
P/N 202729
FORCE COMPUTERS Inc./GmbH

All Rights Reserved

This document shall not be duplicated, nor its contents used
for any purpose, unless express permission has been granted.

Copyright by FORCE COMPUTERS

SYS68K/IBC-20 Rev.2
Firmware User’s Manual

Edition No. 0
April 1997

Please refer to the FGA-002 User’s Manual, chapter 10, which
includes a guide to the latest revision of the boot software.

VMEPROM SYSTEM OVERVIEW

TABLE OF CONTENTS

1. General Overview . 2-1

1.1 VMEPROM Modules . 2-1
1.2 Features of VMEPROM . 2-1
1.2.1 Debugging Functions . 2-1
1.2.2 System Functions . 2-2
1.2.3 System Calls . 2-2
1.2.4 Application Command Interface . 2-2

2. Starting VMEPROM . 2-3

2.1 Power Up Sequence . 2-3
2.2 Front Panel Switches . 2-4
2.2.1 RESET Switch . 2-4
2.2.2 ABORT Switch . 2-4
2.3 The Rotary Switches . 2-5
2.3.1 Lower Rotary Switch . 2-5
2.3.2 Executing the Startup File . 2-5
2.3.3 Program Execution . 2-6
2.3.4 Upper Rotary Switch . 2-7
2.4 Memory Configuration . 2-7
2.5 Terminal/RAM Port . 2-8
2.6 Start Application Command Interface . 2-8
2.6.1 Default Memory Usage . 2-9
2.6.2 Default EPROM Usage . 2-10

3. Details of the IBC Board . 2-11

3.1 EPROM/RAM Address and Device Table . 2-11
3.2 On-board I/O Devices . 2-12
3.3 On-board Interrupt Sources . 2-12
3.4 The On-board Real Time Clock . 2-13
3.5 Off-board Interrupt Sources . 2-13

4. VMEPROM Kernel . 2-14

4.1 Special VMEPROM commands for the IBC-20 board . 2-15
4.2 CONFIG - Search VMEbus for Hardware . 2-15
4.3 FLUSH - Set Buffered Write Mode . 2-16

LIST OF TABLES

Table 1: Lower Rotary Switch . 2-5
Table 2: Program Execution . 2-6
Table 3: Upper Rotary Switch . 2-7
Table 4: Memory Configurations . 2-7
Table 5: Memory layout of the on-board RAM . 2-9
Table 6: Layout of the Default EPROM Usage . 2-10
Table 7: EPROM/RAM Addresses . 2-11
Table 8: On-board I/O Devices . 2-12
Table 9: On-board Interrupt Sources . 2-12
Table 10: Off-board Interrupt Sources . 2-13

SECTION 2 VMEPROM SYSTEM OVERVIEW

1. General Overview

1.1 VMEPROM Modules

VMEPROM is a PDOS based real time Monitor. It consists of two basic parts:

1) PDOS Kernel with BIOS modules
2) User Interface

The first part, the PDOS Kernel with the BIOS modules, consumes around 32 Kbytes. This part is
responsible for all the system calls and the hardware interface.

The second part is much bigger and contains the complete user interface, the built-in functions and
debugging facilities. The size of this part is about 256 Kbytes.

The remaining space in the EPROM is reserved for future expansions.

The kernel features over 100 system calls and is 100% identical to PDOS.

The user interface gives the user both a debugging tool and an interface to the system functions. It
includes breakpoint setting, tracing, a powerful line assembler/disassembler, task management, and
event control.

1.2 Features of VMEPROM

1.2.1 Debugging Functions

• Line assembler/disassembler with full support of all 68020/68881 instructions.

• Over 20 commands for program debugging, including breakpoints, tracing, processor register
display and modify.

• Display and modify floating point data registers.

• S-record up/downloading from any port in the system.

• Time stamping of user programs.

• Built-in Benchmarks

• Support of RAM disk, floppy and Winchester disks, including disk formatting and initialization.

2-1

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

Debugging Functions Continued

• Serial I/O support for up to two SYS68K/SIO-1/2 or SYS68K ISIO-1/2 boards in the system.

• Support for EAGLE modules and base boards equipped with an Application Command Interface
(ACI).

• EPROM programming utility using the SYS68K/RR-2/3 board.

• Full screen editor.

• Numerous commands to control the PDOS kernel and file manager.

1.2.2 System Functions

• EPROM programming utility, using the SYS68K/RR-2/RR-3 boards.

• FLASH EPROM programming utility

• Complete task management.

• I/O redirection on the command line.

1.2.3 System Calls

• Over 100 system calls.

• Data conversion and file management functions.

• Task management system calls.

• Terminal I/O functions.

1.2.4 Application Command Interface

Depending on the state of the front panel rotary switch, two additional tasks are started together with
VMEPROM. The Application Command Interface software is started as a second task and a third task -
the DMA task - is started by the ACI.

Please refer to the "ACI Programming Guide" in this manual for further details about the Application
Command Interface (ACI).

2-2

SECTION 2 VMEPROM SYSTEM OVERVIEW

2. Starting VMEPROM

2.1 Power Up Sequence

The first executed software after powerup is the IBC Boot Software. Immediately after this, the
VMEPROM will be started. Control is given to the BIOS modules of VMEPROM to perform all the
necessary hardware initialization of the IBC. The real time kernel is started and the user interface of
VMEPROM is invoked as the first task. This sequence also reads the Real Time Clock (RTC) of the
IBC board and initializes the software clock of the kernel.

If a terminal is connected to the terminal port of the IBC board, the VMEPROM banner and the
VMEPROM prompt ("? ") will be displayed upon powerup or reset. Otherwise the VMEPROM installs
a RAM port to be used as an alternate I/O port of the VMEPROM.

The default terminal port setup is as follows:

Asynchronous communication
9600 Baud
8 data bits
1 stop bit
no parity
Hardware handshake protocol

If the above message does not appear, check the following:

1. Baud rate and character format setting of the terminal (default upon delivery of the IBC board is
9600 Baud, 8 data bits, 1 stop bit, no parity).

2. Cable connection from the IBC board to the terminal (refer to the Hardware User’s Manual for
the pinning of the DSub connector and the required handshake signals).

3. Power supply, +5V, +12V, -12V must be present. See the Hardware User’s Manual for the power
consumption of the IBC board.

If everything goes well, the header and prompt are displayed on the terminal and VMEPROM is now
ready to accept commands.

The Application Command Interface provides a unique interface to access the physical devices on
available EAGLE modules.

2-3

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

2.2 Front Panel Switches

2.2.1 RESET Switch

Pressing the RESET switch on the front panel causes all programs to terminate immediately and resets
the 68020 processor and all I/O devices.

When the VMEPROM kernel is started, it overwrites the first word in the user memory after the task
control block with an EXIT system call. If breakpoints were defined and a user program was running
when the RESET button was pressed, the user program could possibly be destroyed.

Pressing reset while a program is running should only be done as a last resort when all other actions
(such as pressing ^C twice or the ABORT Switch) have failed.

2.2.2 ABORT Switch

The ABORT Switch is defined by VMEPROM to cause a level 7 interrupt. This interrupt cannot be
disabled and is therefore the appropriate way to terminate a user program and return to the command
level of VMEPROM.

If ABORT is pressed while a user program is under execution, all user registers are saved at the current
location of the program counter and the message "Aborted Task" is displayed along with the contents
of the processor register.

If ABORT is pressed while a built-in command is executed or the command interpreter is waiting for
input, only the message is displayed and control is transferred to the command interpreter. The
processor register are not modified and are not displayed in this case.

NOTE: Tasks with port 0 as its input port will not be aborted.

2-4

SECTION 2 VMEPROM SYSTEM OVERVIEW

2.3 The Rotary Switches

Two rotary switches are available on the IBC-20 base board: The rotary switch accessible on the front
panel is called the "Upper Rotary" switch; whereas the second rotary switch on the base board is called
the "Lower Rotary" switch. The state of these two rotary switches are read by VMEPROM after RESET
and control the options described below:

2.3.1 Lower Rotary Switch

Table 1: Lower Rotary Switch

Bit Description

0 Reserved

1 Controls whether a startup file is executed (typically SY$STRT)

2,3 Selects one of four addresses where to continue execution after the
kernel has been initialized.

2.3.2 Executing the Startup File

The second bit (bit 1) of the lower rotary switch controls whether a given startup file has to be executed
by the VMEPROM shell. The name of this startup file is included in the configuration table at offset 016

and is called "SY$STRT".

If the second bit is set (bit 1), then no startup file is executed by the VMEPROM shell; otherwise, when
the bit is cleared (0), the VMEPROM shell executes the startup file specified by the appropriate entry
in the configuration table.

2-5

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

2.3.3 Program Start

Bits 2 and 3 are used to control where the firmware continues execution after the VMEPROM kernel is
initialized. Depending on the state of bits 2 and 3, the firmware fetches one of four addresses from a
table within the configuration table. This table contains the addresses where the firmware continues
execution after the kernel is initialized. The table below lists the relationship between the state of the
two bits of the lower rotary switch and the address being fetched.

Table 2: Program Execution

Lower Rotary Switch
Description

Bit 3 Bit 2

0 0 Fetch the address at offset 4016 in the configuration table
(continue execution at location 4080000016)

0 1 Fetch the address at offset 4416 in the configuration table
(fetch stack pointer and program counter)

1 0 Fetch the address at offset 4816 in the configuration table
(continue execution at location FFC8000016)

1 1 Fetch the address at offset 4C16 in the configuration table
(continue to execute VMEPROM)

As shown in the table above, the firmware continues execution in all four cases at predefined locations.
In the first, third and fourth cases, the firmware continues execution at the appropriate addresses via
Jump-Subroutine instruction (JSR); when the application returns to the firmware by a Return-From-
Subroutine instruction (RTS), the firmware continues to start the VMEPROM shell.

In the second case, the firmware fetches the stack pointer and the program counter, located at offset
016 and 416 of the binary image addressed by the entry, and continues execution at the location specified
by the program counter (the firmware uses a Jump instruction (JMP) to continue execution).

In general, it is wise to keep at least the fourth entry of the table located at offset 4016 within the
configuration table; however, the first three entries of the table at offset 4016 are to be modified
accordingly.

2-6

SECTION 2 VMEPROM SYSTEM OVERVIEW

2.3.4 Upper Rotary Switch

Table 3: Upper Rotary Switch

Bit Description

0,1 Memory Configuration

2 Terminal/RAM port

3 Start Application Command Interface (ACI)

2.4 Memory Configuration

These two bits are used to describe how the on-board memory has to be shared between the
VMEPROM and the task supporting the Application Command Interface. In the table below all possible
memory configurations are stated:

Table 4: Memory Configurations

Bit 1 Bit 0 Memory Configuration

0 0 Three fourths of the on-board memory is available to VMEPROM.
The remaining memory is available to ACI.

0 1 One half of the on-board memory is available to VMEPROM.
The remaining memory is available to ACI.

1 0 One fourth of the on-board memory is available to VMEPROM.
The remaining memory is available to ACI.

1 1 One eighth of the on-board memory is available to VMEPROM.
The remaining memory is available to ACI.

NOTE: The state of these two bits are only evaluated when the most significant bit (bit 3) of the
upper rotary switch is set.

2-7

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

2.5 Terminal/RAM Port

This bit specifies whether the I/O port of VMEPROM will be either the RAM port provided by the
Application Command Interface or the first serial communications channel (channel A) of the base
board’s SCC Z85C30.

If the bit is set, then the port 1 is selected to be the I/O port of VMEPROM. The firmware verifies
whether a terminal is connected with the serial interface of the first port (CTS and DCD must be active
for the firmware to assign the first port as I/O port to VMEPROM.) In case a terminal attached to the
serial interface, port 1 is used as I/O port; otherwise, the RAM port is being used as the task’s I/O port.
If the bit is cleared, then the RAM port is specified to be the task’s I/O port.

NOTE: The state of this bit is only evaluated when the most significant bit (bit 3) of the upper
rotary switch is set.

2.6 Start Application Command Interface

This bit specifies whether the Application Command Interface (ACI) has to be provided by the base
board. If this bit is set, then the firmware starts a second task - supporting the ACI - in addition to
VMEPROM. The on-board memory is shared between the two tasks as specified by the first and second
bits (bit 0 and 1) of the rotary switch.

If this bit is cleared, then the base board does not provide the ACI and no further tasks are started by
the firmware. The entire on-board memory is available to VMEPROM.

2-8

SECTION 2 VMEPROM SYSTEM OVERVIEW

2.6.1 Default Memory Usage

By default, VMEPROM uses the following memory assignment for the IBC board:

Table 5: Memory layout of the on-board RAM

MEMORY LAYOUT OF THE ON-BOARD RAM

$00000 Vector Storage of the 68020

$00400 System Configuration Data

$00800 General Purpose RAM, reserved for
System Commands

$01000 Kernel System RAM

$07000 Task Control Block for first task

$080000 User Memory

Highest On-board
Memory Address

Task Control Block for ACI

Task Memory of the ACI

RAM disk

Mail Array

2-9

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

2.6.2 Default EPROM Usage

Table 6: Layout of the Default EPROM Usage

EPROM USAGE LAYOUT

$FFE00000 Initial Supervisor Stackpointer

$FFE00004 Initial Program Counter

FGA-002A Boot Software

$FFE10000 Initial Supervisor Stackpointer

Initial Program Counter

BIOS Modules
Kernel

VMEPROM
(VMEPROM Initialization Code, Shell,

System Tools)
Application Command Interface Software

2-10

SECTION 2 VMEPROM SYSTEM OVERVIEW

3. Details of the IBC Board

3.1 EPROM/RAM Address and Device Table

Table 7: EPROM/RAM Addresses

Address Device

0000 0000
↓

........*
Local RAM

FFC0 0000
↓

FFC7 FFFF
SRAM Area

FFC8 0000
↓

FFCF FFFF
FLASH EPROM Area

FFE0 0000
↓

FFEF FFFF
EPROM Area

* → Highest On-Board Memory Address

2-11

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

3.2 On-board I/O Devices

The following table shows the base addresses of the on-board I/O devices.

Table 8: On-board I/O Devices

BASE ADDRESS DEVICE

$FF803000 RTC 72423

$FF802000 SCC Z8530 (Channel B)

$FF802020 SCC Z8530 (Channel A)

$FF800C00 CIO Z8536

$FFD00000 FGA-002A

3.3 On-board Interrupt Sources

The following table is used for the on-board interrupt sources and levels which are defined by
VMEPROM. All interrupt levels and vectors of the on-board I/O devices are software programmable via
the FGA-002A Gate Array.

Table 9: On-board Interrupt Sources

DEVICE INTERRUPT LEVEL INTERRUPT VECTOR

Abort Switch 7 232

CIO 5 242

SCC 4 245

Application Command Interface 2 192

EAGLE UART Driver 5 196

EAGLE Disk Driver 5 198

2-12

SECTION 2 VMEPROM SYSTEM OVERVIEW

3.4 The On-board Real Time Clock

During the powerup sequence, the on-board real time clock of the IBC board is read and loaded in the
VMEPROM. This sequence is done automatically and requires no user intervention. If the software
clock of VMEPROM is set by the ID command, the RTC is set automatically to the new time and date
values.

3.5 Off-board Interrupt Sources

VMEPROM supports several VMEbus boards. As these boards are interrupt driven the level and vectors
must be defined for VMEPROM to work properly. The following table shows the default setup of the
interrupt levels and vectors of the supported hardware. For a detailed description of the hardware setup
of the boards, please refer to the Appendix of this manual. The supported I/O boards together with the
base addresses and the interrupt level and vector are summarized in Table 9. In order for these boards
to work correctly with VMEPROM, the listed interrupt vectors may not be used.

Table 10: Off-board Interrupt Sources

Board Interrupt Level Interrupt Vector Board Base Address

SIO-1/2 4 169-181 $FCB00000

ISIO-1/2 4 161-168 $FC960000

ISCSI-1 4 160 $FCA00000

IBC UART
Driver 5 197 ---

IBC Disk
Driver 5 199 ---

2-13

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

4. VMEPROM Kernel

The functions of the VMEPROM kernel are described here in detail. There are three main
sections of VMEPROM; namely, the BIOS, kernel, and the user interface.

VMEPROM is based on the powerful PDOS real time kernel.

Features of the kernel:

1. Multitasking scheduling
2. System clock
3. Memory allocation
4. Task synchronization
5. Task suspension
6. Event processing
7. Character I/O including buffering
8. Support primitives

The PDOS kernel is the multitasking, real time nucleus of the VMEPROM. Tasks are the
components comprising a real time application. It is the main responsibility of the kernel to
see that each task is provided with the support it requires in order to perform its
designated function.

The main responsibilities of the kernel are the allocation of memory and the scheduling of
tasks. Each task must share the system processor with other tasks. The kernel saves the
task’s context when it is not executing and restores it again when it is scheduled. Other
responsibilities of the kernel are maintenance of a 24 hour system clock, task suspension
and rescheduling, event processing, character buffering and other support functions.

2-14

SECTION 2 VMEPROM SYSTEM OVERVIEW

4.1 Special VMEPROM commands for the IBC-20 board

The commands described below are provided by VMEPROM in addition to the commands
described in Section 3 of this manual.

4.2 CONFIG - Search VMEbus for Hardware

Format: CONFIG

This command searches the VMEbus for available hardware. It is useful if VMEPROM is
started and bit 0 of the lower rotary switch on the front panel is set to "1", so that
VMEPROM does not check the configuration by default.

In addition this command allows the user to install additional memory in the system.
Additional memory can ONLY be installed with this command.

The following hardware is detected:

1. ISIO-1/2
2. SIO-1/2
3. ISCSI-1
4. Boards providing the Application Command Interface
5. Contiguous memory starting at the highest on-board memory address

The boards must be set to the default address for 32 bit systems. This setup is
summarized for all supported boards in the Appendix of this manual.

Additional memory must be contiguous to the on-board memory of the CPU board. This
memory is cleared by the config command to allow DRAM boards with parity to be used.
Please remember that the installation of additional memory does not effect the RAM size
of the running task. However, VMEPROM identifies this installed memory area and every
time memory is required (i.e. with CT or FM) it is taken from this area as long as there is
enough free space.

The CONFIG command also installs Winchester disks in the system and initializes the disk
controller (if available). So if a SYSFAIL is active on the VMEbus (which can come for
example from the ISIO-1/2 or ISCSI-1 controller during selftest), the command is
suspended until the SYSFAIL signal is no longer active.

An example follows on the next page.

2-15

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

Example:

? CONFIG<cr>
UART FORCE ISIO1/2 (U3) INSTALLED
ISCSI-1: 1 boards available
ISIO-1/2: 1 boards available

? _

4.3 FLUSH - Set Buffered Write Mode

Format: FLUSH
FLUSH <disk number>,<time>

The first command flushes all buffers on all disks in the system.

The second command sets a flush time for the device driver task. The device driver task has to
flush its buffers periodically every <time> seconds. Please refer to the USER’S MANUAL of the
Module to see if the device driver task is able to handle this service. The parameter <disk
number> is only used to select a specific device driver task. Every disk which is connected to
this task is flushed.

Example

? FLUSH

All modified buffers are flushed

? FLUSH 2 20

Flush time: 20 seconds

? _

2-16

VMEPROM BUILT-IN COMMANDS

TABLE OF CONTENTS

1. GENERAL INFORMATION . 3-1

1.1 Command Line Syntax and Line Editing . 3-1

1.2 VMEPROM Built-in Commands . 3-6

1.2.1 # - Symbolic Command Name . 3-7
1.2.2 ARB - Set the Arbiter of the IBC Board . 3-8
1.2.3 AS - LINE ASSEMBLER . 3-9
1.2.4 ASSIGN - Assign New Input or Output Ports . 3-11
1.2.5 BASE - SET/DISPLAY BASE REGISTER . 3-12
1.2.6 BENCH - Built-in Benchmarks . 3-13
1.2.7 BF - Block Fill . 3-14
1.2.8 BM - Block Move . 3-15
1.2.9 BP - BAUD PORT . 3-16
1.2.10 BR - Set/Display/Delete Breakpoints . 3-17
1.2.11 BS - Block Search . 3-18
1.2.12 BT - Block Test . 3-19
1.2.13 BV - Block Verify . 3-20
1.2.14 COLD - Cold Start VMEPROM . 3-21
1.2.15 CREATE TASK . 3-22
1.2.16 DI - Disassembler . 3-24
1.2.17 DR - Display Processor Registers . 3-25
1.2.18 DT - DATE AND TIME . 3-26
1.2.19 DU - Dump S-record . 3-27
1.2.20 EAGLE - Display All Information About Available EAGLE Modules 3-28
1.2.21 ER - LIST ERRORS . 3-29
1.2.22 EV - SET/RESET EVENT . 3-30
1.2.23 FGA - Change Boot Setup for Gate Array . 3-32
1.2.24 FM - FREE MEMORY . 3-33
1.2.25 FMB - Force Message Broadcast . 3-34
1.2.26 FUNCTIONAL - Perform Functional Test . 3-35
1.2.27 GO - Start User Program . 3-36
1.2.28 GD - Start User Program Without Breakpoints . 3-37
1.2.29 GM - GET MEMORY . 3-38
1.2.30 GT - Start User Program with Temporary Breakpoint . 3-39
1.2.31 HELP - HELP . 3-40
1.2.32 HIST - Command history . 3-41
1.2.33 ID - SET SYSTEM DATE/TIME . 3-42
1.2.34 INFO - Information about the CPU board . 3-43
1.2.35 KM - KILL MESSAGE . 3-44
1.2.36 KT - KILL TASK . 3-45
1.2.37 LO - Load S-record . 3-46
1.2.38 LT - LIST TASKS . 3-47
1.2.39 M - Modify Memory . 3-48
1.2.40 MD - Display Memory . 3-50
1.2.41 MEM - Set Data Bus Width of the VMEbus . 3-51

TABLE OF CONTENTS

1.2.42 MS - Set Memory to Constant or String . 3-52
1.2.43 PROG - Program FLASH EPROM . 3-53
1.2.44 PROMPT - CHANGE PROMPT SIGN . 3-54
1.2.45 RM - Modify Processor Registers . 3-55
1.2.46 RR2 - EPROM Programming . 3-57
1.2.47 SELFTEST - Perform On-board Selftest . 3-62
1.2.48 SM - SEND MESSAGE . 3-63
1.2.49 ST - SET TASK TERMINAL TYPE . 3-64
1.2.50 T - Trace Program Execution . 3-67
1.2.51 TC - Set Trace Count . 3-70
1.2.52 TIME - Enable/Disable Program Run Time Display . 3-71
1.2.53 TJ - Trace on Change of Flow . 3-72
1.2.54 TM - TRANSPARENT MODE . 3-73
1.2.55 TP - TASK PRIORITY . 3-74
1.2.56 UN - CONSOLE UNIT . 3-75
1.2.57 ZM - ZERO MEMORY . 3-76

This page was intentionally left blank

SECTION 3 VMEPROM BUILT-IN COMMANDS

1. GENERAL INFORMATION

The VMEPROM command interpreter is a set of resident routines for program debugging and handling
of the most common kernel functions. The command interpreter then searches for a given command.
If a match is found, the command is executed.

The prompt of VMEPROM is a single question mark, followed by a space ("? ").

1.1 Command Line Syntax and Line Editing

Command Line Arguments

The VMEPROM command interpreter allows several options. In general the complete command line is
divided into separate arguments. The arguments must be separated by one or more spaces or a comma.
If a null-argument has to be entered, it must be represented by a comma only.

Example: ? PROG ARG1,,ARG3,

In this example, the arguments number 2 and 4 are null-arguments.

If any argument is using a comma, space, period or one of the I/O redirection arrows, it has to be put
in brackets to suspend the command line interpretation.

Example: ? PROG1 (Hello, world.),(<....>),>2

Port 2 now shows the output of PROG1 which may be:

ARGUMENT 1 was: Hello, world.
ARGUMENT 2 was: <....>
ARGUMENT 3 was:
ARGUMENT 4 was:
ARGUMENT 5 was:

3-1

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

Input/Output Redirection

VMEPROM supports simple I/O redirection. The specifiers are the signs ’<’ for input and ’>’ for output
and may appear at any location in the command line, but must be after the command name. Immediately
after the redirection signs ’<’ and ’>’, a port number must be specified. The port number may be one
of the ports available in the system. It is expected to be given in hexadecimal number system. The
arguments specifying the I/O redirection are removed from the command line by the command
interpreter and do not appear in the built-in command.

Example: ? PROG <2>3 ARG1,ARG2,ARG3,ARG4

In this example, the program PROG is started. It is getting all inputs from port 2 and all output is
redirected to port 3.

Multiple Commands

VMEPROM allows command lines of up to 78 characters. This command line can contain several
different commands. The parsing of the command line is terminated at the first period (".") and the
remaining command line is saved to be used later.

Example: ? RM D0 12345678.SM 2,Hello
? SM 2,Hello
?

Command Line Editing

The PDOS get line (XGLM) primitive is used to get a command line of up to 78 characters into the
command line buffer.

Input is normally in replace mode which means an incoming character replaces the character at the
cursor. Various control characters can be used to edit the input line.

The following table summarizes the control characters:

[ESC] = Cancel current line
[CTRL-C] = Cancel current line
[CTRL-I] = Enter insert mode
[CTRL-A] = Recall last entered line
[CTRL-L] = Move right 1 character
[CTRL-H] = Move left 1 character
[CTRL-D] = Delete character under cursor
[RUBOUT] = Delete 1 character to the left

3-2

SECTION 3 VMEPROM BUILT-IN COMMANDS

A [CTRL-I] changes input from replace to insert mode. The mode returns to replace mode when any
other editing control code is entered. Replace mode overwrites the character under the cursor. Insert
mode inserts a character at the current cursor position.

In either mode, the cursor need not be at the end of the line when the [CR] is entered. The command
line is passed as it appears on the screen.

When a line is accepted, it is copied to another buffer (MPB$) where it can be recalled by using the
[CTRL-A] character. A [CR] and [LF] are output to the console followed by the recalled line. The cursor
is positioned at the end of the line. This is a circular buffer and commands will rotate through it as they
are recalled.

Numeric parameters are entered as signed decimal, unsigned hex, unsigned octal or unsigned binary
numbers. All numbers are converted to two’s complement 32-bit or 16-bit integers depending on their
function. Therefore it ranges from -2,147,483,648 to 2,147,483,647 (hex $80000000 to $7FFFFFFF) or
-32,768 to 32,767 (hex $8000 to $7FFF). All built-in commands assume that numbers are entered in hex
if not noted otherwise. To change from the expected number system, numbers must be preceded with
a special sign. These are: a dollar sign ($) to enter into hexadecimal, an ampersand (&) to enter into
decimal, an at/around sign (@) to enter into octal and a percent sign (%) to enter into the binary number
system.

(Note: Numbers are not checked for overflow. Hence, $FFFFFFFF or 4,294,967,295 are equivalent to
-1). A line beginning with an ’*’ is ignored. This is very useful to insert comment lines in command files.

In addition, every numeric parameter is passed through a Regular Expression Processor. This processor
calculates numbers. For this calculation the following operations are allowed:

*: Multiplication
/: Division
+: Addition
-: Subtraction
^: Power of
(: Opening Bracket
): Closing Bracket

3-3

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

Line Editing

Some commands allow inputting data outside the command line. For this a line editor is used. There are
some control characters to edit the line:

[ESC] = Cancel current line and exit
[CTRL-C] = Cancel current line and exit
[CTRL-I] = Toggle between insert and replace mode.

First the line editor is in insert mode.
[CTRL-A] = Dependent on the called command.
[CTRL-L] = Move right one character
[CTRL-E] = Move to end of line
[CTRL-H] = Move one character left
[CTRL-B] = Move to begin of line
[CTRL-D] = Delete character under cursor
[RUBOUT] = Delete one character to the left
[CTRL-\] = Delete character under cursor to end of line
[CTRL-O] = Delete whole line

The cursor need not be at the end of the line when the [CR] is entered.

3-4

SECTION 3 VMEPROM BUILT-IN COMMANDS

Program or Command Abort

There are two basic methods of aborting a running program or command. The first one is the ABORT
switch on the CPU board. This switch causes a level 7 interrupt to the processor. If a VMEPROM
command was under execution at this time, the message "Abort switch pressed" is displayed and control
is transferred back to the command interpreter immediately. If a user program is running when the
ABORT switch is pressed, the current contents of the processor registers are saved and a message
along with the processor registers is displayed.

The second method is typing ^C twice on the keyboard. If that happens, VMEPROM will abort the
current command and control is transferred to the command interpreter. The processor register is not
saved by this action. They show the same status as they had before the program was started.

NOTE: Tasks with port 0 as input port will not be aborted.

3-5

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.2 VMEPROM Built-in Commands

The VMEPROM built-in commands are described in detail in this chapter.

The following notations are used throughout this document:

• Symbolic representation is put in arrows (i.e. <address> where an absolute address has to be
inserted.

• Optional arguments are in square brackets (i.e. [<option>]). Those arguments must not be
specified and have a default value.

• If one argument out of more can be selected, the arguments are separated by a "|" (i.e. [B | W
| L] to select Byte, Word or Long Word size).

• If more than one out of many possibilities for an argument has to be selected, these are marked
with a "&" sign (i.e. [B|W|L&N&O|E] to select B or W or L together with N and O or E).

Most of the VMEPROM commands assume that the parameters are given in hex (without a leading $
sign).

However, some values are assumed in decimal.

These are:

Port VMEPROM port numbers are in the range 0-15 and have to be entered in decimal.

Tasks The task numbers have to be entered in decimal

Task Priorities The task priority has to be entered in decimal

Error Numbers The error numbers are displayed in decimal and have to be entered in decimal

3-6

SECTION 3 VMEPROM BUILT-IN COMMANDS

1.2.1 # - Symbolic Command Name

Format: #
<name>
<name>,<command string>

The symbolic name command is used to display, delete or define a symbolic name for often used
command lines. The first format displays all currently defined names, the second deletes a defined name
from the list and the third one defines a new name with the command string. VMEPROM supports up
to 5 symbolic names with command lines of up to 40 characters.

Symbolic names can reference other symbolic names.

Example:

? # ASM AS 8000 Define ASM for the command AS

? # DISP LT Define DISP for list tasks

? # D DISP Define D for DISP

? # Show defined symbolic names
ASM: AS 8000
DISP: LT
D: DISP

? DISP
task pri tm ev1/ev2 size pc tcb eom ports name
*0/0 1 1 256 FFE1D46A 00007000 00047000 1/1/0/0/0 lt

1/-1 1 1 1762 FFE1010C 00047000 0 01FF800 0/0/0/0/0 MEtask
2/-1 1 1 6 0004FA1C 0004E9EE 000503AE 0/0/0/0/0 DMAtask

? D
?_

? ASM
8000 : XEXT

: _

3-7

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.2.2 ARB - Set the Arbiter of the IBC Board

Format: ARB

The ARB command allows the user top set the arbitration mode of the IBC board for VMEbus. This
command is also used to select the Standard Access Mode for the VMEbus. Additionally, the VMEbus
interrupts can be enabled or disabled.

Example:

?ARB<cr>

Current arbiter mode: enabled, Mode = Prioritized ROUND ROBIN
Set arbiter mode ? (Y,y/-) : Y
ROUND ROBIN mode ? (Y,y/-) : Y
Prioritized ROUND ROBIN ? (Y,y/-) : N

New arbiter mode = ROUND ROBIN
Set arbiter mode for VME-BUS:

STATUS: ROR & RAT & RBCLR & FAIR
SET: Release on bus clear (RBCLR) (Y/N) Y
SET: Fair VME-BUS arbitration (FAIR) (Y/N) Y

Standard Access Mode (A24) for Slave Accesses currently disabled.
Enable A24 mode ? (Y,y/-) : Y

A31-A24 = 80
Change interrupt mask ? (Y,y/-) : Y

Enable(1) / Disable(0) VMEbus interrupts by level:

STATUS: Level: 7 6 5 4 3 2 1
1 1 1 1 1 1 1

SET: Enter new interrupt mask: 1 1 1 1 1 1 0

?_

3-8

SECTION 3 VMEPROM BUILT-IN COMMANDS

1.2.3 AS - LINE ASSEMBLER

Format: AS <address>

The AS command invokes the line assembler/disassembler of VMEPROM. It can assemble and
disassemble all 68020 instructions and all the PDOS system calls.

The AS command, when invoked, displays the current address offset and the address within the window.
Then the current location is disassembled.

After the prompt on the next line, the user can enter one of the following:

1) A valid 680x0 mnemonic. Some 68020 addressing modes allow omission of arguments. These
addressing modes can be entered by omitting the argument and typing the dividing character ’,’.

Examples: CLR.W ([$1,A0],D0.W,$2)
CLR.W ([$1,A0],,$2)
CLR.W ([,A0],,)

2) A ’#’ sign followed by the new address within the window. This is an absolute address change.

3) An ’=’ to disassemble the same location again.

4) A ’+’ to disassemble the next location.

5) A ’-’ sign forces the disassembler to step back one possible opcode. If none is found the same
location will be opened.

6) A ’+’ or ’-’ sign followed by the number of bytes the address has to be increased or decreased.
This is a relative address change.

7) A ’.’ or [ESC] to exit the line assembler and return control to the command interpreter.

8) [CTRL-A] to edit the disassembled opcode.

All immediate values, addresses and offsets inside mnemonics are assumed to be entered in decimal.
So hex values have to be proceeded with a dollar ($) sign. In addition, binary values may be used if
proceeded by a percent sign ("%") and octal values if proceeded by an at/around sign ("@"). The
disassemblers display all values in hex representation.

The line assembler accepts a pseudo opcode of the form DC.B, DC.W and DC.L to define constant data
storage. An ASCII pattern can be stored by using DC.B with the format DC.B "ASCII. All characters
after ’" ’ will be written to memory. The disassembler displays all illegal opcodes as DC.W.

3-9

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

Both the line assembler and disassembler support the opcodes as described in Chapter 4 of the
VMEPROM Manual.

Example:

? AS 8000
8000 : XEXT

: MOVE.L #$123,D1 New opcode entered
8006 : ORI.B #0,D0

: - Step back one opcode
8000 : MOVE.L #$123,D1

: [CTRL-A] Recall line
: MOVE.L #$1234,D1 Line edited

8006 : ORI.B #0,D0
: XRDM New opcode

8008 : ORI.B #0,D0
: -8 Back 8 bytes

8000 : MOVE.L #$1234,D1
: + Disassemble next instruction

8006 : XRDM
: [CR] Disassemble next instruction

8008 : ORI.B #0,D0
: #8010 Go to absolute address $8010

8010 : ORI.B #0,D0
: . Back to the command interpreter

? _

3-10

SECTION 3 VMEPROM BUILT-IN COMMANDS

1.2.4 ASSIGN - Assign New Input or Output Ports

Format: ASSIGN <port>
ASSIGN <port>,<output port>

The ASSIGN command has two functions, depending on the command line arguments. If the output port
is omitted, ASSIGN sets a new input and output port for the current task. If the output port is specified,
the default input/output ports are unchanged, but the alternate output ports of the task are changed. The
output port specified must be in the range 1-4.

Example:

? ASSIGN 3 VMEPROM now uses port 3 for I/O

? ASSIGN 3,2 Use port 3 as unit 2 port

3-11

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.2.5 BASE - SET/DISPLAY BASE REGISTER

Format: BASE
BASE <address>

The BASE register in VMEPROM is used to offset all memory accesses into the tasks memory. So all
debugging can be done relative to address 0, which is actually the begin address of your tasks memory.
This saves a lot of typing and makes sure that no other tasks memory is destroyed by a typing error.

Example:

? base<cr> Display BASE register
Base = 00000000 : <cr> No changes

? base 8000<cr> Set BASE register to $8000
? base<cr> Display BASE register
Base = 00008000 : <cr>

? M 0<cr> Open address $0 +BASE register
8000+0000 A00E : <cr>
8000+0002 0000 : <cr>
8000+0004 0000 : .

?

3-12

SECTION 3 VMEPROM BUILT-IN COMMANDS

1.2.6 BENCH - Built-in Benchmarks

Format: BENCH
BENCH <#>,<address>

These function can execute one of the built-in benchmarks. If only BENCH is entered, a short
descriptions of all benchmarks is displayed on the terminal. A benchmark is executed by entering the
number of the benchmark (in decimal) and the address where it shall run in memory (in hex).

The following benchmarks are available:

Bench 1: Decrement long word in memory, 10.000.000 times
Bench 2: Pseudo DMA 1K bytes, 50.000 times
Bench 3: Substring character search, 100.000 times, taken from EDN, 08/08/85
Bench 4: Bit Test/Set/Reset, 100.000 times, taken from EDN,08/08/85
Bench 5: Bit Matrix Transposition, 100.000 times, taken from EDN, 08/08/85
Bench 6: Cache test, executes 128K bytes program 1000 times

CAUTION: This benchmark will destroy 128K bytes memory
Bench 7: Floating Point - 1.000.000 Additions
Bench 8: Floating Point - 1.000.000 Sines
Bench 9: Floating Point - 1.000.000 Multiplications
Bench 10: 100.000 Context switches
Bench 11: 100.000 Set system event
Bench 12: 100.000 Change task priority
Bench 13: 100.000 Send and Receive task message
Bench 14: 100.000 Read system time

Example:

? bench 1 8000 Execute benchmark #1 at address $8000

Bench 1: Decrement long word in memory, 10.000.000 times
Benchmark time = 0:07.23

?

3-13

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.2.7 BF - Block Fill

Format: BF <begin>,<end>,<value>,[B | W | L]
BF <begin>,<end>,<pattern>,P
BF <begin>,<end>,<opcode>,O

This command fills the specified memory area with a constant. The type of the constant is defined by
the option and may be a Byte, Word, Long word, Pattern or an Opcode. A pattern is an ASCII string
which is to be put in inverted commas. The maximum length is only restricted by the length of the input
line, which may not exceed 78 characters. An Opcode is each valid 680x0 mnemonic or an opcode as
described in Chapter 4 of the VMEPROM Manual. If the pattern or the opcode contains argument
separators, such as space, comma, or full stop, the data has to be put in brackets. If no option is
specified, a default of Word is assumed.

Example:

? BF 8000 8100 NOP O

? MD 8000 10
00008000: 4E 71 4E 71 4E 71 4E 71 4E 71 4E 71 4E 71 4E 71 NqNqNqNqNqNqNqNq

? BF 8000 8100 ("Hello World") P

? MD 8000 10
00008000: 48 65 6C 6C 6F 20 57 6F 72 6C 64 48 65 6C 6C 6F Hello World Hello

? BF 8000 8100 12345678 L

? MD 8000 10
00008000: 12 34 56 78 12 34 56 78 12 34 56 78 12 34 56 78 .4Vx.4Vx.4Vx.4Vx

? BF 8000 8100 &255

? MD 8000 10
00008000: 00 FF 00 FF 00 FF 00 FF 00 FF 00 FF 00 FF 00 FF

? _

3-14

SECTION 3 VMEPROM BUILT-IN COMMANDS

1.2.8 BM - Block Move

Format: BM <begin>,<end>,<destination>

The BM command copies a memory from one area to another. The areas may be overlapped.

Example:

? MD 8000 20
00008000: 00 FF 00 FF 00 FF 00 FF 00 FF 00 FF 00 FF 00 FF
00008010: 00 FF 00 FF 00 FF 00 FF 00 FF 00 FF 00 FF 00 FF

? BM 8000 8020 9000

? MD 9000 20
00009000: 00 FF 00 FF 00 FF 00 FF 00 FF 00 FF 00 FF 00 FF
00009010: 00 FF 00 FF 00 FF 00 FF 00 FF 00 FF 00 FF 00 FF

? _

3-15

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.2.9 BP - BAUD PORT

Format: BP
BP <port #>
BP {-}<port #>,<baud rate>
BP {-}<port #>,<baud rate>,<type>,<UART base addr>

The BAUD PORT command initializes a VMEPROM I/O port and binds a physical UART to a character
buffer. The command sets the UART character format, receiver and transmitter baud rates, and enables
receiver interrupts. The first parameter <port #> selects the console port in ranges from 1 to 15. This
corresponds to character input buffers defined in the VMEPROM system RAM (SYRAM). If a minus (-)
precedes the port number, then the associated port # is stored in the UNIT 2 (U2P$(A6)) variable.
Receiver and transmitter baud rates are initialized to the same value according to the <baud rate>
parameter. The <baud rate> parameter ranges from 0 to 8 or the corresponding baud rates of 19200,
9600, 4800, 2400, 1200, 600, 300, 110, or 38400. Either parameter type is acceptable.

Baud Rates Allowed:

0 = 19200 baud 1 = 9600 baud
2 = 4800 baud 3 = 2400 baud
4 = 1200 baud 5 = 600 baud
6 = 300 baud 7 = 110 baud
8 = 38400 baud

The <type> and <UART base addr> are optionally included when binding a logical port to a different
UART. For <type> information, refer to the User’s Manual of your CPU-board. The <port #> can also
be used to set or reset the port flags. These are bit positions 8 through 15 of the resulting integer value
and are defined to the right. It is recommended that hex format be used when setting these parameters.

$100 + port = CtrlS CtrlQ protocol $200 + port = Pass control characters
$400 + port = DTR protocol $800 + port = 8-bit character I/O
$1000 + port = receiver interrupts disable $2000 + port = even parity enable
$4000 + port = clear flag bits

If the BP command has no arguments, a listing of all currently installed ports is sent to the console.
’Task’ parameter indicates the currently assigned task to that port.

Example:

? BP
Port Type fwpi8dcs Base Baud task
1 1 00001100 FF800000 9600 1

? BP 2,1,1,$FF800200 Initialize the UART
?

3-16

SECTION 3 VMEPROM BUILT-IN COMMANDS

1.2.10 BR - Set/Display/Delete Breakpoints

Format: BR
BR *
BR <number>
BR <number>,<address>
BR <number>,<address>,<command>
BR <number>,<address>,[<command>],<count>

VMEPROM supports a maximum of 10 breakpoints in the range 0-9. The BR command is used to set,
display or delete breakpoints.

The first format displays all currently defined breakpoints. The second one deletes all defined
breakpoints. The third format is used to delete one single breakpoint. The other formats are used to
define one breakpoint. If a breakpoint is already defined it will be overwritten. Two breakpoints looking
for the same address are not possible.

If a count is specified, the program first stops at the breakpoint when this specification has been
achieved. The default value is one.

The default action taken by a breakpoint is a display of the breakpoint number encountered and a
display of all processor registers.

So there is a fourth option of the command line to change the default behavior at a breakpoint. The
command, which can be specified is executed instead of the display described before. The command
may not have any arguments and may have a length of up to 9 characters.

The command may be a symbolic name, one of the built-in commands of VMEPROM, an installed utility
or a disk file (command file or program).

Example:

? BR 0 8020 Define breakpoint 0 at address $8020

? BR
Defined Breakpoints:
B0 $8020 1

?

3-17

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.2.11 BS - Block Search

Format: BS <begin>,<end>,[/]<value>[,<option>]
BS <begin>,<end>,[/]<pattern>,P
BS <begin>,<end>,[/]<opcode>,O

This command searches the specified memory area for a constant. The type of the constant is defined
by the option and may be a Byte, Word, Long word, Pattern, or an Opcode. A pattern is an ASCII string
which is to be put in inverted commas. The maximum length is only restricted by the length of the input
line, which may not exceed 78 characters. An Opcode is each valid 680x0 mnemonic or an opcode as
described in Chapter 4 of the VMEPROM Manual. If the pattern or the opcode contains argument
separators, such as space, comma, or full stop, the data has to be put in brackets. If no option is
specified, a default of Word is assumed.

The data which has to be searched in memory may be preceded by a ’/’ to look only for locations not
containing the value, pattern or opcode.

Example:

? BS 8000 8100 /1234Search memory for "not" value
Search: 8020 = 5678 Found

? BS 8000 8100 5678Search memory for value
Search: 8020 = 5678 Found

? BS 8000 8100 ("Hello World") P Search memory for pattern
None found

? BS 8000 8100 (ADDQ.L #1,D0) O Search memory for opcode
None found

? _

3-18

SECTION 3 VMEPROM BUILT-IN COMMANDS

1.2.12 BT - Block Test

Format: BT <begin>,<end>

The Block Test command performs an in-depth memory test within the specified address limits. The
following passes are performed:

1) Byte Pattern Test
2) Word Pattern Test
3) Long Pattern Test
4) Word Shift Test
5) Address Test

If any errors are found they are reported with the type of test which failed, the address and the differing
values. In addition the error counter in the task control block (TCB) is incremented.

Example:

? bt 200000 300000 Test memory from $200000 to $300000
?

3-19

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.2.13 BV - Block Verify

Format: BV <begin>,<end>,<destination>

This command compares two blocks of memory. If the specified blocks are not equal, the different
values and the memory location is displayed. In addition the error counter in the task control block
(TCB) is incremented.

Example:

? bv 8000 8080 8080
Verify: 8021 = 70 80A1 = 71

?

3-20

SECTION 3 VMEPROM BUILT-IN COMMANDS

1.2.14 COLD - Cold Start VMEPROM

Format: COLD

The COLD command is used to reinitialize all VMEPROM variables. It takes the same action as a reset,
except that the kernel and all associated tasks are not affected.

Example:

? COLD
**
* *
* V M E P R O M *
* *
* SYS68K/IBC-20 Version a.bb Date *
* *
* (c) FORCE Computers and Eyring Research *
* *
**

? _

3-21

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.2.15 CREATE TASK

Format: CT <command>,<size>,<[time*256+]priority>,<port>
CT ,<size>,<[time*256+]priority>,<port>
CT <address>,<size>,<[time*256+]priority>,<port>

The CREATE TASK command places a new task entry in the task queue and lists the realtime kernel
of VMEPROM. Parameters for the new task include a command line, memory size, task priority/time
slice, and an I/O port. The new task number is reported after task creation.

The <command> parameter is the command line for the new task. The string is passed to the new task
via a message buffer and cannot exceed 64 characters in length.

Multiple commands and parameters are passed by using parentheses. If the first parameter is omitted,
then the VMEPROM monitor is invoked.

If an address is specified instead of <command>, this address is interpreted as the start address of a
program in memory. The address must be specified in hexadecimal and start with a number 0-9 not to
conflict with a program name.

The amount of memory for the new task is given by <size> and is in 1 Kbyte increments (although
rounded to the next 2 Kbyte boundary). The minimum amount of memory is 8 Kbyte. The system
memory bit map is searched for a contiguous block of memory equal to <size>. If the search fails to
find a large enough block, then memory is taken from the parent task and allocated to the new task.

The <priority> parameter specifies the new tasks priority. The range of task priority is from 1 to 255
where 255 is the highest priority. The highest priority, ready task always executes. Tasks on the same
priority level are scheduled in a round robin fashion. The time a task is in running state is also given with
the <priority> parameter. If no time is specified it will default to one time slice. Otherwise it is calculated
to "time*256+priority".

The <port> parameter assigns an I/O port to the new task. Port 0 is the default and is called the
phantom port. On the phantom port, all character outputs and conditional inputs are ignored while
requests for character input result in the task aborting with error 86. More than one task may be
assigned to an output port. The input port cannot be shared with another task. Input ports are allocated
on a first come basis.

After a task is created, the spawned task number is reported. This number is used in killing the new
task.

The values for size, priority and port have to be entered in decimal.

