
I
r=====
I
r
r===

CP-6
APL
REFERENCE
MANUAL

SUBJECT

CONTROL PROGRAM-SIX (CP-6)
APL REFERENCE MANUAL

Description of the APL Programming Language Elements, Statements, Func
tions, and System Commands

SOFTWARE SUPPORTED

APL DOD on CP-6 Operating System Release DOD.

ORDER NUMBER

CE38-04 May 1986

HoneY"'ell

Preface

This document contains reference information for the 000 release version of CP-6 APL.

The Los Angeles Development Center (L.A.D.C.) of Honeywel I Information Systems, Inc.
has developed Computer Aided Publ ications (CAP). CAP is an advanced text processing
system providing automatic table of contents, automatic indexing, format control,
automatic output of camera-ready masters, and other features. This manual is a
product of CP-6 CAP, with special handling for APL characters.

Readers of this document may report errors or suggest changes through a STAR on the
CP-6 STARLOG system. Prompt response is made to any STAR against a CP-6 manual, and
changes wil I be incorporated into subsequent releases and/or revisions of the
manuals.

The information in this publication is believed to be accurate in 01 I respects.
Honeywel I Information Systems cannot assume responsibility for any consequences
resulting from unauthorized use thereof. The information contained herein is subject
to change. New editions of this publication may be issued to incorporate such
changes.

The information and specification in this document are subject to change
without notice. Consult your Honeywell Marketing Representative for
product or service availability.

@ Honeywell Informat ion Sysstems Inc •• 1986 Fi Ie No. :1W13

i i Preface CE38-04

Section 1 Introduction.
Section 2 Using APL .

Logging On.
General APL Input .

CONTENTS

Charact~r Set
Names
User Input versus Computer Output .
Line Corrections during Input ..
Execution and Definition Modes
Prompts

Direct-Line Prompt.
Function-Line Prompt.
Quad Prompt . . .'. .
Quote-Quad Prompt . . . • . .

Comments.
Cont ro I Keys.

Statements and System Commands.
Variables and Functions .•.
Defined Functions

Section 3 Common Elements in APL.
Constants

Numeric Constants
Character Constants
Vector Notation•.....

Names
Name Format
Name Usage

Variables
Local and Global Variables ..

Local Variables ..
Arrays and Indexing ...•.

Indexing of Arrays
Functions and Arguments

Axis Operator
APL Functions and Operators ..

Scalar Function Summary.
Mixed Function Summary ..
Operator Summary

Defined Function References ..
Assignment

Simple Assignment
Multiple Assignments.
Vector Assignment ..
Indexed Assignment
Se I ect i ve Ass i gnment.

Input/Output
Input/Output Devices
General Input/Output.
Types of Input

Direct Input .. .
Evaluated Input ..
Quote-Quad Input ...

Output.
Section 4 Expression Evaluation.

Order of Evaluation
Right to Left
Precedence of Functions
Parentheses
Precedence of Operators .

CE38-04 Table of Contents

Page

1-1
2-1
2-1
2-2
2-2
2-3
2-3
2-3
2-4
2-4
2-5
2-5
2-5
2-6
2-6
2-6
2-6
2-7
2-7
3-1
3-1
3-1
3-2
3-2
3-3
3-3
3-4
3-5
3-5
3-6
3-8
3-9
3-13
3-14
3-14
3-14
3-22
3-31
3-35
3-36
3-36
3-37
3-37
3-37
3-38
3-38
3-38
3-39
3-39
3-39
3-39
3-41
3-41
4-1
4-1
4-1
4-1
4-1
4-2

iii

CONTENTS (cont)

Value of a Variable versus its Name.
Default Output

Errors and Breaks
Section 5 APL Primitive Functions .. .

Scalar Functions
Arithmetic Functions.

+ Function !conjugate, Addition)
- Funct i on Negate, Subt ract ion).
x Function Signum, Multiplication) .. .

Function IReCiProcal, Division) * Function Exponential, Exponentiation).
• Function Natural Logarithm, Logarithm)
r Function Ceiling, Maximum)
L Function Floor, Minimum)
I Function (Absolute Value, Residue) ..
o Function (Pi Times, Circular) ...

Function (Factorial, Binomial).
Relational Functions.

< Function (Less Than).
S Function ILess Than or Equal)
= Function Equals)
~ Function Greater Than or Equal). • ...
> Function Greater Than)
~ Function Not Equal).

Logical Functions ..
~ Function lAnd, LCM) ..
v Function Or, GCD)
4 Function Nand)
¥ Funct!on Nor).
- Function Not).

Mixed Functions.
? Funct on Roll, Deal)
t Funct on Index Generator, Index Of)
c Funct on Enclose)
~ Funct on Disclose, Pick)
= Funct on Depth, Equivalence)
, Funct on Ravel, Catenation, Lamination)
IJ Funct on Shape, Reshape)
~ Funct on Reversal, Rotation)
~ Funct on (Transpose).
• Funct on (Grade-up)
t Funct on (Grade-Down)
1 Funct on !BaSe Value, Decode) ..
T Funct on Representation, Encode)
• Funct on Format)
• Funct on IFirst, Take)
• Funct on Drop)
f Funct on Type, Membership)
J Funct on Execute)
m Funct on Matrix Inverse, Matrix Divide).

Operators
Reduction dlOperator
Compression AI Operator (Replicate)
Scan d\ Operator.
Expansion A\ Operator.
Inner Product f.g Operator.
Outer Product o.d Operator.
Each Operator

Section 6 APL Statements
Comment Statements
Branch Statements

Statement Labels
Assignment and Non-assignment Statements.
Compound Statements

Section 7 Defined Functions ..
User-Defined Functions

iv Table of Contents

Page

4-2
4-2
4-3
5-1
5-2
5-3
5-4
5-4
5-5
5-6
5-7
5-8
5-8
5-9
5-10
5-11
5-12
5-13
5-13
5-13
5-14
5-14
5-15
5-15
5-16
5-16
5-16
5-17
5-18
5-18
5-19
5-19
5-19
5-20
5-21
5-22
5-23
5-26
5-26
5-27
5-31
5-33
5-34
5-35
5-37
5-39
5-40
5-40
5-41
5-43
5-45
5-45
5-47
5-48
5-49
5-50
5-53
5-53
6-1
6-1
6-2
6-4
6-5
6-6
7-1
7-1

CE38-04

CONTENTS (cont)

Function Definition Mode
Syntax of Defined Functions
Variables Local to a Defined Function
Dummies.
Body of a Function
Loca Is
Labe Is.

Changing Suspended Functions ..
Directives

Search and Replacement Strings ..
Displaying User-defined Functions

Displaying All Lines.
o i sp I ay i ng One Line
Displaying a Range of Lines.
Displaying Lines Containing a String
Displaying the Next Occurrence of a String ..

Editing User-defined Functions.
Deleting a Line
Inserting a Line
Replacing a Line
Issuing Multiple Directives.
Modifying a Line
Changing a Function Header ..

Screen Editing
Issuing System Commands ..
Function Execution.

Recursive Functions.
Suspending Execution.

Lock i ng Funct ions •
System Functions Controlling Defined Functions.

OTRACE System Function (Tracing Execution)
OSTOP System Function (Stopping Execution) .. .
OCR System Function (Canonical Representation). orx System Function (Fix Definition)
OAT System Function (Function Attributes) ...•..

Section 8 System Commands
Workspace Concept

Active Workspace ...
Saved Workspace . . .
Continue Workspace. . •

Initiating an APL Session.
User Accounts ••...•
Command Processor

System Command Summary. • . • • . . . • • .
CATCH Intercepting Assignments
CLEAR Clearing Workspace ...•...•....
CONTINUE Saving Active Workspace and Leaving APL .
copy Copying from Saved Workspace ...•..
DIGITS Specifying Numeric Print Precision•.•..•..
DROP Dropping a Saved Workspace
EDITOR Selecting the APL Function Editor .. .
END Exiting APL•..
ERASE Deleting Objects From Active Workspace ..
ERROR Selecting Error Message Information Level•.
FNS Listing Global Function Names ...• ~ .
GO Resume Execution.
GROUP Creating a Group.•....•.•.
GRP Listing Members of a Group. . . . ••......
GRPS Listing Names of Groups•........
IBEX Issuing CP-6 Commands
LIB Listing Names of Saved Workspaces.
LOAD Retrieving a Saved Workspace .. .
NMS Displaying Global Names
OBSERVE Observing Intermediate Results
OFF Logg i ng Of f. • . • • .
OPR Communicating with Computer Center Operator.

CE38-04 Table of Contents

Page

7-1
7-2
7-4
7-4
7-5
7-5
7-5
7-6
7-6
7-8
7-8
7-8
7-9
7-9
7-10
7-10
7-11
7-12
7-13
7-14
7-15
7-15
7-17
7-18
7-19
7-20
7-20
7-20
7-22
7-22
7-23
7-25
7-26
7-27
7-28
8-1
8-2
8-2
8-2
8-3
8-3
8-4
8-4
8-4
8-10
8-13
8-13
8-15
8-16
8-17
8-18
8-19
8-19
8-20
8-21
8-21
8-22
8-23
8-24
8-24
8-25
8-26
8-27
8-27
8-29
8-30

v

CONTENTS (cont)

OPRN Communicating with Computer Center Operator.
ORIGIN Setting Index Origin
PCOPY Copying from Saved Workspace
QLOAD.)QCOPY. and)QPCOPY Quiet Commands.
QUIT Leaving APL
REPORT Selecting the Function Stop Display.
SALVAGE Copying from Saved Workspace .. .
SAVE Saving a Workspace
SEAL Saving a Sealed Workspace
SET Changing Assignments of Input/Output Streams.
SI Control I ing the State Indicator .. .
SIC Clearing the State Indicator .. .
SIL Listing the State Indicator Lines ..
SINL Listing the State Indicator
STEP Single Step Execution
TERMINAL Specifying Input/Output Device
VARS Listing Global Variable Names .. .
WIDTH Setting Line Width
WSID Identifying the Active Workspace

Section 9 Report Formatting
Format Specifications

Format Specifications versus Data Types
Format Statement (Left Argument).
Format Data List (Right Argument)

Operation of OFHT
Formatting Scalar Arguments .. .
Formatting Vector Arguments

Formatting a Vector on One Line
Formatting Matrix Arguments ...

Picture Format•...
Forms of Output Values•...........
Format Qualifier and Affixture Codes ...•..
Format Symbol Substitution
Format Result
Format Error Reports.
Formatting Aids•...•...........

oPCE Function ~SkiP to New Output Page) ..
OWLS Function Number of Lines Remaining).
OHDR Function Set Page Heading)
OVFC Function Set Line Spacing)
OXL Function (Translate Text).

Section 10 Execution Stops.
Normal Stop. ••.•...
Execution Break.. . .•.
Stop for User Input . • . . • • • .
Stop Control Vector. . •
Er ror Stop.
S i det rack i ng On Er rors And Breaks

OSH Function (Set/Query Sidetrack Matrix).
Dynamics of Sidetracking•.
Considerations after Gaining a Sidetrack

Aids for Sidetrack Users.
OERN function Error Number) .
OERF function Error Function) ..
OERH Function Error Message) ...
OERL function Error Line) ..
OERP function Error Position) ...
OERX function I/O Error) ...••.
OERH function Error Help) ..•.
OERS function Error Simulation) .

Section 11 System Functions and Variables ...

vi

OCT Variable Icomparison Tolerance) .•.
010 Variable Index Origin) ..•...
~X Variable Latent Expression)
oPW Variable Platen Width)
oPS Variable Positioning and Spacing)

Table of Contents

Page

8-30
8-31
8-31
8-32
8-32
8-33
8-33
8-34
8-35
8-35
8-36
8-38
8-38
8-38
8-39
8-40
8-41
8-42
8-43
9-1
9-1
9-2
9-2
9-2
9-3
9-3
9-3
9-4
9-4
9-5
9-5
9-6
9-7
9-7
9-7
9-8
9-8
9-8
9-8
9-9
9-10

10-1
10-1
10-1
10-2
10-2
10-3
10-4
10-7
10-8
10-9
10-10
10-10
10-10
10-10
10-11
10-11
10-11
10-11
10-12
11-1
11-2
11-2
11-2
11-2
11-2

CE38-04

CONTENTS (cont)

OfP Variable lprint Precision)
ORL Variable Random Link)
OSP Variable Session Parameter) .
OSA Variable Stop Action) .. ."

System Functions
Workspace Management Functions
Namelist and Canonical Representati~ns. ~ .
System Functions for Function Definition ..

OLOK Function (Lock Function)
OST Function (Set/Query Stop)
OTR Function (Set/Query Trace) ..

Workspace Management System Functions
OAV Function (Atomic Vector) ..
DePU Function (CPU Time Used)
DeVT Function (Convert)
ODL Function (Delay)
DEX Function (Expunge)
DExe Function (Expunge Globals) ..
OFI Function (Fix Input)
OGRP Function (Return Group Members) .
OIBEX Function (IBEX Expunge)
OIBLET Function (Set/Query IBEX Variable) ..
OISNL Function (IBEX Namelist)
OIDLOC Function (Identifier Location).
OLC Funct ion (Li ne Cha'i n)
~eT Function (Logon Time)
ONC Funct i on (Name C I ass if i cat ion)
ONce Function (Name Correspondence of Global) ..
ONL Function (Name I ist)
OONL Function (Online)
OOVH Function (Overhead Time).
ORH Funct i on (Room).
ORHe Function (Global Room)
OSCT Function (Session Time)
OSI Function (State Indicator) .
OSITEID Function (Site ID)
OSITENAHE Function (Site Name)
OSTEPCC Function (Step Condition Codes) .. .
OSYSID Function (Sysid).
OTS Function (Time Stamp)
OTT Function !Terminal Type) .. .
OUA Function User Account) .. .
OUL Function User Load)
OVI Function (Verify Input)
OVERSION Function (Version)
OWA Function (Workspace Available) •.
OWSID Function (Workspace Identifier).

Shared Variable System Functions
OSVC Function Shared Variable Controls) ..
OSVO Function Shared Variable Offer)
OSVQ Function Shared Variable Query) ..
OSVR Function Shared Variable Retract) ..
OSVS Function Shared Variable State).
OSVN Function Shared Variable Process Name) ..
OSC Function (State Change)

Text Editing System Functions
OTIX Function (Text Index)
OTLEX Function (Text Lexemes)
OSSS Funct ion lsubstring Search)
OSSR Function String Search and Replace).
OSRP Function Substring Replace)
OSCP Function String Compare)

Terminal I/O System Functions
OTIN Function (Terminal Input)

CE38-04

OTATTR Function (Terminal Attributes).
OTTIHE Function (Terminal Timeout) ..

Table of Contents

Page

11-3
11-3
11-3
11-3
11-3
11-3
11-4
11-4
11-4
11-5
11-5
11-6
11-6
11-7
11-7
11-8
11-8
11-9
11-9
11-10
11-11
11-11
11-12
11-12
11-13
11-14
11-14
11-15
11-15
11-16
11-17
11-17
11-18
11-18
11-19
11-20
11-20
11-20
11-21
11-21
11-22
11-22
11-23
11-23
11-24
11-24
11-25
11-25
11-26
11-27
11-28
11-29
11-30
11-30
11-31
11-31
11-32
11-34
11-34
11-35
11-36
11-37
11-37
11-38
11-38
11-39

vi i

CONTENTS (cont)

OTECHO Function (Terminal ECho)
OTSOZ Function (Terminal Mnemonic Translation) .
OTWINDOW Function (Terminal Windows) ...

Secti on 12 CP-6 APL Fi I e I/O.
File Information Functions.

OFNUHS Function (Numbers of Open Files).
OFNAHS Funct i on (Names of Open Fi I es)..•
OFID Function (Fi Ie Identifier).

Opening. Closing. and Deleting Fi les. •..
OFOPEN Function (Open File)
OFCLOSE Function (Closing and Renaming Files).
OFERASE Function (Close and Delete File)
OFCLEAR Function (Close AI I Open Files) ...•

Reading and Writing Records
OFAPPEND Funct i on (Append Record to Fi I e).
OFREAD Function (Read a Record).
OFWRITE Function (Write or Replace a Record) ..
OFDROP Function (Delete Record from File)

~: OFRDCI Function (Return Component Information)
Fi I e Access Cont ro Is.

Fi Ie Access Matrix.•..
OFRDAC Function (Return File Access Matrix). . • •.•
OFSTAC Function (Store File Access Controls)

Coordinating Shared Fi les
OFENQ Function (Hold a Record) . . . •
OFDEQ Function (Release Record or File) ...•.......

File Status Functions.•..
OFRKEY Function (Return Ker Values)
OFSIZE Function (File Size). •..
OFKEYINT Function (Set Key Interval)
OFKEYS Function {Return Fi Ie Keys} .
OFCRPT Function (Set File Encryption Seed)

Library or Account Information.
OFHA Function (Return File Management Account) .
OFLIB Function (Return File Names) ..

Record Field Descriptions
OFFLDS Function {Return Record Fields} .

Alternate Indexed Files.
Spec i a I i zed F i I e Opt ions.

Section 13 CP-6 APL I-D-S/II System Functions.•
Subschema Information Functions.•

ODBNAHES Function (List Subschema Names)
ODBTYPES Function (Subschema Name Types)

I-D-S/II Funct ion Argumen.ts • .
Name and Set Information.

ODBANLZ Function (Analyze Subschema Names)
ODBOWNER Function (Set Owner).•..
ODBHEHBER Function (Set Member)•...............
ODBINFORH Function (Database Register)•.

Access i ng Data.
ODBFROH Function (Retrieving Data)
ODBTO Function (Storing Data) ..

Standard I-o-S/II Functions
I-D-S/II Error Reporting and Handlin9 .

ODBUSE Function (Use Procedures)
Section 14 Packages

Package System Functions
oPACK Function (Package Create) ..
oPINS Function (Package Insert).
oPNAHES Function (Package Names)
oPNC Function (Package Name Correspondence) ..
oPVAL Function (Package Value)•..
oPDEF Function (Package Definition). . • . .• • •..
oPPDEF Function (Protected Package Definition)
oPSEL Function (Package Select)

Page

11-39
11-39
11-40
12-1
12-3
12-3
12-3
12-4
12-4
12-4
12-6
12-7
12-7
12-8
12-8
12-9
12-10
12-10
12-11
12-11
12-12
12-12
12-13
12-14
12-14
12-14
12-15
12-15
12-16
12-16
12-16
12-17
12-18
12-18
12-18
12-20
12-22
12-23
12-23
13-1
13-2
13-2
13-2
13-4
13-5
13-5
13-5
13-5
13-6
13-6
13-7
13-7
13-7
13-9
13-9
14-1
14-1
14-2
14-2
14-3
14-3
14-4
14-5
14-5
14-6

vi i i Table of Contents CE38-04

CONTENTS (cont)

oPEX Function (Package Expunge) ..
oPLOCK Function (Package Lock) .

Section 15 CP-6 APL Graphics
Graphics Output Functions

OGRLINE Function (Draw Line)
OGRHARK Function (Draw Marker Symbols) .
OGRPOLYGON Function (Draw Polygon) ..
OGRDRAW Function (Draw Picture)
OGRTEXT Function (Draw Text)
OGRWORLDC Function (Map to World Coordinates).
OGRNDC Function (Map to NOC)
OGRTEXTX Function (Inquire Text Extent)
OGRCP Function (Current Position)

Graphics Segment Functions
DGRSEGOPEN Function (Create a Retained Segment) .. .
OGRSEGCLOSE Function (Close Retained Segment) ..
OGRSEGDEL Function (Delete Retained Segment) ..
OGRSEGREN Function (Rename Retained Segment) ..
OGRSEGSURFS Function (Inquire Segment Surfaces) ..
OGRSEGS Function (Inquire Retained Segment Names).
OGRSEGCURR Function (Inquire Open Segment)
OGRTSEGO Function (Create Temporary Segment) .. .
OGRTSEGC Function (Close Temporary Segment)
OGRTSEG Function (Inquire Open Temporary Segment) ..
OGRSEGVISIBILITY Function (Segment Visibi lity) ..
OGRSEGHIGHLIGHT Function (Segment Highlight) ..
OGRVISIBILITY Variable (Set/Inquire Visibility).
OGRHIGHLIGHT Variable (Set/Inquire Highl ighting) .

Graphics Attribute Variables
OGRHARKER Variable (Marker Symbol)
OGRPINS Variable (Polygon Interior Style).
OGRPES Variable (Polygon Edge Style) .
OGRLW Variable (Line Width)
DGRLI Variable (Line Index) .. .
OGRLS Variable (Line Style) .. .
OGRPEN Variable (Pen).
OGRFONT Var i ab I e (Font}......
OGRTEXTl Variable (Text Index).
OGRCHSIZE Variable (Character Size).
OGRCHPLANE Variable (Character Plane) ..
OCRCHUP Variable (Character Up)
OCRCHPATH Variable (Character Path).
OCRCHSPACE Variable (Character Space)
OCRCHJUST Variable (Character Justification)
OCRCHPREC Variable (Character Precision)•.
OCRFlLL Variable (Fi II Index).•.
OCRVERTEX Variable (Vertex Indices). •...

Graphics Viewing Variables.•.
OGRWlNDOW Var i ab I e (Wi ndow). • .
OGRUP Variable (View Up)••.
OCRSPACE Variable (NDC Space).••.
OCR V 1 EJlPORT Va r i ab I e (Vi ewpo rt). . . . ••. . . • • •
OGRVREFPT Variable (View Reference Point).
OGRVPLNORH Variable (View Plane Normal). . . . •..
OCRVPLNDlS Variable (View Plane Distance).· ..•...••.•..
OCRVDEPTH Variable (View Depth).•...•.•
OCRPROJECTION Variable (Projection Type) .•.........•..

Window Clipping Variables.•.
OGRCLlP Variable (Window Clipping)•.
OGRFCLlP Variable lFront Plane Clipping)
OCRBCLlP Variable Back Plane Clipping}. . • •..
OCRCOORD Variable Coordinate System Type} ..•.
OGRWORLD Variable World Transformation) . . .•..

Graphics Control Functions and Variables.•..••.
OCRlNlT Function (Initialize APL Graphics)
OCRDONE Function (Terminate APL Graphics).•..

CE38-04 Table of Contents

Page

14-7
14-7
15-1
15-2
15-3
15-3
15-4
15-5
15-6
15-7
15-8
15-9
15-10
15-10
15-10
15-11
15-12
15-13
15-13
15-14
15-15
15-15
15-16
15-16
15-17
15-18
15-19
15-19
15-20
15-21
15-21
15-22
15-22
15-23
15-23
15-24
15-24
15-25
15-25
15-26
15-26
15-27
15-27
15-28
15-28
15-29
15-29
15-30
15-30
15-31
15-31
15-32
15-33
15-34
15-34
15-35
15-36
15-37
15-37
15-38
15-38
15-39
15-40
15-41
15-41
15-42

ix

CONTENTS (cont)

OCRINITSURF Function (Initialize View Surface)
OCRTERHSURF Function (Terminate View Surface).
OCRCAPABILITIES Function (Inquire Capabil ities)
OCRSURFACE Function (Select View Surface) ...
OCRUNSURFACE Function (Deselect View Surface) ..
OCRSURFACES Function (Inquire Selected Surfaces)
OCRIHHVISIBILITY Function (Immediate Visibil ity)
OCRCURRENT Function (Make Picture Current)
OCRBATCH Function (Control Batching of Updates).
OCRCSTATUS Function (Inquire Control Status) ..
OCRFRAHE Function (New Frame)
OCRCOLHODEL Function (Color Model)
OCRCOLINDEX Function (Set/Inquire Color Indices) ..
OCRINTINDEX Function (Set/Inquire Intensity Indices).
OCRBACKCROUND Variable (Background Index) ..
OCRPIXEL Variable (Pixel Array) ..•....
OCRPIXELORC Variable (Pixel Pattern Origin).

Section 16 Blind I/O
Us i ng B lind I/O . •
B lind I/O on a Dev ice
Accessing Files with Blind I/O•..
B lind I/O System Funct ions. •

OBBIN Function (Set and Query Binary Mode) .
OBSIZE Function (Read Size)•...
OBVFC Function (Set and Query VFC) •.....
OBTRANS Function (Set and Query Transparency).
OBLINES Function (Lines Remaining) .
OBKEY Function (Return Key)••.
OBPRECORD Function (Position Record)
OBPFILE Function (Position File) .•
OBREW Function (Rewind)•
OBREWRITE Function (Rewrite Record) ••
OBSEED Function (Encryption Seed) ...
OBRR Function !Re-Read Mode) ...•.
OBRS Function Record Size)•
OBKR Function Key Returned) ...••...•
OBCLOSE Function (Close Blind I/O Channel) .
OBPACE Function (Skip to New Page) .•
OBDELREC Function (Delete Record) .
OUNSET Function (Unset DCB)••.......

Forms Mode•.....•....
Field Definition Matrix•.......

Field Definition Matrix Columns ..•
OBFLD Function (Field Definition) ••
OBHFLD Function !MOdifY Field) .
OBSFLD Function Select Field) .
OBRFLD Function Release Field) ..••.
OBXFLD Funct i on Expunge Fi e I d). ..•.•...

Appendix A CP-6 APL Parameters ..

x

Arithmetic Limits •.•••.
Array Limi ts. . . • • •
System Variables .•.•...•....•

Implementation Defined System Variables
Defined Functions •.•....•..
APL Input and Output. •..•.•••.•••..
Miscellaneous Limits ..••.....•.
Fi I e System •0
Trigonometric and Hyperbolic Algorithms.
Numeric Algorithms ..•.••••••

Semi Numeric Algorithms •..•.
Pseudo-random Number Generation.
Deal Function ..•.•.•.•

CP-6 Dependent Algorithms ..•••.
Array Representation. • . • • ••.
Consistent Extensions to the ISO APL Standard

Nested Arrays • • . • • • . • . • . • . . .

Table of Contents

Page

15-42
15-43
15-44
15-45
15-46
15-47
15-47
15-48
15-48
15-49
15-50
15-50
15-51
15-52
15-53
15-53
15-54
16-1
16-1
16-2
16-3
16-4
16-4
16-5
16-5
16-6
16-6
16-6
16-7
16-7
16-8
16-8
16-8
16-9
16-9
16-10
16-10
16-11
16-11
16-12
16-12
16-13
16-13
16-14
16-16
16-17
16-18
16-18
A-1
A-1
A-1
A-1
A-2
A-2
A-2
A-2
A-2
A-2
A-3
A-3
A-3
A-4
A-4
A-5
A-5
A-5

CE38-04

CONTENTS (cont)

Additional Primitive Functions
Extensions to Primitive Functions ..
Additional Primitive Operators ..
Extensions to Primitive Operators.
Additional System Functions ..
Extensions to System Functions.

Extensions to Defined Functions.
Additional System Variables ..
Extensions to System Variables
Additional System Commands
Extensions to System Commands
Miscellaneous Extensions

Appendix B CP-6 APL Character Set.
Appendix C Error Messages
Appendix D CP-V Compatible Workspace Functions ...
Appendix E Honeywell CP-6 APL Summary •.

Scalar Primitive Functions ..
Mixed Functions ..
Primitive Operators ..
System Variables
Speciol Symbols ... ~ .. .
Function Definition
Defined Function Controls
Sidetracking on Errors and Interrupts.
Error Control Functions.
CP-6 APL System Functions ...•..
Shared Variable Functions.
Fi Ie I/O
Text Editing Functions
I-D-S/II Functions
Terminal Control System Functions.
Report Formatting Functions
Blind I/O Functions
Index • • •

TABLES

Table 3-1.
Table 3-2.
Table 3-3.
Table 3-4.
Table 5-1.
Table 5-2.
Table 5-3.
Table 7-1.
Table 7-2.
Table 7-3.
Table 7-4.
Table 7-5.
Table 8-1.
Table 9-1.
Table 9-2.
Table 10-1.
Table 10-2.
Table 11-1.
Table 11-2.
Table 11-3.
Table 12-1.
Table 12-2.
Table 12-3.
Table 12-4.
Table 16-1.
Table 16-2.
Table B-1.
Table C-1.

CE38-04

Effect of Shadowing.
Scalar Functions
Mixed Functions.
Operators.
Circular Functions
Default Collating Sequence Array
Identity Values for Scalar Functions
Function Header Syntax
Defined Function Examples.
Displaying and Editing Defined Functions
Screen Editing Control Characters.
Screen Editing Directives.
System Command Summary
Format Specifications.
Default Formatting Symbols

Events Subject to Sidetracking.
Sidetracking Special Action Table
System Variables.
CP-6 APL Terminal Types
Window Column Descriptions.
File I/O Record Types
File Open Options
CP-6 APL File Access Permissions.
Record Field Datatypes and Rules.
Blind I/O Field Rendition Attributes.
Blind I/O Field Input Attributes.

CP-6 APL Character Set
Error Messages

Table of Contents

Page

A-5
A-6
A-7
A-7
A-7
A-7
A-8
A-8
A-8
A-8
A-8
A-9
B-1
C-1
D-1
E-1
E-1
E-3
E-4
E-4
E-5
E-6
E-6
E-7
E-7
E-8
E-8
E-9
E-10
E-11
E-11
E-12
E-13
i-1

3-7
3-14
3-22
3-31
5-11
5-32
5-46
7-2
7-3
7-11
7-18
7-19
8-4
9-1
9-7

10-6
10-9
11-1
11-22
11-40
12-2
12-5
12-12
12-21
16-13
16-14
B-2
C-1

xi

Tabl e E-l.
Table E-2.
Table E-3.
Table E-4.
Table E-5.
Table E-6.
Table E-7.
Table E-8.
Table E-9.
Table E-10.
Table E-11.
Table E-12.
Table E-13.
Table E-14.
Table E-15.
Table E-16.
Table E-17.
Table E-18.
Table E-19.
Table E-20.
Table E-21.
Table E-22.
Table E-23.
Table E-24.
Table E-25.

FIGURES

Figure 2-1.
Figure 6-1.
Figure 12-1.
Fi gure 15-1.
Fi gure 16-1.

xi i

CONTENTS (cont)

Scalar Monadic Functions
Scalar Dyadic Functions.
Relational and logical Functions
Mixed Functions.
Operators.
System Variables
Special Symbols.
Function Header Syntax
Directive Summary.

Defined Function Controls
Error Numbers
Error Control Functions
CP-6 APl System Functions
Shared Variable System Functions.
File I/O Example Names.
Fi Ie Functions.
File I/O Open Options
Text Editing Functions.
l-o-S/Il System Functions
Terminal System Functions
OFHT Format Controls.
Report Formatting Functions
Blind I/O Example Variable Names.
Blind I/O Functions
CP-6 APl Character Set.

Sample APl Session
Summary of Common Formats for Branching.

Fi Ie I/O Component Record Format .
Graphics Output Example
Forms Mode Screen Display

Table of Contents

Page

E-1
E-1
E-2
E-3
E-4
E-4
E-5
E-6
E-6
E-6
E-7
E-7
E-8
E-8
E-9
E-9
E-10
E-10
E-11
E-11
E-12
E-12
E-13
E-13
E-14

2-2
6-4

12-2
15-2
16-15

CE38-04

About This Manual

This manual is organized in the fol lowing manner:

Section 1 presents an overview of CP-6 APL, its features, capabil ities, and
compatibility with the CP-6 operating system.

Section 2 describes the use of APL.

Section 3 describes common elements of APL.

Section 4 describes APL expression evaluation.

Section 5 describes APL primitive functions.

Section 6 describes APL statements.

Section 7 describes APL defined functions.

Section 8 describes system commands and APL workspace concepts.

Section 9 describes APL report formatting.

Section 10 describes APL execution stops.

Section 11 describes system defined functions and variables.

Section 12 describes APL file I/O.

Section 13 describes APL I-D-S/II system functions.

Section 14 describes system functions for manipulating packages.

Section 15 describes functions and variables used in APL graphics.

Section 16 describes blind I/O.

Appendix A contains information on APL parameters.

Appendix B contains a comprehensive list of APL symbols.

Appendix C contains information on error messages.

Appendix 0 contains information on APL's compatibility with CP-V workspace
management, information on APL's compatibility with CP-V file input/output, and
summarizes CP-V APL intrinsic functions.

Appendix E contains a summary of CP-6 APL.

CE38-04 About This Manual xi i i

On-Line HELP Facility

CP-6 APL has an on-line HELP facility. APL users can list syntax formats,
parameters, and function or command descriptions at the terminal. For a list of HELP
topics from the system level (I), enter:

HELP (APL) TOPICS

xiv On-Line HELP Facility CE38-04

Section 1

In trod uction

APL is an acronym for A Programming Language, the language created by Kenneth
Iverson. It is a problem-solving language the symbology of which closely
approximates mathematical notation, making the language extremely attractive for use
by engineers, financial planners, scientists, and statisticians. APL is an
interpretive language designed for use on time-,sharing computers. The term
"interpretive language" means that APL does not wait to receive a complete program
prior to compi I ing each statement into object code and executing it; instead APL
interprets each statement as it is entered and immediately executes it. An answer is
received by the user each time a portion of the total problem is stated.

APL is a powerful language: concise in notation, easy to learn and easy to use. It
has many features that make it attractive for use in business applications where user
interaction and rapid feedback are key requirements. One of APL's major strengths is
its abil ity to manipulate vectors and multi-dimensional arrays as easily as it does
scalar (single) values. FQr example, a matrix addition that might require a number
of statements and several loops in other languages can be accomplished as A+B in APL.
It is this type of simplification which best exemplifies APL's concise power.

This enhanced version of the processor is designed for operation under Control
Program-6 and is hereafter referred to as CP-6 APL. This manual is intended
primarily for use as a reference document by experienced APL programmers. Beginning
APL users may find it useful to consult an APL primer to augment the information
contained in this manual. Three such publ ications are "APL-An Interactive Approach"
by Leonard Gi Iman and Allen J. Rose (John Wi ley Sons, Inc .• New York), "A Course in
APL with Appl ications" by Louis D. Grey (Addison-Wesley Publishing Company, Inc.,
Read i ng, Mass). and "APL Use r' s Gu i de" by Ha r ry Katzan, Jr. (Van Nost rand and
Reinhold Company, New York).

CP-6 APL incorporates a broad range of improvements, including a' number of
improvements that are unavai lable on other APL systems. Some highlights of CP-6 APL
include:

o APL Standards Compatibility

CP-6 APL is a superset of the ISO APL standard.

o On-line and Batch Operation

Complete flexibility of operation is provided. Programs may be developed and
executed in any mode. The batch mode is advantageous for either long execution
times or voluminous output. On-line mode is more advantageous for interactive
program development and moderate amounts of execution time and output.

o Operation from Terminals without APL Characters

APL characters may be represented by combinations of alphanumeric and special
characters in order to 01 low programs to be created or modified on any terminal
supported by CP-6.

o Input/Output Assignment Control

The CP-6 APL system command,)SET, allows the assignment of normal and 'blind'
I/O to files and devices such as line printers or magnetic tapes. It is also
used to establish format control over printed output.

o Formatted Output

Three separate formatting functions are available (monadic ., dyadic ., and OFHT)
to facilitate the preparation of reports and tables.

CE38-04 Introduction 1-1

o File Input/Output

A program-controlled mechanism is provided for file Input/output. Any variable
in an APL workspace may be written to a file and later retrieved for subsequent
processing. permitting an APL program to operate on more data than can be
contained in a workspace. APL entities may also be written as data records
without their APL attributes. and non---APL records can be read.

The CP-6 APL file I/O system operates with all CP-6 file types. File access may
be with numeric keys or character keys. Files may be accessed in shared update
mode. using the CP-6 Enqueue-Dequeue feature to coordinate shared access control.

o Compound Statements

More than one statement can be included on a line using diamonds for separation.
Since an item of a compound statement can be a branch. this feature permits
conditional execution control within a single statement of a function.

o Blind Input/Output

BI ind input/output is a form of device input/output that permits input and output
of character data. It is designed to facilitate the use of screen access modes.
graphics terminals or other special devices with CP-6 APL. Using the)SET
command. blind I/O may be used to create or access sequential fi les or to access
devices such as line printers or magnetic tapes.

o Easy Function Copying

An entire function can be copied simply by changing the name of an already
defined function.

o Replicate

The / function has been extended to permit non-negative integers in the left
argument. The selected items of the right argument are "replicated" the number
of times indicated in the left argument.

o Powerful Function Editor

CP-6 APL permits a range of lines to be specified for display or editing. Within
the range specification. it is possible to request a display of all lines
containing a string or identifier. or to replace al I occurrences of a string with
another string.

o Enhancements to System Commands

o The)SEAL command provides protected workspaces. When)SEAL is executed. the
current workspace is saved with all user functions locked. A sealed
workspace cannot be accessed by other users unless they are running APL. The
workspace owner retains full access.

o The)TERHINAL command allows independent setting of Input and output terminal
translation tables.

o The Quiet commands ()QLOAD,)QCOPY and)QPCOPY) suppress the SAVED message
when loading or copying successfully.

o Options have been added to the lSI command to control function suspension due
to errors.

o The)COPYand)PCOPY commands allow system variables to be copied if named
exp Ii cit I y.

o The)SIL command lists the lines in execution within the state indicator.

o Availability of Other CP-6 Facilities

1-2

A user of CP-6 APL may use other CP-6 processors such as EDIT. PCL. and FORTRAN
from the same terminal during the same session. An APL workspace may pass
commands to a command processor (e.g .• IBEX) and may link to other run units.

Introduction CE38-04

o The Execute Function

The execute function has been extended to allow the execution of system commands.

o Observation of Intermediate Results

The)OBSERVE command permits the user to view intermediate results as APL
executes a statement.

o Single Stepping

The)STEP command is used as a debugging aid. This command causes execution of
one I ine of a defined function. and then immediately suspends execution.

o Catching Assignments

The)CATCH command is a debugging aid which permits the user to catch (or
intercept momentari Iy) every assignment to a named variable immediately fol lowing
each assignment. The assignment is "caught" by means of a function defined by
the user according to their debugging requirements.

o Error and Break Control

CP-6 APL has a faci lity to provide the user with selective and dynamic control
over errors and breaks. Since this faci I ity permits bypassing of standard APL
handl ing of breaks and errors. it is called the "sidetracking" capabi I ity.

o Text Editing Functions

Five system functions are avai lable to facilitate the manipulation of character
vectors in CP-6 APL.

o Shared Variable System Functions

Nine system functions are provided to support the sharing of variables between
the workspaces of consenting CP-6 users. Any CP-6 user may access this facility.

o Defined Function Extensions

A dyadic defined function may be used monadically or dyadically. If used
monadically. the dummy name that references the missing left argument will be
undefined.

o Database Access

System functions are provided to access I-D-S/II databases. AI I of the standard
Codasyl DML functions are provided and they are augmented by unique information
functions tailored to the APL environment.

o Packages

Packages provide the ability to manipulate aggregates containing variables and
functions.

o Extended Error Messages

Additional information concerning an error that APL has detected may be displayed
with the)? command.

o Nested Arrays

Items of an array in CP-6 APL may themselves contain APL arrays. In addition to
extending most existing functions to accept nested arrays. new functions
(enclose. disclose. equivalence. type. first. and depth) and a new operator
(each) have been added. Defined functions. system functions. and derived .
functions are permitted as arguments to operators.

o Vector Notation

CP-6 APL syntax has been extended to provide a simple notation for the entry of
nested arrays.

CE38-04 Introduction 1-3

o Vector Assignment

This mechanism is used to assign each item of a vector to a different name in a
single operation.

o Selective Assignment

This capabil ity al lows items of an array that are selected by an APL expression
to be assigned new values.

o Sorting

The grade-up and grade-down functions have been extended to sort character arrays
and arrays of any rank.

o Least Common Multiple Function

The OR primitive function (v) has been extended to provide the Least Common
Multiple function.

o Greatest Common Divisor Function

1-4

The And (A) primitive function has been extended to provide the Greatest Common
Divisor function.

Introduction CE38-04

Section 2

Using APL

Logging On

The user must first prepare the terminal for use. establish a connection with the
CP-6 system. and then invoke the APL processor. This is done as follows:

1. Connecting to the CP-6 system:

a. Press the number 8 several times unti I CP-6 responds with:

PLEASE TYPE A LEFT PARENTHESIS

b. The system requests that the user enter a left parenthesis. Once a left
parenthesis is entered. a salutation is printed after which the system
requests a logon. At this time a valid logon should be entered. A logon
consists of an account., name. and optional password. separated by commas.
This information is not echoed (printed) on the terminal to provide privacy.

*** CP-6 AT YOUR SERVICE, LADC L66A
14:30 THU OCT 17 'B5 LINE B(L6VI)-14BO
LOGON PLEASE:

c. The CP-6 system will then allow the user to log on to the system with an
attendant greeting. or inform the user of the reason for not logging on.

d. When the CP-6 system prompts wi th !. the user is at the 'IBEX Command
Processor level and may invoke APL by typing APL and pressing RETURN.

Figure 2-1 shows a sample APL session including logon and logoff. as performed from a
Diablo 1620 or equivalent terminal with an APL typewheel.

CE38-04 Logging On 2-1

*** CP-6 AT YOUR SERVICE,LADC L66B
14:00 SAT HAY 22 '82 LINE 8(L6VIl)-1480
LOGON PLEASE:<E+>HYACCT,HYACNAHE<E->

*** SYSIDx 12077 ON LADC L66B AT 14:00z17.71 SAT HAY 22 '82.

!APL
APL C02

CLEAR J/S

A+t8
A

1 2 3 456
A+~A

9 9 9 9 9 9
A,A+A

1 2 3 4 56

) END
!DI

7

9

7

USERS" 37
ETHF .. 1

8

9

8 2 4 6 8 10 12 14 16

90~ RESPONSE < 50 HSECS
HAY 22 '82 14:01

!OFF
CON=00:00:49 EX=00:00:00:18 SRV-00:00:Ol.15 PHHE= 147 CHG-

Figure 2-1. Sample APL Session

General APL Input

.00

The fol lowing paragraphs define the APL character set, APL names, and various
input/output characteristics.

Character Set

One of CP-6 APL's unique characteristics is the richness of its character set. An
APL keyboard normally has 94 printing graphics. All of these are legal characters.
In addition. backspacing may be used to create the following overstrikes. all of
which are legal characters:

A B. C. D. E. C. c[H 1 .J. K £. If fJ. Q f g B ~ 1: fl r (! 1. r Z

Other legal characters are blank (the space bar). tab (the TAB key. treated as one or
more blanks). and carriage return (the RETURN key). Two other characters are also
accepted for control purposes: the <CTL-O> sequence and the BREAK key discussed
below under "Line Corrections during Input" and "Control Keys".

2-2 Character Set CE38-04

Names

Names are used to identify certain CP-6 APL constructs. AI I variables, functions,
groups, workspaces, and statement labels have names; the fol lowing restrictions apply
to these names:

1. All names except workspace names can contain from 1 to 79 characters. Workspace
names can contain from 1 to 31 characters (see Section 8).

2. Names may be composed of letters, numbers, A, underlined letters, underlined At
and underscore.

3. Names cannot begin with a number or underscore.

4. There can be no blanks embedded within a name.

5. A particular kind of name, cal led a distinguished name, begins with O.

Some examples of names are:

~ fArBQ~~ BAl Sl234 TEHPERATURE OPW

User Input versus Computer Output

The user can enter input whenever the carrier or cursor is indented six spaces from
the left margin. As soon as the user has typed any input and pressed the RETURN key,
APL takes control. Characters entered by the user whi Ie APL is processing wi I I be
"stored" until APL has completed processing the previous input, printed any results,
and prompted for more input (usually by indenting six spaces from the left margin).

User input and computer output are easily distinguished. Computer output usually
begins at the left margin whi Ie user input is usually indented six spaces. For
example:

)DIGITS 2
liAS 10

0.33

4

2

3+9

2+2

4+2

Everything at the left margin in this example is printed by APL. while everything
which is indented is typed by the user.

Line Corrections during Input

A line can be corrected during input as long as the RETURN key has not been struck.
Simply strike the RUBOUT key, to delete characters up to the error and enter <ESC> R
to retype the correct portion of the line. Then proceed with the entry of the line.
For example. suppose the user mistakenly types 30-20 instead of 30+20. The user can
correct this as fol lows:

50

30-20\\\<R>
30+20

CE38-04

enter three RUBOUTS and <ESC> R
the system displays 30; user enters +20
system responds with 50.

Line Corrections during Input 2-3

Perhaps the simplest line correction method is to delete al I of the input with the
control X character. Another correction method can be employed if the user discovers
that a character has been omitted. As long as the RETURN key has not been struck.
the user can simply backspace to where the character is to be inserted (or enter
<ESC> V followed by the character at which to position). enter <ESC> J. and type it.
For example. suppose the user types the fol lowing I ine and notices that one left
parenthesis is missing:

(10H)*2)+(20H)*2

By simply backspacing and typing the required left parenthesis. the user can enter

«10H)*2)+(20H)*2

This illustrates that it is not always necessary to enter characters in order. The
user can leave blanks in a line, then backspace and fi I I them in. As a rule. APL
interprets what the user sees at the terminal; this is known as visual fidelity. For
more information on standard CP-6 input line editing, see the CP-6 Programmer
Reference Manual (CE40).

Execution and Definition Modes

From the user's viewpoint. CP-6 APL operates in two modes, execution mode and
definition mode. In execution mode, the processor responds to each line of input by
taking a specified action or by performing requested calculations and printing a
result. In the fol lowing printout. for example, the first I ine is a system command
that causes the processor to take some action and to respond with a message. and the
third line (3+9) performs a calculation, printing the results on the fourth line:

)DIGITS 2
WAS 10

3+9
0.33

System commands can be entered during execution or definition mode. Calculations are
performed only in execution mode.

In definition mode. statements (that is, calculations) are saved as part of a defined
function instead of being executed immediately. System commands issued in this mode.
however. are executed immediately. After functions are defined, they can be
referenced in other defined functions or in statements entered in execution mode.
The user must type the del symbol v to begin definition mode, and another V to return
to execution mode. See section 7 under Defined Functions, for a detailed description
of definition mode.

Prompts

CP-6 APL has four ways of prompting for (that is, requesting) input: direct line
prompt, function line prompt, evaluated input prompt, and quote-quad prompt. These
are described below.

2-4 Prompts CE38-04

Direct-Line Prompt

When APL is ready for user input rn immediate execution mode. it automatically moves
six spaces in from the left margin. This is a signal to the user to enter a
statement or system command. Direct-line prompts are shown in the following example:

4

2

2+2

4+2

In this example. APL indented six spaces to prompt for user input. and the user
entered the statement 2+2. The processor then printed the result of the calculation
at the left margin. moved to the next line. and again indented six spaces to prompt
for more input.

Function-Line Prompt

Within definition mode (that is. when a function is being defined) CP-6 APL prompts
for user input by printing a line number in brackets at the left margin. After
printing the line number. it moves three spaces to the right and waits for user
input. As an example. look at the following portion of a function definition:

VSQUARE
[1) A+(BXB)
[2)

In this example. the user entered a function header (VSQUARE). and APL typed the [1]
and moved three spaces to the right to prom~t for user input. The user then entered
the statement A+(BXB). and APL typed the [2J to prompt for more user input. This
continues until the user ends the function definition with another del symbol V.

Quad Prompt

The quad symbol 0 can be used in a statement to indicate evaluated input. When APL
encounters the quad on execution of the statement. it halts and requests input by
printing the symbols 0:. moving to the next line. and indenting six spaces. The user
can enter any valid APL expression. This expression wi II be evaluated. and its value
substituted for the quad contained in the statement. Execution of the statement then
resumes. Examples of the quad prompt are shown below:

A+O+B
0:

7x2X4
A

7
A NSWER+O

0:
'YES'
ANSWER

YES

CE38-04 Quad Prompt 2-5

Quote-Quad Prompt

The quote-quad symbol ~ (a quote symbol overstruck with a quad) is used to enter
character data. It is executed similarly to the quad symbol except that nothing is
printed to signal the user. and no six-space indentation takes place. The user
enters character data without enclosing it in quotes. For example:

YES

YES

At+~

At

Comments

Comments can be written on separate lines or can follow (that is, be tacked onto)
statements. They may be included on any line except a system command line or a
function edit control line. To enter a comment. type the symbol ~ and follow it with
the comment. This symbol is produced by typing a n symbol (upper shift C) and
overstriking it with a 0 symbol (upper shift J). Any valid APL characters may appear
to the right of the ~ symbol. The ~ and any characters to the right are ignored in
APL expression evaluation. but will be printed if the line is displayed. Examples of
comments are shown below:

~ THIS IS A COHHENT.

A+BxB ~SET A = B-SQUARED.

[3) X+Y+5 ~ COHHENT: X IS SET TO Y+5

Control Keys

The BREAK key is used to interrupt execution or stop a lengthy display on the
termina I.

Statements and System Commands

Each completed line of input in CP-6 APL is classified as either a statement or a
system command. Statements specify the operations to be performed by APL. such as
calculations. branching. and assignments of values or expressions. Some examples of
statements are:

4+2
B+A+2
+START
vA PLUS B

(3) 'ENTER VALUES FOR A'

System commands are used to communicate directly with the APL system itself. They
are concerned primarily with the mechanical aspects of the processor. such as logging
on and off, saving. loading. and deleting workspaces. System commands always begin
with a right parenthesis. A few examples of system commands follow:

)SAVE NEWJOB
)LOAD OLDJOB
) END
)DIGITS

Statements and system commands are described in detail in sections 6 and 8.
respectively.

2-6 Statements and System Commands CE38-04

Variables and Functions

Data (numeric or character) can be assigned a name and stored in the active
workspace. The name and the associated value are collectively known as a variable.
The value may be a single data item (scalar) or a group of data items (array). and
may be changed as needed during the course of a program. Examples of assignments of
variables are shown below:

A+5
B2+1 2 3
ABC+5+4
B3+A+B2

Some character symbols indicate that basic APL operations. such as addition or
multipl ication. are to be performed. These symbols are cal led primitive functions.
Functions can be monadic (have one argument) or dyadic (have two arguments). Some
examples of functions are:

x
+
r

The domain and range of function arguments and a I ist of all the functions are
presented in Section 3 under Primitive Functions. Section 5 is devoted to a detailed
discussion of each function.

Defined Functions

In addition to the primitive functions. APL permits users to define new functions.
name them. and store them in a workspace. Defined functions can then be referenced
by name in subsequent statements. either as programs by themselves or as mathematical
operations used in a formula. To define a function. the user enters it statement by
statement whi Ie APL is in definition mode. This mode begins when the user types a
del symbol v and ends when another v is typed.

CE38-04 Defined Functions 2-7

Section 3

Common Elements in APL

Constants

Constants are either numeric or character.

Numeric Constants

Numeric constants can take the form of integer or real numbers. An integer is a
whole number, requiring neither decimal point nor exponential form. A real number is
a number, usually with a decimal point, expressed in either exponential form or
decimal form. The user need not generally be concerned with whether a number is
integer or real, or exponential or decimal, since APL automatically takes care of any
necessary conversions. The representation of numeric data is accomplished with the
following characters:

o 1 2 3 4 5 6 7 B 9 . - E

The numbers are the ordinary keyboard digits, and the decimal point is the keyboard
period. The - character, called the negative sign, is found over the digit 2 on an
APL keyboard and is used to indicate negative numbers. It should be distinguished
from the - character, which is found over the + symbol and is used for subtraction.
The negative sign is only valid for numeric constants; it is not valid in any other
context. The E is the letter E on the keyboard and is used to indicate an exponent.
Embedded blanks, commas, and other punctuation are not al lowed in APL numbers.

APL ignores leading and trailing zeros, 80 that the user need enter only the parts of
numbers required for calculations. Thus, there is no need for the user to enter data
as all integer or all fractional. For example, the number one may be entered as
1.00, 001.0, 1, etc. Examples of numeric constants entered in decimal form are shown
below:

10.55

0.34

5 + 5.55

6.8 -:- 20

The negative symbol (-) can be used only with a numeric constant to indicate a
negative number; it can never be used with a name. The symbol immediately precedes
the applicable number; that is, no blanks are al lowed between the symbol and the
number. The use of the negative symbol is shown below:

-2
-2 -,. + -5
-9 ,. - -3
7

It is often easier to enter very large numbers in exponential form rather than
decimal form. Exponential representation is written as a number. followed by E,
followed by an integer indicating a power of 10. (E can be interpreted as "times 10
to the following power".) The exponent (the number following the E) can be a
positive or negative number. Following are some examples of numeric data in
exponential form:

CE38-04 Numeric Constants 3-1

APL Exponential Notation

.99E5

Mathematical Notation

14
-8.37)(10

-6
4.2)(10

5
.99)(10

-60
3.8)(10

The maximum and minimum magnitude representable numbers in CP-6 APL are
approximately:

8.379879956E152

4.661462957E-156

Note that non-integer values are handled internally as "double precIsion floating
point" numbers. Fractions that are representable exactly in decimal notation. such
as .1. are not exactly representable in this internal form. In some instances, this
wil I cause results of operations to deviate from expected results. particularly if
the anticipated result is ~isplayed to 20 decimal places or is a value near zero.

Character Constants

Character constants are enclosed in quote symbols and can contain any keyboard
character including legal overstrikes and the space character. The quote symbols are
used to distinguish a character constant from a number. the name of something. or a
constant in the language. They are not printed in the display of the literal. For
example:

?

A+'?'
A

In this example. the name A has been assigned the value of a character constant.

Vector Notation

When two or more values appear together separated by one or more blanks. a vector is
formed. The vector that is formed has the properties of length (the number of
items). type (numeric. character or nested). and rank (vector). Some examples of
numeric vectors are:

1 1 3
1 2.5 -726E12

Character vectors may be formed either as a series of character scalars with each
item enclosed in quotes. or by enclosing the entire string in quotes. For example:

'H' 'I' " 'T' 'H' 'E' 'R' 'E'
HI THERE

'HI THERE'
HI THERE

Both character vectors are equivalent. If a quote is to be used within text. it must
be represented by two quotes. The use of the quote character is shown below:

A+'THE "a" CHARACTER IS USED FOR COHHENTS.'
A

THE 'a' CHARACTER IS USED FOR COHHENTS.

3-2 Vector Notation CE38-e4

Character arrays may be generated. compared for equality. indexed and catenated just
like any other arrays.

A character constant may contain one or more carriage returns. If a carriage return
is entered before the closing quote is given. APL will automatically type the closing
quote at the beginning of the next I ine to indicate that a closing quote is required
to end th is st ring. If the constant is to be extended. a RUBOUT may' be entered to
delete the closing quote.

Parentheses may also be used to separate items in vector notation. For example:

A+1(2)
A+(1) 2
A+(1) (2)

The three examples above are al I equivalent ways of forming the two item vector 1 2.
Multiple blanks and extra parenthesis are also always permitted:

A+19 20
A+«19» « (20)))

The use of parenthesis in vector notation is used to produce a single item out of any
array that they enclose. The parenthesis may also enclose any array. For example:

SALES

A+('YEAR') 1983 ('SALES') (2619 5250)
A[3J

In this example, vector notation has produced a four item vector which contains the
vector 'YEAR' as the first item, the scalar 1983 as the second item. the vector
'SALES' as the third item. and the numeric vector 2619 5250 as the final item.
Parentheses are not required around character vectors because the enclosing quotes
are already grouping them. For example:

A+'YEAR' 1983 'SALES' (2619 5250)

This example produces the same four item vector as the previous example.

Names

AI I of the fol lowing constituents of the APL language have names (sometimes known as
identifiers) so that they may be easily referenced: variables. functions. groups.
statement labels. and workspaces.

Name Format

A name can include only letters. the letters underscored, digits. At At and _
characters. A name cannot start with a digit or an underscore. Distinguished names
fol low the other rules for names. but always start with a single 0 character.

Lengths of names may vary, depending on their use. The names of variables,
functions, groups, and statement labels can be of any length up to 79 characters.
Workspace names (also known as fids in CP-6 APL) can be up to 31 characters in
length.

CE38-04 Name Format 3-3

Nanna Usage

The uses of APL names are described below:

1. A variable refers to the name given to scalar or array values by the assignment
symbol (the character '+') described later in this section under Assignment.

2. Defined function names are treated briefly latei in this section under Function
References. and in detai I in Section 7. Defined Functions.

3. A collection of names can be referenced using groups. Included in the group can
be the names of variables. functions. and other groups (see the)GRP command in
Section 8).

4. A label is given to a statement within a user-defined function so that it may be
referenced by other statements of that function. Statement labels are used as
branch reference points.

5. A workspace name is used to identify an active workspace so that it can be saved
and later recal led. Workspace names are referenced in system commands which are
described in Section 8 (also see item 8).

6. A password is assigned to a workspace or file to prevent other users from
accessing it. The password must always be used in order to access the workspace
or file. Passwords are described in Section 8 (also see item 8. below).
Passwords may contain any characters.

7. An account is the identifier of a recognized user's account. The account must be
specified when logging on to the CP-6 system and when accessing a workspace or
file in another user's account. The use of accounts is described in Section 8
(also see item 8. next). Accounts may be, but are not restricted to. letters or
digits.

8. In CP-6 APL. a saved workspace is a CP-6 file. A file identifier (fid) refers to
the information needed in a system command to save a workspace or to reference it
after it has been saved. A file identifier takes the following form:

workspace[.[acct][.[password]]]

where

workspace is the name assigned to the workspace. or file. It can consist of
up to 31 characters from the set A-Z, A-i, -, :, _, $, and 0-9.

acct is the identifier of a recognized user's account. It can consists of up
to eight characters from the set of accounts authorized by the installation
manager.

password is assigned to a workspace. or file. in order to restrict user
access. It can consist of up to eight characters.

The bracketed items in the above form indicate optional items. File identifiers
are used in the following system commands, all of which are described in Section
8:)LIB,)COPY,)DROP,)LOAD,)PCOPY,) QCOPY ,)QLOAD,)QPCOPY,)SAVE,) SET , and
)WSID.

Accounts and Passwords may include any characters except the period. comma.
semicolon, or embedded blanks.

For further information on file identifiers, see the the documentation on the
command processor IBEX in the CP-6 Programmer Reference Manual (CE40). Set names
and serial numbers are also discussed there.

Name Usage CE38-04

Variables

A variable must be assigned a value before it can be used. The value assigned can be
numeric. character. or nested and can be a scalar or on array (a vector. a matrix. or
a higher-order array). The user can display the value of a variable at any time
simply by typing the variable name. Examples of the assignment and use of variables
are shown below:

A+2
B+2 345
A+B

4 5 6 7
C+4 5pt,20
C

1 2 3 4 5
6 7 8 9 10

11 12 13 14 15
16 17 18 19 20

D+B+2
D

1 1.5 2 2.5

A variable can be respecified at any time simply by assigning a new value to the
variable name. The most recent value specification replaces any previous value. For
example. notice the following:

ABC+1
ABCXO 2 3 4 5

02345
ABC+2
ABCxO 1 2 3 4 5

o 2 4 6 8 10

In this example. ABC is first assigned a value of 1 and calculations are performed
with that value. The variable ABC is then assigned a value of 2 and the calculations
are performed using this new value.

Another way of respecifying a variable value is to decrease or increase its value by
a certain amount. For example. suppose variable A has a value of A has a value of 2
and the use r want to inc rease th is va I ue by 1. Th is can be accomp I i shed as fo I lows:

3

A+A+1
A

Notice that the calculation 2+1 is performed first. and then the result 3 is assigned
to a variable A. This type of operation is particularly useful for setting up a
counter to test the number of occurrences of an event. such as the number of passes
through a program loop. Each time through the loop the counter can be increased or
decreased by 1 and then tested against a desired value to determine further action.

Local and Global Variables

Local variables exist while user-defined functions (Section 7) are active, that is,
while the function is pendent or suspended. Local variables, described below, are
classified as follows:

o Dummies
o Result
o Locals
o Labels

Dummies, result, and locals are Indicated by their presence in the header of a
defined function. Labels are indicated on statements within a defined function.

CE38-04 Local and Global Variables 3-5

At a given point in time if a variable is not local. it is global. It is possible
(in fact useful) to allow global variables to be identified by the same name as local
variables (or local variables for one function to use the same name as local
variables for another function). fhis concept is useful in APL because it 01 lows a
defined function to be formed without regard to name conflicts. Its local variables
are totally independent· of any previously assigned variables. Furthermore. if the
function cal Is itself. a new set of variables exist independent of the original local
variables. As each such function cal I exits (that is. becomes inactive again). the
current set of local variables disappear and the earlier values associated with their
names once more become accessible.

When a function cal I occurs. its local variables are said to "shadow" previous
definitions for the names used by the local variables. Shadowing can be repeated
extensively as functions are cal led. A~ the,se functions exit. their shadowing effect
is removed. Only globals will exist when no function is active. Global variables
also exist if their names are not shadowed by any currently active functions (for
example. the local variables use unique names) .. Shadowing is illustrated in Figure
3-1.

Local Variables

The fol lowing local variables are named in a function header: result. dummies. and
locals. These are 01 I optional; a function is not required to use any local
variables. Notice the fol)owing example:

VR+Y F X;A;B;C

In this example. the function F names the following local variables in its header
line:

R (result) - note that R is followed by a + symbol. which designates that R is the
result name.

X (dummy) - one name to the right of F separated by blanks(s). designates the right
dummy. When F is cal led. the right argument·s value is automatically assigned to
local variable X.

Y (dummy) - one name to the left of F, separated by blank(s). designates the left
dummy. When F is called. the left argument·s value is automatically assigned to
local variable Y.

A, B, and C (locals) - note that each local name is preceded by a semicolon.

The remaining type of local variable is the label. Its name appears in a function
line as in the example below.

(3) L:Q THIS LINE IS LABELED.

Notice that the label's name. L, fol lows the line number. [3]. and is in turn
followed by a colon. Although labels are classified as local variables. it is more
appropriate to consider them local constants. They cannot be assigned values; that
is. the fol lowing expression is a syntax error when L is a label:

L+4

The value of a label is the line number of its function line (which cannot change
during execution of the function).

The example in Table 3-1 illustrates the effect of shadowing as functions F1 and F2
become active and inactive.

Local Variables CE38-04

Table 3-1. Effect of Shadowing

Example Description

)CLEAR
CLEAR WS

V+'V-GLOBAL' Set V. W. X. Y
W+'W=GLOBAL' to be global variables.
X+'X=GLOBAL'
Y+' Yfl:GLOBAL'
V Fl;X;Y

(1 J ' •••• • Fl CALLED ,
(2J V
(3J W Define F1. naming X and
[4J ,X+'X=LOCAL (Fl)' Y as its locals.
(5J ,Y+'Y=LOCAL (Fl)'
(6J F2 A CALL F2
(7J ' ••••• Fl EXITS 'v

VF2;W;X
(1] , •••• • F2 CALLED ,
(2] V
(3) ,W+'W=LOCAL (F2)'
(4) ,X+'X=LOCAL (F2)'
(5] Y
(6) , •••• • F2 EXITS 'V

V W X Y
V-GLOBAL W=GLOBAL X=GLOBAL Y=GLOBAL

F2
.... . F2 CALLED

V=GLOBAL
W-LOCAL (F2)
X-LOCAL (F2)
Y-GLOBAL
.... . F2 EXITS

V W X Y
V-GLOBAL W-GLOBAL X=GLOBAL Y-GLOBAL

F1
.... . Fl CALLED

V-GLOBAL
W=GLOBAL
X-LOCAL (Fl)
Y=LOCAL (Fl)
... .. F2 CALLED

V-GLOBAL
W=LOCAL (F2)
X-LOCAL (F2)
Y-LOCAL (Fl)
.... . F2 EXITS
. F1 EXITS ...•..

V W X Y
V-GLOBAL W-GLOBAL X-GLOBAL Y=GLOBAL

Define F2. naming W
and X as its locals.

Verify V. W. X. Y.

Call F2.

V and Yare sti I I global.
Wand X are local to F2.

V. W. X. Yare global again.

Call F1.

V and ware stil I global.
X and Yare local to F1.

F1 ca II s F2.

V is sti I I global.
Wand X are local to F2.
Y is ati II local to F1.

V. W. X. Yare again global.

CE38-04 Loca I Va r i ab I es 3-7

Arrays and Indexing

As mentioned earlier, a variable may represent a scalar or an array. A scalar is
always a single item, an item being a character, number, or nested array. One
example of a scalar is:

33

SCLR+33
SCLR

Although an array may be made up of more than one item, it can also consist of a
single item or even no items. An array with no items is cal led an empty array.

In addition, arrays can be classified as vectors, matrices, or higher-order arrays.
A vector is an array of one dimension, and is displayed as a collection of items
arranged on one I ine. As a typical example, notice the vector named VECT which has
four items:

VECT+5 7 9 11
VECT

5 7 9 11

A matrix is an array with two dimensions, (a dimension is sometimes cal led a
coordinate) and is displayed as a collection of items arranged in a rectangular
pattern. An example of a two-dimensional matrix, named HAT, is shown below:

HAT
12345
6 7 B 9 10

11 12 13 14 15

Notice that this matrix has three rows and five columns. It is two-dimensional
because it is made up of rows and columns.

A higher-order array is an array with three or more dimensions, displayed as a
collection of items in a set of rectangular patterns. An example of a higher-order
ar ray is:

CUBE
1 2 3 4 5
6 7 B 9 10

11 12 13 14 15

16 17 1B 19 20
21 22 23 24 25
26 27 2B 29 30

This higher-order array is three-dimensional. It has two planes, and each plane has
three rows and five columns.

The user can find out if a variable is a scalar, a vector, a matrix, or a
higher-order array by using pp to test for the rank (that is, number of dimensions)
of the variable. For example, testing the previous variables SCLR, VECT, HAT, and
CUBE wi II give

o

2

3

ppSCLR

ppVECT

ppHAT

ppCUBE

A 0 indicates a scalar, a 1 indicates a vector, a 2 indicates a two-dimensional
array, a 3 indicates a three-dimensional array, and so on, up to a maximum of 62
dimensions.

3-8 Arrays and Indexing CE38-04

The user can also determine the size of each dimension in an array (that is, the
"shape" of the array) by using p. For example, testing the same variables SCLR, VECT,
HAT, and CUBE wil I give

pSCLR
pVECT

4
pHAT

3 5
pCUBE

2 3 5

Since a scalar has no dimensions, p of a scalar produces an empty (vector) result;
nothing is displayed (other than the next input prompt). The above example confirms
that SCLR is a scalar (no dimension); that VECT is a vector with four items; that HAT
is a two-dimensional matrix with three rows and five columns (15 items); and that
CUBE is a three-dimensional array with two planes, each with three rows and five
columns. One other situation should be noted, p of on empty vector wil I return the
value zero, and p of on empty array wil I return one or more zeros depending on which
dimension or dimensions have length zero.

Indexing of Arrays

Items in an array can be referenced by their positions within the array. The
position number is called an index. The index can also be used for several items.
and to index other indexed arguments. The following topics are discussed in this
subsection:

o Referencing a Single Item
o Referencing More Than One Item
o Assigning a Value to on Array
o Indexing an Indexed Argument

Referencing a Single Item

An item in an array is referenced by its position within the array. which is
indicated by one or more numbers col led indexes. One number is used as the index of
on item in a vector array; two numbers. as the index of on item in a two-dimensional
matrix; three numbers. as the index of on item in 0 three-dimensional array; and so
on, with one number for each dimension.

The indexes of all arrays start with 0 or 1. depending on the index origin. When the
user first enters APL. the index origin is 1 by ~efault. It can be set to 0 by
assigning the 010 system variable to O. and reset to 1 by reassigning the 010
variable to 1.

V+'ABCDE'
010+1
V[2J

B
010+0
V[2J

C
V[lJ

B
010+1

The indexes of a two-dimensional matrix also start with 0 or 1. depending on the
index origin. but two numbers are used in each index. The first number selects the
items from a row. and the second number selects the items from a column. The indexes
are ordered with the rightmost position varying the fastest. then the next rightmost.
and so on. For purposes of illustration. consider the matrix named HAT3:

HAT3
3 1 11 2 12

13 15 4 B 14
6 10 7 9 5

CE38-04 Indexing of Arrays ~9

The indexes for this matrix. with index origin 1. wil I be

[1;1]
(2; 1]
(3; 1]

(1;2)
(2;2)
(3;2)

(1; 3)
(2;3)
(3;3)

(1; 4)
(2;4)
(3;4)

(1;5)
(2;5)
(3;5)

Thus HAT3(l;l) is 3; HAT3(l;2) is 1; HAT3(l;3) is 11; HAT3(l;4) is 2; and so on.
Notice that semicolons must be used to separate the numbers of each dimension.

An item in an array of more than two dimensions is selected in the same way as an
item of a two-dimensional array. except that more numbers are included in the index.
An index contains one number for each coordinate of the associated array. For
example. consider the following three-dimensional array:

HAT4
1 4 14 7

15 13 2 B

11 12 6 16
5 3 9 10

To reference the value 8 in this array. one uses the index HAT4[1;2;4), where 1
denotes the first plane. 2 denotes the second row. and 4 denotes the fourth column.
Notice that each additional coordinate always adds a number to the beginning of an
index. The rightmost number of an index always refers to a column; the next
rightmost to a row; the next rightmost to a plane; the next to a panel of planes; and
so on.

Referencing More Than One Item

To reference items within an artay. simply include the index of each desired item in
brackets after the array name. For example. notice the following vector:

To select the items 5, -1, and 3 from this vector (assuming an index origin of 1).
one uses the expression A(l 3 4) as shown here:

A[l 3 4)
5 -1 3

Other examples of referencing several items in vector A are shown below. Notice in
the second example that indexing can be used to create larger and differently shaped
arrays:

A(1 1 B B B)
554 4 4

A(3 21)1 3 4 2 6 5)
5 -1
3 4

-2 9

There are a variety of ways to reference several items in a matrix. Consider the
following matrix:

HAT5
1 10 9 B 11
2 15 4 5 6

15 3 12 13 7

Examples of referencing several items in this matrix are shown below. These examples
assume an index origin of 1.

HAT5(l;4 5 2)
B 11 10

HAT5(l 2;)
1 10 9 B 11
2 15 4 5 6

HAT5(l 2; 1 2 3 4 5)
10 9 B 11

3-10 Indexing of Arrays CE38-04

2 15 4 5 6
HAT5[l 2 3;4]

8 5 13
HAT5(1 2;4 5]

8 11
5 6

HAT5(;2 4)
10 8
15 5
3 13

HAT5[1 2 3;2 4)
10 8
15 5
3 13

In fact, the shape of the indexing result has a rank equal to the shape of each of
the index expressions joined together. If an index expression is elided, the result
shape has the length of the elided coordinate inserted.

Several items in a three-dimensional array are referenced similarly to a matrix,
except that the third coordinate must also be added to the index. Consider the
fol lowing three-dimensional array:

HAT6
12345
6 7 8 9 10

11 12 13 14 15
16 17 18 19 20

Examples of referencing several items in this array are shown
below. These examples assume an index origin of 1.

HAT6[1;2;5J
10

HAT6(;2;)
6 7 8 9 10

16 17 18 19 20
HAT6(;2; 1 3)

6 8
16 18

HAT6(1 1 2; 1 2 1;1 2 4)
1 2 4
6 7 9
1 2 4

1 2 4
6 7 9
1 2 4

11 12 14
16 17 19
11 12 14

Assigning a Value into an Ar ray

One or more items in an already existing array can be assigned values via the
assignment symbol +. The user simply places the variable name and the index
designation to the left of the symbol, and the new value to the right. Examples
fol low, all of which assume an index origin of 1.

Example of vector:

CE38-04 Indexing of Arrays 3-11

V+3+t.10
V

4 5 6 7 8 9 10 11 12 13
V[1 3 5)+1 0 1
V

5 0 7 1 9 10 11 12 13
V[l 3 5 7 9)+0
V

0 5 0 7 0 9 0 11 0 13
WHOOPS+V[)+2
V

2 2 222 222 2 2
WHOOPS

2

Example of matrix:

HAT7+2 5pt.10
HAT7

1 2 3 4 5
6 7 8 9 10

HAT7(2;5)+0
HAT7

1 2 345
6 7 890

HAT7 (1 2;3 5)+-1
HAT7

1 2 -1 4 -1
6 7 -1 9 -1

HAT7(;)+2
HAT7

2 2 2 2 2
2 2 2 2 2

Notice from examples above (HAT6(;2;). V()+2. and HAT7[;)+2) that if an index
position is not filled. all index values for that position are assumed to be
applicable. Assigning a new value to an indexed variable does not change the rank or
shape of the variable. it merely changes some items in the variable.

The value that is assigned to a variable or indexed variable is also the "result" of
the assignment. This is illustrated by the example WHOOPS+V()+2. Since V is a
10-item vector. all 10 index values received the value 2. But the result as far as
the assignment operation is concerned is the scalar 2. Thus. WHOOPS becomes a scalar
variable having the value 2. When analyzing APL expressions. it is helpful to
imagine that assignments are "invisible". For example.

3+H(;4)+5

can be analyzed as if the assignment were not present. i.e .•

3+ 5

making the result (8) apparent.

Indexing an Indexed Argument

In APL. an indexed argument may itself be indexed. For example:

A[1;)(2)

which is equivalent to the expression (A(1;)[2) and is interpreted as follows.
Obtain the first row of matrix A. This row temporarily forms a vector. call it T.
whose length is the number of columns originally given for A. Select the second item
from vector T. and (in this case) display the value of that item.

Only arguments can be followed by multiple indexes. Specifications and coordinates
cannot; thus the following is a syntax error:

A[1;)(2)+X
LINESCAN ERR A

3-12 Indexing of Arrays CE38-04

The user instead is advised in this case to use

A[1;2]+X

Functions and Arguments

APL expressions are derived from three fundamental entities: operators. functions.
and values. Functions may be formed by the user (see section 7 under Defined
Functions) or are included as an inherent part of the language. In the latter case.
they are cal led primitive functions. Most primitive functions are represented by a
single character. A general treatment of these functions is given in this section;
for a detailed treatment. see Section 5. APL Functions.

Operators usually take APL functions as arguments and return a new (or derived)
function. The derived function typically applies the function arguments to the value
arguments in an operator defined order. Examples of APL operators include axis.
inner product. and outer product.

Values are APL arrays and have certain attributes: type. rank. depth. and length or
shape. The domain of an array may be character type. numeric type. or nested type.
There are three numeric domains: logical. integer. or real; however. the user seldom
needs to be concerned with this distinction. Logical data represents l's or 0's and
is stored in bit form. Integer data represents positive and negative numbers (using
neither decimal point nor exponential form) whose range is limited to the size of one
computer word. Real data is stored in doubleword form (that is. in floating-point
form). Text or character data is stored in byte form. The nested domain type can
have an array item which contains other APL arrays or both character and numeric data
items. If a numeric argument contains numbers that could fit in more than one
domain. it is made to uniformly contain numbers in the largest size domain necessary.
Thus the fol lowing vector argument has integer domain since that is necessary to
represent the 2:

o 102

The rank of an array is the number of its dimensions (or coordinates). A scalar has
a rank of zero. a vector has a rank of one. a matrix has a rank of two. and so forth.
The maximum al lowed rank in CP-6 APL is 62.

The length of a vector is its number of items or components (zero for an empty
vector). The shape or dimension of an array (including a vector) is an ordered
vector containing the lengths of its coordinates. Single-item vectors and
single-item arrays of higher order (for instance. all 1 reshape of 5 is a
single-item three-dimensional array) are not equivalent to scalars but may be used
interchangeably with scalars in many operations. Vectors and arrays of higher ranks
may also be ·empty·. This is the case when the length of a coordinate is zero.

The depth of an array indicates the maximum level of nesting of items within the
array. A simple scalar character or number has depth 0. An array containing only
simple scalar character or scalar numeric items has depth 1. An array containing
items of depth 0 and 1 has depth 2. In general. an array containing items of depth
less than or equal to N has a depth of N+1. Simple arrays have depth 0 or 1. Nested
arrays have depth 2 or more.

Functions are classified as monadic or dyadic according to the number of their
arguments. A monadic function has one argument to the right of the function. A
dyadic function has two arguments. one to the right of the function and one to the
left .

In many cases. the same function can be used both monadically and dyadically. but the
resulting functions are different. although usually related in a natural way. Each
function has its own domain. rank. and length or shape requirements, and the result
of a function may have a new set of these characteristics.

CE38-04 Functions and Arguments 3-13

Axis Operator

Certain functions are coordinate-dependent. For example, a matrix rotation can occur
about the first coordinate (rotation of rows) or about the second coordinate
(rotation of columns). For such functions, the user has the option of specifying
this coordinate in the form of a bracketed expression to the right of the function.
The value of this expression must be an integer of appropriate range. These
coordinate specifications are called the Axis operator. The Axis operator takes the
coordinate specified and the function to its left and creates a new "derived"
function which operates on the requested coordinate. The following functions may use
a coordinate specification:

Reduction
Reversal
Rotation
Scan

Compression
Expansion
Catenation

Enclose
Disclose

NOTE: Catenation may also use a fractional coordinate specification. This form of
catenati·on is called lamination. Enclose and disclose permit the
specification of a vector of axes.

APL Functions and Operators

Tables 3-2, 3-3, and 3-4 include summary information about Scalar Functions, Mixed
Functions and Operators, respectively. Each table lists dyadic and monadic
operations, if any, and gives simple examples. For a detailed description of these
functions and operators, see Section 5.

Scalar Function Sunmary

Scalar functions are pervasive. That is, when they are applied to nested arrays, the
function is applied to every numeric and every character scalar in the array.

Table 3-2. Scalar Functions

Function Usage

+

Monadic - Conjugate:

Leaves argument unchanged. Example:

+10
10

Dyadic - Add it ion:

Adds two arguments. Example:

10+20
30

3-14 Scalar Function Summary CE38-04

Function

x

CE38-04

Table 3-2. Scalar Functions (cont.)

Usage

Monadic - Minus:

Negates the argument that fol lows it. Example:

-(10+5)

Dyadic - Subtraction:

Subtracts the right argument from the left argument.
Example:

10-5
5

Monadic - Signum:

Returns -1, 0, or 1, depending on whether its argument is
negative, zero or positive. Example:

Dyadic - Multiplication:

Multiplies the left argument by the right argument.
Example:

10x15 150
150 1500

Monadic - Reciprocal:

Divides 1 by the value of its argument. Example:

+1 3 5
1 0.3333333333 0.2

Note that this is equivalent to the dyadic use:

1+1 3 5.

Dyadic - Division:

Divides the left argument by the right argument.
Example:

10+5 2 1 .5
2 5 10 20

Scalar Function Summary 3-15

Function

*

3-16

Table 3-2. Scalar Functions (cont.)

Usage

Monadic - Exponential:

Raises e (i .e .• the base of the natural logarithms.
having the value of approximately 2.71828 ...) to the
power of its argument. Examples:

*1
2.718281828

*10
22026.46579

*2.2
9.025013499

Dyadic - Exponentiation:

Raises the left argument to the power indicated by the
right argument. Examples:

10 10 2*2 10 3
100 1E10 8

Monadic - Natural logarithm:

Computes the natural logarithm of its argument (that is.
log base e of the argument). Examples:

'1 o
'2

0.6931471806
'3 10

1.098612289 2.302585093

Dyadic - logarithm:

Computes the logarithm of the right argument to the base
indicated by the left argument; that is. computes the
power to which the left argument must be raised to equal
the right argument. Examples:

10'100
2

10'1 10 100 1000
0 1 2 3

2'4
2

2'1 2 ,. 8
0 1 2 3

Monadic - Floor:

Returns the greatest integer less or equal to its
arguments. Examples:

l 10.7
10

Scalar Function Summary CE38-04

Function

CE38-04

Table 3-2. Scalar Functions (cont.)

Usage

Dyadic - Minimum:

Compares two arguments and returns the value of the
smaller argument. Examples:

2

398

332

5L2

9L3 11 8

4 3 2L3

Monadic - Ceiling:

Returns the least integer greater than or equal to its
argument. Examples:

r 10.1
11

Dyadic - Maximum:

Compares two arguments and returns the value of the
larger argument. Examples:

5
9r3 11 8 -2 10

9 11 9 9 10

Monadic - Absolute value:

Returns the absolute value of its argument. Example:

10

Dyadic - Residue:

Returns the remainder from dividing the right argument by
the left argument. Examples:

214
o

5115 16 11 18
o 123

2 311
1 1

Scalar Function Summary 3-17

Function

o

3-18

Table 3-2. Scalar Functions (cont.)

Usage

Monadic - Generalized factorial:

For integer arguments. returns the factorial of its
argument. The argument may not be a negative integer.
(See Sectio~ 5 for explanation of ! with non-integer
argument.) Examples:

!3
6

!O 1 2
1 1 2

Dyadic - Generalized combination:

For positive integer arguments. the right argument
represents a population size and the left argument
represents a sample size. The result is the number of
different samples that can be drawn from the population
(see Section 5 for explanation of ! with non-integer
arguments.) Examples:

13!52
6.350135596El1

2!l0
45

3!10
120

Monadic - Pi times:

Multiplies the value of pi (approximately
3.14159265353589793) times its argument. Examples:

01
3.141592654

02 .1
6.283185307 0.3141592654

Dyadic - Circular:

Returns the result of any of a number of trigonometric
functions. The left argument specifies the trigonometric
function and must be one of the integers from -7 to 7. as
follows:

o (1-X*2)*0.5
1 sine X
2 cosine X
3 tangent X
4 (1+X*2)*0.5
5 sinh X
6 cosh X
7 tanh X

Examples:

20(lOX2.5)
0.9912028119

102 4

-1 arcsine X
-2 arccos X
-3 arctan X
-4 BX(1-B*-2)*0.5
-5 arcsinh X
-6 arccosh X
-7 arctanh X

0.9092974268 -0.7568024953

Scalar Function Summary CE38-04

Function

<

>

CE38-04

Usage

Dyadic

Dyadic

Dyadic

Table 3-2. Scalar Functions (cont.)

- Less than:

Tests if the left argument is less than the right
argument. Returns 1 if the test is true, and 0 if the
test is false. (See Section 5 for effect of comparison
tolerance on relational functions.) Examples:

2<3

3<4 1 2 5
100 1

- Less than or equal to:

Tests if the left argument is less than or equal to the
right argument. Returns 1 if the test is true, and 0 if
the test is false. (See Section 5 for effect of
comparison tolerance on relational functions.) Examples:

2s3

2S1 2 3 4
o 1 1 1

- Greater than:

Tests if the left argument is greater than the right
argument. Returns 1 if the test is true, and 0 if the
test is false. (See Section 5 for effect of comparison
tolerance on relational functions.) Examples:

2>3
o

2>-2 0 2 3
1 100

Dyadic - Greater than or equal to:

Tests if the left argument is greater than or equal to
the right argument. Returns 1 if the test is true, and 0
if the test is false. Examples:

2~3
o

2~-2 0 2 3
1 1 1 0

Scalar Function Summary 3-19

Function

3-20

Table 3-2. Scalar Functions (cont.)

Usage

Dyadic - Equal to:

Tests if the left argument is equal to the right
argument. Returns 1 if the test is true. and 0 if the
test is false. (See Section 5 for effect of comparison
tolerance on relational functions.) Examples:

1=0
0

2=0 123
0 0 1 0

'A'='CANADA'
0 1 010 1

Dyadic - Not equal:

Tests if the left and right arguments are unequal.
Returns 1 if the test is true. and 0 if the test is
false. (See Section 5 for effect of comparison tolerance
on relational functions.) Examples:

2"1

3"-3 0 3 6
1 1 0 1

'A''''CANADA'
1 0 1 0 1 0

Dyadic - And:

(The arguments must be 0 or 1.) Returns 1 if both
arguments are 1. and 0 for any other combination of
arguments. Examples:

o

o

o

1

0"0

0-2)"(3<4)

0<2)"3< 1

0"0"3<4

Least Common Multiple:

Returns the least common multiple of the left and right
arguments. The LCM of a set of numbers is defined as
their product divided by the GCD of the numbers.
Examples:

6

12

1.5

3"2

0.5"0.3

Scalar Function Summary CE38-e4

Function

v

CE38-04

Table 3-2. Scalar Functions (cont.)

Usage

Dyadic - Or:

Returns 1 if either or both arguments are 1. and 0 if
neither argument is 1. Examples:

1

o

Ovl

(1=2)v(4<3)

(3<4)v4<5

Greatest Common Divisor:

Returns the greatest common divisor of the left and rrght
arguments. The GCD of a pair of numbers is defined as
the largest divisor of both which produces an integer or
near-integer result. Examples:

.5v+3
0.1666666667

2v8
2

1

Dyadic - Nand:

2v3

Returns 0 if both arguments are 1. and 1 for al I other
combinations. Examples:

1

1

o

Dyadic - Nor:

0""0

(2<1)""(5<1)

(1 <2)""(1 <5)

Returns 1 if both arguments are 0. and returns 0 for all
other combinations. Examples:

1

o

1

o

(1-2)¥(2<1)

(1-=2)+¥2<3

Scalar Function Summary 3-21

Table 3-2. Scalar Functions (cont.)

Function Usage

-
Dyadic - Not:

Returns 0 if the argument is 1 , and returns a 1 if the
argument is 0. Examples:

-0 1
1 0

-(6)4)
0

-1 0 1 0
0 1 0 1

Mixed Function Summary

The mixed functions produc~ results wrth a structure that is different from that of
its arguments. Mixed functions can be sub-divided into the structural mixed
functions and the transformation mixed functions:

o The structural mixed function subset re-orders the array right argument under the
optional control of a left argument. The re-ordering is generally dependent on
the right argument's rank and shape but independent of the actual elements within
it.

o The transformation mixed functions produce results which typically depend upon
the value of the array arguments.

The following table is a summary of APL mixed functions.

Function

3-22

Table 3-3. Mixed Functions

Usage

Monadic - Index generator:

Generates a vector whose length is the value of the
argument. If the index origin (010) is 1, the vector
will contain positive integers 1 through value of the
argument. If the index origin is 0, the vector will
contain the positive integers 0 through the value of the
argument minus 1. Examples:

t5
1 234 5

010+0
t5

o 123 4
010+1

Dyadic - Index of:

Returns the position of the right argument in the left
argument. If the right argument is not found in the left
argument, it is given a value of the last index position
of the left argument plus 1. Examples:

Mixed Function Summary CE38-04

Function

CE38-04

Table 3-3. Mixed Functions (cont.)

Usage

6 4 31.6
1

6 4 31.3 5 4
3 4 2

Monadic - Ravel:

Dyadic

Generates a vector from either a scalar or an array of
higher dimension. Examples:

O+A+2 4tJ1.8
123 4
5 6 7 8

,A
123 4 5 6 7 8

- Catenation:

Joins together scalars or arrays of conforming dimension.
Examples:

A+l 2 3
B+4 5 6 7
A,B

123 4 567
C+3
(C+2) ,C X 3-2

1.5 3

Monadic - Shape:

Returns an empty vector if the argument is a scalar, the
length (or number of items) if the argument is a vector,
or a vector containing the length of each dimension if
the argument is a higher-order array. Examples:

4

3 3

o

tJA+2
tJB+l 5 6 7

pC+3 31'1.9

ppA

Dyadic - Reshape (restructure):

Generates an array whose dimensions are the left
arguments and whose items are taken from the right
argument. Examples:

5tJl
1 1 1 1 1

2 41'8
8 8 8 8
8 8 8 8

2 41'1.8
1 2 3 4
5 6 7 8

Mixed Function Summary 3-23

Function

t

?

