

2020268

REFERENCE MANUAL

BASIC
Language

Reprinted 2-70

Any and all material contained herein is supplied without represen
tation or warranty of any kind. The General Electric Company there
fore assumes no responsibility and shall have no liability of any
kind arising from the supply or use of this publication or any ma
terial contained herein.

GEN ERAL. ELECTRIC
INFORMATION SERVICE DEPT.

Preface

This manual, which combines and supersedes two other manuals--BASIC Language Refer
ence Manual (202026A) and BASIC Language Extensions Reference Manual (802207--describes
the version of the BASIC language used with the General Electric Mark I Time-Sharing
Service.

Another manual, Mark I Time-Sharing Service Command System Reference Manual (229116)
explains all of the system commands that are a part of the Mark I Time-Sharing Service. It
should be consulted for system information.

The original development of the BASIC language was supported by the National Science
Foundation under the terms of a grant to Dartmouth College. Under this grant, Dartmouth
College developed, under the direction of Professors John G. Kemeny and Thomas E. Kurtz,
the BASIC language compiler. Since that development, BASIC has been offered as part of the
Time-Sharing Service of General Electric's Information Service Department.

General Electric has continued to expand the capabilities of BASIC, adding such versatile
features as string manipulation, data files, formatted line output, and others.

© 1965, 1969, 1970 by General Electric Company

Contents

Page

IN'TRODUCTION. • 1

1. A BASIC PRIMER . 2

An Example. 2
Formulas. 5

Numbers. 6
Variables. • 6

Loops. • • . 7
Lists and Tables • • . 9
Errors and Debugging. .. 11
Summary of Elementary BASIC Statements. .. 14

LET. • .. 14
READ and DATA. .. 14
IN'PUT . • .• 15
PRrnT • . • . . •. 15
G¢> T¢> • • . . • • . . • 16
¢>N- -G¢> T¢> • . . • .. 16
IF--THEN. • • • . • 17
F¢>R and NEXT • .. 17
DIM. • . •. 18
END. . • • • • .. 18

2. ADVANCED BASIC. • 19

Alphanumeric Data and String Manipulation. .. 19
DIM. • • .. 19
LET. • • .. 19
READ and DATA. .. 20
rnpUT . . . • • • . • . • 20
PRrnT . • •. 21
IF--THEN. .. 21

More About Printing. .. 21
PRrnT • • • 21
TAB. • . • • •. 23
Rules for Printing Number s. • • 23

PRrnT USING and Image Statements. . • . • 24
Integer Fields. . • • • 25
Decimal Fields .. 25
Exponential Fields. • 26
Alphanumeric Fields. .. 26
Literal Fields • • .. 27
General Rules. •• 27

Functions • • .. 28
rnT • . • • • .. 28
RND. • • . . • • . . . • . . • • • • • • • • 28
SGN. • • • • . .. 30
CLK. • .. 31
TIM. • • • .. 31
DEF. • • .. 31

Additional BASIC Statements • .. 31
G¢>SUB and RETURN. .. 32

iii

CONTENTS (CONT'D)

Page

2. ADVANCED BASIC STATEMENTS (Cont'd)

CALL. • • • • • . .. 33
ST1£)P. • • • • . • . . . • . . . • . 35
REM • • • . . . • • • • • 35
REST1£)RE . • • • . • . . . • • • • . . . • • • • • • . • . . • . • . 36
CHAIN' . • . . . • • • . . 36

Data Files. • • • • • . . • 37
File Reference. • • • • • • • • 37
File Designator • • • • • • • • • . 38
Dummy Catalog Files. • . • • • • . . . 38

BCD Data Files • • . . . • • • • • • • • . . 39
File Reading • . . . • . • . . • • • . . . • . • • • . • • • • 39
File Writing . • • • • • . • • 40
End-of-File and End-of-Space • . • . . • • • • . . • • • 41
End-of- File Test. • • • • • • 41
File Restoring. • • • • . . . • . • • • • . . . 42
File Scratching • • • . . • • • • . . • . 42
File Backspacing. • • • • • • . • • 43

Binary Data Files. • • • . • • • • . . • • . . . • • 43
File Writing . • • . • . . • • . 43
File Reading. • . . . • . • 45
Random Accessing. • • • • • • • 45
Locating the Element Pointer. • • • . . . • . . . • . . . • • . . . 46
File Scratching . . . • • . • . . • 46
File Restoring. . • • • • • . • • • • . . 47
End-of-File Test. • . . • . . • • • • 47

Matrices. • • • . • . . . • • . . • • • • • . . . 48
MAT READ and MAT PRIN'T. • . . . • • • . • . • . . . 49
Matrix Addition, Subtraction, and Multiplication. • • 49
Scalar Multiplication. • • • • • . . . 50
Identity Matrix. • • • • . • . . . • . . . • . . . • • 50
Matrix Transposition • • . . . • 50
Matrix Inversion . • . • • . . . • • . 51
Matrix ZER and C1£)N Functions • • 51
Dimensioning. • • • • 51
Examples • • . • 52

Examples of Advanced BASIC Programs. • • 55
Inventory Problem • . • • • • • . . . • • • • . . 55
Personnel Information. • • 57

AP PENDIXE S

A. ERROR MESSAGES. • • • • • 59

B. LIMITATIONS ON BASIC. • • • . • • 64

C. COMPARISON ORDER FOR BASIC CHARACTERS. • • 65

D. USING THE TIME-SHARIN'G SYSTEM. • • • 66

IN'DEX . • • . . . • • . . . • • • . . . • • . . . • 69

iv

Introduction

A program is a set of directions that is used to tell a computer how to provide an answer to
some problem. It usually starts with the given data, contains a set of instructions to be car
ried out in a certain order, and ends up with a set of answers.

Any program must meet two requirements before it can be carried out. The first is that it
must be presented in aform that the computer understands. If the program is a set of instruc
tions for solving a system of linear equations and the computer is an English-speaking person,
the program will be presented in a combination of mathematical notation and English. If the
computer is a French-speaking person, the program will be presented in French rather than
English. And if the computer is a high-speed digital computer, the program must be pre
sented in a programming language that the digital computer understands.

The second requirement for any program is that it must be completely and precisely stated.
This requirement is crucial when dealing with a digital computer, which has no ability to infer
wh~t you mean. It does what you tell it to do, not what you meant to tell it.

We are talking about programs that provide numerical answers to numerical problems. It
would be easy to present a program in the English language, but such a program would pose
insurmountable difficulties for the computer. English is rich with ambiguities and redun
dancies, the qualities that make poetry possible but computing impossible. Instead of using
English, you present your program in a programming language that resembles ordinary
mathematical notation, that has a simple vocabulary, and that permits a complete and precise
specification of your program. The programming language you will use is BASIC, Beginner's
~ll-purpose~ymbolic !.nstruction ~ode. BASIC is precise, simple, and easy to understand.

An intrOduction to writing a BASIC program is given in Chapter 1, which includes all that you
need to know to write a variety of useful and interesting programs. Chapter 2 deals with more
advanced techniques. The Appendixes contain a variety of reference materials.

1

1. A BASIC Primer

AN EXAMPLE
The following example is a complete BASIC program for solving a system of two simultaneous
linear equations in two variables:

ax + by = c dx + ey = f

and then solving two systems, each differing from this system only in the constants c and f.

If ae - bd is not equal to zero, you should be able to solve this system to find that

ce ~ bf af - cd
x = ae _ bd and y = ae - bd

If ae - bd is equal to zero, either there is no solution or there are infinitely many, but there
is no unique solution. If you are rusty on solving such systems, take our word for it that this
is correct. For now, we simply want you to understand the BASIC program for solving this
system.

Study the following program carefully--the purpose of most lines in the program is self
evident--and then read the commentary and explanation.

100 READ A,B,D,E
110 LET G=A*E-B*O
120 IF' 6=0 THEN 180
130 READ C,F'
J40 LET X=(C*E-B*F')/G
J50 LET Y=(A*F-C*D)/G
160 PRINT X,Y
170 60 T0 130
180 PRINT tlN0 UNIQUE S0LUTI0N"
J90 DATA 1,2,4
200 DATA 2,-7,5
2JO DATA 1,3,4,-7
999 END

You can see, first, that this sample program uses only capital letters, because the teletype
writer has only capital letters.

Second, you can see that each line of the program begins with a line number. These numbers
are called line numbers; they identify the lines, each of which is called a statement. A pro
gram is made up of statements, most of which are instructions to the computer. The line
numbers also serve to specify the order in which the statements are to be performed by the
computer. This means that you may type your program in any order. Before the program is
run, the computer sorts out and edits the program, putting the statements into the order
specified by their line numbers. This editing process also facilitates correcting and changing
programs, as we shall explain later on. .

Third, note that each statement starts, after its line number, with an English word. The
word denotes the type of the statement. There are several types of statements in BASIC, nine

2

of which are discussed in this chapter. Seven of these nine appear in the sample program we
are now considering.

Note also that, although it is not obvious from the program, spaces have no significance in
BASIC statements, except in messages that are to be printed out, as in line number 180.
Spaces may be used or not, at will, to make a program more readable. Statement 100 could
have been typed as 100READA, B, D, E and statement 110 as 110LETG=A*E-B*D.

With this preface, let's go through the program, step by step. The first statement, 100, is a
READ statement. It must be accompanied by one or more DATA statements. When the com
puter encounters a READ statement while executing your program, it will cause the variables
listed after the word READ to be given values according to the next available numbers in the
DATA statements. In our sample program, we read A in statement 100 and assign the value
1 to it from statement 190, and similarly with B and 2, and with D and 4. At this point, we
have exhausted the available data in statement 190, but there is more in statement 200. We
pick up there the number 2 to be assigned to E. '

Next we go to statement 110, a LET statement, where we first encounter a formula to be
evaluated. (The asterisk, *, is used to denote multiplication.) In this statement we direct
the computer to find the value of AE - BD, and to call the result G. In general, a LET state
ment directs the computer to set a variable equal to the formula on the righthand side of the
equal sign.

We know that if G is equal to zero, the system has no unique solution. Therefore, we next
ask, in line 120, whether G is equal to zero. If the computer finds a Yes answer to the ques
tion, it is directed to go to line 180. Line 180 tells it to print out Nfl) UNIQUE Sfl)LUTIfl)N.
From this point, it would go to the next statement. But lines 190, 200, and 210 give it no in
structions, since DATA statements are not executed, and it then goes to line 999, which
directs it to END the program.

If the answer to the question "lsG equal to zero?" is No, as it is in our sample program, the
computer simply goes to the next statement, in this case statement 130. (An IF--THEN state
ment tells the computer where to go if the IF condition exists, but to go on to the next state
ment if it does not exist.) Statement 130 directs the computer to read the next two entries
from the DATA statements--in this case -7 and 5, both in statement 200--and to assign them
to C and F respectively. The computer is now ready to solve the system:

x + 2y = -7 4x + 2y = 5

In statements 140 and 150, we direct the computer to find the values of x and y according to
the formulas provided. Note that we must use parentheses to show that CE - BF is divided by
G. Without parentheses, only BF would be divided by G, and the computer would find

BF
X = CE - G

The computer is told in line 160 to print the two values computed, those of X and Y. Having
done so, it moves on to line 170, where it is directed back to line 130. If there are additional
numbers in the DATA statements, as there are here in 210, the computer is told in line 130
to take the next number and assign it to C, and the one after that to F. The computer is now
ready to solve the system:

x + 2y = 1 4x + 2y = 3

As before, it finds the solution in 140 and 150, prints out the values in 160, and then is di
rected in 170 to go back to 130.

In line 130 the computer reads two more values, 4 and -7, which it finds in line 210. It then
solves the system:

x + 2y = 4 4x + 2y =-7

3

and prints out the solutions. It is directed back again to 130, but there are no more pairs of
numbers available for C and F in the DATA statements. The computer therefore informs you
that it is out of data, printing on the paper in the teletypewriter ~UT ~F DATA IN 130, and
stops.

Let's look at the importance of the various statements. For example, what would have hap
pened if we had omitted line number 160? The answer is simple. The computer would have
solved the equations three times and then told us it was out of data. However, since it was
not told to show us (PRINT) the answers, it would not do so, and the solutions would be the
computer's secret.

What would have happened if we had left out line 120? In the problem just solved, nothing.
But if G were equal to zero, we would have set the computer the impossible task of dividing
by zero in 140 and 150, and it would tell us so by printing out DIVISI~NBY ZER~ IN 140
and DIVISI~NBY ZER~ IN 150. Suppose we had left out statement 170? The computer would
have solved the first system, printed out the values of X and Y, and then gone on to line 180.
As directed, it would print out N~ UNIQUE S~LUTI~N, and then stop.

A natural question that may arise is, why this selection of line numbers? The answer is that
the particular choice of line numbers is arbitrary. The only reqUirement is that statements
be numbered in the order that we want the computer to follow in executing the program. We
could have numbered the statements 1, 2, 3, 4, ... , 13; but we do not recommend this num
bering. We would normally number the statements 100, 110, 120, ..., 999. We put the num
bers such a distance apart so that we can later insert additional statements easily. For ex
ample, if we find that we have left out two statements belonging between those numbered 140
and 150, we can give them any two numbers between 140 and 150, say 144 and 146. In the
editing and sorting process, the computer will put them in the correct place.

Another question that may arise has to do with the placing of the elements of data in the DATA
statements: Why place them as they are in the sample program? The choice is arbitrary. We
need only arrange the numbers in the order that we want them read--the first for A, the
second for B, the third for D, the fourth for E, the fifth for C, the sixth for F, the seventh
for the next C, and so on. In place of the three statements numbered 190, 200, 210, we could
have put

195 DATA 1,2,4,2, -7, 5, 1, 3,4,-7

or we could have written, perhaps more logically

190 DATA 1,2,4,2
200 DATA -7,5
210 DATA 1,3
220 DATA 4,-7

putting the coefficients in the first DATA statement and the three pairs of righthand constants
in the following DATA statements.

After typing the program, we type RUN followed by a carriage return. Up to this point the
computer stores the program and does nothing else with it. It is the command RUN that
directs the computer to execute the program.

The sample program and the resulting printout are shown now as they appear on the teletype
writer.

100 READ A6B6D6E
110 LET G=A*E-B*D
120 IF G=O THEN 180
130 READ C6F
140 LET X=(C*E-B*F)/G
150 LET Y=CA*F-C*D)/G
160 PRINT X.Y
170 G0 T0 130

4

·.

180 PRINT "Ne UNIQUE SfiJLUTI0~"

190 DATA 1,,2,,4
200 DATA 2,,-7,,5
210 DATA 1,,3,,4,,-7
999 END
RUN

LINEAR

4
.666667

-3.66667

14137

-5.5
.166667
3.83333

0UT 0F DATA IN 130

FORMULAS
The computer can carry out a great many operations. It can add, subtract, multiply, divide,
extract square roots, raise a number to a power, find the sine of a number on an angle meas
ured in radians, and so on. We shall now learn how to tell the computer to carry out these
various operations in the order that we want them done.

The computer computes by evaluating formulas that are supplied in a program. The formulas
are similar to those used in ordinary mathematical calculation, except that each BASIC
formula must be written on a single line. Five arithmetic operations can be used to write a
formula. They are listed in the following table.

Symbol

+

*
I

Example

A+B
A-B
A*B
AlB
X T 2

Meaning

Addition. Add B to A.
Subtraction. Subtract B from A.
Multiplication. Multiply B by A.
Division. Divide A by B.
Raise to the power. Find X2

•

We must be careful with parentheses to make sure that we group together the things we want
together. We must also understand the order in which the computer does its work.

For example, if we type A+B*Ct D, the computer will first raise C to the power D, then
multiply this result byB, and then add A to the resulting product. This is the usual convention
for A + BC D. If this is not the intended order, we must use parentheses to indicate a different
order. Suppose it is the product of Band C that we want raised to the power D. We must write
A+(B*C)t D. Or, if we want to multiply A + B by C to the power D, we write (A+B)*CT"D. We
could add A to B, multiply their sum by C, and raise the product to the power D by writing
((A+B)*C) TO.

The order of priorities for computing is according to the following rules.

1. The formula inside parentheses is computed before the enclosed quantity is used in
further calculations.

2. In the absence of parentheses in a formula that includes addition, multiplication, and
the raising of a number to a power, the computer first raises the number to the power,
then does the multiplication, and does the addition last. Division has the same priority
as multiplication, and subtraction 'the same as addition.

3. In the absence of parentheses in a formula that includes only multiplication and divi
sion (or only addition and SUbtraction), the computer works from left to right.

The rules are illustrated in the sample program already considered. The rules also tell us
that the computer, given A-B-C, will subtract B· from Aand thenC from their difference.
Given AlBiC, it will divide A by B and then that quotient by C. Given ATBTC, the computer

5

will raise the number A to the power B and then raise the resulting number to the power C.
If there is ever any question in your mind about the priority, put in more parentheses to
avoid possible ambiguities.

In addition to the five arithmetic operations, the computer can evaluate several mathematical
functions. The functions are given special three-letter names, as shown in the following table.

Function

SIN(X)
Ct>S(X)
TAN(X)
ATN(X)
EXP(X)
L(>G(X)
ABS(X)
SQR(X)

Meaning

Find the sine of X.
Find the cosine of X.
Find the tangent of X.
Find the arctangent of X.
Find ex.
Find the natural logarithm of X (In X).
Find the absolute value of X (I XD.
Find the square root of X (JX).