3-22

SECTION 3 VMEPROM BUILT-IN COMMANDS

Example:

? lt
task pri tm ev1/ev2 size pc tcb eom ports name
*0/0 1 1 256 FFE1D46A 00007000 00047000 1/1/0/0/0 lt

1/-1 1 1 1762 FFE1010C 00047000 001FF800 0/0/0/0/0 MEtask
2/-1 1 1 6 0004FA1C 0004E9EE 000503AE 0/0/0/0/0 DMAtask

? ct ,10,64,2
Sontask number = 3

? lt
task pri tm ev1/ev2 size pc tcb eom ports name
*0/0 1 1 246 FFE1D46A 00007000 00044800 1/1/0/0/0 lt

1/-1 1 1 1762 FFE1010C 00047000 001FF800 0/0/0/0/0 MEtask
2/-1 1 1 6 0004FA1C 0004E9EE 000503AE 0/0/0/0/0 DMAtask
3/0 64 1 98 10 FFE06F50 00044800 00047000 2/2/0/0/0

? ct ,,256*10+40,3
Sontask number = 4

? lt
task pri tm ev1/ev2 size pc tcb eom ports name
*0/0 1 1 238 FFE1D46A 00007000 00042800 1/1/0/0/0 lt

1/-1 1 1 1762 FFE1010C 00047000 001FF800 0/0/0/0/0 MEtask
2/-1 1 1 6 0004FA1C 0004E9EE 000503AE 0/0/0/0/0 DMAtask
3/0 64 1 98 10 FFE06F50 00044800 00047000 2/2/0/0/0
4/0 40 10 99 8 FFE06F50 00042800 00044800 3/3/0/0/0

? _

3-23

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.2.16 DI - Disassembler

Format: DI <address>
DI <address>,<count>

The DI command causes the disassembler to be invoked and display the mnemonic, starting at the
specified address. If count is specified, it is interpreted as the number of lines to display. If count is
omitted, a full page is displayed on the terminal and the user is then prompted to continue disassembly
(enter <cr>) or to return to the command interpreter (enter any other key).

The disassembler supports all 68020 mnemonics.

Example:

? DI 8000 5

8000 NOP
8002 NOP
8004 NOP
8006 NOP
8008 NOP

?

3-24

SECTION 3 VMEPROM BUILT-IN COMMANDS

1.2.17 DR - Display Processor Registers

Format: DR [T]

The DR command displays processor registers. The displayed registers are not real current processor
registers, but those kept in memory and loaded to the processor when a program is started. When
program execution is terminated (XEXT instruction, trap or breakpoint or other exception) the processor
registers are resaved and can be displayed by the DR command.

When choosing the option ’T’, only the program counter, stack pointer, and address registers A5 and
A6 will be displayed until ’T’ is used a second time. Then all registers will once again be displayed. First
VMEPROM is configured to display all registers.

Example:

? DR
0 1 2 3 4 5 6 7

D: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A: 00000000 00000000 00000000 00000000 00000000 00001000 00007000 0009AFFC

VBR = 00000000 CAAR = 00000000 CACR = 00000001 SFC = 0 DFC = 0
*USP = 0009AFFC SSP = 00007BE6 MSP = 000078C4

PC = 00008000 SR = 0000 ..U..0........

? DR T
PC = 00008000 SP = 0009AFFC A6 = 00007000 A5 = 00001000

? DR
PC = 00008000 SP = 0009AFFC A6 = 00007000 A5 = 00001000

? DR T
0 1 2 3 4 5 6 7

D: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A: 00000000 00000000 00000000 00000000 00000000 00001000 00007000 0009AFFC

VBR = 00000000 CAAR = 00000000 CACR = 00000001 SFC = 0 DFC = 0
*USP = 0009AFFC SSP = 00007BE6 MSP = 000078C4

PC = 00008000 SR = 0000 ..U..0........
? _

3-25

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.2.18 DT - DATE AND TIME

Format: DT

The DT command outputs the current date and time to the user console. These values can be changed
by the ID command.

Example:

? DT
16-Mar-88
16:47:38

?

3-26

SECTION 3 VMEPROM BUILT-IN COMMANDS

1.2.19 DU - Dump S-record

Format: DU <begin>,<end>
DU <begin>,<end>,<command line>

This command sends an S-Record to the standard output port. It may be redirected with the usual
redirection method.

An optional command line may be specified which is sent via the output port before the S-record starts.
This can be used to start a load command on the host system.

The following S-record types are supported:

S1 Start record

S2 Data record, this type is needed if the end address is smaller than $8000.

S3 Data record, this type is used if the end address is bigger than $800000.

S7 End-record for S3 records.

S8 End-record for S2 records.

S9 End-record for S1 records.

The address field of all End-records is 0.

Example:

? DU 8000 8020
S0030000FC
S2180080004E714E714E714E714E714E714E714E714E714E71F1
S2100080144E714E714E714E714E714E71E1
S804000000FB

? DU 8000 8020 >2
?

3-27

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.2.20 EAGLE - Display All Information About Available EAGLE Modules

Format: EAGLE

This command is intended to display all information about available EAGLE modules on the IBC-20
board. The information displayed by this command is contained in the ID EPROM of an EAGLE module
and the content of such an ID EPROM has a fixed structure which has been specified by FORCE
COMPUTERS.

However, the EAGLE command provides the following information about an EAGLE module.

• The EAGLE module identifier

• The name of the manufacturer who had developed the EAGLE module.

• The serial number of the board, the hardware and software revision number.

• Up to eight Ethernet addresses (these addresses are always displayed independent from the
presence of a corresponding LAN controller).

• Detailed information about available software modules relating to different operating systems.

• Detailed information about the available devices on the EAGLE modules (base addresses,
interrupt and DMA capabilities, logical device number, etc.).

3-28

SECTION 3 VMEPROM BUILT-IN COMMANDS

1.2.21 ER - LIST ERRORS

Format: ER [-c]
ER 0 [-c]
ER <error#>

The LIST ERROR command has three functions. The first one, with no argument, displays the number
of errors found on one of the following commands:

1) Block Test
2) Block Verify
3) Block Search.

The second format, with the argument "0" resets the above error count to 0.

If the optional parameter [-c] is given when using the first two formats, an execution count will be
displayed or reset to zero. The execution count will be incremented before it is displayed.

The third format requires a valid error number as an argument and displays the VMEPROM error
message associated with <error#>.

Error numbers range as follows:

VMEPROM errors 1-49
PDOS errors 50-99
Disk errors 100-299

Example:

? ER
Current error count = 6

? er 0

? er 2
Command line argument error

?er 0 -c

?er -c
Current error count = 0 Execution count = 1

3-29

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.2.22 EV - SET/RESET EVENT

Format: EV
EV {-|+}<event>
EV {-|+},<address>,<bit#>

VMEPROM events are set, reset, or listed with the EV command. Both logical and physical events can
be accessed with EV. The delayed event queue can also be listed or cleared with the EV command.

If the first parameter is zero, the delay queue is cleared. For accessing a logical event, the event
number <event> has to be entered. If <event> is proceeded by a plus (+) sign, the event is set and the
old status is returned. If <event> is proceeded by a minus (-) sign, the specified event is cleared and
its old status is displayed. For accessing a physical event, the second parameter must be the byte
address followed by the bit number (0-7), where bit 7 is the most significant bit of the byte. Physical
events are set (+), reset(-) and list(_) in the same way as logical events are accessed. If no special sign
is specified, the current status of the event is displayed. If <event> is omitted, a status list of all events
in the system and all pending delay events are displayed.

The event number has to be entered in decimal.

Current logical event definitions are as follows:

1-63 = Software events
64-80 = Software resetting events
81-95 = Output port events
96-111 = Input port events
112 = 1/5 second event
113 = 1 second event
114 = 10 second event
115 = 20 second event
116 = Reserved
117 = Reserved
118 = Reserved
119 = Reserved
120 = Level 2 lock
121 = Level 3 lock
122 = Batch event
123 = Spooler event
124 = Reserved
125 = Reserved
126 = Reserved
127 = Virtual ports
128 = Local event

3-30

SECTION 3 VMEPROM BUILT-IN COMMANDS

Example:

? EV
00000000 00000000 00000000 0000FE00
EV 128 : TASK 0 SET DELAY = 43 TICS

? EV 10
Is 0

? EV +10
Was 0

? EV -10
Was 1

? EV 10
Is 0

? EV +,$10000,1
Was 0

? EV, $10000,1
Is 1

3-31

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.2.23 FGA - Change Boot Setup for Gate Array

Format: FGA

Some registers of the gate array are definable by the user. The contents of this register is stored in the
on-board battery SRAM in a short form.

The boot software for the gate array swill take these values after reset to initialize the gate array. The
FGA command may be used to enter an interactive mode for changing this boot table in the battery
SRAM.

The FGA command will show the actual value stored in the battery SRAM. To change any value, a new
one has to be entered in binary form. If only a <cr> is entered, no change will be made. To step
backward a minus has to be entered. If a <.> or <ESC> is given, the FGA command returns to the
shell.

Example:

? FGA

> > > Setup for FGA-002 BOOTER < < <

REGISTER FGA offset Value in SRAM Changed Value

SPECIAL $0420 %00011110 %00011110
CTL_01 $0238 %00000100 %00000100
CTL_02 $023C %00000000 %00000000
CTL_05 $0264 %00001100 %00001100
CTL_12 $032C %00000000 %00000000
CTL_14 $0354 %00000000 %00000000
CTL_15 $0358 %01001100 %01000110
CTL_16 $035C %00100000 %00100000
MBX_00 $0000 %00000000 %00001001
MBX_01 $0004 %00000000 %00000000
MBX_02 $0008 %00000000 %00000000
MBX_03 $000C %00000000 .
MBX_04 $0010 %00000000
MBX_05 $0014 %00000000
MBX_06 $0018 %00000000
MBX_07 $001C %00000000

3-32

SECTION 3 VMEPROM BUILT-IN COMMANDS

1.2.24 FM - FREE MEMORY

Format: FM
FM -E
FM {-}<size>

The FREE MEMORY command drops memory from your current task.

If no parameter is given all free memory contiguous to tasking memory is displayed.

If parameter ’-E’ is given all free memory is displayed. This includes memory which is not contiguous
to tasking memory but deallocated in the memory bit map.

If the <size> parameter is positive, then the memory is deallocated and made available to the system
for other task usage. If the <size> parameter is negative, then the memory is simply dropped from the
current task and is not recoverable. The size parameter must be entered in decimal.

Example:

? FM
No free memory contiguous to tasking memory

? FM -E
Free memory: 2 kbyte at $B6000

? FM 100
100 Kbytes free at address $9C800

? FM
Free memory: 100 Kbyte

? FM -10
10 Kbytes free at address $9A000

? FM
No free memory contiguous to tasking memory

? FM -E
Free memory: 100 kbyte at $9C800
Free memory: 2 kbyte at $B6000

? _

3-33

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.2.25 FMB - Force Message Broadcast

Format: FMB <slotlist>,<FMB channel>,<message>
FMB [<FMB channel>]

The FMB command allows sending a byte message to individual slots in the backplane, broadcast to
all the boards, and getting a pending message.

The first format is used to send a message. With this the first parameter is used to select the slots to
which a message should be sent. Each slot number can be separated with a ’/’ sign; a ’-’ defines a
range of slot numbers. Slot numbers can range from 0 to 21. A slot number of 0 sends the message
to all slots. The second parameter defines which FMB channel should be used. It can be ’0’ or ’1’. The
message is the byte to be deposited into the FMB channel(s).

The second format is used to get messages. If no parameter is given, one message of each FMB
channel is fetched and displayed. If a channel is specified only this channel is addressed and the
message will be displayed.

Example:

? FMB
FMB channel 0 is empty
FMB channel 1 is empty

? FMB 1-21,0,$EF

? FMB 1-21,1,%10100001

? FMB
FMB channel 0 = $EF
FMB channel 1 = $A1

? FMB 1-21,1,$77

? FMB 1
FMB channel 1 = $77

? FMB 1/2/5/7-19/21,0,$1

? _

3-34

SECTION 3 VMEPROM BUILT-IN COMMANDS

1.2.26 FUNCTIONAL - Perform Functional Test

Format: FUNCTIONAL

NOTE: This command is not designed for the user, but instead for internal purposes by
FORCE COMPUTERS.

3-35

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.2.27 GO - Start User Program

Format: G
G <address>
GO
GO <address>

A user program in memory is started with this command. The start address may be specified on
the command line, or the value of the program counter, as displayed by the DR command, is taken
if this field is omitted.

The following actions are taken by VMEPROM if this command is specified:

1) The processor registers are loaded with the user values.

2) The first instruction is executed.

3) If any breakpoints are defined, they are inserted in the user program.

4) The program is continued at the second instruction.

Example:

? G 8000
>>> This is a Test <<<

?

3-36

SECTION 3 VMEPROM BUILT-IN COMMANDS

1.2.28 GD - Start User Program Without Breakpoints

Format: GD
GD <address>

The GD command takes the same actions as the G or GO command, except that defined
breakpoints are ignored and not inserted in the user program.

Example:

? GD 8000
>>> This is a Test <<<

?

3-37

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.2.29 GM - GET MEMORY

Format: GM
GM <size>

The GM command adds memory to the current task. The amount of memory is specified by
<size>. The <size> parameter has to be given in decimal. If no parameter follows GM, then all
of the available memory is added. No error is reported if the memory request cannot be met.

Example:

? FM
No free memory contiguous to tasking memory

? FM 20
20 Kbytes free at address $00071800

? GM
? FM
No free memory contiguous to tasking memory

?

3-38

SECTION 3 VMEPROM BUILT-IN COMMANDS

1.2.30 GT - Start User Program with Temporary Breakpoint

Format: GT <breakpoint>
GT <breakpoint>,<address>
GT <breakpoint>,<address>,<command>
GT <breakpoint>,<address>,<command>,<count>

This is almost the same function as the G or GO command, except that an additional temporary
breakpoint is inserted. This breakpoint is automatically removed if the program counter reaches this
breakpoint.

If a command is given, it will be executed at the breakpoint. Otherwise all processor registers are
displayed.

If a count is specified, the program first stops at the breakpoint when this specification has been
achieved. The default value is one.

Example:

? GT 10020 10000
At temporary breakpoint

0 1 2 3 4 5 6 7
D: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A: 00000000 00000000 00000000 00000000 00000000 00001000 00007000 00099FFC

VBR = 00000000 CAAR = 00000000 CACR = 00000001 SFC = 0 DFC = 0
*USP = 00099FFC SSP = 00007BDE MSP = 000078C4

PC = 00010020 SR = 0000 ..U..0........

? GT 10020 10000 lt

task pri tm ev1/ev2 size pc tcb eom ports name
*0/0 64 1 588 FF01FAB8 00007000 0009A000 1/1/0/0/0 lt

? GT 10020,10000,,2
At temporary breakpoint

0 1 2 3 4 5 6 7
D: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A: 00000000 00000000 00000000 00000000 00000000 00001000 00007000 00099FFC

VBR = 00000000 CAAR = 00000000 CACR = 00000001 SFC = 0 DFC = 0
*USP = 00099FFC SSP = 00007BDE MSP = 000078C4

PC = 00010020 SR = 0000 ..U..0........

? _

3-39

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.2.31 HELP - HELP

Format: HELP
HELP <command>

The HELP command first displays a short description of all VMEPROM built-in commands on the
terminal. Then a more detailed description of all commands is displayed.

After every screen full, the output stops. It may be continued by entering a <cr>. Control is transferred
back to the command interpreter on any key other than <cr>.

If HELP is followed by a command name, a short description of this command is displayed.

If HELP is followed by one or more characters, but not a complete command name, a start description
of all commands matching with the given character is displayed.

Example:

? HE M
M <address>[,B|W|L&N&O|E|F#] Modify memory contents
MD <address>[,<count>] Display memory in Hex and ASCII
MEM [16|32] Set data bus width
MM <address>[,B|W|L&N&O|E|F#] Alias for M command
MS <address>,<data|"string"> Preset memory with constant or string

? _

3-40

SECTION 3 VMEPROM BUILT-IN COMMANDS

1.2.32 HIST - Command history

Format: HIST

The HIST command is used to show which commands can be recalled with [CTRL-A]. This is an easy
way to check if a command is inside the alternate command line buffer. If it is, recalling the line is
possible and it need not to be written a second time.

Example:

? HIST
BT 10000 20000
DR
BT 200000 300000

? [CTRL-A]
BT 10000 20000[CTRL-A]
DR[CTRL-A]
BT 200000 300000<cr>

? _

3-41

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.2.33 ID - SET SYSTEM DATE/TIME

Format: ID

The SET SYSTEM DATE/TIME command displays the VMEPROM header and prompts for the date and
time. The header shows the version of VMEPROM and the used CPU-type as displayed after reset.

The date can be entered in either a day, ASCII month, year form or numeric month, day, year.

Any delimiter can be used to separate date and time parameters.
Pressing [CR] leaves the old date and time.

Example:

? ID
**
* *
* V M E P R O M *
* *
* SYS68K/IBC-20 Version a.bb Date *
* *
* (c) FORCE Computers and Eyring Research *
* *
**

Date: 17-Aug-89 <cr>
Time: 18:45:21 <cr>

? _

3-42

SECTION 3 VMEPROM BUILT-IN COMMANDS

1.2.34 INFO - Information about the CPU board

Format: INFO

The INFO command is used to obtain information about the board. The output is strongly dependent
on the used board.

These outputs are given at all board types:

1) Board type.

2) VMEPROM Version and it’s start address.

3) EPROM base address.

4) I/O devices: Depending on the board type all I/O devices are listed including their base
address.

5) RAM addresses SYRAM start address.
Current tasks task control block start address.

Additional information may occur.

Example:

? INFO
FORCE IBC-20
VMEPROM Version a.bb at $FFE0484A

EPROM base addresses:
System EPROM at $FFE00000; EEPROM at $FFC80000
Boot EPROM at $FFE00000

I/O Devices:
BIM at $FF803E00; RTC at $FF803000
CIO at $FF800C00; SCC channel A at $FF802020

RAM addresses:
Local RAM $0 to $001FFFFF; SRAM at $FFC00000
SYRAM at $00001000; TCB aT $00007000

? _

3-43

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.2.35 KM - KILL MESSAGE

Format: KM
KM <task #>

The KM command removes all task messages associated with <task #> from the message buffers.

If no task is specified, then all messages associated with the current task are deleted from the message
buffers.

See also SEND MESSAGE.

3-44

SECTION 3 VMEPROM BUILT-IN COMMANDS

1.2.36 KT - KILL TASK

Format: KT
KT {-}<task #>

The KILL TASK command removes a task from the task list and returns the task’s memory to the free
pool for use by other tasks. Only your current task or a task spawned by your task can be killed. (Task
0 can kill any task except itself or a task that is kill protected.)

Each task is assigned a unique task number which is shown by the LIST TASK command. Only the
current task (indicated by ’*’) or those spawned by the current task (indicated by current task number
following a "/" character) may be killed. Task #0 is the system task and cannot be killed.

If a minus sign (-) precedes the task number, then the task’s memory is not deallocated to the memory
bit map. If the task number is zero, then the current task is killed without deallocating memory.

If no parameter is given, then the current task is killed and memory is deallocated.

All open files associated with the killed task are closed by the KT command.

Example:

? lt
task pri tm ev1/ev2 size pc tcb eom ports name
*0/0 1 1 238 FFE1D46A 00007000 00042800 1/1/0/0/0 lt

1/-1 1 1 1762 FFE1010C 00047000 001FF800 0/0/0/0/0 MEtask
2/-1 1 1 6 0004FA1C 0004E9EE 000503AE 0/0/0/0/0 DMAtask
3/0 64 1 98 10 FFE06F50 00044800 00047000 2/2/0/0/0
4/0 40 10 99 8 FFE06F50 00042800 00044800 3/3/0/0/0

? kt 3

? lt
task pri tm ev1/ev2 size pc tcb eom ports name
*0/0 1 1 238 FFE1D46A 00007000 00042800 1/1/0/0/0 lt

1/-1 1 1 1762 FFE1010C 00047000 001FF800 0/0/0/0/0 MEtask
2/-1 1 1 6 0004FA1C 0004E9EE 000503AE 0/0/0/0/0 DMAtask
4/0 40 10 99 8 FFE06F50 00042800 00044800 3/3/0/0/0

? _

3-45

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.2.37 LO - Load S-record

Format: LO
LO <address> , <command line>,<-V|-T>

The LO command loads a S-record into memory from a standard input port. Normal I/O redirection may
be used for input from other ports. The starting load address is optionally specified by <address>.

An optional command line may be specified which is sent to the host before S-record loading starts.
It can be used to initiate a host system download without using the TM Command.

Two possible options exist which must be proceeded by a minus sign. If option V is given, the contents
of the S-records will only be compared with contents of those memory locations which are to be loaded.
The different values of the memory locations and the S-record data are displayed. If option T is given
without an address parameter, the S-records are loaded immediately following the TCB. The following
S-record types are supported by VMEPROM:

S0 Start record, ignored by VMEPROM and may be omitted.

S1 Data record with 16 bit address field

S2 Data record with 24 bit address field

S3 Data record with 32 bit address field

S7 End record with 32 bit address field

S8 End record with 24 bit address field

S9 End record with 16 bit address field

If the address for the LO command is specified on the command line, address fields in the data records
are ignored and the S-record is loaded contiguously from the specified address upwards.

If the end record address field is equal, 0 control is transferred back to the VMEPROM command
interpreter. If the address file holds an address, VMEPROM automatically executes a "G address"
command after the S-record is loaded and an end record is found. Because of the "G" command all
breakpoints which are defined are inserted in the program.

See also DU - Dump S-records

Example:

? lo <2 8800

?

3-46

SECTION 3 VMEPROM BUILT-IN COMMANDS

1.2.38 LT - LIST TASKS

Format: LT

The LT command displays all tasks currently in the task list to the console. Task 0 is the system task
and is created automatically during system initialization. This task cannot be killed.

Your current task is indicated by an ’*’ preceding the task number. Following the task number is a slash
and the parent task number. Subsequent data provides the current status of each task and is defined
as follows:

task {*=current} Task #/parent task #

pri Task priority (1-255)

tm Time slice (1-255)

ev1/ev2 Suspended event(s)

size Task size (k bytes)

pc Current program counter. If the task is in suspended state or ready state the program
counter points to the first opcode this task will execute after the task is moved to run
state.

tcb Task control block

eom End of memory

ports Task I/O ports in the following order:
input port/output port/Unit 2 port/Unit 4
port/Unit 8 port

name The name of the command currently executing

Example:

? lt
task pri tm ev1/ev2 size pc tcb eom ports name
*0/0 1 1 256 FFE1D46A 00007000 0004700 1/1/0/0/0 lt

1/-1 1 1 1762 FFE1010C 00047000 001FF800 0/0/0/0/0 MEtask
2/-1 1 1 6 0004FA1C 0004E9EE 000503AE 0/0/0/0/0 DMAtask

? _

3-47

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.2.39 M - Modify Memory

Format: M <address>[,<option>]
MM <address>[,<option>]

Option is B | W | L & N & O | E | Fx

The Modify Memory command is used to inspect and change memory locations. Several options are
allowed on the command line to specify the size of the memory and the access type. The following
options are allowed:

B memory is byte sized (8 bits).
W memory is word sized (16 bits). This is the default.
L memory is long word sized (32 bits).
O memory is byte sized and on odd addresses only.
E memory is byte sized and on even addresses only.
N memory is write only, the current contents is not displayed.
Fx specifies the 68020 function code signals which should be driven from the 68020 to perform the

read/write. The default value is 1. Possible values are:

1: User Data Space 6: Supervisor Program Space
2: User Program Space 7: CPU Space
5: Supervisor Data Space

The Odd and Even options are overriding the B/W/L options. The N (no read) option has to be specified
after the size qualifier and after the Odd/Even specification. All memory accesses check that the write
access was successful by performing a read after the write unless N is specified. If the data written and
the data read do not match, the command is terminated and an error message is displayed. The
memory modify command supports a number of sub-commands, which can be entered instead of a new
memory value. These sub-commands do not change the access option specified on the command line.
The following sub-commands are supported:

<cr> open next location
= open same location again
- open previous location
-<count> go back <count> bytes
+ open next location
+<count> go forward <count> bytes
#<address> open new absolute address
?<mnemonic> insert 68000 opcode at current address
. exit to the command interpreter

3-48

SECTION 3 VMEPROM BUILT-IN COMMANDS

Example:

? M 8000
8000 4246 : <cr>
8002 1C2E : <cr>
8004 0441 : <cr>
8006 4247 : ?nop<cr>
8008 A05A : -2<cr>
8006 4E71 : -<cr>
8004 0441 : #8000<cr>
8000 4246 : <cr>
8002 1C2E : .
? M $10000, F5B

10000 48 : .

?_

3-49

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.2.40 MD - Display Memory

Format: MD <address>
MD <address>[,<count>]

The MD command displays the memory contents of the specified address. The data is displayed in hex
and ASCII representation, 16 bytes on every line. If the hex value cannot be displayed in ASCII
representation, a full stop (".") is displayed instead.

If no count is specified on the command line, the Display Memory command displays 16 lines,
representing 256 bytes of data, and prompts the user to display more or to return to the command
interpreter.

If a carriage return (<cr>) is entered, the next 256 bytes are displayed. Any other character returns
control back to the command interpreter of VMEPROM.

If a count is specified on the command line, the value is interpreted as the number of bytes to be
displayed. All values are assumed to be in hex.

If a base is specified with the BASE command this value is printed at the first line which is put out.

Example:

? MD 8000 30
00008000: A0 0E 00 00 00 21 00 08 01 00 00 00 00 1C 00 04!..........
00008010: 00 00 00 00 00 00 00 00 00 00 00 08 00 00 00 00
00008020: 40 B0 00 00 24 E4 00 04 02 D5 00 00 00 80 00 08 @...$...........

? MD A000 30
0000A000: 08 98 00 00 04 88 00 01 00 80 00 08 40 08 00 80@...
0000A010: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0000A020: 40 03 00 00 00 00 00 00 02 04 00 40 00 00 00 00 @..........@....

? BASE 2000

? MD 8000 30
00002000+
00008000: 08 98 00 00 04 88 00 01 00 80 00 08 40 08 00 80@...
00008010: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00008020: 40 03 00 00 00 00 00 00 02 04 00 40 00 00 00 00 @..........@....

? _

3-50

SECTION 3 VMEPROM BUILT-IN COMMANDS

1.2.41 MEM - Set Data Bus Width of the VMEbus

Format: MEM
MEM 16
MEM 32

This command can display or set the data bus width of the CPU board on the VMEbus.
If no argument is entered, the current data bus width is displayed. If an argument of ’16’ or ’32’ is given,
the data bus width is set to 16 or 32 bits respectively.

Example:

? MEM<cr>
Data bus width is set to 32 bits

? MEM 16<cr>

? MEM<cr>
Data bus width is set to 16 bits

? MEM 32<cr>

? _

3-51

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.2.42 MS - Set Memory to Constant or String

Format: MS <address>,<data|"string">

This command writes the specified data pattern to memory. The data may consist of hex numbers
and ASCII data in any combination. The ASCII data must be put in inverted commas.

Example:

? BF 8000 8100 @377 B

? MD 8000 20
00008000: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
00008010: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

? MS 8000 "Hello World"0D0A00

? MD 8000 20
00008000: 48 65 6C 6C 6F 20 57 6F 72 6C 64 0D 0A 00 FF FF Hello World.....
00008010: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

? _

3-52

SECTION 3 VMEPROM BUILT-IN COMMANDS

1.2.43 PROG - Program FLASH EPROM

Format: PROG [<source>[,<destination>[,<length>[,<width>]]]]

This command is used to program FLASH EPROMs. All parameters may be specified on the command
line or may be entered interactively after the function has been invoked.

The first parameter <source> is the start address of the data which is to program into the FLASH
EPROM.

The second parameter <destination> represents the base address of the FLASH EPROM.

The third parameter <length> specifies the length of the FLASH EPROM. If 0 is entered the length and
width is automatically calculated.

The fourth parameter <width> selects the data width of the FLASH EPROMs. Three values are possible:

’1’: Byte width (8-bit)
’2’: Word width (16-bit)
’4’: Long width (32-bit)

Please note that the FLASH EPROM(s) must be completely programmed. Therefore programming only
parts of a FLASH EPROM is not possible.

Example:

? PROG $100000 $FFC80000 0
programming......
FLASH EPROM successfully programmed

? PROG
Source base address = $40800000
FLASH EPROM base address = $FFC80000
Source length (0 for automatic select) = $20000
Width (1,2 or 4) = 1
programming......
FLASH EPROM successfully programmed

?_

3-53

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.2.44 PROMPT - CHANGE PROMPT SIGN

Format: PROMPT [<data|"string">]

The PROMPT command is used to change the prompt for the current task in the used specified pattern.

The data may consist of hex numbers and ASCII data in any combination. The ASCII data must be put
in inverted commas.

If no parameter is given, the default VMEPROM prompt "?" will occur. The user defined prompt sign will
be truncated to nine characters maximum.

Example:

? PROMPT "#"_
#_

#PROMPT ("HELLO> ")_
HELLO> _

HELLO> PROMPT_
? _

3-54

SECTION 3 VMEPROM BUILT-IN COMMANDS

1.2.45 RM - Modify Processor Registers

Format: RM
RM <register>
RM <register>,<value>

The RM command modifies the processor registers or, if available, the data registers of the 68881
coprocessor. Three modes are allowed.

The first mode is an interactive mode, which scans all registers. For each register, the current value is
displayed and the user is prompted to enter a new value. A <cr> leaves the register unchanged. After
a new value or a <cr> has been entered, the same procedure will be started for the next register. If an
<ESC> or <.> has been entered, control is transferred back to the command interpreter.

The second mode makes it possible to change only one specified register. The current value is then
displayed and the user is prompted to enter a new value. A <cr> leaves the register unchanged. After
a new value or a <cr> has been entered, control is transferred back to the command interpreter.

The third mode allows the specification of the new value for the given register on the command line and
does not display the the old value.

The following registers may be modified by the user:

VBR Vector base register, only on 68010/68020/68030 systems
SFC/DFC Source and Destination function code register
CAAR CACHE address register, only for 68020/68030 systems
CACR CACHE control register, only for 68020/68030 systems
PC Program counter
SR Status register
USP User Stack pointer
SSP System Stack pointer
MSP Master Stack pointer, only on 68020/68030 systems
D0-D7 Data registers D0-D7
A0-A7 Address registers A0-A7, where A7 is the current stack pointer as defined by the status

register

Caution: Be careful when modifying the Vector Base register (VBR) as VMEPROM is a
interrupt driven system and any modifications to this register may crash the
system.

3-55

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

Example:

? RM D0
D0 = 00000000 : 12345678<cr>

? RM D1 1000

? DR
0 1 2 3 4 5 6 7

D: 12345678 00001000 00000000 00000000 00000000 00000000 00000000 00000000
A: 00000000 00000000 00000000 00000000 00000000 00001000 00007000 0009CFFC

VBR = 00000000 CAAR = 00000000 CACR = 00000001 SFC = 0 DFC = 0
*USP = 0009CFFC SSP = 00007BE6 MSP = 000078C4

PC = 00008000 SR = 0000 ..U..0........

? _

3-56

SECTION 3 VMEPROM BUILT-IN COMMANDS

1.2.46 RR2 - EPROM Programming

Format: RR2 [<f>,<file>],<board>,<mode>,<option>
RR2 [<m>,<addr>,<cnt>],<board>,<m>,<opt>

The RR2 command is used for programming EPROMS or EPROMS on a SYS68K/RR-2/RR-3 board.
It can also be used to transfer files or memory contents into a SRAM area on the RR_2 or to load
EPROM/EEPROM contents into the VMEPROM memory.

The following are examples on the usage of the RR2 command:

? RR2 F,FILENAME,RR_2_ADDRESS,MODE,OPTION
if the source is a disk file, or

? RR2 M,STRTADDR,BYTECNT,RR_2_ADDRESS,MODE,OPTION
if the source is in memory.

The following describes the parameters:

F,FILENAME.............source = disk file
F = source flag

FILENAME = the name of the source file
M,STRTADDR,BYTECNT.....source = memory

M = source flag
STRTADDR = source start address

BYTECNT = source length in bytes
RR_2_ADDR..............the address of the RR_2 bank
MODE................... 1 = 8 bit mode (single EPROM)

2 = 16 bit mode (two EPROMS)
4 = 32 bit mode (four EPROMS)

OPTION.................P = program an EPROM (includes E and V and a bit
test)

E = check if EPROM is empty
V = verify source and EPROM contents
L = load EPROM contents to memory

For further information on the hardware setup of the SYS68K/RR2 or SYS68K/RR3 board please refer
to the user’s manual of the RR-2/3 board.

3-57

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

Example:

? RR2 M,$0,$8000,$800000,2,E

executes an empty check in word mode for EPROM type 27128 (16k x 8) at RR_2 address $800000.
The M - source flag and the memory address are dummy.

? RR2 F,PROG/2,$800000,4,P
programs EPROMS at address $800000 in 32-bit mode with the source file PROG from disk 2.

? RR2 M,$10000,$2000,$800000,1,L
loads the contents of an 8k x 8 EPROM at address $800000 into the memory to address $10000.

3-58

SECTION 3 VMEPROM BUILT-IN COMMANDS

SYS68K/RR-2/RR-3 board configuration:

This example contains the RR-2 board configuration and and the program usage for 27128 EPROMs
in the 16 bit mode.

Jumper settings for 16 k x 8 EPROMs on bank 2 (TOSHIBA 27128):

B1b Read time selection on bank 2

8 5
o o o o

| | 250 ns
o o o o
1 4

B2b Write time selection on bank 2

3 15
o o o o o

|
o o o o o 50 ms

o o o o o
1 13

B4b Device type bank 2

4
o o

| EPROM type 1
o o
1

B13b Device size bank 2

10 6
o o o o o
| | | | 4 x 16k x 8
o o o o o
1 5

B15 Device pinning bank 2

3 33
o o o o o o o o o o o
| |
o o o o o o o o o o o

| | |
o o o o o o o o o o o
1 31

3-59

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

B16 Enable VPP generator

2
o
|
o
1

B17 Select VPP bank 2

3
o
|
o 21V

o
1

B18 Select output enable on VPP bank 2

2
o

o
1

B19 Select chip erase bank 2

3
o

o
|
o
1

B11 Upper address bank 2

2 8
o o o o

| | | $8
o o o o
1 7

B12 Lower address bank 2

2 8
o o o o
| | | | $0
o o o o
1 7

3-60

SECTION 3 VMEPROM BUILT-IN COMMANDS

Program call for subsequent jobs:

a) EPROM empty check

? RR2 M,$0,$8000,$800000,2,E
option = empty check
mode = word
RR-2 base address
byte count (2 EPROMs 16k x 8)
memory address (don’t care)
source = memory

b) program EPROMs

? RR2 F,MYFILE:PRG/4,$800000,2,P
option = program
mode = word
RR-2 base address
source file name
source = file

c) load EPROMs into memory

? RR2 M,$10000,$8000,$800000,2,L
option = load
mode = word
RR-2 base address
byte count(2 EPROMs 16k x 8
memory address
destination = memory

3-61

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.2.47 SELFTEST - Perform On-board Selftest

Format: SELFTEST

This command performs a test of the on-board functions of the IBC board. It may only be run if no other
tasks are created. If there are any other tasks no selftest will be made and an error will be reported. The
selftest tests the memory of the IBC board and all devices on the board.

The following tests are performed in this order:

1. I/O test

This function tests the access to and the interrupts from the SCC. If the SCC cannot generate interrupts
an error will be reported.

2. Memory test on the memory of the current task.

The following procedures are performed:

1) Byte Test
2) Word Test
3) Long Word Test

All passes of the memory test perform pattern reading and writing as well as bit shift tests. If an error
occurs while writing to or reading from memory it will be reported.

3. Clock Test

If the CPU does not receive timer interrupts from the CIO an error will be displayed. This ensures that
VMEPROM could initialize the CIO 68230 properly and the interrupts from the CIO are working.

CAUTION: During this process, all memory is cleared.

Example:

? SELFTEST

VMEPROM Hardware Selftest

I/O test passed
Memory test passed
Clock test passed
? _

3-62

SECTION 3 VMEPROM BUILT-IN COMMANDS

1.2.48 SM - SEND MESSAGE

Format: SM [<task #>,<message>]

The SEND MESSAGE command puts an ASCII text message in a message buffer. The destination
is specified by <task#>. The message can be up to 63 characters in length.

If a message is sent to itself, i.e. the task which is sending the message, the complete message
is interrupted as a command line and executed.

Note: No other commands can be appended to an ’SM’ command with a period, since the
<message> parameter takes everything up to the carriage return.

If no parameter is given, all pending messages are displayed.

See also: KM - KILL MESSAGE.

Example:

? SM 2,Hello
?_

3-63

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.2.49 ST - SET TASK TERMINAL TYPE

Format: ST
ST <type>

The ST command sets the position cursor (PSC$) and clear screen (CSC$) variables in the task
control block (TCB). This command makes it easy to use various types of terminals together with
VMEPROM. Each task has its own characters for these two functions, which are initialized, when
the task is started, to the parent task control set.

If a legal <type> is passed in the command line, then ST simply enters the corresponding
sequences into the user status block.

Otherwise, the command prints the following table of options:

D = VT52
L = Lear Siegler ADM3a
V = VT100
T = TVI 950
U = User defined
Type = _

and prompts the user for an input. Enter the letter representing the type of terminal you are using.

The terminal type setup is only required for the VMEPROM screen editor. No other function uses
the terminal dependant sequences.

The default setup of VMEPROM is the codes for a VT52 terminal.

In addition to the built in terminal types, the ST command allows to enter the values for position
cursor, clear screen, clear to end of screen and clear to end of line interactively with the "C" option.
So nearly every terminal can be used with VMEPROM.

? St U to to enter a user defined terminal

Enter encoded position cursor value: $.

Now the position cursor code can be entered in hex. The hex value must be 16 bit.

3-64

SECTION 3 VMEPROM BUILT-IN COMMANDS

The format of the leading characters for cursor positioning is as follows (note that each letter
represents a bit):

B111 1111 0222 2222

B = 0 then $00 bias
1 then $20 bias

O = 0 then row before column, 1 then column before row
1 = 7 bits for first ASCII lead in character
2 = 7 bits for second ASCII lead in character
A value of 0 will result in the code for a VT100 terminal.

Enter encoded clear screen value: $_

The cursor home and clear screen can also be entered as a encoded 16 bit value. The format is
(note that each letter represents a bit):

E111 1111 E222 2222

E = if 1 then precede with [ESC]
1 = 7 bits for first ASCII character
2 = 7 bits for second ASCII character
If all 16 bits are 0 then a VT100 is selected

Enter encoded clear to end of screen value: $.

This is the code to clear the access from the current cursor position to end of screen. The
format is:

0111 1111 0222 2222

1 = 7 bit for first ASCII character
2 = 7 bit for second ASCII character

Enter encoded clear to end of line value: $_

This is the code to clear from the cursor position to the end of the line. The format is:

0111 1111 0222 2222

1 = 7 bit for first ASCII character
2 = 7 bit for second ASCII character

3-65

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

Example:

? ST
D = VT52
L = Lear Siegler ADM3a
V = VT100
T = TVI 950
U = User defined

Type = L

? ST D
?

3-66

SECTION 3 VMEPROM BUILT-IN COMMANDS

1.2.50 T - Trace Program Execution

Format: T
T <address>[,<begin>,<end>]
T <R|S|?>
TT
TT <address>[,<begin>,<end>]
TT <R|S|?>

The first format starts a user program in trace mode. The start address is the current value of the
program counter (PC) as displayed by the DR command.

The second format is used to start a user program in trace mode at the specified address.
Additionally two parameters (<begin> and <end>) are able to be given. These parameters specify
an address range. Inside this range the program does not stop tracing.

The third format is used to display/set the trace mode. The parameter "S" toggles between
enabling and disabling trace over subroutine. No stop inside a subroutine (i.e. started with BSR)
will be done if trace over subroutine is enabled. The parameter "R" toggles between
displaying the registers after each step and displaying only if trace count matches or the condition
for trace over range is true. Displaying registers goes along with displaying the disassembled code
of the next instruction which will be executed. The parameter "?" induces the
displayal of the current settings.

If the program stops the user is prompted to continue the trace or to return to VMEPROM. Tracing
can be continued by entering a space (" ") or a carriage return (<cr>).

See also: TC - Set Trace Count
TJ - Trace on change of flow

Example:

? DI 8000 7
8000 SUBA.L A5,A5
8002 ADDQ.L #1,A5
8004 BSR.B $800A
8006 ADDQ.L #3,A5
8008 XEXT
800A ADDQ.L #2,A5
800C RTS

? DR T
PC = 00008000 SP = 003B67FC A6 = 00007000 A5 = 00001000

? T ?
Display registers after each step
Trace over subroutine is disabled

3-67

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

(Example cont’d)

? T 8000
Trace
PC = 00008002 SP = 003B67FC A6 = 00007000 A5 = 00000000
8002 : ADDQ.L #1,A5<cr>
Trace
PC = 00008004 SP = 003B67FC A6 = 00007000 A5 = 00000001
8004 : BSR.B $800A<cr>
Trace
PC = 0000800A SP = 003B67F8 A6 = 00007000 A5 = 00000001
800A : ADDQ.L #2,A5<cr>
Trace
PC = 0000800C SP = 003B67F8 A6 = 00007000 A5 = 00000003
800C : RTS<cr>
Trace
PC = 00008006 SP = 003B67FC A6 = 00007000 A5 = 00000003
8006 : ADDQ.L #3,A5<cr>
Trace
PC = 00008008 SP = 003B67FC A6 = 00007000 A5 = 00000006
8008 : XEXT<cr>

? T 8000 800A 9000
Trace
PC = 00008002 SP = 003B67FC A6 = 00007000 A5 = 00000000
8002 : ADDQ.L #1,A5<cr>
Trace
PC = 00008004 SP = 003B67FC A6 = 00007000 A5 = 00000001
8004 : BSR.B $800A<cr>
Trace
PC = 0000800A SP = 003B67F8 A6 = 00007000 A5 = 00000001
800A : ADDQ.L #2,A5 NO STOP!
Trace
PC = 0000800C SP = 003B67F8 A6 = 00007000 A5 = 00000003
800C : RTS NO STOP!
Trace
PC = 00008006 SP = 003B67FC A6 = 00007000 A5 = 00000003
8006 : ADDQ.L #3,A5<cr>
Trace
PC = 00008008 SP = 003B67FC A6 = 00007000 A5 = 00000006
8008 : XEXT<cr>

? T R
Display registers only if stop condition reached

? T 8000 800A 9000
Trace
PC = 00008002 SP = 003B67FC A6 = 00007000 A5 = 00000000
8002 : ADDQ.L #1,A5<cr>
Trace
PC = 00008004 SP = 003B67FC A6 = 00007000 A5 = 00000001
8004 : BSR.B $800A<cr>
Trace
PC = 00008006 SP = 003B67FC A6 = 00007000 A5 = 00000003
8006 : ADDQ.L #3,A5<cr>
Trace
PC = 00008008 SP = 003B67FC A6 = 00007000 A5 = 00000006
8008 : XEXT<cr>

3-68

SECTION 3 VMEPROM BUILT-IN COMMANDS

(Example cont’d)

? T S
Trace over subroutine is enabled

? T 8000
Trace
PC = 00008002 SP = 003B67FC A6 = 00007000 A5 = 00000000
8002 : ADDQ.L #1,A5<cr>
Trace
PC = 00008004 SP = 003B67FC A6 = 00007000 A5 = 00000001
8004 : BSR.B $800A<cr>
Trace
PC = 00008006 SP = 003B67FC A6 = 00007000 A5 = 00000003
8006 : ADDQ.L #3,A5<cr>
Trace
PC = 00008008 SP = 003B67FC A6 = 00007000 A5 = 00000006
8008 : XEXT<cr>

? _

3-69

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.2.51 TC - Set Trace Count

Format: TC <count>

The Set Trace Count command sets the number of instructions to be traced continuously. The default
after reset is 1.

See also: T - Trace program execution and TJ - Trace on change of flow

Example:

? TC
Trace count = 0

? TC 100
? TC
Trace count = 100

?

3-70

SECTION 3 VMEPROM BUILT-IN COMMANDS

1.2.52 TIME - Enable/Disable Program Run Time Display

Format: TIME
TIME ON
TIME OFF

VMEPROM has the ability to measure the run time of user programs or command execution of the built
in commands. This feature can be turned on and off with the TIME command. If only TIME is entered,
the current status is displayed (i.e. On or OFF). VMEPROM displays the time in minutes, seconds, and
tens and hundreds of seconds. If time measurement is enabled, a time stamp is taken whenever the
command interpreter gets a complete input line. The timing stops when the function is executed and
control is transferred back to the command interpreter.

Example:

? TIME
Time is off

? TIME ON
? BENCH 1 8000
Bench 1: Decrement long word in memory, 10.000.000 times
Benchmark time = 0:07.23
Programm execution time is 0:07.27

? TIME OFF
?

3-71

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.2.53 TJ - Trace on Change of Flow

Format: TJ
TJ <address>

This command is only supported on 68020 versions. It traces a user program (like the Trace
command), but only on instructions where a change of program flow occurs. Such instructions are for
example: BRA, BSR, JMP, JSR, RTS etc.

See the Trace command for a complete description of program tracing.

See also T - Trace program execution

Note: This command is only available for 32 bit processors.

3-72

SECTION 3 VMEPROM BUILT-IN COMMANDS

1.2.54 TM - TRANSPARENT MODE

Format: TM <port #>
TM <port #>,<break>

The TRANSPARENT MODE command directs your current input to <port #>. Input received from <port
#> is directed to your output. This command effectively allows you to access other systems as if you
were a terminal.

This process continues until an [ESC] character is entered. This can be changed to another character
by adding the <break> parameter.

Caution: Typing ^C twice will abort every command currently in the state of execution. This
is independent of the brake character.

3-73

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.2.55 TP - TASK PRIORITY

Format: TP
TP <task #>
TP <task #>,<[time * 256 +] priority>

The TASK PRIORITY command allows you to change task priority of different tasks. The task number
is specified by <task #> and defaults to the current task if omitted. If no priority is given the tasks current
priority is displayed. Otherwise the tasks priority is changed to the given value.

The range of <priority> is from 1 to 255 where 255 is the highest priority. The highest priority, ready task
always executes. Tasks on the same priority level are scheduled in a round robin fashion. The time a
task is in running state is also given with the <priority> parameter. If no time is specified the time slice
will not be changed. Otherwise it is calculated to "time*256+priority".

Example:

? lt
task pri tm ev1/ev2 size pc tcb eom ports name
*0/0 1 1 238 FFE1D46A 00007000 00042800 1/1/0/0/0 lt

1/-1 1 1 1762 FFE1010C 00047000 001FF800 0/0/0/0/0 MEtask
2/-1 1 1 6 0004FA1C 0004E9EE 000503AE 0/0/0/0/0 DMAtask

? tp
Current tasks priority = 1, time slice = 1

? tp 1
Task #1 priority = 1, time slice = 1

? tp 1,256*10+1

? lt
task pri tm ev1/ev2 size pc tcb eom ports name
*0/0 1 1 238 FFE1D46A 00007000 00042800 1/1/0/0/0 lt

1/-1 1 10 1762 FFE1010C 00047000 001FF800 0/0/0/0/0 MEtask
2/-1 1 1 6 0004FA1C 0004E9EE 000503AE 0/0/0/0/0 DMAtask

? tp 1
Task #1 priority = 1, time slice = 10

? tp 1,256*1+1

? lt
task pri tm ev1/ev2 size pc tcb eom ports name
*0/0 1 1 238 FFE1D46A 00007000 00042800 1/1/0/0/0 lt

1/-1 1 1 1762 FFE1010C 00047000 001FF800 0/0/0/0/0 MEtask
2/-1 1 1 6 0004FA1C 0004E9EE 000503AE 0/0/0/0/0 DMAtask

3-74

SECTION 3 VMEPROM BUILT-IN COMMANDS

1.2.56 UN - CONSOLE UNIT

Format: UN
UN {[-128]-}<unit number>

The CONSOLE UNIT command displays/sets the console output unit number. Unit 1 is the system
terminal. Unit 2 and 3 are auxiliary output ports. The unit 4 is used by VMEPROM for output redirection
and shall not be used.