3-24

Table 3-3. Mixed Functions (cont.)

Usage

Monadic - Grade-up:

Ranks the components of its argument in ascending order,
and returns the positions (i.e., indexes of the
components). Example:

A+l 4 1 2 3 L

'A
L 364 5 2

Dyadic - Grade-up:

Ranks the components of its right argument in ascending
order defined by the collating sequence given by the left
argument. Similar to the monadic grade-up function
except that both arguments must be character and the
ordering is defined by the left argument. Examples:

1 3 2

A+3 4p'ABRACODEBACK'
'ABCDEFGHIJK"A

Monadic - Grade-down:

Similar to Grade-up, except that it returns the indexes
in descending order. Examples:

A+l 4 L 2 3 1
tA

254136

Dyadic - Grade-down:

Ranks the components of its right argument in the
descending order defined by the collating sequence given
by the left argument. This is similar to the monadic
grade-down function except that both arguments must be
character and the ordering is defined by the left
argument. Examples:

231

Monadic - Roll:

A+3 4p'ABRACODEBACK'
'ABCDEFGHIJK'tA

Returns an integer pseudorandomly selected from \ B.
Examples:

3

321

?5

?3 3 3

?5 B 11 13
2 5 8 2

Note that this function is modified by 010 (index
origin).

Mixed Function Summary CE38-04

Function

1.

T

"

CE38-04

Table 3-3. Mixed Functions (cont.)

Usage

Dyadic - Deal:

Returns the number of integers specified in the left
argument, each pseudorandomly selected from the integers
specified in the right argument, and with no repetition
of numbers in the result. Examples:

4?8
B 3 4 2

4?4
132 4

Note that this function is modified by DID (index
origin).

Dyadic - Base value:

Dyadic -

Switches from one number system to another. The right
argument contains the numbers to be converted and the
left argument contains the increments needed to convert
from one unit to another. The left argument, usually
called the radix vector, can be thought of as the base of
the number system. Examples:

10 10 101.5 6 5
565

0 601.10 20
620

2 2 2 21.1 0 o 1
9

21.1 0 o 1
9

Encode:

Converts a number to some predetermined representation.
It works in reverse of the base value operation above.
The fol lowing shows how to reconvert to the initial
arguments used above in the base value. Examples:

565

10 20

10 10 10T565

o 60T620

2 2 2 2T9
100 1

Monadic - Format:

Converts numeric arrays to character arrays. The result
is the same as if the argument were printed. Examples:

" 3 3.1
3 3.1

Mixed Function Summary 3-25

Function

t

+

3-26

Table 3-3. Mixed Functions (cont.)

Usage

Dyadic - Format:

Converts numeric arrays to character arrays while
control ling the format with the left argument. The left
argument specifies the width and precision to be used in
the display of the right argument. Examples:

2 OW3 4.1 5
345

5 2W 3 0.61 5.5
3.00 0.61 5.50

Monadic - First

Returns an array whose value is the first item of the
right argument. If the right argument is empty, then the
result is the prototype of the right argument.

For a scalar right argument, this function is the inverse
of the enclose function. Examples:

1

ONE

Dyadic - Take:

t'ONE' 'TWO' 'THREE'

Selects the number of components indicated by the left
argument from the right argument. If the left argument
is positive, the take function selects the components
from the beginning of the right argument. If the left
argument is negative, the take function selects the
components from the end of the right argument. Examples:

246

468

Dyadic - Drop:

A+2 4 6 8
3tA

-3tA

Similar to take except that the indicated items are
dropped instead of selected. Examples:

6 8

246

A+2 4 6 8
2+A

-1+A

Mixed Function Summary CE38-04

Function

c

CE38-04

Table 3-3. Mixed Functions (cont.)

Usage

Monadic - Type:

Dyadic

Monadic

Returns an array containing 0 where argument items are
numeric or blank where argument items are text. Example:

f 1 'BRUCE' 2 (3 4)
o 0 0 0

, '=f1 'HI' 2
o 1 1 0

- Membership:

Returns 1 if a given item of the left argument is an item
of the right argument. and 0 if it is not. The result
has the same dimensions as the left argument. Examples:

A+t,6
B+2xt,4
BfA

1 1 1 0

100
1 0 1
000

C+'ABCDEFGHIJK'
D+3 3p'HOWAREYOU'
DfC

Execute:

Treats its argument (a character scalar or vector) as an
APL statement. Examples:

1'2+3'
5

Monadic - Enclose:

Increases the depth of the argument by 1 and decreases
the rank. If an axis is not specified. al I axes are
enclosed and the result is a scalar. When an axis is
specified. the rank of the result is the rank of the
argument minus the number of axes being enclosed.

The enclose of a simple scalar yields the scalar
unchanged. Examples:

c'B'
B

p[j+c'VENICE'
VENICE

c[1l33pt,9
123 456 7 B 9

Mixed Function Summary 3-27

Function

3-28

Table 3-3. Mixed Functions (cont.)

Usage

Monadic - Disclose:

Decreases the depth of the argument by 1 and increases
the rank. If the axes are not specified, the new axes
are inserted after the last axis of the argument.

The disclose of a simple crrray yields the array
unchanged. Examples:

pO+~c'HI'
HI
2

pO+~{l 2) (3 4 5)
1 2 0
3 4 5
2 3

Dyadic - Pick:

Select an item from the right argument specified by the
path indices in the left argument. Each item of the left
argument must be a simple scalar or vector of integer
indices which selects an item to be indexed by the next
item of the left argument. Example:

B

5

9

Monadic - Depth:

2 ~1 B 9

2 1 (2 1)~ 1 { (2 2p3 4 5 6) 1) B

"~9

Returns a simple non-negative integer scalar indicating
the maximum depth of nesting in the right argument.

A simple scalar number or character has depth 0. Arrays
containing simple scalar numbers or characters have depth
1. Examples:

o

1

3

='A'

=1 2 3

='ABC' (4 (56» 1

Dyadic - Equivalence:

Returns a simple logical scalar. The result is 1 if the
left argument is identical to the right argument,
otherwise the result is o.
Arrays are identical if they have the same shape and the
same values in al I corresponding positions. Empty arrays
are identical only if their prototypes are identical.
Examples:

Mixed Function Summary CE38-04

Function

CE38-04

UsaQe

Table 3-3. Mixed Functions (cont.)

1

o

o

o

'APPLE'::'APPLE'

'CP6'.='CPV'

9.=,9

, '.=1.0

Monadic - Matrix Inverse:

Used to invert matrices. Examples:

A+3 3,,4
oPP+2
IBA

0.17 0.072
0.26 -0.17
0.043 -0.0097

Dyadic - Matrix Divide:

-0.029
-0.099
-0.063

Used for solving systems of linear equations. Examples:

A
4 2 -5
5 -4 4
2 2 -20

B+22 -7 80
SlBA

1 -1 -4

Monadic - Transpose:

Performs row column transposition on its matrix argument.
Examples:

A
1 2 3 4 5
6 7 8 9 10

11 12 13 14 15
&A

1 6 11
2 7 12
3 8 13
4 9 14
5 10 15

Dyadic - Transpose:

Returns an array similar to the right argument except
that the coordinates (dimensions) are changed according
to the left argument (that is. the left argument
specifies the new position of the original coordinates).
Examples:

B+2 4 3,,1.24
2 1 3&B

1 2 3
13 14 15

Mixed Function Summary 3-29

Function

a

3-30

Usage

Table 3-3. Mixed Functions (cont.)

456
16 17 18

789
19 20 21

10 11 12
22 23 24

Monadic - Reversal:

Reverses the order of the components of a vector, or the
components of each each row of a matrix. Examples:

A+l 2 4 6
~A

642 1
~t.5

5 4 321

Dyadic - Rotation:

Rotates the items in the right argument as specified by
the left argument (i.e. according to the number of places
specified in the left argument). Examples:

A+l 2 4 6
l~A

246 1
2~A

4 6 1 2

Monadic - Reversal along the first coordinate:

Dyadic -

Same as ~ above except along the first coordinate instead
of the last. This is equivalent to ~[OIOJ. Example:

O+HAT+3 4"t.12
1 2 3 4
5 6 7 B
9 10 11 12

aHAT
9 10 11 12
5 6 7 B
1 2 3 4

Rotation along the first coordinate:

Same as ~ above, except along the first coordinate
instead of the last. This is equivalent to ~[OIO).
Examples:

O+HAT+3 4"t.12
1 2 3 4
5 6 7 B
9 10 11 12

laHAT
5 6 7 B
9 10 11 12
1 2 3 4

Mixed Function Summary CE38-04

Operator Summary

APL operators usually take functions (primitive, system, or user-defined) and produce
a derived function which is then applied to array arguments. The manner in which the
function argument is applied to the array arguments distinguishes the various
operators.

The letters f and 9 in the fol lowing table represent any functions.

Function

f/

CE38-04

Table 3-4. Operators

Usage

Monadic - Reduction:

Dyadic -

Inserts the APL function specified to the left of the I
between each item of the right argument, performs the
operation from right to left, and returns a value with
one less coordinate than the right argument. Examples:

+/1 2 3 4 5
15

-11 2 3 4 5
3

O+N+3 41'1.12
1 2 3 4
5 6 7 B
9 10 11 12

+IN
10 26 42

-IN
-2 -2 -2

Compression and Replicate:

Suppresses some items of a vector and retains others.
Items of the right argument corresponding to a 1 in the
left argument are retained while those corresponding to a
o are dropped. If either argument contains just one
item, it appl ies to al I items of the other arguments.
Examples:

A+5 7 9 11
B+'ABCD'
1 0 1 11 A

5 9 11
1 0 1 liB

ACD

O+HAT+3 41'1.12
1 2 3 4
5 6 7 B
9 10 11 12

1 0 1 O/HAT
1 3
5 7
9 11

Replicate is like compression but this function wil I
replicate items as wei I as suppress. In this case, the
left argument is an integer vector, whose items are
greater than or equal to zero. Each item of the left
argument indicates the number of times the corresponding
item in the right argument is to be replicated.
Examples:

Operator Summary 3-31

Function

ff

f.g

3-32

Usage

Table 3-4. Operators (cont.)

2/'APPLE'
AAPPPPLLEE

1 2 3/'51051'
JlOOWW

2 1 0/' ITS'
IIT

Monadic - Reduction along the first coordinate:

Same as f/ above except reduction occurs along the first
coordinate rather than the last (equivalent to f/[0101.
Examples:

O+N+3 4pt.l2
1 2 3 4
5 6 7 8
9 10 11 12

+fN
15 18 21 24

-fN
5 6 7 8

Dyadic - Compression along the first coordinate:

Same as above except that compression or replication is
along the the first coordinate instead of the last.
Equivalent to 1(010). Examples:

O+HAT+3 4p t.l2
1 2 3 4
5 6 7 8
9 10 11 12

o 1 Of HAT
567 8

Dyadic - Generalized inner product:

This operator is a generalized form of the inner product
of matrix multiplication. The particular form that
corresponds to traditional matrix multiplication is
A+.xB, where the second dimension of matrix A is the same
as the first dimension of B. The result has the same
first dimension as A and the same second dimension as B.

In the conventional matrix inner product, each item of
the result is the sum of products of items from A and B
(see Section 5 for detailed description). The APL
generalized inner product allows different forms such as
the sum of equality tests, the maximum of sums, etc.
Examples:

A+2 3p1.6
B+3 2p-1.6
A

123
456

B
-1 -2
-3 -4
-5 -6

A+.XB

Operator Summary CE38-04

Function

o.f

f\

CE3~4

Usage

Table 3-4. Operators (cont.)

-22 -28
-49 -64

A+.=B
0 0
0 0

Ar .+B
0 -1
3 2

The general form is Af.gB where f and g represent any
function. A and B may be vectors, matrices, or higher
order arrays. subject to conformability rules described
in Section 5.

Dyadic - Generalized outer product:

This operator is a generalization of matrix outer
product. Ao.xB. The conventional form multipl ies each
item of A by each item of B. The shape of the result is
the catenation of the shapes of A and B. In the
generalized form. multiplication may be replaced by any
APL function. Examples:

A+-l+t.5
AO.+A

o 123 4
1 234 5
23456
3 4 567
4 5 6 7 B

Ao. xA
o 0
3 4
6 B
9 12

000
012
024
036
048 12 16

AO.<A
o 1 1 1 1
00111
00011
o 0 001
o 0 0 0 0

Monadic - Scan:

Returns value of same shape as argument. For vectors,
the i'th result item is formed by taking the first i
argument items. placing f between them. and evaluating
right to left. For example:

+\1 3 5 7 9
1 4 9 16 25

-\3 1 1 5
3 2 3 -2

A coordinate specification [Kl may be used; if omitted.
the last coordinate is assumed.

1 2 3
579

+\[1)2 31)1.6

Operator Summary 3-33

Function

f~

f"

3-34

Table 3-4. Operators (cont.)

Usage

Dyadic - Expansion:

Inserts additional items into an array. For each 0 in
the left argument. a prototype item (blank for character.
zero for numeric) is inserted in the result. which
otherwise is the same as the right argument. Examples:

A+l 2 3 4
B+'ABCD'
1 0 1 0 1 0 I\A

102 0 304
1 0 1 0 1 0 .1\B

ABC D

ABCD
EFGH
IJKL

O+H+3 4~OAV[65+tI2)

1 0 1 0 1 0 I\H
ABC D
E F G H
I J K L

Monadic - Scan along the first coordinates:

Same as f\[oIO). Thus. as above.

+~2 3~t6
123
579

Dyadic - Expansion along the first coordinate:

Same as \ above. except expansion occurs along the first
coordinate rather than the last. This is equivalent to
\(010). Example:

ABCD
EFGH
IJKL

ABCD

EFGH

IJKL

Monadic - Each:

O+H+3 4~oAV[65+t12)

1 0 1 0 I~H

Returns a value of the same shape as the argument. Each
item of the result is formed by applying the monadic
function to the corresponding item of the right argument.
Examples:

~"'ABC' 'HAPPY'
3 5

t"2 3
1 2 1 2 3

~"'XYZ' 'HOOD'
ZYX DOOH

Operator Summary CE38-04

Function Usage

Dyadic

Table 3-4. Operators (cont.)

- Each:

Returns a value of the same shape as the left and right
arguments (a singleton argument is extended to the shape
of the higher ranked argument).

Each item of the result is formed by applying the dyadic
function to the corresponding items of the left and right
argument. Examples:

2~-'ABC' 'HAPPY'
AB HA

l~-' BCA' (t4)
CAB 2 3 4 1

Defined Function References

Defined functions are used in much the same way as primitive functions, but defined
functions must first be formed by the user instead of being an inherent part of the
language. Once a defined function has been formed, or IIdefined ll , it is referenced by
its assigned name. (Naming conventions are described earlier in this section under
Names.) A general discussion of functions is given in this section; for a detailed
discussion, see Section 7, Defined Functions.

Like primitive functions, defined functions can have arguments which in turn have
attributes of domain, rank, length, and shape (see Functions and Arguments above).
Functions are classified as monadic. dyadic, or ni ladic, according to their number of
arguments. A monadic function has one argument to the right of the function name. A
dyadic function may have one or two arguments, one to the right of the function name
and one optionally to the left. A ni ladic function has no arguments; the function
name is referenced by itself.

The right argument is the value of the largest, complete APL expression immediately
to the right of a function. For the example below, F is a function whose right
argument is 2+t3.

(F 2+t3) 'POUNDS'

In this case, the character vector 'POUNDS' is not included in the argument since the
parenthesis splits the example into two distinct expressions.

The left argument is the value of the smal lest complete APL expression to the left of
a function. In the example below, D is a dyadic function whose left argument is
(t3).

2+ (t3) D 4

In this case, the parenthetical expression (t3) is the smal lest complete APL
expression immediately to the left of D. 2+(t3) is also an APL expression, but it is
larger. Therefore, the above example is interpreted as

2+result

where IIresultll is the result supplied by the function reference

(t3) D 4

In addition, any of the classes of defined functions may specify an implicit or
explicit result. Thus there are actually six types of defined functions: monadic,
dyadic, and niladic each of which may optionally produce a result.

CE38-04 Defined Function References 3-35

The class is determined by the way a function is defined (that is. the function
header). and it affects the way a function is referenced in an expression. Defined
functions with explicit results may appear in compound expressions. much like
primitive functions. Defined functions without results may appear alone; they cannot
appear in compound expressions except as the last function to be executed.

A defined function may reference itself; that is. it may be recursive. A recursive
function is one that references itself in the process of its execution.

When a function is invoked, it may complete execution and return a result or it may
become suspended or pendent during execution. A suspended function is one in which
execution has been stopped before completion (the reasons for stopping execution are
given under Suspending Execution in Section 7). A pendent function is usually one
that has referenced a suspended function and is unable to complete execution because
of the suspended function. Suspended functions are always stopped "between" lines.
but a pendent function is stopped in the process of executing a line. A function can
be both suspended (stopped at some point) and pendent (in execution at some point).
For instance, if a recursive function is stopped after it calls itself, it is
suspended (at the stop) and pendent (where it called itself).

ASSignment

The following paragraphs define simple assignment. multiple assignment, and indexed
assignments.

Simple Assignment

The assignment symbol, denoted by a left-pointing arrow, is used to assign values to
named variables or to a system variable. (Some programmers may refer to this symbol
as the specification symbol or the replacement symbol, but the term assignment symbol
is used throughout this manual.) It is the assignment that causes a variable to be a
scalar, a vector, a matrix, or a higher-order array. The assignment of a value or an
expression to a quad displays the value. Examples of assignments are shown below:

A+5+2X4

Assigns the value of the expression 5+2X4 to variable A.

B+l 2 3 4 5

Indicates that B is to be a vector with the values 1, 2, 3, 4, and -5.

B+1.5

Another way of assigning the numbers 1 through 5 to variable B. (Assuming an index
origin of 1.)

C+2 4p1.a

Indicates that C is to be a matrix (with two rows and four columns) and that it is to
be made up of the values 1 through 8 (assuming an index origin of 1). as shown here:

123 4
567 a

D+2 3p5 6 1 2 a 9

Indicates that D is to be a matrix (with two rows and three columns) and that it is
to be made up of the values 5, 6, 1, 2, a, and 9, as shown here:

561
2 a 9

E+D

Indicates that the value of D is assigned to E.

3-36 Simple Assignment CE38-04

Multiple Assignments

APL al lows repeated use of assignment, or multiple assignments. in a single
statement. Examples of multiple assignment are shown as fol lows:

566

579

A+5,B+6
A,B

Z+2+Y+2+X+5
X,Y,Z

O+C+2 3 4 5
234 5

Vector Assignment

This notation may be used to assign each item of a vector to a name in a list of
names. In this case, the specification symbol (+) is preceded by the list of names
enclosed in parentheses. The specification symbol must be fol lowed by an APL
expression which produces a vector having the same length as the number of names.

Examples:

1
2
3

(A B C)+1 2 3
A 0 B 0 C

(NAME ADDRESS)+'JOE WHO' '21 CENTURY BLVD, LOS ANGELES'
NAME

JOE WHO
pO+ADDRESS

21 CENTURY BLVD, LOS ANGELES
28

Indexed Assignment

One or more items of an already established array may be assigned new values. This
is done by placing the variable name and the index designation(s) to the left of the
assignment symbol. and the new value(s} to the right. as .hown below (these examples
all assume an index origin of 1):

O+A+l 5 4 3 2
5 4 3 2

A[l 2)+2 3
A

2 3 4 3 2
A[)+0
A

o 0 000
O+B+2 31'1.6

1 2 3
4 5 6

B[1;2)+4
B

1 4 3
4 5 6

B[;)+0
B

0 o 0
0 o 0

CE38-04 Indexed Assignment 3-37

Selective Assignment

This operation permits selected el.ements of a named array to be given new values
while leaving the shape and the unselected elements unchanged. Bracket indexing or
use of the selection functions are used to select the array elements to be changed.
The selection functions that are used with selective specification are ravel
(monadic ,). reshape (monadic p). take (dyadic .). drop (+). first (.). transpose
(~). reversal (monadic ~). rotate (dyadic ~). compression (/). pick (dyadic ~) and
disclose (monadic ~).

The result of the selection expression must be a subset or re-arrangement (or both)
of selected element locations. Only those selected locations receive the new value.
The value being assigned must have the ~ame.shape as the selection expression after
skipping al I dimensions of length 1 in both.

Examples:

N+5 5p 1 2 4 3
«4= ,N)I ,N)+O
N

1 2 031
20312
o 3 120
3 1 203
1 2 031

C1
N

55 2 0
2 55 3
o 3 55
3 1 2
120

1~N)+55

3 1
1 2
2 0

55 3
3 55

Input/Output

A REPLACE ALL 4S WITH 0

REPLACE DIAGONAL

This subsection describes how the user can enter input and display output.

Input/Output Devices

The CP-6 APL system gives the user a choice of five input/output methods:

o APL/ASCII terminal input/output: a terminal with either bit paired or typewriter
paired APL/ASCII character transmission codes.

o ASCII terminal input/output.

o Batch input/output.

o File input/output.

o Blind input/output.

The input/output described in this section refers to terminals with the APL character
set.

3-38 Input/Output Devices CE38-04

General Input/Output

After logging on to CP-6 and invoking APL, the user is in immediate execution mode
and can enter input whenever the carriage or cursor is indented six spaces. The
fundamental item of input to APL is the line. A line is a collection of characters
that does not include the carriage return. Striking the RETURN key completes a line,
and APL attempts to interpret it and perhaps output data. An incomplete line can be
corrected as described in Section 2. User input and computer output are easily
distinguished at the terminal; computer output usually begins at the left margin
while user input is usually indented six spaces from the left margin. An input line
is limited to 390 characters in length, not counting the carriage return (overstrikes
count as single characters).

Types of Input

CP-6 APL acknowledges four kinds of input: direct, evaluated, quote quad, and blind.
Direct input occurs when APL is not executing the user's program. evaluated input
results from quad-input execution, quote-quad input results from quote-quad
execution, and blind input results from quad-e through quad-9 execution. Direct
input, evaluated input. and quote-quad input are described below and are considered
to exist only after input translation and current-line editing. Blind input is
covered in Section 16.

Direct Input

Direct input is entered during execution mode. APL is ready to accept direct input
when it skips to a new line and indents six spaces. Evaluation of direct input
occurs immediately, and the response is either printed at the left margin (if the
input was a non-assignment statement) or assigned to a variable (if the input was an
assignment statement). Examples of direct input fol low:

0.625

10

5+2x4

A+A+5

O+B+3 4p1.12
123 4
567 8
9 10 11 12

Evaluated Input

The quad symbol 0 can be used as an argument in a statement, to denote that input is
desired. When APL encounters the quad during statement execution it halts execution
and requests input by printing the symbols 0: at the left margin. A response of any
valid APL expression causes execution to continue, using the value obtained in
response to the quad symbol. Examples:

8+0
0:

2
4

5XO
0:

123 4
5 10 15 20

CE38-04 Evaluated Input 3-39

If the quad symbol is built into an input loop. the user can terminate the input
requested by entering the symbol + (not fol lowed by on argument). Simply entering
nothing and pressing the RETURN key is not sufficient to terminate the input request;
it wil I merely couse the 0: to reappear at the left margin. An example of escaping
from an input request is shown below:

VCUBEiA
[1) LOOP:A+O
(2) A+AXAxA
(3) A
[4) +LOOP

V

CUBE
0:

3
27
0:

4
64
0:

5
125
0:

+

Entering any of the fol lowing system commands wil I terminate an input request:
)CLEAR,)LOAD,)OFF,) END ,)SIC, or)CONTINUE. Entering other system commands merely
causes the 0: to reappear after the command is executed.

Functions can be defined during evaluated input. This is similar to function
definition during normal (direct) input except that at the conclusion of the
definition. APL re-requests evaluated input. This is to be expected since when APL
originally requested evaluated input it needed a value. and defining a function
provides no value. This enhancement is not limited to just providing definition
capability. The ful I range of function definition mode features are available during
evaluated input:

o Creating a new function

o Revising an existing non-pendent function (If a function makes an evaluated input
request, the function becomes pendent. Therefore, that function cannot be opened
during the evaluated input request): inserting a line, deleting a line,
replacing a line, and editing characters of a line.

o Displaying one or more lines of the open function.

Enteri'ng an)SI or)SINL command in response to an input request wil I cause the state
indicator to contain a O. For example:

0:

o
0:

5

3-40

10+0

)SI

2

Evaluated Input CE38-04

Quote-Quad Input

The quote-quad symbol ~ (except when to the left of an assignment arrow) denotes
I iteral input. When APL encounters this symbol during statement execution. it awaits
user input (nothing is printed to prompt for input). Literal character strings are
entered without beginning and ending quote symbols. and a quote within a string is
represented by one quote. Quote-quad input always produces a vector result. To
terminate a request for literal input without having any value associated with the
variable being requested. press the BREAK key twice.

Note that if the request for literal input is initiated from within an executing
function and a double break is entered. execution of the defined function is
suspended at that point. Examples of quote-quad input are:

o
B+-~

QUOTES AREN'T NEEDED
B

QUOTES AREN'T NEEDED

X+-'CALIFORNIA'E~
ABCDEFGHIJKLHN

X
1111100111

Output

As previously mentioned. the display of most computer output begins at the left
margin. Important output characteristics are described below.

1. Width of line. The user can change the number of characters displayed on a line
to any number from 32 to 390 via the)WIDTH system command (see Section 8), or
the oPW system variable (see Section 11). Output processing always assumes that
the left and right margin stops are placed full left and full right.

2. Fractional number. A fractional number is displayed with one leading zero to the
left of the decimal point. even if the number was entered without zero. Examples
of fractional numbers are:

.2+.4
0.6

2+3
0.6666666667

.123
0.123

3. Exponential notation. APL usually uses exponential form for printing numbers
less than lE-5. or greater than lEN where N is the value of the oPP system
variable. Decimal form is used for other cases. Numbers printed in exponential
form have a magnitude between one and ten followed by an appropriate exponent.

When on array is displayed, some numbers may be printed in exponential form and
some in decimal form. depending on the size of each number. Numbers in a vector
are printed with one space between each number. as shown below:

1234567.89 1234567890 1.23456789EI0

When a matrix is displayed, each column of numbers is printed all in exponential
form or al I in decimal form. One number requiring exponential form in a column
will cause all the numbers in that column to be printed in exponential form. One
column of blanks separates columns of numbers. Numbers in a matrix are printed
with decimal points aligned. as shown below:

CE38-04 Output 3-41

A
0.0100003 1.2345E12 -1.99032

12.3456703 3.0000EO 7.76767676

A*l1
1.000330050E-22 1.014850423E133
1.015456727E12 1.771470000ES

-1941.565195
6211587288

4. Significant digits. CP-6 APL carries out al I calculations to approximately 18
significant digits, and displays the result rounded off to the value of oPP
digits. Any trai ling zeros are suppressed in the display. Examples are shown
below:

4+3
1.333333333

5+2
2.5

The user can use the)DIGITS system command (see Section 8) or the oPP system
variable to change the number of significant digits displayed, to a number
ranging from 1 to 20. Examples are shown below:

1.333

2.5

oPP+4
4+3

5+2

5. Comparison Tolerance. The arithmetic functions (addition, subtraction,
multiplication, and division) are implemented in the computer as functions which
represent real numbers through a set of discrete numbers. In CP-6 APL,
calculations are carried out to approximately 18 decimal digits. Comparison
tolerance is provided by APL to partly disguise the fact that only 18 digits of
precision are available. The default value of comparison tolerance in a clear
workspace is lE-13 which causes the equals function to return 1 if the numbers
being compared are equal in the first 13 digits. An example of comparison
tolerance in comparison is:

1=1+-2E-13 -9E-14 0 9E-14 2E-13
o 1 1 1 0

6. Numeric and character vectors. Numeric vectors are displayed with one blank
between items, whi Ie character vectors are displayed with no blanks between
items, as shown:

2+1.6
3 4 5 6 7 8

'ABCXYZ'
ABCXYZ

If an array contains both numeric and character scalar values, a trailing blank
column is included after each numeric column (except the last cOlumn).

1 'A' 2
1 A2

7. Arrays of two or more dimensions. The components of a two-dimensional array
(i.e., a matrix) are displayed in a rectangular arrangement. The components of
an array of more than two dimensions (i.e., a higher-order array) are displayed
as a set of rectangles. Character arrays of two or more dimensions are displayed
with no spaces between columns. In addition, arrays of more than two dimensions
are displayed with extra blank lines separating planes. Examples are shown
below:

3-42 Output CE38-04

-1 0
4 5
9 10

5 6
9 10

13 14

17 18
21 22
25 26

NOWI
STHE
TIHE

ABCDE
r CHI

JKL H
NOPQR

3 5p-2+H5
1 2 3
6 7 8

11 12 13
2 3 4p4+1.24

7 8
11 12
15 16

19 20
23 24
27 28
3 4p'NOWISTHETIHE'

2 2 5p'ABCDEr CHIJKL HNOPQR'

8. Simple. An APL array is simple if every item of the array is either a scalar
character or a scalar number.

9. Nested Arrays. An array is nested if it is not simple. That is, an array is
nested if an item of the array contains another APL array of rank greater than 0.
Nested arrays, like other APL arrays, are displayed with columns aligned. The
column width is determined by the widest formatted representation of the items in
the column.

The space required to display non-simple items is controlled by the system
variable OPS. The column width for a non-simple item may be stated as the width
of the formatted value plus the value (1-1+OPS). The row depth for a non-simple
item can be stated as the number of rows required to display the value plus the
value (11+-2+OPS).

The first two items in OPS control the placement of the arrays within the column
and row. The first item controls the vertical placement of the formatted array
and the second item controls the columnar placement of the formatted array. The
first item of OPS can be -1 (top), 0 (center), or 1 (bottom). The second item of

. OPs can be -1 (left). 0 (center), or 1 (right).

The last two items of OPS can be negative to indicate that a vertical bar or box
be drawn around the border of the array. The magnitude of the value must be
greater than 1 for the box to be drawn.

The fol lowing is an example of displaying nested arrays:

OPS+O 0 -3 -3 ~ CENTER AND DRAW BOXES
A+2 2p1.4 0 B+3 4p'ABCDErCHIJKL'
C+2 3pA B 7 'Z' A B
C

+---+ +----+
11 21 I ABCD I 7
13 41 I ErCH I
+---+ IIJKLI

+----+

+---+ +----+
Z 11 21 I ABCD I

13 41 I ErCH I
+---+ IIJKL I

+----+

CE38-04 Output 3-43

oPS+-l 1 0 2 ~ DEFAULT VALUE
C

1 2 ABCD 7
3 4 EFGH

IJKL
Z 1 2 ABCD

3 4 EFGH
IJKL

10. Prototypes. Every APL array contains a prototype which is the type of the first
item of the array. For on array whose first item is a simple scalar number, the
prototype is 0; for on array whose first item is a simple scalar character, the
prototype is a blank. For all arrays, the prototype has the some structure
(shope and depth) as the first item and contains zeroes where the corresponding
item is numeric, and blanks where the corresponding item is character.

11. Empty arrays. An empty array (on array of no components) can toke the form of a
vector or on array of two or more dimensions. An empty array produces no display
(just another prompt for input). An empty vector (also known as a nul I vector)
can be entered in one of the following ways: 1.0 or " or OpO. Simi larly,
examples of entering empty arrays of two or more dimensions are a 2p4 and 0 0
OpO. The display of on empty vector and on empty matrix are shown below:

4

1,0
o 2p6
2+2

Note that on empty numeric vector is represented by the expression 1.0 and any
empty character vector is represented by the expression 'I. These expressions
cannot always be used interchangeably because their prototypes differ. An
example is in their use as the right argument in on expansion operation:

0\' ,

0\1,0
o

Empty vectors are useful in initial izing vectors, in branching, and in the
limiting cases of some algorithms.

Note that the use of on empty arroyos the argument of a scalar function will
result in on empty array:

34+pO
0"2 Op5

12. Blind output. Blind output (see in Section 16) is output as one record of
character (literal) data.

13. Stopping a display. The user can stop display of output by pressing the BREAK
key.

14. Quod output. When 0 appears immediately to the left of on assignment arrow, the
value of the expression to the right of the arrow is output. Example:

[}+A+2+3
5

15. Bore output. Normal output includes a concluding carriage return in order that
the succeeding entry (whether it is input or output) will begin at the first
position on the fol lowing line. Bore output, denoted by expressions of the form
~Xt does not include a carriage return if the expression is followed either by
another expression denoting bore output or character input (of the form X~). For
example:

v F
[1) ~'TRUE OR FALSE: THE SQUARE OF '
[2) ~?4
[3) ~'IS'
[4) ~(?4)*2
[5) X~ V

3-44 Output CE38-04

F
TRUE OR FALSE: THE SQUARE OF 2 IS 9FALSE

X
FALSE

The carriage returns normally caused by the width setting <OPW) are sti II present
in bare output.

Because any expression of the form ~X entered at the keyboard (rather than being
executed within a defined function) is followed by another keyboard entry,
(concluded by a carriage return), its effect is indistinguishable from the effect
of the corresponding normal output.

CE38-04 Output 3-45

Section 4

Expression Evaluation

Order of Evaluation

The fol lowing subsections describe the order in which APL evaluates expressions.

Right to Left

APL evaluates expressions from right to left, not from left to right as in most
written languages. Each function or assignment symbol in an expression operates on
the entire expression to the right of it, with the rightmost expression evaluated
first, then the next rightmost, and so on. In illustration, notice the fol lowing
expression:

20X4+5+2
130

In this expression the result of 5+2 is added to 4, and the result of that is
multipl ied by 20, thereby yielding the value 130.

Precedence of Functions

Unlike most programming languages (and unlike common algebraic usage) no APL function
has precedence over another function. A division operation, for example, is not
performed before an adjacent addition unless, of course, the division appears to the
right of the addition. Note that in the example cited above, the conventional
algebraic function hierarchy would have treated the expression as equivalent to
(20X4) + (5+2), which would have resulted in the value 82.5.

Parentheses

Parentheses can be used in an expression to depart from the right-ta-Ieft rule for
function execution or left-ta-right order for operator execution. They are used just
as they are in mathematics for grouping. APL evaluates everything within a pair of
parentheses (from right to left) before evaluating the expression of which they are a
part. There must be an equal number of left and right parentheses. The beginning
APL user may find parentheses convenient to avoid confusion over the difference
between APL and conventional algebraic notation.

Some examples of the use of parentheses are shown below:

(3+1.5)x2+1
12 15 18 21 24

«6+2)x5 x4)+3+12
4

2.25

82.5

6+2x5x4+3+12

(20X4)(+)(5+2)

CE38-04 Parentheses 4-1

Precedence of Operators

Operators have higher precedence than functions. They may be monadic or dyadic (but
not both); they always produce a function which may be monadic, dyadic or both. The
left operand of an operator is the expression to the left of the operator up to a
function (or array) with an array or function to its left. The right operand of a
dyadic operator is the first function or array to its right. Monadic operators have
their only argument on their left.

Unlike functions, operators are permitted to have arguments that are functions.

Operators and their arguments combine to produce functions (called "derived
functions") which are then executed like all other APL functions. In fact, the
derived function that is produced by an operator may be used as an argument to
another operator.

A++O.+/ (0 100)(0 10 20)(1 2 3 4)
A

123 4
11 12 13 14
21 22 23 24

101 102 103 104
111 112 113 114
121 122 123 124

In this example, the plus-outer-product reduction is performed on the vector argument
to produce the scalar enclosed matrix (which is subsequently disclosed by the first
function). Notice that the + is the argument to the outer product operator o. and
that this derived function (cal led plus outer product or 0.+) is the argument to the
reduction operator (/).

Value of a Variable versus its Name

When APL encounters a name, it obtains the associated value immediately. This value
becomes an argument, and the argument wil I not change value even if the named
variable is assigned a new value. The following example illustrates this evaluation
procedure:

(K+2)+K+l
3

The K to the right of the plus sign was evaluated to the argument having, at that
time, value 1. This argument did not change even through K's value changed before
the addition was completed.

Default Output

Default output occurs when a non-assignment statement is evaluated. That is, the
result is displayed instead of being stored in memory. For example, 2X4 gives
default output:

2X4
B

Default output is killed by assignment. For example, the expression A+2x4 prints no
output at the terminal.

A+2X4

Instead, the value 8 is assigned to variable A and stored in computer memory.

When a compound statement (Section 6) includes both non-assignment and assignment
expressions, the non-assignment expressions produce output while the assignment
expressions do not. Some examples are:

4-2 Default Output CE38-04

4 0 5
4
5

4 0 'A' o 5
4
A
5

4+2 0 A+5+2 0 4+3
6
7

X+1.5 0 Y+2+4

Errors and Breaks

If the user discovers an error in a statement before the RETURN key is pressed, the
user can RUBOUT to the error and retype the rest of the line as described in Section
2. (On al I terminals, the standard CP-6 input line editing mechanism is applicable.
See the CP-6 Programmer Reference Manual (CE40». An example (using the RUBOUT key)
is:

10

A+5xB+8x\<R>
A+5XB+8+4
A

«R> indicates <ESC> R.)

If the user has entered a line and APL detects an error or double break during
statement execution, execution of the statement is terminated. If the statement in
execution contains multiple assignments or is a compound statement, the assignments
and expressions to the right of the termination point (denoted by a caret) will be
completed. The current expression and any expressions to the left of the termination
point wi II usually not be completed. If a dyadic operator or function is indicated,
however, its left argument expression (possibly containing assignments) will have
been completed before the function or operator was invoked. Examples are shown below
(it is assumed that sidetracking, see Section 10, is not appl icable in these
examples).

C+4+(D+0)xZ+5
DOHAIN ERR

C+4+(D+0)XZ+5

C
UNDEFINED

C

" D
o

Z
5

"

A+4+2*.5 0 F+O 0 E+4+2+1 0 E+F
DOHAIN ERR

A+4+2*.5 0 F+O 0 E+4+2+1 0 E+F

E
1.333333333

F
o

In both of these examples the user has attempted to divide by zero. thus producing a
DOHAIN ERR message. In the first example the error is detected before variable C is
assigned a value. so C remains UNDEFINED as shown. In the second example. E and F
had values assigned to them before the error was detected.

If the user has entered a line and APL detects a simple error before any part of the
line is executed, APL displays the message LINESCAN ERR and a caret at the error
point. The user can type <ESC> 0 to recall the line in error and edit it to correct
the problem. For example:

CE38-04 Errors and Breaks 4-3

A+234 + () xO*3
LlNESCAN ERR 1\

0:

<D>
A+234 + ()xO*3

\t,3<R>
A+234 + (t,3)xO*3

4
A

298 362 426

Note that the difference between a LlNESCAN ERROR and a BAD CHAR error is that the
former involves an error in expression logi'c or syntax. whi Ie the latter involves the
typing of an illegal APL character.

4-4 Errors and Breaks CEJ8-e4

)

Section 5

APL Primitive Functions

A primitive function is a symbol indicating that a basic APL function, such as
addition or division, is to be performed! A symbol denoting a primitive function is
either a non-alphanumeric character or a combination of such characters. For
example, addition is denoted by the + symbol and division is denoted by the + symbol.

Some of the basic primitive functions are "monadic" and others are "dyadic". That
is, some require a single argument and others require two. For example, the
reciprocal function is monadic (e.g., +A) and the division function is dyadic (e.g.,
A+B). Most of the symbols denoting functions are used for both monodic and dyadic
functions. APL distinguishes between the monadic and dyadic use of any given
function by testing for the absence or presence of a left argument.

o Syntax Conventions

Syntax conventions use~ throughout this section are as fol lows:

R denotes the result of a function.

+ denotes the replacement of any previous value of the symbolic variable to the
left of the arrow.

A denotes a left argument.

B denotes a right argument.

H denotes a monodic function.

D denotes a dyadic function.

Fol lowing are some examples of the use of these conventions:

R+H B R+A D B

o Argument Characteristics

In discussing functions, certain argument characteristics will be referenced
frequently. The terms used are described below.

Domain - In general, the type of data item such as integer data or
floating-point data. For some functions the domain of on argument
may be especially restricted (see the example for the circular
function later in this section).

Rank - The number of coordinates in on array argument. (A rank of
zero indicates a scalar.)

Length - The number of items in a coordinate of on argument.

Shape - The vector made up of the lengths of 01 I coordinates of on
argument.

o Domain Tables

In the tables listing the domains of the results for various types of argument
data, the fol lowing symbology is used:

N denotes numeric data.

C denotes character dato.

CE38-04 APL Primitive Functions 5-1

L denotes logical data (1 or 0).

denotes integer data.

F denotes floating-point data.

DE denotes a DOHAIN ERR.

RE denotes a rank error.

Scalar Functions

APL functions vary considerably in how they reference the items of array arguments
and in the characteristics (rank and dimensions) of the result compared with those of
the arguments. A group of functions cal led scalar functions fol Iowa common set of
rules with respect to the characteristics of the arguments and results. These
functions, comprising the arithmetic group, the relational group, and the logical
group, are so named because they are defined in terms of scalar arguments.
Extensions of scalar functions to array arguments are equivalent to performing
item-by-item scalar functions.

If an item of an array contains another APL array, the operation is performed on each
item within the nested array repeatedly, until the operation selects a simple scalar
numeric or character item. AI I of the rank, length and domain checks are made at
each level of nesting. The shape of the resulting structure fol lows the rules at
each function application level.

o Monadic Scalar Functions

The argument used with a monadic scalar function may have any rank and
dimensions. The result has the rank and dimensions of the argument. The domain
of the result may differ from the domain of the argument.

o Dyadic Scalar Functions

~2

If the rank and dimensions of the argument used with a dyadic scalar function are
the same, the function is performed on corresponding items of the two arguments
and the result has the same rank and dimensions. If the arguments have different
ranks or dimensions and both contain other than one item, a rank or length error
will be reported.

If one argument has multiple items and the other is a scalar or single item
array, the function is performed on the single item with each item of the
multiple item argument. The result has the rank and dimensions of the multiple
item argument. If neither argument has multiple items, the result is given the
shape of the higher ranked argument. The shapes of results of scalar functions
for various arguments are tabulated below.

Scalar Functions CE38-04

Right Argument

S V1 M1 H1 V M H

S S V1 M1 H1 V M H

V1 V1 V1 M1 H1 V M H

M1 M1 M1 M1 H1 V M H

Left H1 H1 H1 H1 H1 V M H
Argument Result

V V V V V V RE RE

:1
M M M M RE ~ RE

H H H H RE RE

.... Dimensions of arguments must be identical.
-....Rank and dimensions of arguments must be identical.

where

S denotes a scalar.

V denotes a vector.

M denotes a matrix.

H denotes a higher order array.

RE denotes a rank error.

V1 denotes a single item vector.

M1 denotes a single item matrix.

H1 denotes a single item higher order array.

Arithmetic Functions

Each function in the arithmetic group has a monadic and dyadic form. If any argument
is in the character domain. a DOMAIN ERR is reported. Results are always in the
numeric (integer or floating) domain. If during the execution of any function a
numeric result exceeds the range of CP-6 APL numbers. a DOMAIN ERR is reported.

CE38-04 Arithmetic Functions 5-3

+ Function (Conjugate, Addition)

o Monadic + is the Conjugate function.

R++B

Domain Table:

8 C L F

R C L F

Examples:

+5
5

+(-3 2 1.1>
-3 2 1.1

+0 0
010

o Dyadic + is the Addition function.

R+A+B

Domain Table:

\8
A\ C L F

C DE DE DE DE

L DE F

DE I/F,.,. F

F DE F F F

,.,. The result is floating-point if the value exceeds the integer range.

Examples:

2 3 1+5 -1 0
7 2

2.5+1 2 3
3.5 4.5 5.5

2.5 3.5+1 2 3
LENGTH ERR

2.5 3.5+1 2 3

"

- Function (Negate, Subtraction)

o Monadic - is the Negate function.

5-4

R+-B

Domain Table:

8 C L F

R DE I I/F F

Function (Negate. Subtraction)
CE38-04

0

Examples:

-5
-5

-(-3 2 1.1>
3 -2 -1.1

Dyadic - is the Subtraction function.

R+A-B

Domain Table:

\8
A\ C L F

C DE DE DE DE

L DE F

DE I/F F

F DE F F F

.... The result is floating-point if the value exceeds the integer range.

Examples:

2 3 1-5 -1 0
-3 4 1.

2.5-1 2 3
1.5 0.5 -0.5

1 2 3-2.5
-1.5 -0.5 0.5

x Function (Signum, MuLtipLication)

o Monadic x is the Signum function.

R+XB

If B is positive. R is 1. If B is zero. R is O. If B is negative. R is -1.

Domain Table:

8 C L F

R DE L

Examples:

X-2 3.5 0 .001
-1 1 0 1

o Dyadic x is the Multiplication function.

R+AXB

CE38-04 x
Function (Signum. Multipl ication)

5-5

Domain Table:

\B
A\ C L F

C DE DE DE DE

L DE L F

DE I!F ... F

F DE F F F

... The result is floating-point if the value exceeds the integer range.

Examples:

5Xl -1 7
5 -5 35

-1 2 OX1.5 2.5 3.5
-1.5 5 0

2.5 3x1.7 12 .01
LENGTH ERR

2.5 3x1.7 12 0.01

"

Function (Reciprocal, Division)

o Monadic is the Reciprocal function.

R++B

Domain Table:

8 eLF

R DE F F F

If 8 is zero, the error DOHAIN ERR is reported.

Examples:

+1 2 5
1 0.5 0.2

+.01
100

o Dyadic + is the Division function.

R+A+B

Domain Table:

\8
A\ C L F

C DE DE DE DE

L DE I!F... I!F... F

DE I!F... I!F... F

F DE F F F

... The quotient is integer if B is an exact multiple of A; otherwise, it is
floating-point.

5-6 CE38-04
Function (Reciprocal, Division)

If B is zero and A is other than zero, the error DOMAIN ERR is reported. If both
B and A are zero, R is 1. If R exceeds the range of floating-point numbers,
DOMAIN ERR is reported.

Examples:

7 8 9+2 10 18
3.5 0.8 0.5

0+12
o

0+0

* Function (Exponential, Exponentiation)

o Monadic * is the Exponential function.

The monadic * is the equivalent of the dyadic form with e (the base of the
natural logarithms) suppl ied as a left argument. The value used for e is
approximately 2.11828182845904524.

Domain Table:

8 C L F

R DE F F F

If B exceeds 352.1187677244522173, DOMAIN ERR is reported. If B is less than
-355.2379300369719713, R is O.

Examples:

*1 .5 0 -190
2.718281828 1.648721271 1 3.048234951E-83

o Dyadic * is the Exponentiation function.

R+A*B

Domain Table:

\8
A\ DE L F

C DE DE DE DE

L DE L f

DE I/F f

F DE F F f

If both A and B are zero, R is 1. If A is zero and B is less than zero, DOMAIN
ERR is reported. If A is less than zero and B is not an integer, DOMAIN ERR is
reported. If R exceeds range of floating-point numbers, DOMAIN ERR is reported.

Examples:

o 1 2 -2*0 5.3 0.5 3
1 1 1.414213562 -8

-2*-.3
DOHAIN ERR

-2*-0.3

"

CE38-04 .*
Function (Exponential, Exponentiation)

5-7

i Function (Natural Logarithm, Logarithm)

o Monadic' is the Natural Logarithm (base e) function.

R+'B

Domain Table

8 C L F'

R DE F F F'

If B is not a positive number. DOHAIN ERR is reported.

Example:

, 2.716261626459 1 .049767066367693943
1 0 -3

o Dyadic' is the Generalized Logarithm (base A) function.

R+A'B

If A or B is not a positive number. DOHAIN ERR is reported. If A is 1 and B is
other than 1, DOHAIN ERR is reported.

Domain Table:

\8
A\ C L F

C DE DE DE DE

L DE F F F

DE F F F

F DE F F F

Examples:

2 3 16'1 27 .25
o 3 -0.5

10'10 .1 250
-1 2.397940009

r Function (Ceiling, Maximum)

o Monadic r is the Ceiling function.

5-8

For r, R is the algebraically smal lest integer greater than B-OCTx lrB. OCT is
lE-13 unless it has been reassi~ned.

Domain Table:

8 C L F

R DE L I/FN

N The result is floating-point if the value exceeds the integer range.

Examples:

r 2.1 2.01 -2.01 2.00000000000000001
3 3 -2 2

r Function (Ceiling. Maximum) CE38-04

o Dyadic is the Maximum function.

R+AfB

R is the larger value of A and B.

Domain Table:

\8
A\ C L F

C DE DE DE DE

L DE L F

DE F

F DE F F F

Examples:

5r12
12

(-1 5 7H 5
5 5 7

-1 2 3.5f-3 -2 7.1
-127.1

l Function (Floor, Minimum)

o Monadic L is the Floor function.

R+LB

LB is the largest integer less than B+OCT x 1rB

Domain Table:

8 C L F

R DE L I/F

.... The result is floating-point if the value exceeds the integer range.

Examples:

L 2.9 2.99 -2.99 2.99999999999999999
2 2 -3 3

o Dyadic L is the Minimum function.

R+ALB

R is the smaller value of A and B.

Domain Table:

\8
A\ C L F

C DE DE DE DE

L DE L F

DE F

F DE F F F

CE38-04 L Function (Floor. Minimum) 5-9

Examples:

5112
5

Function (AbsoLute VaLue, Residue)

o Monadic I is the Absolute Value function.

R+IB

Domain Table:

B C L F'

R DE L F'

Examples:

2.15
1-1 -4.3 5 1.2

1 4.3 5 1.2

o Dyadic I is the Residue function.

R+AIB

1. If 04=0 then AlB is B.

2. If A~O then R lies between A and zero (being permitted to equal zero but not
A) and is equal to B-NxA for some integer N.

3. If A=AIB (using OCT) then R is O.

Examples:

04+3 0 -3
B+-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
Ao .IB

o 120 120 120 120
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
o -2 -1 0 -2 -1 0 -2 -1 0 -2 -1 0

0.004

X+21.B24
.011X

The definition of residue can be stated formally as follows:

AlB ++ B-AxLB+A+A=O

Domain Table:

\B
A\ C L I F

C DE DE DE DE

L ,DE L I F

DE I F

F DE F F F

5-10 I
Function (Absolute Value, Residue)

CE38-04

o Function (Pi Times/ Circular)

o Monadic 0 is the Pi Times function.

R+OB

The result is 3.14159265358979324 times B.

Domain Table:

B C L F

R DE F F F

Examples:

01
3.141592654

02 .5
6.283185307 1.570796327

o Dyadic 0 is the Circular function.

R+AOB

The value of A determines the computed function of B according to the fol lowing
convention.

A R

-7 Archtanh
-6 Arccosh
-5 Archsinh
-4 BX(I-B*-2)*0.5
-3 Arctan
-2 Arccos
-1 Arcsin
o (I-B*2)*.5
1 Sine
2 Cosine
3 Tangent
4 (1+B*2)*.5
5 Sinh
6 Cosh
7 Tanh

Table 5-1. Circular Functions

Domain of B-

1~IB
(lsB)ABsHAX*.5-
(HAX*.5)~IB
IslB
HAX~B
1~IB
1~IB
1~IB
4096>IB
4096>IB
4096>IB
(HAX*.5)~IB
352.811914905~IB
352.811914905~IB
HAX~IB

Range of R-

24.9532985 to -24.9532985
3.292722539E-I0 to 0
+352.811914905 to 0
+352.811914905 to 0
Pi/2 to Pi/2
o to Pi
-Pi/2 to Pi/2
o to 1
-1 to 1
-1 to 1
approximately -6E18 to 6E18
1 to HAX*.5
-HAX to HAX

1 to HAX
-1 to 1

-The domains of B and ranges of R are narrower than those theoretically possible.
The limitations reflect the precision with which real numbers are represented and
with which computations are made in the computer.

--HAX=8.379879956EI52
HAX*.5=2.894802231E76

For sine. cosine. and tangent functions and their hyperbol ic counterparts. B is
expressed in radians. For the inverse trigonometric functions. the value of R is
in radians. The domain of the result is always' floating-point.

Examples:

1002
-2.064961208E-18

00.4 .5 .6
0.916515139 0.8660254038 0.8

-70.5
0.5493061443

CE38-04 o
Function (Pi Times. Circular)

5-11

Notice in the first example that the result (the sine of 2xPi) should actually be
zero. The actual result reflects the effect of computing with approximately 18
decimal-place precision.

Function (Factorial, Binomial)

o Monadic is the Generalized Factorial function.

The result is B factorial for non-negative integral value of B. If B is not an
integer, the result is the gamma function of B+l.

Domain Table:

B C L F

R DE L I/F F

Examples:

!7
5040

!.66 -.75 0
0.9016683712 3.625609908

o Dyadic! is the Binomial function.

If the arguments are positive integers and A is less than or equal to B. the
result is the number of combinations of B things taken A at a time. In general,
(A!B) is:

R+(!B)+(!A)X !B-A

Domain Table:

\B
A\ C L I F

C DE DE DE DE

L DE L F

DE I/F F

F DE F F F

Examples:

1!2
2

1.5 !2
1.697652726

1.5!2.5
2.5

5!52
2598960

5-12 CE38-04
Function (Factorial, Binomial)

Relational Functions

The six relational functions are used to compare two values and return a value of 1
if the relation is true or a value of 0 if the relation is false. The truth value
can be used in calculations in the same way as any other value of 1 or O. The
relational functions are strictly dyadic, requiring a left argument.

The expressions used below to define the relational functions includes a value DELTA.
This is a relative tolerance value related to the user-established comparison
tolerance in the fol lowing way:

DELTA+OCTx(IA)rIB

< Function (Less Than)

o Dyadic < is the Less Than function.

R+A<B

The result is 1 if (A-B)<-DELTA. and is 0 otherwise.

Domain Table:

\8
A\ C L F

C DE DE DE DE

L DE L L L

DE L L L

F DE L L L

Examples:

2<4.5

1 2 3<3 2 1
o 0

~ Function (Less Than or EquaL)

o Dyadic s is the Less Than or Equal function.

R+ASB

The result is 1 if (A-B)sDELTA. and is 0 otherwise.

Domain Table:

\8
A\ C L F

C DE DE DE DE

L DE L L L

DE L L L

F DE L L L

CE38-04 s 5-13
Function (Less Than or Equal)

Examples:

ls2

1 2 3s3 2 1
1 0

= Function (EquaLs)

o Dyadic is the Equals function.

R+A=B

If A and B are numeric, the result is 1 if (IA-B)sDELTA, and is 0 otherwise. If
A and B are characters, R is 1 if A and B are the same, and 0 if they are not.
If one argument is character and the other numeric, R is o.

Domain Table:

\B
A\ C L F

C L L L L

L L L L L

L L L L

F L L L L

Examples:

1 2 3=3 2 1
0 0

'THIS'='THAT'
0 0

'A'=5
0

~ Function (Greater Than or EquaL)

o Dyadic ~ is the Greater Than or Equal function.

R+A~B

The result is 1 if (A-B)~-DELTA, and is 0 otherwise.

Domain Table:

\B
A\ C L F

C DE DE DE DE

L DE L L L

DE L L L

F DE L L L

Examples:

1~2
o

1 2 3~3 2 1
o 1 1

5-14 ~ CE38-04
Function (Greater Than or Equal)

> Function (Greater Than)

o Dyadic> is the Greater Than function.

R+A>B

The result is 1 if (A-B»DELTA. and is 0 otherwise.

Domain Table:

\B
A\ eLF

C DE DE DE DE

L DE L L L

DE L L L

F DE L L L

Examples:

o

001

2>3.4

1 2 3>3 2 1

¢ Function (Not Equal)

o Dyadic ~ is the Not Equal function.

R+A~B

If A and B are numeric, the result is 1 if (IA-B»DELTA. and is 0 otherwise. If
A and B are characters, R is 0 if A and B are the same, 1 if they are not. If
one argument is character and the other numeric, R is 1.

Domain Table:

\B
A\ C L F

C L L L L

L L L L L

L L L L

F L L L L

Examples:

1 2 3"3 2 1
0

'THIS''''THAT'
0 0 1

'A'''5

CE38-04 ~ Function (Not Equal) 5-15

Logical Functions

The five logical functions are used to perform logical operations, returning a result
of 0 or 1. The first four operations are strictly dyadic, and the last (the "not"
operator) is strictly monadic.

A Function (And, LCM)

o Dyadic A is the And function.

R+A"B

For logical values of A and B (0,1) the result is 1 if A and B are both 1, and is
o otherwise. Otherwise, the result is the least common multiple of A and B.

Domain Table:

\B
A\ C L F

C DE DE DE DE

L DE L F

DE I/F F

F DE F F

Examples:

(1<2)"(3=4)
o

1 1 0 0" 1 0 1 0
000

6

1.4

F

v Function (Or, GCD)

o Dyadic v is the Or function.

R+AvB

For logical values of A and B (0,1) the result is 1 if either A or B are both 1.
and is 0 otherwise. Otherwise, the result is the greatest common divisor of A
and B.

The greatest common divisor of two values will always be less than or equal (in
magnitude) to each of the values. The result of this function is always
non-negative.

5-16 v Function (Or, GCD) CE38-04

Domain Table:

\B
A\ C L F

C DE DE DE DE

L DE L F

DE F

F DE F F F

Examples:

hi

(l<l)v(3=4)
0

1 1 o Ovl 0 1 0
1 1 0

4v6
2

A Function (Nand)

o Dyadic ~ is the Nand function.

The result is 0 if A and B are both 1, and is 1 otherwise.

Domain Table:

\B
A\ C L F

C DE DE DE DE

L DE L L L

DE L L L

F DE L L L

A DOHAIN ERR results if both A and B are not equal to either 1 or o.
Examples:

o
(1<2)~(3=4)

1 0 O~1 0 1 0
o 1 1

CE38-04 ~ Function (Nand) 5-17

"I Function (Nor)

o Dyadic ¥ is the Nor function.

R+A¥B

The result is 0 if either A or B, or both, are 1, and is 1 otherwise.

Domain Table:

\8
A\ C L F

C DE DE DE DE

L DE L L L

DE L L L

F DE L L L

A DOMAIN ERR results if both A and B are not equal to either 1 or O.

Examples:

1"11
o

(1)2)''1(3=4)

1 0 0"11 0 1 0
000

Function (Not)

o Monadic - is the Not function.

R+-B

The result is 1 if B is 0, and is 0 if B is 1.

Domain Table:

8 C L F

R DE L L L

A DOMAIN E~R results if B is not equal to either 1 or o.
Examples:

-1
o

-0

-(2.5-1.5)
o

5-18 - Function (Not) CE38-04

Mixed Functions

Functions not categorized previously as monadic or dyadic scalar functions are called
mixed functions. Rules for shapes and domains of the arguments and results vary and
are described for the individual functions.

? Function (Roll, Deal)

o Monadic? is the Rol I function.

Each item R[I) of the result is an integer selected pseudorandomly from (~ B[I).
The range of the result depends on the value of the index origin (see the deal
operator below). The shape of the result is the same as that of the right
argument.

Examples:

?5
3

?2 4 6
2 4

?3 3 3 3
231

o Dyadic? is the Deal function.

R+A?B

The result is a vector of integers comprising A components pseudorandomly
selected from (~ B) without replacement, preventing the duplication of integers
in R. The range of the result depends on the index origin. If the index origin
is 0. the range is 0 through B-1. If the index origin is 1. the range is 1
through B.

A may not exceed B. and both must be simple numeric items.

Examples:

2?4
4 2

6?6
2 135 4 6

A+10 20 30 40 50 60 70 BO
A[4?Bl

70 20 10 40

t Function (Index Generator, Index Of)

o Monadic ~ is the Index Generator function.

R+~ B

B must be a single simple numeric item, equal to an integer. The result is a
simple integer vector comprising B items, beginning with the index origin and
incrementing monotonically by 1. The index origin can be changed by assigning a
value to 010. If B is 0 the result is an empty numeric vector.

CE38-04 ~ 5-19
Function (Index Generator, Index Of)

Examples:

[)+R+1,4
123 4

0[0+0
[)+R+1,4

o 123

o Dyadic 1, is the Index Of function.

R+A1, B

The value of each item of the result is the smal lest index [such that A[[] is
equivalent to the corresponding item in B. The left argument must be a vector.
The right argument may have any rank. If no match for an item of B is found in
A, that item of the result is set to (pA)+OIO. The shape of the result is the
same as the shape of the right argument. The result is simple and in the integer
domain.

Note that A may be an empty vector and the value of the result depends on whether
the index origin is 1 (th~ default case) or o. A and B may be of any domain.
Note, however, that if A IS al I character data, for example, and B is al I
numeric, the resul t wi II be ent i rely "no match" values.

Examples:

5

4

424

2 4 6 81,3

'xrz' 1, 'W'

'DOG'1,'COT'

'xrz' 'DOG'1,'O' 'xrz' 'X' 'DOG'
332

c Function (Enclose)

o Monadic e is the Enclose function.

R+eB

R+e[K]B

B may be any APL array. This function increases the depth of B by 1 and
decreases the rank. If an axis is not specified, the result is a scalar whose
only item is the array B. If B is a simple scalar character or number, the result
is B unchanged.

If an axis is specified. all of the axes specified by K are enclosed. resulting
in an array of rank (ppB)-p,K, containing items of rank p,K. The shape of the
result is (pB)[(-(1,ppB)fK)/pB] and the shape of each item of B is (pB)[KJ.

Examples:

5-20

6

+-+
161
+-+

e,6

e'SENATE'
+------+
I SENATE I
+------+

e Function (Enclose) CE38-04

c[lJ2 3p'ABCDEr'
+--+ +--+ +--+
IADI IBEI Icrl
+--+ +--+ +--+

oPS+-l 1 0 2
A+'STEVE' 'HARK' 'TOH' 'BRUCE'
A[3J+c'THOHAS'
A

STEVE HARK THOMAS BRUCE

~ Function (Disclose, Pick)

o Monadic ~ is the Disclose function.

R+~B

R+~[KJB

The result is an array whose depth is one less than that of B and whose rank has
increased by the rank of the non-scalar items of B. AI I of the non-scalar items
of B must have the same rank although they may vary in shape. If B is a simple
array then the result is B.

If B is a simple scalar. the result is B. Otherwise if B is a scalar. the result
is the array contained"in B.

If axes are specified. they indicate where to insert the axes of the items of B
into the result. When no axes are specified. the new axes are inserted after the
axes of B. The number of axes specified must equal the rank of the non-scalar
items of B.

Examples:

WHO
WHAT
WHEN
WHERE
4 5

SHTB
TAOR
ERHU
VK C
E E
5 4

CP-6

pO+~'WHO' 'WHAT' 'WHEN' 'WHERE'

pO+~[lJ'STEVE' 'HARK' 'TOH' 'BRUCE'

~'CP-6'

o Dyadic ~ is the Pick function.

The result is an item from the (pA)'th level of nesting in B selected by the path
specified in A. A must be a scalar or vector containing only simple integer
scalars or vectors.

The first item of A must contain valid indices of B. These indices select an
item of B which is then indexed by the next item of A until all items of A have
been used. The final array is the result of this function.

If A is empty. the result is B.

CE38-04 ~ Function (Disclose. Pick) 5-21

Examples:

C

3

91

3 ~'ABCDEFGHIJ'

2 3 (2 1) ~ 1 (1 2 (2 2 p1 2 3 4) 4) 3 2 1

2 (1.0)~ 90 91 92

= Function (Depth, Equivalence)

o Monadic = is the Depth function.

0

R+=.B

The result is a simple non-negative integer scalar indicating the maximum depth
of nesting in B. B may 'be any APL array.

The depth of a simple scalar character or number is defined as O. Non-scalar
arrays containing only depth 0 items have depth 1. All other arrays have a depth
of 1+r '=."B.

A depth greater than 1 indicates that an array is not simple.

Examples:

::.29
o

::.23 29 31

=.'ABC' 4 (5 (6 7»
3

::.'CABLE' 'CARS'
2

Dyadic = is the Equivalence function.

R+A=.B

The result is a simple logical scalar indicating whether every item of the left
argument is equivalent to every item of the right argument. The result is 0 if
any item of A is not equivalent to the corresponding item of B.

Comparison tolerance is used if corresponding items of A and B are numeric.
Arrays are equivalent if they have the same shape and structure, and if all
corresponding values in each structure are equal.

Empty arrays are equivalent only if their prototypes are also equivalent.

Examples:

1984=.,1984
0

'APPLE'=.'PIE'
0

10 20=.9+1 11

10 (9 8)=.4 (3 2)+6

5-22
Function (Depth, Equivalence)

CE38-04

, Function (Ravel, Catenation, Lamination)

o Monadic, is the Ravel function.

R+,B

The result is a vector comprising the components of the argument B in index
sequence. The argument can have any shape and dimensions.

Examples:

B+2 21'1.4
B

1 2
3 4

,B
2 3 4

B[1 j 1)+cB
B

1 2 2
3 4

3 4
,B

1 2 2 3 4
3 4

O+C+2 4p'LEVELSIX'
LEVE
LSIX

,C
LEVELSIX

o Dyadic, is the Catenation and Lamination function.

R+A, (K1B

The catenation coordinate K is acceptable if {rK)E1.{ppA)rppB. The catenation
coordinate is rK.

If A and B are vectors or scalars, the result is a vector comprising all items of
A followed by al I items of B.

Examples:

A+l 2 3
B+4 5 6
A,B

23456
C+'STR'
D+'AND'
C,D,A

STRANDl 2 3

Catenation

Arguments A and B are conformable for catenation if:

1. The ranks are equal and al I coordinates except the catenation coordinate are
equal.

2. The rank of one argument is one less than the other and all coordinates
except the catenation coordinate of the higher rank argument are equal to all
coordinates of the lower rank argument. The lower rank argument is
subsequently treated as if its rank were equal to the other argument and its
catenation coordinate length were 1.

3. Either A or B is a scalar. The scalar argument is subsequently treated as if
its shape were equal to the other argument with a catenation coordinate
length of 1.

CE38-04 , Function 5-23
(Ravel, Catenation. Lamination)

If A and B have conformable shapes and one or both are of higher rank than
vector, catenation joins A and B along an existing coordinate. If no coordinate
is specified, catenation occurs along the last coordinate. Scalar arguments are
extended for catenation in this case.

Examples:

[)4-H+4 7p'H'
HHHHHHH
HHHHHHH
HHHHHHH
HHHHHHH

X+2 7p'X'
Y+' 1234567'
Z+' 1234'
W+' 0'

H, [1 JX
HHHHHHH
HHHHHHH
HHHHHHH
HHHHHHH
XXXXXXX
XXXXXXX

H,[llY
HHHHHHH
HHHHHHH
HHHHHHH
HHHHHHH
1234567

H,Z
HHHHHHHI
HHHHHHH2
HHHHHHH3
HHHHHHH4

H, [1 JW
HHHHHHH
HHHHHHH
HHHHHHH
HHHHHHH
0000000

H,W
HHHHHHHo
HHHHHHHo
HHHHHHHo
HIlHHHHHO

Lamination

If a non-integer coordinate value is indicated in catenation, and its ceiling is
a valid coordinate, the function performed is termed lamination. In this case
the variable A and B are joined on a new coordinate. The length of the new
coordinate is always 2.

In the fol lowing examples, the index origin is 1. If a coordinate of zero or
less, or three or more, were specified, RANK ERR would be reported.

Examples:

H,['5)W
HHHHHHH
HHHHHHH
HHHHHHH
HHHHHHH

5-24 , Function CE38-04
(Ravel, Catenation, Lamination)

0000000

0000000

0000000

0000000

pH, [.5)J{
247

H, [1. 5)J{
HHHHHHH
0000000

HHHHHHH
0000000

HHHHHHH
0000000

HHHHHHH
0000000

pH,[1.5)J{
427

H,[2.5)J{

4 7
pH, [2.5)J{

472

CE38-04 • Function 5-25
(Ravel, Catenation, Lamination)

p Function (Shape, Reshape)

o Monadic p is the Shape function.

R+pB

The result is an integer vector comprising the number of items each index of B
contains. That is. R contains the highest index in each coordinate of B in
origin 1. Thus. the expression ppB represents the rank (number of dimensions) of
B. If B is a scalar. pB results in an empty vector.

Examples:

B+2 4 6 B
pB

4
C+2 3p'PIFFLE'
pC

2 3

o Dyadic p is the Reshape function.

R+ApB

The result is an array with the dimensions specified by vector A and the contents
of B. Items of A may be positive integers or zero. If any component of A is
zero. R is empty. If A is empty. R is a scalar. If B is empty, the prototype of
B is used to fil I the result. If the reshape requires fewer items than B
contains, only the required items are in the result. If the result requires more
items than B contains, B is cyclically reused as required. B may be of any rank
or domain.

Examples:

2p3 4 5 6
3 4

2 4p~5
1 234
5 123

AB
JKLHN

FCHI

3 3p' AB' 'CDE'
CDE FCHI

AB CDE
JKLHN AB

'FCHI' 'JKLHN'

$ Function (Reversal, Rotation)

o Monadic ~ is the Reversal function.

R~[K]B

The result is a reversal along the K'th coordinate of B. If K is omitted, the
last coordinate is .assumed. (If e is used instead of ~, the first coordinate is
assumed).

Examples:

TIHE

7 B 9
456

5-26

~'EHIT'

~[1l3 3p~9

~ CE38-04
Function (Reversal, Rotation)

2 3
~3 3p1.9

3 2 1
6 5 4
9 8 7

~'FOX' 'WOLVERINE' 'DOG' 'CAT'
CAT DOG WOLVERINE FOX

o Dyadic ~ is the Rotation function.

R+A¢[KJB

The result is a cyclic rotation of B by the number of components determined by A.
If A is positive, rotation is to the left; if A is negative, rotation is to the
right. Rotation is performed along the K'th coordinate of B. If K is omitted,
the last coordinate is assumed. (If e is used instead of ¢, the first coordinate
is assumed).

Arguments A and B are conformable for rotation if:

1. A is a scalar or one element vector.

2. The rank of A is one less than the rank of B and the shape of A is equal to
the shape of B omitting axis K.

A must be a simple integer array.

Examples:

3¢'LEAP'
PLEA

2~3 4p1.l2
3 4 1 2
7 8 5 6

11 12 9 10
-1~3 4p1.l2

4 1 2 3
8 5 6 7

12 9 10 11
1e 3 4p1.l2

5 6 7 8
9 10 11 12
1 2 3 4

~ Function (Transpose)

o The monadic Transposition function has the fol lowing syntax:

R+&B

The result is an array comprising the items of B with the order of all
coordinates reversed. For any B, (p&B)=(~pB). If B is a matrix. for example. the
result is a matrix whose rows are the columns of B and whose columns are the rows
of B. Monadic transpose of a scalar or vector yields R+B.

Examples:

AGENT
VIGOR
AGONY

CE38-04

O+A+3 5p'AGENTVIGORAGONY'

& Function (Transpose) 5-27

&A
AVA
GIG
EGO
NON
TRY

O+B+2
1 2 3
5 6 7
9 10 11

101 102 103
105 106 107
109 110 111

4 3 2

1 101
5 105
9 109

2 102
6 106

10 110

3 103
7 107

11 111

4 104
8 108

12 112

p&B

&B

3 4p(t12),100+t12
4
8

12

104
108
112

o The dyadic Transposition function has the fol lowing syntax:

R+A&B

The result is an array similar to B except that the coordinates of B are permuted
according to A. The shape of A and B must be related by

There are two cases of dyadic transposition:

Case 1:

A is a permutation of tppB (the coordinates of B). A is described as the inverse
permutation vector. The A[l)'th component of pR is the l'th component of pB, and
thus the A(l)'th coordinate of the result is the l'th coordinate of B.

Examples:

1 4
2 5
3 6

ER
Sl

XA
PO

AT
EN

3 2 1&2 2 3p'EXASPERATION'

Case 2:

A satisfies the relationship (trIA)fAj that is, A is a dense set of the first K
coordinates of B, permuted, with some coordinates duplicated. If B is a matrix,
the one possible form for A is (1 1), and the result is the principal diagonal of
the matrix.

5-28 & Function (Transpose) CE38-04

Example:

GET
EAR
TRY

GAY

O+X+3 3p'GETEARTRY'

1 I&X

If B has rank 3 or more, the rule is that the rank of R equals the highest value
in A. If 1<+/A[I)=A and N+(A[I)fA)/tpA. then the A[N[I))'th coordinate of R is
made up of those components of B whose N'th coordinate indices are the same. AI I
other coordinates of the result are structured as in Case 1.

For higher order arrays, the generai ized' "diagonal" case of dyadic transpose is
varied and somewhat difficult to visualize. The examples below show some forms
for Case 2:

Z+2 4 4p'ABCDEFGHIJKLHNOPQRSTUVWX'
pO+Z,

ABCD
EFGH
IJKL
HNOP

QRST
UVWX
ABCD
EFGH
244

A+l 1 1&Z
A

AV

pA
2

B+1 2 2&Z
B

AFKP
OVCH

p B
2 4

C+2 1 1&Z
C

AO
FV
KC
PH

p C
4 2

D+2 1 2& Z
D

AR
EV
IB
HF

p D
4 2

E+1 2 1& Z
E

AEIH
RVBF

pE
2 4

F+2 2 1&Z
F

AU
BV
CW
DX

pF
4 2

CE38-04 & Function (Transpose) 5-29

G+1 2 2&Z
G

AFKP
QVCH

pG
2 4

X+2 3 4 5pt.120
1 1 1 1&X

87
1 1 2&X

1 2 3 4 5
86 87 88 89 90

222 1&X
1 86
2 87
3 88
4 89
5 90

1 1 2 2&X
1 7 13 19

81 87 93 99
221 1&X

1 81
7 87

13 93
19 99

1 2 2 3&X
1 2 3 4 5

26 27 28 29 30
51 52 53 54 55

61 62 63 64 65
86 87 88 89 90

111 112 113 114 115
3 2 2 1&X

1 61
26 86
51 111

2 62
27 87
52 112

3 63
28 88
53 113

4 64
29 89
54 114

5 65
30 90
55 115

5-30 & Function (Transpose) CE38-04 \

4 Function (Grade-up)

o Monadic. is the Grade-up function.

The result is a vector of indices (index origin sensitive) of the first
coordinate of B ranked in ascending order of magnitude. B may be any simple
non-scalar array containing only numbers or only character items. Identical
components of B are ranked in index order.

If B is a vector, then the result values are the indices of the individual items
of B. If B is a matrix, the result values are indices of rows of B. and the rows
are ranked such that a difference in the first column of B is more significant
than a difference in the remaining columns. This ranking extends to higher
ranked arrays by sorting on the first coordinate and treating al I other
dimensions in ravel order.

Ranking Numeric Ar rays

• 5 10 15 20
1 2 3 4 • 3 1 4 1
2 4 3

• 5
21) 2 8 192 3 4 2 1 4

5 2 3 1 4

Ranking Character Arrays

If B is a character array, then .B is treated asA.B where A is the default
collating sequence shown in Table 5-2. For this default array, difference in
case (lower or uppercase) is less significant than a difference in spelling.
Also, numeric suffixes sort in numeric order.

Examples:

A+ll 3p'LI0Ll L3 L9 L33L LX L7 L30LL L6 ' .A
6 10 7 2 3 11 8 4 1 9 5

L
LL
LX
Ll
L3
L6
L7
L9
LlO
L30
L33

CE38-04 • Function (Grade-up) s-:.31

Table 5-2. Default Collating SeQuence Array

(10 2 27+' ',12 26poAV[65 97 0 .+t26),'01234567B9',[1.5]' ,
ABCDEFCHIJKLHNOPQRSTUVWXYZO
A~~QEr~HLlKk~HQEQ8~IU~~KrZ

2

3

4

5

6

7

B

9

o Dyadic' is the Grode-up function.

R+A'B

The result is a vector of indices (010 sensitive) of the first coordinate of B
ranked in ascending order of magnitude using the collating sequence specified by
the array A. A and B must be simple non-scalar arrays containing only character
items.

The left argument collating sequence array is arranged such that the indices of
the first occurrence of each character determines the significance and order for
the ranking operation. When two characters differ in their indices along the
columnar axis (the lost dimension), this difference is more significant than a
difference in indices along the row axis or plane axis.

For example, to sort on array containing letters and underscored letters, a
matrix might be used. In this case, if the first row of the matrix contained the
letters and the second row contained the underscored letters, the sort would rank
a difference in spel ling (letters) higher than a difference in case. The result
would couse all simi larly spelled words to sort together regardless of their
case.

Any characters occurring in B but not in A are treated as though their index
position in A is beyond the end of each axis of A.

Examples:

O+A+'A~~QEr~HL~Kk~HQE',[.5]'ABCDEFCHIJKLHNOP'
A~~QEr~HLlKk~HQE
ABCDEFCHIJKLHNOP

A~A
AHA
EL
A~A
A~~

5-32

O+B+5 3p'A~AAHAEL A~AA~~'

, Function (Grade-up) CE38-04

A' B
4 253

'ABkQEl~HLlKkHMQfABCDEFGHIJKLHNOP" B
45312

'AABBkCQDiEEF~GHHLIlJKKkLHHMNQOfP" B
4 5 123

t Function (Grade-Down)

o Monadic t is the Grade-down function.

R+tB

The result is a vector of indices (010 sensitive) of the first coordinate of B
ranked in descending order of magnitude. B may be any simple non-scalar array
containing only numbers or only character items. Identical components of Bare
ranked in index order.

If B is a vector, the result values are the indices of the individual items of B.
If B is a matrix, the result values are the indices of rows of B and the rows are
ranked such that a difference in the first column of B is more significant than
the remaining columns. This ranking extends to higher ranked arrays by sorting
on the first coordinate and treating all other dimensions in ravel order.

Examples:

.t 3 1 4 1 5 9
653 124

t 7 2p 3 1 1 3 2 7 34 6 1 5 7 1 4
564 1 372

Ranking Character Arrays

If B is a character array, tB is treated as AtB where A is the default collating
sequence shown in Table 5-2. For this default array difference in case (letter
or underscored letters) is less significant than a difference in spel ling. Also,
numeric suffixes sort in numeric order.

Examples:

A+12 3p'NFDNS NB PEIQUEONTHANSASALBBC NWTYUK'
A[O+tA;l

12 B 5 4 6 11 2 1 3 7 10 9
YUK
SAS
QUE
PEl
ONT
NWT
NS
NFD
NB
HAN
Be
ALB

o Dyadic t is the Grade-down function.

R+AtB

The result is a vector of the indices of the first coordinate of B arranged such
that B is ranked in descending order of magnitude using the collating sequence
specified by the array A. A and B must be simple non-scalar arrays containing
only character items.

CE38-04 t Function (Grade-Down) 5-33

The left argument collating sequence is arranged such that the indices of the
first occurrence of each character determines the significant and order of the
ranking. When two characters differ in their indices along the columnar axis
(the last dimension). this difference is more significant than a difference in
indices along the row axis or plane axis.

Any characters occurring in B but not in A are treated as though their index
position in A is beyond the end of each axis of A.

Examples:

AO~'AB~DEEGHL~KkHHQeQ8~r~~~KrZABCDEFGH[JKLHNOPQRSTUVWXrz'
Al~'AABB~CDDEEEFGGHHL[lJKKkLHHHNQOEPQQBR~SrTUUrV~KXrYZZ'
A2~2 26"AO

B~7 6p'TQ~QQHIB~DGEPHQrQ ~HDEB rQ~QQHTB~DGETEK

AO'B
6 7 3 425

Al'B
4 6 7 2 5 3

A2'B
462 1 573

B[AO'B;J,' ',B[Al'B;),' ',B[A2'B;J
TB~DGE ~DEB UHDEB
TQ~QQH TBUDGE TB~DGE
TEK TQ~QQH rB~DGE
PHQIQ TEK TQ~QQH
~HDEB IB~DGE IQ~QQH
IB~DGE rQ~QQH TEK
IQ~QQH PHQrQ PHQIQ

1 Function (Base VaLue, Decode)

o Dyadic 1 is the Base Value function.

R~A1B

The argument A is referred to as the radix or radix vector. If A is a scalar. it
is conceptually expanded to a vector. A and B must be simple and numeric; R is
numeric.

The argument A is used internally to generate a set of weights, W, to operate on
B as follows. Let [be the length of B. Then:

W[[J~l
W[[-l]~A[[)XW[[)

W[[-2][A[[-lJxW[[-lJ
W[1 J+A[2JxW[2]

Note that A[l] has no effect on the result.

Example:

A+O 60 6011 2 3
W[3] is 1
W[2] is W(3)xA[3]' or 60
W[1) is W(2)XA[2J, or 3600

5-34 1

Function (Base Value. Decode)
CE38-04

The result is formed by W+.xW:

1x3600

WXB is 3600 120 3

R is 3723

If A is a vector and B is on array, pA must be the some as the length of the
first coordinate of B. If B is a matrix for example, B must have the some number
of rows as the length of A. Each column of B is decoded to provide one item of
the result. If A is also on array, each row of A represents a different radix
vector. The shope of R is the catenation of the shope of 01 I but the last
coordinate of A with 01 I but the first coordinate of B. (Structure rules for A,
B, and R are the same as for inner product.)

Examples:

11

228

987

560

2J.1 0

4J.3 2 0

10J.9 8 7

2 3J. 45 67 89

A K IS A TABLE OF TIHES REPRESENTED IN DAYS (ROW I),
A HOURS (ROW 2), HINUTES (ROW 3), AND SECONDS.

+K+4 6pO 0 0 0 1 11 0 0 0 2 3 13 0 1 16 46 46 46 10,5p40
o 0 0 0 1 11
o 0 0 2 3 13
o 1 16 46 46 46

10 40 40 40 40 40

A EACH COLUHN OF K REPRESENTS A TIHE VALUE.
A IF K IS OPERATED ON BY THE 'BASE VALUE' FUNCTION,
A THE RESULT IS A VECTOR OF TIHES IN SECONDS.
A THE RADIX VECTOR IS -- 365 24 60 60

365 24 60 60J.K
10 100 1000 10000 100000 1000000

T Function (Representation, Encode)

o Dyadic T is the Encode function.

R+ATB

R is a "bose A" representation of B. R satisfies the relationship
«xIA)IB-AJ.R)=O. A and B must be simple and numeric, R is numeric. Note that
the T and J. functions are inverses (opposites). Note also that since Encode
carries out a residue operation, its values are subject to the rules for that
function.

If vector A contains too few items for B to be .represented, the most significant
digits of the result are truncated. If A[l] is 0, any unencodeable portion of B
wil I be returned as Rl1] rather than being truncated .. Note that A and B may be
negative or non-integer values. In this case, the result is as well defined but
not as intuitively clear as for positive integer values.

B may be an array rather than a scalar, and the shope of the result will be the
catenation of the shapes of the ar9uments. (The structure rules for R, A, and B
are the some as for outer product.)

CE38-04 T 5-35
Function (Representation, Encode)

Examples:

~ BINARY REPRESENTATION

(8p2)T75
o 100 101 1

1 1 3

~ OCTAL REPRESENTATION

(3p8)T75

~ DECIHAL REPRESENTATION

(5plO)T31415
3 1 4 1 5

~ VARIED UNIT REPRESENTATION
24 60 60T75432

20 57 12

1 5

~ EXAHPLE OF TRUNCATION
10 10T31415

~ THE ARGUHENTS FOR REPRESENTATION NEED NOT BE INTEGER
(8pl.5)T32.75

1 0.5 1 0 0 0.5 0 1.25

~ H IS A VECTOR OF TIHE VALUES IN SECONDS
H~10 100 1000 10000 100000 1000000
~ H CAN BE ENCODED IN TERMS OF DAYS,HOURS,HINUTES AND SECONDS.
365 24 60 60TH

o 0 0 0 1 11
o 0 0 2 3 13
o 1 16 46 46 46

10 40 40 40 40 40

~ IN THE RESULT, EACH COLUHN REPRESENTS ONE ELEHENT OF H
~ ROW 1 IS DAYS, ROW 2 IS HOURS, ROW 3 IS HINUTES AND
~ ROW 4 IS SECONDS.

The encode function T is based on the residue function in the manner specified by
the following function for vector A and scalar B:

v Z~A ENCODE B
[1) Z~OXA
[2) I~pA
[3) L:+([=O)/O
[4J Z[IJ~A[I)IB
[5) +(A[I)=O)/O
[6) B~(B-Z[I)+A[I)
[7) I~I-l
[8) +L

V

5-36 T CE38-04
Function (Representation. Encode)

~ Function (Format)

o Monadic W is the Format funct~on.

0

R+W B

The symbol W (T and 0 overstruck) defines two format functions which convert
numerical arrays to character arrays. The monadic function produces a character
array which is identical to the array which would be produced if the argument
were merely printed; the difference (and advantage) is that the result is made
expl icitly available. The monadic format function can also be applied to a
character array and wil I return the same character array. When applied to
numeric arrays. however. the shape pf the result is the same as the shape of the
argument except for the required expansion along the last coordinate. each number
being expanded. in general. to several characters. When applied to a nested
array. the result is a vector or a matrix.

Examples:

PTABLE+2=?4 4p2
PTABLE

1 1 o 1
0 0 1 0
1 0 o 0
0 0 o 1

pPTABLE
4 4

pO+DFORHAT+wPTABLE
1 1 0 1
0 0 1 0
1 0 0 0
0 0 0 1
4 7

w'LITERAL'
LITERAL

Dyadic W is the Format function.

R+A • B

The dyadic format function accepts only simple numeric arrays for its right
argument. and uses the left argument to provide detailed control over the result.
In general. a pair (or pairs) of numbers in the left argument controls one or
more columns of the result. The first number of the pair determines the total
width of a number field and the second number specifies the desired precision.
For decimal form numbers. precision is defined as the number of digits to the
right of the decimal point; for scaled form it is defined as the number of digits
in the multiplier. The form to be used is defined by the sign of the precision
number in the control pair. Negative numbers indicate scaled form. For example:

pO+DHATRIX+3 2p12.34 -34.567 0 12 -.26 -123.45
12.34 -34.567
o 12

-0.26 -123.45
3 2

p0+12 3.DHATRIX
12.340 -34.567
0.000 12.000

-0.260 -123.450
3 24

pO+SCALED+9 -2wDHATRIX
1.2E1 -3.5E1
O.OEO 1.2El

-2.6E-l -1.2E2
3 18

A single control number may also be used. and is treated as a number pair with a
width indicator of zero. In this event. a field width is chosen such that at
least one space wil I appear between adjacent numbers. For example:

CE38-04 W Function (Format) 5-37

,,[J+2"DHATRIX
12.34 -34.57
0.00 12.00

-0.26 -123.45
3 14

,,[J+-2"DHATRIX
1.2El -3.5El
O.OEO 1.2El

-2.6E-l -1.2E2
3 20

Each column of an array can be individually formatted by defining a left argument
containing a control pair for each column of the array. For example:

,,0+0 2 0 2"DHATRIX
12.34 -34.57
0.00 12.00

-0.26 -123.45
3 14

,,0+6 2 12 -3"DHATRIX
12.34 -3.46El
0.00 1.20El

-0.26 -1.23E2
3 IB

When applied to an array having a rank greater than two, the format
specifications apply to each of the planes defined by the last two coordinates.
For example:

HATRIX3D+2=?2 2 5,,2
HATRIX3D

1 0 1 1
o 0 1 0

o 1 0 1 1
00000

4 1"HATRIX3D
1.0 0.0 1.0 1.0 1.0
0.0 0.0 1.0 1.0 0.0

0.0 1.0 0.0 1.0 1.0
0.0 0.0 0.0 0.0 0.0

Tabular displays which incorporate row and column headings or other information
between columns or rows, can be configured using the format function together
with extended catenation. For example:

ROWHEADS+4 3,,'JANAPRJULOCT'
YEARS+7B+t.5
TABLE+.OOlx-4E5+?4 5"BE5

(' " [1]ROWHEADS), (2¢9 O"YEARS), [1]9 2"TABLE
79 BO Bl B2 B3

JAN -159.97 153.B5 269.01 20B.60 -BB.20
APR B.B9 -322.64 293.61 297.76 213.28
JUL 254.56 73.44 255.15 -134.65 305.28
OCT 52.33 1.25 -6.41 -234.24 -314.15

A DOHAIN ERR results when the width indicator of the control pair does not
specify a size large enough to hold the requested form. The width need not,
however. provide for blanks between adjacent numbers.