X interpreted as
a number, or as
an angle measured
in radians.

Three other mathematical functions are available in BASIC: INT, RND, and SGN. These are
reserved for explanation in Chapter 2.

In place of X, we may substitute any formula or number in parentheses following any of the
functions listed above. For example, we may tell the computer to findJ"4'"""+X3 by writing
SQR(4+XT 3), or the arctangent of 3X - 2ex + 8 by writingATN(3*X-2*EXP(X)+8).

Since we have mentioned numbers and variables, we should be sure we understand how to
write numbers for the computer and what variables are allowed.

Numbers

A number may be positive or negative, and it may contain as many as nine digits, but it must
be expressed in decimal form. For example, all of the following are numbers in BASIC:

2 -3.675 123456789 -.987654321 483.4156

The following are not numbers in BASIC:

14/3 .00123456789

The first two are formulas, but not numbers. The last one has more than nine digits. We may
tell the computer to find the decimal expansion of 14/3 or ,/7, and to do something with the
resulting number, but we may not include either in a list of DATA.

We gain flexibility by use of the letter E, which stands for Htimes ten to the power." Using
E, we can write .00123456789 in several forms acceptable to the computer: .123456789E-2
or 123456789E-11 or 1234.56789E-6. We can write ten million as 1E7 and 1969 as 1.969E3.
We do not write a number as E7, but must write 1E7 to indicate that it is 1 that is multiplied
by 107

•

Variables

A variable in BASIC is denoted by any letter, or by any letter followed by a single digit. The
computer will interpret E7 as a variable, along with A, X, N5, 10, and ~1. A variable in BASIC
stands for a number, usually one that is not known to the programmer at the time the program
is written. Variables are given or assigned values by LET, READ, and INPUT statements.
All variables have the initial value of zero, so that if you want the starting value of a variable
to be zero you need not assign it that value. (Another kind of variable, the string variable, is
discussed later on in Chapter 2.)

6

Although the computer does little in the way of correcting during computation, it will some
times help you when you forget to indicate absolute value. For example, if you ask for the
square root of -7 or the logarithm of -5, the computer will give you the square root of 7 with
the error message that you have asked for the square root of a negative number, or the
logarithm of 5 with the error message that you have asked for the logarithm of a negative
number.

Three other mathematical symbols, symbols of relation, are available in BASIC to indicate
any of six standard relations. These are used in IF--THEN statements, where values must
be compared. The six possible relations are shown in the following table.

Symbol

<
<=
>

>=
<>

LOOPS

Example

A=B
A<B

A<=B
A>B

A >=B
A < >B

Meaning

Is equal to. A is equal to B.
Is less than. A is less than B.
Is less than or equal to. A is less than or equal to B.
Is greater than. A is greater than B.
Is greater than or equal to. A is greater than or equal to B.
Is not equal to. A is not equal to B.

We are often interested in writing a program in which one or more parts are traversed not
just once, but a number of times, perhaps with slight changes each time. In order to write
the simplest program, one in which the part to be repeated is written just once, we use the
programming device known as a loop.

The use of loops can be illustrated by two programs for the simple task of printing out a
table of the first 100 positive integers together with the square root of each. Without a loop,
our program would be 101 lines long:

100 PRINT I,SQR<I)
105 PRINT 2,SQR(2)
110 PRINT 3,SQR(3)···590 PRINT 99,SQR(99)
595 PRINT 100,SQRCIOO)
600 END

With the following program, using one type of loop, we can get the same table with only 5 lines
of instruction instead of 101.

100 l.ET X=I
110 PRINT X,SQR<X)
120 l.ET X=X+I
130 IF X<=IOO THEN 110
999 END

Statement 100 gives the value of 1 to X, which initializes the loop. Line 110 causes the print
ing of both 1 and its square root. Line 120 increases the value of X by 1, to 2. Line 130 asks
whether X is less than or equal to 100--a Yes answer directs the computer back to line 110.
Here it prints 2 and Jl, and goes to 120. Again X is increased by 1, this time to 3, and at
130 it goes back to 110. This process is repeated--line 110 (print 3 and ../3), line 120 (X = 4),
line 130 (since 4 is less than or equal to 100 go back to line 110), and so on--until the loop
has been traversed 100 times. Then X becomes 101. The computer now finds a No answer to
the question in line 130 (X is greater than 100, not less than or equal to 100). It therefore
does not return to 110 but mOves onto line 999, and ends the program.

All loops contain four elements: initialization (line 100 in our program), the body (line 110),
modification (line 120), and an exit test (line 130). Because loops are so important, BASIC

7

provides a pair of statements that specify a loop even more simply than the previous program.
They are the FfDR and NEXT statements. 'fheir use is illustrated in this program:

100 F0R X=I T0 100
110 PRINT XISQR(X)
120 NEXT X
999 END

which does exactly the same thing as the two previous programs. In line 100, X is set equal
to 1, and a test is set up, like that of line 130 above. Line 120 causes X to be increased by 1,
and also carries out the test to decide whether to go back to line 110 or to go on. Thus lines
100 and 120 take place of lines 100, 120, and 130 in the previous program--and they are
easier to use.

Note that the value of X is increased by 1 each time we go through the loop. If we wanted a
different increase, we could specify it by writing, for example:

100 F0R X=1 T0 100 STEP 5

and the computer would assign 1 to Xon the first time through the loop, 6 to X on the second
time through, 11 on the third time, and 96 on the twentieth time. Another step of 5 would take
X beyond 100, so the program would go on to the end after printing 96 and its square root.
The step value may be either positive or negative. We could obtain the first table printed in
reverse order by writing line 100 as

100 F0R X=IOO T0 1 STEP -1

In the absence of a STEP instruction, a step size of +1 is assumed.

More complicated FfDR statements are allowed. The initial value, the final value, and the
step size may all be formulas of any complexity. For example, if N and Z have been speci
fied earlier in the program, we could write

250 F0R X=N+7*Z T0 (Z-N)/3 STEP (N-4*Z)/10

For a positive step size, the loop continues as long as the control variable is less than or
equal to the final value. For a negative step size, the loop continues as long as the control
variable is greater than or equal to the final value.

If the initial value is greater than the final value (or less than for a negative step size), then
the body of the loop will not be done even once. The computer will immediately pass to the
statement following the NEXT. As an example, the following program for adding up the first
n integers will give the correct result 0 when n is O.

100 READ N
110 F0R K= I T0 N
120 LET S=S+K
130 NEXT K
140 PRINT S
ISO G0 T0 100
160 DATA 3110,0
999 END

It is often useful to have loops within loops. These are called nested loops. They can be ex
pressed with FfDRandNEXT statements. But they must actually be nested and must not cross,
as the following skeleton examples illustrate.

8

Allowed

~
F¢jRX

F~R yL NEXT Y
NEXT X

Not Allowed

[f
F¢jR X
F~R Y
NEXT X
NEXT Y

LISTS AND TABLES

Allowed
F¢jR X

!~~/z~[]
FPRW ~
NEXT W-l
NEXT Y
FPR Z =:I
NEXT Z
NEXT X--_.....J

In addition to the ordinary numeric variables used in BASIC, there are variables that we
can use to designate the elements of a list or table. We use these where we would ordinarily
use a subscript or a double subscript, as for the coefficients of a polynomial (ao, at, a 2 , •••)

or the e~ements of a matrix (hi, j). The variables that we use in BASIC consist of a single
letter, which we call the name of the list or table, followed by the subscripts in parentheses.
For the coefficients of the polynomial we would write A(O), A(l), A(2), and so on; for the
elements of the matrix we would write B(I,I), B(I,2), and so on.

We can enter the list A(O), A(I), ••. A(10) into a program very simply with four lines:

100 F0R 1=0 T0 10
I lORE AD A CI >
120 NEXT 1
130 DATA 2,3,-5,7,2.2,4,-9,123,4,-4,3

We need no special instruction to the computer if no subscript greater than 10 occurs. If we
want larger subscripts, we must use a dimension (DIM) statement, to tell the computer to
save extra space for the list or table. When in doubt, indicate a larger dimension than you
expect to use. For example, if we want a list of 15 numbers entered, we might write:

100 DIM AC2S>
1J0 ~EAD N
120 F0R 1=1 T0 N
130 READ ACI>
140 NEXT I
150 DATA 15
160 DATA 2.3,5,7,11,13,17,19,23,29,31,37,41.43,47

Statements 110 and 150 could have been eliminated by writing 120 as F0R 1=1 T0 15, but
the form we used allows us to lengthen the list by changing only statement 150, so long as
the number of elements in the list does not exceed 25.

We would enter a 3 x 5 table into a program by writing:

100 F'0R 1=1 T0 3
110 F'0R '-'= I T0 5
120 READ BCI,'-'>
130 NEXT J
140 NEXT I
150 DATA 2,3,-5,-9,2
160 DATA 4,-7,3,4,-2
170 DATA 3.-3,5,7.8

We may enter a table with no dimension statement, and the computer will handle all the
entries from B(O,O) to B(10,10). But if you try to enter a table with a subscript greater than
10, without a DIM statement, you will get an error message telling you that you have a sub
script error. This can be easily corrected by entering, for example, the line:

9

95 DIM 8<20,,30)

which will reserve space for a 20 by 30 table.

The single letter denoting a list or table name may also be used to denote a simple variable
without confusion. But the same letter may not be used to denote both a list and a table in
the same program.

The form of the subscript is quite fleXible. You might have the list item B(I+K) or the table
items B(I,K) or Q(A(3,7),B-C).

Let's look now at a sample program that uses both a list and a table. The program computes
the total sales of each of five salesmen, each of whom sells the same three products.

SALES I 14:38

100 F0R 1=1 T0 3
110 READ PC!)
120 NEXT I
130 F0R 1=1 T0 3
140 F"0R J=1 T0 5
ISO READ SCI"J)
160 NEXT J
170 NEXT I
180 F"0R J= 1 T0 5
190 LET S=O
200 F"0R 1= 1 T0 3
210 LET S=S+PCI)*SCI"J)
220 NEXT I
230 PRINT "T0TAL SALES F"0R SALESMAN "JJ,,"$"JS
240 NEXT J
250 DATA 1.25,,4.30,,2.50
260 DATA 40,20,37,29,42
270 DATA 10,,16,3,21,8
280 DATA 35,47,29,16,,33
999 END

RUN

SALESI 14139

T0TAL SALES J00R SALESMAN 1 $ 180.5
T0TAL SALES J00R SALESMAN 2 $ 211.3
T0TAL SALES J00R SALESMAN 3 $ 131.65
T0TAL SALES F0R SALESMAN 4 $ 166.55
T0TAL SALES J00R SALESMAN 5 $ 169.4

The list P gives the price per item of each of the three products. The table S tells how many
items of each product each man sold. As you can see from the program, product number 1
sells for $1.25 per item, number 2 for $4.30 per item, and number 3 for $2.50 per item. You
can see also that salesman number 1 sold 40 items of the first product, 10 of the second,
and 35 of the third, and soon. The program reads in the price list in lines 100, 110, and 120,
using data in line 250. It reads in the sales table in lines 130-170, using data in lines 260
280. The same program could be used again, modifying only line 250 if the prices change,
and only lines 260-280 to enter the sales in another month.

The sample program did not need a dimension statement, since the computer automatically
saves enough space to allow subscripts to run from 0 to 10. A DIM statement is normally
used to save more space. But in a long program, requiring many small tables, DIM may
be used to save less space for tables, in order to leave more for the program.

Since a DIM statement is not executed, it may be entered into the program on any line before
END. It is convenient, though, to place DIM statements near the beginning of the program.

10

ERRORS AND DEBUGGING
Occasionally the first run of a new problem will be free of errors and give the correct
answers. Usually, though, errors will have to be corrected before the program runs right.
Errors are of two types: errors of form that prevent the running of the program, and logical
errors in the program that cause the computer to produce either wrong answers or no
answers at all.

Errors of form will cause error messages to be printed. The various error messages are
listed and explained in Appendix A. Logical errors are often much harder to find, par
ticularly when the program gives answers that are nearly correct. In either case, after
you find the errors, you can correct them by changing lines, inserting new lines, or deleting
lines from the program. A line is changed by typing it correctly with the same line number.
A line is inserted by typing it with a line number between those of two existing lines. A line
is deleted by typing its line number and pressing the RETURN key. Notice that you can
insert a line only if the original line numbers are not consecutive. For this reason, most
programmers start out using line numbers that are multiples of five or ten, but that is a
matter of choice.

You can make corrections at any time that you notice them, either before or after a run.
Since the computer sorts lines and arranges them in order, a line may be retyped out of
sequence. Simply retype the bad line with its original line number.

As with most problems in computing, we can best illustrate the process of finding errors
(or bugs) in a program, and correcting (or debugging) it, by an example. Let's consider the
problem of finding the value of X between 0 and 3 for which the sine of X is a maximum,
and printing out this value of X and the value of its sine. If you have studied trigonometry,
you know that 1T /2 is the correct value of X, but we shall use the computer to test successive
values of X from 0 to 3. First we shall use intervals of .1, then of .01, and finally of .001.

Thus, we shall tell the computer to find the sine of 0, of .1, of .2, of .3, ••. , of 2.8, of 2.9,
and of 3, and to determine which of these 31 values is the largest. It will do so by testing
SIN(0) and SIN(.I) to see which is larger, and calling the larger of these two numbers M.
Then it will pick the larger of M and SIN(.2), and call.!! M. This number it will check against
SIN(.3), and so on down the line. Each time a larger value of M is found, the value of X is
remembered in XO. When the computer finished the series, M will have the value of the
largest of the 31 sines, and XO will be the argument that produced that largest value. It will
then repeat the search, this time checking the 301 numbers 0, .01, .02, .03, ..• , 2.98, 2.99,
and 3, finding the sine of each and checking to see whic.h sine is the largest. Finally, it will
check the 3001 numbers 0, .001, .002, .003, .•• , 2.998, 2.999, and 3, to find which has the
largest sine. At the end of each of the three searches, we want the computer to print three
numbers: the value XO that has the largest sine, the sine of that number, and the interval
of search.

Before going to the terminal, we write a program. Let's assume it is the following:

100 READ D
110 LET XO=O
120 F0R X=O TO 3 STE P D
130 IF SIN(X) =M THEN 190
140 LET XO=X
150 LET M=SIN(XO)
160 PRINT XO,X,D
170 NEXT XO
180 00 T0 110
190 DATA .1,.01,.001
999 END

We shall illustrate the entire sequence on the teletypewriter, and make explanatory comments
on the righthand side.

11

NEW
NEW FILE NAME--MAXSIN
READY.

100 READ 0
110 LWR XO=O
120 F0R X=O T0 3 STEP 0
130 IF SIN(X)<=M THEN 190
140 LET XO=X
150 LET M=SIN(X)
160 PRINT X0,X,D
170 NEXT XO
180 60 T0 110
110 LET XO=O
190 DATA .1,.01,.001
999 END
RUN
WAIT.

After typing line 180, we notice that
LET was mistyped in line 110, so
we retype it, this time correctly.

MAXSIN 14:42

INC0RRECT F0RMAT IN
NEXT WITH0UT F0R IN
F0R WITH0UT NEXT
UNDEFINED NUMBER 190

USED 0.83 UNITS.
160 PRINT XO,X,D
170 NEXT X
130 IF SINCX)<=M THEN 170
RUN

160
170

When we receive the first error
message, we inspect line 160 and
find that we used X0 instead of XO
for a variable. The next two error
messages refer to lines 120 and
170, where we see that we mixed
variables. We correct this by chang
ing line 170. The fourth error mes
sage points out that line 130 di
rected the computer to a DATA
statement and not to line 170 where
it should go. We correct this by re
typing line 130.

160
175 PRINT XO,M,D
RUN
WAIT.

110 LET M=-1
RUN
WAIT.

12

MAXSIN

• 1
·2
.3

ST0P.
READY.

MAXSIN

o
• 1
.2
·3

ST0P.
READY.

14144

• 1
.2
·3

o
• 1
.2
.3

• 1
• 1

• 1
• 1
• 1

This is obviously incorrect. Every
value of X is being printed. We stop
the printing by pressing the BREAK
key. Then we ponder the program
for a while, trying to figure out
what's wrong with it.
We notice that SIN(O) is compared
with M on the first time through the
loop, but we had assigned no value
to M. So we wonder if giving a value
less than the maximum value of the
sine will do it. We give it the value
of -1, by changing line 110, where
we had incorrectly initialized XO
instead of M.
We are about to print out almost
the same table as before. It is print
ing out XO, the current value of X,
and the interval size each time it
goes through the loop.
We fix this by moving the PRINT
statement outside the loop. We de
lete line 160, and line 175 is outside
of the loop. We also realize that we
want M printed and not X.

180 6121 TI2I 100
95 PRINT "X VALUE", "SINE", RESI2ILUTII2IN"
RUN
WAIT.

MAXSIN

1.6
1.6
1.6
1.6

STI2IP.
READY.

14:46

.999574

.999574

.999574

• 1
• 1
• I

We see that we are doing the same
thing over and over again, the case
for D=.l. So we stop the printing
and inspect the program again.

