Georgia
—Institute
of

“Iechnol
CCNNOIOLY scrooL oF INFORMATION AND COMPUTER SCIENCE | (404 §94-3152 | ATLANTA, GEORGIA 30332

GTL
PROGRAMMERS REFERENCE MANUAL
o] FOR THE

BURROUGHS B 5500

August 1974

GTL
PROGRAMMERS REFERENCE MANUAL
FOR THE

BURROUGHS B 5500

December 1971

ACKNOWLEDGMENTS

The GTL compiler almost certainly would not exist today if it were
not for the dedicated effort and genius of a single person, Martin
Alexander. His phenomenal talent was first recognized in the early 1960's
when he both designed and coded a LISP interpreter in machine language (not
assembly) for the Burroughs 220 computer in one weekend! Furthermore, he
was embarrasssed to admit that as many as about 5 or 10 instructions had to
be changed before it worked correctly. This success was followed by a LISP
interpreter for the Burroughs B 5500, this time written in ALGOL, and
now--—GTL.

Although Martin Alexander, who most unfortunately is no longer
employed at the Georgia Tech Computer Center, must be acknowledged as the
sole creator of GTL, it is felt that he would insist on giving credit to
the many people who have provided suggestions, advice, criticism, and
assistance in the effort. Particular credit is due Marie Courtney, who
implemented major portions of the double precision and complex arithmetic,
checked and corrected most of the machine language intrinsic functions,
and assisted in the design and implementation of many other features.

Credit is certainly due the Burroughs Corporation, whose excellent
Extended ALGOL compiler provided the starting point for GTL.

This manual was prepared by the staff of the Rich Electronic
Coﬁputer Center. The GTL Compiler is currently supported by the School

of Information and Computer Science.

ii

I.

IT.

III.

Iv.

TABLE OF CONTENTS

INTRODUCTION . . . « « « « . .

MISCELLANEOUS EXTENSIONS OF ALGOL .
SINGLE PRECISION STANDARD FUNCTIONS

1
2
3
A
.5
.6
.7
8
9
1
1

.

NINNNDNNNNMNDNONNDNDN
. e o o

.10
1

.

.
.

D
1
2
3
A
5
6
7
8
9

LWWWwWwWwwWwww
. . e

.

CASE EXPRESSIONS

FOR STATEMENT

EXIT STATEMENT
RETURN STATEMENT
ERROR STATEMENT
MATRIX MANIPULATION
POWERS OF TEN TABLE
SWAP STATEMENT . . . e o e .
RANDOM NUMBER GENERATOR .« e e

STATEMENT LINE NUMBER DETERMINATION

OUBLE PRECISION ARITHMETIC . . .

INTRODUCTION
FORM FOR DOUBLE EXPRESSIONS .
DOUBLE ARITHMETIC .OPERATORS .
DOUBLE RELATIONAL OPERATORS

DOUBLE STANDARD FUNCTIONS .

RULES OF CONTEXT . . . « « o &
DOUBLE PRECISION INPUT-OUTPUT
RESTRICTIONS . . ¢« « & o ¢ o &
EXAMPLE PROGRAM

COMPLEX ARITHMETIC

.

PEAEEEPRAPEEAEPEAD

1
2
3
4
5
6
7
8
9

INTRODUCTION . . . « o « . .
FORM FOR COMPLEX EXPRESSIONS .
COMPLEX ARITHMETIC OPERATORS .
COMPLEX RELATIONAL OPERATORS .
COMPLEX STANDARD FUNCTIONS . .
COMPLEX INPUT-OUTPUT
DOUBLE COMPLEX DECLARATOR . .
RESTRICTIONS . « & « ¢ « « o &
EXAMPLE PROGRAM

TRING PROCESSING . . « ¢ &« « « o &

(S, R, G, BV, IV, T, NV, BV, U, T, T,]
L]
LWWLWLWLwLwLwLwNDNREFHERFRED

STRING VARTABLES

Simple String Variables and Arrays

Substring Variables
Formal String Variables . .
STRING DESIGNATOR . . . o . .
STRING EXPRESSIONS
String Expression Forms . .
The Quoted String
String Designator
String Assignment Statement
String Function Designator .
SPACE Function

iii

pod
!
jairy

[
NOUUWWNRNN

NN PNNDNDNDNDNNNMDNNONNDN
1

: LWLWWLWWLWWLWWLWWLWWWW
1 1 | S O I |
PEREDPONNON =

-l-\-l-\-l-\-l-\-l'-\-l-\-l-\-l-\-l-\-l-\
VU D WWR e

(S0, NV, IRV, N, I, N, N, RN,)]
1
VOO NNN~NOOO VTSN

VI.

TABLE OF CONTENTS (Cont.)

The NIL Function . « « « ¢ ¢ ¢ ¢ ¢ ¢ « o « &
The String Skip Indicator
The QMARK Function . . & « ¢ ¢ ¢ o ¢ ¢ o o &
The Bit EXpression . « « « ¢ o o o« o o o & &
The Restricted Boolean Expression
The Restricted Arithmetic Expression
The Restricted Symbol Expression . . « . . .
The STRING Transfer Function
The SUBST Function . . . & ¢ ¢ o« &« ¢ o o o o
The FILL Function +« ¢« ¢ ¢ ¢ o & o« &
The OCTAL Function . « « o o ¢« o o ¢ o o o &
The String Repeat Expression « . . .
Parenthesized String Expression
THE STRING ASSIGNMENT STATEMENT
The Basic String Assignment Statement ., .
String Assignment with SPACE
String Assignment with NIL
String Assignment with String Skip Indicator
String Assignment Overlap: A Warning

. .. .
o e e e e e e e e O 00 N
CONOAUP~WN O

. .
AU P WN =

3
3
3
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4

Assignment 4 . 0 ¢ e ¢ e e e e
4,7 The String FILL Statement . . . « & « o o &
4.8 The String Addition Assignment Statement . .
4.9 The String Subtraction Assignment Statement
5 STRING COMPARISON .« o & o s o o o o o o o o &
5.1 String Relational Expression . . . « « « . .
5.2 String Relation with SPACE
.5.3 String Relation with NIL +. . « &« « &
.5.4 String Relation with String Skip Indicator .
5.5 String Pattern Matching
5.6 The SEARCH Function . . + « « o o o o« o o o
6 BIT EXPRESSIONS . & ¢ & ¢ o o s o o o @
6.1 Bit Expression FOIXM .« o ¢« & ¢ o« o« o o o &
6.2 Bit Primary . . ¢ ¢« ¢ ¢ o o o e s o o o o o
7 STRING ACTUAL PARAMETERS . . ¢ & o « o o « « &
7.1 Call-by-Value . . ¢ v 4 v o« o« o o o oae o
7.2 Call-by-Name e e e e e e e
8 USING STRINGS IN OTHER TYPES OF EXPRESSIONS .
8.1 Arithmetic Expressions . . . « « « « « « .« .
8.2 Symbolic Expressions e e e e e e
9 USING AN ARRAY OR A STRING VARIABLE o o e o
.10 OPTIMALITY OF STRING EXPRESSIONS
.11 READING AND WRITING STRINGS . « « ¢ « &« « .+ .
11.1 READ and WRITE Statements « « « .
.1

1.2 GIL Input=-Output Functions
LISsP 2 o s 6 s o s & s e e o o s s o o
6.1 INTRODUCTION o e e e e e e e e e e e e
6.2 S-EXPRESSION AND LISP RECORDS o e o o s e o

6.2.1 Record and Field Designator
6.2.2 LISP RECOTdS &+ + & & & « ¢ o o o o o « o & =
6.2.3 LISP Lists o v v & v v 4 o o ¢ o o o o « o &

iv

String Assignment Statement Containing String Length

TABLE OF CONTENTS (Cont.)

.3 SYMBOL EXPRESSION .

.3.1 Definition

3.2 Quoted S-expressions

.3.3 Numbers and Arithmetic Expre331ons
3.4 LISP Variables

.3.5 Assignment Statements . . .

3.6 The Field Designators .

3.7 Conditional Expressions .

.3.8 LISP Function Designator

4 LISP STANDARD FUNCTIONS . .
4.1 CONS . v v ¢ v v v v o o o o &
4.2 LIST & ¢ v v ¢ ¢ v o o o o o o

4.3 RANDOM . .

b APPEND . . . ¢ ¢ ¢ ¢« ¢ o o o o o o &
4.5 NCONC « o e e e 4 s e . e s
.4.6 SPACE and QMARK .

.5 BOOLEAN STANDARD FUNCTIONS .
5.1 ATOM . . ¢ v v 6 v o v v v e e
.5.2 ATSYM« ¢« ¢ v v v o . .
5.3 NUMBERP . . . « +« ¢« ¢ ¢ ¢ « &

5. ALF . . v v v v v e v e e e e

5.5 NULL . v ¢ v v v 4 v 6 o o o o o &
.5.6 MEMBER . . . o o e e
6 LISP RELATIONAL EXPRESSIONS o e e e

7 THE LISP ASSIGNMENT STATEMENT
8 THE LISP ITERATIVE STATEMENT
8.1 The ON Statement . . . ¢ ¢« « ¢ « . &
8.2 The IN Statement« . . .
8.3 The WHILE Part . . e e e

9 EXTENSIONS OF ARITHMETIC EXPRESSIONS
9.1 Arithmetic Expression Syntax Extension
9.2 The LENGTH Function
10 READING AND WRITING S-EXPRESSIONS . .
.10.1 Output Functions . . . « « « « « &
.10.2 1Input Functions . . « . « &« o « « ¢« &
11 THE SYMBOL MONITOR . . &« & « o « « o &
.12 ATOMIC SYMBOLS . & ¢ ¢ & « ¢ o o o &
.12,1 Types of Atomic Symbols
.12.2 Nonstandard Atomic Symbols

.12.3 Uniqueness of Atomic Symbols
13 THE LISP OBJECT LIST . . « ¢ ¢ o « + &
.13.1 The LISP Symbol Table
.13.2 The OBLIST Function
13.3 The REMOB Statement . . . « « « « . .
.14 STRINGS AND ATOMIC SYMBOLS . . . « . &
1
1
.1
.1
1
.1
1

.

4 e e e e e
4.3 The MKATOM Function . « « « o o o o &
4.4 The GENSYM Function . . . e e e e
5 LISP REFERENCE VALUE TRANSFER FUNCTIONS
5.1 The CTSM Function « « « .
5.2 The SMTA Function

0\0\@0\0\0\0\0\0\0\0\0\O\O\O\O\O\O\O\O\O\O\O\O\QO\O\O\O\O\O\O\O\O\C\O\O\O\O\O\O\G\O\G\O\O\O\O\O\C\O\G\

L |

]
HHEHOWOWOONNNOO

(e N e Ne)

(oMo T e We o) e N e o) We e Mo e N
1

VII.

TABLE OF CONTENTS (Cont.)

6.15.3 The ATSM FUnction . « o v &« v & o ¢ « o o o o o o o
6.16 THE CTR FIELD T
6.17 PREFIX AND DOT OPERATORS T
6.17.1 Prefix Field Designators ¢« « &+ « « o« o o« o o &
6.17.2 Boolean Prefix Operators« + + ¢ ¢ « « o o« o o &
6.17.3 The Dot Operator . . . « « o « &« o & o o o o o o

6.18 PROPERTY LIST OPERATORS . & & o ¢ « « o o « o « &

6.18.1 The Property List . . ¢« « ¢ ¢ ¢« ¢« « ¢ o « o o &

6.18.2 ADDPROP . & & + 4 v v o o o o o o o« o o o o+ o o o o 4
6.18.3 PROP . v & ¢ v o o o o o o o o o o o o o o o o o o
6.18.4 REMPROP e 4 o s o e o e 8 o & s @

6.18.5 The Numeric Property Record e s e e s e s e e e e s
6.18.6 Reference Property Records « ¢ « « « « & &
6.19 THE SYMBOL DEFINE DECLARATION . . ¢ « & « « o & &

6.19.1 The Standard Declaration . . . ¢« v ¢ « ¢« ¢« o « o o+ &
6.19.2 CDR Field Initialization . . . ¢ ¢ ¢« « ¢« « o « o o &
6.19.3 The Asterisk Form . . . v v + + + o o o o o o o

6.20 STORAGE RECLAMATION . « & o « o o « o o o s o o &«

6.20.1 Automatic Versus Programmed Storage Reclamation
6.20.2 Automatic Storage Reclamation . . . + « « ¢ « ¢ o &
6.20.3 Programmed Storage Reclamation . . . o« e e e e .
6.21 AUTOMATIC STORAGE AND RETRIEVAL OF LISP LIST STRUCTURE .
6.21.1 The LISP "Memory" . . e e e e e e e e e e e e e
6.21.2 The REMEMBER Statement s o s & s e s 8 s e s e e e e e
6.21.3 The RECALL Statement . . e e e e e e e e e
6.22 THE INTERNAL REPRESENTATION OF LISP RECORDS P
6.22,1 LISP Reference Values . . « ¢ ¢ « o ¢ o o o o o o o o
6.22.2 Atomic Symbols . . & . 4 4 4 4 4 e 6 4 e s e e e e e
6.22.3 Atomic Number + & v ¢ ¢ ¢ o ¢ 4o e 4 e e e 0.
6.22.4 Dotted Pairs . . v ¢ ¢ ¢ 4 ¢ o 0 e 6 0 o e e 0 e e e
6.22.5 Other Types of Records . . « v ¢« ¢ « o o o o o« o«
6.23 LISP SYSTEM CONTROL PARAMETERS . . & + & ¢ ¢ o o « o o &
6.24 PROGRAMMED STORAGE RECLAMATION . & & ¢ « o o o o o o o o
6.25 LISP EXAMPLE PROGRAM . &+ v &« &+ 4 o o o o o o o s o o

RECORD PROCESSING « + « o o o o o o o o o o o o o s o s o o
7.1 INTRODUCTION . . . « &« o« + & . . et e e s e e
7.2 BASIC CONCEPTS OF GTL RECORD PROCESSING ¢ s o s o o e s
7.2.1 Reference EXPresSsions . « « « ¢« o o « o s o o « & &
7.2,2 Field Designators o . + o o« o o o o o o o o o o « o o o
7.2.3 The Reference Assignment Statement
7.2.4 The Field Declaration . . v « o« ¢ o o o o o « o o o o
7.2.5 Indexed Fields . & & ¢« ¢« 4 o o o o o o o o o o o o« =
7.3 THE DISK SYSTEM . v ¢ ¢ ¢ ¢ ¢ o o o o o o o o o o
7.3.1 The Record Class Declaration . . . « ¢« « ¢ ¢ &« o o o &
7.3.2 The RECORD File Declaration . . « v ¢« « ¢ ¢ & « o ¢ & &
7.3.3 The Record Designator . . . « ¢« ¢« v ¢ ¢« ¢ ¢ ¢ « o o o &
7.3.4 Record Relational Expressions . . « « « ¢ o « o« « &
7.3.5 Transfer Functions . . ¢ ¢ ¢ v ¢ ¢ ¢ ¢ ¢ o o o o o &
7.3.6 Storage Reclamation . « ¢ « ¢« ¢+ ¢ ¢ ¢ v o o s o o o o &
7.3.7 Saving and Restoring Heads of Master Lists in Non-LOCAL
T =T

vi

6-35
6-36
6-36
6-36
6-37
6-37
6-39
6-39
6-39
6-40
6-41
6-42
6-42
6-43
6-43
6-44
6-46
6-47
6-47
6-48
6-49
6-49
6-49
6-50
6-51
6-52
6-52
6-53
6-54
6-54

NNNSNNSNSNSNSNNNSNNNS
1
o ONSNNUUURND N -

~
]

oy

w

VIII.

IX.

TABLE OF CONTENTS (Cont.)

7.3.8 Printing Reference Values . .
7.4 THE CORE STORAGE PLEX PRECESSING SYSTEM .
7.4.1 The Record Class Identifier . . .
7.4.2 Field Designators
7.4.3 Record Designator
7.4.4 The SYMBOL PLEX Option .
7.4.5 The ATSM Transfer Function .
7.4.6 The RECALL and REMEMBER Statement .
7.5 RECOMMENDED PRACTICES . . .
7.6 EXAMPLE PROGRAM . . .

SYNTAX-DIRECTED PARSING

INTRODUCTION
SYMBOL FORMAT EXPRESSIONS . .
Terminal Symbols
Nonterminal Symbols .
NIL
Statements
Labels
RETURN . . . o e e e o .
The SWITCH Optlon e e e e e e
The Error Message Option . .

e e o o e e e e
CoNOTUL S~ WN

SYMBOL FORMAT STATEMENTS , . .

Syntactic Class Declaration .

Class Variable Declaration .

Error Procedure
The Trace Option
RECOMMENDED PRACTICES .
BOOLEAN PROCEDURE EQUIVALENT OF
EXAMPLE PROGRAM . «. « ¢ « « o &

.

1
2
2
2
2
2
2
2
2
2
2
3 SYMBOL FORMAT DECLARATIONS .
4
5
5
5
5
5
5
6
7
8

00 00 00 00 00 00 00 OO 00 00 00 00 00 0o 0O 0 00 00 0o 00 00 OO
] . L] e o e« o

3

INPUT-OUTPUT FUNCTIONS
INTRODUCTION . & & & & ¢ « o &
THE OUTPUT FUNCTIONS

Extended WRITE Statement .

The FORMAT Option
Literal String
String Values . . . « « « . .
Real and Integer Values . . .
Alpha Values ...0 &+ v o 4 o &
Boolean Values
Double Precision Values . . .

HEEFEMHEEEBOVONOOULEEWND -

POLOUNMHEO

LISP Values .« « ¢« « ¢« &« o &
Reference Values

QMARK e o o e o o e o o o o .
SPACE . o o e e o o o o . e o

.
.

.
.

\O O O \WWOWWOWWWWYWWOWOWWOWWOWOWOUO
°]

NDNPNMNDNDPNPNDNNNMDNONDNNNNNDNDNDDNDND -
L]

.
°

vii

1
2
.3 Getnext Procedure Declaration .
4
5

. .

SYMBOL FORMAT AUXILIARY DECLARATIONS

e o o

SYMBOL FORMAT

.

. o o

¢ o

Syntax and Semantics of SYMBOL FORMAT

.

The PRINT, PRIN, and TERPRI Statements

.

.

.

Complex and Double Precision Complex Values

~o~o\ovo~o«ow0\0|?~o~0|o~o~0\0wo~o
1 | B] 1]]
NOOOOUUTUIUIUNIE W

L
TABLE OF CONTENTS

.15 SKIP . . e e e e e e
.16 The NTS Statement . e e -
.17 Conditional PRINT Statement .

THE OUTPUT STATEMENT . .« o o
1 The Standard Form
.2 The Output Procedure .
3

THE READ FUNCTIONS . . . « . .
1 Extended READ Statement . . .
2 The GTL Read Mechanism
3 The SCAN Function . .
.4 The READCON Function .
5 The READN Function
6 The READ1 Function .
7 The READ Function
THE INPUT STATEMENT .

The Standard Form . . .

The Input Procedure

Sign-Number Separation . . .
REMOTE TERMINAL INPUT-OUTPUT .
1 The FILE REMOTE Declaration .
2 FILE REMOTE Side-Effects . .
3 READ and WRITE Statements .
4 READ TWX . ¢ v ¢ ¢« ¢ ¢ o o o &
.5 WRITE TWX .+ ¢ v ¢ ¢« o ¢ o o &
6 READN (TWX) + ¢ o « o « o o &
7 READN (TWXA) « v v v o o o « .
8 TWXNUM « e e e .
9 Conversational READ Statement

1 The Standard Variables
2 The Standard Variable TAB . .
.3 The Standard Variable COL .

4 System Control Parameters

1 Card Reader . « + ¢ « o o &
2 Line Printer o o e
.3 Remote Terminal F11es . e e
4 Listing of Input Cards . . .

APPENDIX A - EXAMPLES OF GTL PROGRAMS

String Processing Example .
Lisp Processing Example . . .
Lisp Processing Example .
Syntax-Directed Parsing Example

viii

1

2 .
.3 Setting Left and Right Marglns
4 .

(Cont.)

Setting Left and Right Marglns .

.

.

SAMPLE INPUT AND OUTPUT STATEMENTS .

APPENDIX B - REMOTE TERMINAL CHARACTER SET .
APPENDIX C - CONVAL FUNCTION . . .
APPENDIX D - GTL RUN TIME ERROR MESSAGES .
APPENDIX E - REFERENCES

. . . .

STANDARD VARIABLES AND SYSTEM CONTROL PARAMETERS .

. . * . . .

mcow:;>n>:>.'>:>
HEHEENPONDE

I. INTRODUCTION

Since the beginning of Newell, Simon, and Shaw's list processing
language, IPL, in 1954, the role of symbol manipulation languages in com-
puter applications has become increcasingly important. In 1965, a LISP
interpreter was implemented on the Burroughs B 5500 here at Georgia Tech.
For several years, it was used quite successfully in classroom instruction
and in a few small scale symbol manipulation applications. Since the inter-
preter was too slow and too restrictive for any large scale applications, a
decision was made to implement a high level symbol manipulation language by
extending the existing, and excellent, B 5500 ALGOL compiler. The result
was GIL, an acronym for Georgia Tech Language.

The GTL compiler is truly an extension of the Burroughs B 5500 ALGOL
compiler; hence, it contains all features of Burroughs Extended ALGOL. (As
used at Georgia Tech, STREAM PROCEDURES are prohibited.) Only one class of
exception exists. The addition of certain GTL constructs to the ALGOL
compiler has introduced new reserved words which cannot be used as defined
identifiers by the programmer. These words are CAR, CDR, COMPLEX, CTR, EQ,
FIELD, NEQL, NIL, RECORD, STRING, and SYMBOL.

In addition to its symbol manipulation capabilities, GTL also contains
significant extensions to B 5500 ALGOL for numeric computation. GTL contains
facilities for: double precision, complex, and double precision complex
arithmetic; string manipulation; list processing (a non-standard version of
LISP 2); record processing (linked disk records or "plex" processing);
syntax-directed parsing; extended input-output functions (including special

functions for remote terminal files); and other miscellaneous ALGOL

1-1 ,

extensions (including additional intrinsic functions, the BASIC compiler
matrix functions, an efficient means of swapping the contents of two arrays,
a random number generator, and several other useful constructs).

Almost all of the major features of GTL were implemented prior to 1970.
Some of the miscellaneous extensions, some of the inevitable error correc-
tions, and updates to later versions of the ALGOL compiler have been accom-
plished since that time. All the features of GTL, as described in this
manual, are currently being used by a large number of Georgia Tech students,
faculty, and research workers. It is currently running under the Burroughs
Mark XII Data Communications and Time Sharing Master Control Programs.*

Most of the features of GTL were implemented and made operational in
successive stages. As each new feature was implemented it was described in
a separate publication. Altogether, ten of these preliminary draft manuals
were published between May 1968 and December 1969. The contents of these
ten preliminary drafts have been consolidated into this single manual with
a small amount of editing, rearrangement, and with the incorporation of
some new material. The preliminary drafts are now obsolete, and this manual
should be considered the official and complete documentation for GTL.

Comments, suggestions, or corrections to this manual or the GTL language
are welcomed and should be forwarded to the Director, Information and

Computer Science, Georgia Institute of Technology, Atlanta, Georgia 30332.

*As of November 1971, GTL is being updated to Mark XIII.O which provides
a new COMPLEX Polish statement. Since this conflicts with the more convenient
GTL COMPLEX construct, it is planned to omit this particular Mark XIII.0 feature.
With this omission, GTL will no longer be a true extension of Burroughs ALGOL.

1-2

IT. MISCELLANEOUS EXTENSIONS OF ALGOL

The GTL system contains a number of miscellaneous extensions of the
ALGOL framework in which it is embedded. Those are described in detail

below.