The first format is used to display the current output unit number.

The second format selects where the output is to be directed. If the parameter is negative no character
echo to the input port will be done. Otherwise character echo to the input port is enabled.
If the parameter is lower than -128 only the system prompt will be displayed at the input port. No
character echo of the input port is done. The correct parameter for this command is calculated to
"-128-unit number". This command is very helpful to recognize if a command line can be entered.

Example:

? UN
Unit mask = 1

? UN 3

? UN
Unit mask = 3

? UN -1
{LT} No echo

task pri tm ev1/ev2 size pc tcb eom ports name
*0/0 1 1 238 FFE1D46A 00007000 00042800 1/1/0/0/0 lt

1/-1 1 1 1762 FFE1010C 00047000 001FF800 0/0/0/0/0 MEtask
2/-1 1 1 6 0004FA1C 0004E9EE 000503AE 0/0/0/0/0 DMAtask

{UN -129} No echo

? {LT} No echo
task pri tm ev1/ev2 size pc tcb eom ports name
*0/0 1 1 238 FFE1D46A 00007000 00042800 1/1/0/0/0 lt

1/-1 1 1 1762 FFE1010C 00047000 001FF800 0/0/0/0/0 MEtask
2/-1 1 1 6 0004FA1C 0004E9EE 000503AE 0/0/0/0/0 DMAtask

? {UN 1} No echo

? _

3-75

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.2.57 ZM - ZERO MEMORY

Format: ZM

The ZERO MEMORY command clears the entire user work space to zeros. All flags and pointers are
reset.

The memory is cleared from the end of the TCB up to the current user stack pointer. The values on the
stack are not destroyed.

Example:

? ZM
?

3-76

VMEPROM SYSTEM CALLS

TABLE OF CONTENTS

1. VMEPROM SYSTEM CALLS . 4-1

1.1 General Information . 4-1

1.2 Assembly Language Calls . 4-2

1.3 Description of Kernel Primitives . 4-4

1.3.1 X881 - SAVE 68881 ENABLE . 4-5
1.3.2 XAPF - APPEND FILE . 4-6
1.3.3 XBCP - BAUD CONSOLE PORT . 4-7
1.3.4 XCBC - CHECK FOR BREAK CHARACTER . 4-8
1.3.5 XCBD - CONVERT BINARY TO DECIMAL . 4-9
1.3.6 XCBH - CONVERT BINARY TO HEX . 4-10
1.3.7 XCBM - CONVERT TO DECIMAL W/MESSAGE . 4-11
1.3.8 XCBP - CHECK FOR BREAK OR PAUSE . 4-12
1.3.9 XCBX - CONVERT TO DECIMAL IN BUFFER . 4-13
1.3.10 XCDB - CONVERT ASCII TO BINARY . 4-14
1.3.11 XCFA - CLOSE FILE W/ATTRIBUTE . 4-15
1.3.12 XCHX - CONVERT BINARY TO HEX IN BUFFER . 4-16
1.3.13 XCLF - CLOSE FILE . 4-17
1.3.14 XCLS - CLEAR SCREEN . 4-18
1.3.15 XCPY - COPY FILE . 4-19
1.3.16 XCTB - CREATE TASK BLOCK . 4-20
1.3.17 XDEV - DELAY SET/RESET EVENT . 4-22
1.3.18 XDFL - DEFINE FILE . 4-23
1.3.19 XDLF - DELETE FILE . 4-24
1.3.20 XDMP - DUMP MEMORY FROM STACK . 4-25
1.3.21 XDPE - DELAY PHYSICAL EVENT . 4-26
1.3.22 XDTV - DEFINE TRAP VECTORS . 4-27
1.3.23 XERR - RETURN ERROR D0 TO VMEPROM . 4-29
1.3.24 XEXC - EXECUTE PDOS CALL D7.W . 4-30
1.3.25 XEXT - EXIT TO VMEPROM . 4-31
1.3.26 XFAC - FILE ALTERED CHECK . 4-32
1.3.27 XFBF - FLUSH BUFFERS . 4-33
1.3.28 XFFN - FIX FILE NAME . 4-34
1.3.29 XFTD - FIX TIME & DATE . 4-35
1.3.30 XFUM - FREE USER MEMORY . 4-36
1.3.31 XGCB - CONDITIONAL GET CHARACTER . 4-37
1.3.32 XGCC - GET CHARACTER CONDITIONAL . 4-38
1.3.33 XGCP - GET PORT CHARACTER . 4-39
1.3.34 XGCR - GET CHARACTER . 4-40
1.3.35 XGLB - GET LINE IN BUFFER . 4-41
1.3.36 XGLM - GET LINE IN MONITOR BUFFER . 4-42
1.3.37 XGLU - GET LINE IN USER BUFFER . 4-43
1.3.38 XGML - GET MEMORY LIMITS . 4-44
1.3.39 XGMP - GET MESSAGE POINTER . 4-45
1.3.40 XGNP - GET NEXT PARAMETER . 4-46

i

TABLE OF CONTENTS

1.3.41 XGTM - GET TASK MESSAGE . 4-47
1.3.42 XGUM - GET USER MEMORY . 4-48
1.3.43 XISE - INITIALIZE SECTOR . 4-49
1.3.44 XKTB - KILL TASK . 4-50
1.3.45 XKTM - KILL TASK MESSAGE . 4-51
1.3.46 XLDF - LOAD FILE . 4-52
1.3.47 XLER - LOAD ERROR REGISTER . 4-53
1.3.48 XLFN - LOOK FOR NAME IN FILE SLOTS . 4-54
1.3.49 XLKF - LOCK FILE . 4-55
1.3.50 XLKT - LOCK TASK . 4-56
1.3.51 XLSR - LOAD STATUS REGISTER . 4-57
1.3.52 XNOP - OPEN SHARED RANDOM FILE . 4-58
1.3.53 XPAD - PACK ASCII DATE . 4-59
1.3.54 XPBC - PUT BUFFER TO CONSOLE . 4-60
1.3.55 XPCC - PUT CHARACTER(S) TO CONSOLE . 4-61
1.3.56 XPCL - PUT CRLF TO CONSOLE . 4-62
1.3.57 XPCP - PLACE CHARACTER IN PORT BUFFER . 4-63
1.3.58 XPCR - PUT CHARACTER RAW . 4-64
1.3.59 XPDC - PUT DATA TO CONSOLE . 4-65
1.3.60 XPEL - PUT ENCODED LINE TO CONSOLE . 4-66
1.3.61 XPEM - PUT ENCODED MESSAGE TO CONSOLE . 4-67
1.3.62 XPLC - PUT LINE TO CONSOLE . 4-68
1.3.63 XPMC - PUT MESSAGE TO CONSOLE . 4-69
1.3.64 XPSC - POSITION CURSOR . 4-70
1.3.65 XPSF - POSITION FILE . 4-71
1.3.66 XPSP - PUT SPACE TO CONSOLE . 4-72
1.3.67 XRBF - READ BYTES FROM FILE . 4-73
1.3.68 XRCN - RESET CONSOLE INPUTS . 4-74
1.3.69 XRCP - READ PORT CURSOR POSITION . 4-75
1.3.70 XRDE - READ NEXT DIRECTORY ENTRY . 4-76
1.3.71 XRDM - DUMP REGISTERS . 4-77
1.3.72 XRDN - READ DIRECTORY ENTRY BY NAME . 4-78
1.3.73 XRDT - READ DATE . 4-79
1.3.74 XRFA - READ FILE ATTRIBUTES . 4-80
1.3.75 XRFP - READ FILE POSITION . 4-81
1.3.76 XRLF - READ LINE FROM FILE . 4-82
1.3.77 XRNF - RENAME FILE . 4-83
1.3.78 XROO - OPEN RANDOM READ ONLY FILE . 4-84
1.3.79 XROP - OPEN RANDOM . 4-85
1.3.80 XRPS - READ PORT STATUS . 4-86
1.3.81 XRSE - READ SECTOR . 4-87
1.3.82 XRSR - READ STATUS REGISTER . 4-88
1.3.83 XRST - RESET DISK . 4-89
1.3.84 XRSZ - READ SECTOR ZERO . 4-90
1.3.85 XRTE - RETURN FROM INTERRUPT . 4-91
1.3.86 XRTM - READ TIME . 4-92

ii

TABLE OF CONTENTS

1.3.87 XRTP - READ TIME PARAMETERS . 4-93
1.3.88 XRTS - READ TASK STATUS . 4-94
1.3.89 XRWF - REWIND FILE . 4-95
1.3.90 XSEF - SET EVENT FLAG W/SWAP . 4-96
1.3.91 XSEV - SET EVENT FLAG . 4-97
1.3.92 XSMP - SEND MESSAGE POINTER . 4-98
1.3.93 XSOE - SUSPEND ON PHYSICAL EVENT . 4-99
1.3.94 XSOP - OPEN SEQUENTIAL FILE . 4-100
1.3.95 XSPF - SET PORT FLAG . 4-101
1.3.96 XSTM - SEND TASK MESSAGE . 4-102
1.3.97 XSTP - SET/READ TASK PRIORITY . 4-103
1.3.98 XSUI - SUSPEND UNTIL INTERRUPT . 4-104
1.3.99 XSUP - ENTER SUPERVISOR MODE . 4-105
1.3.100 XSWP - SWAP TO NEXT TASK . 4-106
1.3.101 XSZF - GET DISK SIZE . 4-107
1.3.102 XTAB - TAB TO COLUMN . 4-108
1.3.103 XTEF - TEST EVENT FLAG . 4-109
1.3.104 XTLP - TRANSLATE LOGICAL TO PHYSICAL EVENT . 4-110
1.3.105 XUAD - UNPACK ASCII DATE . 4-112
1.3.106 XUDT - UNPACK DATE . 4-113
1.3.107 XULF - UNLOCK FILE . 4-114
1.3.108 XULT - UNLOCK TASK . 4-115
1.3.109 XUSP - RETURN TO USER MODE . 4-116
1.3.110 XUTM - UNPACK TIME . 4-117
1.3.111 XVEC - SET/READ EXCEPTION VECTOR . 4-118
1.3.112 XWBF - WRITE BYTES TO FILE . 4-119
1.3.113 XWDT - WRITE DATE . 4-120
1.3.114 XWFA - WRITE FILE ATTRIBUTES . 4-121
1.3.115 XWFP - WRITE FILE PARAMETERS . 4-122
1.3.116 XWLF - WRITE LINE TO FILE . 4-123
1.3.117 XWSE - WRITE SECTOR . 4-124
1.3.118 XWTM - WRITE TIME . 4-125
1.3.119 XZFL - ZERO FILE . 4-126

iii

SECTION 4 VMEPROM SYSTEM CALLS

1. VMEPROM SYSTEM CALLS

1.1 General Information

PDOS assembly primitives are assembly language system calls to PDOS. They consist of one word
A-line instructions (words with the first four bits equal to hexadecimal ’A’). PDOS calls return results in
the 68000 status register as well as regular user registers.

PDOS calls are divided into three categories:

1) System
2) Console I/O
3) File support primitives. Please note that these primitives are included, but all of them will return

with an error. This is because of the loss of any file system in the VMEPROM of IBC.

The following primitives are available in a PDOS operating system environment, but not in VMEPROM:

PDOS debugger: PDOS monitor command:
XBUG XCHF

XLST
XBFL
XAIM
XGTP
XEXZ

These primitives give reference to the PDOS Monitor/Debugger and are not included in VMEPROM.
The monitor calls XGNP and XPCB of PDOS are emulated by VMEPROM and perform their expected
functions.

4-1

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.2 Assembly Language Calls

PDOS assembly primitives are one word A-line instructions which use the exception vector at memory
location $00000028. Most primitives use 68000 registers to pass parameters to and results from
resident PDOS routines. Observe the following example for Trapping an error after a PDOS call:

CALLX LEA.L FILEN(PC),A1 ;GET FILE NAME
XSOP ;OPEN FILE, ERROR?
BNE.S ERROR ;Y
MOVE.W D1,SLTN(A4) ;N, SAVE SLOT #

PDOS primitives return error conditions in the processor status register. This provides error processing
allowing a program to do long or short branches on different error conditions.

PDOS command primitives can be grouped into six levels according to their function and calling
hierarchy. These levels are System Calls, System Support Calls, Console I/O Calls, File Support Calls,
File Management Calls, and Disk Access Calls.

Level 1 PDOS primitives consist of system calls that deal with functions such as swapping, message
passing, events, TRAP vector initialization, etc.

The PDOS system calls are as follows:

XGML - Get memory limits XTEF - Test event flag
XGUM - Get user memory XDEV - Delay set/reset event
XFUM - Free user memory XSUI - Suspend until interrupt
XRTS - Read task status XDTV - Define trap vectors
XSTP - Set/read task priority XSUP - Enter supervisor mode
XLKT - Lock task XUSP - Return to user mode
XULT - Unlock task XRSR - Read status register
XSWP - Swap to next task XLSR - Load status register
XCTB - Create task block XRTE - Return from interrupt
XKTB - Kill task X881 - 68881 enable
XSTM - Send task message XDMP - Dump memory from stack
XGTM - Get task message XRDM - Dump registers
XKTM - Kill task message XEXC - Execute PDOS call D7.W
XGMP - Get message pointer XLER - Load error register
XSMP - Send message pointer XERR - Return error D0 to VMEPROM
XSEV - Set event flag XEXT - Exit to VMEPROM
XSEF - Set event flag w/swap XEXZ - Exit to VMEPROM with command

4-2

SECTION 4 VMEPROM SYSTEM CALLS

Level 2 consists of system support calls. Data conversion and data/time processing are their main
functions. They are as follows:

XCBD - Convert binary to decimal XRTP - Read time parameters
XCBH - Convert binary to hex XFTD - Fix time & date
XCBM - Convert to decimal w/message XPAD - Pack ASCII date
XCDB - Convert decimal to binary XUAD - Unpack ASCII Date
XCBX - Convert to decimal in buffer XUDT - Unpack date
XCHX - Convert binary to hex in buffer XUTM - Unpack time
XRDT - Read date XWDT - Write date
XRTM - Read time XWTM - Write time

XGNP - Get next parameter

Level 3 primitives deal with console I/O. Included are commands for setting the baud rate and other
characteristics of an I/O port, reading and writing characters or lines, clearing the screen, positioning the
cursor, and monitoring port status.

XGCB - Conditional get character XPDC - Put data to console
XGCC - Get character conditional XPEL - Put encoded line to console
XGCR - Get character XPMC - Put message to console
XGCP - Get port character XPEM - Put encoded message to console
XGLB - Get line in buffer XCLS - Clear screen
XGLM - Get line in monitor buffer XPSC - Position cursor
XGLU - Get line in user buffer XTAB - Tab to column
XPBC - Put buffer to console XRCP - Read port cursor position
XPCC - Put character(s) to console XBCP - Baud console port
XPCL - Put CRLF XSPF - Set port flag
XPCR - Put character raw XRPS - Read port status
XPSP - Put space to console XCBC - Check for break character
XPLC - Put line to console XCBP - Check for break or pause

Level 4 primitives are file support calls for the file manager. However, important functions such as
copying files, appending files, sizing disks, and resetting disks are included here.

XFFN - Fix file name XCPY - Copy file
XLFN - Look for name in file slots XLDF - Load file
XBFL - Build file directory list XRCN - Reset console inputs
XRDE - Read next directory entry XRST - Reset disk
XRDN - Read directory entry by name XSZF - Get disk size
XAPF - Append file

4-3

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

Level 5 primitives are the file management calls of PDOS. They use the file lock (event 120) to prevent
conflicts between multiple tasks. Functions such as defining, deleting, reading, writing, positioning, and
locking are supported by the file manager.

XDFL - Define file XULF - Unlock file
XRNF - Rename file XRFP - Read file position
XRFA - Read file attributes XRWF - Rewind file
XWFA - Write file attributes XPSF - Position file
XWFP - Write file parameters XRBF - Read bytes from file
XDLF - Delete file XRLF - Read line from file
XZFL - Zero file XWBF - Write bytes to file
XSOP - Open sequential XWLF - Write line to file
XROO - Open random read only XFBF - Flush buffers
XROP - Open random XFAC - File altered check
XNOP - Open non-exclusive random XCFA - Close file w/attribute
XLKF - Lock file XCLF - Close file

The final level of primitives is for disk access via the read/write logical sector routines in the PDOS
BIOS. A disk lock (event 121) is used to make these calls autonomous and prevent multiple commands
from being sent to the disk controller.

XISE - Initialize sector XWSE - Write sector
XRSE - Read sector XRSZ - Read sector zero

1.3 Description of Kernel Primitives

The following chapters give a detailed description of all Kernel calls available in VMEPROM.

4-4

SECTION 4 VMEPROM SYSTEM CALLS

1.3.1 X881 - SAVE 68881 ENABLE

Mnemonic: X881
Value: $A006
Module: MPDOSK1
Format: X881

Description: The SAVE 68881 ENABLE sets the BIOS save flag (SVF$(A6)) thus signaling the PDOS
BIOS to save and restore 68881 registers and status during context switches. The save
flag is again cleared by exiting to VMEPROM.

See also: None

Possible Errors: None

4-5

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.3.2 XAPF - APPEND FILE

Mnemonic: XAPF
Value: $A0AA
Module: MPDOSF
Format: XAPF

<status error return>

Registers: In (A1) = Source file name
(A2) = Destination file name

Note: A [CTRL-C] will terminate this primitive and return error -1 in data register D0.

Description: The APPEND FILE primitive is used to append two files together.

The source and destination file names are pointed to by address registers A1 and A2,
respectively. The source file is appended to the end of the destination file. The source
file is not altered.

See also: None

Possible Errors:

-1 = Break
50 = Invalid file name
53 = File not defined
60 = File space full
61 = File already open
68 = Not PDOS disk
69 = Not enough file slots
Disk errors

4-6

SECTION 4 VMEPROM SYSTEM CALLS

1.3.3 XBCP - BAUD CONSOLE PORT

Mnemonic: XBCP
Value: $A070
Module: MPDOSK2
Format: XBCP

<status error return>

Registers: In D2.W = f0PI 8DBS / <port #>
D3.W = Baud rate
D1.W = Port type
D5.L = Port base

Description: The BAUD CONSOLE PORT primitive initializes any one of the PDOS I/O ports and binds
a physical UART to a character buffer. The primitive sets handshaking protocol, receiver
and transmitter baud rates, and enables receiver interrupts.

Data register D2 selects the port number and sets (or clears) the corresponding flag bits.
If D2.W is negative, then the absolute value is subsequently used and the port number
is stored in U2P$(A6).

The right byte of data register D2 (bits 0-7) selects the console port.

The left byte of D2.W (bits 8-15) selects various flag options including ^S-^Q and/or DTR
handshaking, receiver parity and interrupt enable, and 8-bit character I/O.

The receiver and transmitter baud rates are initialized to the same value according to
register D3. Register D3 ranges from 0 to 7 or the corresponding baud rates of 19200,
9600, 4800, 2400, 1200, 600, 300, or 110.

If data register D4 is non-zero, then it selects the port type and register D5 selects the
port base address. These parameters are system-defined and correspond to the UART
module. If register D4 is zero, there is no change.

See also: XRPS - READ PORT STATUS
XSPF - SET PORT FLAG

Possible Errors: 66 = Invalid port or baud rate

4-7

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.3.4 XCBC - CHECK FOR BREAK CHARACTER

Mnemonic: XCBC
Value: $A072
Module: MPDOSK2
Format: XCBC

<status return>

Registers: Out SR = EQ....No break
LO....[CTRL-C], Clear flag & buffer
LT....[ESC], Clear flag
MI....[CTRL-C] or [ESC]

Note: If the ignore control character bit ($02) of the port flag is set, then XCBC always returns .EQ.
status.

Description: The CHECK FOR BREAK CHARACTER primitive checks the current user input port break
flag (BRKF.(A5)) to see if a break character has been entered. The PDOS break
characters are [CTRL-C] and the [ESC] key. A [CTRL-C] sets the port break flag to one,
while an [ESC] character sets the flag to a minus one. The XCBC primitive samples and
clears this flag. The condition of the break flag is returned in the status register. An ’LO’
condition indicates a [CTRL-C] has been entered. The break flag and the input buffer are
cleared. All subsequent characters entered after the [CTRL-C] and before the XCBC call
are dropped.

All open procedure files are closed and any system frames are restored. Also, the last
error number flag (LEN$) is set to -1 and a ’^C’ is output to the port. An ’LT’ condition
indicates an [ESC] character has been entered. Only the break flag is cleared and not
the input buffer. Thus, the [ESC] character remains in the buffer.

The [CTRL-C] character is interpreted as a hard break and is used to terminate command
operations. The [ESC] character is a soft break and remains in the input buffer, even
though the break flag is cleared by the XCBC primitive. (This allows an editor to use the
[ESC] key for special functions or command termination.)

See also: None

Possible Errors: None

4-8

SECTION 4 VMEPROM SYSTEM CALLS

1.3.5 XCBD - CONVERT BINARY TO DECIMAL

Mnemonic: XCBD
Value: $A050
Module: MPDOSK3
Format: XCBD

Registers: In D1.L = Number
Out (A1) = String

Description: CONVERT BINARY TO DECIMAL primitive converts a 32-bit, 2’s complement number
to a character string. The number to be converted is passed to XCBD in data register D1.
Address register A1 is returned with a pointer to the converted character string located
in the monitor work buffer (MWB$).

Leading zeros are suppressed and a negative sign is the first character for negative
numbers. The string is delimited by a null. The string has a maximum length of 11
characters and ranges from -2147483648 to 2147483647.

See also: XCBX - CONVERT TO DECIMAL IN BUFFER.

Possible Errors: None

4-9

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.3.6 XCBH - CONVERT BINARY TO HEX

Mnemonic: XCBH
Value: $A052
Module: MPDOSK3
Format: XCBH

Registers: In D1.L = Number
Out (A1) = String

Description: CONVERT BINARY TO HEX primitive converts a 32-bit number to its hexadecimal (base
16) representation. The number is passed in data register D1 and a pointer to the ASCII
string is returned in address register A1. The converted string is found in the monitor
work buffer (MWB$) of the task control block and consists of eight hexadecimal characters
followed by a null.

See also: XCHX - CONVERT BINARY TO HEX IN BUFFER.

Possible Errors: None

4-10

SECTION 4 VMEPROM SYSTEM CALLS

1.3.7 XCBM - CONVERT TO DECIMAL W/MESSAGE

Mnemonic: XCBM
Value: $A054
Module: MPDOSK3
Format: XCBM <message>

Registers: In D1.L = Number
Out (A1) = String

Description: CONVERT TO DECIMAL WITH MESSAGE primitive converts a 32-bit, signed number to
a character string. The output string is preceded by the string whose PC relative address
is in the operand field of the call.

The string can be up to 20 characters in length and is terminated by a null character. The
number to be converted is passed to XCBM in data register D1. Address register A1 is
returned with a pointer to the converted character string which is located in the monitor
work buffer (MWB$) of the task control block.

Leading zeros are suppressed and the result ranges from -2147483648 to 2147483647.

The message address is a signed 16-bit PC relative address.

See also: None

Possible Errors: None

4-11

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.3.8 XCBP - CHECK FOR BREAK OR PAUSE

Mnemonic: XCBP
Value: $A074
Module: MPDOSK2
Format: XCBP

<status return>

Registers: Out SR = EQ...No character
LT...[ESC]
LO...[CTRL-C]
NE...Pause

Note: If a ’BLT’ instruction does not immediately follow the XCBP call, then the primitive exits
to PDOS when an [ESC] character is entered.

If the ignore control character bit ($02) of the port flag is set, then XCBP always returns
.EQ. status.

Description: CHECK FOR BREAK OR PAUSE primitive looks for a character from your PRT$(A6) port.
Any non-control character will cause XCBP to output a pause message and wait for
another character.

The pause message consists of:

[CR]
’Strike any key...’
[CR]
’
[CR].

A [CTRL-C] will abort any assigned console file and return the status ’LO’. If a ’BLT’
instruction follows the XCBP primitive and an [ESC] character is entered, then the call
returns with status ’LT’. Otherwise, an [ESC] will abort your program to VMEPROM.

An ’EQ’ status indicates that no character was entered. An ’NE’ status indicates a pause
has occurred.

See also: None

Possible Errors: None

4-12

SECTION 4 VMEPROM SYSTEM CALLS

1.3.9 XCBX - CONVERT TO DECIMAL IN BUFFER

Mnemonic: XCBX
Value: $A06A
Module: MPDOSK3
Format: XCBX

Registers: In D1.L = Number
(A1) = Buffer

Description: CONVERT TO DECIMAL IN BUFFER primitive converts a 32-bit, 2’s complement number
to a character string. The number to be converted is passed to XCBX in data register
D1. Address register A1 points to the buffer where the converted string is stored.

Leading zeros are suppressed and a negative sign is the first character for negative
numbers. The string is delimited by a null. The string has a maximum length of 11
characters and ranges from -2147483648 to 2147483647.

See also: XCBD - CONVERT BINARY TO DECIMAL.

Possible Errors: None

4-13

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.3.10 XCDB - CONVERT ASCII TO BINARY

Mnemonic: XCDB
Value: $A056
Module: MPDOSK3
Format: XCDB

<status return>

Registers: In (A1) = String
Out D0.B = Delimiter

D1.L = Number
(A1) = Updated string
SR = LT....No number

EQ....# w/o null delimiter
GT....#

Note: XCDB does not check for overflow.

Description: CONVERT ASCII TO BINARY primitive converts an ASCII string of characters to a 32-bit,
2’s complement number. The result is returned in data register D1 while the status register
reflects the conversion results.

XCDB converts signed decimal, hexadecimal, or binary numbers.

Hexadecimal numbers are preceded by "$" and binary numbers by "%". A "-" indicates
a negative number. There can be no embedded blanks.

An ’LT’ status indicates that no conversion was possible. Data register D0 is returned with
the first character and address register A1 points immediately after it.

A ’GT’ status indicates that a conversion was made with a null delimiter encountered.
The result is returned in data register D1. Address register A1 is returned with an
updated pointer and register D0 is set to zero.

An ’EQ’ status indicates that a conversion was made but the ASCII string was not
terminated with a null character.

The result is returned in register D1 and the non-numeric, non-null character is returned
in register D0.

Address register A2 has the address of the next character.

See also: None

Possible Errors: None

4-14

SECTION 4 VMEPROM SYSTEM CALLS

1.3.11 XCFA - CLOSE FILE W/ATTRIBUTE

Mnemonic: XCFA
Value: $A0D0
Module: MPDOSF
Format: XCFA

<status error return>

Registers: In D1.W = File ID
D2.B = New attribute

Description: CLOSE FILE WITH ATTRIBUTES primitive closes the open file specified by data register
D1. At the same time, the file attributes are updated according to the byte contents of
data register D2.

D2.B = $80 AC or Procedure file
= $40 BN or Binary file
= $20 OB or 68000 object file
= $10 SY or 68000 memory image
= $08 BX or BASIC binary token file
= $04 EX or BASIC ASCII file
= $02 TX or Text file
= $01 DR or System I/O driver
= $00 Clear file attributes

If the file was opened for sequential access and the file has been updated, then the
END-OF-FILE marker is set at the current file pointer. If the file was opened for random
or shared access, then the END-OF-FILE marker is updated only if the file has been
extended (data was written after the current END-OF-FILE marker). The LAST UPDATE
is updated to the current date and time only if the file has been altered. All files must be
closed when opened! Otherwise, directory information and possibly even the file itself will
be lost.

Note: If the file is not altered, then XCFA will not alter the file attributes.

See also: XRFA - READ FILE ATTRIBUTES
XWFA - WRITE FILE ATTRIBUTES
XWFP - WRITE FILE PARAMETERS

Possible Errors:

52 = File not open
59 = Invalid file slot
75 = File locked
Disk errors

4-15

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.3.12 XCHX - CONVERT BINARY TO HEX IN BUFFER

Mnemonic: XCHX
Value: $A068
Module: MPDOSK3
Format: XCHX

Registers: In D1.L = Number
(A1) = Output buffer

Description: CONVERT BINARY TO HEX IN BUFFER primitive converts a 32-bit number to its
hexadecimal (base 16) representation. The number is passed in data register D1 and a
pointer to a buffer in address register A1. The converted string consists of eight
hexadecimal characters followed by a null.

See also: XCBH - CONVERT BINARY TO HEX.

Possible Errors: None

4-16

SECTION 4 VMEPROM SYSTEM CALLS

1.3.13 XCLF - CLOSE FILE

Mnemonic: XCLF
Value: $A0D2
Module: MPDOSF
Format: XCLF

<status error return>

Registers: In D1.W = File ID

Description: CLOSE FILE primitive closes the open file as specified by the file ID in data register D1.
If the file was opened for sequential access and the file was updated, then the
END-OF-FILE marker is set at the current file pointer.

If the file was opened for random or shared access, then the END-OF-FILE marker is
updated only if the file was extended (ie. data was written after the current END-OF-FILE
marker).

If the file has been altered, the current date and time is stored in the LAST UPDATE
variable of the file directory. All open files must be closed at or before the completion of
a task (or before disks are removed from the system)! Otherwise, directory information
is lost and possibly even the file itself.

See also: None

Possible Errors:

52 = File not open
59 = Invalid slot #
75 = File locked
Disk errors

4-17

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.3.14 XCLS - CLEAR SCREEN

Mnemonic: XCLS
Value: $A076
Module: MPDOSK2
Format: XCLS

Registers: None

Note: The clear screen characters are located in the user TCB variable CSC$(A6).

Description: CLEAR SCREEN primitive clears the console screen, homes the cursor, and clears the
column counter. This function is adapted to the type of console terminals used in the
PDOS system.

The character sequence to clear the screen is located in the task control block variable
CSC$(A6). These characters are transferred from the parent task to the spawned task
during creation. The initial characters come from the BIOS module.

If CSC$ is nonzero, then the CLEAR SCREEN primitive outputs up to four characters:
one or two characters; an [ESC] followed by a character; or an [ESC], character, [ESC],
and a final character. The one-word format allows for two characters. The parity bits
cause the [ESC] character to precede each character.

If CSC$ is zero, then PDOS makes a call into the BIOS for custom clear screens. The
entry point is B_CLS beyond the BIOS table.

The ST command maintains the CSC$ field, although it can be altered under program
control.

See also: XRCP - READ PORT CURSOR POSITION

Possible Errors: None

4-18

SECTION 4 VMEPROM SYSTEM CALLS

1.3.15 XCPY - COPY FILE

Mnemonic: XCPY
Value: $A0AE
Module: MPDOSF
Format: XCPY

<status error return>

Registers: In (A1) = Source file name
(A2) = Destination file name

Note: A [CTRL-C] terminates this primitive and returns the error -1 in register D0.

Description: COPY FILE primitive copies the source file into the destination file. The source file is
pointed to by address register A1 and the destination file is pointed to by register A2. A
[CTRL-C] halts the copy, prints ’^C’ to the console, and returns with error -1.

The file attributes of the source file are automatically transferred to the destination file.

See also: None

Possible Errors:

-1 = Break file transfer
50 = Invalid file name
53 = File not defined
60 = File space full
61 = File already open
68 = Not PDOS disk
69 = No more file slots
70 = Position error
Disk errors

4-19

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.3.16 XCTB - CREATE TASK BLOCK

Mnemonic: XCTB
Value: $A026
Module: MPDOSK1
Format: XCTB

<status error return>

Registers: In D0.W = Task size (1 Kbyte increments)
D1.W = Task time.B/priority.B
D2.W = I/O port
(A0) = Optional low memory pointer
(A1) = Optional high memory pointer
(A2) = Command line pointer or entry address
Out D0.L = Spawned task number

Note: If D0.W is positive, A0 and A1 are undefined.

If D0.W equals zero, A0 and A1 are the new task’s memory bounds and A2 contains the
task’s entry address.

If D0.W is negative, A0 and A1 are the new task’s memory bounds and A2 points to the
task’s command line.

Description: CREATE TASK primitive places a new task entry in the PDOS task list. Memory for the
new task is either from the parent task or the system memory bit map. Data register D0
controls the creation mode of the new task as well as the task size. If register D0.W is
positive, the first available contiguous memory block equal to D0.W (in 1 Kbyte) is
allocated to the new task. If the block is not big enough, the upper memory of the parent
task is allocated to the new task. The parent task’s memory is then reduced by D0.W x
1 Kbytes. Address register A2 points to the new task command line. If A2 is zero,
VMEPROM is invoked. If register D0.W is zero, registers A0 and A1 specify the new
task’s memory limits. Register A2 specifies the task’s starting PC. The task control block
begins at (A0) and is immediately followed by an XEXT primitive. The task user stack
pointer is set at (A1). Thus, the new program should allow $1000 bytes at the low end
and enough user stack space at the upper end.

If data register D0.W is negative, registers A0 and A1 specify the new task’s memory
limits. Register A2 points to the new task command line. (If A2=0, VMEPROM is
invoked). The command line is transferred to the spawned program by a system
message buffer. The maximum command line length is 64 characters. When the task
is scheduled for the first time, message buffers are searched for a command. Messages
with a source task equal to $FF are considered commands and moved to the task’s
monitor buffer.

4-20

SECTION 4 VMEPROM SYSTEM CALLS

The task CLI then processes the line. If no command message is found, then the
VMEPROM is called directly.

Data register D1.W specifies the new task’s priority. The range is from 1 to 255. The
larger the number, the higher the priority.

Data register D2.W specifies the I/O port to be used by the new task.

If register D2.W is positive, then the port is available for both input and output. If register
D2.W is negative, then the port is used only for output. If register D2.W is zero, then no
port is assigned. Only one task may be assigned to any one input port while many tasks
may be assigned to an output port. Hence, a port is allocated for input only if it is
available. An invalid port assignment does not result in an error.

A call is made to D$INT in the debugger module. This initializes all addresses, registers,
breaks, and offsets.

Finally, the spawned task’s number is returned in register D0.L to the parent task. This
can be used later to test task status or to kill the task.

See also: None

Possible Errors:

72 = Too many tasks
73 = Not enough memory

4-21

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.3.17 XDEV - DELAY SET/RESET EVENT

Mnemonic: XDEV
Value: $A032
Module: MPDOSK1
Format: XDEV

<status error return>

Registers: In D0.L = Time
D1.B = Event (+=Set, -=Reset)

Note: If D0.L=0, then the D1.B event is cleared.

Description: DELAY SET/RESET EVENT primitive places a timed event in a system stack controlled
by the system clock. Data register D0.L specifies the time interval in clock tics. When
it counts to zero, then the event D1.B is set if positive, or reset if negative.

If the event already exists in the stack, it is replaced by the new entry. If the time
specified in D0 equals zero, then any pending timed event equal to D1.B is deleted from
the stack.

If D1.B is positive, event D1.B is first cleared. If D1.B is negative, event D1.B is set
before exiting the primitive.

See also: XSEF - SET EVENT FLAG W/SWAP
XSEV - SET EVENT FLAG
XSUI - SUSPEND UNTIL INTERRUPT
XTEF - TEST EVENT FLAG

Possible Errors: 83 = Delay event stack full

4-22

SECTION 4 VMEPROM SYSTEM CALLS

1.3.18 XDFL - DEFINE FILE

Mnemonic: XDFL
Value: $A0D4
Module: MPDOSF
Format: XDFL

<status error return>

Registers: In D0.W = # of contiguous sectors
(A1) = File name

Description: DEFINE FILE primitive creates a new file entry in a PDOS disk directory, specified by
address register A1. A PDOS file name consists of an alphabetic character followed by
up to 7 additional characters. An optional 3 character extension can be added if preceded
by a colon. Likewise, the directory level and disk number are optionally specified by a
semicolon and slash respectively. The file name is terminated with a null.

Data register D0 contains the number of sectors to be initially allocated at file definition.
If register D0 is nonzero, then a contiguous file is created with D0 sectors. Otherwise,
only one sector is allocated. Each sector of allocation corresponds to 252 bytes of data.

A contiguous file facilitates random access to file data since PDOS can directly position
to any byte within the file without having to follow sector links. A contiguous file is
automatically changed to a non-contiguous file if it is extended with non-contiguous
sectors.

See also: None

Possible Errors:

50 = Invalid file name
51 = File already defined
55 = Fragmentation error
57 = File directory full
61 = File already open
68 = Not PDOS disk
Disk errors

4-23

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.3.19 XDLF - DELETE FILE

Mnemonic: XDLF
Value: $A0D6
Module: MPDOSF
Format: XDLF

<status error return>

Registers: In (A1) = File name

Description: DELETE FILE primitive removes the file whose name is pointed to by address register A1
from the disk directory and releases all sectors associated with that file for use by other
files on that same disk. A file cannot be deleted if it is delete (*) or write (**) protected.

See also: None

Possible Errors:

50 = Invalid file name
53 = File not defined
58 = File delete or write protected
61 = File already open
68 = Not PDOS disk
Disk errors

4-24

SECTION 4 VMEPROM SYSTEM CALLS

1.3.20 XDMP - DUMP MEMORY FROM STACK

Mnemonic: XDMP
Value: $A04A
Module: MPDOSK3
Format: XDMP

Registers: In USP.L = <# of bytes>.W
<start address>.L
Out USP.L = USP.L + 6

Description: DUMP MEMORY FROM STACK primitive dumps a block of memory to the console as
specified by two parameters on the user stack (USP). The left side of the output is a
hexadecimal dump and the right side is a masked ($7F) ASCII dump.

To use this primitive, first push a 32-bit address and then a 16-bit number of the amount
of memory to be dumped. The primitive will automatically clean up the user stack.

See also: None

Possible Errors: None

4-25

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.3.21 XDPE - DELAY PHYSICAL EVENT

Mnemonic: XDPE
Value: $A114
Module: MPDOSK1
Format: XDPE

Registers: In A0 = Event address
D0.L = Time TICs for delay (0=clear entry)
D1.W = Event descriptor

Description: Causes the specified event to be set/cleared after the specified time has elapsed. Each
event can have only one delayed action pending. Successive calls will supersede
pending requests. Only the lower eight bits of the descriptor are used. To cancel
pending actions, specify a delay time of 0.

The event descriptor is a 16-bit word that defines both the bit number at the specified A0
address and the action to take on the bit. The following bits are defined:

Bit number - 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
T x x x x x x x S x x x x B B B

T = Should the bit be toggled on scheduling?
1 = Yes (toggle), 0 = No (do not toggle)

S = Suspend on event bit clear or set
1 = Suspend on SET, 0 = Suspend on CLEAR

BBB = The 680 x 0 bit number to use as an event
x = Reserved, should be 0

Since the bit number is specified in the lower three bits of the descriptor, you may use the
descriptor with the 680 x 0 BTST, BCLR, BSET instructions.

See also: XDEV - Delay Set/Clear Event
XSOE - Suspend on Physical Event
XTLP - Translate Logical to Physical Event

4-26

SECTION 4 VMEPROM SYSTEM CALLS

1.3.22 XDTV - DEFINE TRAP VECTORS

Mnemonic: XDTV
Value: $A024
Module: MPDOSK1
Format: XDTV

Registers: In D1.L = TVCZ FEDC BA98 7654 3210
(A0) = Table base address
(A1) = Vector table address

Vector table: DC.L TRAP #0-<BASE ADR>
....
DC.L TRAP #15-<BASE ADR>
DC.L ZDIV-<BASE ADR>
DC.L CHK-<BASE ADR>
DC.L TRAPV-<BASE ADR>
DC.L TRACE-<BASE ADR>

Note: The vector table size is variable and each entry corresponds to non-zero bits in the mask register
(D1.L). Each entry is a long signed displacement from the base address register.

D1.L = TVCZ FEDCBA9876543210

TRAPs #0-#15
Zero divide
CHK
TRAPV
Trace exception

Description: The DEFINE TRAP VECTORS primitive loads user routine addresses into the task control
block exception vector variables. Each task has the option to process its own TRAP, zero
divide, CHK, TRAPV, and/or trace exceptions.

Data register D1 selects which vectors are to be loaded according to individual bits
corresponding to vectors in the vector table pointed to by address register A1. Bits 0
through 19 (right to left) correspond to TRAPs 0 through 15, zero divide, CHK, TRAPV,
and trace exceptions. A 1 bit moves a vector from the vector table (biased by base
address A0) into the task control block.

When an exception occurs, the task control block is checked for a corresponding non-zero
exception vector. If found, then the return address is pushed on the user stack (USP)
followed by the exception address and condition codes. PDOS next moves to user mode
and executes a return with condition codes (RTR). This effectively acts like a jump
subroutine with the return address on the user stack.

4-27

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

The trace processing is handled differently. If the processor is in supervisor mode when a trace
exception occurs, the trace bit is cleared and the exception is dismissed. The processor remains in
supervisor mode. If the processor is in user mode and there is a non-zero trace variable in the task
control block, then the trace is again disabled, the trace processor address is pushed on the supervisor
stack along with status, and a return from exception is executed (RTE).

See also:

Possible Errors: None

4-28

SECTION 4 VMEPROM SYSTEM CALLS

1.3.23 XERR - RETURN ERROR D0 TO VMEPROM

Mnemonic: XERR
Value: $A00C
Module: MPDOSK1
Format: XERR

Registers: In D0.W = Error code

Description: RETURN ERROR D0 TO VMEPROM primitive exits to VMEPROM and passes an error
code in data register D0. PDOS prints ’PDOS ERR’, followed by the decimal error
number. The error call can be intercepted by changing the value of the ERR$ variable
in the task TCB. This allows you to customize your own monitor.

See also: XEXT - EXIT TO VMEPROM

Possible Errors: None

4-29

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.3.24 XEXC - EXECUTE PDOS CALL D7.W

Mnemonic: XEXC
Value: $A030
Module: MPDOSK1
Format: XEXC

Registers: In D7.W = Aline PDOS CALL

Description: EXECUTE PDOS CALL D7.W primitive executes a variable PDOS primitive contained
in data register D7. Any registers or error conditions apply to the corresponding PDOS
call.

See also: Possible Errors: Call dependent

4-30

SECTION 4 VMEPROM SYSTEM CALLS

1.3.25 XEXT - EXIT TO VMEPROM

Mnemonic: XEXT
Value: $A00E
Module: MPDOSK1
Format: XEXT

(Always exits to VMEPROM)

Registers: None

Description: EXIT TO VMEPROM primitive exits a user program and returns to VMEPROM.

The exit can be intercepted by changing the value of the EXT$ variable in the task TCB.
This primitive allows you to customize your own monitor.

See also: XERR - RETURN ERROR D0 TO VMEPROM

Possible Errors: None

4-31

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.3.26 XFAC - FILE ALTERED CHECK

Mnemonic: XFAC
Value: $A0CE
Module: MPDOSF
Format: XFAC

<status error return>

Registers: In (A1) = FILE NAME
Out CC = File not altered

CS = File altered
NE = Error

Description: FILE ALTERED CHECK primitive looks at the altered bit (bit $80) of the file pointed to by
address register A1. If the bit is zero (not altered), then the primitive returns with the carry
status bit clear.

If the alter bit is set (file altered), then it is cleared and the primitive returns with carry set.
If either case, the bit is always cleared.

See also: None

Possible Errors: Disk errors

4-32

SECTION 4 VMEPROM SYSTEM CALLS

1.3.27 XFBF - FLUSH BUFFERS

Mnemonic: XFBF
Value: $A0F8
Module: MPDOSF
Format: XFBF

<status error return>

Registers: None

Description: FLUSH BUFFERS primitive forces all file slots with active channel buffers to write any
updated data to the disk. It thus does a checkpoint of any open and altered file.

See also: None

Possible Errors: Disk errors

4-33

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.3.28 XFFN - FIX FILE NAME

Mnemonic: XFFN
Value: $A0A0
Module: MPDOSF
Format: XFFN

<status error return>

Registers: In (A1) = File name
Out D0.L = Disks(4th/3rd/2nd/1st)

(A1) = MWB$, Fixed file name

Description: FIX FILE NAME primitive parses a character string for file name, extension, directory
level, and disk number. The results are returned in the 32-character monitor work buffer
(MWB$(A6)). Data register D0 is also returned with the disk number. The error return
is used for an invalid file name.

The monitor work buffer is cleared and the following assignments are made:

0(A1) = File name
8(A1) = File extension
11(A1) = File directory level

System defaults are used for the disk number and file directory level when they are not
specified in the file name.

See also: XRDN - READ DIRECTORY ENTRY BY NAME

Possible Errors:

50 = Invalid file name

4-34

SECTION 4 VMEPROM SYSTEM CALLS

1.3.29 XFTD - FIX TIME & DATE

Mnemonic: XFTD
Value: $A058
Module: MPDOSK3
Format: XFTD

Registers: Out D0.W = Hours * 256 + Minutes
D1.W = (Year * 16 + Month) * 32 + Day

Description: FIX TIME & DATE primitive returns a two-word encoded time and date generated from
the system timers. The resultant codes include month, day, year, hours, and minutes.
The ordinal codes can be sorted and used as inputs to the UNPACK DATE (XUDT) and
UNPACK TIME (XUTM) primitives.

Data register D0.W contains the time and register D1.W contains the date. This format
is used throughout PDOS for time stamping items.

See also: XPAD - PACK ASCII DATE
XRDT - READ DATE
XRTM - READ TIME
XUAD - UNPACK ASCII DATE
XUDT - UNPACK DATE
XUTM - UNPACK TIME

Possible Errors: None

4-35

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.3.30 XFUM - FREE USER MEMORY

Mnemonic: XFUM
Value: $A040
Module: MPDOSK1
Format: XFUM

<status error return>

Registers: In D0.W = Number of K bytes
(A0) = Beginning address

Description: FREE USER MEMORY primitive deallocates user memory to the system memory bit map.
Data register D0.W specifies how much memory is to be deallocated while address
register A0 points to the beginning of the data block.

Memory thus deallocated is available for any task use including new task creation.

Possible Errors:

79 = Memory error

4-36

SECTION 4 VMEPROM SYSTEM CALLS

1.3.31 XGCB - CONDITIONAL GET CHARACTER

Mnemonic: XGCB
Value: $A048
Module: MPDOSK2
Format: XGCB

<status return>

Registers: Out D0.L = Character in bits 0-7
SR = EQ....No character
LO....[CTRL-C]
LT....[ESC]
MI....[CTRL-C] or [ESC]

Note: If the ignore control character bit ($02) of the port flag is set, then XGCB ignores
[CTRL-C] and [ESC].

Description: CONDITIONAL GET CHARACTER primitive checks for a character from first, the input
message pointer (IMP$(A6)), second, the assigned input file (ACI$(A6)), and then finally,
the interrupt driven input character buffer (PRT$(A6)). If a character is found, it is
returned in the right byte of data register D0.L and the rest of the register is cleared.

If there is no input message, no assigned console port character, and the interrupt buffer
is empty, the status is returned as ’EQ’.

The status is returned ’LO’ and the break flag cleared if the returned character is a
[CTRL-C]. The input buffer is also cleared. Thus, all characters entered after the
[CTRL-C] and before the XGCB call are dropped.

The status is returned ’LT’ and the break flag cleared if the returned character is the
[ESC] character.

For all other characters, the status is returned ’HI’ and ’GT’. The break flag is not
affected.

Possible Errors: None

4-37

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.3.32 XGCC - GET CHARACTER CONDITIONAL

Mnemonic: XGCC
Value: $A078
Module: MPDOSK2
Format: XGCC

<status return>

Registers: Out D0.L = Character in bits 0-7
SR = EQ....No character
LO....[CTRL-C]
LT....[ESC]
MI....[CTRL-C] or [ESC]

Note: If the ignore control character bit ($02) of the port flag is set, then XGCC ignores
[CTRL-C] and [ESC].