5-38 " Function (Format) CE38-04

+ Function (First, Take)

o Monadic + is the First function.

R++B

B may be any APL array. The result is the APL array which is within the first
item of B. If B is empty. the result is the prototype value of the array B.

Examples:

10

H

+10 20 30

t'HIYA'

t'SASKATOON' 'HOOSE JAW'
SASKATOON

S

S

o 0

tt'SASKATOON' 'HOOSE JAW'

ttt'SASKATOON' 'HOOSE JAW'

+Op(1 2) 3 (4 5)

o Dyadic + is the Take function.

R+AtB

A must be an integer scalar or vector. and the length of A must equal the rank of
B. (If B is a scalar it is treated as though it were a 1 item array whose rank is
the length of A.) Each item of A controls the "take" from a coordinate of B. R
has the same rank as B. The shape of R is IA.

If A[I)~O, then the I th coordinate of R is the first A[I) items in the I th
coordinate of B. If A[[)<O, the last IA[1l items are used. If IA[1l indicates
more items than are present in the coordinate of B, R is padded with prototype
values of B.

Examples:

345
7+1,5

2 3 4 500
3+(123) (4 5)

2 3 4 5 000
, '=10+'OLYHPICS'

0 0 0 o 000 0 1 1
+B+2 2 2p1,8

1 2
3 4

5 6
7 8

1 2 3+B
1 2 0
3 4 0

CE38-04 + Function (First. Take) 5-39

~ Function (Drop)

o Dyadic + is the Drop function.

R+A+B

A must be integer scalar or vector, and the length of A must equal the ~ank of B.
(If B is a scalar it is treated as through it were a 1 item array whose rank is
the length of A.) Each item of A controls the "drop" from a coordinate of B. R
has the same rank as B. The shape of R is OL(pB)-IA. If a dimension in the result
thus created would be negative it is set to zero.

If A[/)~O, then the I'th coordinate of R is 01 I but the first A[/) items of the
I'th coordinate of B; that is, the first A[Il items are dropped. If A[J)<O, the
last IA[/) items of the I'th coordinate of B are dropped.

Examples:

-3+t5
2

3+t5
4 5

+B+2 2 2pt8
1 2
3 4

5 6
7 8

1 2 2+B ~ NOTE: RESULT IS AN EHPTY ARRAY
2 2 1+B
1 1 1+B

8

€ Function (Type, Membership)

o Monadic E is the Type function.

R+EB

The result is an array with the same structure (shape and depth) as B with all
numbers replaced by zero and al I characters replaced by blanks.

Examples:

E1 2 3 4
0 0 0 0 , '=E'CHARACTER'

111111
E1 (2 3) (4 (5 6) 7)

0 o 0 0 o 0 0

o Dyadic E is the Membership function.

If an item of A is contained in B, the corresponding item of R is equal to 1;
otherwise, it is 0. The result has the same shape as A and is in the logical
domain. B may have any rank. If A and B are numeric, OCT is used in the
equa I i ty test.

5-40 E Function (Type, Membership) CE38-04

Examples:

A+ 'ALPHABET ,
B+'ABCDE'
C+2 4pt.B
AEB

0001110
1 5 10EC

o
'TWO' 'TEN'E'ONE' 'TWO' 'THREE' 'FOUR'

o

A NOTE THAT HEHBERSHIP HAY BE USED WITH NUHERIC VERSUS
A TEXT ARGUHENTS. BUT THE RESULT IS ALWAYS ZERO

AEC
000 0 0 0 0 0

CEA
o 0 0 0
o 0 0 0

1 2 3E'1 2 3'
000

i Function (Execute)

o Monadic I is the Execute function.

R+IB

B must be a simple scalar or vector. The domain of B must be character unless B
is an empty vector. Ordinarily, the argument B wil I be a smal I character vector.
If B contains unbalanced quotes, the error OPEN QUOTE is reported.

Once the argument has met the above requirements. the execute function departs
from the mold of the other functions. That is, the characters in its argument,
if any, are treated as if they were an APL statement to execute.

It is even possible in CP-6 APL to execute system commands. Execute operations
can be applied so that an application can create its own variable names, or
compose new formulas and evaluate them.

The execute function is a powerful tool. It can, however, be costly in execution
time. The cost stems from the translation process when accepting its argument as
if freshly input. This translation is repeated each time the same execute
operation is performed; a function line, on the other hand, is translated only
once regardless of the number of times it is invoked. Thus, "execute' should be
used sparingly in interactive or recursive processes.

As stated previously" the execute function permits formula evaluation, or system
command execution in the midst of any APL statement. As with evaluated input,
the result of executing an expression is the value resulting from evaluating that
expression. The following examples illustrate this:

1'2+2'
4

1'" AB'"
AB

3+1'2+2'
7

X+'2+'
Y+'2'
3+IX.Y

7

Executing an empty vector yields an empty (numeric) vector result.

CE38-04 I Function (Execute) 5-41

o

o

0\1'\.0'

0\1' ,

There are three important differences between execute in CP-6 APL and execute in
most other APL's. These are:

1. System commands may be the object of execute statements in CP-6 APL.

2. Function editing is possible using the execute functions in CP-6 APL.

3. Executing an empty or all blank vector results in an empty numeric vector.

Executing some system commands yields no result. For example:)OFF,)OFF HOLD,
)CLEAR, and)LOAD yield no display. In CP-6 APL, the "execute" of a system
command which produces a display is returned as a character vector. This
character vector is directly usable by the program.

The argument to the execute function may contain a number of expressions
separated by diamonds. The result of such an argument is the result of the last
expression evaluated. For example:

1
2
7

4+1'1 0 2 0 3'

prints the values 1 and 2, returns 3 as the result of execute, which is added to
4 to print 7. (The diamond separator is described in Section 6 under Compound
Statements.)

The execute function can also be used to access function definition mode, but
limitations are imposed. A basic limitation exists since only one "statement"
(character vector) can be the argument of an execute function.

The result of executing function definition mode operation is an empty vector
unless a function display was requested, in which case the text of the display is
returned as the result.

When using the execute function, the argument cannot contain unbalanced quotes
(the error message OPEN QUOTE is issued in such cases).

Error handling is unique in the case of the execute function. After the
diagnostic message (such as DOHAIN ERR), the path leading to the error is
displayed until a normal suspension point is reached. The fol lowing example
illustrates error handling during an involved execute function.

VZ .. y F X
(1) A+'Y+'
[2) B+'X'
[3) C+'IA,B'
[4) Z+100+IC

V

5 F 4
109

5 F 'FOUR'
DOHAIN ERR

Y+X
" IA,B

" F[4) Z+100+IC

"

5-42 I Function (Execute) CE38-04

ffi Function (Matrix Inverse, Matrix Divide)

o ffi is the Matrix Inverse function.

This function is used to solve systems of linear equations and to invert
matrices. The monadic form is equivalent to the dyadic form with an identity
matrix as a left argument. and the function can best be explained in terms of the
dyadic form. The right argument must be matrix with at least as many rows as
columns; that is, 1=(s/pB). The first coordinate of the left and right arguments
must have the same length; that is, (ItpA) = ItpB. A vector argument is treated
as though it were a one-column matrix; and a scalar is treated as though it were
a one-by-one matrix, in terms of shape requirements. The shape of the result is
(pR) = (1+pB),(1+pA). For inversion. the shape of the result is (pR)=(~pB)'
R+AffiB produces R such that the expression +/(,A-B+.XR)*2 is minimized; that is,
R indicates the least-squares solution (or solutions) to a system (or systems) of
linear equations.

If B is a non-singular square matrix. then the minimum is (except for
computational round-off errors) zero, and R is the solution of a set of
simultaneous equations. If, in addition, A is an identity matrix, R is the
inverse of B (that is equivalent to R+ffiB). If A is a vector, R is the solution to
one system of simultaneous equations. If A is a matrix, each column of A
represents the constants for a linear system with coefficient matrix B, and each
column of R is the corresponding solution.

If B is non-square, then the minimum of +/(,A-B+.xR)*2 is not generally zero, and
R represent a solution in the least-squares sense.

If B is singular (has fewer I inearly independent rows than columns), then a SING
HATRIX error is reported.

If B is non-square and A is an identity matrix, the result is the left inverse of
A and the function is equivalent to R+eB.

Examples:

314
159
265

A INVERSE OF A SQUARE HATRIX

O+B+3 3p3 1 4 1 5 9 2 6 5

O+R+eB
0.3222222222

-0.1444444444
-0.2111111111
-0.07777777778

0.1222222222
0.2555555556

-0.1555555556 0.04444444444 0.1777777778

oPP+5

A VERIFY THAT THE INNER PRODUCT OF RAND B IS
A ESSENTIALLY THE IDENTITY HATRIX.

R+.xB
1.0000EO -5.4210E-19 -8.6736E-19

-4.3368E-19 1.0000EO -3.2526E-18
-2.7105E-20 -8.1315E-20 1.0000EO

314
158
274
359
876

A LEFT INVERSE OF A NONSQUARE HATRIX

O+B+5 3p3 1 4 1 5 8 2 7 4 3 5 9 8 7 6

O+R+eB
0.074106 -0.082157 -0.072245 -0.015323 0.13129

-0.10492 0.011612 0.17084 -0.048546 0.013386
0.061261 0.06862 -0.073814 0.085902 -0.04531

CE38-04 HI
Function (Matrix Inverse, Matrix Divide)

5-43

A AGAIN, VERIFY THAT THE INNER PRODUCT OF RAND B IS
A VERY CLOSE TO THE IDENTITY MATRIX

R+.xB
1.0000EO 1.0842E-19 -1.1926E-18

-1.5179E-18 1.0000EO -1.4095E-18
1.9516E-18 8.6736E-19 1.0000EO

A SOLUTION OF A SINGLE LINEAR SYSTEM
A B IS THE COEFFICIENT MATRIX
A A IS THE VECTOR OF CONSTANTS

314
159
265

O+B~3 3p3 1 4 1 5 9 2 6 5

O+A~35 89 79
35 89 79

O+R~AI!lB
2.1444 8.2111 5.0889

A VERIFY THAT B+.xR APPROXIMATELY EOUALS A

A-B+. xR
5.5511E-17 1.1102E-16 8.3267E-17

A SOLUTION OF A SET OF LINEAR SYSTEMS
A B IS A COEFFICIENT MATRIX
A A IS A MATRIX; EACH COLUMN IS A SET
A OF CONSTANTS FOR B.
A EACH COLUMN OF R, WHICH IS A MATRIX, IS THE
A SOLUTION FOR THE CORRESPONDING COLUHN OF A.

35 36
89 88
79 75

O+A~3 2p35 36 89 88 79 75

R~AI!lB
R

2.1444 2.1889
8 .2111 7. 1222
5.0889 5.5778

A CHECKING ...

A-B+. xR
5.5511E-17 2.7756E-17
1.1102E-16 8.3267E-17
8.3267E-17 5.5511E-17

1
2
3
4
5
6

A LEAST-SQUARES SOLUTION

O+B~6 2p1 1 1 2 1 3 1 4 1 5 1 6

A~12.03 8.78 6.01 3.75 -0.31 -2.79
A

12.03 8.78 6.01 3.75 -0.31 -2.79
R~AI!lB
R

14.941 -2.9609

A THE RESULT GIVES THE INTERCEPT AND SLOPE OF THE INE

5-44 IB
Function (Matrix Inverse, Matrix Divide)

CE38-04

~ THAT IS THE LEAST-SQUARES BEST FIT TO THE POINTS OF A.

B+.xR
11.98 9.0196 6.0588 3.0979 0.13705 -2.8238

A-B+. xR
0.049524 -0.23962 -0.048762 0.6521 -0.44705 0.03381

To find the values of X, Y, and Z in the fol lowing linear equations:

4X + 2Y - 5Z = 22
5X - 4Y + 4Z = -7
2X + 2Y - 20Z = 80

assign the values of the coefficients to A and the constant vector to B, as in

A
4 2 -5
5 -4 4
2 2 -20

B
22 -7 80

and then obtain the solution:

Thus in the linear equations provided above, X has the value 1, Y has the value
-1 and Z has the value -4.

Operators

The five operators in CP-6 APL extend functions to arrays. In the following
descriptions of these operations, the bracketed value K represents that coordinate of
the argument array along which the specified operator is to act. If K is
unspecified, the last coordinate of the array is assumed. The 'symbols d, f, and 9
represent any dyadic function, including a primitive function, a system function, a
defined function, or a derived function.

Reduction d/ Operator

o Monadic dl is the Reduction operator.

R+d/[KJB

The result is an array having dimensions equal to that of array B except that the
K'th component is not present. If f is used instead of I, the first coordinate
axis is used.

For a vector argument, the value of the result is that produced by placing the
function d between each pair of adjacent components of vector B. A minus
reduction results in an alternating sum and a divide reduction results in an
alternating product.

For a scalar or an array comprising a single component along the reduction
coordinate, the result has the same value as B. For an empty array the result has
the value of the identity item of function d as shown in the table below or a
DOHAIN ERR if no identity exists.

CE38-04 Reduction d/ Operator 5-45

d

x
+
-
* I • 0
v

" ...
'If

!
L
r
>
~

<
S
=
~

Table 5-3. Identi ty Va lues for Scalar Functions

Identity Item Comment

1
0
1 Right identity only.
0 Right identity only.
1 Right identity only.
0 Left identity only.
None
None
0
1
None
None
1 Left identity only.
8.379879956E152
-8.379879956E152
0 Right identity only.
1 Right identity only.
0 Left identity only.
1 Left identity only.
1
0

Domain restrictions for function d apply. If the function argument d is not a
scalar function. then the result is a possibly nested array. If B has more than
one item. the domain of the result is the some as indicated in the domain tables
for the dyadic scalar functions. or a nested array for al I other functions.

Examples:

0++/2 4 6 8
20

(]+-/2 4 6 8
-4

0+!/10
10

=./'APPLE' 'APPLE'

=./'APPLE' 'PEAR'
o

O+A+2 4pt8
1 234
5 6 7 8

+/A
10 26

+1'A
6 8 10 12

+I+/A
36

oPS+O 0 -3 -3
pO+./4 5p'ONE TWO THREEFOUR'

+-----+ +-----+ +-----+ +-----+
lONE I I TWO I I THREE I IFOUR I
+-----+ +-----+ +-----+ +-----+
4

.1 1 (2 3 4) 5 (6 7 8)
+---------------+
11 234 5 6 7 81
+---------------+

5-46 Reduction d/ Operator CE38-04

+---+
13 31
+---+

p/2 3

p[}+p/2 3p4
+-------+ +-------+
14 4 4 41 14 4441
+-------+ +-------+
2

B4-2 3 4p~24
B

1 234
5 6 7 8
9 10 11 12

13 14 15 16
17 18 19 20
21 22 23 24

+IB
10 26 42
58 74 90

+/[21B
15 18 21 24
51 54 57 60

+I+IB
78 222

+I+I+IB
300

C4-3 4p1
C

1 0
1 o 0
0 o 0

"IC
0 0 0

"fC
0 0 0

110 1 100 1 000

Compression AI Operator (Replicate)

o Monadic AI is the Compression operator.

R4-A/[K1B

The result includes all items in B that correspond to a 1 in A. Those
corresponding to a 0 are suppressed. If either argument is scalar, it is applied
to al I items of the other argument.

Compression is performed along the K'th coordinate of B. If K is omitted, the
last coordinate is assumed. (If f is used instead of I, the first coordinate is
assumed.)

A may be a simple logical scalar or vector, and B may be of any rank or domain.
If A consists of more than one item, its length must be the same as that of the
coordinate of B being compressed.

Examples:

1
3

CE38-04

B4-2 2p1.4
1 OIB

Compression 5-47
AI Operator (Replicate)

The compression operator may be used in a test and branch situation. In this
case, when the left argument has a value 1, a branch is made to the statement
indicated by the right argument. If the left argument has the value 0, a branch
is not taken and execution proceeds with the next statement. For example, the
statement:

+(2)3)IEND 0 'NO BRANCH'
NO BRANCH

fal Is through to the next statement; whereas

+(3)2)IEND 0 'BRANCH'

causes a branch to the statement labeled END.

o The Replicate operator.

R+A/[K]B

Like compression, the result includes A[l] copies of each B[l). That is, if
A[I)=O then the corresponding item of B is suppressed, if A[I)=2 then the
corresponding item of B appears twice and so on.

Repl ication fol lows 01 I the rules of compression except that A may be an integer
scalar or vector of non-negative values.

Examples:

B+2 2,)1.4
2 31B

1 1 222
33444

Scan d\ Operator

o Monadic d\ is the Scan operator.

R+d\[K]B

The result has the same shape as that of B. If ~ is used instead of \, the first
coordinate axis is used.

For a vector argument, the result is a vector of the same length with values as
fo II ows:

R[l]+B[1]
R[2]+B[l] d B[2]
R[3]+B[I] d B[2] d B[3]

Thus the last component of the result is equal to dlB.

For a scalar or a one-component array, the result is the same as B. For an empty
argument, the result wi I I be empty.

Domain restrictions for function d apply. If B has more than one item, the
result domain is that indicated in the domain table for d if d is a scalar
function; otherwise the result is a nested array.

Examples:

+\1 35.,
1 4 9 16

+\-5 0 ., 0
-5 -5 223

-\3 9 5
3 -6 -1 -2

X\1 2 3 4 5

5-48 Scan d\ Operator CE38-04

)

2 6 24 120
~\7 9 5 -4

7 0 0
,\'ABCD'

A AB ABC ABCD
=\'AA'

A

Scan generalizes to
doing the operation

higher ranked arguments in the same way reduction does, by
along the K'th coordinate as shown by the example below:

B+2 3 4p1.24
+~B

1 2 3 4
5 6 7 8
9 10 11 12

14 16 18 20
22 24 26 28
30 32 34 36

+\[21B
1 2 3 4
6 8 10 12

15 18 21 24

13 14 15 16
30 32 34 36
51 54 57 60

+\B
1 3 6 10
5 11 18 26
9 19 30 42

13 27 42 58
17 35 54 74
21 43 66 90

Expansion A\ Operator

o Monadic A\ is the Expansion operator.

R+A\[K1B

A must be a vector of 1's and O's and must include the same number of 1's as the
length of the coordinate to be expanded. B may be of any rank and domain.
Expansion occurs along the K'th coordinate of B. If K is omitted, the last
coordinate is assumed. If ~ is used instead of \, the first coordinate is
assumed. Thus, the difference between \ and ~ is

R+A\B expands along the last coordinate of B.

R+A~B expands along the first coordinate of B.

Expansion consists of extending the length of the affected coordinate of B by
insertion of prototype values in positions indicated by zeros in the argument A.
The process is best described by example. The prototype for a simple numeric
array is O. The prototype of a simple character array is " In general, the
prototype of an array B is (cE~B).

1 0 1 0 1\1.3
o 2 0 3

1 0 1\(1 2) (3 4 5)
20034 5

A THE FOLLOWING EXAMPLES SHOW EXPANSION ON EACH OF THE
A COORDINATES OF A RANK 3 ARRAY.

CE38-04 Expansion A\ Operator 5-49

B+2 2 2pt.B
1 0 l~B

1 2
3 4

0 0
0 0

5 6
7 B

1 0 1\(2JB
1 2
0 0
3 4

5 6
0 0
7 B

1 0 l\B
1 0 2
3 0 4

5 o 6
7 o B

A+2 2 2p'ABCDEFGH'
1 0 l~A

AB
CD

EF
GH

1 0 1\(2JA
AB

CD

EF

GH
1 0 1\[3JA

A B
C D

E F
G H

Inner Product f.g Operator

o Dyadic f.g is the Inner Product operator.

R+A f. g B

The result is an array having shape equal to all except the last dimension of
array A catenated with al I except the first dimension of array B. If the function
g is a scalar function. the length of the last dimension of A must be the same as
that of the first dimension of B t or one of those lengths must be 1. The domain
of the result is indicated by the functions f and g. Functions f and g may be
any dyadic functions. For example. R+A+.XB gives the conventional matrix inner
product.

For vector arguments. the result is:

flA g B

5-50 Inner Product f.g Operator CE38-04

Examples:

3 4+.X5 6
39

+/3 4X5 6
39

1 2 3+.x4 5 6
32

+/1 2 3X4 5 6
32

o 0+.1\1 0 0

o o+.v 1 1 0 0
3

If A is a vector and B is a matrix, the ['th component of the result is:

f/AgB[;Il

Example:

A+2 4
B+2 4p3 2 6 8 5 4 9 4
B

326 8
5 4 9 4

A+.XB
26 20 48 32

B[; 1)
3 5

B[;2)
2 4

B[;3)
6 9

B[; 4)
8 4

+/Ax3
26

+/AX2
20

+/AX6
48

5

4

9

+/AxB[;4)
32

1 2 3+. !3
42 68 102

3p1.9

If A is a matrix and B a vector, the ['th component of the result is:

f/A[l;) 9 B

Example:

57 56

C+l 2 3 4
B+.xC

B[1;)
326 8

B[2;)
5 4 9 4

57

56

+/B[1;)xC

+/B[2;)XC

For matrix arguments, the [;J'th component of the result is:

f/A[lj) g B[jJ)

CE38-04 Inner Product f.g Operator 5-51

Example:

(2 4" ~ 8)+.x4 2" ~ 8
50 60

114 140
X+3 3" 'CANDIDATE'
Y+3 3,,'DRAHATIZE'
X"'.=Y

0 0 0
0 0 0
0 0 1

X
CAN
DID
ATE

Y
DRA
HAT
IZE

Xv.=Y
0 1 0
1 0 0
0 0 1

X"'.plY
1 0 1
0 1 1
1 1 0

Inner product also applies to higher order arrays. For the example below. the
arguments are each three dimensional and the result has four dimensions. The
I;J;K;Lth item of the result is: +IA[I;J;)XB[;K;L).

A+2 2 3p~12
A

123
456

789
10 11 12

13 14
15 16

17 18
19 20

21 22
23 24

O+B+3 2 2p12+t.12

A+.XB
110 116
122 128

263 278
293 308

416 440
464 488

569 602
635 668

110

116

308

5-52

+IA[1;1;)XB[;1;1)

+1 A [1; 1;) XB[; 1; 2)

+1 A (1; 2;) XB(; 2; 2)

Inner Product f.g Operator CE38-04

)

)

Outer Product o.d Operator

o Dyadic o.d is the Outer Product operator.

R+A O.d B

The result is an array having a shape equal to the shape of A catenated with the
shape of B. The dyadic function d is performed for each item of A with respect to
all items of B. The domain of the result is determined by the rules for the
function d.

for vector arguments. the I;Jth component of the result is:

A[[) d B[Jl

Example:

1 2 3o.x1 234
1 2 3 4
2 4 6 8
3 6 9 12

1 (2 3)o.X1 (2 3) 4
1 2 3 4

2 3 4 9 8 12
'ABC' 0 •• 'D' 'DEF' (22p'DEFG')

AD ADEF ADE
AFG

BD BDEF BDE
BFG

CD CDEF CDE
CFG

Outer product is valid for arguments of higher rank. If. for example. A has a
rank 3 and B has rank 2, the items of the result are defined by:

R[I;J;K;L;Hl ++ A[I;J;K) d B[L;HJ

Each Operator

o Monadic d- is the Each operator.

R+d··B

The result is an array with the same shape as B. Each item of the result contains
the result of applying the monadic function d to the corresponding item of B. d
may be any monadic function including a monadic primitive function, a monadic
system function. a monadic defined function, or a monadic derived function.

Examples:

p··'CENTURY' 'DECADE' <1972 1974 1976 1979 1980)
765

~··'NOW' 'POOL' 'ON'
WON LOOP NO

,,··2 3
1 2 123

1··'1+1' 'PW+80' '4x3+"2'
2 80 16 20

o Dyadic d- is the Each operator.

R+A d·· B

The result is an array where each item of the result contains the result of
applying the dyadic function d to the corresponding items of A and B.

CE38-04 Each Operator 5-53

A RANK ERR is reported if both A and B are not singletons and their ranks differ.
A LENGTH ERR is reported if both A and B are not singletons and the lengths of A
and B are not the same. If A or B is a singleton, it is reshaped to the rank of
the higher ranked argument before performing the Each operation.

d may be any dyadic function, including a dyadic primitive function, a dyadic
system function, or 0 dyadic defined function.

Examples:

1, ··10 20 30 40
1 10 1 20 1 30 1 40

2~··'CENTURY' 'DECADE' (1972 1974 1976 1979 1980)
NTURYCE CADEDE 1976 1979 1980 1972 1974

5-54 Each Operator CE38-04

Section 6

APL Statements

As mentioned in Section 2, each completed line of input is classified as either a
statement or a system command. Statements specify the operations to be performed by
APL, such as calculations, branching, and assignment of values or expressions.
System commands (treated in Section 8) are concerned with the mechanical aspects of
the system, such as logging off and saving, loading, and deleting workspaces.
Statements can be entered when the system is in either execution mode or function
definition mode. The user indicates the end of a statement by pressing the RETURN
key. In execution mode, the computer then executes the operations contained in the
statement. In definition mode, the computer stores the statements unti I the function
is invoked. Blanks may appear anywhere in a statement except embedded within a
number or a name. In general, an APL statement cannot be continued on another line.
A character constant, however, may include one or more carriage returns, thus
al lowing multi-line statements.

When a character constant is being entered and APL detects a carriage return before
receiving the closing quote, it automatically types a closing quote at the beginning
of the next line. The assumption is that the user may simply have forgotten the
closing quote. If that is not the case, the user may delete the closing quote and
continue the text constant.

A+'LONG VECTOR, CLOSING ~UOTE fORGOTTEN

A
LONG VECTOR, CLOSING ~UOTE fORGOTTEN

A+LONG VECTOR, CLOSING ~OTE NOT fORGOTTEN,

VECTOR CONTINUED ON SECOND LINE'
A

LONG VECTOR, CLOSING ~UOTE NOT fORGOTTEN,
VECTOR CONTINUED ON SECOND LINE

In this example. note that APL automatically provides the closing quote in the first
specification of A. In the second specification, the user cancels APL's action and
continues the character constant on the second line.

For al I practical purposes there are four kinds of statements in CP-6 APL: comment.
branch. assignment and non-assignment, and compound.

Comment Statements

To enter a comment statement, the user types the symbol A at the beginning of a line
and fol lows it with a comment. The A symbol is produced by typing a n symbol (upper
shift C) and overstriking it with a 0 symbol (upper shift J). This symbol signals
APL that the line is a comment and is not to be executed. Any val id APL characters
may be included in a comment; invalid APL characters produce an error message. If a
comment extends over several lines. each line must begin with the A symbol. Some
examples of comments are shown below:

A ROOH AREA ROUTINE.
A

A

A EACH LINE Of A HULTIPLE-LINE
A COHHENT HUST BEGIN ~ITH A A.

CE38-04 Comment Statements 6-1

A comment statement can be entered as a direct input line (during execution mode) or
it can be entered as part of a defined function. If a comment statement is entered
as a direct input line. it is not retained in the workspace. If a comment statement
is used in a function definition. however. the statement wi I I have a line number.
wi I I occupy workspace. and wi I I be displayed like any other function line. Function
definition mode cannot be closed on a comment I ine. because the closing V symbol wi I I
be treated as just another symbol in the comment. An example of a comment in a
function definition is shown below:

VA+H TRIAREA B
[1) Il

[2]
CALCULATES AREA OF TRIANGLE ..
A+HXB+2

[3] V

In CP-6 APL. any executable statement may include a comment to its right. Everything
to the left of a Il character is considered executable. Everything to the right is
considered comment. Some examples are:

[10] COST+HOURSXRATE Il COST FOR STRAIGHT-TIHE LABOR.
[15] OCOST+1.5xHOURSXRATE Il COST FOR OVERTIHE LABOR.

When functions are displayed. comment lines are highlighted by indenting them one
space less to the left of executable lines.

Branch Statements

Branch statements are generally used within defined functions to alter the sequential
execution of statements. Another form of branch statement. covered later. is the
branch arrow that is not fol lowed by an expression. A branch arrow by itself can be
used to terminate execution of a suspended function and the functions that invoked
it. thus effectively clearing the state indicator to the next suspension (if any).
This application of the branch arrow is described in Section 7. A branch statement
has the general form

+exp

where exp stands for an integer value. The value determines the line number of the
statement to be executed next. as follows:

1. If the value is a line number within the current function. that line is executed
next. Thus the statement

[5] +(2)A)X3

where A has a value of zero. causes a branch to line 3 of the current function.
(The value 3 is derived as fol lows: the expression (2)A) returns a value of 1;
and this value is multiplied by 3.)

2. If the value is a line number outside the function being executed. then execution
of that function terminates. For example. the statement

[4] +0

indicates a branch to line 0, which is outside the function. Since functions
begin with line 1, branching to line 0 is an effective way to exit a function.

3. If the value is an empty vector. then no branch occurs and the next sequential
I ine is executed. If there are no more lines. execution of the function is
terminated. An empty vector can be created in any of the following ways:

6-2

O/S
O~S
OtS

where 0 may be the result of a comparison expression. and S represents a line
number. (If the result of the comparison statement is 1 instead of 0, the next
line executed is the one indicated by the line number.) Substituting the
comparison expression A~4, which produces a value of 0 or 1, and line 2 in the
above expressions illustrates the simplicity of this type of branching:

Branch Statements CE38-04

[5) +(04=4)/2
[5) +(04=4)02
[5) +(04-4)+2

In each case if the value of A equals 4 (that is, the comparison expression
returns a 1), then line 2 is executed next. If A is any other value, then the
comparison expression returns a 0. yielding an empty vector, and line 6 will be
executed next if it exists; otherwise execution of the function terminates.

The expression indicating the I ine numbers can be a scalar or a vector. In other
words, the user can specify branching to one I ine, to one of two I ines, or to one of
any number of I ines. Branching to one li~e is described above. Branching to one of
two lines can take either of the fol lowing forms:

+(Sl.S2)[l+X OP Y)
+((X OP Y) .-X OP n/Sl.S2

where

Sl is the I ihe number to be branched to if the compar i son expression yields a o.

S2 is the line number to be branched to if the comparison expression yields a 1.

X OP Y is a comparison expression; X and Yare the values to be compared, and OP
is any of the following functions: <.~. =. ~. >. ~. v. 11.. ¥. "'. (. or =.
Both of these forms cause a, branch to the first line number if the comparison yields
0. or to the second I ine number if the comparison yields 1. In illustration, the
second form is entered in a defined function, and then executed with values for X and
Y.

VX F Y
[1) +«X<Y).-X<Y)/A1.A2
[2) Al:'STEP AI'
[3) +0
[4) 042: 'STEP 042'
[5) +0
[6) v

1 F 2
STEP 041

2 F
STEP 042

Clearly the second form can be expanded to include more line numbers. Similarly, a
branch to one of several statements can also take the form:

+/¢V

where

I is a counter.

¢ is the rotation function.

V is a vector of line numbers, the first of which must be a positive integer or
zero.

In this case the branch function selects statement I¢V as the next one to be
executed. The following illustration shows how this branch function is carried out
(see line number 3):

VNUHB I
[1) +([~4)/2 0 'LOW' 0 +0
[2) +([~6)/3 o 'HIGH' 0 +0
[3) +([-4)¢4 5 6
[4) 'FOUR' 0 +0
(5) 'FIVE' 0 +0
(6) 'SIX' 0 +OV

CE38-04 Branch Statements 6-3

LOW

FOUR

FIVE

SIX

HIGH

NUNB 3

NUNB 4

NUNB 5

NUNB 6

NUNB 7

See Figure 6-1 for a summary of common branch function formats that can be used; APL
also offers many other forms of branching.

Branch to line S or to next line:

+(X OP Y)/S
+(X Of Y)pS
+(X OP Y)+S

Branch to line S1 or line S2:

+(S1,S2)[1+X OP Y]
+«X OP Y).-X OP Y)/S1.S2

Branch to one of several lines:

+«X OP Y),(X OP Y),X OP Y)/S1,S2,S3
+I~V
+(S1 S2 S3)[I]

Figure 6-1. Summary of Common Formats for Branching

Statement Labels

Instead of referencing a line number in a branch statement. a statement label can be
assigned to the branch destination. Referencing that label wil I obtain the current
I ine number of the I ine. To assign a label to a line. precede the first statement
with a variable name and a colon. as shown:

[5] END:A+B+2

The label END can now be used in a branch statement to transfer execution to this
statement. For example. the statement

[3] +(A<l) lEND

will cause a branch to line 5 if A is less than '. or a branch to line 4 if A is 1 or
more.

The value of a label is the line number with which it is associated at the close of
function definition. If new lines are inserted via function editing (see Section 7).
then the values of the labels are automatically respecified at the closing of the
function definition. The value of a label cannot be respecified by an assignment;
any attempt to do so will produce a SYNTAX ERR message.

Like local variables (Section 3). the integer values of labels in one function can be
accessed in other functions invoked by the function.

6-4 Statement Labels CE38-04

Use of a statement label in a branch statement is preferable to use of a line number.
since function editing may change the original I ine number. If any I ines are
inserted or deleted during function editing. al I lines will be renumbered at the
close of a function definition mode. For example. consider the fol lowing statement
which specifies a branch to line 5.

[3] +5

If two new statements are inserted between lines 3 and 4. the old line 5 is
renumbered as line 7 at the close of function definition. However. the branch
statement wi I I stil I cause a branch to statement 5 instead of line 7 as now desired.
This problem can be avoided if labels are used instead of statement numbers as branch
points. (See Changing Suspended Functions in Section 7 for other considerations
about labels.)

When labeled lines are displayed within a function. they are highlighted by indenting
them one space less than usual.

Assignment and Non-assignment Statements

An assignment statement assigns the result of an expression or a value to a variable
name. It has the general form:

name + expression

where name can be any variable name and expression can be any APL expression. Three
examples of assignment statements are

B+6
A+B+2
Z+(B<1)+3 x5

A non-assignment statement is similar to an assignment statement except that it does
not have the assignment arrow and the variable name to the left of it; however. a
non-assignment statement can contain embedded assignments. Examples are:

B+2
3

(B<1)+3x5
15

2X4+A+2
12

+A+1

Notice the differences between assignment and non-assignment statements: (1)
execution of an assignment statement ends on the assignment. and (2) an assignment
statement produces no display. while a non-assignment statement displays the
resulting value of the statement.

CE38-04 Assignment
and Non-assignment Statements

Compound Statements

Using diamonds for separation. all of the preceding kinds of statements can be
combined in "compound" statements. Compound statements have the fol lowing
characteristics:

1. The statements are evaluated in left-to-right order. with each individual
statement evaluated in the normal APL manner. Example:

2.

A+2 4 6 0 pA 0 A,1

would produce two lines of output. an integer 3 corresponding to the result of
the second statement. and a vector 246 1 corresponding to the third.

An assignment statement produces no display. Example:

5X4+2 0 A+4
10

5X4+2 0 +A+4
10
4

3. A comment statement can have no statement to its right. AI I characters from the
comment symbol A up to the end of the line are considered to be commentary.
Example:

3r2 A SHOWS r FUNCTION 0 THIS IS STILL A COMMENT.
3

4. A branch statement implies no special display. In the no-branch case. statements
to the right of the branch wil I be executed; they are ignored if a branch occurs.
This provides conditional execution capabi I ity. Example:

VVERACITY X
[IJ +(X;I)/2 0 'TRUE' 0 +0
[2J +(X;0)/3 0 'FALSE' 0 +0
[3J 'NEITHER TRUE NOR FALSE'

v
VERACITY 4=2+2

TRUE
VERACITY 2+2=4

NEITHER TRUE NOR FALSE
2+2=4

2

TRUE
VERACITY (2+2)=4

5. If the statement is the subject of an execute function or evaluated input
request. then the result of the function (or input request) is the result of the
last expression executed. For example:

A+I't5 0 +/t5'
1 234 5

A
15

Compound Statements CE38-04

Section 7

Defined Functions

As mentioned in Section 3, defined functions are used in the same way as primitive
functions. Defined functions must first. be formed by the user instead of being an
inherent part of the APL language.

User-Defined Functions

The fol lowing tasks are handled in function definition mode:

o Creating user-defined functions
o Displaying user-defined functions
o Editing user-defined functions

Once created, most functions can be edited and displayed. Once a locked function is
created, however, it cannot be edited or displayed (see "Locking Functions" later in
this section). Locked function lines cannot even be displayed for error diagnosis.
It is possible, however, to erase a locked function.

User defined functions can be created or modified by function definition mode or by
the orx system function. They can be loaded or copied from a I ibrary workspace or
"packaged" and read or written to a file (see Section 14).

Function definition mode begins when a function is opened and continues until a
function is closed or abandoned. (It is possible to close a different function than
was originally opened by revising the name of the function.) A function may be
"opened" during direct input or evaluated input (see Section 3), and it may be opened
briefly during execution (see the Execute Operator, R, Section 5). A function cannot
be opened during any other form of input, such as quote-quad input or blind input:
and a different existing function cannot be opened whi Ie stl I I in function definition
mode. Until a function is closed during function definition mode, APL execution is
impossible except for system commands (which are executed and do not become part of
the function being defined). Most system commands leave the currently open function
intact and return the user to definition mode; however, some system commands cause a
function definition to be abandoned (see Issuing System Commands later in this
section).

Function Definition Mode

A del symbol, v, followed by a function name specifies a change from execution mode
to function definition mode. A second V symbol ends function definition mode and
declares a change back to execution mode. No execution of statements occurs during
function definition. and no errors are reported except for linescan errors. character
errors. and definition errors. Instead. each statement is stored as part of the
function.

Upon entry to definition mode. the editor is selected depending upon the setting of
the last)EDITOR command. The default function editor is a line-oriented editor
similar to the editor provided by other APL systems. A screen editor is also
available and the capabi lities unique to screen editing are described under the
heading Screen Editor later in this section.

CE38-04 Function Definition Mode 7-1

Each defined function has a header and a body. The function header is the opening
line of a function and declares the nome (the identifier used to reference the
function) and type of a function. The body of a function is the rest of the
function. After the user enters a function header, APL responds with a statement
number as follows:

VCUBE
(1)

The line number [1) signifies that the first line of the function program may be
entered. Each line thereafter is numbered sequentially unti I the function is
completed. The statements are stored and are not executed until definition mode is
exited and the function named has been referenced.

Syntax of Defined Functions

A defined function can be niladic, monadic, or dyadic; that is, it can have zero,
one, or two arguments. In addition, a defined function may return an expl icit result
or no result. Thus, there are actually six types of defined functions as illustrated
by the following table of function header syntax possibilities:

Table 7-1. Function Header Syntax

Function No Explicit Result Explicit Result

Niladic function Vname Vr + name

Monodic function Vname y Vr + nome y

Dyadic function Vx nome y Vr + x name y

where

nome is the user-assigned function nome.

r is a variable to which the result is returned.

x and y are dummy variable names.

The syntax of the function header affects the way a function can be referenced in a
statement; that is, whether the function requires zero, one, or two arguments for
execution. Defined functions with explicit results may appear in compound
expressions, much like primitive functions. Defined functions without on explicit
result must appear alone; they cannot appear in compound expressions except as the
last function to be executed. Examples of creation and use of each function type are
shown in Table 7-2.

Dyadic defined functions are not strictly dyadic. They may be executed monodical Iy.
in which case the left argument will be undefined at execution time. The ONe
function may be used to test for the presence of the left argument. (If the function
is being executed monodical Iy, the name closs of the left argument is 0).

The result nome in the function header may optionally be enclosed in braces II. If it
is enclosed. then the result of the function execution wil I not print if it is the
primary function on the line (the last function executed).

7-2 Syntax of Defined Functions CE38-04

Function Type

Ni ladic function
with explicit
result

Niladic function
with no explicit
result

Monadic function
with explicit
result

Monadic function
with no explicit
result

CE38-04

Table 7-2. Defined Function Examples

Header Syntax Examples

'Vr ~ name

'Vname

'Vr ~ name y

'Vname y

'VRESULT~PI
[1) RESULT~OI
[2) 'V

PI
3.141592654

'VRESULT+TRIANGLE
[11 AREA+O.5XBASExHEIGHT
[21 DIAGONAL~«HEIGHT*2)+BASE*2)*0.5
[31 RESULT~AREA,DIAGONAL
[41 'V

BASE~5
HEIGHT~8
TRIANGLE

20 9.433981132

'VP I
[1 1 X+Ol
[21 X
[3) 'V

PI
3.141592654

'VTRIANGLE
[1) AREA~O.5xBASExHEIGHT
[2) DIAGONAL+«HEIGHT*2)+BASE*2)*0.5
(3) 'AREA IS ',.AREA
[4) 'DIAGONAL IS ',.DIAGONAL
[5) 'V

BASE+5
HEIGHT+8
TRIANGLE

AREA IS 20
DIAGONAL IS 9.433981132

'VRETURN+EXPAND INPUT
[1) RETURN+«2 xpINPUT)pl O)\INPUT
[2) 'V

EXPAND 'COPY COHHAND'
COP Y C 0 H HAN D

'VRETURN+DESCENDINGSORT INPUT
[1) RETURN+INPUT[tINPUT)
[2) v

DESCENDINGSORT -5 -3 10 5 6 a
10 a 6 5 -3 -5

'VEXPAND INPUT
[1) X+«2 xpINPUT)p1 O)\INPUT
[2) X
[3) 'V

EXPAND 'COpy COHHAND'
COP yeO H HAN D

'VDESCENDINGSORT INPUT
[1) X+INPUT[tINPUT)
[2) X
[3] 'V

DESCENDINGSORT -5 -3 10
1 a 6 5 -3 -5

5 6 a

Syntax of Defined Functions 7-3

Function Type

Dyadic function
with explicit
result

Dyadic function
with no explicit
result

Table 7-2. Defined Function Examples (cont.)

Header Syntax

Vr + x name y

Vx name y

Examples

VRESULT+BASE TRIANGLE HEIGHT
[11 AREA+O.SXBASExHEIGHT
[2] DIAGONAL+«HEIGHT*2)+BASE*2)*0.5
(3) RESULT+AREA.DIAGONAL
[41 v

5 TRIANGLE 8
20 9.433981132

vBASE TRIANGLE HEIGHT
[1] AREA+0.5xBASExHEIGHT
[21 DIAGONAL+«HEIGHT*2)+BASE*2)*0.5
[3] 'AREA IS '.~AREA
[4] 'DIAGONAL IS '.~DIAGONAL
[5] v

5 TRIANGLE 8
AREA IS 20
DIAGONAL IS 9.433981132

V[PLUS Y
[1] ANS+[+Y
[2] ANS
[3] v

2 PLUS 5 10 15 20
7 12 17 22

Variables Local to a Defined Function

The three types of variables that can be local to a defined function are:

o Dummies
o Locals
o Labels

Dummies and locals are named in the function header, whi Ie labels are named in the
body of the function.

Dummies

Dummies are used in the header of a defined function to indicate the syntax of a
function. For example. notice the header of the fol lowing simple function (this
function calculates the area of a triangle):

VA+H TRIAREA B
[1] A+HxB+2v

The dummies A. H. and B in the function header indicate that the function named
TRIAREA returns an explicit result and that the function operates on two arguments
which must be furnished by the user. For example, suppose the user calls this
function with the statement

AREA+I0 TRIAREA 5

7-4 Dummies CE38-04

)

The dummy H in the function is assigned the value 10, and the dummy B is assigned the
value 5. The result is returned in the dummy A, and is finally assigned to the
variable AREA in the cal ling statement. Dummies possess values only within the
function. That is, the use of A, H, and B as dummies does not affect their use as
variables outside the function. If variables A, H, and B have values assigned to
them before the function is called, they wil I have the same values after the function
is executed. For example, suppose the variable A (with value 21) existed in the
workspace before function TRIAREA was cal led. A display of variable A after the
execution of TRIAREA demonstrates that A stil I has the value 21:

25

21

A~21
AREA~10 TRIAREA 5
AREA

A

Body of a Function

After the opening statement, in which the user creates the function header, the
process of creating a function consists of inputting function statements and,
finally, closing function definition. The user is prompted with a function line
number each time the system is ready for further input. The process is ended by
typing a closing v fol lowe~ by a RETURN key.

Locals

Locals are variables that retain their values only within the function in which they
are defined. Whi Ie a function is active, its local variables take precedence over
any externally defined variables of the same name. A list of a function's local
variables is added to the end of the function header. with each variable in the list
preceded by a semicolon. For example, the function header

VR~A CIRCLE B;X;Y;Z

indicates that the function named CIRCLE has locals X, Y, and Z. The values for these
variables are assigned within the function; if these variables are referenced without
having a value assigned within the function. an UNDEFINED error wil I be produced. If
variables X, Y, and Z have values assigned to them before the function is cal led.
they wil I revert to those values after the function has finished execution.

Labels

Function lines may be labeled to allow symbolically control led branching (if a
function is edited, line numbers may change). A labeled line has the form

[n] name:statement

where n is the I ine number. name is the label. and statement is the content of the
I ine. For example:

(4) ERREXIT: 'ERROR EXIT' 0 +0

In this example, the label ERREXIT has the value 4. If an attempt is made to assign
a value to ERREXIT during function execution. a syntax error message wil I be
reported. If the function is edited and the line number changes to (5), ERREXIT wil I
then have the value 5.

CE38-04 Labels 7-5

Changing Suspended Functions

At the time a function is suspended. its (current) local variables have been
determined by APL. and its labels have already been assigned their values. Changing
the suspended function does not alter these assignments. Resuming execution of a
suspended function causes the determined items to remain in effect. regardless of how
the function was altered.

Directives

During function definition mode. editing directives are used to display. modify. and
odd new lines. A directive may toke anyone of the fol lowing forms:

[1 J

[loJ

[1-50J

[0 2J
[2-0)

[0)

[3-9;/x/)

[10 6 J

[1-20;2/x/Sly/J

[/1.1)

7-6

Directs APL to a line - here line 1.

Directs APL to display a line and to stay
at that line for further editing - here
line 1.

Directs APL to display a range of lines.
here lines 1 through 5.

Directs APL to display from a line to the
end of the function - here beginning at line
2.

Directs APL to display the entire function.

Directs APL to display lines containing a
string - here string "X" in lines 3 through 9.

Directs APL to edit a line. starting at a
given column - here line 1 at column 6.

Directs APL to change 01 I occurrences of one
string to another string in the specified
range of lines - here the second occurrence
on each line of the string "X" is changed to
string "y" in lines 1 through 20.

The separator S may be replaced by the letter
F (in which case the replacement string wil I
fol low the search string), the letter P (in
which case the replacement string wil I
precede the search string), or the letter D
(in which case the replacement string may not
be specified and the search string will be
deleted).

If the occurrence number is omitted, only the
first occurrence is replaced. If the occurrence
number is 0, then 01 I occurrences on each line
are replaced.

Directs APL to search for the next occurrence of
the string 'x' starting at the current line number
through the end of the function.

Di rect i yes CE38-04

[\K\]

[62]

[A4-9]

[65-8; Ix/]

[+]

[D]

[UJ

Directs APL to search for the next occurrence of
the string 'x' starting at the current line to the
beginning of the function.

Directs APL to delete a line - here line 2.

Directs APL to delete a range of lines - here
lines 4 through 9.

Directs APL to delete lines from a range which
contain a string - here lines 5 through 8
containing string "x".

Directs APL to abandon definition mode and ignore
01 I editing changes mode.

In screen editing mode, APL wi I I scrol I down. If
not in screen editing mode, on error is reported.

In screen editing mode, APL wi I I scrol I up. If
not in screen editing mode, a DEFN ERR is reported.

A directive always storts with a left brocket and ends with a right bracket. With
the exception of search or replacement strings, only legal I ine numbers, a dash,
quod, delta, semicolon, slosh or backslash are permitted within directives.

A line number is a number in the range 0 through 9999.999 which contains at most
three digits after the decimal point. Scientific or E notation is not permitted. A
line number range contains a dash separating the first line number of the range and
the lost line number of the range. At least one of the line numbers in a range
directive must be specified. If the first number of a range is omitted, it is
assumed to be 0. If the second number is omitted, it is assumed to be 9999.999.
Examples of legal line numbers are:

o
123
0.999

A quod appearing within the directive indicates a display directive and a delta
appearing immediately fol lowing the left brocket indicates a line delete directive.

Directives must be the leftmost items input during function definition mode. Several
directives may be used on one line, however, the rightmost directive overrides all
directives to the left of it. For example, notice the fol lowing portion of a
function definition:

vFF
[IJ X+Y
[2 J [1] Y+X
[2 J [5 J A+B
[6J

The [1] directive on the third line overrides the [2] directive to its left and
causes the statement on line 1 to be replaced with Y+X; notice that the next prompt
is [2]. (It should be obvious by now that a function line prompt is a form of
directive.) Similarly, the [5] directive on the next line overrides the [2]
directive to its left and causes line 5 to become the expression A+B. The next line
prompt is then [6].

CE38-04 Di rect ives 7-7

Search and Replacement Strings

Directive strings are delimited by either a slash or backslash. They may contain any
characters in the CP-6 APL character set. but if they contain the delimiting
character. it must be doubled. For example:

Del imited string

12+A*0.51
IB\CIIDI
INAHEI

String

2+A*0.5
B\CID
NAME

In the last example. the string NAME would be found in a line containing '1+NAHE+2'
or in a I ine containing '1+VARNAHES+2'.

When a search string is specified. the final delimiter may be followed by the
character N. which is used to indicate that a string match should only be made if the
characters before and after the match are not in the permitted set of identifier name
characters. This option then allows searches for al I occurrences of a specified
identifier name. For example:

[3) [0-4;IX/)
[0) R~A FUN B;EXTRA;X
[1) EXTRA~'TESTS'
[2) X~A*B
(3) EXTRA~EXTRA.~.X

[5) [0-4;IXIN)
[0) R~A FUN B;EXTRA;X
[2) X~A*B
[3) EXTRA~EXTRA.~.X
[5)

In the first example above. every occurrence of the letter X is displayed. but in the
second example. only those occurrences of the identifier X are displayed. Note that
if the identifier X appears within quotes. that I ine is stil I displayed.

Displaying User-defined Functions

A user-defined function can be displayed in any of the following ways:

0 Display a II lines of the function.
0 Display one line.
0 Display a range of lines.
0 Display the next line.
0 Display lines containing a string.
0 Display the next line containing a string.

Displaying All Lines

To display a function. the user opens the function with a del symbol. names the
function. and specifies what is to be displayed. all on the same line. The user can
then either close the function with another del symbol (if no editing is to be done)
or leave the function open for further editing.

If the user wants to display all of a function. function TRIANGLE for example. the
procedure is as fol lows:

VTRIANGLE [D1V
v BASE TRIANGLE HEIGHT

[lJ AREA~0.5xBASEXHEIGHT
[2) DIAGONAL~«HEIGHT*2)+BASE*2)*0.5
[3) 'AREA IS '.~AREA
[4) 'DIAGONAL IS 't~DIAGONAL

v

7-8 Displaying All Lines CE38-04

Displaying One Line

If the user wants to display only one line. of a function. say line 3 of function
TRIANGLE, the procedure is

VTRIANGLE[30JV
[3J 'AREA IS ',WAREA

Displaying a Range of Lines

If the user wants to display from one line to the end of a function. say from line 2
of a function TRIANGLE, the procedure is

VTRIANGLE [2-oJv
[2J DIAGONAL~«HEIGHT*2)+BASE*2)*O.5
[3J 'AREA IS ",wAREA
[4) 'DIAGONAL IS ',WDIAGONAL

If the user wants to display a range of lines. for example. lines 1 through 2 of
function TRIANGLE. the procedure is:

VTRIANGLE[1-2oJV
[lJ AREA~O.5xBASExHEIGHT
[2J DIAGONAL~«HEIGHT*2)+BASE*2)*O.5

The display of lengthy functions can be stopped at any point by pressing the BREAK
key. The user can request the display to start at line 10 and then press the BREAK
key after line 15 has been displayed. If the display command is closed with a del
symbol. APL is in execution mode after the interruption. If the closing del is
omitted. APL is in function definition mode after the interruption.

Notice that the display commands in all of the above examples are closed with a del
symbol. This symbol causes control to be returned to execution mode as soon as the
display is complete. To remain in function definition mode and edit the function
instead, the user merely omits the closing del in the display command. See how the
above examples appear without a closing del in each display command.

VTRIANGLE [OJ
v BASE TRIANGLE HEIGHT

[lJ AREA~O.5xBASExHEIGHT
[2J DIAGONAL~«HEIGHT*2)+BASE*2)*O.5
[3) , ARE A IS', wARE A
[4) 'DIAGONAL IS ',WDIAGONAL

v
[5)

VTRIANGLE [30)
[3) , ARE A IS', wARE A
[3)

VTRIANGLE [0 2)
[2) DIAGONAL~«HEIGHT*2)xBASE*2)*O.5
[3) 'AREA IS ',WAREA
[4) 'DIAGONAL IS ',WDIAGONAL
[5 J

,Notice that after a single-line display. APL reprompts with the same line number; and
that after a multiple-line display. APL prompts with the next available line number.
The user can then edit the function as described below or can enter another del
symbol to close the function. Closing the function definition with a del symbol does
not alter the content of that I ine. For example. the fol lowing operation does not
change the value of line 3; it will stil I be 'AREA IS ',wAREA:

VTRIANGLE[30)
[3) , ARE A IS', wARE A
[3] v

CE38-04 Displaying a Range of Lines 7-9

In order to find and display the line following a particular line. enter linefeed
ofter the closing bracket of a simple line number directive. For example. to display
the line fol lowing 1.5, the procedure is:

(4) (1.5)
(2) DIAGONAL+«HEIGHT*2)+BASE*2)*O.5

The entire function can be displayed one line at a time by entering linefeed after
each line is displayed. In summary remember that

[0) displays entire function.

(20) displays a single line (here 2).

[0 21 displays from a I ine (here 2) to end of the function.

[1-20) displays a range of lines (here 1 through 2)

Displaying Lines Containing a String

In order to display all lines containing a particular string of characters. the line
range to search is fol lowed by a semicolon. an optional count. and either a slash or
backslash del imited string. If the count is present. the I ine is displayed only if
it contains at least count occurrences of the string. When count is not present. 1
is assumed. For example. to display al I lines in the function TRIANGLE containing
the string BASE, the procedure is:

VTRIANGLE[O-9;IBASE/)
[Ol BASE TRIANGLE HEIGHT
[ll AREA+O.5xBASEXHEIGHT
[21 DIAGONAL+«HEIGHT*2)+BASE*2)*O.5
(10 1

If the search string is for a particular identifier. the closing slash or backslash
may be fol lowed by the letter N which causes APL to display only those lines in which
the string is both preceded and followed by characters that are not legal within a
name. For example. if the search is for al I occurrences of the identifier A. then
the directive:

[7-20;IAINl

wil I not display a line containing AREA (unless it also contains the name A).

Displaying the Next Occurrence of a String

In order to search for the next occurrence of a string. (either forward or backward).
the directive must contain only a search string. If the search string is del imited
by a slash. the search begins at the next line through the end of the function. If
the search is delimited by a backslash. the search begins at the previous line
through to I ine zero. If the string is found. APL displays that I ine and issues a
prompt for that I ine. If the string is not found. APL then prompts for the I ine at
which the search ended (either zero or 1+ the last line number in the function). For
example. if the search is for the first occurrence of the string D after line 2. the
procedure is:

VTRIANGLE(2J(IDI)
(4l 'DIAGONAL IS ',~DIAGONAL
[4)

7-10 Displaying
the Next Occurrence of a String

CE38-04

)

\

)

Editing User-defined Functions

Editing of user-defined functions is oriented to line-at-a-time editing capabi lities:

o Deleting a line
o Inserting a line
o Replacing a line
o Modifying a line

The first three capabi I ities can be performed as shown in Table 7-3. The last
capabi I ity, modifying a I ine, permits character editing (that is, deletion,
insertion, and replacement of characters), adding to a I ine, and overstriking
existing characters on a I ine. AI I of these capabil ities are detai led below. Column
one of table 7-3 states the action to be performed. Column two gives an example of
the action within definition mode. Column three gives an example of the same action
when exiting definition mode. In both examples the functions are already open.

Table 7-3. Displaying and Editing Defined Functions

Action

Display entire
function

Display a line

Display line
and change

Display function
beginning with
spec i f i ed line

Delete a line

Delete a range
of lines

I nse rt a line

Replace a line

Override a line
number

Display a range
of lines

Find occurrences
of a string

CE38-04

Within Definition

[2) [0)
v F

[1) A
[2) B
[3) C

v
[4)

[4] (20)
[2) B
[2]

(4) [2o]B+X+Y
[2] B
[3)

[4] [0 2]
(2) B+X+Y
(3) C

v
[4]

[62]
[3]

(4) [61-2]
[3]

[3] [0.5] X
[0.6)

[4] [2] Z
[3)

[4] [2]
[2]

(4] [1-20]
[11 A
[2] B
[3]

(4] [O-4;IB/)
[2] B
[4]

Mode Exitin~ Definition

[2) [o)V
v F

[1) A
(2) B
[3) C

v

(4) [2o)V
(2) B

(4) [2o]B+X+YV
[2] B

(4) [02]V
[2] B+X+Y
[3] C

v

[62]V

[4)[61-2]V

[3] (0.5) Xv

[4] (2)ZV

[4] [2]
[2] v

[4] [l-20)V
[1) A
[2] B

[4) [O-4;IB/]V
[2) B

Editing User-defined Functions

Mode

7-11

Table 7-3. Displaying and Editing Defined Functions (cont.)

Action

Fi nd occu r rences
of identifier

Find next occurrence
of a string

Find previous
occurrence of a
string

Abort changes, restore
original version of
function

Change al I occurrences
of a string in a
range of lines

Change function
header

Erase current funct.ion

Erase another
function

Within Definition Mode

[4] [O-4;IBIN]
[2] B
[4]

[4] [l](/C/]
[3] C
[3]

[4] [\B\]
[2] B
[2]

[4] [l-3;IAISIABI]
[1] AB
[4]

[4] [0] F;B
[1]

[4])ERASE G
[4]

Exiting Definition Mode

[4] [O-4;IBIN]V
[2] B

[4] [l][/C/]v
[3] C

[4] [\B\]V
(2) B

[4] [..]

[4] [l-3;IAISIABI]V
[1] AB

[4] [0] F;BV

[4])ERASE F

[4])ERASE G
[4] V

A simple three-I ine function named F has been assumed in the examples in this table
(see the first display entry in the table for the original content of function F).
Note: The example which illustrates changing a function header, adds a local
variable to the functional header.

Deleting a Line

A statement in a defined function can be deleted by using the delete directive. A
delete directive may specify al I of the line numbers to be deleted. For example, to
delete line 2 of the following function:

VBASE TRIANGLE HEIGHT
[1] A THIS FUNCTION CALCULATES AREA AND HEIGHT OF TRIANGLE
[2] A BASE AND HEIGHT CANNOT EXCEED 5 AND 15 RESPECTIVELY
[3] AREA+0.5xBASExHEIGHT
[4] DIAGONAL+«HEIGHT*2)+BASE*2)*0.5
[5] , ARE A IS'." ARE A
[6] 'DIAGONAL IS '."DIAGONAL
[7] V

First, the user opens the function and issues the delete directive:

VTRIANGLE[62]

APL responds with a prompt for line 3.

The user can now either close the function with a del symbol or proceed with further
editing (including deleting the next line). (The user can also press the RETURN key
if nothing is to be done to the line. APL simply responds with the line number, in
this case [3]. A linefeed may be used in place of RETURN in which case APL displays
the next line of the function.) A display of the function at this point illustrates
that line 2 is deleted:

7-12 Deleting a Line CE38-04

[3 J [OJ
V BASE TRIANGLE HEIGHT

[lJ ~ THIS FUNCTION CALCULATES AREA AND HEIGHT OF TRIANGLE
[3J AREA+0.5xBASEXHEIGHT
[4J DIAGONAL+«HEIGHT*2)+BASE*2)*0.5
[5J 'AREA IS ','AREA
[6J 'DIAGONAL IS ','DIAGONAL

V
[7 J

The function can now be closed with a del symbol.

[7J V

Once definition mode is exited. APL renumbers the line in sequential order. as
illustrated by another display of the function

VTRIANGLE[DJv
V BASE TRIANGLE HEIGHT

[1] ~ THIS FUNCTION CALCULATES AREA AND HEIGHT OF TRIANGLE
[2] AREA+0.5xBASExHEIGHT
[3] DIAGONAL+«HEIGHT*2)+BASE*2)*0.5
[4] 'AREA IS ','AREA
[5] 'DIAGONAL IS ','DIAGNOAL

V

Inserting a Line

A new line can be inserted in a defined function simply by reopening the function and
entering the statement as described below. The user reopens the function by typing a
del and the function name. to which APL responds by printing the line number of the
next statement to be entered. If the new line is to be inserted at the end of the
function. the user can now enter the new statement and close the function as shown:

VTRIANGLE
[6] ~ THIS FUNCTION IS USED IN ROUTINES 1 AND 2.
[7] V

If the new line is to be inserted between two existing lines. however. the user must
specify a I ine number between those two lines. For example. suppose the user wants
to add a comment as the first line of function TRIANGLE instead of the last line.
This can be done as follows:

[6]
[O.5J
[0.6]

VTRIANGLE
[0.5]
~ THIS FUNCTION IS USED IN ROUTINES 1 AND 2.

Notice the [O.6J prompt in this example. After an insert statement is entered. APL
adds 1 to the last place of the number chosen for the insert. and prompts with the
new number. (The next prompt after [0.6] will be [O.7J; the next. [O.8J; and so on.)
This al lows the user to insert several lines.

A display of function TRIANGLE illustrates that line [O.5J has been added

[0.6] [D)v
V BASE TRIANGLE HEIGHT

[0.5] ~ THIS FUNCTION IS USED IN ROUTINES 1 AND 2.
[1] ~ THIS FUNCTION CALCULATES AREA AND HEIGHT OF TRIANGLE
[2] AREA+0.5 xBASExHEIGHT
[3] DlAGONAL+{{HElGHT*2)+BASE*2)*0.5
(4) 'AREA IS ','AREA
[5] 'DI AGONAL IS " 'Dl AGONAL

V

After the function is closed. APL automatically renumbers the lines. as illustrated
by the fol lowing display:

CE38-04 Inserting a Line 7-13

VTRIANGLE[OJV
v BASE TRIANGLE HEIGHT

[lJ A THIS FUNCTION IS USED IN ROUTINES 1 AND 2.
[2J A THIS FUNCTION CALCULATES AREA AND HEIGHT OF TRIANGLE
[3J AREA+0.5xBASExHEIGHT
[4J DIAGONAL+«HEIGHT*2)+BASE*2)*0.5
[5J 'AREA IS ',WAREA
[6J 'DIAGONAL IS ',WDIAGONAL

V

Li ne Numbe rs

APL al lows the user to type a I ine number with up to four numbers to the left of the
decimal point and up to three numbers to the right. As noted above. after each
insert line is entered. APL adds 1 to the last place of the insert. As illustrated
in the fol lowing portion of a printout. the next prompt after an [.88J insert wi I I be
[0.89J; the next. [0.9J; the next. [0.91J; and so on:

VF
[7J [.88J
[0.88J
[0.89J
[0.9 J
[0.91J

The highest integer line number printed by APL is [9999J; thus the highest possible
I ine number is [9999.999J. If the user is prompted with [9999.999J and enters a legal
statement. APL wil I prompt with the same I ine number since it cannot go any higher.

Replacing a Line

A line in a defined function can be replaced simply by reopening the function.
directing control to the statement that is to be replaced. and entering the desired
statement. For example. line 1 of function TRIANGLE is to be replaced with another
statement. The user reopens the function by typing a del and the function name and
directs control to line 1 by typing that I ine number in brackets. After the RETURN
key is pressed. APL responds to this entry by printing the specified I ine number at
the left margin. as shown:

VTRI ANGLE[1 J
[1]

Any statement the user enters at this point will replace what previously existed at
that I ine. Suppose the user now enters the fol lowing comment statement:

[1] A INPUT HUST BE IN FEET
[2]

Notice that the next prompt is at line 2. If no more editing is required. the user
can close the function by entering another del:

[2J V

This action has no effect on line 2; it merely closes the function. The fol lowing
display of function TRIANGLE illustrates the change to line 1:

VTRIANGLE [O]V
V BASE TRIANGLE HEIGHT

[1] A INPUT HUST BE IN FEET
[2] A THIS FUNCTION CALCULATES AREA AND HEIGHT OF TRIANGLE
[3] AREA +0.5xBASExHEIGHT
[4] DIAGONAL+«HEIGHT*2)+BASE*2)*0.5
[5] 'AREA IS ',WAREA
[6] 'DIAGONAL IS ',WDIAGONAL

V

7-14 Replacing a Line CE38-04

Issuing Multiple Directives

APL allows the user to open a function, change a I ine, and close the function al Ion
one I ine. For example:

VG[l][2]2.2V

In this case the user opens function G, issues a directive to line 1 (realizes line 2
was meant), changes the directive to line 2, replaces whatever exists on that line
with the value 2.2, and then closes the function. This shortcut operation al lows the
user to change a function without having to interact extensively with the computer.
Another example is shown below:

VG[lo]l.llV
[1] 1.1

VG[o]V
v G

[1] 1.11
[2] 2.2

v

The first I ine requests that line 1 of function G be displayed, and the contents of
that line changed to the value of 1.11. The display of function G shows that line
has indeed been changed from 1.1 to 1.11. It should be noted that the user can
display one line and change it at the same time, but cannot display an entire
function and change something at the same time.

Modifying a Line

As mentioned earl ier, modifying a I ine involves character editing (that is, deletion.
insertion, and replacement of characters), adding to a line, and overstriking
existing characters in the line. Modifications to a line can be specified by
overriding the present line number with the directive:

[noc]

where n is the number of the line to be edited (0 for a function header). and c is
the column at which to begin editing (the column position is the number of spaces
from the left margin). APL wil I normally display the specified I ine. and position to
the designated column. The editing column specified may be 0, in which case APL
displays the line and stops at the end. If the designated line does not fit on a
single line, no character editing can be done. In this case, APL simply displays the
I ine and then reprompts the user with the same I ine number. The fol lowing is an
example of such a line:

[2] 'A
B'

If the typing element is stil I not in the proper position, the user can backspace,
tab or use <CTL-R> to space forward until the desired position is reached.

The line-modifying capabilities of CP-6 APL are identical to those described in the
CP-6 Programmer Reference Manual (CE40). In summary, the user may enter escape
sequences to successively modify the content of function lines in a manner similar to
that afforded direct input.

NOTE: An escape sequence is generated by pressing the <ESC> key once and
then the appropriate key for the action desired (e.g .• <ESC> fol lowed
by R for an escape-R sequence). The CP-6 system prints <R> on
the terminal in response to an <ESC> R sequence.

For example, suppose the following function had been previously defined by the user.

v A PLUS B
[1] 'THE SUH OF ',(wA),' AND ',(wB),' IS ',wA+B

V

CE38-04 Modifying a Line 7-15

Now the user wants to change the function to perform a multipl ication rather than an
addition. Suppose the function that wi I I do this is cal led TIMES. To proceed with
the example. the user opens the function for editing with

VPLUS

and APL responds with [2]. The user types [10 0) to tel I APL to display line 1 and
remain at the end to await new instructions.

[2) [10 0)
[1) 'THE SUM OF ',CwA),' AND ',(wB),' IS ',wA+B

APL waits at the end of the displayed line. The user presses RUBOUT twice to delete
the B and then the +, and enters <ESC> followed by R to retype the I ine. The line
appears as:

[1) 'THE SUM OF ',(wA),' AND ',(wB),' IS ',wA+B\\<R>

The two backslashes indicate the rubouts and <R> indicates the <ESC> R sequence. APL
immediately types

[1) 'THE SUM OF ',(wA),' AND ',(wB),' IS ',WA

and waits after the last A. Now the user types xB and enters <ESC> V S to move to the
S in SUM.

[1) 'THE SUM OF ',(WA),' AND ',(WB),' IS ',wAxB

The terminal now waits at the S for more instructions. Now the user presses RUBOUT
three times to delete S then U then M enters <ESC> J to switch to CP-6 insert mode
types PRODUCT and then <ESC> R to show the line.

[1) 'THE SUM OF ',(WA),' AND ',(wB),' IS ',wAxB
\\\PRODUCT<R>

[1) 'THE PRODUCT OF ',(WA),' AND ',(wB),' IS ',wAXB

APL now waits for input at the T in PRODUCT. The user has decided to change the name
of the function to TIMES. First. the user presses RETURN to tell APL that a new line
1 has been defined. APL responds with [2]. The user rewrites line 0 directly and
ends function definition al I in one line.

[2J [0) A TIMES BV

Now the user demonstrates the new function.

4 TIHES 6
THE PRODUCT OF 4 AND 6 IS 24

o TIMES 9
THE PRODUCT OF 0 AND 9 IS 0

Adding Characters to End of Line

To add one or more characters to the end of a line. specify zero as the column at
which to begin editing. APL will then display the line unaltered and wait at the end
of the line for the user to add something. An example of adding local variables to a
function header is shown below:

[3J (00 0)
[OJ RETURN+FUNC X;A;B
[1)

In this case APL typed the header as RETURN+FUNC X and waited at the end of the line,
and the user typed ;A;B.

7-16 Modifying a Line CE38-04

Overstriking a Character

To edit a line and create a legal overstrike, specify zero as the column at which to
begin editing. APL will display the I ine and wait at the end of it; the user can
then backspace to the character to be overstruck, and type the second character. An
example of overstriking a character is shown below:

[B) [50 0)
(5) A+~

In this case the first line caused statement 5, consisting of the expression A+O. to
be displayed and APL to wait at the end of the line. The user then backspaced to the
quod and typed an apostrophe, thus crea~ing the legal overstrike ~.

Editing a Line Number

Line numbers may be edited in the some way that the content of a line is edited. One
appl ication of editing line numbers is in repeating a statement at several different
lines. For example, the fol lowing procedure can be used to repeat the contents of
line 2 at line 4.1:

VC[20 1)
(2) A+30+12xA

APL waits under the [. The user presses <CTRL-R> to move under the 2, presses RUBOUT
to delete it, enters <ESC~ J to switch to insert mode, types 4.1, and enters <ESC> R
to see the result.

(2) A+30+12xA
\4.1<R>

[4.1) A+30+12XA

When the user now presses RETURN, a new line 4.1 has been defined. The contents of
line 2 remain the some; that line was merely copied to line 4.1.

Changing a Function Header

There are four changes the user can make to a function header (that is, to line
zero).

1. Change the name of the function. Suppose the user reopens an existing function
cal led FF1 and changes only the nome of the function to C1 as shown below:

VFF1[O)
(0) RETURN+C1 ARC
[1)

This example assumes that C1 does not already exist. (If it did, a DEFN ERR
message would be reported.)

\

Changing the function nome has no effect on function FFI. the function stil I
exists as it did before the reopen. Of course, FFI is no longer the open
function, CI is. CI is initially a copy of FF1 and any modifications
subsequently made while in function definition mode apply only to CI. This
feature al lows synonymous function names as long as only the header is revised.
It is possible for a user to make a locked version of an unlocked function in
this manner, retaining the unlocked version only until satisfied that the locked
version is error-free. Erasing the original function does not affect a
synonymous function, nor does subsequent revision of the original. A synonymous
function retains the stop and trace vectors supplied with the original function
when it was copied.

2. Change the name of the result, change a function with a result to a no-result
function, or change a no-result function to a function with a result. The
fol lowing illustrates the change of function FF1's result name from RETURN to R:

CE38-04 Changing a Function Header 7-17

VFFU 0)
(0) R+Ffl ARC
[I)

3. Change the name of on argument. An example is shown below. where function FFI's
argument is changed to X:

VFF1£OJ
(0) R+FFl X
[I J

4. Change the names of locals, insert locals, or delete locals. APl does not al low
the user to delete a function header. Any attempt to do so wi I I cause APl to
print an error message and reprompt the user with line zero. To get rid of the
current function, the user must issue an)ERASE command.

Screen Editing

CP-6 APl provides a screen-oriented editor for editing defined functions. The screen
editor is requested by the)EDITOR system command. In this mode, a portion of the
function being edited is always on the screen, and the bottom of the screen typically
contains an area for error messages and the output of system commands. To modify a
line, position to the character or characters to be changed and enter the appropriate
characters to be inserted or replaced. To position the cursor to a particular line.
enter <ESC> X and one of the line positioning directives I isted below. In order to
leave screen editing mode, enter a V character at the end of a line or enter an <ESC>
xv sequence. Please note that in this section, the sequence u<ESC>" indicates
pressing of the escape key on the terminal.

Whenever the cursor moves off a line. APl determines whether the line is changed or
if a directive was entered. A directive can be entered at anytime by typing <ESC> X
followed by the directive. The line that was erased in order to enter the directive
reappears as soon as the directive is acted upon. Display directives are not
permitted in screen editing mode (mainly because the function is already being
displayed). If the screen does not contain the portion of the function requiring
modification, the line to be modified can be reached by entering linefeed characters
to get to it, or by entering a bare I ine number directive such as [6] (which would
position the cursor to line 6).

Table 7-4 contains a list of character sequences to perform some common input
editing. For a complete list of screen editing input editing sequences. see the CP-6
Programmer Reference Manual (CE40). Table 7-5 contains a list of the directives that
may be entered in screen editing mode and their meaning.

Input

<ESC>A
< ESC>P
<ESC>N
<ESC>
<ESC>V?
<ESC>J
<ESC>K
<ESC>X
<ESC>.

<ESC>:
<ESC>N<ESC><lF>
<ESC><8S>
<ESC><lF>

<8S>
<CTl-R>
<CTl-I>
<tab>

7-18

Table 7-4. Screen Editing Control Characters

Meaning

Position one line up.
Restore line to its contents when the cursor arrived.
Position to the end of the line.
Repaint the screen.
Position the cursor to the next .? character.
Toggle insertion mode.
Delete characters to the end of the line.
Delete all characters on the line.
Remember the characters in the insertion window (or
line) .
Copy characters remembered by <ESC>. into line.
Insert a line after the current line.
Join current I ine to previous or next line.
Spl it current line by inserting a new line following
the current line.
Position backward one character.
Position forward one character.
Position forward to next tab setting.
Position forward to next tab setting.

Screen Editing CE38-04

Input

[n]

[/string/]

[\string\]

[6n]

[6n-m]

[6n-m;/str/]

[n-m;c/x/S/y/]

Table 7-5. Screen Editing Directives

Meaning

Position to line n if directive has nothing following
it. Otherwise replace line n with the remaining
text.

Position to the next higher line number which contains
the string 'string'.

Position to the next lower line number which contains
the string 'string'.

Delete line number n.

Delete line numbers n through line m.

Delete line numbers n through line m if they
contain the string 'str'.

Abandon screen editing mode ignoring al I
editing changes.

Replace the c'th occurrence of the string 'x'
with the string 'y' in lines n through m.

Issuing System Commands

CP-6 APL allows the user to enter any system command whi Ie in function definition
mode. Most system commands keep the user in function definition mode, whi Ie some
system commands (described below) return the user to execution mode or even exit APL.
After commands that keep the user in definition mode, APL wil I prompt with the same
line number at which the command was given. For example, suppose the user is at line
5 of a function and wants to find out the names of variables in the workspace:

(5))VARS
AAA BAT DDD
[5)

The system commands that exit function definition mode are:)CLEAR.)LOAD.)COPY.
)PCOPY,)QLOAD.)QCOPY.)QPCOPY,)CONTINUE,)CONTINUE HOLD,)Off.)Off HOLD,)END,
)SAVE, and an)ERASE of the current function. AI I of these commands force a close of
the definition mode as though the user had closed it, but the resulting disposition
of that function depends on the command. The)CLEAR,)LOAD,)QLOAD,)ERASE,)Off,
and)END commands cause the function to be discarded; the)SAVE,)COPY,)PCOPY,
)QCOPY,)QPCOPY,)CONTINUE, and)CONTINUE HOLD commands automatically reopen the
function after the command hos finished. In the last situation, as soon as the
command has finished, APL signals the user of the reopening by printing the function
name (with an opening del) and prompting with the next available line number. With
the)CONTINUE and)CONTINUE HOLD commands, of course, the function is not opened
until the next APL session. The user should display the function before doing any
more editing, since renumbering may have occurred because of the forced close.

CE38-04 Issuing System Commands 7-19

Function Execution

APL permits recursive functions (those which reference themselves when they are
executed). APL also allows the user to suspend function execution. These topics are
discussed in detail below.

Recursive Functions

Recursive functions reference themselves in the body of their definitions. As an
example, notice the fol lowing function which returns the factorial of its argument:

VZ+-FAC N
(1) Z+-l 0 +(NS1)/O 0 Z+-NXFAC N-1v

24

FAC 0

FAC

FAC 4

Suspending Execution

Execution of a function is suspended (stopped) before completion, if any of the
fol lowing occurs: the BREAK key is pressed, an error is encountered (unless
sidetracking occurs, see section 10), or a user-set stop control is reached (see
OSTOP). When a suspension occurs, APL prints the name of the suspended function and
the line number at which it was suspended. At this point, APL is in direct execution
mode (subject to any OSA requirements, see Section 11). Any functions that can be
performed in execution mode are appl icable during function suspension. As long as a
function is suspended, its local variables are active and can be examined and
modified.

The user can resume execution of a suspended function by specifying a branch.
Entering a branch arrow followed by a RETURN key clears that suspension, while
specifying a branch to a particular line number resumes execution at the beginning of
that I ine (that is, at the right end of that I ine). Branching to a I ine outside a
function's range of line numbers, or zero, terminates the execution of that function.

As a general rule, it is best not to leave a function suspended, because the
information about that function occupies workspace which is valuable to the APL user
(see State Indicator). In addition, each time the user attempts to execute an
already suspended function, even more information about that function is added to
computer memory. Thus, if the user has no specific reason to leave a function
suspended, it should be cleared before proceeding with the rest of the program. (See
also the)SIC command in Section 8.)

State Indicator

APL maintains a "state indicator" that gives a list of all suspended and pendent
functions (that is, 01 I "active" functions). A suspended function is one where
execution is stopped before completion (see Suspending Execution). A function is
pendent unless specifically suspended. Most commonly, this is observed when one
(pendent) function has called a suspended function. As a rule, suspended functions
are stopped between lines, while pendent functions are stopped in the middle of a
I ine. Note, however, when a function is suspended due to an error, the error marker
may indicate the middle of the line; nevertheless, the function is stopped between
that line and its predecessor. A display of pendent and suspended functions can be
obtained via the)SI system command, with the most recent active function displayed
first.

7-20 Suspending Execution CE38-04

)Sf
Z[2J *
X[4J *
Y[3J
Z[2J *
X[2J
W[5J *
An asterisk after an entry indicates a suspended function; absence of an asterisk
indicates a pendent function. The bracketed number after a function name is the
number of the next line to be executed. If there are no suspended or pendent
functions in the state indicator. no report wil I result from the)Sf command. The
number of items in the state indicator can be determined by typing the expression
pOLe.

Unlike suspended functions. pendent functions cannot be erased. copied over, or
edited. As an example. look at the state indicator list shown above. Functions Z
and W can be edited but functions X and Y cannot. Notice that function X is listed
as both pendent and suspended; it cannot be edited because it is pendent in one of
its states. Also notice that function Z has been suspended twice.

There is one instance in which a pendent function wil I not be listed in the state
indicator. Suppose a dyadic function is about to be executed, pending resolution of
its left argument. Assume that argument is obtained as the result of some function.
say F, and F is suspended. Then the dyadic function is pendent. because it is ready
to execute as soon as F is resumed. But the dyadic function is not listed in the
state indicator because it has not yet entered a state of execution. Fortunately,
this situation is rare and'seldom wil I confuse the user.

The system command)SfNL lists the contents of the state indicator, including a list
of variables local to pendent and suspended functions. Using the command)SfNL lists
the fol lowing:

)SfNL
Z[2J * A B
X[4J * AA
Y[3J
Z[2J * A B
X[2J AA
W[5J *
As with the)Sl command. the most recent active function is displayed first. This
example indicates that variables A and B are local to function Z and that variable AA
is local to function X. Only the local variables of the most recent active functions
can be accessed by the user. Thus. the user can access local variables A and B of
the last invocation of function Z, and variable AA of the last invocation of X. But.
the user cannot access local variables A and B of the first invocation of function Z
or local variable AA of the earlier invocation of function X (see X[2J).

The user can clear the state indicator by using the branch arrow (that is, +). Each
branch arrow clears one suspended function and its associated pendent functions;
thus. to clear the entire state indicator. the user enters a branch arrow for each
asterisk in the list. For example, the user can clear the previous indicator.

+

)SINL
X[4J * AA
Y[3J
Z[2J * A B
X[2] AA
W[5] * +

)SINL
Z[2] * A B
X[2] AA
W[5] * +

+

)SINL

CE38-04 Suspending Execution 7-21

The)SINL commands in this example show what is left in the state indicator after
each branch arrow. The user can also clear the same state indicator by entering four
successive branch arrows .

..
)SINL

In this case, the)SINL command shows that nothing is left in the state indicator.
The easiest way to completely clear the state indicator is to issue a)SIC command.

CP-6 APl provides limited protection against SI DAMAGE. As an example, suppose the
user opens function r and modifies the header, changing the function's type (e.g.,
monadic to dyadic, result to no-result) and then attempts to close function r. If r
is not suspended, the function is closed as usual. If r is suspended, APl issues a
warning (to the effect that references in the state indicator wil I be damaged by the
change to the header) and requests a response from the user. The user can either
order the close to occur with SI DAMAGE by typing YES fol lowed by a RETURN, or cancel
the close in order to revise the function further, hopefully correcting the header.
Only a type change requires this protection. It is perfectly permissible to make
other changes to the header, such as adding locals or renaming the result or dummy
arguments: however, this is seldom advisable (see Changing Suspended Functions
above).

Locking Functions

A function can be locked during definition or editing by using an opening or closing
9 (V overstruck with N) instead of a V. A locked function can be executed, copied,
or erased, but it cannot be displayed, suspended, or altered. After a function is
locked, any associated trace control or stop control is automatically reset.
Examples of locking functions are:

[8]
9 HH
V

VHH
[8] 9

9 HH
(8) 9

Once locked, if an error exists that is not sidetracked in the function, the error is
implicitly sidetracked by APl to the line on which the locked function was invoked
and the error report occurs on that line.

System Functions Controlling Defined Functions

CP-6 APl provides system functions which have the ability to create, modify, display,
and set or query the attributes of defined functions. This section also introduces
the terms namelist and canonical representation which are defined in Section 11 under
the heading "Namelist and Canonical Representations". The system functions covered
in this section are:

OTRACE
OSTOP
OCR orx
OAT

Set/query function trace attribute
Set/query function stop attribute
Obtains function character representation
Creates or modifies a function
Query function attributes

Each function is discussed in detail below.

7-22 System
Functions Control ling Defined Functions

CE38-04

DTRACE System Function (Tracing Execution)

Syntax:

R+OTRACE F

R+V OTRACE F

Parameters:

F is a namelist containing the name of a displayable defined function.

V is an integer or vector of integers that specify the I ine numbers for which
execution results are to be displayed. Only the integers that correspond to line
numbers in the named function are significant.

R is an integer vector containing the original trace settings.

Description:

Function execution can be traced by displaying the results of statements (some or
all) as execution of the function progresses. When any of the traced line numbers is
executed, the result of its statements are printed. If the specified line contains a
branch statement, a branch arrow fol lowed by the new I ine number is printed.
Specifying a trace vector of (~O) discontinues the trace.

Examples:

{~O)OTRACE 'FAC'

stops trace of function FAC.

Below is an example of tracing the execution of a function. Notice that all output
resulting from a trace is identified by the function name and line number.

VZ+FAC N
[1] Z+ 1
[2] -+(NS1)/0
[3] Z+NxFAC N-l
[4] V

1 2 3 OTRACE 'FAC'
FAC 0

FAC[1) 1
·FAC[2] -+0
1

FAC 1
FAC[1) 1
FAC(2) -+0
1

FAC 4
FAC[1) 1
FAC(2) -+1.0
FAC(1) 1
FAC(2) -+~O
FAC [1) 1
FAC(2) -+1.0
FAC[1) 1
FAC(2) -+0
FAC(3) 2
FAC[3) 6
FAC(3) 24
24

(1.0) OTRACE 'FAC'
123

CE38-04 OTRACE 7-23
System Function (Tracing Execution)

The same function written as a compound statement produces the fol lowing trace
output:

VZ+FAC N
[1] +(NsZ+1)/0 0 Z+NxFAC N-1V

1 OTRACE 'FAC'
FAC 0

FAC [1] +0
1

FAC 1
FAC[l] +0
1

FAC 4
FAC[1] +~O
FAC[t] +~O
FAC[t] +~O
FAC[l] +0
FAC[l] 0 2
FAC[l] 0 6
FAC[l] 0 24
24

The dyadic OTRACE function requires that the right argument contain a valid name or a
DOHAIN ERR is reported. The explicit result of dyadic OTRACE is an integer vector
containing the original trace setting of the named function.

Setting a trace vector can also be included as part of a defined function. For
example, if the statement 1 OTRACE 'FAC' is included within the above function, line
1 wil I also be traced each time the function is invoked. More complex expressions
can be used to produce conditional tracing. In such cases, the condition produces
one or more values (line numbers) that are the left argument of OTRACE. This
general ization also applies to the stop vector described below.

The)OBSERVE command, described in Section 8, extends the tracing facil ity. It
permits the user to see not only the final result of a trace command, but every
intermediate result occurring as APL executes a traced statement.

The current trace settings may be obtained by the monadic execution of the OTRACE
system function. In this case, the right argument is the same as in the dyadic usage
of OTRACE and the result is an integer vector containing the current trace settings.
For example:

OTRACE 'FAC'

" OTRACE 'FAC'

OTRACE 'FAC'

Possible Errors:

A RANK ERR is reported if:

o the left argument (new trace settings) is not a scalar or vector.

A DOHAIN ERR is reported if:

o the left argument is not a simple array containing only integers.

7-24 OTRACE
System Function (Tracing Execution)

CE38-04

OSTOP System Function (Stopping Execution)

Syntax:

R+OSTOP F

R+V OSTOP F

Parameters:

F is a namel ist containing the name of a displayable defined function.

V is an integer or vector of integers that specify the line numbers at which the
function is to stop. Of course. only the integers that correspond to I ine numbers in
the named function are significant. If 0 is an item of V, the function stops on
exit.

R is an integer vector containing the original stop settings.

