
T ~

I
~

~

= = I

Z~•Jt§
ESF for lhe TRS-80

------users manual

Gexatron

USERS MANUAL

EXATRON STRINGY FLOPPY

FOR THE TRS-80

REVISED MAY 1980

exatron
excellence in electronics

Exatron Corporation, 181 Commercial St., Sunnyvale, CA 94086

TRS-80 is a trademark of Tandy Corporation
Stringy Floppy is a trademark of Exatron Corporation

This Manual is placed in the public domain.
Reproduction in whole or in part is expressly authorized.

Section

I

II

III

IV

TABLE OF CONTENTS

Title

INTRODUCTION
1.1 General .. .
1.2 The Exatron Stringy Floppy
1.3 Clock Speed-Up Kits .. .

INSTALLATION AND CHECKOUT
2.1 Installation .. .
2.2 Subsystem Checkout .. .

ESF OPERATIONS WITH BASIC
3 .1 General .. .
3.2 Subsystem Enable .. .

3.2.1 Procedure .. .
3.2.2 Arguments and Punctuation

3.3 Certify Wafer .. .
3.4 Save Programs on Wafer .. .

3.4.1 Save BASIC Programs
3.4.2 Save Machine Language Programs

3.5 Load A Program From Wafer Into Memory
3.5.1 Load BASIC Programs
3.5.2 Load Machine Language Programs
3.5.3 Using @LOAD As A Program Statement

3.6 Write Data Files .. .
3.7 Read Data Files .. .
3.8 Error Messages .. .

3.8.1 Errors During @NEW, @SA VE, or @LOAD
3.8.2 Errors During @OPEN
3.8.3 Errors During @PRINT
3.8.4 Errors During @INPUT
3.8.5 Errors During @CLOSE
3.8.6 Errors During @CLEAR

ASSEMBLY LANGUAGE OPERATIONS
4.1 Load An Assembly Language Program
4.2 Assembly Language Subroutines
4.3 Error Codes .. .
4.4 Find Beginning of Tape .. .
4.5 Read a Data Record Into Memory
4.6 Write a Data Record on a Wafer
4.7 Write End-of-Data-File Mark
4.8 Write Assembly Language Program on a Wafer
4.9 Move Tape to Beginning of File n
4.10 Select Drive .. .
4.11 Return to BASIC .. .
4.12 Certify Tape .. .
4.13 Write Record and End-of-File Mark
4.14 Display Error Message .. .

Page

1-1
1-1
1-2

2-1
2-1

3-1
3-1
3-1
3-2
3-2
3-2
3-2
3-3
3-3
3-3
3-3
3-4
3-4
3-5
3-5
3-6
3-6
3-6
3-6
3-6
3-6

4-1
4-1
4-1
4-1
4-1
4-2
4-2
4-2
4-2
4-2
4-2
4-2
4-2
4-2

TABLE OF CONTENTS (Continued)

Section Title

v CARE AND MAINTENANCE
5.1 General .. .
5.2 Drive Module .. .
5.3 Wafers .. .

VI THEORY OF OPERATION

Appendices A. Guarantee and Warranty .. .

ii

B.
c.
D.
E.
F.

Saving Machine Language Programs
Memory Map .. .
Summary - Commands & Syntax
Multiple Drive Systems .. .
Schematics .. .

Page

5-1
5-1
5-1

6-1

Al
B-1
C-1
D-1
E-1
F-1

SECTION I

INTRODUCTION

1.1 GENERAL

Congratulations on being the new owner of an
Exatron Stringy Floppy for your TRS-80! You
will be pleased and perhaps quite surprised at what
it will do for you. We will ensure that it serves you
well.

This is your Users Manual. In it you will find what
you need to know to install the Stringy Floppy
(ESF for short), to check it out for proper opera­
tion, to use it to its full capability, to take care of
it, to resolve any problem that might arise, and
generally to answer all the questions we thought
you might ask.

*NOTICE - STUDY SECTION II BEFORE
INSTALLING YOUR ESF*

Use this manual to learn all about your Stringy
Floppy. Be sure you understand what it will do for
you, and be sure it does it well. The 30-day uncon­
ditional moneyback guarantee is for the purpose of
making sure that if you are an ESF owner, you are
a satisfied owner. If you are not, take advantage of
the guarantee.

On the other hand, if you are satisfied, tell your
fellow TRS-80 owners about it-or better yet, show
them how it works. Take it to your TRS-80 Users
Group meeting, and give a demonstration!

Your name will be kept in our computerized Owner
File to keep you informed on product improve­
ments, on new products, on ESF Owners Associa­
tion activities, and to ensure good warranty service
when needed.

We welcome your suggestions. If you have ideas on
how this Users Manual can be more effective, or
have questions without answers, let us know.

1.2 THE EXATRON STRINGY FLOPPY

The ESF is a mass storage subsystem for use with a
microcomputer. It consists of a Drive Module, a
flat cable for connection to your TRS-80, and a
small sealed-unit power supply.

The power supply is already connected to the Drive
Module, and is simply plugged into a wall re­
ceptacle or other 110 volt AC outlet. The flat
cable, already hooked up, terminates in a 40-pin
connector which mates with the card edge at the
left rear of your TRS-80 chassis. The Drive Module
contains the tape drive with slot for inserting wafers;
two red light-emitting diodes (LEDs) to signal drive
running and write operation; the drive electronics
to process signals and to control the drive motor;
the controller electronics to adapt signals to the
specific microprocessor and bus; and a read-only
memory (ROM) holding all the programs that
operate your Stringy Floppy.

The medium on which programs and data are
stored is a custom digital quality magnetic tape,
wound as a continuous loop within a miniature
cartridge called a wafer. Wafers are available with
variable tape lengths, from 5 feet to 75 feet. With
single-density packing, and normal drive speeds, a
wafer will save or load 4K bytes of program on 5
feet of tape in 6 seconds. So a 20-foot wafer, for
example, will hold 16K bytes and will cycle around
the continuous loop of tape in 24 seconds.

The End-Of-Tape/Beginning-Of-Tape (EOT/BOT)
splice reflects light, and is detected optically
and electronically for proper loop-cycle control.
Another optical sensor detects the presence of the
write-enable sticker, a silvery reflector on the front
of the wafer. If this silver circle is removed from
the wafer, the sensor will disable the write circuits,
and the wafer is write-protected.

The two most outstanding features of the ESF are
its speed and its reliability. The baud rate of 7200
can be compared to the standard of 300 for a
cassette recorder, or occasionally, 500 or 1200. As
for reliability, you may never see some of the error
messages in the system! Error detection is built-in
and automatic, so you always know whether you
have a correct save or load. Since the Stringy
Floppy was designed from the ground up to digital
standards, for use with industrial quality equip­
ment, you are not hampered in any way by the

1-1

adaptation of audio equipment, audio materials, or
audio standards for your microcomputer. You have
no buttons, knobs, or switches to adjust when you
save or load programs. The operations are all con­
trolled by the software, and are highly reliable.

The programs in the firmware of your ESF ensure
that it will work properly with either Level II or
Level III BASIC in your TRS-80.

1-2

1.3 CLOCK SPEED-UP KITS

If your TRS-80 CPU clock circuit has been modi­
fied to run at a higher or lower frequency, the data
density and storage capacity of the wafer will be
affected. A double-speed modification will double
the storage capacity of the wafers. Wafers can only
be read back at the same clock speed used to save
the program or data.

SECTION II

INSTALLATION AND CHECKOUT

2.1 INSTALLATION

Step 1 - Do your own rece1vmg inspection by
verifying receipt of all items on the packing list,
and inspecting for physical damage. Report any
irregularities immediately.