2.1 SINGLE PRECISION STANDARD FUNCTIONS
In addition to the standard (or "intrinsic") functions already provided
by the B 5500 ALGOL compiler, GTL provides the following new single precision

standard functions:

Name Meaning

LOG logarithm (base 10)
ARCSIN inverse sine

ARCOS inverse cosine

TAN tangent

COTAN cotangent

SINH hyperbolic sine
COSH hyperbolic cosine
TANH hyperbolic tangent
GAMMA gamma function
LNGAMMA natural logarithm of gamma function
ERRORF error function

2.2 CASE EXPRESSION
The syntax of expressions of type REAL, BOOLEAN, DOUBLE, COMPLEX, DOUBLE
COMPLEX, SYMBOL, and "reference" (disk record address) has been extended by

the inclusion of the '"CASE expression', an expression having the same form

2-1

as the CASE statement of Burroughs Extended ALGOL with the statements
replaced by expressions of the appropriate type. For example, if X, Y, and Z

are REAL variables, then
CASE J OF BEGIN X; Y; Z; END

is an expression of type REAL, the value of which is the value of X if J is O,

Y if Jis 1, or Z if J is 2, or an error termination otherwise,

2.3 FOR STATEMENT

The syntax of the FOR statement has been extended by allowing a single
unsigned integer or simple variable to appear bétween the FOR and DO,
indicating that the controlled statement is to be executed the number of times
given by the value of the variable or integer. For example, if X is a real

variable which has a value of 100, then

FOR X DO STMT

FOR 100 DO STMT
both have the effect of causing STMI to be executed 100 times.

2.4 EXIT STATEMENT
The word EXIT may be used in any block which is not a procedure body to
cause an immediate exit from that block. The EXIT statement may appear any=-

where in the block and may appear any number of times.

2.5 RETURN STATEMENT
The RETURN statement may be used to cause an immediate exit from any

procedure in which it appears., If the procedure is typed, then the procedure

2-2

is given the value of the expression immediately following the word RETURN.

The RETURN statement may appear anywhere in the procedure declaration and may
appear any number of times (if the RETURN statement appears in a block, then
that block must constitute the procedure body). For example, the LISP func-

tion MEMBER (a GTL standard function) may be defined as

BOOLEAN PROCEDURE MEMBER (X,Y); VALUE X,Y; SYMBOL X,Y;

FOR Y IN Y DO IF X = Y THEN RETURN TRUE

2.6 ERROR STATEMENT

A convenient way of providing an immediate exit from any point in a
program in which an error condition is detected is the ERROR statement. An
execution of the ERROR statement will cause the value of its argument to be
printed in a 2 character alpha format, together with the segment and relative
address in the program of the ERROR statement. After the execution of the
ERROR statement the program is immediately terminated. For example, execution

of

ERROR ("E3")

will cause "E3" to be printed and the program to be terminated.

2.7 MATRIX MANIPULATION

GTL provides a limited amount of matrix manipulation (using the intrinsic
functions provided by Burroughs for the BASIC compiler). The matrix opera-
tions are addition, subtraction, multiplication, inversion, transposition,

and assignment. There are 10 basic constructs which are illustrated below.

ARRAY A,B,C[0:10,0:10] sample declaration

1) A:=B + C addition

2) A:=B - C subtraction

3) A:=B ®C multiplication

4) A:=1/B matrix inversion

5) A:=B * transpose

6) A:= B ® primary multiplication by a scalar
7) A:=B simple assignment

8) A:= IDN identity matrix assignment
9) A:= ZER zero matrix assignment

10) A:= COHN unit matrix assignment

where primary is any arithmetic primary; e.g.,

>
Il

B ®2

>
1l

B ® (SIN(X) + 1)

All arrays must be two dimensional and may never be specified as SAVE.
The lower bounds of the arrays must be declared to be 0; however, they are
treated as if they had lower bounds of 1; for example, the arrays declared
above are considered to be 1 by 10 matrices. The intrinsic functions use

the declared sizes of the arrays for their activities, not the amount of

information the programmer has placed into the arrays, necessarily.
The last four modes of assignment are vastly more efficient than the
equivalent open GTIL code and should be used whenever that type of assignment

is desired.

2-4

2,8 POWERS OF TEN TABLE
GTL provides access to a table containing powers of ten. It may be

referenced with a construct of the form

TEN[aexp]

where aexp represents an arithmetic expression which, when integerized, will
have a value from zero to 69. The value of this subscript should be the

(integral) power of ten desired:

TEN[aexp] is equivalent to 10 * (aexp)

1/TEN[aexp] is equivalent to 10 * (-(aexp))

When used in a double precision context, it yields a double precision value;
in a single precision context, its value is the double precision value
truncated to a single word.

The use of this construct is encouraged since it provides a much more
efficient means of calculating a power of ten than do the alternate forms.
The object program uses the powers of ten table for I/0 conversion, so its

use will not further increase core requirements,

2.9 SWAP STATEMENT
The fastest and easiest way to swap two two-dimensional arrays is by

the following construct:
SWAP(A1,A2)

where Al and A2 are two array identifiers. The effect is to swap the contents
and sizes of the two arrays. The actual implementation swaps only the

pointers to the arrays, rather than the information in the arrays themselves.

2.10 RANDOM NUMBER GENERATOR
GTL contains a built-in random number generator which the programmer

may reference directly through the arithmetic primary
CONVAL(0)

Each call on CONVAL(O) will generate a new random number between 0 and 1,

but never 1. The arithmetic primary
CONVAL (1)

will return the previously-generated random number and will not generate
a new one, If it is desired to change the stream of random numbers being
generated, an alternate form of CONVAL(O) may be used, involving the following

arithmetic primary
CONVAL (0,ae)

Depending on the value of ae, a different seed for random number generation
will be used. 1In many applications, the following special form of CONVAL

is used once at the beginning of the program:
CONVAL (0,TIME (4))

This presents the program with one of 64 different streams of random numbers,
usually different each time the program is used, dependent upon the machine

clock.

2-6

2.11 STATEMENT LINE NUMBER DETERMINATION
The line number of the current statement in a program may be accessed

through the arithmetic primary

LINENUMBER

This is convenient in many applications, especially for debugging. If the

programmer defines this identifier for his own use, it loses this meaning.

2-7

III. DOUBLE PRECISION ARITHMETIC

3.1 INTRODUCTION
In GTL, the declarator DOUBLE may be used in the same manner in which

the declarator REAL is used in an ALGOL program. For example:

DOUBLE X, Y, Z
DOUBLE ARRAY DR[0:99]
DOUBLE PROCEDURE DSINH (X); VALUE X; DOUBLE X;
BEGIN DOUBLE Y;
DSINH:= ((Y:= EXP(X)) - 1.0/Y) ® .5

END

Calculations with such variables, elements of arrays, and procedure
values will automatically be done in double precision, subject to the
rules of context (Subsection 3.6) and the available double precision
operators and standard functions (Subsections 3.3, 3.4, 3.5). The Input-

Output mechanism (Section IX) facilitates reading and writing double values.

3.2 TFORM FOR DOUBLE EXPRESSIONS

A double expression has the form of an ordinary ALGOL arithmetic
expression with double primaries and/or single precision primaries. A
double primary can be a double variable, a double function designator (a call
on a double-valued procedure or on a double standard function with its
actual parameters, if any), a double assignment statgment, a double expression
within parentheses, READN in a double context (see Subsection 3.6 for con~
text rules and Section IX for READN), or a constant appearing in a double

context.

3-1

3.3 DOUBLE ARITHMETIC OPERATORS
The operators available for double precision arithmetic are +, -, ®, /,
and MOD. DIV may be used between double primaries, but the calculation of

the result will always be done in single precision.

3.4 DOUBLE RELATIONAL OPERATORS

All the relational operators, =, #, <, >, <, =, and their mnemonics,
are available for double precision comparison. A comparison is a double
precision comparison only when the expression on the left hand side of the
relational operator is a double variable, double procedure, or double
assignment statement. A double assignment statement is one in which the

leftmost variable is double.

3.5 DOUBLE STANDARD FUNCTIONS
The available standard (or "intrinsic') functions of double expressions

are as follows:

FUNCTION MEANING

cos cosine .

SIN sine

EXP exponential function

LN natural logarithm

LOG common logarithm

SQRT square root

ARCTAN inverse tangent

LOPART least significant part of double value
HIPART most significant part of double value

3-2

The other functions available for single precision can be applied to
double expressions, but the calculation of the function value will always

be performed in single precision.

3.6 RULES OF CONTEXT

Whether single or double precision calculations are performed to
evaluate an arithmetic expression depends on whether the arithmetic expres-
sion is in a single or double context. If the context is single, the
calculations are done in single precision. If the context is double, all
the calculations are done in double precision except for the operator DIV
and intrinsic functions not avilable in double (which are done in single
precision). When a double variable or double procedure is used in a single
precision context, the double value is normalized and truncated to a single
precision value. When a single precision variable, procedure, or standard
function is used in a double context, it is converted to a double precision
operand by setting the least significant part of the double operand to zero.

An arithmetic expression is in a double context in any one of the
following cases and is otherwise in a single context:

1) 1If the arithmetic expression is on the right hand side of
a := in an assignment statement, it is in a double context if, and only if,
the variable immediately to the left of the := is a double variable.

2) 1If the arithmetic expression is an argument of a procedure
for which the corresponding formal parameter is double, the arithmetic
expression is in double context.

3) 1If the arithmetic expression is the expression on the right hand
side of the relational operator of a double precision comparison (see Sub=-

section 3.4).

3-3

3.7 DOUBLE PRECISION INPUT-OUTPUT

Ordinary ALGOL READ statements can be used to read single precision
numbers to be used in double context, and ordinary ALGOL WRITE statements
can be used to write a double value in single precision. ALGOL READ and
WRITE statements cannot read and write double pfecision numbers. However,
the I/0 facilities of GTL facilitate the reading of double numbers and the
writing of double numbers and editing phrases.

The GTL Input-Output system provides a very flexible and powerful means
of reading and writing many types of data using any of the files which can
be declared in normal ALGOL. The system is described in detail in Section IX

of this manual.

3.8 RESTRICTIONS

If a double formal parameter is call-by-name and the corresponding
actual parameter is a variable, this variable must be double,

If the actual procedure corresponding to a formal procedure is to
have a double parameter, then in the actual procedure, that parameter must
be double call-by-value, and the expression used as the corresponding para-
meter of the formal procedure must begin with a double variable. When the
formal procedure and its double arguments are compiled, the compiler will
print a warning message indicating the requisite type of the corresponding

actual parameter of the actual procedure.

3.9 EXAMPLE PROGRAM

The following example double precision program is not intended to
represent a practical program, but merely serves to illustrate some of
the GIL double precision constructs. The GIL Input-Output system, which is

described in Section IX, is also included in the example.

3-4

BEGIN CUCMMENT FIND DOUBLE PRECTSINN KCOTS CF SLARRATIC EGUATICNS

FILE IN INCD (2,103
STRING CRND(RO)S
FILE UUT PRINTER 16(2s15)3
STRING LIN (1203
REAL JoK3j
PRGCEDURE QUADSOLVE(AsHB,C)3
VALUF A,R»C3
NCUBLF AsR»C3
BEGIM
NCUBLE D3
PRINT A»B,CJ
JF D t= B « 2 = 4 %X A x C < 0O THEN
PRINT SPACE(IC) #COMPILFy REQOTS2
ELSE
BEGIN
C 2= (D 1= SART(N) + BY / & = 2 »x b 3
B s= (D = 8) , A 3
PRINT #rEAL ROCTSs % By C3
ENDS
END OF GUADSOLVES
INPUTCINCD,CRD» 803
OUTPUTCPRINTERSLIN2120)3
PRINT #QUADSNLVE PROGRAMY#;
COMMENT READ IN NUMBER OF TRTPLES TC EBF RFAL IN3
K = REALCNS
FUR Jt=1 STEP 1 UNTIL x DO QUANSOLVECRFARN,REACN,REANN) S
END,

THE PROGRAM HAD THE FOLLOWING CARD INPLT:

5
1 2 3 .002 3,14 442 .001 41 .1 «01 01 201 .08 C€ (7

AND THE QUTPUT LISTING wAS:

QUADSOLVE PROGRAM
123
COMFLEX RQOCTS
2€=3 34,14 ,47?
REAL KODTS: 7.,84866230640610502244262 1.569866230€4061C5C27244¢€3
1@'3 o1 .1
REAL RODTSt 4.898597948556635619639461 9.89857G048556635619639461
1g=2 lg=2 le=2
COMPLEX RQOOTS
8e=¢ 6@=2 Te=2
COMPLEX RQOOTS

3-5

IV. COMPLEX ARITHMETIC

4,1 INTRODUCTION
In GTL, the declarator COMPLEX may be used in the same manner in which the

declarator REAL is used in an ALGOL program. For example,

COMPLEX Y
COMPLEX ARRAY A[0:5]
COMPLEX PROCEDURE ROOT1(A,B,C);
VALUE A,B,C;
REAL A,B,C;

ROOT1 := (-B + SQRT(B*2 - 4@RARC))/(2®A)

Such variables, elements of arrays, and procedure values will be automatically
treated as complex numbers and may be used in the same manner as reals.

The Input-Output mechanism (Section IX) facilitates reading and
writing complex values.

Cdmplex arithmetic in double precision is also available (Subsection

4.7).

4.2 FORM FOR COMPLEX EXPRESSIONS

A complex expression has the form of an ordinary ALGOL arithmetic
expression with complex primaries, with the exception of exponentiation (*),
in which case the exponent must be real. (In other words, in A*B, A may be
complex but B must be real.)

A complex primary can be an ordinary real-valued primary, a complex
variable, a complex function designator (a call on a complex~-valued

procedure or on a complex standard (intrinsic) function with actual

parameters, if any), a complex assignment statement, a complex expression
within parentheses, or :complex primary. The colon (:) in a complex primary
indicates multiplication by i; i.e., the : is syntactically equivalent to
SQRT(-1)®. For example, if X is a complex variable and X :=3+:7, then

the real part of X is 3 and the imaginary part is 7. Since the colon means
"i times," it must be followed by a primary; 7:, for instance, has no
meaning.

Examples of complex expressions, where A and B are real variables and

X and Y are complex variables:

A+:B
X/Y

COS (X+A) + :SIN(:ARG(X))

(X+Y)*
::A - B (i.e., =A-B)
X + :(A+B)

4.3 COMPLEX ARITHMETIC OPERATORS

The operators are +, -, ®, /, *, MOD, DIV. The meaning of the operators
is illustrated by the table of equivalent algebraic expressions given below,
where Z1 and Z2 are complex numbers such that Z1 = a + ib and Z2 = ¢ + id

and a,b,c,d, and R are real numbers.

EXPRESSTON DEFINITION

21+7Z2 (a+c) + i(b+d)
Z1-72 (a=c) + i(b=d)
21872 (ac-bd) + i(bc+ad)

(ac+bd) i(bc=-ad)
(E+) T (E+d)

Z1/z22

Rei R arg(Zl)

Z1*R |21|
Z1 MOD Z2 (ac+bd)MOD (c®+d®) + i ((bc-ad)MOD (c®+d?))
Z1 DIV z2 (ac+bd)DIV(c®+d®) + i ((bc-ad)DIV(c®+d®))

4.4 COMPLEX RELATIONAL OPERATORS

Two relational operators, = and #, and their mnemonics, are available
for complex comparisons. Two complex expressions A and B are = if and only
if the real part of A is equal to the real part of B and if the imaginary
part of A is equal to the imaginary part of B. Otherwise, the # relation is
true. The left hand side of a complex relation must be a complex variable
(including complex array elements) or a complex assignment statement
(i.e., the leftmost variable must be a complex variable) and the right hand
side can be any complex expression (including reals). For example, if X
is complex and A is real, then X=A only if the real part of X equals A and

if the imaginary part of X is zero.

4.5 COMPLEX STANDARD FUNCTIONS
The available intrinsic functions of complex expressions are given

in the following chart. Assume X:= 1+:1 and Y:= 3+:4.

FUNCTION MEANING TYPE OF RESULT EXAMPLE

ABS absolute value real ABS(Y) =5

ARG argument real ARG(X) = .78540
CONJ conjugate complex CONJ(X+Y) = 4-:5
SQRT principal complex SQRT(:20-21) = 2+:5
IMAGPART imaginary part real IMAGPART (Y) = 4
REALPART real part . real ' REALPART(Y) = 3

4-3

FUNCTION MEANING TYPE OF RESULT EXAMPLE

SIN sine complex SIN(X) = 1.2984 + :.63496
Ccos cosine complex COS(X) = .83373 - :.98890
EXP exponential function complex EXP(X) = 1.4687 + :2.2874
LN principal value of complex LN(X) = .34657 + :78540

natural logarithm

4.6 COMPLEX INPUT-OUTPUT

Ordinary ALGOL READ and WRITE statements can be used to read and write
complex numbers if the real parts and the imaginary parts of the numbers
are read and written separately as real numbers., However, the I/0 facilities
of GTIL facilitate the reading of complex numbers and the writing of complex
numbers and editing phrases.

The GTIL Input-Output system provides a very flexible and powerful means
of reading and writing many types of data using any of the files which can
be declared in normal ALGOL. The system is described in detail in Section IX

of this manual.

4.7 DOUBLE COMPLEX DECLARATOR

In a GTL program, COMPLEX declarations may be replaced by DOUBLE COMPLEX
declarations for complex arithmetic in double precision. The "Rules of
'Context" described in Subsection 3.6 of this manual apply. The arithmetic
operators available for DOUBLE precision COMPLEX are +, -, ®, /, *, MOD;
the relational operators are = and # and their mnemonics, and the intrinsic
functions are REALPART, IMAGPART, ARG, ABS, CONJ. All the other operators
and functions available for complex can be applied to DOUBLE COMPLEX, but
the calculation will be done in single precision. When a DOUBLE COMPLEX
variable, assignment statement, or typed procedure appears in the list of

a PRINT statement, the real and imaginary parts are printed in double precision.

b=4

4.8 RESTRICTIONS

If a complex parameter is call-by-name and the actual parameter
expression is a single variable, this variable must be complex.

If the actual procedure corresponding to a formal procedure is to
have a complex parameter, then in the actual procedure, that parameter
must be complex call-by-value and the expression used as the corresponding
parameter of the formal procedure must begin with a complex variable. When
the formal procedure and its complex arguments are compiled, the compiler
will print a warning message indicating the requisite type of the corres-

ponding actual parameter of the actual procedure.

4.9 EXAMPLE PROGRAM

The following example program uses a simplified portion of Robert
Rodman's "Muller's Method for Finding Roots of an Arbitrary Function,"
(Algorithm 196, CACM, Vol. 6, August 1963), which finds real and complex
roots of an arbitrary function. Given the starting values Pl, P2, and P3,
a limit MXM on the number of iterations, and convergence criteria EPl and
EP2, the procedure Muller listed below attempts to find a root to the func-
tion FUNCTION. This example also illustrates the GIL Input-Output system as
described in Section IX. A listing of the compilation of the complete
program and output is given. The card input was the following set of num-
bers, in order:

-1 01 30 @-8 @-8

The compilation listing is as follows:

BEGLN
Flbe In INFILE (221Q)3
FILE UUT LINE 16(C4,15)3
STRING CRU(B0)sLINC120);
COMELEX PKUCELUKE SPF(A»B)3;
VALUE A»bj
COMPLEX Asgs
dEGIN
A = SQRTCA)D3
RETURN IF AbS(B+A) < ABS(H=A) THEN B=A ELSE B+Aj
ENC OF SPH
PROCEUURE MULLER(P1,PZsF3,MXMsEPL1,EP2,FUNCTION);
VALUE P1sP2sP3sMXMIEPL1,EPZ}
REAL P1sPZ2sP3,EPL1SEPZ;
INTEGER MXM3
CUMPLEX PROCEDURE FUNCTIONS
BEGIN
INTEGER ITC/
COMPLEX X1oX2sX30T1lpFX1oFX2sFX3sKoLAMsDEL»GS
LABEL MSsMBsME;
X1 3= P13 X2 t= PZ2; X3 t= P33
Fxl1 = FUNCTICN(X1):
FX2 8= FUNCIICNCXz)3
FX3 8= FUNCTICN(X3))
H 8= X3 = Xéi
LAM 3= IF X¢ EQL X1 THEN 1 ELSE K / (X2 = X1);
DEL t= LAM + 1;
My 3 IF FX1 EQL FX2 ANU FX2 EGL FXJ3 THEN
BEGIN LAM 8= 1; GO T0 M8; END3
Ty 3= 4 x Fad x Deb x LAM x (FXx1 x LAM = Fx2 x CEL + FXx3)J)5
G 8= LAM X LAM % FX1 = DEL X DEL X FXZ 4 FX3 x (LAM 4 QEL)J
LAM 8= (=2 X FX3 X DEL) / SPF(G X G + T1» G)J
Mg ITC ¢= ITC + 13
X1 33 X23 Xe¢ 3= X35 FX1 3= FX23 FXZ t= FX33
H t= LAVM X h3J
MéE S UEL 8= LAM + 13 X3 3= X2 + H} FX3 82 FUNCTICN(X3)}
IF FX2 NEQ U THEN
IF ABS(FX3/FXZ) GIR 10 THEN
BEGIN LAM 3= LAM s 23 H 33 H s 23 GC 10 Mgs ENUS
IF ABS((X3=x2)/Xx2) GTR EP1 AND ABS(FX3) GTR EP2 AnU ITC LSS MxM
THEN GO TO MY}
PRINT #THE KOCT FUUND IS#» SPACEC(S)» X33
PRINT #THE FUNCTIUN EVALUATED AT THIS PCINT 1S#, SPACE(D5)s FX33
END OF MULLERS
CUMPLEX PROCECURE F(Z)3
VALUE Zj
COMPLEX &)
RETURN ZXOZXCZ2XC2x(Z2x(Z2XCZxCZ+41)+43)42)+3)=1)+43)m2)413
COMMENT END OF DECLARATIONSS
INPUT(INFILESCRD280)}

4-6

UGTPUTCLINESLINS1CU)S
NTS(*»11)3
MULLERCKREADNSREADNS READNSREADNSREACNSREACN,F)

EnG,
THE QUTPUT FRUM THE PROGKAM LOUKS LIKE THISH
THE RuLT FOUNL 1S 01675853/5026
THE FUNCTION EVALUATED Al THIS PQINT IS 2,C053Clekudz

4-7

V. STRING PROCESSING

5.1 STRING VARIABLES

5.1.1 Simple String Variables and Arrays

In GIL, a string variable contains a string of characters; just as in
ALGOL a variable of type REAL contains a number. String variables are
declared with declarator STRING in the same forms as REAL, INTEGER, and
BOOLEAN variables in ALGOL. The declaration of string variables which are
not formal parameters of a procedure must also contain a "size part'" which
specifies the size of a string variable, i.e., the maximum number of
characters which a string variable can contain. The simplest form of the
size part is an unsigned integer enclosed in parentheses. The syntax of the

string variable declaration is illustrated by the following examples:

STRING STR(5)

STRING CARD1, CARD2(80), LINE(120)
OWN STRING TEMP(26)

STRING ARRAY SR[0:9](10)

STRING ARRAY SA1, SA2 [1:100](8)

Thus the simple string variable STR can contain at most 5 characters, CARD1
and CARD2 at most 80 characters, etc. The specification OWN in this context
has the same functional meaning as other types of OWN variables in ALGOL.
Similarly, each element of the string array SR can contain at most 10
characters.

The size of a string variable cannot exceed 8184 characters.