Of course. Line 180 sent us back to
to line 110 to repeat the operation
rather than back to line 100 to pick
up a new value for D. We also de
cide to put in headings for our col
umns by a PRINT statement.

MAXSIN

INCI2IRRECT

14147

F'I2IRMAT

WI WED 03/19/69

IN 95

There is an error in our PRINT
statement: no lefthand quotation
mark for the third item.

USED 1.00 UNITS.
95 PRINT "X VALUE", "SINE", "RESI2ILUTII2IN"
RUN

We retype line 95 with all of the re
quired quotation marks.

MAXSIN

X VALUE
1.6
1.57
1.571

14:48

SINE
.999574

1 •
I •

RESI2ILUTIl2IN
.1
.01
.001

Exactly the desired results. Of the
31 numbers 0, .1, .2, .3, ••• , 2.8,
2.9, 3, it is 1.6 that has the largest
sine, namely .999574. Similarly for
the finer subdivisions.

I2IUT I2IF' DATA IN 100

95 PRINT "X VALUE", "SINE", "RES0LUTI0N"
100 READ D
110 LET M=-I
120 F'I2IR X=O TI2I 3 STEP 0
130 IF' SINCX)<=M THEN 170
140 LET XO=X
150 LET M=SINCX)
170 NEXT X
175 PRINT XO,M,D
180 60 T0 100
190 DATA .1,.01,.001
999 END

USED
LIST

MAXSIN

18.17 UNITS.

14149

The whole process used only 18.33
computer resource units.

Having changed so many parts of the
program, we ask for a list of the
corrected program.

SAVE

READY.
We save the program for later use.
This should not be done unless we do
expect to use the program later.

13

In solving this problem, there are two common devices we did not use. One is the insertion
of a PRINT statement when we wonder whether the machine is computing what we think we
asked it to compute. For example, if we wondered about M, we could have inserted 155 PRINT
M, and we would have seen the values. The other device is used after several corrections
have been made and you are not quite sure what the program now looks like. Simply type
LIST or LISTNH, and the computer will type out the program in its current form for you to
inspect.

SUMMARY OF ELEMENTARY BASIC STATEMENTS
In this section, we shall give a concise description of each of the types of BASIC statements
you will find most useful in writing the simpler kinds of BASIC programs. For each form,
we shall assume a line number and use underlining to denote a general type. Thus, variable
means any variable, which is a single letter, possibly followed by a single digit.

LET

The LET statement is not a statement of algebraic equality. It is an instruction to the com
puter to do certain computations and to assign the answer to a"Certain variable. Each LET
statement is of the form

LET variable = formula

Examples:
100 LET X=X+l
259 LET W7=(W-X4 t 3)*(Z-A/(A-B))-17

READ and DATA

We use a READ statement to assign to the listed variables values obtained from a DATA
statement. Neither statement is used without one of the other type. A READ statement causes
the variables listed in it to be given, in order, the next available numbers in the collection
of DATA statements. Before the program is run, the computer puts all of the DATA state
ments, in the order in which they appear, into a large data block. Each time a READ state
ment is encountered anywhere in the program, the data block supplies the next available
number or numbers. If the data block runs out of data, with a READ statement still asking
for more, the program is assumed to be done.

Since we have to read in data before we can work with it, READ statements normally are
placed near the beginning of a program. The location of DATA statements is unimportant,
so long as they are in the correct order. A common practice is to put all DATA statements
together just before the END statement.

Each READ statement is of the form

READ sequence of variables

and each DATA statement is of the form

DATA sequence of numbers

Examples:

150 READ X, Y, Z,Xl, Y2,Q9
330 DATA 4,2,1.7
340 DATA 6.734E-3,-174.321,3.14159265

234 READ B(K}
263 DATA 2,3,5,7,9,11,10,8,6,4

100 READ R(I,J}
440 DATA -3,5,-9,2.37,2.9876,-437.234E-5
450 DATA 2.765,5.5576,2.3789E2

Remember that only numbers are put in a DATA statement, and that 15/7 and J3 are
formulas, not numbers.

14

INPUT

At times 'it is desirable to have data entered during running of a program. This is par
ticularly true when one person writes the program and saves it in the computer's memory,
and other persons are to supply the data. This may be done by using an INPUT statement,
which is very much like a READ statement, but does not draw numbers from a DATA state
ment. Each INPUT statement is of the form

INPUT sequence of variables

If, for example you want the user to supply values for X and Y in a program, you include
the statement

140 INPUT X,Y

before the first statement that is to use either of the two values. When it encounters the
INPUT statement, the computer types a question mark on the printout and waits for input.
The user types two numbers, separated by a comma, and presses the return key, and the
computer goes on with the rest of the program.

Frequently an INPUT statement is accompanied by a PRINT statement, to make sure that
the user knows what the question mark is asking for. If you include in your program

120 PRINT uY0UR VALUES 0F X, Y, AND Z ARE";
130 INPUT X,Y,Z

the computer will type out

Y0UR VALUES 0F X, Y, AND Z ARE?

Without the semicolon at the end of line 120, the question mark would have been printed on
the next line.

Data entered by INPUT statement is not saved with the program. Also, it may take a long
time to enter a large amount of data using INPUT. INPUT should be used only when small
amounts of data are to be entered, or when it is necessary to enter data during the program
run, as it is with game playing programs.

PRINT

The PRINT statement has a number of different uses. It is discussed in more detail in
Chapter 2. The common uses are:

A. To print out the result of some computations
B. To print out verbatim a message included in the program
C. To do a combination of A and B
D. To skip a line

We have seen examples of only A and B in our sample programs. Each type is slightly dif
ferent in form, but all start with PRINT after the line number.

Examples of type A:

100 PRINT X,SQR(X)
135 PRINT X,Y,Z,B*B-4*A*C,EXP(A-B)

The first will print the value of X and then, a few spaces to the right, its square root. The
second will print five different numbers: X, Y, B 2 -4AC, and e A

-
B

• The computer will com
pute the two formulas and print the values for you, if you have already given values to A,
B, and C. It can print up to five numbers per line in this format.

15

Examples of type B:

100 PRINT IlN0 UNIQUE S0LUTI0N"
430 PRINT HX VALUE", HSlNE", uRES0LUTI0N"

You have seen both in the sample programs. The first prints the statement within the quota
tion marks. The second prints the three labels with spaces between them. The labels in 430
automatically line up with three numbers called for in a PRINT statement, as seen in the
program MAXSIN.

Examples of type C:

150 PRINT liTHE VALUE 0F X IS";X
315 PRINT liTHE SQUARE R00T 0FH ;X;HIS" ;SQR(X)

If the first has computed the value of X as 3, it will print out

THE VALUE 0F X IS 3

If the second has computed the value of X as 625, it will print out

THE SQUARE R00T 0F 625 IS 25

In statements of type C, the semicolon is used to minimize space.

Example of type D:

250 PRINT

The computer will advance the paper one line when it encounters this statement.

There are times in a program when you do not want all statements executed in the order
in which they appear in the program. An example of this occurs in the MAXSIN program
where the computer has computed XO, M, and D and printed them out in line 160. We did not
want the program to go on to the END statement yet, but we wanted it to go through the same
process for a different value of D. So we directed the computer to go back to line 100 with a
G0 T0 statement. Each 00 T0 statement is of the form

00 T0 line number

Example:

150 00 T0 75

~N-G¢ T¢
The simple 00 T0 statement provides a single branched switch. The 0N--OO T0 state
ment provides a multi-branched switch. The form of the statement is

0N expression 00 T0 line number, line number, •.• , line number

The expression is any valid BASIC expression, and the line numbers are those to which
the statement will transfer depending on the value of the expression.

Example:

230 0N X+Y G0 T0 575, 490, 150

16

This statement will transfer to line 575, 490, or 150 depending on whether the value of the
expression X+Y is 1, 2, or 3.

The expression value will be truncated to an integer if it is not already an integer. For
example, if X+Y equals 2.5, the value will be truncated to 2, and the program will branch
to line 490, the second line number in the list.

Branching to a line containing a DIM, REM, or DATA statement is not allowed. As many
line numbers may be included in an 0N---G0 T0 statement as will fit on one line.

IF-THEN

At times we want to jump the normal sequence of statements if a certain relationship holds.
For this we use an IF--THEN statement, sometimes called a conditional G0 T0 statement.
Such a statement occurred at line 130 of MAXSIN. Each IF--THEN statement is of the form

IF formula relation formula THEN line number

Examples:

340 IF SIN(X)< =M THEN 630
120 IF G=O THEN 165

The first statement asks whether the sine of X is less than or equal to M, and tells the
computer to go to line 630 if it is. The second statement asks if G is equal to zero, and
tells the computer to go to line 165 if it is. In each case, if the answer, to the question is No,
the computer will go on to the next line of the program.

F0R and NEXT

We have already encountered the F0R and NEXT statements in loops, and have seen that
they go together, one at the entrance to the loop and one at the eXit, directing the computer
back to the entrance again. Each F0R statement is of the form

F0R variable = formula T0 formula STE P formula

Most commonly, the formulas will be integers and the STEP will be omitted, which means
that a step size of plus one is assumed. The accompanying NEXT statement is simple in
form, but the variable must be exactly the same one as that following F0R in the F0R state
ment. The form of the NEXT statement is

NEXT variable

Examples:

130 F~R X=O T~ 3 STEP D
180 NEXT X

120 F0R X4=(17+C0S(Z»/3 T0 3*SQR(10) STEP 1/4
235 NEXT X4

240 F0R X=8 T0 3 STEP -1
270 NEXT X

456 F0R J=-3 T0 12 STEP 2
470 NEXT J

Notice that the step size may be a formula (1/4), a negative number (-1), or a positive
number (2). In the example with lines 120 and 235, the successive values of X4 will be

17

.25 apart, in increasing order. In the next example, the successive values of X will be 8,
7, 6, 5, 4, 3. In the last example, on successive trips through the loop J will take on values
-3, -1, 1, 3, 5, 7, 9, and 11.

If the initial, final, or step size values are given as formulas, the formulas are evaluated
once and for all upon entering the F<)R statement. The control variable can be changed in
the body of the loop. Of course the exit test always uses the latest value of this variable.

If you write 150 F0R Z=2 T0 -2 without a negative step size, the loop will not be executed,
and the computer will go immediately to the statement following the corresponding NEXT
statement.

DIM

Whenever we want to enter a list or table with a subscript greater than 10, we must use a
DIM statement to tell the computer to save enough room for the list or table.

Examples:

120 DIM H(35)
135 DIM Q(5,25)

The first statement would enable us to enter a list of 35 items--36 if we use H(O)-- and the
second a table 5 x 25--or 6 x 26 if we use row 0 and column O.

END

Every program must have an END statement, and it must be the statement with the highest
line number in the program. Its form is simple: a line number with END.

Example:

99 END

18

2. Advanced BASIC

In Chapter 1, you learned how to write programs in BASIC. In this chapter we will discuss
some capabilities of BASIC that were not discussed yet. These include:

• Alphanumeric data and string manipulation

• Files

• Matrices

We will also consider some advanced capabilities in printing output, several functions that
we have not yet mentioned, and several statements either in more detail or for the first time.
And, finally, we will consider two sample BASIC programs that make use of many of the
advanced capabilities of BASIC.

ALPHANUMERIC DATA AND STRING MANIPULATION
Alphanumeric data, names, and other identifying information can be handled in BASIC using
string variables. You can enter, store, compare, and print out alphanumeric and certain
special characters in the Mark I character set.

A string is any sequence of alphanumeric and certain special characters in the Mark I
character set not used for control purposes in the Mark I system. String size is limited to
15 valid characters.

A string variable is denoted by a letter followed by a dollar sign. For example, A$, B$, and
X$ denote string variables.

DIM

Strings can be set up as one-dimensional arrays only. If you request a two-dimensional array
you will receive the error message DIMENSI0N T00 LARGE.

Examples:

100 DIM A(5),C$(20),A$(12),D(lO,5)
200 DIM R$(35)
300 DIM M$(15),B$(15)

In line 100, only C$ and A$ are string variables. R$, as dimensioned in line 200, will save
storage space for 35 fifteen character arrays. Any or all of the 35 strings may in fact be
less than fifteen characters long.

LET

Strings and string variables may appear in only two forms of the LET statement. The first
is used to replace a string variable with the contents of another string variable.

19

Example:

156 LET G$=H$

The second is used to assign a string to a string variable.

Example:

160 LET J$=ItTHIS STRING"

Arithmetic operations may not be done on string variables. Requests for addition, subtraction,
multiplication, or division involving string variables produce the error message ILLEGAL
STRING ~PERATI9SN AT XXX.

The LET statement permits multiple variable replacement.

Example:

262 LET X=Y=Z=21*N/2
435 LET A$=G$=J$=ItTHIS STRING"

The first statement places the value of the expression 21*N/2 in variables X, Y, and Z. The
second statement assigns the string THIS STRING to variables A$, G$, and J$. Any valid
expression or string may be used.

READ and DATA

READ statements can contain string variables intermixed with ordinary variables. In the
corresponding DATA statements, every item corresponding to a string variable in the READ
statement must be a valid string. If the string contains any characters that have special
meaning in BASIC--such as commas, semicolons, leading or trailing spaces, and so on-
it must be enclosed in quotation marks. Unquoted strings must begin with an alphabetic
character.

Example:

100 READ A$,B$,C$,D$,A,E$
200 DATA THE,1t ", ItPE0PLE,",YES--,500,0F THEM.
300 PRINT A$;B$;C$;B$;D$;A;E$
999 END

This program will print out THE PE0PLE, YES-- 500 0F THEM. The DATA statement has
quotation marks around B$ because it is a blank space, and around C$ because it includes a
comma.

INPUT

Like READ and DATA statements, INPUT statements can contain string variables inter
mixed with ordinary variables. Every item corresponding to a string variable in the INPUT
statement must be a valid string variable. If the string contains characters that have special
meaning in BASIC, it must be enclosed by quotation marks. If the string begins with other
than an alphabetic character it must be enclosed in quotation marks.

Example:

110 INPUT L$(17),M$,N$(I)

20

PRINT

The PRINT statement also can contain string variables intermixed with ordinary variables.
When a string variable is encountered that has not been assigned, the PRINT statement will
produce for that variable a string of 15 blank spaces. A semicolon after a string variable
in a PRINT statement causes the printout of the variable following that string to be directly
connected to the string variable.

Examples:

135 PRINT A}16,B$,C$;N
140 PRINT 100+1, "DATA",L$;M$;N$
150 PRINT S$

IF-THEN

Only one string variable is allowed on each side of the IF-THEN relation sign. All of the
six standard relations are valid (=,< > , < , >, < =, and:> =). When strings of different lengths
are compared, the shorter string and the corresponding part of the longer string will be
used. If they compare, the shorter string is taken to be the lesser of the two.

Examples:

100 IF N$=ltSMITH" THEN 105
200 IF A$< >B$ THEN 205
300 IF "JUNE"< =M$ THEN 305
400 IF D$>=It FRIDAY" THEN 600

You must use quotation marks around the string to be compared, as above, unless it is
referenced in the IF--THEN statement by a string variable name.

Characters are compared in their BASIC code representations. The collating sequence used
in comparing is listed in Appendix C.

MORE ABOUT PRINTING
Although the format of the printout is automatically supplied for the beginner, the PRINT
statement, the TAB function, and image formatted output germit a greater flexibility for the
advanced programmer in setting up different formats for his output.

PRINT

The teletypewriter line is divided into five zones of fifteen spaces each. Some control of
the use of these zones comes from the use of the comma. A comma is a signal to move to
the next print zone or, if the fifth print zone has been used, to move to the first print zone
on the next line.

Shorter zones can be made by use of the semicolon. The zones are three spaces long for
I-digit numbers, six spaces long for 2-digit, 3-digit, and 4-digit numbers, nine spaces long
for 5-digit, 6-digit, and 7-digit numbers, twelve spaces long for 8-digit, 9-digit, and 10-digit
numbers, and fifteen spaces long for II-digit numbers. As with the comma, a semicolon
is a signal to move to the next short print zone or, if the last such zone on the line has been
used, to move to the first print zone of the next line.

The first space in any print zone is reserved for the sign, even though it is not printed out
if it is plus.

21

If you typed the program

100 F0R 1=1 T0 15
110 PRINT I
120 NEXT I
999 END

the teletypewriter would print 1 at the beginning of the first line, 2 at the beginning of the
next line, and so on, finally printing 15 at the beginning of the fifteenth line. But if you changed
line 110 to read

110 PRINT I,

you would have the numbers printed in zones, reading

1
6
11

2
7
12

3
8
13

4
9
14

5
10
IS

If you wanted the numbers printed in the same fashion, but more tightly packed, you could
change line 110 to replace the comma with a semicolon

110 PRINT I;

and the result would be printed

2 3 4 5 6 7 8 9 10 11 12 13 14 15

You should remember that a label inside quotation marks is printed just as it appears, and
also that the end of a PRINT stat~ment signals a new line, unless a comma or semicolon is
the last symbol. The instruction

150 PRINT X,Y

will result in the printing of two numbers and the return to the next line, but

150 PRINT X, Y,

will result in the printing of two numbers and no return. The next number to be printed will
be printed in the third zone on the same line as the values of X and Y.