Description:

A planned suspension of fu~ction execution. cal led a function stop. can be
establ ished by setting a stop control vector. This vector is set in the same manner
that a trace control vector is set for a function trace.

When each specified line number is reached. APL stops execution and prints the
function name. the I ine number. and optionally the line about to be executed.
Function execution is now in a normal suspended state (subject to OSA setting). and
can be terminated or resumed by appropriate branching (see Suspending Execution).
Specifying ~o discontinues the stop control vector; for example. (~O) OSTOP 'FAC'
discontinues any function stops in function FAC. The)REPORT system command is used
to include the APL statements in the stop report.

Examples:

Below is an example of stopping execution of a function named CIRCLE:

2 S OSTOP 'CIRCLE'
CIRCLE

CIRCLE[21

13
10

Suspension activities
+2

30
CIRCLE(S)

The explicit result of OSTOP is an integer vector containing the original stop
settings of the named function. Like the trace control vector. the stop control
vector can also be used within a defined function to stop execution after a certain
number of loops. Editing a line that has a trace or stop control set removes the
control for that I ine. Deleting. copying the function from a saved workspace. or
locking a function also deletes trace control and stop control vectors associated
with a function.

The current stop settings may be obtained by executing the OSTOP function
monadically. In this case. the right argument is the same as in the dyadic usage of
OSTOP and the result is a simple integer vector of the current stop settings. For
example:

CE38-04 OSTOP 7-25
System Function (Stopping Execution)

STOPS+OSTOP 'CIRCLE'
pSTOPS

2
STOPS

2 5
" OSTOP 'CIRCLE'

2 5
OSTOP 'CIRCLE'

Possible Errors:

A DOMAIN"ERR is reported if:

o the right argument does not contain a valid name.

A RANK ERR is reported if:

o the left argument (new stop settings) is not a scalar or vector.

A DOMAIN ERR is reported if:

o the left argument is not a simple array containing only integers.

OCR System Function (Canonical Representation)

Syntax:

R+OCR F

Parameters:

F is a name I ist containing the name of a displayable defined function.

R is a simple character matrix.

Desc r i pt ion:

The OCR system function is used to obtain the character representation of a defined
function. The right argument must be a namelist containing the name of a single
defined function. The result is a matrix containing the canonical representation of
the function (if it is displayable) or a 0 by 0 matrix if the name is not a defined
function or not displayable.

The canonical representation of a function contains the function header in the first
row. fol lowed by the function lines in the remaining rows.

Examples:

pR+OCR 'FAC'
4 11

R
R+FAC N
R+l
"(N~1)/O
R+NXFAC N-l

7-26 OCR CE38-04
System Function (Canonical Representation)

OFX System Function (Fix Definition)

Syntax:

R+OFX CR

R+AT OFX CR

Parameters:

CR is a simple character matrix (or vector with carriage returns) containing the
canonical representation of a defined function.

AT is a scalar or four-item vector containing only the scalar values 1 or 0.

R is a simple character vector containing the name of the function established or
an integer scalar row index of CR.

Description:

The OFX system function creates a defined function from its canonical form. The
right argument must be a character matrix (or vector with carriage returns separating
lines). The first row of the matrix must be a valid function header and the
remaining rows must be val id function lines. The expl icit result of this function is
the name of the function that was established, or the integer row index of the line
which caused the definition attempt to fail.

Before the function is established, APL makes sure that the name is not currently in
use for anything other than a defined function. A DOMAIN ERR is reported if the name
is in use and not a defined function or if the right argument is not a simple
character array. A RANK ERR is reported if the right argument is not a scalar,
vector or matrix. If the name is currently a local symbol to an active or executing
function, then this function will exist as a local function.

When OFX is used dyadical Iy, the left argument must either be a scalar or four-item
vector of simple booleans (1's and 0's). The left argument specifies the execution
properties of the defined function. The four properties in order are:

1. not displayable
2. not suspendable
3. not interruptable
4. execution errors converted to DOMAIN ERR

If a scalar is used as the left argument, all four properties are set to that value.
Setting 01 I of the properties to 1 is the same as locking the function.

Examples:

pR+OFX CR+(24t'R+FAC N'),[O.5J'+(NsR+l)/O 0 R+NxFAC N-1'
3

FAC
R

CR
R+FAC N
+(NsR+1)/O 0 R+NxFAC N-l

VFAC[OJV
R+FAC N

(1) +(NsR+1)/O 0 R+NXFAC N-1
V

CE38-04 OFX
System Function (Fix Definition)

7-27

OAT System Function (Function Attributes)

Syntax:

R+I OAT NAMES

Parameters:

NAMES is a namel ist containing the names of defined functions.

I is the simple scalar integer value 1. 2. 3. or 4.

R is a simple matrix containing the requested function attributes.

Description:

The system function OAT returns attributes for each function named in the right
argument. When a function is created by function definition or by the OFX system
function. four attributes specific to the function are defined. The attributes
include the valence of the function. the creation time. the execution properties. and
the account which created the function.

The right argument of the OAT system function must be a name.1 ist containing the
names of the functions whose attributes are to be returned. The left argument is an
integer scalar in the range 1 through 4 whose value determines the attribute to be
returned. The result is a matrix (or vector if the namelist is a vector containing
one name) with one row for each name in the namelist.

The left argument value and the associated attributes are:

1 - Valences

Three items indicating whether a result may be produced and the number of arguments.
The first item is 0 if there is no result. or 1 if there is a result. The second
item is 0, 1, or 2 for niladic, monadic or dyadic functions. The third item is 0 and
is reserved for future use.

2 - Creation Time

A seven-item vector indicating the time that the function was created. The items are
in the fol lowing order: year, month, day, hour, minute, second, and mill isecond.

3 - Execution Properties

A four-item vector, indicating execution properties of this function. The first item
is 1 if the function may not be displayed (OCR not permitted). The second item is 1
if the function may not be suspended (by double attention or an error). The third
item is 1 if the function is not interruptable by a single attention. The fourth
item is 1 if any execution error (non-resource) produces a DOMAIN ERR report. The
action of locking a function sets al I but the last of these properties to 1. The
dyadic use of the OFX system function permits each of these properties to be set
independently.

4 - Creator

An eight-item character vector, indicating the account that created
(or last modified) this function.

7-28 OAT
System Function (Function Attributes)

CE38-04

Examples:

3
tJR+1 []AT 'FAC'

R
o

2 OAT 'FAC'
1983 10 11 12 29 59 610

CE38-04 OAT
System Function (Function Attributes)

7-29

Section 8

System Commands

System commands al low the user to control the mechanical aspects of APL, and can be
divided into three categories:

1. Workspace Control Commands - commands that affect the state of active and saved
workspaces.

2. Inquiry Commands - commands that supply information about the active workspace.

3. Communications Commands - commands that send messages to the computer operator
and log the user off APL.

System commands always begin with a right parenthesis and can be entered when the
system is in execution mode or definition mode. By using the Execute operator (see
Section 5). system commands can be embedded in an APL expression and in a function
line. Thus. a system command can be placed under control of such expressions or
functions. Only the first four letters of command names are significant. Name
characters after the fourth are ignored. Thus)CLEA and)CLEAVAGE are both
interpreted to be the)CLEAR command. Note that a blank must separate the command
name and any fol lowing parameters; for example,)WIDTH 30 is not the same as
)WIDTH30. A number of conventions are used in this section to describe the command
formats.

1. Uppercase letters and special symbols must be typed exactly as they appear
(except that only the first four letters of a command are required, as noted
above).

2. Lowercase letters are employed to indicate where in a command to substitute a
name or numerical value. The meanings or the notations in lowercase letters are
as fo I lows:

CE38-04

account

fid

fname

grpname

list

message

n

objname

string

vname

User account.

CP-6 fi Ie identifier of the form:

name.account.password.

Name can consist of up to 31 characters.
Account and password can consist of up
to 8 characters.

Name of a function.

Name of a group.

List of names (of functions, variables, groups),
separated by blanks.

Actual message to computer operator.

An integer value.

Name of function, variable, or group.

Any sequence of characters not including a blank
or carriage return. If a string includes more
than 79 characters, those past the 79th are
ignored. Strings are used for range demarcation
in certain commands.

Name of a variable.

System Commands 8-1

wsname A workspace name; can consist of up to 31 characters
(letters, underscored letters and numbers) as long
as the first character is not a number. It has
the same form as fide

The actual system commands are detai led later in this section, but first
it is necessary to describe the concept of a workspace in order to understand
how certain commands are used.

Workspace Concept

Each user has a storage area containing control information which can be saved for
future use.

Active Workspace

Associated with each user is a storage area in the computer known as an active
workspace. This active workspace contains the following:

1. AI I control information currently applicable to the terminal session.

2. The variables, functions, and groups entered for calculations and sti I I active
during the session.

3. A state indicator that keeps track of the names of suspended and pendent
functions and at what point they were interrupted.

4. System variables that control several features of APL, such as index origin, seed
for random number generation, line width, and number of significant digits
(decimal places) printed. These system variables al I assume default values when
the user first invokes APL, but they can be respecified with system commands, or
by assignment.

When APL is invoked, the active workspace is usually clear (that is, there is nothing
in it except the default values of the parameters mentioned above in item 4). An
active workspace can also be cleared with the system command)CLEAR.

Saved Workspace

An active workspace can be saved for future use with the)SAVE command. Once a
workspace is saved, any user who knows the workspace name can load it as an active
workspace using the)LOAD command. The workspace's variables, functions, and groups
can be copied into an active workspace using the)COPY command. The workspace can
also be dropped using the)DROP command (if fi Ie access controls permit). In
addition, the names of saved workspaces in an account can be listed with the)L1B
command.

8-2 Saved Workspace CE38-04

Continue Workspace

A line disconnect or either of the fol lowing commands cause the active workspace to
be saved in the logon account:

)CONTINUE
)CONTINUE HOLD

The CONTINUE workspace is automatically loaded as an active workspace the next time
the user invokes APL unless it is directed to load another workspace. In general,
the CONTINUE workspace can be used the same as any other named workspace. It can be
saved, copied, loaded, etc. However, it should only be used for temporari Iy saving a
workspace, since another)CONTINUE command or line disconnect would save another
active workspace over what was previously saved. That is, the previous CONTINUE
workspace wil I be overwritten.

Since the CONTINUE workspace is part of the user's logon account, it is subject to
the granule restrictions imposed by an installation. If the user's account is near
that I imit, the CONTINUE workspace may not be saved, and the information in the
active workspace may be lost if a line disconnect occurs (see User Accounts). The
CONTINUE workspace is saved with its access controls set to restrict access of the
workspace to the user who created it.

Initiating an APL Session

APL is invoked with the fol lowing IBEX command syntax:

IAPL [fid1] [IONIOVERIINTOI [fid2] [,fid3]] [(options)]

Parameters:

fid1 is a CP-6 fi Ie identifier designating either a workspace to be loaded, or a
file containing APL statements to be used as input. In either case, fid1 indicates
"source input" (the current setting of M$SI). If fid1 is a workspace file or if fid1
is not specified, then APL input will default to the terminal on-line or the default
input device in batch (ME). The APL)SET INPUT command may be used to redirect input
after entering APL.

ON specifies that if fid3 already exists, the file is not to be overwritten. An
error is reported.

OVER specifies that fid3 is to be overwritten even if it currently exists.

INTO specifies that APL output is to be appended to the end of file fid3 (if it
exists).

fid2 is the CP-6 file name that is to be used by APL to designate the CONTINUE
workspace name (the current setting of M$OU). If not specified, the CONTINUE
workspace name defaults to the string 'APL:' fol lowed by the current user's logon
name (established when logging onto CP-S). The account used to hold the CONTINUE
workspace is always the logon account. APL uses this fi Ie identifier in the event of
a line disconnect, an uncontrol led error, or a I imit exceeded error in batch mode, or
if a)CONTINUE command is issued.

fid3 is the CP-6 file identifier that specifies the file containing output
generated by the APL session (the current M$LO setting). If fid3 is not specified,
then APL output will default to the terminal on-line and the line printer in batch.
The APL)SET OUTPUT command may be used to redirect output after entering APL.

options is the list of APL options to be used for this session separated by
commas. The options permitted are QUIET, WS, and CPV. The QUIET option invokes APL
without the initial version and either CLEAR WS or SAVED messages being displayed.
The WS option must be followed by = and a fid which identifies a workspace to be
automatically loaded. If the WS option is specified, then fid1 must contain the APL
statements to be executed. The CPV option causes some of the primitive functions in
CP-S APL to perform as their counterparts in CPV APL performed.

CE38-04 Initiating an APL Session 8-3

User Accounts

Accounts are specified when logging onto CP-6 or when accessing fi los in accounts
other than the default fi Ie management account for a user. CP-6 instal lations impose
restrictions on file al location space (and file access) of file management accounts.
When an account is at (or very near) its space limit, other files (or workspaces) in
the account may need to be deleted to create or update a file (or workspace). In
this event, APL reports the error. The)? command can be used to obtain more
information about the error.

Command Processor

The material which fol lows assumes that the Command Processor in effect when APL is
invoked is the CP-6 IBEX processor. If this is not the case, the commands)CONTINUE.
)!.)OFF and)SET may operate in a manner other than specified here. In particular,
for the transaetion processing command processor (TPCP), some of these commands wil I
result in the BAD COMMAND error.

System Command Summary

The system commands are detailed below in alphabetic order, and are summarized by
category in Table 8-1.

Table 8-1. System Command Summary

Command Description

Workspace Control Commands

)CATCH [vname VIA name]

)CLEAR

Removes any current catches (i .e., intercepts of assignments to
specified variable names) or designates that assignments to vname are
to be "caught" (intercepted immediately after the assignment), and
that the test function name, a ni ladic function or character vector,
is to be executed.

Clears active workspace and restores default width. print precIsion,
index origin, comparison tolerance, random number link, etc.

)COpy fid [I ist]

8-4

Copies functions, variables, and groups from saved workspace. Any
password must be included, and so must the account if different than
the file management account. If list is present, then only those
named are copied. If list is not present, al I names in fid are
copied.

System Command Summary CE38-04

Command

}DIGITS [n]

}DROP [fid]

}ERASE list

Table 8-1. System Command Summary (cont.)

Desc r ipt ion

Displays the current value of Ofp (numeric print precision). If n is
specified, sets the value of OfP. and displays the previous valuo of
OfP.

Deletes a saved workspace. If the fi Ie identifier is protected with
a password, the

Removes the named objects such as functions, variables, or groups
from active workspace.

}GROUP grpname [list]

} LOAD f i d

}OBSERVE

}ORIGIN [n]

Groups objects and names the group. If list is not specified,
disperses the named group.

Moves a copy of the saved workspace into the active workspace. If
the file identifier is protected with a password, the password must
be specified. Also, if the saved workspace is in another account,
that account must be specified.

Specifies that the next (direct input) statement and any traced
function statements executed are to be "observed". This displays a
number of "observations", showing intermediate results as APL
interprets those statements.

Displays the current value of 010 (the index origin). If n is
specified, sets the value of DID where n can be 0 or 1, and displays
the previous value of 010.

}PCOpy fid [list]

Same as)COPY. except that a name is not copied if it already has a
value in the active workspace.

)QCOPY fid [list]

CE38-04

Same as)COPY. except that the SAVED message is suppressed, i.e.,
quiet copy.

System Command Summary 8-5

Command

)QLOAD f i d

Table 8-1. System Command Summary (cont.)

Description

Same as)LOAD, except that the SAVED message is suppressed, i.e.,
quiet load.

)QPCOPY fid [list]

Same as)PCOPY, except that the SAVED message is suppressed, i.e.,
quiet copy.

)SALVAGE fid [list]

)SAVE [fid]

)SEAL [fid]

)WIDTH [n]

)WSID [fid]

Similar to)COPY except objects may be copied from broken workspaces.

Saves the active workspace. If fid is specified, saves active
workspace under the specified name. To save a workspace and protect
it with a password, fol low the workspace name with two periods and
the password name (i .e ..)SAVE wsname .. password).

Saves the current workspace as a sealed 'execute-only' workspace with
the designated name.

Displays the value of oPW (the current maximum width of output
lines). If n is specified, the value of oPW is changed, and the
previous value of oPW is displayed. The width parameter n can range
from 32 to 390.

Displays the fi Ie identifier of active workspace. If fid is
specified, assigns the fi Ie identifier to active workspace, or
changes the name if one already exists and displays the old name.

Inquiry and Communication Commands

)CONTINUE [ONIOFFI[HOLD][fid]]

8-6

Ends terminal session, and saves the active workspace as a CONTINUE
workspace. If HOLD is specified, returns control to the CP-6 IBEX
command processor. If OFF is specified, suppresses automatic
generation of CONTINUE workspace file. If ON is specified,
reinstates such automatic generation. If fid is specified, it
overrides the default CONTINUE workspace name.

System Command Summary CE38-04

Table 8-1. System Command Summary (cont.)

Command Description

)EDITOR [CP6RRISTDISE]

)END

Displays the current editor. If CP6RR is specified. the CP-6 re-read
mode of editing APL lines in definition mode is used when a [line 0
position] directive is encountered.

If SrD is specified. APL "super-edit" mode of editing APL I ines in
definition mode is selected. This is the editing method most often
avai lable on other APL implementations.

If SE is specified. APL uses the CP-6 screen editor.

Returns control to CP-6 IBEX.

)ERROR [BRIEFIFULLISUMMARY]

Displays the current error message information level. If BRIEF is
specified. the most concise error messages for error displays are
selected. If SUMMARY is specified. one-I ine error messages for error
displays are selected. If FULL is specified. the most informative
error messages for error displays are selected (possibly multi-line
error messages).

)FNS [string1 [string2]]

)GO

)GRP name

CE38-04

Alphabetically lists 01 I defined function names in active workspace.
CP-6 APL uses the fol lowing collating sequence in the process of
alphabetizing:

0 blank or end of name
0 di g its
0 alphabetic I etters wi thout underl ines (A through z)
0 underline
0 unde r I i ned alphabetic letters (A through Z)
0 !:i, A

If string1 is specified. the list of names starts at the first name
which is alphabetically equal to or greater than string1. If string2
is specified. the list of names ends before the first name
alphabetically greater than·string2.

Resumes execution at the current line.

Lists the names in the specified group.

System Command Summary 8-7

Table 8-1. System Command Summary (cont.)

Command Description

)GRPS [string1 [string2]]

)IBEX message

Alphabetically lists all group names in active workspace. CP-S APL
uses the following collating sequence in the process of
alphabetizing:

o blank or end of name
o digits
o alphabetic letters wi1hout underlines (A through Z)
o underlined alphabetic letters (A through Z)
o ~, A

If string1 is specified, the list of names starts at the first name
which is alphabet ically equal to or greater than string1. If string2
'is specified, the list of names ends before the first nome
alphabetically greater than string2.

Issues command to IBEX.

) LIB [account]

Lists the names of saved workspaces in an account.

)NMS [string1 [string2]]

)OFF [HOLD]

)OPR message

)OPRN message

)QUIT

8-8

Alphabetically lists all of the global names in use and their name
class in the active workspace. The string1 and string2 parameters
are used in the some way as the)FNS command.

Ends the terminal session and discords the active workspace. If HOLD
is specified, control returns to CP-S IBEX, otherwise the user is
logged off of CP-S.

Sends message to computer operator, and waits for a reply.

Sends message to computer operator.

Same as)END.

System Command Summary CE38-04

Table 8-1. System Command Summary (cont.)

Command Descript ion

)REPORT [FUNC[TION]ILINE]

)RESET

)SET dcb fid

If FUNCTION is specified, APL displays the function name and line
number when a function is stopped (default). If LINE is specified,
APL displays function name, line number and the contents of the line
when a function is stopped.

Completely clears the state indicator. Same as)SIC.

AI lows routing of regular output, input and/or 'bl ind' I/O channels
to files or various devices, and specification of formatting options
for device output. Analogous to the SET command in CP-6 IBEX.

)SI [ONIOFFICLEA[R]]

)SIC

)SIL

Lists the contents of the state indicator, a list of suspended and
pendent functions. If CLEAR is specified, clears the entire state
indicator. If OFF is specified, prevents an error from suspending
the function containing the erroneous statement. If ON is specified,
restores normal state indicator control. If an error occurs in an
active function line, APL suspends the function at that line
(assuming sidetracking does not occur, see section 10).

Completely clears the state indicator. Same as)RESET.

Lists contents of the state indicator, a list of suspended and
pendent functions, and the contents of I ines in execution.

)SINL [ONIOFFICLEA[R]]

Lists the contents of the state indicator, a list of suspended and
pendent functions, and the local variables named by those functions.

)SIV [ONIOFFICLEA[R]]

Same as)SINL.

)STEP [LINEIFUNC[TION]] [n]

CE38-04

Executes the line indicated by the top entry in the state indicator,
and stops before any other line is executed. If the FUNCTION
parameter is specified, the stop wil I not count function lines in
functions invoked by the line initially put in execution. The LINE
parameter is the default, and it causes APL to stop before any other
line is executed. The n parameter specifies the number of lines to
execute before stopping.

System Command Summary 8-9

Table 8-1. System Command Summary (cont.)

Command Desc r i~t ion

)TERMINAL [INPU[T]IOUTP[UT]] [n]

Identifies to APL the input/output devices being used, where n can be
any of the fol lowing values:

1,13,14

2,3,4,5

for devices with APL
character set

for devices with ASCII
character set

)VARS [string1 [string2]]

)?

)CATCH

Syntax:

Alphabetically lists all global variable names in active workspace.
CP-6 APL uses the fol lowing collating sequence in the process of
alphabetizing:

o blank or end of name
o digits
o alphabetic letters without underlines (A through Z)
o underlined alphabetic letters (A through Z)
o ~, 6

If string1 is specified, the list of names starts at the first name
which is alphabet ically equal to or greater than string1. If string2
is specified, the list of names ends before the first name
alphabetically greater than or equal to string2.

Displays the next highest detailed error message (if any) about the
most recent error condition.

Intercepting Assignments

)CATCH [vname VIA name]

Parameters:

vname is the name of the variable (which may be local or global).

name is the name of a function or character vector.

8-10) CATCH Intercepting Assignments CE38-04

Description:

The)CATCH command is primarily a debugging tool. It permits the programmer to
intercept each assignment to a specified variable name, immediately after that
assignment is completed. The function is defined according to the user's debugging
needs. The only restriction is that this name must be a character vector or
represent a ni ladic function with no result. This restriction isolates the name from
the statement or statements assigning values to the specified variable. If the name
is undefined or does not indicate a character vector or a ni ladic, no-result .
function, no error message occurs; the catch is simply ignored. Catches on shared
variables are not permitted.

Catches are not saved when a workspace is saved, so loading a workspace does not
automatically reinstal I catches. The)CLEAR command also removes any current
catches. The)CATCH command without options removes any existing catches. A maximum
of two catches can be defined at one time.

Examples:

Suppose the programmer has invoked the fol lowing catch,

)CATCH Vl VIA Fl

then al I assignments to the name Vl cause function Fl to be cal led or if Fl is a
character vector, the expression ~Fl is executed. This includes indexed assignments.
Fl is executed regardless of whether Vl is a local or global variable. The
programmer can modify this catch to enter a different test function. For example,

)CATCH Vl VIA FTWO

After the above specification. assignments to Vl cause test function FTWO to be
cal led (instead of Fl).

The programmer can also invoke a second catch. For instance.

)CATCH VAR2 VIA FOTHER

The programmer can have both catches enter the same test function as in the next
example.

)CATCH VAR2 VIA FSAHE
)CATCH Vl VIA FSAHE

The programmer cannot. however. invoke a third catch: this attempt produces a BAD
COHHAND error.

Any current catches can be removed by issuing the command

)CATCH

Following this command. the programmer is free to specify one or two new catches.

The simplicity of the)CATCH command may obscure its power as a debugging aid. This
power is brought to bear by the test expression. A few hypothetical examples are
given below to suggest the potential of catch capability.

Using a catch to display values assigned to vname:

)CATCH X VIA SHOWX
SHOWX+' "x IS :" OXO'

As long as the catch is in effect, every assignment to X wil I cause the new value of
X to be displayed. A catch may be used to stop execution when a particular value is
~ssigned to a name. (Assume that X"is a scalar and 77 is the value of interest.)

CE38-04) CATCH Intercepting Assignments 8-11

)CATCH X VIA CHECK
VCHECK

[1) +(X"77)/0
[2] STOP OSTOP 'CHECK'
[3J STOP:v

As long as this catch is in effect, each assignment to X will be tested at line 1 of
the CHECK function. If X is not 77, line 1 causes CHECK to exit. If X receives the
value 77, line 2 is executed. Line 2 sets the stop-vector for the CHECK function so
that when the line labeled STOP is reached, CHECK wi I I suspend execution.

Using a catch to change the value of vname:

(Note that this does not affect the value used by the statement making an assignment
to vname; the catch is isolated.)

)CATCH X VIA CHANGE
VCHANGE i CHANGE

[1) X+O v

As long as this catch is in effect, each assignment to X that occurs "outside" the
CHANGE function wi I I cause X to be set to 0. The assignment at line 1 of the CHANGE
function wil I not be "caught" because cal ling the function temporari Iy declares the
name CHANGE to be a local variable (shadowing the definition of CHANGE as a test
function); see the function header line.

Suppose the fol lowing statement is executed with the above catch in effect.

X + 100 + X+55

The answer of 155 results in the fol lowing way.

1. The value 55 is obtained.

2. X is assigned the value 55.

3. The catch occurs.

4. X is set to 0 by the CHANGE function.

5. Execution of the original statement resumes, undisturbed (so far, at least) by
the catch. This means that the value 55 is the right argument of the next
addition.

6. 100 plus that argument yields 155.

7. This value, 155, becomes the right argument of the next addition.

8. The value of X is obtained; it is now O.

9 . 0 P Ius 1 55 y i e Ids the fin a Ire sui t .

8-12)CATCH Intercepting Assignments CE38-04

}CLEAR Clearing Workspace

Syntax:

)CLEAR

Description:

The)CLEAR command deletes all groups. functions. variables. and the state indicator
from active workspace. Furthermore. it resets the fol lowing system variables and
workspace attributes to the values in parentheses:

o Random number link (16807). ORL

o Comparison tolerance (lE-13). OCT

o Index origin (1). 010

o Platen width (terminal dependent). oPW

o Significant digits (10). oPP

o Workspace identification (CLEAR WS).

o Latent expression ("). OLX

o Stop action ("). OSA

o State indicator control (ON); see also the)Sf command description.

o Current catches (none). see the)CATCH command description.

o Error number (0) • see Sidetracking on Errors and Breaks in Section 10

o Error location (line number 0 and function name an empty character vector). (See
also Section 10).

APL responds to this command by printing the message CLEAR WS.

Example:

)CLEAR
CLEAR WS

}CONTINUE

Syntax:

Saving Active Workspace and Leaving APL

)CONTINUE [[ONIOFFI[HOLD][fid]]

CE38-04)CONTINUE
Saving Active Workspace and Leaving APL

8-13

Parameters:

fid overrides the default CONTINUE workspace name.

HOLD causes APL to exit to IBEX rather than logging off.

ON specifies reinstatement of automatic generation of the CONTINUE workspace
f i Ie.

OFF specifies suppression of automatic generation of the CONTINUE workspace file.

Des~ription:

The)CONTINUE command saves the active workspace in a CONTINUE workspace, and logs
the user off. This workspace is automatically loaded the next time the user invokes
APL without specifying a workspace. The active workspace is also automatically saved
as a CONTINUE workspace if the terminal is accidentally disconnected or other
unexpected end of session (LIMIT exceeded, unexpected error, etc.) occurs, unless
such automatic action is suppressed (see below).

A successful)CONTINUE command wi I I produce a save report (time and date saved) and
the CP-6 log off messages. If insufficient room remains in the user's account to
save the workspace, APL prints an error message. If this happens, the user must
delete some workspaces or other fi les. before any APL workspaces may be saved.

The default CONTINUE workspace name can be overridden at APL invocation time or by
appending a fid to the end of either form of this command. See "Initiating an APL
Session" for more details on the continue workspace name.

NOTE: If a user's workspace is passworded, the password is retained in the CONTINUE
workspace. In this case, the CONTINUE workspace is not automatically loaded the next
time the user logs on.

If an account already contains a passworded CONTINUE workspace, any subsequent
CONTINUE wi I I fai I until the passworded version is deleted. Sealed workspaces cannot
be saved with CONTINUE.

If either form of the)CONTINUE command is given during function definition mode, the
currently open function is closed by APL. When the CONTINUE workspace is loaded
later, APL automatically reopens the function and prompts the user to continue
function definition. The automatic saving of this workspace can be suppressed by
issuing)CONTINUE OFF. It can be reinstated by issuing)CONTINUE ON.

The CONTINUE workspace can be used almost like any other named workspace. It can be
saved, copied, loaded, etc. However, the default name should only be used for
temporarily saving a workspace since any CONTINUE workspace can be erased by a new
CONTINUE workspace save.

Examples:

)CONTINUE
APL:201GEISERT SAVED 15:33 DEC 15 '84

Saves active workspace and ends terminal session after printing save report and CP-6
log off messages.

)CONTINUE HOLD
APL:201GEISERT SAVED 15:31 DEC 15 '84

Saves active workspace and returns control to command processor after printing save
report. IBEX prompts for commands with the J character.

8-14)CONTINUE CE38-04
Saving Active Workspace and Leaving APL

)COpy Copying from Saved Workspace

Syntax:

)COPY fid [list]

Parameters:

fid is a CP-6 file identifier of a saved workspace.

I ist is a list of variable names, function names, or group names, separated by
blanks.

Description:

The)COPY command copies information from a saved workspace into the active
workspace. The information can consist of one, several, or al I of the functions,
global variables, and groups in the saved workspace. If the list parameter is not
specified, al I of the global names in the saved workspace are copied (except for
system variables).

Note that if a workspace is saved with a password, that password must be included in
the)COPY command. Also, if a workspace is copied from another user's account, the
account must be specified in the)COPY command.

When a saved workspace is copied, only global functions,'global variables, and groups
are copied. If copied functions hod sidetracks (see Section 10), then these settings
also apply in the active workspace. AI I referents of a copied group are themselves
copied into the active workspace. For instance, suppose group Gl is copied, where Gl
contains At B t and G2 with G2 being another group containing X, Yt and Z. Then the
fol lowing are copied into the active workspace: Gl t G2 t At Bt Xt 'y and Z. The state
indicator and system variables are not copied. (Most system variables can be copied
by specifically naming them.)

A copy attempt may fail if there is not enough room in the active workspace to hold
the items copied. In that case, an error message is displayed and the workspace wi I I
contain the same objects it contained before the)COPY command was issued. The error
message TOO BIG TO LOAD is displayed when copying from a different account in which
two conditions are met. First, the workspace copied from is large (so large that it
could not even be loaded by the current user). Second, the referenced account is
01 located more computer memory than is avai lable to the current user's account
(memory 01 locations are specified by the instal lotion manager). This difficulty can
be circumvented with the cooperation of the owner of the larger account, who can copy
portions of the large workspace, forming one or more smaller workspaces. After this
cooperative activity, the current user can copy required objects from those smaller
workspaces.

If a)COPY command is issued during function definition mode, the currently open
function is temporarily closed. When the copy is completed, the function is
automatically reopened. The copy may have replaced the current function. If the
)COPY command names functions that are pendent in the active workspace, they are not
replaced. Suspended functions may be replaced and may couse on SI DAMAGE error
message to be issued. Use of the)PCOPY command precludes this possibility.

The)PCOPY command is the some as the)COPY command except that on object is not
copied if the active workspace already contains on object with the some nome.

A group of objects can be copied even though the group de'finition is not copied.
This happens if the group nome matches the nome of a pendent function in the active
workspace or if the nome matches any object in the case of)PCOPY. Alternatively, a
group definition may be copied but some of its objects not copied.

CE38-04) COpy 8-15
Copying from Saved Workspace

Examples:

)COPY GRANOLA.ACCT33.SECRET
GRANOLA SAVED 15:08 DEC 15 '84

Copies a saved workspace named GRANOLA, and prints a save report giving the time and
date GRANOLA was saved. The workspace GRANOLA is saved with the password SECRET in
another user's account (account ACCT33).

)COPY KAJlA
KAWA SAVED 15:00 DEC 15 '84

Copies an entire saved workspace named KAWA from the user's own account and produces
a save report giving the time and date KAWA was saved.

)COPY JlS ATHF CHEAP oPP
WS SAVED 13:31 DEC 01 '84

Copies a function named ATHF, a group named CHEAP, and the system variable oPP from a
saved workspace named WS in the user's own account. A save report giving the time
and date WS was saved is printed.

)COPY HENRY .. SECRET
HENRY SAVED 15:08 DEC 15 '84

Copies a saved workspace named HENRY, and prints a save report giving the time and
date HENRY was saved. The workspace named HENRY is saved with the password SECRET in
the current user's account~

If the)COPY command is used to access a workspace sealed by another user, the error
message SEALED JlS is reported.

)DIGITS Specifying Numeric Print Precision

Syntax:

)DIGITS [n]

Parameters:

n indicates the new value for oPP (the number of significant digits in printed
output) which can be any integer number from 1 through 20. APL then prints the
previous value of oPP. If n -is not specified, APL prints the current value of oPP.

Description:

The)DIGITS command sets the number of digits in numeric output to a number between 1
and 20 inclusive. The default value in a CLEAR JlS is 10, which displays a maximum of
10 significant digits. Only numeric output and the result of the monadic ~ function
are affected by this command; internal calculations are not affected.

Examples:

)DIGITS
IS 10

This requests the value of oPP to be displayed. APL responds with the current value.

)DIGITS 15
JlAS 10

This sets the value of oPP to 15. APL responds with the previous value.

8-16)DIGITS
Specifying Numeric Print Precision

CE38-04

)

)

4+9
0.444444444444444

Here, the result of a calculation is printed. APL displays the value to 15
significant digits.

)DIGITS 5
WAS 15

This sets oPP digits to 5, and APL responds with the previous value.

4+9
0.44444

The result of an expression is displayed again, showing 5 significant digits.

The number of significant digits to be output can also be changed by redefining the
value of oPP.

)DROP Dropping a Saved Workspace

Syntax:

)DROP [fid]

Parameters:

fid is a CP-6 file identifier (omission of fid implies the default CONTINUE
workspace) of a saved workspace.

Description:

The)DROP command removes a saved workspace. It has two forms, one for removing
unprotected workspaces, and another for removing the default CONTINUE workspace. If
the workspace is not found, delete access is not available, or the proper password is
not provided, APL returns the message WS NOT FOUND. If the workspace is deleted, APL
returns a message identifying the workspace and the time it was last saved.

Examples:

)DROP GRANOLA .. SECRET
GRANOLA SAVED 14:58 DEC 15 '84

Removes the workspace GRANOLA with password SECRET, from the user's account.

CE38-04) DROP Dropping a Saved Workspace 8-17

)EDITOR Selecting the APL Function Editor

Syntax:

)EDITOR [CP6RRISTDISE)

Parameters:

CP6RR selects the CP-6 re-read mode of editing APl lines in definition mode when
a [line 0 position] directive is encountered.

STD selects APl "super-edit" mode of editing APl lines in definition mode. This
is the editing method most often available on other APl implementations.

SE selects the CP-6 APl screen editor. It is available for most CRTs that may be
connected to the CP-6 system. The terminal profile must indicate RETYPOVR=YES and
EDITOVR=YES.

Description:

The)EDITOR command permits the APL user to choose the edit mode of line editing for
the [line 0 position] directive. If a mode is not specified, the current editor
setting is displayed. CP-6 re-read mode is by far the more powerful line editing
technique, but super edit mode is included for compatibility with other APL
implementations.

Super edit is a two pass editing method. In this mode, the line is displayed and APl
awaits input on the line fol lowing at the position specified. Blanks or backspaces
may be enteted to'position. The digits 0 through 9 insert that number of blanks, the
letters A through Z insert 5, 10, 15, ... blanks. A slash "/" is used to delete
characters. A decimal point "." inserts all of the characters following it.

The line is re-displayed with al I of the character insertions and deletions and the
cursor is positioned at the first insertion position. Now all of the normal CP-6
line editing capabilities are available to modify the line.

Examples:

)EDITOR STD
WAS CP6RR

vFUN
[1) Q THIS IS A TET OF SUPER EDIT
[1) [10 20)
[1) Q THIS IS A TET OF SUPER EDIT

1
(1) Q THIS IS A TEST OF SUPER EDIT
(2) v

8-18)EDITOR
Selecting the APl Function Editor

CE38-04

)END Exiting APL

Syntax:

) END

Description:

The)END command causes the contents of the active workspace to be discarded,
fol lowing which control is passed to the process which invoked APL. This is usually
IBEX, the CP-6 Command Processor. This command is functionally identical to the
)OFF HOLD command.

)ERASE Deleting Objects From Active Workspace

Syntax:

)ERASE list

Parameters:

list specifies the names of the global objects (i .e., functions, variables or
groups) to be erased. Note that it is the value that is erased; the name may remain
in the symbol table.

Description:

The)ERASE command deletes one or more named objects (i.e., global functions, global
variables, or groups) from the active workspace. If a group is named in the)ERASE
command, that group definition is erased along with any functions, groups, or
variables named in the group. Pendent functions cannot be erased. It is impossible
to erase a locked function in a sealed workspace. During function definition, if the
function being defined is erased, definition mode is abandoned (equivalent to closing
the function and then erasing it).

Examples:

)ERASE HATHFUNCTIONS

Erases a group named HATHFUNCTIONS and the functions and variables it names. It
disperses any group named within the group HATHFUNCTIONS.

)ERASE PAYROUTINE GROSS INS

Erases a function named PAYROUTINES and two variables named GROSS and INS.

NOTE: The)ERASE command wil I not remove local variables.

CE38-04) ERASE
Deleting Objects From Active Workspace

8-19

}ERROR Selecting Error Message Information Level

Syntax:

)ERROR [BRIE[FJIFULLISUMH[ARYJJ

Parameters:

BRIEF selects the most concise error messages for future error displays.

FULL selects the most informative error messages for future error displays
(possibly multi-line error messages).

SUMMARY selects one-line error messages for future error displays.

Description:

The)ERROR command selects the default error message information level. APL error
messages are often available in various levels of information. The most concise
messages are known as BRIEF. This type includes DOMAIN, RANK, LENGTH, and other
general messages. These messages often contain sub-divisions which provide
information specific to thjs instance. These sub-divisions are known as SUMMARY and
FULL. SUMMARY messages are typically one line and FULL messages can contain up to
seven lines of error message text. The)1 command may be used to obtain additional
error information after on error has been reported.

Examples:

)ERROR SUMMARY
WAS BRIEF

5+0
DIVISION BY ZERO

5+0
A

)ERROR FULL
WAS SUMMARY

1 2 + 1 2 3
THIS FUNCTION REQUIRES THAT BOTH ARGUMENTS
HAVE THE SAME SHAPE (DIMENSIONS) OR THAT AT
LEAST ONE ARGUMENT IS A SINGLE ELEMENT ARRAY.

1 2+ 1 2 3

"
)ERROR BRIEF

WAS FULL

1 2+1 2 3
LENGTH ERR

1 2+ 1 2 3

"

8-20) ERROR
Selecting Error Message Information Level

CE38-04

)FNS Listing Global Function Names

Syntax:

)FNS [string1 [string2]]

Parameters:

string1

string2

is any sequence of characters not including blank or carriage return.

is any sequence of characters not including blank or carriage return.

Description:

The)FNS command alphabetically I ists the names of functions in the active workspace.
If string1 is specified, all function names that are alphabetically equal to or
greater than string1 and are also less than or equal to string2 are displayed. If
string1 is not specified, al I function names are displayed. Alphabetic ordering is
illustrated in the examples. Note particularly the first)FNS command since it
indicates where each name character lies in alphabetic order.

If a string includes more than 79 characters, those past the 79th are ignored.
Strings are only used for range demarcation in an alphabetic ordering.

Examples:

)FNS
F FO Fl FF FX FXr FE. FA Ffl S T

)FNS FF
FF FX Fxr FE:. FA Ffl S T

)FNS F FF
F FO Fl FF

)FNS FFF FX
FX

)FNS Fxr Fxr
Fxr

)FNS A Z
F FO Fl FF FX FXr FE. FfA Ffl S T

)GO Resume Execution

Syntax:

)CO

CE38-04)GO Resume Execution 8-21

Description:

The)GO command resumes execution of the most recently suspended function at the
start of the current line.

)GROUP Creating a Group

Syntax:

)GROUP grpname [list]

Parameters:

grpname is the name of the group. A group name fol lows the same formation rules
as a variable or function name, except that a group name cannot be the same as a
global function or global variable in the active workspace.

I ist is a I ist of the names that make up the group, separated by blanks.

Description:

The)GROUP command references a group of names, i.e., variables, functions, other
groups, or just names collectively. Group definitions can be used in)ERASE and
)COPY commands to faci litate erasing and copying a group of related objects. Names
can be added to an already existing group by merely repeating the group name in any
of the command forms:

)GROUP grpname grpname list
)GROUP grpname list grpname
)GROUP grpname list grpname list

A group can be dispersed with the command form

)GROUP grpname

This form disperses the group; that is, removes the name references previously
associated with grpname. The names and their references are not themselves erased,
only the group identity is lost. An)ERASE command can be used to remove the group,
but the)ERASE command removes the group and deletes the group referents (the actual
functions or variables) from the active workspace.

Examples:

)GROUP PROBl COS TAN A B

Defines a group named PROBl, consisting of the variable and functions named COS, TAN,
A, and B.

)GROUP PROBl PROBl D ST

Adds the variable D and ST to the already existing group named PROBl.

)GROUP PROBl

Disperses the group named PROBl from the active workspace. The referents of PROBl
are not deleted.

Note that the last example disassociates the function and variable names from the
group, but does not delete actual functions and variables from the active workspace.
The)GRPS command can be used to verify that the group named PROBl has been deleted,
and the)FNS and)VARS commands can be used to verify that the named function and
variables stil I remain in the active workspace.

8-22) GROUP Creating a Group CE38-04

)GRPS
)FNS

COS TAN
)VARS

ABC ST

Also see the)GRP and)GRPS commands, which I ist the members of a group and the names
of groups in active workspace respectively.

)GRP Listing Members of a Group

Syntax:

)GRP name

Parameters:

name is the name of a group.

Description:

The)GRP command prints al I of the names contained in the specified group.

Examp I es:

)GROUP Gl ABC
)GRP G 1

A B C
)GROUP G1 Gl D
)GRP G1

A B C D
)GROUP Gl X Y Z Gl G2
)GRP G 1

X Y Z A B C D G2
)GROUP G2 X A F1
)GRP G2

X A F1
)GRPS

G1 G2
) GROUP G1
)GRPS

G2
)GRP G1
)GRP G2

X A F1

CE38-04)GRP Listing Members of a Group 8-23

)GRPS Listing Names of Groups

Syntax:

)CRPS [string1 [string2]]

Parameters:

string1

string2

is any sequence of characters not including blank or carriage return.

is any sequence of characters not including blank or carriage return.

Description:

The)CRPS comm'and alphabetica"y lists the names of groups in the active workspace.
Alphabetic ordering is illustrated in the examples. Note particularly the first
)CRPS command since it indicates where each name character I ies in alphabetic order.

If string1 is specified al I group names that are alphabetically equal to or greater
than string1 are displayed. If string1 is not specified, al I group names are
displayed. If a string includes more than 79 characters, those past the 79th are
ignored. Strings are only, used for range demarcation in alphabetic ordering. If
string2 is specified, all group names that are alphabetically equal to or greater
than string1. and are also less than or equal to string2 are displayed.

Examples:

)CRPS
C CO C1 CC CH CHI C~ CA ct:.

)CRPS CC
CC CH CHI C~ CA ct:. H

)CRPS C CC
C CO C1 CC

)CRPS CCC CH
CH

)CRPS CHI CHI
CHI

)CRPS A Z
C CO C1 CC CH CHI C~ CA ct:.

)IBEX Issuing CP-6 Commands

Syntax:

)/BEX message
)!message

Parameters:

H

H

message specifies text of a legal IBEX command.

8-24)IBEX Issuing CP-6 Commands CE38-04

Description:

The)! command directs a string of characters to the CP-6 Command Processor (IBEX)
for further processing.

Examples:

)IBEX DI
USERS = 63
ETHF = 1
gOp RESPONSE < 100 HSECS
DEC 15 '84 15:10

) !DI
USERS = 63
ETHF = 1
gOp RESPONSE < 100 HSECS
DEC 15 '84 15:11

)UB Listing Names of Saved Workspaces

Syntax:

)LIB [account]

Parameters:

account specifies a CP-6 account name.

Description:

The)LIB command lists the names of workspaces saved in an account. If a password
was saved with a workspace, the workspace name is listed, but not the password.

Exampl es:

)LIB
APLQ.UIZ
APLSIDR
PROBI
PROB2

Lists names of saved workspaces in the current user's account.

)L 1 B RE 107207
EDITFILE
FACTOR
PAYROLL

Lists names of saved workspaces in another account (account REI07207).

CE38-04)UB
Listing Names of Saved Workspaces

8-25

)LOAD Retrieving a Saved Workspace

Syntax:

)LOAD f i d

Parameters:

fid is the CP-6 fi Ie identifier of a saved workspace.

Description:

The)LOAD command causes a copy of saved workspace to be loaded into the user's
active workspace. The saved workspace may be retrieved from a user's own account or
another account. Note that if a saved workspace is retrieved from another account,
the account must be specified in the)LOAD command. Also, if the workspace is saved
with a password, that password must be included in the)LOAD command. In response to
a successful load, APL prints a message giving the time and day that the workspace
was saved. If the workspace is not found or if a proper password is not used, APL
prints the message WS NOT FOUND. After a successful)LOAD the expression I~X is
executed.

If a workspace is saved during function definition mode, the)LOAD command causes APL
to automatically reopen that function and prompt the user to continue function
definition or editing. (The user may choose to close the function immediately.) If
)LOAD accesses a workspace sealed by another user, the workspace is sealed,
prohibiting any form of function editing or display.

Examples:

)LOAD KAWA
KAWA SAVED 15:00 DEC 15 '84

Loads workspace KAWA into the active workspace and prints a save report. Workspace
KAWA was previously saved in the current user's account.

)LOAD HENRY .. SECRET
HENRY SAVED 15:08 DEC 15 '84

Loads workspace HENRY into the active workspace and prints a save report. Workspace
HENRY was previously saved with password SECRET in the current user's account.

)LOAD GRANOLA.TESTAPL.PASSWRD
GRANOLA SAVED 15:08 DEC 15 '84

Loads workspace GRANOLA into active workspace and prints a save report. Workspace
GRANOLA was previously saved with password PASSWRD in account TESTAPL.

8-26) LOAD CE38-04
Retrieving a Saved Workspace

)NMS Displaying Global Names

Syntax:

)NHS [stringl [string2]]

Parameters:

stringl is any sequence of characters not including blank or carriage return.

string2 is any sequence of characters not including blank or carriage return.

Description:

The)NHS command alphabetically lists the global names in the active workspace.
Alphabetic ordering is illustrated in the examples. Note particularly the first)NHS
command since it indicates where each name character I ies in alphabetic order.

If stringl is specified al I global names that are alphabetically equal to or greater
than stringl are displayed. If stringl is not specified. all global names are
displayed. If a string includes more than 79 characters. those past the 79th are
ignored. Strings are only used for range demarcation in alphabetic ordering. If
string2 is specified. al I global names that are alphabetically equal to or greater
than stringl. and are also less than or equal to string2 are displayed.

Examples:

)NHS
A.2 AO.2 A1.2 AA.3 B.3

)NHS AA
AA.3 B.3

)NHS Al AX
A1.2 AA.3

)OBSERVE Observing Intermediate Results

Syntax:

) OBSERVE

Description:

The)OBSERVE command observes intermediate results developed by APL as it interprets
a statement. This could be thought of as a "super-trace" capabi I ity. Following an
)OBSERVE command. the succeeding statement is observed along with any traced function
lines that are encountered. Subsequent direct statements are not observed unless the
user precedes each of them by a new)OBSERVE command. Thus. an)OBSERVE command is
short-I ived. applicable to only one direct statement. By setting trace-vectors for
functions to be encountered during an execution, however. the user can observe
arbitrarily selected statements until issuing another direct input line.

CE38-04) OBSERVE 8-27
Observing Intermediate Results

While an)OBSERVE command is in effect, CP-6 APL displays a series of observations.
An observation consists of displaying: the current line being executed, a marker
(error caret) beneath some character in that line, and the value resulting at that
point in execution (empty results, as usual, cause no value to be displayed). The
observation marker often marks the leftmost point reached, so far, during execution
of the line; however, when a function yields its results, the marker is placed below
the function for clarity. (The only exception is the Execute function in which case
the "leftmost" rule applies.)

For "observed" lines, observations occur for:

o Each operator result
o Each function result
o Arguments that have not already been observed on this line
o Indexed arguments

Observations are not made for assignments since the assigned value has already been
observed prior to the assignment. Observations are also not made for the ful I
variable when it is used as an indexed variable; this eliminates lengthy displays in
cases such as the fol lowing sample)OBSERVE command.

5

G

A+1000,,'GORP'
) OBSERVE
B+A[5J This is the observed line.
B+A[5J

B+A[5J
II

Observation of the argument 5.

Observation of the indexed argument A[5J.

Note in the above sample that A was not displayed. This is fortunate since its
display would produce 1000 characters, most of which contribute nothing to the
observe statement.

Usage Notes:

The)OBSERVE command has three valuable uses: for debugging, for learning how a
calculation is performed. and for developing better APL functions. Its value in
debugging is obvious. Suppose a complicated APL statement produces a LENGTH ERR. By
using the OBSERVE command and reissuing that statement, the programmer can view
development of values leading up to the error and readily see what caused the
problem.

The)OBSERVE command can be a tremendous timesaver. When presented with a new APL
statement or function. the user can spend a great deal of time analyzing how it
accomplishes its result. By observing a sample run, the interpretation path and
values can be readily inspected, simplifying analysis greatly. The reader might
apply this process to the following function.

VPRIHESUPTO NjRjljJ
[1J (lIf(O~(1+R)o.IJ)v«R+~LN*O.5)o.=I»/J+1+1+~N-1v

This function produces the prime numbers from 2 up to the positive integer specified
as its argument. To observe this function, the user might proceed as follows:

1 OTRACE 'PRIHESUPTO'
) OBSERVE
PRIHESUPTO 15

Set to trace line 1 of the function
Request observations.
Cal I the function.
About 30 observations are made; then the

)OBSERVE command "disappears".

There are at least two ways in which the)OBSERVE command can be used to develop
better APL functions. First, redundant calculations are made obvious and the
programmer can then eliminate such redundancies. The following function is an
inefficient version of the PRIHESUPTO function. The user might try observing the
function to discover how apparent such redundancies become under the)OBSERVE
command.

8-28)OBSERVE CE38-04
Observing Intermediate Results

)

)

VPRIHESUPTOO N
[1) (A~(O~(1+tLN*O.5)o.I(1*tN-1»v«tLN*O.5)o.=(tN-1»)/1+tN-1v

The PRIHESUPTOO function takes considerably more execution time (and produces more
observations) than the PRIHESUPTO function shown previously.

The fact that the)OBSERVE command is useful for developing better APL functions is
not obvious. It depends on the creativity and imagination of the user. By viewing
the manner in which a calculation is carried out, the creative user may recognize
patterns that can be more easily produced by other calculations. In other words,
observations can suggest alternate approaches to solving a given problem.

One final note about the)OBSERVE command should be presented. Suppose the user
suspends execution during an observed run by hitting the break key, for instance.
This removes the)OBSERVE command. Subsequent execution wi I I not be observed unless
the user issues a fresh)OBSERVE. As stated earlier, this command is short-I ived.
(At times its short I ife can be inconvenient, but considering the voluminous output
possible with the)OBSERVE command this is more often a convenience.)

)OFF Logging Off

Syntax:

)OFF [HOLD)

Parameters:

HOLD requests APL to return to the calling run unit or IBEX.

Description:

The)OFF command discards the active workspace, exits APL, and logs the user off of
CP-6 (producing the CP-6 log off message). If HOLD is specified, the user is not
logged off. NOTE: If APL has been cal led from a run unit, not directly from IBEX,
)OFF HOLD returns to the calling run unit.

Examples:

)OFF
CON=00:00:36 EX=00:00:00.36 SRV=00:00:01:98 PMME=235 CHG=.44

Logs the user off and displays the CP-6 log-off messages.

)OFF HOLD

Ends APL communication and returns control to IBEX.

CE38-04)OFF Logging Off 8-29

)OPR Communicating with Computer Center Operator

Syntax:

)OPR message

Parameters:

message is the actual message to the operator; it cannot exceed 254 characters.
Note that the operator's console does not include special APL characters, so messages
should be I imited to ordinary alphanumeric characters.

Description:

The)OPR command 01 lows the user to send messages to the operator in the computer
center and requests a reply. APL prints the word SENT and enters WAIT mode unti I the
user presses the BREAK key or the operator response is received.

Examples:

)OPR CP-6 UP SUNDAY?
SENT

YES ,FOR A WHILE.

Illustrates sending message to the operator and receiving a reply.

)OPRN Communicating with Computer Center Operator

Syntax:

)OPRN message

Parameters:

message is the actual message to the operator; it cannot exceed 254 characters.
Note that the operator's console does not include special APL characters. so messages
should be limited to ordinary alphanumeric characters.

Description:

The)OPRN command al lows the user to send messages to the computer operator. without
waiting for a reply. APL responds to this command with the message SENT and then is
ready for more input.

Examples:

)OPRN TRIAL HESSAGE. DON'T REPLY
SENT

Illustrates sending a message to the operator. with no reply expected.

8-30)OPRN CE38-04
Communicating with Computer Center Operator

)ORIGIN Setting Index Origin

Syntax:

)ORIGIN [n]

Parameters:

n is e it he rOo r 1.

Description:

The)ORIGIN command sets or displays the value of 0/0 (index origin). There are two
index origins available. 0 and 1. The functions affected are index of and index
generator (t), indexing and axis operator ([]). grade up (i), grade down (t), and
random number generation (?).

The)ORIGIN command causes APL to set the index origin (the value of 0/0) and to
print a message indicating the previous index origin. If the user does not supply
parameter n when issuing this command. the current index origin is displayed. Note
that the)ORIGIN command affects the active workspace and is saved along with a
workspace. The index origin can also be changed by assigning a value to the system
variable 0/0.

Examples:

IS

WAS

WAS 0

)ORIGIN

)ORIGIN 0

)ORIGIN 1

)PCOpy Copying from Saved Workspace

Syntax:

)PCOPY fid [list]

Parameters:

fid is a CP-6 fi Ie identifier of a saved workspace.

list specifies a list of variable names. function names. or group names,
separated by blanks.

Description:

The)PCOPY command, the Protected Copy command. is the same as the)COPY command
except that a name is copied only if the name in the active workspace is undefined
(see the)COPY command).

CE38-04)PCOPV 8-31
Copying from Saved Workspace

)QLOAD,)QCOPY, and)QPCOPY

Syntax:

)QLOAD f i d
)QCOPY fid [I ist]
)QPCOPY fid [list]

Parameters:

Quiet Commands

fid is a CP-6 file identifier of a saved workspace.

list specifies a list of variable names, function names, or group names,
separated by blanks.

Description:

The)QLOAD,)QCOPY, and)QPCOPY commands are sl ight variants of the)LOAD,)COPY, and
)PCOPY commands. The Q stands for quiet. The SAVED message normally shown at the
conclusion of a load or copy is suppressed on a quiet load or copy. No other
messages (i .e., error diagnostic) are suppressed by the quiet commands.

Certain APL application programs benefit from the quiet commands, programs that use
execute-operations to load or copy without user intervention. The user is unaware
that such)LOAD or)COPY commands are executed. and would be puzzled by SAVED
messages.

The quiet commands should be inserted in programs only after the application is wei I
tested. In the event of an error subsequent to a quiet load or copy, it may be
difficult to isolate the problem for lack of knowledge about the workspace
environment.

)QUIT Leaving APL

Syntax:

)QUIT

Description:

The)QUIT command causes the contents of the active workspace to be discarded.
fol lowing which control is passed to the process that invoked APL (usually IBEX, the
CP-6 Command Processor). The command is identical to the)END command.

8-32)QUIT Leaving APL CE38-04

)REPORT Selecting the Function Stop Display

Syntax:

)REPORT [FUNC[TIONlILINEl

Parameters:

FUNCTION sets function stop display to function name and line number (default).

LINE sets function stop display to function name, line number and contents of the
line.

Description:

The)REPORT command is used to control the information displayed when a function stop
occurs. The default display is the function name fol lowed by the line number in
brackets. Specifying the LINE parameter causes APL to also display the contents of
the I ine at which execution stopped.

Examples:

)REPORT LINE
WAS FUNCTION

VFUN
[1] 1+1+2
[2] tl COMMENT
[3] v

2 1 OSTOP 'FUN'
FUN

FUN[11 1+1+2
)REPORT FUNCTION

WAS LINE
-+OLC

4
FUN[2]

-+OLC

)SALVAGE Copying from Saved Workspace

Syntax:

)SALVAGE fid [list]

Parameters:

fid is a CP-6 fi Ie identifier of a saved workspace.

list specifies a list of variable names, function names, or group names.
separated by blanks.

CE38-04) SALVAGE
Copying from Saved Workspace

8-33

Description:

The)SALVAGE command retrieves information from a workspace which the)LOAD or)COPY
command report as broken. The process is identical to that performed for the)COPY
command except that the current workspace must be CLEARed prior to issuing the
)SALVAGE command, and any items in disrepair are not copied.

If the file contents which describes the major structure of the workspace is
defective, the)SALVAGE command wi I I stil I be terminated with a broken workspace
report.

)SAVE Saving a Workspace

Syntax:

)SAVE [fid]

Parameters:

fid is a CP-6 fi Ie identifier. Like other APL names, the workspace name can
consist of one or more letters from a to z, or A to Z, or numbers. Unlike other APL
names, a workspace name is limited to 31 characters. If omitted, the fid defaults to
the current workspace name (set by the)WSID command).

Description:

The)SAVE command saves a copy of the active workspace. If the active workspace was
loaded as a sealed workspace, the workspace cannot be saved by)SAVE or)CONTINUE
commands. Attempts to do so wi II result in a BAD FILE REF error. A word of caution
is necessary about using passwords in the)SAVE command. If a saved workspace
already exists with a given name and password, specifying the same name with a new
password in the)SAVE command wil I not change the password. Instead it results in
the error message BAD FILE REF. The previously passworded workspace must be deleted
before a new version can be saved. To delete the old workspace, use the)DROP
command with the name and password. The workspace is saved provided that file
management write access is available to the current user for the fid (expressed or
impl ied).

When a workspace is saved while in the direct input mode (not in evaluated input,
function definition, or execute modes), the variable ~X wi I I be executed when that
workspace is subsequently loaded.

When a workspace is successfully saved, APL prints a save report giving the name of
the workspace and the time and date of the save. The)SAVE command also updates the
current workspace identification, i.e., WSID. The name of the saved workspace along
with its password (if any) becomes the WSID for the active workspace. If the
workspace cannot be saved because it exceeds the available space in the user account,
APL prints an error message. In this case, the user must delete some workspaces or
other fi les from the account before saving any APL workspace.

If a)SAVE command is issued during function definition mode, the currently open
function is temporarily closed. The saved workspace carries an indication that the
function should be reopened on)LOAD. After the)SAVE command, APL reopens the
function and prompts the user to continue function definition or editing.

8-34) SAVE Saving a Workspace CE38-04

Examples:

)SAVE GRANOLA .. SECRET
GRANOLA SAVED 14:58 DEC 15 'B4

Saves a copy of the active workspace with specified workspace name and password. and
produces a save report.

)SAVE
CONTINUE SAVED 14:59 DEC 15 '84

Saves a copy of the active workspace and produces a save report.

)SAVE KAWA
KAWA SAVED 15:00 DEC 15 '84

Saves a copy of the active workspace named KAWA and produces a save report.

)SEAL Saving a Sealed Workspace

Syntax:

)SEAL [fid]

Parameters:

fid is a CP-6 file identifier of the workspace to be sealed.

Description:

The)SEAL command is identical to the)SAVE command. but in addition the workspace is
created with READ access to al I accounts using APL as the execution vehicle. Thus.
the user who creates the workspace has unrestricted access to the it. All other
users can only access the workspace with APL. If the save is not successful. BAD
FILE REF. FILE SPACE TOO LOW. or other relevant error messages may be issued and the
active workspace will not be sealed.

)SET Changing Assignments of Input/Output Streams

Syntax:

)SET dcb fid

Description:

Refer to the CP-6 Programmer Reference Manual (CE40) for a complete description of
the SET command in CP-6 IBEX. Any)SET command is passed to IBEX for processing with
only a minor change to the DCB designation as noted below.

The inclusion of the)SET command within APL permits error action by the user or. if
error control is used. in APL functions. If any of the listed strings noted below
are detected by APL. the corresponding substituted string is substituted before
referral to IBEX:

CE38-04)SET 8-35
Changing Assignments of Input/Output Streams

STRING

INPUT

OUTPUT

0, m, ... ,D

User Prompts

REPLACEMENT STRING

#1

14
F$Q0. F$FQ1 •...• F$Q9

If either output or input is diverted from the terminal. the prompts normally issued
to the user are omitted. On ASCII terminals with ful I duplex. the echoing of
characters indicates that input is being accepted. The home device for on-line
sessions is the terminal. In batch the home devices are the command stream (card
reader) for input. and I ine printer for output.

Echoing of Input

If input is coming from somewhere other than the user·s terminal. then APL input (but
not bl ind-input) is echoed to the output setting depending upon the IBEX ECHO
setting. If input is echoing and this is not desired then the APL command:

) !DONT ECHO

should be issued. Conversely. echoing may be initiated by the APL command.

) !ECHO

Errors on Input or Output

If normal input or output is reassigned from the home device by the)SET command and
an I/O error occurs. the input (or output) setting is returned to the home device(s).
This is the user·s terminal for on-I ine users. the card reader and I ine printer for
batch. If error control is not in effect. an I/O error message is then output. If
control is in effect for I/O errors. no error message is output. The user·s error
control function should note that input and output have been restored ·home· from
their)SET command assignments.

Break Response

If normal input or output is reassigned from the home device by a)SET command. it is
restored to the home device by a break. If the user has taken break control. the
function which manages break control should note that input and output have been
restored to the home device and terminal.

)SI ControHing the State Indicator

Syntax:

)SI [ONIOFFICLEA[Rll

8-36)SI CE38-04
Control ling the State Indicator

)

)

Parameters:

CLEA[R) removes every entry in the state indicator. This may free a sUbstantial
amount of workspace and is a valuable tool for recovering from WS FULL errors.

ON suspends the executing function if an error occurs (the default). This is
useful when debugging the workspace since it al lows access to local variables for the
suspended function. Suspending the function. however. expends a certain amount of
the active workspace. and this can be a disadvantage. The ON option sets state
indicator control for errors that may occur during subsequent execution of functions
in the active workspace.

OFF sets state indicator control to avoid suspending a function when an error
occurs. Note that the OFF setting applies only to errors. It has no influence over
execution breaks or stop vectors; these may sti I I cause function suspension. The OFF
option sets state indicator control for errors that may occur during subsequent
execution of functions in the active workspace.

Description:

The)S[command displays the contents of the state indicator. which is a I ist of
suspended and pendent functions. For a discussion of the state indicators and
suspended and pendent functions. see State Indicators in Section 7.

Examples:

)S[
A(2) *
Xy[S)
B[31 *
The most recently suspended function is listed first. An asterisk after an entry
indicates a suspended function; no asterisk indicates a function that is pendent. In
the above example. function A has been suspended just before line number 2. and
function B just before line number 3. Function XY is pendent because it referenced
function A at line number 5. If)S[is issued when evaluated input is pending. the
input request wi I I also be displayed. using the 0 character. If the)S[command is
issued when an 'execute' is pending, the execute state wi I I be indicated, using the I
character.

Errors causing suspended function should be corrected as soon as possible. Suspended
functions can be cleared from the state indicator with the branch arrow (~).
(Remember that the state indicator with its list of suspended and pendent functions
and local variables may take up a lot of workspace.) Each branch arrow clears the
most recent suspended function and al I pendent functions associated with it. This
can be repeated until al I suspended and pendent functions have been cleared; that is.
unti I the)S[command returns a blank line. Applied to the above example, this would
give

~

)S[
B(3) *

~

)S[

A more convenient method for clearing the state indicator is to issue the fol lowing
command:

)S[C

To restore normal state indicator control. the command

)S[ON

may be issued. This setting also occurs automatically if a)CLEAR command is issued.
The ON or OFF state indicator control is saved when the active workspace is saved.
and loaded when the workspace is loaded. Copying does not alter the control of the
active workspace.

CE38-04)SI 8-37
Controlling the State Indicator

)SIC Clearing the State Indicator

Syntax:

)SIC

Description:

The)SIC command removes every entry in the state indicator. This may free a
substantial amount of workspace and is a valuable tool for recovering from WS FULL
errors.

)SIL Listing the State Indicator Lines

Syntax:

)SlL

Description:

The)SIL command lists the same information as the)Sl command and also lists the
contents of the lines that are currently in execution. For pendent functions, it
indicates the position within each line at which execution is to be resumed. An. in
column 1 indicates a direct input line in execution.

Examples:

)SlL
A(2) CC+l 20 BB
XY[S) R+l00 xL(A N)+100

* XY
" B(3) VAL+(PAY~100)/PAY 0 PAY+OFREAD 20

* B
"

)SINL Listing the State Indicator

Syntax:

)SINL [ONIOFFICLEA[R))

Parameters:

CLEA[Rl removes every entry in the state indicator. This may free a substantial
amount of workspace and is a valuable tool for recovering from WS FULL errors.

ON suspends the executing function if an error occurs (the default). This is
useful when debugging the workspace since it al lows access to local variables for the
suspended function. Suspending the function, however, expends a certain amount of
the active workspace, and this can be a disadvantage. The ON option sets state
indicator control for errors that may occur during subsequent execution of functions
in the active workspace.

8-38)SINL CE38-04
Listing the State Indicator

OFF sets state indicator control to avoid suspending a function when an error
occurs. Note that the OFF setting applies only to errors. It has no influence over
execution breaks or stop vectors; these may stil I cause function suspension. The OFF
option sets state indicator control for errors that may occur during subsequent
execution of functions in the active workspace.

Description:

The)SINL command lists the same information as the)SI command and additionally
lists the local variable names appearing in the suspended and pendent functions. For
a discussion of the state indicators and suspended and pendent functions, see State
Indicators in Section 7.

Examples:

)SINL
A[2] *
XY[5]
B[3] *

BB CC DD

PAY VAL

where BB, CC, and DD are local variables appearing in function Ai and PAY and VAL are
local variables appearing in function B.

Errors causing suspended function should be corrected as soon as possible. Suspended
functions can be cleared from the state indicator with the branch arrow (+).
(Remember that the state indicator with its list of suspended and pendent functions
and local variables may take up a lot of workspace.) Each branch arrow clears the
most recently suspended function and al I pendent functions associated with it. This
can be repeated unti I al I suspended and pendent functions have been cleared; that is,
until the)SI command returns a blank line. Applied to the above example, this would
give:

+
)SINL

B[3] * PAY VAL

)SI

)STEP Single Step Execution

Syntax:

)STEP [LINEIFUNCTION) [n]

Parameters:

n indicates the number of statements to step. This can be any integer from 1 to
99999.

LINE specifies to stop before the next APL line is executed within any function.

FUNCTION specifies to stop before the next line is executed within the current
function.

CE38-04)STEP Single Step Execution 8-39

Description:

The)STEP command executes the line at the top of the state indicator and stops
before another function line is executed. That is in the simplest case where the
current line does not cal I another user function, the line wil I be executed and
execution wi II halt before executing the next I ine. A single right bracket and a
carriage return on a line also has this effect.

Examples:

)STEP LINE
FUN 1

FUN[1)
) STEP

FUN[2J
) STEP

FUN2[1)
) STEP

FUN [1)
) STEP

FUN(2)
)STEP FUNCTION

FUN[1)

)TERMINAL Specifying Input/Output Device

Syntax:

)TERHINAL [INPUTIOUTPUT] [n]

Parameters:

INPUT

OUTPUT

specifies that only the input translation tables are to be affected.

specifies that only the output translation process is to be affected.

n indicates the device to be assumed by APL and can be any of the values 1, 2, 3,
4, 5, 13, 14.

Description:

The)TERMINAL command is used to identify to APL the input/output device being used.
This command is not normally needed for users operating on a terminal or submitting
batch runs for card input and line printer output. New terminal declarations are
acceptable at any time during an APL session, but the user should be aware of the
consequences (such as error message discrepancies and input/output translation
problems). OTT also results in the integer n; this may be useful for APL programs
that are sensitive to terminal type. Using)TERHINAL INPUT or)TERMINAL OUTPUT
modifies only the specified (input or output) translation table. This form is useful
when APL input or output is diverted to an alternate device by the)SET command.

CP-6 supports two types of input/output devices with respect to APL sessions:

o Those capable of printing the APL character set.
o Those capable of printing the ASCII-96 character set.

Specifying a terminal of type 1, 13, or 14 indicates the APL character set; types 2,
3, 4, or 5 specify the ASCII set with types 4 and 5, representing underscored letters
as lowercase letters. Types 2 and 3 represent underscored letters as the mnemonic
combination $U fol lowed by the letter. For types 3 and 5, certain characters (0, ~,
~, ~, f and \) are represented via appropriate backspace overstrike combinations.

8-40)TERMINAL CE38-04
Specifying Input/Output Device

Examples:

)TERH 5
WAS 1

Indicates that a Diablo 1620 terminal (or equivalent) with a non-APL daisy wheel is
being used.

)TERH
IS 5

Shows that the non-APL Diablo 1620 terminal was most recently declared.

)TERH OUTPUT 4
WAS 5

Sets output translation for the line printer, but does not change input translation.

APL recognizes three separate choices for input/output character translation.

Input terminal type is changed by either)TERH INPUT n or)TERH n. Output terminal
type is changed by either)TERH OUTPUT n or)TERH n.

Usage Notes:

The combination of the)TERHINAL and)SET commands permits a variety of I/O
operations with devices and files. The user should be warned that some choices,
particularly changes to the home terminal, can result in difficulties carrying on
further terminal communications. In general,)TERH OUTPUT 4 should be used for line
printer output. Output which is filed and reread by the same user should preferably
usa home terminal type. If several users with different terminals want to access the
file, a common type should be agreed on, probably 1 for APL or 4 for ASCII.

)VARS Listing Global Variable Names

Syntax:

)VARS [string1 [string2]]

Parameters:

string1 is any sequence of characters not including blank or carriage return. If
string1 includes more than 79 characters, those past the 79th are ignored.

string2 is any sequence of characters not including blank or carriage return.

Description:

The)VARS command alphabetically I ists the names of global variables in the active
workspace. Strings are used only for range demarcation in alphabetic ordering. If
string1 is not specified, al I global variable names are displayed. If string2 is
specified, global variable names that are alphabetically equal to or greater than
string1 and are also less than or equal to string2 are displayed. Alphabetic
ordering is illustrated in the example. Note particularly the first)VARS command
since it indicates where each name lies in alphabetic order.

CE38-04)VARS 8-41
Listing Global Variable Names

Examples:

)VARS
A AO A1 AA AB ABC AA AA A6 B

)VARS AA
AA AB ABC AA AA A6 B

)VARS A AA
A AO A1 AA

)VARS AAA AB
AB

)VARS ABC ABC
ABC

)VARS A Z
A AO A1 AA AB ABC AA AA A6 B

)WIDTH Setting Line Width

Syntax:

)WIDTH [n]

Parameters:

n is an integer number ranging from 32 to 39a.

Description:

The)WIDTH command changes or displays the value of OPW (Platen Width). This system
variable is used to indicate the length of the longest line that APL wi I I output. In
a clear workspace the platen width defaults to the platen width when APL was
initially invoked. or the closest value acceptable by APL to the initial value. The
value of OPW is saved with a workspace and is restored when a workspace is loaded.

Examples:

)WIDTH
IS 120

Displays the current width of a line output (i.e .• 12a printing positions).

)WIDTH 50
WAS 120

Changes the width of an output line to sa print positions. The previous line width
setting was 120.

8-42)WIDTH Setting Line Width CE38-04

)WSID Identifying the Active Workspace

Syntax:

)WSID [fid]

Parameters:

fid is the new CP-6 file identifier of the active workspace. If fid is not
specified. the fid of the active workspace is displayed. APL responds with a message
showing the previous workspace name. This name can be from 1 to 31 characters.

password a password may be specified. but a previous password is never displayed.

Description:

The)WSID command al lows the user to identify the active workspace or to change its
name. The)WSID command cannot be used to change the name of a sealed workspace.

Examples:

)WSID
IS JONES

Lists the name (JONES) of the active workspace.

)WSID
IS GOSTYLE.ZZZ02HAR

Lists the name GOSTYLE and account ZZZ02MAR of active workspace.

)WSID SHITH
WAS GOSTYLE.ZZZ02HAR

Changes the name of the active workspace from GOSTYLE to SMITH.

CE38-04)WSID
Identifying the Active Workspace

8-43

)

)

Section 9

Report Formatting

CP-6 APL provides a formatted output capabi I ity with the system function OFHT in
addition to the W function. OFHT uti lizes a set of format control phrases that are
applied to a list of APL expressions. Each APL expression may evaluate to numeric or
character scalars, vectors, or matrixes. The format control phrases, cal led format
specifications, are described in Table 9-1.

Format Specifications

OFHT recognizes twelve data format codes. Each code is described in the fol lowing
table.

Code

A

E

F

I

x

T

G

I!l TEXT I!l

o TEXT 0

< TEXT >

c TEXT ~

.. TEXT ..

Table 9-1. Format Specifications

Description

Alphanumeric specification.

Floating-point with exponent (scientific format).

Floating-point to fixed decimal position.

Decimal integer.

Blank insertion.

Column Tabbing.

Picture formatting.

Text insertion.

Text insertion.

Text insertion.

Text insertion.

Text insertion.

Format specifications may be in any of the following forms:

[r] Aw

[r) Ew.s

[r] [q] Fw.d

[r] [q] Iw

[r] Xw

[r] I!l TEXT I!l

T c

CE38-04 Format Specifications 9-1

[r] [q] G ~ TEXT ~

where

r is an optional unsigned integer constant indicating the specification is to be
repeated r times. When r is omitted, it is taken as 1.

w is an integer constant indicating the total field width, or number of print
positions occupied by the formatted value (or blanks. for X type).

s is an integer constant indicating the number of significant digits to be printed
in E format; s must be less than w-5.

q is an optional "qualifier" or "affixture" code used to position and affix
characters to the results of [and F output forms. The available codes and their
uses are described later in this section.

d is an integer constant indicating the number of digits to the right of the
decimal point in F formats; d must be less than w.

c is the column number at which the next field wi I I start to be formatted.

Format Specifications versus Data Types

Format A may be applied to character data only. Formats E, F. and [may be appl ied
to numeric data only.

Arrays with rank above 2 (matrix) cannot be processed. If a value cannot
meaningfully be expressed in the format and field width specified, the field is
fi I led with asterisks.

Format Statement (Left Argument)

A format statement is the left argument of OFHT. operating on data values in the
right argument. The format statement consists of a character vector made up of one
or more format specifications separated by commas. The left argument of OFHT must
always be a valid format statement. For example,

'3[3.2E8.2.X12.[3' OFHT ...

Parenthesis may be used with repeat counts around phrases. For example:

'[5.3U2.FB.2)' OFHT ...

Parenthesis may be nested up to 7 deep within format phrases.

Format Data List (Right Argument)

The right argument of OFHT must be a list of APL variables or expressions, separated
by semicolons. The expression may represent scalars, vectors, or arrays. For
example,

... OFHT (VAR[ABLE1jVAR[ABLE1+VAR[ABLE2;'SUH')

If the list contains only one value, the parentheses may be omitted. The value of
each expression must be simple and al I numeric or al I character.

9-2 Format Data List (Right Argument) CE38-04

Operation of OFMT

OFHT uses the format specifications in its left argument (the format statement) to
control printing of its data list (right argument) on one or more columns. The
syntax is

or
'format stmt' OFHT expr

'format stmt' OFHT list

The result of executing OFHT is one or more "lines" of formatted character data. A
I ine may be as long as workspace allows. In print ing, long I ines are broken up
according to the OPW setting. If more than one line is produced (as will be the case
if the data I ist includes vectors or arrays with more than one row) all I ines are of
the same length. The result, then, is a character matrix.

If OFHT is not used within a larger expression, the amount of temporary workspace
required is only the length of one I ine. Thus, formatted output may be used to
process output that would overflow available workspace if assigned or used in its
entirety. If OFHT is used within a larger expression, the result is always a matrix,
even if only one I ine, and space for the ful I matrix is required. The operation of
OFHT on various right arguments is described below.

Formatting Scalar Arguments

If the data list consists exclusively of scalars, a single I ine is created. Format
specifications are used in turn to process elements of the data I ist in left to right
order. Blank insertion and text insertion specifications do not "use up" elements of
the data list, however. A repetition indicator causes a particular specification to
be applied the designated number of times to successive elements of the data list.
If there are fewer format specifications (counting repetition indicators) than values
to be formatted, the I ist of format specifications is reused as necessary unti I the
data I ist is exhausted.

Examples:

'13,A5,X5' OFHT (l00;'A';200;'B')
100 A 200 B

'5F5.2' OFHT (1;10;100;-10;-1)
1.0010.00**********-1.00

This last example illustrates the use of the repetition indicator. Also note the
asterisks indicating that the value 100 and -10 would not fit in the specified
format.

Formatting Vector Arguments

If the data list includes vector and scalar arguments (or vectors only), the number
of lines generated equals the length of the vector with the most elements. Each
vector creates a "column" in the resulting character array. The columns of shorter
vectors or scalars are extended by blanks.

CE38-04 Formatting Vector Arguments 9-3

Examples:

'Ell.4' OFHT 3.1 .123 -1.234 5678
3.100EO
1.230E-l

-1.234EO
5.678E3

'215,A2'OFHT (1 2 3 4;10.4 10.6;'ABCDEF')
1 10 A
2 11 B
3 C
4 D

E
F

In the last example. note the rounding off of values as required for I format
specifications. and also note the different column lengths.

Formatting a Vector on One Line

The normal result for OFHT on vector arguments is columnar formatting. but it is
often desirable to create a formatted row for vectors. There are two ways this can
be done:

o Ravel the result of OFHT. This method is appropriate if the result contains a
single column.

Examples:

,'A2'OFHT 'DOUBLE SPACE'
D 0 U B L ESP ACE

,'15'OFHT .14 1.4 14 140 1400
o 1 14 140 1400

o Reshape the vector as a 1 by N matrix. (This method uses a property of the
operation of OFHT on matrixes. as discussed below.)

V+-'TRIPLE+SPACE'
'A3' OFHT (l,pV)p V

T RIP L E + SPA C E

Formatting Matrix Arguments

If the data list includes a matrix argument. each column of the matrix occupies a
column in the formatted output. Each row of the matrix creates an entry on a "line"
of output. Note that a 1 by N matrix creates a single row, and an N by 1 matrix
creates the same output form as an N element vector.

In essence, OFHT outputs matrixes in the same shape as unformatted output would, but
permits control of decimal placement, column positioning, etc.

Examples:

IOTA+-3 5pt.15
'F5.1'OFHT IOTA

1.0 2.0 3.0 4.0 5.0
6.0 7.0 8.0 9.0 10.0

11.0 12.0 13.0 14.0 15.0

"9-4 Formatting Matrix Arguments CE38-04

)

)

JKL+'JKL'
PI+3.14
VECT+1 2 3 4
HAT+2 2p.1 2.0 ~O -4
'A1,F6.3,I5,2F6.1' OFHT (JKL;PI;VECT;HAT)

J 3.140 1 0.1 2.0
K 2 30.0 -4.0
L 3

4

Picture Format

Picture formatting provides the greatest control over the result of numeric
formatting. The syntax of a picture format is:

[r] [g] G ~ TEXT ~

The B. C. Land Z format qualifiers are not permitted with picture formatting. The
text field may contain any text. The two characters. '9' and 'Z' by default control
the formatting of the numeric data. The data may be scaled by K qualifiers and then
rounded to integer for formatting.

A '9' in the text field selects the corresponding digit from the data. A 'Z' in the
text field selects the co~responding digit from the data only if the digit is not a
leading or trailing zero.

As the text is scanned. characters other than 9 or Z are copied to the result. If
there are leading or trailing Z controls. non-special characters are copied into the
result only if the last Z selected a digit.

Examples:

'K2G<ZZZ.ZZZ DOLLARS. ZZ CENTS>' OFHT 31415.962
31.415 DOLLARS. 96 CENTS

'G~99/99/99~' OFHT 52282
OS/22/82

Forms of Output Values

The fol lowing rules determine spacing and content of output fields for various format
specifications.

o Right-justification. For A. 1, and F specifications. the value is
right-justified in the field and preceded by blanks where appropriate to fill out
the field.

o E format. The letter E always occupied the fourth space from the right in the
field. Three spaces are reserved for the exponent value and exponent sign. If
less than three spaces are needed. the right-most space or spaces are blank. In
this format. there is columnar alignment of the decimal points and letter E.

o ~ TEXT ~ format. Characters between the quote-quads (or other text insertion
format specifications) are inserted directly into the output line. There are as
many insertions as there are lines of output. No data list elements are expended
by text insertion.

o Significance of results. The value of OfP is ignored in OFHT output: a maximum
of 20 significant positions are displayed. however. If a format specification
requests more than 20 significant digits. digits beyond the eighteenth. and to
the left of the decimal point are replaced by zeroes. Excess digits to the right
of the decimal point are replaced by blanks.

o Field width. If field widths are too smal I to hold formatted values according to
the specification. the fields are fil led with asterisks.

CE38-04 Forms of Output Values 9-5

Format Qual ifier and Affixture Codes

1 and F format specifications may be immediately preceded by one or more qualifier or
affixture codes.

o Qualifier codes

B Leaves the field blank if the result would otherwise be zero.

C Inserts commas between triads of digits in the integer part of the result.

L Left-justifies the value in the result field.

Z Fi I Is unused leading positions in the result with zeros (and commas if C is
also used) instead of blanks.

Kn Scaling factor.
indicated by n.

Before formatting, the data is multiplied by the power of 10
n may be any positive or negative integer.

o Affixture codes

H< TEXT > prefixes negative results with the text instead of the negative sign.

N< TEXT >

P< TEXT >

Q< TEXT >

postfixes negative results with the text.

prefixes positive results with the text.

postfixes positive results with the text.

R< TEXT > presets the field to the text, which is used as many times as
necessary to fill the field. The text is replaced in parts of the
field fi lied by the result.

S< TEXT > symbol substitution.

Note: If Band R are both specified, R overrides B.

Qualifier and affixture codes do not extend field widths. The modified result
must fit in the field width specified or asterisks wil I be substituted.

Nand Q affixtures, since they postfix the text, shift results to the left by the
number of characters to be postfixed.

Examples:

V+128 0 -.25 -64 -12345.67
'BF10.1,X2,BI8,X2,Cll0,X2,LI9' OFHT (VjVjVjV)

128.0 128 128 128
o 0

-0.3 0 0
-64.0 -64 -64 -64

-12345.7 -12346 -12,346 -12346

'ZFI0.2,X2,~*~10.1,X2,P<+>18' OFHT (VjVjV)
0000128.00 128.0 +128
0000000.00 0.0 +0
-000000.25 **0.3 +0
-000064.00 **64.0 -64
-012345.67 **12345.7 -12346

'Q<+++>19,X2,R<*>18' OFHT (VjV)
128+++ *****128

0+++ *******0
0+++ *******0

-64 *****-64
-12346 **-12346

Combinations of qualifier and affixture may be used together to provide various
output forms as shown below.

9-6 Format CE38-04
Qualifier and Affixture Codes

'H<-$>P<$>CF12.2' OFHT (12345.67;-9.98)
$12.345.67 -$9.98

Format Symbol Substitution

OFHT uses predefined characters in formatting output and interpreting specifications.
In some cases, the default characters may not be appropriate. The S qual ifier al lows
these defaults to be changed. The default symbols and their appl icable format
phrases are I isted in the fol lowing table.

Table 9-2. Default Formatting Symbols

SYMBOL USES PHRASE

9 digit select G

Z zero suppress digit select G

* field overflow FGI

0 Z qual ifier fill/lead zero fi I I FGI

- non-significant digit FGI

. C qualifier character FI

decimal point F

The default character can be replaced by first specifying the default character
fol lowed by the character to be used in its place.

Examples:

'S< .••. >CF16.2' OFHT 2718235.49
2.718.235.49

Format Result

The principal use of OFHT is to provide lines of formatted output. However, if OFHT
is used as part of a larger APL expression, the result of executing OFHT is a
character matrix which may be manipulated and used just as any other character
matrix.

Format Error Reports

If the right argument includes an array of higher order than matrix. or the left
argument is not a vector, a RANK ERR results.

If the left argument is not simple and al I character data. and contains no format
specifications, or contains a format specification with inconsistent parameters (such
as d greater than w. or w = 0). a DOHAIN ERR results.

If there is incorrect syntax in the right argument, a SYNTAX ERR results. If there
is incorrect syntax in the left argument. a FORHAT SYNTAX ERR results.

If the line length of the result is too big for the remaining workspace, or OFHT is
included in a larger expression and the total result exceeds the remaining workspace.
WS FULL results.

CE38-04 Format Error Reports 9-7

Formatting Aids

In addition to OFHT. the following system functions may be used to aid in output
formatting. The)SET and)TERHINAL commands. described in Section 8. may also be
used in the overal I process of output report generation.

OPGE Function (Skip to New Output Page)

Syntax:

oPGE

Description:

oPGE is a niladic function with an empty vector result. When executed. if output is
to a printing device. the current page wil I be ejected. If output is to a unit
record type device and OHDR has been established by the)SET command. a standard
header line wil I also be produced.

ONLS Function (Number of Lines Remaining)

Syntax:

l+ONLS

Parameters:

1 is a simple integer scalar.

Description:

ONLS is a niladic function with an integer result. If output is to a device with
line count applicable. the result is the number of lines remaining to print on the
current output page. If not, the result is zero.

OHDR Function (Set Page Heading)

Syntax:

OHDR T

9-8 OHDR CE38-04
Function (Set Page Heading)

)

)

Parameters:

T is a simple character scalar or vector of maximum length 160.

Description:

This function establishes the output header line which wil I be displayed at the start
of each page if output is set to a printing device. This system function uses a CP-6
facility which does not recognize special APL characters. If special characters or
overstrikes are included, OHDR may not produce correct headings.

Possible errors:

A DOMAIN ERR is reported if:

oTis not text or simple.

A RANK ERR is reported if:

oTis not a scalar or vector.

A LENGTH ERR is reported if:

o T contains more than 160 items.

OVFC Function (Set Line Spacing)

Syntax:

OVFC C

Parameters:

C is a simple character scalar or one-item vector.

Description:

OVFC is a monadic function with empty vector result. The right argument must be a
single character. When OVFC is executed, the character in the right argument becomes
the vertical format control character for the next print I ine. After that I ine is
printed, the default character is restored as the vertical format control character.
Refer to the CP-6 Programmer Reference Manual (CE40) for the specific values of
vertical format codes.