Description: GET CHARACTER CONDITIONAL primitive checks the interrupt driven input character
buffer and returns the next character in the right byte of data register D0.L. The rest of
the register is cleared. The input buffer is selected by the input port variable (PRT$) of the
TCB.

If the buffer is empty, the ’EQ’ status bit is set. If the character is a [CTRL-C], then the
break flag and input buffer are cleared, and the status is returned ’LO’. If the character
is the [ESC] character, then the break flag is cleared and the status is returned ’LT’.

If no special character is encountered, the character is returned in register D0 and the
status set ’HI’ and ’GT’.

If no port has been assigned for input (ie. port 0 or phantom port), then the routine always
returns an ’EQ’ status.

Possible Errors: None

4-38

SECTION 4 VMEPROM SYSTEM CALLS

1.3.33 XGCP - GET PORT CHARACTER

Mnemonic: XGCP
Value: $A09E
Module: MPDOSK2
Format: XGCP

<status return>

Registers: Out D0.L = Character in bits 0-7
SR = LO....[CTRL-C]
LT....[ESC]
MI....[CTRL-C] or [ESC]

Note: If the ignore control character bit ($02) of the port flag is set, then XGCP ignores
[CTRL-C] and [ESC].

Description: GET PORT CHARACTER primitive checks for a character in the interrupt driven input
character buffer. If a character is found, it is returned in the right byte of data register
D0.L and the rest of the register is cleared. The input buffer is selected by the input port
variable (PRT$) of the TCB.

If the interrupt buffer is empty, the task is suspended pending a character interrupt.

The status is returned ’LO’ and the break flag cleared if the returned character is a
[CTRL-C]. The input buffer is also cleared. Thus, all characters entered after the
[CTRL-C] and before the XGCR call are dropped.

The status is returned ’LT’ and the break flag cleared if the returned character is the
[ESC] character.

For all other characters, the status is returned ’HI’ and ’GT’. The break flag is not
affected.

If no port has been assigned for input, (ie. port 0 or phantom port), then an error 86
occurs.

Possible Errors: None

4-39

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.3.34 XGCR - GET CHARACTER

Mnemonic: XGCR
Value: $A07A
Module: MPDOSK2
Format: XGCR

<status return>

Registers: Out D0.L = Character in bits 0-7
SR = LO....[CTRL-C]
LT....[ESC]
MI....[CTRL-C] or [ESC]

Note: If the ignore control character bit ($02) of the port flag is set, then XGCR ignores
[CTRL-C] and [ESC].

Description: GET CHARACTER primitive checks for a character from first, the input message pointer
(IMP$(A6)); second, the assigned input file (ACI$(A6)); and then finally, the interrupt
driven input character buffer (PRT$(A6)). If a character is found, it is returned in the right
byte of data register D0.L and the rest of the register is cleared.

If there is no input message, no assigned console port character, and the interrupt buffer
is empty, the task is suspended pending a character interrupt.

The status is returned ’LO’ and the break flag cleared if the returned character is a
[CTRL-C]. The input buffer is also cleared. Thus, all characters entered after the
[CTRL-C] and before the XGCR call are dropped.

The status is returned ’LT’ and the break flag cleared if the returned character is the
[ESC] character.

For all other characters, the status is returned ’HI’ and ’GT’. The break flag is not
affected.

If no port has been assigned for input, (ie. port 0 or phantom port), then an error 86
occurs.

Possible Errors: None

4-40

SECTION 4 VMEPROM SYSTEM CALLS

1.3.35 XGLB - GET LINE IN BUFFER

Mnemonic: XGLB
Value: $A07C
Module: MPDOSK2
Format: XGLB

{BLT.x ESCAPE} optional
<status return>

Registers: In (A1) = Buffer address
Out D1.L = Number of characters

SR = EQ...[CR] only
LT...[ESC]
LO...[CTRL-C]

Note: If the ignore control character bit ($02) of the port flag is set, then XGLB ignores [CTRL-C]
and [ESC].

Description: LINE IN BUFFER primitive gets a character line into the buffer pointed to by address
register A1. The XGCR primitive is used by XGLB and hence characters can come from
a memory message, a file, or the task console port.

The buffer must be at least 80 characters in length. The line is delimited by a carriage
return. The status returns EQUAL if only a [CR] is entered.

If an [ESC] is entered, the task exits to VMEPROM unless a ’BLT’ instruction immediately
follows the XGLB call. If such is the case, then XGLB returns with status set at ’LT’.

If the assigned console flag (ACI$(A6)) is set, then the ’&’ character is used for character
substitutions. ’&0’ is replaced with the last system error number. ’&1’ is replaced with the
first parameter of the command line, ’&2’ with the second, and so forth up to ’&9’.

The command line can be edited with various system defined control characters. A
[BACKSPACE] ($08) moves the cursor one character to the left. A [CTRL-F] ($0C)
moves the cursor one character to the right. A [RUB] ($7F) deletes one character to the
left. A [CTRL-D] ($04) deletes the character under the cursor. The cursor need not be
at the end of the line when the [CR] is entered.

See also: XGLU - GET LINE IN USER BUFFER

Possible Errors: None

4-41

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.3.36 XGLM - GET LINE IN MONITOR BUFFER

Mnemonic: XGLM
Value: $A07E
Module: MPDOSK2
Format: XGLM

{BLT.x ESCAPE} optional
<status return>

Registers: Out (A1) = String
D1.L = Number of characters
SR = EQ...[CR] only
LT...[ESC]
LO...[CTRL-C]

Note: If the ignore control character bit ($02) of the port flag is set, then XGLM ignores
[CTRL-C] and [ESC].

Description: The GET LINE IN MONITOR BUFFER primitive gets a character line into the monitor
buffer located in the task control block. The XGCR primitive is used by XGLM and
hence, characters can come from a memory message, a file, or the task console port.

The buffer has a maximum length of 80 characters and is delimited by a carriage return. The status
returns EQUAL if only a [CR] is entered. If an [ESC] is entered, the task exits to VMEPROM unless
a ’BLT’ instruction immediately follows the XGLM call. If such is the case, then XGLM returns with
status set at ’LT’.

If the assigned console flag (ACI$(A6)) is set, then the ’&’ character is used for character substitutions.
’&0’ is replaced with the last system error number. ’&1’ is replaced with the first parameter of the
command line, ’&2’ with the second, and so forth up to ’&9’.

The command line can be edited with various system-defined control characters. A [BACKSPACE]
($08) moves the cursor one character to the left. A [CTRL-L] ($0C) moves the cursor one character
to the right. A [RUB] ($7F) deletes one character to the left. A [CTRL-D] ($04) deletes the character
under the cursor. The cursor need not be at the end of the line when the [CR] is entered.

The last command line can be recalled to the buffer by entering a [CTRL-A] ($01). This line can then
be edited using the above control characters.

Possible Errors: None

4-42

SECTION 4 VMEPROM SYSTEM CALLS

1.3.37 XGLU - GET LINE IN USER BUFFER

Mnemonic: XGLU
Value: $A080
Module: MPDOSK2
Format: XGLU

{BLT.x ESCAPE ;optional}
<status return>

Registers: Out (A1) = String
D1.L = Number of characters
SR = EQ...[CR] only
LT...[ESC]
LO...[CTRL-C]

Note: If the ignore control character bit ($02) of the port flag is set, then XGLU ignores [CTRL-C]
and [ESC].

Description: The GET LINE IN USER BUFFER primitive gets a character line into the user buffer.
Address register A6 normally points to the user buffer. The XGCR primitive is used by
XGLU; hence, characters come from a memory message, a file, or the task console port.
The line is delimited by a carriage return. The status returns EQUAL if only a [CR] is
entered. Address register A1 is returned with a pointer to the first character.

The user buffer is located at the beginning of the task control block and is 256 characters in length.
However, the XGLU routine limits the number of input characters to 78 plus two nulls.

If an [ESC] ($1B) is entered, the task exits to VMEPROM unless a ’BLT’ instruction immediately follows
the XGLU call. If such is the case, then XGLU returns with status set at ’LT’.

If the assigned console flag (ACI$(A6)) is set, then the ’&’ character is used for character substitutions.
’&0’ is replaced with the last system error number. ’&1’ is replaced with the first parameter of the
command line, ’&2’ with the second, and so forth up to ’&9’.

The command line can be edited with various system defined control characters. A [BACKSPACE]
($08) moves the cursor one character to the left. A [CTRL-L] ($0C) moves the cursor one character
to the right. A [RUB] ($7F) deletes one character to the left. A [CTRL-D] ($04) deletes the character
under the cursor. The cursor need not be at the end of the line when the [CR] is entered.

Possible Errors: None

4-43

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.3.38 XGML - GET MEMORY LIMITS

Mnemonic: XGML
Value: $A010
Module: MPDOSK1
Format: XGML

Registers: Out (A0) = End TCB (TBE$)
(A1) = Upper memory limit (EUM$-USZ)
(A2) = Last loaded address (BUM$)
(A5) = System RAM (SYRAM)
(A6) = Task TCB

Description: GET MEMORY LIMITS subroutine returns the user task memory limits. These limits are
defined as the first usable location after the task control block ($500 beyond address
register A6) and the end of the user task memory. The task may use up to but not
including the upper memory limit.

Address register A0 is returned pointing to the beginning of user storage (which is the
end of the TCB). Register A1 points to the upper task memory limit less $100
hexadecimal bytes for the user stack pointer (USP). Register A2 is the last loaded
memory address as provided by the PDOS loader. Address registers A5 and A6 are
returned with the pointers to system RAM (SYRAM) and the task control block (TCB).

Possible Errors: None

4-44

SECTION 4 VMEPROM SYSTEM CALLS

1.3.39 XGMP - GET MESSAGE POINTER

Mnemonic: XGMP
Value: $A004
Module: MPDOSK1
Format: XGMP

<status return>

Registers: In D0.L = Message slot number (0..15)
Out D0.L = Source task # (-1 = no message)

SR = EQ....Message (Event[64+Message slot#]=0)
NE....No message
D0.L = Error number 83 if no message
(A1) = Message

Description: GET MESSAGE POINTER primitive looks for a task message pointer. If no message is
ready, then data register D0 returns with a minus one (-1) and status is set to ’Not
Equal’.

If a message is waiting, then data register D0 returns with the source task number,
address register A1 returns with the message pointer, event (64 + message slot #) is set
to zero indicating message received, and status is returned equal.

See also: XGTM - GET TASK MESSAGE
XKTM - KILL TASK MESSAGE
XSMP - SEND MESSAGE POINTER
XSTM - SEND TASK MESSAGE

Possible Errors:

83 = Message slot empty

4-45

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.3.40 XGNP - GET NEXT PARAMETER

Mnemonic: XGNP
Value: $A05A
Module: Emulated by VMEPROM
Format: XGNP

<status return>

Registers: Out SR = LO....No parameter
[(A1)=0]

EQ....Null Parameter
[(A1)=0]

HI....Parameter
[(A1)=PARAMETER]

Description: GET NEXT PARAMETER primitive parses the VMEPROM command buffer for the next
command parameter. The XGNP primitive clears all leading spaces of a parameter. A
parameter is a character string delimited by a space, comma, period, or null. If a
parameter begins with a left parenthesis, then all parsing stops until a matching right
parenthesis or null is found. Hence, spaces, commas, and periods are passed in a
parameter when enclosed in parentheses. Parentheses may be nested to any depth.

A ’LO’ status is returned if the last parameter delimiter is a null or period. XGNP does
not parse past a period. In this case, address register A1 is returned pointing to a null
string.

An ’EQ’ status is returned if the last parameter delimiter is a comma and no parameter
follows. Address register A1 is returned pointing to a null string.

A ’HI’ status is returned if a valid parameter is found. Address register A1 then points
to the parameter.

Possible Errors: None

4-46

SECTION 4 VMEPROM SYSTEM CALLS

1.3.41 XGTM - GET TASK MESSAGE

Mnemonic: XGTM
Value: $A01E
Module: MPDOSK1
Format: XGTM

<status return>

Registers: In (A1) = Buffer address
Out D0.L = Source task #

(-1 = no message)
SR = EQ....message found

NE....no message

Description: GET TASK MESSAGE primitive searches the PDOS message buffers for a message
with a destination equal to the current task number. If a message is found, it is moved
to the buffer pointed to by address register A1. The message buffer is then released,
and the status is set EQUAL. If no message is found, status is returned NE.

The buffer must be at least 64 bytes in length. (This is a configuration parameter.) The
message buffers are serviced on a first in, first out basis (FIFO). Messages are data
independent and pass any type of binary data.

See also: XGMP - GET MESSAGE POINTER
XKTM - KILL TASK MESSAGE
XSMP - SEND MESSAGE POINTER
XSTM - SEND TASK MESSAGE

Possible Errors: None

4-47

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.3.42 XGUM - GET USER MEMORY

Mnemonic: XGUM
Value: $A03E
Module: MPDOSK1
Format: XGUM

<status error return>

Registers: In D0.W = Number of K bytes
Out (A0) = Beginning memory address

(A1) = End memory address

Description: GET USER MEMORY primitive searches the system memory bit map for a contiguous
block of memory equal to D0.W Kbytes. If found, the ’EQ’ status is set, address registers
A0 and A1 are returned the start and end memory address, and the memory block is
marked as allocated in the bit map.

See also: XFUM - FREE USER MEMORY

Possible Errors:

73 = Not enough memory

4-48

SECTION 4 VMEPROM SYSTEM CALLS

1.3.43 XISE - INITIALIZE SECTOR

Mnemonic: XISE
Value: $A0C0
Module: MPDOSF
Format: XISE

<status error return>

Registers: In D0.B = Disk number
D1.W = Logical sector number
(A2) = Buffer address

Description: INIT SECTOR primitive is a system-defined, hardware-dependent program which writes
256 bytes of data from a buffer (A2) to a logical sector number (D1) on disk (D0). This
routine is meant to be used only for disk initialization and is equivalent to the WRITE
SECTOR (XWSE) primitive for all sectors except 0. Sector 0 is not checked for the PDOS
ID code.

See also: XRSE - READ SECTOR
XRSZ - READ SECTOR ZERO
XWSE - WRITE SECTOR

Possible Errors:

Disk errors

4-49

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.3.44 XKTB - KILL TASK

Mnemonic: XKTB
Value: $A0FA
Module: MPDOSK1
Format: XKTB

<status error return>

Registers: In D0.B = Task number

Note: If D0.B equals zero, then kill current task. If D0.B is negative, then kill task without
allocating task memory to system bit map.

Description: KILL TASK primitive removes a task from the PDOS task list and optionally returns the
task’s memory to the system memory bit map. Only the current task or a task spawned
by the current task can be killed. Task 0 cannot be killed.

The kill process includes releasing the input port assigned to the task and closing all files
associated with the task.

The task number is specified in data register D0.B. If register D0.B equals zero, then the
current task is killed and its memory deallocated in the system memory bit map.

If D0.B is positive, then the selected task is killed and its memory deallocated. If D0.B
is negative, then task number ABS(D0.B) is killed, but its memory is not deallocated in the
memory bit map.

See also: XCTB - CREATE TASK BLOCK

Possible Errors:

74 = No such task
76 = Task locked

4-50

SECTION 4 VMEPROM SYSTEM CALLS

1.3.45 XKTM - KILL TASK MESSAGE

Mnemonic: XKTM
Value: $A028
Module: MPDOSK1
Format: XKTM

<status return>

Registers: In D0.B = Task #
(A1) = Buffer address

Out D0.L = Source task #
(-1 = no message)
SR = EQ....message found

NE....no message

Description: KILL TASK MESSAGE primitive allows you to read (and thus clear) any task’s messages
from the system message buffers.

See also: XGMP - GET MESSAGE POINTER
XGTM - GET TASK MESSAGE
XSMP - SEND MESSAGE POINTER
XSTM - SEND TASK MESSAGE

Possible Errors: None

4-51

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.3.46 XLDF - LOAD FILE

Mnemonic: XLDF
Value: $A0B0
Module: MPDOSF
Format: XLDF

<status error return>

Registers: In D1.B = Execution flag
(A0) = Start of load memory
(A1) = End of load memory
(A3) = File name

Out (A0) = EAD$ - Lowest loaded address
(A1) = BUM$ - Last loaded address

Note: If D1.B=0, then XLDF returns to your calling program. If D1.B<>0, then the program is
immediately executed.

Description: LOAD FILE primitive reads and loads 68000 object code into user memory. The file name
pointer is passed in address register A3. Registers A0 and A1 specify the memory
bounds for the relocatable load. The file must be typed ’OB’ or ’SY’. If data register D1.B
is zero, then XLDF returns to the calling program. Otherwise, the loaded program is
immediately executed.

The 68000 object should be position-independent section 0 code without any external
references or definitions.

A ’SY’ file is generated from an ’OB’ file by the MSYFL utility. The condensed object is
a direct memory image and must be position-independent code.

The XLDF primitive uses long word moves and may move up to three bytes more than
contained in an ’SY’ file. As such, you must allow for extra space for data moves to an
existing program.

Possible Errors:

63 = Illegal object tag
64 = Illegal section
65 = File not loadable
71 = Exceeds task size
73 = Not enough memory
Disk errors

4-52

SECTION 4 VMEPROM SYSTEM CALLS

1.3.47 XLER - LOAD ERROR REGISTER

Mnemonic: XLER
Value: $A03A
Module: MPDOSK1
Format: XLER

Registers: In D0.W = Error number

Description: LOAD ERROR REGISTER primitive stores data register D0.W in the task control block
variable LEN$(A6). This variable will replace the parameter substitution variable ’&0’
during a procedure file.

User programs should execute this call when an error occurs.

The enable echo flag (ECF$(A6)) is cleared by this call.

Possible Errors: None

4-53

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.3.48 XLFN - LOOK FOR NAME IN FILE SLOTS

Mnemonic: XLFN
Value: $A0A2
Module: MPDOSF
Format: XLFN

<status return>

Registers: In D0.B = Disk number
(A1) = Fixed file name

Out D3.W = File ID (Disk #/Index)
(A3) = Slot entry address
SR = NE...File name not found

EQ...File name found

Note: If D3.W=0, then no slots are available.

Description: LOOK FOR NAME IN FILE SLOTS primitive searches through the file slot table for the
file name as specified by registers D0.B and A1. If the name is not found, register D3.W
returns with a -1 or 0. The latter indicates the file was not found and there are no more
slots available. Otherwise, register D3.W returns the associated file ID and register A3
returns the address of the file slot.

A file slot is a 38-byte buffer where the status of an open file is maintained. There are
32 file slots available. The file ID consists of the disk # and the file slot index.

File slots assigned to read-only files are skipped and not considered for file match.

Possible Errors: None

4-54

SECTION 4 VMEPROM SYSTEM CALLS

1.3.49 XLKF - LOCK FILE

Mnemonic: XLKF
Value: $A0D8
Module: MPDOSF
Format: XLKF

<status error return>

Registers: In D1.W = File ID

Description: LOCK FILE primitive locks an opened file so that no other task can gain access until an
UNLOCK FILE (XULF) primitive is executed. Only the locking task has access to the
locked file.

A locked file is indicated by a -1 ($FF) in the left byte of the lock file parameter (LF) of
the file slot usage (FS) command. The locking task number is stored in the left byte of
the task number parameter (TN).

See also: XULF - UNLOCK FILE

Possible Errors:

52 = File not open
59 = Invalid slot #
75 = File locked
Disk errors

4-55

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.3.50 XLKT - LOCK TASK

Mnemonic: XLKT
Value: $A014
Module: MPDOSK1
Format: XLKT

<status return>

Registers: Out SR = EQ...Not locked
NE...Locked

Description: LOCK TASK primitive locks the requesting task in the run state by setting the swap lock
variable in system RAM to nonzero. The task remains locked until an UNLOCK TASK
(XULT) is executed. The status of the lock variable BEFORE the call is returned in the
status register.

XLKT waits until all locks (Level 2 and Level 3 locks) are cleared before the task is
locked.

See also: XULT - UNLOCK TASK

Possible Errors: None

4-56

SECTION 4 VMEPROM SYSTEM CALLS

1.3.51 XLSR - LOAD STATUS REGISTER

Mnemonic: XLSR
Value: $A02E
Module: MPDOSK1
Format: XLSR

Registers: In D1.W = 68000 status register

Description: LOAD STATUS REGISTER primitive allows you to directly load the 68000 status register.
Of course, only appropriate bits (i.e. the interrupt mask too high, supervisor mode, trace
mode, etc.) are to be set so that the system is not crashed.

See also: XSUP - ENTER SUPERVISOR MODE

Possible Errors: None

4-57

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.3.52 XNOP - OPEN SHARED RANDOM FILE

Mnemonic: XNOP
Value: $A0DA
Module: MPDOSF
Format: XNOP

<status error return>

Registers: In (A1) = File name
Out D0.W = File attribute

D1.W = File ID

Notes: Uses multiple directory file search. You MUST lock and position file before each multitask
access.

Description: OPEN SHARED RANDOM FILE primitive opens a file for shared random access by
assigning the file to an area of system memory called a file slot. The file ID and file
attribute are returned to the calling program in registers D1 and D0, respectively.
Thereafter, the file is referenced by the file ID and not by the file name. A new entry in
the file slot table is made only if the file is not already opened for shared access.

The file ID (returned in register D1) is a 2-byte number. The left byte is the disk number
and the right byte is the file slot index. The file attributes are returned in register D0.

The END-OF-FILE marker on a shared file is changed only when the file has been
extended. All data transfers are buffered through a channel buffer; data movement to
and from the disk is by full sectors.

An "opened count" is incremented each time the file is shared-opened and is
decremented by each close operation. The file is only closed by PDOS when the count
is zero. This count is saved in the right byte of the locked file parameter (LF) and is
listed by the file slot usage command (FS).

Possible Errors:

50 = Invalid file name
53 = File not defined
60 = File space full
61 = File already open
68 = Not PDOS disk
69 = Not enough file slots
Disk errors

4-58

SECTION 4 VMEPROM SYSTEM CALLS

1.3.53 XPAD - PACK ASCII DATE

Mnemonic: XPAD
Value: $A00A

Module: MPDOSK3
Format: XPAD

Registers: In (A1) = ’DY-MON-YR’
Out D1.W = (Year*16+month)*32+day

(YYYY YYYM MMMD DDDD)
(A1) = Updated
SR = .EQ. - Conversion ok

.NE. - Error

Description: PACK ASCII DATE primitive converts an ASCII date string to an encoded binary number
in data register D1. The result is compatible with other PDOS date primitives such as
XUAD.

See Also: XFTD - FIX TIME & DATE
XRDT - READ DATE
XRTM - READ TIME
XUAD - UNPACK ASCII DATE
XUDT - UNPACK DATE

Possible Errors: Status errors.

4-59

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.3.54 XPBC - PUT BUFFER TO CONSOLE

Mnemonic: XPBC
Value: $A084
Module: MPDOSK2
Format: XPBC

Registers: None

Description: PUT USER BUFFER TO CONSOLE primitive outputs the ASCII contents of the user
buffer to the user console and/or SPOOL file. The output string is delimited by the null
character. The user buffer is the first 256 bytes of the task control block and is pointed
to by address register A6. With the exception of control characters and characters with
the parity bit on, each character increments the column counter by one. A
[BACKSPACE] ($08) decrements the counter while a [CR] ($0D) clears the counter.
[TAB]s ($09) are expanded with blanks to MOD 8 character zone fields. If there are
coinciding bits in the unit (UNT$(A6)) and spool unit (SPU$(A6)) variables of the TCB,
then the processed characters are written to the spool unit file slot (SPI$(A6)) and are
not sent to the corresponding output ports. If a disk error occurs in the spool file, then
all subsequent output characters echo as a bell until the error is corrected by selecting
a different UNIT or resetting the SPOOL UNIT.

See also: XGLB - GET LINE IN BUFFER

Possible Errors: None

4-60

SECTION 4 VMEPROM SYSTEM CALLS

1.3.55 XPCC - PUT CHARACTER(S) TO CONSOLE

Mnemonic: XPCC
Value: $A086
Module: MPDOSK2
Format: XPCC

Registers: In D0.W = Character(s)

Description: PUT CHARACTER TO CONSOLE primitive outputs one or two ASCII characters in data
register D0 to the user console and/or SPOOL file. The right byte (bits 0 through 7) is
first and is followed by the left byte (bits 8 through 15) if non-zero. If the right byte or
both bytes are zero, nothing is output to the console.

With the exception of control characters and characters with the parity bit on, each
character increments the column counter by one. A [BACKSPACE] ($08) decrements
the counter while a [CR] ($0D) clears the counter. [TAB]s ($09) are expanded with
blanks to MOD 8 character zone fields.

If there are coinciding bits in the unit (UNT$(A6)) and spool unit (SPU$(A6)) variables of
the TCB, then the processed characters are written to the spool unit file slot (SPI$(A6))
and are not sent to the corresponding output ports. If a disk error occurs in the spool file,
then all subsequent output characters echo as a bell until the error is corrected by
selecting a different UNIT or resetting the SPOOL UNIT.

See also: XPCR - PUT CHARACTER RAW
XPDC - PUT DATA TO CONSOLE

Possible Errors: None

4-61

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.3.56 XPCL - PUT CRLF TO CONSOLE

Mnemonic: XPCL
Value: $A088
Module: MPDOSK2
Format: XPCL

Registers: None

Description: PUT CRLF TO CONSOLE primitive outputs the ASCII characters carriage return <$0A>
and line feed <$0D> to the user console and/or SPOOL file. The column counter is
cleared.

If there are coinciding bits in the unit (UNT$(A6)) and spool unit (SPU$(A6)) variables of
the TCB, then the processed characters are written to the spool unit file slot (SPI$(A6))
and are not sent to the corresponding output ports. If a disk error occurs in the spool file,
then all subsequent output characters echo as a bell until the error is corrected by
selecting a different UNIT or resetting the SPOOL UNIT.

Possible Errors: None

4-62

SECTION 4 VMEPROM SYSTEM CALLS

1.3.57 XPCP - PLACE CHARACTER IN PORT BUFFER

Mnemonic: XPCP
Value: $AOBC
Module: MPDOSK2
Format: XPCP

Registers: In D0.B = Character to insert
D1.W = Input port number (1 to 15)

Out SR = .EQ. = High water (character is inserted)
.NE. = Character is inserted

Description: XPCP allows a character to be placed into the input buffer of any VMEPROM port from
a task or program.

Note: Once the status returns EQ (high water)_, subsequent XPCP calls will return a status of
NE as if everything were normal, but the data is discarded. Once the status of EQ is
detected, the transmitting task should monitor the status of the port with the XRPS (read
port status) call until bit 56 is cleared.

The port specified in the XPCP call is independent of window g - it refers to the physical
port, not the logical port.

4-63

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.3.58 XPCR - PUT CHARACTER RAW

Mnemonic: XPCR
Value: $A0BA
Module: MPDOSK2
Format: XPCR

Registers: In D0.B = CHARACTER

Description: The PUT CHARACTER RAW primitive outputs the character in the lower byte of data
register D0 to the user console. No attempt is made by PDOS to interpret control
characters.

See also: XPCC - PUT CHARACTER(S) TO CONSOLE
XPDC - PUT DATA TO CONSOLE

Possible Errors: None

4-64

SECTION 4 VMEPROM SYSTEM CALLS

1.3.59 XPDC - PUT DATA TO CONSOLE

Mnemonic: XPDC
Value: $A096
Module: MPDOSK2
Format: XPDC

Registers: In D7.W = LENGTH
(A1) = DATA STRING

Description: PUT DATA TO CONSOLE primitive outputs data-independent bytes to the console.
Address register A1 points to the string while data register D7 has the string length.

If there are coinciding bits in the unit (UNT$(A6)) and spool unit (SPU$(A6)) variables of
the TCB, then the processed characters are written to the spool unit file slot (SPI$(A6))
and are not sent to the corresponding output ports. If a disk error occurs in the spool file,
then all subsequent output characters echo as a bell until the error is corrected by
selecting a different UNIT or resetting the SPOOL UNIT.

See also: XPCC - PUT CHARACTER(S) TO CONSOLE
XPCR - PUT CHARACTER RAW

Possible Errors: None

4-65

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.3.60 XPEL - PUT ENCODED LINE TO CONSOLE

Mnemonic: XPEL
Value: $A06E
Module: MPDOSK2
Format: XPEL

Registers: In (A1) = Message

Description: PUT ENCODED LINE TO CONSOLE primitive outputs to the user console the message
pointed to by address register A1. An encoded message is similar to any other string
with the exception that the parity bit is used to output blanks and the character $80
outputs a carriage return/line feed.

If the parity bit is set and the masked character ($7F) is less than or equal to a blank,
then the numeric value of the negated character is used as the number of blanks to be
inserted in the output stream. If the mask character is greater than a blank, then that
character is output followed by one blank.

With the exception of control characters, each character increments the column counter
by one. A [BACKSPACE] ($08) decrements the counter while a [CR] ($0D) clears the
counter. [TAB]s ($09) are expanded with blanks to MOD 8 character zone fields.

If there are coinciding bits in the unit (UNT$(A6)) and spool unit (SPU$(A6)) variables of
the TCB, then the processed characters are written to the spool unit file slot (SPI$(A6))
and are not sent to the corresponding output ports. If a disk error occurs in the spool file,
then all subsequent output characters echo as a bell until the error is corrected by
selecting a different UNIT or resetting the SPOOL UNIT.

See also: XPEM - PUT ENCODED MESSAGE TO CONSOLE
XPLC - PUT LINE TO CONSOLE
XPMC - PUT MESSAGE TO CONSOLE

Possible Errors: None

4-66

SECTION 4 VMEPROM SYSTEM CALLS

1.3.61 XPEM - PUT ENCODED MESSAGE TO CONSOLE

Mnemonic: XPEM
Value: $A09C
Module: MPDOSK2
Format: XPEM <message>

Registers: None

Description: PUT ENCODED MESSAGE TO CONSOLE primitive outputs to the user console the PC
relative message contained in the word following the call. An encoded message is
similar to any other string with the exception that the parity bit is used to output blanks
and the character $80 outputs a carriage return/line feed.

If the parity bit is set and the masked character ($7F) is less than or equal to a blank,
then the numeric value of the negated character is used as the number of blanks to be
inserted in the output stream. If the mask character is greater than a blank, then that
character is output followed by one blank.

With the exception of control characters, each character increments the column counter
by one. A [BACKSPACE] ($08) decrements the counter while a [CR] ($0D) clears the
counter. [TAB]s ($09) are expanded with blanks to MOD 8 character zone fields.

If there are coinciding bits in the unit (UNT$(A6)) and spool unit (SPU$(A6)) variables of
the TCB, then the processed characters are written to the spool unit file slot (SPI$(A6))
and are not sent to the corresponding output ports. If a disk error occurs in the spool file,
then all subsequent output characters echo as a bell until the error is corrected by
selecting a different UNIT or resetting the SPOOL UNIT.

See also: XPEL - PUT ENCODED LINE TO CONSOLE
XPLC - PUT LINE TO CONSOLE
XPMC - PUT MESSAGE TO CONSOLE

Possible Errors: None

4-67

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.3.62 XPLC - PUT LINE TO CONSOLE

Mnemonic: XPLC
Value: $A08A
Module: MPDOSK2
Format: XPLC

Registers: In (A1) = ASCII string

Description: PUT LINE TO CONSOLE primitive outputs the ASCII character string pointed to by
address register A1 to the user console and/or SPOOL file. The string is delimited by the
null character.

With the exception of control characters and characters with the parity bit on, each
character increments the column counter by one. A [BACKSPACE] ($08) decrements
the counter while a [CR] ($0D) clears the counter. [TAB]s ($09) are expanded with
blanks to MOD 8 character zone fields.

If there are coinciding bits in the unit (UNT$(A6)) and spool unit (SPU$(A6)) variables of
the TCB, then the processed characters are written to the spool unit file slot (SPI$(A6))
and are not sent to the corresponding output ports. If a disk error occurs in the spool file,
then all subsequent output characters echo as a bell until the error is corrected by
selecting a different UNIT or resetting the SPOOL UNIT.

See also: XPEL - PUT ENCODED LINE TO CONSOLE
XPEM - PUT ENCODED MESSAGE TO CONSOLE
XPMC - PUT MESSAGE TO CONSOLE

Possible Errors: None

4-68

SECTION 4 VMEPROM SYSTEM CALLS

1.3.63 XPMC - PUT MESSAGE TO CONSOLE

Mnemonic: XPMC
Value: $A08C
Module: MPDOSK2
Format: XPMC <message>

Registers: None

Description: PUT MESSAGE TO CONSOLE primitive outputs the ASCII character string pointed to
by the message address word immediately following the PDOS call to the user console
and/or SPOOL file. The address is a PC relative 16-bit displacement to the message.
The output string is delimited by the null character.

With the exception of control characters and characters with the parity bit on, each
character increments the column counter by one. A [BACKSPACE] ($08) decrements
the counter while a [CR] ($0D) clears the counter. [TAB]s ($09) are expanded with
blanks to MOD 8 character zone fields.

If there are coinciding bits in the unit (UNT$(A6)) and spool unit (SPU$(A6)) variables of
the TCB, then the processed characters are written to the spool unit file slot (SPI$(A6))
and are not sent to the corresponding output ports. If a disk error occurs in the spool file,
then all subsequent output characters echo as a bell until the error is corrected by
selecting a different UNIT or resetting the SPOOL UNIT.

See also: XPEL - PUT ENCODED LINE TO CONSOLE
XPEM - PUT ENCODED MESSAGE TO CONSOLE
XPLC - PUT LINE TO CONSOLE

Possible Errors: None

4-69

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.3.64 XPSC - POSITION CURSOR

Mnemonic: XPSC
Value: $A08E
Module: MPDOSK2
Format: XPSC

Registers: In D1.B = Row
D2.B = Column

Note: Uses PSC$(A6) as lead characters.

Description: POSITION CURSOR primitive positions the cursor on the console terminal according to
the row and column values in data registers D1 and D2. Register D1 specifies the row
on the terminal and generally ranges from 0 to 23, with 0 being the top row. Register D2
specifies the column of the terminal and ranges from 0 to 79, with 0 being the left-hand
column. Register D2 is also loaded into the column counter reflecting the true column
of the cursor.

The XPSC primitive outputs either one or two leading characters followed by the row and
column. The leading characters output by XPSC are located in PSC$(A6) of the task
control block. These characters are transferred from the parent task to the spawned task
during creation. The initial characters come from the BIOS module.

The row and column characters are biased by $20 if the parity bit of the first character
is set. Likewise, if the second character’s parity bit is set, then row/column order is
reversed. This accommodates most terminal requirements for positioning the cursor.

If PSC$ is zero, then PDOS makes a call into the BIOS for custom position cursor. The
entry point is B_PSC beyond the BIOS table.

The ST command of the user interface can be used to change the position cursor codes.

See also: XCLS - CLEAR SCREEN
XRCP - READ PORT CURSOR POSITION

Possible Errors: None

4-70

SECTION 4 VMEPROM SYSTEM CALLS

1.3.65 XPSF - POSITION FILE

Mnemonic: XPSF
Value: $A0DC
Module: MPDOSF
Format: XPSF

<status error return>

Registers: In D1.W = File ID
D2.L = Byte position

Note: A byte position equal to -1 positions to the end of the file.

Description: POSITION FILE primitive moves the file byte pointer to any byte position within a file.
The file ID is given in register D1 and the long word byte position is specified in register
D2.

An error occurs if the byte position is greater than the current end-of-file marker.

A contiguous file greatly enhances the speed of the position primitive since the desired
sector is directly computed. However, the position primitive does work with
non-contiguous files, as PDOS follows the sector links to the desired byte position.

A contiguous file is extended by positioning to the end-of-file marker and writing data.
However, PDOS will alter the file type to non-contiguous if a contiguous sector is not
available. This would result in random access being much slower.

See also: XRFP - READ FILE POSITION
XRWF - REWIND FILE

Possible Errors:

52 = File not open
59 = Invalid slot #
70 = Position error
Disk errors

4-71

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.3.66 XPSP - PUT SPACE TO CONSOLE

Mnemonic: XPSP
Value: $A098
Module: MPDOSK2
Format: XPSP

Registers: None

Description: PUT SPACE TO CONSOLE outputs a [SP] ($20) character to the user console. There
are no registers or status involved. If there are coinciding bits in the unit (UNT$(A6)) and
spool unit (SPU$(A6)) variables of the TCB, then the processed characters are written
to the spool unit file slot (SPI$(A6)) and are not sent to the corresponding output ports.
If a disk error occurs in the spool file, then all subsequent output characters echo as a
bell until the error is corrected by selecting a different UNIT or resetting the SPOOL UNIT.

See also: XPCC - PUT CHARACTER(S) TO CONSOLE

Possible Errors: None

4-72

SECTION 4 VMEPROM SYSTEM CALLS

1.3.67 XRBF - READ BYTES FROM FILE

Mnemonic: XRBF
Value: $A0DE
Module: MPDOSF
Format: XRBF

<status error return>

Registers: In D0.L = Number of bytes
D1.W = File ID
(A2) = R/W buffer address

Out D3.L = Number of bytes read
(On EOF only.)

Description: READ BYTES FROM FILE primitive reads the number of bytes specified in register D0
from the file specified by the file ID in register D1 into a memory buffer pointed to by
address register A2. If the channel buffer has been rolled to disk, the least-used buffer
is freed and the desired buffer is restored to memory. The file slot ID is placed on the
top of the last-access queue.

If an error occurs during the read operation, the error return is taken with the error
number in register D0 and the number of bytes actually read in register D3.

The read is independent of the data content. The buffer pointer in register A2 is on any
byte boundary. The buffer is not terminated with a null.

A byte count of zero in register D0 results in one byte being read from the file. This
facilitates single byte data acquisition.

See also: XRLF - READ LINE FROM FILE
XWBF - WRITE BYTES TO FILE
XWLF - WRITE LINE TO FILE

Possible Errors:

52 = File not open
56 = End of file
59 = Invalid slot #
Disk errors

4-73

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.3.68 XRCN - RESET CONSOLE INPUTS

Mnemonic: XRCN
Value: $A0B2
Module: MPDOSF
Format: XRCN

Registers: None

Description: RESET CONSOLE INPUTS closes the current procedure file. If there are other procedure
files pending (nested), then they become active again.

See also: XCBC - CHECK FOR BREAK CHARACTER

Possible Errors: None

4-74

SECTION 4 VMEPROM SYSTEM CALLS

1.3.69 XRCP - READ PORT CURSOR POSITION

Mnemonic: XRCP
Value: $A092
Module: MPDOSK2
Format: XRCP

Registers: In D0.W = Port #
Out D1.L = Row

D2.L = Column

Note: If D0.W=0, then the current port (PRT$(A6)) is used.

Description: READ PORT CURSOR POSITION primitive reads the current cursor position for the port
designated by data register D0.B. The PDOS system maintains a column count (0-79)
and a row count (0-23) for each port. When the cursor reaches row 23, the count is not
incremented, acting like a screen scroll.

See also: XCLS - CLEAR SCREEN
XPSC - POSITION CURSOR

Possible Errors: None

4-75

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.3.70 XRDE - READ NEXT DIRECTORY ENTRY

Mnemonic: XRDE
Value: $A0A6
Module: MPDOSF
Format: XRDE

<status error return>

Registers: In D0.B = Disk number
D1.B = Read flag (0=1st)
(A2) = Last 32 byte directory entry
TW1$ = Sector number
TW2$ = number of directory entries

Out D1.W = Sector number
(A2) = Next entry

Description: READ NEXT DIRECTORY ENTRY primitive reads sequentially through a disk directory.
If register D1.B is zero, then the routine begins with the first directory entry. If register
D1.B is nonzero, then based on the last directory entry (pointed to by register A2), the
next entry is read.

The calling routine must maintain registers D0.B and A2, the user I/O buffer, and
temporary variables TW1$ and TW2$ of the task control block between calls to XRDE.

Possible Errors:

53 = File not defined (End of directory)
68 = Not PDOS disk
Disk errors

4-76

SECTION 4 VMEPROM SYSTEM CALLS

1.3.71 XRDM - DUMP REGISTERS

Mnemonic: XRDM
Value: $A02A
Module: MPDOSK1
Format: XRDM

Registers: In All

Description: The DUMP REGISTERS primitive formats and outputs all the current register values of
the 68000 to the user console along with the program counter, status register, and the
supervisor stack.

The registers and status are not affected by this primitive.

See also: XDMP - DUMP MEMORY FROM STACK

Possible Errors: None

4-77

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.3.72 XRDN - READ DIRECTORY ENTRY BY NAME

Mnemonic: XRDN
Value: $A0A8
Module: MPDOSF
Format: XRDN

<status error return>

Registers: In D0.B = Disk number
MWB$ = File name

Out D1.W = Sector number in memory
(A2) = Directory entry
TW2$ = Entry count

Description: READ DIRECTORY ENTRY BY NAME primitive reads directory entries by file name.
Register D0.B specifies the disk number. The file name is located in the Monitor Work
Buffer (MWB$) in a fixed format. Several other parameters are returned in the monitor
TEMP storage of the user task control block. These variables assist in the housekeeping
operations on the disk directory.

See also: XFFN - FIX FILE NAME

Possible Errors:

53 = File not defined
68 = Not PDOS disk
Disk errors

4-78

SECTION 4 VMEPROM SYSTEM CALLS

1.3.73 XRDT - READ DATE

Mnemonic: XRDT
Value: $A05C
Module: MPDOSK3
Format: XRDT

Registers: Out (A1) = ’MN/DY/YR’<null>

Description: READ DATE primitive returns the current system date as a nine character string. The
format is ’MN/DY/YR’ followed by a null. Address register A1 points to the string in the
monitor work buffer.

See also: XFTD - FIX TIME & DATE
XPAD - PACK ASCII DATE
XRTM - READ TIME
XUAD - UNPACK ASCII DATE
XUDT - UNPACK DATE
XUTM - UNPACK TIME

Possible Errors: None

4-79

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.3.74 XRFA - READ FILE ATTRIBUTES

Mnemonic: XRFA
Value: $A0E0
Module: MPDOSF
Format: XRFA

<status error return>

Registers: In (A1) = File name
Out (A2) = Directory entry

D0.L = Disk number
D1.L = File size (in bytes)
D2.L = Level/attributes

Note: Uses multiple directory file search.

Description: READ FILE ATTRIBUTES primitive returns the disk number of where the file was found
in data register D0.L. Data register D1.L is returned with the size of the file in bytes.
The file directory level is returned in the upper word of register D2.L and the file attributes
are returned in register D2.W. The file name is pointed to by address register A1. File
attributes are defined as follows:

$80xx AC - Procedure file
$40xx BN - Binary file
$20xx OB - 68000 object file
$10xx SY - 68000 memory image
$08xx BX - BASIC binary token file
$04xx EX - BASIC ASCII file
$02xx TX - Text file
$01xx DR - System I/O driver
$xx04 C - Contiguous file
$xx02 * - Delete protect
$xx01 ** - Delete and write protect

See also: XCFA - CLOSE FILE W/ATTRIBUTE
XWFA - WRITE FILE ATTRIBUTES
XWFP - WRITE FILE PARAMETERS

Possible Errors:

50 = Invalid file name
53 = File not defined
60 = File space full
Disk errors

4-80

SECTION 4 VMEPROM SYSTEM CALLS

1.3.75 XRFP - READ FILE POSITION

Mnemonic: XRFP
Value: $A0FE
Module: MPDOSF
Format: XRFP

<status error return>

Registers: In D1.W = File ID
Out (A3) = File slot address

D2.L = Byte position
D3.L = EOF byte position

Description: READ FILE POSITION primitive returns the current file position, end-of-file position, and
file slot address. The open file is selected by the file ID in data register D1.W.

Address register A3 is returned pointing to the open file slot. Data registers D2.L and
D3.L are returned with the current file byte position and the end-of-file position
respectively.

See also: XPSF - POSITION FILE
XRWF - REWIND FILE

Possible Errors:

52 = File not open
59 = Invalid slot #
Disk errors

4-81

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.3.76 XRLF - READ LINE FROM FILE

Mnemonic: XRLF
Value: $A0E2
Module: MPDOSF
Format: XRLF

<status error return>

Registers: In D1.W = File ID
(A2) = R/W buffer address

Out D3.L = # of bytes read
(On EOF only.)

Description: READ LINE primitive reads one line, delimited by a carriage return [CR], from the file
specified by the file ID in register D1. If a [CR] is not encountered after 132 characters,
then the line and primitive are terminated. Address register A2 points to the buffer in
user memory where the line is to be stored. If the channel buffer has been rolled to disk,
the least-used buffer is freed and the buffer is restored to memory. The file slot ID is
placed on the top of the last-access queue. If an error occurs during the read operation,
the error return is taken with the error number in register D0 and the number of bytes
actually read in register D3.

The line read is dependent upon the data content. All line feeds ([LF]) are dropped from
the data stream and the [CR] is replaced with a null. The buffer pointer in register A2
may be on any byte boundary. The buffer is not terminated with a null on an error
return.

See also: XRBF - READ BYTES FROM FILE
XWBF - WRITE BYTES TO FILE
XWLF - WRITE LINE TO FILE

Possible Errors:

52 = File not open
56 = End of file
59 = Invalid slot #
Disk errors

4-82

SECTION 4 VMEPROM SYSTEM CALLS

1.3.77 XRNF - RENAME FILE

Mnemonic: XRNF
Value: $A0E4
Module: MPDOSF
Format: XRNF

<status error return>

Registers: In (A1) = Old file name
(A2) = New file name

Description: RENAME FILE primitive renames a file in a PDOS disk directory. The old file name is
pointed to by address register A1. The new file name is pointed to by address register
A2.

The XRNF primitive is used to change the directory level for any file by letting the new file
name be a numeric string equivalent to the new directory level. XRNF first attempts a
conversion on the second parameter before renaming the file. If the string converts to a
number without error, then only the level of the file is changed.

See also: XDFL - DEFINE FILE
XDLF - DELETE FILE

Possible Errors:

50 = Invalid file name
51 = File already defined
Disk errors

4-83

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.3.78 XROO - OPEN RANDOM READ ONLY FILE

Mnemonic: XROO
Value: $A0E6
Module: MPDOSF
Format: XROO

<status error return>

Registers: In (A1) = File name
Out D0.W = File attribute

D1.W = File ID

Note: Uses multiple directory file search.

Description: OPEN RANDOM READ ONLY FILE primitive opens a file for random access by assigning
the file to an area of system memory called a file slot, and returning a file ID and file
attribute to the calling program. Thereafter, the file is referenced by the file ID and not
by the file name. This type of file open provides read only access.

The file ID (returned in register R1) is a 2-byte number. The left byte is the disk number
and the right byte is the channel buffer index. The file attribute is returned in register D0.

Since the file cannot be altered, it cannot be extended nor is the LAST UPDATE
parameter changed when it is closed. All data transfers are buffered through a channel
buffer and data movement to and from the disk is by full sectors.

A new file slot is allocated for each XROO call even if the file is already open. The file
slot is allocated beginning with slot 1 to 32.

Possible Errors:

50 = Invalid file name
53 = File not defined
61 = File already open
68 = Not PDOS disk
69 = Not enough file slots
Disk errors

4-84

SECTION 4 VMEPROM SYSTEM CALLS

1.3.79 XROP - OPEN RANDOM

Mnemonic: XROP
Value: $A0E8
Module: MPDOSF
Format: XROP

<status error return>

Registers: In (A1) = File name
Out D0.W = File attribute

D1.W = File ID

Note: Uses multiple directory file search.

Description: The OPEN RANDOM FILE primitive opens a file for random access by assigning the file
to an area of system memory called a file slot, and returning a file ID and file attribute to
the calling program. Thereafter, the file is referenced by the file ID and not by the file
name.

The file ID (returned in register D1) is a 2-byte number. The left byte is the disk number
and the right byte is the channel buffer index. The file attribute is returned in register D0.