5-1

5.1.2 Substring Variables

The declaration of a string variable which is not a formal parameter

of a procedure may contain the declaration of a substring variable. A
substring variable is a string variable which references only a fixed part
of (a "substring" of) the string variable which is declared. The substring
variable identifier appears in the size part of the string declaration.
The size part of the string variable declaration may now be defined as a
list of one or more string length specifications enclosed in parentheses.
Each string length specification is either

1) an unsigned integer, or

2) a substring variable identifier followed by a size part.
Two or more string length specifications are separated by commas. The sum
of the unsigned integers in the size part determines the length of the

string being declared. For example,
STRING A(9, B(14), 7)

means that A is a string variable which can contain at most 30 characters,
and B is a string variable which is a substring of A containing at most 14
characters., The sum of the string length specifications occurring before

the substring variable identifier determines the number of character posi-
tions to be skipped in the main string before reaching the starting character
position of the substring. The character positions of a string variable

may be illustrated graphically by a set of contiguous '"boxes'', each box
representing a single character position. Thus, the string variable A and

its substring B, may be displayed graphically as follows:

A (30 characters)

1 ? 3 4 5 3 7 8 9 0 11 12 13 14 15 6 17 18 19 20 21 77- ?] ?{ 25 2? 27 28 29 30
| [j LL lT !l]

. | :
11 IR |

B (14 characters)

Note that the definition of the size part allows the declaration of
substring variables to be 'mested"; i.e., a substring variable may contain

a substring variable. For example,
STRING ST(STA(14),3,STB(2, STC(6),2, STD(3),1), 4)
may be displayed graphically as

ST (35 characters)
r 1

1 2 3 4 5 &6 17 8 9 10 11 12 13 14 15 16 17 18 19 20 2} 22 23 24 25 26 27 28 29 30 31 132 33 34 35

§

L

STA
STC STD

STB

When two or more string variables are associated with a size part
which contains substring variables, the main string with which a substring
identifier is to be associated in any particular instance must be given

explicitly. For example, with the string declaration,

STRING A, B, C(72, SEQ(8))

one of the following forms must be used when referring to SEQ:

5-3

SEQ IN A
SEQ IN B

SEQ IN C

This form of the substring variable may be used like any other string
variable. Ambiguously defined substrings of subscripted string variables
are handled in the same way. For éxample, with the following string array

declaration,
STRING ARRAY R, S [0:99](T(1),7)

if J represents a subscript expression for elements of the string arrays
R and S, then one of the following forms must be used when referring to

the substring T:

T IN R [J]

T IN S [J]

This form of the subscripted string variable may be used like any other

string variable.

5.1.3 Formal String Variables

A formal string variable, i.e., a string variable which is a formal
parameter of a procedure, is declared without a size part. The maximum

number of characters that a formal string variable can contain will depend

on the size of the corresponding actual parameter of the function designator.

(See paragraphs 5.7.1 and 5.7.2.) 1In a procedure declaration which contains
a formal string variable, the size of the string variable may be determined

by the application of the GTL standard function LENGTH to the formal string

5-4

variable identifier, For example, if STR is a simple formal string

variable and STRA is a formal string array, the

LENGTH(STR)
and

LENGTH(STRA)
gives the sizes of these formal string variables.

5.2 STRING DESIGNATOR

In GTL, the string designator is a construct which allows the programmer
to refer to a string variable or any proper substring thereof. The defini-
tion of string designator includes the string variable, and has the three

following forms:

SV
SV (ael)

SV(ae2,ae2)

where SV represents a string variable, either simple or subscripted, and
ael and ae2 represent arithmetic expressions. The first form of the

string designator is simply the string variable itself, The second form of
the string designator is the substring of SV obtained by skipping over the
first ael characters in SV; the size of the substring is the number of
remaining characters. The third form of the string designator is the
substring of SV obtained by skipping over the first ael character positions
in SV and its size is specified by ae2. (If the values of ael and ae2

are not non-negative integers, then they are converted into this form.)

5-5

For example, given the string declaration,
STRING CARD (72, SEQ(8))
the string designator
CARD (72)

refers to the same substring of CARD as the substring variable SEQ. Given

the string declaration,

STRING A(9, B(14), 7)
the string designator,

A(9, 14)

refers to the same substring of A as the substring variable B. The string
designators A(2,4) and A(9,14) are illustrated graphically below.

A (30 charactérs)
I |

1 2 3 4 5 6 7 8 9 10 1 12 13 14 5 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

L1 |

A(2,4) A(9,14)

5.3 STRING EXPRESSIONS

5.3.1 String Expression Forms

In ALGOL, an arithmetic expression may be considered as a set of rules
which, when executed, generates a value which is a number; in GTL, a string
expression is a set of rules which produces a value which is a string of

characters.

5-6

A string expression is either a string primary, which has a string of
characters as its value, or two or more string primaries separated by
ampersands (& - the '"concatenate operator'). The latter form has as its
value the string produced by "joining together' the values of the con-
stituent string primaries. The string primaries are described in para-

graphs 5.3.2 through 5.3.19.

5.3.2 The Quoted String

The quoted string has the same syntactical form as a string in
Burroughs Extended ALGOL, i.e., a string of characters enclosed in quotes (").
The quote mark itself may be quoted: ""'". The value of the quoted string is
the string of characters appearing between the quote marks. The quoted
string may not exceed 420 characters in length.

Examples:

U
""THIS IS A QUOTED STRING"
"y n

mnan

5.3.3 String Designator

When used as a string primary, the value of the string designator is
the string of characters in the string variable, or substring thereof,

referenced by the string designator.

5.3.4 String Assignment Statement

A string assignment statement, besides being used as a statement,

may be used in a string expression having as its value the value which is

assigned to the variables in the left part list. An extension of the

syntax of a string assignment statement is described in Subsection 5.4,

5.3.5 String Function Designator

A string function designator is a call on a procedure which was
declared with the type STRING, its value being the value to which the
string procedure identifier is assigned in the string procedure declaration.‘
The value of a string function designator may not exceed 7 characters in
length. The formal parameters of the procedure, if any, may be of any
type, including the string formal parameters discussed in Subsection 5.7.

For example,

STRING PROCEDURE REVERSE(S); VALUE S; STRING S;
BEGIN REAL L;
REVERSE :=
IF (L:= LENGTH(S)) = 1 THEN S ELSE
S(L-1,1) & REVERSE(S(0,L-1));

END OF REVERSE

defines a procedure which has as its value the string of characters in the

string S in reverse order:
Ay

REVERSE ("ABC") = CBA

5.3.6 SPACE function

The SPACE function is used to generate a specified number of spaces in a

string expression. The SPACE function may be used in one of the following

forms:

5-8

n SPACE

where n is an unsigned integer, and

SPACE (ae)

where ae represents an arithmetic expression. The SPACE function will
generate the number of spaces specified by the value of n or ae. For

example, if J is a real variable having a value of 40 then,

40 SPACE
SPACE (40)

SPACE(J)

all have the effect of generating 40 spaces,

5.3.7 The NIL Function

The NIL function is used to generate a specified number of zeros
(the character '"0") in a string expression. The NIL function may be used

in one of the two following forms:

n NIL

where n is an unsigned integer, and

NIL(ae)

where ae represents an arithmetic expression. The NIL function will
generate the number of zeros specified by the value of n or ae. For

example, if J is a real variable having the value of 40, then

5-9

40 NIL
NIL(40)

NIL(J)

all have the effect of generating 40 zeros.

5.3.8 The String Skip Indicator

The string skip indicator has the effect of creating a gap in the
string being generated by the string expression in which it appears; Its
actual effect depends on the context of the string expression: If it is
used in a string expression which is assigned to string variable in a
string assignment statement (see Subsection 5.4), it causes the indicated
number of character positions to be skipped over in the string variable
during the execution of the assignment statement (see paragraph 5.4.4).

If it appears in the string expression on the right hand side of a string
relational expression (see Subsection 5.5), it causes the indicated number
of characters in the string designator (on the left hand side) to be ignored
in the process of determining the value of the string relational expression
(see paragraph 5.5.4).

The string skip indicator may be used in one of the two following forms:
¥
where n is an unsigned integer, and
*(ae)

where ae represents an arithmetic expression; for example, if J is a real

variable having a value of 40, then

5-10

40 *
* (40)

% (J)

all have the effect of causing 40 characters to be skipped over.

5.3.9 The QMARK Function

The QMARK function, used in the form,

QMARK

in a string expression will generate one question mark (?) or invalid
character. This function is provided since the question mark cannot be
quoted in a GTIL program, and there would be no other simple way of

generating this character.

5.3.10 The Bit Expression

A bit expression is a string primary which generates a string of bits
(not the characters "1" and "O", but the actual bit components of
characters). If any characters are generated in the remainder of the string
expression, the first of these characters will start at a position equal to
the position of the last character generated before the bit expression plus
the smallest multiple of six bits containing the bit string (since a
character is six bits long). The syntax and semantics of the bit expression

are explained in Subsection 5.6.

5.3.11 The Restricted Boolean Expression

A restricted Boolean expression, i.e., a Boolean expression which does

not begin with any of the other preceding string primaries, may be used as

a string primary itself. The value of the Boolean expression in this
context will be a string of letters, "TRUE" or "FALSE", depending on the

value of the Boolean expression.

5.3.12 The Restricted Arithmetic Expression

A restricted arithmetic expression, i.e., an arithmetic expression
which does not begin with any of the other preceding string primaries, may
be used as a string primary itself. The value of the arithmetic expression
in this context will be an unsigned string of digits up to 7 characters in
length representing the value of the arithmetic expression. If the value
of the arithmetic expression cannot be represented in this way, then the
string value of the expression is undefined. For example, if R is a real

variable with a value of 25, then

R ® 10

when used as a string primary, will generate the string ''250".

5.3.13 The Restricted Symbol Expression

A restricted symbol expression (Section VI), i.e., a symbol expression
which does not begin with any of the other preceding primaries, may be used
as a string primary itself. The value of the symbol expression in this
context must be an atomic symbol, which is converted into the string which
the atomic symbol represents. For example, if S is a symbol variable

having as its value the list (THIS IS A LIST), then
CAR(S)

will cause the string "'THIS" to be generated.

5«12

5.3.14 The STRING Transfer Function

The STRING transfer function, when used in the form,

STRING (ae)

where ae represents an arithmetic expression, will generate the equivalent
alpha representation of the value of the arithmetic expression (up to 7
characters in length), left-justified. For example, if R is a real or alpha

variable, the value of which is the alpha string "AB", then

STRING(R)

will generate the string "AB'". 1If the value of R is 250, then "3," will
be generated.
A string which is right-justified in a field of n characters may be

produced by the following variant of the STRING transfer function:

STRING (aexp,n)

where aexp is the arithmetic expression to be converted, and n is an unsigned
integer, ranging from 1 to 7, which specifies the size of the resulting
string. For example, if R is a real variable containing the ALPHA string

"AB", then the value of

STRING (R,4)

would be the string "OOAB'". If R has a value of 250, then

STRING(R,1)

would generate the string "3,'".

5-13

5.3.15 The SUBST Function

The string-valued function SUBST allows the programmer to make charac=-
ter-for-character substitutions in a string variable. The SUBST function

may be used in two forms, the first of which is

SUBST(string designator, substitution pair list)

where string designator must be a string variable, or designated substring

thereof, and substitution pair list is a list of one to 12 substitution pairs

of the form

matching character : substitution character

where substitution character is the quoted character which is to replace

the quoted special character matching character. The matching character

cannot be the "blank" character, The length of the string designator must
not be greater than 126 characters, and if longer than 63 characters it
must be an even number; also, the string variable may not be a formal
parameter. The value of the SUBST function is the contents of the string
designator after the substitutions have been made. For example, if the

string CARD contains "AR[INDEX]", then

CARD:= SUBST(CARD(0,72),"[":"(","]":")")

will change this string to "AR(INDEX)".

The second form of the SUBST function is

SUBST (string designator, substitution table)

where string designator has the same meaning as above, and substitution table

5-14

is a simple string variable containing substitution characters for all of
the 64 characters in the B 5500 character set. This 'table" is indexed by
the REAL value equivalent of the character to be replaced; for example, the
replacement for the Jth character of the string CARD from the string TABLE

would be

TABLE (REAL (CARD (J,1)),1)

For example, if the first 10 characters of TABLE are "123456789A'" and CARD

contains the string "539648", then

CARD :=SUBST (CARD (0,72) ,TABLE)

will change the string to "64A759". The substitution table must be at least

64 characters long.

5.3.16 The FILL Function

The FILL Function allows access to the B 5500 operator TBN (Transfer
Blanks for Non-numerics). It may be used in GTL string expressions in two

forms, the first of which is

FILL(aexp, n)

where aexp is an arithmetic expression whose value should be an integer,

and n is an unsigned integer ranging from 1 to 8. The value of the arith-
metic expression is converted into a string which is right-justified in the
field of characters, whose length is specified by n. Characters to the left
of the left-most digit of thé string are set to the blank character. For
example,

FILL(215,5)

generates the string " 215".

5-15

The second form of the FILL function is
FILL n

where n is an unsigned integer ranging from 1 to 63. This string primary
is intended to be used in a string assignment statement where it will
replace each zero digit or non~digit character in the ''destination string"
by a blank until a non-zero-digit is encountered. The number of characters
tested will be n minus one characters (so that if the last character is a
zero, it will not be replaced by a blank). For example, if the first 5

characters in the string CARD are '00215'", then
CARD :=FILL 5
changes the string to " 215",

5.3.17 The OCTAL Function

The OCTAL‘function transforms a 48-bit B 5500 word into a 16-character
string containing the equivalent octal value. This function has the

following forms:

OCTAL (aexp)

OCTAL (string designator)

where aexp is any arithmetic expression and string designator is a string

variable, or substring thereof, beginning at a word boundary (multiple of

8 characters), which is 8 characters long.

5-16

5.3.18 The String Repeat Expression

The string repeat expression, which has the form

lae : se]

where ae represents an arithmetic expression, and se represents a string
expression, will cause the value of the string expression to be generated
repeatedly the number of times specified by the value of the arithmetic

expression. For example,

[3: "AB"]

will cause the string

ABABAB

to be generated. The value of the arithmetic expression must be an integer

less than 64.

5.3.19 Parenthesized String Expression

A string expression enclosed in parentheses may be used as a string
primary. For example, if A and B are string variables, then the following

are string primaries:

(A & n_n & B)

(A:=B & "S")

5-17

5.4 THE STRING ASSIGNMENT STATEMENT

5.4.1 The Basic String Assignment Statement

The basic string assignment statement has the same form as an ordinary
ALGOL assignment statement. However, in addition to string variables,
string designators may also appear in the left part list of the assignment
statement. For example, if A is a string variable 30 characters in length
which contains only spaces at the time of execution of the assignment state-
ment, and B is a string variable, the first 5 characters of which is the

string '"'CARRY', then
A:=A(10):=B(0,4) & "IES"

will change the contents of A as indicated by the following graphic represen-

tation:

\ 2 3 4 5 6 7 8 9 10 11)2 13 14 15 16 17 18 19 20 2} 22 23 24 25 26 27 28 29 3Q

C/AIRR|RIIIE|S CARRR|IIE|S

If this assignment statement is used as a primary in a string expression,
then its value would be the string '"CARRIES'". If the length of the string
generated by the string expression exceeds the number of character
positions available in any of the string designators appearing in the left
part list of the string assignment statement, then an error message will

be generated, and the program will be terminated.

5.4.2 String Assignment with SPACE

The word SPACE (see paragraph 5.3.6) may be used at the end of a string
expression to indicate that all of the remaining character positions in the

string into which the string expression is assigned is to be filled with

- 5-18

spaces. For example, if A is a 30 character string, the assignment state-

ments

A:=B(0,5) & SPACE

A:=SPACE

are equivalent to the assignment statements

A:=B(0,5) & SPACE(25)

A:=SPACE (30)

5.4.3 String Assignment with NIL

The word NIL (see paragraph 5.3.7) may be used in the same way as SPACE

in paragraph 5.4.2; for example,

A:=B(0,5) & NIL

is equivalent to

A:=B(0,5) & NIL(25)

5.4.4 String Assignment with String Skip Indicator

The string skip indicator as defined in paragraph 5.3.8 may be used
in the string expression in a string assignment statement as a means of
effectively combining two or more assignment statements into one; for
example, if LINE is a 120 character string variable, and CARD is an 80

character string variable, then

LINE(8):=CARD(0,72) & *(8) & CARD(72,8)

5-19

is equivalent to the two assignment statements:

LINE(8) :=CARD (0,72)

LINE(88):=CARD(72,8)

If there is more than one string designator in the left part list of the
assignment statement a gap caused by a string skip indicator is filled

in with characters from the right most string designator in the left part
list; for example, if A and B are string variables, the latter containing

the string "ABCDEFGH'", then the assignment statement

A:=B:="123"&2 * & "678"

will set the value of A(0,8) to the string "123DE678".

5.4.5 String Assignment Qverlap: A Warning

A string generated by a strihg expression in a string assignment state-
ment is not generated in its entirety before it is transferred into the
string designators in the left part list. Instead, as each character of
the string is generated from the string expression, it is transferred into
the rightmost string designator in the left part list. Then each character
in the string thus generated is transferred, one by one, into the preceding
string designator, and this process continues until the string has been
transferred into all of the string designators in the left part list. The
means by which string assignment statement is effected introduces a side
effect which may not be obvious. Whenever the string variable referenced
by the rightmost string designator in the left part list also appears as a
part of a string designator in the string expression of an assignment state-

ment, the characters to be referenced in the string expression may have

5-20

already been changed to new characters generated earlier in string
expression; for example, if A is a string variable containing the string

"12345678", then

A(2):=A(1,3)

will change A(0,8) to '"12222678"; on the other hand

A(2):=A(4,3)

will change A(0,8) to '"12567678". This side effect may be used to advan-
tage; for example, the most efficient way to fill the 120 character string

variable LINE with asterisks is

LINE:=[2:"%¥%*"] & LINE(0,112)

5.4.6 String Assignment Statement Containing String Length Assignment

Sometimes it is not easy or convenient to determine the length of a
string generated by a string expression. For this reason the following
option is provided for the string assignment statement: if a real
variable followed by a colon is inserted between the := and the
string expression in the string assignment statement, then the length of
the string generated by the string expression is assigned to this variable.
For example, if A is a string variable, R is a real variable, and S is a
symbol variable, the value of which is the atomic symbol "ATOMICSYMBOL'",

then the execution of the string assignment statement

A:=R: S

will set the first 12 characters of the string variable A to the string

"ATOMICSYMBOL" and will set the value of R to 12,

5-21

5.4.7 The String FILL Statement

When filling a string variable with a very long literal string, the

string FILL statement may be used:

FILL stringid WITH STRING quoted string

where stringid is the name of a simple string variable, and quoted string

is a string of characters enclosed by quotes which may be as long as 1022

characters. For example,

STRING STR(216)

.
.
.

FILL STR WITH STRING "WHEN FILLING A STRING VARIABLE WITH A

VERY LONG LITERAL STRING, THE STRING FILL STATEMENT MAY BE USED."

5.4.8 The String Addition Assignment Statement

The addition of a + between the := and the string expression of a
string assignment statement will cause the string generated by the string
assignment statement to be added to the contents of the rightmost string
designator in the left part list. For example, if CARD is an 80 charac~
ter string variable such that the last 8 characters contain the string
"12345000" and INCR is an 8 character string variable containing the string

'"00001000", then the string assignment statement
CARD(72,8) := + INCR

will cause the contents of CARD(72,8) to be changed to "12346000".
The value of the string expression in this context should be a string
of digits not exceeding 63 characters in length. If there is an overflow

in the most significant character position, then this overflow will be lost.

5-22

(This type of string assignment statement has the same effect as the

statement
DS :=N ADD

in a stream procedure of Burroughs Extended ALGOLQ.)

5.4.9 The String Subtraction Assignment Statement

The addition of a - between the := and the string expression of a
string assignment statement will cause the string generated by the string
assignment statement to be subtracted from the contents of the rightmost
string designator in the left part list. For example, if CARD is an 80
character string variable such that the last 8 characters contain the
string "12345000" and DCR is an 8 character string variable containing the

string "'00001000", then the string assignment statement

CARD(72,8):= - DCR

will cause the contents of CARD(72,8) to be changed to '"12344000". The
value of the string expression in this context should be a string of digits
not exceeding 63 characters in length. (This type of string assignment

statement has the same effect as the statement
DS:=N SUB
in a stream procedure of Burroughs Extended ALGOL .)

5.5 STRING COMPARISON

5.5.1 String Relational Expression

The string relational expression may consist of a string designator

followed by a relational operator followed by any string expression. Any

5-23

of the relational operators, =, #, <, >, <, 2, or their mnemonics, may

be used; comparisons are made on the basis of the ordering of the B 5500
4

collating sequence. For example, if A, B, CARD, and SEQ are string

variables, then

A(0,J) = B(0,J-2) & "LY"

CARD(72,8) > SEQ(0,8)

are examples of string relational expressions.

If the length of the field of characters specified by the string
designator is not equal to the length of the string generated by the
string expression, then the result of the comparison will depend on the
relational operator: if the string expression length is greater than the
string designator length, then the relation will be TRUE if the operator
is #, FALSE otherwise; if the string expression length is less than the
string designator length, then

(1) 1If the operator is =, then the relation will be FALSE.

(2) 1If the operator is #, then the relation will be TRUE, and;

(3) For any other operators, the value of the relation will
depend only on the result of the comparison of the string generated by

the string expression.

5.5.2 String Relation with SPACE

The word SPACE (see paragraph 5.3.6) may be used at the end of a
string expression to indicate that all of the remaining characters yet
to be compared in the string designator on the lefthand side of the string

relation are to be compared with the "blank" character. For example, if

5-24

A is a 30 character string, the string relations

>
I

B(0,5) & SPACE

>
]

SPACE

are equivalent to the relations

>
]

B(0,5) & SPACE(25)

o>
1l

SPACE (30)

5.5.3 String Relation with NIL

The word NIL (see paragraph 5.3.7) may be used in string relations in

the same way as SPACE in paragraph 5.5.2 above. For example,

A = B(0,5) & NIL

is equivalent to

A = B(0,5) & NIL(25)

when A is a 30 character string variable.

5.5.4 String Relation with String Skip Indicator

The string skip indicator, as defined in paragraph 5.3.8, may be used
in the string expression in a string relational expression as a means of
effectively combining two or more string relations into one; for example,
if LINE is a 120 character string variable, and CARD is an 80 character

string variable, then

LINE(8,88) = CARD(0,72) & *(8) & CARD(72,8)

is equivalent to the expression

LINE(8,72) = CARD(0,72) AND LINE(88,8) = CARD(72,8)

5-25

An asterisk by itself may be used at the end of the string expression
on the righthand side of a string relation containing the relational
operator = to indicate that, in case the length of the string generated
by the preceding part of the string expression is less than the string
designator length, the value of the relation will depend only on the
result of the string comparison and not on the difference i; length (which
would ordinarily make the relation FALSE; see paragraph 5.5.1). For

example, if A and B are 30 character strings, and J is a real variable,

having a value of between 1 and 30,
A = B(0,J) & *

is equivalent to
A(0,J) = B(0,J)

5.5.5 String Pattern Matching

A limited amount of string pattern matching is made possible in GIL
by extending the number of primaries allowed in the string expression on
the righthand side of the string relational expression when the operators
are = and #. In addition to the string primaries described in Subsection 5.3,
a number of pattern matching primaries are allowed. These pattern

matching primaries have the following forms

nP

P(ae)

where P represents a 'pattern element'", n represents an unsigned integer,
and ae represents an arithmetic expression. The number of characters in

the string designator tested for a match is determined by n or ae, and

5-26

must be less than 64. If the pattern element is given with neither ae
nor n, then only one character from the string designator is tested. A
table of the pattern elements and the set of characters they match is

given below.