CE38-04 OVFC 9-9
Function (Set Line Spacing)

OXL Function (Translate Text)

Syntax:

R+A OXL B

Parameters:

A is a simple character vector of length less than 513 (unspecified character
positions are treated as blanks).

B is a simple character array.

R is the translated result with the same shape as B.

Description:

The OXL function facilitates special character set translations within APL. The
result of the OXL function has the same shape as the right argument and consists of a
translation of the right argument. The index position in DAV of each item of the
right argument is used to index the left argument to obtain the corresponding result
item. The result is exactly equivalent to:

(513tA)[DAVt Bl

but requires much less workspace.

This feature is designed to overcome problems encountered in character set
differences between various devices. It allows any character mapping, including
mapping several characters to the same result character. An example of this use
might be to map 01 I 'il legal' characters to some unique character. Another example
is as fol lows:

L+-l+t256
Ll97+t261+64+t26
L+OAVlOIO+Ll

This value of L, used as left argument of OXL, converts lowercase letters in the
right argument to similar uppercase letters in the result.

Possible errors:

A RANK ERR is reported if:

o X is not a vector.

A LENGTH ERR is reported if:

o X contains more than 512 items.

A DOMAIN ERR is reported if:

o any item of X is not a scalar character.

A DOMAIN ERR is reported if:

o the right argument T contains an item which is not a scalar character.

9-10 OXL Function (Translate Text) CE38-04

Section 10

Execution Stops

Execution is stopped if any of the fol lowing conditions occurs:

1. Execution is completed (a normal stop).

2. Execution break occurs (BREAK key is pressed), and sidetracking does not occur.

3. User input is required (quad or quote-quad input).

4. Stop control I ine is encountered.

5. Error is encountered, and sidetracking does not occur.

Normal Stop

Execution comes to a normal stop after any action indicated by direct input is
completed. It should be noted, however, that a direct input prompt does not
necessari Iy mean that al I pending execution is completed. The user can determine
whether any execution is pending via the)SI command.

Execution Break

An execution break (that is, the BREAK key) can be issued by the user at any time.
There may be a short delay until output stops. Sidetracking can be used to gain
break control within an APL function; in this case execution does not stop, but is
"diverted" (see Sidetracking on Errors and Breaks).

Either a soft break or interrupt may be signal led by pressing the BREAK key. The
first break during the execution of a line of APL is a soft break. Execution of the
current line continues until the end of the line is reached at which time, the
currently executing defined function wil I suspend. If a second break is sent before
the soft break is processed, this signals a hard break or interrupt and the currently
executing line is removed from execution. An INTERRUPT message is displayed along
with the line that was in execution and a caret indicating the position in the line
that execution was interrupted. In this case, if the APL line contains "side
effects" such as embedded assignments or shared variable accesses, then the line may
not be easily restartable.

APL's reaction to break also depends on whether the BREAK key is pressed during
execution mode or definition mode. If break is used during (non-function) execution,
APL stops any output in progress end skips to the next line and indents six spaces to
prompt for new input. If break is used during execution of a defined function, APL
displays the function name and the line number being executed.

If break is used during display of a function, APL will exit from function definition
mode if a closing del was included in the display command. If the display command
did not have a closing del, APL wil I remain in function definition mode and will
prompt with the next line number after the line range being displayed.

Execution breaks are usually not allowed to interrupt the execution of a system
command. However, those that produce lengthy display can be stopped:)FNS.)CRPS.
)LIB.)SI,)SINL. and)VARS. Break is also used to abort the wait resulting from the
)OPR system command.

CE38-04 Execution Break 10-1

stop For User Input

Execution may be stopped by an input request in a line. The normal response to a
quad or quote-quad input request is a line of input. While quad input is pending,
BREAKS are treated as normal execution errors and thus cause the quad input request
to be re-issued. If the user's program contains a loop such that the user is
repeatedly prompted for input. the user may escape as follows:

1. For quad input, type a branch arrow (~) fol lowed by a RETURN. An example is
shown below:

VPITIHES[O]V
V PITIHES

[1] 0[]
[2] ~1

V
PITIHES

0:
1

3.141592654
0:

-1
-3.141592654
0:

)SI
o
PITIHES[I]
0:

~

)SI

In this example the user has defined a function, PITIHES t that repeatedly
requests input and provides a result. The first)SI command shows that an !nput
request and line 1 of PITIHES are pendent. After the ~t the input request IS no
longer repeated. The second)SI command shows that the loop has been broken and
PITIHES is no longer in use.

2. For quote-quad input, press the BREAK key twice to cause an INTERRUPT at the
point of the quote quad input request.

stop Control Vector

As described in Section 7 (under Suspending Execution), a stop control vector can be
used to specify the exact place a function suspension is to occur. The user can set
a stop control vector by executing the OSTOP system function with the function name
enclosed in quotes as the right argument and the line numbers at which the function
is to be suspended as the left argument. For example, suppose the user wants to
suspend execution of function HH at lines 2 and 4; by typing the expression

2 4 OSTOP 'HH'

APL will then suspend function execution just before each specified line number is
executed, print the function name and line number, skip to the next line and indent
six spaces to prompt for user input. (See the possible effects of OSA described in
Section 11.)

HH
HH[2)

The user may then operate as desired. in direct input mode with the function
suspended. and can resume or terminate function execution at any time. Function
execution can be resumed by appropriate branching; for example. an entry of ~3 wil I
resume execution of the suspended function at statement 3. Termination can be
accomplished by a branch to a non-existent I ine number (~O is a convenient choice).
The function suspension can also be abandoned by a suspension clear statement. which
is a branch arrow without any line number.

1~2 Stop Control Vector CE38-04

)

A stop control vector can be specified during execution mode. or during function
execution as one of the statements of a defined function. To discontinue an active
stop control vector. assign an empty vector to that stop control vector; for example.
"OSTOP 'HH' wi II turn off the stop control for funct ion HH.

Error stop

As soon as APL detects an error in a statement. execution of that statement is
terminated and any partial result is lost. except for assignments that were completed
before the error was detected. Unless sidetracking occurs. APL prints a message
indicating the type of error. displays the erroneous statement with a caret below the
place the error was detected. (see also the discussion of error messages for the
Execute operator in Section 5). and prompts for input. (See the possible effects of
OSA described in Section 11.) The user can then correct the statement. An example
of error detection is shown here:

X1+4+0
DOMAIN ERR

X1+4+0
1\.

If a statement contains more than one error. only the first (rightmost) one detected
by APL will result in an error report. The next error wil I not be detected until the
user has corrected the f i r~t error. as illustrated here:

X1+(4+0)X(2+0)
DOMAIN ERR

X1+(4+0)x(2+0)
1\

X1+(4+0)X(2+l)
DOMAIN ERR

X1+(4+0)x(2+1)
1\

If an error is detected in a statement with multiple specifications. any assignments
tot her i g h t 0 f the err 0 r w i I I be com pie ted. as i I Ius t rat e d her e :

B+5 0 4+C+BxO
DOMAIN ERR

5

o

B+5 0 4+C+BXO

B

C

During function definition some types of errors are detected immediately whi Ie other
types are not detected until later when the function is executed. Definition errors.
and character errors are detected immediately and must be corrected as soon as an
error report is printed.

VR+B TRI H
[1] AREA+0.5xBxH
(2) DIAGONAL+«H*2)B*2)*0.5
(3) R+AREA;DIAGONAL
(4) [0.5 TRI CALCULATES AREA AND DIAGONAL OF TRIANGLE
DEFN ERR 1\

[0.5) ~ TRI CALCULATES AREA AND DIAGONAL OF TRIANGLE
[0.6) v

Linescan errors are detected immediately and may be corrected immediately by function
editing or its correction may be deferred. AI I other errors in a defined function
are detected when the function is executed. When APL encounters each error during
function execution. it suspends execution and prints an error report containing the
type of error and the function name and offending line and statement (with a caret
marking the place the error was detected). For example. the fol lowing error message
is produced because a Not function had been entered instead of a multiplication sign:

CE38-04 Error Stop 10-3

5 TRI B
SYNTAX ERR
TRI[31 DIAGONAL+«H*2)-B*2)*O.5

A

An error that causes suspended execution can be corrected during the suspension or
after termination of execution.

1. To correct an error during suspended execution, the user can follow normal
function editing procedures (see Section 7). For example,

SYNTAX ERR
TRI[31 DIAGONAL+«H*2)-B*2)*O.5

A

VTRI[31 DIAGONAL+«H*2)XB*2)*O.5V

After correcting an error, the user can resume execution at the line suspended by
specifying a branch to that line number. Thus, the expression +3 wi I I resume
execution at line 3 (starting at the right, as usual for APL).

2. To correct an error with termination of execution, the user enters a branch arrow
to terminate function execution, edits the function as necessary, and then
reexecutes the function. For example:

SYNTAX ERR
TRI[31 DIAGONAL+«H*2)-B*2)*O.5

+
VTRI[31 DIAGONAL+«H*2)XB*2)*O.5v
5 TRI B

Each branch arrow removes the most recent suspension from the state indicator
I ist. Thus if several suspensions have occurred since the last suspension clear,
more than one branch arrow (suspension clear) will be required to clear the state
indicator. A convenient method for clearing the entire state indicator is to
issue a)SIC command.

Sidetracking On Errors And Breaks

In some APL appl ications, the programmer would like to bypass APL's standard error
and break procedure (for example, to substitute messages or institute corrective
actions). Computer-assisted learning programs and commercial business aids are
applications where this may be desired. Users of such applications may have little
knowledge of APL, and messages such as DOHAIN ERR or WS FULL frustrate rather than
help.

CP-6 APL al lows the programmer to overcome this problem through "sidetracking". The
term "error control" is also used (with an understanding that break control is
included).

Suppose a DOHAIN ERR has been detected by APL. With sidetracking, APL searches the
state indicator for active functions for which the programmer has decided to
sidetrack. If a sidetracking function wants control over DOHAIN ERR. then APL
sidetracks (branches) to the line in the function specified for DOHAIN ERR. If no
active function wants such control, then APL issues the standard diagnostic message.

Sidetracking is both flexible and dynamic. Different errors can be sidetracked to
distinct lines of a function. Certain sidetracking functions may control some errors
while other sidetracking functions control others. The system function OERS al lows
an APL program to simulate an error (which can be subject to sidetracking) by
supplying the error number and optionally the error message. Sidetracking functions
can also compete for control of t~e same error. In this case, the most recently
invoked function gets control, and its competing predecessors never become aware that
the error occurred. Sidetrack specifications can be changed at wil I. They can be
turned on and off, the error selection can be altered, and the sidetrack branches can
be changed; the application program itself can modify sidetracking specifications
throughout its. execution. This capability permits a simple or comprehensive
treatment at the programmer's discretion.

1~4 Sidetracking On Errors And Breaks CE38-04

Table 10-1 shows errors that are subject to sidetracking. Errors not listed in the
table include SYSTEM ERR and BROKEN WORKSPACE.

Since recovery from these errors is impossible for an applications program, APL
retains exclusive control. See the discussion fol lowing Table 10-1 for detai Is
concerning certain unique errors.

Associated with each item in Table 10-1 is an error number. Error numbers are
informally grouped by common classifications: statement execution errors,
input-translation errors, command errors, fi Ie input/output errors, etc. Gaps are
provided in the error number sequence to accommodate future diagnostics.

The items in Table 10-1 contain four cases in which APL gives up control after
displaying an error message:

SI DAMAGE
name NOT COPIED
name NOT FOUND
name NOT ERASED

These cases, in which command processing or function definition is in effect, must
reach an orderly conclusion. Therefore, APL uni laterally displays the messages and
proceeds to conclusion. (Nevertheless, sidetracking is sti I I possible, and an
application program might issue explanatory messages after the APL messages, as one
alternative.) As APL proceeds in these four cases, a series of such messages could
be displayed (but this would be unusual). APL permits sidetracking only with regard
to the latest error known at the conclusion of this kind of processing. Using the
execute function, for example, suppose a)COPY command occurs whi Ie sidetracking is
in effect. Suppose also that some object, Xt is missing from the copied workspace -
X NOT FOUND is displayed; furthermore, suppose that the data found wi I I not fit in
the active workspace. Then the)COPY command concludes without copying anything and
would ordinari Iy issue a TOO BIG message. Sidetracking would then apply in this
example to the TOO BIG error and, the NOT FOUND error would be "forgotten".

Note in the foregoing example that copying was attempted by means of an execute
operation. This was a necessity. A function can obtain sidetracking only while it
is actively in execution. Thus command and function definition errors can be
sidetracked only when the function (or some function invoked by the sidetracking
function) actually executes a command or function definition. Evaluated-input might
seem to provide another way in which a function could, indirectly, invoke command or
function definition activity. However, for the reason given below, evaluated input
is not considered capable of being sidetracked (except whi Ie that input has itself
invoked a sidetracking function).

The execute function makes it possible to execute via quote-quad input anything that
could be entered via evaluated input. Quote-quad input has an advantage from the
standpoint of error recovery. The input text can be assigned to a variable before it
is executed. Thus, a sidetrack function can analyze this text to determine correct
recovery action. Evaluated-input is not susceptible to this analysis; it is
immediately interpreted by APL.

CE38-04 Sidetracking On Errors And Breaks 10-5

Table 10-1. Events Subject to Sidetracking

Er ror Number Error Message

1 WS FULL
2 SYNTAX ERR
3 UNDEFINED
4 DOMAIN ERR
5 RANK ERR
6 LENGTH ERR
7 INDEX ERR
8 NO RESULT
10 IMPLICIT ERR
15 SINGULAR MATRIX
16 FORMAT SYNTAX ERR
20 BAD CHAR
21 LI NESCAN ERR
22 TRUNCATED INPUT
23 OPEN QUOTE
30 I/O ERR fcg-xxxxx-s
35 DEFN ERR
36 SI DAMAGE
38 NOT CLEAR WS
39 CLEAR WS
40 BAD COt.t#.ND
41 NOT SAVED. THIS WS IS name
42 FILE IN USE
43 BAD FILE REF
44 WS NOT FOUND
45 TOO BIG TOO LOAD
46 TOO BIG
47 TOO MANY SYMBOLS
48 name NOT COPIED
49 name NOT FOUND
50 name NOT ERASED
51 NOT GROUPED
52 SEALED WS
53 OLD WS. MUST EXPORT
55 NOT HELD
59 HOLD ABORTED
61 HOLD DEADLOCK
62 ENQUEUE FULL
68 SV QUOTA EXHAUSTED
69 NO SHARES
70 FILE SPACE TOO LOW
71 FILE I/O ERR fcg-xxxxx-s
72 FILE DAMAGE
73 FILE NAME ERR
74 NOT APL FILE
75 FILE TBL FULL
76 FILE ACCESS ERR
77 FI LE TIE ERR
78 PACKSET NOT MOUNTED
79 FI LE I NDEX ERR
98 NONCE ERR
100 INTERRUPT

10-6 Sidetracking On Errors And Breaks CE38-04

DSM Function

Syntax:

E+OSH F
R+E OSH F

Parameters:

(Set/Query Sidetrack Matrix)

F is a namel ist containing the name of a displayable defined function.

E is a simple 2-column matrix of integers in which the first column contains line
numbers and the second column contains error numbers.

R is an empty numeric array .

. Description:

A sidetracking setting resembles setting a stop or trace vector. The function must
be defined when the OSH function is executed; it could even be a statement in the
function.

The dyadic OSH function requires that the right argument contain a legal name or
DOHAIN ERR is reported. The explicit result of dyadic OSH is an empty numeric
vector. The left argument (sidetrack matrix) must be a matrix or RANK ERR is
reported. The second dimension of the left argument must be 2 or LENGTH ERR is
reported. The left argument must be a simple array containing only integers or
DOHAIN ERR is reported.

In effect, the sidetrack table becomes part of the function's definition and is
copied or loaded if the function is copied or loaded. Function editing has no
influence on the sidetrack setting. Since the sidetrack table contains I ine numbers,
the fol lowing precaution should be observed. If editing a sidetracking function
alters the position of a I ine specified by the sidetrack table, a correct setting
must be reissued. This is necessary to ensure that the proper line wi II be branched
to if the sidetrack does take place.

Erasing a sidetracking function erases its sidetrack setting. A sidetrack setting
can also be removed by being replaced with an empty matrix, as in the fol lowing
example:

(0 2pO)OSH 'FUN'

When a (non-empty) table is assigned for sidetracking, it consists of one or more
rows. Each row contains a pair of integers - a line number and an error number. The
line number designates which line of the function is to be sidetracked to (branched
to) if the indicated error occurs. The fol lowing sample sidetrack setting specifies
a branch to line number 9 in case of a DOHAIN ERR (error 4 in Table 10-1).

(1 2p9 4)OSH 'FUN'

A new sidetrack setting for a function entirely replaces any previous setting.

Examples:

The fol lowing example would remove FUN ·s control over DOHAIN ERR.

(2 2p9 3 9 2)OSH 'FUN'

In this example, FUN sidetracks to line 9 for UNDEFINED or SYNTAX ERR. This
illustrates that a sidetrack table can contain duplicate line numbers; however, it is
useless to duplicate an error number in the same table. Only the first such number
would be effective.

CE38-04 OSH 10-7
Function (Set/Query Sidetrack Matrix)

In the above example, FUN sidetracks on only two of the possible errors. If other
errors occur, APL handles them in the standard manner unless some other function has
specified sidetracking for those errors.

A special error number, 0, exists for sidetracking on a II items in Table 10-1 except
the break (number 100). In the fol lowing example, FUN sidetracks:

0 to line 8, if a break is detected

0 to line 7, if WS FULL occurs

0 to line 9, for any other error subject to control.

(3 2,,8 100 7 1 9 O)OSH 'FUN'

Breaks are sidetracked only if the sidetrack expl icitly includes error number 100.

The current sidetrack matrix may be obtained by the monadic execution of the OSH
system function. In this case, the right argument is the same as in the dyadic
usage, but the result is a simple N-by-2 matrix of integers. For example:

OSH 'FUN'
8 100
7 1
9 0

The result of monadic OSH for all names other than a displayable, active defined
function is a numeric matrix of shape (0,2).

The fol lowing example (assuming origin 1) shows a compact way of setting several
different error numbers to the same line. Suppose ERRLAB is the label of the desired
I ine and sidetracking is set within the function FCN containing ERRLAB.

(ERRLAB,[l.5J23 5 8 21) OSH 'FCN'

sets the indicated errors to sidetrack to ERRLAB (see Lamination).

The above examples illustrate how to set sidetracks. This does not imply that the
function FUN immediately receives control if an error occurs. If FUN is not actively
in execution, its sidetracking is disregarded. Even if FUN is in execution, it may
sti I I not be given control. The error may have occurred in evaluated-input, or FUN
may have cal led another function which has a competing sidetrack.

Dynamics of Sidetracking

A step-by-step outline reveals significant aspects of sidetracking dynamics. Assume
a controllable error or break has occurred and APL is ready to check for
sidetracking.

Step 1: APL designates and saves the current error number, replacing any previously
recorded error number; the line in execution, the position in this line and the text
of the error message are also saved. For the moment, it initializes the error
location to be line zero and an empty function name. APL points to the top (latest)
entry in the state indicator.

Step 2: The state entry is examined. If it is a pendent function, APL proceeds to
Step 3. If it is an execute-operation state, APL points to the next entry and
repeats Step 2. Otherwise, sidetracking is not applicable; so APL issues the
standard diagnostic.

Step 3: (Pendent function state) The error location is tested. If still initialized
(see Step 1), the line number and name of the pendent function are recorded. The
function's definition is tested for sidetrack setting. If it features some
sidetracking, APL proceeds to Step 4. Otherwise, APL points to the next state
indicator entry and repeats Step 2, attempting to find a function with a sidetrack
setting.

10-8 Dynamics of Sidetracking CE38-04

Step 4: (Sidetrack setting present) The sidetrack table is tested sequentially
versus the recorded error number. If a match is found, or the error number is less
than 100 or greater than 199 and the table has an error number entry for the error
number 100xLN+100 (where N is the error number being reported) or the table has a
zero error number, APL proceeds to Step 5. Otherwise, APL points to the next state
entry and repeats step 2, attempting to find a function interested in the current
error.

Step 5: If the specified I ine number is greater than or equal to zero, then APL
proceeds to Step 6. Otherwise, the line number is assumed to represent one of the
special actions in Table 10-2.

Step 6: (Sidetrack acknowledged) APL removes from the state indicator any entries it
bypassed in reaching Step 5. This puts the sidetracking function at the top of the
state indicator. APL then branches to the specified I ine number.

Number

Table 10-2. Sidetracking Special Action Table

Special Action

The state indicator is cleared to the entry before
this function. The current error is then reported
at the point of the sidetracking function cal I.

This function expl icitly requests no sidetracking
for the error. The state indicator, however, is
to be cleared to this function and this function
suspended. (Debugging Aid)

Simi lar to -2 except that the state indicator is not
cleared to the sidetrack function. The function that
was in execution when the error occurred is suspended
and the error is reported at the point of the error.
(Debugging Aid)

When used in conjunction with an error class control,
this al lows a function to control al I errors but a
specific error. As in

(2 2p -4 1 5 0) OSH 'X'

This setting means that al I errors other than a
workspace ful I (1) wi I I sidetrack to line 5.

The APL session is terminated and a CONTINUE workspace is saved,
suspending the function that had the error.

The workspace is cleared.

Considerations after Gaining a Sidetrack

Once APL performs a sidetrack, it has no further interest in handling the break or
error. Responsibility falls to the application programmer, depending on the line
number dictated and statements supplied for the sidetracking function. Caution is
advised.

If a mistake occurs in statements entered via a sidetrack, a new error may confuse
the intended recovery procedure. It is possible for that statement to generate the
error being considered, leading to the same sidetrack, the same mistake, and so on
indefinitely. WS FULL can be particularly troublesome. In some cases, the statement
reached by the sidetrack wil I itself cause another WS FULL. There is no general
solution to this potential problem, but it is a rare difficulty for two reasons.
First, intermediate results may be discarded after any error, freeing up sufficient
workspace for recovery. Second, more workspace may become available if state
indicator entries are removed in reaching the sidetrack (See Step 5 above).

CE38-04 Considerations
after Gaining a Sidetrack

10-9

Aids for Sidetrack Users

Eight system functions ore of porticulor interest ofter on error hos occurred. These
functions ore described next.

OERN Function (Error Number)

Syntox:

W4-OERN

Description:

The result is 0 two-item integer vector, the first item is the lotest error number
ond the second item is the line number of the function in which the error occurred.
If the error did not occur in 0 defined function, the second item is 0.

OERF Function (Error Function)

Syntox:

Description:

The result is 0 chorocter vector containing the name of the function in which the
error occurred. If the error did not occur in 0 defined function, the result is an
empty choracter vector.

OERM Function (Error Message)

Syntax:

Description:

The result is 0 charocter vector containing the text of the lotest error message.

10-10 OERH Function (Error Message) CE38-04

)

)

OERL Function (Error Line)

Syntax:

T+OERL

Description:

The result is a character vector containing the text of the line that was in
execution when the error occurred.

OERP Function (Error Position)

Syntax:

I+OERP

Description:

The result is the integer scalar index in OERL of the error pointer. The result
value is 010 dependent.

OERX Function (1/0 Error)

Syntax:

T+OERX

Description:

The result is a character vector of length 12. containing the latest I/O error
information avai lable to APL. It represents one of the error codes given in the CP-6
Host Monitor Services Reference Manual. v.l. (CE74).

OERH Function (Error Help)

Syntax:

T+OERH

CE38-04 OERH Function (Error Help) 10-11

Description:

The result is a character matrix of shape N-by-120 containing the error message text
from the system error message file pertaining to the latest CP-6 I/O error
information.

Note: APL sometimes expects I/O errors. Thus. the value reported when using OERX
does not necessari Iy indicate an error condition has occurred.

DERS Function

Syntax:

MESSAGE OERS [
OERS [

Parameters:

(Error Simulation)

is a simple integer scalar in the range 0 through 19999.

MESSAGE is a simple character vector containing an error message.

Description:

The OERS system function initiates an error report under program control that can be
subject to sidetracking. The error simulated may be one of APL's standard execution
errors such as DOMAIN ERR or the specific error message can be supplied. The left
argument of OERS may be supplied only for error numbers greater than 499. Simulating
error number 0 clears the current error status variables (OERN. OERF. OERM. OERL.
OERP) to their initial values in a clear workspace.

If OERS is invoked by an active function. the error generated by the execution of
OERS occurs in the environment of the line that invoked the currently executing
defined function.

10-12 OERS CE38-04
Function (Error Simulation)

Section 11

System Functions and Variables

CP-6 APL provides a complete set of system functions and variables. Each of these
system-defined objects have names which begin with a quad (0) and are known as
distinguished names.

AI I of the distinguished names are present in an active workspace, and the values of
the system variables are saved with the workspace when a)SAVE command is issued.

AI I CP-6 APL system variables have default values in a clear workspace, may be
modified at any time by assignment, and are subject to the normal rules of scope.
That is, a user-defined function may localize a system variable and subsequently
modify it. When the function exits, the value of the system variable wil I revert to
its original value. The fol lowing table I ists system variables included in CP-6 APL.

NAME

OCT

010

OLK

oPP

oPS

oPW

ORL

OSA

OSP

MEANING

Comparison tolerance

Index origin

Latent expression

Pr i nt precision

Positioning
and spacing

Platen width

Random I ink

Stop Action

Session Parameter

Table 11-1. System Variables

VALUE IN CLEAR WS

1E-13

1

' ,
10

-1 102

device dependent

16B07

, ,
, ,

RANGE

Non-negative less than
1E-12

o or 1

character vector

integer in the range
1 .. 20

a 4-item integer vector.
The first two items
are integers in the
range -1 to 1
The last two items may
be any integer value
from -2*35 to -1+2*35.

integer in the range
32 .. 390

integer in the range
1 .. (-1+2*35)

'EXIT'. 'CLEAR' and "

any array

Each of the APL system variables is described in detail next.

CE38-04 System Functions and Variables 11-1

OCT Variable (Comparison Tolerance)

The relational functions « s = > ~ ~), monadic r, L and dyadic t, =, and E involve
comparisons that are not absolute because of the internal representation of numbers.
OCT is used to establish a neighborhood of equality around any particular value. For
the relational functions, any number between B+OCTxIB and B-OCTxIB wil I be considered
equal to B. The default value for OCT is 1E-13 which is adequate for almost al I
situations.

Comparison tolerance is used in APL so that the finite precision of the internal
representation of numbers can be partly disguised. Computer arithmetic with real
numbers can only approximate the result to numbers which are mathematically close to
the true result. Meaningful values of OCT are real numbers in the range 0 to 1E-12
inclusive.

DID Variable (Index Origin)

The DID variable is used by APL during indexing. the axis operator. OFX, 7, dyadic ~,
t, •• and t. Its value indicates the index of the first value in a non-empty vector.
The only permissible values are zero and one. The default value in a clear workspace
is 1.

oLX Variable (Latent Expression)

The OLl variable is executed (as in lOLl) whenever a workspace is loaded. The
default value in a clear workspace is an empty character vector.

oPW Variable (Platen Width)

AI I output is subject to the constraint that at most oPW characters wi I I appear on a
line. Additional characters that would have appeared on a particular line are
printed indented on the succeeding line. The meaningful values are integers in the
range 32 through 390. The default value in a clear workspace is the CP-6 platen
width setting when APL was invoked or the closest permissible value to the CP-6
platen setting.

oPS Variable (Positioning and Spacing)

The value of the oPS variable controls the display (and monadic format result) of
nested arrays. The meaning of the values are described in Section 3 under Output.

11-2 oPS CE38-04
Variable (Positioning and Spacing)

)

)

Opp Variable (Print Precision)

The OfP variable is used to determine the number of digits to be used in the default
display of numeric arrays. The meaningful values are integers in the range 1 to 20.
The default value in a clear workspace is 10.

ORL Variable (Random Link)

This value is used in the? function and reset after each use such that it cycles
through the entire meaningful range. The meaningful values are integers between 0
and 2*35 exclusive.

OSP Variable (Session Parameter)

When APL is invoked, OSP is establ ished with an initial value of an empty character
vector. A new value may be specified at any time, by assignment (or a)COPY command
containing OSP in the copy list). The value associated with OSP is carried across
)LOAD and)CLEAR commands.

OSA Variable (Stop Action)

The OSA variable defines the action to be taken when a function terminates execution
and direct input mode is entered for any reason. The default value of an empty
character vector indicates that no action is to be taken. Other valid values of OSA
are: 'CLEAR' which causes the workspace to be cleared, and 'EXIT' which causes APL
to issue an)END system command. If the value of OSA is undefined the state
indicator is scanned until a value associated for OSA is found and the associated
action is taken.

System Functions

System functions are always present in a workspace, and can be used in defined
functions. They are niladic, monadic, or dyadic as appropriate and have an explicit
result. In many cases, they also have impl icit results, in that their execution
causes a change in the environment.

Workspace Management Functions

CP-6 APL provides a set of system functions, OCR, orx, OWL, DEX, DEXG, ~OK, OWC,
ONCG, ORHJ ORHG J OST, OTR, OSH, OSTOP and OTRACE to aid in user workspace management
and information display.

CE38-04 Workspace Management Functions 11-3

Namel ist and Canonical Representations

The introduction of two concepts is useful to describe the argument and results
associated with these system functions. A namel ist is a character matrix in which
each row represents an APL name. As an argument to a system function. a namelist may
also consist of a character vector of names separated by blanks.

When a namel ist argument is required. a RANK ERR occurs if the rank of the argument
is greater than 2. A DOHAIN ERR occurs if the argument contains an item which is not
a character scalar. A LENGTH ERR occurs if a row contains more than 262143 columns.
A DOHAIN ERR is also reported when a system function which only accepts a single
name, is provided with other than a single name. Examples of legal namelists are:

'A'
'AB'
2 2p'ABCD'
'AB CD'

~ NAHELIST CONTAINING THE NAHE A
~ NAHELIST CONTAINING THE NAHE AB
~ NAHELIST CONTAINING THE NAHES AB AND CD
~ ARGUHENT NAHELIST CONTAINING THE NAHE AB AND CD

Canonical Representation is a representation of a function as a character matrix.
Each row of the matrix represents a line of the function. The first row must consist
of a val id function header. Succeeding rows if present must be val id APL statements.

A RANK ERR is reported if the rank of the canonical representation is greater than 2.
A LENGTH ERR occurs if a row contains more than 262143 columns. A DOMAIN ERR is
reported if the canonical representation contains an item which is not a character
scalar. The canonical representation does not contain line numbers as provided by
the function definition mode display.

System Functions for Function Definition

CP-6 APL provides system functions to create. modify. and replace defined functions.
These functions include oTRACE, OSTOP, OCR, OFX, and OAT discussed in section 7. and
OSH in section 10 in addition to the following functions.

OLOK Function (Lock Function)

Syntax:

V+OLOK N

Parameters:

N is a namelist containing the names of user-defined functions in the active
workspace.

V is a simple vector containing the integer values 00r 1.

Description:

The OLOK function returns a numeric vector containing 1 if the corresponding name in
N is now a locked function or 0 otherwise (also see function OAT in Section 7). The
referenced functions are locked.

11-4 OLOK Function (Lock Function) CE38-04

OST Function

Syntax:

V+OST F

R+V OST F

Parameters:

(Set/Query Stop)

F is a namel ist containing the name of a defined function.

V is a simple integer vector.

R is a simple integer vector.

Description:

For monadic OST. if F is a namelist containing the name of a defined function, the
result V is the stop vector associated with that function.

For dyadic OST. if F is a namelist containing the name of a displayable defined
function, stop control is set on the lines indicated by V. The explicit result is an
empty vector. Also see the function $QSTOP.

Possible Errors:

A RANK ERR is reported if:

o the left argument V is not a scalar or vector.

A DOHAIN ERR is reported if:

o V is not a simple array containing integers.

OTR Function

Syntax:

V+OTR F

V+V orR F

Parameters:

(Set/Query Trace)

F is a namelist containing the name of a defined function.

V is a simple integer vector.

CE38-04 OTR
Function (Set/Query Trace)

11-5

Description:

For monadic OTR, if F is a namelist containing the name of a displayable defined
function, then V is the trace vector associated with that function.

For dyadic OTR, if F is a namelist containing the name of a displayable user defined
function, trace control is set on the lines indicated by V. The explicit result is an
empty vector. Also see the function $QTRACE.

Possible Errors:

A RANK ERR is reported if:

o the left argument is not a scalar or vector.

A DOMAIN ERR is reported if:

o V is not a simple array containing integers.

Workspace Management System Functions

The fol lowing functions are used in the management of active workspace.

OAV Function (Atomic Vector)

Syntax:

X+OAV

Parameters:

X is a character vector of length 512.

Description:

The OAV function returns a character vector containing al I of the possible characters
in the APL character set. Many of these characters are not used in CP-6 APL to
represent printing symbols. The positions of the individual characters differ
between implementations of the APL language.

Example:

OAV[65+t27)
ABCDEFGHIJKLMNOPQRSTUVWXYZ[

11-6 OAV Function (Atomic Vector) CE38-04

)

)

OCPU Function (CPU Time Used)

Syntax:

I+DePU

Parameters:

I is an integer scalar.

Description:

The DePU function returns an integer scalar containing the CPU execution time used
since entering APL. The time returned is in units of milliseconds. Execution times
vary widely between APL implementations and the model of CPU upon which the APL is
executing.

Example:

T+DePU 0 Z+5+tlE6 0 DePU-T
3

In this example. the time required by CP-6 APL to execute the expression Z+5+tlE6 has
been computed to be 3 mi I liseconds (or .003 seconds).

OCVT Function (Convert)

Syntax:

R+W DeVT J

Parameters:

J is a simple array of either al I numeric or al I character items.

51 is a simple integer vector of length two.

Description:

J must be a simple array containing only numeric or only character items. 51 is a
simple two-item integer vector controlling the result type and values of R. The first
item of 51 is one of 1. 2, 3, or 4 meaning one of the fol lowing types:

TYPE

1
2
3
4

INTERNAL BIT LENGTH

1
9

36
72

MEANING

Boolean
Character
Integer
Floating Point

The second item of 51 is a value whose magnitude indicates the number of bits of the
right argument to use to represent each item of the result. If the second item of 51
is less than zero, then the sign of each item of R is negative if the sign bit of a
field is 1. A DOHAIN ERR occurs if the first item of 51 is not one of 1, 2, 3, or 4,
or if J is either a nested array or index sequence. A LENGTH ERR occurs if the
number of bits in the last dimension of J are not evenly divisible by the second item
of W.

CE38-04 DeVT Function (Convert) 11-7

Example:

3 9 DeVT 'ABZ' A CHARACTER Hu.
65 66 90

DAV 1. 'ABZ'
66 67 91

3 3 DeVT 'AZ' A CONVERT TO OCTAL
101132

3 36 DeVT 12345678.015625
1709378160 8589934592

DDL Function (Delay)

Syntax:

I+DOL I

Parameters:

I is a simple integer scalar.

Description:

The DOL function requires at least I seconds to complete. The explicit result is the
number of seconds of delay. The delay may be shorter than the number of seconds
specified if it is interrupted by a break.

Example:

7

o

DOL 6.75

DOL -60 A NO~ BACK UP ONE MINUTE!

Note that in the above example, requested delays of 6.75 and -60 seconds were
actually delayed 7 and 0 seconds.

DEX Function (Expunge)

Syntax:

V+OEX N

Parameters:

V is a namelist.

N is a simple integer vector.

11-8 OEK Funct i on (Expunge) CE38-04

Description:

The DEK function erases the user defined objects in namelist Nt except groups,
labels, and active, pendent or suspended functions. The explicit result is a logical
vector whose l'th item is 1 if the l'th name in N is now available for use (whether
or not it was erased). For non-names or distinguished names or any names not erased,
the result is 0.

Example:

A+C+O
DEK 4 Ip'AB7C'

1 1 0 1

In the above example, the result of DEK indicates that the first. second and fourth
names are now avai lable for use (they have no active use) and that the third name is
not.

DExe Function (Expunge Globals)

Syntax:

V+DEKC N

Parameters:

V is a namelist.

N is a simple integer vector.

Description:

Same as the DEK function except that only global referents are affected.

OF I Fun c t i- 0 n (Fix Input)

Syntax:

V+OFI T

Parameters:

T is a simple character scalar or vector.

V is a simple numeric vector.

CE38-04 OFI Function (Fix Input) 11-9

Description:

The OFI function returns a numeric vector containing the value of 01 I numeric
constants found in T that are delimited by blanks. ~on-blanks in T that are not
legal numbers are indicated by a zero value.

Example:

OFI '22 3K5 -100.5 1E999 1E6 0.0'
22 0 -100.5 0 1000000 0

Possible Errors:

A RANK ERR is reported if:

oTis not a character scalar or vector.

A DOMAIN ERR is reported if:

o T contains on item that is not a character scalar.

OGRP Function (Return Group Members)

Syntax:

N+OCRP G

Parameters:

G is a nome I ist containing the nome of a group in the active workspace.

N is a nome I ist.

Description:

The OGRP function returns a a namelist containing the names associated with the
group.

Example:

OCRP 'STAT_GROUP'
HEDIAN
MODE
REG

In this example, the nome STAT_GROUP represents on APL group containing the names
MEDIAN, HODE and REG.

11-10 OCRP CE38-04
Function (Return Group Members)

OIBEX Function (IBEX Expunge)

Syntax:

R+DIBEX N

Parameters:

N is a namelist containing the names of IBEX variables.

R is a simple integer vector.

Description:

The DIBEX system function is used to expunge IBEX variables. The right argument is a
namelist. the result is a simple logical vector containing 1 for every IBEX name that
is now available for re-use. or 0 for the corresponding name representing an
unavai lab~e name (il legal name).

Example:

DIBEX 'STATUS'

OIBLET Function

Syntax:

R+DIBLET T

R+T DIBLET T

Parameters:

(Set/Query IBEX Variable)

T is a simple character vector.

R is a simple character vector.

Description:

The DIBLET system function returns or sets the value of an IBEX variable. The right
argument is the text of the name of an IBEX variable and the left ar2ument when
present is the value to be assigned to that variable. Monadically. DIBLET returns
the value of the named variable. Dyadically. the left argument becomes the new value
of the variable.

This function can be useful when communicating with IBEX (outside of APL) or with
oth~r CP-6 programs. The left and right argument must be a scalar or vector or a
RANK ERR is reported. A LENGTH ERR is reported if the name in the right argument
contains more than 31 characters or if the length of the left argument is more than
511. A DOMAIN ERR is reported if either the left of right argument contains an item
which is not a character scalar. or if the right argument contains an il legal name.
An error is also reported if the monadic syntax is used and the named variable does
not currently have a value.

CE38-04 DIBLET 11-11
Function (Set/Query IBEX Variable)

Example:

'RATE=12,BALANCE~1246.42' DIBLET 'NAME'

DIBLET 'NAME'
RATE=12,BALANCE=1246.42

)!OUTPUT NAME
RATE=12,BALANCE=1246.42

OIBNL Function (IBEX Namelist)

Syntax:

R+DIBNL

Description:

The DIBNL system function is used to return the names of all of the IBEX variables
associated with this CP-6 session. The result is a simple character matrix with one
IBEX variable name in each row.

Example:

OIBNL
NAME
STATUS

OIDLOC Function

Syntax:

R+OIDLOC N

Parameters:

N is a namelist.

(Identifier Location)

R is a simple integer matrix having one row for each name in N.

Description:

The DIDLOC system function returns the local and global name classes for each of the
names in the namelist at each level in the state indicator. The result contains a
row whose length is l+p~C for each name. The name classes returned are:

-1 Not local at this level
0 Local but no value
1 Label
2 Variable
3 Function
4 Not Avai lable

11-12 DIDLOC CE38-04
Function (Identifier Location)

Example:

)SINL
F2[2] * e A
F[4] X R D B A

)VARS
A e

OIDLOe 'A BeD F'
2 3 2

-1 2 0
2 -1 2

-1 0 0
-1 -1 3

The first row of the result of OIDLOe contains the values 2 3 2 which indicate that
the name A is a global variable, a function local to the execution instance of the
function F and is a variable local to the function execution of F2. The second row
indicates that the name B has no global usage, it is a variable local to the
execution of F and is localized (but not yet used by) the execution of F2.

OLG Function

Syntax:

v+OLe

Parameters:

(Line Chain)

v is a simple integer vector.

Description:

The OLe function returns an integer vector whose length indicates the number of
entries in the state indicator and whose values are the line numbers of the functions
in execution or 0 for state entries that are not defined functions. The result is
ordered so that the most recently initiated function has the lowest index.

Example:

v F
[1] OLe
[2] l'OLe'

v

F
1
o 2

In this example. the function F displays two lines of output. The first line
displayed indicates that line 1 is in execution. The second line displayed indicates
that line 2 of F is in execution followed by a state entry that is not a defined
function (an execute state entry).

CE38-04 OLe Function (Line Chain) 11-13

OLaT Function (Logon Time)

Syntax:

l+OLGT

Parameters:

I is an integer scalar.

Description:

The OLGT function returns an integer scalar whose value is the number of milliseconds
that have elapsed between midnight and the time of day that APL was invoked.

Example:

o 60 60 1000T O+OLGT
45000250
12 30 0 250

In this example, APL was invoked at 12:30 PM.

ONe Function (Name CLassification)

Syntax:

K+ONe N

Parameters:

N is a namelist.

K is a simple integer vector.

Description:

The ONe function returns the type of object represented by each name in namelist N.
The l'th item of K corresponds to the l'th name in N. The value of each item of the
result is one of the fol lowing:

o a name without an active referent

a label

2 a variable

3 a function

4 other (distinguished name,
group name, or not a name.)

11-14 ONe
Function (Name Classification)

CE38-04

)

)

Example:

VFV
A+C+O
ONC 5 lp'AB7CF'

20423

In the above example, the result of ONC indicates that the first and fourth names (A
and C) are variables, the second name (B) has no current use. The third name is not
avai lable (actually 7 is not a legal name), and the fifth name (F> is a defined
function.

ONCG Function (Name Correspondence of GLobal)

Syntax:

K+ONCG N

Parameters:

N is a namelist.

K is a simple integer vector.

Description:

The same as ONC except only Global referents are examined.

ONL Function

Syntax:

N+ONL K

N+T ONL K

Parameters:

(NameList)

K is a simple integer scalar or vector.

N is a namelist.

T is a simple character scalar or vector.

Description:

For monadic ONL, K is a simple numeric integer scalar or simple numeric vector with
items containing the values 1,2, or 3. The result is a namelist whose rows
represent names whose active referents are of each of the indicated classes as
defined for ONC.

Dyadic OWL is the same as the monadic case, except that only names beginning with one
of the characters in T are included in the result.

CE38-04 OWL Function (Namelist) 11-15

Possible Errors:

A DOHAIN ERR is reported if:

o K contains an item that is not a simple integer value 1~ 2 or 3.

A RANK ERR is reported if:

o K is not a scalar or vector.

Example:

A+-AB+-C+-CX+-O
VAFUNCTIONV
vFUNCTIONv

[]NL 3
AFUNCTION
FUNCTION

'AB' []NL 2 3
A
AB
AFUNCTION

DONL Function

Syntax:

I+-DONL

Parameters:

(Online)

I is an integer scalar value.

Description:

The DONL function returns an integer scalar whose value is 1 if the current APL
session is in timesharing mode or 0 if the session is in batch processing mode.

This function al lows programs to determine whether to provide prompts for input or to
allow a timesharing user to make corrective actions in some situations and provide
default actions in batch.

Example:

DONL

11-16 DONL Function (Onl ine) CE38-04

OOVH Function

Syntax:

[+DOVH

Parameters:

(Overhead Time)

1 is an integer scalar.

Description:

The DOVH function returns an integer scalar containing the CPU execution time
overhead since entering APL. The time returned is in units of milliseconds.
Overhead time is defined as CPU time expended while executing within the CP-6
operating system and not while executing within the APL process.

Example:

DOVH 0 DOVH,DOVH,DOVH,DOVH
227
231 231 231 231

In this example. the first line of output indicates that 227 milliseconds of CPU time
of overhead have been used since entering APL. In the second line of output. the
overhead CPU time is constant since all four values are obtained without incurring
any monitor service time. The different values reflect the monitor processing
involved in writing the output to the terminal.

ORM Function (Room)

Syntax:

V+[JRH N

Parameters:

N is a namelist.

V is a simple integer vector.

Description:

The [JRH function returns an integer vector whose rtth value is equal to the number of
bytes of workspace occupied by the l'th name in N.

Example:

A
C
r

[JRH O+ON L 2 3

16 16 144

In this example, the name A occupies 16 bytes. C occupies 16 bytes, and r occupies
144 bytes of workspace. Expunging these names does not necessarily return that
amount of workspace because in CP-6 APL values can be shared with other names.

CE38-04 [JRH Function (Room) 11-17

ORMG Function (Global Room)

Syntax:

V+ORHG N

Parameters:

N is a namel ist.

V is a simple integer vector.

Description:

Like ORH except that the size in bytes is of the global referents of the names in N.

OSCT Function (Session Time)

Syntax:

I+OSCT

Parameters:

I is an integer scalar.

Description:

The OSCT function returns an integer scalar whose value is the number of milliseconds
that have elapsed since APL was invoked.

Example:

o 60 60 1000TO+OSCT
1625740
o 27 5 740

In this example, 27 minutes, 5 seconds, and 740 milliseconds have elapsed since APL
was invoked.

11-18 OSCT Function (Session Time) CE38-04

)

)

OS! Function (State Indicator)

Syntax:

X+OSI

Parameters:

X is a character vector.

Description:

The OSI function returns a character vector with the same contents as the display of
the)SI command. Carriage return characters are used to separate each line of the
state indicator display.

Example:

v F
[1] 1 + 1 A

V

1 OSTOP

F
F[11

)SI
F[1] *

~O+OSI
F[11 * 6

F
F[1]

)SI
F[11 * F[11 *

~O+OSI
F[11 * F[11 * 13

'F'

A LINE TO STOP ON

A STOP ON LINE

A SUSPEND F

A SUSPEND F AGAIN

In this example. the function F has been suspended by setting a stop on line 1. The
result of the OSI function contains the same information as displayed by the)SI
command.

CE38-04 OSI 11-19
Function (State Indicator)

OSITEID Function (Site 1D)

Syntax:

T+OSITEID

Description:

The OSITEID niladic function returns the site-id of the current CP-6 system as a 6
item character vector.

Example:

OSITEID
LX8001

DSITENAME Function

Syntax:

T+OSITENAHE

Description:

(Site Name)

The OS I TEN A HE niladic function returns the CP-6 site name as a character vector.

Example:

OSITENAHE
LADC L66A

OSTEPCC Function

Syntax:

OSTEPCC I

Parameters:

(Step Condition Codes)

I is a simple integer scalar.

Description:

The OSTEPCC function specifies the value for the step condition code when APL exits.
The last value specified will be used. This value may be interrogated in IBEX
statements that follow the execution of APL.

11-20 OSTEPCC CE38-04
Function (Step Condition Codes)

Example:

OSTEPCC 4

DSYSID Function (Sysid)

Syntax:

I+OSYSID

Parameters:

I is a simple integer scalar.

Description:

The OSYSID niladic function returns the sysid of the current CP-6 user as a scalar
integer. This number is used by the CP-6 system to identify output to devices (like
line printer output) and to schedule and run batch jobs.

Example:

OSYSID
38200

DTS Function

Syntax:

V+DTS

Parameters:

(Time Stamp)

V is a 7-item integer vector.

Description:

The DTS function returns a 7-item integer vector whose individual items are the
current year. month. day. hour. minute. second. and millisecond. The actual time
returned depends on the setting of the time in the CPU that CP-6 APL is running on.

Example:

DTS
1984 7 1 11 15 15 450

In this example. the current date and time is July 1. 1984 at 11:15 AM and 15.450
seconds.

CE38-04 DTS Function (Time Stamp) 11-21

OTT Function (Terminal Type)

Syntax:

[4oOTT

Parameters:

[is a simple integer scalar.

Description:

The OTT function returns an integer scalar whose value indicates the character set
that APL uses to output to the terminal (or home device). The value returned by this
function reflects the value determined when APL was invoked or the most recent value
specified by the)TERMINAL system command. The possible values for terminal type are
indicated by Table 11-2. When the output device is not capable of producing the full
APL character set, ASCII mnemonics (defined in Appendix B) are used to output those
characters which are not avai lable. The choice of the mnemonics used for output
depend upon whether the terminal type indicates support for lowercase and
overstrikes.

Table 11-2. CP-6 APL Terminal Types

Number Description

1 Full APL character set
2 ASCI I character set, upper case only
3 ASCI I character set. upper case only. overstrikes
4 ASCI I character set. upper and lower case
5 ASCII character set. upper and lower case, overstrikes

13 Full APL character set
14 Full APL character set

Example:

OTT

DUA Function (User Account)

Syntax:

T400UA

Parameters:

T is a simple character vector of length 8.

11-22 ouA Function (User Account) CE38-04

)

)

Description:

The OUA function returns a character vector containing the CP-6 account number under
which the APL user is logged in.

Example:

p[}+OUA
123TEST
8

OUL Function

Syntax:

I+OUL

Parameters:

(User Load)

I is a simple integer ~calar.

Description:

The OUL function returns an integer scalar indicating the number of users that are
currently using the CP-6 system.

Example:

OUL
115

OVI Function (Verify Input)

Syntax:

V+OVI T

Parameters:

T is a simple character scalar or vector.

V is a simple numeric vector.

Description:

The result has the same length as OFI T. Each item of V is either 1 meaning that the
corresponding item in OFI T is a valid representation of a number or 0 meaning that
the corresponding item of OFl T does not represent a number.

CE38-04 OVI Function (Verify Input) 11-23

Example:

I NPUT+ '22 3X5 -100.5 lE999 lE6 0.0'

OV I INPUT
o 1 0 1 1

(OVI INPUT)/OFI INPUT
22 -100.5 1000000 0

Possible Errors:

A RANK ERR is reported if:

oTis not a scalar or vector.

A DOHAIN ERR is reported if:

o T contains an item that is not a character scalar.

OVERSION Function (Version)

Syntax:

T+OVERSION

Description:

The OVERSION niladic function returns the current version of APL as a character
vector.

Example:

OVERS ION
DOO

OWA Function (Workspace AvaiLabLe)

Syntax:

I+[)J'A

Parameters:

I is an integer scalar.

Description:

The OWA function returns an integer scalar whose value indicates the number of unused
bytes in the active workspace. This space is available for the storage of data and
defined functions.

11-24 [)WA CE38-04
Function (Workspace Avai lable)

)

)

Example:

[JIA
1048360

DWSID Function

Syntax:

T+[JISID

Parameters:

(Workspace Identifier)

T is a character vector.

Description:

The [JISID function returns a character vector containing the name of the active
workspace.

Example:
~I

.: ,,[}+[JISID
CLEAR WS
8

)LOAD APLANAR.X
APLANAR SAVED 12:18 NOV 10 '84

,,[}+[JISID
APLANAR.X
9

Shared Variable System Functions

CP-6 APL provides the ability to share values between users of the system via the
shared variable facil ity. A variable may only be shared by two users although each
user can potentially share many (currently 16) variables. When a shared variable is
used, it is indistinguishable from any other variable. It may be assigned a value
and its value may be referenced. At any time, a shared variable has only one value.
that is, the last value assigned by one of the partners.

All variables (including shared variables) have a degree of coupling associated with
them which indicates the status of any shares associated with them. The degree of
coupling indicates whether a variable is shared or not shared. The degrees of
coupling are:

0. this name is not currently a shared va r i ab Ie

1. this name is a shared variable that has been offered but not yet accepted by
another user.

2. this name is a shared variable that has been offered and matched (accepted) by
another user.

The term processor is often used to describe each of the partners sharing a variable.
In this respect, each processor is identified by the account it is logged on to and
an optional string of 12 characters that enables multiple users logged onto the same
account to simultaneously use the shared variable faci lity (see OSVN). Using the
functions OSVQ or dyadic OSVO before a unique identification has been established
results in a NO SHARES error being reported.

CE38-04 Shared Variable System Functions 11-25

Namelists for the shared variable functions are slightly different than namelists
used with other system functions. For shared variable functions, a vector is treated
as a one row matrix. Each row of a shared variable function namelist may contain one
or two names. The first (or only) name in each row designates the name to use for
the shared variable in the active workspace. The second (or only) name in the ~ow
designates the name that is to be matched by the sharing process. This permits a
single shared variable user to share the name A with many processes where in fact
each instance of a share actually references a unique (different) name in the user's
workspace.

The fol lowing are the shared variable system functions.

DSVC Function

Syntax:

R+OSVC N

R+C OSVC N

Parameters:

N is a namelist.

(Shared Variable Controls)

R is a simple integer matrix of shape N-by-4.

C is a simple logical scalar, one-item vector, four-item vector or N-by-4 matrix.

Description:

For monadic OSVC, the explicit result is an array of shape «-1+pN),4) giving, in
each row, the current combined shared-variable access control vector for the
corresponding rows of N. For a row which does not denote the name of a variable with
a degree of coupling of at least one, zeros are given.

For dyadic OSVC, the effect is to set the access controls. The explicit result is an
array whose shape is «-1+pN),4) and whose value is the new combined shared variable
access control for the corresponding rows of N. The OSVC function adds the active
workspace contribution to the shared variable access control vector. Setting this
vector permits two separate processes to coordinate (or synchronize) their use of a
shared variable. The access control vector for a shared variable is a vector of four
items whose values are 0 or 1 to turn specific controls off or on.

When a process is blocked from accessing or setting a shared variable by the access
control vector, it wi I I wait until the variable's state has changed to an unblocked
state before proceeding with execution. The positions (in origin 1) of the access
control vector and their meanings are:

1. If 1, then once the shared variable's value has been set in the active workspace,
the partner (the other sharing process) must reference it before the variable can
be set again in the active workspace.

2. If 1, then once the shared variable's value has been set by the partner, the
active workspace must reference it before the partner can set the value again.

3. If 1, then once the shared variable's value has been referenced in the active
workspace, the partner must set a value before the active workspace can reference
it again.

4. If 1, then once the shared variable's value has been referenced by the partner,
-the active workspace must assign a value before the partner can reference it
again.

11-26 OSVC CE38-04
Function (Shared Variable Controls)

)
/

NOTE: Both sharing partners contributions are combined to obtain
the current settings of the access control vector.

Example:

OSVc 3 31J'BA BJ SO '
0 0 o 0
1 1 o 0
0 0 1 1

1 OSVC 3 31J'BA BJ SO '
0 0 0 0
1 1 1 1
1 1 1 1

0 o 1 1 OSVC 2 3p'BJ SO '
0 0 1
0 0 1

(2 41' 1 1 0 0 0 0 1 1) OSVC
1 1 0 0
0 0 1 1

OSVO Function

Syntax:

R+OSVO N

R+P OSVO N

Parameters:

N is a namelist.

(Shared

R is a simple integer vector.

2 3p'BJ SO '

VariabLe Offer)

P is a character scalar vector or matrix which identifies one or (X/-l+IJN)
accounts.

Description:

For monadic OSVO, the explicit result is a numeric vector giving the degree of
coupling for each row of N: 2 if shared; 1 if there is an unmatched offer to another
processor; 0 if not offered.

For each row of N, dyadic OSVO tenders an offer to the corresponding account if the
first (or only) name in that row was not previously offered and is not already in use
as the name of an object other than a variable. The expl icit result is a vector
giving the degree of coupling in effect after the offer for each name or pair. If a
second name is used, the second name (surrogate name) is used only for matching
offers. An empty vector P is used to denote a general offer: an offer to share a
variable with any account whose offer otherwise matches.

The left argument must be a vector of length 0 through 20 or an N--by-20 matrix of
processor identifications. The first 8 characters of a processor identification is
the logon account and the remaining 12 characters are the name specified in the right
argument of OSVN.

CE38-04 OSVO 11-27
Function (Shared Variable Offer)

Examples:

OSVO 2 3p'A B C
0 0

'905APL' OSVO 2 3p'A B C

OSVO 'A'

OSVO 'A X'
0

OSVO 'A B'

The above example demonstrates the offer of two variables (A and C) to account
90SAPL. Account 90SAPL would see the offers of names Band C from this account.

Possible Errors:

A DOHAIN ERR is reported if:

o a row of N contains other than one or two variable names.

A.SV QUOTA EXHAUSTED is reported if:

o more offers were made than the quota allotted by the system.

A LENGTH ERR is reported if:

o a processor identification has more than 20 characters.

o the number of processor identifications is not equal to 1 or the number of names
be i ng off e red.

DSVQ Function (Shared Variable Query)

Syntax:

R+OSVQ P

Parameters:

P is a character scalar or vector.

R is a simple character matrix.

Description:

When P is non-empty, the result is a character matrix of names offered by account P
to this user, either explicitly or generally, but not currently shared. If P is an
empty vector, the result is a vector which identifies any accounts with unmatched
offers to share variables with this user.

11-28 OSVQ CE38-04
Function (Shared Variable Query)

)

Example:

OSVQ "
905APL ARES
ERSTEST

~ WHO IS OFFERING US SOHETHING

In this example, two accounts are found to be offering the current APL user variables
to share. In the following example. the shares offered by account 905APL are matched
using OSVO.

P+OSVQ "
P

905APL ARES
ERSTEST

STATUS
DATA

2 2

N+OSVQ P[1;]
N

P[l;l OSVO N

DSVR Function

Syntax:

R+OSVR N

Parameters:

N is a namelist.

(Shared Variable Retract)

R is a simple integer vector.

Description:

Ends sharing of any variables named in N. The result is the degree of coupling before
retraction (compare OSVO, above). This function may cause a WS FULL error to occur
obtaining the current value of the names being retracted.

Examples:

OSVO 'A' ~ PRINT 2 IF A IS SHARED.
2

OSVR 'A'
2

OSVR 'A' ~ IT IS NOT SHARED NOW.
0

CE38-04 OSVR 11-29
Function (Shared Variable Retract)

DSVS Function (Shared Variable State)

Syntax:

R+OSVS N

Parameters:

N is a namelist.

R is a simple integer matrix of shape N-by-4.

Description:

The result is a numeric array of shape ((-1.~N),4) giving in each row the current
shared variable state matrix for the names in N. For variables that are not currently
shared their state is given as all zeros.

Each row of the result of OSVS has four possible values:

0 0 0 0 this is not a shared variable

0 0 value set by one processor and has been
referenced by the other.

0 0 value set by partner, but not yet referenced
in the active workspace.

0 0 value set in active workspace, but not yet
referenced by the partner.

Example:

OSVS IAI

001 1
A+5

OSVS IAI

1 0 1 0

DSVN Function (Shared Variable Process Name)

Syntax:

/+OSVN T

Parameters:

T is a simple character scalar or vector.

/ is the simple integer scalar containing the value 0 or 1.

11-30 OSVN CE38-04
Function (Shared Variable Process Name)

)

)

Description:

If shared variables are to be used by multiple users on the same CP-6 account, then
this function permits each user to uniquely identify their own process. T is a
vector of up to twelve characters. If a unique identifier is establ ished the result
is 1. If there are currently any shares offered by this process or if the value
specified in T does not create a unique identifier, the result is o. If successful,
this process is uniquely identified by the eight character CP-6 account followed by
12+T.

Example:

OSVN 'BRUCE'

"OSVO 'A'

OSVN 'HE'
o

In the example above, the second execution of OSVN returned e because a name (A) was
currently shared.

Possible Errors:

A SV QUOTA EXHAUSTED error is reported if:

o an attempt is made to use shared variables before establishing a unique
identifier (the default is blanks).

osc Function

Syntax:

[+OSC

Description:

(State Change)

The osc function causes execution of the current line to halt until the state of one
of this processes shared variables changes or an explicit offer is made to this
process. The result is 1 if a unique processor identifier exists and zero if one
does not.

Text Editing System Functions

CP-6 APL provides six text editing functions which facilitate the examination and
modification of character vectors.

CE38-04 Text Editing System Functions 11-31

OTIX Function (Text Index>

Syntax:

R+OTIX T SDV TDV DDV

Parameters:

T must be a simple character vector containing the string to tokenize.

SDV must be a simple character scalar or vector defining those characters that
are token separators.

TDV must be a simple character scalar or vector defining those characters that
are single character tokens and token separators.

DDV must be a simple character vector defining those character pairs that create
delimited character strings.

R is an N-by-2 integer matrix containing starting positions in the first column
and lengths in the second column.

Description:

The OTrX function returns an integer matrix of N rows and 2 columns. The first
column contains the starting index of each token in T. The second column contains the
corresponding length of each token in T.

The definition.of a token in T is governed by the arguments SDV, TDV, and DDV. The
SDV items are token separators and are never tokens themselves (for example. blanks
are skipped this way). The TDV items are token separators and are also single
character tokens themselves (like + is in APL). The DDV items are token separators
and also create a delimited token (like quote strings in APL). Finally. characters
not appearing in SDV. TDV. and DDV are a single token when occurring consecutively
(like identifiers in APL).

The scan of T starts at the first index position and continues until a character from
the SDV. TDV, and DDV vectors is found or the last index position of T has been
examined. The order of evaluation is as follows:

o Characters in T which occur in the SDV vector are simply skipped over when they
are encountered.

o When the character encountered is not in the SDV, DDV, or TDV vectors. the vector
T is scanned from this point until a character in one of those vectors is found.
A new row is added to the result indicating the position of the first character
not in SDV, TDV. or DDV and whose length includes the characters up to but not
including the character found that are in SDV, TDV, or DDV.

o When the character encountered is in the TDV set. a token is added that indicates
the character in TDV that was encountered.

o When the character encountered is in the DDV set. a del imited string token is
added to the result. The delimited string is defined by treating the DDV vector
as an N by 2 matrix and using the first character in each row as a delimited
string starter and the corresponding second character in the same row as the
terminator. If the delimited string starter and terminator are the same
character. it may appear within the string by doubling it. All characters
between the string start and end are treated as a single token.

If the delimited string starter and terminator are separate characters. the first
terminator character found terminates the delimited string.

o The scan of the vector T continues. searching for characters in the SDV. DDV, and
TDV sets unti I the last index of the vector T is scanned.

11-32 oTIX Function (Text Index) CE38-04

DDV need not be specified if empty. and DDV and TDV need not be specified if both are
empty.

Examples:

The fol lowing examples use the LIST function to display the tokens returned by the
OTIX function. It works only in origin 1 and displays one token per row with the" ..
character indicating characters which are not part of the actual token.

VR+-A LIST B;J;K
(1) R+-('.'.A)[l+(B[;1)o.+J)XKo.>J+--1+trIK+-B[;2))

V

The first example demonstrates using blanks and commas as delimiters which are not
themselves del imiters.

THIS
IS ..
A •••
TEST

L LIST OTIX (L+-'THIS IS A.TEST')

The next example demonstrates using a dieresis character to indicate a delimited
string.

L LIST OTIX (L+-'THIS IS "A TEST····S··H/OW.4') " " , ,
THIS
IS
"A TEST····S··
+WOW.4

Notice that in the above example. the dieresis is doubled within the token to
continue the production of the token. The fol lowing example demonstrates using token
separators which are tokens themselves.

L LIST OTIX (L+-'THIS IS "A TEST .. ··S .. +WOW,4') " '+. ' , ,
THIS
IS
"A TEST····S ..
+ ••.•...•••
WOW
,
4 ••••••••••

In the above example. + and. are token separators and appear as tokens. The
character" is a delimited token character in the above example.

Possible Errors:

A DOHAIN ERR is reported if:

o a terminating character cannot be found in the T string.
o a DDV or TDV character appears more than once in SDV. DDV or TDV vectors.
o a delimited string terminating character is found that is not within a delimited

string.
o T. SDV. TDV. or DDV contains any item that is not a simple character scalar.

A RANK ERR is reported if:

o SDV or TDV is not a scalar or vector.
o T or DDV are not vectors.

A LENGTH ERR is reported if:

o the length of DDV is not a multiple of 2.
o the right argument to OTIX contains more than 4 items or fewer than two items.

CE38-04 OTIX Function (Text Index) 11-33

OTLEX Function (Text Lexemes)

Syntax:

R+OTLEX T SDV TDV DDV

Parameters:

T is a simple character vector containing the string to tokenize.

SDV is a simple character scalar or vector defining the token separator
characters.

TDV is a simple character scalar or vector defining the single character tokens.

DDV is a simple character vector defining the character pai rs that create
delimited tokens.

R is a vector of character vectors.

Description:

This function tokenizes the string T. returning a vector where each item was a token
found in T. The tokenization uses the same method as the OTIX function.

Example:

p O+OTLEX 'THIS IS A TEST' "
THIS IS A TEST
4

p O+OTLEX 'TOMATOES=FRUIT,SALMON ARE FISHY'
TOMATOES FRUIT SALMON ARE FISHY
7

osss Function (Substring Search)

Syntax:

R+OSSS T SS
R+OSSS T ss FeOL
R+OSSS T SS FeOL LeOL

Parameters:

T is a simple character vector.

SS is a simple character vector.

R is a simple i ntege r vector.

FeOL is a simple integer scalar

LeOL is a simple integer scalar

11-34

index of T.

index of T.

OSSS

, ,

Function (Substring Search)

'=, '

CE38-04

)

Description:

The result is a vector of the starting indices in T of each non-overlapping
occurrence of SS. If the string SS does not occur in T then the result is an empty
vector.

FeOL and LeOL frame the indices of T to be searched for occurrences of SS. FeOL is
the first index of T and LeOL is the last index of T that wi I I be searched for an
occurrence of SS. When not specified FeOL defaults to 010 and LeOL defaults to
(pT)-1+oI0.

Examples:

TV is a vector of length 100.

R+OSSS TV 'BOB' provides the starting indices of al I occurrences of 'BOB' in TV.

R+OSSS TV 'BOB' 30 provides the starting indices of 'BOB' in TV from TV[30] to the
end of TV.

R+OSSS TV 'BOB' 30 SO provides the starting indices of al I occurrences of 'BOB' in TV
from TV[30] to TV[SO).

The result R, reOL and LeOL are origin dependent.

Possible Errors:

A DOMAIN ERR is reported if:

o the right argument is not a 2,3, or 4 item list.
o T or SS is not a character scalar or vector.
o reOL or LeOL are not integer indices.

A LENGTH ERR is reported if:

o FeOL or LeOL are not scalars or one-item vectors.

An INDEX ERR is reported if:

o reOL or LeOL are not valid indices of T.

OSSR Function (String Search and Replace)

Syntax:

T SS RS R+OSSR
R+OSSR
R+OSSR

T SS RS reOL
T SS RS reOL LeOL

Parameters:

T is a character vector.

RS is a character vector.

SS is a character vector.

R is a character vector.

FeOL is a simple integer scalar index of T.

LeOL is a simple integer scalar index of T.

CE38-04 OSSR·
Function (String Search and Replace)

11-35

Description:

The result is a character vector like T except that al I non-overlapping occurrences
of SS are replaced by RS. FCOL and LCOL indicate the range of indices of T subject
to replacement. That is. only occurrences of SS in the range FCOL+tLCOL-FCOL are .
replaced.

Examples:

TV is a character vector containing names separated by blanks.

R+OSSS TV ' , OAV[13+0IOJ replaces all blanks with carriage returns.

R+OSSS TV ' , OAV[13+0IOJ 20 replaces blanks from TV[20J to the end with carriage
returns.

R+OSSR TV ' , OAV[13+0IOJ 20 30 replaces blanks from TV[20J through TV[30J with
carriage returns.

R+OSSR TV 'BOB' 'ROBERT' replaces al I occurrences of 'BOB' with 'ROBERT'.

R+OSSR TV 'PIERRE' " removes al I occurrences of 'PIERRE' from TV.

OSRP Function (Substring Replace)

Syntax:

R+OSRP T RS FCOL LCOL

Parameters:

T is a character vector.

RS is a character scalar or vector.

FCOL is an index of T.

LCOL is an index of T.

R is a character vector.

Description:

The result is a character vector like T with the location T[LCOLJ through T[LCOLJ
replaced by RS.

Examples:

11-36

010+1

TV+'THE PRICE OF PRODUCT-NAME IS'

RS+'WHEATIES'

R+OSRP TV RS 14 25

R
THE PRICE OF WHEATIES IS

OSRP
Function (Substring Replace)

CE38-04

Possible Errors:

A DOHAIN ERR is reported if:

o the right argument is not a four item list.
oTis not a character vector.
o RS is not a character vector or scalar.
o LCOL or rCOL are not numeric scalars or 1-item vectors.

An INDEX ERR is reported if:

o rCOL>LCOL or if rCOL or LCOL are not valid indices of T.

DSCP Function (String Compare)

Syntax:

R+OSCP (A;B)

Parameters:

A is a character vector.

B is a character vector.

Description:

The OSCP function returns a two item numeric vector, the first item of which is 0 if
A is equal to B, or 1 if A is greater than B, or 2 if A is less than B. The second
item of the result is the first index in A that A[R[2))~B[R[2)) or if A is equal to
B, then R[2)+-1. If A is longer than B and every item of B is equal to every item of
A, then R+2 -1.

Possible Errors:

A DOHAIN ERR is reported if:

o the right argument is not a two item list.
o A or B is not a character vector.

Terminal 110 System Functions

These system functions return information about or control a terminal session.

CE38-04 Terminal I/O System Functions 11-37

OTIN Function (TerminaL Input)

Syntax:

I OTIN T

Parameters:

T is a simple character vector or scalar.

I is a simple integer scalar.

Description:

The right argument must be a character vector which replaces the current terminal
re-read I ine. If the opt ional left argument is present when the re-read I ine is
recal led, the value of the left argument is used as the column to position to.

OTATTR Function (TerminaL Attributes)

Syntax:

V+OTATTR

Description:

The OTATTR function returns a simple integer vector containing terminal status
information. The vector may in a future release be extended to contain additional
information. Currently the vector contains:

1 line speed (CPS)
2 Parity (even=2, odd=1, none=0, one=3, zero=4)
3 Dial-up/hardwired/foreign net (0=dial-up, 1=hardwire, 2=NET)
4 Normal/multi-drop (0=normal, 1=multi)
5 Character set (0=ASCII, 1=bit paired, 2=type paired)
6 lowercase=1
7 Screen width (Characters)
8 Screen height (I ines)
9 Blank erases (1=yes, 0=no, 2=not applicable)

10 Scroll (0=no, 1=yes)
11 Wrap (0=no, 1=yes)
12 Retypovr (0=no, 1=yes)
13 Edi tovr (0=no, 1-1e8)
14 Echo (0=no, 1=yes)

11-38 OTATTR
Function (Terminal Attributes)

CE38-04

)

)

OTTIME Function (TerminaL Timeout)

Syntax:

OTTIHE N

Parameters:

N is a simple integer scalar.

Description:

The OTTIHE function sets the timeout period in seconds for terminal reads. After a
terminal read is issued, the terminal user must complete input in N seconds or an I/O
error wi I I be reported. The I/O error is, of course, sidetrackable. The read
timeout may be reset by setting the timeout value to o.

OTECHO Function (TerminaL Echo)

Syntax:

OTECHO L

Parameters:

L is the simple integer scalar value 0 or 1.

Description:

If L is zero, then terminal reads wil I not echo. If L is one, then characters typed
at the terminal wi I I echo.

OTSQZ Function (TerminaL Mnemonic TransLation)

Syntax:

R+I OTSQZ V

Parameters:

I is the simple numeric value 0 or 1.

V must be a simple character scalar or vector.

R is a simple character vector.

CE38-04 OTSQZ 11-39
Function (Terminal Mnemonic Translation)

Description:

If the value of the left argument is 1 then the result of this function is a
character vector containing the text in the right argument translated into internal
APL text. This function resolves al I valid overstrikes and mnemonics into single
characters.

If the value of the left argument is 0, then the result of this function is a
character vector containing the text in the right argument translated into external
ASCII suitable for bl ind output. This function generates mnemonics for the internal
APL characters that are not representable with the currently set terminal type.

This function is designed to aid in the use of blind I/O and APL characters with
bl ind I/O.

OTWINDOW Function (Terminal Windows)

Syntax:

H+OTWINDOW

Parameters:

H is a matrix of shape N-by-8 containing information about each of the currently
defined logical devices that refer to the terminal.

Description:

The result of the OTWINDOW function is a matrix which has one row for each logical
device that refers to a terminal (device UC). The information returned indicates the
positioning and size of each window associated with the device, and whether or not
the window can be used to create another window.

Table 11-3 summarizes the contents of the result matrix. Note: A future release of
CP-6 APL may return additional information by adding trai ling columns to the result
of this function.

The logical terminal devices 1, 98, and 99 always start a session referring to the
same window. The system command)!LDEV may be used to create additional logical
devices or to modify the definitions of existing devices. The)SET command may be
used to direct APL input/output or bl ind I/O to any logical device. IBEX LDEV
command options include the ability to specify a window size and position relative to
the window being used to create the new window.

Column

2

3

4

5

11-40

Table 11-3. Window Column Descriptions

Description

Contains the logical device number. For
example, if this value is 98, then the remaining
columns of this row describe the device UC98.

Contains the line number on the screen of
the top I ine of the window. The top-most line on the
screenis1.

Contains the column number on the screen
of the left side of the window. The left-most column
on the screen is 1.

Contains the number of lines in the window.

Contains the width of the window.

OTWINDOW
Function (Terminal Windows)

CE38-04

Table 11-3. Window Column Descriptions (cont.)

Column Description

6 Contains the minimum number of lines that
must be avai lable for this window. This value I imi ts
the number of lines that may be taken from this window
to form a new window.

7 Contains the minimum width that must be
ava i I ab Ie for this window. This value I imi ts the
number of columns that may be taken from this window
to form a new window.

8 Contains either the value 0 indicating that the window is
removable, or the value 1 indicating that the window is
not removable.

Example:

pZ+OTWINDOW
4 8

Z
98 13 1 12 80 0 o 0

1 13 1 12 80 0 o 0
99 7 1 6 80 0 o 0

5 1 1 6 80 0 o 0

In the preceding example, the APL session has 4 logical devices known as UC98. UC01.
UC99 and UC05. Logical devices 1 and 98 share the same window on the screen,
beginning at row 13. column 1. The window is 12 lines long and 80 columns wide. have
no minimum length or width, and are removable.

CE38-04 OTWINDOW
Function (Terminal Windows)

11-41

)
Section 12

CP-6 APL File 1/0

CP-6 APL provides access to al I CP-6 file types. Records within these fi les can be
read or written as non-APL records, APL datablock records, or APL component records.

APL datablock records are read and written along with the data type, rank, and
dimensions. This permits arrays to be written to a fi Ie and later read back as the
same array.

APL component records (the default) are read and written with the data type, ronk,
dimensions, timestamp, and account identifier of the user that wrote the record. In
addition to the capabi I ity associated with datablock records, there is a system
function which operates on this record format to obtain the component information
(timestamp and account identifier). Figure 12-1 shows the component record format
used by APL.

A datablock record has simi lar format except that the first nine words of the
component record format are omitted.

Non-APL records are typically files created by other CP-6 programs. Non-APL records
may be read or written in a number of ways. The easiest method is to treat the
record contents as a simple character vector when reading and writing the raveled
data. This form excludes APL's internal type, rank, and shape information. Using
this mode, datatype conversions are the programmer's responsibi lity. Other functions
(such as OCVT and I) are avai lable to aid in the datatype conversions.

The APL fi Ie I/O record types and descriptions are summarized in Table 12-1. The
record type numbers indicated in this table are used to indicate the type of record
to read or write.

When records are read or written, an encryption seed may be specified to protect the
data in the fi Ie. If the wrong seed is provided on a read of a component or
datablock record, APL informs the user that this is NOT AN APL FILE. If a non-APL
record is read with an incorrect seed, the data returned is an encrypted version of
the actual data.

Records within a file can be accessed (read or written) sequentially or by record
identifier. The record identifier can be specified as an integer number in the range
1 through 134217726 or as a character vector of 1 to 255 characters. Record numbers
need not be contiguous; record number 3 can be fol lowed by record number 10099. New
records can be inserted in the future and existing records may be deleted (or
dropped).

Up to 31 files can be accessed simultaneously. Each fi Ie is known to APL by its
stream number which is specified when opening (or tying) the fi Ie. stream numbers
are integer values in the range 1 through 34359738367. Once a file is opened, it
remains open unti I it is closed using one of the functions OFCLOSE. OFCLEAR, OFERASE
or unti I the APL session ends.

A file stream is not affected by changing the active workspace. In particular the
system commands)LOAD and)CLEAR have no effect upon the fi les which have been
opened.

CE38-04 CP-6 APL File I/O 12-1

Word

o DATE (6 chars)

I UNUSED

2 TIME (8 chars)

4 ACCOUNT (8 chars)

6 USER NAME
12 CHARACTERS

9 TYPE I RANK I SIZE IN WORDS

10 UNUSED

11 DIMENSIONS (if any)

DATA (if any)

Figure 12-1. Fi Ie I/O Component Record Format

CP-6 file management provides access controls to prevent unauthorized file access.
Each file may be passworded and various levels of access are possible once the file
is open. For example, READ access permits accounts to be specified that may only
read records, WNEW access permits accounts to write new records, UPDATE al lows
accounts to replace existing records. For more information on file access see the
OFSTAC and OFRDAC functions.

When CP-6 fi les are created, the system al locates an initial extent and as the file
space is used up, the CP-6 system automatically extends the file until the file space
I imit for the account or packset is used up. Thus, in CP-6 APL there is little need
to worry about fi Ie size when allocating fi les.

By default, APL users create keyed files, that is, files whose individual records are
identified by a one to 255 item character vector. However, file access within APL is
not restricted to this fi Ie type. Indexed files (most commonly created by COBOL),
rei a t i ve f i I e s , i n d ex e d- rei a t ion a I f i I e s, ran d om f i I e s, un i t r e cor d f i I e s, fix e d
files, and consecutive fi les are al I accessible from APL. Each of these files have
different capabilities (for more information see the CP-6 Host Monitor Services
Reference Manual (CE74».

Table 12-1. Fi Ie I/O Record Types

TYJ?e Description

1 Component record. The record includes the APL datatype,
rank, shape, date, time, account, user name and data
in ravel order (default).

2 Datablock record. The record includes the APL datatype, rank,
shape and data in ravel order.

3 Data record. Only the actual data is read or written. Reading
always returns a character vector.

4 Record field description. If the file was created with a record
field description, this is used to read or write the record. The
data read or written is always a vector (possibly nested).

12-2 CP-6 APL File I/O CE38-04

File Information Functions

The functions in this group provide information about the files that are currently
being accessed.

DFNUMS Function (Numbers of Open Files)

Syntax:

R~OFNUHS

Description:

The OFNUHS niladic function returns an integer vector containing the stream numbers
for the files currently open.

Examples:

OFNUHS
1 314159

DFNAMS Function

Syntax:

R~OFNAHS

Description:

(Names of Open Files)

The OFNAHS ni ladic function returns a character matrix showing the names of files
currently open.

Example:

OFNAHS
*TEST
TIHING

CE38-04 OFNAHS 12-3
Function (Names of Open Files)

OF I D Fun c t ion I (F ; leI den t i fie r)

Syntax:

DrID Y

Parameters:

Y is a simple integer scalar indicating a file I/O stream that is currently open.

Description:

The DrID system function returns the CP-6 file identifier for the file I/O stream
specified.

Example:

DrID
*TEST

DrID 314159
TIHINGS.TESTAPL

DrID·· 1 314159
*TEST TIHINGS.TESTAPL

Opening. Closing. and Deleting Files

The file functions in this group are used to initiate and terminate access to files.

oFOPEN Function (Open File)

Syntax:

X DrOPEN T

Parameters:

T is a simple integer scalar indicating an available file I/O stream.

X is a simple character vector indicating the name of the file to open or a vector
of nested arrays containing a simple text vector indicating the name of the file to
open. and optionally a file access matrix. a record field matrix. and a key
definition matrix.

12-4 orOPEN Function (Open File) CE38-04

Description:

The OFOPEN system function is used to initiate file access through a stream. The
left argument is the file identifier and the right argument is the stream number to
be associated with this file. The number used for the stream number must be an
integer and not currently in use as a stream number.

If the left argument is a simple character vector containing a CP-6 fi Ie identifier,
that fi Ie is opened for reading only. In order to create, update, or share a fi Ie,
options are specified in the left argument fol lowing the FlO and separated by commas.
The options and their meanings are provided in Table 12-2.

Option

UPDATE
*IN

CREATE

OLDFILE
*NEWFI LE

ERROR

ALL
*NONE

SHAREIN

CTG

SCRATCH
* NAMED

CONSEC
*KEYED

RANDOM
UR
RELATIVE
INDEXED
CG
IREL

*DIRECT
SEQUEN

LOAD

COMP

REASSIGN

Table 12-2. File Open Options

Meaning

Opens fi Ie so records can be read and written.
Opens file for reading only.
Creates a fi Ie.

For create, if file already exists use it.
For create, even if fi Ie already exists create new file.
For create, if fi Ie al ready exists report error.

Share fi Ie (multiple updaters).
If UPDATE, file open is for exclusive use.
If IN, fi Ie open shares with other readers only.
Only readers can share fi Ie.

For create, catalogues fi Ie in directory upon open.

Fi Ie is not permanent.
Fi Ie is permanent.

For create, specifies
For create, speci f i es
For create, speci f i es
For create, specifies
For create, specifies
For create, specifies
For create, speci f i es
For create, speci f i es

organization of new f i Ie.
organization of new f i Ie.
organization of new f i Ie.
organization of new f i Ie.
organization of new f i Ie.
organization of new file.
organization of new f i Ie.
organization of new f i Ie.

For create of alternate index fi Ie, build indices
on fi Ie close.

CP-6 file management wi I I compress records.

Uses IBEX ISET F$tie for additional options.

*denotes defaults

If one of the option fields is not a valid option and is exactly two characters in
length, it is used as the file type. Additional information on the meanings of these
options can be found in the CP-6 Host Monitor Services Reference Manual (CE74).

The left argument of the OFOPEN system function may also be a vector of nested arrays
which permits the specification of file access controls, record-field definitions,
and alternate key definitions. The topic named Specialized File Options (later in
this section) contains information on this usage.

CE38-04 OFOPEN Function (Open File) 12-5

Examples:

'TEHP' OFOPEN 1

'COHHON.HISACCT,UPDATE,ALL' OFOPEN 99

APLSTUFF,D~,CREATE,ERROR,CTC'OFOPEN 1234

'DP~PACK3/'HrSTUFF,UPDATE'OFOPEN 31415926

OFCLOSE Function

Syntax:

OFCLOSE TV

FID OFCLOSE r

Parameters:

(Closing and Renaming Files)

TV is a simple integer vector indicating file I/O streams that are currently open.

r is a simple integer scalar indicating a fi Ie I/O stream that is currently open.

FID is a simple character vector indicating the new name or new password by which
this file will be known.

Description:

The OFCLOSE function closes the specified streams. For monadic OFCLOSE, the right
argument is a scalar or vector of stream numbers.

A fi Ie's name can be changed at closing time using dyadic OFCLOSE. The right argument
is the stream number. The left argument is the new fi Ie identifier.

Renaming a fi Ie requires DELF access in the fi Ie's access controls. The file's name.
password, or both may be changed. The fi Ie's access controls (see Fi Ie Access
Controls) may also be modified at close time by specifying an access control matrix
as the left argument. In general, the left argument to OFCLOSE may contain a fid,
access control matrix or a nested vector containing both a fid and an access control
matrix.

Example:

OFNUHS
99 1234 31415926

OFCLOSE 1234 99

OFNUHS
31415926

12-6 OFCLOSE CE38-04
Function (Closing and Renaming Files)

)

OFERASE Function (Close and Delete File)

Syntax:

[]FERASE TV

Parameters:

TV is a simple integer vector indicating fi Ie I/O streams that are currently open.

Description:

The []FERASE function closes the specified streams and deletes the fi les that were
opened to them. The right argument is a scalar or vector of stream numbers. Note
that once a stream has been closed, referencing it before opening it once again will
result in a FILE TIE ERR.

Example:

OFNUHS
99 1234 31415926

OFERASE 1234

OFNUHS
99 31415926

OFCLEAR Function

Syntax:

[]FCLEAR

Description:

(CLose All Open Files)

The OFCLEAR system function causes al I currently open streams to be closed. It is
functionally equivalent to the expression:

[]FCLOSE []FNUHS

CE38-04 []FCLEAR 12-7
Function (Close AI I Open Files)

Reading and Writing Records

The functions in this group provide access to records within the fi Ie. Records may
be accessed either sequentially or directly by specifying record number or key. The
absence of the record number or key is used to indicate a sequential operation.

OFAPPEND Function (Append Record to File)

Syntax:

R+X OFAPPENDR Y

X OFAPPEND Y

Parameters:

X is the APL array that is to be written (appended) to the fi Ie.

Y is a vector of up to 3 items. The first item must be a simple integer scalar
indicating a file I/O stream that is currently open. The optional second item is a
simple integer encryption seed (or a 4-element character vector). The optional third
item is a simple integer scalar record type number as described in Table 12-1 (or a
record field matrix).

R is the key of the record that was appended.

Description:

The OFAPPEND function writes the data object to the file at the position of the last
record in the file plus the key interval of the file. The key interval can be set or
obtained by using the OFKEYINT function. The key interval for files other than keyed
fi les is always 1. The fi Ie must have been open in UPDATE or CREATE mode.

The right argument consists of the stream number. the optional encryption seed. and
the optional type of record to be written. Only the stream number is required. If
the encryption seed is zero or not present then the record wi I I not be encrypted. If
the third item of the right argument is omitted or 1. then an APL component record is
written. If it is 2. then an APL datablock is written. If it is 3. then the ravel
of the data is written. Finally. if it is 4. the record field description associated
with the file is used to format the record before writing. The left argument is any
APL array.

OFAPPENDR is identical in operation to OFAPPEND. and additionally returns the numeric
key of the record written.

Examples:

'FAR OUT' OFAPPENDR 31415926

'EXTERNAL RECORD TYPE' OFAPPEND 0 3

'ENCRYPTED RECORD' OFAPPEND 1 99B

12-8 OFAPPEND
Function (Append Record to File)

CE38-04

OFREAD Function (Read a Record)

Syntax:

R+OFREAD Y

Parameters:

Y is a vector of 1 to 4 items in length (stream, key, seed, type).

R is the contents of the requested record.

Description:

The OFREAD function is used to read records. The right argument contains the stream
number and optionally the record number or key, the encryption seed and the record
type. If the key is a character vector, the argument must be 0 nested array with the
key as the second item. If the key is an empty vector, then a sequential read is
performed. If a record with the specified key does not exist or if a sequential read
reaches the end of the f,i Ie, FILE INDEX ERR is reported.

As in OFAPPEND, the encryption seed can be non-zero to request encryption and record
types 1 (the default), 2, 3, or 4 may be requested. The result is the record with
the specified key or the next sequential record if READ access permission has been
granted.

Reading when a record type of 3 is specified always results in a character vector
result.

Examples:

OFREAD 31415926
FAR OUT

OFREAD 1 2 0 3
EXTERNAL RECORD TYPE

OFREAD 1 3 998
ENCRYPTED RECORD

OFREAD 1 'TEXTKEY'
RECORD WITH TEXT KEY

Reading Sequentially

A sequential read may be performed by not specifying a key. For example:

OFREAD 5

where 5 is the stream number in this case. In order to read a non-APL file
sequentially the fol lowing expression is used:

OFREAD 9" 0 3

where 9 is the stream number in this example.