Step 2 - Make sure that your TRS-80 with sup­
plementary equipment to date is working properly.
It is impossible to evaluate the performance of a
new subsystem when added to a main system
working erratically. Turn on the TRS-80 WITH 0 UT
the ESF and verify its operation. Then TURN IT
OFF before connecting them up.

NOTICE - THE CIRCUIT BOARDS
USED BY RADIO SHACK ARE THICK­
ER THAN NORMAL, AND THE CARD
EDGES ARE NOT BEVELED. BEFORE
YOU TRY TO CONNECT THE ESF TO
THE TRS-80, READ THE INSTRUC­
TIONS JUST BELOW.

SPECIAL INSTRUCTIONS: It may be necessary
to bevel slightly the top and bottom edges and the
corners of the TRS-80 card edge, so as to be able
to affix the ESF female connector. If this is done,
be sure to: (1) use a fine file, such as a fingernail
file; (2) draw the file only away from the card
edge, not toward it or sideways, so as not to
damage the metal fingers; and (3) don't pe:r;mit any
of the filed particles to get inside the computer
box-use a vacuum cleaner.

It is recommended that you use an Exatron BUS
EXTENDER on the card edge. This way you make
the card edge connection only once, and you can
make easy disconnects as often as needed between
the BUS EXTENDER and the Stringy Floppy.

Step 3 - With the TRS-80 OFF, join the female
40-pin connector on the ESF flat cable to the card
edge at the left rear of the TRS-80 chassis, or
connect an Exatron BUS EXTENDER to the card
edge and connect the ESF connector to the BUS
EXTENDER. Observe the marking on the con­
nector: THIS SIDE UP. If you use the Expansion

Interface, you should use a BUS EXTENDER to
connect the ESF close to the TRS-80 chassis, and
not through the EI. We cannot guarantee that
signals going through the EI are unaffected. Make
all connections snug.

Step 4 - Make sure there is NO WAFER IN THE
SLOT, then plug the sealed-unit power supply
module into a convenient 110 volt AC outlet.

YOUR EXATRON STRINGY FLOPPY IS NOW
PHYSICALLY INTEGRATED INTO YOUR COM­
PUTER.

2.2 SUBSYSTEM CHECKOUT

Step 5 - Now power up your computer. After
answering "MEMORY SIZE" with the ENTER
key, and getting back the TRS-80 sign-on message,
type in the word "SYSTEM" (don't enter the
quotes) and ENTER. Next type in "/12345" (no
quotes), and ENTER. At this point you should see
the title "EXATRON STRINGY FLOPPY" on the
display. You should also see the Level II prompt
sign "> ", showing that program control has been
returned to your Level II BASIC.

(Step X) - Now HALT and REVIEW. If you have
followed all instructions to this point carefully,
including Installation Steps 1 through 4, and you
cannot successfully complete Step 5, go no further.
Try again, starting with Step 1. If nothing changes,
disconnect the ESF and call or write Exatron, DO
NOT DISASSEMBLE ANYTHING. Your 30-day
moneyback guarantee and your one-year full
warranty are there to support the Exatron policy:
"Every customer fully satisfied with our product."

Step 6 - Insert an ESF wafer in the slot at the
front of the drive module, label side up, and seat
firmly. Type in "@NEW" (without the quotes of
course), and ENTER. You will see the righthand
LED on the front of the drive module light up,
showing that the motor is running, and shortly
after you will see the lefthand LED light up, indi­
cating that the tape is being written on. When the

2-1

tape completes one full cycle the write LED will go
out, and the motor will keep running for another
full cycle to verify the operation. Then the motor
will stop, the verification message "DONE" will be
displayed and control will return to Level II BASIC.

Step 7 - You have now completed the installation
and checkout of your ESF. Before you get too en­
thusiastic however, read and understand thoroughly
Sections III and V of this manual, to ensure lasting
and reliable service.

2-2

NOTICE
Since there is no power switch built into the ESF,
power is always on when the transformer is plugged
into an active power socket. It would be a good
idea to connect both the TRS-80 and the ESF to a
wall socket or power strip controlled by a master
power switch. In this case it would be desirable to
leave the TRS-80 power switch on and tum power
on and off to the TRS-80/ESF system with the
master power switch. The ESF will be quite warm
when power has been turned on for more than a
few minutes.

SECTION Ill

ESF OPERATIONS WITH BASIC

3.1 GENERAL

The operation and control of your Exatron Stringy
Floppy lies almost entirely in the software supplied
in ROM or RAM, and the various functions are
exercised simply and easily. One thing is important:
you must read the instructions below, and follow
them precisely. As with any other operation on
your TRS-80, it is sometimes possible to make a
misstep and lose program material and the time it
takes to enter it.

3.2 SUBSYSTEM ENABLE

When you power up your TRS-80 with the ESF
properly connected, you enter as usual Level II
BASIC. In order to activate the ESF, you use the
SYSTEM command to execute a program in the
ESF ROM, which adds ESF central control and
most functions and commands to your system, and
also adds a KEYBOARD DEBOUNCE subroutine
to your TRS-80. The program then returns control
to Level II BASIC. From this point onward, you
operate with the added capability as though it were
designed into the original system.

3.2.1 Procedure

a. Make sure your ESF is properly connected,
and then power up your TRS-80. After "MEM­
ORY SIZE?", reserve memory if needed, and touch
the ENTER key. BASIC will sign on and give a
READY prompt.

b. Type the word "SYSTEM", and ENTER.
c. Type "/12345", and ENTER. You now see

the ESF sign-on message, confirming subsystem
activation. At the same time, control has been re­
turned to Level II BASIC. At this point you have
the @NEW, @SA VE, and @LOAD commands and
functions available (see details further in this
section). If you don't need data files now, skip sub­
paragraph e. following.

d. In addition to the system entry command
"/12345", you have several other entry address
options, all of which initialize the ESF firmware.
These may take you directly to the functions most
often needed at the time of Subsystem Enable,

thereby saving additional steps. Each can be entered
immediately after typing the word "SYSTEM" and
touching ENTER; each is explained in detail further
on in this section. Here they are:

/12340 - load the next program file from Drive
#0- same as @LOAD

/12341 - load File #1 from Drive #0--same as
@LOADl

/12342 - load File #2 from Drive #0- same as
@LOAD2

/12343 - load File #3 from Drive #0--same as
@LOAD3

/12344 - load File #4 from Drive #0--same as
@LOAD4

/12345 - initialize ESF and return to BASIC
(includes initializing KEYBOARD
DEBO UN CE)

/12346 - initialize ESF without KEYBOARD
DEBOUNCE and return to BASIC.
This is useful if you already have a
debounce routine, an upper-lower
case routine, or an auto-repeat rou­
tine.

e. To add data file functions to your system,
insert the Data I/0 wafer into the Drive Module,
type "@LOADl ", and ENTER. (The LOAD opera­
tion is described in detail below.) When you see the
word "DONE'', the tape has been successfully
loaded. You now have the additional commands
and functions needed to read and write data files.

NOTE -THE DATA I/O PROGRAM IS
INITIALLY LOADED AT 6COO TO
6F91 HEX (27648 TO 28611 DECIMAL)
BEFORE RELOCATING ITSELF TO
TOP MEMORY. IF YOU HA VE A PRO­
GRAM OR DATA IN THIS AREA, IT
WILL BE WIPED OUT BY LOADING
THE DATA I/O PROGRAM. IF YOUR
STACK WAS IN THIS AREA, THE
LOADING WILL CRASH. IF YOU
HA VE RESERVED THE TOP OF MEM­
ORY, THE DATA I/0 PROGRAM WILL
BE RELOCATED BELOW THE RE­
SERVED MEMORY AREA. REFER TO
APPENDIX C FOR A MEMORY MAP.