Pattern Element Characters matched

ALF any alphanumeric character

LTR any letter

DGT any digit

VWL any vowel (A, E, I, 0, or U)

AMONG gs any character in the quoted string

represented by gs (which must be less
than 8 characters in length)

For example, if the string variable A contains the string "CARRIES', then

the following relation will be TRUE:

A(0,7) = 4 LTR & 2 VWL & "'S"

Also, if the string variable A contains the string ''AACBABB', then the

following relation will be TRUE:

A(0,7) = 7 AMONG "ABC"

Note that the pattern element VWL is equivalent to AMONG "AEIOU".

5.5.6 The SEARCH Function

The SEARCH function converts a string relational expression into a

pattern searching function. It has the basic form:

SEARCH(string designator relop string expression)

where the string designator is the test string, relop is the relational

5-27

operator, and string expression generates the string which will be compared

to successive substrings of the string contained in the string designator.
The sequence of comparisons will continue until the relation is satisfied,
or until no more comparisons are possible. If the length of the string

contained in the string designator is denoted by L. and the length of the

1

string generated by the string expression is denoted by L2, then the
maximum number of comparisons which can be made is (L1 - Ly + 1); this
number is limited to 63. The value of the SEARCH function is the number
of character positions skipped in the string designator before a success-
ful match is made; if no substring of the string designator satisfies the

relation, then the value of SEARCH is (L - Lo + 1). For example, if STR

is a 7 character string, then

Contents of STR SEARCH Function Value of SEARCH

"ABCDEFG" SEARCH(STR = "C'") 2
"ABCDEFG" SEARCH(STR = "G') 6
"ABCDEFG" SEARCH (STR = "X') 7
"ABCDEFG" SEARCH(STR = "CD") 2
"ABCDEFG" SEARCH(STR = "XYZ') 5
"AR(X); " SEARCH(STR = AMONG"(),") 2
"ABC456." SFARCH(STR = "0") 3
"o 1023" SEARCH(STR # " ") 3

There is also an additional form of the SEARCH function
SEARCH (strexp, var)

where strexp is a string relational expression as defined above, and var

is a REAL or ALPHA variable. If the match of a single character

5~28

succeeds, then this character is transferred into the last character
position of var. Otherwise, var retains its former value. For example,
given the 7-character string variable STR, and the REAL variable R

(initially zero),

Contents of STR SEARCH Function, R VALUE of SEARCH VALUE of R
"ABX5Yy " SEARCH(STR = DGT,R) 3 "5
" 1023" SEARCH(STR # " ",R) 3 "
"AR(X); " SEARCH(STR = AMONG "(),",R) 2 e
""ABCDEFG" SEARCH(STR = ".",R) 7 "o

5.6 BIT EXPRESSIONS

5.6.1 Bit Expression Form

A bit expression is an expression which generates a string of bits.
A bit string so generated may contain gaps, such as might be used for
masking purposes, analogous in effect to the string skip indicator (see
paragraph 5.3.8). Since a single character is six bits long, a bit
string n bits long, including gaps, is considered to contribute
((n + 5) DIV 6) characters to the string expression in which bit expres-
sions appear. A bit expression may consist of one or more bit primaries.

Two or more bit primaries may be separated by + symbols.

5.6.2 Bit Primary

A bit primary may have one of the following forms:

n BIT1 BITL (ae2, ael)
n BITO BITO(ae2, ael)
BITL (ael) BIT1
BITO (ael) | BITO

5-29

BIT1 represents the bit '"1" and BITO represents the bit "0". The number
of bits to be generated is determined by the unsigned integer n or the
arithmetic expression ael if given, or is 1 otherwise. If the arithmetic
expression ae2 is also given, it &etermines the number of bit positions to
be skipped before any bits are generated. If, for example, Cl, C2, C3, C4,
and C5 are real variables which have values of 1 and 0 only, J is a real

variable, and CODE is a string variable, then

CODE(J,1) = BIT1(1-Cl,Cl) + BITL(1-C2,C2) +

BIT1(1-C3,C3) + BIT1(1-C4,C4) + BIT1(1-C5,C5)

will be TRUE only if the nth bit of CODE(J,1) is 1 for each Cn which is 1,
forn=1, 2, ..., 5. If, in the example given above, the string
relational expression were changed into a string assignment statement by
replacing the = with a :=, and CODE(J,1) initially contained the charac-
ter 0, then the execution of this assignment statement would place into
CODE(J,1) a bit pattern corresponding to the sequence of values of the

Cn's.

5.7 STRING ACTUAL PARAMETERS

5.7.1 Call-by-Value

When a formal string parameter is called by value, as in the example
given in paragraph 5.3.5, then the corresponding actual parameter may be
any string expression. However, the string generated by the string

expression may not be longer than 7 characters in length.

5.7.2 Call-by-Name

When the formal parameter is a string array then the corresponding

actual parameter may only be a string array identifier or string array row.

5-30

However, when the formal parameter is a simple string variable (call=-by-
name) then the actual parameter may be either a string designator or
string assignment statement. The latter is not equivalent to calling a
string expression by name. Instead, the string assignment statement is
executed when the function designator is called, not when referenced
inside the procedure body. The name of the leftmost string designator in
the left part list of the string assignment statement is given to the
string formal parameter. The length of the string formal parameter will
be the length of the string generated by the string expression in the
assignment statement,

Even though the actual parameter may be a string designator which
refers to a substring of a string variable, the corresponding formal
string variable may be used in the procedure body as if it were the name
of an entire string variable, and itself may be used in a string designa=~

tor; for example, consider the following procedure declaration:

PROCEDURE P(R,S); VALUE S; STRING R,S;

R(1,4):=5 & "X"

If A is a string variable containing the string "ABCDEFGH" then

P(A(1,6),"RS")

will change the value of A(0,8) to "ABRSXFGH".

5.8 USING STRINGS IN OTHER TYPES OF EXPRESSIONS

5.8.1 Arithmetic Expressions

If the contents of a string designator is a string of less than 8

digits, it may be used in an arithmetic expression in the same manner as

5-31

any other arithmetic primary. 1In this context, the digit string is
automatically converted into the integer which the string represents.
For example, if A is a real variable and S is a string variable con-

taining the string '"125", then the assignment statement
A:=5(0,3) + 25

will set A to 150.
If A is an alpha or real variable, and S is a string variable con-

taining the string "ABC" in its first three character positions, then
A:=58(0,3) + 25

will set A to 148, since "ABC" = "123" when zone bits are stripped.

If the string referenced by a string designator is less than 8 charac-
ters in length, then the transfer function REAL applied to that string
designator may be used in an arithmetic expression in the same manner as
any other arithmetic primary. In this context, the string is automatically
converted into the number which represents the string (in ALPHA format,
right justified). For example, if A is an alpha or real variable, and S
is a string variable containing the string "ABC" in its first three posi-

tions, then
A:=REAL(S(0,3))
has the same effect as
A:="ABC"

The transfer function REAL may not be applied to a Boolean expression
starting with a string designator bécause of the ambiguity with the con-

text described above,.

5-32

5.8.2 Symbolic Expressions

If the string referenced by a string designator is less than 32
characters in length, then it may be used in a symbol expression in the
same manner as any other symbol primary. In this context, the string is
automatically converted into the atomic symbol which represents the string.
For example, if L is a symbol variable, the value of which is the list
(IS A LIST), and S is a string variable containing the string ''THIS",
then

L:=CONS (S (0,4),L)

will cause L to be set to the list (THIS IS A LIST).

5.9 USING AN ARRAY OR A STRING VARIABLE
A single-dimensional array identifier may be used in place of a
string variable in the left-part list of a string assignment statement, in

a string expression, or in a string relational expression. For example,

STRING CARD(80); ARRAY AR[0:9]

CARD(72,8) :=AR(72,8)
AR(7,8) :=CARD (32,6) & SPACE

AR(3,5) > CARD(3,5)

Note that whenever an array identifier appears in the left-part list of
a string assignment statement, it is possible that the flag bit of one or
more array elements may be set, If an array element is accessed in an
arithmetic expression context and the flag bit is set, then a FLAG BIT

run time error will occur.

5-33

5.10 OPTIMALITY OF STRING EXPRESSIONS

In all string expressions for which the compiler can determine at
compile time exactly what actions are to be performed (all skip parts
and size parts in a string expression or assignment statement are
unsigned integers), then the code emitted is almost always more efficient
than an equivalent STREAM PROCEDURE. This is not necessarily true other-

wise.

5.11 READING AND WRITING STRINGS

5.11.1 READ and WRITE Statements

A string variable not a formal parameter and longer than 8 charac-
ters in length may appear in ALGOL READ and WRITE statements at any place
at which an array row is allowed. As with the array row forms, the
number of words to be read or written, rather than the number of charac-
ters, must be given since only multiples of 8 characters may be read or
written. For example, if CARD is an 80 character string, INFILE is an
input file, LINE is a 120 character string, and OUTFILE is an output file,

then the following READ and WRITE statements are allowed:

READ (INFILE,10,CARD)

WRITE (OUTFILE,15,LINE)

5.11.2 GTL Input-OQutput Functions

In addition to the ALGOL READ and WRITE statements described above,
strings may be easily read from or written onto any file using the GIL Input-

Output functions described in Section IX.

5-34

VI. LISP 2

6.1 INTRODUCTION

Among the facilities for processing symbolic data, GTL contains a
non-standard version of LISP 2, a list processing languagel.

This section of the manual describes the list processing constructs
provided by the GTIL language. Although enough information is provided
in this section toenable the user to write a LISP program, it is intended

to supplement, but not replace, the standard references on LISP2’3’8’6.

6.2 S-EXPRESSIONS AND LISP RECORDS

6.2.1 Record and Field Designator

The name S-expression (or "Symbolic expression'') is given to the
symbolic (or "external') representations of LISP data. In order to
define the S-expression and relate it to the various LISP operations, the
concept of a linked record9 is introduced.

A record, like an array in ALGOL, is a set of values. In ALGOL, an
array is an ordered set of values all of the same type, each of which may
be referenced by an appropriate subscript. A record, on the other hand,
contains a set of fields, and each field contains a value, the type of
which corresponds to the type of field. A collection of records is said
to belong to the same record class if each record in the collection con-
tains the same corresponding fields. The value of a field in a record is
referenced by the application of the field name to a reference expression,
the value of which is a reference to the record. 1In GTL, this construct

is called a field designator, and has the form

FIELDNAME (re)

where FIELDNAME is the name of a field and re is a reference expression.

6-1

Certain classes of LISP records contain two fields which are directly
accessible to the programmer, the names of which are CAR and CDR. The
value of a CAR or CDR field is a reference to a LISP record. A LISP
reference expression; i.e., an expression the value of which is a refer-

ence to a LISP record, is called a symbol expression. Thus,

CDR(se)

is a reference to the LISP record which is referenced by the value of

the CDR field of the LISP record referenced by the symbol expression se.

6.2.2 TLISP Records

There are three primary classes of LISP records:
1) A record which represents a string of characters. This type

of record is called an atomic symbol, and contains a CDR field, but not a

CAR field.
2) A record which represents a number. This type of record is

called an atomic number, or simply number, and contains neither the CAR

nor the CDR field.

3) A record which contains only the CAR and CDR fields. It
represents a symbolic expression called a dotted pair, which is defined
below.

LISP records of types 1 and 2, atomic symbols and atomic numbers,
are called atoms because they are the basic components from which the sym-
bolic representations of LISP data are constructed. Atoms are represented
symbolically simply by the strings and numbers which they represent.

A LISP record of type 3 is represented symbolically by a dotted pair

6-2

which has the form

(sl.s2)

where sl and s2 are the symbolic representations of the LISP records
referred to by the values of the CAR and CDR fields, respectively, of

the LISP record. For example,
(DOTTED . PAIR)

is the symbolic representation of a LISP record for which the CAR field
refers to the atomic symbol DOTTED, and the CDR field refers to the
atomic symbol PAIR. Note that the definition of a dotted pair is recur-
sive, If the values of the CAR and CDR fields of a LISP record are non-
atomic, then the dotted pair representing the record will contain dotted

pairs; for example,
((DOTTED . PAIR) . (POTTED . DAIR))

LISP records which represent dotted pairs can be represented graphi-
cally by a rectangle divided in half, the left half representing the CAR
field and the right half representing the CDR field., Each half contains
an atom if the corresponding field is atomic, or an arrow pointing to
another rectangle if non-atomic. For example, the two dotted pairs given

above can be represented as shown below.

6-3

corresponds to (DOTTED

. PAIR)

CAR CDR
DOTTED PAIR

CAR CDR
> DOTTED PATIR

corresponds to ((DOTTED

. PAIR)

POTTED

DAIR

(POTTED . DAIR))

It is possible to create LISP records which have a graphic

representation, but which have no corresponding symbolic representation

as a dotted pair; for example,

CAR

CDR

6.2.3 LISP Lists
Atomic symbols, atomic numbers, and dotted pairs are all forms of

symbolic representations of LISP data called S-expressions. There is an
additional type of S-expression called a list. A LISP list can be defined
recursively as

1) a sequence of one or more S-expressions enclosed in paren-
theses, or

2) the empty list, ()

The non-empty list has the form

(sl 82 . . .)

where sl, s2, . . ., are S~expressions. Two or more list items may be
separated by commas if desired.

Examples of LISP Lists:

(A 15 B)

(A,B,C)

(ONE)
((A.B) , (C.D), (E.F))
(A (B C))

O

Lists are defined in terms of atoms and dotted pairs as follows.
The empty list is equivalent to the atom O (zero)*. A list with one
list item is equivalent to a dotted pair with the list item first and
the atom O (zero)* second. A list with two or more list items is

equivalent to a dotted pair with the first list item as the first

*In most LISP systems, the atomic symbol NIL is used instead of O.

6-5

component and a list containing all list items except the first as the
second component, Thus LISP lists may be defined in terms of dotted pairs

(but not vice versa).

Examples:
=0
A = (.0
(AB) = (A. (B .0))
((€) D) = ((C.0) . (D. 0))
(AB) (C)D) =(A. (B .0)). (.0 . (D.DO0)

LISP lists can be represented graphically in the same manner as

dotted pairs; for example, (A B C) may be represented as

CAR CDR

A ~ B ~ ¢ 0

This kind of graphical representation is often useful for visualizing
what occurs when S-expressions are manipulated by altering the contents

of the CAR and CDR fields of the associated LISP records.

6.3 SYMBOL EXPRESSION
6.3.1 Definition

In ALGOL, an arithmetic expression may be considered as a set of
rules which, when executed, generates a value which is a number. In GTL,
a symbolic expression is a set of rules which produces a value which is
a reference to a LISP record. Some of the components from which symbolic

expressions are composed are described below.

6-6

6.3.2 Quoted S-expressions

The quoted S-expression is an S-expression enclosed in quotes which
has as its value a LISP record, the symbolic representation of which is

the S-expression. For example,

"(THIS IS A LIST)"
"ATOMICSYMBOL'"
"(DOTTED . PAIR)"

"(3 57 11)"

6.3.3 Numbers and Arithmetic Expressions

Almost any class of arithmetic expression, including those composed
of literal numbers, may be used in a symbol expression. Whenever an
arithmetic expression is used where a LISP reference value is expected,
its value is a reference to a LISP record which represents the number
which is the value of the arithmetic expression. The arithmetic primary
which cannot be used in this context is the string constant (of Burroughs
Extended ALGOL, in which GIL is embedded), since it may be identical in

form to a quoted atomic symbol representing the same string.

6.3.4 LISP Variables

Variables whose values are references to LISP records are declared
and used in the same forms as REAL, INTEGER, and BOOLEAN variables in
ALGOL, LISP variables are declared with the declarator SYMBOL; for

example,

SYMBOL X, Y, Z

SYMBOL ARRAY SR[0:20]

6-7

A variable of type SYMBOL may be used in a symbol expression to produce
its value, or, as in ALGOL, in the left part list of an assignment state-

ment to change its value.

6.3.5 Assignment Statement

An assignment statement, besides being used as a statement, may be
used in a symbol expression having as its value the value which is
assigned to the variables in the left part list. An extension of the

syntax of the LISP assignment statement is described in Subsection 6.7.

6.3.6 The Field Designators

The CDR field name may be applied to any symbol expression the value
of which is a LISP record of type 1l or 3 (atomic symbol or dotted pair).
The CAR field name may be applied to any symbol expression the value of

which is a type 3 LISP record (dotted pair).

Examples
CAR("(A . B)")= A
CDR("(A . B)")=B
CAR("(A B C)")= A

CDR("(A B C)")= (B C)

Compositions of these field designators may be contracted to a form illus-

trated by the following examples:

CADR("(A B C)") = CAR(CDR("(A B C)")= B

CDAR('"((A B) C)") = CDR(CAR("((A B)C)")) = (B)
CAAAR("(((A)))")= CAR(CAR(CAR("(((A)))")))= A
CADDR("(A B C)")= CAR(CDR(CDR("(A B C)")))= C

The length of a composite field designator may not exceed 13 characters.

6-8

6.3.7 Conditional Expression

The LISP 2 conditional expression has the same form as any ALGOL

conditional expression. For example,

IF X = 1 THEN CAR(S) ELSE CADR(S)

6.3.8 LISP Function Designator

A LISP function designator is simply a call on a procedure which was
declared with the type SYMBOL, its value being the reference to the LISP
record defined by the SYMBOL procedure declaration. In GTL, the formal
parameters of the procedure, if any, may be of type SYMBOL; the conventions
of call-by-value and call-by-name of standard ALGOL also apply. For

example, the declaration

SYMBOL PROCEDURE ELN(N ,S); REAL N; SYMBOL S;
BEGIN
WHILE (N:=N - 1) > 0 DO S:=CDR(S);
ELN:=CAR(S)

END OF ELN
defines a procedure which has as its value the Nth element of the list S;

ELN(1, "(A B C D)")= A

ELN(3, "(AB C D)")=C

Note that the preceding definition is not intended to imply that procedures
of any other type (or untyped) may not have formal parameters of type

SYMBOL; see, for example, the procedure declaration given in paragraph 6.8.2.

6-9

6.4 LISP STANDARD FUNCTIONS
6.4.1 CONS

The LISP function CONS is a standard (or "intrinsic'") function of two
arguments, both symbolic expressions. The value of CONS is a freshly-
created LISP record whose CAR field is set to the value of the first argu-
ment, and whose CDR field is set to the value of its second argument. For

example,

CONS (A", "B") = (A . B)

CONS ("A'", CONS("LIST",0)) = (A LIST)

Note that the difference between CONS("A", "B") and "(A . B)" is that each
time the latter is evaluated, its value is a reference to the same LISP

record.

6.4.2 LIST
The LIST function is a standard function of one or more arguments,
the value of which is a set of link LISP records the symbolic represen-

tation of which is a LISP list. For example,

LIST("THIS", "IS", "(A LIST)") = (THIS IS (A LIST))

The use of the word LIST in this context does not interfere with its use

in the LIST declaration of Burroughs Extended ALGOL.

6.4.3 RANDOM

The standard function RANDOM is a function of one symbol expression
argument the value of which should be a list. The value of RANDOM is one
item chosen at random from the list.

Example:

RANDOM ("' (CHOOSE ONE OF THESE AT RANDOM)')

6-10

6.4.4 APPEND

The standard function APPEND is a function of two symbol expression
arguments whose values should be lists. 1Its value is a copy of the first
list with the CDR field of its last record modified to point to the second

list. TIts effect is illustrated by the following procedure declaration:

SYMBOL PROCEDURE APPEND (X, Y); VALUE X, Y; SYMBOL X, Y;
APPEND :=IF NULL (X) THEN Y ELSE

CONS (CAR(X), APPEND (CDR(X), Y))

(The NULL function is TRUE if its argument is the empty list - see
paragraph 6.5.5).
Example:

APPEND ("(A B C)","MD EF)") = (ABCDEF)

6.4.5 NCONC

The standard function NCONC is a function of two symbol expression
arguments whose values should be lists. 1Its value is its first argument
(if a non-empty list) with the CDR field of its last record altered to
point to the value of NCONC's second argument. If the first argument is
the empty list, then the value of NCONC is the value of its second argu-
ment. The effect of NCONC, illustrated by the procedure declaration given
below, is similar to that of APPEND except that its first argument is not

copied.

SYMBOL PROCEDURE NCONC(X,Y); VALUE X, Y; SYMBOL X, Y;
IF NULL(X) THEN NCONC:=Y ELSE
BEGIN
NCONG: =X
WHILE NOT NULL(CDR(X)) DO X:=CDR(X);
CDR(X) :=Y;

END
6-11

The last assignment statement shown above means that the CDR field of the
record to which the value of X refers is changed to the value of Y. This

construct is further explicated in Subsection 6.7.

6.4.6 SPACE and QMARK

The standard functions SPACE and QMARK are functions of no arguments
whose values are atomic symbols which represent the blank and question
mark characters, respectively. These functions are provided since these
characters are not part of the syntax of S-expressions which may be read

or quoted (see Subsection 6.10).

6.5 BOOLEAN STANDARD FUNCTIONS
6.5.1 ATOM

The Boolean standard function ATOM, when applied to a symbolic expres-
sion argument, yields a value of TRUE if the value of the symbolic expres-
sion is an atom, i.e., an atomic symbol or number, and is FALSE otherwise.

Examples:

ATOM (""ATOMICSYMBOL") = TRUE
ATOM(X + 5) = TRUE

ATOM("(A . B)") = FALSE

6.5.2 ATSYM
The Boolean standard function ATSYM, when applied to a symbolic
expression argument, yields a value of TRUE if the value of the symbolic
expression is an atomic symbol, and is FALSE otherwise.
Examples:
ATSYM(""ATOMICSYMBOL") = TRUE
ATSYM(125) = FALSE

ATSYM("(A . B)") = FALSE

6-12

6.5.3 NUMBERP

The Boolean standard function NUMBERP, when applied to a symbolic
expression argument, yields a value of TRUE if the value of the symbolic
expression is a reference to a LISP record which represents a number,

and is FALSE otherwise.

Examples:
NUMBERP ("ATOMICSYMBOL'") = FALSE
NUMBERP (125) = TRUE
NUMBERP("(A . B)") = FALSE
6.5.4 ALF

The Boolean standard function ALF, when applied to a symbolic expres-
sion argument having an atomic symbol as its value, yields a value of
TRUE if the atomic symbol is an identifier, and is FALSE otherwise. If
the value of the symbolic expression argument is not an atomic symbol, the
value of ALF is undefined,.

Examples:

ALF ("ATOMICSYMBOL") = TRUE
ALF(":") = FALSE

ALF("A") = TRUE

In other words, ALF distinquishes between atomic symbols of types 1 and 2

as defined in paragraph 6.12.1.

6.5.5 NULL
The Boolean standard function NULL, when applied to a symbolic

expression argument, yields a value of TRUE if the value of the symbolic

6-13

expression is the atom O (zero), and is FALSE otherwise.

Examples:

NULL(0) = TRUE
NULL("()") = TRUE
NULL (" (ONE)") = FALSE

NULL(CDR(" (ONE)'")) = TRUE

6.5.6 MEMBER

The Boolean standard function MEMBER, when applied to two symbolic
expression arguments, yields a value of TRUE if the value of the first
argument is a member of the list which is the value of the second argument.