CE38-04 OFREAD
Function (Read a Record)

12-9

DFWRITE Function (Write or Replace a Record)

Syntax:

X OfWRITE Y

Parameters:

Y is a vector of 1 to 4 items in length (stream. key. seed. type).

X is the APL array that is to be written to the fi Ie.

Description:

The OfWRITE system function causes a record to be written (new or replaced) in the
file with the specified key ..

The right argument contains the stream number and optionally a record number or key.
an encryption seed and a record type.

If the record identifier is a character key. the right argument must be a nested
array with the key as the ~econd item. If the key is not specified and this is not
an indexed or irel fi Ie. then the record last read by this stream is replaced.

A non-zero value for the encryption seed wil I cause the record to be encrypted before
writing it. The same encryption key must be used to subsequently read it.

The record type is 1 for a component record. 2 for a datablock record. 3 for an
external record. and 4 for the file's record field definition.

The file must have been opened with either the UPDATE or CREATE options and WNEW or
UPDATE permission must be granted.

Examples:

'REPLACEMENT' OfWRITE 31415926 1

'TEXT KEY' OfWRITE 'OJ SIMPSON' 27165

'EXTERNAL WRITE' QrwRITE 3330 0 3

DFDROP Function (Delete Record from File)

Syntax:

OFDROP Y

Parameters:

Y is a vector of length 2 (stream. key).

12-10 OFDROP CE38-04
Function (Delete Record from File)

Description:

The OFDROP system function deletes specific records from a file. The right argument
identifies the stream and the record number or key of the record to delete.

Examples:

OFDROP 2

deletes record number 2. The file must be opened in either UPDATE or CREATE mode to
use this function and DELR access permission must be granted.

DFRDC[Function (Return Component Information)

Syntax:

R+OF'RDCI Y

Parameters:

Y is a 1, 2, or 3 item vector (stream, key, seed).

R is a simple character vector of length 36.

Description:

The OF'RDCI function returns a character vector of 36 items containing the date in the
format YYMMDD (e.g., 841030) in the first six items, the time in the format HHMMSSSS
(e.g., 12300000 for 12:30 PM) after the blank fol lowing the date. The remaining
characters are the account and user name fields (see Figure 12-1).

The right argument is the same as for OF'READ except that the record type is not
specified (this function only works on component records).

If the record was not written as a component record, then the error NOT AN APL FILE
is reported. For example:

OF'RDC I 1 2
840922 16410818MAGAPL 201GONE

File Access Controls

The functions in this group set and retrieve the current fi Ie access controls for
files that are currently open. Access controls may also be set when the file is
created by the OF'OPEN system function, or modified when closing the file by the
OFCLOSE system function.

CE38-04 File Access Controls 12-11

File Access Matrix

An APL fi Ie access matrix is used to indicate the file access controls. Access
controls permit or prevent access to files by users. Permissions are indicated in
terms of accounts (which may be wild-carded) and fi Ie access permissions granted to
those accounts. Table 12-3 contains the fi Ie access permissions which are available.

An APL fi Ie access matrix is a simple N-by-17 character matrix. The first eight
columns contain an account identifier. The ninth column must always be blank. The
remaining columns contain either the character 'Y' to permit the corresponding access
or the character 'N' to restrict the access.

Example:

AC+l 17p(B+'905APL'),' YYYYNNNN'

BC+l 17p(B+'TEST?')',' YNYNNNNN'

CC+AC, [010 lBC

In the example, AC is a file access matrix which permits the account 905APL to read,
delete, update, write new records and see the fi Ie name in the file directory (or
account).

The fi Ie access matrix Be permits any account beginning with the characters 'TEST' to
read, write new records, and see the file name in the file directory.

The fi Ie access matrix CC provides the permissions associated with AC and BC to their
respective accounts.

Table 12-3. CP-6 APL Fi Ie Access Permissions

Column Permission Description

10 READ can use OFREAD, OFRDCI, OFRDAC, OFEN~, OFDE~
11 DELR can use OFDROP to delete records
12 WNEW can use OFAPPEND, OFWRITE to write new records
13 UPDATE can use OFWRITE to replace records
14 DELF can use OFSTAC, OFERASE or dyadic OFCLOSE
15 NOLlST can use OFLIB wi II not list f i I e name
16 REATTR can use OFSTAC
17 EXEC not meaningful to APL f i I es

OFRDAC Function (Return File Access Matrix)

Syntax:

R+OFRDAC Y

12-12 OFRDAC CE38-04
Function (Return File Access Matrix)

)

)

Parameters:

Y is a simple integer scalar indicating a fi Ie I/O stream that is open.

R is a simple character matrix of shape N-by-17.

Description:

The OFRDAC function returns the APl fi Ie access matrix for the specified file. Each
row of the matrix contains an account identifier (which can be wild-carded) and the
corresponding file permissions. The right argument is a stream number. If the file
was opened with the create option. then it must also have been opened with the CTG
option.

Examples:

OFRDAC 1
? NNNNNNN

DFSTAC Function (Store File Access Controls)

Syntax:

H OFSTAC Y

Parameters:

Y is a simple integer scalar indicating a fi Ie I/O stream that is open.

H is a file access matrix. that is. a simple character matrix of shape N-by-17.

Description:

When the OFSTAC function is executed. the file opened to stream Y has its access
controls revised to reflect the permissions specified in H. The right argument is the
stream number of a currently open file. The left argument is a file access matrix.

Examples:

«(9tACCOUNT),'YYNNNNYN'),[llOFRDAC l)OFSTAC 1

This example wil I al low the account named in the variable ACCOUNT to read and delete
records and to change the access permissions of the file.

CE38-04 OFSTAC 12-13
Function (Store File Access Controls)

Coordinating Shared Files

The functions in this group are intended to be used when more than one user is
accessing a file, and it is being updated by at least one user. The enqueuing
protocol should be agreed upon for all applications using the file; its use is not
enforced by the system.

OFENQ Function (Hold a Record)

Syntax:

R+OFENQ Y

Parameters:

Y is a vector of length 2 (stream. key).

Description:

After the OFENQ function has executed. another user executing OFENQ on the same file
and resource name will be halted until the user currently holding the resource
releases it with the OFDEQ function.

The right argument contains the tie number and resource name. The resource name is
an integer or character value. most commonly a record key.

OFDEQ Function (Release Record or File)

Syntax:

R+OFDEQ Y

Parameters:

Y is a vector of length 2 (stream. key).

Description:

When the OFDEQ function is executed, the resource specified is released permitting
another user currently waiting for this resource to continue.

The right argument contains the tie number and optional resource name.

If the resource is not specified. then al I resources currently held by this user are
released for this file.

12-14 OFDEQ CE38-04
Function (Release Record or File)

)

)

File Status Functions

The following functions give additional information about a specific currently open
f i Ie.

OFRKEY Function (Return Key Values)

Syntax:

R+OFRKEY YS

Parameters:

YS is a vector of length 2 or 3 (stream, keytype, altkey).

R is the key.

Description:

The OFRKEY function returns specific key values depending upon the second item in YS.
If YS[21 is 1, OFRKEY returns the key of the first record in this file. If YS[21 is
2, OFRKEY returns the key of the record most recently read or written. If YS[2J, is
3, OFRKEY returns the key of the lost record in the fi Ie. If YS[2J, is 0, OFRKEY
returns the key of the record lost accessed when reading or writing on the specified
key index. (For non-IREL fi les, the difference between 0 and 2 is that file position
is maintained independently for every key index and 2 is the key contained in the
most recently read or written record. 0 indicates the position at which a sequential
read along a particular key index would commence; for IREL fi les they are
equivalent).

The right argument is a simple integer vector of two or three items. The first item
is the stream number and the second item is the integer 0, 1,2 or 3. The third
(optional) item is the key index. If the third item is not present, 1 (primary key)
is assumed. The key index is not 010 dependent.

If the fi Ie is currently empty, an empty vector is returned.

For keyed files, a key length of three characters is treated as a numeric key, for
all other key lengths the keys are returned as a character vector.

Examples:

FLIH+(OFRKEY 1 l),OFRKEY 1 3

If this is a keyed file with numeric keys or any other file type other than INDEXED
or IREL, then this expression results in FLIM being assigned an integer vector of
length 2. The first item of FLIM is the record number of the first record in the
file, the second item is the record number of the last record in the file. For
example:

20
60
98

OFRKEY o OFRKEY 2 0 OFRKEY 3

pO+OFRKEY 4 2 2 A CURRENT KEY ON SECOND KEY INDEX
SAN FRANCISCO
20

CE38-04 OFRKEY
Function (Return Key Values)

12-15

OFSIZE Function (File Size)

Syntax:

R .. orSIZE Y

Parameters:

Y is a simple integer scalar indicating a fi Ie I/O stream that is open.

Description:

The orSIZE function returns the number of bytes of storage allocated to the file
opened to stream Y.

OFKEYINT Function (Set Key Interval)

Syntax:

R .. orKEYINT YS

Parameters:

YS is a simple 1 or 2 element integer vector.

Description:

The orKEYINT function sets the increment to be used when appending a record to a
keyed fi Ie. The right argument is a stream number and an optional integer value.

The result is the previous increment or the current increment depending on whether
the current increment has been replaced. The default value (after orOPEN) is 1000
for keyed files.

OFKEYS Function (Return File Keys)

Syntax:

R .. orKEYS Y

Parameters:

Y is a simple integer scalar indicating a file I/O stream that is open.

R is a key definition matrix.

12-16 []FKEYS CE38-04
Function (Return Fi Ie Keys)

)
I

Description:

The OFKEYS system function returns the key list for the specified stream.

For INDEXED files, this is a matrix of shape N-by-3 containing the starting position,
length, and duplicate indicator. The first column contains the index in character
positions of the first character of the key (the first index position is 010). The
second column contains the length in characters of the key. The third column
contains 1 if the key must be unique or 0 if the duplicate key values are permitted.
Each row defines a key, the first row is the primary key (this key must always be
unique). Any subsequent rows are alternate keys (may be unique).

For IREL files, this is a matrix of shape N-by-2 containing field numbers in the
first column and key unique/key-end flags in the second column. The second column
values and their associated meanings are as fol lows: 0, a non-unique key; 1, a unique
key; 2, the last field of a non-unique key; and 3, the last field of a unique key.

For other fi Ie types, the result is:

3p 0 0

Example:

An example of OFKEYS with an indexed file is:

10 4
14 20

1 5

OFKEYS
1
o
o

4

In this example, the file open to stream 4 has 3 keys. The primary key is 4
characters long beginning at position 10. The secondary keys are 20 and 5 characters
long and begin at positions 14 and 1 respectively. Only key values for the primary
key must be unique.

An example of OFKEYS with an IREL file is

3 3
5 0
4 2
8 1
9 3

OFKEYS 9

In this example, the fi Ie open to stream 9 has 3 keys. The primary key is field 3.
The first alternate key is field 5 fol lowed by field 4. The first alternate keys do
not have to be unique. The last alternate key is field 8 fol lowed by field 9. The
last key values must be unique.

OFCRPT Funct;on (Set F;le Encrypt;on Seed)

Syntax:

X OFCRPT Y

CE38-04 OFCRPT 12-17
Function (Set File Encryption Seed)

Parameters:

Y is a simple integer scalar indicating a file I/O stream that is open.

X is a simple integer scalar encryption seed.

Description:

The OFCRPT function changes the seed that is used by default for subsequent read and
write operations to this stream. The initial default encryption seed is zero when a
stream is opened. The right argument is the stream number. The left argument is on
encryption seed.

A seed can be specified on the OFREAD. OFWRITE. OFAPPEND and OFRDCI functions which
overrides this default seed. There is no explicit result to this function.

Library or Account Information

The functions in this group return information about the files in an account.

OFMA Function (Return FiLe Management Account)

Syntax:

R+OFHA

Description:

The OFHA system function returns a character vector of length 8 containing the
current default file management account which is used whenever a file identification
does not contain an account identifier. This would typically be the same as the
current logon account but can be changed by a)!DIR command (for example).

OFLIB Function

Syntax:

R+OFLIB A

R+X OFLIB A

Parameters:

(Return FiLe Names)

A is a simple character vector containing an account or a wild-carded file name
and account.

R is a simple character matrix of shape N-by-40.

X is a simple character vector of length 2 or a simple character matrix of shape
N-by-2.

12-18 OFLIB CE38-04
Function (Return File Names)

Description:

The OFLIB function returns a character matrix of shape N-by-40 containing names of
the files in the specified account. If a wi Id-carded fi Ie name is specified, the
result includes only those names which contain all of the characters in the wi Id-card
with any characters (zero or more) in place of the '?' character.

The right argument is either a CP-6 account identifier or a wi Id-carded fi Ie
identifier.

An account name is 0 to 8 characters in length. A wi Id-carded fi Ie identifier is
to 31 characters in length containing a single '?' character and any other
characters, fol lowed by a period, and an (optional) account name.

Monadically. the result is a character matrix of shape N-by-40 where each row
contains the account in the first 8 characters (or blanks for the default file
management account), a blank. and the fi Ie name left justified in the remaining 31
characters.

Dyadically. only those files which have a file type listed in the left argument are
returned. If the left argument is empty (a 0-by-2 matrix). al I file types are
selected. Note that dyadically, OFLIB returns a CP-6 FlO which can be used directly
by the OFOPEN system function.

Examples:

TESTAPL
TESTAPL
TESTAPL
TESTAPL
TESTAPL

TESTAPL
TESTAPL

TESTAPL
TESTAPL

OFLIB 'TESTAPL'
: APLPCF
:HAIL_CENTRAL
I DSJlS
CRAFX
TESTJlS

OFLIB ':?TESTAPL'
: APLPCF
:HAIL_CENTRAL

OFLIB '?JlS.TESTAPL'
I DSJlS
TESTJlS

OFLIB
*A
*N
*s

'*? '

'JlA' OFLIB 'TESTAPL' ~ JlORKSPACES.
IDSJlS.TESTAPL
TESTJlS.TESTAPL

"OFLIB 'TESTAPL'
:APLPCF.TESTAPL
:HAIL_CENTRAL.TESTAPL
IDSJlS.TESTAPL
CRAFX.TESTAPL
TESTJlS.TESTAPL

Possible Errors:

A RANK ERR is reported if:

~ ALL FILES.

o A is not a scalar or vector.

A DOHAIN ERR is reported if:

o A is not simple or contains an item that is not a character.

o A is not a wi I d-ca rded f i I e name conta in ing a I ega I CP-6 account.

CE38-04 OFLIB
Function (Return File Names)

12-19

o The account name is longer than 8 characters.

Record Field Descriptions

When a file is created. a record field matrix may be specified. This matrix defines
the contents of the records in a file in terms of fields. Each field (or row of the
record field matrix) defines the datatype. location within the record and the field
size.

A record field matrix is a simple integer matrix of shape N-by-4 or N-by-5. The
record field matrix column numbers (in origin 1) and their definitions are:

1. Datatype. This is an integer indicating the type of data which is in this field.
Table 12-4 contains the numbers of the valid datatypes.

2. Length. For decimal fields. this is the number of digits (minus possible
overhead); for floating point and character fields. this is the number of bytes;
for integer fields. this is the number of bits. Table 12-4 indicates the rules
for the field lengths.

3. Scale. A scale value may be specified for some decimal datatypes. The scale
value must be in the range -32 to 31 and it indicates the number of digits after
the decimal point. Table 12-4 indicates whether the scale is permitted for each
datatype.

4. Vector. Numeric fields may be vectors of numbers. A vector value of 0 indicates
that this field is a scalar. A negative vector value indicates a fixed length
vector whose length is the absolute value. A vector value greater than zero
indicates the field number whose value indicates the length of the vector.

5. Logical Order. This optional value may be used to reorder the physical record
contents into a logical order. If all logical order values are 0. then the
physical order of fields directly corresponds to the logical order. Otherwise.
the logical record corresponds to those fields whose logical order is greater
than 0 sorted by increasing logical order number. Logical order values are only
used to communicate with other CP-6 processors.

The physical order of fields in a record is always the order in which the fields
are defined. That is. the first physical field is the first row of the record
field matrix.

When accessing records in a file, the use of the file's record field matrix may be
requested by specifying a record type 4. In this case. APL will automatically
perform datatype conversions between the internal APL datatypes and those in the
record field matrix datatypes.

When reading records using a record field matrix, the result is a vector with as many
items as the record contained (usually the number of fields defined). A DOMAIN ERR
is reported if the contents of a field are not legal for the datatype indicated by
the record field matrix. This occurs if a decimal field (for example) contains a'"
character in a digit position.

When writing records using the record field matrix. the value to write must be a
vector that is not longer than the number of fields (rows) in the record field
matrix. A DOMAIN ERR is reported if:

o a numeric item to be written has a character datatype in the corresponding row of
the record field matrix.

o a character item to be written has a numeric datatype in the corresponding row of
the record field matrix.

o the value overflows (or underflows) when converted to the type in the
corresponding row of the record field matrix.

When creating a file with a record field matrix, the matrix is specified as an item
of the left argument of the OFOPEN system function. During the execution of the
OFOPEN function, the system verifies the contents of the record field matrix and
reports any inconsistencies as a DOMAIN ERR or a FILE 110 ERR.

12-20 Record Field Descriptions CE38-04

Table 12-4. Record Field Datatypes and Rules

Datatype Type Decimal Size Scale Di gi ts Overhead

Undefined 0 3 0 0
Integer 1 1 1 1
Single Floating 3 3 1 2
Double Floating 4 3 1 2
Packed decimal leading sign 9 YES 2 YES 2 1
Floating packed decimal 10 YES 2 2 3
Fixed length character 21 3 0 0
Varying length character 22 3 0 0
Unsigned integer 24 1 1 0
Packed decimal t ra iii ng sign 25 YES 2 YES 2 1
Packed decimal EBCDIC sign 31 YES 2 YES 2 1
Packed decimal unsigned 40 YES 2 YES 2 0
Decimal unsigned 41 YES 3 YES 3 0
Decimal leading sign 42 YES 3 YES 3 1
Decimal t ra iii ng sign 43 YES 3 YES 3 1
Leading overpunch sign 44 YES 3 YES 3 0
Trai ling overpunch sign 45 YES 3 YES 3 0
Floating decimal 50 YES 3 3 3
Packed decimal leading EBCDIC 51 YES 2 YES 2 1
Date 54 YES 2 4 1
UTS 55 1 5 0
TEXTH 56 3 0 0
Time 57 YES 2 4 1

where

Size rules:

1. The field can be of any length up to 36 bits starting at any bit.

2. The field length is in nibbles and starts on a nibble or character boundary.

3. The field length is in characters and starts on a character boundary.

Digits Rules:

The number of decimal digits in the field is:

0.
1.
2.
3.
4.
5.

none
lOi2*SIZE-OVERHEAD
(l(SIZE+lSIZE+9)+5)-OVERHEAD
l(SIZE+9)-OVERHEAD
Length must be 16 (nibbles).
Length must be 36 (bits).

Note: Decimal fields cannot contain more than 63 digits.

Overhead Rules:

0.
1.
2.
3.

o (none)
1 (bits for integer. digits for decimal)
9 (bits)
2 3[OIO+TYPE=lOJ (digits)

CE38-04 Record Field Descriptions 12-21

OFFLDS Function (Return Record Fields)

Syntax:

R+OFFLDS Y

Parameters:

Y is a simple integer scalar indicating a fi Ie I/O stream that is open.

Description:

The OFFLDS system !unction returns the record field description for the specified
file. The result IS an integer matrix of shape (N,5). If the fi Ie tied to the
specified stream has no record field list defined, the result is a matrix of shape (0
5).

Example:

OFFLDS 29
1 36 0 0 0

21 12 0 0 0
10 12 0 0 0
44 6 2 0 0
50 32 0 0 0
22 0 0 0 0

In this example, file stream 29 is open to a file whose records contain 6 fields.
The field numbers and their corresponding types are:

1. Integer. Values in the range (-2*35) to (-1+2*35).

2. Text vector. 12 characters in length.

3. Floating packed decimal. 9 decimal digits in the range -IE136 to 1E136
exclusive. The smallest non-zero numbers in magnitude are -lE-128 and 1E-128.

4. Leading overpunched signed decimal. 6 decimal digits (2 after the decimal
point). The largest values are 9999.99 and -9999.99.

5. Floating decimal. 30 decimal digits in the range -lE157 to 1E157 (exclusive).
Note that APL wil I provide an approximation to these values accurate to the 18
most significant digits.

6. Variable length text vector. The maximum length of this field is 511 characters.

The fol lowing examples demonstrate writing records to this file using APL's automatic
data conversion capability (record type 4).

X+123 'CHAR(12)' (*1) 12.345 (01) 'VARYING'

X OFWRITE 29 1 0 4
X

123 CHAR(12) 2.718281828 12.345 3.141592654 VARYING

In the above example. X is written to the file, APL wil I pad field 2 with blanks to
fi I I it out to 12 characters in length. The value written for fields 3 and 4 wil I be
rounded to the number of digits defined for the field.

OFREAD 29 1 0 4
123 CHAR(12) 2.71828 12.35 3.141592654 VARYING

Notice that field 2 has been padded with blanks and that field 4 has been rounded to
2 digits after the decimal point.

12-22 OFFLDS CE38-04
Function (Return Record Fields)

Alternate Indexed Files

The fol lowing fi Ie I/O functions permit the specification of an alternate index:
OFREAD, OFRDCI OFDROP, OFRKEY. The alternate key list can be obtained via the OFKEYS
function.

An alternate key is specified as a nested 2-item argument in the position in which
the key is found. The first item is the key index number. The second item is the
key value. An empty vector for the key value causes a sequential read along the
specified alternate key to occur. For example:

OFREAD 9 (3 ('SMITH'» 0 3

In this example, stream 9 is read. The third key is searched for the value 'SMITH'
(trai I ing blanks ore supplied by APL if the key is shorter than the key length). If
multiple records with that key exist, the first record with that key is returned.
Subsequent reads on this stream that do not specify a key index or specify index 0
will use the third key index.

In the fol lowing example, al I records with the value 'MARTIN' for the third key index
are removed from the file:

OFDROP 9 (3 'MARTIN')

If only one particular 'MARTIN' record is to be deleted, the key value for a unique
key (there is always one) must be provided.

For IREL fi les, the key index must always be provided and the key value must be a
vector of field values. For example:

OFREAD 4 (2 (,5» 0 4

In this example. the second key index is used. The key value that wi I I be found is
5.

Special ized File Options

The left argument of the OFOPEN and OFCLOSE system functions can be:

o a simple character vector containing the CP-6 file identifier and options.

o a vector of arrays, where each item in the vector can be: a character vector
with the CP-6 fid, an access control matrix as described in OFRDAC, a record
field matrix, or an indexed key list as described in OFKEYS. The access control
matrix and indexed key I ist are only used for CREATE opens. If OLDFILE is
specified and the file exists, the access controls and index keys are not used.
The character vector containing the file identifier must appear before the
alternate keys in the list of items.

Examples:

To create a file which permits any CP-6 user to read with a 5 character primary key
starting at index 1. a 4 character alternate key starting at index position 6. a 20
character alternate key starting at index position 10. and another 20 character
alternate key starting at index position 30, the following is entered:

CE38-04

ALTKEYS+4 3p 1 5 1 6 4 0 10 200 30 20 0
AC+l 17p'(9+'?'),'Y',7p'N'
FID+'ALTFILE,CREATE,NEWFILE,INDEXED,LOAD,CTG'
(FID ALTKEYS AC)OFOPEN 1

Specialized File Options 12-23

OFKEYS
1 5 1
6 4 0

10 20 0
30 20 0

OFRDAC 1
? YNNNNNNN

AI I of the options avai lable through the IBEX !SET command are also avai lable to
users wishing to open a fi Ie. For information on the SET command, see the CP-6
Programmers Reference Manual (CE40).

To create an INDEXED fi Ie in APL with the name INDEX01 and with the key starting in
the 73rd character and being 8 characters in length, the fol lowing APL expressions
can be used:

I')SET F$31 INDEK01,KEYX=72,KEYL=8'

',REASSIGN,INDEXED.CREATE.NEWFILE' OFOPEN 31

The options that APL permits on the OFOPEN all have defaults that wi II override the
SET options. That is, the SET options EXIST=. SHARE=, FUN=, ORG= and ACS= wi II be
ignored on the)SET command and so they must be specified on the OFOPEN if different
from APL's default options.

Possible Errors:

A RANK ERR is reported if:

o the left argument of OFOPEN or OFCLOSE is not a scalar or vector.

A LENGTH ERR is reported if:

o the left argument is not simple and it contains zero or more than four items.

A RANK ERR is reported if:

o any item of the left argument is not a scalar, vector or matrix.

A DOMAIN ERR is reported if:

o any item of the left argument is not simple.

A LENGTH ERR is reported if:

o a matrix item of the left argument is not of shape N-by-17 (access control
matrix). or an N-by-3 (alternate key matrix) matrix.

12-24 Specialized File Options CE38-04

)

)

Section 13

CP-6 APL 1-D-S/II System Functions

CP-6 APL contains system functions which provide access to I-D-S/II databases. AI I
of the COBOL language DML (Data Manipulation Language) statements have equivalent APL
functions. In addition to these standard DML functions, the APL interface contains a
number of unique functions which may be used to obtain detai led information about the
database being accessed.

In order to make use of this facil ity an APL subschema must be generated. The
creation of I-D-S/II databases and subschema generation is achieved through the
execution of various I-D-S/II uti I ity programs.

R+ODBSUB 'sub-schema-name,privacy-lock,SHARE'

This function must always be the first I-D-S/II function to be executed during an APL
session. It informs I-D-S/II of the name of the subschema to be used and the result
of its execution is the name of the associated schema. If the subschema, schema or
areas reside in an account other than the current fi Ie management account, or if
their file management name is different than their schema name or the CP-6 file
containing the subschema is passworded, a)5ET command is required to direct I-D-S/II
to the correct fi Ie. For example, if the subschema name is SSCHFILE and it resides
in the file: SSCHFILE_7A.123TEST. the schema fi Ie name is SCHFILE and it resides in
the file SCHFILE.123APL.PSSWD and the area to be used in this subschema is AREAO in
the CP-6 file MAGAREA.123IDS. The)SET commands required to use this database in APL
are:

)SET SSCHFILE SSCHFILE_7A.123TEST
)SET SCHFILE SCHFILE.123APL.PSSWD
)SET AREAO MAGAREA.123IDS

The optional positional parameter SHARE when present causes al I of the items in the
database to become automatically shared between~the user work area and the APL
workspace. This al lows the functions ODBFROM and ODBTO to be performed automatically
upon assignment or a reference to a workspace variable with the same name as the
corresponding database item. Note however, item names containing underscores wil I
appear in the workspace with deltas replacing the underscores.

The fol lowing errors are possible when executing the ODBSUB system function:

I-D-S/II LIBRARY NOT AVAILABLE

The alternate shared library named I-D-S/II either does not exist or another
alternate library is currently associated. This error may be sidetracked as error
number 201.

INVALID SUBSCHEMA

The file indicated as the subschema is not an I-D-S/II subschema file. This error
may be sidetracked as error number 202.

FILE TBL FULL

The maximum number of files that an APL user may open are currently open. In order
to use I-D-S/II. some files must be closed. This may be sidetracked as error number
203.

SUBSCHEMA NAME ERR

Either the subschema name and privacy key is ill-formed or the subschema nome in the
file does not match the name supplied. This may be sidetracked as error number 205.

CE38-04 CP-6 APL I-D-S/II System Functions 13-1

SUBSCHEHA ACCESS ERR

Access to the subschema has been denied because the file does not exist. it is
passworded. or the privacy locks do not match. This may be sidetracked as error
number 206.

Subschema Information Functions

The fol lowing functions give information about subschema names and subschema name
types.

DDBNAMES Function (List Subschema Names)

Syntax:

R+ODBNAHES

Description:

The ODBNAHES ni ladic system function returns the names of 01 I of the realms. sets.
records. items. and I-D-S/II keywords avai lable through the current subschema. The
shape of the result is N by M where N is the number of names and M is the length of
the longest nome.

DDBTYPES Function (Subschema Name Types)

Syntax:

R+ODBTYPES

Description:

The ODBTYPES ni ladic system function returns a numeric array of shape N-by-6
indicating the attributes of each corresponding name in ODBNAHES. The first item of
each row indicates the type of object represented by that name. The second item of
each row contains usage or mode information. the third item of each row contains
encoded flogs that are type specific. the fourth item of each row contains the index
in ODBNAHES of the object that owns this object. the fifth item of each row contains
sub-type information and the sixth item of each row contains the length or the
object·s order.

Column one contains:

OBJECT TYPE

1 REAUA
2 RECORD
3 FIELD
4 SET
5 PARAMETER
6 unused
7 I-D-S/I I KEYWORD
8 Record Key

13-2 ODBTYPES CE38-04
Function (Subschema Nome Types)

)

Record Type Information

For records, column two contains the location mode for this record:

o DIRECT
1 CALC
2 VIA SET
3 SEQUENTIAL
4 INDEXED

Column three contains flags decoded as:

F+(35p2)TODBTYPES[R;3J

where (in index origin 1):

Field Type Information

R 1
R 2
R 3
R 4
R 5
R 6
R 7
R 8
R 9

R 10j
R 11
R 12

name is in SUBSCHEMA
name understood by I-o-S/II
STORE is 01 lowed
MODIFY is 01 lowed
DELETE is 01 lowed
ERASE is 01 lowed
variable length
in multiple areas
has alternate keys
on elementary item
item is signed
item is scaled

The second column for fields contains usage information. The range of possible
values are:

o DATA ITEM
1 DATA BASE PARAMETER
2 LOCATION MODE DIRECT FIELD
3 AREA-ID FIELD
4 CALC KEY SYNONYM FIELD
5 SCAN KEY SYNONYM FIELD

The third column for fields contains flogs that may be decoded with the expression:

F+(35p2)TODBTYPES[F;3J

where the meanings are the same as for the record flags.

The fourth column contains the record number in ODBNAHES that this field belongs to.
The fifth column contains the data type of this field. Values are:

o CHARACTER
1 INTEGER DB KEY
2 INTEGER

13 SINGLE PRECISION FLOATING POINT
14 DOUBLE PRECISION FLOATING POINT

The sixth column is used for character data items to indicate the length of the
string.

CE38-04 ODBTYPES
Function (Subschema Name Types)

13-3

Set Type Information

The second column for sets indicates the mode of this set. Valid values of mode are:

o CHAIN
1 RECORD ARRAY
2 POINTER ARRAY

The fourth column for sets indicates the index in ODBNAHES of the record that owns
this set. The fifth column indicates the type of set this is. Values of set type
are:

o USER SET
1 CALC SET
2 PRIMARY KEY
3 SECONDARY KEY

The sixth column indicates how this set is ordered. Values of order are:

Parameter Type Information

o FIRST
1 LAST
2 NEXT
3 PRIOR
4 SORTED BY KEY

Column four contains the index in ODBNAHES of the record related to this database
parameter.

I-D-5/11 Function Arguments

In the fol lowing description of the APL language interface to I-D-S/II, the functions
are described in terms of the database objects known to I-D-S/II. The database
objects are indicated in APL by either the text of the object's name or by the
numeric index of the object's name in ODBNAHES.

A series of database objects and keyword names may be indicated by separating the
names by blanks in a character vector, as an integer vector of object indices (in
ODBNAHES) , or as a series of object values (including character and/or numeric
indices), separated by semi-colons and enclosed in parentheses as in arguments to
OFHT. This means that al I of the fol lowing I-D-S/II cal Is are equivalent:

R+ODBFIND 'STUREC WITHIN COURSET CURRENT STUNAHE'
R+ODBFIND ('STUREC';'WITHIN';'COURSET';'CURRENT';'STUNAHE')
R+ODBFIND ('STUREC WITHIN COURSET CURRENT';'STUNAHE')
R+ODBFIND (5 42 3 34;'STUNAHE')

where in the last example, the fifth row of ODBNAHES contains the text STUREC, the
42nd row contains WITHIN, etc.

1~4 I-D-S/II Function Arguments CE38-04

)

)

Name and Set Information

The following functions give information about subschema names and sets.

DDBANLZ Function (Analyze Subschema Names)

Syntax:

R+ODBANLZ A

Desc r i pt ion:

The right argument to this function is a simple character vector containing subschema
names and keywords. The result is an integer vector containing the index in ODBNAHES
of each name in A.

DDBOWNER Function (Set Owner)

Syntax:

R+ODBOWNER B

Parameters:

B is a character vector containing the name of a set or record. Optionally. it
may be the index in ODBNAHES of the name of a set or record.

Description:

The right argument to this function is either the name of a set or record. The
result for a set is the index of the record that owns this set in ODBNAHES. The
result for a record is a vector of the indices of the sets that this record may own.

DDBMEMBER Function (Set Member)

Syntax:

R+ODBHEHBER B

Parameters:

B is a character vector containing the name of a set or record. Optionally. it
may be the index in ODBNAHES of the name of a set or record.

CE38-04 ODBHEHBER
Function (Set Member)

13-5

Description:

The right argument to this function is either the name of a set or record. The
result is always an N-by-3 matrix indicating in column one the sets or records that
the supplied record or set may be a member of. The second column contains zero if
membership is manual or one if membership is automatic. The third column is zero if
membership is optional or one if membership is mandatory.

DDBINFORM Function (Database Register)

Syntax:

R+ODBINFORH B

Parameters:

B is a simple character vector.

Description:

The ODBINFORH function returns the contents of the specified database register. The
registername is specified as one of the fol lowing:

Accessing Data

DBSTATUS
DBREALH
DBSET
DBRECORD
DBPRIVACY
DBDATANAHE
DBKEYNAHE
DIRECTREFERENCE

The values of record items may be set and obtained by either sharing variables in the
workspace with I-D-S/II or by the functions ODBFORH and ODBTO. Sharing of all
database items may be requested when the database is opened (see ODBSUB) or by using
the Shared Variable system functions. For example, if USERNAME is the name of an
item in the database then the expression:

'IDS.:SYS' OSVO 'USERNAHE'
2

returns 2 indicating that the variable USERNAME in the active workspace may be
referenced or assigned is a surrogate for the value in the UWA. Note that erasing
USERNAME or retracting USERNAME by the OSVR system function will discontinue sharing.

1~6 Accessing Data CE38-04

ODBFROM Function (Retrieving Data)

Syntax;

R+ODBFROH B

Description:

The ODBFROH function returns the values of the specified items in the UWA (User Work
Area). The items in the iteml ist must al I be of type numeric or al I character or a
DOHAIN ERR wil I occur. Character values in the result are separated by carriage
return characters.

ODBTO Function (Storing Data)

Syntax:

R+ODBTO (iteml ist;valuel ist[;valuel ist; ...])

Parameters;

itemlist is a simple character vector containing the names of I-D-S/II items.
Optionally, this may be a simple integer vector containing the indices of items in
ODBNAHES.

valuelist are simple scalar numbers or vectors of numbers to be assigned to the
corresponding item named in itemlist. Character values are included as separate
items in the list.

Description:

The right argument to this monadic system function is a I ist, the first item of which
is either the character vector of the itemnames or a numeric vector of the name
indices in ODBNAHES. The remaining items in the argument list consist of the values
to be moved into the UWA for each corresponding item name. A valuelist consists of
character or numeric scalars or vectors. If a character vector is suppl ied, separate
values may be separated by carriage return characters.

Standard I-D-S/II Functions

Brief descriptions of syntax for APL cal Is on the I-D-S/II data manipulation
functions are I isted below. For information on their meaning and use, see the
I-D-S/II Programmers Reference Manual (CE35).

setname
R+ODBACCEPT ([FROH] [recordname] CURRENCY)

areaname

set name
R+ODBACCEPT ([FROH] [recordname] REALHNAHE)

dbkey

If the first parameter is a setname or recordname, this function requires that the
text of the name be supplied and not the name's index in ODBNAHES.

CE38-04 Standard I-D-S/II Functions 13-7

R+ODBACCEPT «(FROM] setname

NEXT
PRIOR
CURRENCY>
OWNER

R+ODBBUFFERS

R+ODBCHECK

R+ODBCRPT

R+ODBCONNECT

integer

integer

integer

([recordname[TO]]setname

R+ODBDISCONNECT ([recordname[FROM]]setname

R+ODBERASE

R+ODBFIND

R+ODBFIND

R+ODBFIND

R+ODBFIND

R+ODBFIND

([recordname] [ALL](MEMBERS]

dbkey
([recordname]DBKEY[IS] parametername

(ANY recordname

(DUPLICATE recordname)

(DUPLICATE[WITHIN]setname[USING]itemlist

[FIRST]
(NEXT]
(PRIOR] [recordname][WITHIN]setname
[LAST] realmname
[count]

If the first parameter is a keyword. this function requires that the text of the name
be supplied.

R+ODBFIND

R+ODBFIND

R+ODBFIND

R+ODBFIND

R+ODBFINISH

R+ODBGET

R+ODBGET

R+ODBMODIFY

R+ODBMODIFY

(CURRENT (WITHIN] recordname 1~:~7~~~mel)
keyname

(OWNER [WITHIN] setname)

(recordname WITHIN setname [CURRENT] (USING] itemlist)

FIRST
(NEXT [recordname] USING keyname)

recordname

realmnamel ist

recordname

identifierlist
[ONLY ALL]

[recordname] [INCLUDING setnamelist [MEMBERSHIP]])

item list
[ALL]
[INCLUDING setnamelist [MEMBERSHIP]])

[CONNECT l
R+ODBPRIVACY SET [DISCONNECT privacykey [setnamelist])

[FIND

I GET
MODIFY
STORE

R+ODBPRIVACY (RECORD (FIND privacykey [recordnamelist])

13-8

I
ERASE
CONNECT
DISCONNECT
GET]

Standard I-D-SjII Functions CE38-04

)

)

R+OVBPRIVACY (ITEH [HODIFY] privacykey [itemlist])

R+OVBREADY
[UPDATE) [SHARE l

([realml ist] [USAGE HODE[IS)[RETRIEVAL) [SHAREIN
[LOAD) [NOSHARE

[SHARE ANY

R+OVBRETAIN

R+OVBROLL

R+OVBRPTSTATS

R+OVBSTATSOFF

R+OVBSTATSON

[REALH l [RECORD
([SETS)

[setnamelist

R+OVBSTORE (recordname)

R+OVBTRACEOFF option

R+OVBTRACEON option

R+OVBIF IEHPTY l
(set name HEHBER

TENANT
)

I-D-S/II Error Reporting and Handl ing

The execution of I-D-S/II data manipulation functions always cause a code to be
returned in the DBSTATUS cel I. Values of DBSTATUS greater than zero signify that an
exception condition has occurred. Successful completion of the data management
function is indicated by a DBSTATUS of zero.

Control over exception conditions may be obtained by APL use procedures.

DDBUSE Function

Syntax:

code OVBUSE name
OVBUSE name

Description:

(Use Procedures)

The OVBUSE function returns the name of the use procedure associated with the
specified code.

APL use procedures are specified and interrogated by the OVBUSE system function. To
specify a use procedure. the left argument to OVBUSE contains the DBSTATUS value.
The right argument contains the name of a ni ladic function or character vector to be
executed when the DBSTATUS value returned by I-D-S/II is equal to the left argument.
If an empty vector is supplied for the right argument. the use procedure for the
DBSTATUS value in the left argument is deleted. More generally. the left argument to
OVBUSE may be a vector of status codes. in which case. the specified niladic function
becomes the use procedure for all of the status codes specified. If the right
argument is empty. use procedures for al I of the specified codes are removed.
Finally. the left argument may be a namelist. in which case. there must be exactly as
many status codes specified as there are names in the use procedure list.

CE38-04 ODBUSE 13-9
Function (Use Procedures)

Monadically, ODBUSE is used to determine the status codes for which there exists an
active use procedure or the names of procedures attached to particular status codes.

Examples:

ODBUSE ~o

This function returns all of the status codes for which there exists a use procedure.

ODBUSE ODBUSE ~o

This function returns the names of all of the use procedures.

A status code of zero may be specified for a use procedure in which case that
procedure wi I I gain control whenever on exception condition occurs for which there
exists no explicitly named use procedure for that code. The use procedure table is
of limited size, there wil I however always be room for 75 use procedures. Whenever
the current workspace is cleared or a new workspace is loaded, the use procedure
table is lost and must be set up once again.

13-10 ODBUSE CE38-04
Function (Use Procedures)

)

)

Section 14

Packages

A package is used to hold the definition of one or more functions, or the value of
one or more variables. A package contains a set of names which are distinct from
each other. However, the names within a package need not be distinct from names used
outside the package or from the name of the package itself. A name must be extracted
from the package before it can be referenced in the active workspace. Packages can
be written to or read from fi les, passed as the argument of a defined function, or
returned as the result of a defined function. Packages within saved workspaces can
be copied.

The package name is displayed by the system command)VARS or as the result of ONL.
The function ONe reports the nameclass of the package as "variable", the function ORH
reports the number of bytes required to store the package and the function DEX may be
used to expunge a package. The)ERASE command can also be used to expunge a package
if the package is defined globally.

The fol lowing restrictions apply to the use of packages:

1. A package is outside the domain of arithmetic, relational, and structural
functions.

2. A package is outside the domain of t, c, and [].

3. A package cannot be:

o an item of another array.

o catenated.

o inserted into an array via indexed assignment.

4. The contents of a package cannot be directly displayed.

The function OPNAHES can be used to distinguish a variable that is a package from a
variable that is not a package. For example, the expression OPNAHES X returns a
matrix when X is a package and returns an empty vector when X is not a package.

Package System Functions

The fol lowing system functions are used to create and manipulate packages. When two
syntax formats are I isted for a function, "Monadic Syntax:" refers to the monadic
function and "Dyadic Syntax:" refers to the dyadic function.

CE38-04 Package System Functions 14-1

OPACK Function

Syntax:

R+[]PACK X

R+Y []PACK X

Parameters:

X is a namelist.

R is a package.

Y is a name I ist.

Description:

(Package Create)

Using monadic []PACK, the argument is a namelist which contains the names to be
included in the resulting package. The result is a package containing each of the
distinct names included in the argument and the object, if any, to which that name
refers. If the name in X is the name of a shared variable, the value included in the
package is the last visible value in the active workspace. (Referring to a shared
variable with monadic []PACK does not count as a "use" of the shared variable.)

Dyadically, the []PACK function packages the value X with the name in Y. The right
argument is any data object (an array or package, but not a function). The left
argument is a character vector, scalar or 1-row matrix which contains a single name.
The result is a package which contains the name in the left argument and the data in
the right argument.

Note:

1. If the same name is included more than once in the right argument X, the extra
occurrences have no effect.

2. A misspel led name in the argument does not cause an error message and the
intended object will be missing from the package.

OPINS Function (Package Insert)

Syntax:

R+Y []PINS X

Parameters:

X is a package.

Y is a package.

R is a package.

14-2 []PINS
Function (Package Insert)

CE38-04

)

Description:

The oPINS function inserts the package X into the package Y. Both X and Y must be
packages. The result is a package which contains al I the names along with their
referents from package X, and, in addition those names that occur in Y but do not
occur in X, and the objects which are referred to in package Y.

The resulting package contains all of the names from both of the packages. However,
when a name in X is the same as a name in Y, it's referent from X is included as the
referent in the result.

Note: The names in a package are reported in arbitrary order. The package resulting
from oPINS need not have names in the identical order as the names which appear in Y.

DPNAMES Function <Package Names)

Syntax:

R+oPNAHES X

Parameters:

X is a package.

R is a namelist.

Description:

The oPNAHES function returns the names in a package X. The argument is any array or
package. The result is an empty vector whenever the argument is not a package.
otherwise the result is a character matrix containing the names in the package. The
matrix has one row for each name. and the longest name determines the number of
columns. Names are left-justified. with fol lowing blanks.

Note: APL reports the names within a package in arbitrary order.

DPNC Function

Syntax:

R+ oPNC X

R+Y oPNC X

Parameters:

X is a package.

(Package Name Correspondence)

Y specifies an optional argument which is a namelist.

R is a simple integer vector.

CE38-04 oPNC
Function (Package Name Correspondence)

1~3

Description:

Monadically. OPNC returns the nameclass of each of the names in the package.
Dyadically. OPNC returns the nameclass of each of the specified names in a package.

The right argument is a package. The left argument is an optional namelist. It is
not necessary that a name included in th,e left argument also be present in the
package. or that the names are wei I formed. The result is an integer vector which
indicates the nameclass of package X names. Whenever OPNC is used with a left
argument. the result contains one item corresponding to each name in the left
argument.

Monadically. the result of the OPNC function contains one item for each name included
within the package X in the same order as the names reported by OPNAHES X. leading to
the fol lowing identity:

OPNC X ++ (OPN AHES X) OPNC X

The class of object to which the name refers is indicated by an item of the result.
The fol lowing table shows the relationship:

CODE NAME

-1 No referent

0 Not present in the.package

2 Refers to a va r i ab I e

3 Refers to a function

4 Is not we II-formed

The code used in the result of ONC determines the code in the result of OPNC. The
value 1 cannot appear in the result of OPNC because a package cannot contain a label.
The value -1 does not occur in the result of ONC.

OPVAL Function (Package Value)

Syntax:

R+Y OPVAL X

Parameters:

X is a package.

Y is a namelist containing one name.

R is an APL value.

Description:

The OPVAL function returns the value of the variable named in Y from the package X.
The left argument is a character vector. scalar. or matrix. The referent in X must
be a variable and the left argument must contain one name. APL reports a DOHAIN ERR
message when Y does not meet those requirements. The result is the value of the
variable which is named in Y.

14-4 OPVAL CE38-04
Function (Package Value)

OPDEF Function (Package Definition)

Syntax:

OPDEF X

Y OPDEF X

Parameters:

X is a package.

Y is a namelist.

Description:

Monadically. OPDEF defines al I of the names in the package right argument.
Dyadically. OPDEF defines those names in the package right argument that appear in
the left argument.

Each name in the left argument must:

o Be well formed.

o Be contained in package X.

o Not have an active function which is a visible referent in the workspace. (Its
referent may not appear on the state indicator.)

Monadically. the OPDEF function defines every name in package X in the active
workspace with the referent from the package. Dyadically. the OPDEF function defines
each name in the namel ist Y in the active workspace with the referent from the
package X. A name existing in the package without a referent is expunged when OPDEF
is used to bring the name into the workspace.

Possible Errors:

A DOMAIN ERR is reported if:

o any of the names in Y do not meet requirements stated in description.

OPPDEF Function

Syntax:

R+ OPPDEF X

R+Y OPPDEF X

CE38-04

(Protected Package Definition)

OPPDEF
Function (Protected Package Definition)

14-5

Parameters:

X is a package.

Y is a name list.

R is a namelist.

Description:

Monadically. oPPDEF defines al I of the names in the package right argument that
currently have no value. Dyadically, oPPDEf defines those names that appear in the
package right argument, are named in the left argument, and do not currently have a
value. The expl icit result for both cases is a namelist containing names of objects
not defined because they had values.

oPPDEF assigns a new meaning to a name with no current use and never expunges or
changes an existing name's referent. (It can be compared to the system command
)PCOPY. except that)PCOPY refers to the global and not to the visible meaning of
each name.)

When oPPDEF is used dyadical Iy, the left argument Y is a namelist that specifies the
names which are to be defined. Each name in Y must be included as a name in package
X.

When oPPDEF is used with two arguments, each name in Y (or when oPPDEF is used with
one argument. each name in X) which has no visible referent in the workspace, is
given the value which it has in the package.

The result is a namel ist containing the names in the package which were not defined
because they already exist in the active workspace.

OPSEL Function (Package SeLect)

Syntax:

R+Y oPSEL X

Parameters:

X is a package.

Y is a namelist.

R is a package.

Description:

The oPSEL function returns a package containing those names from the package right
argument that appear in the namelist left argument. Each name specified in the
namelist must be contained within the package.

14-6 oPSEL CE38-04
Function (Package Select)

)

)

OPEX Function (Package Expunge)

Syntax:

R+Y OPEX X

Parameters:

X is a package.

Y is a namel ist.

R is a package.

Description:

The OPEX function returns a copy of the package right argument excluding the names
specified in the namelist left argument.

OPLOCK Function

Syntax:

R+Y OPLOCK X

R+ OPLOCK X

Parameters:

X is a package.

(Package Lock)

Y is an optional namelist.

R is a package.

Description:

Monadica"y, OPLOCK returns a package identical to the right argument except that al I
of the defined functions are locked. Dyadical Iy, OPLOCK returns a package identical
to the right argument except that al I of the defined functions named in the left
argument are locked.

Each of the names must be wei I formed and must be a name which is present in package
X and is used there as the name of a function. The function in X need not be
previously unlocked.

The result is a package which contains the same names with the same referents as
package X. The exceptions are as fol lows:

o When OPLOCK has two arguments, the functions which are unlocked in X and named in
Yare locked in the resulting package.

o When OPLOCK is used with one argument, all functions are locked in the resulting
package.

CE38-04 [JPLOCK
Function (Package Lock)

14-7

)
Section 15

CP-6 APL Graphics

CP-6 APL provides four system functions which produce device independent graphics
output. Additional system functions and variables are also provided which may be
used to control the graphics device or the appearance of the graphics output. The
CP-6 DIGS Reference Manual (CE72) provides a more detailed definition of the general
capabilities and functionality available. This section contains a simple overview of
the graphics capabi I ity avai lable within APL.

The APL graphics capabi lities are sub-divided into the five areas:

o Output Functions
o Segment Primitives
o Attribute Variable
o Viewing Variables
o Control Primitives

The graphics output primitives include the ability to draw lines, draw and optionally
fill polygons, draw markers and generate text. Graphics output is subject to the
controls provided by the other graphics capabi lities and the device on which it is
displayed.

AI I graphics output appears in either a temporary or a retained segment. CP-6 APL
provides the abi lity to create segments, delete segments, rename segments, select
segments, and to inquire about the attributes of segments. A retained segment
defines an image which is a part of the whole picture displayed on a view surface.
Attributes of a retained segment may be dynamically modified, thereby changing the
image on the view surface.

The capabi lities provided by the graphics attribute variables allow control over the
appearance of graphics output primitives. The appearance includes such items as the
color, intensity. I ine widths, marker symbols. and the text font. The graphics
viewing variables control the location. size and rotation of graphics output. The
viewing variables include such items as the graphics window, the viewport, and the
image transformation variables.

The graphics control primitives provide the capabi lities required to initiate an APL
graphics session, select a graphics device, determine the device capabilities, and
define the mappings between certain attribute settings and the corresponding device
color or intensity.

The fol lowing APL program demonstrates the use of APL graphics. It does all that is
necessary within APL to produce graphics output on a graphics terminal.

'il HOUSE EXAHPLE
[1] OGRINIT If A INITIALIZE GRAPHICS
[2] 'f OGRINITSURF A PREPARE TERHINAL FOR GRAPHICS
[3] OGRSURFACE 1 A SELECT TERHINAL FOR GRAPHICS
[4] OGRTSEGO A OUTPUT INTO TEHPORARY SEGHENT
[5] A CREATE OUTLINE OF HOUSE
[6] HOUSE+? 2p 1 6 5 9 9 6 9 1 1 1 1 6 9 6+10
[?] OGRL I NE HOUSE
[8] A DRAW DOOR
[9] DOOR+4 2p 7 1 ? 3 8 3 B 1+10
[10] OGRLINE DOOR
[11] A DRAW SHALL WINDOW
[12] WINDOW1+5 2p 222 3 3 3 3 222+10
[13] OGRLINE WINDOWI
[14] A DRAW LARGE WINDOW
[15] WINDOW2+5 2p 4 2 4 4 6 4 6 2 4 2+10
[16] OGRLINE WINDOW2

'il

CE38-04 CP-6 APL Graphics 15-1

DO
Figure 15-1. Graphics Output Example

This example demonstrates the necessary preparations before graphics output may be
created. The OCRINIT, OCRINITSURF and OCRSURFACE functions must all be executed
before any graphics output is created. The use of these functions is described under
the topic Graphics Control Functions and Variables.

The function OCRTSEGO is used to indicate that the fol lowing output is temporary (not
to be retained across screen clears for example). This function is described under
the topic Graphics Segment Functions. A graphics segment (temporary or retained)
must also be in use before graphics output may commence.

The function OCRLINE is one of the five graphics output functions available in CP-6
APL. This function connects each of the points specified with a I ine. The type of
line drawn may be controlled by variables that are described under the topic Graphics
Attribute Variables.

Graphics Output Functions

Five system functions in CP-6 APL are used to produce graphics output. Each of the
functions supply a different type of graphics output from a similar graphics
argument. The data to be displayed graphically is provided as either an N-by-2 or
N-by-3 array. The columns are treated as X. Y. and optional Z components of a
graphical position. If the data to be displayed is not a matrix, a RANK ERR is
reported. If the data to be displayed is not an N-by-2 or N-by-3 array. a LENGTH ERR
is reported. If the data to be displayed is not a simple numeric array. a DOMAIN ERR
is reported.

If an APL graphics session has not been initiated by executing the OCRINIT system
function, or if a device has not been initialized and selected. or there is not a
currently open segment. a DOMAIN ERR is reported. (Entering a ')?' command indicates
which error has occurred).

15-2 Graphics Output Functions CE38-04

)

DGRLINE Function (Draw Line)

Syntax:

OCRLINE DATA

Parameters:

DATA is a simple array of shape N-by-2 or N-by-3 containing only scalar numbers.

Description:

The OCRLINE function defines the simplest form of graphical output. A line is drawn
connecting each of the positions in the data array provided.

Example:

HOUSE~7 2p.6 .1 .9.5.6.9.1.9.1.1.6.1.6.9
OCRLINE HOUSE

This example creates a simple stick house on the currently selected view surface.

Possible Errors:

A RANK ERR is reported if:

o the right argument is not a matrix

A LENGTH ERR is reported if:

o the right argument is not an N-by-2 or N-by-3 matrix

A DOHAIN ERR is reported if:

o the right argument is not simple or al I numeric
o APL graphics is not initial ized
o there is not an open segment
o the current value of OCRLI is not supported
o the current value of OCRLS is not supported
o the current value of OCRLW is not supported
o the current value of OCRPEN is not supported

DGRMARK Function (Draw Marker Symbols)

Syntax:

OCRHARK DATA

CE38-04 OCRHARK 15-3
Function (Draw Marker Symbols)

Parameters:

DATA is a simple array of shape N-by-2 or N-by-3 containing only scalar numbers.

Description:

The OGRMARK function produces a marker symbol (as selected by the OGRMARKER system
variable). at each of the positions indicated by the data array.

Example:

CURVE+-7 2pO 0 .2 .1 .3 .4 .5 .5 .7 .4 .8 .1 .9
OGRMARK CURVE

Possible Errors:

A RANK ERR is reported if:

o the right argument is not a matrix

A LENGTH ERR is reported if:

o the right argument is not an N-by-2 or N-by-3 matrix

A DOMAIN ERR is reported if:

o the right argument is not simple or not all numeric
o APL graphics is not initialized
o there is not an open segment
o the current value of OCRLI is not supported
o the current value of OCRHARKER is not supported.
o the current value of OCR PEN is not supported

OGRPOLYGON Function (Draw Polygon)

Syntax:

OGRPOLYGON DATA

Parameters:

DATA is a simple array of shape N-by-2 or N-by-3 containing only scalar numbers.

Description:

The OGRPOLYGON function produces a polygon whose vertices are the positions provided
in the data array. The appearance of the polygon can be controlled through
assignment to the attribute variables.

Example:

15-4

PARALLELS+4 2p.2 .3 .4 .7 .8 .7 .6 .3
OGRPOLYGON PARALLELS

OGRPOLYGON
Function (Draw Polygon)

CE38-04

)

Possible Errors:

A RANK ERR is reported if:

o the right argument is not a matrix

A LENGTH ERR is reported if:

o the right argument is not an N-by-2 or N-by-3 matrix

A DOHAIN ERR is reported if:

o the right argument is not simple or not al I numeric
o APl graphics is not initialized
o there is not an open segment
o the current value of OCRPEN is not supported
o the vertices are not coplanar
o the current value of OCRFILL is not supported
o the current value of OCRVERTEX is not supported
o the length of OCRVERTEX is not equal to the first dimension of the right argument
o the current value of OCRLI is not supported

OGRDRAW Function (Draw Picture)

Syntax:

I OCRDRAW DATA

Parameters:

I is the integer scalar value 0, 1, or 2.

DATA is a simple numeric array of shape N-by-3 or N-by-4. The first column contains
the values 0 or 1 only. The last 2 or 3 columns the X, Y or X, Y, and Z world
coordinates.

Description:

The OCRDRAW function provides a mechanism to define a sequence of strokes or
polygons. A new stroke begins when a row of the data in the right argument contains
the value 1 in the first column. A stroke ends when all positions in the remaining
rows have been connected or before the next row which contains a 1 in the first
column.

If I is 0, each stroke is joined by a line. If I is 1, each point is marked. If I
is 2, each stroke is treated as a polygon.

Example:

In the fol lowing example, the picture of the house created in the example at the
beginning of this section is produced by a single use of the OCRDRAW function rather
than executing the function OCRLINE four separate times.

v DRAW_EXAHPLE
[lJ H~«7+1),HOUSE),[lJ«4+1),DOOR)t[lJ(5+1)tWINDOW2
[2J 0 OCRDRAW H

v

CE38-04 OCRDRAW
Function (Draw Picture)

1~5

Possible Errors:

A RANK ERR is reported if:

o the left argument is not a matrix.
o the left argument is not a scalar.

A LENGTH ERR is reported if:

o the right argument is not an N-by-3 or N-by-4 matrix.
o the left argument is not a single value.

A DOMAIN ERR is reported if:

o the right argument is not simple or al I numeric.
o the left argument is not simple or not numeric.
o APL graphics is not initialized
o there is not an open segment
o the current value of OCRLI is not supported
o the current value of OCRPEN is not supported
o the current value of OCRLS is not supported
o the current value of OCRLW is not supported.
o the current value of OCRMARKER is not supported
o the current value of OCRFILL is not supported.
o the current value of OCRVERTEX is not supported.
o the length of OCRVERTEX is not equal to the number of points in the stroke.
o the vertices are not coplanar.

DGRTEXT Function (Draw Text)

Syntax:

POSITION OCRTEXT STRING

Parameters:

POSITION
position.

is a simple numeric vector of 2 or 3 items which indicate a graphical

STRING is a simple character vector containing the characters to be displayed on
the graphics device.

Description:

The OCR TEXT function causes the character vector to appear on the graphics device
starting at the position indicated. The appearance of the text depends on the
current definition of the text graphics attribute variables.

Example:

.125 .25 OCRTEXT 'HERMOSA'

This example displays the text 'HERMOSA' at the world coordinate position
(0.125,9.25).

1~6 OCRTEXT Function (Draw Text) CE38-04

)

Possible Errors:

A RANK ERR is reported if:

o
o

the left argument is not a vector
the right argument is not a vector or scalar

A LENGTH ERR is reported if:

o the left argument does not contain 2 items

A DOMAIN ERR is reported if:

o the right argument is not simple and al I character scalars
o the left argument is not simple and al I numeric
o APL graphics is not initialized
o there is not an open segment
o the current value of OCRPEN is not supported
o the current value of OCRTElT is not supported
o the current value of OCR FONT is not supported
o the string contains i I legal characters
o the vectors establ ished by OCRCHPLANE and OCRCHUP are paral lei
o the string contains more than 256 characters
o OCRCHPLANE and OCRCHUP matrix cannot be inverted

OGRWORLDC Function (Map to World Coordinates)

Syntax:

DATAO+OCRWORLDC DATAl

Parameters:

DATAO

DATAl

is a simple array of shape N-by-2 or N-by-3 containing only scalar numbers.

is a simple array of shape N-by-2 or N-by-3 containing only scalar numbers.

Description:

The OCRWORLDC function returns the world coordinates associated with the normalized
device coordinates supplied as the right argument.

Example:

OCRWORLDC 4 2p.2 .3 .4 .7 .B .7 .6 .3
0.2 0.3
0.4 0.7
O.B 0.7
0.6 0.3

Since the default image transformation is an identity matrix. the positions supplied
to this funct~on are mapped to themselves.

CE38-04 OCRWORLDC 1~7
Function (Map to World Coordinates)

Possible Errors:

A RANK ERR is reported if:

o the right argument is not a matrix

A LENGTH ERR is reported if:

o the right argument is not an N-by-2 or N-by-3 matrix

A DOHAIN ERR is reported if:

o a specified NDC position is outside the current viewport
o the world coordinate transformation is not invertible
o the view plane normal and view up direction are paral lei
o APL graphics is not initial ized
o the projection and view parameters are inconsistent
o the cl ipping planes are inconsistent

DGRNDC Function (Map to NDC)

Syntax:

DATAO+OCRNDC DATAl

Parameters:

DATAO

DATAl

is a simple array of shape N-by-2 or N-by-3 containing only scalar numbers.

is a simple array of shape N-by-2 or N-by-3 containing only scalar numbers.

Description:

The OCRNDC function returns the normal ized device coordinates associated with the
world coordinates supplied as the right argument.

Example:

OCRNDC 4 2p.2 .3 .4 .7 .8 .7 .6 .3
0.2 0.3
0.4 0.7
0.8 0.7
0.6 0.3

Possible Errors:

A RANK ERR is reported if:

o the right argument is not a matrix

A LENGTH ERR is reported if:

o the right argument is not an N-by-2 or N-by-3 matrix

A DOHAIN ERR is reported if:

o a specified world position is outside the current window
and clipping is enabled

o the view plane normal and view up direction are paral lei
o APL graphics is not initial ized
o the projection and view parameters are inconsistent

1~8 OCRNDC Function (Map to NDC) CE38-04

)

OGRTEXTX Function (Inquire Text Extent)

Syntax:

POSO+POS1 OGRTEXTX STRING

Parameters:

POSO is a simple numeric vector of 2 or 3 items which indicate a graphical
position in world coordinates.

POS1 is a simple numeric vector of 2 or 3 items indicating a graphical position
in world coordinates.

STRING is a simple character vector containing the characters to be displayed on
the graphics device.

Description:

The OGRTEXTX function is used to return the extent of the specified character string
on the specified view surface, if the character string is drawn, unjustified,
beginning at the position Jndicated by the left argument.

Example:

.125 .25 OGRTEXT 'HERMOSA BEACH'
0.13 0

Possible Errors:

A RANK ERR is reported if:

o the left argument is not a vector
o the right argument is not a vector or scalar

A LENGTH ERR is reported if:

o the left argument does not contain 2 items

A DOMAIN ERR is reported if:

o the right argument is not simple and al I character scalars
o the left argument is not simple and al I numeric
o APL graphics is not initialized
o there is not an open segment
o the current value of OCR FONT is not supported
o the string contains il legal characters
o the vectors established by OCRCHPLANE and OGRCHUP are paral lei
o the string contains more than 256 characters
o the OGRCHPLANE and OGRCHUP matrix cannot be inverted

CE38-04 OGRTEXTX
Function (Inquire Text Extent)

1~9

DGRep Function (Current Position)

Syntax:

POS+OCRCP

Parameters:

POS is a simple numeric vector of 2 or 3 items which indicate a graphical
position in world coordinates.

Description:

The OCRCP ni ladic function is used to return the current drawing position in world
coordinates.

Example:

OCRCP
0.125 0.25

Possible Errors:

A DOHAIN ERR is reported if:

o APL graphics is not initialized

Graphics Segment Functions

AI I graphics output occurs in graphical segments. The segments partition the output
primitives such that the output of each primitive occurs in one and only one segment
and each segment contains only graphic primitive output. Two types of segments may
be used: retained segments and temporary segments.

Graphic output directed to a temporary segment exists for the lif~ of the current
frame. Output directed to a retained segment may appear in multiple frames depending
on its visibility attribute. Many retained segments may be used to represent the
image on the view surface. Retained segments are identified by their names which
must be an integer number in the range 1 to 65535.

DGRSEGOPEN Function (Create a Retained Segment)

Syntax:

OCRSECOPEN SEC

15-10 OCRSEGOPEN CE38-04
Function (Create a Retained Segment)

)

Parameters:

SEC is a simple numeric scalar containing the number of the segment to be
created.

Description:

The OGRSECOPEN function creates a new empty retained segment. The dynamic attributes
for the new segment are determined by the current attribute values for the retained
segment dynamic attributes. The set of currently selected view surfaces is recorded
with the newly created retained segment. Throughout the life of the retained
segment, the image it defines appears on each view surface in this list.

The newly created segment becomes the currently open segment. Subsequent execution
of graphics output functions are recorded in this retained segment. If the retained
segments visibi I ity attribute is visible, the execution of graphics output functions
also results in new information appearing on the view surfaces selected by the
segment. While a segment is open, the viewing parameters may not be altered and view
surfaces may not be selected or deselected.

Example:

OGRSECOPEN 314

Possible Errors:

A LENCTH ERR is reported if:

o the right argument does not contain exactly one item

A DOMAIN ERR is reported if:

o the right argument is not simple or numeric
o there is no currently selected view surface
o an open segment already exists
o the specified retained segment already exists
o there is an illegal image transformation
o the view plane normal and view up direction are paral lei
o the viewing parameters are inconsistent
o the clipping parameters are inconsistent
o APL graphics is not initial ized

DGRSEGCLOSE Function (Close Retained Segment)

Syntax:

OCRSEGCLOSE

Description:

The OGRSEGCLOSE function closes currently open retained segments. Output primitives
can no longer be executed. Closing a retained segment has no effect on its
visibil ity or other segment attributes.

CE38-04 OCRSEGCLOSE 15-11
Function (Close Retained Segment)

Example:

[]GRSEGCLOSE

Possible Errors:

A DOHAIN ERR is reported if:

o no open retained segment exists
o APL graphics is not initialized

DGRSEGDEL Function (Delete Retained Segment)

Syntax:

[]GRSEGDEL SEGS

Parameters:

SEGS is a simple integer vector containing the numbers of the segments to be
deleted.

Description:

The []GRSEGDEL function deletes the specified retained segment. If the retained
segment's visibility attribute is visible, its image is removed from each view
surface on which it appears. After a retained segment is deleted, it is as if the
segment had never existed.

Example:

[]GRSEGDEL 314

This example causes segments 314 and 1 to be deleted.

Possible Errors:

A RANK ERR is reported if:

o the right argument is not a scalar or vector

A DOHAIN ERR is reported if:

o the right argument is not simple or does not have integer values
o APL graphics is not initialized
o the specified retained segment does not exist

15-12 []GRSEGDEL CE38-04
Function (Delete Retained Segment)

)

)

DGRSEGREN Function (Rename Retained Segment)

Syntax:

OCRSECREN SEC2

Parameters:

SEC 2 is a simple integer vector containing 2 items which are the current segment
number and the new number by which that segment is to be known.

Description:

The OCRSECREN function renames the specified segment. The original retained segment
name can no longer be referenced. This function has no visible effect.

Example:

OCRSECREN 2 314

This example changes the nqme (segment number) of segment 2 to number 314.

Possible Errors:

A RANK ERR is reported if:

o the right argument is not a scalar or vector

A LENCTH ERR is reported if:

o the right argument is not of length 2

A DOMAIN ERR is reported if:

o the right argument is not simple or not near integer
o the first item of the right argument is not a retained segment number
o the second item of the right argument is a currently existing segment number
o APl graphics is not initialized

DGRSEGSURFS Function (Inquire Segment Surfaces)

Syntax:

SURFS~OCRSECSURFS SEC

Parameters:

SEC

SURFS

is a simple numeric scalar containing the number of an existing segment.

is a simple integer vector of view surface numbers.

CE38-04 OCRSECSURFS 15-13
Function (Inquire Segment Surfaces)

Description:

The OCRSEGSURFS function returns the number of the view surfaces which were selected
when the retained segment was created.

Example:

OCRSEGSURFS 314

This example demonstrates that graphics output to segment 314 appears on view surface
1.

Possible Errors:

A LENGTH ERR is reported if:

o the right argument does not contain exactly one item

A DOHAIN ERR is reported if:

o the right argument is not simple or near integer
o the specified segment does not exist
o APL graphics is not initialized

OGRSEGS Function (Inquire Retained Segment Names)

Syntax:

SEGS+OCRSEGS

Parameters:

SEGS is a simple integer vector result.

Description:

The OGRSEGS function returns the numbers of al I of the current retained segments.

Example:

OCRSEGS
3 314

This example displays the number of current retained segments. in this case there are
currently two retained segments numbered 3 and 314.

Possible Errors:

A DOHAIN ERR is reported if:

o APL graphics is not initialized

15-14 OCRSEGS CE38-04
Function (Inquire Retained Segment Names)

)

)

OGRSEGCURR Function (Inquire Open Segment)

Syntax:

SEC~OCRSECCURR

Parameters:

SEC a simple integer scalar result.

Description:

The result of the OCRSECCURR function is 0 if there is not a currently open retained
segment, or it is the number of the currently open retained segment.

OGRTSEGO Function (Create Temporary Segment)

Syntax:

OCR TSECO

Description:

The OCRTSECO creates an open temporary segment. Subsequent execution of output
primitives result in information appearing on the currently selected view surfaces.
While a temporary segment is open, the viewing parameters may not be altered and view
surfaces may not be selected or deselected.

Example:

OCR TSECC 0

Possible Errors:

A DOHAIN ERR is reported if:

o APL graphics is not initialized
o the set of selected view surfaces is empty
o an open segment already exists
o the viewing parameters are inconsistent
o the clipping parameters are inconsistent

CE38-04 OCR TSEC 0 15-15
Function (Create Temporary Segment)

OGRTSEGC Function (Close Temporary Segment)

Syntax:

OCRTSEGC

Description:

The OCRTSEGC function closes the currently open temporary segment. Output primitives
may no longer be executed.

Example:

OCR TSEGC

Possible Errors:

A DOMAIN ERR is reported if:

o APL graphics is not initialized
o there is no open temporary segment

OGRTSEG Function (Inquire Open Temporary Segment)

Syntax:

LOGL+OCRTSEG

Parameters:

LOGL is a scalar logical value 0 or 1.

Description:

The result of executing the OCRTSEG function is the value 1 if there is a temporary
segment currently open, otherwise the result is O.

Example:

OCR TSEG
o

Possible Errors:

A DOMAIN ERR is reported if:

o APL graphics is not initialized

15-16 OCR TSEG CE38-04
Function (Inquire Open Temporary Segment)

)

OGRSEGVISIBILITY Function (Segment Visibility)

Syntax:

LOGLO+LOGLI OGRSEGVISIBILITY SEGS

LOGLO+ OGRSEGVISIBILITY SEGS

Parameters:

is a simple logical vector. LOGLO

SEGS is a simple integer vector containing the numbers of retained segments.

LOGLI is a simple logical vector of the same length as SEGS. Or, it is a single
logical value to be used for each item in SEGS.

Description:

The OGRSEGVISIBILITY function is used to modify or inquire about the current value of
the segment visibility attribute for each segment number in the right argument. If
the left argument is not pr.ovided, the result has the same length as the right
argument. In this case, each result value is 1 if the segment visibility attribute
is 'VISIBLE' or 0 if the segment visibi I ity attribute is 'INVISIBLE'.

If the left argument is provided, the values specified by the left argument are used
as the new segment visibility dynamic attribute for each of the segments specified in
the right argument; the result is an empty vector. The value 1 is used to set the
segment visibi I ity to 'VISIBLE' and the value 0 is used to set the segment visibility
to 'INVISIBLE'.

Example:

1 OGRSEGVISIBILITY 3 314
OCRSEGVISIBILITY 3 314

1 1

Possible Errors:

A RANK ERR is reported if:

o the left or right arguments are not vectors or scalars

A LENGTH ERR is reported if:

o the left argument is not the same length as the right argument and the left
argument is not a single item.

A DOMAIN ERR is reported if:

o the right argument contains an item that is not a simple integer value
o the left argument contains an invalid value
o the right argument contains a number which is not the number of a retained

segment
o APL graphics is not initialized

CE38-04 OGRSEGVISIBILITY
Function (Segment Visibi lity)

15-17

OGRSEGHIGHLIGHT Function (Segment Highlight>

Syntax:

LOGLO+LOGL1 OCRSEGHIGHLIGHT SEGS

LOGLO+ OCRSEGHIGHLIGHT SEGS

Parameters:

is a simple logical vector. LOGLO

SEGS is a simple integer vector containing the numbers of retained segments.

LOGLl is a simple logical vector of the same length as SEGS. Or, it is a single
logical value to be used for each item in SEGS.

Description:

The OGRSEGHIGHLIGHT function is used to modify or inquire on the current value of the
segment highlighting attribute for each segment number in the right argument. If the
left argument is not provided, the result has the same length as the right argument.
In this case, each result value is 1 if the segment highl ighting attribute is
'HIGHLIGHTED', or 0 if the segment highl ighting attribute is 'NON-HIGHLIGHTED'.

If the left argument is provided, the values specified by the left argument are used
as the new segment highlighting dynamic attribute for each of the segments specified
in the right argument; the result is an empty vector. The value 1 is used to set the
segment highl ighting to 'HIGHLIGHTED', and the value 0 is used to set the segment
highlighting to 'NON-HIGHLIGHTED'.

Example:

1 1

1 OGRSEGHIGHLIGHT 3 314
OCRSEGHIGHLIGHT 3 314

Possible Errors:

A RANK ERR is reported if:

o the left or right arguments are not vectors or scalars

A LENGTH ERR is reported if:

o the left argument is not the same length as the right argument and the left
argument is not a single item

A DOMAIN ERR is reported if:

o the right argument contains an item that is not a simple integer value
o the left argument contains an invalid value
o the right argument contains a number which is not the number of a retained

segment

15-18 OGRSEGHIGHLIGHT
Function (Segment Highl ight)

CE38--04

)

)

OGRVISIBILITY Variable (Set/Inquire Visibility)

Syntax:

OCRVISIBILITY+LOGL

Parameters:

LOGL is either a scalar numeric value 0 or 1. Or, it is a simple vector
containing the characters 'VISIBLE' or 'INVISIBLE'.

Description:

The OCRVISIBILITY system variable is used to define the default segment visibility
attribute. This value is used when a new segment is created by the OCRTSEGO or
OCRSECOPEN system functions.

Example:

OCRVISIBILITY+l
OCRVISIBILITY

Possible Errors:

A RANK ERR is reported if:

o a character value assigned is not a scalar or vector

A LENGTH ERR is reported if:

o a numeric value assigned contains more than one item

A DOMAIN ERR is reported if:

o the value assigned is not simple.
o a numeric value assigned is not 0 or 1
o a character value assigned is not a legal keyword

OGRHIGHLIGHT Variable (Set/Inquire Highlighting)

Syntax:

OCRHIGHLIGHT+LOGL

Parameters:

LOGL is either a scalar numeric value 0 or 1. Or, it is a simple vector
containing the characters 'HIGHLIGHTED' or 'NON-HIGHLIGHTED'.

CE38-04 OCRHIGHLIGHT
Variable (Set/Inquire Highlighting)

15-19

Description:

The OGRHIGHLIGHT system variable is used to define the default segment highlighting
attribute. This value is used when a new segment is created by the OGRTSEGO or
OGRSEGOPEN system functions.

Example:

OCRHIGHLIGHT+ 1
OCRHIGHLIGHT

Possible Errors:

A RANK ERR is reported if:

o a character value assigned is not a scalar or vector

A LENGTH ERR is reported if:

o a numeric value assigned contains more than one item

A DOMAIN ERR is reported if:

o the value assigned is not simple.
o a numeric value assigned is not 0 or 1
o a character value assigned is not a legal keyword

Graphics Attribute Variables

The graphics output functions use the current values of the graphics attribute system
variables to determine the actual appearance of the graphics output. These system
variables may be referenced to obtain their current value, assigned new values, or
localized within functions. When localized, these system variables maintain their
previous value unless reassigned.

Values assigned to these attributes affect future use of their associated graphics
output functions.

The assignment of these attribute variables can result in a DOMAIN ERR report from
APL for the following reasons:

o the attribute value is invalid
o APL graphics is not initialized

Other errors can include RANK ERR, LENGTH ERR, and DOMAIN ERR when requirements set
out by the parameter definition for the variable are not met.

15-20 Graphics Attribute Variables CE38-04

OGRMARKER Variable (Marker Symbol)

Syntax:

OCRHARKER+KEYWORD

Parameters:

KEYWORD is a scalar integer value which indicates the number of the desired
ma rke r symbo I .

Description:

The OCRHARKER variable is used by the OCRHARK system function to specify a marker
symbol. The valid values are integers in the range 1 through the device driver
defined maximum. The values 1 through 5 always produce the symbols: dot, star,
capital letter 0 and capital letter X. Legal values greater than 5 produce symbols
determined by the device. The default value is 1.

Example:

3

OGRHARKER+3
OGRHARKER

DGRPINS Variable

Syntax:

OCRPINS+KEYWORD

Parameters:

(Polygon Interior Style)

KEYWORD is a simple character vector containing one of the keyword values:
'PLAIN', 'SHADED', or 'PATTERNED'.

Description:

The OCRPINS variable is used by the OCRPOLYGON system function to determine the
method for fil ling the image of the interior of a visible polygon. The default value
is 'PLAIN'.

Example:

SHADED

OGRPINS+'SHADED'
OGRPINS

CE38-04 OCRPINS 15-21
Variable (Polygon Interior Style)

OGRPES Variable (Polygon Edge Style)

Syntax:

[JGRPES+KEYWORD

Parameters:

KEYWORD is a simple character vector containing one of the keyword values:
'SOLID' or 'INTERIOR'.

Description:

The OGRPES variable is used by the [JGRPOLYGON system function to determine the method
for forming the image of the border (edges) of a visible polygon. The default value
is 'SOLID'.

Example:

SOLID

OCRPES+'SOLID'
OCRPES

OGRLW Variable

Syntax:

OCRLW+N

Parameters:

(Line Width)

N specifies the relative width of the image of a visible line.

Description:

The OGRLW variable specifies the relative width of the image of a visible line
generated by the OCRLINE system function. The specified value must be in the range
from 0 to 1 inclusive. The default value is o.

Example:

OCRLW+.0625
OGRLW

0.0625

15-22 OCRLW Variable (Line Width) CE38-04

)

OGRLI VariabLe (Line Index)

Syntax:

OCRLI+I

Parameters:

I is a simple integer scalar value.

Description:

The OCRLI variable specifies the index used to select the color or intensity of the
image of a visible line, marker, or polygon edge (whose OCRPES is 'SOLID'). This
value only applies to the system functions OCRLINE, OCRHARKER. and OCRPOLYCON. The
default value is 1.

Example:

2

OCRLI+2
OCRLI

OGRLS VariabLe

Syntax:

OCRLS+I

Parameters:

(Line StyLe)

I is a scalar integer value.

Description:

The OCRLS variable is used by the OCRLINE function to determine the style of the
image of a visible line (e.g., sol id, dashed). The default value is 1 which
corresponds to a solid line.

Example:

4

OCRLS+4
OCRLS

CE38-04 OCRLS Variable (Line Style) 15-23

OGRPEN Variable (Pen)

Syntax:

OCRPEN+I

Parameters:

is a scalar integer value.

Description:

The OCRPEN variable may be used by al I output primitives to distinguish the image of
their output. The particular values of OCRLI. OCRLS. OCRLW, and OCRTEXTI which
correspond to a particular pen value are implementation and device dependent. The
default value of 0 corresponds to the current settings or OCRLl. OCRLS. OCRLW. and
OCRTEXTl. AI I other OCRPEN values override these values.

Example:

2

OCRPEN+2
OCRPEN

OGRFONT Variable

Syntax:

OCRFONT+I

Parameters:

(Font)

I is a scalar integer value.

Description:

The OCRFONT variable is used by the OCR TEXT function to specify the style of a
visible character. Values range from 1 to a device dependent maximum. The default
value of 1 corresponds to ASCII.

Example:

29

[]GRFONT+29
[]GRFONT

15-24

~ SELECT APL FONT

[]GRFONT Variable (Font) CE38-04

)

)

DGRTEXTI Variable (Text Index)

Syntax:

[JGRTEXTI+I

Parameters:

I is a scalar integer value.

Description:

The oeRTEXTI variable is used by the [JGRTEXT function to select the color or
intensity of the images of a visible character. The default value is 1.

Example:

3

[JGRTEXTI+3
[JGRTEXTI

DGRCHSIZE Variable

Syntax:

[JGRCHSIZE+NN

Parameters:

(Character Size)

NN is a simple two item numeric vector.

Description:

The [JGRCHSIZE variable is used by the [JGRTEXT function to select the desired size (in
world coordinate units) of a character. The pair of values is used to select both
the width and height of a character. The values must be in the range of 0 to 1
inclusive. The default value is (0.01 0.01).

Example:

[JGRCHSIZE+.0625 .0625
[JGRCHSIZE

0.625 0.625

CE38-04 [JGRCHSIZE
Variable (Character Size)

15-25

DGRCHPLANE VariabLe (Character Plane)

Syntax:

OCRCHPLANE+NNN

Parameters:

NNN is a simple numeric vector of length 3.

Description:

The OCRCHPLANE variable is used by the OCR TEXT function to select the orientation in
the world coordinate system of the plane on which the characters wi I I appear. The
three values contain an X, Y, and Z component. The default value is (0 0 -1).

Example:

021

OCRCHPLANE+O 2 1
OCRCHPLANE

DGRCHUP Variable

Syntax:

OCRCHUP+NNN

Parameters:

(Character Up)

NNN is a simple numeric vector of length 3.

Description:

The OCRCHUP variable is used by the OCR TEXT system function selects the principal up
direction in the plane on which the characters wi I I appear. The component of OCRCHUP
perpendicular to OCRCHPLANE points up. The value is made up of (X, Y, Z) components.
The default value is (0 1 0).

Example:

0.25

15-26

OCR CHUP + 1 .25
OCRCHUP

OCRCHUP
Variable (Character Up)

CE38-04

DGRCHPATH Variable (Character Path)

Syntax:

OGRCHPATH+KEYWORD

Parameters:

KEYWORD is a simple character vector containing one of the keyword values:
'RIGHT'. 'LEFT'. 'UP'. or 'DOWN'.

Description:

The OGRCHPATH variable is used by the OGRTEXT function to determine the direction
within the plane on which the characters wil I appear. The default value is 'RIGHT'.

Example:

DOWN

OGRCHPATH+'DOWN'
OGRCHPATH

DGRCHSPACE Variable

Syntax:

OGRCHSPACE+N

Parameters:

(Character Space)

N is a scalar numeric value in the range 0 to 1.

Description:

The OGRCHSPACE variable is used by the OGRTEXT system function to determine
additional spacing between adjacent characters in a string. The value represents the
fraction of the OGRCHSIZE attribute. The default value is O.

Example:

OGRCHSPACE+.03125
OGRCHSPACE

0.03125

CE38-04 [JGRCHSPACE
Variable (Character Space)

15-27

OGRCHJUST Variable (Character Justification)

Syntax:

OGRCHJUST+KEYWORDS

Parameters:

KEYWORDS is a simple character vector containing two keywords separated by a
blank. The first keyword value must be either 'OFF't 'LEFT't 'RIGHT't or 'CENTER'.
The second keyword value must be either 'OFF't 'TOP't 'BOTTOM', or 'CENTER'.

Description:

The OGRCHJUST variable is used by the OGRTEXT system function to determine the mode
of string justification. It has two components specifying the horizontal and
vertical justifications. The default value is 'OFF OFF'.

Example:

OGRCHJUST+'LEFT TOP'
OGRCHJUST

LEFT TOP

OGRCHPREC Variable

Syntax:

OGRCHPREC+KEYWORD

Parameters:

(Character Precision)

KEYWORD is a simple character vector containing one of the keyword values:
'STRING', 'CHARACTER't or 'STROKE'.

Description:

The OGRCHPREC is used by the OGRTEXT system function to determine the precision of
the appearance of text output. The default value is 'STRING'.

Example:

OGRCHPREC+'STROKE'
OGRCHPREC

STROKE

15-28 OGRCHPREC CE38-04
Variable (Character Precision)

OGRFILL Variable (Fill Index)

Syntax:

[]GRFILL+I

Parameters:

I is a simple integer scalar value.

Description:

The []GRFILL variable specifies the index used to select the color or intensity used
to fi I I the image of a visible polygon.

Example:

3

[]GRFILL+3
[]GRFILL

OGRVERTEX Variable

Syntax:

[]GRVERTEX+IV

Parameters:

(Vertex Indices)

IV is a simple integer vector containing at least 3 values.

Description:

The []GRVERTEX variable is used by the []GRPOLYGON function to specify the set of index
values used to shade the image of a visible polygon (whose []GRPINS is 'SHADED'). The
default value is (1 1 1).

Example:

[]GRVERTEX+3 2 1 4 5
[]GRVERTEX

3 2 145

CE38-:-04 []GRVERTEX
Variable (Vertex Indices)

15-29

Graphics Viewing Variables

APL graphics provides system variables to define the viewing operations and the
coordinate transformations to be made when graphics output is generated. These
system variables may be referenced to obtain their current value. assigned to modify
their value or localized within user-defined functions. The most recently specified
values of the viewing parameters (or their defaults) are used to determine the
viewing.

Viewing parameters may not be specified while a graphics segment is open (or being
created). If the termination of a defined function causes a viewing variable to be
surfaced while a segment is open. then the surfaced value is lost.

The valid values of a viewing variable may depend on whether the graphics system is
initialized as 20 or 3~. At graphics initialization time. 01 I values of graphics
viewing variables are respecified and set to their defaults.

DGRWINDOW Variable (Window)

Syntax:

OCRWINDOW+NNNN

Parameters:

NNNN is a simple numeric vector of length 4.

Description:

The OCRWINDOW variable specifies a rectangle in world coordinates. The values define
the X-minimum. X-maximum. Y-minimum. and Y-maximum extents of the window. The
default window is <0 1 0 1).

Example:

OCRWINDOW+O .75 .25 1
OCRWINDOW

o 0.75 0.25 1

Possible Errors:

A RANK ERR is reported if:

o the assigned value is not a vector.

A LENGTH ERR is reported if:

o the assigned value is not of length 4

A DOMAIN ERR is reported if:

o the assigned value is not simple or all numeric
o a segment is currently open
o the first item is greater than the second or

the third item is greater than the fourth
o APL graphics is not initialized

15-30 OCRWINDOW Variable (Window) CE38-04

OGRUP Variable (View Up)

Syntax:

OCRUP+-N23

Parameters:

N23 is a simple numeric vector of 2 items for 20 graphics or 3 items for 3D
graphics.

Description:

The OCRUP variable defines the world coordinate up direction so that the world
coordinate Y-axis need not be upright on the view surface. The default value for 20
graphics is (0 1) and (0 1 0) for 3D graphics.

Example:

1 0

OCRUP+-1 0
OCR UP

Possible Errors:

A RANK ERR is reported if:

o the assigned value is not a vector

A LENGTH ERR is reported if:

o the assigned value is not of length 2 or 3

A DOMAIN ERR is reported if:

o the assigned value is not simple or all numeric
o APL graphics is not initialized
o a segment is currently open
o al I assigned values are zero

OGRSPACE Variable (NDC Space)

Syntax:

OCRSPACE+-N23

Parameters:

N23 is a simple numeric vector of 2 items for 20 graphics or 3 items for 3D
graphics.

