
is based on the use of such electromechanical devices.:1%14
There is a fundamental limitation, however, to the maximum
speed at which electromechanical devices can operate, owing to
the inertia of the mechanically moving parts. Present practice
indicates that the maximum speed for reliable operation of any
electromechanical EPDCC is approximately 100 counts per
second.?b%  Since the great majority of future large-scale
computing machines will demand basic speeds considerably in
excess of this figure, it is necessary to go to some other type of
EPDCC to achieve the desired results. The use of electron
tubes offers such a possibility, and the remainder of this chapter
will deal only with those EPDCC’s which utilize electron tubes.

3-3. The Flip-flop Principle

- Historically, the flip-flop principle has been known since
1919, but its application to a full-scale digital computing
machine does not appear to have been realized until 20 years
later.® Prior to this conception certain special forms of flip-flop
had been developed, but mainly for the purposes of counting
atomic particles. Since that time the basic principle of the
flip-flop and the ring counters has been altered variously for
particular purposes. ,

The flip-flop configuration of vacuum tubes is characterized
by the fact that there are two plate-to-grid couplings and a
common bias arrangement between the two halves of the circuit;
this coupling and bias arrangement causes the circuit as a whole



14 THE BASIC ELEMENTS OF MACHINE COMPUTATION

to remain in either one of its two stable states until the appli-
cation of the signal which changes it to the other.

Because the flip-flop circuit is so fundamental to practically
every type of EPDCC, we shall proceed first to a description of
this arrangement of two triodes (Fig. 3-1) having two stable
states.11:31:32,34,3843  Tn this circuit the plate of the first triode
V1 is connected to the grid of the second V', and the plate of the

Fic. 3-1. Flip-flop arrangement of two triodes. Each successive negative
pulse on the single input lead will reverse the operating state of the circuit.
In the state shown (V: conducting) a negative pulse lowers the cathode
potential of V. below its grid potential, causing V. to start conducting,
which in turn lowers the grid potential of V1.

second is connected to the grid of the first. An increase in
current through either triode tends to lower the grid potential
of the other triode. For example, an increase of the plate current
of V1 causes a greater potential drop across the resistor R;; this
lowers the grid potential on V,. Accordingly, the plate current
of tube V', is decreased, which, in turn, lowers the potential drop
across the resistor R», causing an increase in the grid potential
of tube V;. With a higher grid potential on tube V7, the plate
current through this tube is increased. This general condition
of instability prevails and continues to drive the operation just
described until tube V' is conducting at saturation and tube V,
is cut off. The plate current of the conducting tube produces a
voltage drop across both its own plate resistor and the common
cathode resistor R;. The values of the resistors are selected so
that the potential at both cathodes, with either tube fully con-
ducting, is above the grid potential of the nonconducting tube.
This elementary configuration can be caused to shift from one
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stable condition to the other by introducing circuitry designed
to respond to various stimuli. There are two main types of
shifting stimuli which can be introduced to the flip-flop circuit,
and'both of these have application in computing devices.

The first type of stimulus utilizes pulses of a fixed polarity
which are introduced at a single input terminal. The action of
the flip-flop is such that it reverses between its two stable states
each time a new input signal is introduced: it is similar in action
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F1a. 3-2. Binary counting circuit with a single input lead.
to a pull-chain light switch which reverses its state (on or off)
each time the chain is pulled. Thus it indicates, by its state,
whether the total number of input pulses which have been
applied is odd or even.

Such a device is classified as a modulo 2 counter. The term
modulo means, literally, ‘‘with respect to the modulus, or stand-
ard of measurement.” Two numbers are congruent with respect
to an integral modulus if their difference is divisible by that
modulus. That is, ¢ = b (mod ¢) if ¢ — b is divisible by ¢ (or
if a and b have the same positive remainder when divided by c).

A modulo 2 (or binary) counter is essentially the main ele-
mentary component from which counters and accumulators are
assembled. A practical example of such a binary ring circuit
having a single input lead, as found in the plus-minus indicating
device of the ENIAC, is illustrated in Fig. 3-2. In this illustra-
tion the tubes V; and V. act as trigger tubes. Whenever a
positive signal arrives on the one input lead, both of these tubes
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begin to conduct. This causes the grids and plates of both Vs
and V, to take a negative swing. Since V, is already noncon-
ducting, it has no effect there, but V3 is cut off. As V; cuts off,
its plate becomes more positive, and, through condenser Cj,
the grid of V', also takes a positive swing. As V, begins to con-
duct, its plate takes a negative swing, and condenser (s further
causes the tube V; to cut off. Note that the tubes utilized are

100K
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g -360 %
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.001
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Fic. 3-3. Binary counting circuit with two input leads.

actually dual triodes so that Vi and V3, and likewise V3 and Vy,
are in a single envelope.

The second type of actuating signal, or stimulus, for altering
the stable state of the flip-flop is introduced on one of two input
terminals. If the input signal arrives on the first terminal, it
causes the flip-flop to assume the first of its two stable states and
remain in this state thereafter until such time as a signal arrives
at its other input terminal, whereupon it will reverse. This
action is analogous to that of the ordinary wall-type toggle switch,
which can be thrown in either of two directions and which will
remain thrown in this direction until such time as it is thrown the
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other way. A practical example of such a side-stable electronic
circuit is shown in Fig. 3-3. Except for a few circuit values, the
only difference between this and the circuit of Fig. 3-2 is in the
number of input leads for introducing the actuating signal.

3-4. Pulse-sensitive Flip-flop Circuits

Of the two types of flip-flop circuits described above, the one
having a single input terminal is of interest mainly because a
whole series of pulse-sensitive counters can be built from it.
When considered as a single unit operating by itself, it is essen-
tially an odd-even, or modulo 2, counter, as mentioned previ-
ously. If a number of such modulo 2 counters are connected
so that the output of one feeds the input of the next, a radix 2
counter is formed, each successive flip-flop registering the next
binary digit. (The reader who is not familiar with the concepts
of binary arithmetic is referred to Chap. 6 for an exposition which
will explain more fully the meaning of this paragraph.) If the
number of tubes in the flip-flop itself is increased beyond two,
the circuit can count to a modulus higher than 2. Stating the
proposition generally, a number of modulo r flip-flops used
together constitute a counter system operating to the radix r.
It is also possible to connect a number of flip-flop circuits in
such a manner that each complete flip-flop represents one ele-
ment in a ring of such twin elements, thus forming another type
of modulo r counter, which can be compounded into a radix r
counter. .

All these configurations are characterized by the presence
of a single input terminal and further by the fact that they are all
fundamentally compounded from a number of modulo 2 flip-flop
elements. Such compounding is necessary because, although it
is easy to think of all radices as having substantially equal
mathematical merit, the electron tube is unable to assume more
than two discrete stable states with any assurance of reliability.

3-b. Radix 2 Counters

One of the simplest schemes for counting the pulses in a series
is the radix 2 counter, which may be assembled by coupling
together several modulo 2 counters.!®?43443 Figure 3-4 illus-
trates how this may be done. The circuit shown contains four
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modulo 2 counters denoted by the blocks with the Roman
numerals. Counter I receives the pulses to be counted; these
pulses are introduced via the input lead of a modulo 2 counter
of the type illustrated in Fig. 3-2. Each pulse causes counter I
toreverse its state. The output from counter I drives counter II.
The output is taken from point B in Fig. 3-2 and is coupled,
possibly through a pulse-sharpening circuit, to the input lead of
counter II. In the same way the output from point B of counter
IT is taken to the input of counter III, and the output at point B
of counter IIT is taken to the input of counter IV. Now it is
clear that each time tube V, of counter I, II, or III changes
from a conducting to a nonconducting condition, a positive pulse
will be introduced to the input of the next counter in the series,
causing it to change its state. Assume that a counter’s condition
is denoted by the symbol 0 if tube V, is blocked and tube V3 is
conducting. Then a pulse changing the counter’s status from
" 0 to 1 introduces a negative pulse which has no effect on the next
counter in the series. However, if the status is changed from 1
to 0, a positive pulse is introduced to the next counter, and this
pulse changes the status of the next counter. Thus, in the
example of Fig. 3-4, if the configuration of the four counters
were 0000 at the beginning and if 16 pulses were introduced, the
successive configurations would be 0001, 0010, 0011, 0100, 0101,
0110, 0111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111, and
0000.

The representations 0000 through 1111 are the radix 2, or
binary, representations of the decimal numbers from 0 through 15.
The 16th pulse returns the system to zero. This representation
is described more fully in Chap. 6; it should be noted here, how-
ever, that from the configuration of the system the number of
pulses which have been introduced can be deduced, provided this
number is less than 16. By adding more counters modulo 2
with similar coupling, the capacity of the circuit can be
increased. The number of pulses which can be counted with m
modulo 2 counters is 2» — 1. '

The reading of these counters is brought about without sub-
stantial decrease in their functioning frequencies by establishing
reading leads at points A of the individual modulo 2 counters.
Simple radix 2 counters can be made to operate at a counting
rate of 10 pulses per microsecond.
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3-6. The r-triode Counter, Modulo r

For small values of r, such as 3, 4, and 5, it is feasible to extend
the circuit of Fig. 3-1 beyond two, so that, of r triodes, one is
conducting and r — 1 are blocked.*!%173" Thus, a pulse intro-
duced to the input lead causes the originally conducting tube to

Fi1e. 3-5. Five-triode ring. This circuit has five stable states, in each of
which one, and only one, tube is conducting. It is a modulo”s counter.’

become blocked and causes a tube cyclically advanced beyond
the originally conducting tube to begin to conduct. Figure 3-5
illustrates such a circuit®* with five triodes so wired that the
direction of progress is counterclockwise. In this circuit the
grid resistors are chosen carefully so that the condition in which
none, or more than one, of the tubes is conducting leads to a grid
voltage too high or too low for stable operation. The grid of
each tube obtains its operating potential from a voltage divider
comprising five resistors, four from the plates of the four other
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tubes, and one from a permanent bias bus. The values are
such that, for any one tube, only two conditions can obtain:
(1) if the other four are all cut off, the grid voltage will be suffi-
ciently high that full conduction of this tube is assured, or (2) if
one of the other four tubes is conducting, then the grid voltage
will be low enough to assure that this tube is cut off, thus pre-
serving the one-on—four-off ratio.

A negative pulse on the input-pulse bus will cause the conduct-
ing triode to cut off, thus raising its plate potential. This rise is
then transmitted to the other four tubes. However, only the
associated voltage-divider resistor of the next tube cyclically
advanced is shunted by the necessary crossover condenser;
hence it is the only one to achieve conduction as a result of the
input pulse. [It is also possible** to construct a circuit such
that only one tube is cut off and the rest are fully conducting,.
Another possibility*® is a ring composed of an odd number of
tubes, r, of which in each of the ring’s r stable positions (» 4+ 1)/2
tubes are nonconducting.]

Read-out from the modulo r counter illustrated in Fig. 3-5 is
accomplished at the plates of the tubes, as illustrated by the
small neon indicator lamps. Its operation is limited to values of
r which are sufficiently small to permit adequate discrimination
between conditions governing operation of the individual tubes.
In the configuration shown, the plate potential of the conducting
tube may be well below that of the nonconducting tubes. The
difference in potential between the plates and the grids of the
nonconducting tubes is 1/r times the difference between the
plate of the conducting tube and the plates of the nonconducting
tubes. - If r becomes sufficiently large, 1/r becomes sufficiently
small to make operation of the circuit uncertain. In practice,
with careful design, values of r up to 7 or 8 appear to be feasible;
values much larger than this have led to difficulty. It does not
appear possible to make r = 10 (for decimal arithmetic) with
this scheme, except at considerable decrease in reliability.
However, a binary counter and a quinary counter can be com-
bined to form another type of decimal counter.1%:23:34

There is another form of r-triode modulo 7 counter which is
practical and which has achieved wide usage in certain specialized
applications where the ultimate in speed is not required. This
is the ring consisting of gas-filled triodes,!%4%4%43 popularly
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known as thyratrons. The thyratron, as contrasted with the
conventional tube, has only two possible stable states for all
grid potentials: fully conducting and completely nonconducting.
The grid of such a tube, by itself, serves to trigger the tube from
the nonconducting to the fully conducting state, after which it
loses control of the action of the thyratron until the tube is
extinguished by other means. Figure 3-6 represents a decade of
thyratrons, forming a modulo 10 counter. In each of its 10stable
states, one, and only one, tube is conducting. Because of the

INPUT
+PULSE[

Fic. 3-6. Thyratron ring counter.

voltage divider in the cathode circuit of the conducting tube, the
grid voltage of the tube following it is higher than the grid
voltages of the other nonconducting tubes. The tube is there-
fore said to be primed. The next positive pulse raises its grid
sufficiently to cause it to start conducting. Almost simul-
taneously the preceding tube is cut off. This is the consequence
of a drop in its plate voltage while its cathode voltage remains
nearly constant. The drop in plate voltage is occasioned by the
additional current (to the tube which has begun to conduct)
through the common plate resistor; at the same time, the cathode
potential is held nearly constant by the action of the capacitor
in the cathode circuit.

This gas-tube ring counter can be used in applications requiring
a rate up to about 10,000 counts per second, this limit being
established probably by the time constant of the grid circuit.
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The ultimate limitation on counting speed is set by the deioniza-
tion time of the gas molecules. It is probable that 50,000 counts
per second is about the best that will be reliably accomplished
with production gas-tube counter circuits. Higher speeds, of
the order of 1 million counts per second, demand the use of
vacuum tubes exclusively, although experimental gas-tube rings
have been made to work as fast as 110,000 to 200,000 counts
per second.®

3-7. The 2r-triode Counter, Modulo r

For high-speed counting to a radix greater than 2, the 2r-triode
counter modulo r unit is probably the only answer. The most
advanced present form of this type of counter will be found in the
decade rings of the ENTAC, where it forms the basic counting
unit. An example of such an arrangement taken from the
ENTACS#3+39 is shown in Fig. 3-7.

It will be noticed that there is a strong resemblance between
the circuit of Fig. 3-7 and the more elementary circuit of Fig. 3-1.
The former is merely a tenfold repetition of the latter. It is
interesting to note, however, that this circuit can be operated
more reliably if the coupling between flip-flop stages is effected
through the regular control grids while the single input terminal
is connected to the cathode circuits on only one side of each flip-
flop. Thus the condition of the ring as a whole assures that
there is one flip-flop in the “set” or abnormal state and that the
other nine are in the “reset’” or normal state. Successive input
signals cause the flip-flop stage previously in the abnormal state
to resume its normal condition, meanwhile simultaneously driving
the next succeeding flip-flop into the abnormal state..