Since the end of a PRINT statement signals a new line, a statement such as

250 PRINT

will cause the teletypewriter to advance the paper one line. It will put a blank line in your
printout, if you! want to use it for vertical spacing of your results, or it will cause the com
pletion of a paz:t:ly filled line, as illustrated in the following part of a program:

100 F0R M=l T0 N
110 F0R J=O T0 M
120 PRINT B(M,J);
130 NEXT J
140 PRINT
150 NEXT M

The program will print B(1,0) and next to it B(1,1). Without line 140, the teletypewriter would
then go on printing B(2,0), B(2,1), and B(2,2) on the same line, and even B(3,0), B(3,1), and
so on, if there were room. Line 140 directs the teletypewriter to start a new line after print
ing the B(l,l) value corresponding to M=l, and to do the same thing after printing the value
of B(2,2) corresponding to M=2, and so on.

22

TAB

The print function TAB vermits tabbing of the teletypewriter. Whenever the TAB function is
used in the PRINT statement, it will cause the print head to move over to the position indi
cated by the argument of TAB.

Example:

150 PRINT X; TAB(10); Y; TAB(2*N); Z

The argument of TAB refers to a print position on the teletypewriter line. The positions are
assumed to run from 0 through 74. In the example, if the value of N is 10, the print head
will move to the 10th print position after printing the value of X, and to the 20th print
position after printing the value of Y.

When using the TAB function, you should use the semicolon in the PRINT statement in order
to minimize field width.

If the argument of TAB is less than the current teletypewriter print head position, it is
ignored.

All arguments of TAB are treated modulo 75.

Rules for Printing Numbers

The following rules for the printing of numbers will help you in interpreting printed results.

• If a number is an integer, the decimal point is not printed. If the integer is larger
than or equal to z30 (i.e. 1,073,741,824), the teletypewriter will print the first digit,
followed by (1) a decimal point, (2) the next five digits, and (3) an E followed by the
appropriate exponent integer. For example, it will print 32,437,580,259 as 3.24376E+I0.

• For any decimal number, no more than six significant digits are printed.

• For a number less than 0.1, the E notation is used unless the entire significant part
of the number can be printed as a six decimal number. For example, .03456 means
that the number is exactly .0345600000, but 3.45600E-2 means that the number has
been rounded to .0345600.

• Trailing zeroes after the decimal point are not printed.

The following program, in which we print out the first 45 powers of 2, shows how numbers
are printed.

100 F0R 1=1 T0 45
110 PRINT 2'IJ
120 NEXT I
999 END
RUN

PRINT 14.53

2 4 8 16 32 64 128 256 512 1024 2048 4096 8192
16384 32768 65536 131072 262144 524288 1048576 2097152
4194304 8388608 16777216 33554432 67108864 134217728
268435456 536870912 1.07374E+09 2.14748E+09 4.29497E+09
8.58993E+09 1.71799E+IO 3.43597E+IO 6.87195E+l0 1.37439E+l1
2.74878£+11 5.49156E+II 1.09951£+12 2.19902E+12 4.39805E+12
8.79609E+12 1.75922£+13 3.51844E+13

23

PRINT USING AND IMAGE STATEMENTS
You can set up formatted line output by use of the PRINT USING and image statements.

The form of the PRINT USING statement is

PRINT USING line number, output list

where the line number is that of the image statement to be used in formatting the output line,
and the output list can consist of numbers, variables, string constants, string variables, and
functions.

The form of the image statement is

line number:line image

where the line number is that of the image statement in the program, and the line image
consists of format control characters and printable constants.

Format control characters are

(apostrophe) a one-character field that is filled with the first character in an
alphanumeric string regardless of the string length.

II "

#

TTTT

(quotation marks) the replacement field of an alphanumeric string of two or more
characters; the field width includes the quotation marks as well as the characters
(if any) contained within the marks.

(pound sign) the replacement field for a numeric character.

(four up-arrows) indicates scientific notation for a numeric field.

All other characters are treated as printable constants.

The following simple example is part of a program, showing the use of the PRINT USING
statement, the line image statement, and format control characters.

Example:

110 PRINT USING 120"AS""S""A,,324,,X
120:"" .",." ""fI "."""

If the values of A$, A, and X are FmST, 12.9, and 24687, output is

FIRST S 12.90 324 2.47£+04

An image statement must begin with a colon. It is composed of fields which form the print
line. There are five types of fields:

• Integer fields

• Decimal fields

• Exponential fields

• Alphanumeric fields

• Literal fields

24

Integer Fie'lds

The following rules apply to integer fields.

• An integer field is composed of pound signs (#).

• Numbers in an integer field are right justified and truncated if they are not integral.

• The field will be widened to the right if the number is too big.

• The field must reserve a place for the algebraic sign.

• If the number is greater than 1,073,741,823 in absolute value, an asterisk will be
printed.

Example:

100: "IN ""I ",
110 READ A,B,C
120 PRINT USING 100,A,B,C
130 G0 T0 110
140 DATA 123.45,-34.856,45.7,457.34,-17,89.999
999 END
RUN

PRINTU

123
457

15:00

-34
-17

45
89

0UT 0F DATA IN 110

Decimal Fields

The following rules apply to decimal fields.

• A decimal field is a string of pound signs (#) with an imbedded period. Note that .###
is not a decimal field because the period is not imbedded.

• The number will be rounded to the number of places specified by the pound signs
following the decimal.

• The number is right justified, placing the decimal as given in the field definition.

• The field will be widened to the right if the number is too large.

• The field must include a place for the algebraic sign.

Example:

100: ""." ""."" "",.
110 READ A,B,C,D
120 PRINT USING 100,A,B,C,D
130 G0 T0 110
140 DATA 123.456,-34.856,47.7,-.0177
150 DATA 1.999,876.55,-17,.893
999 END
RUN

,."",

PRINTU

123.46
2.00

15103

-34.8560
876.5500

48.
-17.

-.018
.893

0UT 0F DATA IN 110

25

Exponential Fields

The following rules apply to exponential fields .

• An exponential field is a decimal field followed by four up-arrows(t), which reserve
a place for the exponent.

• The pound signs preceding the decimal represent the factor by which the exponent
will be adjusted.

o The number will be rOWlded as with decimal fields.

o A place must be reserved for the sign.

Example:

1001 '.','Ultttt UI.llltttt UIU.tttt
110 READ A~B~C~D

120 PRINT USING 100~A~B~C,D

130 G0 T0 110
140 DATA 123.4S6~-34.8S6,47.7,-.0177

ISO DATA 1.999~876.5S~-17~.893

999 END
RUN

'.flltttt

PRINTU 15105

.12346E+03

.19990E+Ol
-3-486E+Ol

8.766E+02
48.E+00

-17.E+00
-.18E-OI

.89E+00

0UT 0F DATA IN 110

Alphanumeric Fields

The following rules apply to alphanumeric fields.

• The apostrophe is used to print the first character from a string variable or quoted
constant•

• A field bounded by quotation marks is used to print two or more characters.

• In an alphanumeric field of two or more characters, the string is left justified within
the field and blank filled or truncated on the right.

Example:

1001 "23456" "THE NAME G0ES HERE"
110 READ A$,B$~C$,D$~E$

120 PRINT U~ING 100,AS,8S,C$,OS,ES
130 DATA ABCDEFGHI
140 DATA ABCDEF"
150 DATA ABC
160 DATA ABC
170 DATA ABC
999 END
RUN

••

26

PRINTU

ABCDEF"G

15:08

ABCDEF" A AA

LiteraI Fields

A literal field is composed of characters or character strings that are not control charac
ters. It will appear on the print line exactly as it appears in the image.

Example:

100: THE VALUE f0R A IS
110 LET A=100.54
120 LET AS=ttS"
130 PRINT USING 100~A$IA

999 END
RUN

""".tllI

PRINTU 15:09

THE VALUE f0R A IS

General Rules

$ 100.54

The following rules apply in general to formatted line output.

• A program may contain up to 100 images.

• The list elements in the PRINT USING statement may be expressions, variables,
numeric constants, and quoted literals.

• Numeric list elements must replace numeric fields, and alphanumeric elements must
replace alphanumeric fields, or you will receive the error message BAD IMAGE.

• If the output list contains more elements than there are replaceable fields in the image
statement, a carriage return is supplied after the last field in the image, and the image
is reused. The extra elements will be printed on a second line only if they match the
image fields that are to be used.

Example:

100 PRINT USING 120
110 PRINT
120: I It2 It3

130: ,,"," """" "'ti'"
140 f0R 1=1 T0 6
150 LET ACI)=1
160 LET 8CI)=I'2
170 LET CCI)=It3
175 NEXT !
180 f0R 1=1 T0 6 STEP 2
190 PRINT USING 130IACI)18CI)ICCI)IACI+I)18C!+I)ICCI+1)
200 NEXT 1
999 END
RUN

PRINTU 15: 14

I It2 It3

1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216

27

The following program demonstrates one kind of application in which the formatted output
line is useful.

Example:

HRS W0RKED RATE PAY
" ,/1/1,." fllI.",/HR ,""."

ANDREWS,47.5,3.987.KELLY.40,2.865,MANLEY.46,3.020
ZUMPAN0,42.34,4.255

100 PRINT USING 170
110 PR INT
120 F0R 1= 1 T0 4
130 READ AS.A.S
140 LET T=A*B
ISO PRINT USING J80,AS,A.B."$",T
160 NEXT I
170:NAME
180:"
190 DATA
200 DATA
999 END
RUN
WAIT.

F0RMAT J5: 19

NAME HRS W0RKED RATE: PAY

ANDREWS 47.50 3.987/HR S J89.38
KELLY 40.00 2.865/HR S 114.60
MANLEY 46.00 3.020/HR $ 138.92
ZUMPAN0 42.34 4.2S5/HR $ 180.16

FUNCTIONS
There are two functions that were listed in Chapter 1 but not described: !NT and RND.

Three other functions that you will sometimes find useful are SGN, CLK, and TIM. And you
can write your own functions by use of the DEF statement.

INT

The INT function is the one that frequently appears in algebraic computation as [x], and it
gives the greatest integer not greater than x. Thus INT(2.35} equals 2, INT(-2.35} equals -3,
and INT(12} equals 12.

One use of the INT function is to round numbers. We can use it to round to the nearest in
teger by asking for INT(X+.5}. This will round 2.9, for example, to 3, by finding

INT(2.9+.5) = 1NT(3.4) = 3

You should convince yourself that INT(X+.5) will do the rounding guaranteed for it, that it will
round a number midway between two integers up to the larger of the integers.

It can also be used to round to any specific number of decimal places. For example,
INT(lO*X+.5}/lO will round X correct to one decimal place; INT(lOO*X+.5}/100 will round
X correct to two decimalplaces;andINT(X*10TD+.5)/10TDwill round X correct to D decimal
places.

RND

The function RND is a pseudo random number generator. It requires a single argument, which
has the following meanings:

28

• If the argument is positive, the argument is used to initiate the random number se
quence.

• If the argument is negative, a random number is used to initiate the random number
sequence.

• If the argument is zero, RND will supply a random number. The first use of RND(O)
in a program will always yield the same random number.

A positive or negative argument would probably be used to initiate a sequence of random
numbers, after which a zero argument would be used repeatedly.

If the initial value used for the argument is any power of 2, the same initial random number
results as when 2 is used.

If we want the first twenty random numbers, we can use the following program to get twenty
six-digit decimals.

Example:

100 LET X=RNO(I)
110 F0R L=1 T0 20
120 PRINT RNO(O),
130 NEXT L
999 END
RUN

RNDTST 15s23

.473599

.123978
2.97623E-02
.280064

.442519
8.68505£-02
.75441
.159309

.498805
4.06526£-02
.498551
.211611

.373168

.341097

.242898

.042684

.921321

.468896
9.31652£-02
.383241

If, on the other hand, we want twenty random one-digit integers, we can change line 120 to
read

120 PRINT INT(10*RNO(0»J

and we then obtain

RNOTST 15s24

4 4 4 3 9 00340 7 4 2 0 2 203

We can vary the kind of random numbers we get. For example, if we want twenty random
numbers ranging from 1 to 9 inclusive, we can change line 120 as shown below

120 PRINT INTC9*RNOCO>+I>J
RUN

RNOTST 15s25

545 492 4 5 7 ~ 3 322

Or we can obtain random numbers which are integers from 5 to 24 inclusive by changing line
120 as follows

29

120 PRINT INTC20*RNDCO)+5)J
RUN

RNDTST

14
10

15:26

13 14 12
8 9 5 12

23 7 6 5 II 14 5 20 14 9 6

In general, if we want our random numbers to be chosen from A integers of which B is the
smallest, we would call for

INT(A*RND(O)+B)

after first having initiated the random number sequence with a positive or negative argument,
as in line 100 of our sample program.

If you were to run the first version of our sample program again, you would get the same
twenty numbers in the same order. But we can get a different set by throwing away some of
the random numbers. In the following program we find the first ten random numbers and do
nothing with them. We then find the next twenty and print them. You can see, by comparing
this with the earlier program, that the first ten of these random numbers are the same as
the second ten of the first program.

Example:

100 LET Z=RNDCI)
110 F0R 1=1 T0 10
120 LET Y=RNDCO)
130 NEXT I
140 F0R 1=1 T0 20
150 PRINT RNDCO),
160 N£XT I
999 END
RUN

RNDTST 15128

SGN

2.97623E-02
.280064
8.89948£-02
.795665

.75441

.159309

.140658

.66257

.498551

.211611

.643944

.384661

.242898

.042684

.829565

.817653

9.31652£-02
.383241
5.32346£-02
.942257

The function SGN allows you to test for the sign of any value. The form is SGN(argument) and
it yields +1, -1, or 0 depending on the value of the argument. The options are

Argument Value

Zero
Positive, not zero
Negative, not zero

Examples

Yields

o
+1
-1

30

SGN(O)
SGN(-1.82)
SGN(989)
SGN(-.001)
SGN(-O)

yields 0
yields -1
yields +1
yields -1
yields 0

elK
The function CLK(X), X being a dummy argument, yields the time of day in military hours.

Examples:

100 PRINT CLK(X)
295 IF CLK(X»15.00 THEN 1000
130 IF A-CLK(X)<.5 THEN 1000

TIM

The function TIM(X), Xbeing a dummy argument, yields the program elapsed time in seconds.

Examples:

100 PRINT TIM(X)
688 IF TIM(X»10 THEN 1000

DEF

In addition to making use of the standard functions, you can define any other function that you
expect to use several times in your program. You use a DEF statement to define such a
function. The name of the defined function must be three letters, the first two of which are
FN. Hence you can define up to 26 functions in one program: FNA, FNB, FNC, and so on.

The usefulness of DEF you can see in a program, for example, where you often need the

function e-x2
• You introduce the function by the line

130 DEF FNE(X)=EXP(-Xt 2)

and later on call for various values of the function by FNE(.l), FNE(3.45), FNE(A+2), and so
on. DEF can be a great time-saver when you want values of some function for a number of
different values of the variable.

The DEF statement may be put anywhere in the program, and the expression to the right of
the equal sign may be any formula that can be fitted on one line. It may include any combina
tion of other functions, including ones defined by other DEF statements, and it can involve
other variables besides the one denoting the argument of the function. For example, if FNR
is defined by

170 DEF FNR(X)=SQR(2+L<Xi(X)-EXP(Y*Z)*(X+SIN(2*Z»)

and you have previously assigned values to Y and Z, you can ask for FNR(2.175). You can
give new values to Y and Z before the next use of FNR, if you want to.

DEF is generally limited to cases where the value of the function can be computed within a
single BASIC statement. Often much more complicatedfunctions, or even pieces of a program,
must be calculated at several different points within a program. For these functions, the
G~SUB statement will frequently be useful. It is described in the next section.

ADDITIONAL BASIC STATEMENTS

Several kinds of BASIC statements were not covered in Chapter 1. These are discussed in this
section. They are:

31

• G~SUB and RETURN
• CALL
• ST~P
• REM
• REST~RE
• CHAIN

G¢SUB and RETURN

When a particular part of a program is to be used more than one time, or possibly at several
different places in the overall program, it is most efficiently programmed as a subroutine.
The subroutine is entered with a G~SUB statement.

Example:

190 G~SUB 310

The line number, 310, is the line number of the first statement in the subroutine.

The last line of the subroutine should be a RETURN statement, directing the computer to re
turn to the earlier part of the program.

Example:

450 RETURN

This statement, if it is the last line in the subroutine entered in the previous example, tells
the computer to go back to the first line numbered greater than 190 and continue the program
there.

You may use a G~SUB statement inside a subroutine to execute yet another subroutine. This
is called nested G~SUBs. It is absolutely necessary that a subroutine be left only with a
RETURN statement. Using a G~ T~ or an IF--THEN to get out of a subroutine will not work
correctly. You may have several RETURNs in the subroutine so long as only one of them will
be used.

You should be very careful not to write a program in which a G~SUB appears inside a sub
routine that refers to one of the subroutines already entered. Recursion is not allowed.

The following example, a program for determining the greatest common divisor of three in
tegers using the Euclidean Algorithm, illustrates the use of a subroutine.