The END-OF-FILE marker on a random file is changed only when the file has been
extended. All data transfers are buffered through a channel buffer and data movement
to and from the disk is by full sectors.

The file slot is allocated beginning with slot 32 to slot 1. If the file is already open, then
the file slot is shared.

Possible Errors:

50 = Invalid file name
53 = File not defined
61 = File already open
68 = Not PDOS disk
69 = Not enough file slots
Disk errors

4-85

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.3.80 XRPS - READ PORT STATUS

Mnemonic: XRPS
Value: $A094
Module: MPDOSK2
Format: XRPS

<status error return>

Registers: In D0.W = Port number
Out D1.L = ACI$.W / portflag.B / Status.B

Note: If D0.W=0, then the current port (PRT$(A6)) is used.

Description: The READ PORT STATUS primitive reads the current status of the port specified by data
register D0.W. The high order word of data register D1.L is returned zero if no procedure
file is open. Otherwise, it is returned with ACI$.

The low order word is returned with the port flag bits and the status as returned for the
port UART routine. The flag bits indicate if eight bit I/O is occurring, if DTR or ^S ^Q
protocol is in effect, and other flags.

See also: XBCP - BAUD CONSOLE PORT
XSPF - SET PORT FLAG

Possible Errors:

66 = Invalid port or baud rate

4-86

SECTION 4 VMEPROM SYSTEM CALLS

1.3.81 XRSE - READ SECTOR

Mnemonic: XRSE
Value: $A0C2
Module: MPDOSF
Format: XRSE

<status error return>

Registers: In D0.B = Disk number
D1.W = Sector number
(A2) = Buffer pointer

Description: READ SECTOR primitive calls a system-defined, hardware-dependent program which
reads 256 bytes of data into a memory buffer pointed to by address register A2. The disk
is selected by data register D0. Register D1 specifies the logical sector number to be
read.

See also: XISE - INITIALIZE SECTOR
XRSZ - READ SECTOR ZERO
XWSE - WRITE SECTOR

Possible Errors:

Disk errors

4-87

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.3.82 XRSR - READ STATUS REGISTER

Mnemonic: XRSR
Value: $A042
Module: MPDOSK1
Format: XRSR

Registers: Out D0.W = 68000 status register

Description: READ STATUS REGISTER primitive allows you to read the 68000 status register. Of
course, this is equivalent to the ’MOVE.W SR,Dx’ instruction on the 68000. However, this
instruction is privileged on the 68010 and 68020. Hence, it is advisable to use the XRSR
primitive to read the status register to make software upward compatible.

Possible Errors: None

4-88

SECTION 4 VMEPROM SYSTEM CALLS

1.3.83 XRST - RESET DISK

Mnemonic: XRST
Value: $A0B4
Module: MPDOSF
Format: XRST

Registers: In D1.W = -1.... Reset by task
>=0... Reset by disk

Description: RESET DISK primitive closes all open files either by task or disk number. The primitive
also clears the assigned input file ID. If register D1 equals -1, then all files associated
with the current task are closed. Otherwise, register D1 specifies a disk and all files
opened on that disk are closed.

XRST has no error return and as such, closes all files even though errors occur in the
close process. This is necessary to allow for recovery from previous errors.

See also: XCFA - CLOSE FILE W/ATTRIBUTE
XCLF - CLOSE FILE

Possible Errors: None

4-89

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.3.84 XRSZ - READ SECTOR ZERO

Mnemonic: XRSZ
Value: $A0C4
Module: MPDOSF
Format: XRSZ

<status error return>

Registers: In D0.B = Disk number
Out D1.L = 0

(A2) = User buffer pointer (A6)

Description: READ SECTOR ZERO primitive is a system-defined, hardware-dependent program which
reads 256 bytes of data into the user memory buffer (usually pointed to by address
register A6). The disk is selected by data register D0.W. Register D1.L is cleared and
logical sector zero is read.

See also: XISE - INITIALIZE SECTOR
XRSE - READ SECTOR
XWSE - WRITE SECTOR

Possible Errors:

Disk errors

4-90

SECTION 4 VMEPROM SYSTEM CALLS

1.3.85 XRTE - RETURN FROM INTERRUPT

Mnemonic: XRTE
Value: $A044
Module: MPDOSK1
Format: XRTE

Registers: In SSP = Status register.W
Program counter.L

Description: RETURN FROM INTERRUPT primitive is used to return from an interrupt process routine
with a context switch. This allows an immediate rescheduling of the highest priority
ready task which may be suspended pending the occurrence of an event set by the
interrupt routine.

If the interrupted system is locked when the XRTE primitive is executed, then the
reschedule flag (RFLG.(A5)) is cleared and a return from exception instruction (RTE) is
executed. When the system clears the task lock, RFLG. is tested and set (TAS) and a
rescheduling occurs at that time.

Possible Errors: None

4-91

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.3.86 XRTM - READ TIME

Mnemonic: XRTM
Value: $A05E
Module: MPDOSK3
Format: XRTM

Registers: Out (A1) = ’HR:MN:SC’<null>
10(A1).W = Tics/second (B.TPS)
12(A1).L = Tics (TICS.)

Description: READ TIME primitive returns the current time as a nine-character string. The format is
’HR:MN:SC’ followed by a null. Address register A1 points to the string in the monitor
work buffer.

See also: XFTD - FIX TIME & DATE
XPAD - PACK ASCII DATE
XRDT - READ DATE
XUAD - UNPACK ASCII DATE
XUDT - UNPACK DATE
XUTM - UNPACK TIME

Possible Errors: None

4-92

SECTION 4 VMEPROM SYSTEM CALLS

1.3.87 XRTP - READ TIME PARAMETERS

Mnemonic: XRTP
Value: $A034
Module: MPDOSK1
Format: XRTP

Registers: Out D0.L = TICS.
D1.L = MONTH/DAY/YEAR/0
D2.L = HOURS/MINUTES/SECONDS/0
D3.L = B.TPS

Description: READ TIME PARAMETERS primitive returns the current time parameters. Data register
D0 returns with the current tic count (TICS.(A5)). Register D1.L returns with the current
date and register D2.L the current time. Both are three bytes that are left-justified.
Finally, data register D3.L returns with the number of clock tics per second.

See also: XFTD - FIX TIME & DATE
XPAD - PACK ASCII DATE
XRDT - READ DATE
XRTM - READ TIME
XUAD - UNPACK ASCII DATE
XUDT - UNPACK DATE
XUTM - UNPACK TIME

Possible Errors: None

4-93

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.3.88 XRTS - READ TASK STATUS

Mnemonic: XRTS
Value: $A012
Module: MPDOSK1
Format: XRTS

<status return>

Registers: In D0.W = Task number
Out D1.L = 0 - Not executing

= +N - Time slice
= -N - (Event #1/Event #2)

A0.L = TLST entry (IF -D0: A0=TLST.)
SR = Status of D1.L

Note: If D0.W=-1, then the current task number is returned in D1.L.

Description: READ TASK STATUS primitive returns in register D1 and the status register returns the
time parameter of the task specified by register D0. The time reflects the execution
mode of the task. If D1 returns zero, then the task is not in the task list. If D1 returns a
value greater than zero, then the task is in the run state (executing). If D1 returns a
negative value, then the task is suspended pending event -(D1).

The task number is returned from the CREATE TASK BLOCK (XCTB) primitive. It can
also be obtained by setting data register D0 equal to a minus one. In this case, register
D1.L is returned with the current task number.

See also: XSTP - SET/READ TASK PRIORITY

Possible Errors: None

4-94

SECTION 4 VMEPROM SYSTEM CALLS

1.3.89 XRWF - REWIND FILE

Mnemonic: XRWF
Value: $A0EA
Module: MPDOSF
Format: XRWF

<status error return>

Registers: In D1.W = File ID

Description: REWIND FILE primitive positions the file specified by the file ID in register D1, to byte
position zero.

See also: XPSF - POSITION FILE
XRFP - READ FILE POSITION

Possible Errors:

52 = File not open
59 = Invalid slot #
70 = Position error
Disk errors

4-95

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.3.90 XSEF - SET EVENT FLAG W/SWAP

Mnemonic: XSEF
Value: $A018
Module: MPDOSK1
Format: XSEF

<status return>

Registers: In D1.B = Event (+=Set, -=Reset)
Out SR = NE....Set

EQ....Reset

Note: An XSWP is automatically executed after the event is set or reset. Event 128 is local to
each task.

If D1.B is positive, then the event is set.
If D1.B is negative, then the event is reset.

Description: SET EVENT FLAG WITH SWAP primitive sets or resets an event flag bit. The event
number is specified in data register D1.B and is module 128. If the content of register
D1.B is positive, then the event bit is set to 1. Otherwise, the bit is reset to 0. Event 128
can only be set. (It is cleared by the task scheduler.)

The status of the event bit prior to changing the event is returned in the status register.
If the event was 0, then the ’EQ’ status is returned. Also, an immediate context switch
occurs thus scheduling any higher priority task pending on that event.

Events are summarized as follows:

1-63 = Software events
64-80 = Software resetting events
81-95 = Output port events

96-111 = Input port events
112 = 1/5 second event
113 = 1 second event
114 = 10 second event
115 = 20 second event
116 = TTA active
117 = LPT active

See also: XDEV - DELAY SET/RESET EVENT
XSEV - SET EVENT FLAG
XSUI - SUSPEND UNTIL INTERRUPT
XTEF - TEST EVENT FLAG

Possible Errors: None

4-96

SECTION 4 VMEPROM SYSTEM CALLS

1.3.91 XSEV - SET EVENT FLAG

Mnemonic: XSEV
Value: $A046
Module: MPDOSK1
Format: XSEV

<status return>

Registers: In D1.B = Event (+=Set, -=Reset)
Out SR = NE....Set

EQ....Reset

Note: Event 128 is local to each task.

If D1.B is positive, then the event is set.
If D1.B is negative, then the event is reset.

Description: SET EVENT FLAG primitive sets or resets an event flag bit. The event number is
specified in data register D1.B and is module 128. If the content of register D1.B is
positive, then the event bit is set to 1. Otherwise, the bit is reset to 0. Event 128 can
only be set. (It is cleared by the task scheduler.)

The status of the event bit prior to changing the event is returned in the status register.
If the event was 0, then the ’EQ’ status is returned. A context switch DOES NOT occur
with this call making it useful for interrupt routines outside the PDOS system.

Events are summarized as follows:

1-63 = Software events
64-80 = Software resetting events
81-95 = Output port events

96-111 = Input port events
112 = 1/5 second event
113 = 1 second event
114 = 10 second event
115 = 20 second event
116 = TTA active
117 = LPT active

See also: XDEV - DELAY SET/RESET EVENT
XSEV - SET EVENT FLAG
XSUI - SUSPEND UNTIL INTERRUPT
XTEF - TEST EVENT FLAG

Possible Errors: None

4-97

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.3.92 XSMP - SEND MESSAGE POINTER

Mnemonic: XSMP
Value: $A002
Module: MPDOSK1
Format: XSMP

<status return>

Registers: In D0.B = Message slot number (0..15)
(A1) = Message

Out SR = EQ....Message sent (Event[64+slot #]=1)
NE....No message sent

Description: SEND MESSAGE POINTER primitive sends a 32-bit message to the message slot
specified by data register D0.B. Address register A1 contains the message. If there is
still a message pending, then the primitive immediately returns with status set ’Not Equal’
and D0.L equal to 83. Otherwise, the message is taken by PDOS event (64 + message
slot number) is set to one indicating a message is ready, and status is returned ’Equal’.

The primitive XSMP is only valid for message slots 0 through 15. (This is because of
current event limitations.)

See also: XGMP - GET MESSAGE POINTER
XGTM - GET TASK MESSAGE
XKTM - KILL TASK MESSAGE
XSTM - SEND TASK MESSAGE

Possible Errors:

83 = Message buffer pending

4-98

SECTION 4 VMEPROM SYSTEM CALLS

1.3.93 XSOE - SUSPEND ON PHYSICAL EVENT

Mnemonic: XSOE
Value: $A112
Module: MPDOSK1
Format: XSOE

Registers: In D1.L = Event 1 Descriptor.w, Event 0 Descriptor.w
A0 = Event 0 address (0=no event 0 to suspend on)
A1 = Event 1 address (0=no event 1 to suspend on)

Out D0 = -1 if awaken on event 0;1 if awaken on event 1

Note: This call is the same as XSUI but with physical events.

Description: Allows a task to suspend on one or two events within the system. Tasks that suspend
on physical events are listed as suspended on events -1/1. If event 0 is the scheduling
event, a -1 is returned; otherwise, a 1 is returned.

The event descriptor is a 16 bit word that defines both the bit number at the specified
A0,A1 address and the action to take o n the bit. The following bits are defined:

Bit number: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
T x x x x x x x S x x x x B B B

T = Should the bit be toggled on scheduling?
1 = Yes (toggle), 0 = No (do not toggle)

S = Suspend on event bit clear or set
1 = Suspend on SET, 0 = Suspend on CLEAR

BBB = The 680 x 0 bit number to use as an event
x = Reserved, should be 0

Since the bit number is specified in the lower three bits of the descriptor, you may use the descriptor
with the 680x0 BTST,BCLR,BSET instructions.

See also: XDPE - Delay On Physical Event
XTLP - Translate Logical To Physical Event

4-99

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.3.94 XSOP - OPEN SEQUENTIAL FILE

Mnemonic: XSOP
Value: $A0EC
Module: MPDOSF
Format: XSOP

<status error return>

Registers: In (A1) = File name
Out D0.W = File attribute

D1.W = File ID

Note: Uses multiple directory file search.

Description: OPEN SEQUENTIAL FILE primitive opens a file for sequential access by assigning the
file to an area of system memory called a file slot and returning a file ID and file type to
the calling program. Thereafter, the file is referenced by the file ID and not by the file
name.

The file ID (returned in register D1) is a 2-byte number. The left byte is the disk number
and the right byte is the file slot index. The file attribute is returned in D0.

The END-OF-FILE marker on a sequential file is changed whenever data is written to the
file. All data transfers are buffered through a channel buffer; data movement to and from
the disk is by full sectors.

The file slots are allocated beginning with slot 32 down to slot 1.

Possible Errors:

50 = Invalid file name
53 = File not defined
61 = File already open
68 = Not PDOS disk
69 = Not enough file slots
Disk errors

4-100

SECTION 4 VMEPROM SYSTEM CALLS

1.3.95 XSPF - SET PORT FLAG

Mnemonic: XSPF
Value: $A09A
Module: MPDOSK2
Format: XSPF

<status error return>

Registers: In D0.W = Port number
D1.B = Port flag (fwpi8dcs)

Out D1.B = Old port flag

Note: If D0.W=0, then the current port (PRT$(A6)) is used.

Description: SET PORT FLAG primitive stores the port flag passed in data register D1.B in the port
flag register as specified by register D0.W. If flag bits ’p’, ’i’, or ’8’ change, the BIOS
baud port routine is called.

See also: XBCP - BAUD CONSOLE PORT
XRPS - READ PORT STATUS

Possible Errors:

66 = Invalid port or baud rate

4-101

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.3.96 XSTM - SEND TASK MESSAGE

Mnemonic: XSTM
Value: $A020
Module: MPDOSK1
Format: XSTM

<status error return>

Registers: In D0.B = TASK NUMBER
(A1) = MESSAGE

Description: SEND TASK MESSAGE primitive places a 64-character message into a PDOS system
message buffer. The message is data-independent and is pointed to by address register
A1.

Data register D0 specifies the destination of the message. If register D0 is negative, and
there is no input port (phantom port), then the message is sent to the parent task. If
there is a port, then the message is sent to itself and will appear at the next command
line. Otherwise, register D0 specifies the destination task.

The ability to direct a message to a parent task is very useful in background tasking. An
assembler need not know from which task it was spawned and can merely direct any
diagnostics to the parent task.

If the destination task number equals -1, the task message is moved to the monitor input
buffer and parsed as a command line. This feature is used by the CREATE TASK
BLOCK primitive to spawn a new task.

See also: XGMP - GET MESSAGE POINTER
XGTM - GET TASK MESSAGE
XKTM - KILL TASK MESSAGE
XSMP - SEND MESSAGE POINTER
XSTM - SEND TASK MESSAGE

Possible Errors:

78 = Message buffer full

4-102

SECTION 4 VMEPROM SYSTEM CALLS

1.3.97 XSTP - SET/READ TASK PRIORITY

Mnemonic: XSTP
Value: $A03C
Module: MPDOSK1
Format: XSTP

<status error return>

Registers: In D0.B = Task #
D1.W = Task time/Task priority

Out D1.B = Task priority (If D1.B was 0)

Note: If D0.B=-1, then select current task. If D1.B=0, then read task priority into D1.B.

Description: SET/READ TASK PRIORITY primitive either sets or reads the task priority selected by
data register D0.B. If D1.B is nonzero, then the priority is set. Otherwise, it is read and
returned in D1.B. If the upper byte of D1.W is nonzero, then the corresponding task time
slice is also set.

See also: XRTS - READ TASK STATUS

Possible Errors:

74 = No such task

4-103

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.3.98 XSUI - SUSPEND UNTIL INTERRUPT

Mnemonic: XSUI
Value: $A01C
Module: MPDOSK1
Format: XSUI

Registers: In D1.W = EV1/EV2
Out D0.L = Event

Description: SUSPEND UNTIL INTERRUPT primitive suspends the user task until one of the events
specified in data register D1 occurs. A task can suspend until an event sets (positive
event) or until it resets (negative event). A task can suspend pending two different
events. This is useful when combined with timeout counters to prevent system lockups.
Data register D0.L is returned with the event which caused the task to be scheduled.

A suspended task does not receive any CPU cycles until one of the event conditions is
met. When the event bit is set (or reset), the task begins executing at the next
instruction after the XSUI call. The task is scheduled during the normal swapping
functions of PDOS according to its priority. Register D0.L is used to determined which
event scheduled the task.

A suspended task is indicated in the LIST TASK (LT) command under the ’Event’
parameter. Multiple events are separated by a slash.

Events 64 through 128 toggle when they cause a task to move from the suspended state
to the ready state. All others must be reset by the event routine.

If a locked task attempts to suspend itself, the call polls the events until a successful
return condition is met.

See also: XDEV - DELAY SET/RESET EVENT
XSEF - SET EVENT FLAG W/SWAP
XSEV - SET EVENT FLAG
XTEF - TEST EVENT FLAG

Possible Errors: None

4-104

SECTION 4 VMEPROM SYSTEM CALLS

1.3.99 XSUP - ENTER SUPERVISOR MODE

Mnemonic: XSUP
Value: $A02C
Module: MPDOSK1
Format: XSUP

Registers: None

Description: ENTER SUPERVISOR MODE primitive moves your current task from user mode to
supervisor mode. Care should be taken not to crash the system since you would then be
executing off the supervisor stack! This primitive enables programs to access I/O
addresses and use privileged instructions.

Exit to user mode by executing a ’ANDI.W #$DFFF,SR’ instruction or the XUSP primitive.

See also: XLSR - LOAD STATUS REGISTER
XUSP - RETURN TO USER MODE

Possible Errors: None

4-105

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.3.100 XSWP - SWAP TO NEXT TASK

Mnemonic: XSWP
Value: $A000
Module: MPDOSK1
Format: XSWP

Registers: None

Description: SWAP TO NEXT TASK primitive relinquishes control to the PDOS task scheduler. The
next ready task with the highest priority begins executing. (This may be to the same
task if there is only one task or the task is the highest priority ready task.)

Possible Errors: None

4-106

SECTION 4 VMEPROM SYSTEM CALLS

1.3.101 XSZF - GET DISK SIZE

Mnemonic: XSZF
Value: $A0B6
Module: MPDOSF
Format: XSZF

<status error return>

Registers: In D0.B = Disk number
Out D5.L = Directory size/# of files

D6.L = Allotted/Used
D7.L = Largest/Free

Description: GET DISK SIZE primitive returns disk size parameters in data registers D5 through D7.
Data register D5 returns the number of currently defined files in the low word along with
the maximum number of files available in the directory in the high word. The low order
16 bits of data register D6 (0-15) returns the total number of sectors used by all files.
The high order 16 bits of D6 (16-31) returns the number of sectors allocated for file
storage.

The low order 16 bits of data register D7 (0-15) is calculated from the disk sector bit map
and reflects the number of sectors available for file allocation. The high order 16 bits
of D7 (16-31) is returned with the size of the largest block of contiguous sectors. This
is useful in defining large files.

Possible Errors:

68 = Not PDOS disk
Disk errors

4-107

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.3.102 XTAB - TAB TO COLUMN

Mnemonic: XTAB
Value: $A090
Module: MPDOSK2
Format: XTAB <column>

Registers: None

Description: TAB TO COLUMN primitive positions the cursor to the column specified by the number
following the call. Spaces are output until the column counter is greater than or equal
to the parameter.

The first print column is zero. At least one space character will always be output.

Possible Errors: None

4-108

SECTION 4 VMEPROM SYSTEM CALLS

1.3.103 XTEF - TEST EVENT FLAG

Mnemonic: XTEF
Value: $A01A
Module: MPDOSK1
Format: XTEF

<status return>

Registers: In D1.B = Event number (+=0-127, -=128)
Out SR = NE....Event set (1)

EQ....Event clear (0)

Description: TEST EVENT FLAG primitive sets the 68000 status word EQUAL or NOT-EQUAL
depending upon the zero or nonzero state of the specified event flag. The flag is not
altered by this primitive.

The event number is specified in data register D1 and is module 128. Event 128 is local
to each task.

See also: XDEV - DELAY SET/RESET EVENT
XSEF - SET EVENT FLAG W/SWAP
XSEV - SET EVENT FLAG
XSUI - SUSPEND UNTIL INTERRUPT

Possible Errors: None

4-109

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.3.104 XTLP - TRANSLATE LOGICAL TO PHYSICAL EVENT

Mnemonic: XTLP
Value: $A110
Module: MPDOSK1
Format: XTLP

Registers: In D1.W = Event 1.B,,Event 0.B
Out A0 = Event 0 address (0=no event 0 to suspend on)

A1 = Event 1 address (0=no event 1 to suspend on)
D1 = Event 1 Descriptor.w,Event 0 Descriptor.w

Description: XTLP takes a VMEPROM logical event number and translates the event into a physical
event. This call is used when a program needs to suspend on both a logical and a
physical event. The logical event is first translated; then the XSOE call is used to
suspend it.

A VMEPROM logical event is one of the 128 events maintained by the VMEPROM system in SYRAM.

Events are summarized as follows:

1 - 63 = Software events
64 - 80 = Software self clearing events
81 - 95 = Output port events
96 -111 = Input port events

112 -115 = Timer events
116 -127 = System control events

128 = Local

The event descriptor is a 16-bit word that defines both the bit number at the specified A0,A1 address
and the action to take on the bit. The following bits are defined:

Bit number: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
T x x x x x x x S x x x x B B B

T = Should the bit be toggled on scheduling?
1 = Yes (toggle), 0 = No (do not toggle)

S = Suspend on event bit clear or set
1 = Suspend on SET, 0 = Suspend on CLEAR

BBB = The 680 x 0 bit number to use as an event
x = Reserved, should be 0

4-110

SECTION 4 VMEPROM SYSTEM CALLS

Since the bit number is specified in the lower three bits of the descriptor, you may use the descriptor
with the 680 x 0 BTST, BCLR, BSET instructions. You may also use the following physical manipulation
calls which are macros for single assembly instructions. They are optimal as long as the values have
already been placed in the correct registers. Physical events may need synchronization via the XTAS
macro to avoid corruption. The macros are defined in the file PESMACS:SR.

XTST - Test Physical Event (replaces BTST D1, A0))
XSET - Test and Set Physical Event (replaces BSET D1,(A0))
XCLR - Test and Clear Physical Event (replaces BCLR D1,(A0))

Input: D1.W - Event descriptor
A0 - Event address

Output: None
Status: EQ - the bit was clear (0)

NE - the bit was set (1)

The bottom three bits are evaluated as a bit number. The bit at the address is set and the previous
value is returned in the Z bit of the status register.

XTAS - Test and Set Physical Event (Bit 7 atomic)

This macro replaces TAS (A0). The seventh bit at the address is set and the previous value is
returned in the N bit of the status register.

Input: A0 - Event address
Output: None
Status: EQ - the bit was clear (0)

NE - the bit was set (1)

See also: XDPE - Delay On Physical Event
XSOE - Suspend On Physical Event

4-111

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.3.105 XUAD - UNPACK ASCII DATE

Mnemonic: XUAD
Value: $A036
Module: MPDOSK3
Format: XUAD

Registers: In D1.W = (Year*16+Month)*32+Day
(YYYY YYYM MMMD DDDD)

Out (A1) = ’DY-MON-YR’<null>
(Outputs ??? for invalid months)

Description: UNPACK ASCII DATE primitive returns a pointer in address register A1 to an ASCII date
string. Data register D1.W contains the binary date [(Year*16+Month)*32+Day]. The
format of the string is more exact than simple numbers separated by slashed.

Note: XUAD does not check for a valid date and hence, funny looking strings could result.
Invalid months are replaced by ’???.’

See also: XFTD - FIX TIME & DATE
XPAD - PACK ASCII DATE
XRDT - READ DATE
XRTM - READ TIME
XUDT - UNPACK DATE
XUTM - UNPACK TIME

Possible Errors: None

4-112

SECTION 4 VMEPROM SYSTEM CALLS

1.3.106 XUDT - UNPACK DATE

Mnemonic: XUDT
Value: $A060
Module: MPDOSK3
Format: XUDT

Registers: In D1.W = (Year * 16 + Month) * 32 + Day
Out (A1) = ’MN/DY/YR’<null>

Description: UNPACK DATE primitive converts a one-word encoded date into an eight- character string
terminated by a null (nine characters total). Data register D1 contains the encoded date
and returns with a pointer to the formatted string in address register A1. The output of
the FIX TIME & DATE (XFTD) primitive is valid input to this primitive.

See also: XFTD - FIX TIME & DATE
XPAD - PACK ASCII DATE
XRDT - READ DATE
XRTM - READ TIME
XUAD - UNPACK ASCII DATE
XUTM - UNPACK TIME

Possible Errors: None

4-113

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.3.107 XULF - UNLOCK FILE

Mnemonic: XULF
Value: $A0EE
Module: MPDOSF
Format: XULF

<status error return>

Registers: In D1.W = File ID

Description: UNLOCK FILE primitive unlocks a locked file for access by any other task. The file is
specified by the file ID in data register D1.

See also: XLKF - LOCK FILE

Possible Errors:

52 = File not open
59 = Invalid slot #
Disk errors

4-114

SECTION 4 VMEPROM SYSTEM CALLS

1.3.108 XULT - UNLOCK TASK

Mnemonic: XULT
Value: $A016
Module: MPDOSK1
Format: XULT

Registers: None

Description: UNLOCK TASK primitive unlocks the current task by clearing the swap lock variable in
system RAM. This allows other tasks to be scheduled and receive CPU time.

See also: XLKT - LOCK TASK

Possible Errors: None

4-115

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.3.109 XUSP - RETURN TO USER MODE

Mnemonic: XUSP
Value: $A008
Module: MPDOSK1
Format: XUSP

Registers: None

Description: RETURN TO USER MODE primitive moves your current task from supervisor mode to
user mode. Executing an ’ANDI.W #$DFFF,SR’’ instruction also returns you to user
mode, but must be executed in supervisor mode. The XUSP primitive can be executed
in either mode.

See also: XLSR - LOAD STATUS REGISTER
XSUP - ENTER SUPERVISOR MODE

Possible errors: None

4-116

SECTION 4 VMEPROM SYSTEM CALLS

1.3.110 XUTM - UNPACK TIME

Mnemonic: XUTM
Value: $A062
Module: MPDOSK3
Format: XUTM

Registers: In D1.W = HOUR*256+MINUTE
(HHHH HHHH MMMM MMMM)

Out (A1) = HR:MN<null>

Description: UNPACK TIME primitive converts a one word encoded date into a five character string
terminated by a null (six characters total). Data register D1 contains the encoded time
and returns a pointer to the formatted string in address register A1. The output of the
FIX TIME & DATE (XFTD) primitive is valid input to this primitive.

See also: XFTD - FIX TIME & DATE
XPAD - PACK ASCII DATE
XRDT - READ DATE
XRTM - READ TIME
XUAD - UNPACK ASCII DATE
XUDT - UNPACK DATE

Possible Errors: None

4-117

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.3.111 XVEC - SET/READ EXCEPTION VECTOR

Mnemonic: XVEC
Value: $A116
Module: MPDOSK1
Format: XVEC

Registers: In D0.W = Exception number (#2-255)
(A0) = New exception service routine (0=read only)

Out (A0) = Old service routine

Description: Sets and/or reads the execution vector for the system. The old service routine address
is returned so that you may change a routine and then restore the former routine under
program control.

See also: XDTV - Define Trap Vectors

Possible Errors: None

4-118

SECTION 4 VMEPROM SYSTEM CALLS

1.3.112 XWBF - WRITE BYTES TO FILE

Mnemonic: XWBF
Value: $A0F0
Module: MPDOSF
Format: XWBF

<status error return>

Registers: In D0.L = Byte count - must be positive
D1.W = File ID
(A2) = Buffer address

Description: WRITE BYTES TO FILE primitive writes from a memory buffer, pointed to by address
register A2, to a disk file specified by the file ID in register D1. Register D0 specifies
the number of bytes to be written. If the channel buffer has been rolled to disk, the
least-used buffer is freed and the buffer is restored to memory. The file slot ID is placed
on the top of the last-access queue.

The write is independent of the data content. The buffer pointer in register A2 may be
on any byte boundary. The write operation is not terminated with a null character.

A byte count of zero in register D0 results in no data being written to the file.

If it is necessary for the file to be extended, PDOS first uses sectors already linked to the
file. If a null or end link is found, a new sector obtained from the disk sector bit map is
linked to the end of the file. If this makes the file non-contiguous, it is retyped as a
non-contiguous file.

See also: XRBF - READ BYTES FROM FILE
XRLF - READ LINE FROM FILE
XWLF - WRITE LINE TO FILE

Possible Errors:

52 = File not open
58 = File delete or write protected
59 = Invalid slot #
60 = File space full
Disk errors

4-119

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.3.113 XWDT - WRITE DATE

Mnemonic: XWDT
Value: $A064
Module: MPDOSK3
Format: XWDT

Registers: In D0.B = Month (1-12)
D1.B = Day (1-31)
D2.B = Year (0-99)

Description: WRITE DATE primitive sets the system date counters. Register D0 specifies the month
and ranges from 1 to 12. Register D1 specifies the day of month and ranges from 1 to
31. Register D2 is the last 2 digits of the year.

No check is made for a valid date.

Possible Errors: None

4-120

SECTION 4 VMEPROM SYSTEM CALLS

1.3.114 XWFA - WRITE FILE ATTRIBUTES

Mnemonic: XWFA
Value: $A0F2
Module: MPDOSF
Format: XWFA

<status error return>

Registers: In (A1) = File name
(A2) = ASCII file attributes

Note: (A2)=0 clears all attributes.

Description: WRITE FILE ATTRIBUTES primitive sets the attributes of the file specified by the file
name pointed to by register A1. Register A2 points to an ASCII string containing the new
file attributes followed by a null character. The format is:

(A2) = {file type}{protection}

{file type} = AC - Procedure file
BN - Binary file
OB - 68000 object file
SY - 68000 memory image
BX - BASIC binary token file
EX - BASIC ASCII file
TX - Text file
DR - System I/O driver

{protection} = * - Delete protect
** - Delete and Write protect

If register A2 points to a zero byte, then all flags, with the exception of the contiguous
flag, are cleared.

See also: XCFA - CLOSE FILE W/ATTRIBUTE
XRFA - READ FILE ATTRIBUTES
XWFP - WRITE FILE PARAMETERS

Possible Errors:

50 = Invalid file name
53 = File not defined
54 = Invalid file type
Disk errors

4-121

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.3.115 XWFP - WRITE FILE PARAMETERS

Mnemonic: XWFP
Value: $A0FC
Module: MPDOSF
Format: XWFP

<status error return>

Registers: In (A1) = File name
D0.L = Sector index of EOF/Bytes in last sector
D1.L = Time/Date created
D2.L = Time/Date last accessed
D3.W = OR’d status (less contiguous bit)

Description: WRITE FILE PARAMETERS primitive updates the end-of-file and date parameters of the
file specified by the name pointed to by address register A1 in the disk directory.

See also: XCFA - CLOSE FILE W/ATTRIBUTE
XRFA - READ FILE ATTRIBUTES
XWFA - WRITE FILE ATTRIBUTES

Possible Errors:

50 = Invalid file name
53 = File not defined
Disk errors

4-122

SECTION 4 VMEPROM SYSTEM CALLS

1.3.116 XWLF - WRITE LINE TO FILE

Mnemonic: XWLF
Value: $A0F4
Module: MPDOSF
Format: XWLF

<status error return>

Registers: In D1.W = File ID
(A2) = Buffer address

Description: WRITE LINE TO FILE primitive writes a line delimited by a null character to the disk file
specified by the file ID in register D1. Address register A2 points to the string to be
written. If the channel buffer has been rolled to disk, the least-used buffer is freed and
the buffer is restored to memory. The file slot ID is placed on the top of the last-access
queue.

The write line primitive is independent of the data content, with the exception that a null
character terminates the string. The buffer pointer in register A2 may be on any byte
boundary. A single write operation continues until a null character is found.

If it is necessary for the file to be extended, PDOS first uses sectors already linked to the
file. If a null link is found, a new sector obtained from the disk sector bit map is linked
to the end of the file. If this makes the file non-contiguous, it is retyped as a
non-contiguous file.

See also: XRBF - READ BYTES FROM FILE
XRLF - READ LINE FROM FILE
XWBF - WRITE BYTES TO FILE

Possible Errors:

52 = File not open
58 = File delete or write protected
59 = Invalid slot #
60 = File space full
Disk errors

4-123

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.3.117 XWSE - WRITE SECTOR

Mnemonic: XWSE
Value: $A0C6
Module: MPDOSF
Format: XWSE

<status error return>

Registers: In D0.B = Disk number
D1.W = Sector number
(A2) = Buffer address

Description: WRITE SECTOR primitive is a system-defined, hardware-dependent program which writes
256 bytes of data from a buffer, pointed to by address register A2, to the logical sector
and disk device specified by data registers D1 and D0 respectively.

See also: CHAPTER 8 BIOS
XISE - INITIALIZE SECTOR
XRSE - READ SECTOR
XRSZ - READ SECTOR ZERO

Possible Errors:

Disk errors

4-124

SECTION 4 VMEPROM SYSTEM CALLS

1.3.118 XWTM - WRITE TIME

Mnemonic: XWTM
Value: $A066
Module: MPDOSK3
Format: XWTM

Registers: In D0.B = Hours (0-23)
D1.B = Minutes (0-59)
D2.B = Seconds (0-60)

Description: WRITE TIME primitive sets the system clock time. Register D0 specifies the hour and
ranges from 0 to 23. Register D1 specifies the minutes and register D2, the seconds.
The latter two range from 0 to 59.

There is no check made for a valid time.

Possible Errors: None

4-125

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.3.119 XZFL - ZERO FILE

Mnemonic: XZFL
Value: $A0F6
Module: MPDOSF
Format: XZFL

<status error return>

Registers: In (A1) = File name

Description: ZERO FILE primitive clears a file of any data. If the file is defined, then the end-of-file
marker is placed at the beginning of the file. If the file is not defined, it is defined with
no data.

See also: XDFL - DEFINE FILE
XDLF - DELETE FILE

Possible errors:

50 = Invalid file name
61 = File already open
68 = Not PDOS disk
Disk errors

4-126

APPENDIX

A. VMEbus Board Setup . A-

A1. VMEbus Memory . A-1
A2. SYS68K/SIO-1/SIO-2 . A-2
A3. SYS68K/ISIO-1/2 . A-3
A4. SYS68K/ISCSI-1 Disk Controller . A-4
A5. Boards providing the Application Command Interface (ACI) A-5
A5.1 UART Driver . A-5
A5.1.1 Onboard EAGLE Module . A-5
A5.1.2 Offboard EAGLE Modules . A-6
A6.2 Disk Driver . A-7

B. S-Record Formats . B-1

B1. S-Record Types . B-1
B2. S-Record Example . B-2

C. System RAM Definitions . C-1

D. Task Control Block Definitions . D-1

E. Interrupt Vector Table of VMEPROM . E-1

F. Benchmark Source Code . F-1

G. Special Locations . G-1

G1. VMEPROM Configuration Table . G-1

H. Minimum Demands for Device Driver Tasks in Order to Run with VMEPROM H-1

H.1 Device Driver Tasks for Serial Devices . H-1
H.2 Device Driver Tasks for Block Devices . H-4
H.2.1 Floppy Devices . H-4
H.2.2 SCSI Devices . H-9

SECTION 5 APPENDIX

APPENDIX A

A. VMEbus Board Setup

This appendix summarizes the changes to be made to the default setup of additional VMEbus boards
so that they are VMEPROM compatible. Appendices A.2 through A.6 are available in EPROM, but are
not installed. All drivers may be installed with the INSTALL command. When INSTALL followed by a
question mark is entered, the following will appear:1

? INSTALL ?

THE FOLLOWING UARTS AND DISK DRIVERS ARE ALREADY IN EPROM:

DISK DRIVER FORCE ISCSI-1 ADDR: $FF007300
DISK DRIVER FORCE IBC/ME ADDR: $FF004CC0
DISK DRIVER FORCE EAGLE/ME ADDR: $FF004E30
UART DRIVER FORCE CPU-39/DUSCC ADDR: $FF004500
UART DRIVER FORCE SIO-1/2 ADDR: $FF004800
UART DRIVER FORCE ISIO-1/2 ADDR: $FF004C00
UART DRIVER FORCE IBC/ME ADDR: $FF008410
UART DRIVER FORCE EAGLE/ME ADDR: $FF008610
UART DRIVER FORCE UNIX MAIL ADDR: $FF005100
UART DRIVER FORCE IBC RAM port ADDR: $FF00EE7C

By typing in: INSTALL <file>,<address><cr> , a specific driver may be loaded in the system. The
addressed file should be located in EPROM.

A1. VMEbus Memory

In general, every FORCE memory board can be used together with VMEPROM. The base address
must be set correctly in order to use the board within the tasking memory of VMEPROM. The board
base addresses of any additional memory boards must be set to be contiguous to the on-board memory.
It is strongly recommended that only 32 bit memory boards are used because of speed purposes.

1 Please note that the printed UART and Disk Driver addresses are only examples. They may change according to software versions.

A-1

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

A2. SYS68K/SIO-1/SIO-2

These two serial I/O boards are set to the base address $B00000 by default. VMEPROM expects the
first SIO-1/SIO-2 boards at $FCB00000. This is in the standard VME address range (A24, D16, D8) with
the address $B00000. The address modifier decoder (AM-Decoder) of the SIO-1/2 boards must be set
to:

Standard Privileged Data Access
Standard Nonpriviledged Data Access

Please refer to the SIO User’s Manual for setup. If a second SIO-1/2 board will be used, the base
address must be set to FCB00200. The AM-decoder setup described above must again be used.
Please refer to the User’s Manual of your SIO board for the address setup of the second SIO board.
Before using the driver for the SIO-1/2 board, the driver must be installed by using the INSTALL
command. The following must be entered:

? INSTALL U2,$FF004800

In order to install one of the ports of the SIO boards in VMEPROM, the BP command can be used. The
SIO-1/2 boards use the driver type 2. To install the first port of a SIO board with a 9600 baud rate, the
following command line can be used:

? BP 4, 9600, 2, $FCB00000

The port can then be used as port number 4. Please note that the hardware configuration must be
detected before a port can be installed. This can be done with the CONFIG command. Please refer
to the command description in the VMEPROM User’s Manual for a detailed description of the CONFIG
and BP commands. The base addresses of all ports of a SIO-1/2 board which must be specified with
the BP command is as follows:

SIO port # Address

1 (first SIO board) $FCB00000
2 $FCB00040
3 $FCB00080
4 $FCB000C0
5 $FCB00100
6 $FCB00140
1 (second SIO board) $FCB00200
2 $FCB00240
3 $FCB00280
4 $FCB002C0
5 $FCB00300
6 $FCB00340

A-2

SECTION 5 APPENDIX

VMEPROM supports up to two serial I/O boards. These can be either the SIO-1/2 board, the ISIO-1/2
board, or a mixture of both. Please note that the first board of every type must be set to the first base
address. In using one SIO-1 board and one ISIO-1 board, the base address of the boards must to be
set to:

SIO-1 $FCB00000
ISIO-1 $FC960000

A3. SYS68K/ISIO-1/2

These serial I/O boards are set to the address $960000 in the standard VME address range by default.
VMEPROM awaits this board at this address; no changes need to be made to the default setup. An
optional second board may be used. When used, the address must be set to $980000. Read the
SYS68K/ ISIO-1/2 User’s Manual for a description of the base address setup. Before using the driver
for the ISIO-1/2 board, the driver must be installed by using the INSTALL command. The following must
be entered:

? INSTALL U3,$FF004C00

In order to install one of the ports of an ISIO board in VMEPROM, the BP command can be used. The
ISIO-1/2 boards are driver type 3. In order to install the first port of an ISIO board with a 9600 baud
rate, the following command line can be used:

? BP 4, 9600, 3, $FC968000

The port number is four. The hardware configuration must be detected before a port can be installed.
This is done with the CONFIG command. Read the command description in the VMEPROM User’s
Manual for a description of the CONFIG and BP commands. The base address of all ISIO-1/2 ports,
specified by the BP command, is as follows:

ISIO port # Address

1 (first ISIO board) $FC968000
2 $FC968020
3 $FC968040
4 $FC968060
5 $FC968080
6 $FC9680A0
7 $FC9680C0
8 $FC9680E0
1 (second ISIO board) $FC988000
2 $FC988020
3 $FC988040
4 $FC988060
5 $FC988080
6 $FC9880A0
7 $FC9880C0
8 $FC9880E0

A-3

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

VMEPROM supports two serial I/O boards. These can be the SIO-1/2 or ISIO-1/2 board or mixture of
both. The first board of each type must be set to the first base address. When using one SIO-1 and
one ISIO-1 board, the base address of the boards must be set to:

SIO-1 $FCB00000
ISIO-1 $FC960000

A4. SYS68K/ISCSI-1 Disk Controller

VMEPROM supports up to two floppy disk drives and three Winchester disk drives together with the
ISCSI-1 disk controller. The floppy drives must be jumpered to drive select 3 and 4 and can be
accessed as disk number 0 and 1 out of VMEPROM. The floppy drives are installed automatically when
a ISCSI-1 controller is detected by the CONFIG command. Usable floppy drives must support 80
tracks/side, and must be double sided/double density. The step rate used is 3 ms. The Winchester
drives are not installed automatically. The VMEPROM FRMT command must be used for defining the
following factors:

• The physical structure of the drive (i.e. number of heads, number of cylinders, drive select
number, etc.)

• The bad block of the Winchester drive

• The partitions to be used

If this setup is done once for a particular drive, the data is stored in the first sector of the Winchester
and is loaded automatically when the disk controller is installed in VMEPROM. The driver for the ISCSI-
1 may be installed by using the INSTALL command. The following must be entered:

? INSTALL W,$FF007300

The default base address of the ISCSI-1 controller is $A00000 in the standard VME address range. This
is the address $FCA00000 for the CPU board and no changes have to be made to this setup. The
ISCSI-1 driver uses interrupts by default. This cannot be disabled. Please make sure that the interrupt
daisy chain is closed so that the controller can work properly.

A-4

SECTION 5 APPENDIX

A5. Boards providing the Application Command Interface (ACI)

Four drivers are included in VMEPROM which manage the communication through the ACI, two disk
drivers and two UART drivers. Two of each type are necessary because one controls the onboard
EAGLE module(s) and the other controls offboard modules. The driver for offboard modules searches
for every board in the system (except itself) and installs as many devices as the driver can handle. To
ensure that the driver can find all IBC boards in system, their base addresses must be set according to
the following table.

Slot # Base Address

1 $80000000

2 $84000000

3 $88000000

4 $8C000000

.

.

.

.

.

.

21 $D0000000

A5.1 UART Driver

A5.1.1 Onboard EAGLE Module

To install the UART driver, type:

? INSTALL U7,$FF008610

The UART driver can handle up to 64 serial ports. However, the kernel only allows up to 15 ports.
To select a specific port use the BP command. The BP command expects a UART base address.
This address is a logical address starting with $1 for the first serial device. The second serial device
gets a logical address $2 and so on. For example, when an EAGLE module has 3 serial channels
their logical addresses are $1, $2 and $3. To inform the kernel about the second channel, type:

? BP $1905,1,7,$2

Now port 5 is connected to the second serial device on the EAGLE module. The baud rate is set to
9600 baud. The handshake is set to XON/XOFF.

A-5

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

A5.1.2 Offboard EAGLE Modules

To install the UART driver, type:

? INSTALL U8,$FF008410

Now the driver searches for up to 21 boards in the system if they provide the ACI. Every serial
device is installed. Additionally, the RAM port of every board with an ACI is installed.

The UART driver can handle up to 64 serial ports. However, the kernel only allows up to 15 ports.
To select a specific port use the BP command. The BP command expects a UART base address.
This address is a logical address, $1 for the first physical serial device, $2 for the second and so on.
The logical address of the RAM port is always the base address of the currently installed board.

The following is an example where a system contains 3 IBC-20 cards.

The first IBC-20 has an EAGLE with 3 serial channels; the IBC-20 base address is $84000000. The
second has no serial device; the IBC-20 base address is $B4000000. The third has two EAGLE
modules with 6 serial channels; the IBC-20 base address is $B8000000.

A-6

SECTION 5 APPENDIX

After the INSTALL command the driver knows 12 serial channels.

Logical Address UART

$84000000 RAM port of the first IBC-20

$00000001 The first serial channel of the first IBC

$00000002 The second serial channel of the first IBC-20

$00000003 The third serial channel of the first IBC-20

$B4000000 RAM port of the second IBC-20

$B8000000 RAM port of the third IBC-20

$00000004 The first serial channel of the third IBC-20

$00000005 The second serial channel of the third IBC-20

$00000006 The third serial channel of the third IBC-20

$00000007 The fourth serial channel of the third IBC-20

$00000008 The fifth serial channel of the third IBC-20

$00000009 The sixth serial channel of the third IBC-20

To inform the kernel about the second channel of the third IBC-20, type:

? BP $1905,1,8,$5

Now port 5 is connected to the second serial device on the EAGLE module. The baud rate is set to
9600 baud. The handshake is set to XON/XOFF.

A6.2 Disk Driver

VMEPROM supports up to two floppy disk drives and up to four hard disk drives per driver. The first
floppy controller and every hard disk controller which is found on the EAGLE Module(s) are installed
(up to the limit of four hard disk drives). Hard disks must have a valid partition table on the first
physical block. If none is found a default partition table is used. The VMEPROM FRMT command
must be used to define the partitions.

Depending on the device driver task the disk access can be cached. Therefore, not every data
which is written to the disk from VMEPROM must be written to the hard disk. The FLUSH command
of VMEPROM is used to be sure that all data is written to every hard disk.

The driver for onboard EAGLE Modules automatically is installed after power up, while the offboard
driver must be installed with the command:

? INSTALL W,$FF004CC0

A-7

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

This page was intentionally left blank

A-8

SECTION 5 APPENDIX

APPENDIX B

B. S-Record Formats

B1. S-Record Types

Eight types of S-records have been defined to accommodate the needs of the encoding,
transportation and decoding functions. VMEPROM supports S0, S1, S2, S3, S7, S8 and S9 records
(S7 and S8 on load only).

An S-record format module may contain S-records of the following types:

S0 The header record for each block of S-records.