3-1

3.2.2 Argument And Punctuation

Following are the conventions, labels, and symbols
used in the commands and procedures for the
Stringy Floppy. Follow them exactly. If you find
that a command doesn't operate, or operates im­
properly, it may be that you have departed from
one of these standards.

n

m
d

addr

lnth

aust
lexp

lvar

ENTER

File number, decimal, from 1 to 99,
or any expression with this range of
values
Number of 256-byte buffers to be used
Drive number - needed only in multi­
drive systems; may be an expression or
variable; default is always Drive 0
Starting memory address, a decimal
number
Length of file in bytes, a decimal num­
ber - this equals the end address minus
the starting address plus one
Autostart address, a decimal number
List of expressions: one or more ex­
pressions, separated by commas. (An
expression is a combination of one or
more constants, variables, and opera­
tions.)
List of variables: one or more variables,
separated by commas. (A variable is a
quantity that can take on any of a
given set of values.)
Indicates an optional argument in a
command
Touch the ENTER key - required
after every command, but not shown

Following are the ESF functions and commands
using BASIC: tape preparation, save, and load.

3.3 CERTIFY WAFER

a. Command- @[#d]NEW[n]
b. Function - With a new ESF tape wafer in

the Drive Module, this operation causes a specific
digital pattern to be written on the tape, and
verifies the physical and electronic quality of the
tape. Use this command with all new tapes before
using them for program or data storage. Insert the
wafer carefully in the slot, and type "@NEW".
First you see the righthand LED light up, while
the drive takes the tape back to the end-of-tape/
beginning-of-tape (EOT /BOT) splice. The message
"ERASING .. " shows on the screen. Then you see
the other LED light up, showing that the WRITE
operation is under way. Finally the lefthand LED

3-2

goes out while the righthand one stays on, for the
VERIFY cycle, when the pattern on the tape is
read back to certify the wafer. At the end you will
see something like "ERASING . .4202 BYTES ..
DONE". If an error occurs, you will see the words
"PARITY ERROR" or "CHECKSUM ERROR"
instead of "DONE". If this happens, repeat the
operation several times when working with a new
wafer.

c. Alternate Function - When you want to
save new programs or data on a wafer that has
already been used, and you 're finished with the
previous material, use the @NEW command to clear
up the tape before saving the new material. Use
the command with a file number to wipe out that
file and ALL FOLLOWING FILES on the wafer.
The commands @NEW and @NEWl both write
over the entire wafer. The command @NEW4, for
example, writes over File 4 and all following files,
but not Files 1 through 3. Use the appropriate
command whenever you want to delete former
programs or data.

d. Wafer Storage Capacity -Use @NEWn when
n is the next unused file number to measure the
usable storage space remaining in the wafer.

3.4 SAVE PROGRAMS ON WAFER

3.4.1 SAVE BASIC Programs

a. Command - @[#d] SAVEn (file number 1
through 99)

b. Function - If you have a BASIC program
in your system, the command "@SA VEl" will
cause the program to be written on the tape, start­
ing at the first position at the beginning of the tape
(BOT). After the program is saved, the tape auto­
matically cycles around the second time, and what's
on tape is verified a""ainst the program still in
memory. Successful completion is indicated by the
word "DONE". This message, and the return to the
Level II BASIC prompt, assure you that what you
have on tape is exactly what you have in memory.
Since this file is identified only by number, you
must keep a note on the contents of the file for
future access.

c. Examples - If you have already saved one
or more files on this wafer, you use the command
with the next unused numeral, for instance
"@SAVE2". This causes the ESF to seek the end of
the file with the next lower number, and save the
new program following the old. This requires that
you keep a note on how many files have already
been saved on the wafer at hand, so you'll know
the next number to use. Files must be saved in
numerical sequence starting with File 1.

Another example. You have a 10-foot wafer (BK
capacity) on which you've already saved two pro­
grams. There's a BASIC program in memory ready
to save. If you key in "@SAVE3", the current
program will be saved on the wafer following File
2. If you make a mistake and enter "@SAVE4",
the ESF will continue to look for nonexistent File
3, and won't stop until you touch the BREAK key.
If for some reason you enter "@SAVE2", the new
material will be saved immediately following File 1,
writing over and destroying the earlier File 2. If
you use the command "@SAVEl ",the new material
will be saved starting at the beginning of tape, and
will write over and destroy the original File 1.
Also, if the new File 1 is longer than the old, the
old File 2 will be affected so as to be no longer
accessible. Even if the new File 1 is shorter than
the old, the intervening useless data may impair
your ability to access File 2 properly. If you want
to start over with a new set of files, use the @NEW
command, and start out with a clean tape.

REMINDER - Don't forget to note down some­
where - on an index sheet with your wafers, or on
a 3x5 card near your computer - the contents of
each file on a wafer, and how many files are
already saved on each wafer to date.

3.4.2 SAVE Machine Language Programs

a. Command-@[#d] SAVEn,addr,lnth[,aust]
b. Function - This command will cause a

machine language program with the indicated
parameters to be written on tape. Use of an auto­
start is optional but recommended. Autostart can
be disabled during LOAD when necessary. See
3.5.2 c. below. The description of the operation,
the need for cataloging, and the proper choice of
file numbers are all similar to those described above
for saving BASIC programs. Note that this function
is in effect a memory dump on tape. It doesn't
have to be a machine language program: it can be
any code that you want to restore unchanged to
memory later.

c. Example - @#lSA VE2,l 7152,3800,18000
This command will save on Drive No. 1, with File
Number 2, the machine language program residing
in memory at 17152, which is 3800 bytes long,
and which autostarts at address 18000.

3.5 LOAD A PROGRAM FROM WAFER
INTO MEMORY

3.5.1 LOAD BASIC P.rograms

a. Command - @[#d] LOAD[n]

b. Function - With a wafer on which you've
SA VEd one or more files, this command without
file number will load the next file on tape from the
current position. First the program will check
whether there is enough memory available as de­
termined by the "MEMORY SIZE?" chosen, with­
out regard to variables and array already in mem­
ory. If there is enough room the program will be
loaded, all variables and arrays will be cleared, and
a new variable pointer established just above the
top of the program. Then the Level II prompt is
displayed. The LOAD operation includes a parity
check for each byte, and a checksum for the entire
file (two standard digital techniques for detecting
errors). Successful completion, indicated by display
of the word "DONE", assures you that what was
loaded is exactly what was on the tape wafer. If
you use this command with a file number, the ESF
will load the program in the file selected, following
the procedure described above.

3.5.2 LOAD Machine Language Programs

a. Commands - Same as for BASIC programs
b. Functions - Same as for BASIC programs
c. Autostart Override - To make a copy of a

program which has an autostart, you need to dis­
able the autostart function. To do this, load the
program to be copied in the normal way (see 3.5.1
a and 3.5.2 a below) by typing "@LOAD[n] "and
then ENTER; in addition, hold the shift key down
while the program is being read, until it stops. You
will see on the screen something like this:

@LOAD2
READING .. DONE
BREAK
nnnn,mmmm,1111
FD ERROR

The numbers on the screen--nnnn,mmmm,1111-
are in order the address, length, and autostart
address. Now take the wafer out of the Drive
Module, insert a fresh wafer, and type the SAVE
command described in b. and c. above. The ESF
will then copy your original program with auto­
start.