CE38-04 OCRSPACE Variable (NDC Space) 15-31

Description:

The OGRSPACE variable defines the size of the normalized device coordinate space
which can be addressed on the view surface of all display devices and within which
viewports are specified. All values must be in the range 0 to 1 inclusive and at
least one value must be 1. This value may be specified at most once per
initial ization. The default value for 20 is (1 1) and (1 1 0) for 3D graphics.

Example:

OGRSPACE
1 1

Possible Errors:

A RANK ERR is reported if:

o the assigned value is not a vector

A LENGTH ERR is reported if:

o' the assigned value is not 2 or 3 items in length

A DOMAIN ERR is reported if:

o the assigned value is not simple or not all numeric
o APL graphics is not initialized
o the NDC space is already established
o a value is not in the range of 0 to 1
o neither value is 1
o the first or second value is 0

OGRVIEWPORT Variable (Viewport)

Syntax:

OGRVIEWPORT+NNNN

Parameters:

NNNN is a simple numeric vector of length 4.

Description:

The OGRVIEWPORT variable specifies a rectangle in normalized device coordinate space.
The viewport cannot exceed the bounds defined for the variable OGRSPACE. The values
define (in order) the X-minimum. X-maximum. Y-minimum. and Y-maximum limits of the
viewport. The default value of this variable is the value of OGRSPACE.

Example:

OGRVIEWPORT+.125 .815 0 1
OGRVIEWPORT

0.125 0.815 0 1

15-32 OGRVIEWPORT
Variable (Viewport)

CE38-04

Possible Errors:

A RANK ERR is reported if:

o the assigned value is not a vector

A LENGTH ERR is reported if:

o the assigned value is not of length 4

A DOHAIN ERR is reported if:

0 the assigned value is not simple or all numeric
0 APL graphics is not in i t i a I i zed
0 a segment is open
0 the first item is greater than the second item or

the third item is greater than the fourth item
0 the viewport is outside of NDC space

DGRVREFPT Variable (View Reference Point)

Syntax:

OCRVREFPT+NNN

Parameters:

NNN is a simple numeric vector of length 3.

Description:

The OCRVREFPT variable specifies the view reference point in world coordinates. The
value specified defines (in order) the X. Y. and Z location of the reference point.
The default value is (0 0 0). This value is only used in 3D viewing.

Example:

123

OCR VREFPT+ 1 2 3
OCR VREFPT

Possible Errors:

A RANK ERR is reported if:

o the assigned value is not a vector

A LENGTH ERR is reported if:

o the assigned value is not 3 items in length

A DOHAIN ERR is reported if:

o the assigned value is not simple or al I numeric
o APL graphics is not initialized
o a segment is open

CE38-04 [JGRVREFPT
Variable (View Reference Point)

15-33

OGRVPLNORM VariabLe (View PLane NormaL)

Syntax:

QGRVPLNORH+NNN

Parameters:

NNN is a simple numeric vector of length 3.

Description:

The QGRVPLNORH variable specifies the view plane normal. The value specified
determines a vector in world coordinates relative to the view reference point. The
value specified defines (in order) the X. Y. and Z location of the view plane normal.
The default value is (0 0 -1). This value is only used in 3D viewing.

Example:

1 0 1

QGRVPLNORH+1 0 1
QGRVPLNORH

Possible Errors:

A RANK ERR is reported if:

o the assigned value is not a vector

A LENGTH ERR is reported if:

o the assigned value is not of length 3

A DOHAIN ERR is reported if:

o the assigned value is not simple or all numeric
o APL graphics is not initialized
o al I three values are zero

OGRVPLNDIS VariabLe (View PLane Distance)

Syntax:

QGRVPLNDIS+N

Parameters:

N is a simple numeric scalar value.

15-34 QGRVPLNDIS
Variable (View Plane Distance)

CE38-04

Description:

The OGRVPLNDIS variable specifies the distance of the view plane. The default value
is 0 which signifies that the view plane is located at the view reference point.

Example:

2

OGRVPLNDIS+2
OGRVPLNDIS

Possible Errors:

A LENGTH ERR is reported if:

o the assigned value is not exactly one item

A DOHAIN ERR is reported if:

o the assigned value is not simple or numeric
o APL graphics is not initialized
o a segment is open

OGRVDEPTH Variable (View Depth)

Syntax:

OGRVDEPTH+NN

Parameters:

NN is a simple numeric vector of length 2.

Description:

The OGRVDEPTH variable specifies the clipping depth planes but does not affect
whether depth clipping is performed. The first item is the front distance from the
view reference point. The second item is the back distance from the view reference
point. The default value is (0 -1).

Example:

OGRVDEPTH+-2 2
OGRVDEPTH

Possible Errors:

A RANK ERR is reported if:

o the assigned value is not a vector

A LENGTH ERR is reported if:

o the assigned value is not of length 2

CE38-04 OGRVDEPTH
Variable (View Depth)

15-35

A DOHAIN ERR is reported if:

o the assigned value is not simple or all numeric
o APL graphics is not initial ized
o a segment is open
o the first item is greater than or equal to the second

DGRPROJECTION Variable (Projection Type)

Syntax:

OCRPROJECTION+PROJ

Parameters:

PROJ is a 4 item vector. The projection keyword is an enclosed character vector
representing the first item. The X. Y. and Z positions in world coordinates are the
final 3 items. The projection keyword value must be either 'PARALLEL' or
'PERSPEC IT IVE' .

Description:

The OCRPROJECTION variable specifies the type of projection used in the 3D viewing
operation. If a paral lei projection is specified, the world coordinate position
indicates the lines are parallel to a line through the view reference point and this
point. If a perspective projection is selected, the world coordinate position
specifies the center of the projection. The default value is ('PARALLEL' 0 0 1).

Example:

OCRPROJECTION+'PERSPECTIVE' 0 0 2
OCRPROJECTION

PERSPECTIVE 0 0 2

Possible Errors:

A RANK ERR is reported if:

o the assigned value is not a vector
o the first item of the assigned value is not a scalar or a vector

A LENGTH ERR is reported if:

o the assigned value is not of length 4

A DOHAIN ERR is reported if:

0 the first item of the assigned value is not character or the
scalar numbers

0 the first i tern of the assigned value is not a va lid keyword
0 a segment is open
0 the assigned value is ('PARALLEL' o 0 0)
0 APL graphics is not i nit i a I i zed

15-36 [JGRPROJECTION
Variable (Projection Type)

remaining items not

CE38-04

Window Clipping Variables

APL automatically provides a window clipping capabi lity if clipping is enabled. The
clipping is control led by specifying values for the three clipping variables:
OGRCLIP, OGRFCLIP, and OGRBCLIP.

DGRCLIP Variable (Window Clipping)

Syntax:

OCRCLIP+L

Parameters:

L specifies a value which can be the simple numeric scalar 0 or 1, or the keyword
value 'ON' or 'OFF'.

Description:

The OGRCLIP variable specifies whether window clipping is enabled. The values 'ON'
or 1 may be used to turn window cl ipping on. The values 'OFF' or 0 may be used to
turn window clipping off. When referenced, the value is 0 or 1. The default value is
1.

Example:

o

OCRCLIP+'OFF'
OCRCLIP

Possible Errors:

A RANK ERR is reported if:

o the character value assigned is not a scalar or vector

A LENGTH ERR is reported if:

o the numeric value assigned is not a singleton

A DOHAIN ERR is reported if:

o a character value assigned is not a clipping keyword
o a numeric value being assigned is not 0 or 1.
o APL graphics is not initial ized
o a segment is open

CE38-04 OGRCLIP
Variable (Window CI ipping)

15-37

DGRFCLIP Variable (Front Plane Clipping)

Syntax:

OGRFCLIP+L

Parameters:

L specifies a value which can be the simple numeric scalar 0 or 1. or the keyword
va I ue 'ON' or 'OFF'.

Description:

The OGRFCLIP variable specifies whether front plane clipping is enabled. The values
'ON' or 1 may be used to turn front plane clipping on. The values 'OFF' or 0 may be
used to turn front plane clipping off. When referenced. the value is 0 or 1. The
default value is O.

Example:

o

OGRFCLIP+O
OGRFCLIP

Possible Errors:

A RANK ERR is reported if:

o the character value assigned is not a scalar or vector

A LENGTH ERR is reported if:

o the numeric value assigned is not a singleton

A DOMAIN ERR is reported if:

o a character value assigned is not a cl ipping keyword
o a numeric value being assigned is not 0 or 1
o APl graphics is not initialized
o a segment is open

OGRBCLIP Variable (Back Plane Clipping)

Syntax:

OGRBCLIP+L

Parameters:

L specifies a value which can be the simple numeric scalar 0 or 1. or the keyword
value 'ON' or 'OFF'.

15-38 OGRBCLIP CE38-04
Variable (Back Plane Clipping)

)

)

Descript ion:

The OCRBCLIP variable specifies whether back plane clipping is enabled. The values
'ON' or 1 may be used to turn back plane clipping on. The values 'OFF' or 0 may be
used to turn back plane clipping off. When referenced. the value is 0 or 1. The
default value is o.

Example:

OCRBCLIP+1
OCRBCLIP

Possible Errors:

A RANK ERR is reported if:

o the character value assigned is not a scalar or vector

A LENGTH ERR is reported if:

o the numeric value assigned is not a singleton

A DOMAIN ERR is reported if:

o a character value assigned is not a clipping keyword
o a numeric value being assigned is not 0 or 1
o APL graphics is not initialized
o a segment is open

DGRCOORD VariabLe (Coordinate System Type)

Syntax:

OCRCOORD+KEYWORD

Parameters:

KEYWORD is a simple character vector containing one of the keyword values:
'LEFT' or 'RIGHT'.

Description:

The OCRCOORD variable is used to specify whether the world coordinate system is
left-handed or right-handed. The default value is 'RIGHT'.

Example:

OCRCOORD
RIGHT

CE38-04 OCRCOORD
Variable (Coordinate System Type)

15-39

Possible Errors:

A RANK ERR is reported if:

o the character value assigned is not a scalar or vector

A LENGTH ERR is reported if:

o the numeric value assigned is not a singleton

A DOMAIN ERR is reported if:

o a character value assigned is not a clipping keyword
o a numeric value being assigned is not 0 or 1
o APL graphics is not initialized
o a segment is open

DGRWORLD Variable (World Transformation)

Syntax:

OCRWORLD+MAT

Parameters:

MAT is a simple numeric matrix of shape (3 3) for 20 transformations or shape (4
4) for 3D transformations.

Description:

The OCRWORLD variable is used to transform world coordinate positions. This matrix
is used in a matrix multiplication which can effect scaling. translation. and
rotation of the position.

Example:

100
010
001

OCRWORLD

Possible Errors:

A RANK ERR is reported if:

o the value assigned is not a matrix

A LENGTH ERR is reported if:

o the value assigned is not shape 3-by-3 or shape 4-by-4

A DOMAIN ERR is reported if:

o the value assigned is not simple and all numeric
o APL graphics is not initialized

15-40 OCRWORLD
Variable (World Transformation)

CE38-04

Graphics Control Functions and Variables

CP-6 APL provides several functions and variables which control the picture
generation process. These capabilities are provided for:

o Initiating and terminating APL graphics
o View surface (device) control
o Picture change control
o Frame control
o Color specification
o Color and intensity binding
o Pixel array definition

Before graphics output can occur, APL graphics must be initialized and a view surface
must be initialized and selected.

OGRINIT Function (Initialize APL Graphics)

Syntax:

OCRINIT STRING

Parameters:

STRING is a simple character vector containing initialization keywords separated
by blanks or a single comma. Any keyword that is al I blank is defaulted.

Description:

The OCRINIT function is used to initial ize APL graphics. The right argument may
contain up to four keywords which define (in order) the graphics output level, the
input level, the number of dimensions, and the hidden surface removal level. The
values for output level are: 'BASIC'. 'BUFFERED'. 'DYNAHIC-A' •. 'DYNAHIC-B'. and
'DYNAHIC-C'. The value for the input level is: 'NONE'. The values for the number of
dimensions are: '2D' or '3D'. The value for the hidden surface removal level is:
'NONE' .

This function must be executed before any other graphics function is executed or any
graphics variable is referenced or assigned. It causes al I graphics variables to be
initial ized to their default values.

Example:

OCRINIT 'BUFFERED •• 2D'

In this example, APL graphics is initialized with the output level 'BUFFERED'. the
input level 'NONE'. a dimensionality of '2D'. and a hidden surface removal level of
'NONE'. The default right argument (if an empty or al I blank value is specified) is
'BUFFERED.NONE.2D.NONE'.

Possible Errors:

A RANK ERR is reported if:

o the right argument is not a vector or scalar

CE38-04 OCRINIT 15-41
Function (Initialize APL Graphics)

A DOHAIN ERR is reported if:

o Graphics is already initialized
o the output level is not supported
o the input level is not supported
o the dimension level is not supported
o the hidden surface level is not supported
o an undefined keyword is provided
o too many keywords ore provided
o APL graphics capability is not available

OGRDONE Function (Terminate APL Graphics)

Syntax:

OGRDONE

Description:

The OGRDONE function closes any open segments, terminates all initialized view
surfaces, and releases all resources used by APL graphics. After this function is
executed, APL graphics may be reinitialized by executing the OGRINIT function.

Example:

OGRDONE

Possible Errors:

A DOHAIN ERR is reported if:

o APL graphics is not initialized

OGRINITSURF Function (Initialize View Surface)

Syntax:

STRING OGRINITSURF SURF

Parameters:

STRING

SURF

is a simple character vector containing options separated by commas.

is a simple integer scalar indicating a view surface number.

Description:

The OCRINITSURF function obtains access to the specified view surface and clears it.
The right argument is a view surface number. The left argument specifies attributes
of the view surface. The left argument is composed of the keyword 'INTENSITY' or
'COLOR'. fol lowed by the CP-6 fid indicating the location of the view surface
(default is 'HE'). This is fol lowed by the CP-6 device profi Ie name (default is
current profile if onl ine or super-graphics device if batch). Each of these
parameters is separated by blanks or commas. The default left argument (if it is
empty) is 'INTENSITY.HE'.

15-42 OGRINITSURF CE38-04
Function (Initial ize View Surface)

)

)

Example:

'INTENSITY' OCRINITSURF 1

In this case, the view surface is cleared and the device is prepared for graphics
output on the terminal.

Possible Errors:

A RANK ERR is reported if:

o the left argument is not a scalar or vector

A LENGTH ERR is reported if:

o the right argument contains more than one item

A DOMAIN ERR is reported if:

o the view surface is already initial ized
o al I possible view surfaces are initial ized
o an unknown keyword value is specified
o color is not provided on this surface
o the left argument is not al I character scalar items
o the right argument is not an integer scalar
o too many keywords in the left argument

DGRTERMSURF Function (Terminate View Surface)

Syntax:

OCRTERMSURF SURFS

Parameters:

SURFS is a simple integer vector of view surface numbers.

Description:

The OCRTERMSURF function terminates access to the view surface. Segments whose
images appear only on this view surface are deleted.

Example:

OCRTERHSURF

In this case, the view surface number 1 is terminated.

Possible Errors:

A RANK ERR is reported if:

o the right argument is not a scalar or vector

A DOHAIN ERR is reported if:

o the view surface is not initialized
o APL graphics is not initialized
o an item of the right argument is not an integer

CE38-04 OCRTERHSURF
Function (Terminate View Surface)

15-43

OGRCAPABILITIES Function (Inquire Capabilities)

Syntax:

CAP+OGRCAPABILITIES SURF

Parameters:

SURF is a simple integer scalar indicating a view surface number.

CAP is a 6-item nested array indicating the device capabilities.

Description:

The OGRCAPABILITIES function returns the device capabi lities associated with the
specified view surface. Each item of the result indicates attributes of the device.
They are separated into 6 classes of information which are:

the highest initialization levels supported by the device.

2 an indication of whether the device is physically there or is a pseudo device.

3 the size of the view surface (in centimeters).

4 the level of support avai lable for the primitive attributes.

5 an indication of how the segment attributes are supported.

6 an indication of the effect of batching functions.

The result is a 6 item vector containing:

1. LEVELS

A 3 item nested vector containing three character vectors:

1 highest output level supported
2 highest dimension level supported
3 highest hidden surface level supported

2. PHYSICAL

A character vector containing the value 'PSEUDO' or
'REAL' .

3. SIZES

A 6 item numeric vector containing:

1-2 width and height of view surface in centimeters
3-4 width and height of NDC space area in centimeters
5-6 horizontal and vertical resolution per centimeter

4. PRIMITIVE_ATTRIBUTES

A 22 item numeric vector containing:

1 Line index color count
2 Line index intensity count
3 Line index global color count
4 Line index global intensity count
5 Line index intensity hard/soft
6 Line index color type
7 Line index intensity type
8 Line style hardware count

15-44 OGRCAPABILITIES
Function (Inquire Capabil ities)

CE38-04

9 Line style software count
10 Line width count
11 Line width hard/soft
12 Line width minimum NOC
13 Line width maximum NOC
14 PEN hardware count
15 PEN software count
16 FONT count
17 Charsize count
18 Charsize hard/soft
19 Charsize minimum size in NOC
20 Charsize maximum size in NOC
21 Marker hardware count
22 Marker software count

5. SEGMENT_ATTRIBUTES

A vector containing two character vectors:

1 highl ighting support
2 image transformation support

6. BATCHING

A character vector indicating the strategy used by the
device for batching of updates.

Example:

pCAP+OCRCAPABILITIES
6

Possible Errors:

A LENGTH ERR is reported if:

o the right argument is not a single value

A DOHAIN ERR is reported if:

o the right argument value is not an integer
o the right argument value is not a valid view surface
o APL Graphics is not initial ized

OGRSURFACE Function (Select View Surface)

Syntax:

OCRSURFACE SURFS

Parameters:

SURFS is a simple integer vector of view surface numbers.

CE38-04 [JCRSURFACE
Function (Select View Surface)

15-45

Description:

The OCRSURFACE function adds the specified view surfaces to the list of currently
selected view surfaces. When a subsequent segment is created, the graphics output
will appear only on those surfaces that are currently selected.

Example:

OCRSURFACE

This example selects view surface 1.

Possible Errors:

A RANK ERR is reported if:

o the right argument is not a scalar or vector

A DOMAIN ERR is reported if:

o the right argument values are not integer
o a segment is currently open
o the specified view surface is not initialized
o the specified view surface has been selected
o APL Graphics is not initial ized

OGRUNSURFACE Function (Deselect View Surface)

Syntax:

OCRUNSURFACE SURFS

Parameters:

SURFS is a simple integer vector of view surface numbers.

Description:

The OCRUNSURFACE function removes the view surface specified from the set of selected
view surfaces. Subsequent segment creations and OCRFRAME function execution wil I not
affect this view surface until it is reselected.

Example:

OCRUNSURFACE

This example deselects view surface 1.

Possible Errors:

A RANK ERR is reported if:

o the right argument is not a scalar or vector

A DOMAIN ERR is reported if:

o the right argument contains a non-integer value
o a segment is open
o the view surface has not been selected
o APL Graphics is not initialized

15-46 OCRUNSURFACE CE38-04
Function (Deselect View Surface)

)

)

OGRSURFACES Function (Inquire Selected Surfaces)

Syntax:

SURFS~OCRSURFACES

Parameters:

SURFS is a simple integer vector of view surface numbers.

Description:

The OCRSURFACE function returns a vector containing the numbers of the selected view
surfaces.

Example:

OCRSURFACES

In this example. the result is the vector 1 indicating that view surface 1 has been
selected.

Possible Errors:

A DOHAIN ERR is reported if:

o APl graphics is not initialized

OGRIMMVISIBILITY Function (Immediate Visibility)

Syntax:

OCRIHHVISIBILITY LOGL

Parameters:

LOGL is the simple scalar number 0 or 1. Optionally. the keyword 'ON' or 'OFF'
may be used.

Description:

Specifying the value 1 as the right argument causes al I delayed visible picture
changes to take effect unless they are deferred as a result of batching.

Example:

OCRIHHVISIBILITY

CE38-04 OCRIHHVISIBILITY
Function (Immediate Visibi lity)

15-47

Possible Errors:

A RANK ERR is reported if:

o the right argument is character and is not a scalar or vector

A LENGTH ERR is reported if:

o the right argument is numeric and contains more than one item

A DOMAIN ERR is reported if:

o the right argument is not the number 0 or 1 or the character vector is not 'ON'
or 'OFF'.

o APL graphics is not initialized

DGRCURRENT Function (Make Picture Current)

Syntax:

OCRCURRENT

Description:

The OCRCURRENT function has no effect if immediate visibi lity is 1. If immediate
visibi lity is 0. al I delayed visible picture changes take effect subject to botching.

Example:

OCRCURRENT

Possible Errors:

A DOMAIN ERR is reported if:

o APL graphics is not initialized

DGRBATCH Function (Control Batching of Updates)

Syntax:

OCRBATCH LOGL

Parameters:

LOGL is the simple numeric scalar value 0 or 1.

15-48 OCRBATCH CE38-04
Function (Control Botching of Updates)

Description:

If the right argument is 1, a batch of updates is started. The end of the batch of
updates is indicated by executing the OGRBATCH function with a right argument value
of 0. While batching of updates is in effect, visible picture changes are deferred.

Example:

OGRBATCH 1
OGRLINE 7 2p .1.6.5.9.6 .9 .1.9.1.1.6.1.6 .9
OGRBATCH 0

Possible Errors:

A LENGTH ERR is reported if:

o the right argument contains more than one item

A DOHAIN ERR is reported if:

o the right argument value is not 0 or 1
o APL graphics is not initial ized
o the right argument value is 1 and already batching updates
o the right argument value is 0 and not batching updates

DGRCSTATUS Function (Inquire Control Status)

Syntax:

LOGL2+OGRCSTATUS

Parameters:

LOGL2 is a simple vector of 2 items containing the values 0 or 1.

Description:

The OGRSTATUS function indicates the current status of immediacy and batching of
updates. The first item is 1 if updates are immediately visible, otherwise it is 0.
The second item is 1 if within a batch of updates, otherwise it is 0.

Example:

OGRCSTATUS
1 0

This result indicates that immediate visibility is in effect and that no batching of
updates is being performed.

Possible Errors:

A DOHAIN ERR is reported if:

o APL graphics is not initialized

CE38-04 OCRCSTATUS 15-49
Function (Inquire Control Status)

OGRFRAME Function (New Frame)

Syntax:

OGRFRAHE

Description:

The OCRFRAHE function causes a new frame action to occur. The result on each
affected view surface is that the surface is erased and all visible retained segments
are redrawn.

Possible Errors:

A DOHAIN ERR is reported if:

o the set of currently selected view surfaces is empty
o APL graphics is not initial ized

OGRCOLMODEL Function (Color Model)

Syntax:

OCRCOLHODEL KEY

Parameters:

KEY is a simple character vector containing the keyword value 'HLS'. 'RGB' or "

Description:

The OCRCOLHODEL function is used to establ ish or inquire about the current color
model. If the right argument is empty or contains only blanks. the result is the
current color model type ('RGB' or 'HLS'). If the right argument contains non-blank
characters. they are used to specify the color model. The color model may be
established once after APL graphics is initialized before any view surfaces are
in i t i a I i zed.

Example:

OCRCOLHODEL "
HLS

This example demonstrates obtaining the current color model.

Possible Errors:

A RANK ERR is reported if:

o the right argument is not a scalar or vector.

A DOHAIN ERR is reported if:

o the keyword specified is not 'RGB' or 'HLS'
o a keyword is specified and a view surface has been initialized
o APL graphics is not initialized

15-50 OCRCOLHODEL
Function (Color Model)

CE38-04

)

)

OGRCOLINDEX Function (Set/Inqu'ire Color Indices)

Syntax:

COLS~COLS OCRCOLINDEX SURF

COLS~ OCRCOLINDEX SURF

Parameters:

SURF is a simple integer scalar indicating a view surface number.

COLS is a simple N-by-3 numeric array whose values range from 0 to 1.

Description:

Dyadically. the OCRCOLINDEX function sets al I of the color entries for the specified
view surface to the color components specified by the left argument and returns an
empty vector. Monadically. the OCRCOLINDEX function returns the currently defined
color entries for the specified view surface.

Example:

(4 3p 0 0 1 0 1 0 1 0 0 1 1 1) OCRCOLINDEX 1
OCRCOLINDEX

001
010
100
1 1 1

Possible Errors:

A RANK ERR is reported if:

o the left argument is not a matrix

A LENGTH ERR is reported if:

o the right argument is not exactly one item
o the second dimension of the left argument is not 3

A DOHAIN ERR is reported if:

o the right argument is not an integer
o the left argument is not numeric
o the specified view surface is not initial ized
o the view surface is not of type 'COLOR'
o too many indices are specified
o one or more of the color parameters is invalid
o APL graphics is not initialized

CE38-04 OCRCOLINDEX
Function (Set/Inquire Color Indices)

15-51

OGRINTINDEX Function (Set/Inquire Intensity Indices)

Syntax:

INTS~INTS OGRINTINDEX SURF

INTS~ OGRINTINDEX SURF

Parameters:

SURF is a simple integer scalar indicating a view surface number.

INTS is a simple numeric vector whose values range from 0 to 1.

Description:

Dyadically, the OGRINTINDEX function sets al I of the i~tensity entries for the
specified view surface to the intensity values specified by the left argument and
returns an empty vector. Monadically, the OGRINTINDEX function returns the currently
defined intensity entries for the specified view surface.

Example:

.1 .2 .3 .4 .5 .6 .7 OGRINTINDEX
OCRCOLINDEX 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Possible Errors:

A RANK ERR is reported if:

o the left argument is not a vector or scalar

A LENGTH ERR is reported if:

o the right argument is not exactly one item

A DOMAIN ERR is reported if:

o the right argument is not an integer
o the left argument is not numeric
o the specified view surface is not initialized
o the view surface is not of type 'INTENSITY'
o too many indices are specified
o one or more of the intensity values are invalid
o APL graphics is not initialized

15-52 OGRINTINDEX
Function (Set/Inquire Intensity Indices)

CE38-04

DGRBACKGROUND Variable (Background Index)

Syntax:

OGRBACKGROUND+I

Parameters:

I is a simple integer scalar.

Description:

The OGRBACKGROUND variable controls the current background index. During a new-frame
action, the background is set to the color or intensity specified by the value of
this variable.

Example:

OGRBACKGROUND+l
OGRBACKGROUND

Possible Errors:

A LENGTH ERR is reported if:

o the value being assigned contains more than one item

A DOHAIN ERR is reported if:

o the specified index value is not supported by a view surface
o APL graphics is not initialized

DGRPIXEL Variable (Pixel Array)

Syntax:

OGRPIXEL+HAT

Parameters:

HAT is a simple integer matrix.

Description:

The OGRPIXEL variable specifies the pixel array that is used when a polygon is drawn,
and the OGRPINS variable has the value 'PATTERNED'.

CE38-04 OGRPIXEL
Variable (Pixel Array)

15-53

Example:

2 3
1 4

OCRPIXEL+2 2p 2 3 1 4
OCRPIXEL

Possible Errors:

A RANK ERR is reported if:

o the assigned value is not a matrix

A DOMAIN ERR is reported if:

o the matrix is too large
o the matrix is empty
o APL graphics is not initialized

OGRPIXELORG VariabLe (PixeL Pattern Origin)

Syntax:

OCRPIXELORG+XY

Parameters:

XY is a simple 2 item vector containing a position in normalized device
coordinate space. The default value is 0 O.

Description:

The OCRPIXELORG variable is used to specify the origin for the transfer of the pixel
array to the view surface. The origin specifies the position of the item in the
lower left-hand corner of the current pixel array.

Example:

OCRPIXELORG+0.25 0.125
OCRPIXELORG

0.25 0.125

Possible Errors:

A RANK ERR is reported if:

o the assigned value is not a vector

A LENGTH ERR is reported if:

o the assigned value is not exactly 2 items

A DOMAIN ERR is reported if:

o the value specified is outside of NDC space
o the value specified is not numeric
o APL graphics is not initialized

15-54 OGRPIXELORG
Variable (Pixel Pattern Origin)

CE38-04

)

Section 16

Blind lID

BI ind I/O is a capabi lity which is of use in a number of specialized cases. The
major uses of blind I/O include:

o Sending or receiving data to CP-6 devices or fi les without undergoing any
translation or validity checking by APL.

o Exercising more control over a CP-6 device than is possible with normal APL input
and output.

o Accessing multiple input and output streams (or devices) simultaneously.

o Creating a terminal independent CP-6 FORM which permits reading, writing and
clearing specified fields in a screen-oriented fashion.

For example, bl ind input permits the entry of overstrikes (or any other characters)
which would result in a BAD CHAR error if normal APL input were used. Blind output
may be used to output special character sequences (including ASCII control
characters) to perform special device functions such as control ling a plotter.

Using 81 ind 110

APL provides ten DCBs - F$Q0 through F$Q9 to be used for blind I/O, but performs no
special set-up on them. It is assumed that the DCB wil I be assigned to devices or
fi les, using the)SET command (section 8). If a)SET command has not been issued,
the blind I/O streams default to the standard APL input (and output) streams (the
CP-6 ME device, which is the terminal if onl ine or the card-reader if batch).

Within APL, the characters D through B (quad overstruck with 0 through 9) supplement
the quad and quote-quad characters. They are used to access the DCBs when blind
input or output is desired.

There is no I imit on the size of a record input via blind I/O. Input from blind DCBs
creates a character vector result. If the data actually contains logic values,
integer values, or floating point values, then the OCVT function may be used to
correct the data type after input.

Blind output may only be used to output simple APL arrays. It should be noted,
however, that large output records routed to physical devices with maximum length
constraints wil I be truncated on output. In particular, records output to the user's
console should be limited to 511 bytes, and records output to a line printer to 132
bytes. Note also that blind output of non-character data to a printing device may
lead to unpredictable results.

APL bypasses al I of its translation sequences (overstrike resolution and mnemonic
substitution) for bl ind input. If an end-of-file condition is encountered by a
bl !nd-input request, APL returns an empty numeric vector result.

CE38-04 Us i ng B lind I/O 16-1

81 iod I/O 00 a Device

In the following examples, B is assigned to the user's console (if the session is
online) after cal ling APL, as follows:

)SET B HE,ORG=TERHINAL,FUN=UPDATE

Quad-2 may then used for blind input and for blind output to the terminal. In the
example below, blind input functions much the same as a quote-quad input, since the
terminal itself is the input device.

A+B
NOW IS THE TIHE FOR ALL GOOD HEN.

A
NOW IS THE TIHE FOR ALL GOOD HEN.

Blind input can be used to input il legal overstrike characters, which cannot be done
with quote-quad input. Note, however, that the characters entered appear in the
result, including backspaces, and that overstrikes are not mapped into single APL
characters.

The examples below illustrate blind output to the terminal. Only simple arrays
containing 01 I character or al I numeric data may be written with blind I/O. Note
that the data to be output was specified as a literal. When the RETURN key is
struck, the data is output the terminal exactly as it was input.

B+'1234567890+XQWERTYUIOP~ASDFGHJKL[]ZXCVBNH,./'
1234567890+xQWERTYUIOP~ASDFGHJKL[]ZXCVBNH,./

B+'''-<S=~>~VA-+?~Ep-++tO*~arL-V60''O()c~nU~TI ;:\'
"-<s=~>~VA-+?~Ep-++tO*~arL-V6o'O()c~nu~TI ;:\

B+'ASDF'
ASDF

Note that the OBTRANS function may be used to request transparent input. Transparent
input from a terminal (with ORG=TERMINAL specified on the SET command) should only be
specified when al I of the control characters entered are of interest to the APL
program. In this mode, the terminal read is not terminated until the number of
characters specified by the read (511 by default,or see OBSIZE> have been received.
The command:

)SET W HE,FUN=CREATE

is used to set W to the terminal (or lineprinter in batch). In this case, unit
record oriented functions may be performed on the stream. This includes the ability
to specify a page heading on the SET command and to use the OBLINES function to
determine the number of lines per page and the number of lines remaining on the
current page. The OBVFC function may be used to indicate that the first character of
each output I ine is to be used to control line spacing.

The OTSQZ system function may be used to map legal APL overstrikes and mnemonics into
their internal representations or to map the internal APL characters into mnemonics
and overstrikes appropriate for the current APL terminal (as indicated by the current
terminal type).

1~2 Blind I/O on a Device CE38-04

Accessing Files with BI ind I/O

In the following examples. m is assigned to a test input file which is built using
CP-6 EDIT:

IEDIT
EDIT C00 HERE
*BUILD BLINDIN

1.000 BLINDIN, RECORD 1.
2.000 RECORD 2. TEST BACKSPACING.
3.000 LAST RECORD
4.000

*END

Record 2 of the fi Ie contains a series of blanks and backspaces such that the total
number of characters in the record is considerably more than the example shows.

After APL is called:

)SET m BLINDIN.FUN=IN

In the next example, blind input is used to input records from the file. Note that
an attempt to use blind I/O to access the non-existent fourth record results in an
empty integer vector.

A. B. C. and D now contain the data from the file records. as shown below. Note that
the length of B reflects the blanks and backspace characters that were part of the
file record.

pA
18

A
BLINDIN. RECORD 1.

pB
81

B
RECORD 2. TEST BACKSPACrNG.

pC
15

C
LAST RECORD.

pD
o

When blind output to a fi Ie is used, records are output as character data -- scalars.
vectors, and arrays are written without any sort of header data.

The bl ind I/O system functions OBPRECORD. OBPFILE, and OBREW may be used to position
to a specific record within the file. The system functions OBSEED and OBREWRITE may
be used to set record encryption or or to indicate that the last record read is to be
replaced.

When writing records to a keyed, random or relative fi Ie. the record identifier
(number or key) may be specified by assigning a nested array whose first item is a
simple non-negative scalar integer less than 134217726 or a simple character vector.
The second item is a non-scalar array to be written.

For example:

m+5000 'EDIT KEY FIVE'
m+'TEXT KEY' 'RECORD ASSOCIATED WITH KEY: "TEXT KEY'"

CE38-04 Accessing Fi les with Blind I/O 1~3

In the first example, the integer key S000 is used to write the record. In the
second statement, the character key 'TEXT KEY' is used to write the record. Note
that blind I/O does not permit records to be read by their key as does APL Fi Ie I/O
(see Section 12).

81 ind I/O System Functions

CP-6 APL al lows options to be specified for reading and writing with blind I/O.
These capabi I ities include specification and interrogation of VFC. TRANSPARENCY and
BINARY modes. setting the encryption seed for reading and writing, and setting the
size of the record to read.

The right argument to the blind I/O system functions must be a scalar or vector or a
RANK ERR is reported. If a vector argument is provided, there must be one or two
items or a LENGTH ERR is reported. The right argument must be simple and contain
only scalar integers or a DOMAIN ERR is reported.

When a scalar or one-item vector argument is provided. the current status of an I/O
option is returned. When a two item vector argument is provided, the I/O option is
set for a subsequent read or write. The first item of the argument is the blind I/O
stream number to be affected.

OBBIN Function (Set and Query Binary Mode)

Syntax:

I+OBBIN N,L

Parameters:

N is a simple integer scalar representing the blind I/O channel number.

L is an optional simple integer scalar value 0 or 1.

I is a simple integer scalar value 0 or 1.

Description:

The OBBIN function sets or resets binary mode. If L is equal to one, then subsequent
reads and writes through channel N wi I I be in binary mode. If L is zero, then
subsequent reads and writes will not specify binary mode. If L is not present, the
result indicates whether the last operation was BINARY.

When querying binary mode, this function indicates whether the last record read or
written was with BINARY.

1~4 OBBIN CE38-04
Function (Set and Query Binary Mode)

)

)

OBSIZE Function (Read Size)

Syntax:

I+OBSIZE N,I

Parameters:

N is a simple integer scalar representing the blind I/O channel number.

I is an optional simple integer scalar value greater than or equal to o.

Description:

When a blind I/O stream is SET or opened for the first time, APL determines a default
read size that is sufficient for any record in the fi Ie. This function is used to
override the default input record size. The integer value I is subsequently used for
the record size. If I is zero, then APL reverts back to the default read size for
the stream. If I is not specified in the right argument, the result is the current
default read record size; otherwise, an empty vector is returned.

OBVFC Function (Set and Query VFC)

Syntax:

I+OBYFC N,L

Parameters:

N is a simple integer scalar representing the blind I/O channel number.

L is an optional simple integer scalar value 0 or 1.

I is the simple integer scalar value 0 or 1.

Description:

If L is not present, then this function indicates whether the last record read was
originally written with VFC.

If L is one, subsequent writes through channel N wi I I specify VFC. If L is zero,
then subsequent writes wil I not specify VFC.

CE38-04 OBVFC 1~5
Function (Set and Query VFC)

OBTRANS Function (Set and Query Transparency)

Syntax:

[+OBTRANS N,L

Parameters:

N is a simple integer scalar representing the blind I/O channel number.

[is the simple integer scalar value 0 or 1.

L is an optional simple integer scalar value 0 or 1.

Description:

If L is not present. then this function indicates whether the last record read or
written was with transparency.

If L is one. subsequent blind I/O reads and writes through channel N wil I specify
TRANSPARENCY. If L is zero. then subsequent writes wi II not specify transparency.

OBLINES Function (Lines Remaining)

Syntax:

[+OBL[NES N

Parameters:

N is a simple integer scalar representing the blind I/O channel number.

[is a simple 2-item integer vector.

Descript ion:

This function returns a two item integer vector containing the number of lines per
page. and the number of lines currently remaining on the page printed through channel
N.

OBKEY Function (Return Key)

Syntax:

K+OBKEY N

16-6 OBKEY Function (Return Key) CE38-04

Parameters:

N is a simple integer scalar representing the blind I/O channel number.

K is a record key returned as an integer or character vector.

Description:

The result is the key of the next record to be read, or, if the file is not keyed or
indexed, the record number of the next record to be read. Three byte keys and record
numbers are returned as integers, al I other keys are returned as character vectors.
This function operates on tape or disk files only.

OBPRECORD Function (Position Record)

Syntax:

K~OBPRECORD N,I

Parameters:

N is a simple integer scalar representing the bl ind I/O channel number.

I is a simple integer scalar.

K is a record key returned as an integer or character vector.

Description:

If I is positive, the file or device is positioned I records ahead. If I is
negative, the file or device is backspaced I records. The result is the key of the
record positioned to (or record number for sequential fi les).

OBPFILE Function (Position File)

Syntax:

OBPFILE N,L

Parameters:

N is a simple integer scalar representing the blind I/O channel number.

L is a simple integer scalar.

Description:

If L is zero, then the file or device is positioned to the beginning of the file. If
L is one, then the fi Ie or device is positioned to the end of the file.

CE38-04 OBPFILE 1~7
Function (Position Fi Ie)

OBREW Function (Rewind)

Syntax:

OBREW N

Parameters:

N is a simple integer scalar representing the blind I/O channel number.

Description:

The file associated with stream N is positioned to the beginning of file or the
device associated with stream N is rewound.

OBREWRITE Function (Rewrite Record)

Syntax:

OBREWRITE NtL

Parameters:

N is a simple integer scalar representing the blind I/O channel number.

L is a simple integer scalar.

Description:

If L is one, then subsequent writes will specify the REWRITE option. If L is zero,
then the REWRITE option is not specified. If L is not specified, the result is the
current setting of rewrite for this stream.

OBSEED Function (Encryption Seed)

Syntax:

OBSEED Ntl

Parameters:

N is a simple integer scalar representing the blind I/O channel number.

I is a simple integer scalar.

16-8 OBSEED CE38-04
Function (Encryption Seed)

)

)

Description:

The integer value I is used on all succeeding reads and writes as the encryption seed
for channel N.

OBRR Function (Re-Read Mode)

Syntax:

R+OBRR IV

Parameters:

IV is a simple 1 or 2-item integer vector containing as the first item a blind
I/O stream number. The second item must be the value 0 or 1.

R is a simple integer scalar containing the previous re-read setting.

Description:

The OBRR function permits the specification of re-read on blind input for each blind
I/O stream. This function may be used in conjunction with the OTTIN system function
which sets the re-read I ine. If the second item of IV is not present, then the
result indicates whether re-read wi I I be specified on the next read. If the second
item of IV is 1, re-read wi I I be specified on the next read. If the second item of
IV is 0, then re-read wi I I not be specified on the next read.

OBRS Function (Record Size)

Syntax:

R+OBRS I

Parameters:

I is a simple integer scalar containing a blind I/O stream number.

R is a simple integer scalar representing the value of the ARS# field of the DCB
associated with the specified stream.

Description:

The OBRS system function is used to return the setting of the DCB field F$DCB.ARS#.
This is intended to be used with screen edit access mode which provides information
via this DCB field.

CE38-04 OBRS Function (Record Size) 16-9

OBKR Function (Key Returned)

Syntax:

R+OBKR 1

Parameters:

I is a simple integer scalar whose value is used to indicate a blind I/O stream
to be affected.

R is a simple character vector.

Description:

The OBKR system function is used to return the key specified by the most recent
M$READ or M$WRITE associated with a blind I/O stream whose ORG is SE or FORM.

OBCLOSE Function

Syntax:

OBCLOSE N

OBCLOSE N,L

Parameters:

(Close Blind 1/0 Channel)

N is a simple integer scalar representing a blind I/O channel number.

L is a simple integer scalar value 0 or 1.

Description:

The OBCLOSE function closes the specified blind I/O channel. If L is lor not
specified, the channel is closed with SAVE. If L is 0, the channel is closed with
RELEASE. The RELEASE option is used to delete files or make windows created by a)SET
command disappear.

If this function is not executed, an automatic close is performed whenever a)SET
command is issued to a channel, or when the APL session ends.

16-10 OBCLOSE CE38-04
Function (Close Blind I/O Channel)

DBPAGE Function (Skip to New Page)

Syntax:

OBPAGE N

OBPAGE N.L

Parameters:

N is a simple integer scalar representing a blind I/O channel number.

L is a simple integer scalar value 0 or 1.

Description:

The OBPAGE function is used to eject the current page of a unit record device.

If the bl ind I/O channel is open to the terminal with ORG=FORM, the argument L is
used to control the display. For screens, if L=0, then this function causes the
screen to be updated. If the device is not a screen and L=0, then nothing is
printed. If L=1, then the screen is updated or the form is printed.

DBDELREC Function (Delete Record)

Syntax:

OBDELREC N

OBDELREC N.Kl

OBDELREC N.Kl.K2

Parameters:

N is a simple integer scalar representing the blind I/O channel number.

Kl is a simple integer scalar.

K2 is a simple integer scalar.

Description:

The OBDELREC function is used to delete a record (or records) from a fi Ie. If Kl is
not specified, the last record read or written is deleted. Otherwise, Kl indicates
the key of the record to delete. If K2 is specified, 01 I records between Kl and K2
(inclusive) are deleted.

CE38-04 OBDELREC
Function (Delete Record)

16-11

OUNSET Function (Unset DeB)

Syntax:

V+OUNSET N

Parameters:

N is a simple integer scalar representing the blind I/O channel number or a
simple character scalar or vector.

Description:

If N is an integer channel number, the result is a character string containing the
fid and)SET options for this blind I/O channel. If N is a character vector, the
result is the setting for the DeB named.

Forms Mode

Forms mode is a terminal independent method of defining a screen (form) consisting of
a number of fields and accessing specific fields for the purpose of reading, writing
and erasing. In forms mode, a field is a variable length string of characters which
are on a specific line, start in a specific column and occupy N columns (where N is
the length of the field). Multiple fields may appear on the same line, but fields
may not overlap. Forms mode permits form definition, field selection, field input,
field output and selective erasure.

When a blind I/O channel is open with ORC=FORH, the result of a read and the value to
write is a matrix of two columns. The first column is an integer key or field
number. The second column contains enclosed character vectors.

When forms mode is required, the blind I/O channel that is used should be)SET to the
terminal with the option ORC=FORH. If a CRT terminal is in use, a window for the form
should also be defined with the WWIDTH= and WLENGTH= options. Next, the fields for
that form must be defined by executing the DEFLD system function. This system
function defines the position, length, initial contents, and attributes of the fields
on the screen. Attributes and contents of currently defined screen fields can be
modified by the DEHFLD system function.

Before reading from on ORG=FORM blind I/O channel, the fields that are to be input
must be selected by the OBSFLD system function. Only those input fields that are
currently selected may have values input for them. The OBRFLD system function is
used to release currently selected fields. The DEXFLD system function selectively
erases fields.

Finally, the DEPACE system function is used to make changes to the form visible.
Normally, when a field value is written or on attribute is changed, the changes do
not appear unti I a read is issued to the form. The DEPACE system function is used to
force changes to appear. The right argument of DEPACE may be a 1 or 2-item integer
vector. The first item is the blind I/O stream and the second item is 0 or 1 to
force changes to the current screen or (if the device is not a screen) 1 to force a
copy of the form to be displayed on the terminal. If the terminal device is not a
screen, then changes to the form are not displayed unless the second item of the
right argument is 1 or is omitted.

16-12 Forms Mode CE38-04

Field Definition Matrix

The form is initially defined using the OBFLD system function. After definition. the
attributes and values of the fields can be modified by the OBHFLD system function.
The left argument for both of these functions must be a field definition matrix.

This matrix must have at least four columns and no more than seven columns. The
first six columns always contain integer values; the seventh column must always
contain character vectors. Each row of the matrix defines a field.

Field Definition Matrix Columns

1. Field Number. This number is used to refer to the field when selecting. erasing.
modifying or writing. Field numbers are integer scalars in the range 0 through
65535. When modifying a field definition, a field number value of -1 is used to
modify the definition of al I currently selected fields.

2. Row Number. This number locates the row on the screen in which a field wi II
appear. Row numbers are integer scalars in the range 1 through 254. When
modifying a field definition, a value of -1 must be specified for the row number.

3. Column Number. This number locates the column on the screen in which a field
begins. Column numbers are integer scalars in the range 1 through 254. When
modifying a field definition. a value of -1 must be specified for the column
numbe r.

4. Length. This number determines the number of character positions that the field
takes up. Field lengths are integer scalars in the range 1 through 254. When
modifying a field definition. a value of -1 must be specified for the field
length.

5. Field Rendition Attributes. Rendition attributes are scalar integers whose
values are the sums of the inclusion values listed in table 16-1. The default
attributes are obtained (when defining a field) by using the value -lor 0. When
modifying a field definition. a value of -1 for the rendition attribute is used
to indicate no change to the current rendition attributes. The value 0 indicates
the default attributes.

Table 16-1. Blind I/O Field Rendition Attributes

Value Description

1 reserved for future use
2 reverse video
4 fast bl ink
8 s I ow b link

16 underscore
32 decreased intensity
64 increased intensity

128 hidden

6. Field Input Attributes. Field input attributes are scalar integers whose values
are the sums of the inclusion values I isted in table 16-2. The default input
attributes are obtained by using the value -lor 0. When modifying a field
definition. a value of -1 for the input attribute is used to indicate no change
to the current input attributes.

CE38-04 Field Definition Matrix Columns 16-13

Table 16-2. 81 i nd I/O Field Input Attributes

Value Description

1 reserved for future use
2 constant
4 input required
8 protected

16 letters permitted
32 numbers permitted
64 graphic characters permitted

128 protect and guard field
256 all characters permitted

Attributes that are not supported by the device in use are not available.

7. Value. Field values are simple character vectors. When modifying a field
definition. an empty vector is used to indicate that the current field value is
not to be changed.

OBFLD Function (Field Definition)

Syntax:

H OBFLD I

Parameters:

H is a field definition matrix (see below).

I is a simple integer scalar representing a valid blind I/O channel.

Description:

The OBFLD system function defines the fields indicated by the left argument field
definition matrix. The field definition matrix contains definitions of the location
and size of each field. input attributes. rendition attributes. and the current (or
initial) value of the field.

Examples:

The following example demonstrates the creation of a form for entry of names and
addresses. Figure 16-1 shows the screen image that results from the form definition
example.

FIELDS+2 ?pl 130 15 0 0 'AQQB£~~ S~B££N' 2 3 2 5 0 0 'NAH£:'
FIELDS+FIELDS,[IJ33 11 35 0 0 'JQ£ WHQ'
FIELDS+FIELDS,[1J4 4 2 800 'AQQB£~~:'
FIELDS+FIELDS,[1154 11 35 0 0 'SU~~£K DBl~£,'
FIELDS+FIELDS,[1J65 11 35 0 0 'CAk~ABr, AkB£BrA'

A DISPLAY THE FIELD DEFINITION HATRIX
FIELDS

1 30 15 0 0 AQQB£~~ S~B££N
2 3 2 5 0 0 NAH£:
3 3 11 35 0 0 JQE WHQ
4 4 2 8 0 0 AQQB£~~:
5 4 11 35 0 0 SU~~£K DBl~E,
6 5 11 35 0 0 CAk~ABr, AkB£BrA

A SET THE BLIND liD CHANNEL TO BE USED
)SET m UC05,ORG=FORH,FUN-UPDATE

16-14 OBFLD
Function (Field Definition)

CE38-04

)

FIELDS OBFLD 1

Name: Joe Who
Address: Sussex Drive,

Calgary, Alberta

Address Screen

Figure 16-1. Forms Mode Screen Display

Possible Errors:

A RANK ERR is reported if:

o the left argument is not a matrix or vector.
o the seventh column of the left argument does not contain scalars or vectors.

A LENGTH ERR is reported if:

o the right argument contains more than one item.
o the left argument contains more than 7 or fewer than 4 columns.

A DOMAIN ERR is reported if:

o

o
o

o

o

o

o

o

o

the right argument is not a simple scalar integer in the range 0 through 9
inclusive.
the first six columns of the left argument are not scalar integers.
the seventh column of the left argument is not simple character vectors or
scalars.
the first column of the left argument contains a value (field number) greater
than 65535 or less than 0.
the second column of the left argument contains a value (row number) greater than
254 or less than 0.
the third column of the left argument contains a value (column number) greater
than 254 or less than 0.
the fourth column of the left argument contains a value (field length) greater
than 254 or less than 0.
the fifth column of the left argument contains a value (field rendition) greater
than 1023 or less than -1.
the sixth column of the left argument contains a value (input attributes) greater
than 1023 or less than -1.

An //0 ERR is reported if:

o the field definition is not consistent with CP-6 requirements.

CE38-04 OBFLD 16-15
Function (Field Definition)

OBMFLD Function (Modify Field)

Syntax:

H OBHFLD 1

Parameters:

H is a field definition matrix.

I is a simple integer scalar representing a valid blind I/O channel.

Description:

The left argument is a field definition matrix as described for the OBFLD system
function.

Because the field location and length may not be modified. the value specified for
them must be 0. A value of -1 for either the field rendition attributes or the field
input attributes is used to indicate no change in this attribute. An empty vector is
used to indicate no change in the current field value.

Examples:

In the following example. fields 3.5. and 6 of the current form are selected and
their attributes are modified to reverse video and input required:

3 5 6 OBSFLD 1 A SELECT OUR INPUT FIELDS

A THE FOLLOWING EXECUTION OF THE OBHFLD SYSTEH
A FUNCTION WILL CAUSE ALL CURRENTLY SELECTED
A FIELDS TO BE HODIFIED TO THE RENDITION ATTRIBUTE
A OF REVERSE VIDEO AND THEIR INPUT ATTRIBUTES TO
A INPUT REQUIRED.

-1 -1 -1 -1 2 4 OBHFLD

Possible Errors:

A RANK ERR is reported if:

o the left argument is not a matrix or vector.
o the seventh column of the left argument does not contain scalars or vectors.

A LENGTH ERR is reported if:

o the right argument contains more than one item.
o the left argument contains more than 7 or fewer than 4 columns.

A DOHAIN ERR is reported if:

o the right argument is not a simple scalar integer in the range 0 through 9
inclusive.

o the first six columns of the left argument are not scalar integers.
o the seventh column of the left argument is not simple character vectors or

scalars.
o the first column of the left argument contains a value (field number) greater

than 65535 or less than -1.
o the second column of the left argument contains a value (row number) other than

-1.
o the third column of the left argument contains a value (column number) other than

16-16 OBHFLD
Function (Modify Field)

CE38-04

-1.
0 the fourth column of the left argument contains a value (field length) other than

-1.
0 the fifth column of the left argument contains a value (field rendition) greater

than 1023 or less than -1.
0 the sixth column of the left argument contains a value (input attributes) greater

than 1023 or less than -1.

An IIO ERR is reported if:

o the field definition is not consistent with CP-6 requirements.

OBSFLD Function (SeLect FieLd)

Syntax:

IV OBSFLD I

Parameters:

IV is a simple integer vector of field numbers.

I is a simple integer scalar representing a val id bl ind I/O channel.

Description:

The OBSFLD function is used to select fields that are to be affected by subsequent
field operations. For example.in order to input a field value. it must have been
selected previous to the read. A field number of -1 is used to select all currently
defined fields.

Examples:

In the fol lowing example. fields 3. 5. and 6 are selected:

3 5 6 OBSFLD

Possible Errors:

A RANK ERR is reported if:

o the left argument is not a vector or scalar.

A LENGTH ERR is reported if:

o the right argument contains more than one item.

A DOMAIN ERR is reported if:

o the right argument is not a simple integer value representing a valid blind I/O
channel (0 through 9 inclusive).

o the left argument is not a simple integer vector of valid field numbers or -1.

An IIO ERR is reported if:

o the operation is not consistent with CP-6 requirements.

CE38-04 OBSFLD
Function (Select Field)

16-17

OBRFLD Function (Release Field)

Syntax:

IV OBRFLD I

Parameters:

IV is a simple integer vector of field numbers.

[is a simple integer scalar representing a valid blind I/O channel.

Description:

The OBRFLD system function is used to release (or deselect) a previously selected
screen field. A field number of -1 is used to release al I currently selected fields.

Examples:

In the following example. fields 5 and 6 are deselected:

5 6 OBRFLD

Possible Errors:

A RANK ERR is reported if:

o the left argument is not a vector or scalar.

A LENGTH ERR is reported if:

o the right argument contains more than one item.

A DOMAIN ERR is reported if:

o the right argument is not a simple integer value representing a valid blind I/O
channel (0 through 9 inclusive).

o the left argument is not a simple integer vector of valid field numbers or -1.

An 1/0 ERR is reported if:

o the operation is not consistent with CP-6 requirements.

OBXFLD Function (Expunge Field)

Syntax:

IVO OBXFLD IVl

16-18 OBXFLD CE38-04
Function (Expunge Field)

Parameters:

IVO is a simple integer vector of field numbers.

IVI is a simple integer vector of length two, containing a valid blind I/O
channel number and an erase level code value of 0, 1, 2, or 3.

Description:

The OBXfLD system function is used to erase (or expunge) the specified fields. The
second item of the right argument controls the extent of the erase. A value of 0
erases input fields, 1 erases input fields and protected fields, 2 erases input
fields and constant fields, and 3 erases input fields, constant fields and protected
fields. A field number of -1 is used to erase all currently selected fields.

Examples:

In the fol lowing example, fields 3, 5, and 6 are erased:

3 5 6 OBXfLD 1 1

Possible Errors:

A RANK ERR is reported if:

o the left argument is not a vector or scalar.

A LENGTH ERR is reported if:

o the right argument contains more than two items.

A DOMAIN ERR is reported if:

o the right argument is not a simple integer value representing a valid blind I/O
channel (0 through 9 inclusive) fol lowed by a simple integer value in the range 0
through 3 inclusive.

o the left argument is not a simple integer vector of valid field numbers or -1.

An I/O ERR is reported if:

o the operation is not consistent with CP-6 requirements.

CE38-04 OBXfLD 16-19
Function (Expunge Field)

Appendix A

CP-6 APL Parameters

This appendix defines the I imits that apply to the CP-6 APL implementation and
references to (or definitions of) the implementation-defined algorithms. This
information may be useful in comparing CP-6 APL to other implementations and in
determining whether an existing APL application can be run on CP-6 APL.

Arithmetic Limits

Largest positive number:
Largest negative number:

Largest counting numbers:

8.3798799562141231863E152
-8.3798799562141231872E152

(2*60) C2*60)

Maximum exponent field width: 5
Integer tolerance value: OCT
Digits in ful I print precision: 20

Array Limits

Maximum rank:
Maximum index:
Maximum number of items:

System Variables

62
34359738367
34359738367

The val id value range for the named system variables is:

Minimum Maximum
Name Value Value Domain

OCT 0 1E-12 (0 .. 1E-12)
0/0 0 1 integer 0 or
OLX character vector
ORL 34359738367 integers in range
oPP 20 Integers in range

CE38-04 System Variables A-l

Implementation Defined System Variables

Minimum Maximum
Name Value Value

oPW 32 390

oPS -1 1
-2*35 -1+2*35

Defined Functions

Maximum number of lines:
Maximum function definition prompt:

APL Input and Output

Direct input prompt:
Quad input prompt:
Function definition prompt:
Quote quad output limit:

Miscellaneous Limits

Domain

integers in

integer; for
integer; for

65535
9999.999

(6p' ')
0:
[n]
none

range

first two items
last two items

Maximum number of shared variables:
Identifier length limit:

16 + unlimited IDS/II shares
79

Account identification:
Workspace name length limit
Shared variable general offer

Fi Ie System

8-item character vector
31 characters
20p' ,

Maximum number of simultaneous file ties: 31
File name length limit:
File account name limit:

31 characters
8 characters

Trigonometric and Hyperbol ic Algorithms

Cosine:
Sine:
Tangent:
Inverse Cosine:
Inverse Sine:
Inverse Tangent:
Hyperbolic Cosine:
Hyperbolic Sine:
Hyperbolic Tangent:
Inverse Hyperbolic Cosine:
Inverse Hyperbolic Sine:
Inverse Hyperbolic Tangent:

CP-6 LIBRARY

XPE_9DCOS
XPE_9DSIN
XPE_9DTAN
XPE_9DACOS
XPE_9DASIN
XPE_9DATAN
XPE_9DCOSH
XPE_9DSINH
XPE_9DTANH
XPE_9DACOSH
XPE_9DASINH
XPE_9DATANH

HART •••

3346
3346
4286
4904
4904
4904
1067 ••
1986
1067 ••
2705.
2705.
2705.

• The standard logarithmic formula equivalents are used
to evaluate these functions.

A-2 Tr i gonomet ric
and Hyperbolic Algorithms

CE38-04

•• The standard exponential formula equivalents are used
to evaluate these functions .

••• Algorithm number from Computer Approximations. Hart. J. F .• et 01.
Robert C. Krieger Publishing Company. Huntington. N.Y .• 1978.

Numeric Algorithms

Exponent i a I:
Gamma-function:

Modulo:
Natural Logarithm:
Power:

Matrix Divide:

Semi Numeric Algorithms

CP-6 LIBRARY HART

XPE_9DEXP 1067
Chebyshev Approximations to the
Gamma Function by Helmut Werner and
Robert Col I inge. Also Hart 5422
when overflow would otherwise occur.
XPE_9DMOD
XPE_9DLOG 2705
XPE_9PWRI I
XPE_9PWRDI
XPE_9PWRDD 2705

Golub/Businger algorithm with
Powell/Reid strategies for
seal ing and row interchanging
except for square matrices
where Gaussian reduction
with partial pivoting is used.

Pseudo-random Number Generation

v R+ROLL N;X
[1] +(N~2*35)/BIC
[2] R+OIO+LNXROLLEH+2*31
[3] +0
[4] BIC:X+ROLLEH+(2*31)xLROLLEH+2
[5] R+OIO+LNxX+2*61

v

v R+ROLLEH
[1] QRL+R+L(-1+2*31)IQRL X65539

v

CE38-04 Pseudo-random Number Generation A-3

Deal Function

v R~A DEAL B;1
[1) R~t.O

(2) R~t. B 0 I~DI0
(3) B~~?~B-t.A
(4) L:+([~A)/X
[5) R[I+B(IJ,O)~R[I+0,B(I))
[6) + L,I+I+1
(7) X:R~AtR
(8) +0

v

CP-B Dependent Algorithms

Input Conversion:

Output Conversion:
Current time:
Trace display:

Function display:

Next Definition Line:

Read Keyboard:
Plus:
Minus:
Times:
Divide:
Time-Stamp

Pi-Times

XPN_7NS0TO I •
XPN_7NS0TOD
XPN_7ITONSS
M$TIME •
fun[n) value
fun[n) 0 value
fun[n) +n

v fun
[1] line

V

99999.999LCURR+INCRLAST

where CURR is the current line
number and INCRLAST is 1 or the
value associated with the last
digit position entered that
overrode a previously prompted
line number.

CP-6 M$READ monitor service.
DPS8 instructions: DFAD. ADO ••
DPS8 instructions: DFSS. SSO ••
DPS8 instructions: D~P. MPY ••
DPS8 instructions: DFDV. DFDI. DIV ••
A seven item integer vector containing
the current time as: year. month. day.
hour. minute. second. and millisecond
as returned by M$T1ME .•

The closest hardware approximation to pi (to
19 digits) times the argument value.

• See CP-6 Host Monitor Services Reference (CE74. CE75)
•• See DPS8 Assembly Instructions (DH03)

A-4 CP-6 Dependent Algorithms CE38-04

)

)

Array Representation

Arrays in CP-6 APL occupy a minimum of 16 bytes of workspace. where a byte contains 9
bits of information. The total size of the array depends upon the rank and the total
number of items in the array.

Character arrays are stored one character in each byte of memory providing 512
possible characters. Numeric arrays are represented in one of four different methods
depending. upon the value being represented and the method used to generate the
value. Logical arrays are used to represent arrays containing only the values 0 and
1 using one bit. with up to 9 values packed in each byte. Integer arrays are used to
represent the integer values -34359738368 to 34359738367 using four bytes for each
value. Index sequences are used to represent the result of the index generator
function. This representation always occupies 24 bytes of workspace. Finally.
floating point arrays are used to represent al I other numeric values using 8 bytes of
workspace for each value.

Nested arrays are used to represent heterogeneous arrays. and arrays with items which
are themselves APL arrays. Each item of a nested array occupies 4 bytes of workspace
where each item contains either a simple scalar value or a pointer to another APL
array.

Consistent Extensions to the ISO APl Standard

CP-6 APL provides many extensions over the ISO and ANSI APL standards. Some of the
extensions are minor (in that almost al I APL implementations provide the same
extension) while some provide capabilities not generally available in other APL
implementations. The use of these extensions in CP-6 APL wi I I make a program
non-conformant with the APL Standard. The fol lowing is a summary of the extensions
that are found in CP-6 APL.

Nested Arrays

CP-6 APL provides a nested array capability where any item of an array may contain
another APL array (as a scalar item). The introduction of nested arrays has extended
the domain of al I scalar functions to nested arrays. of al I structural mixed
functions to nested arrays. of al I operators to nested arrays and the monadic format
function creates a display form for a nested array.

In addition to providing nested arrays. CP-6 APL arrays may also contain items of
differing types (mixed character and numeric).

Additional Primitive Functions

CP-6 APL provides eight primitive functions which are not present in the APL
standard. They are: = (equivalence). monadic t (first). ~ (disclose and pick). c
(enclose). monadic E (type). dyadic' (grade-up). dyadic' (grade-down). I (I-beam).
and 'f (T-bar).

CE38-04 Additional Primitive Functions A-5

Extensions to Primitive Functions

CP-6 APL provides many extensions to the existing primitive functions in addition to
those noted under the nested array datatype. Some of these extensions are common
extensions to APL made in other implementations.

The dyadic A (and) function has been extended to permit any numeric value as
arguments (as opposed to only 0 and 1). This extension returns the
Least-Common-Multiple of the two val.ues.

The dyadic v (or) function has been extended to permit any numeric value as arguments
(as opposed to only 0 and 1). This extension returns the Greatest-Common-Divisor of
the two values.

The monadic. (grade-up) and monadic t (grade-down) functions have been extended to
sort character data and to sort arrays of any rank.

The left argument of the dyadic I (compress) function may contain positive integers
less than the maximum index I imit. This new function is known as replicate because
it repl icates the right argument values the number of times specified by the left
argument values.

The dyadic J (join) function does not report a DOMAIN ERR when the types of the left
and right argument are different. The nested array extensions permit arrays to
contain both character and numeric items. If both arguments are empty, the result
type is the prototype of the right argument.

The functions which access the system variable OCT (comparison tolerance) wil I only
attempt to access the value if the internal CP-6 APL datatype needs to have OCT
appl ied.

The dyadic ~ (reshape) function does not report a DOMAIN ERR if the right argument is
empty. Instead, it fi lis the resulting array with prototype values (if they are
needed).

The monadic I (execute) function always returns a value if tho execution of the
statement is successful. If the statement does not provide a result, execute returns
an empty numeric vector. The line to execute may also contain system commands or
function-definition-mode commands.

The monadic + (conjugate) function does not report a DOMAIN ERR if it is provided
with an argument of type character. It returns the character value unchanged.

The []~ (indexed assignment) function does not report a DOMAIN ERR when the type of
the assigned value is not the same as the type of the name being assigned. The
result is an array containing data of both types (numeric and Character).

If the left argument of the \ (expand), I (compress and repl icate) or ~ (reshape)
functions is a singleton, it is treated as a scalar.

If either argument of the dyadic? (deal) function is a singleton, it is treated as a
sea I ar.

If the right argument of the monadic t function is a singleton, it is treated as a
sca I ar.

A-6 Extensions to Primitive Functions CE38-04

Additional Primitive Operators

CP-6 APL provides an operator which is not present in the ISO or ANSI APL standards.
It is the - (each) operator.

Extensions to Primitive Operators

In addition to the extensions noted under the section on nested arrays. CP-6 APL
contains an extension to the \ (scan) operator. A DOMAIN ERR is not reported if the
type of the result of applying the function differs from the type of the argument.

AI I of the operators in CP-6 APL accept any function as an argument. not just a
scalar function.

Additional System Functions

CP-6 APl provides many system functions in addition to those defined in the APL
standard. These new system functions include:

OAT (set/query function attributes)
DeVT (convert datatypes)
DERS (signal error)
DEXC (expunge globals)
OF I (f i x input)
OFMT (format)
OCRP (group names)
OHDR (output heading)
oIBEX (IBEX expunge)
oIBLET (IBEX let)
olBNL (IBEX names)
olDLOC (identifier locations)
OLOK (function lock)
ONcc (nameclass globals)
ORM (room)
ORMC (room globals)
osc (shared variable state change)
OSCP (string compare)
OSITEID (system siteid)

OSITENAME (system name)
OSM (set/query function sidetrack)
OSRP ~substring replace)
OSSR substring search and replace)
OSSS substring search)
OST (set/query function stop)
OSTEPCC (step condition codes)
OSVN (shared variable user name)
OSVS (shared variable state)
OSYSID ~user sysid)
oTATTR terminal attributes)
oTECHO terminal echo)
oTIN (terminal input prompt)
oTIX (text index)
oTLEX (text lexemes)
oTR (set/query function trace)
oTTIME (terminal timeout)
OVERS ION (APL version)
oVI (verify input)
OXL (translate)

In addition to these system functions. this manual includes discussions of APL Fi Ie
I/O (section 12). APL I-o-S/II Interface (section 13). Packages (section 14).
Graphics (section 15). and Blind I/O (section 16) which contains documentation for
more CP-6 APl system functions.

Extensions to System Functions

The ODL. ONL, OSTOP and oTRACE system functions treat a singleton right argument as a
scalar.

Name I ist arguments (identifier-row in the APL standard) to system functions may
contain more than one name per row (separated by blanks or carriage returns). In
this case. the result depends upon the number of identifiers found in the argument.
not the number of rows in the namelist.

The dyadic OSTOP (set function stops) and dyadic OTRACE (set function trace) system
functions permit stopping and tracing line 0.

The OFK system function permits its right argument to be a vector with carriage
return characters separating lines. This function may also be used dyadically to
create a function with specific execution properties.

CE38-04 Extensions to System Functions A-7

Extensions to Defined Functions

Dyadic defined functions may be executed monadically.

The result name in the function header may be enclosed in brace brackets to turn off
"output potential".

Additional System Variables

CP-6 APL provides the fol lowing system variables (which are not in the APL standard):
oPW (platen width), Ofs (positioning and spacing).

Extensions to System Variables

The value assigned to the system variables 010 (index origin), Ofp (print precision)
and OCT (comparison tolerance) may be a singleton of any rank.

Additional System Commands

CP-6 APL contains many system commands in addition to those defined by the APL
standard. (See section 8 for complete descriptions of these commands.)

The additional commands suppl ied in CP-6 APL are:)CATCH,)CONTINUE,)DIGITS,
)EDITOR,)END,)ERROR,)GO,)GROUP)GRP,)GRPS,)IBEX,)LINK,)NHS,) OBSERVE ,)OFF,
)OPR,)OPRN,)ORIGIN.)PCOPY,)OCOPY,)OLOAD,)OPCOPY,)OU IT,)REPORT,)RESET.
)SALVAGE,)SEAL,)SET,)SIL,)SIV,)STEP.)TERHINAL, and)WIDTH.

All of the system command names can be abbreviated to the first four characters.

Extensions to System Commands

A CP-6 APL workspace identifier may contain additional characters to those defined in
the APL standard. The characters are: $. :, _, and -. The workspace identifier may
be fol lowed by a period. an 8 character account identifier and optionally followed by
another period and an 8 character password.

The)COPY command copies groups (see section 8) and more than one name may be
specified in the copy list.

The)DROP command with no workspace identifier drops the workspace created by the
)CONTINUE command (see section 8).

The)ERASE command permits more than one name to be specified to be erased.

The)FNS and)VARS commands permit two names to be specified which are used to
delimit the start and end of the list of names to display.

The)LIB command permits an account name to be specified.

The)SI and)SINL commands indicate when an execute or quad entry is found in the
state indicator. These commands also permit the keyword options ON, OFF and CLEAR to
be specified.

A-8 Extensions to System Commands CE38-04

)

)

Miscellaneous Extensions

The quote quad output prompt may be formed by assignment to ~ multiple times. The
value assigned to ~ is permitted to be any APL array. If an APL statement begins
with the left pointing arrow (assignment arrow), default output that would have been
generated by the statement is not displayed.

During 0 input, defined functions may be modified or created, and system commands may
be issued.

When an identifier exceeds the identifier length limit, an error is not reported.
Instead, the name is truncated to the limit.

Vector notation may be used to create nested arrays.

Vector assignment may be used to assign the values of a vector to a list of
identifier names.

Selective assignment may be used to modify items of an array.

CE38-04 Miscellaneous Extensions A-9

Appendix B

CP-6 APL Character Set

The appendix describes the atomic vector for CP-6 APL. The CP-6 APL atomic vector
(oAV) is a character vector of length 512. The lost 256 character positions of this
vector are not assigned any meaning and are not permitted to appear in APL
expressions.

In the fol lowing table each of the first 256 elements of oAV are described in terms
of their position, the ascii characters to enter on non-APL terminals, the APL
character, the APL characters that form the overstrike and the name of the character.
Some of these characters are unassigned and do not have a meaning.

APL characters which have no corresponding character in ASCII may be entered as
mnemonics. Mnemonics are introduced by the $ character and are fol lowed by 1, 2 or 3
characters which are mapped into the internal APL character during input processing.
When the introducer is not fol lowed by a defined mnemonic, the characters entered are
passed through the APL input routine. This permits the $ character to be entered in
normal input. A true dollar sign can be entered where it could be interpreted as a
mnemonic by doubl ing it. That is, $$ is always a single dollar sign.

CE38-04 CP-6 APL Character Set B-1

Table B-1. CP-6 APL Character Set

Index ASCI I APL Overstrike Name Index ASCII APL Overstrike Name

0 NUL 64 0 a alpha
1 SOH 65 A A
2 STX 66 B B
3 ETX 67 C C
4 EOT 68 D D
5 ENO 69 E E
6 ACK 70 F F
7 BEL 71 G G
8 BS 72 H H
9 HT 73 1 I

10 LF 74 J J
11 VT 75 K K
12 FF 76 L L
13 CR 77 M H
14 SO 78 N N
15 SI 79 0 0
16 DLE 80 P P
17 DC1 81 0 Q

18 DC2 82 R R
19 DC3 83 S S
20 DC4 84 T T
21 NAK 85 U U
22 SYN 86 V V
23 ETB 87 W W
24 CAN 88 X X
25 EM 89 Y Y
26 SUB 90 Z Z
27 ESC 91 [[left bracket
28 FS 92 \ \ back slash
29 GS 93 ~TAK

) right bracket
30 RS 94 f- take
31 US 95 $- - underbar
32 BL blank 96 $ENC c enclose
33 ! ! , bang 97 a A A -
34 $" .. diaeresis 98 b e. B -
35 $NE '# not equal 99 c C. C -
36 $ $ dollars 100 d D. D_
37 $R p rho 101 e E. E_
38 $CAP n cap 102 f f. F_
39 . , quote 103 g ~ G
40 ((left paren 104 h H H_
41)) right paren 105 i 1 I -
42 • * star 106 j .J. J
43 + + plus 107 k 11 K_
44

$-
t comma 108 I L. L -

45 - minus 109 m If H_
46 dot 110 n N. N_
47 / / slash 111 0 Q 0
48 0 0 zero 112 p P. p-
49 1 1 one 113 q ~ Q-
50 2 2 two 114 r B R_
51 3 3 three 115 s $. S
52 4 4 four 116 t I T_
53 5 5 five 117 u Cl. U_
54 6 6 six 118 v r V -
55 7 7 seven 119 w li w
56 8 8 eight 120 x K. X_
57 9 9 nine 121 y r y-
58 : : colon 122 z Z Z_
59 ; ; semicolon 123 I I left brace
60 < < less 124

1
I st i Ie

61 = = equal 125 I right brace
62 > > greater 126 - not
63 ? ? query 127 DEL

B-2 CP-6 APL Character Set CE38-04

Table B-1. CP-6 APL Character Set (cont.)

Index ASCI I APL Overstrike Name Index ASCI I APL Overstrike Name

) 128 192 $MIN l floor
129 193 $E (epsi Ion
130 194
131 195 $DLT 6 de I to
132 196 $1 ~ iota
133 197 # x times
134 198 % divide
135 199 $MAX r cei ling
136 200 $DRP + drop
137 201
138 202 $W '" omega
139 203 $DSC ~ disclose
140 204 & II and
141 205 " v del
142 206 - - over bar
143 207 $LE s less equal
144 208 $GE ~ greater equal
145 209 $OR v or
146 210 $DMD 0 diamond
147 211 $LTK ... left tack
148 212 $RTK ... right tack
149 213 $0 0 quad
150 214 $0 0 circle
151 215 $GO .. right arrow
152 216 .- left arrow
153 217 iDCD 1. decode
154 218 $ECD T encode
155 219 $COM tI no lamp
156 220 $EOV = - equivalent
157 221 $NOV ~ - inequivalent
158 222 $FDI ~ find index -
159 223 $FND (- find
160 224
161 $SC 0 jot 225
162 $RDl of /- slash bar 226
163 $CUP u cup 227

)
164 $XPl \ \- backs lash bar 228
165 $GD t vi gradedown 229
166 $LOK IF "1- lock 230
167 $XEC J! 1.0 execute 231
168 $FMT 1J TO format 232
169 $00 I!I '0 quote-quad 233
170 $ LOG $ 0* log 234
171 $RVl e 0- rotate first 235
172 $MDV IE +0 matrix divide 236
173 $TBR T T t-bar 237
174 $IB I T1. ibeam 238
175 $UDL ~ 6 delta underbar 239
176 $TPS ~ 0\ transpose 240
177 $GU , 61 grade up 241
178 $NND "'" 11- nand 242
179 $NOR ¥ v- nor 243
180 $REV ¢ 01 reverse 244
181 $00 0 00 quad-zero 245
182 $01 m 10 quad-one 246
183 $02 e 20 quad-two 247
184 $03 ~ 30 quad-three 248
185 $04 rt1 40 quad-four 249
186 $05 a 50 quad-five 250
187 $06 a 60 quad-six 251
188 $07 rn 70 quad-seven 252
189 $08 B 80 quad-eight 253
190 $09 B 90 quad-nine 254
191 255

CE38-04 CP-6 APL Character Set B-3

Appendix C

Error Messages

Table C-1 is an alphabetic listing of possible APL error messages. The first column
contains the message and the second column contains explanatory details and recovery
procedures where appropriate. The effects of error detection on APL processing are
described in more detail in Section 10.

Message

nome NOT COPIED

nome NOT ERASED

nome NOT FOUND

Table C-1. Error Messages

Description

The item has the some name as a pendent function in the
active workspace.

The item name in an)ERASE command was not erased because
it was a pendent function.

The item named in a)COPY command was not found (the item
may have been a local variable).

ABORTED BY BRK OR CTRL-Y

BAD CHAR

BAD COM'MND

BAD FI LE REF

CE38-04

An enqueue request has been aborted by the user (pertains
to shored fi les).

A bad input character was detected. This is usually the
result of a transmission error or the input of on i I legal
overstrike. In the case of nonstandard I/O devices. the
message can also indicate the input of a character which is
"i Ilegal" for that device.

An improper command construct was detected.

A bod reference to on existing file name was made during a
)SAVE command. This could occur. for example. if the
workspace name specified in the)SAVE command referenced
some existing workspace that was protected by a password.
The)SAVE command should be respecified using a different
workspace name. This message will also result on a
)CONTINUE command if a passworded CONTINUE workspace
already exists.

Error Messages C-1

Message

BROKEN WORKSPACE

DEADLOCK

DEFN ERR

DOMAIN ERR

ENO FULL

FI LE ACCESS ERR

FILE DAMAGE

FILE IN USE

C-2

Table C-1. Error Messages (cont.)

Description

Damaged workspace reported during loading. It may be
possible to copy specific items from the broken workspace
with the)SALVAGE command.

An enqueue request has been made (pertaining to shared
fi les) which. if honored. would create a deadlock stopping
further activity of two or more users.

This message is output for any sort of error in function
definition. such as misplaced del symbol (v), improper
syntax of header editing. or an attempt to edit a pendent
function.

The indicated argument is of the wrong type or out of the
proper range for the specific function or for the other
argument. Examples are character data input for a numeric
operation. or numbers input for a logical operation which
do not reduce to 0 or 1. See the domain tables in Section
5 for examples of acceptable types of argument data for
each APL function.

The CP-6 Enqueue tables are ful I.

This file I/O error often means a password is missing or is
incorrect.

This file I/O error indicates some damage to the file
contents was discovered. but not necessarily to every
record or component in the fi Ie. Recovery is often
possible by copying undamaged material to a new file,
replacing damaged items.

The file named in a)SAVE command is currently in use,
i.e .• another user may be simultaneously executing a load
of that file. Since this situation is a momentary timing
conflict, the user should retry the command after a short
wait. This type of timing conflict may also occur when
us i ng f i I e I/O.

Error Messages CE38-04

)

)

Message

FILE INDEX ERR

Table C-1. Error Messages (cont.)

Description

This file I/O error may mean that an index (record
identifier, sometimes col led a key) is incorrect, or on
attempt has been mode to read beyond the limits of a file.

FILE I/O ERR nnn-xxxxx-s

FILE NAME ERR

FILE SPACE TOO LOW

FI LE TBL FULL

FI LE TIE ERR

FORMAT SYNTAX ERR

I/O ERR

CE38-04

This is a general fi Ie I/O error message. It indicates
errors detected by the monitor and corresponds to I/O error
codes shown in the CP-6 Programmer Reference Manual (CE40).

This fi Ie I/O error may mean that a fi Ie identifier is
improperly formatted, on attempt has been mode to use a
file that does not exist, or on attempt has been made to
create a fi Ie that already exists.

Either the user's or the packset's file space limit has
been reached. This can occur when workspaces are being
saved or during fi Ie I/O operations. Recovery is usually
possible; the user drops unneeded files from his account
and retries the aborted statement.

This file I/O error means that the maximum permissible
number of files have been "tied" (designated).

This file I/O error may mean either that the file has not
yet been opened (designated as on input or output stream),
or that the file being opened has already been opened, or
that an attempt has been mode to write into a file owned by
another user.

A syntax error was detected in the left argument of a OFHT
expression. See Section 9 for on explanation of correct
syntax.

This message indicates that an irrecoverable system I/O
error occurred and an error exit has been made from APL. A
system I/O error should be reported to the user's field
representative along with the conditions under which it
occurred (see also srs ERR).

Error Messages C-3

Table C-1. Error ~essages (cont.)

~essage Description

I/O ERR nnn-xxxxx-s

INDEX ERR

LENGTH ERR

LINESCAN ERR

NO RESULT

NO SHARES

NOT APL FILE

C-4

If blind I/O was being used, this message indicates that
the requested blind read or write could not be executed for
some reason. The user may retry the I/O or otherwise
continue operation.

The error codes are described in the CP-S Programmer
Reference ~anual (CE40).

The index subscript specified in an expression is out of
the range of the particular array to which it is applied.
For example, if A is a four-item vector, the expression
A[Sl would generate an INDEX ERR since the requested sixth
item does not exist.

The length(s) of the indicated argument(s) are not
conformable or are incorrect for the function used. For
example, the expression 9 7 8 + 5 3 results in a LENGTH ERR
becatise the two vectors do not have the same number of
items.

An obvious error in form (leading right brocket, misplaced
colon line ending with a function, etc.) was detected in
the scan of a line input for execution or function
definition. No part of the line is executed. In function
definition mode, the line is entered as part of the
function and may then be replaced or edited.

A defined function that generated no result was used in a
context that requires a result.

Another user logged onto the same account is using shared
variables. Create a unique account identifier with the
OSVN system function. If the shared variable administrator
is not avai lable or has become unavai lable, this message is
reported and the APL user may no longer access the
variables he may have previously shored.

This file I/O error means that a component read failed
because it did not have the structure required by APL.

Error ~essages CE38-04

Message

NOT GROUPED

NOT HELD

Table C-1. Error Messages (cont.)

Description

The group name specified in a)CROUP or)CRP command
references an existing item which is not a group. A
different group name must be used.

The OFDEQ system function specified a fi Ie and resource
that is not currently enqueued.

NOT SAVED, THIS WS IS name

OPEN QUOTE

RANK ERR

SEALED WS

SI DAMAGE

If "name" = CLEAR WS, either there is nothing to save or
the)SAVE command did not specify a name for the saved
workspace. Otherwise, the)SAVE command named an existing
saved workspace and the active workspace name is different.
Change the active workspace name or drop the saved
workspace.

The Execute function has been used on an argument that has
an odd number of quotes before the end of the line (or
first embedded carriage return).

The rank of the indicated argument is incompatible with the
function or with that of the other argument.

An attempt was made to save a sealed workspace.

A suspended function has been erased or replaced, and the
state indicator has been modified to delete al I references
to it from its active list. This may occur in function
definition, or upon execution of an)ERASE or)COPY
command.

SI DAMAGE WILL RESULT: PROCEED?

CE38-04

This warning message is output in function definition when
the header of an existing active function is changed. It
indicates that references to this function in the state
indicator list wil I be damaged if the header change is
implemented. In order to avoid SI damage, the user may
restore the header to the old form or change the function
name in the header before closing the function. The user
types YES in reply to the warning message.

Error Messages C-5

Message

SING. MATRIX

SV QUOTA EXHAUSTED

SYNTAX ERR

SYSTEM ERR

TOO BIG

TOO BIG TO LOAD

TRUNCATED INPUT

UNDEFINED

WS FULL

C-6

Table C-1. Error Messages (cont.)

Description

The right argument of a matrix divide operation <m) is a
singular matrix, i.e., it had no inverse.

The APL user may share up to 16 variables at anyone time.
This message is reported if the user attempts to share
another variable.

Improper syntax was detected in the executed line.
Examples of improper syntax are unbalanced parenthesis or
an attempt to assign a value to a label.

An irrecoverable system error of indeterminate origin has
occurred and an error exit has been made from APL. If APL
is reaccessed, it should operate correctly unless the
conditions which led to the SYSTEH ERR recur. Please
report these problems to Honeywel I.

A)COPY command refers to more material than would fit in
the current workspace; no items were copied.

The workspace specified in a)LOAD command was saved by a
user with larger memory al location than the present user,
and there is insufficient space for the workspace to be
loaded (in some cases it cannot even be copied). See also
the description of the)COPY command, Section 8.

The input line was too long.

The indicated symbol has not been assigned a value.

The active workspace is ful I. This may occur during
execution, in function definition, or because of a)CROUP
command. Depending on the particular situation, the user
may choose to use an)ERASE command to erase unneeded
objects from the workspace, clear the state indicator. or
)CLEAR the entire workspace in order to free up space.

Error Messages CE38-04

Tab I e C-1. Error Messages (cont.)

Message Desc r i pt i.on

WS NOT FOUND

The workspace f i Ie specified in a)LOAD or a)COPY command
was not found.

CE38-04 Error Messages C-7

Appendix D

CP-V Compatible Workspace Functions

CP-6 APL provides a set of intrinsic functions. 6CR, 6WH. and 6TE to aid in
conversion from CP-V to CP-6. This appendix is provided for CP-V conversion purposes
only. CP-6 APL provides more powerful system functions to perform these tasks.

Canonical Representation

The 6CR intrinsic function converts user functions to character form. creates
user-defined functions. and locks existing functions.

Function to Text

R+l 6CR A

If A is not a character vector representing a valid name in APL. DOHAIN ERR is
reported.

If A contains a name which does not represent a user-defined function in the dynamic
environment. DEFN ERR is reported.

If no error is indicated. R is a character vector consisting of lines of the defined
function with embedded carriage .returns as separators.

Text to Function

R+2 6CR LL

If LL is not a linelist. DOMAIN ERR results.

DEFN ERR is reported if the 'header' line is not in the proper format for a function
or if the function name has an active referent which is not a user function.

If no errors occur. a defined function. with the name specified by LL, is created.

R is a character vector indicating the name of the function created.

Locking Function

R+3 6CR NL

NL must be a namelist. For each name in NL. if the current referent is a function.
it is locked. If not. the name is included in R.

R is a character vector consisting of any names in NL which were not current function
names.

CE38-04 CP-V 0-1
Compatible Workspace Functions

Intrinsic To Text

R+4 6CR A

R is a character vector containing the name of the intrinsic mentioned in A, an
assignment arrow, and the particular intrinsic definition statement that defined the
named intrinsic.

Workspace Management

The workspace management function, 6WH, is a dyadic intrinsic function providing a
variety of operations described below.

Expunge. Local (Active)

R+l 6WH NL

NL must be a namelist. The active referents of names found in NL are erased. R is a
namelist of any names for which referents were found but not erased.

Expunge. Global

R+2 6WN NL

Same as 1 6WH NL except that only global referents of names are erased.

List Workspace Named Items

R+3 6WH I

The value of I must be an integer from 1 to 6. R is a character vector with carriage
returns separating the names. The entities named depend on I.

Category Listed

1 Labels.
2 Active variables.
3 Active functions.
4 Groups.
5 Global variables.
6 Global functions.

List Elements of a Group

R+4 6WH A

A must be a character vector containing one name. R is a character vector with names
of the members of group A.

List Workspace Parameters

R+5 6WH I

The value of I must be an integer from 1 to 8. R depends on the value of I.

I R

1 WSID as character vector.
2 State indicator as character vector with embedded line feeds.
3 Origin as integer.
4 Width as integer.
5 Digits as integer.
7 Symbol table size.
8 Number of symbols still available.