Example:

100 PRINT "A"6"S"6"C","GCO"
110 READ A,B,C
120 LET X=A
130 LET Y=B
140 G0SUB 230
ISO LET X=G
160 LET V=C
170 G0SUB 230
180 PRINT A686C6G
190 G0 T0 110
200 DATA 60,906120
2.0 DATA 38456664872698765
220 DATA 32,384672
230 LET Q=INTCx/V)
240 LET R=X-Q*V
250 IF R=O THEN 290
260 LET X=Y
270 LET Y=R

32

280 G0 T0 230
290 LET G=Y
300 RETURN
999 END
RUN

GCD3N0 15130

A B C GCD
60 90 120 30
38456 64872 98765 1
32 384 72 8

0UT 0F DATA IN 110

The first two numbers are selected in lines 120 and 130, and their GCD is determined in the
subroutine, lines 230 - 300. The GCD just found is called X in line 150, the third number is
called Y in line 160, and the subroutine is entered from line 170 to find the GCD of these two
numbers. This number, the GCD of the three given numbers, is printed out with the three
numbers in line 180.

CALL

The CALL statement is used to call an external program for use as a subroutine within the
main program just as the G~SUB statement calls a subroutine inside the main program. The
statement form is CALL saved program name.

Examples:

100 CALL HISDWN
200 CALL EQCLS*

You can call either previously savedprograms of your own, as in line 100; common programs
in your catalog library, as in line 200; or system library programs, either regular or run
only.

The standard program naming rules apply.

Examples:

140 CALL A B
150 CALL AB

Statements 140 and 150 both call a program named AB, since BASIC ignores all leading,
trailing, and imbedded blanks. No arguments are permitted after the program name in the
CALL statement. Subroutines may call other routines, but no program may call the main
program or itself.

The return from a subroutine to the calling program is by a RETURN statement. Multiple
returns are permissible. The return is always to the statement immediately following the
statement in which the program was called.

All variables and defined functions are common to the main program and the called SUb
routines. They need not be defined separately in each program.

33

Example:

NEW
NEW ~ILE NAME--DEFPRT
READY.

100 LET Y=4
110 LET X=7
220 LET A=FNP(3)
230 RETURN
999 END
SAVE
WAIT.

READY.

NEW
NEW FILE NAME--MAIN
READY.

100 DEF FNPCZ)=SQRCXt2+Yt2+Zt2)
J J 0 CALL DEF PRT
120 PRINT A
999 END
RUN
WAIT.

MAIN 15135

8.60233

Statement 110 calls DEFPRT, which stores 4 in Y and 7 in X, and calculates a value for A by
use of a function defined in line 100 of MAIN. The function uses the value 3 for Z as defined in
statement 220 of DEFPRT. DEFPRT then returns to the statement immediately following the
CALL statement, and the calculated value for A, 8.60233, is printed.

An END or ST¢>P statement terminates all execution, whether it is executed in a subroutine
or in the main program.

The line numbers in the different programs are completely independent. G¢> T¢> and IF-
THEN statements reference line numbers in their own program only.

Data is compiled from the main program first, and then from each of the called programs in
the order in which the CALL statements are encountered.

Consider the following example.

Example:

0L.D
0L.D FILE NAME--SUBR

READY.

LIST

SUBR 15138

100 READ X.YIZ
110 DATA 617,,8
120 RETURN
999 END

34

eLD
8LD FILE NAME--MAIN

READY.

LIST

MAIN 15.39

100 READ A"B
110 CALL SUBR
120 READ C,D"E
130 DATA 1,2
140 DATA 3,4,,5
150 PRINT A#B
160 PRINT X"Y"Z
170 PRINT C,D"E
999 END

RUN

MAIN 15140

1
3
6

2
4
7

5
8

Statement 100 reads the numbers 1 and 2 into A and B. Statement 110 transfers control to
SOOR, which reads 3, 4, and 5 (not 6, 7, and 8) into variables X, Y, and Z. After the return
to statement 120, 6, 7, and 8 are read into C, 0, and E.

The CALL statement allows more effective use of program space available. A program re
ferred to by a CALL statement will be compiled only once no matter how many times it is
called in each of the routines. Object code generated by the called program counts toward
object code limitation, but the characters in the called program do not count toward the
BASIC character limitation.

As many as 10 different programs may be called.

ST~P

The ST~P statement is equivalent to G~ T~ XXXXX, where XXXXX is the line number of
the END statement in the program. It is useful in programs having more than one natural
finishing point. For example, the following two parts of programs are exactly equivalent.

Example:

250 G0 T0 999 250 ST0P

· ·• ·· ·340 60 T0 999 340 ST0P
••·999 END 999 END

REM
The REM statement allows you to insert explanatory remarks in a program. The form is REM
any comment. The computer completely ignores the part of the line following REM, allowing
you to inclUde directions for using the program, identifications of the parts of a long program,
or anything else. Although what follows REM is ignored, you may use the line number of a
REM statement in a GfDSUB or IF--THEN statement.

35

Examples:

100 REM INSERT DATA IN LINES 900-998. THE fIRST
110 REM NUMBER IS NI THE NUMBER 0, P0INTS. THEN
120 REM THE DATA P0INTS THEMSELVES ARE ENTEREDI BY

200 REM THIS IS A SUBR0UTINE ,~R S0LVING EQUATI0NS.

···300 RETURN··•
520 G0SUB 200

REST¢RE

Sometimes it is necessary to use data in a program more than once. The REST¢)RE state
ment permits reading the data as many additional times as necessary. Whenever REST¢)RE
is encountered in a program, the computer restores the data block pointer to the first item
of data. A sUbsequent READ statement will then start reading the data allover again.

One word of warning: if the data items you wish to use again are preceded by code numbers
or parameters, superfluous READ statements should be used to pass over the numbers.

As an example, the following part of a program reads the data, restores the data block to its
original state, and reads the data again. Note the use of line 570 to pass over the value of N,
which is already known.

Example:

100 READ N
110 f0R 1=1 T0 N
120 READ X·••
200 NEXT I···560 REST0RE
570 READ X
580 f0R 1=1 T0 N
590 READ X

CHAIN

The CHAIN statement allows you to stop the execution of the current program and begin
compilation and execution of another program without direct intervention. The CHAIN state
ment is equivalent to giving the commands ST¢>P, ¢)LD, a program name, and RUN.

The statement form is
\.

CHAIN saved program name

or

CHAIN saved program name, line number

Only one program name may appear in a statement. The name must conform to the rules
used in naming BASIC programs.

36

Examples:

100 CHAIN NEXT
100 CHAIN NEXT, 100
100 CHAIN PL¢)TER***
100 CHAIN TUT01$***
100 CHAIN PAYR¢)L, 555

Notice that, as shown in the examples, BASIC library programs may be chained.

When a number appears after the saved program name, as in the second and fifth lines of the
examples, the number indicates the line number of the named program at which execution is
to begin. When no number appears, execution begins with the first executable statement of the
named program.

Once a CHAIN statement is executed, the current program is stopped and the named program
brought in. Because there is no logic path to any statements following the CHAIN statement,
all needed current program statements must be executed before the CHAIN statement.

DATA FILES
An external data file is a saved program in which you can record information for later use.
There are two types of data files: BCD and binary. The data in a file must all be of one type.

BCD data files may be created with a BASIC program or they may be typed in as a saved
program. Thus all of the editing commands, such as LIST, EDIT DELETE, and so on, may be
used in accessing and modifying BCD files.

Binary data files can be created only with a BASIC program. They cannot be created from a
terminal or altered in the same manner as BCD files.

If a BCD or binary file is to be written during program execution, an area on the disc large
enough to contain the entire file to be generated must be reserved in your library before
program execution. This is done by renaming and saving special files available in the system
library (see ((Dummy Catalog Files"). These files are empty. Their purpose is to preset the
size of the files to be generated.

Example:

¢)LD
bLD FILE NAME--CH0768***
READY
RENAME
NEW FILE NAME--WFILE
READY
SAVE
READY

In the example, the data file WFILE has been created; it has a storage capacity of 768 char
acters.

File Reference

The form of the file reference statement is

FILES name 1; name 2; ... ; name n

where name 1, name 2, and so on are the names of files to be read or written by the program.
The file reference statements must precede all executable statements in the program. The

37

number of files that can be used in a program depends on the size of the program, but you
can always reference at least 8 files in any program.

The named files must be saved in your catalog before running the program. Files referenced
but not saved produce the error message FILE N~ SAVED when you run the program.

File naming must conform to the established conventions for naming programs, except:

• File names must not contain semicolons. They will be interpreted as file name sepa
rators.

• Leading and imbedded blanks are ignored.

• The file name is left-justified.

• File names should not contain slashes or commas.

Examples:

100 FILES A;B;C

or

100 FILES A
110 FILES B;C

The following file names are identical:

100 FILES XYZ
100 FILES XY Z
100 FILES X Y Z

Fi Ie Designator

The file designator is used in all statements referencing files. It singles out a file named in
the file reference statement. It may be an integer, an expression, a variable, or a subscripted
variable.

Example:

100 FILES P;Q

.
170 READ #l,A(I), B(I)

.
195 READ #A*B, A(I), B(I)

Statement 170 refers to file P. Statement 195 refers to a file depending on the value of the
expression A*B, which must be an integer. If the value of A*B is 1, file P is selected; if the
value of A*B is 2, file Q is selected.

If the value of the file designator is less than one, non-integral, or greater than the number
of files referenced, the error message ILLEGAL FILE DESIGNATt>R will be printed.

Dummy Catalog Files

Since it is necessary to save a file of a size large enough to contain the data to be written,
the system library contains the following six files which you can rename and save in your
catalog.

38

Library Name

CH0192***
CH0384***
CH0768***

Characters

192
384
768

Library Name

CH1536***
CH3072***
CH6144***

Characters

1536
3072
6144

The number of data points that can be written into a file is a function of the number of charac
ters in each data point. Line numbers and spaces must also be considered in the count.

BCD DATA FILES

BCD files are sequential access files. For each execution of the READ or WRITE statement,
data is transmitted serially. BCD files contain line numbers and are listable.

If a BCD file with initial values is to be read from the disc, you must prepare it before
program execution and save it in your catalog.

Example:

NEW
NEW FILE NAME--RFILE
READY
100 1,1.5,2,2.5,3
110 3.5,4,4.5,5,5.5
SAVE
READY

When preparing a BCD file, you may if you wish use a blank in place of a comma as a data
separator. This option allows files prepared in F0RTRAN to be processed in BASIC and
conversely. RFILE in the previous example can be prepared as:

100 1 1.5 2 2.5 3
110 3.5 4 4.5 5 5.5

Note that the word DATA is not needed in these files. The first number on each line is the
line number.

All files are in either read mode or write mode. Initially, the FILES statement results in
all files being set to the read mode. This protects you from accidentally destroying valuable
files. You can later change the mode of any file by iSSUing a SCRATCH or REST~RE state
ment. The SCRATCH statement establishes the designated file as write mode. The REST0RE
statement establishes the designated file as read mode.

File Reading

The form of the BCD read file statement is

READ #file designator, input list

where the file designator is as previously described. The pound sign denotes a BCD file.

The input list consists of the variables, separated by commas, into which the data is to be
read. The list may contain non-string and string variables, and any of them may be sub
scripted.

39

Example:

A file containing 1, 1.5, 2, 2.5,3,3.5, 4, 4.5, 5, 5.5 is to be read into A(I) and B(I).
100 FILES RFILE
110 FQJR 1=1 TQJ 5
120 READ #l,A(I),B(I)
130 NEXT I

For each execution of the READ # statement one value is read into an A(I) and B(I) so that,
at the termination of the loop:

A(I) 1
A(2) 2
A(3) = 3
A(4) 4
A(5) 5

B(l) = 1.5
B(2) = 2.5
B(3) = 3.5
B(4) = 4.5
B(5) = 5.5

The file pointer will remain positioned following the last read data item (5.5 in the example)
until further file statements designating the file (RFILE in the example) are executed.

File Writing

The form of the BC D write file statement is

WRITE #file designator, output list

where the file designator is as previously described.

The output list consists of the variables, separated by semicolons, from which the file is
generated. The list may contain non-string variables, string variables, strings, and expres
sions. Subscripting is permissible in the output list.

WRITE # always generates a file beginning with line number 1000, incrementing by 10
for each new line. The line number sequencing can be modified, if you wish, by EDIT
RESEQUENCE.

Each WRITE # statement generates one line of output unless the teletypewriter line limit
is exceeded or the last list item is followed by a semicolon. When the teletypewriter line
limit is exceeded, writing continues on the next line with the next data item. When the output
list is followed by a semicolon, subsequent writing occurs on the same line in a closely
packed format.

Example:

100 FILES WFILE
110 SCRATCH #1
120 FQJR 1=1 TQJ 25
130 WRITE #1,1;1*1
140 NEXT 1

When listed WFILE would contain

1000 1 1
1010 2 4
1020 3 9

1240 25 625

40

Following is an example showing how strings and string variables are used with files.

Example:

100 FILES STRING
110 SCRATCH #1
120 LET A$=HSTRING1"
130 WRITE #1,A$;HSTRING2"
140 WRITE #1, tlSTRING2";A$

Then listing the file STRING gives

1000 STRINGl STRING2
1010 STRING2 STRING1

End-at-File and End-at-Space

The end-of-file (EOF) is a special mark written by BASIC itself that indicates the end of
data in the file.

The end-of-space (EOS) is the physical end of the disc area reserved for a file. When a file
is completely filled with data, EOF = EOS; otherwise EOF< EOS.

Whenever a word is generated with a WRITE # statement, an EOF mark is placed im
mediately following the last word written. Subsequent transmissions to the file move the
EOF mark so that it always follows the last word written. When a file is generated from the
teletypewriter, an EOF mark is placed immediately after the last data item in the file as
soon as the file is saved.

End-at-File Test

The form of the statement that tests for an EOF mark or the EOS is

IF END #file designator THEN line number

where the file designator is as previously described.

The statement will test whether an EOF was detected by the last command reading the
designated file. When writing a file, the statement will test whether an EOS was detected.

If the last READ # statement found an EOF mark, the program will go to the line number
specified in the IF END # statement. otherwise the next sequential statement is executed.

If the program continues reading or writing a file after the EOF or EOS has been detected,
an error message (END 0F FILE or END 0F SPACE) will be printed and the program will
continue. The error message will be printed out each time an attempt is made to exceed the
EOF or EOS limit.

Example:

100 FILES F1;F2
110 SCRATCH #2
120 DIM X(100),Y(lOO), Z(100)
130 F0R 1=1 T0 100
140 IF END #1 THEN 180
150 READ #l,X(I),Y(I),Z(I)
160 WRITE #2,SQR(X(I)t 2+Y(I) t2+Z(I)t 2)
170 NEXT I
180 ST0P

41

If file F1 contained 300 data items, no EOF would be encountered; but if it contained only
150 data items, for example, the IF END # statement (line 140) would cause a transfer to
line 180 following the 50th execution of the loop.

File Restoring

The form of the BCD restore file statement is

REST0RE #file designator

where the file designator is as previously described.

The REST0RE # statement causes the position of the designated file pointer to be moved so
that the next transmission is from the beginning of the file.

If a file is already restored, the REST0RE # statement merely sets the file to read mode.

BASIC automatically restores the referenced files before a program begins executing.

Example:

100 FILES UTIL
110 SCRATCH #1
120 F0R 1=1 T0 50
130 WRITE #1,I;SQR(I)
140 NEXT I
150 REST0RE #1

170 READ #l,X,Xl

In the example the REST0RE # statement (line 150) is required to restore the written file
before reading it. Reading then begins at the first data item in the file.

A file being written cannot be read before it is restored. A file being read cannot be written
before it is scratched. This means that if any modifications are to be made to an existing
file via the program, it must be copied (written) to another file up to the modification point.
The modification can then be written into the second file.

File Scratching

The form of the BCD scratch file statement is

SCRATCH #file designator

where the file designator is as previously described. This statement causes the designated
file to be scratched, or made ready for writing. If the file is already reset or restored the
statement merely sets the file to write mode. Following the SCRATCH # statement, trans
mission to the file commences at the beginning of the file.

Example:

100 FILES UTIL
110 SCRATCH #1
120 F0R 1=1 T0 50
130 WRITE #1,RND(O)
140 NEXT I
150 REST0RE #1
160 READ #l,X,Y,Z

42

In the example, the SCRATCH # statement (line 110) must be executed before the write into
the file. The REST0RE # statement must be executed before reading from the written file.

File Backspacing

The form of the BCD backspace file statement is

BACKSPACE #file designator

where the file designator is as previously described. This statement is permitted only on
files in the read mode.

The BACKSPACE # statement causes the position of the data pointer for the file being read
to be moved backward one data item. If the data pointer is already at the beginning of the
file, the backspace statement is ignored.

Some applications require a file to be processed forward and then backward. The following
example illustrates how this can be done.

Example:

100 FILES F1
110 IF END #1 THEN 210
120 READ #1,A
130 REM C0UNT NUMBER 0F P0INTS IN FILE
140 LET N=N+l

200 00 T0 110
210 F0R 1=1 T0 N
220 BACKSPACE #1
230 READ #1,A
240 BACKSPACE #1

300 NEXT I

BINARY DATA FILES
Binary data files are not listable. The file space normally used for line numbers in files
can be used for data. They are random access files; that is, data can be written into or read
from a binary file in any order. Since data conversion routines are eliminated in processing
binary files, program efficiency is increased.