NOTE - WE PUT A LOT OF EFFORT
INTO MAKING IT EASY FOR OUR
USERS TO MAKE BACKUP COPIES
FOR THEIR OWN USE. WE HOPE
YOU APPRECIATE THIS EFFORT
AND WILL NOT USE THIS CAPA­
BILITY TO BOOTLEG SOFTWARE.

3-3

3.5.3 Using @LOAD As A Program Statement

a. Statements - The commands @LOAD and
@LOADn can also be used as statements within a
BASIC program, thus serving to link two or more
programs together. This technique is called chain­
ing, or program overlay.

WARNING: Use no other BASIC statements or
functions on the same line as the ESF program
statement.

If you use @LOAD or @LOADn in a numbered
statement within a BASIC program to call up a
machine language program, created as described
in Section 3.4.2 above, the operation will take
place just as for a direct command. If an autostart
was used, execution will start there right after the
called-up program is loaded. If no autostart was
used, the original BASIC program goes on as usual
to the next numbered statement.

If you use either of these commands to call up a
second BASIC program, the ESF firmware will
check for enough memory below the variable
pointer (not below the selected MEMORY SIZE).
If there is enough room, the called-up program is
loaded, ALL VARIABLES AND ARRAYS ARE
PRESERVED, and the program is immediately
executed.

This feature of saving the variables and arrays when
using @LOAD[n] as a program statement gives you
a powerful programming tool. If you are writing a
long BASIC program, requiring more memory than
you have available, you can divide the program in
sections, with values of variables and arrays passed
from one section to another. Or you can link related
programs, so that again any common variables are
passed from one program to another.

WARNING: When chaining programs as described
above, you must either: (1) make the first program
the longest, so that the variable pointer is estab­
lished in memory high enough to leave room for
later programs, OR (2) set the variable pointer
yourself using a program statement, so that it will
not be affected by any later program action.

b. Example - The following short BASIC
program illustrates the chaining technique.

10 REM*** MENU TO SELECT GAMES***

20 REM SAVE 3K FOR OVERLAY PROGRAM

30 POKE 16634, PEEK(16634)+12

3-4

40 REM ADDEND ABOVE IS 4* {NBA OF Kl

50 REM SAVE 20 BYTES FOR STRING

60 CLEAR 20

70 PRINT "WHICH GAME DO YOU WANT?"

80 PRINT "1.NIM"

90 PRINT "2. STARTREK"

100 PRINT "3 "

150 INPUT N

160@LOAD N+1

170 REM THIS MENU IS IN Fl LE 1

180 REM NIM IS IN Fl LE 2, ETC.

3.6 WRITE DATA FILES

NOTE: These functions are available only
after loading the Data 1/0 program from
wafer.

a. Commands- (1) @[#d]OPEN[n]
(2) @[#d] PRINT lexp
(3) @[#d]CLOSE
(4) @CLEAR[m]

b. Functions - In order to WRITE a data file,
you must first OPEN the file. This operation sets
up the appropriate file identifiers before the PRINT
operation starts. The OPEN command refers to the
current drive: if there is only one drive, no designa­
tion is necessary. If you have more than one drive,
and want to WRITE on a drive other than the
current one, you must use the drive number option.
Remember also that there can be only one file
OPEN at a time on any one drive. After OPENing
the file, use the PRINT command to write the file
on tape. Again use the drive number only when you
have more than one and want to change away from
the current drive. The list consists of one or more
expressions, whether numeric, algebraic, or string.
Don't forget that the expressions must be separated
by commas. After the data file is written on tape,
using the PRINT command, the file must be
CLOSEd. The use of a drive number is the same
as before.

An additional command, useful for multi-drive
systems, is "@CLEAR[m] ".This command aborts
all files not closed, clears 1/0 buffers in memory,
and makes Drive 0 the current drive. The form
with the optional argument, "@CLEARm", also
clears all variables and strings, and reserves the
specified number of buffers for tape I/0. The
number of buffers, m, dictates the maximum num­
ber of files that you can open at the same time.

c. Examples (not consecutive or related)
@OPEN2 - Open File 2 on the current

drive
@#10PEN3 - Set current drive to #1

and open File 3
@PRINT 3+4,A(l0)+3.l ,A#,B#-PRINT

(write) on the current drive the values
of the expressions listed

@#lPRINT lexp - Set current drive to
#1 and PRINT (write) the values of
the expressions listed

@CLOSE - Close the file on the current
drive

@#lCLOSE - Close the file on Drive #1

WARNING - IF YOU TRY TO WRITE
MORE DATA ON TAPE THAN THERE
IS ROOM FOR, THERE'S A CHANCE
THAT YOU'LL COAST PAST THE
END-OF-TAPE MARKER. THIS WILL
DESTROY THE HEADER FOR FILE
1, WHICH IN TURN CAUSES ALL
DATA ON THE WAFER TO BE LOST.
BE SURE THAT THE WAFER YOU
USE IS LONG ENOUGH TO HOLD
THE AMOUNT OF DATA YOU WANT
TO SAVE.

NOTE 1. The print operation must always be pre­
ceded by OPENing a file and followed by a CLOSE.
Between OPEN and CLOSE, don't remove the
wafer from the drive, and don't use it to SAVE or
LOAD programs.

NOTE 2. @OPEN is used before either @PRINT
or @INPUT (see below). Once the operation called
up by either of these second commands has started,
you can't change the operation back to the other
type; you must terminate with @CLOSE and re­
initiate the sequence.

NOTE 3. When you have an application program
using data files, it's a good idea to make File 1 on
that wafer the Data I/O Program. Then SA VE the
application program as File 2. To copy the Data
I/0 Program, first clear memory in your TRS-80,
and then follow the procedure in 3.5.2 c. above.

NOTE 4. In planning for the tape length necessary
to hold your data files, allow for the fact that data
is written in 256-byte records, with a 256-byte gaps
between records. So only 50% of the tape length
is actually used. If you do go past the end of tape,
be sure to use @NEW to re-certify the wafer.

NOTE 5. Use @CLEAR at the beginning of a pro­
gram using data files to ensure that all files that
were opened by previous programs are forgotten.

3.7 READ DATA FILES

NOTE: These functions are available only
after loading the Data I/0 program from
wafer.

a. Commands - (1) @[#d]OPENn
(2) @[#d]INPUT Ivar
(3) @[#d]CLOSE
(4) @CLEAR[m]

b. Functions - In order to read a data file
from tape into memory, you must first OPEN the
file. The optional drive number is needed only
when you have more than one drive, AND you want
to change the current drive. Use the OPEN com­
mand, and then the INPUT command above. The
variables must be separated by commas, and their
types must match the types on the tape. After the
values of the variables are assigned from the data on
the tape, you must CLOSE the file. The @CLEAR
commands function exactly as described in Section
3.6.

c. Examples
@OPEN3 - Open File 3 on the current

drive
@#llNPUT C,Al,P2,D$,E$ - Set cur­

rent drive to #1, and assign the values
to the variables

@CLOSE - Close the file on the current
drive

3.8 ERROR MESSAGES

3.8.1 Errors During @NEW, @SAVE, or @LOAD

As stated above, whenever you use the @NEW,
@SA VE, or @LOAD commands, you are assured
that the operation was completed without error
when you see the message "DONE". If for any
reason an error occurs, a message is displayed
identifying the occurrence and the type. Here is a
list of error messages.

a. Using @LOAD
PARITY ERROR - one or more bits
did not load correctly; repeat @LOAD
CHECKSUM ERROR - two or more
bits did not load correctly; repeat
@LOAD

3-5

b. Using ®SAVE
WRITE-PROTECTED - the reflecting
sticker has been removed, so as to pre­
vent the SA VE operation; you must
replace the sticker

TAPE TOO SHORT - you ran out; save
this on another wafer

NOTE 1. After any of the messages above is dis­
played, the program returns to BASIC, and displays
either FD ERROR in Level II or BAD FILE
DATA in Level III.