S1 A record containing code/data and the 2-byte address at which the code/data is to reside.

S2 A record containing code/data and the 3-byte address at which the code/data is to reside.

S3 A record containing code/data and the 4-byte address at which the code/data is to reside.

S5 A record containing the number of S1, S2 and S3 records transmitted in a particular block.
The count appears in the address field. There is no code/data field. Not supported by
VMEPROM.

S7 A termination record for a block of S3 records. The address field may optionally contain
the 4-byte address of the instruction to which control is to be passed. There is no
code/data field.

S8 A termination record for a block of S2 records. The address field may optionally contain
the 3-byte address of the instruction to which control is to be passed. There is no
code/data field.

S9 A termination record for a block of S1 records. The address field may optionally contain
the 2-byte address of the instruction to which control is to be passed.

Only one termination record is used for each block of S-records. S7 and S8 records are usually
used only when control is to be passed to a 3 or 4 byte address. Normally, only one header record
is used, although it is possible for multiple header records to occur.

B-1

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

B2. S-Record Example

S214020000000004440002014660000CB241F8044CB1
S214020010203C0000020E428110C1538066FA487AE4
S214020020001021DF0008487A001221DF000C4E750E
S21402003021FC425553200030600821FC41444452C2

XX.- Check-sum
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX Data

0200XX 24 bit Address
14 Byte Count

S2 Record Type

S9030000FC

FC Check-sum
0000 Data

03 Byte Count
S9 Record Type

B-2

SECTION 5 APPENDIX

APPENDIX C

C. System RAM Definitions
/* SYRAM:H -- DEFINITION OF SYRAM BLOCK OF MEMORY

05-Jan-88 Revised to correspond to PDOS 3.3
BRIAN C. COOPER, EYRING RESEARCH INSTITUTE, INC.
Copyright 1985-1988

*/
#define NT 64 /* number of tasks */
#define NM ((NT+3)&0xFC) /* number of task messages */
#define NP 16 /* number of task message pointers */
#define ND ((NT+3)&0xFC) /* number of delay events */
#define NC 8 /* number of active channel buffers */
#define NF 64 /* number of file slots */
#define NU 15 /* number of I/O UART ports */
#define IZ 6 /* input buffer size (2^p2p. */
#define MZ 0x4000000 /* maximum memory size */
#define TZ 64 /* task message size */

#define NTB NT
#define NTM NM
#define NTP NP
#define NCB NC
#define NFS NF
#define NEV ND
#define NIE (ND/2)
#define NPS (NU+1)
#define P2P IZ
#define MMZ MZ
#define TMZ TZ

#define IMK (0xFF>>(8-P2P))/* input buffer wrap around mask */
#define NCP ((1<<P2P)+2) /* (# characters/port) + 2 */
#define MPZ 2048 /* memory page size */
#define MBZ (MMZ/MPZ) /* memory bitmap size */
#define NMB (MBZ/8) /* number of map bytes */
#define FSS 38 /* file slot size */
#define TQB 2 /* TCB index */
#define TQM (TQB+4) /* map index */
#define TQE (TQM+2) /* event #1 / event #2 */
#define TQS (TQE+2) /* scheduled event */
#define TBZ (TQS+2+4) /* TASK entry size */
#define BPS 256 /* bytes per sector */
#define NRD 4 /* number of RAM disks */

struct SYRAM{
/*000*/ char *_bios; /* address of bios rom */
/*004*/ char *_mail; /* *mail array address */
/*008*/ unsigned int _rdkn; /* *ram disk # */
/*00A*/ unsigned int _rdks; /* *ram disk size */
/*00C*/ char *_rdka; /* *ram disk address */
/*010*/ char _bflg; /* basic present flag */
/*011*/ char _dflg; /* directory flag */
/*012*/ int _f681; /* 68000/68010 flag */
/*014*/ char *_sram; /* run module B$SRAM */
/*018*/ int spare1; /* reserved for expansion */
/*01A*/ int _fcnt; /* fine counter */
/*01C*/ long _tics; /* 32 bit counter */
/*020*/ unsigned char _smon; /* month */
/*021*/ unsigned char _sday; /* day */
/*022*/ unsigned char _syrs[2];/* year */
/*024*/ unsigned char _shrs; /* hours */
/*025*/ unsigned char _smin; /* minutes */
/*026*/ unsigned char _ssec[2];/* seconds */
/*028*/ char _patb[16]; /* input port allocation table */
/*038*/ char _brkf[16]; /* input break flags */
/*048*/ char _f8bt[16]; /* port flag bits */
/*058*/ char _utyp[16]; /* port uart type */
/*068*/ char _urat[16]; /* port rate table */

B-1

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

C. System RAM Definitions (cont’d)
/*078*/ char _evtb[10]; /* 0-79 event table */
/*082*/ char _evto[2]; /* 80-95 output events */
/*084*/ char _evti[2]; /* 96-111 input events */
/*086*/ char _evts[2]; /* 112-127 system events */
/*088*/ char _ev128[16]; /* task 128 events */
/*098*/ long _evtm[4]; /* events 112-115 timers */
/*0A8*/ long _bclk; /* clock adjust constant */
/*0AC*/ char *_tltp; /* task list pointer */
/*0B0*/ char *_utcb; /* user tcb ptr */
/*0B4*/ int _suim; /* supervisor interrupt mask */
/*0B6*/ int _usim; /* user interrupt mask */
/*0B8*/ char _sptn; /* spawn task no. (** must be even **)*/
/*0B9*/ char _utim; /* user task time */
/*0BA*/ char _tpry; /* task priority (** must be even **) */
/*0BB*/ char _tskn; /* current task number */
/*0BC*/ char spare2; /* reserved */
/*0BD*/ char _tqux; /* task queue offset flag/no */
/*0BE*/ char _tlck[2]; /* task lock/reschedule flags */
/*0C0*/ char _e122; /* batch task # */
/*0C1*/ char _e123; /* spooler task # */
/*0C2*/ char _e124;
/*0C3*/ char _e125;
/*0C4*/ long _cksm; /* system checksum */
/*0C8*/ int _pnod; /* pnet node # */
/*0CA*/ char bser[6]; /* bus error vector */
/*0D0*/ char iler[6]; /* illegal vector */
/*0D6*/ char ccnt[16]; /* control C count */
/*0E6*/ char *_wind; /* window id’s */
/*0EA*/ char *_wadr; /* window addresses */
/*0EE*/ char *_chin; /* input stream */
/*0F2*/ char *_chot; /* output stream */
/*0F6*/ char *_iord; /* i/o redirect */
/*0FA*/ char _fect; /* file expand count */
/*0FB*/ char _pidn; /* processor ident byte */
/*0FC*/ long *_begn; /* abs addr of K1$BEGN table */
/*100*/ int _rwcl[14]; /* port row/col 1..15 */
/*11C*/ char *_opip[15]; /* output port pointers 1..15 */
/*158*/ char *_uart[16]; /* uart base addresses 1..15 */
/*198*/ long _mapb; /* memory map bias */
/* */
/* the following change with different configurations:*/
/* configuration for VMEPROM is defined to:*/
/* NT = 64, NF = 64, MZ = $400000*/
/**/
/* NOTE: the offset on top of each line is calculated only for this */
/* configuration */
/* */
/*019C*/ char _maps[NMB]; /* system memory bitmap */
/*119C*/ char _port[(NPS-1)*NCP];/* character input buffers */
/*157A*/ char _iout[(NPS-1)*NCP];/* character output buffers */
/*1958*/ char rdtb[16]; /* redirect table */
/*1968*/ int _tque[NTB+1]; /* task queue */
/*19EA*/ char _tlst[NTB*TBZ]; /* task list */
/*1DEA*/ char _tsev[NTB*32]; /* task schedule event table */
/*25EA*/ long _tmtf[NTM]; /* to/from/INDEX.W */
/*26EA*/ char _tmbf[TMZ*NTM]; /* task message buffers */
/*36EA*/ char _tmsp[NTP*6]; /* task message pointers */
/*374A*/ char _deiq[2+8+NIE*10]; /* delay event insert queue */
/*3894*/ char _devt[2+NEV*10]; /* delay events */
/*3B16*/ int _bsct[32]; /* basic screen command table*/
/*3B56*/ int _xchi[NCB]; /* channel buffer queue */
/*3B66*/ char _xchb[NCB*BPS]; /* channel buffers */
/*4366*/ char _xfsl[NFS*FSS]; /* file slots */
/*4CE6*/ char _l2lk; /* level 2 lock (file prims, evnt 120)*/
/*4CE7*/ char _l3lk; /* level 3 lock (disk prims, evnt 121)*/
/*4CE8*/ long _drvl; /* driver link list entry point */
/*4CEC*/ long _utll; /* utility link list entry point */
/*4CF0*/ int _rdkl[NRD*4 + 1]; /* RAM disk list */
};

C-2

SECTION 5 APPENDIX

APPENDIX D

D. Task Control Block Definitions
#define MAXARG 10 /* max argument count of the cmd line */
#define MAXBP 10 /* max 10 breakpoints */
#define MAXNAME 5 /* max 5 names in name buffer */
#define TMAX 64 /* Max number of tasks */
#define ARGLEN 20 /* maximum argument length */

/* special system flags for VMEPROM */

#define SOMEREG 0x0001 /* display only PC,A7,A6,A5 */
#define T_DISP 0x0002 /* no register display during trace(TC>1)*/
#define T_SUB 0x0004 /* trace over subroutine set */
#define T_ASUB 0x0008 /* trace over subroutine active */
#define T_RANG 0x0010 /* trace over range set */
#define REG_INI 0x0020 /* no register initialization if set */
#define RE_DIR 0x0040 /* output redirection into file and */

/* console at the same time */

/* the registers are stored in the following order: */
#define VBR 0
#define SFC 1
#define DFC 2
#define CACR 4
#define PC 5
#define SR 6
#define USTACK 7
#define SSTACK 8
#define MSTACK 9
#define D0 10 /* 10-17 = D0-D7 */
#define A0 18 /* 18-24 = A0-A6 */

#define N_REGS 25

#define BYTE unsigned char
#define WORD unsigned int
#define LWORD unsigned long

struct TCB{

/*000*/ char _ubuf[256]; /* 256 byte user buffer */
/*100*/ char _clb[80]; /* 80 byte monitor command line buffer */
/*150*/ char _mwb[32]; /* 32 byte monitor parameter buffer */
/*170*/ char _mpb[60]; /* monitor parameter buffer */
/*1AC*/ char _cob[8]; /* character out buffer */
/*1B4*/ char _swb[508]; /* system work buffer/task pdos stack */
/*3B0*/ char *_tsp; /* task stack pointer */
/*3B4*/ char *_kil; /* kill self pointer */
/*3B8*/ long _sfp; /* RESERVED FOR INTERNAL PDOS USE */
/*3BC*/ char _svf; /* save flag -- 68881 support (x881) */
/*3BD*/ char _iff; /* RESERVED FOR INTERNAL PDOS USE */
/*3BE*/ long _trp[16]; /* user TRAP vectors */
/*3FE*/ long _zdv; /* zero divide trap */
/*402*/ long _chk; /* CHCK instruction trap */
/*406*/ long _trv; /* TRAPV Instruction trap */

D-1

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

D. Task Control Block Definitions (cont’d)
/*40A*/ long _trc; /* trace vector */
/*40E*/ long _fpa[2]; /* floating point accumulator */
/*416*/ long *_fpe; /* fp error processor address */
/*41A*/ char *_clp; /* command line pointer */
/*41E*/ char *_bum; /* beginning of user memory */
/*422*/ char *_eum; /* end user memory */
/*426*/ char *_ead; /* entry address */
/*42A*/ char *_imp; /* internal memory pointer */
/*42E*/ int _aci; /* assigned input file ID */
/*430*/ int _aci2; /* assigned input file ID’s */
/*432*/ int _len; /* last error number */
/*434*/ int _sfi; /* spool file id */
/*436*/ BYTE _flg; /* task flags (bit 8=command line echo)*/
/*437*/ BYTE _slv; /* directory level */
/*438*/ char _fec; /* file expansion count */
/*439*/ char _spare1; /* reserved for future use */
/*43A*/ char _csc[2]; /* clear screen characters */
/*43C*/ char _psc[2]; /* position cursor characters */
/*43E*/ char _sds[3]; /* alternate system disks */
/*441*/ BYTE _sdk; /* system disk */
/*442*/ char *_ext; /* XEXT address */
/*446*/ char *_err; /* XERR address */
/*44A*/ char _cmd; /* command line delimiter */
/*44B*/ BYTE _tid; /* task id */
/*44C*/ char _ecf; /* echo flag */
/*44D*/ char _cnt; /* output column counter */
/*44E*/ char _mmf; /* memory modified flag */
/*44F*/ char _prt; /* input port # */
/*450*/ char _spu; /* spooling unit mask */
/*451*/ BYTE _unt; /* output unit mask */
/*452*/ char _u1p; /* unit 1 port # */
/*453*/ char _u2p; /* unit 2 port # */
/*454*/ char _u4p; /* unit 4 port # */
/*455*/ char _u8p; /* unit 8 port # */
/*456*/ char _spare2[26]; /* reserved for system use */

/**/
/* VMEPROM variable area */
/**/

/*470*/ char linebuf[82]; /* command line buffer */
/*4C2*/ char alinebuf[82]; /* alternate line buffer */
/*514*/ char cmdline[82]; /* alternate cmdline for XGNP */
/*566*/ int allargs, gotargs; /* argc save and count for XGNP */
/*56A*/ int argc; /* argument counter */
/*56C*/ char *argv[MAXARG]; /* pointer to arguments of the cmd line*/
/*594*/ char *odir, *idir; /* I/O redirection args from cmd line */
/*59C*/ int iport,oport; /* I/O port assignments */
/*5A0*/ char *ladr; /* holds pointer to line in_mwb */
/*5A4*/ LWORD offset; /* base memory pointer */
/*5A8*/ int bpcnt; /* num of defined breakpoints */
/*5AA*/ LWORD bpadr[MAXBP]; /* breakpoint address */
/*5D2*/ WORD bpinst[MAXBP]; /* breakpoint instruction */
/*5E6*/ char bpcmd[MAXBP][11]; /* breakpoint command */

D-2

SECTION 5 APPENDIX

D. Task Control Block Definitions (cont’d)
/*654*/ WORD bpocc[MAXBP]; /* # of times the breakpoint should be*/

/* skipped */
/*668*/ WORD bpcocc[MAXBP]; /* # of times the breakpoint is already*/

/* skipped */
/*67C*/ LWORD bptadr; /* temp. breakpoint address */
/*680*/ WORD bptinst; /* temp. breakpoint instruction */
/*682*/ WORD bptocc; /* # of times the temp. breakpoint should*/

/* be skipped */
/*684*/ WORD bptcocc; /* # of times the temp. breakpoint is */

/* already skipped */
/*686*/ char bptcmd[11]; /* temp. breakpoint command */
/*691*/ char outflag; /* output messages (yes=1,no=0) */
/*692*/ char namebn[MAXNAME][8]; /* Name buffer, name */
/*6BA*/ char namebd[MAXNAME][40]; /* Name buffer, data */
/*782*/ WORD errcnt; /* error counter for test .. */
/*784*/ LWORD times,timee; /* start/end time */
/*78C*/ LWORD pregs[N_REGS]; /* storage area of processor regs */
/*7F0*/ WORD tflag; /* trace active flag */
/*7F2*/ WORD tcount; /* trace count */
/*7F4*/ WORD tacount; /* active trace count */
/*7F6*/ WORD bpact; /* break point active flag */
/*7F8*/ LWORD savesp; /* save VMEprom stack during GO/T etc */
/*7FC*/ char VMEMSP[202]; /* Master stack, handle w/ care */
/*8C6*/ char VMESSP[802]; /* supervisor stack, handle w/ care */
/*BE8*/ char VMEPUSP[802]; /* vmeprom internal user stack */
/*F0A*/ LWORD f_fpreg[3*8]; /* floating point data regs */
/*F6A*/ LWORD f_fpcr; /* FPCR reg */
/*F6E*/ LWORD f_fpsr; /* FPSR reg */
/*F72*/ LWORD f_fpiar; /* FPIAR reg */
/*F76*/ BYTE f_save[0x3c]; /* FPSAVE for null and idle */
/*FB2*/ BYTE cleos[2]; /* clear to end of screen parameter */
/*FB4*/ BYTE cleol[2]; /* clear to end of line parameters */
/*FB6*/ char u_prompt[10]; /* user defined prompt sign */
/*FC0*/ long c_save; /* save Cache control register */
/*FC4*/ long exe_cnt; /* execution count */
/*FC8*/ BYTE nokill; /* kill task with no input port */
/*FC9*/ BYTE u_mask; /* unit mask for echo */
/*FCA*/ WORD sysflg; /* system flags used by VMEPROM */

/* bit 0: display registers short form*/
/* bit 1: trace without reg. display */
/* bit 2: trace over subroutine */
/* bit 3: trace over subroutine active*/
/* bit 4: trace over range */
/* bit 5: no register initialization */
/* bit 6: output redirection into file*/
/* and console at the same time*/

/*FCC*/ LWORD t_range[2]; /* start/stop PC for trace over range */
/*FD4*/ LWORD ex_regs; /* pointer to area for saved regs */
/*FD8*/ BYTE sparend[0x1000-0xFD8];/* make tcb size $1000 bytes */

char _tbe[0]; /* task beginning */
};

D-3

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

This page was intentionally left blank

D-4

SECTION 5 APPENDIX

APPENDIX E

E. Interrupt Vector Table of VMEPROM

Vector
Number/s

Vector
HEX Assignment

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

THROUGH
23
24
25
26
27
28
29
30
31
32

THROUGH
47
48
49
50
51
52
53
54
55
56
57
58
59

THROUGH
63
64

THROUGH
159

000
004
008
00C
010
014
018
01C
020
024
028
02C
030
034
038
03C
040

05C
060
064
068
06C
070
074
078
07C
080

OBC
0C0
0C4
0C8
0CC
0D0
0D4
0D8
0DC
0E0
0E4
0E8
0EC

0FC
100

27C

Reset: Initial Interrupt Stack Pointer
Reset: Initial Program Counter
Bus Error
Address Error
Illegal Instruction
Zero Divide
CHK, CHK2 Instruction
FTRAPcc, TRAPcc, TRAPV Instructions
Privilege Violation
Trace
VMEPROM System Calls
Coprocessor Instructions
(Unassigned, Reserved)
Not used
Format Error
Uninitialized Interrupt

(Unassigned, Reserved)

Spurious Interrupt
AV1
AV2
AV3
AV4
AV5
AV6
AV7

TRAP #0-15 Instruction Vectors

FPCP Branch or Set on Unordered Condition
FPCP Inexact Result
FPCP Divide by Zero
FPCP Underflow
FPCP Operand Error
FPCP Overflow
FPCP Signaling NAN
FPCP Unimplemented Data Type
PMMU Configuration
PMMU Illegal Operation
PMMU Access Level Violation

Unassigned, Reserved

Vector numbers reserved for up to 12 FC68165s

The Interrupt Vector Table of VMEPROM is continued on the next page.

E-1

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

Interrupt Vector Table of VMEPROM (Continued)

Vector
Number/s

Vector
HEX Assignment

160
161

THROUGH
168
169

THROUGH
181
182

THROUGH
191
192
193
194
195
196
197
198
199
200

THROUGH
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248

THROUGH
254
255

280
284

2A0
2A4

2D4
2D8

2FC
300
304
308
30C
310
314
318
31C
320

37C
380
384
388
38C
390
394
398
39C
3A0
3A4
3A8
3AC
3B0
3B4
3B8
3BC
3C0
3C4
3C8
3CC
3D0
3D4
3D8
3DC
3E0

3F4
3FC

Disk Interrupt Vector

ISIO-1/2 Interrupt Vector

SIO-1/2 Interrupt Vectors

Reserved

Mailbox 0 (Used by the ACI)
Mailbox 1
Mailbox 2
Mailbox 3 (Reserved)
Mailbox 4 (Used from the EAGLE UART driver)
Mailbox 5 (Used from the IBC UART driver)
Mailbox 6 (Used from the EAGLE disk driver)
Mailbox 7 (Used from the IBC disk driver)

Reserved

Timer
Reserved
Reserved
Reserved
FMB1 Refused
FMB0 Refused
FMB1 Message
FMB0 Message
ABORT
ACFAIL*
SYSFAIL*
DMA Error
DMA Normal
PARITY Error
Reserved
Reserved
LOCAL1
LOCAL2
LOCAL3
LOCAL4
LOCAL5
LOCAL6
LOCAL7
LOCAL8

Reserved

Empty Interrupt

E-2

SECTION 5 APPENDIX

APPENDIX F

F. Benchmark Source Code

** Module name: Assembler benchmarks Version: 1.0 **
** date started: 20-Apr-87 M.S. last update: 23-Apr-87 M.S. **
** Copyright (c) 1986/87 FORCE Computers GmbH Munich **

*

section 0
opt alt,P=68020,P=68881
xdef .benchex
xdef .BEN1BEG,.BEN1END
xdef .BEN2BEG,.BEN2END
xdef .BEN3BEG,.BEN3END
xdef .BEN4BEG,.BEN4END
xdef .BEN5BEG,.BEN5END
xdef .BEN6BEG,.BEN6END
xdef .BEN7BEG,.BEN7END
xdef .BEN8BEG,.BEN8END
xdef .BEN9BEG,.BEN9END
xdef .BEN10BEG,.BEN10END
xdef .BEN11BEG,.BEN11END
xdef .BEN12BEG,.BEN12END
xdef .BEN13BEG,.BEN13END
xdef .BEN14BEG,.BEN14END
page

*
* benchmark execution: benchex(address)
*

movem.l d1-a6,-(a7)
move.l 15*4(a7),a0
jsr (a0)
movem.l (a7)+,d1-a6
rts

*
* BENCH #1: DECREMENT LONG WORD IN MEMORY 10.000.000 TIMES
*

LEA.L @010(PC),A0
MOVE.L #10000000,(A0)

@020 SUBQ.L #1,(A0)
BNE.S @020
RTS

@010 DS.L 1

*
* BENCH #2: PSEUDO DMA 1K BYTES 50.000 TIMES
*

MOVE.L #50000,D2 ; DO 50000 TRANSFERS
@001 MOVE.W #$FF,D3 ; EACH IS 1K BYTES

LEA.L @010(PC),A1 ; A1 POINTS TO SOURCE AND DESTINATION
@002 MOVE.L (A1),(A1)+

DBRA D3,@002
SUBQ.L #1,D2
BNE.S @001
RTS
NOP

@010 NOP
PAGE

F-1

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

(cont’d)

*
* BENCH #3: SUBSTRING CHARACTER SEARCH 100.000 TIMES TAKEN FROM EDN 08/08/85
*
*

MOVE.L #100000,D4
@002 MOVE.L #15,D0

MOVE.L #120,D1
LEA.L EDN1DAT(PC),A1
LEA.L EDN1DAT1(PC),A0
BSR.S EDN1
SUBQ.L #1,D4
BNE.S @002
RTS

*
****** BEGIN EDN BENCH #1 *******
EDN1 MOVEM.L D3/D4/A2/A3,-(A7)

SUB.W D0,D1
MOVE.W D1,D2
SUBQ.W #2,D0
MOVE.B (A0)+,D3

@010 CMP.B (A1)+,D3
@012 DBEQ D1,@010

BNE.S @090
MOVE.L A0,A2
MOVE.L A1,A3
MOVE.W D0,D4
BMI.S @030

@020 CMP.B (A2)+,(A3)+
DBNE D4,@020
BNE.S @012

@030 SUB.W D1,D2
@032 MOVEM.L (A7)+,D3/D4/A2/A3

RTS
@090 MOVEQ.L #-1,D2

BRA.S @032

******* END EDN BENCH #1 *******
EDN1DAT DC.B ’000000000000000000000000000000’

DC.B ’000000000000000000000000000000’
EDN1DAT1 DC.B ’HERE IS A MATCH000000000000000’

PAGE

*
* BENCH #4: BIT TEST/SET/RESET 100.000 TIMES TAKEN FROM EDN 08/08/85
*

MOVE.L #100000,D4
LEA.L EDN2DAT(PC),A0

@010 MOVEQ.L #1,D0 ; TEST
MOVEQ.L #10,D1
BSR.S EDN2
MOVEQ.L #1,D0
MOVEQ.L #11,D1
BSR.S EDN2
MOVEQ.L #1,D0
MOVE.W #123,D1
BSR.S EDN2
MOVEQ.L #2,D0 ; SET
MOVEQ.L #10,D1
BSR.S EDN2

F-2

SECTION 5 APPENDIX

(cont’d)

MOVEQ.L #1,D0
MOVEQ.L #11,D1
BSR.S EDN2
MOVEQ.L #1,D0
MOVE.W #123,D1
BSR.S EDN2
MOVEQ.L #3,D0 ; RESET
MOVEQ.L #10,D1
BSR.S EDN2
MOVEQ.L #1,D0
MOVEQ.L #11,D1
BSR.S EDN2
MOVEQ.L #1,D0
MOVE.W #123,D1
BSR.S EDN2
SUBQ.L #1,D4
BNE.S @010
RTS

*
EDN2 SUB.W #2,D0

BEQ.S @020
SUBQ.W #1,D0
BEQ.S @030

@010
* BFTST (A0){D1:1}

DC.W $E8D0
DC.W $0841
SNE D2
RTS

@020
* BFSET (A0){D1:1}

DC.W $EED0
DC.W $0841
SNE D2
RTS

@030
* BFTST (A0){D1:1}

DC.W $E8D0
DC.W $0841
SNE D2
RTS

EDN2DAT DC.L 0,0,0,0
PAGE

*
* BENCH #5: BIT MATRIX TRANSPOSITION 100.000 TIMES
* TAKEN FROM EDN 08/08/85
*

MOVE.L #100000,D4
LEA.L EDN3DAT(PC),A0

@002 MOVE.L #7,D0
MOVEQ.L #0,D1
BSR.S EDN3
SUBQ.L #1,D4
BNE.S @002
RTS

F-3

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

(cont’d)

*
EDN3 MOVEM.L D1-D7,-(A7)

MOVE.L D1,D2
MOVE.W D0,D7
SUBQ.W #2,D7

@010 ADDQ.L #1,D1
MOVE.L D1,D3
ADD.L D0,D2
MOVE.L D2,D4

@020
BFEXTU (A0){D3:1},D5
BFEXTU (A0){D4:1},D6
BFINS D5,(A0){D4:1}
BFINS D6,(A0){D3:1}
ADD.L D0,D3
ADDQ.L #1,D4
CMP.L D3,D4
BNE.S @020
DBRA D7,@010

MOVEM.L (A7)+,D1-D7
RTS

EDN3DAT DC.B %01001001
DC.B %01011100
DC.B %10001110
DC.B %10100101
DC.B %00000001
DC.B %01110010
DC.B %10000000
EVEN
PAGE

*
* BENCH #6: CACHE TEST - 128KB PROGRAM IS EXECUTED 1000 TIMES
* CAUTION: THIS BENCHMARK NEEDS 128 KBYTE MEMORY
*

LEA.L @010(PC),A2
MOVE.L #$203A0000,D1 ; OPCODE FOR MOVE.L ($0,PC),D0
MOVE.L #$20000/4,D2 ; LENGTH IS 128 KBYTE

@004 MOVE.L D1,(A2)+ ; LOAD OPCODE TO MEMORY
SUBQ.L #1,D2
BNE.S @004
MOVE.W #$4E75,(A2) ; APPEND RTS

* PROGRAM IS NOW LOADED -- START 1000 TIMES
MOVE.L #1000,D3

@008 BSR.S @010
SUBQ.L #1,D3
BNE.S @008
RTS

*
@010 DC.L 0 ; PROGRAM WILL START HERE

PAGE
*
* BENCH #7: FLOATING POINT 1.000.000 ADDITIONS
*

MOVE.L #1000000,D5
FMOVE.L #0,FP0
FMOVE.L #1,FP1

@010 FADD.X FP0,FP1
SUBQ.L #1,D5
BNE.S @010
RTS

F-4

SECTION 5 APPENDIX

(cont’d)

*
* BENCH #8: FLOATING POINT 1.000.000 SINUS
*

MOVE.L #1000000,D5
FMOVE.L #1,FP1

@010 FSIN.X FP1
SUBQ.L #1,D5
BNE.S @010
RTS
PAGE

*
* BENCH #9: FLOATING POINT 1.000.000 MULTIPLICATIONS
*

MOVE.L #1000000,D5
FMOVE.L #1,FP0
FMOVE.L #1,FP1

@010 FMUL.X FP0,FP1
SUBQ.L #1,D5
BNE.S @010
RTS
page

*
* PDOS BENCHMARK #1: CONTEXT SWITCHES
*

MOVE.L #100000,D6
@000 XSWP ;CONTEXT SWITCH

SUBQ.L #1,D6 ;DONE?
BGT.S @000 ;N

RTS
PAGE

*
* PDOS BENCHMARK #2: EVENT SET
*

MOVEQ.L #32,D1 ;SELECT EVENT 32
MOVE.L #100000,D6

*
@000 XSEV ;SET EVENT

SUBQ.L #1,D6 ;DONE?
BGT.S @000 ;N

RTS
PAGE

*
* PDOS BENCHMARK #3: CHANGE TASK PRIORITY
*

MOVEQ.L #-1,D0 ;SELECT CURRENT TASK
MOVEQ.L #64,D1 ;SET PRIORITY TO 64
MOVE.L #100000,D6

*
@000 XSTP ;SET PRIORITY

SUBQ.L #1,D6 ;DONE?
BGT.S @000 ;N

RTS

F-5

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

(cont’d)

*
* PDOS BENCHMARK #4: SEND TASK MESSAGE
*

CLR.L D0 ;SELECT TASK #0
LEA.L MES01(PC),A1 ;POINT TO MESSAGE
MOVE.L #100000,D6

*
@000 XSTM ;SEND MESSAGE

XKTM ;READ MESSAGE BACK
SUBQ.L #1,D6 ;DONE?

BGT.S @000 ;N
RTS

MES01 DC.B ’BENCH #13’,0
EVEN
PAGE

*
* PDOS BENCHMARK #5: READ TIME OF DAY
*

MOVE.L #100000,D6
@000 EQU *

XRTP
SUBQ.L #1,D6 ;DONE?
BGT.S @000 ;N
RTS
end

F-6

SECTION 5 APPENDIX

APPENDIX G

G. Special Locations

The following table describes some special locations in the EPROM. These locations define the default
setup of the name of the startup file, user program location and RAM disk addresses.

The locations shown in the table can be changed by the user to adapt VMEPROM to every environment.
To make the necessary changes, please conduct the following steps:

1. Read the EPROMs with an EPROM programmer

2. Modify the code

3. Burn new EPROMs and keep the old ones in a safe location

4. Insert the new EPROMs in the CPU board and verify the changes

G1. VMEPROM Configuration Table

The Configuration Table or User Alterable Memory Locations contains several entries which can be
altered in order to modify the VMEPROM environment to meet the requirements of a customer. The
base address of the table can be obtained by invoking the VMEPROM command info .

? info

FORCE IBC-20 REV 2.10 with Gate Array FGA-002 at $FFD00000
VMEPROM Version 3.00 at $FFE1001C
Processor is a MC68020
...
Addresses to customize VMEPROM

Configuration table at $FFE1B180 (base address of configuration table)
...

The structure of the configuration table is shown on the next page and the entries are described in the
following pages.

G-1

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

Table 1: Structure of the User Alterable Memory Locations

The following table is provided by the VMEPROM.

Offset Size Contents Description

016 22 "SY$STRT" NUL terminated string containing the name of the startup
file

1616 2
2
4

810

204810

4080000016

Disk number of the first RAM disk entry
Size of the RAM disk in 256 byte sectors
Base address of the RAM disk

2
2
4

810

204810

4070000016

Disk number of the second RAM disk entry
Size of the RAM disk in 256 byte sectors
Base address of the RAM disk

2
2
4

810

25610

FFC80000016

Disk number of the third RAM disk entry
Size of the RAM disk in 256 byte sectors
Base address of the RAM disk

2E16 18 "SY$DSK" NUL terminated string containing the default RAM disk
name to be used when the RAM disk is being initialized

4016 4
4
4
4

4080000016

FF00000016

FFC8000016

Address of
VMEPROM

These four entries contain addresses where execution
continues after the VMEPROM kernel has been initialized

5016 4 "USER" Identification used by disk drivers

5416 1 0316 WAITFLAG

5516 1 0116 MEDMA

5616 1 0716 Reserved

5716 5 FF16 Reserved

5C16 2 1610 Reserved (number of hashing buffers: not supported)

5E16 4 0000000016 Reserved (amount of memory dedicated to the MEtask: not
supported)

6216 1 B016 RDSKSEL

6316 1 0116 RDSKLSZ

6416 1 0F16 Reserved

G-2

SECTION 5 APPENDIX

Offset 0 16: Startup Filename
This entry contains the ASCII encoded name of the startup file to be executed by the VMEPROM
shell when bit 1 of the lower rotary switch is cleared (0).

The name of the startup file must be a valid VMEPROM file name, must be terminated by a NUL
character, should not be longer than 19 characters, and must be left justified. In the case of a name
shorter than 19 characters, the unused characters must be filled with NUL characters.
By default, the entry contains the string "SY$STRT".

Offset 40 16: Program Start Table
This table contains four addresses where execution continues after the VMEPROM kernel has been
initialized. Depending on the state of the bits 2 and 3 of the lower rotary switch, one of the four
entries is fetched to continue execution at the particular address.

Offset 50 16:
This entry contains the string "USER" which indicates the validity of the data in the following entries.

Offset 54 16: Wait Flag
The least significant bits (bits 0 and 1) are used to control whether VMEPROM waits for the
availability of the hard disk.

The state of the first bit (bit 0) is only considered when the second bit (bit 1) is set (1). VMEPROM
waits for the availability of the hard disk when bit 1 is set (1) and does not wait when the bit is
cleared (0). In the former case, VMEPROM evaluates the state of the least significant bit. If bit 0
is set, then VMEPROM notifies the user that it is waiting for the hard disk to become available by
displaying a message on the console. Otherwise, bit 0 is cleared and VMEPROM works in silent
mode. In the latter case, VMEPROM does not wait until the hard disks are ready.

Offset 55 16: Start DMA Task
The least significant bit (bit 0) of this entry specifies whether the DMA task will be started by the
Application Command Interface. If this bit is set (1), then the ACI starts the DMA task after reset;
otherwise, when this bit is cleared (0), the ACI does not start the DMA task.
All other bits (bits 1 to 7) must be cleared.

Offset 56 16:
This entry is reserved and should not be altered!

Offset 57 16:
This entry is reserved and should not be altered!

G-3

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

Offset 5C 16:
The following two bytes are reserved and should not be altered!

Offset 5E 16:
The following four bytes are reserved and should not be altered!

The following four entries in the configuration table relate to the configuration of RAM disks provided by
the VMEPROM:

Offset 62 16: RDSKSEL
The state of this entry specifies at which physical address the RAM disk has to be located. The bits
4 and 5 are used to select one of four possibilities, which are listed in the following table.

RDSKSEL
Base Address Size

Bit 5 Bit 4

0 0 4080000016 512KB

0 1 4070000016 512KB

1 0 FFC8000016 64KB

1 1 top-of-memory 32KB/64KB/96KB/128KB
depends on the state of the
entry RDSKLSZ

All parameters of the RAM disk -- size, base address, and the proper disk number -- are obtained
from the RAM disk table, beginning at offset 1616 within the configuration table, depending on the
state of bits 4 and 5.

However, if the RDSKSEL does not specify location of the RAM disk at top-of-memory, then the
VMEPROM always allocates 32 KB of memory on the top-of-memory, which is to be used for an on-
board RAM disk but does not initialize the RAM disk.

The most significant bit (bit 7) of the entry RDSKSEL specifies whether the RAM disk has to be
initialized. If the most significant bit is set (1), then the RAM disk is not initialized. In the case that
the most significant bit is cleared (0), the RAM disk is being initialized by the firmware. In the latter
case, all data in the RAM disk are lost!

G-4

SECTION 5 APPENDIX

Offset 63 16: RDSKSEL
In case of an on-board RAM disk (RDSKSEL = XX11XXXX2), the size of such a RAM disk can be
customized by this entry. It specifies the number of 32KB pages the RAM disk consists of, but
should not exceed the number of four 32KB pages. If this entry specifies more than four pages, then
the firmware automatically limits the number of pages to four. When no page is specified (RDSKLSZ
= 0), then the firmware assumes 32KB of memory is to be allocated for the RAM disk.

Offset 16 16: RAM Disk Table
The RAM disk table contains the description of three RAM disks which are evaluated by the
VMEPROM depending on the state of the bits 4 and 5 of the entry RDSKSEL. Each RAM disk
descriptor consists of the following:

1. The disk number assigned to the RAM disk,

2. The size of the RAM disk specified in 256 byte sectors, and

3. The address where to locate the RAM disk.

The parameters of the RAM disk, which are located on top-of-memory, are defined by the entry
RDSKLSZ in the configuration table (size), and the other parameters are known by VMEPROM
during the startup phase.

Offset 2E 16: RAM Disk Name
This entry includes the ASCII encoded name of the RAM disk selected by the bits 4 and 5 of the
entry RDSKSEL. The name is assigned to the particular RAM disk only when the most significant
bit (bit 7) of the entry RDSKSEL is cleared (0).
The name has to be terminated by a NUL character, should not be longer than 16 characters, and
has to be left justified. In case of a name shorter than 16 characters, the unused bytes have to be
filled with NUL characters.
By default, the entry contains the string "SY$DSK".

Offset 64 16: RAM Disk Name
This entry is reserved and should not be altered!

G-5

SECTION 5 APPENDIX

APPENDIX H

H. Minimum Demands for Device Driver Tasks in Order to Run with VMEPROM

H.1 Device Driver Tasks for Serial Devices

The following commands have to be supported in order that VMEPROM works properly with the
device driver task:

OPEN
VMEPROM executes the OPEN command with a data exchange mode of $C0000000. Therefore,
the device driver task has to support Direct Memory Access. Furthermore, it has to have the
possibility to transfer the data directly into the applications (VMEPROMs) memory.

Positive return values indicate a successful OPEN.

READ
VMEPROM always tries to read exactly 1 character. The read mode is set to $00000002. The
WAIT bit is cleared. Therefore, the device driver task is not allowed to wait until the character is
available.

Any return value except 0 indicates a READ error.

WRITE
VMEPROM always tries to write exactly 1 character. The write mode is set to $00000002. The
WAIT bit is cleared. Therefore, the device driver task is not allowed to wait until the character can
be sent.

Any return value except 0 indicates a WRITE error.

CLOSE
The CLOSE command is executed without any additional parameter.

The return value is not used.

H-1

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

SERVICE
Service codes from -1024 to -2047 are reserved for serial drivers; the codes from -1024 to -1279
are reserved for VMEPROM.
Only one service code is used from VMEPROM. It is service number -1026. It has to set the
UART parameter.

The following service parameters have to be supported:

service parameter[0]: to define the baudrate used

VALUE BAUDRATE

2 150

3 300

4 600

5 1200

6 2400

7 4800

8 9600

9 19200

10 38400

service_parameter[1]: to define the number of data bits per character

VALUE NUMBER OF
DATA BITS

PER
CHARATER

0 7

1 8

H-2

SECTION 5 APPENDIX

service_parameter[2]: to define the number of stop bits

VALUE NUMBER OF
STOP BITS

0 1

1 2

service_parameter[3]: to define the parity to be used

VALUE PARITY

0 no

1 even

2 odd

service_parameter[4]: to define the flow control to be used

VALUE FLOW
CONTROL

0 no handshake

1 XON/XOFF

2 RTS/CTS

3 DTR/DSR/DCD

Any return value except 0 indicates that the device driver task is not able to set the requested
parameter.

H-3

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

H.2 Device Driver Tasks for Block Devices

H.2.1 Floppy Devices

The following commands have to be supported in order that VMEPROM works properly with the
device driver task:

OPEN
VMEPROM executes the OPEN command with a data exchange mode of $C0000000. Therefore,
the device driver task has to support Direct Memory Access. Furthermore, it has to have the
possibility to transfer the data directly into the applications (VMEPROMs) memory.

Positive return values are indicating a successful OPEN.

H-4

SECTION 5 APPENDIX

READ
The READ command is executed with a read mode of $80000000. Because of this the device
driver task has to wait until the data is read.

The parameters used are:

_remnant[0]: the drive number (0 or 1)

_remnant[1]: reserved (any value should be ignored)

The following return values are allowed:

VALUE DESCRIPTION

0 Read successfully completed

-32 Record not found

-33 Address mark not found

-34 Write protect error

-35 Sector not found

-36 Overrun error

-37 CRC error on the disk

-38 Illegal sector

-39 Parameters wrong

-40 Format error

-41
.
.
.

-49

Timeout

H-5

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

WRITE
The WRITE command is executed with a write mode of $80000000. Because of this the device
driver task has to wait until the data is written.

The parameters used are:

_remnant[0]: the drive number (0 or 1)

_remnant[1]: reserved (any value should be ignored)

The following return values are allowed:

VALUE DESCRIPTION

0 Write successfully completed

-32 Record not found

-33 Address mark not found

-34 Write protect error

-35 Sector not found

-36 Overrun error

-37 CRC error on the disk

-38 Illegal sector

-39 Parameters wrong

-40 Format error

-41
.
.
.

-49

Timeout

H-6

SECTION 5 APPENDIX

CLOSE
The CLOSE command is executed without any additional parameter.

The return value is not used.

SERVICE
Service codes from -2048 to -3071 are reserved for floppy drivers; the codes from -2048 to -2303
are reserved for VMEPROM.

The following services have to be supported from the device driver task:

SERVICE CODE DESCRIPTION

-2049 Set Floppy Parameter

-2050 Format
Floppy

The possible return values are listed in the READ/WRITE command description.

Parameters for the set floppy parameter service:

- service parameter[0]: drive number (0 or 1)
- service parameter[1]: number of cylinders (80)
- service parameter[2]: sectors/cylinder (32)
- service parameter[3]: bytes/sector (coded) (1)

VALUE Bytes/Sector

1 256

2 512

3 1024

4 2048

5 4096

H-7

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

- service parameter[4]: number of heads (2)
- service parameter[5]: RW gap ($20)
- service parameter[6]: format gap ($36)
- service parameter[7]: density (1)

VALUE Density

0 High Density

1 Double Density

- service parameter[8]: step rate (1)

Parameters for the format floppy service:

- service parameter[0]: drive number (0 or 1)

- service parameter[1]: address of an interleave table

The interleave table must have as many entries as the floppy has sectors/track, i.e.
the following table has an interleave of 0

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

while the next one has an interleave of 1.

1,9,2,10,3,11,4,12,5,13,6,14,7,15,8,16

Both have 16 sectors/track. The size of every entry is 1 byte.

H-8

SECTION 5 APPENDIX

H.2.2 SCSI Devices

The following commands have to be supported in order that VMEPROM works properly with the
device driver task.

OPEN
VMEPROM executes the OPEN command with a data exchange mode of $C0000000. Therefore,
the device driver task has to support Direct Memory Access. Furthermore, it has to have the
possibility to transfer the data directly into the applications (VMEPROMs) memory.

The parameters used are:

_remnant[0]: Buffer count
If the device driver task is able to cache data this entry defines how many buffers should
be used.

_remnant[1]: Buffer size
If the device driver task is able to cache data this entry defines the size of each buffer in
Bytes.

_remnant[2]: Controller SCSI ID
This entry defines which SCSI ID the controller should have.
Positive return values indicate a successful OPEN.

H-9

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

READ
The READ command is executed with a read mode of $80000000. Because of this the device
driver task has to wait until the data is read.

The parameters used are:

_remnant[0]: SCSI bus ID as returned from the get device list service.

_remnant[1]: Logical block size
VMEPROM uses a block size of 256 bytes.

The following return values are allowed:

VALUE DESCRIPTION

0 Read successfully completed

-50 SCSI error

-51 Illegal SCSI bus phase

-52 Illegal SCSI command

-53 Timeout

-54 Illegal drive ID

H-10

SECTION 5 APPENDIX

WRITE
The WRITE command is executed with a write mode of $80000000. Because of this the device
driver task has to wait until the data is written.

The parameters used are:

_remnant[0]: SCSI bus ID as returned from the get device list service

_remnant[1]: Logical block size
VMEPROM uses a block size of 256 bytes.

The following return values are allowed:

VALUE DESCRIPTION

0 Read successfully completed

-50 SCSI error

-51 Illegal SCSI bus phase

-52 Illegal SCSI command

-53 Timeout

-54 Illegal drive ID

CLOSE
The CLOSE command is executed without any additional parameter.

The return value is not used.

H-11

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

SERVICE
Service codes from -3072 to -4095 are reserved for floppy drivers; the codes from -3072 to -3327
are reserved for VMEPROM.

The following services have to be supported from the device driver task:

SERVICE
CODE

DESCRIPTION

-3073 Get Device List

-3074 Flush All Hashing Buffers

-3092 Transparent Mode

-3097 Format Disk
Any return value except 0 indicates an error.

Parameters for the Get Device List service:

input parameter:

service_parameter[0]: address of a buffer for the returned data

service_parameter[1]: maximum length of the buffer

returned data: status

Structure of the returned data:

typedef struct SCSI_CTRL
{
unsigned char id; /* SCSI bus ID of the device */
unsigned char lun; /* logical unit number */
unsigned char dev_type; /* device type as returned */

/* by the INQUIRY command*/
unsigned char flags;
unsigned long last_block; /* last logical block of the device */
unsigned long blocksize; /* physical blocksize of the device */
char dev_name[24]; /* vendor and product information */
} SCSI_CONTROL;

struct { unsigned long dev_count;
SCSI_CONTROL scntrl[6];
} GDL_PAR;

H-12

SECTION 5 APPENDIX

Parameters for the flush service:

input parameter:

nothing

returned data: status

Parameters for the transparent mode service:

input parameter:

service_parameter[0]: SCSI bus ID as returned from the get device list service
service_parameter[1]: SCSI command (byte 0-3)
service_parameter[2]: SCSI command (byte 4-7)
service_parameter[3]: SCSI command (byte 8-11)
service_parameter[4]: pointer to data buffer
service_parameter[5]: transfer count

returned data: data returned from the SCSI device/status

Parameters for the format disk service:

input parameter:

service_parameter[0]: SCSI bus ID as returned from the get device list service

returned data: status

H-13

THE APPLICATION COMMAND INTERFACE
PROGRAMMING GUIDE

This page was intentionally left blank

Table of Contents

1. Introduction . 1-1

1.1 The Logical Devices . 1-4
1.2 The Command Control Buffers . 1-5

2. The Complete Description of All Commands Provided by The
Application Command Interface . 2-1

2.1 The OPEN Command . 2-1
2.2 The CLOSE Command . 2-11
2.3 The READ Command . 2-13
2.4 The WRITE Command . 2-17
2.5 The SERVICE Command . 2-21
2.5.1 The Get Logical Device Number Service . 2-25

3. Command Chaining . 3-1

3.1 The CCB_ALLOCATE Command . 3-3
3.2 The CCB_FREE Command . 3-5

4. Error Codes . 4-1

4.1 Common Error Codes . 4-1
4.2 Error Codes Related To The OPEN Command . 4-1
4.3 Error Codes Related To The CLOSE Command . 4-2
4.4 Error Code Related To The READ Command . 4-2
4.5 Error Code Especially Related To The WRITE Command 4-2
4.6 Error Codes Related To The SERVICE Command . 4-2
4.7 Error Codes Especially Related To The CCB_ALLOCATE Command 4-3
4.8 Error Codes Especially Related To The CCB_FREE Command 4-3

5. The following example shows how to communicate with the ACI 5-1

Figure 1: The Access Control Flags of the Command Control Buffer 1-6
Figure 2: The inquiry and response mode . 2-2
Figure 3: The data exchange mode . 2-7
Figure 4: The read mode . 2-14
Figure 5: The write mode . 2-18

List of Tables

Table 1: The inquiry mode major and minor interrupt numbers 2-4
Table 2: The response mode major and minor interrupt numbers 2-6

SECTION 6 APPLICATION COMMAND INTERFACE PROGRAMMING GUIDE

1. Introduction

Each base board equipped with one or more EAGLE module slots provides a unique software interface
- called the Application Command Interface (ACI) - through which the application communicates with
specific devices on the EAGLE modules. Furthermore, the interface offers the capability to gain various
information about the EAGLE modules and the particular devices on the modules.