As compared with the counter described in the previous section
(¢.e., the one with a single triode per digit of the modulus), the
particular counter described above does not appear to have any
practical limit as to the size of the modulus, although of course
considerably more driving power may be required in the case of
the larger rings. For computing purposes, 10 seems to be the
highest modulus usually desired.

It is possible to combine a number of modulo 10 counters in
such a manner that a carry-over is provided between successive
rings; this in effect gives us a radix 10, or decimal, counter
capable of handling as many digits as there are rings provided.
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Again there seems to be no limit to the number of rings that can
be combined in this carry-over fashion.

As a final example of this type of counter, we refer again to
the ENTAC, which is capable of handling up to 20-digit decimal
numbers. One accumulator in the ENTAC contains 10 rings of
10 flip-flops each, or a total of 200 tubes, which are enclosed in
100 envelopes. Actually each such 10-digit accumulator requires
almost three times this number of tubes in order to handle certain
auxiliary functions such as signal shaping, carry-over, add
outputs, subtract outputs, and resets.3438

The choice between the r-triode counter and the 2r-triode
counter is completely dependent upon the value of r itself. In
the ENTAC, for example, there are parts of the machine where
r = 10 (all the decimal arithmetic), others where r = 6, 9, 11,
13, 14, or 20 (various special-purpose rings), and several parts
where r = 2 (plus-minus indicators). In all the cases where
r > 2, experiments showed that the 2r-triode counter was
required; for r = 2, however, the r-triode ring, or elementary
flip-flop, was preferable and, in fact, was capable of operating
about twice as fast as the 2r decade rings.

3-8. Other Types of Flip-flop and EPDCC

In addition to the foregoing general types of EPDCC’s, there
are a number of special ones which differ in engineering aspects
and which have application in certain special circumstances.
These will be summarized briefly below.

There is one type of flip-flop which is particularly interesting
in view of its simplicity and the small number of component parts
required. This is the pentode-coupled flip-flop (Fig. 3-8), in
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F1c. 3-8. Pentode-coupled flip-flop circuit.
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which the screens and plates of the two pentodes are cross-
connected.®? The action of this circuit can be readily under-
stood by considering the case in which V; is fully conducting;
its plate must be at a low potential, and therefore the screen of
Vs is at an equally low potential. This being the case, the right
pentode must be essentially nonconducting, which means that
its plate is at a high potential. Hence the screen of the left
pentode, which must be at the same high potential, is serving to
keep the left pentode in its fully conducting state. Positive
input impulses serve to switch this flip-flop alternately into its
two stable states, just as in the case of the triode flip-flop in
Tig. 3-2. This circuit does not appear to have had the exploita-
tion and development which its simplicity warrants. It operates
satisfactorily at a speed of at least 200,000 counts per second;
however, it appears likely that with an appropriate amount of
effort directed toward its fullest exploitation this circuit is capable
of the same speeds as are now achieved in the more fully developed
triode flip-flop. It is quite possible that the advent of printed-
circuit techniques,® mentioned in Sec. 16-6 of this book, and the
recently released wartime developments of miniaturized vacuum
tubes may serve to direct further interest toward the pentode—
flip-flop circuit.

The pentode—flip-flop circuit has been incorporated into a
decade counter.?® This particular decade differs from others
previously described in that there are only five pairs of pentodes
constituting the entire decade ring; thus, we might classify this
as an r-pentode counter, modulo r (with the proviso that r be an
even number). This particular circuit is also interesting in that
its normal mode of operation is one in which there are r/2 con-
secutive pentodes in the conducting state and r/2 consecutive
pentodes in the cutoff state. (The two pentodes forming any
one pair are r/2 apart in the ring.) As opposed to the more
conventional counter ring, which has one element conducting
and 7 — 1 elements nonconducting, this may appear to com-

.plicate the read-out problem; however, a rather ingenious and
unambiguous visual read-out system has been developed for
this pentode ring, and doubtless the same principle could be
applied to the read-in and read-out problems which would arise if
such a ring were integrated into a complete computing machine.
This five-pentode-pair ring has been built and tested up to
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100,000 counts per second or more. It compares favorably with
the performance of the standard production models of triode-pair
decade counters (180,000 pulses per second), which were brought
to an advanced state of development for the ENIAC. More
recently this same circuit has been further developed,?®and it now
appears capable of achieving a speed of 500,000 counts per second.

It will be noted that all the foregoing decade rings operate
with a fixed direction for the progression of the count. This is
true for all the rings (r-triode, 2r-triode, r-pentode) except, of
course, for the trivial case of the binary counter. In general,
this is quite satisfactory for any type of computing machine,
since the forward direction can be made to serve for addition,
while a system of complements to the forward direction can be
made to serve for subtractive purposes. It is a relatively simple
problem to provide a few extra tubes for such a system of numbers
and complements; this is actually the method employed in the
ENIAC.®® However, it is possible to fabricate a ring which can
be driven either forward or backward. At least one such
device has actually been constructed; the choice of drive direction
in this ring was determined by the choice of which of two pairs
of input terminals received the input pulses.?® Since these
flip-flops and counter rings are now in a state of rapid develop-
ment, it is not possible to include here all the numerous finer
engineering points.

One more type of electronic counter should be included here,
although its use to date has been directed more toward a simple
counting device than as a component in a full-scale computer.
This is the decade scaler, or decade counter, which counts in the
decimal system, but not in a manner similar to previously
described counters (all of which embodied a closed ring or
chain of 10 electronic elements). This counter actually employs
a chain of four binary-system counters similar to the ones
described earlier in this chapter. These would, of course, nor-
mally count on a modulus of 2¢ = 16, but certain trick feedback
circuits are employed so that effectively six of the 16 stable
states are circumvented in one way or another, thus redueing
each chain of four flip-flops to what is actually a chain of decimal
counters. This type of circuit has been known for several
years;»18:26.41 geyveral manufacturers have brought out com-
mercial versions of these circuits. The principal merit of this
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modified-binary type of decimal counter as compared to the
more conventional ring of 10 lies in the lowering of the input
electrostatic capacity, which permits the circuit to achieve a
higher operating speed. There is also considerable tube economy
as compared to the 2r-triode ring when 7 becomes 10 or more.

Two other types of flip-flop might be included here for the sake
of completeness and because of the theoretical interest they hold.
Neither of them has to date achieved any acceptance in practical
computer application. The first of these is a standard cathode-
ray tube modified in such a way that the beam, instead of falling
on a phosphorescent screen, will fall on one of two collector
plates, where it will be picked up and used to control the deflec-
tion of the beam so that it continues to remain on this first col-
lector plate.®® By suitably arranging the geometry of the
various internal members and the external circuitry of the tube,
a satisfactory flip-flop element has been obtained. If there
were enough demand for such a tube, it would not be too difficult
to effect the necessary design and development work; such a tube,
however, does not appear to offer any great advantage over
presently available components, and there appear to be a number
of engineering disadvantages to such a scheme.

Another type of flip-flop may be built around the use of any
single tube which shows an inversion in its characteristic curve.
When such an inversion exists, it may be used to represent,
effectively, an area of negative resistance, and, with the proper
choice of operating conditions, this may be used to obtain the
necessary two stable states.’® However, these regions of nega-~
tive resistance are caused by phenomena such as secondary
emission, which is notoriously unstable and unreliable. This
type of tube does not appear to promise any major gain over
present conventional components.

3-9. Economic Considerations

Experience with the cost of existing and contemplated machines
(described in Chap. 10) does not serve as a very accurate guide
toward establishing a cost of the elementary components, because
the cost of the few existing equipments is intimately associated
with developmental charges and certain military considerations.
For this reason it appears best to look to other sources of data.
For the purposes of this estimate, we shall exclude EPDCC’s
of the elementary mechanical type. The cost figures for desk
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computers given in Chap. 8 may be taken as indicative of what
mechanical devices are likely to cost.

Manufacturers are presently engaged in making standard
models of electronic counting equipment on a limited scale.
The Radio Corporation of America is now producing a six-decade
decimal counter (operating on the modified-binary system
described in Sec. 3-8) which is capable of operating on pulses
spaced 1 million per second.?” This device is supplied with an
input for normal pulse counting or with a start-stop input control
which operates a self-contained, 1-megacycle, crystal-controlled
oscillator. The Potter Instrument Company is also producing a
Decade Scaler having only three decades (also modified-binary
type) but capable of a speed of only 200,000 pulses per second.?

In general, it may be stated that the cost of an elementary
flip-flop or a decade ring is not closely governed by the operating
speeds involved. This statement is approximately true over
quite a wide range of speeds: from about 100 cycles per second,
the limit of mechanical counters, to several million cycles per
second, the present limit of electronic counters. Speed require-
ments may dictate the choice of tubes involved and their asso-
ciated circuitry. So far as flip-flops and rings are concerned, the
choice of tubes and circuitry does not greatly influence the cost
of the over-all assembly, since labor appears to be by far the
greatest factor. For example, a top-speed modified-binary
decade employing four flip-flops (eight tubes plus a few extra
tubes) will have about as many tubes as a low-speed thyratron
ring of the conventional type. The two may, therefore, be
regarded as about equally expensive even though their operating
speeds may differ by a factor of over 100 to 1.

Labor is the principal item of expense per EPDCC. The use of
recently announced laborsaving techniques such as the printed
circuit may be expected eventually to reduce this; for example,
printed circuits have been accepted in fabrication of radios and
hearing aids.®. Their potentialities have not yet been exploited
in connection with high-speed computers. It is not unreasonable
to suppose that eventually the quantity cost per EPDCC may
be brought down to the neighborhood of $1.
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CHAPTER 4
SWITCHES AND GATES

4-1. Introduction

The basic operations of any digital computer are the ordinary
elementary arithmetic operations, addition, subtraction, multipli-
cation, and division, all of which can be performed on most of the
inexpensive desk computers as explained in Chap. 8. A principal
feature which distinguishes the organized digital computer
(described in Chap. 5) from a mere aggregation of desk com-
puters is the ability to switch data rapidly from one component
of the computer to another without the necessity of transeribing
the intermediate results to paper either by a hand process or by a
printing procedure. Other features are the speed with which the
individual operations are performed and the extent of the internal
storage. The most distinguishing characteristic, however, is
the ability to switch numbers, representing either intermediate
solutions or coded instructions, from one arithmetic or control
unit to another, between the arithmetic or control units and
storage, and between the storage and input or output equipment.
This chapter describes the various uses of switching equipment,
the various types of switching equipment which are presently
available or which may be developed and exploited in the near
future, and examples of the practical application of these switches
to portions of a complete digital computer.

In the subsequent discussion of such equipment, a much-used
type of switch is denoted as a gate. This is an on-off switch
in which the passage of one electrical signal is controlled by the
presence of one or more other signals which hold the switch on
or off.

4-2. Switch Functions in Computers

Switches and gating equipment are used in many places
throughout a digital computer, and, in fact, the same type of
equipment may be used in a number of different places in a
computer for widely different purposes. Each application of

32
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such a switch or gate, however, falls into one of three general
categories outlined below.

4-2-1. Data Switching. The Automatic Sequence Controlled
Calculator, or the Harvard Mark I machine, offers what is
probably the most easily visualized example of the switching of
data from one part of a machine to another.1® Briefly stated,
this device consists of a number of components including storage
registers, constant registers, and multiply-divide units, each of
which has both an input and an output circuit and a single
number-transfer bus. Kach elementary partial step in a com-
putation is carried out by connecting the output of one unit and
the input of another unit to the number-transfer bus. The result
attained is the transfer of the contents of one unit to the other
unit by means of the number-transfer bus. At any instant,
there is at most one output circuit and at most one input circuit
connected to the number-transfer bus. After this arithmetic
operation has been completed, another pair of registers may be
connected to the common number-transfer bus. The choice of
which units shall be so connected is made through other elements
in the machine (such as the main sequence tapes, which are more
fully described in Chap. 10). The actual means of carrying out
the connections, disconnections, and reconnections is to be found
in a large bank of electromechanical relays.

Much the same sort of data switching may be found in other
types of computing machinery. In the ENIAC, for example,
instead of just one such bus there are several number-transfer
busses, so that elementary operations previously described may
be carried out simultaneously in various parts of the machine.>!!
However, the net effect is that each individual number-transfer
bus may have connected’to it at any instant at most one output
circuit and at most one input circuit. In the EDVAC there is
again a single number-transfer bus.!?

4-2-2. Data Conversion. It frequently happens in computers
that data must be converted from one representation to another.
An example is the ENIAC, in which data are sometimes stored
statically in vacuum-tube circuits and transmitted serially in
trains of pulses. The conversion is one in which a given number
represented on the ring counter (the digit 7 represented by the
seventh flip-flop in the ring, for example) is transformed into a
train of (seven) pulses for transmission to some other part of the
equipment, such as another ring.
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4-2-3. Signal Preservation. A large number of high-speed
switches or gates are employed in computing machines for
purposes which have nothing to do with the actual arithmetic
operations; they are required solely for signal preservation by
pulse shaping. This application of gating circuits is to be found
only in high-speed computers; such devices as the Mark I and
Mark IT computers and the Bell Telephone Laboratories and
IBM relay computers are limited by physical inertia rather than
electrical signal distortion.

Since discrete values are represented by the presence or
absence of pulses in various parts of digital computers, it is
obvious that the identity of the individual pulses must be
properly preserved. In a conventionally designed machine,
the pulses are of proper size, shape, and timing at the time and
place originated. However, after traveling through a long cable
for transfer to some other part of the computer, or after being
operated upon in a device such as an adder, or after being
temporarily stored in some memory equipment, these pulses
may undergo considerable deterioration unless proper steps are
taken to reestablish their original form. The pulses may not
only be diminished in amplitude (a situation corrected by the
insertion of an amplifier), but also may be delayed in time of
arrival or spread out on the time scale to such an extent that they
may give a false representation of the digital value involved.
Electronic gates offer the means for overcoming this undesirable
situation. A gate may be used to allow a standardized master
pulse, which is continuously generated and available throughout
the computer, to be combined with the distorted signal in such
a way that a properly timed and shaped portion of the distorted
signal is selected by the master signal, ‘and this selected portion
is then passed on to the rest of the equipment. This type of
signal preservation or pulse standardization is required.in all
machines which use pulses spaced 10 microseconds apart or less.
In order to achieve reliable operation with a high-speed digital
computer, this pulse standardization is inserted at frequent
locations throughout the machine.

4-3. Types of Switches

Four types of switches, including vacuum-tube gates, are
presently used in computers. These types vary widely in cost
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and speed of operation; each is suitable for one or more particular
purposes.