NOTE 2. One other error type without displayed
message - if you try to load a file which does not
exist on the wafer, your ESF will keep looking for
it. Similarly if you try to save a program with a file
number too high (the next lower number has not
yet been used). If the drive keeps running without
finding anything, touch the BREAK key; that will
stop the drive motor.

3.8.2 Error During @[#d] OPEN [n]

Error Error
Code Message Caused By

2 SN ERROR Data 1/0 program not loaded, missing
argument, etc.

5 FC ERROR Drive d not there, file already OPENed
on that drive, file nbr not 1-99, too
many files

22 FD ERROR Tape error, or BREAK key

3-6

3.8.3

Error
Code

2

5

22

Errors During @[#d] PRINT lexp

Error
Message

SN ERROR

FC ERROR

FD ERROR

Caused By

Data 1/0 program not loaded, syntax
error in expressions, etc.
Drive d not there, file not open, file was
used for ®INPUT
ESF wafer WRITE-PROTECTED, tape
too short, BREAK during tape operation

ALL OTHERS: SAME AS IN APPENDIX B,
LEVEL II REFERENCE MANUAL.

3.8.4 Errors During @[#d] INPUT Ivar

Error
Code

2

4
5

22

Error
Message

SN ERROR

OD ERROR
FC ERROR

FD ERROR

Caused By

Data 1/0 program not loaded, syntax
error in variable list, etc.
End of file reached
Drive d not there, file not open, file was
used for @PRINT
ESF tape error, or BREAK while reading

ALL OTHERS: SAME AS IN APPENDIX B,
LEVEL II REFERENCE MANUAL.

3.8.5 Errors During @[#d] CLOSE

Error
Code

2
5

22

Error
Message

SN ERROR
FC ERROR
FD ERROR

Caused By

Data 1/0 program not loaded, etc.
Drive d not there
ESF wafer WRITE-PROTECTED, tape
too short, BREAK during operation to
CLOSE @PRINT file

3.8.6 Errors During @CLEAR [m]

Error
Code

2
7

22

Error
Message

SN ERROR
OM ERROR
FD ERROR

Caused By

Data 1/0 program not loaded, etc.
Not enough memory for m buffers
ESF wafer WRITE-PROTECTED, tape
too short, BREAK during operation to
CLOSE @PRINT file

SECTION IV

ASSEMBLY LANGUAGE OPERATIONS

4.1 LOAD AN ASSEMBLY LANGUAGE
PROGRAM

It is possible that some Stringy Floppy owners
without assembly language programming skills may
have occasion to LOAD ESF wafers with assembly
language programs or machine code written by
others. You can load them by using exactly the
same commands and procedure as for loading
BASIC programs. Review Section 3.5.1 for details.

NOTICE - THE REST OF SECTION IV
IS FOR SKILLED ASSEMBLY LANG­
UAGE PROGRAMMERS ONLY. IF
YOU USE BASIC ONLY, AND DO NOT
WRITE YOUR OWN MACHINE CODE
OR ASSEMBLY LANGUAGE PRO­
GRAMS, OMIT THE REST OF THIS
SECTION; YOU ARE NOT EXPECTED
TO UNDERSTAND IT, AND YOU
DON'T NEED IT NOW.

4.2 ASSEMBLY LANGUAGE SUBROUTINES

There are a number of distinct functions that make
up the ESF firmware, and many of these are sub­
routines that can be used in other contexts. Each
requires parameters in specified CPU registers before
being called, and each ends with coded reports of
successful completion or error. These subroutines
are extremely useful once you have worked with
assembly language, and can write the programs
which invoke them.

NOTE 1. These are subroutines which must be
CALLed at the proper address; they end with the
RETURN opcode.

NOTE 2. Whenever these subroutines are used, a
file must be OPENed and later CLOSEd, as for data
files.

4.3 ERROR CODES

Each of the subroutines described below reports
completion without error by returning with the
Zero Flag SET (true, or binary 1). If an error has

occurred, the Zero Flag will be RESET (false,
binary 0, or NZ). Further, the type of error is
identified by a status word in the accumulator, or
A-Register. Each bit of the byte returned in A
reports uniquely an error by the presence of a
binary 1. Errors reported by each bit, starting with
the least significant, are as follows:

DO - Wafer is WRITE-PROTECTED
(Readout is OOOOOOOlB or OlH)

Dl - BREAK key was hit by operator
(OOOOOOlOB or 02H, etc. below)

D2 - Not enough tape to SA VE program or to
WRITE data identified

D3 - PARITY ERROR detected
D4 - CHECKSUM ERROR detected
D5 - Not enough memory to LOAD program or

to READ data identified
D6 - File does not VERIFY
D7 - End-of-file mark on a data tape detected

(80H)

If an error is reported, you can use a short routine
to look at the A-Register and report which bit
is SET.

4.4 FIND BEGINNING OF TAPE

a. Function - WIND tape to EOT /BOT marker
and stop

b. Address -3000H (hexadecimal)
c. Parameters - None required
d. Error reported - BREAK key used

This function positions the tape in the wafer for
the start of appropriate operations. Use the @NEW
command in BASIC to certify a new wafer or clean
up superseded programs or data.

4.5 READ A DATA RECORD INTO
MEMORY

a. Function - READ the next data record
from tape into memory

b. Address - 3003H
c. Entry Parameters - HL register must point

to the load address: the hex memory location where
you want to load the material. BC register must

4-1

contain the hex number of bytes to be read into
memory.

d. Return Parameters - BC register will hold
the actual number of bytes r~ad. The zero flag set
shows no error.

e. Errors Reported - BREAK key used, parity
error, checksum error, not enough memory, or
end-of-file mark detected.

f. Note: If the record loaded is shorter than
indicated by the entry in BC, BC will report the
actual length of the record. If the entry was correct,
BC will not change.

4.6 WRITE A DATA RECORD
ON A WAFER

a. Function - Write a data record onto tape
b. Address - 3006H
c. Entry Parameters - HL must point to the

memory location of the first byte to be written.
BC must contain the hex number of bytes to be
saved on wafer.

d. Return Parameters - The zero flag set
indicates save with no error.

e. Errors Reported-Write-protected, BREAK,
and not enough tape.

4.7 WRITE END-OF-DATA-FILE MARK

a. Function - Write end-of-file mark and file
number at end of data file

b. Address - 3021H
c. Entry Parameter - File number, 1 to 99

binary, in Register A.
d. Errors Reported-Write-protected, BREAK,

and not enough tape.

4.8 WRITE ASSEMBLY LANGUAGE
PROGRAM ON A WAFER

a. Function - Save assembly language pro­
gram material

b. Address - 300CH
c. Entry Parameters - HL must point to the

memory location of the program to be saved. BC
must contain the length of the program in hex
bytes. DE must contain the starting address of the
program: where it must reside when run. Register
A, the accumulator, must hold the file number of
the program - binary 1 through 99.

d. Errors Reported-Write-protected, BREAK,
not enough tape, and does not verify.

4-2

4.9 MOVE TAPE TO BEGINNING OF FILE N

a. Function - Position tape to beginning of
File n.

b. Address - 300FH
c. Entry Parameter - File number, 1 to 99

binary, in Register A.
d. Errors Reported - Parity error, BREAK

4.10 SELECT DRIVE

a. Function - Select drive number in multi­
drive system.

b. Address - 3012H
c. Entry Parameter - Drive number, 1 to 7

decimal, in Register A.
d. Return - Zero flag set, done; ze•·o flag

reset, drive not there.