Examples:

MEMBER("B", "(A B C)") = TRUE

1]

MEMBER("X", "(A B C)") = FALSE

MEMBER("(C D)", "(A B (C D))") = TRUE

6.6 LISP RELATIONAL EXPRESSIONS
The definition of the relational expression of ALGOL is extended by

the includion .of the LISP relational expression which has the form:

sv EQ se
sv NEQL se
8V = se
sv # se

— T —

where sv is a SYMBOL variable, LISP assignment statement, LISP function
designator, or a field designator; EQ, NEQL, =, and # are the LISP

relational operators; and se is a symbol expression. The relational

6-14

expression containing EQ is TRUE if, and only if, the values of sv and se
are references to the same LISP record. The relational expression con-
taining = is TRUE if and only if the values of sv and se are references
to LISP records (not necessarily the same) which represent the same
S-expression. The relational expressions containing NEQL and # are the
negations of the relational expression containing EQ and =, respectively.
Note that, according to the definitions given above, a relational

expression of the form
CAR(S) =15

is syntactically correct, whereas
CAR(S) > 15

is not, since > is not a LISP relational operator. The above expression

could be written correctly as
15 < CAR(S)
in which case a run~time error would result if CAR(S) is not a number.

6.7 THE LISP ASSIGNMENT STATEMENT

The LISP assignment statement has the same form and operational
meaning as an ordinary ALGOL assignment statement. 1In addition to SYMBOL
variables, however, field designators (including the composite forms
shown in paragraph 6.3.6) may be used in place of any variable in a left
part list. For example, if X is a SYMBOL variable having the value

(A B C), then

CAR(X):="D"

6-15

changes the CAR field of the LISP record referenced by the value of X to
the atomic symbol D, so that, after the execution of this assignment state-
ment, the value of X is (D B C).

Examples:

If the value of X before the statement is (A B C), then

the following occurs:

value of X after

assignment statement assignment statement
CADR(X):='"D" (ADC)
CDR(X):="(D E)" (A DE)
CAR(X):=CDR(X):=""Cc" (c .0
CDDDR (X) :=X no S-expression
representation

The result of the last assignment statement given above is a "circular"

list and may be illustrated graphically as the following:

Note that NCONC (X, X) would have the same effect. It also changes X into
a circular list. Circular lists may not be read or printed by the normal
GTL Input=-Output mechanism,

The assignment statement with the field designator in the left part
list is the only means of changing the CDR and CAR fields of LISP records

in LISP 2.

6-16

6.8 THE LISP ITERATIVE STATEMENT

6.8.1 The ON Statement

There are two types of LISP iterative statements which are similar in

form to the FOR-statement of ALGOL. The first type has the form:

FOR s ON e DO st

where

1]

is a simple SYMBOL variable
e is a symbol expression, and

st is any statement
It is equivalent to the following compound statement:

BEGIN
si=e;

WHILE NOT NULL(s) DO BEGIN st; s:=CDR(s) END

For example, consider the following procedure declaration:

SYMBOL PROCEDURE SUBST(X, Y, Z); VALUE X, Y, Z; SYMBOL X, Y, Z;
BEGIN
SYMBOL S;
SUBST:=Z;
FOR S ON Z DO IF X = CAR(S) THEN CAR(S):=Y;

END

which has the effect of substituting Y for every occurrence of X in the

list Z.

SUBST("A", "R", "(A B A C)") = (RB R C)

6-17

6.8.2 The IN Statement

The second type of LISP iterative statement has the following form:

FOR s IN e DO st

where s, e, and st have the same meanings as in paragraph 6.8.1 above. It

is equivalent to the block:

BEGIN
SYMBOL X;
FOR X ON e DO BEGIN s:=CAR(X); st END

END

For example, a definition of the MEMBER standard function could be given

by the following procedure declaration:

BOOLEAN PROCEDURE MEMBER (X,Y); VALUE X, Y; SYMBOL X, Y;
BEGIN LABEL EXIT; SYMBOL S;
FOR S IN Y DO IF X = S THEN BEGIN MEMBER:=TRUE;
GO TO EXIT END;
MEMBER :=FALSE;

EXIT: END OF MEMBER

6.8.3 The WHILE Part

Both forms of the iterative statement may contain a WHILE part in the

form:

FOR s¢ (ype WHILE be DO st

where be is a Boolean expression. This means that the loop will continue

until be is FALSE or until the empty list is reached.

6-18

6.9 EXTENSIONS OF ARITHMETIC EXPRESSIONS

6.9.1 Arithmetic Expression Syntax Extension

An arithmetic expression may contain any of the symbol expressions
described in Subsection 6.3; the value of the symbolic expression should
be a reference to a LISP record which represents a number. The value of
the symbol expression in this context will be this number. For example,

if X is a REAL variable and S is a SYMBOL variable,

X:=CDR(S) + X

is permitted if it is known that the value of CDR(S) is a number.

6.9.2 The LENGTH Function

There is a useful-integer-valued standard function called LENGTH
which has a symbolic expression as an argument. If the value of the sym-
bolic expression is a list, then the value of LENGTH is the number of items
on the list. If the value of the symbolic expression is an atomic symbol,
then the value of LENGTH is the number of characters in the string
represented by the atomic symbol; otherwise, the value of LENGTH is

undefined. For example,

LENGTH(" (A B)") = 2

LENGTH("((A B) (B C) (D E))") = 3
LENGTH("()") = O

LENGTH ("'ONE") = 3

LENGTH ("ATOMICSYMBOL") = 12

6-19

6.10 READING AND WRITING S-EXPRESSIONS

6.10.1 Output Functions

The value of any GTL variable or function designator, including LISP
variables, procedures, and assignment statements--i.e., those declared
with type SYMBOL, and LISP field designators--may be printed by the PRINT
statement., The PRINT statement consists of the word PRINT followed by
one or more ''printable items'. (See paragraphs 9.2.2 through 9.2.17 on
the use of the PRINT statement.) For example, if S is a SYMBOL variable
having the atomic symbol X as its value, and Y is a REAL variable, the

value of which is 15, then
PRINT # THE VALUE OF # S # IS # Y

causes

THE VALUE OF X IS 15

to be printed on the output file. The output file is specified by the
OUTPUT statement. (See Subsection 9.3.)
If S and R are SYMBOL variables with values (A B C) and (D E F),

respectively, then
PRINT S,R

causes

(ABC) (DEF)

to be printed.

6-20

If S is a SYMBOL PROCEDURE which returns as its value the S-expres-

sion (THIS IS A LIST), then

PRINT CDR(S)

causes

(IS A LIST)

to be printed.

The user need not be concerned about printing items for which the
character representation exceeds the size of a logical record of the out-
put file. The output system automatically edits the output string so
that it can be written on one or more logical records as needed.

If the GTL Output mechanism is used, then the following file and
output string declarations are suggested:

1) for the line printer:

FILE OUT OUTFILE 16(2,15)
and

STRING LINE (120)

2) for the remote terminal:

FILE OUT OUTFILE REMOTE (2,9)
and

STRING LINE (72)

These declarations must appear in the outermost block of the program.

With these declarations, the following output statement should be executed

6-21

before using PRINT:

OUTPUT (OUTFILE,LINE,file length in characters)

where file length in characters would be an unsigned integer specifying

the file length in characters of the file. For the line printer and
remote terminal, this would be 120 and 72, respectively. For remote
terminals, the FILE REMOTE construct can be used (Subsection 9.6). (See

Section IX for complete details on GTL Input-Output.)

6.10.2 1Input Functions

The functions READ and READ1 may be used in symbol expressions for
reading S-expressions from the input files. The function READ1 reads
single atomic symbols and numbers only, and READ reads S-expressions.
Dotted pairs and lists read by READ must be followed by $ (which serves
to indicate the end of an S-expression in case of a parenthesis mismatch);
the $ functions as a delimiter only and will not be read by a subsequent

READ or READl. For example, if

(NUMBER . 125)$

appears in the input string, then the value of READ will be the dotted
pair (NUMBER . 125); if READ1 is executed six times (without an inter-

vening READ), then the values of READ] will be six atoms:

NUMBER

125

6-22

Although the spacing between items read from an input file by READ or READ1
is not important, an identifier or a digit string in a number cannot be
broken across the boundaries of an input record (for example, the characters
of an atomic symbol cannot begin on one card and continue on the following
card); S-expressions read by READ can otherwise be spread across more than

one input record. The value of READ or READ]l at end-of-file is the QMARK

atomic symbol.

If the GTL Input mechanism is used, the following file and input string

declarations are suggested for a card file:

FILE IN INFILE (2,10);
and

STRING CARD (80)
For a remote terminal file, the following might be used:

FILE IN INFILE REMOTE (2,9);
and

STRING CARD (72)

These declarations must appear in the outermost block of the program. With
these declarations, the following INPUT statement should be executed before

using READ or READI1:

INPUT (INFILE,CARD,file length in characters)

where file length in characters would be 80 and 72 for the card reader and

remote terminal, respectively. (See Subsection 9.5.) If the remote terminal
is being used for both Input and Output, then only one REMOTE file should be
declared and the file identifier associated with that file should be used

in both the INPUT and OUTPUT statements. If a listing of the input

string from the card file is desired, then the additional declarations

given in paragraph 9.8.4 can be used. For remote terminals

6-23

the FILE REMOTE construct can be used. (See Section IX for details of
GTL Input-Output.) Warning: If the FILE REMOTE declaration (Subsec=
tion 9.6) is used in lieu of the above, then care should be exercised
since a psuedo end-of-file is normally returned after every other READ
or READ1; i.e., READ or READ1 will be equal to the QMARK (question mark)
atomic symbol on every other read. (See paragraph 9.6.2, especially

part 4.)

6.11 THE SYMBOL MONITOR

The values of SYMBOL variables and procedures can be monitored by the
LISP monitor system. The variables and procedures to be monitored are
specified by the declaration SYMBOL MONITOR followed by a list of SYMBOL
variables or procedure identifiers. For example, if the variables X and
SR and the procedure ELN (declared in paragraphs 6.3.4 and 6.3.8) are to

be monitored, then the delcaration

SYMBOL MONITOR X, SR, ELN

should be used (after the declarations of these items). The name of the
SYMBOL variable (plus values of subscripts if a subscripted variable) is
printed with its value whenever it appears in the left part list of an
assignment statement which is executed (a subscripted variable must be the
leftmost variable for it to be monitored). Whenever a monitored SYMBOL
procedure is evaluated, the procedure name, its arguments (if call by

value and type REAL, INTEGER, BOOLEAN, or SYMBOL) and its value are
printed. If a call on a SYMBOL procedure to be monitored appears before
the SYMBOL MONITOR declaration (such as would normally occur with recursive
procedure declarations), then that procedure call would not be monitored.

This restriction can be circumvented by either declaring the procedure

6-24

FORWARD and making the actual procedure declaration after the SYMBOL MONI-
TOR declaration or by making the SYMBOL MONITOR declaration inside the
procedure declaration itself (which would cause only recursive calls to be
monitored). The monitor file is specified by the output statement (para-

graph 6.10.1). A monitor declaration is effective only in the block in

which it appears.
For example, with the declarations
SYMBOL R;
SYMBOL PROCEDURE LISTOFATOMS (S);VALUE S; SYMBOL S; FORWARD;
SYMBOL MONITOR LISTOFATOMS, R;
SYMBOL PROCEDURE LISTOFATOMS (S); VALUE S; SYMBOL S;
LISTOFATOMS :=IF NULL(S) THEN O ELSE
IF ATOM(CAR(S))THEN
CONS (CAR(S) ,LISTOFATOMS (CDR(S)))ELSE

NCONC (LISTOFATOMS (CAR(S)) ,LISTOFATOMS (CDR(S)))

the execution of the assignment statement
R:=LISTOFATOMS ("'(A ((B) C))")

will cause the following to be printed (names of variables and procedures

are truncated to 7 characters when necessary):

CALL LISTOFA

(A ())
CALL LISTOFA
(((®) €))
CALL LISTOFA

((®) €

6-25

CALL LISTOFA
(B)
CALL LISTOFA
0
LISTOFA = 0
LISTOFA = (B)
CALL LISTOFA
(©)
CALL LISTOFA
0
LISTOFA = 0
LISTOFA = (C)
LISTOFA = (B C)
CALL LISTOFA
0
LISTOFA = O
LISTOFA = (BC)
LISTOFA = (A B C)

R=(ABC)

6.12 ATOMIC SYMBOLS

6.12.1 Types of Atomic Symbols

In the GIL LISP 2 system, there are three types of atomic symbols
(classified by the kinds of strings the atomic symbol represents):
1) 1Identifier, which is an ordinary ALGOL identifier (i.e., a

letter, which may be followed by one or more letters or digits),

6-26

2) Special character, which is any non-alphanumeric character
in the B 5500 character set except the blank character and the question
mark, and

3) Non-standard atomic symbol, which is any string of charac-
ters (which may include the blank character and question mark which is
neither an identifier nor a special character.

No atomic symbol of any type may exceed 31 characters in length.

Quoted atomic symbols appearing in symbol expressions (paragraph 6.3.2)
and atomié symbols read by READ1 may be any identifier or special charac-
ter. The atomic symbols appearing in quoted dotted pairs or lists, or
dotted pairs or lists read by READ, may be any identifier or special charac-
ter except the following special characters:

(
)

$

These special characters cannot be recognized as atomic symbols in this
context since they serve as delimiters of dotted pairs and lists (for

S-expressions which are quoted or read by READ).

6.12.2 Nonstandard Atomic Symbols

Any nonstandard atomic symbol may be created by the MKATOM function
which is described in paragraph 6.14.3. Also, the blank and question mark
atomic symbols may be created by using the SPACE and QMARK functions,

respectively, in symbolic expressions (paragraph 6.4.6).

6-27

6.12,3 Uniqueness of Atomic Symbols

Every atomic symbol created by the constructs described in this section

(i.e., those appearing in quoted S-expressions, or read by READ or READ1)

is unique. A single type 1 LISP record represents all occurrences of
identical character strings in S-expressions which are read or quoted.

This uniqueness has an important consequence: Information contained in a
set of linked LISP records may be associated with the character string
represented by an atomic symbol via the CDR field of the atomic symbol.

For example, if one describes the syntax of simple arithmetic expressions

by the following BNF equations,

<e> :: = <p>|<p><op><p>|<p><op><e>
<> o= <] (<e>)
<v>::=A]|B]|C
<op>::=+|-|® |/

their representation may be effected through the following assignment

statements:

CDR("E"):="((P) (P OP P) (P OP E))"
CDR("P") :=CONS (LIST(" (ll s ”E" , H)ll) , " ((V))")
COR("V"):="((A) (B) (C))"

CDR("OP™) :="((+) (=) ®) (N"

so that, when using the procedure GEN, as defined below,

PROCEDURE GEN(X); VALUE X; SYMBOL X;
IF NULL(CDR(X)) THEN PRIN X SPACE ELSE

FOR X IN RANDOM(CDR(X)) DO GEN(X)

6-28

calls on the pair of statements

GEN ("E"); TERPRI

would cause to be printed randomly generated expressions which may have

forms like those shown below:

A
A+ B
A/ (B - 0C)

(A+B®C) /A

6.13 THE LISP OBJECT LIST

6.13.1 The LISP Symbol Table

The uniqueness of atomic symbols described in paragraph 6.12.3 is
assured through the use of a symbol table created and maintained by the GTL
system. All single character atomic symbols are necessarily unique. The
numeric value of a character is internally converted directly into the
reference to the LISP record representing the character. However, all unique
multi-character atomic symbols are contained on a list called the object list.
Whenever a unique atomic symbol representing a string of characters is to
be created, the object list is consulted first to determine whether or not
an atomic symbol already exists which represents the string in question.

If the atomic symbol already exists, a reference to this atomic symbol is
returned. If the atomic symbol is not on the object list, it is created,
and placed on the object list. The object list itself is actually not a
single list but a collection of 125 lists. An arithmetic operation (MOD)

is performed on a part of the string to be tested, yielding a value between

6-29

0 and 124, This value is then used as an index to an implicitly declared
SYMBOL array, each element of which references a possibly empty list of
atomic symbols. This procedure, called hashing, greatly reduces the amount
of time required to determine the existence of an atomic symbol representing
a multi-character identifier. The atomic symbols on an object list are not
actually members of a list but are linked together through the CIR field

of the atomic symbol. (The CTR field is described in Subsection 6.16.)

In this context, 1 is used as an end of list indicator instead of O. Therefore,

every atomic symbol on the object list has a non-NULL CTR field.

6.13.2 The OBLIST Function

The OBLIST function may be used to access all of the multi-character
atomic symbols on the LISP symbol table as described above. The OBLIST

function is used in the form:
OBLIST (aexp)

where aexp represents an arithmetic expression, the value of which must be
an integer between 0 and 124 (as explained above). For example, if S is
a SYMBOL variable and X is a REAL variable, then the following statements

could be used to print the contents of the object list:

FOR X:=0 STEP 1 UNTIL 124 DO
IF NOT NULL(S:=OBLIST (X)) THEN
DO PRIN S SPACE UNTIL S:=CTR(S) = 1;

TERPRI

6-30

6.13.3 The REMOB Statement

One or more atomic symbols may be removed from the object list by the
REMOB function for the purpose of reclaiming storage used for atomic symbols
and/or making an atomic symbol unrecognizable. The REMOB statement may be

used in two forms:

REMOB

REMOB (se)

where se represents a symbol expression. The first form of the REMOB state-
ment will remove the entire object list. The second form will remove from
the object list the atomic symbol referenced by the value of the symbol

expression se.

6.14 STRINGS AND ATOMIC SYMBOLS

6.14.1 Creation of Atomic Symbols

Any string of characters less than 32 characters in length can be
converted into an atomic symbol, and vice versa. Conversion of an atomic
symbol into the string of chafacters which it represents was discussed in
paragraph 5.3.13. Every multi-character atomic symbol created by the GTIL
system is placed on the object list with the exception of those created by
the GENSYM function (paragraph 6.14.4) and the asterisk forms of the
MKATOM function (paragraph 6.14.3). The following two paragraphs describe
functions of string expressions (See Section V) which are useful in the
LISP portion of GTL. These functions are used implicitly by the READCON

function (Section IX).

6-31

6.14.2 The ATCON Function

The ATCON function is a Boolean standard function which indicates
whether or not a string is represented by an atomic symbol on the object

list. The ATCON function is used in the form:

ATCON(se)

where se is a string expression. The value of the string expression should
be less than 32 characters in length. The value of ATCON will be TRUE if
there is an atomic symbol on the object list which represents the string,
and FALSE otherwise. If ATCON is TRUE, then the atomic symbol which was
found may be accessed by the standard variable INSYM (see paragraph 9.7.1),
If the function ATCON is used by itself, without the string expression, the

string contained in the string designator

INSTR(0O, LENGTH(INSTR))

will be tested (see paragraphs 9.4.3, 9.4.4, and 9.7.1).

6.14.3 The MKATOM Function

The MKATOM function is used to create an atomic symbol from a string.
The value of MKATOM is the atomic symbol which is created. The MKATOM func-

tion may be used in the following forms:

MKATOM (se)
MKATOM(se)*
MKATOM

MRATOM*

where se represents a string expression. The value of the string expression

6-32

must be less than 32 characters in length. The first two forms of the
MKATOM function will return a reference to an atomic symbol which represents
the string generated by the string expression se. The third and fourth forms
of the MKATOM function will return a reference to an atomic symbol which

represents the string contained in the string designator

INSTR (0, LENGTH (INSTR))

(see paragraphs 9.4.3, 9.4.4, and 9.7.1). The first and third forms of the
MKATOM function will check the object list first to see if the atomic sym-
bol already exists (see Subsection 6.13); if so, a reference to this atomic
symbol is returned. If an atomic symbol does not already exist, then a

new one is created and placed on the object list. 1If the second and fourth
forms of the MKATOM function, the asterisk forms, are used, with multi-
character atomic symbols, they will create a new atomic symbol which is

not placed on the object list, regardless of whether or not there is an
atomic symbol on the object list representing the string. The asterisk

has no effect if the value of se is a single-character atomic symbol.

6.14.4 The GENSYM Function

The GENSYM function is a SYMBOL standard function of no arguments.
Each call on the GENSYM function will create a new atomic symbol which is
not placed on the object list (and will not be recognized if read or
quoted, or tested by ATCON). Atomic symbols created by GENSYM represent
strings consisting of the letter '"G'" followed by a 3 digit number. For

example, the first 3 calls on GENSYM will create the atomic symbols

G001

G002

G003

6-33

6.15 LISP REFERENCE VALUE TRANSFER FUNCTIONS

6.15.1 The CTSM Function

The CTSM function is a real-valued function used in the form:

CTSM(se)

where se represents a symbol expression. The value of CISM is the con-
tents of the word referenced by the value of se. For example, the value of

the ID field of a LISP record (see paragraph 6.22,1) is given by

CTSM(se).[1:2]

In many cases, a REAL FIELD designator is more convenient than the CTSM

function (see paragraph 7.2.2).

6.15.2 The SMTA Function

The SMTA (SyMbol To Arithmetic) function is a real-valued function

used in the form:

SMTA (se)

where se represents a symbol expression. The value of SMTA is the arith-

metic equivalent of the LISP reference value. For example, if

SMTA ("THING") = 167

then 167 is the actual (relative) address of the LISP record which is the

atomic symbol THING (see paragraph 6.22,1). Note that the relation

SMTA (se) < 63

is true when the value of se is a single character atomic symbol or a

single digit number (see paragraphs 6.22.2 and 6.22.3).

6-34

6.15.3 The ATSM Function

The ATSM (Arithmetic To SyMbol) function is a LISP reference-valued

function used in the form

ATSM(ae)

where ae represents an arithmetic expression. The ATSM function converts
the value of ae into the equivalent LISP reference value. For example,

the following relations are always true:

I
o
(0]

SMTA (ATSM(ae))

Il
n
o

ATSM(SMTA (se))

where ae and se represent arithmetic and symbol expressions, respectively.
Since any arithmetic expression may be used as an argument of ATSM, the
user should be very careful to make certain that the value of ATSM is a
legitimate LISP reference value. This is especially important when auto-
matic reclamation is used, since the garbage collector will expect that all
SYMBOL valued items will be an address of a legitimate LISP record.

The ATSM transfer function may also be used to modify the address of

a LISP record when used in the following form

ATSM(aexp, sexp)

where aexp is an arithmetic expression, the value of which is added to the
value of the SYMBOL expression sexp. The value of aexp must be a non-
negative integer (see also paragraph 7.4.5). This expression is equivalent

to

ATSM(aexp + SMTA(sexp))

6-35

6.16 THE CTR FIELD

In addition to the CAR and CDR fields contained in LISP records which
represent dotted pairs, there is an additional field, in GTL, called the
CTR field. This additional field is provided since the internal machine
representation of a LISP record, a B 5500 word, is large enough to accom-
modate an additional reference-valued field. The CTR field is not a stan-
dard LISP field, and it is not found in:most LISP systems. There is also
no corresponding symbolic representation of this field in LISP S-expres-
sions. A CTR field designator may be used in the same forms as the CAR
and CDR field designators, and may be used in composite field designators

(see paragraph 6.3.6). For example,
CTDR(X) = CTR(CDR(X))

The CTR field is useful for a variety of applications such as predecessor
links and for multi-linked list structures (see also Subsection 6.18).
A "dotted-pair'" type LISP record with CTIR field may be represented

graphically by

CIR CAR CDR

6.17 PREFIX AND DOT OPERATORS

6.17.1 Prefix Field Designators

All of the LISP field designators described in paragraph 6.3.6 and
the CTR field designator described above, may be used in a prefix form.
The prefix form consists of the field name followed by a SYMBOL variable,

either simple or subscripted. For example, if S is a SYMBOL variable,

6-36

then,

CADR S :=CAR S

is equivalent to

CADR(S) := CAR(S)

6.17.2 Boolean Prefix Operators

If an argument of any of the Boolean standard functions ATOM,
ATSYM, NUMBERP, ALF, or NULL (described in paragraphs 6.5.1 through
6.5.5) is a SYMBOL variable, then the Boolean function may be
used as a prefix operator (without parentheses). For example, if S is a

SYMBOL variable,

ATOM S
NULL S
ATSYM S
NUMBERP S

ALF S

are valid GTL constructs.