4-3-1. Nonautomatic Switching. Nonautomatic switching is
characterized by cable connections and electrical switch settings
which are manually adjustable; they are set up initially for a
problem and are not altered during its run. Only the simplicity
of this type of switching allows its inclusion here since it is
incapable of being operated by any other part of a computer.
A number of such plug connectors and hand-set switches are
used for the insertion of constants in the Mark I and ENTAC.
In the ENTAC there are a number of plug connectors for setting
up the operations of a problem. Such preset switches and cables
constitute a form of storage of the lowest order. In the ENIAC
the various units are permanently wired to do the specific opera-
tions of addition, subtraction, multiplication, division, taking
the square root, and looking up function values.* The particular
operations which these units perform in a given problem and the
order in which they do them depend to a great extent upon how
units are interconnected by the various cables and how the
manual switches are set. With a machine of this type, the setup
time is so long that it can be operated profitably only if it is
called upon to handle a large number of similar problems which
can all be run on a single manual setup. This is true of the type
of problem which the ENIAC was designed to handle.

4-3-2. Electromechanical Relays. The electromechanical re-
lay exists in a wide variety of sizes and shapes. It is essentially a
metallic switch, or several switches, which can be operated by an
electrical signal. A relay includes an electromagnet which
receives an incoming signal to operate or not operate. When the
signal to operate is received, the coil is energized, and a nearby
piece of magnetizable material called the armature is attracted
and moves toward the coil. This motion, by means of a mechan-
ical linkage, causes an assembly of contacts to open or close.

There is almost no limit to the arrangements possible with
these contacts. For example, the contacts of a single relay may
be made so that in one operation they will close certain circuits,
open others, or transfer a circuit from one place to another. The

* This statement is true of the machine as originally used. The philos-

ophy of programming the machine has been altered since then, as
explained in Chap. 10, to make the machine more versatile.
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removal of the input signal from a simple relay will deenergize
the coil, and a spring will cause the contacts to return to the
original position. Some relays are provided with mechanical
or electrical latches which effectively maintain the contact in the
operating position until a reset stimulus arrives through a'differ-
ent circuit. There are other relays, popularly called stepping
switches, which must receive a series of alternate operate and
nonoperate stimuli before returning to the original state. These,
too, have limited application in computing equipment. For
most computing purposes, -however, the most useful type of
relay is one which is capable of closing a number of electrical
circuits when operated and reopening them when the operate
signal is removed. Small relays have been designed for closing
or for transferring 6 to 12 independent electrical circuits, and
these are used effectively in the Mark I and Mark II machines.

Since the operation of this type of relay is mechanical, a
considerable length of time must elapse from the instant the relay
coil is energized until contact is made, even though the distance
traveled may be only a few hundredths of an inch. Six- and
12-contact relays of the type mentioned are capable of operating
reliably in about 15 milliseconds. Recently a number of relays
capable of operating in 1 to 2 milliseconds have been announced
by a relay manufacturer,’® but these high-speed mechanical
relays tend to be limited to one or two circuits. The wire-brush
relay used by the IBM Company has an operating time of
3 milliseconds and can operate eight contacts. The speed limita-
tion of an electromechanical relay is a fundamental one, and it
does not appear that an inexpensive mechanically operating
relay can be produced which will overcome this limitation.

Despite the limited speed of the mechanical relay, there are
a number of significant advantages to this device. First, the
relay is nearly a perfect switch; 7.¢., when the contacts are closed,
they offer practically zero resistance to the passage of current,
and when they are open, they offer an extremely high resistance.
Second, as compared to electronic equipment of equal cost, the
relays are capable of handling far more current. Also, one relay
can handle 10 or more contacts. Therefore, a relay is attractive
to a circuit designer because of its economy, relatively small size,
and the large number of combinations of circuits which can be
switched with a single relay.
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Some relays are used in electronic computers in locations
where speed is of lesser importance, e.g., in the reading of input
information and its transfer to internal storage, or in the removal
of data from internal storage to an output printer. There are
numerous noncomputational requirements for relays in com-
puters, such as in the control of power supplies, ventilators,
ete.

4-3-3. Vacuum-tube Gating Circuits. An electronic gate is a
circuit with a single output and two (or more) inputs so designed
that an output signal is produced when, and only when, input
signals are received on both (or on a particular set of) input leads.
Such circuits are variously known as gates, coincidence circuits,
Rossi circuits, or logical and circuits.

Figures 4-1a, b, and c illustrate three types of gating circuits.
All perform the same operations and differ only in structural
details and the polarity of signal required to operate them. All
three of these circuits operate with nearly equal speed and are
adequate for machines now in existence or presently contemplated.

Fia. 4-1a. Dual grid gate.

The simplest electronic gate employs a single tube which has
two or more input grids. Tubes such as the 6SA7 and 6L7 are
widely used in radio communications for frequency mixing;
they may be used in a circuit such as shown in Fig. 4-1a to form
an effective and reliable gate. Except when input signals are
applied, the two input grids are negative with respect to the
cathode and the tube is therefore cut off. If either grid is driven
positive, the condition remains substantially unaltered. How-
ever, if both grids are simultaneously driven positive, the full
electron current begins to flow, and the plate takes a large nega-
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tive swing which appears as an output signal. (The similarity
between this circuit and the pentode-coupled flip-flop, Fig. 3-8, in
which plate current could flow only when screen and control grids
were simultaneously positive, should be noted.) One advantage
of this circuit is that only a single tube is required. This single-
tube circuit has the disadvantage that the two grids of conven-
tional tubes do not have equal cutoff potentials; hence the two
input grids are not strictly interchangeable.

Figure 4-1b illustrates a Rossi circuit modified so that it is
suitable for computing purposes.® In this circuit there are two
tubes, possibly in the same envelope, the plates of which are tied

B+
OUTPUT ¢
+PULSE
INPUT A INPUT B
—PULSE ' —PULSE

- ff

Fi1a. 4-1b. Rossi circuit, or parallel gate.

together and fed through a single plate resistor. Both grids are
normally positive with respect to the cathodes; the tubes are
therefore conducting (as shown). Circuit parameters are so
chosen that either of the tubes is capable of drawing all the plate
current supplied by the batteries and plate-resistor combination.
Thus, if one tube receives a negative input signal, the output
voltage at the common plate connection rises very slightly.
However, if both input circuits simultaneously receive negative
pulses, then neither will draw current, and the output voltage
will rise abruptly to the full plate battery potential. This is the
action desired. The input stimuli are negative pulses, and the
output (upon coincidence) is a positive voltage rise, in con-
tradistinction to the multigrid-tube coincidence circuit previously
described. The necessity for proper polarization of input signals
is characteristic of all electronic switching equipment. It is
obvious that a large number of switches may not be cascaded
unless proper attention is paid to the polarity of the input pulses
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and the resulting polarity of output pulses which are to be used
elsewhere as inputs.

In computing machines the two-stage circuit illustrated is
generally adequate for most purposes. However, it is possible to
extend this multitube coincidence circuit further; coincidence
circuits with as many as 100 input stages have been successfully
built and operated. Where only two input circuits are required,
it is possible to use two simple triodes, which are readily available
in a single envelope. For coincidence circuits involving a large
number of input stages or for those which demand the ultimate
in operating speeds, the more elaborate pentode is preferred.

A circuit which apparently has not been used to date in com-
puting machines, but one which merits consideration in the

INPUT INPUT
~ PULSE "B _puLSE
OUTPUT
¢ puLse

II

Fia. 4-1c. Common cathode gate.

design of future equipments, is shown in Fig. 4-1c. This is a
combination of the gating circuit with the cathode follower.*
This circuit is similar to Fig. 4-1b except that the common load
resistance is changed from the plate to the cathode circuit. In
the normal condition, both tubes are conducting. The values of
the common cathode resistor and the bias-battery voltage are
such that, with the tubes conducting, the cathodes are positive
with respect to ground. If the input stimulus in the form of a
negative voltage arrives at one grid, it will serve to cut off this
one tube. As in the previous case, this will have only a trivial
effect on the potential of the common cathodes or output circuit.
However, if negative signals arrive on both grids, then both tubes
are cut off, cathode current ceases to flow, and the output-circuit
potential drops. An important feature of this circuit is that the
polarity of the output signal is the same as the polarity of the
input signals, thus providing the possibility of cascading a
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number of such circuits. This gate has the important advantage
of any cathode-follower circuit in that it presents a considerably
lower output impedance to the next circuit. This is an important
consideration if the next unit in the computer is at a considerable
distance and must be connected by a length of cable with a
resulting high electrostatic capacity. This circuit and also the
one of Fig. 4-1b can have identical tubes at each input and hence
can be made with input leads which are interchangeable.

INPUT A PULSE
PULSE STANDARDIZER OUTPUT
o
¢ -PULSE
Ry >>R,
INPUT ‘ PULSE .4_5.
‘PULSE STANDARDIZER

Fie. 4-2a. Resistance grid gate.

4-3-4. Resistor Matrices and Diode Matrices. Attempts have
frequently been made to simplify the electronic gating circuit by
using pulses of equal size in a matrix of resistors or nonlinear
elements such as crystal rectifiers. An elementary example of a
resistor gate is shown in Fig. 4-2a. In this circuit the pulses
must first be rigorously standardized as to size. In the example
shown, the presence of a pulse is indicated by a potential of 20
volts. The common junction point which feeds the grid circuit
of the output tube may thus assume a potential of 0, +10, or 420
volts, depending on whether zero, one, or two pulses arrive on the
two input circuits. If the cathode is maintained at a potential of
-+15 volts by the batteries shown in the elementary configuration,
the relative grid-cathode potential will be negative for the cases
of zero or one input signal and positive only when two input
signals are simultaneously present. In the latter case, plate
current is permitted to flow and produces an output signal in the
form of a negative pulse. By properly rearranging the circuit
parameters, it is possible to cause this circuit to operate in the
opposite fashion so that the coincidence of negative input pulses
will produce an output pulse of positive polarity. This circuit
works dependably with two input points and reasonably well
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for slightly larger numbers. With a number of input circuits =,
the threshold between operation and nonoperation is only the
difference between (n — 1)/n and 1. This precludes its use for
values of » much larger than 5. Precisely the same limitation
was found to exist in the r-triode counter, modulo r, described in
the previous chapter. Furthermore, the circuit described fails to
afford any significant economy over the ones illustrated in Figs.
4-1a, b, and ¢, because of the number of accessory tubes required
to standardize the amplitude of the input signals.

A considerable improvement in matrices can be obtained by the
use of miniature crystal rectifiers,®?? which were brought to a

Bt
> E VOLT
PULSES
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+ H—— R2 D) Ry

CURRENT FLOW‘ CONVENTION
F1c. 4-2b. Diode-coupled grid gate.

state of perfection for radar application during the recent war.
Each of these diodes or crystal rectifiers contains a small piece
of some semiconductor, such as germanium or silicon, with which
contact is made by a small sharpened point, or cat whisker.
Such a device presents a unilateral impedance. It is capable of
carrying a small current in one direction while resisting up to a
limit the passage of current in the reverse direction. A circuit
similar to Fig. 4-2¢ is shown in Fig. 4-2b in which the pulse
standardizers and resistor pair are replaced by two of these
crystal rectifiers. A negative potential on either of the two
crystals will hold the grid of the output tube below cutoff.
However, if both crystals are simultaneously driven positive,
they effectively disconnect their input circuits from the common
connection point to the grid, thereby causing the potential at
this point to rise, allowing the output circuit to conduct. Here,
again, the circuit parameters may be rearranged so that negative
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input signals are used and a positive output signal is obtained.
The main improvement afforded by the crystals is the snap
action of the potential change at the common tie point. This
common point assumes one potential for both zero and one input
signal and changes to its two-input potential only when two
input signals are received.

It is possible to expand this circuit to a large number of inputs
since the snap action is obtained only when all inputs are driven
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Fia. 4-3e¢. Binary to octal converter. For any one of the eight possible
combinations of three on-off switch positions one, and only one, of the eight
output terminals will have a positive voltage; each of the other seven will be
grounded through one or more of the diodes.

in the proper direction. The main disadvantage of such crystal
circuits is the relatively small amount of power which they are
capable of handling. In practical application, an amplifier tube
will usually be required to restore the power level after each
diode array. However, for some applications with a number of
diode switches at the same location, it is possible to defer this
amplification until after several stages of crystal diodes.

An example of such a situation is shown in Fig. 4-3a. This
diagram represents a hypothetical converter which could be used
for translating a number from binary to octal notation. The
number 7 is shown on the binary keyboard on the left-hand side
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of Fig. 4-3a as 22 + 2! + 20 The row of terminals labeled 1 to 7
at the bottom of the diagram represents those digits in the octal
system. It can be seen that every one of these terminals, except
7, is grounded. The seventh terminal is the only one on which
the voltage from the positive battery supply will appear.

Figure 4-3b illustrates a translator which operates in the
opposite direction. The input switch is set on number 7.
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Fic. 4-3b. Octal to binary converter. For each one of the eight possible
switch positions a different combination of output leads will be energized.

It can be seen that all the on leads for the binary output are
energized. It can also be seen that if the switch were on any
of the other octal numbers, 0 through 6, one or more of the on
leads corresponding to some power of 2 would be grounded
through the octal input switch.

There is some inherent limitation to the rate at which pulses
can be passed through a diode matrix; this is due primarily to
the time constants of the diodes themselves. For computing
applications, however, this limitation need not be considered a
material design factor.
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4-4. Inverse Gates, or Buffers

The gating circuits discussed in a previous paragraph are
frequently described as being the electronic expression of a logical
and; 1.e., the output terminal C produces a signal only when the
two input terminals A and B receive signals simultaneously.
In computer design there is frequently a need for a circuit which
functions as a logical or, to supply an output if either 4 or B is
signaled. These logical or circuits are referred to as anti-Rossi
circuits, isolating circuits, or simply buffers. The term logical
or is used in the sense that A or B includes A and B.

The difference between such a buffer and the gates previously
described is simply the interchange of the electronic states repre-
senting the normal, or stand-by, condition and the operate
condition. For example, the single-tube gate of Fig. 4-la can
be changed to a buffer merely by biasing both grids positively
and furnishing input signals as negative pulses (the reverse of
the gate conditions). Then, if either input is signaled, the plate
current will be terminated and a positive output signal will
result. This same transformation from gate to buffer can be
effected on any of the other circuits, Figs. 4-1b and ¢ and 4-2b.
The only engineering difference between a gate and a buffer is
in the amount of energy dissipated during the stand-by periods.