4.11 RETURN TO BASIC

a. Function - Returns program to BASIC
and prompt.

b. Address - 3015H
c. Use - All files not having a normal auto­

start address should use this address for autostart.

4.12 VERIFY TAPE

a. Function - Compare a file on tape against
memory. Same as the second cycle in the BASIC
@SA VEn command.

b. Address - 3024H
c. Entry Parameter - File number n in H.
d. Return Parameters - Number of bytes in

HL, error code in A.

4.13 WRITE RECORD AND END-OF-FILE
MARK

a. Function - Combination of 4.6 and 4. 7
above, i.e., write data buffer and EOF.

b. Address - 3027H
. c. Entry Condition - If BC = 0 only EOF is

written.

4.14 DISPLAY ERROR MESSAGE

a. Function - Decodes error message in A (if
any) and displays it on screen

b. Address - 302AH

SECTION V

CARE AND MAINTENANCE

5.1 GENERAL

The design components, materials, and packaging
of the Stringy Floppy result in a product that is
rugged, reliable, and difficult to abuse. If you
operate your ESF properly, and exercise the proper
care and maintenance, the life of the drive unit
will be more than 2000 hours, and the life of the
tape wafers will be more than 2000 passes.

5.2 DRIVE MODULE

Probably the most important point is this: DO
NOT DISASSEMBLE. Aside from curiosity, there
is no reason for you to go into the drive module,
unless you are a manufacturer with an OEM
application.

Next most important is to adopt working rules that
avoid the possibility of dust accumulation inside
the drive slot. If where you work (or play!) with
your computer is kept clean, you will have no
problems. Otherwise an improvised dust cover
might be advisable. A practice which will be satis­
factory in most cases is to leave a wafer-say one
you use most often-in the drive slot, not quite all
the way in. This will keep dust off both the tape
head and the exposed tape in the wafer.

Be sure however not to have a wafer all the way
in the slot when you turn on either the TRS-80 or
the ESF. Carelessness here could cause you to
accidentally erase a tape you didn't want to lose.

If your ESF power unit is plugged into an exten­
sion or wall outlet with a switch, it will be turned
off when your other equipment is turned off. If
not, and you 're going to leave your system for a
while, unplug your power unit.

Make a practice of keeping your Stringy Floppy
Drive Unit on the left side of your TRS-80 key­
board, well forward of the CRT monitor or the
Expansion Interface. If it sits too close to the
monitor it may be affected by electromagnetic
fields, and report errors not otherwise present.

There is no incompatibility between simultaneous
hookup of both your cassette recorder and your
Stringy Floppy. Both may be connected at the
same time, and you can load a program from
cassette, for instance, and then save it on an ESF
wafer, without changing any connections.

5.3 WAFERS

The ESF tape wafer is an almost completely
enclosed cartridge, with a 2.5 mm slot for the
drive capstan, and a 14 mm slot for the tape head.
Be sure to handle your wafers so as never to touch
the tape with your fingers, or with any projection
that could misalign it or pull out a loop.

Don't store your tapes near an electromagnetic
field; you may lose the data on them. Keep them
away from motors, transformers, power supplies,
or any other field sources. In particular, don't read
them, write on them, or lay them down, near the
TRS-80 CRT monitor, with its high voltages and
transformers.

KEEP THE DUST AND DIRT OUT. There are
several ways. For a while you may want to slip
them back into the plastic envelope they came in.
Or you may find-or make-a covered plastic,
metal, or wooden box to keep them in. Or, your
local stationery store has plastic pages for three-ring
binders, each page with about 10 pockets for
business cards. These pockets are just the right
size for your ESF wafers.

DO NOT INSERT OR REMOVE WAFERS from
the Drive Module while the motor is running.
Either instance can cause the tape loop to pull free
from the case: once that has occurred, you11 not
be able to use that wafer again. Insert wafers
carefully, making sure that they are properly seated,
past the detent. Remove them carefully also, so as
not to damage the short section of exposed tape.

Most of the tape in ESF wafers is black, and does
not create deposits on the read and write heads in
the Drive Module. A few wafers were manufactured

5-1

with a brown tape, similar in appearance to audio
tape. This is also a high-quality digital tape, but it
can under some conditions leave a deposit on the
heads. You can clean the tape heads by using a
cotton swab and alcohol, normally available for
this purpose commercially. Use the fluid sparingly,
so as not to flood or dampen anything other than
the tape heads. At the same time wipe the drive
capstan with the swab and alcohol. To rotate the
capstan to wipe it all around, remove the swab and
turn on the motor briefly. DO NOT RUN MOTOR
WHILE USING THE SWAB.

You may find occasionally while you are certifying
a new wafer using the @NEW command, that you
get an unexpected "WRITE-PROTECTED" mes­
sage. This can be caused by a slight misplacement
of the silver write-protect reflector circle. If the
optical sensor doesn't find a strong enough re­
flection of light it disables the write function.
Check the reflector location against that on your
other wafers-a small shift may fix it. Other
remedies may include using a small piece of shiny
aluminum wrap; or painting around the edge of

5-2

the circle with stenographic white-out; or even
pasting a piece of white paper over the right
locations.

A possible alternative to removing the silver circle
when you want to write-protect a wafer, is to
cover the circle with a piece of black paper, using
mending tape. It works, and can be undone by
simple removal when the time comes.

Remember to mark your wafers in some way to
avoid mixing them up. If the manufacturer's label
on the wafer will not readily accept marking, or if
any mark is likely to be permanent, you can stick
on a small pressure-sensitive label, and keep track
of the contents of the wafer with an index. It is
frustrating to end up a session with your micro­
computer and ESF, and have a batch of unlabeled
wafers that need to be loaded and sorted out. Use
labels and avoid this.

If you follow all the suggestions above, you '11 find
that your Stringy Floppy will serve you well for a
long time.

SECTION VI

THEORY OF OPERATION

The Exatron Stringy Floppy uses a miniature digital
tape drive and endless loop magnetic tape wafers.
Saturated recording techniques are used, and data
is recorded on tape using a self-clocking bi-phase
method of data encoding. This is the same tech­
nique as that used by floppy disks. When new
information is recorded on the tape, all traces of
the old information are obliterated. It's not nec­
essary to erase tapes before recording new data
over old data. However it's a good idea to use the
@NEW command to remove old data and programs
from a tape. This is accomplished by writing
dummy information over the full length of the tape.

Utility programs to save and load programs and
data are in a 2048-byte read only memory (ROM),

one of the integrated circuits in the ESF for the
TRS-80. This ROM occupies memory space be­
ginning at hexadecimal address 3000. The top 128
locations in the ROM, 3780 to 37FF hex, are not
used because this memory space is reserved. (Refer
to page D/1 of the Level II BASIC Reference
Manual.)

Eight input/output ports are used by the Exatron
Stringy Floppy for reading and writing. The utility
ROM uses port number FO hex for input and
output. Up to seven ESF drive units can be added,
using port numbers Fl through F7 hex. A decoder
must be used in the added units. Software to sup­
port extra drives is included in read/write memory.

6-1

APPENDIX A

GUARANTEE

Purchasers of the Exatron Stringy Floppy may
return their units in good condition within 30
days of receipt and get a full refund of the pur­
chase price.