6.17.3 The Dot Operator

The definition of symbolic expression given in Subsection 6.3 is

extended by the inclusion of the following construct:

sel . se2

where sel and se2 represent symbol expressions. It is equivalent to

CONS (sel, se2)

6-37

The period used in this context is called the dot operator. For example,

the value of

HAII . "Bll

is the dotted pair (A . B). Since sel and se2, as defined above, may also
contain dot operators, symbol expressions may be parenthesized to limit
the scope of a dot operator. When two or more dot operators appear in a

symbol expression, the association is from the right; for example
IIA" R ”Bll IICH . IIDII

is equivalent to
lIA" (”B" (llcll "D"))

the value of which is (A . (B . (C . D))). In the following additional

examples, it is assumed that S is a SYMBOL variable with a value of

(B C D).
symbol expressions value
"A" .S (A B CD)
CAR S . "(A D)" (B A D)
AT, "B" ., "C" L, 0 (A B C)
("a" . "B") . ("¢" . '"D") . 0 ((A . B) (C. D))

When the symbol expression contains arithmetic operators, the dot operator

has the lowest precedence; for example, if the value of the SYMBOL variable
S is (3 4 5), then the value of
CAR' S + CADR S . "(8 9)"

is the list (7 8 9).

6-38

6.18 PROPERTY LIST OPERATORS

6.18.1 The Property List

Most LISP systems use the CDR field of atomic symbols to reference
linked lists of some kind containing attribute-value pairs. Such lists

are called property lists of atomic symbols. Thus, with each atomic sym-

bol there may be associated one or more attributes (atomic symbols) and
each attribute of an atomic symbol has a corresponding value (an S-expres-
sion). In GTIL, an economy of representation is achieved by using the CTR
field for the attribute, the CAR field for the value, and the CDR field

to reference the following attribute-value pairs (if any). The GTL

property list operations are described in the following paragraphs.

6.18.2 ADDPROP
ADDPROP is a statement which is used to add an attribute-value pair

to the property list of an atomic symbol. It is used in the form

ADDPROP (sym, attribute, value)

where sym, attribute, and value represent symbol expressions. The values

of sym and attribute should be atomic symbols. The effect of ADDPROP is

illustrated by the following procedure declaration:

PROCEDURE ADDPROP(S,A,V); VALUE S,A,V; SYMBOL S,A,V;
IF ATSYM(S) THEN
BEGIN CDR S :=V. CDR S;
CTDR S :=A

END

6-39

For example, if the CDR field of the atomic symbol "TWO" is initially

empty, then the two statements

ADDPROP ("TWO", "VAL", 2)

ADDPROP (""TWO'", "TYPE", '"NUM")

have the effect of changing the CDR field of "TWO" as illustrated

graphically below.

CIR CAR CDR CIR CAR CDR

TYPE NUM | VAL 2 0

6.18.3 PROP
PROP is a symbol-valued function which may be used in any symbol

expression. It is used in the form

PROP(sym, attribute)

where sym and attribute represent symbol expressions whose values should
be atomic symbols. If the CDR field of sym is a property list containing
attribute, then the wvalue of PROP is the LISP record containing attribute
in its CTR field and the value associated with the attribute in its CAR
field. Otherwise, the value of PROP is 0. The effect of PROP is illus~

trated by the following procedure declaration:

SYMBOL PROCEDURE PROP(S, A); VALUE S, A; SYMBOL S, A;
IF ATSYM S THEN
IF NULL(S :=CDR S) THEN PROP :=0 ELSE
FOR S ON S DO

IF CTR S EQ A THEN RETURN S

6-40

(Note that this declaration makes use of the RETURN statement described
in Subsection 2.5. Referring to the example given in paragraph 6.18.2
above,
CAR (PROP ("TWO', "TYPE")) = NUM
CAR(PROP (""TWO" ,""VAL")) = 2

PROP("TWO", |I*H) — 0

A list associated with a given attribute could be extended by a statement

like that given below.

IF NULL(S := PROP(R,"*")) THEN ADDPROP(R, "*", L)

ELSE CAR S := APPEND (L, CAR S)

6.18.4 REMPROP
REMPROP is a statement which is used to remove an attribute-value

pair from the property list of an atomic symbol. It is used in the form

REMPROP (sym, attribute)

where sym and attribute represent symbol expressions. The effect of REMPROP

is illustrated by the following procedure declaration:

PROCEDURE REMPROP(S,A); VALUE S, A; SYMBOL S, A;
IF ATSYM S THEN
BEGIN SYMBOL R;
WHILE NOT (NULL(R :=CDR S) OR
(CTR R)EQ A) DO S :=R;
CDR S :=CDR R

END

6-41

6.18.5 The Numeric Property Record

The property list of an atomic symbol may also contain a 'numeric'
property record which contains a CDR field but neither the CIR nor CAR
fields. Instead of containing LISP reference values, the CTR and CAR
fields are combined into a single field which can contain an unsigned
integer. The length of this field is 29 bits (its value may lie between
0 and (229-1), inclusive). The numeric property record is added to and

removed from property lists of atomic symbols by the statements

ADDPROP(sym, *, aexp)

REMPROP (sym, *)

where sym represents a symbol expression and aexp represents an arithmetic
expression. The value of sym should be an atomic symbol and the value of
aexp should be an unsigned integer. A number placed on a property list in
this manner may be accessed by the arithmetic standard function NPROP used
in the form

NPROP (sym)

where sym has the same meaning as above. NPROP may be used in any arith-
metic expression. For example, after the execution of

ADDPROP (""'VAL" ,*,215)
then
NPROP ("'VAL") = 215

6.18.6 Reference Property Records

References to records other than LISP records may be placed on
property lists of atomic symbols in LISP records called '"reference property
records.'" Like the numeric property records described above, these records
have neither CAR nor CTIR fields. These records and the property list

operations associated with them are described in Section 7.

6-42

6.19 THE SYMBOL DEFINE DECLARATION

6.19.1 The Standard Declaration

A SYMBOL DEFINE declaration is used to define an identifier which
represents an S-expression. It has the same form as an ordinary DEFINE
declaration of B 5500 Extended ALGOL except that the definition must be

a quoted S-expression without a # at the end. For example,

SYMBOL DEFINE DF = "(A B C)"

In this case, every occurrence of DF in symbol expressions, including

quoted S-expressions, is replaced by (A B C). Thus, with the declara-

tions,

SYMBOL DEFINE Al

"(A B C)",

A2

1]

n (D E F)",
A3 = "(G H I)",

Bl = "(Al1 A2 A3)"

every occurrence of Bl is replaced with the list

(ABC) DEF) (GH I))

Each occurrence of the SYMBOL DEFINE identifier is replaced with the same
set of records representing the quoted S-expression. If an ordinary

DEFINE declaration were used; e.g.,

DEFINE D = "(A B C)"#

it would be replaced by a different set of records representing the same
S-expression(except in the case of atomic symbols, which are unique). 1In
addition, an ordinary defined identifier would not be replaced by its
definition in a quoted S-expression. Also, a SYMBOL defined identifier may

not be used in its own definition.

6-43

6.19.2 CDR Field Initialization

If the quoted S-expression appearing in a SYMBOL DEFINE declaration
is a quoted atomic symbol, then the CDR field of the atomic symbol can be
initialized at the time the declaration is made by the inclusion of a
"field initialization part' in the SYMBOL DEFINE declaration. There are
four forms of the "field initialization part," each of which must
immediately follow the quoted atomic symbol.

The first form of the field initialization part consists of a colon
followed by any quoted S-expression. The CDR field of the quoted atomic
symbol will reference the records representing the quoted S-expression.

For example, with

SYMBOL DEFINE DF = "ABC" : "(A B GC)"

the following relations will be true:

DF - ”ABC"
CDR(DF) = "(A B C)"

CDR("ABC") - II(A B C)H

The second form of the field initialization part is a colon followed
by an unsigned integer enclosed in brackets. The CDR field of the quoted
atomic symbol will reference a numeric property record representing the

unsigned integer (see paragraph 6.18.5). TFor example, with the declaration

SYMBOL DEFINE Al = "VAL" : [251]

the following relation will be true:

NPROP(Al) = 251

6-44

The third form of the field initialization part is a colon followed
by a parenthesized list of attribute-value pairs and/or bracketed
unsigned integers. Two or more list items are separated by commas, and
each attribute-value pair consists of an atomic symbol followed by a
colon followed by an S-expression. The CDR field of the atomic symbol is
initialized to a property list (see paragraph 6.18.1) consisting of

attribute-value pairs and/or numeric property records. For example,

SYMBOL DEFINE TW = "TWO" : (TYPE:NUM, VAL:2)

has the same effect as the two examples of ADDPROP statements given in

paragraph 6.18.2. Also, with the declaration

SYMBOL DEFINE DV = "/'" : (TYPE:0P, [125])

the following relations will be true:

CAR (PROP (DV,"TYPE")) = "OP"

NPROP(DV) = 125

The fourth form of the field initialization part consists of a colon
followed by an unsigned integer. The CDR field of the atomic symbol will
be initialized to the integer itself and not to a reference to a LISP
record. The value of the integer must be less than 32768 and must not
exceed 63 when automatic storage reclamation is used (see Subsection 6.20).
The CDR field of the quoted symbol appearing in this type of SYMBOL DEFINE
declaration must never be referenced in a symbol expression.

The CDR field of such an atomic symbol may be used in an arithmetic

expression when the CTSM transfer function is used (see paragraph 6.15.1).

6-45

For example, with the declaration

SYMBOL DEFINE D523 = "START" : 523

the following relation will be true:

CTSM(D523).[33:15] = 523

6.19.3 The Asterisk Form

When a SYMBOL DEFINE declaration is used for the sole purpose of
initializing the CDR field of an atomic symbol, the following form of
the definition part may be used: the defined identifier and the = may be

replaced with an asterisk. For example,

SYMBOL DEFINE * "THE" : "ARTICLE"

will initialize the CDR field of the atomic symbol THE to the atomic
symbol ARTICLE. With this form of SYMBOL DEFINE declaration, the fourth
form of the CDR field initialization part (as described above) is parti-

cularly useful for associating numbers with classes of key words; for

example,
SYMBOL DEFINE * "SIN" : 1,
* "Cos" : 2,
* "EXP" : 3,
* "LN" : 4

might be used in conjunction with the CASE statement:

6-46

CASE CTSM(S :=READ1).[33:15] OF
BEGIN
PRINT #UNDEFINED OPERATION#;
PRINT X:=SIN(X);
PRINT X:=COS (X);
PRINT X:=EXP(X);
PRINT X:=LN(X);

END

6.20 STORAGE RECLAMATION

6.20.1 Automatic Versus Programmed Storage Reclamation

In GTL, the user is given a choice between automatic and programmed
storage reclamation. When a relatively large amount of storage is used
and when keeping track of discarded list structure is difficult or
impossible, automatic storage reclamation should be used. On the other
hand, if it is relatively easy for the programmer to keep track of the
list structure which is to be discarded, then it would be more efficient
to use the RECLAIM statement described below. Also, if the amount of
storage used is relatively small, or if the amount of list structure in
use does not decrease, then the user may elect to use no storage reclama-
tion at all. 1In GTL, storage is allocated for LISP programs in 512 word
blocks. Each time four of the blocks have been used (2048 words), the
GTL system will check the available storage list, called the freelist,
to see if any words have been reclaimed. No new blocks of storage will be
allocated as long as there are a sufficient number of words remaining on
the freelist. Words are linked into the freelist either automatically, by
the automatic storage reclamation system, or programmatically by the

RECLAIM function.

6-47

6.20.2 Automatic Storage Reclamation

When automatic storage reclamation is desired in a LISP program, the

words SYMBOL RECLAIM, followed by a semicolon, must appear directly after

the first BEGIN in the program; i.e.,

BEGIN SYMBOL RECLAIM;

This pseudo-declaration tells the compiler that the automatic storage
reclamation is to be used. The internal function used to perform the
storage reclamation is usually called the garbage collector. The gar-
bage collector goes to work when a block of allocated storage is

exhausted and the freelist is empty (see paragraph 6.20.1). The garbage
collector can also be forced into action by the RECLAIM function described
below. The GTIL garbage collector uses an algorithm used by most other
LISP systems: a marking phase followed by a collection phase. In the
marking phase, every LISP record which can be accessed by a SYMBOL
variable or through the CDR field of an atomic symbol on the object list
is marked. 1In other words, all list structure in use by the program at
the time the garbage collector is called is marked. In the collection
phase, a linear scan of the blocks of storage allocated at that point is
made, unmarking the LISP records which are marked, and reclaiming the
initially unmarked records. The operation of the garbage collector can be
monitored through various GTL system control parameters which are made
available to users (see Appendix C). There are two restrictions which must
be observed when automatic reclamation is used. Non-local jumps—i.e.,
jumps to labels outside a procedure or block—are not permitted, and the
values of SYMBOL variables and procedures and the contents of all CAR and

CDR fields must be legitimate LISP reference values (see paragraphs 6.19.3

and 6.15.3).

6-48

6.20.3 Programmed Storage Reclamation

When automatic storage reclamation is not used, LISP records to be

discarded may be linked into the freelist RECLAIM statement of the form

RECLAIM(se)

where se represents a symbol expression the value of which should be a
reference to the LISP record which is to be reclaimed. The RECLAIM func-
tion will reclaim single LISP records only. A collection of procedures
for reclaiming lists and atomic symbols is given in Subsection 6.24. If
automatic storage reclamation is used, the statement RECLAIM may be used

to force the garbage collector to go into action. (Also see paragraph 7.4.4.)

6.21 AUTOMATIC STORAGE AND RETRIEVAL OF LISP LIST STRUCTURE

6.21.1 The LISP '"Memory"

The GTL LISP system provides a mechanism by which all of the atomic
symbols on the object list, and all of the list structure referenced by
the CDR fields of these atomic symbols, can be dumped at some point in a
program, and later loaded at another point in the same or another program.
This is done by actually saving and retrieving the internal representation
of the LISP records, rather than by attempting to read and write the sym-~
bolic representations of these records. If a program's "experiences' are
encoded, for example, in property lists of atomic symbols, then these
"experiences" could be saved and later recalled by the same program or by a
different program, giving the program a 'memory". The file upon which the
LISP records are stored must be specified by the user, and must have the
following specifications: the file must be declared in the outermost block
of the program, each logical record in the file must be at least 512 words

long, and the file should be large enough to contain 80 logical records.

6-49

For example,

FILE REMEM DISK SERIAL [20:4] (1,540,SAVE 10); COMMENT DISK;
or

FILE REMEM 2 (1,512,SAVE 10); COMMENT TAPE;

Two functions which operate on the file, RECALL and REMEMBER, are described

below.

6.21.2 The REMEMBER Statement

The REMEMBER statement is used to store the contents of LISP records.

It is used in the form

REMEMBER (fileid)

where fileid is the name of the file described in paragraph 6.21.1 above.
To save the pointers of various SYMBOL variables and SYMBOL arrays, as well
as the LISP memory, the following extension of the REMEMBER statement may

be used:

REMEMBER (fileid,*,list)

where list is any explicit list of SYMBOL variables and SYMBOL arrays. The
syntax of this list is identical to an explicit ALGOL LIST used in an ALGOL

WRITE statement. For example,
REMEMBER (fileid,*,L,L1,L2,FOR I:=1 STEP 1 UNTIL N DO S[I])

In fact, the REMEMBER statement may be considered identical to an ALGOL
WRITE statement with an explicit LIST, with the additional attribute of

writing out the LISP memory. The REMEMBER statement does not REWIND or

6-50

LOCK the file. Thus multiple REMEMBERs may be made to the same file, If
the SYMBOL RECLAIM option is being used (see Subsection 6.20), then the
garbage collector is called before the REMEMBER statement is executed.

The garbage collector collects all LISP records which are not on or
referenced through the object list, and places these records on the free
list, Therefore, in this case no LISP records may be referenced after the

REMEMBER statement is used.

6.21.3 The RECALL Statement

The RECALL statement will recall a LISP memory which was generated by
a program in which a REMEMBER statement was executed. It is used in the

form

RECALL(fileid)
where fileid is the name of the file described in paragraph 6.21.1 above.
To retain the pointers saved during a REMEMBER statement (see paragraph

6.21.2) as well as the LISP memory, the following extension of the RECALL

statement may be used:

RECALL(fileid,*,list)

where list is any explicit list of SYMBOL variables and SYMBOL arrays.
The syntax of this list is identical to an explicit ALGOL LIST used in an

ALGOL READ statement. For example,
RECALL (fileid,*,FOR I:=1 STEP 1 UNTIL 3 DO S[I],L)

The RECALL may be considered analogous to an ALGOL READ statement with an
explicit list, with the additional attribute of reading in the LISP memory

from the file specified. The RECALL statement does not REWIND the file.

6-51

Thus multiple RECALLs may be made from the same file. Since a RECALL
statement initializes the LISP symbol table and all LISP records refer-
enced through the CDR fields of atomic symbols in the symbol table, all
references created by the compiler into the LISP memory may be invalid
after executing a RECALL statement. To avoid this problem, every quoted
S-expression appearing in the program must be a single character atom (a
single character atomic symbol or a digit). If the SYMBOL RECLAIM option
is used, then no operation which causes a LISP record to be generated may
be performed before the execution of the RECALL statement. These opera-
tions include the creation of lists, dotted pairs, atomic numbers (other
than single digits) and multi-character atomic symbols. Also every quoted
S-expression appearing in the program must be a single character atom (a

single-character atomic symbol, or a digit).

6.22 THE INTERNAL REPRESENTATION OF LISP RECORDS

6.22.1 LISP Reference Values

All LISP reference values in GTL are actually pointers or (relative)
addresses of words in core memory. A maximum of 32768 words are available,
addressed from O to 32767. These words are, in effect, elements of an

array like that specified by the following declaration
ARRAY LINK[0:63,0:512]

If R represents a LISP reference value, then the contents of the word

referenced by R would be
LINK[R.[33:6],R.[39:9]]

A field which is common to all types of LISP records is the ID field.

6-52

The ID field is a 2 bit field, the value of which indicates the type of
LISP record. 1ID is not a GTL field name, but the contents of the ID field
can be referenced indirectly (see paragraph 6.15.1). The locations of the
ID, CTR, CAR, and CDR fields are specified by the following partial word

field descriptions:

field name partial word field description
1D [1:2]
CTR [3:15]
CAR [18:15]
CDR [33:15]

A description of the contents of these and other fields in LISP records

is given below.

6.22.2 Atomic Symbols

A LISP record is identified as an atomic symbol by an ID field value
of 2, The CTIR field is used to link together atomic symbols which are on
the object list (see Subsection 6.,13), and should never be changed by the
programmer. The CAR field of a single character will contain a 1, if a
letter, or a 2 otherwise., The CAR field of a multi-character atomic symbol
contains a pointer to a set of linked words containing the string of charac-
ters which the atomic symbol represents. A word representing a single
character atomic symbol does not contain a reference to its symbolic
representation; the address of the word will always be equal to the numeric
value of the character. The CAR field of an atomic symbol should not be

referenced.

6-53

6.22.3 Atomic Number

A LISP record is identified as an atomic number by an ID field
value of 3. A number which is a single digit is uniquely represented by
one word; the address of the word is the value of the digit. All other

numbers are represented by two words.

6.22.4 Dotted Pairs

A LISP record which represents a dotted pair is identified by an ID
field value of 0. All three of the fields, CTR, CAR, and CDR, may be
referenced and changed by the programmer. Also, all three fields are con-

sidered to be valid LISP reference fields by the garbage collector.

6.22.5 Other Types of Records

Numeric property records and reference property records are identified
by an ID field value of 1. Only the CDR field of these words is considered

to be a valid LISP reference field.

6.23 LISP SYSTEM CONTROL PARAMETERS
The values of various control parameters used by the GIL system may be

accessed by a standard function called CONVAL. The CONVAL function is used

in the form

CONVAL (n)

where n represents an unsigned integer whose value designates the desired
control parameter. Some of the values of n which may be used and the
corresponding values of CONVAL(n) are listed in the table given below.

(See also APPENDIX C.)

6-54

I3

10

29

30

31

36

37

value of CONVAL(n)

a newly-generated random number between O and 1
(used by the LISP RANDOM function)

value of current random number produced by
CONVAL (0)

total number of words collected by
garbage collector

number of times garbage collector
is called

time (in seconds) required by last call
on garbage collector

arithmetic value of the address of the
first word in the freelist (0 if empty)

first subscript of array described in
paragraph 6.22.1

second subscript of the array described
in paragraph 6.22.1

normally O; will be set to 1 after REMEMBER
is executed, meaning that no LISP operation
may be performed that causes a new LISP
record to be generated when using automatic
garbage collection

initially 0; will be set to 1 after the

first LISP record is created by the program;
when set to 1, the RECALL statement cannot

be used when using automatic garbage collection

number of atomic symbols created by GENSYM
current index of table of LISP reference
values maintained by the garbage collector;
it is initially 125

two less than the number of initial blocks of

storage allocated before the garbage collector
is called (see paragraph 6.20.1)

6-55

Three expressions involving CONVAL which might be useful to the GTL

programmer are listed below.

expression meaning

CONVAL (9) ® 512 + CONVAL(10) number of words in use by

the GIL system

LENGTH (ATSM (CONVAL(8))) length of freelist
ENTIER(CONVAL(0) ® N) random integer between
0 and N-1

The value of the first expression minus the second is the number of words

in use by the program.

6.24 PROGRAMMED STORAGE RECLAMATION

The following set of procedures may be used to reclaim storage when

the automatic storage system is not used.

PROCEDURE RECLAIMLIST(L); VALUE L; SYMBOL L;
BEGIN SYMBOL S;
IF NOT ATOM(L) THEN
DO BEGIN S :=CDR L;
RECLAIM(L)
END UNTIL ATOM(L :=8)

END OF RECLAIMLIST

PROCEDURE RECLAIMATOM(L); VALUE L; SYMBOL L;
BEGIN REAL R, N;
IF SMTA(S) > 63 THEN

IF R :=CTSM(L) < O THEN COMMENT

6=-56

ATOM;

IF R.[1:2] = 3 THEN BEGIN COMMENT NUMBER;
RECLAIM(L) ;
RECLAIM(ATSM(R))
END ELSE
BEGIN COMMENT ATOMIC SYMBOL;
IF R.[3:15] # O THEN REMOB (L)
RECLATM(L) ;
N := (R :=CTSM(L :=ATSM(R.[18:15]))).[1:5];
WHILE N > 7 DO BEGIN
RECLAIM(L) ;
N:=N - 4;
R := CTSM(L := ATSM(R));
END;
RECLAIM(L)
END

END OF RECLAIMATOM

PROCEDURE RECLAIMALL(S); VALUE S; SYMBOL S;
BEGIN LABEL START; REAL R;
START: IF R :=CTSM(S) < O THEN RECLAIMATOM(S) ELSE
BEGIN RECLAIM(S)
IF R.[1:2] = O THEN BEGIN COMMENT DOTTED PAIR;
RECLAIMALL (ATSM(R.[3:15]));
RECLAIMALL (ATSM(R.[18:15]))
END;
S := ATSM(R);
GO TO START
END
END OF RECLAIMALL

6-57

The procedure RECLAIMLIST will reclaim a dotted pair on the top level
of a list; i.e., the records referenced by the CAR and CTR fields of the
top level records will not be reclaimed.

The procedure RECLAIMATOM will reclaim atomic symbols and atomic
numbers. If an atomic symbol to be reclaimed by RECLAIMATOM is on the
object list, it will first be removed from the object 1list.