At first glance it may appear that the same results can be
achieved by connecting both A and B to C so that either 4 or B
can send a signal through to the output C. TUnfortunately
such an arrangement also connects A and B together in a ‘‘sneak
circuit”’ having definitely undesirable results. For example,
pulses originating at A and destined for C via a simple Y con-
nection also flow into B, where they are either dissipated entirely
or injuriously affect the apparatus connected to input B. The
buffer connection eliminates this possibility.

Buffers are commonly used in the input circuits of an elec-
tronic register, e.g., in the decade rings of a device like the
ENIAC. Here it is necessary to be able to step the ring from
any of three inputs, a normal input, a carry-over from the decade
of the next lower order, or a read-out input consisting of a series
of 10 cycling pulses used to cycle the ring once for read-out. A
three-input logical or circuit is used to accomplish this, although
it is difficult to point to precisely the three tubes which constitute
the buffer since this function and certain gating operations are



SWITCHES AND GATES 45

combined in some of the tubes. The combination of functions
is common when pulses traverse gates and buffers alternately,
because a buffer may be inherent in the circuit so that additional
tubes are not required for circuit isolation. An example of such

OQUTPUT IMPULSES

A i —=—Ag
INPOT INPUT
. +IMPULSES 1 + IMPULSES
|- J—— ~—B2

Fia. 4-4. A combination of and and or circuits.

a circuit is Fig. 4-4, in which the output circuit will respond if
inputs A, and B; are energized or if A, and B, are energized (or,
also, if both combinations are energized, ‘“or’’ being used to
include. “and”’ as stated above).

4-5. Assemblies of Gates, Buffers, and EPDCC’s

. Combinations of gates and buffers with the EPDCC’s described
in Chap. 3 make possible a complete device capable of carrying
out an elementary arithmetic operation (addition or subtraction).
In the descriptions which follow, three examples are given in
order of increasing complexity. Each involves high-speed
electronic techniques which permit a complete addition in less
than a millisecond, and each performs decimal arithmetic. These
simple examples illustrate principles which are used in large-scale
computing machines.

4-5-1, A Single-digit Adder. In the upper part of Figure
4-5a is a gate—flip-flop combination. The flip-flop opens the gate
when a stimulus is applied on the set lead into the flip-flop. A
stimulus on the reset lead closes the gate. The master oscillator
generates a continuous stream of pulses at some convenient fre-
quency such as 100 kilocycles. The decimal pulsing counter
is a modulo 10 ring (of the 20-triode type, for example).

A start signal causes the flip-flop to open the gate. The stream
of pulses from the master oscillator is permitted by the open
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gate to reach the pulsing counter and also to follow the lines
shown in the diagram to other parts of the circuit. The decimal
pulsing counter counts exactly 10 pulses, going through one
complete cycle in doing so. When it.reaches zero again, the
tenth stage, it generates an impulse on the resef input to the flip-
flop. This closes the gate, suppressing the passage of the 11th,
12th, and succeeding pulses from the master oscillator. In
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F1e. 4-5a. An idealized single-digit decimal adder.

short, the upper part of Fig. 4-5a illustrates a device for
introducing exactly 10 pulses on a pulse bus each time a start
signal is received. .

Let us consider the use of this circuit in solving a simple
single-digit decimal addition problem involving no carry-over.
Suppose it is required to add the single-digit decimal numbers 3
and 5. First, the addend, 3, is stored in the decimal addend
register, which is a ring counter of the type described in Chap. 3
which can be set to represent a particular digit. The number 3
is stored in this counter simply by setting the counter on its
third position.

The accumulator shown in the lower left-hand corner of Fig.
4-5q is a similar ring counter, in which the augend 5 is stored.

The start signal, as described above, permits 10 pulses from
the master oscillator to be introduced via the bus to the addend

<¢
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register and to the gate labeled gate (plus). This gate is closed,
however, at the beginning of the operation. The pulses therefore
do not enter.

The addend register, as indicated above, was set on the third
step of its cycle prior to the introduction of the train of 10 pulses.
The first seven pulses in the train advance it through the rest of
its cycle to zero. When the register transfers from the ninth
step to zero, it opens the gate labeled gate (plus). With this gate
open, the last three pulses of the train of 10 reach the decimal
accumulator, where the number 5 has already been stored.
These three pulses advance the accumulator from 5 to 8, which
is the required sum.

At the close of the operation, therefore, the sum is read from
the accumulator where the augend had originally been set. 3, the
number set into the addend register at the start of the operation,
appears there again at the close of the operation, because 10
pulses have produced a complete cycle of this register, returning
it to 3.

For subtraction, another gate—flip-flop combination is pro-
vided, as shown by the dotted lines of Fig. 4-5a. Suppose it is
required to subtract 3 from 5. 3, which is the subtrahend in this
example, is set into the same register in which it appeared in the
preceding example as the addend. 5, the minuend, is set into the
register used for the augend in the addition example. The start
pulse opens the subtract gate labeled gate (minus). It also causes
the gate leading from the master oscillator to the counter to be
opened. -The first seven pulses reach the accumulator via this
gate, cycling it from 5 to 2. This gate is closed after the seventh
pulse has passed, just as the gate (plus) was opened in the preceding
example. The required difference, 2, is thus obtained in the
accumulator by a process which amounts to the addition to
5 of 7, the 10’s complement of 3. (The carry-over is disregarded.)

In practice it is very difficult to operate a counter in the fashion
described. Close timing is required when the register counter
switches from 9 to 0 because the same signal which effects this
advance in the register must also be routed through the proper
add or subtract gate. For this reason the elementary con-
figuration shown is not actually used. Instead, a separate
source of pulses is used to drive the add or subtract gate, and this
stream is delayed slightly in relation to the series of pulses which
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drives the register. These two streams of pulses are accurately
synchrohized, and the delay is held constant within close limits.

If this system is expanded to handle more than one decade,
it is necessary to use complements with respect to 9 instead of 10
in all but the last decade in order to carry out subtraction. How-
ever, the register counter requires 10 pulses in order to effect a
complete cycle. For this reason the register in a practical
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Fig. 4-5b. A practical decimal adder element.

machine is driven by a series of 10 pulses while the gates leading
into the accumulator are driven by series of 9 pulses which are
synchronized with the spaces between the 10’s pulses. No
matter how complex the computer, however, only one standard
pulse generator is needed to drive everything else. With a
source of accurate 10’s pulses and synchronized interspersed 9’s
pulses in the computer, an elementary single-digit adder resembles
the device shown in Fig. 4-5b. In this figure the 10’s pulses are
routed to the register as before and cause this device to cycle
once around. The 9’s pulses meanwhile are reaching the two
.gates associated with the flip-flop. One of these gates is closed
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from the time the start signal is received until the register transfers
from 9 to 0, whereupon it opens. The other gate, which is used
for subtraction, does the opposite. Two additional gates are
shown, one each for addition and subtraction; one of these two
~ is kept open throughout the operation and causes the operation
to be either addition or subtraction. The outputs of these two
gates are buffered together and brought to the input of the
accumulator. The accumulator thus receives either the contents
of the register (add) or the 9’s complement of the register contents
(subtract). This arrangement of pairs completely avoids the
difficulty of having a set and a reset pulse reaching the flip-flop
at almost the same time when the register flips from 9 to 0.
This is essentially the scheme of operation of the register-
accumulator connections for a single digit in the ENIAC, which
will be described more completely in the third example. The
example just given shows the use of gates for data switching
(i.e., switching streams to indicate add or subtract) and for data
conversion (the pulsing of the register by the 10’s pulses to con-
vert the register contents to pulses).

4-5-2. An Elementary Parallel Adder. The second example
illustrates a method for handling multiple-digit numbers, which
involves carry-overs. This method is not the most efficient
but will serve for the purpose of illustration. The combination
of units shown in Fig. 4-6 can add two three-digit decimal
numbers and perform the required carries. It can also take the
difference by means of 9’s complement addition. In this example
let us assume that 379 is stored in the register and 468 is stored
in the accumulator. They can be stored by the use of the settable
counter or by first setting the counters to 000 and pulsing each
digit ring the appropriate number of times. For addition, three
distinet operations are involved. TFirst, the units ring of the
register is cycled with the 10’s pulses as described in the previous
example, and the output is used to control the add gate routing
the selected pulses from the stream of 9’s pulses into the units
ring of the accumulator, thereby setting this ring to its new
value (7). Meanwhile, another flip-flop connected to the units
ring of an accumulator takes cognizance of the fact that this
ring has passed from 9 to 0 in the process of bringing up the 7,
and it serves to open a special carry gate. After the stream of
10 pulses has been completed, a special 11th pulse is sent to the
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carry gate. Since this gate is open because of the carry-over,
the 11th pulse can enter the 10’s ring of the accumulator. The
11th pulse is supplied by the same master pulse-generating equip-
ment which supplies the 10’s pulses and the 9’s pulses, and it is
properly phased with them. So far the digit 9 has been added
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F1c. 4-6. A multiple-digit decimal adder.

to the numbers 468 in the accumulator and has produced the
new number 477, which is correct, including the handling of the
carry-over. The entire process is repeated except that the next
stream of 10’s pulses is routed into the 10’s ring of the register,
where they serve to rotate the 10’s ring of the accumulator by an
appropriate amount, and the 11th pulse again causes a carry-over,
this time into the 100’s ring of the accumulator. One more
repetition of the process on the 100’s ring of the register com-
pletes the entire operation, and the number 847 stands in the
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. accumulator. Switching of the input streams of 10’s and 9’s
pulses would be accomplished by additional gates.

On a desk machine, subtraction is carried out by running the
machine wheels and carry backward. For a machine involving
electronic counter rings this is not convenient, and some scheme
which has the same effect must be sought. Except for carry,
it would suffice to turn each ring forward a number of steps equal
to 10 minus the digit appearing in the subtrahend. When carry
is taken into account, it turns out (as every desk-calculator
operator knows) that the lowest order digit which differs from 0
is complemented with respect to 10, the higher order digits are
complemented with respect to 9, and the zeros at the low end of
the number, if any, are left unchanged; the resulting number is
added to the minuend, and the final carry to the left is ignored.
(The term complemented with respect to 10 means that the digit
is replaced by the digit to which it must be added to give the
number 10.) Thus to subtract 3,790 from 4,681, the comple-
ment of 3,790 is written 6,210, and this is added to 4,681, ignoring
the final carry, to give 0,891. Since the position of the digit to
be complemented with respect to 10 depends on the number being
complemented, this method is not easily applicable to automatic
machinery. An equivalent scheme results from noticing that
the complement obtained in this fashion exceeds by 1 the number
which would be obtained by taking the 9’s complements of all
digits. Subtraction on many machines including the ENIAC
is carried out in this fashion: the 9’s complement of the subtra-
hend is added to the minuend, ignoring the final carry, and 1 is
added to the result. Thus, for the example above, 6,209 would
be added to 4,681, ignoring the final carry, to obtain 0,890, and 1
is added to the result to obtain 0,891. The correcting pulse
which is used to add 1 may initiate some carry-overs. There-
fore, after it occurs, it is necessary to operate each of the special
carry gates once, beginning with the one of lowest order. Alter-
natively, the digit of the lowest order might be corrected immedi-
ately after adding the complement of the lowest order digit in
the register. No net gain would result from this scheme since
the same amount of time would have to be consumed when
pulsing the digits of high order.

Some improvement in the scheme of addition and subtraction is
realized when carry-over is accomplished while cycling the
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counters, thus eliminating the need for an 11th pulse to follow
later. Thisis analogous to the scheme used on ordinary mechani-
cal counters, in which the input directly turns over the number of
wheels required. The elementary parallel adder s a compara-
tively slow device since it is capable of handling only one digit
at a time. Thus, in the example cited, an addition takes 30
pulse times. In general, if the machine is handling numbers of m
digits on the radix r, the total time for addition in this type of
device is mr. This becomes an appreciable factor if m is 10
or more. The more advanced type of parallel adder described in
the following example is faster.

4-5-3. An Improved Parallel Decimal Adder. The method of
addition employed in the ENTIAC requires the simultaneous
use of two complete accumulators and furnishes an example of
an elaborate usage of gates, buffers, and EPDCC’s. Altogether,
each accumulator decade requires the use of 45 tubes (actually
contained in 32 envelopes) to carry out the functions of addition,
subtraction, carry-over, accumulative carry, and clearing, plus
a number of necessary electronic operations of no direct arith-
metic importance. Thus, to carry out a simple addition (or
subtraction) of two 10-digit decimal numbers, 900 tubes are
required for digit accumulators and another 14 for plus-minus
sign indication. This does not include the common pulse-
generating equipment and the program controls which bring
these accumulators into play.

Figure 4-7, a block diagram of a single ENTAC accumulator
decade, illustrates the functions of the various tubes. One
decade ring is used to store each digit of the addend and one to

“store each digit of the augend and later the sum. The former
unit is in the transmit condition and the latter in the receive
condition. In addition to the 20 tubes of the decade ring itself,
there are the following components listed by identification
number:

1. Buffer for cycling the ring when the accumulator is used to
transmit a number (add or subtract).

2. Gate for receiving pulses when accumulator is receiving.

3, 4, 5, 6. Pulse standardizer and driver tubes to drive the
ring on any operation.

7. Gate for control of carry-initiating signal.
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8. Gate for synchronizing the timing of the carry and for
resetting the carry flip-flops.

9, 10, 11, 12. Flip-flop and associated gates for remembering
when a carry is required and for implementing the carry
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Fic. 4-7. ENIAC accumulator.

when signaled by tube 8. Also used on transmit to produce
the add pulses and the 9’s complement pulses from the 9’s
pulses.

13, 14. Gates used to choose sum or difference for output.

15, 16. Amplifiers.

17, 18, 19, 20. High-power output buffers to permit the con-
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nection of many accumulator transmitters to a single
number-transmission bus.
21, 23. Amplifier and gate for the control of a single carry.
22, 24. Same for accumulative carry.