WARRANTY

Exatron, 181 Commercial Street, Sunnyvale, CA
94086, warrants the electrical and mechanical parts
and workmanship of the Stringy Floppy to be free
from defects for a period of one year from date of
purchase. This warranty EXCLUDES the magnetic
tape wafers. Should the Stringy Floppy prove
defective, it will be repaired free of charge. Pur­
chasers should return the Stringy Floppy directly
to Exatron at the above address. Exatron will pay
shipping costs and will make repairs as soon as
possible but in any event within 30 days.

This warranty does not cover damage resulting
from accidents or abuse of the Stringy Floppy. This
warranty will be null and void if there are any
modifications to the design of the Stringy Floppy.

Exatron shall not be responsible for any incidental
or consequential damages. Some states do not allow
the exclusion or limitation of incidental or con­
sequential damages, so this limitation or exclusion
may not apply to purchaser.

This warranty limits any implied warranty to one
year from date of purchase. Some states do not
allow limitations on how long an implied warranty
lasts, so this limitation may not apply to purchaser.

This warranty gives purchaser specific legal rights
and purchaser may also have other rights which
vary from state to state.

RETURNS

Save the shipping carton for your Stringy Floppy.
If you need warranty repair within the one-year
period, write a detailed statement of what's wrong
with your unit and enclose it with your ESF in the
carton. If you need repair work after the warranty
period has expired, follow the same procedure.
You will receive the same service, with a reasonable
charge for parts and labor.

A-1

APPENDIX B

SAVING MACHINE LANGUAGE PROGRAMS

Section 3.4.2 of this manual has the information
you need to know in order to SA VE a machine
language program, for the cases when you know all
the relevant parameters: the starting address, the
length in bytes, and the autostart or entry address.
This works well when you wrote the assembly
language program or object code yourself. What do
you do when you have commercial software you
bought on the cassette, and you want to transfer it
to ESF wafer? Or when you want to make a
backup copy of a program you have on hand and
use regularly? (Making backup copies is important.
Protect yourself this way against the possibility of
inadvertent error.)

There are several answers to these questions. Let's
start by charting the parameters for a number of
popular programs written for the TRS-80. The
information in this table has been furnished by
Stringy Floppy owners, TRS-80 version, who were
good enough programmers to find out for them­
selves. Additions to this table for other programs of
general inter.est are welcome.

REMEMBER THE SA VE COMMAND:

@[#d] SAVEn,addr,lnth[,aust] (nbrs in decimal)

Program Starting Addr Length Autostart

ESF Data 1/0 Program 27648 914 28416

ESF-80 Monitor 17152 2173 17152

Level Ill BASIC 17152 5376 17152

TRS-80 Editor/ Assmblr 17152 6721 18058

Electric Pencil 17232 4144 17232

TBUG 17280 2560 17312

TSHORT 17131 562 17621

To SAVE these programs on ESF wafer, load the
cassette without executing the program, and then
use the @SA VE command. Do not start execution
of the program before making the wafer copy:
some of them contain self-modifying code which
changes the program once executed. Wherever a
"/" is called for to start execution, do not RESET:
type "/6681" to return to BASIC, ready to use the
ESF @SA VE command.

If you have programs not listed above which
you'd like to transfer to ESF wafer, use the services
of the ESF Owners Association to get information
you don't have.

Another way to get the parameters you need on a
program you bought on cassette is to use the ESF-
80 Monitor. This monitor includes a command
LOAD CASSETTE which includes identification
and printout of the parameters you need. The
monitor is available from Exatron Corporation.

B-1

APPENDIX C

MEMORY MAP

(Supplements pp. D/1, 2 in Level II BASIC Reference Manual.)

Decimal

16384

17128
17129

Limit

BASIC INTERNAL

BASIC PROGRAM TEXT

Hex

4000

42E8
42E9

----------~ This point can be set by
POKE 16633, low
POKE 16634, high

VARIABLES & ARRAYS ---r--
FREE MEMORY

---- _t_ -- --
STACK

STRINGS - n BYTES

4 BYTES FOR ESF
(1028 BYTES WITH DATA 1/0)

RESERVED BLOCK

Space for strings set up by
CLEAR n - Default is 50

These 4 bytes float so as not to t/ interfere with either BASIC area
{ or reserved block

-~
~~ Location set by response to

"" "MEMORY SIZE?"

NOTE: If used, the Data 1/0 Program is first
loaded into the' BASIC program text area, and
then relocated here. The floating 4 bytes are
simultaneously relocated to the start of the
Data 1/0 Program.

Limit of your memory

C-1

APPENDIX D

SUMMARY - COMMANDS & SYNTAX

DEFINITIONS
[] Indicates optional parameters
d - Drive number (0-7)
n - File number (1-99)
m - #of 1/0 buffers (0-8)
ALL PARAMETERS ARE ENTERED IN DECIMAL

INITIALIZATION COMMANDS (After "SYSTEM")

Command

/12340

/12341

/12342-/12344

/12345

/12346

Syntax/Function

Initialize firmware and load next file on wafer

Initialize firmware and load File 1

Initialize firmware and load Files 2, 3, or 4

Initialize firmware and return to BASIC

Initialize firmware and return to BASIC without debounce
subroutine-useful when your application program has
debounce included

GENERAL COMMANDS

@#d

@NEW

@SAVE

@SAVE

@LOAD

@#d
Select drive d and also change default drive to d. Default drive is
0 initially.

@(#d] NEW[n]
Certify wafer starting at file n to end of tape. Absence of n
certifies whole tape.

@[#d]SAVEn
Write BASIC program out to wafer at file n.

@[#d] SAVE n,start addr,#bytes[,autostart addr]
Write a machine language program to wafer at file n. If the
optional autostart address if omitted, the subsequent @LOAD
will return to BASIC after the file is loaded.

@[#d] LOAD[n]
Load file n from ESF. Absence of n causes next file to be loaded.
The same command is used for BASIC and machine language
programs.

Example

[Same as @LOAD below]

[Same as @LOAD1 below]

[Same as @LOADn below]

@#2

@NEW2

@#2SAVE1

@SAVE1, 17152,5380, 17152

@LOAD2

D-1

Command Syntax/Function

DATA FILE COMMANDS - Data 1/0 Program must be loaded

@CLEAR

@OPEN

@INPUT

@PRINT

@CLOSE

D-2

@CLEAR[m]

Abort all files that are open. If m is specified, then m buffers are
reserved for 1/0 and all variables are cleared. (Thus, this should
be used at the beginning of the program only.) #of 1/0 buffers is
set to 1 when the Data 1/0 program is loaded. @CLEAR will not
change the# of buffers nor clear variables and can be used any­
where in the program to abort all opened files.

@[#d] OPENn
Open data file n. The next @INPUT or @PRINT will dictate either
the read or write mode. To change modes, @CLOSE the file and
reopen first. THERE MAY BE ONLY ONE OPEN FILE PER ESF
DRIVE - FOR READ OR WRITE AND NOT BOTH.

@[#d] INPUT list-of-variables
Read the list of variables from the opened file on the specified
drive.

@[#dl PR I NT I ist-of-expressions
Write the values associated with the list of expressions out to the
opened file on the specified drive.

@[#d] CLOSE
Close the file on the default drive, unless drive is specified.

Example

@CLEAR4

@OPEN1

@#1 INPUT A,B,C$

@PR I NI-~$.A+B

@#2CLOSE

APPENDIX E

MULTIPLE DRIVE SYSTEMS

All original ESFs are shipped as a drive zero. If
you order additional drives please specify which
sequential drive number your new unit will be.

You may alter your new drive 1, for instance,
back to a drive 0 by moving the jumper on IC12

down to zero and adding the ROM to the new
drive. Then rejumper your old drive 0 to a drive 1.
All additional drives will have a unique jumper
and no ROM. Note: You must have one drive 0
on line at all times. You must not have two drives
of the same number on line at the same time.