The procedure RECLAIMALL, which uses RECLAIMATOM, will reclaim atoms,
lists and dotted pairs. If RECLAIMALL is applied to a list or dotted
pair, it will reclaim everything in the list or dotted pair. If the
user wants to reclaim everything except atomic symbols, then RECLAIMATOM(S)

may be replaced by
BEGIN IF R.[1:2] = 3 THEN RECLAIMATOM(S) END

in the procedure RECLAIMALL.
Under no circumstances should RECLAIMLIST and RECLAIMALL be applied

to circular lists. This would generate an infinite loop in the program.

6.25 LISP EXAMPLE PROGRAM

The following example LISP program is not intended to represent a
practical program, but merely serves to illustrate some of the GTL LISP 2
constructs. The GTL Input-Output system, which is described in 6.10 and

in Section IX, is also included in the example.

6-58

BEGIN CUMMENT THE SYMHBOL PRUCEDURE L(CSs» UEFINEC HELCw, FANCS IrRE
LUNGEST CUMMCN SEGMENT QOF ThRE TwC LISTS L1 ANy Le<;
FiLe IN INFILE (2510)3
File LuT PRINTEK 16(2s15)»
STKING LINEC120), CARD(eU);
BUOCLEAN PROCECUKRE INPRCS
dEGIN
LABEL ECFsex1T3
KEADCINFILE»1C»CARKDU)LEQOF)
WhITECPRINTER,10,(CARC)S
o0 TO EXI13
EuF INPKRO $t= TRUES
EXITs END OF INPRUS
SYMBOL L1sL23
LABEL START;S
COMMENT
COMSEGL FINUS THE LENGTH UF THE LUNGEST INITIAL CUMMCN SEGMEN]
OF TWO LISTS» X AnND Y3
INTEGER PRCCECUKRE CCMSEGL(Xs»Y)3
VALUE X»Y)
SYMBOL Xx»2Y3
COMSEGL #= lF NULLC(X) OR NULL(Y) UR CAR(X) NEG CARCY) ThHtn O
ELSE COMSEGLCCOR(XJ)s»CORC(Y)) + 1
COMMENT
CUMSEG FINDS THE LUNGEST INLITIAL CUMMCN SEGMENT Cf Twu LISIS
X AND Y3
SyMpUL PRUCEDURE CUMSEG(X,Y)3
VALUE X»Y3;
SYMBOL X»Y3
CUMSEG 8= IF MNULL(X) UR NULLCY) Or CARCX) NEQ CAR(Y) TrEN V
ELSE CONSCCAR(X)»COMSEGCCERC(X)»CLR(Xx)))J
SYMuOL PRUCEDURE LCS(L1,L2);
VALUE L1,L25
SYMBOL LlsLes
SEGIN
LABEL Aj
REAL KsNsoLXsLY3
SYMBOL X»Y,BESTS
Lx 1= LENGTH(LL1)3
FCR X ON L1 WRILE Lx GTR K uO
BEGIN
LY 8= LENGTH(LZ2)3
FOR Y ON L2 WHILE LY GTR K UC
BEGIN
N 8= CUMSEGL(X,Y)}
IF N LEQ@ K THEN GG TC A3
BEST ¢= COMSEG(XsY)3 K 8= N
Al LY ¢= Ly = 13
ENDJ
ENDS

6-59

LCS 8= BESTS

END OF LCSS

CUMMENT

START OF tXtCULTABLE COUDES

UUTPUTC(PRINIERsLINE,120)3

INPUTCINPROPCARL»0U);

PRINT gTHE FOLLCwING IS A TEST GF TR LCS FUNCTICHN#;
SIARTSIF L1s=sREAL E@ GMARK UR L1 EQ n"STUP" THEN ExITS

LZ $= READ/

PRINT LCSCL1sL2)3

GU TO STAKT,

END,
THE CARp InNPUTl 10 THE PROGRAM [S AS FCLLCwS:
(A b CH CpD EYS
(B (U A B CUE)E
STC¥F

THE UUTPUT AS LISTEU ON THE PRINTER IS

THE FulLLowING IS A TEST UF THE LCS FUNCITICN
(Ao L b CDEIE

(b ¢ UL ABCODIUE)

(8 ¢ U E)

STOP

6-60

VII. RECORD PROCESSING

7.1 INTRODUCTION

Among the facilities in GTL, there is a collection of interrelated
systems for creating and manipulating complex data structures. One of
these systems, the GTL version of LISP 2, is described in Section VI.
The purpose of this section is to describe the GTL record processing
system, which consists of two separate systems: a disk-storage-oriented
system and a core-storage-oriented system. The disk system is designed
for manipulating fixed length linked records on a random disk file.
The core system is an extension of the GTL LISP system for variable
length plex processing. (The term ''plex", first used by D. T. Ross,
refers to a node, or linked record, which contains a variety of data
types. In this section the term '"plex processing' will be used primarily
to refer to the core-storage record processing system (Subsection 7.4))
Both of these systems use constructs which are based on the record processing
system described in Wirth and Hoare's "A Contribution to the Development
of ALGOL".9

Familiarity with the GTL LISP system is required for understanding
the core-oriented plex processing system.

The remainder of this section is divided into three subsections:
a description of the constructs common to both record processing systems
(Subsection 7.2), and complete definitions of the disk and core systems

(Subsections 7.3 and 7.4).

7-1

7.2 BAS1C CONCEPTS OF GTL RECORD PROCESSING

7.2.1. Relerence iixpressions

A reference expression is simply an expression whosc value is a
reference to, or address of, o record (sce Scction 6.7, "Reference
ixpressions', p. 426, Refercnce 9). In GTL, refcrence expressions include
the following:

1) reference variable,

2) reference function designator,

3) reference-valued field designator,
4) reference assignment statement,

5) conditional reference expression,
6) record designator,

7) null reference, and

8) parenthesized reference expression

A reference variable is a reference-valued simple variable or
array element. In GTL, it is declared with a special class of declarators
called record class identifiers (p. 423, Reference 9). As the name
implies, a reference variable may only reference records contained in
the class of records associated with the record class identifier.
Reference variables are declared in the same form as variable declarations
of type REAL; for example,

rci A, B, C
rci ARRAY RCA[0:99]
where rci represents a record class identifier. Record class identifiers

are discussed further in Subsections 7.3 and 7.4.

7-2

Reference-valued procedures and formal paramenters (both name and

value) are declared in the same manner:
rci PROCEDURE P(X,Y); VALUE X; rci X,Y; ctc.

A refercence-valued field designator is a construct which refers
to the value of a particular field within a reccord. The type of field
is determined by the declarator used to declare the field. Field
designators are discussed in paragraphs 7.2.2 and 7.2.4, below.

A reference assignment statement has the same form and operational
meaning as an ordinary REAL-valued assignment statement. All of the
variables, function designators, and field designators appearing in a
reference-valued assignment statement must be of the same type; i.e.,
they must have been declared with the same record class identifier.

Conditional reference expressions have the same form and operational
meaning as other types of conditional expressions:

IF bexp THEN rexpl ELSE rexp2

Where bexp represents a Boolean expression, and rexpl and rexp2 represent

reference expressions. If the value of the Boolean expression is TRUE,
then the value of the conditional expression is the wvalue of rexpl;
otherwise, its value is the value or rexp2. Of course, rexpl and
rexp2 must have the same reference type; i.e., they must both be associated
with the same record class.

Record designator is the name given to the construct which is used
to generate new records in a given record class. This construct is

described in Subsection 7.3 and 7.4.

7-3

The null reference is represented by the word NIL, and is used to
indicate the absence of a refcrence to a record. It may be used, for
example, to indicate the end of a list of linked records. (Internally,
the value of NIL is zero - the zeroth record is never accessed.) NIL
is the only reference expression which is associated with all record
classes.

7.2.2. TField Designators

As mentioned above, the field designator is a construct used to
access the value of a field within a record. It has the form

fieldid (rexp)

where fieldid represents a field identifier and rexp represents a
reference expression. The type of the field and its relative location
within the record referenced by rexp is determined by a field declaration,
which is described below. The programmer should be careful to ensure
that the value of the reference expression is never the null reference.
A field designator of any type may take the place of a variable of

the same type in the left-part list of an assignment statement. For
example,

AGE (JACK) :=28
where AGE is a REAL-type field identifier and JACK is a reference
variable. 1In addition, a string field designator may take the place
of a string variable in a string designator; for example,

STRING CARD (80);

STRING FIELD CARDF [0:80];

rei X

.
.
.

CARDF (X) (0,72) :=CARD(0,72) ;
CARD (72,8) :=CARDF (X) (72,8)

7-4

where rei represents o record class identificr.

.2.3. The Reference Assignment Statemen
7.2.3. 71 Rel A t Stat t

The relerence assignment statement (when uscd as a statement) has
the same form and is subject to the same restrictions as the reference-
vialued assignment statement described in paragraph 7.2.1. For example,

X:-NEXT (X);
NEXT (X) :- NIL
where X is a reference variable and NEXT is a field identifier, both
of the same type(i.e., both declared by the same record class identifier).

7.2.4, The Field Declaration

The field declaration is used to declare the type of a field
identifier and its relative location within a record. It has the
following forms

type FIELD fieldid (loc) [skip:length]

type FIELD fieldid (loc)

where type represents a declarator indicating the type of field, fieldid

represents the field identifier being declared, and loc, skip and length

represent unsigned integers. The relative position of the field within
a record is given by loc, which may range in value from 0 to 127. A
loc of O refers to the first word, 1 to the second word, etc. For a
non-STRING field, skip is the number of bits to be skipped from the
beginning of the word and length is the length of the field in bits, so
that this part of the field declaration has the same meaning as the
field description of the partial word designator of Extended ALGOL
(paragraph 3-10, Reference 4). If the field identifier is to refer

to the entire word, the partial word part of the declaration must be

omitted, as a partial word part of [0:48] is not permitted. In the

7-5

case of a STRING ficld, skip is the number of characters to be skipped
from the beginning of the word (from O to 7), and length is the length
of the field in characters; skip and length must be included in all
STRING field declarations.
The permitted ficld types are REAL, INTEGER, ALPHA, BOOLEAN, STRING
and the record class identifiers (which includes SYMBOL).
Examples:
REAL FIELD AGE (0) [41:7]
SYMBOL FIELD SYMF (3)
STRING FIELD NAME (4) [0:32]
rci FIELD NEXT (2) [33:15]
where rci represents a record class identifier, a reference-type field.
SYMBOL and other reference-type fields must be at least 15 bits long.
The GTL compiler makes no distinction between REAL and INTEGER FIELDs;
a full word INTEGER field may be assigned a REAL value.
Several simplifications of the field declaration are permitted:
a loc part of O may be omitted; if the type part is omitted, a REAL
‘field is implied; and a collection of field declarations of the same

type may be combined into one declaration. For example,

Sample Equivalent

STRING FIELD SF [0:64] STRING FIELD SF (0) [0:64

FIELD RF REAL FIELD RF (0)

SYMBOL FIELD CARF[18:15], SYMBOL FIELD CARF (0)[18:15]
CDRF[33:15] SYMBOL FIELD CDRF (0)[33:15]

7.2.5. Indexed Ficlds

Another form of field designator is the indexed field designator,
with the form

fieldid| index] (rexp)

where rexp and fieldid represent a record expression and field identifier,

respectively, and index represents an arithmetic expression, the value of
which designates the relative location of the field in the record
referenced by rexp. The value of index must be within the bounds
specified in the indexed field declaration, which has the two forms

type FIELD fieldid (n, m) [skip:length]

type FIELD fieldid (n, m)
where type, skip and length have the same meanings as above (except an
indexed STRING field is not allowed). The constants n and m specify
the first and last words in the record which may be referenced by the
indexed field designator. For example,

REAL FIELD RFX (0,9)
may be used to reference the first 10 words of a record. For example,
the sum of the first 10 words of the record referenced by the reference
variable X may be computed as follows:

FOR I:=0 STEP 1 UNTIL 9 DO SUM:=RFX[I](X) + SUM
7.3. THE DISK SYSTEM

7.3.1. The Record Class Declaration

A GTL program may contain up to 31 record class identifiers
associated with linked-record random disk files. A record class
identifier is declared by a record class declaration (Section 5.4,
"Record Class Declarations', p. 423, Reference 9); it has the form

RECORD rci fileid (fieldlist)

7-7

where rei represents the record class identifier, fileid is the namc
of the random disk file which is to contain records of the rci class,
and fieldlist is a list of one or more ficld identifiers. The size of
a logical record of the file fileid must be large enough to accommodate
all of the fields in the fieldlist. The field identifiers in the
fieldlist may be declared either before or after the record class
declaration, except for the rci-type fields which must be declared
afterwards. The compiler allows the specification of overlapping
fields in the record class declaration. In general, if the first
character of a word is part of a STRING field, then that word should
not also contain a non-STRING field; to do otherwise may result in a
FLAG BIT error termination.
Two or more rci's may be associated with a given disk file, and

a given field may be contained in two or more record classes; for
example,

RECORD DEALER RANFILE (NAME, ORDER, NEXT);

RECORD STOCK RANFILE (STOCKNO, PRICE, QUANTITY, DATE, NEXT,

beT) ;

STRING FIELD NAME (1) [0:327;

STOCK FIELD ORDER (5), NXT (5);

DEALER FIELD NEXT;

REAL FIELD STOCKNO (1),

PRICE (2),
QUANTITY (3),

DATE (4)

The following is an example of the constructs described in Subsection 7.2
using the declarations given above, and

DEALER DLR;

STOCK STK;

REAT, SUM

.
.
.

WHILE DLR # NIL DO
BEGIN

STK:-:ORDER (DLR) ;

WHILE STK # NIL DO
BEGIN
SUM:=PRICE(STK) ® QUANTITY (STK) + SUM;
STK :=NXT (STK)
END;
PRINT NAME(DLR) SKIP(40) SUM;
DLR :=NEXT (DLR)
END
The file fileid in a record class declaration must be declared by a
special random disk file declaration, which is described below.

7.3.2., The RECORD File Declaration

The RECORD file declaration has the same general form as ordinary
random disk file declarations (paragraph 9-39, Reference 4), with the

following exceptions:

1) "FILE" is replaced by "RECORD FILE",
2) the disk access technique ("RANDOM") is replaced
by the disk type ("LOCAL", '"NEW", or "OLD"),
optionally followed by a constant, adr, and
3) the logical record size must be a constant.
A disk type of LOCAL means that the file is (a non-SAVE file) to be
created by the program in which it appears and will not exist after the
execution of the program; a non-LOCAL disk type indicates a new file to
be created (NEW), or a previously created file (OLD). The optional
constant, adr, indicates the (relative) address of the first record to
be created by the record processing system (for a LOCAL or NEW file);
if it does not appear, the starting address will be one. This allows
the programmer to use the disk records with smaller addresses for other
purposes (such as storing the heads of lists of linked records in non-
LOCAL files).
Examples:
RECORD FILE DISC DISK LOCAL [20:300] (1,10,30)
SAVE RECORD FILE NEWF DISK NEW 2 [5:3007 (1,15,30,SAVE 30)
RECORD FILE RANFILE DISK OLD ''DEALERS'" (1,10,30)

7.3.3. The Record Designator

The record designator is the constuct used to generate records.
It has the two forms

rci(expression list)

rci

were rci is a record class identifier, and expression list is a list

of expressions corresponding in type and position to the fields given

in the record class declaration (p.426, Reference 9). If the field

7-10

is an indexed field, the corresponding expression should be a list of
expressions (corresponding in type to the type of field) enclosed in
brackets. 1f any of the fields in the record are not to be assigned

a value in the record designator, an asterisk may replace the corresponding

expression., If the rci is given without the expression list, a record

is generated with all of its words set to zero. This means that a REAL
field is set to zero, a BOOLEAN field is set to FALSE, a STRING field
is set to all zero characters and reference fields are set to the null
reference, NIL.

RECORD PARTNO DF (STF,TYPE,NBR);

STOCK FIELD STF;

REAL FIELD TYPE (1,9)[18:15],NBR(1,9)[33:15];

PARTNO X

.
.
.

X :=PARTNO (*,%,[23,24,25 % ,% % 56,57,581);
DLR :=DEALER (CARD (10,32) ,* ,DLR);
ORDER (DLR:=DEALER) := STK := STOCK

7.3.4. Record Relational Expressions

In order to compare two addresses of records of the same type,
the following relation expression may be used in any Boolean expression:

recvar relop rexp

where recvar is a reference variable, relop is one of the relational
operators or their mnemonics, and rexp is a reference expression.

For example, given the record class identifier DEALER,

7-11

DEALER DLR,X

DLR = X
DLR # NIL
DLR = NIL OR X = NIL

are Boolean expressions.

7.3.5. Transfer Functions

On occasion, it is ponvenient to be able to treat a reference value

as a number, and vice versa. This can be accomplished with the two
type transfer functions:

REAL (recvar)

zrei (aexp)
The first transforms the value of the reference variable recvar into
an arithmetic primary; the second transforms the value of the arithmetic
expression aexp into a reference value associated with the record class
of the record class identifier rci. These transfer functions should be
used with caution since they allow errors which would otherwise be
prevented by syntactic restrictions.

7.3.6. Storage Reclamation

Disk records may be reclaimed by the RECLAIM statement:
RECLAIM (recvar)
where recvar is a reference variable. It is the programmer's responsi-
bility to ensure that the value of reference variable is not the null
reference and that the record to be reclaimed does not remain a member
of some active list, or is, in any other way, referenced at some later

time., Whenever a record is reclaimed, it is placed on a list of records

7-12

called the freelist. When a new rccord is to be generated and the free-
list is not empty, that record is obtained from the freelist. A
scparate frecelist is maintained for ceach RECORD file in the program;

two or more record classes associated with a given RECORD file use

this freclist in common.

7.3.7. Saving and Restoring Heads of Master Lists in Non-LOCAL Files

The heads of master lists of linked records contained in a non-
LOCAL RECORD file must be saved at the end of a program, and must be
restored at the beginning of the program if the RECORD file is of
type OLD. In addition, two other parameters associated with the RECORD
file must be saved and restored; these are the head of the freelist
(see above) and the location of the next available record. The values
of these parameters are accessed by the constructs

FREELIST (fileid)

NEXTAVL (fileid)
where fileid is the name of the RECORD file. These two constructs
may be used in the left-part list of assignment statements and in
arithmetic expressions as if they were REAL variables.

Normally, the heads of master lists, and the freelist and next
available record, are written onto, and read from, the first record
in the file (with disk address zero). This can be done without inter-
ference to the remainder of the system, since the record with disk
address 0 corresponds to the null reference, which is never accessed.
Simple reference variables, and the FREELIST and NEXTAVL constructs,
may be included in the lists of READ and WRITE statements as if they
were ordinary simple variables. For example, referring to the de-

clarations given in paragraphs 7.3.1 and 7.3.2

7-13

DEALER DH; STOCK SH;

LIST SAVELIST (NEXTAVL(RANFILE),FREELIST (RANFILE),DH,SH)

READ (RANFILE[O],* SAVELIST)

WRITE (RANFILE[O],*,SAVELIST)
The internal value of NEXTAVL(fileid) is actually the disk address

of the next available record minus one. The programmer should keep
this in mind if he attempts to use the NEXTAVL construct for any purpose
other than saving and restoring this parameter on a non-LOCAL file (e.g.,
the file might be used as a stack instead of using the RECLAIM statement).
Notice also that it allows the programmer to use a simple method of com-
bining the file creation program and the file manipulation program into
one program. For example, referring to the example given above, if
RANFILE[O] is initially cleared to zero, then, the first time the program
is executed, the parameters in the list SAVELIST will be set to zero;
i.e., the heads of the master lists DH and SH, and the freelist, will
be set to the null reference, and the first record generated by the
program will have a disk address of one. The file itself could be
created by the following program:

BEGIN

FILE RANFILE DISK RANDOM [20:300] "DEALERS" (1,10,30, SAVE 90);

WRITE (RANFILE[O]);

LOCK(RANFILE);

END.
A RECORD disk file created by one program may be updated in both form and

content by associating additional record class identifiers with the file.

7-14

7.3.8. Printing Reference Values

11 a reference-valued variable or ficld designator appcars in a
PRIN or PRINT statement, then the associated record class identificr
followed by the actual value of the disk address will be printed
(sce paragraph 9.2.12. of Scction IX).
7.4. THE CORE STORAGE PLEX PROCESSING SYSTEM

7.4.1. The Record Class Identifier

Since the core system is an extension of the GTL version of LISP,
the record class identifier in this case will be the LISP 2 declarator
SYMBOL. SYMBOL reference expressions are the SYMBOL expressions de-
fined in Section VI.

7.4.2. Field Designators

The LISP system contains the predefined field identifiers CAR,
CDR, and CTR, and their composite forms (e.g., CADR). In addition,
programmer defined fields may be defined as described in Subsection 7.2.
In the latter case, the SYMBOL expression to which the field identifier
may be applied is restricted to the following: a SYMBOL variable, a
SYMBOL standard function (e.g., APPEND, NCONC, etc), the transfer function
ATSM, the SYMBOL assignment statement, and the SYMBOL-valued field
designator.

7.4.3. Record Designator

The LISP record designator is the function CONS, which is normally
used to generate the one word record containing the fields CAR and CDR.
Another form of the CONS function used with the plex processing system
is

CONS[field-expression pair list]

where field-expression pair list is a list of one or more field-expression

pairs having the form

7-15

ficldid : cxpression

where ficldid represents a ficld identifier, and expression represents
an cxpression whose type corresponds to the type of the fiecld identifier.
For example, given the declarations
SYMBOL X, Y
SYMBOL FIELD CARF [18:15],
CDRF [33:15]
the following two expressions are equivalent:

CONS[CARF: X, CDRF: Y|

CONS (X, Y)

Since CONS can create only one word at a time, a multi-word record is
created by successive CONSes (assuming that the freelist is empty so
that successive CONSes would produce consecutively-addressed one-word
records). In addition, certain restrictions must be placed on the field
in this form of record designator:

1) STRING fields must not be extended beyond a word
boundary; in no case may the length of a string
field be longer than 8 characters,

2) only the first field identifier in a series of
field expression pairs may refer to an entire
word,

3) indexed fields are not allowed, and

4) all of the fields in the field-expression list must
refer to the same relative word location (within a
multi-word record).

Any portion of the word which is not initialized by a field-expression

pair is set to zero. In addition to the two forms of the CONS record

7-16

designator described above, the word CONS, used by itself, will creatc
a one word record which is initialized to zero.

7.4.4. The SYMBOL PLEX Option

Since the user-defined field designator allows the specification
of the contents and meaning of arbitrary fields, the GTL automatic
storage reclamation system cannot be used. Another form of storage
reclamation available is the RECLAIM statement described in Scction 6.
This form of storage reclamation is generally to be avoided however,
since, as mentioned in paragraph 7.4.3. a non-empty freelist would
make the creation of records consisting of consecutive words difficult
or impossible.

Another option available for the plex processing system is the
SYMBOL PLEX option which is specified at the beginning of the outer-
most block of the program by the pseudo-declaration "SYMBOL PLEX;'":

BEGIN SYMBOL PLEX;
When this option is used, the value of the address of the next available
word (minus one) may be accessed by the construct

NEXTAVL (SYMBOL)
This construct may be used in the left-part list of an assignment
statement or in an arithmetic expression as if it were a REAL variable.
This feature allows the programmer to use the entire block of words
available for LISP records as a stack. (The variable NEXTINFO plays
a similar role with respect to the INFO array in the B 5500 ALGOL
compiler). The SYMBOL PLEX option was designed to be used with the
GTL translator writing system described in Section VIII. A sample

program using the SYMBOL PLEX option is given in Subsection 8.8.