The improvement afforded by this arrangement is the increase
in speed realized by having all decades of an accumulator pulsed
simultaneously rather than in the sequential manner indicated
in the previous example. Theoretically, this addition should
require m + r cycles (as compared to mr machine cycles for the
example previously discussed) in order to handle the possibility
of as many carries of an m-digit number of radix r. The ENTAC
actually requires 2r machine cycles for any value of m up to
the maximum possible value 20. This is caused by the provision
of two complete independent carry circuits on each decade, one
for ordinary single carry and one for the accumulative carry
(in which one carry may originate another, such as the addition
of 00 ---001 to 99 - - - 999). In the block diagram of
Fig. 4-7, a single carry would flow through gate 8 and tubes 21
and 23 to the decade of next higher order. If this should create
another carry, it will flow through 3, 4, 5, 6 of the next decade
to the input of the ring (flipping it from 9 to 0), and gate 7 will

- cause this same pulse to pass without further delay directly to
22 and 24 and thence to the next higher decade. The timing of
the 10’s and 9’s pulses is as described in the earlier example and
constitutes the first half of an addition time. In the second half
the carry-over tubes 23 and 24 are opened, and gate 8 is pulsed by

" a reset pulse. Sufficient time must be allowed to permit an

accumulative carry of maximum length and to terminate this
operation and initiate the next one. The total time for both

halves is 200 microseconds. The timing of the ENTAC as a

whole is controlled by 20 pulses generated by a cycling unit in
which a master oscillator, a 20-stage ring, and numerous gates
and signal shapers all combine to produce a set of standardized
pulses which are made available throughout the entire machine.
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CHAPTER 5
A FUNCTIONAL APPROACH TO MACHINE DESIGN

5-1. Introduction

In the design of a general-purpose digital computing machine,
it is necessary to organize elementary potential digital computing
components, switches, and gates into a device which can receive
input information and operate upon it in a specified manner
according to chosen systems of arithmetic and numerical analysis.
The operations performed are initiated by information derived
either from the data-input system or from the results of the
arithmetic computation within the machine. This information
is used to select specific commands from a group of operational
commands which control the process of computation. The
number of operational commands available and the extent of
facilities for storage should be large enough that the arithmetic
computations within the machine can be performed expedi-
tiously. At the same time a minimum of circuit complexity
is desired.

An example of a typical arithmetic problem is presented in
the following paragraphs. Several approaches to its solution,
each demonstrating a method suitable for use with a machine of
different capabilities, are set forth. The exposition is intended to
show how a machine which can perform only a few simple arith-
metic operations, in accordance with correspondingly simple
instructions, can be made to solve a typical problem by following
a set of explicit instructions. It is intended to show, also, that
the arithmetic techniques to be followed in solving a particular
problem efficiently on any given machine must be selected with
regard for the capabilities of the machine. Conversely, when a
new machine is to be designed, a consideration of its intended
uses, i.e., of the kinds of problems it will be asked to solve, is of
obvious importance in deciding what arithmetic operations it
should be designed to perform.

56



TaBLE 5-1

k z y x? y? 2?2 4 y? %__ly? 2u u w - U, u?&:l Tt
1 .0000 | 0.0000 .0000
2 .0054 | 0.0029 .0054
3 .0100 | 0.0065 .0100
4 .0138 | 0.0079 .0138
5 .0201 | 0.0134 .0202
6 .0326 | 0.0201 .0328
7 .0459 0 .0300 .0464
8 .0238 | 1.0634 .0259
9 .0194 | 0.0802 .0225

10 .0127 | 0.0889 .0166
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5-2. An Example

Suppose z and y denote two measurable physical quantities,
such as the orthogonal components of a velocity which varies in
magnitude and direction but remains at all times in the plane
of x and y. A large number of measurements of corresponding
values of z and y have been made. The problem is to compute
the scalar magnitude of the velocity vector for each pair of «
and y values, 7.e., to compute the square root of the sum of the
squares of corresponding z’s and y’s. Table 5-1 contains 10 such
pairs of values of the measured quantities, in columns headed
2z and y. This table contains also the value of u, where

= VEFP

for each pair of z and y values. The meaning of each of the blank
columns in the table will be made clear shortly.

Suppose the values of u are to be obtained by means of cal-
culations performed on a desk machine which can perform
addition, subtraction, multiplication, and division directly but
has no automatic device for extracting the square root of a
number. To obtain the square root of x? 4 y?, therefore, some
method of approximation will be required. (Chapter 7 dis-
cusses such methods, and Chap. 8 contains a summary of the
properties of various commercially available desk calculators;
no detailed discussion of either of these topics is of primary
importance here.) Let us also suppose two additional factors:
(1) the value of y shown in the table for the first measurementis
known to be exactly zero as a consequence of the way the experi-
ment was run, and (2) the measurements were made frequently
enough so that succeeding values of u are known to lie close
together. Because succeeding values do lie close together, each
computed value of w may be used as the assumed value in the
next step of the computation. w, the kth value of u, may be
found by using the formula

w ~ [(x? + v?)/wra] + ur—y
L 2

The detailed instructions for ecarrying out the computation
expressed by this formula may be given to a machine operator
in the following form:



A FUNCTIONAL A}’PROACH TO MACHINE DESIGN 59

1. For measurement No. 1 copy the number z into the column
headed w.

2. For each of the other measurements, in order, multiply the
number z by itself; add to the product, without removing
it from the machine’s register, the product of the number y
multiplied by itself. This leaves 2% 4+ %% in the product
register.

3. Clear the quotient register, leaving the accumulated product
in the machine, and divide this product by the entry in the
% column computed for the next earlier measurement, or
Uk—1.

4. Transfer the quotient to the product register and add to it
the entry from the % column computed for the next earlier
measurement, ug_i.

5. Clear the quotient register and divide the number in the
product register by 2; write the result to four decimal
places in the column headed w.

5-2-1. Variations in the Method. In following the set of
instructions given above the operator had to fill in only the
answer column, headed u, in Table 5-1. The use of the other
columns is illustrated below in an example of the solution of the
same basic problem on a different calculator. Variations in the
arithmetic techniques and, consequently, in the program of
instructions are required because this calculator is not capable
of performing all the operations contained in the foregoing pro-
gram. Analogous variations are required when the same basic
problem is handled on two different large-scale machines.

At the end of step 2 in the calculation described above, the
quantity z2 + y? had been built up in the productregister. The
process of building it up depended upon the ability of the machine
to multiply and to accumulate products. It might be more
convenient to build a machine which would not accumulate
products. In this case, if the machine could multiply, add, and
divide, but all in different components, it might be necessary to
write down the quantities #?, 2, and z? + y? as they are com-
puted so that they can be reinserted in the proper places in the
machine at the desired time. For such a machine, the procedure
would be modified in the manner stated before the directions
were.turned over to the operator. Furthermore, the 2% column
of Table 5-1 would be filled during the computation.
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A more serious modification is required if the machine will
not carry out some of the arithmetical operations used. Suppose,
for example, that the machine will not divide easily. There
are two divisions in the process, and they would have to be
replaced. The second is division by 2, and it is simply replaced
by multiplication by 0.5000. The first is division by the next
earlier value of u; this is more difficult. Methods described in
Chap. 7 permit an easy running computation of a slowly changing
value for w~1, using only the operations of multiplication and
subtraction. It is convenient to use the fact that the first «
is exactly 1 and the first y is exactly 0. Then the set of instruc-
tions or commands for a machine incapable of division would have
to be changed from the set above to a set similar to these:

1’. For measurement No. 1, write the number 1 in the column
headed « and the column headed w=.

2'. For each of the other measurements, in order, multiply
the number x by itself; add to the product, without remov-
ing it from the machine’s register, the product of the
number y multiplied by itself. This leaves 2% + y? in the
product register.

3’. Transfer the number in the product register to the key-
board, clear the product register, and multiply the number
by the entry w—! for the next earlier measurement, u; 7.

4’. Add the entry u for the next earlier measurement, uz—;, to
the number in the product register. ’

5'. Transfer the number in the product register to the key-
board, clear the product register, and multiply by 0.5.
Write the result to four decimal places in the column
‘headed w.

6’. Clear the machine and insert the number 2.00000000 in the

' product register and subtract from it the product of u
(just calculated) and u;7.

7'. Transfer the number in the product register to a keyboard
(the multiplier keyboard if the machine is equipped for
automatic multiplication), clear the product register, and
compute the product of the number just transferred and
the number uk_l Enter the product to four decimal
places under v~

This method of performing division was first brought to our



A FUNCTIONAL APPROACH TO MACHINE DESIGN 61

attention through its use in the Mark IT Calculator.? - It may
be stated thus:

'u/k (2 - Uu- u l)uk_l

but it is not of primary importance in this discussion.

The commands to the operator in this set still make use of
some of the properties which are built into the machine and which
might not be convenient in a machine built on the fast operating
principles being described here. It might be true, for example,
that a convenient machine would not immediately operate on
the result of any other operation; in this case, the properties of
the product register used repeatedly in the list of commands
could not be used to permit double operations like 6, and the
single operation 4’ would become more complex. Although no
machine yet proposed has been reduced to the point that the
result of an elementary arithmetic operation is immediately
removed from the computing component, this is certainly a
possibility which must not be ignored. If this were the case for
a machine with a human operator and if the machine were capa-
ble of addition, multiplication, and subtraction but not of
division, then a set of fairly stereotyped commands would be
written, and all the spaces in Table 5-1 except a few for measure-
ment No. 1 would be filled. The following commands or their
equivalent would be required:

1. Enter the number 1 in the u column for measurement
No. 1.

2", Enter the number 1 in the ! column for measurement
No. 1.

For each other measurement in succession proceed as follows:

3", For entry in z? column, multiply; multiplicand is entry
in x column; multiplier is entry in & column.

4", For entry in y? column, multiply; multiplicand is entry
in y column; multiplier is entry in ¢ column.

5"”. For entry in #2 4+ % column, add; augend is entry in x?
column; addend is entry in y? column.

6. For entry in (z2 + y?) /uk_l column, multiply; multipli-
cand is entry in a? 4 y? column; multlpher is entry in
w1V column for next earlier measurement, ;.
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7. For entry in 2u column, add; augend is entry in (z? + y2)/
Ug—1 column; addend is entry in u column for next earlier
measurement, uz_;.

8. For entry in u column, multiply; multiplicand is entry
in 2u column; multiplier is the number 0.5000.

9"”. For entry in u - u;”y column, multiply; multiplicand is
entry in % column; multiplier is entry in %~ column for
next earlier measurement, u; 7.

10”. For entry in 2 — u-u;} column, subtract; minuend
is the number 2.00000000; subtrahend is entry in u - u;2}
column.

11”. For entry in %! column, multiply; multiplicand is entry
in 2 — u - ;7 column; multiplier is entry in »~! column
for the next earlier measurement, u; ;.

The stereotyped nature of the commands renders an advantage
in clarity and in ease of writing a program. It should be noted
that each command except for the unnumbered command ““For
each other measurement in succession:”’ consists of a prescribed
arithmetical operation, addition, subtraction, or multiplication,
in which the two entering numbers are specified by their position
in Table 5-1 and in which the disposition of the resulting number
into a position in Table 5-1 is specified. Burks, Goldstine, and
von Neumann? have pointed out the advantages of establishing
a simple stylized form of this general type no matter what the
characteristics of the machine. For the convenient operation
of a general-purpose machine, they point out, it is essential that
some steps be taken to translate the nonconforming command
quoted above to the same stereotype form. This translation of
description of all possible operations to prescribed forms has been
called the logic of the machine by these authors, and the term
is now in general use.

5-3. Machine Requirements

The earlier part of this chapter describes a simple calculation
in which various postulated types of machinery operated by a
human operator are used. The two preceding chapters describe
techniques which seem to promise arithmetic calculation with
the elementary operations requiring only microseconds for com-
pletion. For a machine using these new components, a human
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operator intervening at every command would encumber the
machine with a slow-moving element whose reaction time is
intolerably long. For example, during a second of time the
machine is capable of carrying out 1,000 multiplications, but the
operator is capable of issuing at most a single command. It is
essential that a sequencing mechanism similar to, but faster
than, the human operator be built into the machine if its potential
speed is to be utilized.

An automatic sequence-controlled calculator is a computing
machine into which such a mechanism is built. It follows a pre-
seribed set of explicit instructions automatically.

Such a machine is usually much faster and more accurate than
a twelve-year-old arithmetic student, but less versatile. Its
lack of versatility can be offset by its speed because combinations
of a few simple operations can be made to effect results equivalent
to those which would be produced by the twelve-year-old in
response to less explicit instructions. These combinations of
simple operations are therefore components of computation.

A sheet of paper, Table 5-1, was also included as a component
used in the calculation described above. This sheet of paper
is so inexpensive that it is overlooked frequently as a component,
but those experienced in calculation know well that most of the
time required in calculation and essentially all the errors of the
calculation are connected with the reading of data from and the
entering of data on this sheet of paper. The potentialities of
speed of computation with the new components and the resulting
extent of calculations which can be made in a reasonably short
time demand a storage medium which is faster and more accurate
than pieces of paper marked and read by a human operator.
It is also obvious that when complicated calculations are per-
formed in small increments, a voluminous storage outside the
arithmetic units is required to store the partial results until they
are pieced together into a final solution. The voluminous
storage to which quick access must always be available is at
present a chief consideration in connection with computing
instruments. Many machines have several different storage
units, some of which are more quickly accessible than others.

Finally, implicitly, the problem examined above had input data
furnished by some source and output data read by some inter-
preter. It is true that these input data appeared on the basic
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storage medium of the machine (Table 5-1) and that they were
read from this basic medium by the final interpreter, but this is
not necessarily a general state of affairs. It is likely that a
sufficiently fast and accurate storage component for a machine
of the speed considered here will be an integral part of the
machine, not a detachable part. Thus some convenient attach-
able medium for input of basic data must be provided, and some
convenient detachable medium for output of results must also
be provided.

b-4. Stereotyped Commands for the General-purpose Machine

For the sample problem, somewhat similar to some problems in
data reduction, a set of 11 commands of a stereotyped nature,
designated by 1" to 11", and one command not stereotyped
located between commands 2" and 3" were written above. If
these commands are carried out in sequence, the data will be
reduced as required. These commands have the advantages
that a few commands govern a large number of calculation steps
and that the commands themselves are all similar (except for
the one nonconforming command); specifically, their similarity
is that each specifies an arithmetic operation, and each specifies
where the numbers entering into this operation can be found and
where to dispose of the number generated by this operation.
These commands have disadvantages in that they were written
down with no particular regard for the engineering aspects of
the computing components and they include the nonconforming
command.

A set of 43 commands is listed below. Each is of a stereotyped
nature, is written with some regard to ease of engineering achieve-
ment, and is so chosen that the sequence of 43 commands controls
the same set of calculations as the earlier sequence. In this
sequence there are no nonconforming operations, and every
operation has a stereotyped form. This form specifies a desig-
nator for the operation, a description of the operation, and the
location of one number involved in the operation. No operation
requires further specification. In an engineering realization,
the designator does not turn out to be a part of the command
itself but is a statement of where the command is to be placed
in the machine. It is assumed that the location of the number
involved in the operation is itself a numerical code with 10
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assigned values. Thus, every command can be written as a
number, a few digits of which state the code number describing
the prescribed operation and the remaining significant digits of
which state the address code number of a number involved in the
operation. In addition, the designator, or the place in the
-machine at which this command will be placed, must also be
specified.