All communication through the Application Command Interface is done by the use of special data
packets named Command Control Buffers (CCB). These Command Control Buffers are provided and
managed by the Application Command Interface. Depending on the contents of such a Command
Control Buffer, issued through the Application Command Interface, the underlying software processes
the Command Control Buffer and carries out the requested command.
The Application Command Interface provides the following five commands:

1. The OPEN command to establish a logical connection between the application and a specific
device.

2. The CLOSE command to release an existing logical connection between the application and a
specific device.

3./4. The READ and WRITE commands used to initiate data exchanges via an existing logical
connection between the application and a device.

5. The SERVICE command to gain generic information about the devices accessible through the
Application Command Interface. This command is also used to modify device parameters, to get
use of special services provided by a logical group of devices; or to control the operating mode
of a certain device driver dealing with a particular device.

The status information about the command issued through the Application Command Interface is passed
to the application through the same Command Control Buffer used to send the command through the
interface.

A command is "issued" through the Application Command Interface by generating a MAILBOX 0
interrupt on the board providing the Application Command Interface. When the attention of the
Application Command Interface has been gained by such an interrupt, then the underlying software
verifies the consistency of the contents of the issued Command Control Buffer; passes the packet to
the entity dealing with the processing of the command; and finally the entity returns all status information
through the processed Command Control Buffer to report the course of the command execution to the
application. In general, the entity "returning" the Command Control Buffer through the Application
Command Interface uses certain semaphores within the Command Control Buffer to indicate the
completion of the issued command, and depending on the state of certain parameters, it probably gains
the attention of the application by generating an interrupt described by corresponding parameters.

1-1

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

As mentioned above the application accesses devices on an EAGLE module via a logical connection,
rather than directly. Therefore, each device accessible through the Application Command Interface is
identified by a unique logical device number which is provided by the interface.

A base board providing the Application Command Interface deposits the NUL terminated string "ACI"
beginning at offset $0 of the board’s main memory accessible from the VMEbus; and the VMEbus
address of the first Command Control Buffer (CCB 0), provided by the Application Command Interface,
is loaded into the long word at offset $4. Thus, the application intending to communicate with devices
through the Application Command Interface, or to get generic information about available devices, has
to look for the "ACI" identifier within the VMEbus’ standard (A24) and extended (A32) address range.

Any application has to verify whether the base board the application is running on provides the
Application Command Interface, too.

If the application has found a board providing the interface, it has to use the first Command Control
Buffer, addressed by the content of the long word at offset $4 of the board’s memory, either to issue
the SERVICE command to get information about the available devices or other information about the
EAGLE modules; or to issue the OPEN command to establish a logical connection between the
application and a specific device.

However, before the application uses the first Command Control Buffer to issue a command through
the Application Command Interface it has to gain the ownership of the first Command Control Buffer.

The detailed structure of a Command Control Buffer is described in the subsection "The Command
Control Buffers".

The Command Control Buffer contains some semaphores to be used to control the access to the buffer,
and to indicate various states of the Command Control Buffer. To gain the ownership of the Command
Control Buffer a semaphore has to be set to indicate that the buffer is already in use by an application.
Due to this fact, the application has to verify the state of this semaphore, and if the semaphore is
cleared, that means the Command Control Buffer is available, the application has to set it to prevent
the Command Control Buffer from being acquired by another application.

When the application has the ownership of the first Command Control Buffer, it has to prepare the
buffer to issue the particular command. The application can only issue the OPEN command or the
SERVICE command, to get generic information, through the Application Command Interface. All other
commands (CLOSE, READ, and WRITE) are refused by the Application Command Interface because
no logical connection between the application and a device exists.

1-2

SECTION 6 APPLICATION COMMAND INTERFACE PROGRAMMING GUIDE

Depending on the command to be issued, the application has to prepare the first Command Control
Buffer and has to set another semaphore that indicates that the Command Control Buffer is ready to
be passed through the Application Command Interface. To inform the Application Command Interface
about the readiness of the first Command Control Buffer used to issue the particular command (OPEN
or SERVICE), the application has to generate the MAILBOX 0 interrupt on the appropriate base board.

Now the application has to verify cyclically (polling) the state of the semaphore indicating the readiness
of the Command Control Buffer to issue a command, to determine that the command has been carried
out by the underlying software. When the command has been carried out, the underlying software
returns all status information through the first Command Control Buffer and clears the semaphore,
indicating the completion of the issued command. The semaphore described acts as a "BUSY"
semaphore set by the application, to indicate that the Command Control Buffer is "passed" to the
Application Command Interface in order to be processed, and cleared by the Application Command
Interface, to signal that the Command Control Buffer has been processed and is "returned" to the
application.

If the OPEN command has been issued through the Application Command Interface, then the first
Command Control Buffer contains the address of a Command Control Buffer allocated by the
Application Command Interface which is associated with the logical connection between the application
and the appropriate device. The application has to use this Command Control Buffer to issue
subsequent commands through the Application Command Interface (READ, WRITE, CLOSE, and
SERVICE).

In case of the SERVICE command the Command Control Buffer contains further information, depending
upon the requested service. Of course, the READ and WRITE commands also need additional
parameters.

Independent from the issued command, the first Command Control Buffer has to be released by the
application by clearing the semaphore which indicates that the buffer is already in use, to allow other
applications to gain the ownership of the first Command Control Buffer and to issue commands through
the Application Command Interface.

1-3

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

1.1 The Logical Devices

The devices on available EAGLE modules cannot be accessed from the VMEbus directly, but the
Application Command Interface provides a method to access devices on a "higher logical" level. Each
device accessible through the Application Command Interface is identified by an unique "logical device
number" that has been assigned to the device by the Application Command Interface. Such a logical
device number consists of a major device number and a minor device number. The major device
number packs up a number of devices with the same characteristics, and the minor device number
identifies each device in such a group of devices packed up under the major device number.

In general, devices are divided into two classes: the first class represents devices which can be shared
among a number of applications (SHARABLE devices), which means that multiple applications can
access the device simultaneously (e.g. SCSI Controller, FD Controller, Ethernet Controller, etc.).
Logical connections to a SHARABLE device can be established by multiple applications simultaneously.
The second class contains devices which cannot be shared among applications (NON_SHARABLE
devices), and only one application can establish a logical connection to such a device.

The device classes can be distinguished by the minor device number assigned to the corresponding
device: a minor device number in the range 0 to 31 identifies a NON-SHARABLE device (which means
up to 32 devices are packed up under one single major device number); and the minor device number
-1 specifies a SHARABLE device.

Furthermore, devices in the classes are divided into groups of devices with the same characteristics
(device type): devices which allow communication via a serial communication line (e.g. ethernet, FDDI,
RS-232, etc.), devices which communicate via a parallel "bus" (e.g. ordinary parallel I/O peripheral,
IEEE-488 Controller, etc.), devices which are attached to mass storage devices (e.g. SCSI Controller,
FD Controller, etc.). Thus the Application Command Interface offers accesses to generic SERIAL-,
PARALLEL-, and MASS STORAGE devices.

To establish a logical connection to a device the application has to issue the OPEN command through
the Application Command Interface with the appropriate logical device number of the device the
application wants to communicate with. The Application Command Interface returns a Command Control
Buffer associated with the particular device to the application and the application has to use this
Command Control Buffer to issue subsequent commands to the "device".

1-4

SECTION 6 APPLICATION COMMAND INTERFACE PROGRAMMING GUIDE

1.2 The Command Control Buffers

As mentioned previously the Command Control Buffer is the basic data structure to issue commands
through the Application Command Interface. This data structure of 256 bytes size consists of two logical
parts.

The first part (44 bytes) is used to store global information for the device driver dealing with the device
the Command Control Buffer is associated with, to control the access to the Command Control Buffer
and to reflect the state of a Command Control Buffer.

The second part (212 bytes) is exclusively used to specify the command to be issued through the
Application Command Interface, as well as the parameters that accompanies the command. All status
information reflecting the course of the processed command are passed through this area to the
application.

The generic structure of a Command Control Buffer is described below (using the C programming
language elements):

typedef struct _ccb
{

unsigned long _access_control_flags;
long (*ME_system_cal l) ();
struct _ccb *ccb_link;
long last_command;
unsigned long _reserved[7];
long command_or_status;
unsigned long remnant[52];

} CCB;

The first eleven entries in the data structure described above are common to all Command Control
Buffers, independent from the command being issued through the Application Command Interface. The
structure of the remaining 53 entries depend on the command issued, and whether the Command
Control Buffer is "passed" to the Application Command Interface or "returned" to the application through
the Application Command Interface.

unsigned long _access_control_flags
This entry represents the Access Control Field consisting of semaphores to control the access
to the Command Control Buffer and to reflect the state of the Command Control Buffer.

1-5

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

The semaphores depicted in Figure 1 are defined and described in the following.

• The ALLOCATE semaphore indicates whether a Command Control Buffer is already
acquired. If the ALLOCATE semaphore is cleared then the application may gain the
ownership of the Command Control Buffer by setting this semaphore. When the
semaphore is set it marks the Command Control Buffer as already allocated by
another application.

• The BUSY semaphore indicates whether the Command Control Buffer is ready to be
processed by the Application Command Interface. The application has to set this
semaphore to signal the readiness of the Command Control Buffer to be issued through
the Application Command Interface.
The BUSY semaphore is cleared when the command has been carried out and the
Command Control Buffer is "returned" to the application. Thus, the application may get
use of the BUSY semaphore to detect the completion of a command.

• The FINAL semaphore marks the last Command Control Buffer available in the list of
Command Control Buffers managed by the Application Command Interface. This
semaphore has not to be affected by the application.

• The PROCESS semaphore is used by the Application Command Interface for internal
purpose and signal that the command issued through the Application Command Interface
has been accepted by the interface, but the command has not been completed (in-
service). When the Command Control Buffer is "returned" to the application the
semaphore is cleared. Because this semaphore is exclusively used by the Application
Command Interface for its own purpose, it should never be affected by an application.

Figure 1: The Access Control Flags of the Command Control Buffer

31 30 29 28 27 0

Allocate Busy Process Final Reserved ••• Reserved

1-6

SECTION 6 APPLICATION COMMAND INTERFACE PROGRAMMING GUIDE

long (*ME_system_cal l) ()
This entry contains the address of a routine supplied by the Application Command Interface
which provides specific services. This address is exclusively used by a device driver dealing with
the device associated with the Command Control Buffer, and should not be altered by the
application!

struct _ccb *ccb_link
This entry addresses a Command Control Buffer chained to this Command Control Buffer. If no
Command Control Buffer is chained then this entry contains the value zero.

The application may issue a command to cause to chain up a certain number of Command
Control Buffers to this Command Control Buffer. If the application likes to get rid of the
Command Control Buffers chained to this Command Control Buffer it has to issue a command
to release all Command Control Buffers chained to the Command Control Buffer.

The application should not affect this entry!

long last_command
This entry contains the command code of the last command issued through the Application
Command Interface.

The application should not affect this entry!

unsigned long _remnant[7]
These entries are reserved for future use and should not be affected by the application.

long command_or_status
This entry is used by the application to specify the command to be "passed" through the
Application Command Interface (the type of the Command Control Buffer); and the entries
_remnant[0] to _remnant[51] contain further command parameters. When the Command
Control Buffer is "returned" through the Application Command Interface this entry contains the
status and the entries _remnant[0] to remnant[51] contain further status information.

In general, the zero integer value (OK) indicates that the command has been completed
successfully, whereas a negative integer value reports an error. The values -1 to -31 are
dedicated exclusively to the Application Command Interface to indicate common errors. All other
values beginning with the value -32 are returned by the device driver dealing with the device the
Command Control Buffer is associated with.

1-7

SECTION 6 APPLICATION COMMAND INTERFACE PROGRAMMING GUIDE

2. The Complete Description of All Commands Provided by The Application
Command Interface

The following subsections describe each command provided by the Application Command Interface in
detail and discuss the appropriate structure of the Command Control Buffers to issue the particular
command through the Application Interface, as well as the structure of the Command Control Buffer
"returned" through the interface to the application.

2.1 The OPEN Command

The OPEN command requests to establish a logical connection between the application and a
physical device; the appropriate Command Control Buffer is structured as presented below.

Whenever an OPEN command is issued through the Application Command Interface the underlying
software verifies whether it is necessary to initialize the specific physical device. If a physical device
can be owned by more than one application, like floppy disk controllers, or SCSI controllers, the
certain device is being initialized only on the receipt of the very first OPEN command. In contrast, a
physical device, which may be owned by only one single application, like a serial channel of a
serial communication controller, is initialized upon the receipt of every OPEN command.

typedef struct _ccb_open_command
{

unsigned long _access_control_flags;
long (*ME_system_cal l) ();
CCB *ccb_link;
long last_command;
unsigned long _reserved[7];
long command;
unsigned long logical_device_number;
unsigned long inquiry_mode;
unsigned long response_mode;
unsigned long data_exchange_mode;
unsigned long response_mode_address;
unsigned long _remnant[47];

} CCB_OPEN_COMMAND;

2-1

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

_access_control_flags:
The BUSY semaphore has to be set to indicate the readiness of the Command Control
Buffer to be processed; all other semaphores within the Access Control Field have to be left
unaffected.

command:
The value $00 indicates that the Command Control Buffer is used to issue the OPEN command
through the Application Command Interface.

logical_device_number:
The logical device code denotes the device the application likes to communicate with. The
Application Command Interface translates this code using all information provided by the
EAGLE Module Software Interface to determine the appropriate physical device. The
application can obtain a list of logical device numbers, relating to a group of physical
devices with the same functional characteristics using the SERVICE command GET LOGICAL
DEVICE NUMBER.

inquiry_mode:
The inquiry mode describes the way the application prefers to gain the attention of the
Application Command Interface when it will issue subsequent commands. Virtually, the
Application Command Interface’s attention is gained by the generation of a specific interrupt
on the corresponding base board which may be one of the following interrupts:

• one of the seven VMEbus interrupts, or

• one of the two FORCE Message Broadcast interrupts, or

• one of the eight Mailbox interrupts.

The least significant eight bits of the inquiry mode contain the major interrupt number and the
minor interrupt number as shown in Figure 2. The major interrupt number specifies the
interrupt class - one of the interrupts listed above -, whereas the minor interrupt number
specifies which of the interrupts in the class is being used. Refer to Table 1 for a list of the
different major and minor interrupt numbers.

Figure 2: The inquiry and response mode

31 24 23 16 15 8 7 4 3 0

Reserved Vector Number IRQ Level Major Interrupt
Number

Minor Interrupt
Number

2-2

SECTION 6 APPLICATION COMMAND INTERFACE PROGRAMMING GUIDE

The interrupt request level to be assigned to the particular interrupt is contained by bits 8 through
15 and has to be one of the MC680XX interrupt request levels. The Application Command
Interface uses this value to set the corresponding Interrupt Control Register of the FORCE Gate
Array-002 on the base board.

If one of the VMEbus interrupts is specified to gain the attention of the Application Command
Interface then bits 16 through 23 have to contain the exception vector number provided by the
VMEbus interrupter during the interrupt cycle. The most significant eight bits of the inquiry mode
are reserved and should be cleared.

response_mode:
The response mode describes the way the application prefers to be informed about the
completion of a command and may identify one of the following four modes:

• The POLLING mode where the application has to verify the state of the BUSY
semaphore within the Access Control Field of the certain Command Control
Buffer to detect the completion of a command.

• The MAILBOX interrupt mode where the Application Command Interface generates
one of the eight mailbox interrupts on the board on which the application is running.
Obviously, this mode can be selected only if a FORCE Gate Array FGA-002A is on
the board where the application runs.

• The VMEbus interrupt mode where the Application Command Interface initiates an
interrupt cycle on the VMEbus to inform the application about the completion of
a command.

• The FORCE Message Broadcast interrupt mode where the Application Command
Interface executes a FMB cycle on the VMEbus to inform the application about the
completion of a command. Obviously, this mode can be selected only if a FORCE
Gate Array FGA-002A is on the board where the application runs.

2-3

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

Table 1: The inquiry mode major and minor interrupt numbers

Major Interrupt Number Minor Interrupt Number Interrupt Source

$1 $0 VMEbus interrupt 1

$1 VMEbus interrupt 2

$2 VMEbus interrupt 3

$3 VMEbus interrupt 4

$4 VMEbus interrupt 5

$5 VMEbus interrupt 6

$6 VMEbus interrupt 7

$2 $0 FMB channel 0

$1 FMB channel 1

$3 $0 Mailbox 0

$1 Mailbox 1

$2 Mailbox 2

$3 Mailbox 3

$4 Mailbox 4

$5 Mailbox 5

$6 Mailbox 6

$7 Mailbox 7

2-4

SECTION 6 APPLICATION COMMAND INTERFACE PROGRAMMING GUIDE

The least significant eight bits of the response mode contain the major interrupt number and the minor
interrupt number as shown in Figure 2. The major interrupt number specifies the interrupt class -
one of the interrupts listed above -, whereas the minor interrupt number specifies which of the
interrupts in the class is being used. Refer to table 2 for a list of the different major and minor interrupt
numbers.

In contrast to the inquiry mode it is possible to specify the POLL mode; in this case the application
has to detect the completion of a command upon the state of the BUSY semaphore within the
Access Control Field of the particular Command Control Buffer.

The interrupt request level is reserved for the response mode and should be cleared.

If one of the VMEbus interrupts is specified to inform the application about the completion of a
command then bits 16 through 23 have to contain the exception vector number provided by the
VMEbus interrupter during the interrupt cycle. The most significant eight bits of the response mode
are reserved and should be cleared.

2-5

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

Table 2: The response mode major and minor interrupt numbers

Major Interrupt Number Minor Interrupt Number Interrupt Source

$0 $0 No interrupt, POLL mode

$1 $0 VMEbus interrupt 1

$1 VMEbus interrupt 2

$2 VMEbus interrupt 3

$3 VMEbus interrupt 4

$4 VMEbus interrupt 5

$5 VMEbus interrupt 6

$6 VMEbus interrupt 7

$2 $0 FMB channel 0

$1 FMB channel 1

$3 $0 Mailbox 0

$1 Mailbox 1

$2 Mailbox 2

$3 Mailbox 3

$4 Mailbox 4

$5 Mailbox 5

$6 Mailbox 6

$7 Mailbox 7

2-6

SECTION 6 APPLICATION COMMAND INTERFACE PROGRAMMING GUIDE

data_exchange_mode:
The data exchange mode defines the way the data has to be interchanged between the
application and a physical device and describes the location of the data to be transferred. As
shown in Figure 3 below, the most significant two bits specify the data exchange mode: the
DMA semaphore specifies whether the data has to be transferred by Direct Memory
Access or by the Microprocessor; and the GLOBAL semaphore identifies whether to transfer
data via the VMEbus to, or from a buffer provided by the application, or via the local data paths
to, or from a buffer offered by the device driver.

In particular, if the GLOBAL semaphore is set then the data is transferred via the VMEbus by
either the Direct Memory Access Controller or by the Microprocessor according to the state
of the DMA flag. If the DMA flag is set then the Direct Memory Access Controller transfers the
data, otherwise the microprocessor carries out the data transfer. The direction of the data
transfer depends on the data transfer command - READ or WRITE -initiated by the
application. If the GLOBAL flag is cleared then the application assumes that the device
driver provides a buffer used to accumulate the data received from a physical device or to store
the data to be transferred to a physical device. Thus, in this case the data transfer
between the application and a physical device proceeds in the two steps: in the first step the
application has to lead the Application Command Interface to supply an internal buffer used to
store the data to be transferred to a physical device, or to accumulate the data received from
a physical device. Depending upon the data transfer to be carried out, the application has to
move the data from its own buffer to the internal buffer at the beginning of the WRITE
command; or it has to copy the data from the internal buffer to its private buffer at the end
of the READ command.

Figure 3: The data exchange mode

31 30 29 28 27 0

DMA
CPU

LOCAL
GLOBAL

RESERVED RESERVED RESERVED ••• RESERVED

response_mode_address:
If the response mode either specifies one of the mailbox interrupts or one of the FMB interrupts
to be used to inform the application about the completion of a command then the response
mode address has to contain the address of the particular mailbox or FMB channel to be
accessed from the VMEbus to gain the application’s attention.

2-7

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

_remnant:
This data area may be used by the device driver for additional parameters. For further
information please refer to the detailed description of the device driver.

When the OPEN command has been carried out the status of the completion of the command
is returned through the same Command Control Buffer used to issue the command. The
structure of the corresponding Command Control Buffer is structured as described below.

typedef struct _ccb_open_status
{

unsigned long _access_control_flags;
long (*ME_system_cal l) ();
CCB *ccb_link;
long last_command;
unsigned long _reserved[7];
long status;
CCB *ccb;
long ccb_number;
unsigned long ACI_inquiry_address;
unsigned long _remnant[49];

} CCB_OPEN_STATUS;

_access_control_flags:
The BUSY and the PROCESS semaphore are both cleared to signal the completion of the
command. All other semaphores are unaffected.

status:
The status reports the course of the command and indicates one of the following cases:

ACI_OK:
Indicates the successful termination of the command and the other entries within the
Command Control Buffer contain further information.

ACI_E_ILLEGAL_COMMAND:
An illegal command code has been specified.

ACI_E_INCONSISTENT_COMMAND_CHAIN:
Inconsistent command chain.

ACI_E_BUS_ERROR:
A BUS / ADDRESS ERROR occurred within a device driver.

2-8

SECTION 6 APPLICATION COMMAND INTERFACE PROGRAMMING GUIDE

ACI_E_OPEN_CCB_ALREADY_IN_USE:
An attempt to establish a logical connection to a physical device is refused by the Application
Command Interface due to the fact that the Command Control Buffer is already used for a
logical connection to a device.

ACI_E_OPEN_ILLEGAL_INQUIRY_MODE:
An illegal inquiry mode has been specified. Probably, an invalid major or minor interrupt
number, or an illegal Interrupt Request Level has been specified, or an illegal Exception
Vector Number has been specified. The value is also returned when the data within the inquiry
mode are not consistent. For example, if the MAILBOX mode is specified but one or more of
the most significant 16 bits are set.

ACI_E_OPEN_ILLEGAL_RESPONSE_MODE:
An illegal response mode has been specified. Probably, an invalid major or minor interrupt
number, or an illegal Interrupt Request Level has been specified, or an illegal Exception
Vector Number has been specified. The value is also returned when the data within the
response mode are not consistent. For example, if the MAILBOX mode is specified but one or
more of the most significant 16 bits are set.

ACI_E_OPEN_ILLEGAL_DATA_EXCHANGE_MODE:
An illegal data exchange mode has been specified. This status is returned whenever one or
more of the least significant 30 bits are set.

ACI_E_OPEN_ILLEGAL_LOGICAL_DEVICE_NUMBER:
An illegal logical device number has been specified which cannot be translated to its
corresponding physical device code by the Application Command Interface.

ACI_E_OPEN_INSUFFICIENT_CCBS:
The Application Command Interface is not able to allocate a Command Control Buffer within its
internal Command Control Buffer list.

ACI_E_OPEN_DEVICE_ALREADY_IN_USE:
Another application already owns the physical device and no other can gain the ownership of
this device until the certain application releases the logical connection to the device.

ACI_E_OPEN_INSUFFICIENT_MEMORY:
The Application Command Interface cannot allocate the memory required by a device driver
when the device driver has to be activated upon the receipt of an OPEN.

ACI_E_OPEN_CANNOT_ACTIVATE_DEVICE_DRIVER:
The Application Command Interface cannot activate the device driver dealing with the physical
device.

2-9

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

*ccb:
Addresses the Command Control Buffer allocated by the Application Command Interface. The
assigned Control Buffer has to be used by the application to issue subsequent commands
through the Application Command Interface.

ccb_number:
Contains the number of the assigned Command Control Buffer and has to be used whenever
the application will gain the attention of the Application Command Interface by a FORCE
Message Broadcast cycle.

ACI_inquiry_address:
If the inquiry mode specifies to gain the attention of the Application Command Interface by
either a mailbox interrupt or a FMB interrupt then it contains according to the major and minor
interrupt number of the inquiry mode the address of the particular mailbox or FMB channel to
be accessed from the VMEbus.

_remnant:
This data area may be used by the device driver for additional parameters. For further
information please refer to the detailed description of the device driver.

Because the OPEN command has to be issued through the Command Control Buffer #0, the
application has to release the Command Control Buffer after it has gained its own Command
Control Buffer by clearing the ALLOCATE semaphore within the Access Control Field. All
subsequent commands are issued through the Application Command Interface using the
assigned Command Control Buffer.

2-10

SECTION 6 APPLICATION COMMAND INTERFACE PROGRAMMING GUIDE

2.2 The CLOSE Command

The CLOSE command requests to release a logical connection between the application and a
physical device, and depending on the type of the physical device to reset the device. After the
CLOSE command has been completed the application still owns the Command Control Buffer used
to issue commands through the Application Command Interface. To get rid of the Command Control
Buffer the application has to clear the ALLOCATE semaphore in the Access Control Field to return
the Command Control Buffer to the Application Command Interface.

The particular Command Control Buffer is structured as described below.

typedef struct _ccb_close_command
{

unsigned long _access_control_flags;
long (*ME_system_cal l) ();
CCB *ccb_link;
long last_command;
unsigned long _reserved[7];
long command;
unsigned long _remnant[52];

} CCB_CLOSE_COMMAND;

_access_control_flags:
The BUSY semaphore has to be set to indicate the readiness of the Command Control
Buffer to be processed; all other semaphores within the Access Control Field have to be left
unaffected.

command:
The value $0C indicates that the command control buffer is used to issue the CLOSE command
through the Application Command Interface.

_remnant:
This data area may be used by the device driver for additional parameters. For further
information please refer to the detailed description of the device driver.

2-11

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

After the CLOSE command has been carried out, the status of the completion of the command is
returned through the same Command Control Buffer used to issue the command. The corresponding
Command Control Buffer is structured as described below.

typedef struct _ccb_close_status
{

unsigned long _access_control_flags;
long (*ME_system_cal l) ();
CCB *ccb_link;
long last_command;
unsigned long _reserved[7];
long status;
unsigned long _remnant[52];

} CCB_CLOSE_STATUS;

_access_control_flags:
The BUSY and the PROCESS semaphore are both cleared to signal the completion of the
command. All other semaphore are unaffected.

status:
The status reports the course of the command and indicates one of the following cases:

ACI_OK:
Indicates the successful termination of the command

ACI_E_ILLEGAL_COMMAND:
An illegal command code has been specified.

ACI_E_INCONSISTENT_COMMAND_CHAIN:
Inconsistent command chain

ACI_E_BUS_ERROR:
A BUS / ADDRESS ERROR occurred within a device driver.

ACI_E_CLOSE_NO_CONNECTION:
The logical connection to the device is already released

ACI_E_CLOSE_CANNOT_DEACTIVATE_DEVICE_DRIVER:
The Application Command Interface cannot deactivate the device driver.

_remnant:
This data area may be used by the device driver for additional parameters. For further
information please refer to the detailed description of the device driver.

2-12

SECTION 6 APPLICATION COMMAND INTERFACE PROGRAMMING GUIDE

2.3 The READ Command

The READ command initiates a data exchange between a device and the application. The data is
transferred from a device to the application. If any data have to be read from a block oriented device
then blocks of data are transferred; in case of a character oriented device only bytes can be
received from the device. The number of blocks or bytes to be read has to be specified too. The
Command Control Buffer to issue a READ command is structured as described below.

typedef struct _ccb_read_command
{

unsigned long _access_control_flags;
long (*ME_system_cal l) ();
CCB *ccb_link;
long last_command;
unsigned long _reserved[7];
long command;
unsigned char *buffer;
unsigned long count;
unsigned long block_number;
unsigned long read_mode;
unsigned long _remnant[48];

} CCB_READ_COMMAND;

_access_control_flags:
The BUSY semaphore has to be set to indicate the readiness of the Command Control
Buffer to be processed; all other semaphores within the Access Control Field have to be left
unaffected.

command:
The value $04 indicates that the command control buffer is used to issue the READ command
through the Application Command Interface.

*buffer:
Addresses the buffer where the data read from the device have to be stored.

count:
Specifies either the number of blocks to be read from a block oriented device or specifies
the number of bytes to be read from a character oriented device.

2-13

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

block_number:
If any data have to be read from a block oriented device then this entry specifies the number
of the block where to start reading the number of blocks specified by count. In case of a
character oriented device this entry is negligible.

In particular, the entry block_number is interpreted in different ways depending on the certain
device driver: a device driver dealing with a block oriented device will use this entry to
determine the block number where to start reading the number of blocks specified by the entry
count. In contrast to the mentioned above, a device driver dealing with a character
oriented device will only consider the information contained by the entry count.

read_mode:
The read mode specifies the conditions under which the READ command has to be carried out.
As shown in Figure 4 it contains one flag to specify the mode of operation. This flag is valid for
all device drivers. The usage of all reserved flags is device driver dependent. For further
information please refer to the detailed description of the device driver.

The WAIT flag controls whether the READ command has to be carried out either in the wait
or the status mode. If this flag is set, the wait mode is selected. In this case the corresponding
device driver does not inform the application about the completion of the command until all
data blocks or bytes have been read properly or a fail state causes to terminate the operation
before all required data have been transferred.

In the status mode - the WAIT flag is cleared - the device driver reports the successful
completion of the command only if just as much blocks or bytes are already available as
specified by count and transfers the data to the specified buffer. If the number of available
data blocks or bytes is less than the required number, the device driver reports an error but
enters the number of the data blocks or bytes currently available into the entry count of the
Command Control Buffer used to issue the READ command to the device driver. Thus, the
application can use this information to read all available data by a subsequent READ command.

Figure 4: The read mode

31 30 29 28 27 0

WAIT RESERVE
D

RESERVED RESERVED RESERVED ••• RESERVED

2-14

SECTION 6 APPLICATION COMMAND INTERFACE PROGRAMMING GUIDE

_remnant:
This data area may be used by the device driver for additional parameters. For further
information please refer to the detailed description of the device driver.

When the READ command has been carried out by the device driver the completion status is
returned through the same Command Control Buffer used to issue the command. The
structure of the corresponding Command Control Buffer is described below.

typedef struct _ccb_read_status
{

unsigned long _access_control_flags;
long (*ME_system_cal l) ();
CCB *ccb_link;
long last_command;
unsigned long _reserved[7];
long status;
unsigned char *buffer;
unsigned long count;
unsigned long block_number;
unsigned long read_mode;
unsigned long _remnant[48];

} CCB_READ_STATUS;

_access_control_flags:
The BUSY and the PROCESS semaphore are both cleared to signal the command
completion. All other semaphores are unaffected.

status:
The status reports the state of the completion of the command and either indicates the
successful completion or the termination of the command due to the recognition of an error. In
the former case a zero is returned; in the latter case a negative value is returned. The following
error codes are returned by the Application Command Interface directly.

ACI_OK:
Indicates the successful termination of the command

ACI_E_ILLEGAL_COMMAND:
An illegal command code has been specified.

2-15

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

ACI_E_INCONSISTENT_COMMAND_CHAIN:
Inconsistent command chain

ACI_E_BUS_ERROR:
A BUS / ADDRESS ERROR occurred within a device driver.

ACI_E_READ_NO_CONNECTION:
The logical connection to a device does not exist

For device driver dependent error codes please refer to the detailed description of the
particular device driver.

*buffer:
This entry is not affected by the device driver and still addresses the beginning of the buffer
where the data read from the device have been stored.

count:
Contains the number of data blocks and bytes read from the device. In case of any error
detected by the device driver the number of bytes may be less than the number specified by the
application.

read_mode:
This entry is not affected by the device driver and still contains the read mode as specified
by the application.

_remnant:
This data area may be used by the device driver for additional parameters. For further
information please refer to the detailed description of the device driver.

2-16

SECTION 6 APPLICATION COMMAND INTERFACE PROGRAMMING GUIDE

2.4 The WRITE Command

The WRITE command initiates a data exchange between a device and the application. The data is
transferred from the application to a device. If any data have to be written to a block oriented device
then blocks of data are transferred; in case of a character oriented device only bytes can be
transmitted to the device. The number of blocks or bytes to be written have to be specified too. The
Command Control Buffer to issue a WRITE command is structured as described below.

typedef struct _ccb_write_command
{

unsigned long _access_control_flags;
long (*ME_system_cal l) ();
CCB *ccb_link;
long last_command;
unsigned long _reserved[7];
long command;
unsigned char *buffer;
unsigned long count;
unsigned long block_number;
unsigned long write_mode;
unsigned long _remnant[48];

} CCB_WRITE_COMMAND;

_access_control_flags:
The BUSY semaphore has to be set to indicate the readiness of the Command Control Buffer
to be processed; all other semaphores within the Access Control Field have to be left unaffected.

command:
The value $08 indicates that the command control buffer is used to issue the WRITE command
through the Application Command Interface.

*buffer:
Addresses the buffer which contains the data to be written to the device.

count:
Specifies either the number of blocks to be written to a block oriented device or specifies the
number of bytes to be written to a character oriented device.

2-17

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

block_number:
If any data have to be written to a block oriented device then this entry specifies the number of
the block where to start writing the number of blocks specified by count. In case of a character
oriented device this entry is negligible.

In particular, the entry block_number is interpreted in different ways depending on the certain
device driver: a device driver dealing with a block oriented device will use this entry to
determine the block number where to start writing the number of blocks specified by the entry
count. In contrast to the mentioned above, a device driver dealing with a character
oriented device will only consider the information contained by the entry count.

write_mode:
The write mode specifies the conditions under which the WRITE command has to be carried
out. As shown in Figure 5 it contains one flag to specify the mode of operation. This flag is
valid for all device drivers. The usage of all reserved flags is device driver dependent. For
further information please refer to the detailed description of the device driver.

The WAIT flag controls whether the WRITE command has to be carried out either in the wait
or the status mode. If this flag is set, the wait mode is selected. In this case the
corresponding device driver does not inform the application about the completion of the
command until all data blocks or bytes have been written properly or a fail state causes to
terminate the operation before all required data have been transferred. In the status mode
- the WAIT flag is cleared - the device driver reports the successful completion of the command
only if just as much blocks or bytes can be written to the device as specified by count and
transfers the data to the specific device from the buffer. If the number of data blocks or bytes
which can be written to the device is less than the required number, the device driver reports
an error but enters the number of the data blocks or bytes, that could be written to the device,
into the entry count of the Command Control Buffer used to issue the WRITE command to
the device driver. Thus, the application can use this information to write the possible amount
of data to the device by a subsequent WRITE command.

Figure 5 The write mode

31 30 29 28 27 0

WAIT RESERVE
D

RESERVE
D

RESERVE
D

RESERVE
D

••• RESERVE
D

2-18

SECTION 6 APPLICATION COMMAND INTERFACE PROGRAMMING GUIDE

_remnant:
This data area may be used by the device driver for additional parameters. For further
information please refer to the detailed description of the device driver.

When the WRITE command has been carried out by the device driver the status of the
completion of the command is returned through the same Command Control Buffer used to
issue the command. The structure of the corresponding Command Control Buffer is described
below.

typedef struct _ccb_write_status
{

unsigned long _access_control_flags;
long (*ME_system_cal l) ();
CCB *ccb_link;
long last_command;
unsigned long _reserved[7];
long status;
unsigned char *buffer;
unsigned long count;
unsigned long block_number;
unsigned long write_mode;
unsigned long _remnant[48];

} CCB_WRITE_STATUS;

_access_control_flags:
The BUSY and the PROCESS semaphore are both cleared to signal the completion of the
command. All other semaphores are unaffected.

status:
The status reports the state of the completion of the command and either indicates the
successful completion or the termination of the command due to the recognition of an error. In
the former case a zero is returned; in the latter case a negative value is returned. The
following error codes are returned by the Application Command Interface directly.

ACI_OK:
Indicates the successful termination of the command

ACI_E_ILLEGAL_COMMAND:
An illegal command code has been specified.

2-19

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

ACI_E_INCONSISTENT_COMMAND_CHAIN:
Inconsistent command chain

ACI_E_BUS_ERROR:
A BUS / ADDRESS ERROR occurred within a device driver.

ACI_E_WRITE_NO_CONNECTION:
The logical connection to a device does not exist.

For device driver dependent error codes please refer to the detailed description of the particular device
driver.

*buffer:
This entry is not affected by the device driver and still addresses the beginning of the buffer
containing the data which have been written to the device.

count:
Contains the number of data blocks and bytes written to the device. In case of any error
detected by the device driver the number of bytes may be less than the number specified by the
application.

write_mode:
This entry is not affected by the device driver and still contains the write mode as specified
by the application.

_remnant:
This data area may be used by the device driver for additional parameters. For further
information please refer to the detailed description of the device driver.

2-20

SECTION 6 APPLICATION COMMAND INTERFACE PROGRAMMING GUIDE

2.5 The SERVICE Command

The SERVICE command requests special services provided by the Application Command Interface and
a specific device driver. The Application Command Interface provides services to control the device
driver’s parameter, such as task priority etc., or to allocate additional memory which is dedicated to
a logical connection; and a device driver provides services to modify the hardware parameter of
a peripheral (changing the transmission rate of a serial communication controller, to enable or
disable special functions implemented in the peripheral, like timers, counters, etc.) or to change the
operating mode of the device driver. The structure of the Command Control Buffer to issue a
SERVICE command is described below.

typedef struct _ccb_service_command
{

unsigned long _access_control_flags;
long (*ME_system_cal l) ();
CCB *ccb_link;
long last_command;
unsigned long _reserved[7];
long command;
long service;
unsigned long service_parameter[51];

} CCB_SERVICE_COMMAND;

_access_control_flags:
The BUSY semaphore has to be set to indicate the readiness of the Command Control
Buffer to be processed; all other semaphores within the Access Control Field have to be left
unaffected.

command:
The value $10 indicates that the command control buffer is used to issue the SERVICE
command through the Application Command Interface.

2-21

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

service:
Specifies the proper service to be carried out by the Application Command Interface or the
appropriate device driver. A positive value identifies a service required of the Application
Command Interface, whereas a negative value designates a service to be provided by the
device driver. (Please refer to the appropriate "EAGLE Module’s Firmware User’s Manual" to get
detailed information about the services provided by the device drivers dealing with the devices
on the particular EAGLE module.)

The services listed in the table below are provided by the Application Command Interface and
the appropriate code has to be specified in the entry "service" to issue the particular service
request to the Application Command Interface.

Service Code

Get Logical Device Numbers 1

Services provided by the Application Command Interface.

2-22

SECTION 6 APPLICATION COMMAND INTERFACE PROGRAMMING GUIDE

service_parameter:
Depending on the required service further parameters are defined by this entry. The number
and type of these parameters depend on the specific device driver.

typedef struct _ccb_service_status
{

unsigned long _access_control_flags;
long (*ME_system_cal l) ();
CCB *ccb_link;
long last_command;
unsigned long _reserved[7];
long status;
unsigned long service_parameter[52];

} CCB_SERVICE_STATUS;

_access_control_flags:
The BUSY and the PROCESS semaphore are both cleared to signal the completion of the
command. All other semaphores are unaffected.

status:
The status reports the state of the completion of the command and either indicates the
successful completion or the termination of the command due to the recognition of an error. In
the former case a zero is returned; in the latter case a negative value is returned.

The following error codes are returned by the Application Command Interface directly.

ACI_OK:
Indicates the successful termination of the command.

ACI_E_ILLEGAL_COMMAND:
An illegal command code has been specified.

ACI_E_INCONSISTENT_COMMAND_CHAIN:
Inconsistent command chain.

ACI_E_BUS_ERROR:
A BUS / ADDRESS ERROR occurred within a device driver.

2-23

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

ACI_E_SERVICE_NO_CONNECTION:
The logical connection to a device does not exist.

ACI_E_SERVICE_NOT_SUPPORTED:
Indicates that the specific device driver does not support any SERVICE command.

ACI_SERVICE_UNKNOWN_SERVICE:
Unknown service requested.

For device driver dependent error codes please refer to the detailed description of the particular device
driver.

service_parameter:
Depending on the required service further information is returned to the application through
this area of the Command Control Buffer. The number of parameters and their meaning
depends on the specific device driver. (Please, refer to the detailed description of the
particular device driver).

The Application Command Interface provides services to get generic information about devices
on available EAGLE modules. These services are described in the following subsection in detail,
as well as the information returned by the Application Command Interface.

2-24

SECTION 6 APPLICATION COMMAND INTERFACE PROGRAMMING GUIDE

2.5.1 The Get Logical Device Number Service

The application has to issue the Get Logical Device Number service command to obtain a list of
logical device numbers of devices of a particular type (e.g. a device that exchanges data via serial
communication lines, a device that exchanges data through a parallel interface, etc.).The Application
Command Interface returns a list of logical device numbers identifying all devices on the available
EAGLE modules that are of the same type as specified by a parameter of the issued SERVICE
command. (For a detailed description of these bits, refer to the "EAGLE Module Specification.")

The Application Command Interface returns a table of logical device numbers to the application, and
each logical device number consists of two bytes. The most significant byte represents the major
device number assigned to device and the least significant byte specifies the maximum number of minor
devices packed up under the major device number.

Assuming the Application Command Interface has returned a logical device number $0203 (major
device number = 2, minor device numbers are ranging from 0 to 3), then this value has to be interpreted
in the following way: the most significant byte of this value represents the major device number (in this
case 2) which corresponds to a device on an available EAGLE module that is of the same type as
specified by a parameter of the SERVICE command. The least significant byte (in this case 3) indicates
the minor device number of the "last" device packed up under the major device number. Thus, four
devices are packed up under one major device number; the minor device number 0 corresponds to the
first minor device, the minor device number 1 corresponds to the second minor device, the minor device
number 2 corresponds to the third minor device, and last but not least the minor device number 3
corresponds to the fourth minor device packed up under the major device number.
The end of the table is indicated by the value $0000 (major device number = 0, minor device number
= 0).

Further parameters have to be passed to the Application Command Interface through the parameter
area of the certain Command Control Buffer as described below:

unsigned long parameter[0]
Contains the type of device. (For a detailed description of these bits, refer to the "EAGLE
Module Specification.")

unsigned long parameter[1]
Addresses a location within the VMEbus address space where the table of logical device
numbers has to be placed by the Application Command Interface. If this entry is cleared, then
the Application Command Interface places the logical device numbers within the same
Command Control Buffer beginning at the location parameter[1].

2-25

SECTION 6 APPLICATION COMMAND INTERFACE PROGRAMMING GUIDE

3. Command Chaining

The Application Command Interface supports the capability to issue a sequence of commands through
the interface which are executed in successive order. The commands are passed through the
Application Command Interface in a chain of Command Control Buffers and each Command Control
Buffer is used to issue a single command. The Application Command Interface informs the application
about the completion of all commands in the chain only until the last command has been executed
successfully, or it informs the application about the abnormal termination of a command when a fail
state has been detected.

A command chain is built up when the application issues the CCB_ALLOCATE command through the
Application Command Interface via an already existing logical connection to a device. The
CCB_ALLOCATE leads the Application Command Interface to allocate a given number of Command
Control Buffers and to chain these buffers to the Command Control Buffer associated with the logical
connection.

The entry [ccb_link] within the first part of each Command Control Buffer addresses the following
Command Control Buffer and the NULL pointer identifies the last Command Control Buffer in the chain
(A ’single’ Command Control Buffer is always the first and last Command Control Buffer in a ’chain’
consisting of only one Command Control Buffer).

To get rid of the Command Control Buffers chained to a Command Control Buffer associated with the
logical connection the application has to issue the CCB_FREE command to ’return’ the occupied
Command Control Buffers to the Application Command Interface.

The following constraints apply to the command chains:

1. Only READ and WRITE commands are allowed within the command chain. SERVICE
commands which affect the device driver only can be issued through the Application Command
Interface within a command chain.

2. Only the first Command Control Buffer of the chain can be used to issue the CCB_FREE
command.

3. The CCB_ALLOCATED command can be used only if the application already has issued an
OPEN command through the Application Command Interface and received its own Command
Control Buffer associated with the logical connection.

3-1

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

Therefore, the following steps are recommended to build up a command chain:

1. First, a logical connection has to be established between the application and a specific device
using the OPEN command.

2. When the application has established a logical connection, and has received its own
Command Control Buffer through the Application Command Interface, it can issue the
CCB_ALLOCATE command to acquire a specific number of Command Control Buffers.

3. The application must have prepared all Command Control Buffers in the chain - according
to the rules mentioned above - before the chain is passed through the Application Command
Interface.

4. Once the completion of all commands in the chain has been indicated, the application has to
verify the status of each issued command, and then may release the Command Control Buffers
in the chain by issuing a CCB_FREE command through the first Command Control Buffer of the
chain.

5. The application has to issue the CLOSE command using the remaining Command Control Buffer
to release the logical connection to the device.

3-2

SECTION 6 APPLICATION COMMAND INTERFACE PROGRAMMING GUIDE

3.1 The CCB_ALLOCATE Command

The CCB_ALLOCATE command is used to acquire a specific number of Command Control Buffers
which will be chained to the Command Control Buffer associated with the logical connection.

The particular Command Control Buffer is structured as described below.

typedef struct _ccb_allocate_command
{

unsigned long _access_control_flags;
long (*ME_system_cal l) ();
CCB *ccb_link;
long last_command;
unsigned long _reserved[7];
long command;
long ccb_number;
unsigned long reserved[50];

} CCB_ALLOCATE_COMMAND;

_access_control_flags:
The BUSY flag has to be set to indicate the readiness of the Command Control Buffer to
be processed; all other flags within the Access Control Field have to be left unaffected.

command:
The value $18 indicates that the command control buffer is used to issue the CCB_ALLOCATE
command through the Application Command Interface.

ccb_number:
Number of Command Control Buffers to be allocated and linked up to a chain.

3-3

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

After the CCB_ALLOCATE command has been carried out, the status of the completion of the
command in the same Command Control Buffer used to issue the command. The corresponding
Command Control Buffer is structured as described below.

typedef struct _ccb_allocate_status
{

unsigned long _access_control_flags;
long (*ME_system_cal l) ();
CCB *ccb_link;
long last_command;
unsigned long _reserved[7];
long status;
long ccb_number;
CCB *chain_head;
unsigned long reserved[51];

} CCB_ALLOCATE_STATUS;

_access_control_flags:
The BUSY and the PROCESS flags are both cleared to signal the completion of the command.
All other flags are unaffected.

ccb_link:
On successful completion of the command ccb_link contains a pointer to the next Command
Control Buffer in the chain. Otherwise this entry is cleared.

status:
The status reports the course of the command and indicates one of the following cases:

ACI_OK:
Indicates the successful termination of the command.

ACI_E_ILLEGAL_COMMAND:
An illegal command code has been specified.

ACI_E_INCONSISTENT_COMMAND_CHAIN:
Inconsistent command chain.

ACI_E_BUS_ERROR:
Reserved

3-4

SECTION 6 APPLICATION COMMAND INTERFACE PROGRAMMING GUIDE

ACI_E_ALLOCATE_ILLEGAL_NUMBER_OF_CCBS:
An illegal number of Command Control Buffers to be allocated has been specified.