E-1

~s

~ .
&IV'>-]_

l'%j
I

.......

"' Z2K

111 18 P' ll. K 131'lLS.)
+12•12~

;\W"~>-t__.__..!1ffi>'4-41>1~~~~
.fllft>-i>----ll.l~~-l----.1~4--~~~~-"AA_j

«JS
2..2K

+l_t

n J-1

>'>"I)EAT.IBM.

SPARE
SPARE
SAA RE

Co

•S

WRITE fNllBLE
'!\'RITE MTA
MOTOK OH

~''~
~-.....---.. +#.V t.wR'E&.

OS

.,, ...

I
Cl'<

-:- ~BJ

M1TE: DIODE Nt,,_Y 8£ OP EOl'ltO
01C. IN \Jlftll POVJH\ PAC.I(.

,.
2.ZJJO ... f

T.P.-J'-2

Dlil"HEAD

+sv «.u •.

~ff. P~KT Ml. •S rll

f 2 7~L<;q2. 1• 8

f 7~LSIO I< 7

z 7~1.500 f1 7

3 7'L502. '' 7
' 7'L':>3Z I~ 7
s !MIO'I' ,, 7

~ l'L':>l7t /IJ 8

7 27/i zq 1z
e axqe •• 11

tI3S3 ~

~
J!exatron
:ITn-i ™- FfL
HS. BO ADD ·CJ.I

~
~ .

(oC22o)
J 7

J 6 J l
J 5

l 1 ! J40 J 3
J 2
J 1
J 0

I - I

2 ,..

7

Gexatron
I ~ I I

I
-{Q.5.-fil-
--rnn--

+
(oC24o)

0 5

{OC2[o)

q p ct t> ---lR_J'LJ-

l 8 I Li =m=

4

'CD -a:::

1-

a:::

T.RS. 80
ADD-ON

12 v
sv ~ sv

I l~I I
+

+I D 6 I

·-··-

(oC20o)

0
I -- I'an

a 0
B A

0
a:::

I~

@
2

+(oC14oJ, ___ ,

7 ~ MADE IN USA ~ JIM HOW 9-4-79

WHAT IS IT?

ESFOA is a voluntary assoc­
iation of all those who own the
Exatron Stringy Floppy mass
storage subsystem. and of those
who are interested in the ESF
to the point of taking part in
ESFOA activities. There is no
formal organization, no require­
ments, no dues, and the degree
of participation is entirely up to
the individual.

THE PURPOSE

The purpose of ESFOA is to
facilitate the interchange of
ideas, information, software, and
hardware design, to encourage
mutual assistance and coopera­
tive projects among members
with specific common interests,
and to furnish the administrative
backup to support these goals.

HOW DOES IT WORK?

I. To start off, there is a
pennanen t secretary for the
administrative backup.

2. For those within reach. there
is a workshop every Saturday
morning at the Exatron plant
in San ta Clara from 9 to 11.
These have been continuous
since January 1978. There is
always coffee on hand, a
round table for discussion of
whatever comes up, and
friendly help from others
members when needed.

3. We put out a monthly news­
letter. Originally it was pub­
lished locally and di' tribu ted
with a mailing list. Now it is
a page in Microcomputing, a
leading national magazine.
This is the medium for the
broadest coverage to accomp­
lish the goals of ESFOA.

4. Each interested member fills
out a sheet, his "Activity I

E~FIJ~
EXATRON STRINGY FLOPPY OWNERS ASSOCIATION

Secretary, Fred Waters

Interest Record", and we put
them all together in a binder.
You find that another mem­
ber is about to write a
program you just finished, or
vice versa. Or you find that
there are. two other members
who like you want to use
their microcomputer and
Stringy Floppy, for instance,
to keep track of commodity
futures. It's available to all
members.

5. For those interested in writ­
ing programs for possible
commercial sale and distribu­
tion, ESFOA musters the as­
sistance. the motivation, and
practical support in the way
of field test and limited com­
mercial distribution among
members.

WHY AN OWNERS
ASSOCIATION?

Looking back a short four
years ago, personal computing
was limited to a tight little circle
of dedicated and highly skilled
enthusiasts. Most of those in­
volved were already professionals
in the industry -electronic en­
gineers, or computer program­
mers. In this short span there
took place a most astounding
growth: in concepts, in the man­
ufacture of the systems and com­
ponents for microcomputers, in
systems software to make it all
work, and in program languages
and applications programming
for us all to do interesting things
with. So most of the people who
fool around with microcompu­
ters today are people who are
learning, who are starting out
with the more popular games
and utility programs, and who
have all sorts of opportunities
ahea\I of them for wider and
more intensive use of their
systems.

During this lime there has
been one overriding limitation
on progress-one factor which

operates like a governor to slow
down our ability to do all we
want with our systems. That
factor, that limitation, is the
constant- and pressing need for
more and better software. Once
we have begun to appreciate
what we can de with a micro­
computer, and once we've had a
chance to satiate the initial high
enthusiasm for games, we find
that we still need more and
better software-systems software
and practical applications soft­
ware. Well, to some degree we're
all becoming programmers, even
the beginners among us. And
we certainly have a good sprink­
ling of fine programmers and
professionals. So we can all
benefit from each others' efforts
to some degree.

Here are some of the types
of material we can write, im­
prove on, field-test, exchange,
develop for commercial sale, or
otherwise work with: expanded
ways to use the ESF hardware,
input/output interfaces, utility
routines. techniques, methods
and tricks, monitors, debugging
ideas, adaptations for specific
hardware configurations, new
and useful home applications,
high-utility small business appli­
cations, and even assemblers and
tiny languages.

ESFOA operates on a policy
of giving software credit where
due, and will not sanction the
copying and exchange of pro­
prietary software. We encourage
the writing of software among
our members, and where the
author wants to market his ideas,
we afford the maximum protec­
tion. Other authors believe in
donating smaller works to the
public domain. In either case the
author gets the credit and what­
ever else he's entitled to, and we
follow the same policy on any
software from any source.

So these are some of the
reasons why we have an owners
association. and some of the
ways that all members can bene­
fit if they choose.

HOW HAS IT WORKED
SO FAR?

The answer to this question
is what convinces us that an
owners association can and will
be successful. When the S-100
version of the Exatron Stringy
Floppy was getting started, all
it had in the way of software
was a rudimentary utility rou­
tine, just enough to make the
hardware operate. That was a
long way from having a highly
useful mass storage subsystem.
One of the first members of
ESFOA was willing to put his
talents to work to develop a
much more sophisticated and
efficient utility routine, and
then greatly extend the useful­
ness of the ESF by writing a
monitor. That monitor incorp­
orates the necessary op.erating
routines to exercise the ESF
fully, and with subsequent im­
provements and add-ons, it is
still the basis for the great
success of the S-100 ESF.
Another member wrote a tape
operating system for the Stringy
Floppy, which gives it many of
the operating features of a disk
subsystem. Other projects under­
taken by members are a re­
locator, a linking loader, a disk­
compatible operating system,
augmentations and expansions to
existing assemblers and inter­
preters, a scheme for position­
independent code, and a dis­
assembler. On a more day-to-day
level, the experienced program­
mers have always been extremely
helpful to others, with an~wers
to knotty questions, short pieces
of code to solve a particular
problem, or general guidance in
programming. WE KNOW THIS
IDEA WORKS!

So there you have it. The
Exatron Stringy Floppy Owners
As~ucia ti on will continue to en­
courage all kinds of cooperation
among the members, and pro­
vide services that members find
useful.