For binary files, the restrictions on file mode are eliminated. Binary files may be read or
written without haVing been previously restored or scratched. The REST0RE ard SCRATCH
statements serve only to move the data element pointer to the first element in the file.

File Writing

The form of the binary write file statement is

WRITE : file designator, output list

where the file designator is as previously described. The colon denotes a binary file.

43

The output list may contain numeric variables, string variables, or literals. The numeric
variable or literal will cause a two-word entry into the file. The string variable or literal
will cause a six-word entry into the file. Each two-word entry is defined as a data element.
Consequently each numeric variable or numeric literal consists of one data element, and
each string variable or string literal consists of three data elements.

For example, a numeric variable or literal may appear in a WRITE : statement as:

100 WRITE:l,A
110 WRITE:1,10

(numeric variable)
(numeric literal)

A string variable or literal may appear in a WRITE statement as:

120 WRITE:l,A$
130 WRITE:l, I'ASTRN"

(string variable)
(string literal)

The following diagram illustrates how each of these will be entered into the file. In the
diagram, each block represents one computer word.

VARIABLE OR LITERAL

A$10A ASTRN
---~'---u,...-..A--""v.r---------------",v""-----...A.·-------.,.

"--------.v_-J""" --J".....-""""'"--"'....' _ _.._-....JJl"--""""'"--'''''--"""'''"-.J''....-_--'''.....-_--'

1 2 3 4 5 6 7 8

DATA ELEMENT

Binary files contain no line numbers. Data may be written into the file sequentially or
randomly.

The following is an example of a sequentially created file.

Example:

100 FILES WFILE
110 SCRATCH:l
120 F0R 1=1 T0 25
130 WRITE:l,I;I*1
140 NEXT I

File WFILE will contain 25 pairs of numbers, or 50 successive data elements.

In the following example, string information is written into a binary file.

Example:

100 FILES STRING
110 SCRATCH:l
120 LET M$=HMSTRING"
130 WRITE:l,M$;'INSTRING"

File STRING will contain two strings or six data elements, three data elements for each
string.

44

File Reading

The form of the binary read file statement is

READ : file designator. input list

where the file designator is as previously described.

The input list may contain numeric variables or string variables. The numeric variable will
cause one data element (two words) to be read from the file. The string variable will cause
three data elements (six words) to be read from the file.

Data may be read sequentially or randomly from a file.

In the following example data is read sequentially.

Example:

100 FILES RFlLE
110 F0R 1=1 T0 5
120 READ:l,A(I),B(I)
130 NEXT I

The first ten data elements in file RFILE will be read alternately into arrays A and B.

Random Accessing

The form of the random access statement is

SET : file designator, variable

where the file designator is as previously described.

The SET : statement will position the pointer of the designated file to the element specified
by the variable. The variable may be an integer or an expression. If the value of the variable
is less than one, non-integral, or greater than the length of the file, the error message
ILLEGAL P0INTER will be printed out.

Example:

100 FILES V FIL
110 SCRATCH:1
120 F0R 1=1 T0 25
130 WRITE:1,1*1
140 NEXT I
150 SET:l,7
160 READ:l,X,Y

File VFIL will contain 25 elements. In line 150, the pointer will be positioned to the 7th
element. Reading then begins at the 7th element, and the values 49 and 64 will be read into
X and Y.

If the file being processed contains string variables, the length of a string entry must be
considered before the SET statement is used.

Example:

100 FILES RNF
110 SCRATCH:l
120 WRITE: 1, " ASTRN" ;" BSTRN"
130 SET:l,4
140 READ:1,B$

45

When the WRITE : statement is executed, ASTRN will occupy the first three entries of file
RNF, and BSTRN will occupy the next three entries. To access the second string, the pointer
must be set to the position where the second string begins, which is done by line 130. The
string data, BSTRN, is then read into the string variable, B$.

The following uses of the SET : statement are acceptable.

180 SET:l,A*B
195 SET:3,A(I)

In each case the value of the variable must be an integer within the limits of the file.

Locating the Element Pointer

Since the element pointer can be moved randomly in a binary file, it is useful to have a
method of finding out where the pointer is at any time during the execution of a program.

The WC function will provide the location of the pointer in the file referenced.

For example:

LET x== L0C (file designator)

In this statement, X represents any numeric variable, and the file designator is as previously
described.

Example:

100 FILES Fl;F2

210 LET Al==r.,0C(1)

290 PRINT WC(2)

The value of the element pointer into file F1 will be stored in Al (line 210).

The value of the element pointer into file F2 will be printed (line 290).

File Scratching

The form of the binary scratch file statement is

SCRATCH: file designator

where the file designator is as previously described.

The SCRATCH statement cause the data element pointer to be repositioned so that trans
mission to the file starts at the beginning of the file.

Example:

100 FILES VFIL
115 SCRATCH: 1
125 F¢>R 1==1 T¢> 20
140 WRITE: 1, INT(1 0* RND(X))
155 NEXT I

46

The SCRATCH: statement may be replaced with a SET: statement to accomplish the same
purpose:

115 SET: 1, 1

A file being read can be written without being scratched. This means that files can be modi
fied during program execution.

Example:

100 FILES RFIL
110 LET ZI =0
120 LET SI = 26
130 SET: 1, SI
140 READ: 1, X
150 IF X =0 THEN 180
160 SET: 1, Lt>c(l)-1
170 WRITE: 1, Zl
180 LET SI =SI + 26
190 IF SI<E¢)F(l) THEN 130
200 END

This example reads every 26th data element and goes back and writes over that element with
a zero, provided that the element is not already zero.

File Restoring

The form of the binary restore file statement is

REST¢>RE : file designator

where the file designator is as previously described.

The REST¢>RE : statement will move the element pointer to the beginning of the designated
file.

Example:

100 FILES VFIL
110 SCRATCH: 1
120 F¢>R J =1 T¢) 50
130 WRITE: 1, J; SQR(J)
140 NEXT J
150 RESTORE: 1

.
180 READ: 1, X

This program writes 100 data elements into VFIL. Then the element pointer is moved to the
beginning of the file (line 150), and the first data element is read into X.

A file being written can be read before it is restored. If line 150 in the last example is
omitted, reading will begin where writing stopped, and the 101st data element will be read
into X.

End-of-File Test

For binary files the end-of-file test is a test for the end of file space. The IF END statement
will test whether an end-of-file-space condition was detected by the last READ: or WRITE:
statement. When reading a partially filled binary file, the READ: statement should be executed

47

only the number of times required to read the legitimate data in the file. The IF END test
would allow such a file to be read until all the space in the file had been exhausted.

The form of the statement is

IF END : file designator THEN line number

If the last READ: statement or WRITE: statement encountered the end of file space, the pro
gram will go to the line number specified in the IF END: statement. Otherwise the next se
quential statement is executed.

Example:

100 FILES F1
110 SCRATCH: 1
120 F¢>R J =1 T¢> 1000
130 IF END: 1 THEN 160
140 WRITE: 1, J/2
150 NEXT J
160 END

An intrinsic function is also provided to test for the end-of-file condition. The function L¢>F
will retrieve the length of the referenced file. For example:

LET X;: LfDF (file designator)

In this statement, X represents any numeric variable, and the file designator is as previously
described.

The functions L¢>c and L¢>F can replace the IF END: statement in the previous sample pro
gram as follows:

130 IF L¢>C(1) = L¢>F(l) THEN 160

When the element pointer into file F1 reaches the end of the file, writing stops.

If a program continues reading or writing a file after the end-of-file-space condition has been
detected, the error message END fDF FILE SPACE will be printed, and the program will
continue executing.

MATRICES
The matrix operation statements available in BASIC are among the most powerful and useful
in the entire language.

Following is a list of matrix statements.

48

MAT READ A,B,C,

MAT PRINT A,B;C

MAT C=A+B

MAT C=A-B

MAT C =A*B

MAT C =INV(A)

Read matrices A, B, and C, their dimensions haVing been pre
viously specified. Data is read in row-wise sequence.

Print matrices A, B t andC, with A and C in the regular format,
but B closely packed.

Add matrices A and B and store the result in matrix C.

Subtract matrix B from matrix A and store the result in matrix
C.

Multiply matrix A by matrix B and store the result in matrix C.

Invert matrix A and store the result in matrix C.

MAT C ;:TRN(A)

MAT C;: (K)*A

MAT C ;:C¢)N

MAT C:::ZER

MAT C:::IDN

Transpose matrix A and store the result in matrix C.

Multiply matrix A by the value represented by K. K may be
either a number or an expression, but in either case it must be
enclosed in parentheses.

Set each element of matrix C to one. C¢)N means constant.

Set each element of matrix C to zero.

Set the diagonal elements of matrix C to one's and the non
diagonal elements to zeroes, yielding an identity matrix.

MAT READ and MAT PRINT

Using the MAT READ and MAT PRINT statements, you can read data into or print data from
a matrix without having to reference each element of the matrix indiVidually.

Examples:

100 MAT READ A, F, H, G
150 MAT PRINT C
175 MAT READ Z
190 MAT PRINT A, L

Information is read into a matrix using the DATA statement. The elements in the DATA
statement are taken in row order, that is,

All,A12,···,Al m,A 2 1'A22,···,A2 m,···,A n m·" ", , ,

Information is readfrom OATA statements until the matrix array is completely filled. Partial
matrices cannot be read or printed.

Example:

110 DIM L(2,3), M(2,2)
150 MAT READ L, M
160 LET L(2,2)::: -2*L(2,2)
200 MAT PRINT L, M
500 DATA 1,2,3,4,5,6,3, -12, 0,7

Line 110 defines L as a 2 by 3 matrix and M as a 2 by 2 matrix. The MAT READ statement
reads in row order from the DATA statement at line 500. The matrix element L 2,2 is re
computed at line 160. The two matrices are then printed to yield:

[

1 2

4 -10 :] and

Matrix Addition, Subtraction, and Multiplication

You can add, SUbtract, and multiply matrices using the matrix arithmetic statements. The
matrix dimensions must be conformable for each operation. If dimensions are not conform
able, execution is stopped and you receive a dimension error message.

Matrix arithmetic statements may take the forms

MAT C:::A+B MAT C:::A-B MAT P=Q*R

49

Only one operation can be done in each statement.

Examp~e:

Calculate [H] a,a = [E] a,a- [K] a,a +[A] a,3* [B] 3,a

612 MAT H =A*B
615 MAT H=H+E
618 MAT H=H-K

Sca lar Multiplication

You can multiply a matrix by a scalar expression using a statement of the form

MAT X = (expression) *D

where X and D are matrices and the expression in parentheses is a scalar quantity. The
parentheses are required to indicate scalar rather than matrix multiplication. Only one
operation per statement is allowed.

Examples:

100 MAT F = (2)*G
150 MAT Q = (2.33 +M)*Q
750 MAT B = (N)*A

Identity Matrix

An identity matrix is defined by a statement of the form

MAT B=IDN or MAT R=IDN(expression, expression)

In the first statement, matrix B is set up as an identity matrix. If B is not defined to be
square, you will receive a dimension error message. In the second statement, the size of the
identity matrix R is determined at execution time by the value of the expression enclosed in
parentheses

Examples:

190 MAT A=IDN
100 MAT V=IDN(2*N+1,2*N+1)
120 MAT B =IDN(Q,Q)
130 MAT W=IDN
140 MAT C =IDN(l,l)

Matrix Transposition

Matrices are transposed using the form

MAT Y=TRN(Z)

where Y and Z are both matrices. The matrix Z transpose will replace matrix Y. Y and Z
must conform. Matrix transposition in place (MAT A =TRN(A» is not allowed.

Examples:

300 MAT G =TRN(H)
400 MAT U=TRN(V)

50

Matrix Inversion

Matrices are inverted using the form

MAT I=INV(J)

where I and J are both matrices. I will contain the matrix J inverse. I and J must conform.
Matrix inversion in place (MAT A=INV(A» is not allowed. If a matrix is singular, you will
receive the message NEARLY SINGULAR MATRIX.

Examples:

500 MAT K=INV(L)
560 MAT A=INV(B)

Matrix ZER and C¢N Functions

The ZER function is used to zero out all elements of a matrix. It may also be used to redefine
the dimensions of a matrix during execution as described in "Dimensioning." As an example

MAT C=ZER

will zero out the elements of matrix C.

The C~N function is used to set all elements of a matrix to one's. As an example

MAT C=C~N

will set all elements of matrix C to one's.

Dimensioning

Every matrix variable used in a program must be given a single-letter name.

A matrix variable mustbe defined in a DIM statement, which sets aside the amount of storage
required by the matrix variable during execution of the program. For example:

DIM P(3,4), Q(5, 5)

The DIM statement defines two matrices, P and Q. P is defined as a 12 element matrix, and
Q as a 25 element matrix. Note that the first element of P is P(1,1) and the last element
P(3,4). The elements of Q run from Q(1,1) through Q(5,5). All matrix variables must be
dOUbly dimensioned, as shown here.

Before any computation using the MAT statements, youmust declare the precise dimensions
of all matrices to be used in the computation. Four of the MAT statements are used for this
purpose:

MAT READ C(M,N)
MAT C =ZER(M,N)
MAT C =C¢>N(M,N)
MAT C =IDN(N,N)

The first three statements specify matrix C as consisting of M rows and N columns. The
fourth statement specifies matrix C as a square matrix of N rows and N columns.

These same statements may be used to redimension a matrix dUring running. A matrix may
be redimensioned to either a larger or a smaller matrix, provided the new dimensions do not
require more storage space than was originally reservedby the DIM statement. To illustrate,
consider the following.

51

Example:

110 DIM A(8,8), B(8,8), C(8,8)
150 MAT READ A(2,2), B(2,2)
160 MAT C =ZER(2,2)

.
200 MAT A =IDN(8,8)
210 MAT READ B(4,4), C(4,4)

Note that the DIM statement reserves enough storage to accommodate three matrices, each
consisting of 64 elements. The initial MAT READ specifies the dimensions of both matrices
A and B as 2 rows and 2 columns.

The MAT READ also reads the number of values required by the dimensions into the storage
that was reserved by the DIM statement. It reads them in row-wise sequence. In the initial
MAT READ, the elements in the order read are A(l,l), A(1,2), A(2,1), A(2,2), B(l,l), B(1,2),
B(2,1), and B(2,2). Statement 160 uses the ZER to specify dimensions and to zero the ele
ments of matrix C. Statements 200 and 210 illustrate redimensioning. Matrix A is redimen
sioned as an 8 row, 8 column identity matrix; and matrices B and C are redimensioned as
4 row, 4 column matrices into which data is to be read.

The combination of ordinary BASIC statements and MAT statements makes BASIC very
powerful, but you must be careful about dimensions. In addition to having both a DIM state
ment and a declaration of current dimension, you should watch your use of the MAT state
ments. For example, a matrix productMATC =A*B may be illegal for either of two reasons:
A and B may have such dimensions that the product is not defined, or C may have the wrong
dimensions for the answer. In either case you will receive the DIMENSI(>N ERR(>R message.

Examples

Two programs follow that illustrate some of the capabilities of the MAT statements. In the
first program, the values for MandNare read. Using these two values as indices, statement
120 sets the dimensions for matrices A, B, D, and G. The values for the elements of these
four matrices are read, Then, in sequence:

• The dimensions of matrix C are specified and the elements set to zero (line 130).

• Matrix A is printed (line 150).

• Matrix B is printed (line 170).

• The sum of matrices A and B is found and stored in C (line 180).

• Matrix C is printed (line 200).

• The dimensions for matrix F, a vector, are set and the elements set to zero (line 210).

• The product of matrices C and D is computed and stored in F (line 220).

• The dimensions for matrix H (single value) are specified and the elements set to zero
(line 230).

• Finally, the product of matrices G and F is found and stored in H and printed (lines
240, 260).

In the second program, a value N is read that determines the order of the Hilbert matrix
segment to be computed, stored, and printed. Next the matrix is inverted and printed. Finally
the Hilbert matrix is multiplied by its own inverse, and the resulting product matrix is
printed. Notice that line 290 specifies N as equal to 2 to produce the first three matrices of
order 2, and later returns to read in the data "3," redimensions to a larger array--Iarger
than 2, but smaller than the original 20--and produces more output.