ACI_E_ALLOCATE_INSUFFICIENT_CCBS:
No more Command Control Buffers available.

ccb_number:
Specifies the number of Command Control Buffers which have been allocated.

*chain_head:
Addresses the Command Control Buffer which is the first CCB in the chain.

3.2 The CCB_FREE Command

The CCB_FREE command is used to release all Command Control Buffers of a chain except the first
Command Control Buffer of the chain.

The particular Command Control Buffer is structured as described below.

typedef struct _ccb_free_command
{

unsigned long _access_control_flags;
long (*ME_system_cal l) ();
CCB *ccb_link;
long last_command;
unsigned long _reserved[7];
long command;
unsigned long reserved[52];

} CCB_FREE_COMMAND;

_access_control_flags:
The BUSY flag has to be set to indicate the readiness of the Command Control Buffer to
be processed; all other flags within the Access Control Field have to be left unaffected.

command:
The value $1C indicates that the command control buffer is used to issue the CCB_FREE
command through the Application Command Interface.

After the CCB_FREE command has been carried out, the status of the completion of the command
is returned through the same Command Control Buffer used to issue the command.

3-5

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

The corresponding Command Control Buffer is structured as described below.

typedef struct _ccb_free_status
{

unsigned long _access_control_flags;
long (*ME_system_cal l) ();
CCB *ccb_link;
long last_command;
unsigned long _reserved[7];
long status;
unsigned long reserved[52];

} CCB_FREE_STATUS;

_access_control_flags:
The BUSY and the PROCESS flags are both cleared to signal the completion of the command.
All other flags are unaffected.

status:
The status is always zero and indicates the successful termination of the command.

3-6

SECTION 6 APPLICATION COMMAND INTERFACE PROGRAMMING GUIDE

4. Error Codes

This section lists all error codes which are returned through the Application Command Interface to
indicate the fail states detected by the Application Command Interface. All error codes returned by a
particular device driver, dealing with a specific device on an EAGLE module, are described in the
appropriate "Firmware User’s Manual" of the EAGLE module.

4.1 Common Error Codes

ACI_OK 0

ACI_E_ILLEGAL_COMMAND -1

ACI_E_INCONSISTENT_COMMAND_CHAIN -2

ACI_E_BUS_ERROR -3

4.2 Error Codes Related To The OPEN Command

ACI_E_OPEN_CCB_ALREADY_ASSOCIATED -5

ACI_E_ILLEGAL_INQUIRY_MODE -6

ACI_E_ILLEGAL_RESPONSE_MODE -7

ACI_E_OPEN_ILLEGAL_DATA_EXCHANGE_MODE -8

ACI_E_OPEN_ILLEGAL_LOGICAL_DEVICE_NUMBE
R

-9

ACI_E_OPEN_INSUFFICIENT_CCBS -10

ACI_E_OPEN_DEVICE_ALREADY_IN_USE -11

ACI_E_OPEN_INSUFFICIENT_MEMORY -13

ACI_E_OPEN_CANNOT_ACTIVATE_DEVICE_DRIVE
R

-14

4-1

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

4.3 Error Codes Related To The CLOSE Command

ACI_E_CLOSE_NO_CONNECTION -5

ACI_E_CLOSE_CANNOT_DEACTIVATE_DEVICE_DRIVE
R

-6

4.4 Error Code Related To The READ Command

ACI_E_READ_NO_CONNECTION -5

4.5 Error Code Especially Related To The WRITE Command

ACI_E_WRITE_NO_CONNECTION -5

4.6 Error Codes Related To The SERVICE Command

ACI_E_SERVICE_NO_CONNECTION -5

ACI_E_SERVICE_NOT_SUPPORTED -6

ACI_E_SERVICE_UNKNOWN_SERVICE -7

4-2

SECTION 6 APPLICATION COMMAND INTERFACE PROGRAMMING GUIDE

4.7 Error Codes Especially Related To The CCB_ALLOCATE Command

ACI_E_ALLOCATE_ILLEGAL_NUMBER_OF_CCBS -4

ACI_E_ALLOCATE_INSUFFICIENT_CCBS -5

4.8 Error Codes Especially Related To The CCB_FREE Command

None

4-3

SECTION 6 APPLICATION COMMAND INTERFACE PROGRAMMING GUIDE

5. The following example shows how to communicate with the ACI

NOTE: This example has to run on the same board where the ACI is implemented. The
communication with the ACI is done in polled mode. This example is programmed to run
in a PDOS environment. It can easily be ported to any operating system.

#include "XLIB.h"

#define MAILBOX 0xffd80000L
#define DPR_BASE 0x80000000L

#define ACI_IDENTIFIER 0x41434900L

#define OPEN 0x00L
#define READ 0x04L
#define WRITE 0x08L
#define CLOSE 0x0CL
#define SERVICE 0x10L

#define ALLOCATE 31
#define BUSY 30

#define GET_LOGICAL_DEVICE_NUMBER 1L

#define POLL 0x00
#define MBOX0 0x30
#define IRQL2 0x200L

struct _ccb_t
{

unsigned long _access_control_flags;
long (* _ME_system_call) ();
struct _ccb_t *ccb_link;
long last_command;
unsigned long _reserved[7];
long command_or_status;
unsigned long _remnant[52];

};

struct _ccb_open_command
{

unsigned long _access_control_flags;
long (* _ME_system_call) ();
struct _ccb_t *ccb_link;
long last_command;
unsigned long _reserved[7];
long command;
unsigned long logical_device_number;
unsigned long inquiry_mode;
unsigned long response_mode;
unsigned long data_exchange_mode;
unsigned long response_mode_address;
unsigned long remnant[47];

};

5-1

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

struct _ccb_sopen_status
{

unsigned long _access_control_flags;
long (* _ME_system_call) ();
struct _ccb_t *ccb_link;
long last_command;
unsigned long _reserved[7];
long status;
struct _ccb_t *ccb;
long ccb_number;
unsigned long ACI_inquiry_address;
unsigned long remnant[49];

};

struct _ccb_close_command
{

unsigned long _access_control_flags;
long (* _ME_system_call) ();
struct _ccb_t *ccb_link;
long last_command;
unsigned long _reserved[7];
long command;
unsigned long release_state; /* !!!! always cleared !!!! */
unsigned long _remnant[51];

};

struct _ccb_sclose_status
{

unsigned long _access_control_flags;
long (* _ME_system_call) ();
struct _ccb_t *ccb_link;
long last_command;
unsigned long _reserved[7];
long status;
unsigned long _remnant[52];

};

struct _ccb_read_command
{

unsigned long _access_control_flags;
long (* _ME_system_call) ();
struct _ccb_t *ccb_link;
long last_command;
unsigned long _reserved[7];
long command;
unsigned char *buffer;
unsigned long count;
unsigned long block_number;
unsigned long read_mode;
unsigned long _remnant[48];

};

struct _ccb_sread_status
{

unsigned long _access_control_flags;
long (* _ME_system_call) ();
struct _ccb_t *ccb_link;
long last_command;
unsigned long _reserved[7];
long status;
unsigned char *buffer;
unsigned long count;
unsigned long block_number;
unsigned long read_mode;
unsigned long _remnant[48];

};

5-2

SECTION 6 APPLICATION COMMAND INTERFACE PROGRAMMING GUIDE

struct _ccb_write_command
{

unsigned long _access_control_flags;
long (* _ME_system_call) ();
struct _ccb_t *ccb_link;
long last_command;
unsigned long _reserved[7];
long command;
unsigned char *buffer;
unsigned long count;
unsigned long block_number;
unsigned long write_mode;
unsigned long _remnant[48];

};

struct _ccb_swrite_status
{

unsigned long _access_control_flags;
long (* _ME_system_call) ();
struct _ccb_t *ccb_link;
long last_command;
unsigned long _reserved[7];
long status;
unsigned char *buffer;
unsigned long count;
unsigned long block_number;
unsigned long write_mode;
unsigned long _remnant[48];

};

struct _ccb_cservice_command
{

unsigned long _access_control_flags;
long (* _ME_system_call) ();
struct _ccb_t *ccb_link;
unsigned long last_command;
unsigned long _reserved[7];
long command;
long service;
unsigned long parameter[51];

};

struct _ccb_sservice_status
{

unsigned long _access_control_flags;
long (* _ME_system_call) ();
struct _ccb_t *ccb_link;
long last_command;
unsigned long _reserved[7];
long status;
unsigned long _remnant[52];

};

/*

Forwards

*/
static void get_ccb();
static void put_ccb();
static void do_mbox0();
static void wait_not_busy();
static unsigned long do_service();
static short check_device();
static long open_device();
static unsigned long set_floppy_parameter();
static unsigned long do_me_read();
static unsigned long do_me_write();
static long close_device();

5-3

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

/*

call: main()

in : nothing

out : nothing

description:
’main’ first waits until the ME has written its identifier. Then,
the address of the first CCB is fetched. With this CCB the ACI is
asked if there is a floppy device driver task available. If yes,
this task is opened. Furthermore a service call for the floppy
device driver task is executed. At the end the first CCB0 is
released.

called subroutines: get_ccb(), check_device(), open_device(),
set_floppy_parameter(), put_ccb(), do_me_read(),
do_me_write(), close_device()

*/
main()
{ short found;

struct _ccb_open_command *ccb_ptr;
unsigned long floppy_ccb = 0L;
char buffer[256];

while (*(long *)0L != ACI_IDENTIFIER)
; /* wait until ME is ready */

ccb_ptr = (struct _ccb_open_command *)(*(long *)0x04L & 0x00ffffff);
/* get address of CCB0 */

get_ccb(ccb_ptr); /* get the first CCB */
if ((found = check_device(ccb_ptr,2L,0L)) != 0)

/* check for a floppy controller */
if (open_device(ccb_ptr,found) == 0)

/* there is one */
/* try to open it */

floppy_ccb = (long)(((struct _ccb_sopen_status *)ccb_ptr)->ccb)
& 0x00ffffffL;

/* open was ok, get our CCB */
put_ccb(ccb_ptr); /* CCB 0 is not longer used */
if (floppy_ccb != 0) /* execute only if a floppy device */

/* is present */
{ set_floppy_parameter(floppy_ccb,0L);

/* do a service call to the floppy */
/* device driver task */

do_me_read(floppy_ccb, 100L, buffer, 0L);
/* read block 100 from drive 0 */

do_me_write(floppy_ccb, 100L, buffer, 0L);
/* write block 100 to drive 0 */

close_device(floppy_ccb); /* terminate this connection */
} /* end if */

} /* end of ’main()’ */

/*
call: get_ccb(ccb_ptr)

in : ccb_ptr -> address of CCB which is to use

out : nothing

description:
get_ccb() waits until it gets the requested CCB. This MUST be done
with an opcode which cannot be interrupted from another processor.

called subroutines: none

*/

5-4

SECTION 6 APPLICATION COMMAND INTERFACE PROGRAMMING GUIDE

static void get_ccb(ccb_ptr)
struct _ccb_cservice_command *ccb_ptr;
{ while (XTAS((char *)&ccb_ptr->_access_control_flags) != 0)

/* allocating the CCB with a TAS */
; /* instruction */

} /* end of ’get_ccb()’ */

/*
call: put_ccb(ccb_ptr)

in : ccb_ptr -> address of CCB which is no longer used

out : nothing

description:
put_ccb() makes the previous allocated CCB accessible to other
tasks.

called subroutines: none

*/
static void put_ccb(ccb_ptr)
struct _ccb_cservice_command *ccb_ptr;
{ ccb_ptr->_access_control_flags &= ~(1L << ALLOCATE);

/* the CCB is free for other */
} /* end of ’put_ccb()’ */

/*
call: do_mbox0(ccb_address)

in : ccb_address -> CCB address

out : Nothing

description:
do_mbox0() initiates a Mailbox 0 interrupt. If the CCB is onboard
the interrupt will come to myself. If the CCB is offboard the
interrupt will be generated at this board.

called subroutines: none

*/
static void do_mbox0(ccb_address)
register unsigned long ccb_address;
{ if (ccb_address < DPR_BASE) /* ME onboard ? */

{ while (*(char *)MAILBOX < 0) /* initiate an onboard Mailbox 0 */
/* interrupt */

; /* until success */
} /* do not forget this bracket */
else /* the CCB is not on this board */
{ while (*(char *)(0xfcff0000 | ((ccb_address >> 16) & 0xff00)) < 0)

/* initiate a VMEbus Mailbox 0 */
/* interrupt */

; /* until success */
} /* end if */

} /* end of ’do_mbox0()’ */

/*
call: wait_not_busy(ccb_ptr)

in : ccb_ptr -> address of CCB which is used

out : nothing

description:
wait_not_busy() waits until someone (hopefully the ME) clears
the BUSY bit

called subroutines: none

*/

5-5

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

static void wait_not_busy(ccb_ptr)
struct _ccb_cservice_command *ccb_ptr;
{ while (ccb_ptr->_access_control_flags & (1L << BUSY))

; /* we’re waiting until the ME has */
/* cleared the BUSY bit */

} /* end of ’wait_not_busy()’ */

/*
call: do_service(ccb_ptr, service_number)

in : ccb_ptr -> CCB address
service_number -> number of the requested service call

out : error number

description:

called subroutines: do_mbox(0), wait_not_busy()

*/
static unsigned long do_service(ccb_ptr, service_number)
register struct _ccb_cservice_command *ccb_ptr;
unsigned long service_number;
{

ccb_ptr->command = SERVICE; /* we do a SERVICE call */
ccb_ptr->service = service_number; /* set requested service number */
ccb_ptr->_access_control_flags |= 1L << BUSY;

/* we have to set the BUSY bit */
do_mbox0(ccb_ptr); /* and to initiate a Mailbox 0 */

/* interrupt */
wait_not_busy(ccb_ptr); /* we’re waiting until the ME has */

/* done its job */
return(((struct _ccb_sservice_status *)ccb_ptr)->status);

/* return error value */
} /* end of do_service() */

/*
call: check_device(ccb_ptr, device, destination)

in : ccb_ptr -> address of CCB which is to use
device -> device mask
destination -> to where the data is to send

out : Major/Minor number of the (first) device or 0 if none

description:
check_device() checks if the accessed target has I/O device of the
type requested in ’device’.

called subroutines: do_mbox0(), wait_not_busy()

*/

5-6

SECTION 6 APPLICATION COMMAND INTERFACE PROGRAMMING GUIDE

static short check_device(ccb_ptr, device, destination)
register struct _ccb_cservice_command *ccb_ptr;
unsigned long device;
register short *destination;
{ ccb_ptr->command = SERVICE; /* we do a SERVICE call */

ccb_ptr->service = GET_LOGICAL_DEVICE_NUMBER;
/* we want to get logical device */
/* numbers */

ccb_ptr->parameter[0] = device; /* of these devices */
ccb_ptr->parameter[1] = (unsigned long)destination;

/* set destination of the list */
ccb_ptr->_access_control_flags |= 1L << BUSY;

/* we have to set the BUSY bit */
do_mbox0(ccb_ptr); /* and to initiate a Mailbox 0 */

/* interrupt */
wait_not_busy(ccb_ptr); /* we’re waiting until the ME has */

/* done its job */
if (destination == (short *)0) /* is the destination in the CCB ? */

destination = (short *)(&(ccb_ptr->parameter[1]));
/* yes, then we have set this address*/

return(*destination); /* return Major/Minor number */
} /* end of check_device() */

/*
call: open_device(ccb_ptr, major_minor)

in : ccb_ptr -> address of CCB which is to use
major_minor -> Major/Minor number of the device

out : ME return value in the CCB

description:
open_device() tries to open an I/O device. The device number is
given in ’major_minor’.

called subroutines: do_mbox0(), wait_not_busy()

*/
static long open_device(ccb_ptr, major_minor)
register struct _ccb_open_command *ccb_ptr;
short major_minor;
{ ccb_ptr->command = OPEN; /* we do a OPEN call */

ccb_ptr->logical_device_number = (unsigned long)major_minor;
/* set device wanted */

ccb_ptr->inquiry_mode = IRQL2 | MBOX0;
/* interrupt level 2/ Mailbox 0 */

ccb_ptr->response_mode = POLL; /* set response mode */
ccb_ptr->data_exchange_mode = 0xc0000000;

/* the device driver task has to */
/* transfer the data directly with */
/* DMA */

ccb_ptr->_access_control_flags |= 1L << BUSY;
/* we have to set the BUSY bit */

do_mbox0(ccb_ptr); /* and to initiate a Mailbox 0 */
/* interrupt */

wait_not_busy(ccb_ptr); /* we’re waiting until the ME has */
/* done its job */

return(((struct _ccb_sopen_status *)ccb_ptr)->status);
/* return open status */

} /* end of open_device() */

5-7

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

/*
call: set_floppy_parameter(ccb_ptr, drive)

in : ccb_ptr -> CCB address
drive -> floppy drive number

out : STATUS as returned from the ME in the CCB

description:
set_floppy_parameter executes a set floppy parameter service.

called subroutines: do_service()

*/
static unsigned long set_floppy_parameter(ccb_ptr, drive)
register struct _ccb_cservice_command *ccb_ptr;
unsigned long drive;
{ ccb_ptr->parameter[0] = drive; /* set drive number */

ccb_ptr->parameter[1] = 80; /* set number of cylinder */
ccb_ptr->parameter[2] = 32; /* set sectors/cylinder */
ccb_ptr->parameter[3] = 1; /* set bytes/sector (coded) */
ccb_ptr->parameter[4] = 2; /* set number of heads */
ccb_ptr->parameter[5] = 0x20; /* set R/W gap */
ccb_ptr->parameter[6] = 0x36; /* set format gap */
ccb_ptr->parameter[7] = 1; /* set density */
ccb_ptr->parameter[8] = 1; /* set step rate */
return(do_service(ccb_ptr,-2049L)); /* execute service */

} /* end of ’set_floppy_parameter()’ */

/*
call: do_me_read(ccb_ptr, block, buffer, drive)

in : ccb_ptr -> CCB address
block -> requested block number
buffer -> address of source data
drive -> drive number

out : STATUS as return from the ME in the CCB

description:
do_me_read() reads exactly one block from the given drive.
It waits until the ME has returned a status. The block size is
fixed to 256Bytes.

called subroutines: wait_not_busy(), do_mbox0()

*/

5-8

SECTION 6 APPLICATION COMMAND INTERFACE PROGRAMMING GUIDE

static unsigned long do_me_read(ccb_ptr, block, buffer, drive)
register struct _ccb_read_command *ccb_ptr;
unsigned long block;
unsigned char *buffer;
unsigned long drive;
{ ccb_ptr->command = READ; /* we do a READ call */

ccb_ptr->buffer = buffer; /* set read buffer */
ccb_ptr->count = 1; /* we want to read 1 block */
ccb_ptr->block_number = block; /* block number to read */
ccb_ptr->read_mode = 0x80000000; /* we want to wait for the data */
ccb_ptr->_remnant[0] = drive; /* set drive number */
ccb_ptr->_remnant[1] = 256L; /* set block size */
ccb_ptr->_access_control_flags |= 1L << BUSY;

/* we have to set the BUSY bit */
do_mbox0(ccb_ptr); /* and to initiate a Mailbox 0 */
wait_not_busy(ccb_ptr); /* we’re waiting until the ME has */

/* done its job */
return(((struct _ccb_sopen_status *)ccb_ptr)->status);

/* return error value */
} /* end of do_me_read() */

/*
call: do_me_write(ccb_ptr, block, buffer, drive)

in : ccb_ptr -> CCB address
block -> requested block number
buffer -> address where the data is to store
drive -> drive number

out : STATUS as return from the ME in the CCB

description:
do_me_write() writes exactly one block to the given drive.
It waits until the ME has returned a status. The block size is
fixed to 256Bytes.

called subroutines: wait_not_busy(), do_mbox0()

*/
static unsigned long do_me_write(ccb_ptr, block, buffer, drive)
register struct _ccb_write_command *ccb_ptr;
unsigned long block;
unsigned char *buffer;
unsigned long drive;
{ unsigned long error;

ccb_ptr->command = WRITE; /* we do a WRITE call */
ccb_ptr->buffer = buffer; /* set write buffer */
ccb_ptr->count = 1; /* we want to write 1 block */
ccb_ptr->block_number = block; /* block number to write */
ccb_ptr->write_mode = 0x80000000; /* we want to wait until written */
ccb_ptr->_remnant[0] = drive; /* set drive number */
ccb_ptr->_remnant[1] = 256L; /* set block size */
ccb_ptr->_access_control_flags |= 1L << BUSY;

/* we have to set the BUSY bit */
do_mbox0(ccb_ptr); /* and to initiate a Mailbox 0 */

/* interrupt */
wait_not_busy(ccb_ptr); /* we’re waiting until the ME has */

/* done its job */
return(((struct _ccb_sopen_status *)ccb_ptr)->status);

/* return error value */
} /* end of do_me_write() */

5-9

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

/*
call: close_device(ccb_ptr)

in : ccb_ptr -> address of CCB which is to use

out : ME return value in the CCB

description:
close_device() simply executes a CLOSE command to the given CCB.
The response mode is not of interrest because we simply poll the
answer.

called subroutines: do_mbox0(), wait_not_busy()

*/
static long close_device(ccb_ptr)
register struct _ccb_close_command *ccb_ptr;
{ unsigned long error;

ccb_ptr->command = CLOSE; /* we do a CLOSE call */
ccb_ptr->_access_control_flags |= 1L << BUSY;

/* we have to set the BUSY bit */
do_mbox0(ccb_ptr); /* and to initiate a Mailbox 0 */

/* interrupt */
wait_not_busy(ccb_ptr); /* we’re waiting until the ME has */

/* done its job */
error = ((struct _ccb_sclose_status *)ccb_ptr)->status;

/* get close status */
put_ccb(ccb_ptr); /* this CCB is no longer used */
return(error); /* return status */

} /* end of close_device() */

5-10

RAM PORT

TABLE OF CONTENTS

1. Accessing the RAM port through the ACI . 7-1

1.1 Acquire The RAM port . 7-1
1.2 Reading Data From The RAM port . 7-9
1.3 Writing Data To The RAM port . 7-12

2. Accessing The RAM Port From VMEPROM . 7-15

3. The Internal Structure Of The RAM Port . 7-17

This page intentionally left blank

INTRODUCTION

The Application Command Interface (ACI) provides a RAM port that can be used as a character oriented
input/output port of any VMEPROM task running on the same board as the ACI1. Within the VMEPROM
environment, the RAM port is assigned to a specific task using one of the appropriate commands offered by
VMEPROM. Thus, an application running on another board in the system communicates with the task via the
backplane; this means that the application sends VMEPROM commands through the RAM port to the task and
receives the responses of the task through the RAM port as well2.

1On the IBC-20 board, the RAM port is either:
• assigned to the task #0 depending on the state of the third bit of the rotary switch on the front panel;
• or assigned to every other task using the appropriate VMEPROM commands (CT, ASSIGN, and so on).

2 The data passed through RAM port depends on what the certain task expects as input; a VMEPROM task expects proper VMEPROM
commands such as lt , md , etc.; whereas a user-written task interprets the data in another context. Independent of the context any data is
exchanged through the RAM port "byte per byte".

This page intentionally left blank

SECTION 7 RAM PORT

1. Accessing the RAM port through the ACI

Before any data can be exchanged through the RAM port, an application has to gain the ownership of the RAM
port in the same manner as an application establishes a logical connection between itself and a specific device.
First, the application has to issue the OPEN command through the ACI specifying the RAM port as the device
to be opened. If the application has gained the ownership of the RAM port, then it exchanges data between
itself and the RAM port using the READ and WRITE commands provided by the ACI. The number of bytes
which can be read from or written to the RAM port using the appropriate commands is limited to one byte, and
any attempt to read or write more than one byte will be refused by the ACI. Also, any attempt to issue the
SERVICE command to the RAM port will be refused by the ACI, because the RAM port driver does not support
this feature. To release the RAM port the CLOSE command has to be issued. In the following subsections
all commands to gain the ownership of the RAM port, to exchange data between an application and the RAM
port, and to release the RAM port are described in detail.

1.1 Acquire The RAM port

The OPEN command requests the establishment of a logical connection between an application and the RAM
port; the appropriate CCB is structured as presented in Figure 1.

Whenever an OPEN command is issued through the Application Command Interface to ’open’ the RAM port,
the ACI verifies whether the RAM port is still available and in this case it takes possession of the RAM port.
If the RAM port is already owned by another application, the attempt to acquire the RAM port is refused by
the ACI.

typedef struct _ccb_open_command
{

unsigned long _access_control_flags;
long (*ME_system_cal l) ();
CCB *ccb_link;
long last_command;
unsigned long _reserved[7];
long command;
unsigned long logical_device_number;
unsigned long inquiry_mode;
unsigned long response_mode;
unsigned long data_exchange_mode;
unsigned long response_mode_address;
unsigned long _remnant[47];

} CCB_OPEN_COMMAND;

Figure 1: Structure of the CCB used to gain RAM port ownership

7-1

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

_access_control_flags:
The BUSY flag has to be set to indicate the readiness of the Command Control Buffer to be
processed; all other flags within the Access Control Field have to be left unaffected.

command:
The structure member contains the code $00 to mark the OPEN command.

logical_device_code:
Because the RAM port is permanently available through the ACI, the major and minor device
number of the RAM port are always the same: both the major device number of $0 and the minor
device number -4 ($FC) specify the RAM port. (The ACI keeps track of the major device numbers
of all devices available on present EAGLE modules; and due to the fact that the RAM port is
managed by the ACI directly and because it is permanently available through the ACI independent
of the presence of any EAGLE module, the ACI orders the RAM port at the beginning of its internal
device list. Therefore, the major device number assigned to the RAM port by the ACI is $0 and
the minor device number -4 denotes the proper RAM port.)

inquiry_mode:
The inquiry mode describes the way an application prefers to gain the attention of the ACI when
it issues subsequent commands. Virtually, the ACI’s attention is gained by the generation of a
specific interrupt on the corresponding IBC board which may be one of the following interrupts:

• one of the eight Mailbox interrupts,
• one of the seven VMEbus interrupts, or
• one of the two FORCE Message Broadcast interrupts

The least significant eight bit of the inquiry mode contain the major interrupt number and the
minor interrupt number as shown in the Figure 2. The major interrupt number specifies the
interrupt class - one of the interrupts listed above - whereas the minor interrupt number specifies
which of the interrupts in the class is being used. Refer to Table 1 which lists the different major
and minor interrupt numbers.

The interrupt request level to be assigned to the particular interrupt is contained by bits 8 through
15 and has to be one of the MC680X0 interrupt request levels. The ACI uses this value to set the
corresponding Interrupt Control Register.

If one of the VMEbus interrupts is specified to gain the attention of the ACI then bits 16 through
23 have to contain the exception vector number provided by the VMEbus interrupter during the
interrupt cycle. The most significant eight bits of the inquiry mode are reserved and should be
reset.

31 2423 1615 87 43 0

reserved vector number IRQ level major minor

Figure 2: The inquiry and response mode

7-2

SECTION 7 RAM PORT

response_mode:
The response mode describes the way an application prefers to be informed about the completion
of a command by the ACI and may identify one of the following four modes:

Major Interrupt Number Minor Interrupt Number Interrupt Source

$1 $0 VMEbus interrupt 1

$1 VMEbus interrupt 2

$2 VMEbus interrupt 3

$3 VMEbus interrupt 4

$4 VMEbus interrupt 5

$5 VMEbus interrupt 6

$6 VMEbus interrupt 7

$2 $0 FMB channel 0

$1 FMB channel 1

$3 $0 Mailbox 0

$1 Mailbox 1

$2 Mailbox 2

$3 Mailbox 3

$4 Mailbox 4

$5 Mailbox 5

$6 Mailbox 6

$7 Mailbox 7

Table 1: The inquiry mode major and minor interrupt numbers

7-3

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

• The POLLING mode where an application has to verify the state of the BUSY flag within
the Access Control Field of the certain Command Control Buffer to detect the completion
of a command.

• The MAILBOX interrupt mode where the ACI generates one of the eight mailbox interrupts
on the board on which the application is running. Obviously, this mode can be selected
only if a FORCE Gate Array FGA-002A is on the board where the application runs.

• The VMEbus interrupt mode where the ACI initiates an interrupt cycle on the VMEbus to
inform an application about the completion of a command.

• The FORCE Message Broadcast interrupt mode where the ACI executes a FMB cycle on
the VMEbus to inform an application about the completion of a command. Obviously, this
mode can be selected only if a FGA-002A is on the board where the application runs.

The least significant eight bit of the response mode contain the major interrupt number and the
minor interrupt number as shown in the Figure 2. The major interrupt number specifies the
interrupt class - one of the interrupts listed above - whereas the minor interrupt number specifies
which of the interrupts in the class is being used. Refer to Table 2 which lists the different major
and minor interrupt numbers.

In contrast to the inquiry mode it is possible to specify the POLL mode; in this case the application
has to detect the completion of a command upon the state of the BUSY flag within the Access
Control Field of the particular Command Control Buffer.

The interrupt request level to be assigned to the particular interrupt is contained by the bit 8
through 15 and has to be one of the MC680X0 interrupt request levels. If one of the VMEbus
interrupts is specified to inform the application about the completion of a command then bits 16
through 23 have to contain the exception vector number provided by the VMEbus interrupter
during the interrupt cycle. The most significant eight bits of the response mode are reserved and
should be reset.

7-4

SECTION 7 RAM PORT

Major Interrupt Number Minor Interrupt Number Interrupt Source

$0 $0 No interrupt, POLL mode

$1 $0 VMEbus interrupt 1

$1 VMEbus interrupt 2

$2 VMEbus interrupt 3

$3 VMEbus interrupt 4

$4 VMEbus interrupt 5

$5 VMEbus interrupt 6

$6 VMEbus interrupt 7

$2 $0 FMB channel 0

$1 FMB channel 1

$3 $0 Mailbox 0

$1 Mailbox 1

$2 Mailbox 2

$3 Mailbox 3

$4 Mailbox 4

$5 Mailbox 5

$6 Mailbox 6

$7 Mailbox 7

7-5

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

data_exchange_mode:
The data exchange mode defines the way the data has to be interchanged between the application and a physical
device and describes the location of the data to be transferred. As shown in Figure 3 below, the most significant two
bits specify the data exchange mode: the DMA semaphore specifies whether the data has to be transferred by
Direct Memory Access or by the Microprocessor; and the GLOBAL semaphore identifies whether to transfer data
via the VMEbus to, or from a buffer provided by the application, or via the local data paths to, or from a buffer offered
by the device driver.

In particular, if the GLOBAL semaphore is set then the data is transferred via the VMEbus by either the Direct
Memory Access Controller or by the Microprocessor according to the state of the DMA flag. If the DMA flag is set
then the Direct Memory Access Controller transfers the data, otherwise the microprocessor carries out the data transfer.
The direction of the data transfer depends on the data transfer command - READ or WRITE -initiated by the
application. If the GLOBAL flag is cleared then the application assumes that the device driver provides a buffer used
to accumulate the data received from a physical device or to store the data to be transferred to a physical device.
Thus, in this case the data transfer between the application and a physical device proceeds in the two steps: in the
first step the application has to lead the Application Command Interface to supply an internal buffer used to store the
data to be transferred to a physical device, or to accumulate the data received from a physical device. Depending
upon the data transfer to be carried out, the application has to move the data from its own buffer to the internal buffer
at the beginning of the WRITE command; or it has to copy the data from the internal buffer to its private buffer at
the end of the READ command.

31 30 29 28 27 1 0
DMA
CPU

LOCAL
GLOBAL

reserved reserved reserved • • • reserved reserved

Figure 3: The data exchange mode

application_address:
If the response mode either specifies one of the mailbox or FMB interrupts to be used to inform the application about
the completion of a command then the application address has to contain the address of the particular mailbox or FMB
channel to be accessed from the VMEbus to gain the application’s attention.

When the OPEN command has been carried out by the ACI it returns the status of the completion of the command in the same
Command Control Buffer used to issue the command. The structure of the corresponding Command Control Buffer is structured
as presented in Figure 4.

typedef struct _ccb_open_status
{

unsigned long _access_control_flags;
long (*ME_system_cal l) ();
CCB *ccb_link;
long last_command;
unsigned long _reserved[7];
long status;
CCB *ccb;
long ccb_number;
unsigned long ACI_inquiry_address;
unsigned long _remnant[49];

} CCB_OPEN_STATUS;

Figure 4: Structure of the CCB returned through ACI in response to attempt to open RAM port

7-6

SECTION 7 RAM PORT

_access_control_flags:
The BUSY and the PROCESS flags are both reset to signal the completion of the command. All other
flags are unaffected.

status :
The status reports the course of the command and indicates one of the following cases:

0: indicates the successful termination of the command and the other entries within the Command Control Buffer
contain further information.

-1: indicates that an illegal command code has been specified.

-2: inconsistent command chain

-3: a BUS/ADDRESS ERROR occurred withing a DEVICE DRIVER TASK

-4: reserved

-5: is as in OPEN of the IBC Programming User’s Guide (Section 6).

-6: an illegal inquiry mode has been specified. Probably, an invalid major or minor interrupt number, or an illegal
Interrupt Request Level has been specified, or an illegal Exception Vector Number has been specified. The
value is also returned when the data within the inquiry mode are not consistent. For example, if the MAILBOX
mode is specified but one or more of the most significant 16 bits are set.

-7: an illegal response mode has been specified. Probably, an invalid major, or minor interrupt number, or an illegal
Interrupt Request Level has been specified, or an illegal Exception Vector Number has been specified. The
value is also returned when the data within the response mode are not consistent. For example, if the MAILBOX
mode is specified but one or more of the most significant 16 bits are set.

-8: an illegal data exchange mode has been specified. This status is returned whenever one or more of the least
significant 29 bits are set.

-9: an illegal logical device number has been specified which cannot be translated to its corresponding physical
device code by the ACI.

-10: signals that the ACI is not able to allocate a Command Control Buffer within its internal Command Control Buffer
list.

-11: indicates that another application already owns the physical device and no other can gain the ownership of this
device until the certain application releases the logical connection to the device.

-12: reserved for internal use

-13: indicates that the ACI cannot allocate the memory required by a device driver task when the device driver has
to be activated upon the receipt of an OPEN.

-14: indicates that the ACI cannot create the device driver task.

7-7

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

*ccb:
Addresses the Command Control Buffer allocated by the ACI. The assigned Control Buffer has to be
used by an application to issue subsequent commands through the Application Command Interface.

ccb_number:
contains the number of the assigned Command Control Buffer and has to be used whenever an
application will gain the attention of the ACI by a FORCE Message Broadcast cycle.

ACI_inquiry_address:
If the inquiry mode specifies to gain the attention of the ACI by either a mailbox interrupt or a FMB
interrupt then it contains according to the major and minor interrupt number of the inquiry mode the
address of the particular mailbox or FMB channel to be accessed from the VMEbus.

Because the OPEN command has to be issued through the Command Control Buffer #0, an application has
to release the Command Control Buffer after it has gained its own Command Control Buffer by resetting the
ALLOCATE flag within the Access Control Field. All subsequent commands are issued through the Application
Command Interface using the assigned Command Control Buffer.

7-8

SECTION 7 RAM PORT

1.2 Reading Data From The RAM port

The READ command initiates a data exchange between the character oriented RAM port and an application
and the data is transferred from the RAM port to an application.

The Command Control Buffer to read data from the RAM port is structured as described in Figure 5.

typedef struct _ccb_read_command
{

unsigned long _access_control_flags;
long (*ME_system_cal l) ();
CCB *ccb_link;
long last_command;
unsigned long _reserved[7];
long command;
unsigned char *buffer;
unsigned long count;
unsigned long block_number;
unsigned long read_mode;
unsigned long _remnant[48];

} CCB_READ_COMMAND;

Figure 5: Structure of CCB used to read data from RAM port

_access_control_flags:
The BUSY flag has to be set to indicate the readiness of the Command Control Buffer to be
processed; all other flags within the Access Control Field have to be left unaffected.

command:
The structure member contains the code $04 to identify the READ command.

*buffer:
addresses the buffer where the data byte read from the RAM port has to be stored.

count:
The ACI allows only one byte to be read from the RAM port at the time and refuses any attempt
to read more or less than one byte. Thus, the count has to specify always one byte ($1).

block_number:
Because the RAM port is a character oriented device this entry is not considered and should be
cleared.

read_mode:
Each read access to the RAM port is carried out in the status mode independent of the state of
the WAIT flag. Thus, any attempt to read a byte from the RAM port either returns an available
data byte, or is refused if no data is available. It is recommendable to clear all bits.

7-9

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

When the READ command has been carried out by the ACI the status of the completion of the command
is returned within the same Command Control Buffer used to issue the command. The structure of the
corresponding Command Control Buffer is presented in Figure 6.

typedef struct _ccb_read_status
{

unsigned long _access_control_flags;
long (*ME_system_cal l) ();
CCB *ccb_link;
long last_command;
unsigned long _reserved[7];
long status;
unsigned char *buffer;
unsigned long count;
unsigned long block_number;
unsigned long read_mode;
unsigned long _remnant[48];

} CCB_READ_STATUS;

Figure 6: Structure of CCB returned through ACI in response to attempt to read data from RAM
port

_access_control_flags:
The BUSY and the PROCESS flags are both reset to signal the completion of the command. All
other flags are unaffected.

status:
The status reports the state of the completion of the command and either indicates the successfull
completion or the termination of the command due to the recognition of an error. In the former
case the zero value is returned; in the latter case a negative value is returned. The different error
codes which may be returned are described below in detail:

0: indicates the successful termination of the command and the other entries within the Command Control Buffer
contain further information.

-1: illegal command code.

-2: inconsistent chain.

-3: a BUS/ADDRESS ERROR occurred withing a DEVICE DRIVER TASK

-4: reserved.

-5: indicates an attempt to read a data byte from the RAM port but the RAM port’s internal ’transmit’ buffer does
not contain any data.

-6: reserved for future use.

-7: indicates an attempt to read more than one data byte or to read less than one data byte from the RAM port at
the time.

7-10

SECTION 7 RAM PORT

7-11

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

*buffer:
This entry is not affected and still addresses the beginning of the buffer where the data byte read from
the RAM port has been stored.

count:
contains the number of data bytes read from the RAM port (always one). In case of any error detected
by the ACI the number of data bytes may be less than the number of data to be read as specified by
the application.

block_number:
This entry is not affected and still contains the read mode as specified by the application.

read_mode:
This entry is not affected and still contains the read mode as specified by the application.

7-12

SECTION 7 RAM PORT

1.3 Writing Data To The RAM port

The WRITE command initiates a data exchange between the character oriented RAM port and an application
and the data is transferred from the application to the RAM port.

The Command Control Buffer to write data to the RAM port is structured as described in Figure 7.

typedef struct _ccb_write_command
{

unsigned long _access_control_flags;
long (*ME_system_cal l) ();
CCB *ccb_link;
long last_command;
unsigned long _reserved[7];
long command;
unsigned char *buffer;
unsigned long count;
unsigned long block_number;
unsigned long write_mode;
unsigned long _remnant[48];

} CCB_WRITE_COMMAND;

Figure 7: Structure of CCB used to write data to RAM port

_access_control_flags:
The BUSY flag has to be set to indicate the readiness of the Command Control Buffer to be processed; all other flags
within the Access Control Field have to be left unaffected.

command:
The structure member contains the code $08 to identify the WRITE command.

*buffer:
Addresses the buffer where the data byte to be written to the RAM port is stored.

count:
The ACI allows only one byte to be written to the RAM port at the time and refuses any attempt to write more or less
than one byte. Thus, the count has to specify always one byte ($1).

block_number:
Because the RAM port is a character oriented device this entry is not considered and should be cleared.

write_mode:
Each write access to the RAM port is carried out in the status mode independent of the state of the WAIT flag. Thus,
any attempt to write a byte to the RAM port either is accepted, or is refused if no more data can be accumulated by the
RAM port. So, it is recommendable to clear all bits.

When the WRITE command has been carried out by the ACI the status of the completion of the command is returned within the
same Command Control Buffer used to issue the command. The structure of the corresponding Command Control Buffer is
presented in Figure 8.

7-13

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

typedef struct _ccb_write_status
{

unsigned long _access_control_flags;
long (*ME_system_cal l) ();
CCB *ccb_link;
long last_command;
unsigned long _reserved[7];
long status;
unsigned char *buffer;
unsigned long count;
unsigned long block_number;
unsigned long write_mode;
unsigned long _remnant[48];

} CCB_WRITE_STATUS;

Figure 8: Structure of CCB returned through ACI in response to attempt to write data to RAM port

_access_control_flags:
The BUSY and the PROCESS flags are both reset to signal the completion of the command. All
other flags are unaffected.

status:
The status reports the state of the completion of the command and either indicates the successfull
completion or the termination of the command due to the recognition of an error. In the former
case the zero value is returned; in the latter case a negative value is returned. The different error
codes which may be returned are described below in detail:

0: indicates the successful termination of the command and the other entries within the Command Control Buffer
contain further information.

-1: illegal command code.

-2: inconsistent chain.

-3: a BUS/ADDRESS ERROR occurred withing a DEVICE DRIVER TASK

-4: reserved.

-5: indicates that an attempt to write data bytes to the RAM port has been refused due to the fact that the RAM port
has been ’locked’.

-6: indicates that an attempt to write data bytes to the RAM port has been refused due to the fact that the internal
’receive’ buffer of the RAM port cannot accumulate further data.

-7: indicates an attempt to write more than one data byte or to write less than one data byte to the RAM port at the
time.

7-14

SECTION 7 RAM PORT

*buffer:
This entry is not affected and still addresses the beginning of the buffer where the data byte read from
the RAM port has been stored.

count:
Contains the number of data bytes written to the RAM port (always one). In case of any error detected
by the ACI the number of data bytes may be less than the number of data to be written as specified
by the application.

block_number:
This entry is not affected and still contains the read mode as specified by the application.

write_mode:
This entry is not affected and still contains the write mode as specified by the application.

7-15

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

2. Accessing The RAM Port From VMEPROM

VMEPROM is equipped with a UART driver to exchange data via the RAM port and to alter the operating mode
of the RAM port3. This RAM port UART driver is constructed like all other standard VMEPROM (PDOS) UART
drivers and thus provides the same functions.

In contrast to the standard UART drivers the ’port’ flags related to the RAM port UART driver affect it in a
different way. As shown in Figure 9 the ’port’ flags consists of eight bits and the RAM port UART driver
considers only the C-flag and the I-flag; all other flags are ignored by the driver. The C-flag is interpreted by
the kernel rather than by the RAM port driver. And the kernel determines upon the state of this flag how to treat
control characters, like CTRL-C, ESC, etc.,received via the RAM port. To modify the ’port’ flags the VMEPROM
command bp has to be used and the state of the certain flags are specified as an argument in the argument
list of the command. In the following list each flag and its effect on the RAM port UART driver is described in
detail:

S: The control flow by software flag specifies whether the data flow via the ’serial’ data communication line
has to be managed by the XON/XOFF protocol. If this flag is set then the XON and XOFF characters
are used to control data flow via the serial data communication line; otherwise the XON/XOFF protocol
is not used.

C: The ignore control character flag either leads the appropriate routine of the VMEPROM kernel dealing
with the character input to interprete received control characters, or to pass the control characters
through the kernel without any processing. If the flag is set then all received control characters are
passed to the application directly; otherwise the kernel interprets the control characters CTRL-C,
CTRL-X, ESC.

D: The control flow by hardware flag specifies whether the data flow via the ’serial’ data communication
line has to be managed by the specific hardware handshake signals. If this flag is set then the DTR
signal is used to control data flow via the serial data communication line; otherwise no hardware
handshake protocol is used.

8: The size of character flag denotes the number of bits used to represent a character to be received or
transmitted via the serial data communication line. If the flag is set then the character’s size is eight bits;
otherwise seven bits are used to represent a character.

I: The not interrupt driven input flag controls whether the receipt of a character is indicated by a hardware
interrupt. If this flag is set then the receipt of a character is not indicated by an interrupt; otherwise a
hardware interrupt is generated to indicate the receipt of a character.

P: The even parity enable flag indicates to generate an even parity bit for each character to be transmitted
via the serial data communication line and to check the even parity of each character received via the
serial data communication line. If this flag is set then the even parity generation and verification is done
for each received and transmitted character; otherwise the parity generation and verification is disabled.

3The VMEPROM command "bp’ can be used to obtain the port number of the RAM port.

7-16

SECTION 7 RAM PORT

H: reserved for the VMEPROM kernel’s internal purpose

F: reserved for the VMEPROM kernel’s internal purpose

7 6 5 4 3 2 1 0

F H P I 8 D C S

Figure 9: RAM Port UART Driver’s ’port’ Flags

7-17

SYS68K/IBC-20 FIRMWARE USER’S MANUAL FORCE COMPUTERS

3. The Internal Structure Of The RAM Port

The RAM port provided by the ACI consists of an internal 32 bits width semaphore register and two 128 byte
width circular buffers - the ’receive’ and ’transmit’ buffer - each equipped with two pointers to manage insertion
and removal of data. Both, the RAM port driver of the ACI and the RAM port UART driver provided by
VMEPROM have access to the internal flag register, the ’receive’ buffer and the ’transmit’ buffer of the RAM
port as depicted in Figure 10.

Application ACI’s RAM port driver VMEPROM
Command RAM port
Interface UART driver

. .

. .

. K2$CHRI

. 0 127 .

. .
WRITE Receive Buffer UDxG

. .

. .

. .

. RDptr RxDptr .

. .

. 0 127 .

. .
READ Transmit Buffer UDxP

. .

. .

. .

. .
TxDptr WRptr

Figure 10: Internal Structure of the RAM port

Within the context of the RAM port the receive describes the process of writing data through the Application
Command Interface to the RAM port’s receive buffer; and the transmit relates to the process of reading data
through the ACI from the RAM port’s transmit buffer.

Every access to the RAM port through the ACI and the RAM port’s operating mode are controlled by the
specific flags in the internal semaphore register. As shown in Figure 11 the most significant two bits in this
register are in use and described below:

7-18

SECTION 7 RAM PORT

• The RPINTR flag either causes to pass direclty a received character to the appropriate routine of the
VMEPROM kernel dealing with character input, or to store the received character in the RAM port’s
internal receive buffer. If the RPINTR flag is cleared then all received data bytes are placed in the
receive buffer as long as enough room is available in the buffer. In the case that the RPINTR flag is
set then all received characters are passed direcly to the kernel of VMEPROM via a specific call.

The RPINTR flag is modified upon the state of the I-flag in the RAM port’s ’port’ flag whenever the
routine UxDB of the VMEPROM’s RAM port UART driver is called (I-flag = 0 -> RPINTR = 1; I-flag =
1 -> RPINTR = 0;)

• The RPLOCK flag is used to refuse any attempt to write further data to the RAM port through the
Application Command Interface. If the RPLOCK flag is reset then data bytes can be written to the RAM
port; otherwise any attempt to write data to the RAM port is refused by the ACI’s RAM port driver. This
flag is set by the UxHW routine provided by the VMEPROM RAM port UART driver to cause to refuse
an further attempt to write data bytes to the RAM port from the VMEbus side. The RAM port UART
driver’s routine UxLW resets the RPLOCK flag to enable the receipt of further data via the RAM port4.

31 30 29 28 27 1 0

RPINTR RPLOCK reserved reserved reserved • • • reserved reserved

Figure 11: The semaphore register of the RAM port

4 The routines UxHW (Signal High Water) and UxLW (Signal Low Water) provided by the VMEPROM RAM port UART driver are called by the
VMEPROM kernel depending on the state of the internal type-ahead buffer. Please refer to the "PDOS Developer’s Reference" for more
detailed information.

7-19

SECTION 8 HISTORY OF MANUAL

1. HISTORY OF MANUAL REVISIONS

Revision No. Description Date of Last Change

0 This manaual describes the
IBC-20 revision 2 firmware.

FEB/05/1993

1-1