A machine for which commands can be written in this way is
clearly a versatile machine. Since the commands are numbers
and since the machine must expect to have numbers introduced
to it in some fashion, it certainly should not be difficult to enter
these coded commands into the machine. Since a small number
of commands will control a lengthy calculation, the amount of
time spent in writing these commands down for insertion into
the machine is not intolerably long. Since only a few different
operations are required, the engineering structure of the machine
may be expected to be attainable fairly simply. Commands
of this sort have been described most completely and lucidly by
Burks, Goldstine, and von Neumann.? They describe a set of
21 operations which suffice for conveniently carrying out most
problems from a large field. The authors describe the machine
on which these commands will be carried out specifically enough
to give a general idea of the engineering considerations involved.

Bloch, Campbell, and Ellis! have described a set of commands
more nearly of the type used in the list 1" to 11”’. This publica-
tion may be more readily available than the Burks, Goldstine,
and von Neumann paper, but the description is not as complete
in some respects. On the other hand, a special checking scheme
and some other novel ideas are discussed by Bloch, Campbell,
and Ellis.

The commands which will be used below are a set taken essen-
tially from the set proposed by Burks, Goldstine, and von Neu-
mann.

6-4-1. Description of the Machine. The input and output of
the machine will be ignored in this description. The machine
will possess a storage element, an arithmetic element, and a
control element. The arithmetic element will contain two main
units: the accumulator, which will be denoted by the letter A4,
and the multiplier register, which will be denoted by the letter R.
Addition can take place in the accumulator. It will be assumed
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that these elements can handle numbers of the sizes which will
occur (although the accomplishment of this assumption may
not be perfectly straightforward). The positions in which
numbers can be stored will be addressed by numbers; thus, an
address is an ordinal number of a position in storage, at which
position a number involved in the calculation is to be found or
to be placed. It will be assumed that the storage facilities are
adequate for the problem in hand and that the size of the arith-
metic unit is sufficiently great to carry out the calculations which
will later be seen to be involved in modifying the commands.
(Specifically the arithmetic unit must handle numbers as large
as the largest ordinal number occurring in connection with the
storage.) The commands which the machine is capable of
following are described below in the order of their appearance in
Table 5-2, starting on page 69.

. The first operation that the machine will be required to carry
out is the clearing of the accumulator and the insertion in the
accumulator of the number at a designated address. This
operation occurs first in- command 1" below. The machine
will be built so that the number placed into the accumulator
remains unchanged in its storage position. The operation will
not affect R.

.. The second operation is the inverse of that above; it is the
operation of storing at a specified address the number which is
in the accumulator. This operation destroys any number
previously stored at that address, leaves intact the number in 4,
and does not affect B. This operation occurs first in command
2" below. :

. The third operation is the operation of destroying any number
which is in R and replacing it by the number at a specified
address; this operation occurs first in command 3’’. The
number remains unchanged in its storage position, and the
operation does not affect 4.

The fourth operation causes the number in the accumulator to
be destroyed and the product of the number in the I? register, as
multiplier, and the number at a specified address, as multiplicand,
to be inserted in A. This operation occurs first in command
4", The number at the specified address remains unchanged;
the number in R will be destroyed during the operation.

The fifth operation retains the number in 4 and adds to it the
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number at a specified address. It occurs first in command 8";
The addend remains unchanged in its storage position. The
operation does not affect R.

The sixth operation is a subtraction operation similar to the
one above. The number in A is retained, and the number at a -
specified address is subtracted from it, the difference being kept
in A. The operation occurs first in command 21"". The
number at the specified address remains unchanged  at that
address, and the operation does not affect R.

The seventh operation occurs first in command 28"’ below.
To understand it, it is necessary first to have described the normal
sequencing of commands. A program like the one written
below is set up in a fixed sequence. The machine automatically
carries out each command in the order of this sequence unless a
command tells it to depart from this order. (Bloch, Campbell,
and Ellis! describe a different procedure for specifying the order
in which commands are to be carried out.) Thus, a few com-
mands must be used to change the order in which commands
are carried out. If these commands were not included, it would
be impossible to recycle, and it would be necessary to write one
command for every arithmetical operation the machine is to
carry out. This seventh command is one used for altering the
sequence conditionally; if the number in the accumulator is a
negative number, there is no alteration in sequence, and the
machine next carries out the next command (29"), but if the
number in A is nonnegative, the machine passes to the command
specified in the address portion of command 28"”’. 28" is called
a conditional transfer command or conditional jump.

The description of this operation and of one or two others
below is made more precise by specifying that the commands
themselves will be placed in the storage unit of the machine.
This is possible because the commands can be written as numbers;
It was pointed out above that all that is required is that the
operations to be carried out be assigned code numbers and that a
complete command be written as a code number specifying an
operation followed by one specifying a numerical address. The
digits of these two parts may be run together to form a single
multidigit number. The description is complete when it is
stated that the designator of the command is simply the address
in the storage system at which the command is stored. Suc-
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cessive commands in the sequence of commands will be stored
at successively numbered addresses. Thus, the control unit
will be required to start at a specified place and to withdraw
commands from storage. After each command is carried out,
the control unit passes to the next higher numbered storage cell
for the next command unless it has been instructed by the com-
mand just carried out to depart from the standard command
sequence. Thus recycling and alternate sequences are made
possible. .

The eighth operation is similar to the second except that the
information transferred from 4 to the storage unit is restricted to
be information concerning the address of a command. No
matter what is in the accumulator, the portion of the stored
command having to do with the operation to be carried out will
not be changed; the only change is a change in address. This
is an operation which is of fundamental importance in removing
the nonconforming command of the set described earlier. The
operation first occurs in command 31’”.

The ninth operation of the set is one which instructs the control
to depart from the standard sequence of commands. The nature
of its utility is apparent from its use in command 43" below.
Nothing in the arithmetic unit or the storage unit is affected by
this command, which is called an unconditional transfer.

The final operation of the set appears in storage at cell j.
It tells the machine to stop calculations. Without this command
the machine at the end of a calculation would proceed with
meaningless and possibly harmful calculations.

5-4-2. The Coding. A coding which uses the operations
described above can be written immediately from the set 1"
through 11”. All numbers involved will be assumed to have
been inserted in storage. Addresses in storage will correspond
to specification of position (measurement number and column
heading) on the work sheet referred to earlier. A block of
storage addresses must be assigned to each column in which are
written data which must be retained permanently; these are
the columns headed x, y, and u. The other numbers (which
were never written down at all in the program 1 through 5 above)
are assigned space as necessary during the time they must be
saved; these numbers are then discarded in favor of their sue-
cessors. Finally, a block of consecutively numbered addresses
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TaBLE 5-2. CoMMANDS

69

Designator Operation Address Remarks
1 Clear A and insert the num-
ber at c
21 Store number now in 4 at d Completes 2"
3" Clear R and insert the number
at a
4" Clear A and insert in it the
number got by multiplying
by the number in R the num-
ber at a
5" Store number now in 4 at e Completes 3"
6"’ Clear R and insert the number
at b
7 Clear A and insert in it the Completes 4"
number got by multiplying
by the number in R the num-
ber at b
8" Add to the number in A4 the
number at e
9" Store number now in 4 at e Completes 5
10" Clear R and insert the number
at d
11 Clear A and insert in it the Completes 6"
number got by multiplying
by the number in R the num-
ber at e
12/ Add to the number in A the
number at c
13" Store the number nowin A at | e Completes 7"
14" Clear R and insert the number
at f
15 Clear A and insert in it the
number got by multiplying
by the number in R the num-
ber at e
16" Store the number nowin 4 at | ¢ + 1 | Completes 8
17 Clear R and insert in it the
number at d
18" Clear A and insert in it the
number got by multiplying
by the number in R the num-
ber at c+1
19" Store the number now in 4 Completes 9"

at .
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TaBLE 5-2. COMMANDS.

(Continued)

Designator

Operation

Address

Remarks

20
21"
22/
23"

24///

25///
26///
27/[’

28!// )

29///
30/[/

31/// -
32///

33//’
34///

35/'/

Clear A and insert in it the
number at

Subtract from the number in
A the number at

Store the number now in 4
at

Clear R and insert in it the
number at

Clear A and insert in it the
number got by multiplying
by the number in R the num-
ber at

Store the number now at 4
at

Clear A and insert the num-
ber at -

Subtract from A the number
at )

If the number in the accumu-
lator is negative, pass to the
next command in this se-
quence; if it is not negative,
jump to the command stored
at :

Clear 4 and insert the number
at

Add to the number in 4 the
number at

Store the number in A as the
address part (leaving the
coded operation unchanged)
of the command ) E

Store the number in 4 as the
address Ipau‘t (leaving the
.coded. operatlon unchanged)
of the command

Store the number ndw in A at

Add to thle number in’ A the
number at i

Store the number in 4 as the |

address part (leaving the
coded operation unchanged)
of the command

4!//

Completes 10"

Completes 11"

Checks to see whether
caleulation is com-
plete

h

3 T

6[//




A FUNCTIONAL APPROACH TO MACHINE DESIGN 71

TaBie 5-2. Commanps. - (Continued)

Designator Operation Address Remarks

36" Store the number in A as the
address part (leaving the
coded operation unchanged)

of the command 7
37" Add to the number in A the
number at l

38"’ Store the number in 4 as the
address part (leaving -the
coded operation unchanged)
of the command 12"
39" Store the number in A as the
address part (leaving the
coded operation unchanged)

of the command 307"
40" Add to the number in A the
number at c

41" Store the number in 4 as the
address part (leaving the
coded operation unchanged)
of the command 16"
42" Store the number in A as the :
address part (leaving the
coded operation unchanged)

of the command _ 18"

43" For the next operation pro- Repeat command 3"’
ceed in order after jumping and all following:
to command 3" This command re-

places the unstereo-
typed command be-
tween 2’7 and 3" on
the earlier list.

is assigned to the 43 commands 1’’’ through 43’"’. The control
unit causes the commands to be carried out in sequence except
where deviations are commanded by one of the sequence of
commands. ‘ _ :

Specifically, in summary, the storage unit is loaded as follows:
The numbers x are stored at consecutively numbered addresses,
with the first at address a. The numbers y are stored at con-
secutively numbered addresses with the first at address b. The
numbers u; as computed will be placed in consecutively numbered
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addresses with the first at address c. Suppose that there are n
measurements; then the last = is stored at @« +n — 1, ete. A
block of 43 consecutive addresses is assigned to the coded com-
mands 1””” through 43""/. Special numbers are stored at address
d and eight other addresses designated by letters e through !
according to the scheme below:

Address  Number

1

Latest entry for u~!

Latest entry for 22, 22 + y2, 2u, u - ugty, and 2 — u - uz}; in order
0.5

9

The number q, to be replaced by the current address
The number @ + n

The coded value of the command stop calculation
The number b — a

The number ¢ — b

NN L. IQAS O O

Note that command 1” of the early set has been carried out
already through these storage operations.

6-b. Plan for General-purpose Machine

The example above indicates a plan for the convenient opera-
tion of a general-purpose machine. The operational requirement
is simply that a few written commands can conveniently control
a lengthy calculation. The realization of the requirement
suggested is by means of a few stereotyped command forms,
each of which specifies an operation and one or more storage
positions. The arithmetic element must be able to carry out
the operations contained in these stereotyped commands. The
control element must go through the pertinent commands in
order, translate the coded description of the operations to pulses
along busses which will cause the arithmetic elements involved
to carry out the specified operations, and direct numbers to and
from the specified storage locations.

The requirement that a few written commands direct a long
calculation is attained by (1) the inclusion of facilities permitting
the reuse of commands with the operations unchanged and the
addresses changed if desired; and (2) an operation permitting a
departure from the normal sequence to a secondary one (con-
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sisting of a single conditional transfer command in the example),
the departure to depend on the calculation.
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CHAPTER 6
ARITHMETIC SYSTEMS

6-1. Introduction

Most modern arithmetics are founded upon a system for
representing the positive integers in terms of systematic symbols
involving the concept of carry-over. That is, they depend upon
a systematic representation of the counting process. These
arithmetics are the basis of all automatic computing operations
now used.

The basic concepts used in the more usual arithmetics have
been described in Carmichael.? A detailed exposition will be
given here of the concepts of number theory which may be
applied directly to an understanding of computer arithmetic
systems.

6-2. The Fundamental Counting Systems

The recording of counted numbers in the systems to be studied
here will be by means of an infinite ordered sequence of marks,
of which the first will be considered to be at the right-hand end
and the others to proceed in order to the left. The nature of the
sequence will be defined inductively. In each position the
mark 0 (or a mark with an equivalent meaning) will be admissible
as a mark, and usually one or more other marks will be admissible.
For example, in the decimal system the marks admissible in
each position are the marks 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. The
admissible marks will not depend upon the marks present in
other positions. For each position, the admissible marks have
an order assigned, and the mark 0 precedes all the rest. (The
order of the decimal marks is that in which they are given above.)

The rule for denoting a number is given in the following parts:

1. The number zero is denoted by a sequence each of whose
elements is the mark 0. :
2. To pass from the representation of any number to that
74
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of the next higher, the first mark which is not the last
admissible mark for its position is replaced by the next
admissible mark in the set established for its position and
all lower order marks are replaced by 0’s.

6-3. Examples of Counting Systems

The decimal system of counting follows this rule, with the
understanding that a final string of 0’s in the sequence, extending
to the left, is not written. As noted above, the ordered set of
marks which may be used in each position is the set 0, 1, 2, 3, 4,
5, 6,7 8 9. The number 57 is, according to the rule, followed
by 58, for 7 in the first (right-hand) position is the first mark
which is not the last admissible one in its position and it is
replaced by 8, the next higher mark. The number 26,999 is
followed by 27,000, for the first three marks are all the last
admissible marks in their positions, so the fourth one (which is
not maximal) is increased by one and the last three are replaced
by 0’s. The binary number system admits the marks 0 and 1 at
each position, and no others. Thus the counting rule gives the
equivalences shown in Table 6-1 between the first 36 decimal and
binary numbers. In each case, 0’s after the last nonzero mark
are omitted except for the number zero.

TaBLE 6-1
Decimal Binary Decimal Binary Decimal Binary
0 0 12 1,100 24 11,000
1 1 13 1,101 25 11,001
2 10 14 1,110 26 11,010
"3 11 15 1,111 27 11,011
4 100 16 10,000 28 11,100
5 101 17 10,001 29 11,101
6 110 18 10,010 30 11,110
7 111 19 10,011 31 11,111
8 1,000 20 10,100 32 100,000
9 1,001 21 10,101 33 100,001
10 1,010 22 10,110 34 100,010
11 1,011 23 1 10,111 35 100,011

The binary system occurs frequently in considerations of
automatic computers, for many of the basic circuits, such as the
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flip-flop, naturally assume two stable states and are therefore
convenient to use with binary numbers.