52

MATRIX PROGRAM EXAMPLE 1:

100 DIM ACS~S)~BC5~5)~CCS~5)ID(515)~EC5~5)IY(515)IGC515)~H(515)

110 READ MIN
120 MAT READ A(MIM)IB(MIM),D(M,N)IG(N~M)

130 MAT C=ZERCMIM)
140 PRINT "MATRIX A BY 0RDER"JM
150 MAT PRINT AJ
160 PRINT "MATRIX B BY 0RDER"JM
170 MAT PRINT BJ
180 MAT C=A+B
190 PRINT" C=A+B"
200 MAT PRINT C,
210 MAT Y=ZER(M~N)

220 MAT Y=C*D
230 MAT H=ZERCNIN)
240 MAT H=G*Y
250 PRINT It H"
260 MAT PRINT HJ
270 DATA 3,1
280 DATA 1,2,31415,6,7,8,9,9,8,7,6,5,4,3,2,1,1,2,3,3,2,1
999 END
RUN

MAT-I 15:44

MATRIX A 0Y 0RDER 3
1 2 3

4 5 6

7 8 9

MATRIX B BY faRDER 3
9 8 7

6 5 4

3 2

C=A+B
10 10 10

10 10 10

10 10 10

H
360

53

MATRIX PROGRAM EXAMPLE 2:

100 DIM AC20#20)#BC20#20)#CC20#20)
110 READ N
120 MAT A=C0NCN,N)
130 MAT B=C0NCN#N)
140 MAT C=ZERCN#N)
ISO ~0R 1=1 T0 N
160 ~0R J;;1 T0 N
170 LET ACI,J)=l/(I+J-l)
180 NEXT J
190 NEXT I
200 PRINT "HILBERT MATRIX 0~ 0ROER"JN
210 MAT PRINT AJ
220 MAT B=INVCA)
230 PR INT •• INVERSE 0F" HILBERT MATR IX 0F' 0ROER" IN
240 MAT PRINT BJ
250 MAT C=A*B
260 PRINT "HILBERT MATRIX TIMES ITS 0WN INVERSE 0RDER"JN
270 MAT PRINT CJ
280 60 T0 110
290 DATA 2,3
999 END
RUN

MAT-2 15146

HILBERT MATRIX 0F" 0ROER 2
1 .5

.5 .333333

INVERSE 0~ HILBERT MATRIX 0F" 0RDER 2
4. -6.

-6. 12.

HILBERT MATRIX TIMES ITS 0WN INVERSE 0ROER 2
1. 0

-3.72529E-09 1.

HILBERT MATRIX 0F' BROER 3
1.5 .333333

.5 .333333 .25

.333333 .25 .2

INVERSE 0F' HILBERT MATRIX 0F' 0RDER 3
9. -36. 30.

-36. 192. -180.

30. -180. 180.

HILBERT MATRIX TIMES ITS BWN INVERSE 0RDER 3
t. -1.78814E-07 0

-2.23517&:-08 1 • -5.96046E-08

-1.49012E-08 -1.78814E-07

0UT BF DATA IN 110

54

EXAMPLES OF ADVANCED BASIC PROGRAMS
Following are two sample programs illustrating the use of many of the advanced capabilities
of BASIC. The first program is developed in an inventory case problem, and makes use of a
BCD file. The second program uses a binary file to store personnel information.

Inventory Problem

Mr. Swift, a storekeeper, would like to know how any five items in his store are selling in
any given month. He would like a permanent file of the items that were sold each week over
a four week period. He wants to update his file at the end of each week, and he mayor may
not want to get a complete written record of his sales. He may want to get a written report
at any time during the month.

The record should consist of an easy to read table listing the items and the number sold in
each week. The table should also show the total number of items for each week, the total
number of each item sold to date, and the total number of all items sold to date.

The five items that Mr. Swiftwouldliketo check are salt, pepper, sugar, nutmeg, and coffee.
The month is March.

The following program results from Mr. Swift's requirements. The program is explained by
remarks inclUded in it.

REM WHEN X IS NEGATIVE, THE DATA READ IS FINISHED.
LET A(X.Y)=ACX.y)+z
G0 T0 350

REM READ DATA F0R THIS WEEK 0R DATA MISSED FR0M PREVI0US WEEKS.
READ X,y.z
IF XeO THEN 430

REM W=INITIAL PASS FLAG, P=PRINT0UT FLAG
REM W=O INITIAL PASS, peO PRINT0UT D£SIRED
READ W,P
IF WeO THE:N 300

FIl£S ST0CK
DIM AC4,3)
F0R 1=0 T0 5
R£AD ASCI)
NEXT I

-J ••• N0REM IS A PRINT0UT WANTED? O••• YES
IF PeO THEN 870

REM WRITE THE UPDATED INF0 T0 THE PERMANENT DATA FILE.
SCRATCH' 1
F0R X=O T0 4
F"0R Y=O T0 3
WRITEII.XJYJACX,Y)J
NEXT Y
NEXT X

REM READ IN DATA WRITTEN INT0 THE FILE FR0M PREVI0US WEEKS.
REM X••• ITEM, Y••• WEEK, ACX,Y) ••• NUMBERS 0F ITEMS S0lD T0 DATE.
READ'l,X,Y.ACX,Y)
IF END'l THEN 350
G0 T0 300

REM F0R THE INITIAL PASS, WRITE THREE ZER0ES. THERE IS N0
REM DATA INITIAllY, AND S0METHING MUST BE WRITTEN BEF0RE
REM IT CAN BE READ.
SCRATCH'J
WRITE'J,O'O.O
REST0RE'1

100
JlO
120
130
1~0

150
160
170
180
190
200
210
220
230
2~0

250
260
270
280
290
300
310
320
330
3~0

350
360
370
380
390
~OO

410
~20

430
4~0

~50

~60

~70

480
490
500
510

55

520
530 REM PRINT THE M0NTH.
540 PRINT AS(5)
550 PRINT
560 PRINT TAB(IO)J
570 REM PRINT THE C0LUMN HEADER F0R EACH WEEK.
580 F0R 1=0 T0 3
590 PRINT USING 61011+11
600 NEXT I
6101 ,1',11111
620 PRINT USING 630
630: T0TALS
640 PRINT
650
660 REM BEGIN T0 GENERATE THE TABLE 0F VALUES.
670 F0R 1=0 T0 4
680 PRINT A$(!)JTABCIO)J
690 F0R JeO T0 3
700 REM SUM 0F EACH ITEM F0R THE ELAPSED WEEKS.
710 LET T(I)=TCI)+ACIIJ)
720 REM SUMS F0R EACH WEEK
730 LET S(J)=S(J)+A(!,J)
740 PRINT USING 610IACI,J)1
750 NEXT J
760 PRINT USING 610IT(I)
770 NEXT I
780 PRINT
790 PRINT TAS(IO)J
800
810 REM PRINT SUBT0TALS F0R EACH WEEK AND THE T0TAL F0R THE PERI00.
820 F0R K=O T0 3
830 PRINT USING 610,SCK),
840 LET S=S+SCK)
850 NEXT K
860 PRINT USING 610lS
870 END
880 REM O••• SALTI I ••• PEPPER, 2 •• SUGAR, 3 ••• NUTMEG, 4••• C0FFEE
890 DATA SALT,PEPPER,SUGARINUTMEG,C0FFEE,MARCH
1000 DATA -1,0
1010 DATA -1,010

Suppose that two weeks have passed and Mr. Swift wants a record of his sales to date. He
runs the program with data in line 1000 as shown above. The -1 specifies not the first week,
and the 0 specifies a printout of the file data. Also he enters data in line 1010 as shown above.
The -1 indicates the termination of data, and the two final zeroes are dummy data put in to
satisfy the READ. He gets the following results.

RUN

SALT 8:39

MARCH

2 3 4 T0TALS

SALT 3 4 0 0 7
PEPPER 7 5 0 0 12
SUGAR 4 3 0 0 7
NUTMEG 8 7 0 0 15
C0FFEE 2 9 0 0 1]

24 28 0 0 52

56

At the end of the third week, Mr. Swift wants to make an update. He wants a printout. All he
must do is replace line number 1010, as shown below. The BCD data file is updated, and the
printout shows the entries for the third week and the resulting changes in the totals.

1010 DATA 0.2.7. 1.2.5. 2.2.1. 3.2.5. 4.2.12. -1.0.0
RUN

SALT 14100

MARCH

2 3 4 T0TALS

SALT 3 4 7 0 14
PEPPER 7 5 5 0 17
SUGAR 4 3 1 0 8
NUTMEG 8 7 5 0 20
C0FFEE 2 9 12 0 23

24 28 30 0 82

Personnel Information

Following is a typical example of the use of binary files. There are two programs. Wf{>RKER
establishes the data base in the file INFf{>. Wf{>RK1 shows how values can be altered at will.

100 FILES INF0
110 SCRATCH II
120 READ AS.S.AI.D,SI.V
130 WRITEII.ASJSJAIJDJSIJV
I 40 Ga T0 120
150 DATAG0RDaN.9345,27.0.4.0
160 DATAPLUMMER.I0200.30.4.0.5
170 DATAGARANTIN0.8600.22.0.2.7
ISO DATATH0MAS.11550.29.3.0.2
190 DATACHENEy.8S00.25.0.4.6

RUN

W0RKER 14106

0UT 0F DATA IN 120

100 FILES INF0
110 READ A.B.C
120 G0SUB 200
130 SETtl.A*S+B
140 READ.I.X
I so LET X.X+C
160 SETII,LaCCI'-1
170 WRITEtl.X
180 G0 SUB 240
190 ST0P
200 PRINTUSING 220
210 PRINT
220lNAME SALARY AGE DEPENDENTS
2301" "S."'" ", II'
240 SETII.A*8+ I
250 READll.AS.S.Al.D.Sl.V
260 PRINTUSING 230.AS.S.Al.D.Sl.V
270 RETURN
280

SICK DAYS.", VACATI0N DAYS
I''''

57

F0R DATA --- 2~41820 --- A~TER MR. GARANTIN0'S SALARY BY S820

I-NAME. 4-SALARY. S-AGE~ 6-DEPENDENTS~ 7-SICK DAYS
8-VACATI0N DAYS

DATA F0RMAT --- A-NAME~ B-C0DE VALUE~ C-AM0UNT T0 BE ADDED
NAMES---- 0-G0RD0N~ l-PLUMMER~ 2-GARANTIN0~ 3-TH0MAS

4-CHENEY

290 REM
300 REM
310 REM
320
330 REM C0DE----
340 REM
350
360 REM
370
380 DATA 2~4~820

RUN

W0RKI 14111

NAME SALARY AGE DEPENDENTS SICK DAYS VACATI0N DAYS

GARANTIN0 $ 8600 22
GARANTIN0 $ 9420 22

o
o

2
2

7
7

The second line of the printout shows the $820 increase in Mr. Garantino's salary.

58

Appendix A Error Messages

Because most programs under development contain errors, a series of error messages is
included in BASIC. Some of the messages are received during compilation and others during
execution of a program. Many of the messages not only identify the type of error, but indicate
the line number where the error occurred. In the following table, XXX means a line number.

During execution, some messages occur that do not stop execution, but inform you of irregu
lar conditions existing in identified lines of your program. Other messages, however, point
out more serious errors that cause execution to stop.

Compilation Errors

MESSAGE

CUT PR~RAM ¢>R DIMS

DIMENSIf{)N T~¢> LARGE IN XXX

FILE Nf{)T DEFINED IN XXX

FILES N¢Y!' FIRST IN XXX

Ff{)R WITHf{)UT NEXT

ILLEGAL Cf{)NSTANT IN XXX

ILLEGAL Ff{)RMULA IN XXX

ILLEGAL INSTRUCTI¢>N IN XXX

ILLEGAL NUMBER IN XXX

ILLEGAL PR¢>GRAM NAME IN XXX

MEANING

Either the program is too long, or the amount of
space reserved by the DIM statements is too much,
or both. Cut the length of the program, reduce the
size of the lists and tables, reduce the length of
printed labels, or reduce the number of simple
variables.

The size of a list or table is too large. Make it
smaller. Maximum dimension is A(1022).

The file reference statement is missing.

The file reference statement is preceded by an
executable statement.

A NEXT statement is missing. This message can
occur in conjunction with NEXT WITH~UT Ff{)R.

A number is out of bounds (> 5.78960E76).

Perhaps the most common error message. May
indicate missing parentheses, illegal variable
names, missing multiply signs, illegal numbers,
or other errors. Check the statement thoroughly.

Other than one of the 26 legal BASIC instructions
has been used following the line number.

The line number is of incorrect form or contains
more than 5 digits.

A program name in a CALL or CHAIN statement
is a name with more than 6 characters and is
other than a library program name. A program
cannot call itself.

59

MESSAGE

ILLEGAL RELATI~N IN XXX

ILLEGAL VARIABLE IN XXX

IMAGE TABLE ~VERFL~W

INC~RRECT F¢}RMAT IN XXX

NEXT WITH¢}UT F~R IN XXX

N~ DATA

~VER 10 SUBR¢}UTINES

PR~RAM N~ SAVED (Program
Name)

PR~RAM T~¢} L~NG IN XXX

PRfOCJRAM W~N'T FIT (Program
Name)

REDIMENSI¢}NED ARRAY IN XXX

STRING T¢>¢> L~NG IN XXX

T¢>~ MANY C¢}NSTANTS IN XXX

T¢~ MANY FILES

T¢>¢> MANY G~~'S IN XXX

T¢~ MANY L¢¢PS

T¢>~ MUCH DATA

UNDEFINED FUNCTI~N

60

MEANING

Something is wrong with the relational expression
in an IF--THEN statement. Check to see if you
have used one of the 6 permissible relational
symbols.

An illegal variable name has been used.

More than 100 image statements have been in
cluded in the program.

The format of the statement is wrong.

There is an incorrect NEXT statement, perhaps
with a wrong variable given. Check also for in
correctly nested F~R statements.

There is at least one READ statement in the pro
gram, but there are no DATA statements.

The program tried to call more than 10 different
programs.

A program named in a CALL statement is not
saved.

The program is too long for the available storage.
Cut the size of the program or dimensions.

The program called is too large to fit in the re
maining available space.

An array has previously been dimensioned.

A string has more than 15 characters.

A statement contains constants that result in more
than 75 different constants in the program. Ex
ample: LET A(4) =1.24; 4 and 1.24 are constants.

The number of files referenced caused the pro
gram size limit to be exceeded. (At least 8 files
will always be allowed.)

More than 79 different line number references
were made in G~T~, IF--THEN, G¢)SUB, or
¢}N--G¢T¢ statements.

There are more than 26 F¢R--NEXT combina
tions in the program.

The program contains more than 1280 numbers, or
too many numbers and strings, or too many strings
as data.

A function such as FNF() has been used without
appearing in a DEF statement. Check for typo
graphical errors.

MESSAGE

UNDEFINED IMAGE XXX

UNDEFINED NUMBER IN XXX

Execution Errors--Execution Continued

MESSAGE

ABSf)LUTE VALUE RAISED Tf)
Pf)WER IN XXX

ATTEMPT Tf) READ A NUMBER
AS A STRING VARIABLE

DIVISIf)N BY ZERf) IN XXX

END f)F FILE IN XXX

END f)F FILE SPACE IN XXX

INPUT DATA Nf)T IN Cf)RRECT
Ff)RMAT, RETYPE IT

L¢X; f)F NEGATIVE NUMBER IN XXX

L¢>G f)F ZERf) IN XXX

¢>VERFL¢>W IN XXX

SQUARE R¢¢>T f)F A NEGATIVE
NUMBER IN XXX

UNDERFL¢>W IN XXX

MEANING

A PRINT USING statement references line XXX,
but line XXX either does not exist or is not an
image statement.

The statement number appearing in aG¢>T¢>, IF-
THEN, Gf)sUB, or ¢>N--G¢T¢ statement does not
appear as line number in the program.

MEANING

A computation of the form (-3) t 2.7 has been at
tempted. The computer supplies (ABS(-3) } t 2.7
and continues. Note: (-3}t 3 is correctly com
puted to give -27.

Self explanatory.

A division by zero has been attempted. The com
puter supplies + <:Q (about 5.78960E76) and con
tinues running the program.

An attempt has been made to read data from a
BCD file after all data has been read. The file
pointer is located at the end of the file. No data
is transmitted.

After all physical space in a file has been used,
an attempt has been made to write into a BCD file,
or an attempt has been made to read from or write
into a binary file. No data is transmitted.

Self explanatory.

The program has attempted to calculate the
logarithm of a negative number. The computer
supplies the logarithm of the absolute value and
continues.

The program has attempted to calculate the
logarithm of zero. The computer supplies
-5.78960E76 and continues.

A number larger than about 5.78960E76 has been
generated. The computer supplies .±5.78960E76
and continues running the program.

The program has attempted to extract the square
root of a negative number. The computer supplies
the square root of the absolute value and continues.

A number smaller in absolute size than about
4.31809E-78 has been generated. The computer
supplies zero and continues. In many circum
stances, underflow is permissible and may be
ignored.

61

MESSAGE

ZERf{> Tf{> A NEGATIVE POWER
IN XXX

Execution Errors--Execution Terminated

MESSAGE

BAD IMAGE IN XXX

CALLS f{>R Gf{>SUB NESTED T(Jf{>
DEEPLY IN XXX

DATA FILE (LINE XXX)
Ff{>RMAT ERRf{>R

DIMENSION ERROR IN XXX

EXPRESSIf{>N f{>UT f{>F RANGE

FILE Nf{>T BCD

FILE Nf{>T BINARY

FILE(S) Nf{>T SAVED: (File
Name)

ILLEGAL FILE DESIGNATf{>R IN XXX

ILLEGAL Pf{>INTER

NEARLY SINGULAR MATRIX IN XXX

f{>UT f{>F DATA IN XXX

62

MEANING

A computation of the form Ot (-1) has been at
tempted. The computer supplies + <J) (about
5.78960E76) and continues.

MEANING

There are syntax errors in the image statement
referenced by line number XXX, or an attempt has
been made to put numeric data in an alphanumeric
field, or alphanumeric data in a numeric field.