7-17

With the SYMBOL PLEX option, the RECLAIM statement simply has the
clfect of rescetting the NEXTAVL parameter to the value of its argument.
The user should keep in mind that, before resetting NEXTAVL(SYMBOL)
to its previous value, any multi-character atomic symbols created
since its value was first saved will be linked into the object list. (See
Section 6.) Thus, these atomic symbols must be removed from the object
list by the REMOB statement before the words occupied by the atomic
symbols can be re-used; if this is not done the GTL symbol table
mechanism will not work.. In the sample program given in Subsection
8.8, a list of newly created atomic symbols is maintained for this
purpose.

7.4.5. The ATSM Transfer Function

The Arithmetic To SyMbol transfer function, ATSM (paragraph 6.15.3)
may be used to modify the address of a LISP record when used in the
following form

ATSM(aexp, sexp)
where aexp is an arithmetic expression, the value of which is added to the
value of the SYMBOL expression sexp. The value of aexp must be a non-
negative integer. The following example illustrates a method of
printing the contents of a list of variable length records, each
record containing a sequence of whole word numbers. The first word is
the length of the remainder of the record.

SYMBOL R, S;

REAL I;

REAL FIELD WHOLE

7-18

FOR S IN R DO
BEGIN
N:=WHOLE (S);
FOR I:=1 STEP 1 UNTIL N DO
PRIN WHOLE (S: :ATSM(1,S)) SPACE;
TERPRI
END
It is assumed that the value of R is the list in question.

7.4.6. The RECALL and REMEMBER Statements

The RECALL and REMEMBER statements, as described in Subsection 6.21
may be used with the SYMBOL PLEX option. When the SYMBOL PLEX option is
used, there are no restrictions on the use of these statements; they may
be used at any point in the program as often as desired. This feature
might be used, for example, in the implementation of a self-extending
syntax-directed translator. The value of NEXTAVL (SYMBOL) must be set
before a REMEMBER to a point above the last element of the linked list
to be stored.

In general, a LISP memory file created by one program will not
be compatible with another program, since the addresses of quoted
atomic symbols (created at compile time) will almost always be different,

unless they are all single-character atomic symbols,

7.5 RECOMMENDED PRACTICES
If the RECLAIM statement is used to reclaim records then the following

program should be used to create the record file:

7-19

BEGIN

FILE FILENAME DISK [20:300](1,10,30,SAVE 90);

ARRAY A[0:97;

INTEGER 1;

FOR I := 0 STEP 1 UNTIL 5999 DO WRITE (FILENAME,10,A[*]);
LOCK (FILENAME);

END.

If the programmer fails to use this type program and has reused all
reclaimed records and is creating a new record, he will have an error
termination. This is due to the way random files are handled by the MCP

and not by GTL.

7.6 EXAMPLE PROGRAM

The program listed on the following pages was designed to illustrate
the use of the disk-storage-oriented record processing system. The program
maintains a data base of students and possible courses they might take.

The data base can be updated and maintained from a terminal. The user

may inquire into the status of students in regard to required courses taken,
or needed to be taken, grade average, which students took a particular course,
etc. A simple example of the program's operation is given at the end of the
listing.

Attention should be given to the DELETESTUDENTS procedure which illus-
trates not only how to reclaim a record, but also how to reclaim all records
to which only the reclaimed record points.

This program should not be construed to represent a practical application
or to represent data base construction. The program merely illustrates the

creation and deletion of records in record processing.

7-20

In order to understand the operation of the program, the programmer
should be familiar with GTL string processing (Section V) and the Input-
Output system (Section IX). Knowledge of list processing (Section VI) is

helpful in understanding record class identifiers.

7-21

BEGIN

CUMMEN |

THIS PRUGRAM MAINTALINS 3 TYPES OF RECLRLS IN CNE FALE,

THE FIRST RECCKU» SIULENTs CUNTAINS A STUCENT®™S NAMEs ALLRESS,
SUCIAL SECURITY mNuMBER, AND CULLEGE DEGKEE, PLUS

A FIELD wHIUH PCINIS TO A RECCRUs CLCURSELISTING» wrICH

KRECURDS THE HISTURY CF CCOURSES TAKEN eY TrE SITULENI, Tht UIHLK
FUINTER PUINTS TC IHE NEXT STUDENI"S wECCKC, IF THIS PUINIER
1S MULL THEN THERE ARE NC MURE STUCENI KECChDS, TrIS

INDICATES END OF THE LIST. THE STUBENT FCINTERs SP» PULINIS TC
THE FIRST RECORC IN THE LINKED LIST LF STUCENT RECCRUS.

[HE CUUKSEUESCRIP WECURD CONTAINS A UESCRIFTICN Cf EVeRY PUSSIHLE
COURSE THE STULDENMT MAY TAKE. THIS CESCRIFTION INCLUCES

THE DEPARTMENT WHICH CFFEKS THE CUURSEs THE CLUKSE NUMBERS wHETHEK
THE CUUKSE IS KEGUIRED GR NOT, ANU THE TITLE CESCRIFPTIUN GF ThE
CUUKSE, CCF PUINTS TU ThHE FIRST RECURD 'CF THIS LINKEL LIS,

ITHE THIKO RECURDs» COURSELISTINGs COUNTAINS 2 FIELCSe ikt FARSI
FIELD CUNTAINS 3 likEnvSs THE QUARTER THE CCURSE wAS TAKEN, A
POINTER TU THE CCUNDEUESCRIP RECCRD, AND THE GRALE RECElVEWL, TrIS
FLELD OCCURS ¢ TIMES WITHIN THE RECCHKU, WHERE EACF FItLU ULCUFIES
1 wORD, THt SECCND FIELOC» WHICH LS IN TKRE LAST w(nr[C yF Iht
RECORD, PUINTS TO ANCTHER COURSECESCRIP IF CNE EXISTS, [IHE NULL
VALUE OF COURSEDESCRIP PCINTER ENUS THE LIST CF CCULRSES TAREN,
WHEREAS A NULL CCOuRDSES POINTER ENUS TRE LINKED LIST Cf
COURSELISTING RECUKDS,

THE PROGKAM ALLOWS THE USER TO AUU CUURSES, TC ACL STUULENTDS»

AND TO ALU COURSES TAKEN TC ANY STULENT®S RECCRU., STUCENTS Ok
CUUKSES MAY BE DELETED, CAUSING IHE RECCRLS TC BE ™RECLALMED"™

ANG LINKEU UNTO THE FREELIST wy THE PROGRAM, AFTER ANY RECURYS
ARE CREATED OR RECLAIMED» THE NEXTAVLAFREELISTsSF» ANy CUF VALUES
ARE UPDATED IN RECURC ZERU OF THE FILE TC MAINTAIN ITS INTEGRATY
IN THE EVEN! THE PRUGRAM ABNURMALLY TERMINATES, Ch THKE MACHINE
HANGS o

ALL INFCRMAITION IN THE SYSTEM CAN BE LISTED IN vARICUS FURMS .

THE FIND wPIIgN ENAGLES THE USER TU DETERNMINE INFCRMATION AgOouT
THE DATA BASE HE HAS ESTABLISHED. FOK EXAMPLE, TrERE IS A

COMMAND WHICKH DETERMINES WHAT REQUIREL CCURSES HAyE BEEN TAKEN UR
NEED TO BE TAKEN, EITHER FOR A PARTICULAR STUCENT UR ALL

STUDENTS., UTHER VARIATIONS OF THKLIS CUMMAND FINU THE GRAUL

AND GRADE PUINT AVERAGE FUR ONE STUDENT CR ALL STLULENTS,

A THIRD OPTION FINUg EITHER ALL PEUPLE wKC TOCK A FARTICULAR
COURSE, Ok ULUT CF THE PECPLE wHO TOOK THAT COLRSE THRCSE wHU MADE A
CERTAIN GRAUE, QR FINDS THIS INFCRMATION FCR ALL CUURSES. tHE LAST
FIND OPTIUN LISTS ALL STUUENTS WHU HAVE A PARTICULLAR UEGHREE;

7-22

FlLe KEMCIES
RECLRU FILE SF ULISK OLDC1,10,30)3
RECLRU STUDENT SF(NAMEsAUDRESS»SSNUOSCOURSES»DEGREESNEXT)5
Rt CUNKLU CCURSECESCHRIP SF(UEPT»COURSFNO,REGUINEDS»CESCRIFTIUNS
HUURSPNEXTCUURSE)
RECLRU COURSELISTING SFC(UUARTERSCUURSEPUINTER,GRALESCLULRSES)S
STRING FIELL NAME (C) (U261
AUORESS (3) [z33714»
SSNO (7)) L7393
CUUKSELISTING FIELD CCURSES ¢9) (1t17)5
STRINGU FIELD ULEGREE (%) (31213
STUUENT FLELD NEXI (9) L30t181]3
STRING FIELD LEPT (C) [(U34],
CUUKSENC Q) [4831]»
RESUIRELCU) (72811
CESCRIPTIUN (1) [Ut64]),
HOUKS (9) [ect3]3
CUURSELULSCRIP FlELD NEXTCOURSE ($) (308181
COURSEPCINTER (C»r8) [30318)3
REAL FLELD GRADE (U,8) (18361, # TREAT AS ALPKA FIELUS
wUARTER (U»8) [2416])3
STULUENT SP3
CUURSEDESCRIP CULP
STRING
NAMESTR(Z6)»
ADUSTR(37)>
SSNUMBER(Y)»
DEGREESTR(2)»
DEPTSTRC4),
COURSENCSIR(3),
DESCRIPSTR(64),
HUOURSTR(3)3
INTEGER T3
LABEL START;
STULENT PROCEDURE LCOKUPSSNG (SSNUMBER)S
STRING SSNUMBERS
FORWARDS

COMMENT
THIS PRUCEDURE "PRINS® THE CUURSE CESCRIPTICN INFCHMATIUN LN
A RECORD POINTED TU BY P, SINCE DESCRIPTICNCF) MAY CUNTAIN
TRAILING BLANKS» THESE ARE EFFECTIVELY DELETEC SC TWAT TAb
POINTS TU ONE BLANK BEYGND THE INFCRMATICN;

7-23

PRUCEUURE PRINCUUNSEDESCHRIP (P)3
VALUE P3j
CUURSEDLCSCRIP P3
bEGIN
PRIN DEPTCP)»COURSENC(P) REWULIRECCP)»rOURS(P) SKFACE(1)}
DESCRIPSTR 8= DESCRIFTIONCP)S
I 1= 633
WHILE DESCRIPSTR(CiI?2»1) = " » ANO T GTR Q CC T 8= 1 = 13
I ¢ 7 + 13
PRIN DESCRIPSTR(ULT)S
eND S
COMMENT
THIS PRUCEDURE FIKST PRINTS THE GQUARTER AND GRALUE AND THEN
CALLS PRINCLUURSECLESCRIP FOR ALL COURSES IN THE LISH
UF COURSELISTING RECURDS POINIED 1U HY P}
PROCELURE PRINICOURSESC(FIS
VALUE P
COURSELISTING P3J
BEGIN
ALPHA A3
INTEGER 13
LABEL STARTS
IF P=NIL THEN RETuURWN; & REFERENCE TO MULL RECCRL CALSES ERKHUR
STARKTSFCR I 8= 0 STEP 1 UNTIL 8 ne
BEGIN
IF COURSEPUOINTERCIICP) = NIL THEN RETURNS
CASE QUARTERLIICP) OF
BEGIN
PRIN #FA &3
PRIN W1l #;
PRIN #SF #;
PRIN #SU #3
ENDS
PRIN A $= GKADECLILIJCP)»}
PRINCOURSEDESCRIP(COUKSEPUINTERLLIICPR))S
TERPRI;
ENDS
IF P 8= CUUKSESC(P) NEWG NIL THEN GU STARTS
ENDS
PRUVCEUURE PRINTSTUDENT (PsaN)3
VALUE PasN3J
STUDENT P3 % wHICH STUDENT
INTEGER N3 % KEY TO wHAT IS PRINTED ABQUT STUCENT
CASE N CF BEGIN =
PRINT #St & SSNG(P)S
PRINT aNt # NAME(P);
PEINT 4A3 # ADODRESS(P)3
PRINT #Dt # DEGREE(P)}
FRINTCOURSES(COURSES(P)Y);
END3

PRINT SCCIAL SECLKITY MUMDER
PRINT STUDENTS NAME

PRINT STUDENTS ACURESS

PRINT STLDENTS CEGREE

PRINT CCLRSES STLUENT HAS TAKEN

2 DE BC DL DR B
EWN=—=O 2

7=24

COMMENT
PRINTALL LISTS ALL STUDENTS" NAMES» AUNDRESSES» SCCLlAL StuunlTy
NUMBERS» ULGREESs COUKRSES TAKEN INCLUULIANG
THFE QUAKTER THE CUUKSE wAS TAKEN AND IHE GRADE KECEIVEUS

PrRCCEUURE PRINTALLS
BEGIN
STUVENT P3
INTEGER 17
IF P 1= SP = NIL (HEN
gbEGIN
PRINT #2STUDENT LIST ENMPTY#S
RETURN3}
END S :
wHILE P MW NIL Du
BEGIN
FUR T8=C STEP 1 UNILIL 4 DU PRINTSTULENT(P»1)s
TERPRI;
P 3= NEXT(P)}
ENDJ
END3

COMMENT .
LISTER LISTS vARIWUS THINGS FROM THE UIFFERENT RECLRDS, Int
CCMMANDS ARE?

L [(SOCIAL SECURITY NUMBER] LCPTLION LIST)

WHERE
[CPTIUN LIST) s8¢= [QPTICON] » [CPTICN LLISTI]

(OPTIUN] tt= § % PRINT SOCIAL SECLRITY NUMdER
/ N 3 PRINT NAVME
/ A % PRINT ADURESS
/ U % PRINT DEGREE
/ C % PRINT CUULRSES TAKEN

LS LISTS IHE SOCIAL SECURITY NUMEER AND NAMES
GF ALL STUDENTS IN THE DATA BASE

L C LISTS THE DESCRIPTION OF ALL CCURSESS
THt DEPARTMENT, COURSE NUMBER,
FOLLOWED BY AN OPTIONAL ASTERISK (%) wHICH
INDICAIES THAT THE CCURSE IS REQUIREC FCR GRADUATION,
ThE CUURSE HOURS AND CUOURSE TITLE;

7«25

PROCELUKE LISTEK;
gEGILN
STUVENT S
CUURSEDESCKRILIP C3
INTEGER T
LABEL STAKT
LF "0"™ LEW REALCIwAST1(251)) LEGQ "9¥" TFrEN
BEGIN
SSNUMEER 83 TwXxS1(e¢»6)3
IF & $= LUOKUPSSNUCSSNUMBER) = NIL THEN
BEGIN
PRINT #STUDENT NCT FCUNDH¥*3
KETURNS
END3
CuL 8= 125 :
t= REAUNCTWXA) = "S" THEN T 8= 0 ELSE

STARTHIF 1
1F T = "N" THEN T $= 1 ELSE
IF T = "A"™ IHEN T 8= 2 ELSE
IF T = "0" THEN T 8= 3 ELSE
It 7T = "C"™ THEN T 3= 4 ELSE
dEGIN
PRINT #ILLEGAL INPUT#S
RETURN;
ENDS

PRINTSTUUENI(S,T)3

1F TWXS1(COLs1) = ",% THEN
BEGIN

COL t= COL + 1}

GO STARTS

END 3

KETURN?

END 3

IF T 3= REALCTWXS1(2,1)) = "S" THEN
BEGIN

IF S t= SP = NIL IHEN
BEGIN

PRINT #STUDENT LIST EMPTY#}
RETURN}

ENC3S

WHILE S NG NIL DU

BEGIN

PRINT SSNUCS),NAMECS)S

S t= NEXT(S)S

END 3

KE TURNS

ENDJ

IF T = "C" [HEN

BEGIN

IF C 3= CUP = NIL THEN
BEGIN

7-26

PRINT #CUURDSE LISI EMPTY#S
RETURN3

ENDS

whILE C NEG NIL Du

BEGIN

PRINCUUKSEUESCRIP (C)3
TERPRI S

L 3= NEXTCUURSE(C)S

END S

RETURNS

END

PRINT #ILLEGAL LIST COUMMAND#}
ENO LISTEKS

CUMMENT
THIS PRUCEUURE SEARCKES FUR A STUUENT SCCIAL SECLrLITY NUMBER wHICH
MATCHES SSNUMBERs IF SUCH A STULENT EXISTS THEN & PCINTEK
TC HIS RECCURU IS WRETURNED» OTHERWLISE IHE NULL PCINIER 1O
RETURNED 3

STULENT PKOCELUKRE LCUKUFSSNU (SSNUMBER)S
STRING SSNUMBERS
BEGIN
STUDENT P3
P 1= SP3
WHILE P NEG NIL DU
oEGIN
IF SSNOCP) = SSNUMHER (0,9) THEN RETUKN F3
P 8= NEXT (P)3
END
END 3

COMMENT
THIS PRUCEDURE ADDS STUDENTS T0 THE UATA EASE, TrE
PROCEDURE LUOPS ASKING FOR THE FCOLLOWING INFORMATIUN
FOR EACH STUDENT T0 BE ENTERED INTO THE SYSTEMS

SSNU EXPECTS A 9 DIGIT SOCIAL SECURITY wnuMoth Uk
IF THE WORD "STOP"™ CR A BLANK LINE
IS FOUND THEN THE PRCCEDLRE IS txlitue.

NAMES EXPECTS THE NAME OF TKE STLDENT LP TUL 2o
CHARACTERS IN LENGTH,

AUDKESS? EXPECTS THE AUUDRESS CF THE STLLENT P Tw 37
CHARACTEKS IN LENGITHK,

DEGREE? EXPECTS THE DEGREE OF THE STUCENT

(2 CHARACTERS) SUCK AS EE» Its LR CEo
IF THE STUDENT ALKEADY EXISTS ON ThHE SYSTEM THEN AN EhKUR

MESSAGE IS TYPED, UIHERWISE THE MNew STUDENT IS ACLEC TU IHE
SYSTEMS

7-27

PRCCEUURE ADUOSTULENTS

LOCP:

BEGIN

LABEL LCCF;

PRINT #SSNQOS #5 READ TWX3 SSNUMBER $= TwXS1(0»9)3

IF SSNUMBER(Q,4) = "STOP" OR SSNUMBER = SPACE THREN RETURNS
IF LOUKUPSSNOCSSMNUMBER)Y Ne@ NIL THEN

BEGIN

FRINT #STUDENT ALKEALY ON SYSTEMES

G 10 LCCGP;

END S

PRINT #NAMES' #3 READ TWx3 NAMESTR = JwxS1(Crz6)3}
PRINT #AUDRESS: #5 READ TWX3 ADULSITR 1= TwxsS1(C»37)i
PRINT #CtGREES #3 KEAD TwXxj3; DEGREESTH 3= TwxS1(Usc);

CREATE NEwW STUDENI KECOKD

SP 1= STUDENT(NAMESTRSADDSTRsSSNUMBER» *s CEGREESTHR23P);
GG TC LCCP3 3 DE LugP

WRITECSFLO)s %, NEXTAYL(SF)»FREELISTCSF),»SF,CDP);

END 3

CUMMENT

UELETESTUUENT DELETES STUUENTS CURRENILY CN TRE SYSTEM,

wHEN A STUPENT IS DELETED WIS OLCL RECCRp IS LINKEL INIC

THE FREELIST EY THE RECLAIM STATEMENT SC THRAT ThE KECURU

CAN LATER gt USEDL, ALSO ALt Of KIS CLCURSELISTING MECURUS

ARE RECLAIMED, THE PROCEDURE EITHER ASKS FCR A SCCIAL
SECURITY NUMBEK Uk IT MAY BE GIVEN IN THE COMMANL w0 S

SUCH AS mp & 4056288C1w, A SERIES OF SCCIAL SECLRITY NyuMptkS
MAY BE GLVENs IF EACH PRECEDING CNE IF FCLLCWEL Ey A CCMMA.
AS BEACH STUULENT IS DELETED HIS NAME IS PRINTEC AS FEEUBACK

TU THE USERS

PRCGLEUURE DELETESIUDENTS

Ls

BEGIN

STUDENT 8T/

COURSELISTING C»D3

LABEL LUOPsKCsLoL1LS

IF SSNUMBERI=TWXS1(429) = SPACE(Y) THEN
BEGIN

LOOPs: PRINT #SSNQi#;

READ TWX;

SSNUMBER 3= TwxS1(U,»$);

END ELSE TwXS1 8= TwxS1(4) & SPACLS

IF SSNUMHBERCO,4) = "STOP"™ OR SSNUMBER = SFACE THEN RETURNS
IF 8§ t= T 8= SP = NIL THEN

BEGIN

PRINT #STUDENT LIST EMPTY#3

RETURN3

END S

7-28

IF SSNUMBERCU,Y) = SSNOCSP)Y THEN # [1S TKHE FIWNSI mweCCRU
dEGIN
PKINTSTUUENT(SP21)3)
C 1= COURSES(S)
WHILE D1=2C NEQ NIL DC % DELETE CCURSE DESCRIPTIUN HWECURULD
BEGIN
C t% COURSESC(CI? & PCINTER TD NEXI RECOKC
RECLAIM(UDS % RECLALM THE RECURD
ENO
S $= NEXT(SFH)3
KRECLAIMCSK)
SP 13 S5 % RESTORKE STUDENT POINTER
GL 10 RC3
END S
wHILE S 8= NEXTC(S) NEG NIL DD % SCAN LOwN TRE LIS
BEGIN
LF SSNUMBEK(O,9)
BEGIN
PRINTSTUDENIT(S»1);
C t= COURSES(S)S
whILE D $= C NEGQ NIL UO % DELETE CUUKSE CESCRIPTICN RecClruo
BEGIN
C $= COURSES(C)3
RECLAIMCD) S
ENDS
NEXTCT) 3= NEXTCS)3 % DELINK THE RECOKD
RECLAIM(S)S % LINK RECLAIMED RECO®RD ONTC FREELIST
GO TO RC3
EnDs
T ¢= S5 % KELEP TAw QF TRAILING PCINTEK
END OF wWHILE LUCPS
PRIN SSNUMBER, #NUT FOUND®3 % NOT ON SYSTEM = NOTIFY USER
IF TWXS1(Ys1) = %" THEN PRINT #»>CONTINUING# ELSE ITERPKIJ
GC 10 L1
RC? WRITECSFLO)s# ,NEXTAVLC(SFIsFRFELISTC(SF),SPsCOP)3 % ULPDATE FILE
L1 IF TWXS1(Ys1l) = "™ THEN
gEGIN
TwXS1s=TwWXS1(10) & SPACES
GO TO L’
ENDJ
GO 10 LOCP;
END DELETESTUCENTS

SSNOCS) THEN % FCUND KIWM

o

COMMENT

LOOKUPCOUKSE IS THE SAME AS LOOKUPSSNL EXCEFT IT

LGOKS UP A COURSE GIVEN BY DEPT MAME(LT) ANC CCURSE ANUMBERLCN),
IT RETURNS THE ADDRESS OF THE COURSEULESCRIP RECCRL IF SUCH

A CUURSE EXISTSS

7-29

CUUNRSEUESCRIP PKRUCEDURE LUCKUPCUURSE (UI»CN)3

STRING UT»sCN;

BEGIN

COUKSEUESCRLP P3

P 3= CDPJ

wHILE P MNLQ NIL QU

BEGIN

LF DTC0»4) = QEPTC(F) AND CNCO»3) = COULRSENC(P) Tktn ARETURN F3
P 3= NEXTCCURSE (F)s

END S

END

CUMMENT

AUDCOURSE AUUS CCURSES TO THE SySTEM. TKE INpPUT IS As BLLLUWS

DEPY S EX<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>