In the octal system, any one of eight different marks is admis-
sible at each position, e.g., 0, 1, 2, 3, 4, 5, 6, 7 or the binary
equivalents of these same familiar digits, 000, 001, 010, 011,
100, 101, 110, 111. This system is of some interest wherever
binary numbers occur because conversion between binary and
octal numbers is trivially easy, and octal numbers make a fairly
efficient set for printing and reading. These points are exhibited
in greater detail in Sec. 6-6.

The biquinary system was used as a convenient equivalent
of the decimal system in some machines produced by the Bell
Telephone Laboratories.? This application is attributed to
Dr. George Stibitz. The system is one in which the decimal
system is factored and written as a system in which the odd-
numbered positions have five admissible marks and the even-
numbered positions have two admissible marks. The admissible
marks for the odd positions are 0, 1, 2, 3, and 4, and for the even
positions 0 and 5. The equivalence of this system with a decimal
system should be obvious, for the sum of a pair of successive
marks can be considered to be a decimal mark itself, there being
10 such pairs. For example, the decimal numbers 4 and 8
are represented in the biquinary notation as 04 and 53, respec-
tively. Carry-over occurs at 10 as in the decimal system.

This arithmetic system is much like the tetraquinary system
of counting of the Mayan Indians, who had at least two systems
of counting, one for general usage and at least one other for dates.
These have been described by Morley* and by Spinden.” The
Mayans used a true vigesimal system with a systematic rule of
forming the marks. It is said that the Mayans used their
vigesimal system prior to the time the decimal system achieved
general usage in Kurope. In this system there were 20 marks
for each position; however, each mark (except zero) consisted
of from zero to four dots placed over from zero to three bars.
This system was obviously equivalent to a system in which the
odd-numbered positions have five marks (the dot configurations)
and the even-numbered positions four (the bar configurations).
The Mayan zero, a ‘“shell,” was used in the formation of 20, 40,
etc. Although the Mayans used the system as a true vigesimal
number system, they counted as if it were a tetraquinary system:
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the number of bars represented the number of hands and feet
they had used up in the count, and the number of dots repre-
sented the number of odd digits on the next hand or foot.

TABLE 6-2

Decimal Mayan Decimal Mayan
0 Qe 10
1 . 11 S
2 oo 12 .’.‘o
3 oo 13 o6 ©o
4 © o oo 14
5 15 =
6 ° 16
7 ° o 17 =
8 ® 00 18 )
9 oe oo 19 o0 e e

The monetary system used in the United Kingdom may be
thought of as another, more complicated counting system,
satisfying the rule of Sec. 6-2. The mark in the first position
gives the number of pence, the mark in the second position gives
the number of shillings, and the mark in the third position gives
the number of pounds. It is common practice to separate the
different positions by a diagonal (/), writing 26/14/11 for 26
pounds, 14 shillings, 11 pence. There are only three positions.
Assuming that the penny is the unit (¢.e., ignoring the halfpenny),
the marks which are admissible in the first position are the decimal
numbers from 0 through 11 in order; those admissible in the
second position are the decimal numbers 0 through 19 in order,
and the infinite ordered set of nonnegative decimal integers is
the admissible set for the third position.

6-4. Three Fundamental Theorems

The main principles of behavior of numbers under different
number representations may be characterized by three elementary
theorems. For all these theorems it will be assumed that there
are n; different admissible marks for the first position, n, for the
second, n; for the third, ete., with n; for the ¢th. The theorems
are generally trivially true for any n; which become infinite, and
these cases will be disregarded (e.g., the case of the British
monetary system).
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Theorem 6-1. The number of different numbers which can be
represented by configurations with marks different from 0 in at
most the first k positions 7s the product

.Pk = NNaN3 * * * Ny (6-1)

For proof of Theorem 6-1 see Sec. 6-13-1.

From this theorem, it follows that exactly 1,000 (10 X 10 X 10)
different numbers can be represented with three decimal digits;
these are the numbers from 0 through 999, inclusive. Similarly,
to represent 1,000 different numbers with binary digits, 10 digits
will be required, for 1,000 lies between 2 to the ninth and 2 to
the tenth powers (512 and 1,024, respectively, expressed in
decimal numbers).

Theorem 6-2. In the representation of a number z, if p1
represents the number of marks admissible which precede the mark
actually occurring in the first position, if pe is the number of marks
admissible for the second position which precede the mark in that
position, etc., with p; the number of admaissible marks for the ith
position preceding the ith mark, then, conforming with the notation
for P of Eq. (6-1),

x = p1 + PP+ psPe+ - -+ + piPiy (6-2)

For proof see Section 6-13-2. Theorem 6-2 can be used to write
the value in any known arithmetic of a number expressed in
any other arithmetic. Thus, for example, the binary number
10,001,001 may be expressed in decimal notation by noting that
according to the rule it must equal

1:274+0-204+0-2540-2+1-2940-2240-2' 41
=128 +8+ 1 =137

Similarly, in a ternary system which has the admissible marks
0, 1, and 2, the ternary number 12,021 has an equivalent decimal
value h

1-3*+2-334+0-324+2:-3'4+1=81+54+6+ 1= 142

Theorem 6-3. If x is a nonnegative number and if ni, p:, and
P; all have the significance defined above for some system of notation
in which x is expressed, then py s the remainder when x is divided
by ni, p2 18 the remainder when this integral quotient (without
remainder) is divided by ne, etc.: explicitly, there exists a set of
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nonnegative integers qo, q1, g2, - - . , ¢i Such that

go = & = Niq1 + Pi; 0<pr<m
g1 = Naga + Do 0L ps<ne

........................

These equations uniquely determine p;. For proof see Sec.
6-13-3.

Theorem 6-3 furnishes a method for writing the expression for
any positive integer in terms of any system of marks, carrying
out the arithmetic in any known system. For example, to
translate the number 137 to the binary system, where every
n; = 2, repeated division by 2 suffices, as shown in Table 6-3.

TaABLE 6-3

) ni (gi-1) (pi-1)
1 2 137

2 2 68 1
3 2 34 0
4 2 17 0
5 2 8 1
6 2 4 0
7 2 2 0
8 2 1 0
9 2 0 1

Table 6-3 was calculated as follows: First all the numbers n:
were written in their column; then the number 137 was entered
in the center column. The division was performed ¢;—;/n; and
the quotient written directly below with the remainder written
in the right-hand column. The binary representation is written
by copying the right-hand column, the upper mark being placed
at the right in copying:

Decimal 137; binary 10,001,001

A warning is in order at this point: this rule stated in Theorem 6-3
cannot be applied blindly to fractional numbers expressed, for
example, with a decimal point.
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6-6. Rules of Arithmetic for Numbers with a Single Radix

If all the numbers 7; of a system of notation like those described
above are equal, so that n; = r for every ¢, then the common
value is known as the radiz of the system. In particular, the
ordinary decimal number system is the radix 10 system, the
binary system is the radix 2 system, and the Mayan system is the
radix 20 system. For automatic calculating machinery, the use
of a radix implies that the counters at each position can be identi-
cal, so radical numbers are usually used; in cases such as the
biquinary arithmetic described by Alt,* the use is essentially
as decimal, or radix 10, arithmetic.

For any radix arithmetic the basic tables corresponding to the
addition and the multiplication tables of decimal arithmetic can
be written, and from them the operations of addition, mul-
tiplication, subtraction, and division can be carried out.

For binary arithmetic, the tables are given in Tables 6-4 and

TaBLE 6-4. ApDITION TaBLE 6-5. MULTIPLICATION
Augend Multipli-
0 1 cand| 0 1
Addend ) Muliplier
Sum Product
0 0 1 0 . 0 0
1 1 10 1 0 1

6-5. The rules of carry are the same as in arithmetic of any other
radix. The construction of the tables is the same.
For octal arithmetic, the tables are given in Tables 6-6 and

TaBLE 6-6. ADpDITION

Augend
\ 0| 1] 2|3 |4|5]|6/|7
Addend
0 o 1] 2| 83| 4| 5| 6] 7
1 1 2 3 4 5 6 7110
2 2| 3 4| 5| 6| 7|10|11
3 3 4] 5| 6| 7|10 11|12
4 4| 5 6| 71011 )12 |13
5 5/ 6| 710 |11 |12 13 | 14
6 6 7110|1112 |13 |14 | 15
7 7110 | 11 |12 |13 |14 | 15 | 16
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TaBLE 6-7. MULTIPLICATION

Multipli-
w ol1|2|38|4|5]|6]|7
Multiplier
0 o/o| o] ol of o] o] o
1 ol1]| 2| 8| 4| 5| 6| 7
2 0|2] 4| 6|10]|12] 14| 16
3 03| 6|11]14]|17]22]|25
4 04101420 | 24|30 34
5 0|5|12|17|24|31]836]43
6 0614|2230 36|44 |52
7 0|7]16|25 34|43 52|61

6-7. These tables are unimportant for applications at present,
but their structure should give a sufficient example to permit the
reader to construct others as he may desire.

Examples of binary and octal multiplication and division
complete the exposition. To multiply 11,100,110 by 10,001,001,
start the multiplication as always: '

11100110
10001001
11100110
00000000
00000000
11100110
00000000
00000000 -
00000000
11100110

In summing it is best to sum two nonzero numbers at a time until
experience is gained. Thus the sum of the first and fourth rows
from the top is
11100110
11100110

1000000101 10

where carries have occurred in all additions after the sixth. Then
" adding this sum to the last row, the final product is obtained
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100000010110
11100110

111101100010110

with no carries.
For an octal multiplication, consider multiplying 346 by 267.
Again, the multiplying steps:

346 346 346
_r 8 2
52 4 14
3¢ 30 10
25 2 6
3112 2544 714

The final totalization is
' 3112
2544
714
122152

Binary division is performed in much the same way as ordinary
decimal long division. This may be illustrated in the following
example by dividing the binary equivalent of decimal 137 by the
binary equivalent of decimal 10:

begi
1101
1010)10001001
a 1010
¢ 1110
d 1010
{10001
B 1010
i1

As shown above, the divisor is placed outside of the long-division
sign, and the dividend is placed inside. By a series of successive
subtractions, a quotient is formed above the long-division sign.
The first step in the division process is to place the divisor beneath
the dividend in a position as far to the left as a positive difference
will allow. This is shown on line a. The first digit 1 of the
quotient is placed at b in the same column as the lowest order
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digit of the divisor. The first digit 1 of the divisor signifies
that only one subtraction can be performed before a negative
difference is encountered for this position of the divisor. The
divisor is then subtracted from the dividend to produce the
positive difference (line ¢). This difference is then compared
with the divisor to note that it is smaller in value than the divisor.
The next digit in the dividend is brought down to the difference
-obtained on line ¢. If the new number on line ¢ is larger than the
divisor, the divisor is then placed under this number and the
subtraction process repeated. If the new number is less than
the divisor, a 0 is placed in the quotient in the same column as
the lowest order digit of the divisor in this position. The next
digit of the dividend is then brought down to the difference,
the divisor shifted one place to the right, and the subtraction
process is continued until the quotient is completed to the
radical point. Any remainder after the last subtraction is
treated in the same manner as in ordinary long division. In
the example shown above, the quotient is 1,101 with a remainder
of 111 + 1010; this corresponds to the decimal number 1371 .

In the above example, it should be noted that no multiplication
process was mentioned. This is apparent from the realization
that the greatest number of allowable times the divisor goes
into the dividend for any partial quotient is one, since this is the
highest single-order digit in the binary system. Therefore, the
product of the nonzero digit last added to the quotient and the
divisor is the same as the divisor alone. This is not true, how-
ever, for other radix systems. For example, use is made of the
octal multiplication table, displayed above, in the performance
of the same division in the octal system as follows:

15
12)211
12
71
62
7

The quotient, as before, has a decimal equivalent of 13%4.

6-6. A Note Concerning Binary-to-octal Conversion

It is true-according to Theorem 6-1 that exactly eight numbers
can be represented with three binary digits. From this it follows
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that triplets of binary digits may be used as marks to represent
octal digits, and that conversion from binary to octal notation
simply implies changing the notation used for the marks. Spe-
cifically, the notation change is as shown in Table 6-8. The

TABLE 6-8

Binary Triplet Octal Mark
000

001

010

011

100

101

110

111

NO OB WN-=O

change is made triplet by triplet, beginning at the right. For
example, the binary number 10,001,001 is the octal number 211;
the binary 101,100,110 is octal 546, etc.

The binary system has obvious engineering advantages in
computer design. The expression of a number in binary notation
requires a comparatively large number of digits, however. For
example, a number with six decimal digits may require 20 binary
digits; the same number, in octal notation, may need only seven.

The number of octal digits is thus only slightly greater than
the number of decimal digits, the conversion from binary repre-
sentation is trivially easy, and an inexperienced reader can get
good qualitative estimates of the results without worrying about
the octal character of the representation. It can be seen, there-
fore, that the octal system has certain features which make it
very attractive.

6-7. Economy Attained by Radix Choice

The economy to be gained by choice of radix can be estimated
as follows: From Theorem 6-1, it is known that the number of
numbers expressible with n digits radix r is . It was noted in
Chap. 3 that, using two-state tubes or relays, and for small
values of r, each digit radix r requires r triodes or relays (but
for larger values of r each digit requires up to 2r triodes or relays).
Assuming that the complexity is measured according to the
number of tubes, it is possible to determine the theoretical
optimum value for the radix of the arithmetic system.
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Let N = rn represent a fair estimate of the number of tubes
required in the system and M = 7™ be the largest number of
numbers expressible in the system, where r designates the radix
and n designates the number of digits. The value of N should
be a minimum, subject to M being fixed in value. Then

M= (6-4)

log, M = nlog,r = M’ (6-5)
MI

~ log, r (6-6)

Substitﬁting the value of n in the expression for N,

M'r

N = Tog, 7 (6-7)

Since
log. r = log, r - log, e (6-8)

then

dN _ . ,(og,r — log,e) _

R T L 9
If

M/
log, 7 — log,e = 0

and
' r=c¢=271828 - - - (6-11)

This is the only possible value for a minimum, and therefore N
must be a monotonic function of r for » > e, and a monotonic
function for r < e.