Too many CALLs or Gf{>SUBs without a RETURN.
It may be that subroutines are being leftby Gf{>Tf{>
or IF--THEN statements rather than by RETURNs.
The program stops.

At line XXX of the data file being read, data is not
in the required format.

A dimension inconsistency has occurred in con
nection with one of the MAT statements. The
program stops.

The range of an f{>N--Gm-f{> statement is incor
rect. Example: f{>N X Gf{>Tf{> 10,20,30. When the
integer value of X is either minus, zero, or
greater than 3, the expression is out of range.

An attempt has been made to do a BCD file read
or write on a binary file.

An attempt has been made to do a binary file read
or write on a BCD file.

The files indicated have been referenced but are
not saved in your library.

The file designator is less than unity, non-integral,
or greater than the number of referenced files.

The element pointer is less than unity, non
integral, or greater than the length of the refer
enced file.

The INV operation in MAT has encountered a
matrix with zero or nearly zero pivotal elements.
The matrix being inverted is singular or nearly
so. Note, however, that this check is not 100 per
cent reliable. For instance, this message neednot
occur even if the inverse is meaningless, as with
high order Hilbert matrices. If this error occurs,
the program stops.

A READ statement for which there is no DATA
has been encountered. If this means a normal end
of your program, ignore the message. Otherwise,
it means that you haven't supplied enough DATA.
In either case, the program stops.

MESSAGE

READING BCD IN XXX

RETURN BEF~RE G~SUB ~R CALL
IN XXX

SUBSCRIPT ERR~R IN XXX

WRITING BCD IN XXX

MEANING

An attempt has been made to write into a BCD
read mode file. Indicates a logic error or no
SCRATCH statement encoWltered before read
mode activity.

A RETURN has been encoWltered before the first
G¢>SUB or CALL in the program. Note: BASIC
does not require the G¢>sUB to have an earlier
statement number--only to execute a G¢>SUB be
fore executing a RETURN. The program stops.

A subscript has been called for that lies outside
the range specified in the DIM statement, or, if
no DIM statement applies, outside the range 0
through 10. The program stops.

An attempt has been made to read or backspace
a BCD write mode file. Indicates a logic error or
no REST¢>RE statement encountered before read
mode activity.

63

Appendix B Limitations on BASIC

There are some limitations imposed on BASIC by the limited amount of computer storage.
Listed below are some of these limitations, in particular, those that are related to the error
messages in Appendix A. The reader should realize that although the BASIC language itself
is fixed, in time some of these limitations may be relaxed slightly.

ITEM

Source program size

Constants

Data

Ft>R statements

at> Tt>, IF--THEN, at>SUB,
and t>N--at> Tt> statements

Compiled program size

Image statements

Dimension of array

Naming of variables

Subscripting

64

LIMITATION

The source program may not consist of more than 256 lines.
It may not contain more than 6144 characters.

The total number of different constants must not exceed 75.

There can be no more than 1280 data numbers.

There Can be no more than 26 Ft>R statements in a program.

The total number of different references in these statements
cannot exceed 79.

Cannot exceed 4148 words.

Maximum of 100.

A singly dimensioned array cannot exceed 1022. The limita
tions on a doubly dimensioned array with dimensions X, Y,
are: (1) X cannot exceed 1022, (2) Y cannot exceed 510, and
(3) the product of X+l andY+l cannot exceed 2074.

The variable A is distinct from the element A(O).

Numeric variable names consisting of two characters may
not be SUbscripted.

Appendix C Comparison Order for BASIC
Characters

BASIC characters are compared in their BASIC code representations. The following table
gives the BASIC code number for each character. Codes of nonprinting characters are en
closed in parentheses.

Code Character Code Character Code Character

00 0 24 D 53 $
01 1 25 E 54 *

(55) End of Message
02 2 26 F 56 >
03 3 27 G 57 T

04 4 30 H 60 (space)
05 5 31 I 61 /

(32) Bell
06 6 33 . (period) 62 S
07 7 34 " (quote) 63 T
10 8 35 ? 64 U
11 9 36 < 65 V

(37) Carriage Ret.
12 ' (apostrophe) 40 - (minus) 66 W
13 41 J 67 X
14 42 K 70 Y
15 43 L 71 Z

(72) Line Feed
16 44 M 73 , (comma)
17 "- 45 N 74)
20 + 46 0 75 [
21 A 47 P 76]
22 B 50 Q (77) Fill
23 C 51 R

(52) Tab

65

Appendix D Using the Time-Sharing
System

The Mark I Time-Sharing System consists of a GE-235 computer with a number of input
output stations, currently Model 33 and Model 35 Teletypes. Those using the input-output sta
tions are able to share the use of the computer with each other so as to suggest that each one
has sole use of the computer. The teletypewriters are the devices through which the user
communicates with the computer. This appendix contains elementary instructions for using
the Time-Sharing System. For complete information, see the Mark I Time-Sharing Service
Command System Reference Manual (229116).

The Keyboard

The teletypewriter keyboard is a standard typewriter keyboard for the most part. There are
three special keys the user must be familiar with.

RETURN

CTRL

The RETURN key is located at the right-hand end of the third row of keys,
and does more than act as an ordinary carriage return. The computer
ignores the line being typed until this key is pushed.

The CTRL (control) key is located at the left-hand end of the third row of
keys. When it is pressed along with the X key, the computer deletes the
entire line being typed. This also acts as a carriage return.

The backwards arrow key is the shift of 16. It is used to delete the character
or space immediately preceding the -. If this key is pressed N times, the N
preceding characters or spaces will be deleted.

Examples:

ABCWT--DE appears as ABCDE when RETURN is pushed.

AB C--CDE appears as ABCDE when RETURN is pushed.

Some languages available on the Time-Sharing System use the three characters\ , [, and] .
They are located on the keys L, K, and M, respectively, when either SIDFT key is pushed.

Teletypewriter Operation

Besides the keyboard itself there are four control buttons necessary to operate the machine.

66

Button

¢>RIG

CLR

L(>C LF

Location

Leftmost of six small
buttons on the right.

Next to ¢>RIG.

Left of the space bar
on Model 35 Teletypes
only.

Function

Turns on the teletypewriter and connects it
to the phone line.

Turns off the teletypewriter and discon
nects the phone circuit.

Feeds paper to permit tearing it off.

BUZ-RLS Rightmost of six small
buttons on the right.

Turns off the buzzer that signals a low
paper supply.

If the teletypewriter is on a directline to the computer, pushing the ¢RIG button is all that is
necessary to connect up with the computer. To disconnect from the computer, type G~~DBYE
or BYE. If that fails, push CLR.

In order to connect with the computer from a teletypewriter not on a direct line:

• Push the ¢RIG button and wait for the dial tone .

• Dial one of the numbers at the Time-Sharing Center.

In order to disconnect, type G¢¢DBYE or BYE, and if that fails, push CLR.

Control Commands

There are a number of commands that may be given to the computer by typing the command
at the start of a new line, with no line number, and following the command with a carriage
return. The following table lists some of the most frequently used of these commands.

Command

CATAL~

EDIT

LENGTH

LIST

LIST--XXXXX

NEW

¢LD

RENAME

RUN

RUN (typed dUring
computation)

SAVE

SCRATCH

STATUS

ST~P

Meaning

The computer types a list of the names of all the programs cur
rently saved under that user number.

Gives a brief explanation of the format used in the EDIT com
mands.

Gives you an idea of the length of the program, to the nearest 200
characters. The maximum length of one program is 6400 charac
ters.

Causes an up-to-date listing of the program to be typed out.

Causes an up-to-date listing of the program to be typed out be
ginning at line number XXXXX and continuing to the end.

Erases from working storage the program currently being worked
on, and asks for a NEW FILE NAME.

Erases from working storage the program currently being worked
on, and asks for an ¢LD FILE NAME.

Permits you to change the name of the program you are currently
working on, but does not destroy the program.

Begins the computation of a program.

Gives an indication that a program is running and how much ma
chine time has elapsed since the run began.

Saves the program intact for later use. To retrieve a saved pro
gram, type ~LD.

Destroys the program currently being worked on, but leaves the
user number and program name intact. It gives you a clean sheet
to work on.

Gives an indication of the status of the teletypewriter you are
using (running, idle, or disconnected).

Stops the computation at once. It can be typed only when the tele
typewriter is not printing.

67

Command

SYSTEM

TTY

UNSAVE

68

Meaning

Permits you to change systems (BASIC, ALGt>L, etc.) without going
through the sign-on sequence again.

Supplies the following information: teletypewriter number, user
number, language being used, program being used, and status of
teletypewriter.

Erases a saved program from memory. Since the memory of the
computer is finite, this command should be used to free space in
storage for other users' programs.

Acronym BASIC explained. • • • • • • •• 1
Advanced BASIC ••••••••••••• 19-58
Advanced BASIC statements ••.••• 31-37
Alphanumeric data

Definition of string • • • • • • • • • •• 19
Dimensioning • • • • • • • . • • • • • •. 19
IF--THEN statements ••••••.•. 21
INPUT statements • • • • • • . • • • •. 20
LET statements •••••.•••••• 19, 20
PRINT statements • • • • • • • • . • •• 21
READ and DATA statements •.••• 20
String size • • • • • • • • . • • • • . • •• 19
String variable •••••••• • • • • •• 19

Arithmetic operations. • • • . • • • . • •• 5

BASIC acronym explained • • • • • • • •• 1
BCD files •••••••••••••••••• 39-43

Backspacing • • • • . • • . • • . • • • •• 43
Data separator option. • • • . • • • •• 39
End-of-"file • • • • • • • • • • • • • • • •• 41
End-of-file test. • • • • • • • • •• 41, 42
End-of-space ••••••••••••••• 41
Mode. • • • . . • • • • • • • • • • • • • •• 39
Reading • • • • • • • • • • • • • • •• 39, 40
Restoring. • • • • • • • • • • • • • • • •• 42
Scratching. • • • • • • • • • • • • •• 42, 43
Writing • • • • • • • • • • • • • . •. 40, 41

Binary files ••••••••••••••• 43- 48
Block diagram. • • • • • • • • • • • • •• 44
End-of-file test. • • • • • • • • •• 47, 48
Locating element pointer. • • • • • •• 46
Random accessing • • • • • • • •. 45, 46
Restoring • • • • • • • • • • • • • • • • •• 47
Scratching •• • • • • • • . • • • •• 46, 47
Writing • • • • • • • • • • • • • • •• 43, 44

CALL statement ••. • • • • • • • •• 33-35
CHAIN statement • • • • • • • . • • •• 36, 37
Commands . . • • • . • • • • • . • • •• 67, 68
Comparison order • • • • • • • • • • • • •• 65
Computed GQ T(S . • • • • • • • • • •• 16, 17
Control commands • • • • • • • • • •• 67, 68

Data files see also BCD files, Binary files
BCD files defined. • • • • • • • • • • •• 37
Binary files defined • • • • • • • • • •• 37
Dummy catalog files. • • • • • •• 38, 39
File designator • • • • • • . • • • • • •• 38
File reference. • • • • • • • • • •• 37, 38

INDEX

Naming • • • • . • • • • • • • • • • • . .• 38
Saving space for •••••••••• 37-39

Data statement •.••••••••••• 3, 4, 14
Debugging see Errors and debugging
Definitions

Line number • • • • • • • • • • • • . • .• 2
Program •••••••••••••••••• 1
Statement. • • • • • • • • • . • • • • • •• 2

DIM statement. • • • • • • • • • • • •• 10, 18
Dimensioning

Lists and tables. • • • • • • • • • • 9, 10
Matrices ••••.•••••••••• 51, 52

Division by zero •• . . • . . • . . • • • •• 4

E notation. • • • • • • • • . • • • • • • • • •• 6
Elementary BASIC statements .•.• 14-18
END statement ••••••••• . • • • • .• 18
Entering data. • • • . . • • • • •• 3, 4, 14, 15
Error messages, table . . • • . 59- 63
Errors and debugging • • • • . . • . • • 11-14

Files see BCD files, Binary files, Data files
F(m and NEXT statements 17, 18
Format control characters •••••• 24
Formulas. • . . • • • • • • • • • • . • • • •• 5
Functions see also Mathematical functions

CLK •• • • • • • • . • • • • • • • • • • •• 31
DEF ••••••••••••••••••••• 31
INT 28
RND ••••••••••••••••••• 28-30
SGN 30
TIM ••••••••••••••••••.•• 31

G(S T(S statement. • • • . • • • • . • . • •• 16
GQsUB and RETURN statements ••• 32, 33

IF--THEN statement •••••••. •• 3, 17
Image statement. • • • • • • • • • • • •• 24-28
INPUT statement • • • • • • • • • • • . • •• 15

LET statement .. • • • • • • • • • • .• 3, 14
Line numbers • • • • • • . . • • • • • •• 2, 4
Lists and tables

Dimensioning • • • • • • • • • • • •• 9, 10
Sample program ••••••••••••• 10
Subscripts ••••••••••••••• 9, 10

Loops 7-9
Nested loops • • • • • • • • • • • • • •• 8, 9
Step size .•• . • • • • • • . . • . . • • • • 8

69

END•................ 18

Variables
Multiple variable replacement. • • •• 20
Numeric. • • . • • • • • • • • • . • • • •• 6
String • • • • . • • • • • • • • • • • • • •• 19
Subscripted 0............ 9, 10

READ statement •••••••.•. 0 3, 4, 14
REM statement • • • • • • • • • • • •• 35, 36
REST~RE statement. • • . • • • • • • • •• 36

Spaces in programs . • • • • • • • • • • •• 3
Statements

CALL •.••.•.••..•..•••• 33-35
CHAIN • • • • • • • • • . • • . • . •• 36, 37
DIM. • • • • • •• 0 ••••• 0 • • •• 10, 18

F~R and NEXT 0 • • • • • • • • •• 17, 18
F~R and NEXT. • . . • . . • • •• 17, 18
® T~ • • • • • • • • • • • • • • • • • • •• 16
~UB and RETURN • • . • . •• 32, 33
IF--THEN •••. . • • • • . • . • . 3, 17
INPUT. • • • • • • • • . . • • • • • • • •• 15
LET •••• • • • • . . • • • • • • •• 3, 14
PN--(}(> T~ • . • • • • • • • • • •• 16, 17
PRINT. . . • • . . • • • • • . . . •• 15, 16
READ and DATA. • • • • • • •• 3, 4, 14
REM • • • • • • • • • • • • • • • . •• 35, 36
REST0RE. • . • • • • . • • • •• 36
STfbp. • • • • • • . . • • • • • • .• 35

STfbp statement. • • • • • . • • • • • • • •• 35
Strings see also Alphanumeric data

Definition. • • • • • • • • • • • • • • • •• 19
String size • . • . • • • • • . • • • • • •• 19
String variable defined • • • • • • • •• 19

Subscripted variables. • • • . . . • .. 9, 10
Symbols of relation ••••••••••••• 7

Tables see Lists and tables

55-57
57, 58

66-68
67, 68
66, 67

Using BCD files .•.•••...
Using binary files •.•••.•

Using the system • • • • • • • • • . . •
Control commands • • • ••••••
Special keys and controls •••.

Parentheses • • . • • • • . • • . • • • • • •• 5
PRINT statement. . . • • . • . . • •. 15, 16
Printing

Format control characters •...•• 24
Formatted line output • •• 24- 28
Image statement. • • • • • • • • •• 24- 28
PRINT statement. • • . . . • • .• 21, 22
PRINT USING statement • • • •• 24- 28
Rules for printing numbers • . . • •• 23
TAB function. . • • • • • • • • • . • • •• 23

Priorities for computing. • • • • • • 5, 6
Program

Definition • • • • . • • • . • • • • • • • •• 1
EXaIIlples

Greatest common divisor •• 32, 33
Illustrating debugging. • • •• 11-14
Two equations in two variables. 2- 5

QN--G<1 Tfb statement • • • • • • •• 16, 17
Operations • • • • • • • • • • • • • • • • • •• 5

Numbers ••••••••••••.•••• 0 •• 6
Rules for printing • • • • • • • • • • •• 23

Numeric variables • • • • • • • • • • • • •• 6

Mathematical functions. • . • • .• 6, 28-31
Matrices ••...•••••••••••• 48- 54

Addition. • • • . • • • • • • • • • •• 49, 50
CQN function. • . • • • • • . • . • • • .. 51
Dimensioning • • • • • • • • • • •• 51, 52
EXaIIlples • • • • • • . . • • • • • •• 52- 54
Identity matrix • • • • • • • • • • • • •• 50
Inversion • • • • • • • • • • • • • • • • •• 51
MAT PRINT statement • • • • • • • •• 49
MAT READ statement ••••••••• 49
Matrix statements, list. • • • •. 48, 49
Multiplication • • • • • • • • • • •• 49, 50
Scalar multiplication ••••••• 0 •• 50
Subtraction .•••• 0 • • • • • • •• 49, 50
Transposition • • • • • • • • • • • • • •• 50
ZER function. • • • . . . • . • • • • • •• 51

Multiple variable replacement • • • • •• 20

70

	Preface
	Contents
	Introduction
	1. A BASIC Primer
	2. Advanced BASIC
	Appendix A Error Messages
	Appendix B Limitations on BASIC
	Appendix C Comparison Order for BASIC Characters
	Appendix D Using the Time-Sharing System
	Index