TABLE 6-9
N
39.20
38.24
39.20
42.90
60.00

<

O Ok W

1

Now, consider some values, with M fixed at a value 105, as
shown in Table 6-9. Note that N increases with the values of »
above 3. This increase must continue, for r has no further
critical values. Under these assumptions, the radix 3, on the
average, is the most economical choice, closely followed by radices
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TaBLE 6-10
Radix
10 8 5 4 3 2
Number Representation
1 1 1 1 1 1
2 2 2 2 2 10
3 3 3 3 10 11
4 4 4 10 11 100
5 5 10 11 12 101
6 6 11 12 20 110
7 7 12 13 21 111
8 10 13 20 22 1,000
9 11 14 21 100 1,001
10 12 20 22 101 1,010
11 13. 21 23 102 1,011
12 14 22 30 110 1,100
13 15 23 31 111 1,101
14 16 24 32 112 1,110
15 17 30 33 120 1,111
16 20 31 100 121 10,000
17 21 32 101 122 10,001
18 22 33 102 200 10,010
19 23 34 103 201 © 10,011
20 24 40 110 202 10,100
21 25 41 111 210 10,101
22 26 42 112 211 10,110
23 27 43 113 212 10,111
24 30 44 120 220 11,000
25 31 100 121 221 11,001
30 36 110 132 1,010 11,110
35 43 120 203 1,022 100,011
40 50 130 220 1,111 101,000
45 55 140 231 1,200 101,101
50 62 200 302 1,212 110,010
100 | 144 400 1,210 10,201 1,100,100
1,000 | 1,750 | 13,000 33,220 1,101,001 1,111,101,000
10,000 (23,420 (310,000 J2’130’1OO 111,201,101 {10,011,100,010,000

2 and 4. These assumptions are, of course, only approximately
valid, and the choice of 2 as a radix is frequently justified on
more complete analysis. It should be noted that, even with the
optimistic assumption that 10 triodes will yield a reliable decimal
ring, radix 10 leads to about one and one-half times the com-
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plexity of radix 2, 3, or 4. This is probably significant despite
the shallow nature of the argument used here.

For reference, corresponding representations of the same
numbers for radices 2, 3, 4, 5, 8, and 10 are tabulated in Table
6-10.

6-8. Negatives and Complements

A desk calculator, in performing subtraction, uses a reversing
gear and runs the wheels backward. If the subtraction goes far
enough to generate a negative number, a difficulty is encountered.
The difficulty, although easily resolved, arises because the
indicated numbers continue to decrease, while in standard nota-
tion they would suddenly be preceded by a minus sign and begin
to increase. The solution lies in noting that the machine has a
limited capacity. If the machine has 10-decimal-digit capacity
in a register, it can hold numbers as high as 10 — 1, but it
cannot hold 10'®. The machine is unable to distinguish between
two numbers which differ by any integral multiple of 10'°; in
terms of the number theorist, it performs arithmetic modulo 10°,
Any number is represented on this machine by the number plus
or minus an integral multiple of 10'° chosen in such a way as to
bring the indicated number to a value between the limits 0
and 10%° — 1, inclusive. In particular, the number negative 137
would be represented by —137 4 10° = 9,999,999,863. Once
this condition is recognized, there is no difficulty if the coefficient
of the additive 10%° is kept in mind; for almost all calculations
it is 0 or 1. »

For many of the more rapid machines using other types of
EPDCC’s as computing elements, this system of representation
of negative numbers and this system of subtraction are not satis-
factory in general, since most of the faster EPDCC’s cannot be
made to run backward conveniently. Because such components
will run in only one direction, the process of subtraction must be
carried out in the manner defined in. many algebra texts: change
the sign and add. Furthermore, the question of changing the
sign and adding cannot be treated too lightly, for if numbers are
represented by their absolute values preceded by a plus or a
minus sign, the result of adding a pair of 1’s in the right-hand
place depends on the signs of the numbers. Furthermore, if
the radix is anything but 2, a binary mark must be used to denote
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the sign while all other marks are different from this. This
situation may lead to unnecessary complexity in the machine.

The number 9,999,999,863 written above is called the com-
plement of the number 137 with respect to 101°, All the digits
to the left of its last nonzero digit are obtained by subtracting
the corresponding digits of the original number from 9 (with
zero written in front as many times as is necessary). The last
nonzero digit is obtained by subtracting the last nonzero digit
of the original number from 10, and if there are any zeros to the
right of this point in the original number, they are replaced by
zeros in the complement. Thus the complement of 5,280 is
9,999,994,720. The 9’s complement of a decimal number is the
number obtained by replacing each digit of the original number
by 9 minus that digit. To perform subtraction, a fast machine
could form these complements and add, but this process is still
inconvenient. Such a method demands that certain digits be
treated in a special manner, and the positions of the specially
treated digits vary from one number to another.

The solution of treating all digits alike is so attractive that
it has been tried arbitrarily, and it is used in most machines now
being considered. The 9’s complement of a positive number is
used in this system to represent the negative number with the
same absolute value. One disadvantage is immediately appar-
ent: the 10-digit numbers 0,000,000,000 and 9,999,999,999 repre-
sent the same number. This disadvantage is immediately offset
by the fact that the devices in which these complements are to
be used may add or they may subtract, but they cannot do both.
The number 0,000,000,000 turns out never to be generated in a
machine which always adds, and the number 9,999,999,999 is
never generated in a machine which always subtracts.

With 9’s complements, numbers of 10 decimal digits are
expressed modulo 10! — 1 rather than modulo 10! as above;
t.e., numbers are stated with an implicit understanding that an
integral multiple of 10 — 1 (with coefficient invariably 0 or 1
in common practice) has been added to the number originally
to be represented. When two such numbers are added and their
sum exceeds 10 — 1, the machine must automatically reduce
them by this amount. To do this, it must detect the fact that
the number is excessive and then correct. The following state-
ments govern completely:
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1. The sum of two 10-digit decimal numbers exceeds 101 — 1
if and only if there is a carry beyond the 10th place.

2. If there is a carry from the tenth place, the sum modulo
10% — 1 may be represented with 10 decimal digits by
adding this carry to the extreme right-hand digit. This
is the so-called end-around carry.

The first statement is obvious and requires no comment. The
second is an automatic scheme for subtracting 10'° from the sum,
by not writing the carry in the 11th decimal position, and then
adding 1 to the sum, by carrying to the first decimal place. The
net result of this operation is to subtract 101 — 1; this is allow-
able in the arithmetic modulo 1010 — 1.

Completely analogous rules hold for arithmetic with n digits
radix . They will be stated in a theorem the proof of which is
omitted. :

Theorem 6-4. Ij x is a positive number expressed with n digits
radix r, i.e., 0 < x < — 1, then —x may be expressed modulo
™ — 1 by replacing each of the n digits of x by r — 1 menus this
digit; to add, modulo r* — 1, fwo numbers expressed with n digits
radiz r, proceed according to the rules of arithmetic radiz r except
that the carry from the nth digit, if it occurs, is to be added to the
first digit (end-around carry).

A particular example illustrates the principle. Two five-digit
binary numbers will be added: 10,110 + 01,101. With ordinary
binary arithmetic without end-around carry, the answer is
100,011. To reduce to modulo 25 — 1, the sixth digit is deleted
and added to the first with additional carries resulting to give
00,100. '

In binary arithmetic of n digits it is usually assumed that
numbers with the nth digit 1 are negative. Under this assump-
tion the above addition becomes 1,101 — 1,001 = 100.

6-9. Scale Factors and Radical Points

The foregoing description of the arithmetic of integers in
terms of radix r digits can be enlarged to include fractional and
other numbers occurring in analysis. The basis of the enlarge-
ment is classical, and only the most immediately applicable
results will be given here. A complete description can be found
in Ritt.® :
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Many of the numbers which are dealt with in scientific com-
putation are derived from measurements of physical quantities.
If such a quantity is to be represented in a register of n digits,
it must be expressed in terms of a number of not more than n
digits, whether or not it has been measured precisely enough
to warrant expression in terms of a greater number. For
example, to express 7 in a five-digit radix 10 register, we write
3.1416. This expresses the fact that = lies between 3.14155 and
3.14165, which is entirely correct. 3.1416 is an arbitrarily pre-
cise expression for a number the magnitude of which is known
more precisely than can be expressed in five decimal digits.

Furthermore, it is the use of the decimal point which permits
this convenient representation of the number in five digits.
3.1416 is a fraction. In terms of integers it is 31,416/10% The

“same scheme may be used with any other radix. If a radical
point is placed to the left of the kth digit (from the right) of a
number expressed in radix r notation, the number is to be read
as the integer, as if there had been no radical point, divided by
7%, Thus

425 4284221

25

Binary 101.01101 = decimal

= decimal 1734,
= decimal 5.406

Note that the numerator and the implied denominator must
both be translated if the radix is changed and that the rule in
Theorem 6-3 cannot be carelessly applied to this case of frac-
tional representation. It is not difficult, however, to devise
a multiplication rule similar to the division rule of Theorem 6-3 to
handle that portion of the number to the right of the radical
point.

For machines with the radical point in a fixed position, and
these machines are the simplest to build, the use of scale factors is
necessary to obtain the most efficient utilization of the limited
number of numbers representable by the machine. For this,
the units in which the numbers appear are measured and rechosen
in such a way that the largest number of any kind which will
appear in the machine is just slightly smaller than the largest
number the machine will hold. This is an operation analogous
to measuring in inches rather than feet.
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Some workers feel that there is a best place for the radical .
point. In particular, many, including Burks, Goldstine, and
von Neumann,? feel that this best place is one binary digit to
the right of the left-hand end of a binary number. It should be
noted that the first left-hand digit does not represent a numerical
value but merely serves to indicate whether the number is posi-
tive or negative. This placement used with 1’s complements
gives numbers ranging from —1 to 41, and the product of two
such numbers lies in the same range. This feature, which does
not demand a scale change when the products are formed, is
one of the principal advantages of this system.

Other workers have arbitrarily placed the radical point at the
right-hand end of the number; ¢.e., they have built their machines
to deal with integers. Thus the basic operations are programmed
on the machine in terms of shifting operations. One such machine
has been described by Engineering Research Associates, Inec.

A third possible scheme is one in which the position of the
radical point is not designated in advance but is placed by the
machine in performing each operation. This leads to engineer-
ing complexities, but it serves to reduce the burden of converting
all numbers involved into a scale best suited for the machine.
The Mark II Calculator built at the Computation Laboratory
at Harvard University for the Naval Proving Ground at Dahl-
gren, Va., is an example of such a machine.

6-10. Binary Division—A Special Case

Binary division offers simplifications which have been noted
by Burks, Goldstine, and von Neumann.? These authors sug-
gest that the division process for binary numbers be modified to
proceed according to the following steps in a system of commands:

1 Enter the dividend and the divisor so that like order dlglts
are in the same columns.

2. Shift the divisor to place its first left-hand nonzero digit
in the same column as that of the dividend; add as many
0’s at the right-hand end of the divisor as necessary to
make it equal in order to the dividend.

3. Subtract the divisor from the dividend and register a 1

" in the first-order-digit position of the partial quotient
register. To establish its proper position, shift this 1 a
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number of digit places, to the right or to the left, cor-
responding to the number of places and direction by which
the divisor was shifted in step 2.

4. For the next arithmetic operation, shift the divisor one
place to the right.

5. If the remainder (difference) after step 3 is positive, sub-
tract the shifted divisor from this remainder and add 1 to
the partial quotient in the next position to the right of the
previous 1; if the remainder is negative, add the shifted
divisor to it and subtract 1 from the partial quotient in the
new position. '

6. Shift the divisor and proceed as in step 4 using the new
remainder and modifying the quotient by 1 in the next
position.

7. Continue until the process of division is completed, at this
time adding the finally shifted divisor one additional time
in carrying out a corresponding subtraction from the quo-
tient, if necessary, to get a positive remainder.

As an example, a division which occurs as the first step in
translating binary 10,001,001 to a decimal number will be per-
formed, keeping all arithmetic in the binary system and using
Theorem 6-3. It should be noted that where a negative differ-
ence is obtained in Table 6-11, it is represented by its 1’s com-
plement plus 1.

Since the last sum in Table 6-11 is positive, the division is
complete. The quotient is 1,101 (decimal 13), and the remainder
is 111 (decimal 7); these numbers agree with those found earlier.

The justification of this method, mathematically, lies in the
trivial proof that the dividend is the sum of remainder and the
product of the quotient with the divisor. In terms of machine
operation the justification lies in the ease of programming and
in the computing speed. The example is included as an appli-
cable division scheme for binary digital computers.

The applicability of this scheme is enhanced by noting that a
simple rule may be formulated for carrying out the division
without borrows in the quotient. Consider that the quotient
is formed from two numbers z and y such that the quotient z is
z — y and such that x + y, in binary notation, is a series of 1’s.
That is, the quotient
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z=xz—y (6-12)
with
z+y=2"—1 ' (6-13)
for some n. It follows from the second expression that
p=20 — 241 (6-14)
In the above example,
2= 1,101
z = 10,110 (6-15)
y = 1,001

where « is formed with 1’s in the places where the divisor was
added, and y is formed with 1’s in the places where the divisor

TasLe 6-11

Step
(Add next
Operations Isntffulsf Partial quotient
subtract
if plus)

(a)

Dividend (decimal 137) 10001001

Divisor (decimal 10) 1010

Difference —010111 - 10000
®) / \

Divisor (shifted) 1010

Algebraic Sum 111001 /] -+ 10000 — 1000 = 1000
() / )

Divisor (shifted) 1010 Y

Difference 10001 -+ 1000 + 100 = 1100
@ v

Divisor (shifted) 1010 Y :

Difference -11 - 1100 + 10 = 1110
(e /

Divisor (shifted) 1010 Y

Algebraic Sum 111 + 1110 — 1 = 1101

was subtracted. The operation defined in Eq. (6-14) is brought
about by shifting all digits one place to the left, adding a 0 at
the end (multiplication by 2), deleting the initial 1 (subtraction
of 2"), and then replacing the final 0 by a 1 (addition of 1).
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Thus, in the example, step by step,
z = 10,110 — 101,100 — 01,100 — 01,101 — 1,101 = 2
The negative part of the quotient need never enter the calculation.

6-11. Alternate Arrangements—Linear Mappings

The system of complements described in Sec. 6-8 above is
an efficient and convenient method for handling numbers which
occur in calculations where the range of numbers extends approxi-
mately equally on both sides of zero. The advantages are
twofold:

1. Registers with n radix r positions can be utilized fully
without use of additional sign symbols.

2. The arithmetic steps are carried out digit by digit as they
are in long division, long multiplication, addition, and
subtraction with ordinary numbers; the behavior of each
digit is independent both of the value of other digits and the
sign of the numbers. . ‘

In the addition process, the system of arithmetic modulo ™ — 1
has the advantage that complements are easily formed and
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