CP-V CE38-04
Compatible Workspace Functions

Identify Local Use of Names

R+6 6WH NL

The namelist NL is scanned for current use of the names. R is a numeric vector.
Values are as indicated.

o No current referent.
1 Logical variable.
2 Character variable.
3 Integer variable.
4 Real variable.
5 Index sequence.
7 Label.
8 User-defined function, niladic, no result.
9 User-defined function, ni ladic, with result.

10 User-defined function, monadic, no result.
11 User-defined function, monadic, with result.
12 User-defined function, dyadic, no result.
13 User-defined function, dyadic, with result.
14 Intrinsic function, dyadic.
15 Intrinsic function, monadic.
16 Intrinsic function, niladic.
17 Group.

Identify Global Use of Names

R+7 6WN NL

Simi lar to 6 6WH except that global use of names is indicated.

List Storage Requirements for Named Active Items

R+8 6WH NL

NL is a namelist. R is a numeric vector. Each item of R is the number of bytes of
workspace occupied by the active referent.

List Storage Requirements for Named Global Items

R+9 6WH NL

NL is a namelist. R is a numeric vector. Each item of R is the number of bytes of
workspace occupied by the global referent of the corresponding name.

Text Editing

The character editing function, 6TE, provides five capabilities, described below, to
faci litate the examination and modification of character variables in APL.

Text Index function

R+1 6TE L

L is a 'list' with two items.

L+1 6TE (TVjDV)

TV may be any character vector.

DV is a character scalar or vector of 'delimiters'.

R is an N-by-2 numeric matrix. Each row contains the index and length of a string of
non-delimiter characters in TV. The values of column 1 of Rare 010 dependent.

CE38-04 CP-V
Compatible Workspace Functions

Substring Search

R+2 6TE L

L must be a list with 2,3, or 4 items.

R+2 6TE (TV;SS)

TV may be any character vector.

SS may be any character scalar or vector not longer than TV.

L+2 6TE (TV;SS;FCOL)

FeOL may be any integer scalar value such that FCOL is less than or equal to the
highest index value of TV. FCOL indicates the first column in TV at which search is
to start or

L+2 6TE (TV;SS;FCOL;LCOL)

LCOL may be any integer scalar value less than or equal to the highest index value of
TV and greater than or equal to FCOL. LCOL is the last column of TV involved in the
search.

R is a numeric vector with the beginning indexes of non-overlapping occurrences of SS
in TV, starting at position FCOL and ending at LCOL.

Substring Search and Replacement

R+3 6TE L

L must be a list of 3,4, or 5 items.

L+3 6TE (TV;SS;RS)

TV may be a character scalar or vector.

SS may be a character scalar or vector not longer than TV.

RS may be any character scalar or vector.

R is a character vector formed by replaced occurrences of SS, in TV, by RS.
Replacement is on a non-overlap basis. Or

L+3 6TE (TV;SS;RS;FCOL)

FCOL may be any integer scalar value such that FCOL is less than or equal to the
highest index value of TV. FCOL may also be nul I.

L+3 6TE (TV;SS;RS;FCOL;LCOL)

LCOL may be any integer scalar value less than or equal to the highest value of TV
and greater than or equal to FCOL.

Substring Replacement (Without Search)

R+4 6TE L

L is a list with 4 items.

L+4 6TE (TV;RS;FCOL;LCOL)

TV must be a non-empty character vector.

RS must be a character vector or scalar. It may be empty.

FCOL must be an integer scalar representing a valid index of TV.

LCOL must be an integer scalar representing a valid index of TV. LCOL must be
greater than or equal to FCOL.

CP-v CE38-04
Compatible Workspace Functions

R is formed by replacing that portion of TV bounded by rCOL and LCOL by the string
RS. If RS is empty. this constitutes deletion of a specified subset of TV.

String Comparison

R+5 ATE L

L must be a list with two items:

L+5 ATE (A;B)

A and B must be character vectors or character scalars.

R is a two---item numeric vector describing the comparison of A and B. Comparison is
based on the ASCII collating sequence as modified to support the CP-6 APL character
set.

The first item of R indicates which item of L should be first in left to right sorted
order.

o means the character vectors are identical.
means B should sort first.

means A should sort first. 2

The second item of R indicates the lowest position I at which A[I] and B[I] differ.

If A and B are identical. the second item of R is -1. Thus R is 0 -1.

If B is longer than A but A[I] = B[I] that is B differs from A only by being longer.
then A is considered first in sorting order and R is 1 -1.

If A is longer than B. but each B[I] = A[I] then R is 2 -1.

T-bar Functions

The T-bar function, T (the encode character, T, overstruck by the negative sign, -)
is provided for certain system interfaces.

One use of T-bar is the character generator function. It converts integer data into
corresponding character data, and thus al lows the user to generate special
characters, possibly unrecognized by APL. The integer n corresponds to the nth
character in the table of APL Codes. This is equivalent to indexing OAV.

To generate the nth.character. the fol lowing form is used.

The left argument must be the scalar integer 2; this designates that the T-bar
function is to be used for character generation. The right argument may have any
shape, but its domain must be integer, with values between 0 and 511. The result has
a shape identical to the right argument, but is character data.

File Input/Output

CP-6 APL provides more functionality than is available with these functions through
the system functions discussed in section 12. The file intrinsic is:

A fname B

where

A the I/O operation number (ranging from 1 to 29).

B is the argument applicable to the I/O operation.

CE38-04 CP-v
Compatible Workspace Functions

Opening and Creating Files

Fol lowing are the forms for the set of functions required to establish parameters
prior to opening a stream to a file.

o Establ ishing "file number":

1 fname B

where B is a positive integer specifying the file number to be used for subsequent
fi Ie operations.

o Establishing file name:

2 fname B

where B is a character vector specifying the file name for the currently set file
number.

o Establishing or resetting account:

2 fname B

where B is either zero or a character vector specifying the account for the currently
set file number.

o Establ ishing or resetting password:

4 fname B

where B is either zero or a character vector specifying the password for the
currently set fi Ie number.

o Establishing file identification as a single primitive:

21 fname fid

where fid is a character vector specifying a CP-6 file identifier in the same format
permitted for system commands such as)LOAD.

o Assigning serial numbers for pack set utilization:

20 fname B

where B is a character vector of up to 6 characters, or the numeric value 0.

o Opening stream in indicated mode:

5 fname B

If B is an integer specifying the mode of DCB for the currently set file number, as
fo I lows:

1 indicates FUN=IN,DISP=NAMED,EXIST=OLDFILE.
2 indicates FUN=CREATE,DISP=NAMED,EXIST=NEWFILE.
4 indicates FUN=UPDATE,DISP=NAMED,EXIST=OLDFILE.
8 indicates FUN=CREATE,DISP=SCRATCH,EXIST=NEWFILE.

17 indicates FUN=CREATE,DISP=NAMED,EXIST=ERROR,TEST=YES.
20 indicates FUN=UPDATE,DISP=NAMED,EXIST=OLDFILE,SHARE=ALL.

0-6 CP-V
Compatible Workspace Functions

CE38-04

Closing Files

o Closing and saving the file for indicated file numbers:

6 fname B

where B is an integer specifying the file number.

o Closing and releasing the file for indicated file number:

7 fname B

where the argument B is the same as above. (This form is used to delete fi les.)

Maintaining Key Range and Current Key Value

When fi les are created by APL or accessed in other than sequential mode, primitives
are provided to find the key range of an existing file. When a file is opened in
CREATE mode, values for the 'first component' and 'last component' are initialized to
empty vectors and updated when the first record is written.

o Return the value of a designated key for the currently set file number:

8 fname B

where B is 1. 2. or 3, specifying which key the value is to be returned for (the key
returned wi I I be that for the currently open file, if any, of the most recently
referenced fi Ie number):

1 indicates that the value of the first key in the file.
2 indicates that the value of the current key is to be returned.
3 indicates that the value of the highest key is to be returned.

o Setting the value of the current key for the currently set file number:

9 fname B

where B is an integer or character vector specifying the value for the current key.

Writing APL Records

o Writing a record containing the value of an expression:

10 fname expression

The currently set key value and file number are used.

o Writing a component:

11 fname expression

The record contains the time, date, and the user's account and name, and the
expression value. The currently set key value and file number are used.

Writing Non-APL Records

Data records may be written that do not retain the APL internal attributes of 'shape'
and other internal reference data.

22 fname B

where B is any APL expression. The data represented by B is written as a single
record in ravel order. If B is a logical vector the length is rounded up to a
multiple of 9 bits.

CE38-04 CP-V
Compatible Workspace Functions

0-7

Reading APL Records

o Reading a data record:

12 fname B

where B is an integer specifying the size of the data record in bytes. The data
record is read using current key and file number.

o Reading a component datablock:

13 fname B

where B is an integer specifying the key value.

o Reading a component user/time stamp:

14 fname B

where B is an integer specifying the key value. The identification record is
returned as a character vector with the fol lowing format:

DATE bb TIME ACCT UNAME

6 7 8 9 16 17 24 25 36

Reading Non-APL Records

23 fname B

Reads a non-APL record using currently set key and file number. B is an integer
specifying the record size in bytes. The result is a character vector.

Deleting Records Or Components

o Deleting a specified record:

15 fname B

16 fname B

where B is an integer specifying the key value. The current file number is used in
deleting the record.

Sequential Access to Existing APL Files

17 fname B

where B is an integer specifying the size of the record in bytes. Records are read
sequentially, using the current fi Ie number. If an integer of zero is specified, the
record is accessed but data is not read, regardless of actual record size.

13 fname 0

This is simi lar to "13 fname B" except that it reads the next record. If it is not a
component record, records are skipped until a component record is reached. At end of
read, the current key is set to that of the last record read. If no component record
is found, an error is reported.

14 fname 0

This is simi lar to "14 fname BII except that it skips forward to next component
record. The current key is updated. If no component record is found, an error is
reported.

0-8 CP-V CE38-04
Compatible Workspace Functions

Sequential Access to Non-APL Files

24 fname B

where B is an integer specifying the size of the record in bytes. Records are read
sequentially. using the current fi Ie number. Operation is analogous to 23 fname B
except that the read is sequential rather than keyed.

Converting Data Types

Primitives 23 and 24. for reading non-APL records. create character vector results.

o Convert character vector to logical vector.

25 fname B

where B is a character vector. The result is a logic vector consisting of the actual
data in B.

o Convert character vector to integer vector.

26 fname B

where B is a character vector. The length must be a multiple of 4. The result is an
integer vector consisting of the actual data in B.

o Convert character vector to real vector.

27 fname B

where B is a character vector. The length must be a multiple of 8. The result is a
numeric vector consisting of the actual data in B.

Control ling Access to Shared Fi les

The following features are provided to permit the user to lock out records of a file
for purposes of reading without other intervening updates or completing an update
without interference.

o Locking out a record.

28 fname B

B is a key value. Causes the designated record to be enqueued for exclusive use.

o Releasing a locked record.

29 fname B

B is a key value.

Listing Fi Ie Names and Numbers

These operations may be used in functions designed to list file components by number.
with or without contents of the records.

o File names in a specified account

18 fname B

where B is a character vector specifying a user account. Result is a character
matrix. Each row has account in columns 1 through 8 and file name in columns 10
through 40.

o Names or numbers of currently open files

19 fname B

CE38-04 CP-v
Compatible Workspace Functions

~9

where B is an integer specifying the structure of the result as follows:

1. indicates a character matrix with names of currently open fi les. one file per
row.

2. indicates a numeric vector with the currently open file numbers.

0-10 CP-V CE38-04
Compatible Workspace Functions

Appendix E

Honeywell CP-6 APL Summary

Scalar Primitive Functions

AI I scalar functions are applied item-by-item on all operands at all levels of
nesting. A scalar or single item array may be used as an argument of a scalar dyadic
function and its value is applied to all items of the other argument.

Tabl e E-1. Scalar Monadic Functions

Form Description

+Y Conjugate of Y (Y)
-Y Negate Y (O-Y)
xy Sign of Y Cl. 0. 1)
+Y Reciprocal of Y O+Y)
*y e to the Y'th power
ry Cei I ing of Y (round up~
LY Floor of Y (round down
IY Absolute value of Y
tY Natural logarithm o.f Y
!Y Factorial of Y (Gamma of Y+l)
OY Pi times Y

Table E-2. Scalar Dyadic Functions

Form Description

X+Y
X-Y
Xxy
X+Y
x*y
Xry
XlY
XIY
XIIY
XvY
X!Y

xtY
XOY

CE38-04

Add Y to X
Subtract Y from X
Mu I tip I Y Y by X
Divide Y into X
X raised to the power Y
Maximum of X and Y
Minimum of X and Y
X residue of Y (remainder of Y+X)
Least common multiple of X and Y (and)
Greatest common divisor of X and Y (or)
Binomial coefficient. Number of combinations of Y
things taken X at a time
Base X log of Y
Circular functions:
OOY (l-Y*2)*0.5
lOY sine Y -lOY arcsin Y
20Y cosine Y -20Y arccos Y
30Y tangent Y -30Y arctan Y
40Y (l+Y*2)*0.5 -40Y Yx(l-Y*-2)*0.5
50Y sinh Y -50Y arcsinh Y
60Y cosh Y -60Y arccosh Y
70Y tanh Y -70Y arctanh Y

Scalar Primitive Functions E-1

The relational and logical functions obey the rules of scalar conformabil ity and
return 0 if the condition is false, and 1 if true.

Table E-3. Relational and Logical Functions

Form Description

X<Y
X~Y
X>Y
X~Y
X=Y
X~Y

X
X
X
X
X
X

less than Y
less than or
greater than
greater than
equal to Y
not equal to

equal to Y
Y
or equal to Y

Y

The fol lowing functions operate on arguments which are
o or 1.

XAY X and Y (1 if both X and Yare 1)
XvY X or Y (1 if either X or Y is 1).
X~Y X nand Y (not both X and Y)
X¥Y X nor Y (neither X nor Y)
-Y not Y

E-2 Scalar Primitive Functions CE38-04

Mixed Functions

Table E-4. Mixed Functions

Form Description

XPY
PY

X1.Y
l.Y

XEY
EY

X.=Y
.=Y

XTY
X1Y
X?Y

?Y
X~Y
Xey
X~[NJY
~Y
ey
~[NJY

X~Y
~Y

X,Y
X, [NJY

, Y
X+Y

+Y
X+Y

tY
cy
c[NJY
:lY
:I[NJY

X:lY
(By

XffiY
XlIY

lIY
lY

CE38-04

Reshape Y to dimensions X.
Shape of Y.
Index of first occurrence of Y within X.
First Y consecutive integers from index origin.
1 if X occurs in Y, otherwise 0.
Type of r.
1 if X and Yare identical, otherwise 0.
Maximum nesting depth of Y •
Representation of Y in number system X.
Value of r in number system X.
X integers selected randomly without repetition
from l.Y (deal).
A random integer from l.Y
Y rotated along last dimension by X.
Y rotated along first dimension by X.
Y rotated along the N'th dimension by X.
Y reversed along last dimension.
Y reversed al~ng first dimension.
Y reversed along the N'th dimension.
Transpose of r by coordinates in X.
Transpose of r (by reversing al I coordinates).
X joined to Y along the last coordinate.
If N is an integer, X is joined to r
along the N'th coordinate of X; otherwise,
X and Yare joined (laminated) along the new
rN coordinate.
Ravel of Y (make Ya vector).'
Take the first X items from Y (X>O) or
take the last (IX) items from Y (X<O).
Disclose the first item from Y.
Drop the first X items from Y (X>O) or
drop the last (IX) items from Y (X<O).
The indices of Y select items (or rows) of
Y in increasing order of magnitude using the
collating sequence X.
The indices of Y select items of Y in
increasing order of magnitude.
The indices of Y select items (or rows) of
Y in decreasing order of magnitude using the
collating sequence X.
The indices of r which select items of Y
in decreasing order of magnitude.
Enclose of array r (make a nested scalar).
Enclose along selected axes of r.
Disclose y, by decreasing depth and increasing rank.
Disc lose Y, i nse rt i ng new axes at N.
Select item from array r at depth (pX).
Inverse of matrix Y.
Matrix division (least squares fit).
Format Y according to specifications in X.
Format of Y.
Evaluate APL expression contained in r.

Mixed Functions E-3

Primitive Operators

In the fol lowing examples, f and g stand for any dyadic function and h stands for a
monadic function.

Form

flY
f/[N]Y
f,ty
f\Y
f\[N]Y
f~Y

XIY
X/[N]Y
X,tY
X\Y
X\[N]Y
X~Y

X f.g Y
X o.g Y

X f" Y
h" Y

Table E-5. Operators

Description

reduction along the last dimension of Y
reduction along the N'th dimension of Y
reduction along the first dimension of Y
scan along the last dimension of Y
scan along the N'th dimension of Y
scan along the first dimension of Y

replication along the last dimension of Y
replication along the N'th dimension of Y
replication along the first dimension of Y
expansion along the last dimension of Y
expansion along the N'th dimension of Y
expansion along the first dimension of Y

inner product of X and Y
outer product of X and Y

apply function f to each item of X and Y
apply function h to each item of Y

System Variables

Table E-G. System Variables

Name Description

oAV Atomic vector. The ful I CP-G APL character set.
ocr Comparison tolerance. Used in numeric comparisons.
010 Index origin. Used in indexing, 1., ~.
~C Line counter. Vector of lines in execution.
~X Latent expression. Executed after)LOAD.
oPP Print precision. Maximum digits in numeric output.
oPS Positioning spacing. Control nested array display.
oPW Print width. Maximum width of output lines.
ORL Random I ink. Seed for random number generator.
oSA Stop action. Control entry into direct input mode.
OSP Session parameter. Variable saved across)LOAD's.
Drs Time stamp. Year,month,day,hour,min,sec,mill isec.
orr Terminal type.
OUL User load. Number of users logged onto system.
OWA Workspace avai lable. Measured in bytes.

E-4 System Variables CE38-04

Special Symbols

Form

()

A[X)
A[X)~Y

(A f B)~Y

{A B)~Y

+X

+

X~O

'XYZ'
A

V
9
X:
;
o

CE38-04

Table E-7. Special Symbols

Description

Parentheses. Expressions may be of any complexity
and are evaluated from right to left except as
indicated by parentheses.
Indexing. Returns an array of shape (~X).
Indexed assignment. The elements of A selected
by the indices X are replaced by Y.
Selective assignment. The elements of B
selected by the expression (A f B) are replaced by
Y. The function f may be one of the fol lowing
dyadic functions: ~. t. +. ~. e. p. I. or ~.
The function f may also be one of the fol lowing
monadic functions: ~. e. ~ or • (ravel).
Vector assignment. A is assigned the
first value in the vector Y and B is assigned the
second.
Branch. If X is an empty vector. execution
continues. If the first item of X is 0
or beyond the range of statement numbers.
execution of the function terminates.
Terminates execution of function and related
pendent functions.
Quad output. Prints the value of X.
Bare output. Prints X without terminating
carriage return.
Quad input. The input expression is evaluated
and assigned to X.
Character vector ot 3 elements: XYZ.
Lamp. Characters to the right of this symbol
are treated as commentary.
Del. Enter or exit function definition mode
Lock function.
Label. X is a line label within a function.
Semicolon. Index separator.
Diamond. Statement separator.

Special Symbols E-5

Function Definition

A ~ preceding the name of a defined function is used to enter definition mode. In
definition mode, entries are held and saved in a function body for later execution.
Each entry in definition mode is preceded by a prompt containing a line number in
brackets.

Table E-8. Function Header Syntax

Valence No Result Explicit Result

Ni I adi c ~ fname ~r~ fname
Monadic ~ fname b ~r~ fname b
Dyadic ~a fname b ~r~a fname b

Table E-9. Directive Summary

Entry Description

[0] Display the entire function.
[nO) Display line n.
[n-mO) Display lines n through line m.
[nOp] Edit line n.
[n-m;/st/J Display I ines containing 'st' in lines n-m.
[n-m ;/st/S/rt/ J Change string 'st' to ' rt ' in lines n-m.
[6nJ Delete line n.
[6n mJ Delete linesnandm.
[6n-m J Delete lines n through line m.
[6n-m;/st/J Delete lines n-m which contain 'st' .
[/~r/J Find next occurrence of string '~r' .
[\~r\J Find previous occurrence of s t ring '~r' .

Defined Function Controls

Name

R~[OAT F

H~ OCR F
N~ orx H
N~A orx H

E~ OSH F
E~E OSH F
v~ OSTOP F
v~v OSTOP F
v~ oTRACE F
V~V oTRACE F

E-6

Table E-10. Defined Function Controls

Description

Return function attributes (1=valence,
2=create time,3=properties,4=creator).
Return function's canonical representation.
Fix canonical representation, return name.
Like orx but also set execution attributes.
A is a 4-item logical vector control ling
attributes: displayable, suspendable,
interruptable, errorable.
Return function's sidetrack matrix.
Set function's sidetrack matrix.
Return function's stop vector.
Set function's stop vector.
Return function's trace vector.
Set function's trace vector.

Defined Function Controls CE38-04

Sidetracking on Errors and Interrupts

The OSM system function is used to set and obtain the current sidetrack settings for
a defined function. The optional left argument is a sidetrack matrix of shape (N,2)
where each row contains a line number in the first column to indicate where execution
wi I I resume when the error number in the second column occurs. The right argument is
a namelist containing the name of the defined function whose sidetrack matrix is to
be set. If the optional left argument is not present. the result is the sidetrack
matrix of the function named.

Table E-11. Error Numbers

Num Message Num Message

0 all errors 46 TOO BIG
1 WS FULL 48 name NOT COPIED
2 SYNTAX ERR 49 name NOT FOUND
3 UNDEFINED 50 name NOT ERASED
4 DOMAIN ERR 51 NOT GROUPED
5 RANK ERR 52 SEALED WS
6 LENGTH ERR 53 OLD WS, MUST EXPORT
7 INDEX ERR 55 NOT HELD
8 NO RESULT 56 ALREADY HELD

10 IMPLICIT ERR 57 NO SHARES
11 LIHIT ERR 59 HOLD ABORTED
15 SINGULAR HATRIX 61 HOLD DEADLOCK
16 FORHAT SYNTAX ERR 62 ENQ FULL
20 BAD CHAR 68 SV QUTA EXHAUSTED
21 LINESCAN ERR 70 FILE SPACE TOO LOW
22 TRUNCATED INPUT 71 FILE IIO ERROR fcg-Mxxxx-s
23 OPEN QUOTE 72 FILE DAMAGE
30 IIO ERR fcg-Mxxxx-s 73 FILE NAME ERR
35 DEFN ERR 74 NOT APL FILE
36 SI DAHAGE 75 FILE TBL FULL
40 BAD COMHAND 76 FILE ACCESS ERR
41 NOT SAVED, THIS WS IS 77 FILE TIE ERR
42 FILE IN USE 78 PACKSET NOT HOUNTED
43 BAD FILE REF 79 FILE INDEX ERR
44 WS NOT FOUND 80 PACKAGE TOO BIG
45 TOO BIG TO LOAD 100 INTERRUPT

Error Control Functions

Table E-12. Error Control Functions

Name Desc r ipt ion

T+ OERF Name of function involved in recent e r ro r .
T+ OERH Description of most recent I/O er ror.
T+ OERL Line executing most recent e r ro r .
T+ OERM Error message for most recent e r ro r.
W+ OERN Er ror number and line number of error.
I+ OERP Index in OERL of error position.

T OERS I Signal error number I with error message T.
T+ OERX Monitor code associated with I/O error.

CE38-04 Error Control Functions E-7

CP-6 APL System Functions

Name

1+ OCPU
R+W OCVTR

1+ ODL I
V+ OE'X N
V+ OE'XG N
V+ OFI T
N+ []GRP N

DIBEX T
T+ DIBLET N

T DIBLET N
R+ DIBNL
R+ DIDLOC N

1+ OLGT
1+ OLOK N
K+ ONC N
K+ ONCG N
N+ ONL K
N+T ONL K

1+ DONL
1+ DOVH
V+ ORH N
V+ ORHG N
1+ OSCT
T+ OSI
T+ OSITEID
T+ OSITENAHE

OSTEPCC I
T+ OSYSID
T+ OUA
1+ OUL
T+ DVERSION
V+ DVI T
T+ []WSID

Table E-13. CP-6 APL System Functions

Description

CPU time used measured in milliseconds.
Convert data R into type W[ll using
W[21 bits per item.
Delay execution for at least I seconds.
Erase objects named in N.
Erase global objects named in N.
Convert character representation to number.
Return namel ist of group members.
Erase IBEX variable named in T.
Return value of IBEX variable named in N.
Assign value T to IBEX variable named in N.
Return names of current IBEX variables.
Return name correspondence of each name in
N at each level of the state indicator.
APL invocation time in mi I liseconds.
Lock functions named in N.
Return name class of names in N.
Return global name class of names in N.
Return names of objects of class K.
Like monadic OWL but includes only names
beginning with a letter in T.
Session mode: 0=batch,1=online.
Processor overhead time in mi I I iseconds.
Size in bytes of objects in N.
Size in bytes of global objects in N.
Mi I I iseconds elapsed since APL was invoked.
Text vector containing result of)SI.
CP-6 site identifier.
Text vector containing CP-6 site name.
Sets value to use as step condition codes.
Text vector containing current CP-6 sysid.
8 item character vector of current account.
Number of CP-6 system users.
Version of the CP-6 APL processor.
Indicate legal representations of numbers.
Text vector of the current workspace name.

Shared Variable Functions

Table E-14. Shared Variable System Functions

Name Description

1+ OSC Wait for a shared variable event.
C+ OSVC N Obtain controls on shared variables in N.
C+C OSVC N Set controls on shared variables in N.
1+ OSVN T Set current process identification to T.
V+ OSVO N Obtain degree of coupl ing for names in N.
V+P OSVO N Offer names in N to share with process P.
N+ OSVQ P Obtain names of shares not accepted.
V+ OSVR N Retract names in N from sharing.
R+ OSVS N Shared variable states of names in N.

E-8 Shared Variable Functions CE38-04

File 110

Fi Ie I/O functions may be used to access al I CP-6 files provided access permission
have been granted.

Table E-15. File I/O Example Names

Name Description

A CP-6 account or a fid with a ? within the filename.
F CP-6 fid (name.account.pass).
I Scalar integer dependent upon function.
K Integer or character vector record identifier (key).
L For INDEXed fi les: Numeric key matrix of shape (N,3).

Column 1 is the character index of the key start,
column 2 is the key length and column 3 is 0 if
duplicate keys are permitted.

R Array dependent upon function.
S Integer scalar fi Ie I/O stream number.
T Integer record type 1=component,2=datablock,3=raw.
X Encryption seed (integer or 4-item character vector).
Z Shape (Ntl?) character fi Ie access matrix. Columns

1-8 contain accounts, 9 must be blank and 10-17
contain Y or N for access control: READ, DElR, WNEW,
UPDATE, DElF. NOlIST, REATTR and EXEC.

Name

R OFAPPEND S X T
K+R OFAPPENDR S X T

OFCLEAR
OFCLOSE S
OFCRPT S X
OFDEQ S K
OFDROP S K
OFENQ S K
OFERASE S

H+ OFFLDS Y
F+ OFID S

OFKEYINT S I
L+ OFKEYS S
H+ OFLIB A
H+H OFLIB A
T+ OFHA
H+ OFNAHS
R+ OFNUHS

F OFOPEN S
Z+ OFRDAC S
R+ OFRDCI S K X
R+ OFREAD S K X T
K+ OFRKEY S I
1+ OFSIZE S

Z OFSTAC S
R OFWRITE S K X T

CE38-04

Table E-16. Fi Ie Functions

Description

Add reco~d or component to end of file.
Same as OFAPPEND but returns key.
Close al I open files.
Close streams in S.
Set default encryption seed.
Release hold on file.
Delete record from file.
Hold a record.
Close streams and delete files in S.
Return record field matrix.
Return CP-6 fi Ie identifier for stream S.
Set increment for OFAPPEND to keyed fi Ie.
Return matrix describing keys.
Return names of files in account A.
Return fids of type H in account A.
Current file management account.
Names of open files.
Numbers of open files.
Open fi Ie I/O stream.
Return access control matrix for file S.
Return component information.
Read a record.
Return key (1=first,2=current,3=last).
Return size of file S in bytes.
Set file access matrix.
Write a record or component.

Fi I e I/O E-9

Option

.. IN
CREATE
UPDATE

.. NEWFlLE
OLDFI LE
ERROR

.. NONE

ALL
SHAREIN

.. NAMED
SCRATCH

.. KEYED
CONSEC
RANDOM
UR
RELATIVE
INDEXED
CG
IREL

.. DIRECT
SEQUEN

CTG
LOAD
COMP
REASSIGN

Table E-17. File I/O Open Options

Desc r i pti on

Open fi Ie for reading.
Create a new file.
Update an existing fi Ie.

For create, always create a new file.
For create, if file already exists use it.
For create, if file exists report error.

If UPDATE, open fi Ie for exclusive use, if
IN, open shared with other IN,NONE users.
Open fi Ie shared with multiple updaters.
Open fi Ie shared with multiple readers.

Create a permanent file.
Create a scratch fi Ie.

For create, spec i fy f i Ie
For create, spec i fy f i Ie
For create, specify f i Ie
For create, specify f i Ie
For create, spec i fy f i Ie
For create, specify f i Ie
For create, spec i fy f i Ie
For create, spec i fy f i Ie

organization.
organization.
organization.
organization.
organization.
organization.
organization.
organization.

Add file name to directory during open.
Bui Id record indices on OFCLOSE.
Request record compression.
Use IBEX !SET for additional options.

.. indicates default.

Text Editing Functions

The right argument to these functions is a vector of text vectors.

Table E-18. Text Editing Functions

Name Description

I+OSCP T T2 Compare strings T and T2.
T+OSRP T TR Cl C2 Replaces positions Cl through C2 of string

T+OSSR T TS TR
T with string TR.
Replaces occurrences of string TS with
string TR in string T.

V+OSSS T TS Returns indices of string TS in string T.
M+OTIX T SDV TDV DDV Return matrix locating text lexemes.
V+OTLEX T SDV TDV DDV Return text lexemes.

E-10 Text Editing Functions CE38-04

I-D-S/II Functions

Name

R+ODBACCEPT D
I+ODBBUFFERS I
I+ODBCHECK I
R+ODBCONNECT D

ODBCRPT I
R+ODBDISCONNECT D
R+ODBERASE D
R+ODBFIND D
R+ODBFINISH D
R+ODBFROH D
R+ODBCET D
R+ODBIF D
V+ODBHEHBER D
R+ODBHODIFY D
T+ODBHSC
H+ODBNAHES
V+ODBOWNER D
R+ODBPRIVACY D
R+ODBREADY D
R+ODBRETAIN D

ODBROLL
R+ODBSTATS
R+ODBSTATSOFF
R+ODBSTATSON
R+ODBSTORE D
T+ODBSUB T
R+ODBTO D
R+ODBTRACEON I
R+ODBTRACEOFF I
R+ODBTYPES
N+ODBUSE V
V+N ODBUSE V

Table E-19. I-D-S/II System Functions

Description

Return db-key or area name.
Set number of buffers to use.
Indicate a checkpoint.
Connect a record to a set.
Indicate an area encryption seed.
Remove record from a set.
Delete a record.
Locate a record.
Close area(s).
Obtain data from workarea.
Read a record from database.
Test for set membership.
Return member indices of set or record.
Re-write a record.
Return latest I-D-S/II error message.
Names of al I objects in current subschema.
Return owner indices of set or record.
Specify privacy locks.
Open an area.
Indicate currencies to be retained.
Rol I back updates to last checkpoint.
Report statistics.
Turn statistics gathering off.
Turn statistics gathering on.
Write a new record.
Indicate subschema name to use.
Move data into work area.
Initiate I-D-S/II trace.
Terminate I-D-S/II trace.
Indicate types of objects in subschema.
Namel ist of use procedures for errors in V.
Set use procedures associated with errors.

Terminal Control System Functions

Table E-20. Terminal System Functions

Name Description

V+ OTATTR Return terminal attributes.
OTECHO I Control terminal echo: 0=of f • l=on.
OTIN T Set input re-read line.

R+I OTSQZ T Translate to or from mnemonics.
OTTIHE I Set timeout on terminal reads.

R.f- OTWINDOW Return terminal window locations and sizes.

CE38-04 Terminal Control System Functions E-11

Report Formatting Functions

Form

rAw
rEw.s

r qrw.d
r qC<text>
r qlw

Tw
rXw
rl!ltextl!l
rOtextO
r"text"
r<text>

Where:

r
w
s
d
c
q

Optional qualifiers

B
C
L
H<text>
N<text>
P<text>
Q<text>
R<text>
S<text>

Name

H+Q OFHT L
OHDR T

1+ ONLS
oPCE
ovrc B

T+X OXL T

E-12

Table E-21. OFHT Format Controls

Description

Blank insertion
Exponential notation (scientific format)
Fixed decimal notation
Picture format
Integer
Co I umn tabb i ng ,
Blank insertion
Text insertion
Text insertion
Text insertion
Text insertion

opt i ona I rep I i cat i on count
total field width
digits in E format
digits to include after the decimal point
column at which the next field wi I I start
optional qual ifier

field is blank if it is exactly zero
insert comma between triads of digits
formatted field is left justified
prefixes negative fields with text
postfixes negative fields with text
prefixes positive fields with text
postfixes positive fields with text
sets background for formatted value
substitutions for '9Z*O_,.'

Table E-22. Report Formatting Functions

Description

Format L according to specification Q.
Set heading for output pages to T.
Return lines remaining on output page.
Begin future output on a new page.
Set VFC character for next output line.
Translate characters in T using vector X.

Report Formatting Functions CE38-04

BI ind 1/0 Functions

81ind I/O is provided to access CP-6 devices using the special variables D through 9.
The APL system command)SET is used to direct bl ind I/O to a particular device.

Name

I
J

K
L

S
T
V

Name

I+ OBEIN S J
OBCLOSE S I

L OBFLD S
K+ OBKEY S
K+ OBKR S
V+ OBLINES S

L OBHFLD S
OBPFILE S I
OBPRECORD S I
OBREW S
OBREWRITE S J

V OBRFLD S
OBRR S J

I+ OBRS S
OBSEED S I

V OBSFLD S
I+ OBSIZE S J
I+ OBTRANS S J
I+ OBVFC S J

V OBXFLD S
T+ OUNSET S

CE38-04

Table E-23. 81 ind I/O Example Variable Names

Description

Integer sca I ar.
Optional integer scalar whose presence
indicates a set mode operation and whose
absence causes the current setting to be
returned.
Scalar integer or character vector key.
Matrix of shape (N,H) where 4sHs7 and
the fol lowing column meanings are assigned:
1-field numbe r. 2-1 i ne. 3-column. 4-length.
5-attributes. 6-input attributes.
7-initial value.
81 ind I/O stream number (0 through 9).
Character vector.
Vector of form field numbers.

Table E-24. 81 ind I/O Functions

Descript ion

Set or query binary I/O mode.
Close bl ind I/O stream S.
Define form~ mode fields.
Key of current file position.
Key returned by last operation.
Return I ines per page and lines remaining.
Modify forms mode fields.
Position to beginning or end of fi Ie.
Forward or backward space in file.
Rewind fi Ie or tape.
Set rewrite option.
Release forms mode fields.
Set re-read option.
Size 6f record last read (F$DC8.ARS#).
Set encryption seed.
Select forms mode fields.
Set read size.
Set or query transparency.
Set or query VFC.
Expunge forms mode fields.
Return character vector containing CP-6
fid and)SET options.

81 ind I/O Functions E-13

Table E-25. CP-6 APL Character Set

Index APL ASCII Index APL ASCI I Index APL ASCI I Index APL ASCI I

0 NUL 64 a 0 128 192 L $MIN
1 SOH 65 A A 129 193 E $E
2 STX 66 B B 130 194
3 ETX 67 C C 131 195 A $DLT
4 EOT 68 D 0 132 196 t- $1
5 ENO 69 E E 133 197 x #
6 ACK 70 F F 134 198 " 7 BEL 71 G G 135 199 r $MAX
8 BS 72 H H 136 200 ... $DRP
9 HT 73 I I 137 201

10 LF 74 J J 138 202 Col $W
11 VT 75 K K 139 203 j $DSC
12 FF 76 L L 140 204 1\ &:
13 CR 77 H M 141 205 V II

14 SO 78 N N 142 206 - -
15 SI 79 0 0 143 207 s $LE
16 OLE 80 P P 144 208 ~ $GE
17 DC1 81 Q 0 145 209 v tOR
18 DC2 82 R R 146 210 0 $DMD
19 DC3 83 S S 147 211 ... $LTK
20 DC4 84 T T 148 212 ... $RTK
21 NAK 85 U U 149 213 0 $0
22 SYN 86 V V 150 214 0 $0
23 ETB 87 W W 151 215 .. $GO
24 CAN 88 X X 152 216 +-
25 EM 89 Y y 153 217 1 iDCD
26 SUB 90 Z Z 154 218 T $ECD
27 ESC 91 [[155 219 tI $CaM
28 FS 92 \ \ 156 220 $EOV
29 GS 93]

lTAK
157 221 t $NOV

30 RS 94 t 158 222 ! $FDI
31 US 95 - $- 159 223 !. $FND
32 BL 96 c $ENC 160 224
33 ! ! 97 A a 161 0 $SC 225
34 .. $11 98 l!. b 162 f $RD1 226
35 ~ $NE 99 C. c 163 u $CUP 227
36 $ $ 100 D. d 164 ~ $XP1 228
37 p $R 101 E e 165 t $GD 229
38 n $CAP 102 f. f 166 -9 $LOK 230
39 t . 103 G. 9 167 I $XEC 231
40 ((104 H h 168 11 $FMT 232
41)) 105 1 i 169 I!I $00 233
42 * • 106 .J. j 170 i $ LOG 234
43 + + 107 11 k 171 e $RV1 235
44 ,

$-
108 L. I 172 IE $MDV 236

45 - 109 Ii m 173 i' $TBR 237
46 110 f1 n 174 I $IB 238
47 / / 111 Q 0 175 l:! $UDL 239
48 0 0 112 E p 176 ('9 $TPS 240
49 1 1 113 Q q 177 ~ $GU 241
50 2 2 114 B r 178 4 $NND 242
51 3 3 115 ~ s 179 ¥ $NOR 243
52 4 4 116 T. t 180 ~ $REV 244
53 5 5 117 Cl. u 181 D $00 245
54 6 6 118 !: v 182 ID $01 246
55 7 7 119 J{ w 183 B $02 247
56 8 8 120 E- x 184 [J $03 248
57 9 9 121 r y 185 ~ $04 249
58 : : 122 Z z 186 B $05 250
59 ; ; 123 I I 187 a $06 251
60 < < 124 I 188 rn $07 252
61 = = 125 t 189 B $08 253
62 > > 126 - ... 190 9 $09 254
63 ? ? 127 DEL 191 255

E-14 Blind I/O Functions CE38-04

Index

Note: Index references indicate the page on which the paragraph containing the index
term actually ends. Should the paragraph straddle two pages, the actual indexed term
might be on the first page, whi Ie the index reference is to the second page.

A

A Programming Language - 1-1
abort - 6-2 7-20 7-21 10-2
Absolute value function - 3-17 5-10
access control vector - 11-26
access controls - 12-13
Accessing Data - 13-6
Accessing Fi les with Blind I/O - 16-3
account - 3-4 11-22 11-25 11-28 12-18
Active Workspace - 8-2 11~25

clearing - 8-13
expunge names - 8-19 11-8
name - 8-43
name classification - 11-12 11-14
names - 11-15
output width - 8-42
sav'ng - 8-3 8-13 8-34 8-35

addit on - 3-42 5-1
Addit on function - 3-14 5-4 5-4 5-45
Addit onal Primitive Functions - A-5
Addit onal Primitive Operators - A-7
Addit onal System Commands - A-8
Addit onal System Functions - A-7
Addit onal System Variables - A-8
Affixture codes - 9-6
Aids for Sidetrack Users - 10-10
Alternate Indexed Fi les - 12-23
And function - 3-20 5-16 5-45 A-6
APL Character Set, CP-6 - B-1
APL Exponential Notation - 3-2
APL Functions and Operators - 3-14
APL Input and Output - A-2
APL invocation options - 8-3
APL Standards Compatibility - 1-1
APL typewheel - 2-1
append record to a file - 12-8
arccos - 5-11 A-2
arccosh - 3-18 5-11 A-2
arcsin - 3-18 5-11 A-2
arcsinh - 3-18 5-11 A-2
arctan - 3-18 5-11 A-2
arctanh - 3-18 5-11 A-2
Argument characteristics - 5-1
Arithmetic Functions - 5-3
Arithmetic Limits - A-1
Array Limits - A-1
Array Representation - A-5
array -

depth - 3-13 3-28 5-22
nested - 3-13 3-43 5-2
prototype - 3-26 3-44 5-39 5-39
rank - 3-8 3-13 3-35 5-2
shape - 3-8 3-13 3-23 3-35 5-2 5-26

CE38-03 Index i-1

B

simple - 3-13 3-43
type - 3-13 3-26 3-35 5-40

arrays - 2-7 3-8 3-13
Arrays and Indexing - 3-8
Arrays of two or more dimensions - 3-42
ascending order - 3-23 5-31
ASCII - B-1
assigning a value to an array - 3-11
Assignment - 3-5 3-36
Assignment and Non-assignment Statements - 6-5
Assignment control - 1-1
assignment statements - 6-5
asterisk - 7-21
OAT System Function (Function Attributes) - 7-28 E-6
atomic vector - 11-6 B-1
attention - 3-44
oAV Function (Atomic Vector) - 11-6 E-4
Axis Operator - 3-14 11-2

Bare output - 3-44
base value - 3-25 5-34
Batch - 1-1 3-38 11-16
OBBIN Function (Set and Query Binary Mode) - 16-4 E-13
OBCLOSE Function (Close Blind I/O Channel) - 16-10 E-13
OBDELREC Function (Delete Record) - 16-11
best fit - 3-29 5-43
OBFLD Function (Field Definition) - 16-14 E-13
binary I/O - 16-4
BINARY MODE - 16-4
Binomial function - 3-18 5-12 5-45 A-3
OBKEY Function (Return Key) - 16-6 E-13
OBKR Function (Key Returned) - 16-10 E-13
BI ind I/O - 1-1 3-38 A-7
Blind I/O Functions - E-13
Blind I/O on a Device - 16-2
BI ind I/O System Functions - 16-4
Blind 1/0-

binary mode - 16-4
close I/O channel - 16-10
current key - 16-6
delete record - 16-11
field definition - 16-14
field erase - 16-18
field modification - 16-16
field selection - 16-17
last key returned - 16-10
lines of output - 16-6
position file - 16-7
position record - 16-7
previous record size - 16-9
read size - 16-5
record encryption - 16-8
release field - 16-18
return DCB setting - 16-12
rewind - 16-8
rewrite record - 16-8
skip to new page - 16-11
terminal re-read - 16-9
transparent mode - 16-6
uses - 16-1
VFC - 16-5

Blind Input/Output - 1-2
blind output - 3-44
OBLINES Function (Lines Remaining) - 16-6 E-13
OBHFLD Function (Modify Field) - 16-16 E-13
body of a function - 7-2 7-5
OBPACE Function (Skip to New Page) - 16-11
OBPFILE Function (Position File) - 16-7 E-13

i-2 Index CE38-03

C

OBPRECORD Function (Position Record) - 16-7 E-13
branch - 6-6 7-20 7-21 10-2
Branch Statements - 6-2
break - 3-44 4-3 7-20 8-30 8-30 8-36 10-1
BREAK key - 8-29
break response - 8-29 8-36
OBREW Function (Rewind) - 16-8 E-13
OBREWRITE Function (Rewrite Record) - 16-8 E-13
OBRFLD Function (Release Field) - 16-18 E-13
OBRR Function (Re-Read Mode) - 16-9 E-13
OBRS Function (Record Size) - 16-9 E-13
OBSEED Function (Encryption Seed) - 16-8 E-13
OBSFLD Function (Select Field) - 16-17 E-13
OBSIZE Function (Read Size) - 16-5 E-13
OBTRANS Function (Set and Query Transparency) - 16-6 E-13
OBVFC Function (Set and Query VFC) - 16-5 E-13
OBXFLD Function (Expunge field) - 16-18 E-13
byte keys - 16-7

canonical representation - 7-26 7-27 11-4 A-7
)CATCH Intercepting Assignments - 1-3 8-4 8-10 8-10 8-13
Catching assignments - 1-3
Catenation function - 3-14 3-23 5-23 14-1 A-6
Ceiling function - 3-17 5-8 11-2
Changing a Function Header - 7-17
changing a line - 7-15
Changing Assignments of Input/Output Streams - 8-35
Changing Input/Output assignments - 8-35
Changing Suspended Functions - 7-6
character - 2-7 3-2 3-5 3-13 3-42 5-31 5-33 5-40 5-41 A-6
Character Constants - 3-2
Character Set - 2-2 11-6 B-1
character vectors - 3-42
Circular function - 3-18 5-115-45
classification of functions - 3-35
)CLEAR Clearing Workspace - 3-40 5-42 7-19 8-4 8-11 8-13 8-13 11-3 12-1 13-10
Clearing the state indicator - 8-37
Clearing Workspace - 8-13
close bl ind I/O channel - 16-10
closing fi les - 12-6
colon - 6-4
Combination function - 3-18 5-12 A-3
Command Processor - 8-4 8-35
Comment Statements - 6-1
Comments - 2-6 6-1
Communicating with computer center operator - 8-30
Communicating with operator - 8-30
Communication Commands - 8-6
comparison tolerance - 3-42 5-13 5-22 11-2 A-1 A-6 A-8
component information - 12-1 12-11
component records - 12-1
Compound statements - 1-2 6-6
Compression A/ Operator (Replicate) - 5-47
Compression along the first coordinate - 3-32
Compression operator - 3-31 5-47 5-48 A-6
Conjugate function - 3-14 5-4 A-6
connecting to the CP-6 system - 2-1
Considerations after Gaining a Sidetrack - 10-9
Consistent Extensions to the ISO APL Standard - A~5
Constants - 3-1
)CONTINUE Saving Active Workspace and Leaving APL - 3-40 7-19 8-6 8-13
)CONTINUE HOLD - 3-40
Continue Workspace - 8-3
Control Keys - 2-6
Control ling the state indicator - 8-36
Conversion - 11-7
convert data - 11-7
Coordinating Shared Files - 12-14

CE38-03 Index i-3

o

} COpy Copying from Seved Workspace - 1-2 7-1 7-19 7-21 8-4 8-15 8-22 10-5 A-8
Copying from saved workspace - 8-15 8-31 8-33
corrections - 2-3
cosine - 3-18 5-11 A-2
CP-6 APL Cheracter Set - B-2
CP-6 APL System Functions - E-8
CP-6 APL version - 11-24
CP-6 Dependent Algorithms - A-4
CP-6 faci I ities, evai lebi I ity of others - 1-2
CP-6 siteid - 11-20
CP-6 siteneme - 11-20
CP-6 sysid - 11-21
OCPU Function (CPU Time Used) - 11-7 E-8
CPU Time Used - 11-7 11-17
OCR System Function (Cenonicel Representation) - 7-26 E-6
creating e group - 8-22
OCT Variable (Comparison Tolerance) - 11-2 8-13 A-1 E-4
current DCB setting - 16-12
current time - 11-21
OCVT Function (Convert) - 11-7 E-8

Datebase access - 1-3
dateblock records - 12-1
ODBACCEPT Function (Return db-key or Area Name) - E-11
ODBANLZ Function (Analyze Subschema Names) - 13-5
ODBBUFFERS Function (Set Number of Buffers) - E-11
ODBCHECK Function (Indicate e Checkpoint) - E-11
ODBCONNECT Function (Connect Record to Set) - E-11
ODBCRPT Function (Indicate en Area Encryption Seed) - E-11
ODBDISCONNECT Function (Remove Record from Set) - E-11
ODBERASE Function (Delete a Record) - E-11
ODBFIND Function (Locete a Record) - E-11
ODBFINISH Function (Close Area(s» - E-11
ODBFROH Function (Retrieving Data) - 13-7 E-11
ODBGET Function (Read a Record from Databese) - E-11
ODBIF Function (Test for Set Membership) - E-11
ODBINFORH Function (Database Register) - 13-6
ODBHEHBER Function (Set Member) - 13-5 E-11
ODBHODIFY Function (Re-write a Record) - E-11
ODBHSG Function (Return Letest I-D-S/II Error Message) - E-11
ODBNAHES Function (List Subschema Nemes) - 13-2 E-11
ODBOWNER Function (Set Owner) - 13-5 E-11
ODBPRIVACY Function (Specify Privecy Locks) - E-11
ODBREADY Function (Open an Area) - E-11
ODBRETAIN Function (Indicete Currencies to be Reteined) - E-11
ODBROLL Function (Rol I Back Updates) - E-11
ODBSTATS Function (Report Statistics) - E-11
ODBSTATSOFF Function (Turn Statistics Gathering Off) - E-11
ODBSTATSON Function (Turn Statistics Gathering On) - E-11
DBSTATUS - 13-9
ODBSTORE Function (Write a New Record) - E-11
ODBSUB Function (Identify Subschema) - E-11
ODBTO Function (Storing Data) - 13-7 E-11
ODBTRACEOFF Function (Stop I-D-S/II Trace) - E-11
ODBTRACEON Function (Start I-D-S/II Trace) - E-11
ODBTYPES Function (Subschema Name Types) - 13-2 E-11
ODBUSE Function (Use Procedures) - 13-9 E-11
DCB name - 16-12
Deal function - 3-24 5-19 8-31 11-2 11-3 A-4 A-6
Debugging Aid for Intercepting Assignments - 8-10
Decode function - 5-34
Default Output - 4-2
define from package - 14-5
Defined Function Controls - E-6
Defined Function References - 3-35
Defined Functions - 2-7 7-1 A-2

i-4

examples - 7-2
syntax - 7-2

Index CE38-03

definition mode - 2-4
degree of coupling - 11-25 11-27 11-29
del - 7-1
Delay - 11-8
delay execution - 11-8
Delay function - A-7
Deleting a Line - 7-12
deleting -

file - 12-7
function line - 7-12
IBEX variable - 11-11
line - 2-3 7-11
record from file - 12-10
saved workspace - 8-17
variables, functions - 11-8
variables, functions and groups - 8-19

depth - 3-13
Depth function - 3-28 5-22
derived function - 3-13 4-2
descending order - 3-24 5-33
Diablo 1620 - 2-1
diamond - 1-2 5-42 6-6
)DIGITS Specifying Numeric Print Precision - 2-3 2-4 3-42 8-5 8-16
Dimension function - 5-26
Direct Input - 3-39
Direct-Line Prompt - 2-5
Directives - 7-6 E-6 .
Disclose function - 3-27 5-21 A-5
Display -

function - 7-8
index origin - 8-31

Displaying a Range of Lines - 7-9
Displaying AI I Lines - 7-8
Displaying Lines Containing a String - 7-10
Displaying One Line - 7-9
Displaying the Next Occurrence of a String - 7-10
Displaying User-defined Functions - 7-8
division - 3-42
Division function - 3-15 5-6 5-45
ODL Function (Delay) - 11-8 E-8
domain - 3-35 5-1
domain tables - 5-1
) DROP Dropping a Saved Workspace - 8-5 8-17 A-8
Drop function - 3-26 5-40
Dropping a saved workspace - 8-17
Dummies - 3-5 7-4
Dyadic - 3-13 3-35 7-2
Dyadic format - 3-25
dyadic function - 3-13 5-1 5-46
Dyadic functions with expl icit result - 7-2
Dyadic functions with no explicit result - 7-2
dyadic scalar functions - 3-30 5-2

E

Dyadic Shared Variable Control - 11-26
Dyadic Shared Variable Offer - 11-27
Dyadic transpose function - 3-29 11-2
Dynamics of Sidetracking - 10-8

e - 3-15 5-7 5-8 A-3
Each operator - 3-35 5-53 A-7
Easy function copying - 1-2
Echoing of input - 8-36
Editing a line number - 7-17
editing defined functions - 5-42
Editing User-defined Functions - 7-11
)EDITOR Selecting the APL Function Editor - 8-7 8-18
empty array - 3-8 3-43
Enclose function - 3-27 5-20 14-1 A-5
Encode function - 3-25 5-35

CE38-03 Index i-5

F

encryption - 16-8
encryption seed - 12-1 16-4
)END Exiting APL - 8-7 8-19 11-3
Equals function - 3-19 5-14 5-46 11-2
Equivalence function - 3-28 5-22 11-2 A-5
) ERASE Deleting Objects from Active Workspace - 7-19 7-21 8-5 8-19 8-22 14-1 A-8
OERf Function (Error Function) - 10-10 E-7
OERH Function (Error Help) - 10-11 E-7
OERL Function (Error Line) - 10-11 E-7
OERH Function (Error Message) - 10-10 E-7
OERN Function (Error Number) - 10-10 E-7
OERP Function (Error Position) - 10-11 E-7
) ERROR Selecting Error Message Information Level - 8-7 8-20
Error and Break control - 1-3
ERROR CONTROL - 10-4 10-7
Error Control Functions - E-7
Error Stop - 10-3
Errors and Breaks - 4-3
Errors on Input or Output - 8-36
OERS Function (Error Simulation) - 10-12 10-4 E-7
OERX Function (I/O Error) - 10-11 E-7
Evaluated Input - 3-39 6-6 7-1 A-2
OEX Function (Expunge) - 11-8 14-1 E-8
Examples of Defined Functions - 7-2
Execute - 3-27
Execute function - 1-3 3-26 5-41 6-6 7-1 10-5 A-6
executing defined functions - 7-20
Execution and Definition Modes - 2-4
Execution Break - 10-1
execution mode - 2-4
execution time - 11-7 11-17
OExe Function (Expunge Globals) - 11-9 E-8
exiting APL - 8-13 8-19
Expansion along the first coordinate - 3-34
Expansion A\ Operator - 5-49
Expansion operator - 3-34 5-49 A-6
Exponential function - 3-15 5-7 A-3
exponential notation - 3-2
Exponentiation function - 3-15 3-16 5-7 5-45 A-3
expression evaluation - 4-1
expunge - 8-19 11-8 11-9
Expunge Global - 11-9
expunge IBEX variable - 11-11
Expunge names - 14-7
Extensions to Defined Functions - A-8
Extensions to Primitive Functions - A-6
Extensions to Primitive Operators - A-7
Extensions to System Commands - A-8
Extensions to System Functions - A-7
Extensions to System Variables - A-8

Factorial function - 3-17 5-12
OFAPPEND Function (Append Record to File) - 12-8 E-9
OFAPPENDR - 12-8 E-9
OFCLEAR Function (Close AI I Open Fi les) - 12-7 E-9
OFCLOSE Function (Closing and Renaming Files) - 12-6 E-9
OFCRPT Function (Set Fi Ie Encryption Seed) - 12-17 E-9
OFDEQ Function (Release Record or Fi Ie) - 12-14 E-9
OFDROP Function (Delete Record from File) - 12-10 E-9
OFENQ Function (Hold a Record) - 12-14 E-9
OFERASE Function (Close and Delete File) - 12-7 E-9
OFfLDS Function (Return Record Fields) - 12-22 E-9
OF! Function (Fix Input) - 11-9 E-8
fid - 3-3 3-4 12-4 12-4
OF!D Function (File Identifier) - 12-4 E-9
Field Definition Matrix - 16-13
Field Definition Matrix Columns - 16-13
file - A-7

i-6 Index CE38-03

Fi Ie Access Controls - 12-11
Fi Ie Access Matrix - 12-12
File I/O - 1-1 12-1 E-9
file identifier - 3-4 12-4
Fi Ie Information Functions - 12-3
Fi Ie Input/Output - 1-1 12-1
Fi Ie Management Account - 12-18
file output - 12-10
File Status Functions - 12-15
File System - A-2
f i Ie

access control - 12-2
access matrix - 12-11
closing - 12-6 12-7
component information - 12-11
component records - 12-1 12-11
creation - 12-4 12-23
data encryption - 12-1
datablock records - 12-1
delete record - 12-10
deleting - 12-7
encryption - 16-8
f unc ti ons - E-9
indexed fi les - 12-23
input - 12-9
key - 12-1
key information - 12-16
list library fi Ie names - 12-18
modification - 12-6 12-23
names of open files - 12-3
non-APL records - 12-1
numbers of open fi les - 12-3
open options - E-10
opening - 12-4
reading - 16-3
record field descriptions - 12-20
record identifier - 12-1
record types - 12-1
rename - 12-6
return file access matrix - 12-12
return key - 12-15 16-6 16-10
return record field definitions - 12-21
set file access matrix - 12-13
sharing - 12-14
size - 12-16
stream number - 12-1
writing - 12-8 12-10 16-3

files - A-2
First function - 3-26 5-39 A-5
fix input - 11-9
OFKEYINT Function (Set Key Interval) - 12-16 E-9
OFKEYS Function (Return File Keys) - 12-16 E-9
OFLIB Function (Return Fi Ie Names) - 12-18
OFLIB Function (Return Library File Names) - E-9
Floor function - 3-16 5-9 11-2
OFHA Function (Return Fi Ie Management Account) - 12-18 E-9
OFHT Format Controls - 9-1 E-12 E-12
OFNAHS Function (Names of Open Fi les) - 12-3 E-9
)FNS Listing Global Function Names - 8-7 8-21 10-1 A-8
OFNUHS Function (Numbers of Open Files) - 12-3 E-9
OFOPEN Function (Open Fi Ie) - 12-24 12-4 E-9
Format Controls, Report - E-12
Format Data List (Right Argument) - 9-2
Format Error Reports - 9-7
Format function - 1-1 3-25 5-37 9-1 11-3
Format Qualifier and Affixture Codes - 9-6
Format Result - 9-7
Format Specifications - 9-1
Format Specifications versus Data Types - 9-2
Format Statement (Left Argument) - 9-2

CE38-03 Index i-7

Format Symbol Substitution - 9-7
Formatted output - 1-1
Formatting a Vector on One Line - 9-4
Formatting Aids - 9-8
Formatting Matrix Arguments - 9-4
Formatting Scalar Arguments - 9-3
Formatting Vector Arguments - 9-3
Forms Mode - 16-12
Forms of Output Values - 9-5
fractional number - 3-41
OFRDAC Function (Return File Access Matrix) - 12-12 E-9
OFRDCI Function (Return Component Information) - 12-11 E-9
OFREAD Function (Read a Record) - 12-9 E-9
OFRKEY Function (Return Key Values) - 12-15 E-9
OFSIZE Function (Fi Ie Size) - 12-16 E-9
OFSTAC Function (Store File Access Controls) - 12-13 E-9
I Function (Absolute Value, Residue) - 5-10
A Function (And. LCM) - 5-16
1 Function (Base Value. Decode) - 5-34
r Function (Cei I ing. Maximum) - 5-8
+ Funct'on (Conjugate. Addition) - 5-4
_ Funct on (Depth. Equivalence) - 5-22
~ Funct on (Disclose, Pick) - 5-21
• Funct on (Drop) - 5-40
c Funct on (Enclose) - 5-20

Funct on (Equals) - 5-14
i Funct on (Execute) - 5-41
* Funct on (Exponential. Exponentiation) - 5-7

Funct'on (Factorial, Binomial) - 5-12
Funct on (First. Take) - 5-39
Funct on !FIOOr, Minimum) - 5-9

~ Funct on Format) - 5-37
t Funct on Grode-Down) - 5-33
• Funct on (Grode-up) - 5-31
~ Funct on (Greater Than or Equal) - 5-14
> Funct on (Greater Than) - 5-15
t Funct on (Index Generator, Index Of) - 5-19
s Funct on (Less Than or Equal) - 5-13
< Function (Less Than) - 5-13
ffi Function (Matrix Inverse, Matrix Divide) - 5-43
~ Function (Nand) - 5-17
• Function !Natural Logarithm. Logarithm) - 5-8
- Function Negate, Subtraction) - 5-4
¥ Function Nor) - 5-18
~ Function Not Equal) - 5-15
- Funct'on (Not) - 5-18
v Funct on (Or. GCD) - 5-16
o Funct on (Pi Times, Circular) - 5-11

Funct on (Ravel. Catenation, Lamination) 5-23
Funct on (Reciprocal. Division) - 5-6

T Funct on (Representation, Encode) - 5-35
¢ Funct on (Reversal. Rotation) - 5-26
? Funct on (Rol I, Deal) - 5-19
~ Funct on (Shope, Reshape) - 5-26
x Function (Signum, Multipl ication) - 5-5
~ Function (Transpose) - 5-27
E Function (Type. Membership) - 5-40
function attributes - 7-28
function closs - 3-35
Function Definition - E-6
Function Definition Mode - 7-1
Function Editor - 1-2
Function Execution - 7-20
Function Header Syntax - 7-2 E-6
Function Names, Listing of - 8-21
Function-Line Prompt - 2-5
function -

i-8

body - 7-2
creation - 7-2 7-27 A-7
display - 7-26
display one line - 7-9

Index CE38-03

G

displaying - 7-8
editing lines - 7-11
header - 3-35 7-1 11-4 A-8
header modification - 7-17
line deletion - 7-12
line insertion - 7-13
line modification - 7-15
line replacement - 7-14
locking - 7-22 7-27 11-4 14-7
sidetracking - 10-4 10-7
stop controls - 7-25 10-2 11-5 A-7
stop display - 8-33
suspended - 3-36
trace - 7-23 8-27 11-5 A-4 A-7

functions - 2-7 3-13 A-8
Functions and Arguments - 3-13
Functions -

Defined - A-2
dyadic - 3-13
Logical - E-2
Mixed - E-3
monadic - 3-13
Relational - E-2
Scalar Dyadic - E-1
Scalar Monadic - E-1

OFWRITE Function (Write or Replace a Record) - 12-10 E-9
OFX System Function (Fix Definition) - 7-27 E-6

GCD function - 5-16
General APL Input - 2-2
General Input/Output - 3-39
General ized combination function - 3-17
Generalized factorial function - 3-17
Generalized inner product function - 3-32
General ized outer product function - 3-33
global function names - 8-21
Global Name Classification - 11-15
Global Room - 11-18
Global Variable Names, Listing - 8-41
global variables - 3-6
)GO Resume Execution - 8-7 8-21
Grade-down function - 1-4 3-24 8-31 11-2 A-5 A-6
Grade-up function - 1-4 3-23 8-31 11-2 A-5 A-6
graphics - A-7
Graphics Attribute Variables - 15-20
Graphics Control Functions and Variables - 15-41
Graphics Output Functions - 15-2
Graphics Segment Functions - 15-10
Graphics Viewing Variables - 15-30
OGRBACKGROUND Variable (Background Index) - 15-53
OGRBATCH Function (Control Botching of Updates) - 15-48
OGRBCLIP Variable (Back Plane Clipping) - 15-38
OGRCAPABILITIES Function (Inquire Capabilities) - 15-44
OGRCHJUST Variable (Character Justification) - 15-28
OGRCHPATH Variable (Character Path) - 15-27
OGRCHPLANE Variable (Character Plane) - 15-26
OGRCHPREC Variable (Character Precision) - 15-28
OGRCHSIZE Variable (Character Size) - 15-25
OGRCHSPACE Variable (Character Space) - 15-27
OGRCHUP Variable (Character Up) - 15-26
OGRCLIP Variable (Window CI ipping) - 15-37
OGRCOLINDEX Function (Set/Inquire Color Indices) - 15-51
OGRCOLHODEL Function (Color Model) - 15-50
OGRCOORD Variable (Coordinate System Type) - 15-39
OGRCP Function (Current Position) - 15-10
OGRCSTATUS Function (Inquire Control Status) - 15-49
OGRCURRENT Function (Make Picture Current) - 15-48
OGRDONE Function (Terminate APL Graphics) - 15-42

CE38-03 Index i-9

OCRDRAW Function (Draw Picture) - 15-5
Greater Than function - 3-19 5-15 5-46 11-2
Greater Than or Equal function - 3-19 5-14 5-46 11-2
Greatest Common Divisor Function - 1-4 3-21 A-6
OCRFCLIP Variable (Front Plane Clipping) - 15-38
OCRFILL Variable (Fill Index) - 15-29
OCRFONT Variable (Font) - 15-24
OCRFRAHE Function (New Frame) - 15-50
OCRHIGHLIGHT Variable (Set/Inquire Highlighting) - 15-19
OCRIHHVISIBILITY Function (Immediate Visibility) - 15-47
OCRINIT Function (Initialize APL Graphics) - 15-41
OCRINITSURF Function (Initialize View Surface) - 15-42
OCRINTINDEX Function (Set/Inquire Intensity Indices) - 15-52
OCRL[Variable (Line Index) - 15-23
OCRLINE Function (Draw Line) - 15-3
OCRLS Variable (Line Style) - 15-23
OCRLW Variable (Line Width) - 15-22
OCRHARK Function (Draw Marker Symbols) - 15-3
OCRHARKER Variable (Marker Symbol) - 15-21
OCRNDC Function (Map to NDC) - 15-8
)GROUP Creating a Group - 8-5 8-22
Group, Listing Members of a - 8-23 11-10
groups - 3-4 11-10
)GRP Listing Members of a Group - 8-7 8-23
OCRP Function (Return Group Members) - 11-10 E-8
OCRPEN Variable (Pen) - 15-24
OCR PES Variable (Polygon Edge Style) - 15-22
OCRPINS Variable (Polygon Interior Style) - 15-21
OCRPIXEL Variable (Pixel Array) - 15-53
OCRPIXELORG Variable (Pixel Pattern Origin) - 15-54
OCRPOLYGON Function (Draw Polygon) - 15-4
OCRPROJECTION Variable (Projection Type) - 15-36
)GRPS Listing Names of Groups - 8-8 8-24 10-1
OCRSEGCLOSE Function (Close Retained Segment) - 15-11
OCRSEGCURR Function (Inquire Open Segment) - 15-15
OCRSEGDEL Function (Delete Retained Segment) - 15-12
OCRSEGHIGHLIGHT Function (Segment Highlight) - 15-18
OCRSEGOPEN Function (Create a Retained Segment) - 15-10
OCRSEGREN Function (Rename Retained Segment) - 15-13
OCRSEGS Function (Inquire Retained Segment Names) - 15-14
OCRSEGSURFS Function (Inquire Segment Surfaces) - 15-13
OCRSEGVISIBILITY Function (Segment Visibility) - 15-17
OCRSPACE Variable (NDC Space) - 15-31
OCRSURFACE Function (Select View Surface) - 15-45
OCRSURFACES Function (Inquire Selected Surfaces) - 15-47
OCRTERHSURF Function (Terminate View Surface) - 15-43
OCR TEXT Function (Draw Text) - 15-6
OCRTEXTI Variable (Text Index) - 15-25
OCRTEXTX Function (Inquire Text Extent) - 15-9
OCRTSEG Function (Inquire Open Temporary Segment) - 15-16
OCRTSEGC Function (Close Temporary Segment) - 15-16
OCRTSEGO Function (Create Temporary Segment) - 15-15
OCRUNSURFACE Function (Deselect View Surface) - 15-46
OCRUP Variable (View Up) - 15-31
OCRVDEPTH Variable (View Depth) - 15-35
OCRVERTEX Variable (Vertex Indices) - 15-29
OCRVIEWPORT Variable (Viewport) - 15-32
OCRV[SIBILITY Variable (Set/Inquire Visibility) - 15-19
OCRVPLNDIS Variable (View Plane Distance) - 15-34
OCRVPLNORH Variable (View Plane Normal) - 15-34
OCRVREFPT Variable (View Reference Point) - 15-33
OCRWINDOW Variable (Window) - 15-30
OCRWORLD Variable (World Transformation) - 15-40
OCRWORLDC Function (Map to World Coordinates) - 15-7

i-10 Index CE38-03

H

OHDR Function (Set Page Heading) - 9-8 E-12
header - 3-35 7-1 7-17 11-4 A-8
header of a function - 7-2
higher-order array - 3-8
hold a fi Ie - 12-14
hyperbol ic cosine - 3-18 5-11 A-2
hyperbol ic sine - 3-18 5-11 A-2
hyperbol ic tangent - 3-18 5-11 A-2

I-beam function - A-5
I-D-S/II Error Reporting and Handl ing - 13-9
I-D-S/II Function Arguments - 13-4
I-D-S/II Functions - E-11
I-D-S/II -

list name - 13-2
list name types - 13-2
lookup names - 13-5
retrieving data - 13-7
system functions - A-7
use procedures - 13-9

)IBEX Issuing CP-6 Commands - 8-8 8-24
DIBEX Function (IBEX Expunge) - 11-11 E-8
IBEX -

variable - 11-11 11-12
DIBLET Function (Set/Query IBEX Variable) - 11-11 E-8
DIBNL Function (IBEX Namelist) - 11-12 E-8
identifier location - 11-12
Identifying active workspace - 8-43
DIDLOC Function (Identifier Location) - 11-12 E-8
immediate execution - 2-4 A-2
Implementation Defined System Variables - A-2
Index generator function - 3-22 5-19 8-31 11-2 A-6
Index of function - 3-22 5-19 8-31 11-2 14-1
index origin - 3-22 3-37 5-19 8-31 11-2 A-1 A-8
Index Origin. Setting - 8-31
Indexed Assignment - 3-37
indexing - 8-31 14-1 A-6
Indexing an Indexed Argument - 3-12
Indexing of Arrays - 3-9
information level - 8-20
Initiating an APL Session - 8-3
Inner product - 3-32 5-50
Inner Product f.g Operator - 5-50
Input Types -

blind - 3-39
direct - 3-39
evaluated - 3-39
quote quad - 3-39

input. APL - 2-2
Input/Output - 3-38
Input/Output Assignment Control - 1-1 8-3 8-35
Input/Output Devices - 3-38
Input/Output streams. changing assignments - 8-35
Inquiry Commands - 8-6
Insert Package - 14-3
Inserting a Line - 7-13
integer - 3-1
intercepting assignments - 8-10
intermediate results, observation of - 1-3
interrupt - 3-44
inverse cosine - 3-18 5-11 A-2
Inverse function - 3-27
inverse hyperbolic cosine - 3-18 5-11 A-2
inverse hyperbolic sine - 3-18 5-11 A-2
inverse hyperbolic tangent - 3-18 5-11 A-2
inverse sine - 3-18 5-11 A-2

CE38-03 Index i-11

J

K

L

inverse tangent - 3-18 5-11 A-2
Invocation of the CP-6 Command Processor - 8-24
Invoking APL - 8-3
010 Variable (Index Origin) - 11-2 8-13 E-4
Issuing Multiple Directives - 7-15
Issuing System Commands - 7-19
item - 3-8
Items Subject to Sidetracking - 10-6

Join function - 3-23 5-23 14-1 A-6

key - 12-15 12-16 16-6 16-10

Labels - 3-4 3-5 6-4 7-4 7-5
Lamination function - 5-23
latent expression - 8-26 11-2 A-1
~C Function (Line Chain) - 11-13 7-21 E-4
LCM - 5-16
Least Common Multiple Function - 1-4 3-20 A-6
least squares fit - 3-29 5-43
leaving APL - 8-13 8-32
left argument - 3-35
length - 5-1
Less than function - 3-18 5-13 5-46 11-2
Less than or equal function - 3-19 5-13 5-46 11-2
~GT Function (Logon Time) - 11-14 E-8
)LIB Listing Names of Saved Workspaces - 8-8 8-25 10-1 A-8
library - 12-18
Library or Account Information - 12-18
library workspace - 7-18-2
Line Corrections during Input - 2-3
line counter - 7-21
line numbers - 7-14
line numbers in execution - 11-13
Line width setting - 8-42
Listing function names - 8-21
Listing global variable names - 8-41
Listing Group Names - 8-24
Listing Members of a Group - 11-10
Listing names of saved workspaces - 8-25
Listing the Members of a Group - 8-23
Listing the State Indicator - 8-38
listing-

active workspace name - 8-43 11-25
current DCB setting - 16-12
file access matrix - 12-12
file keys - 12-15 12-16
file names and members - 12-3
files in account - 12-18
global function names - 8-21
global names - 8-27
global variable names - 8-41
group members - 8-23 11-10
group names - 8-24
IBEX variable - 11-12
names - 11-15
package names - 14-3
platen width - 8-42
print precision - 8-16
saved workspaces - 8-25
state indicator - 7-20 8-36
state indicator lines - 8-38

i-12 Index CE38-03

N

storage requirements - 11-17
workspace available - 11-24

literals - 3-2
)LOAD Retrieving a Saved Workspace - 3-40 5-42 7-1 7-19 8-5 8-26 11-2 11-3 12-1

13-10
Local and Global Variables - 3-5
Local Variables - 3-6 6-4
locals - 7-4 7-5
Locking Functions - 7-22
Logarithm function - 3-16 5-8 5-45 A-3
Logging off - 8-29
Logging On - 2-1
Logical Functions - 5-16 E-2
logon time - 11-14
~OK Function (Lock Function) - 11-4 E-8
~X Variable (Latent Expression) - 11-2 8-13 8-34 E-4

Mognitude function - 3-17 5-10
Match function - 3-28 5-22 11-2
mathematical notation - 3-2
matrix - 3-8
Matrix Divide function - 3-27 5-43
Matrix Inverse function - 5-43
Maximum function - 3-17 5-8 5-45
Membership function - 5-40 11-2
Minimum function - 3-16 5-9 5-45
Minus function - 3-14 5-4 5-45
Miscellaneous Extensions - A-9
Miscellaneous Limits - A-2
Mixed Function Summary - 3-22
Mixed Functions - 5-19 E-3
mnemonics - 11-39 B-1
MODE -

BINARY - 16-4
TRANSPARENCY - 16-4
VFC - 16-4

Modifying a Line - 7-15
Modulus function - 3-17 5-10 5-45 A-3
Monadic - 3-13 3-35 7-2
Monadic function - 3-13 5-1
Monadic functions with expl icit result - 7-2
Monadic functions with no explicit result - 7-2
Monadic Operator - 5-45
Monadic Scalar functions - 5-2
Monadic transpose function - 3-29
Multiple Assignments - 3-37
multiplication - 3-42
Multipl ication function - 3-15 5-5 5-45

Name and Set Information - 13-5
name classification - 11-12 11-14
Name Format - 3-3
Name List - 11-15
NQme Usage - 3-4
Nameclass in package - 14-4
namelist - 11-4 11-15 11-17 11-25 A-7
Namelist and Canonical Representations - 11-4
Names - 2-3 3-3
Names in package - 14-3
names of open files - 12-3
Nand function - 3-21 5-17
Natural Logarithm function - 3-16 5-8
ONe Function (Name Classification) 11-14 E-8
ONce Function (Name Correspondence of Global) - 11-15 E-8
Negate function - 3-14 5-4

CE38-03 Index i-13

o

P

negative symbol - 3-1
nested arrays - 1-3 3-13 3-43 5-2 5-37 A-5
Niladic - 3-35 7-2
Niladic functions with explicit result - 7-2
Ni ladic functions with no explicit result - 7-2
OWL Function (Name I ist) - 11-15 14-1 E-8
OWLS Function (Number of Lines Remaining) - 9-8 E-12
)NMS Displaying Global Names - 8-8 8-27
non-assignment statements - 6-5
non-dyadic - 3-14
Nor function - 3-21 5-18 5-45
Normal Stop - 10-1
Not equal function - 3-20 5-15 5-46 11-2
Not function - 3-21 5-18
Notation -

exponential - 3-2
mathematical - 3-2

Number of I ines remaining - 9-8
number of users - 11-23
numbers of open fi les - 12-3
numeric - 2-7 3-1 3-5 3-42 5-3 5-37 5-40
Numeric Algorithms - A-3
Numeric Constants - 3-1
numeric vectors - 3-42

Observation of intermediate results - 1-3
)OBSERVE Observing Intermediate Results - 1-3 7-24 8-5 8-27
Observing intermediate results - 8-27
)OFF Logging Off - 3-40 5-42 7-19 8-8 8-29
)OFF HOLD - 3-40
DONL Function (Onl ine) - 11-16 E-8
open fi Ie - 12-4
Opening. Closing. and Deleting Fi les - 12-4
Operation of OFHT - 9-3
Operation -

Batch - 1-1 11-16
On-I ine - 1-1

Operator Summary - 3-31
Operators - 5-45 E-3
)OPR Communicating with Computer Center Operator - 8-8 8-30 10-1
)OPRN Communicating with Computer Center Operator - 8-8 8-30
optional items - 3-4
Or function - 3-20 5-16 5-45 A-6
Order of Evaluation - 4-1
)ORIGIN Setting Index Origin - 8-5 8-31
Other CP-6 faci I ities. avai labi lity of - 1-2
Outer product - 3-33 5-53
Outer Product o.d Operator - 5-53
Output - 3-41
Output Formatting Aids, Other - 9-8
Output Values, Forms of - 9-5
Overstriking a Character - 7-17
DOVH Function (Overhead Time) - 11-17 E-8

oPACK Function (Package Create) - 14-2
Package Names - 14-2
Package System Functions - 14-1
Package Value - 14-2
package -

creation - 14-2
define contents - 14-5 14-5
insertion - 14-2
list name classification - 14-3
I ist names - 14-3
lock function - 14-7

i-14 Index CE38-03

Q

R

name removal - 14-7
return value - 14-4
selection - 14-6

Packages - 1-3 7-1 14-1
Page heading - 9-8
Parentheses - 3-3 4-1
password - 3-4
)PCOPV Copying from Saved Workspace - 1-2 7-19 8-5 8-31
oPDEF Function (Package Definition) - 14-5
pendent - 7-20
pendent functions - 3-36 7-21
oPEX Function (Package Expunge) - 14-7
oPGE Function (Skip to New Output Page) - 9-8 E-12
pi - A-4
Pi times function - 3-18 5-11
Pick function - 3-28 5-21
Picture Format - 9-5
oPINS Function (Package Insert) - 14-2
Platen Width - 3-41 8-6 8-42 11-2 A-2 A-8
oPLOCK Function (Package Lock) - 14-7
Plus function - 3-14 5-4 5-45
oPNAHES Function (Package Names) - 14-3
oPNC Function (Package Name Correspondence) - 14-3
positioning and spacing - 3-43 11-2 A-2 A-8
oPP Variable (Print Precision) - 11-3 3-42 8-13 8-16 E-4
oPPDEF Function (Protected Package Definition) - 14-5
Precedence of Functions - 4-1
Precedence of Operators - 4-2
primitive functions - 3-13 5-1
Primitive Operators - E-4
Print precision - 3-42 8-5 8-16 11-3 A-1 A-8
Prompts - 2-4
Protective definition - 14-6
prototype - 3-26 3-44 5-39 5-39
oPS Variable (Positioning and Spacing) - 11-2 E-4
oPSEL Function (Package Select) - 14-6
Pseudo-random Number Generation - A-3
oPVAL Function (Package Value) - 14-4
oPW Variable (Platen Width) - 11-2 3-41 8-13 E-4

jOCOPY - 7-19 8-5
QLOAD,)OCOPy, and)QPCOPY Quiet Commands - 1-2 7-19 8-6 8-32
QPCOPY - 7-19 8-6

quad output - 3-44
Quad Prompt - 2-5
query IBEX variable - 11-11
query IBEX variable names - 11-12
Quiet commands - 8-32
)QUIT Leaving APL - 8-8 8-32
quote symbols - 3-2
Quote-Quad Input - 3-41
Quote-Quad Prompt - 2-6

radians - 3-18 5-11 A-2
random link - 11-3 A-1
rank - 3-8 3-13 3-35 5-1
Ravel function - 3-23
re-read - 11-38 16-9
read -

file - 12-9
Reading and Writing Records - 12-8
real number - 3-1
Reciprocal function - 3-15 5-6
Record Field Descriptions - 12-20
record format - 12-1

CE38-03 Index i-15

S

record, delete - 16-11
Recursive Functions - 7-20
Reduction along the first coordinate - 3-32
Reduction d/ Operator - 3-31 5-45
Referencing a Single Item - 3-9
Referencing More Than One Item - 3-10
Relational and Logical Functions - E-2
Relational Functions - 5-13
release a fi Ie - 12-14
Removing objects from active workspace - 8-19
rename file - 12-6
Replacing a Line - 7-14
replacing a record - 12-10
Replicate function - 1-2 3-31 A-6
Replicate operator - 5-47
)REPORT Selecting the Function Stop Display - 7-25 8-9 8-33
Report Formatting Functions - E-12
Representation function - 3-25 5-35
)RESET - 8-9
Reshape function - 3-23 5-26 A-6
Residue function - 3-17 5-10 A-3
resuming execution - 8-21
retract shared variable - 11-29
Retrieving a saved workspace - 8-26
return file access matrix - 12-12
Return Key - 12-15
Reversal along the first coordinate - 3-30
Reversal function - 3-30 5-26
REWRITE option - 16-8
right argument - 3-35
Right to Left - 4-1
ORL Variable (Random Link) - 11-3 8-13 E-4
ORH Function (Room) - 11-17 14-1 E-8
ORHG Function (Global Room) - 11-18 E-8
Rol I function - 3-24 5-19 8-31 11-2 11-3 A-3
room - 11-17
Rotate along the first coordinate - 3-30
Rotate function - 3-30 5-26

OSA Variable (Stop Action) - 10-2 10-3 11-3 7-20 7-25 8-13 E-4
) SALVAGE Copying from Saved Workspace - 8-6 8-33
sample APL session - 2-1
)SAVE Saving a Workspace - 7-19 8-6 8-11 8-34
saved workspace - 3-4 8-2

copying - 8-15 8-31 8-32 8-33
deleting - 8-17
listing - 8-25
loading - 8-3 8-26 8-32

Saving a sealed execute-only workspace - 8-35
saving a workspace - 8-13 8-34 8-35
saving active workspace - 8-13 8-34
OSc Function (State Change) - 11-31 E-8
scalar - 3-5 3-9
scalar dyadic functions - 3-30 E-1
scalar extension - 5-2
Scalar Function Summary - 3-14
Scalar Functions - 5-2 A-7
Scalar Monadic Functions - E-1
Scalar Primitive Functions - E-1
Scan along the first coordinate - 3-34
Scan d\ Operator - 3-33 5-48 A-7
OSCP Function (String Compare) - 11-37 E-10
screen access - 16-12
Screen Editing - 7-18
OSCT Function (Session Time) - 11-18 E-8
)SEAL Saving a Sealed Workspace - 1-2 8-6 8-35
Search and Replacement Strings - 7-8
Select names - 14-6

i-16 Index CE38-03

selecting error messages - 8-20
Selecting function Stop Display - 8-33
selective assignment - 1-4 3-38
Semi Numeric Algorithms - A-3
session parameter - 11-3
session time - 11-18
)SET Changing Assignments of Input/Output Streams - 1-1 8-9 8-35 16-12
Set I ine spacing - 9-9
Setting -

file access controls - 12-13
IBEX variable - 11-11
index origin - 8-31
line width - 8-42
re-read line - 11-38
shared variable processor name - 11-30

shadowing - 3-6
shape - 3-8 3-13 3-35 5-1
Shape function - 3-23 5-26
Shared Variable Functions - E-8
Shared Variable Process Name - 11-30
Shared Variable Query - 11-28
shared variable state change - 11-31
Shared Variable System Functions - 1-3 11-25
shared variable -

access control vector - 11-26
I imi t - A-2
offer - 11-27 11-28
process name - 11-25 11-30
query - 11-28
retract - 11-29
state - 11-30

Sharing Fi les - 12-14
)SI Control ling the State Indicator - 1-2 7-20 8-9 8-13 8-36 10-1 11-19 A-8
OSl Function (State Indicator) - 11-19 E-8
)SIC Clearing the State Indicator - 1-2 3-40 7-20 8-9 8-38
Sidetrack Users, Aids for - 10-10
Sidetrack, Considerations after Gaining a - 10-9
sidetracking - 1-3 7-20 10-1 10-4 10-7
Sidetracking On Errors And Breaks - 10-4
Sidetracking on Errors and Interrupts - E-7
Sidetracking, Dynamics of - 10-8
Sidetracking, Items Subject to - 10-6
Sidetracks, Settings - 10-7
Signal ing errors - 10-4 10-12
significant digits - 3-42
Signing off - 8-13 8-29
Signing off and saving active workspace - 8-13
Signum function - 3-15 5-5
)SIL Listing the State Indicator Lines - 1-2 8-9 8-38
simple array - 3-13 3-43
Simple Assignment - 3-36
Simulate a branch and stop - 8-39
sine - 3-18 5-11 A-2
Single step execution - 1-3 8-39
)SINL Listing the State Indicator - 7-21 7-22 8-9 8-38 10-1 A-8
site name - 11-20
s i te- i d - 11-20
OSlTElD Function (Site ID) - 11-20 E-8
OSlTENAHE Function (Site Name) - 11-20 E-8
size of fi Ie - 12-16
Skip to new output page - 9-8
skip to new page - 16-11
OSH Function (Set/Query Sidetrack Matrix) - 10-7 E-6
Sorting - 1-4
OSP Variable (Session Parameter) - 11-3 E-4
Special Action Table - 10-9
Special Symbols - E-5
Specialized File Options - 12-23

CE38-03 Index i-17

T

Specifying Input/Output Device - 8-40
Specifying number of significant digits - 8-16
specifying numeric print precision - 8-16
OSRP Function (Substring Replace) - 11-36 E-10
OSSR Function (String Search and Replace) - 11-35 E-10
OSSS Function (Substring Search) - 11-34 E-10
OST Function (Set/Query Stop) - 11-5
Standard I-o-S/II Functions - 13-7
Starting APL - 8-3
State Change - 11-31
state indicator - 8-36 11-12 11-13 11-19
state of shored variable - 11-30
Statement Labels - 6-4
Statements and System Commands - 2-6
)STEP Single Step Execution - 1-3 8-9 8-39
step condition codes - 11-20
OSTEPCC Function (Step Condition Codes) - 11-20 E-8
stop action - 7-20 10-2 11-3
Stop Control Vector - 10-2
Stop For User Input - 10-2
OSTOP System Function (Stopping Execution) - 7-20 7~25 8-33 E-6
OSTOP System Function (Suspending Execution) - 10-2
stopping a display - 3-44
stopping execution - 7-25 11-5 A-7
string compare - 11-37
string replace - 11-36
string searc~ - 11-34
string search and replace - 11-35
string -

tokenizing - 11-32
Subschema Information Functions - 13-2
subtraction - 3-42
Subtraction function - 3-14 5-4 5-45
Suspending Execution - 7-20
OSVC Function (Shored Variable Controls) - 11-26 E-8
OSVN Function (Shored Variable Process Nome) - 11-30 E-8
OSVO Function (Shored Variable Offer) - 11-27 13-6 E-8
OSVQ Function (Shored Variable Query) - 11-28 E-8
OSVR Function (Shored Variable Retract) - 11-29 E-8
OSVS Function (Shored Variable State) - 11-30 E-8
Syntax of Defined Functions - 7-2
sysid - 11-21
osrSID Function (Sysid) - 11-21 E-8
System Command Summary - 8-4
System command -

enhancements - 1-2
system commands - 5-42 7-19 A-8
System Functions - 11-3 A-7 A-7 E-8
System Functions Control I ing Defined Functions - 7-22
System Functions for Function Definition - 11-4
System functions used with packages - 14-1
System Variables - 3-36 A-1 E-4

T-bar function - A-5 0-5
Toke function - 3-26 5-39
tangent - 3-18 5-11 A-2
OTATTR Function (Terminal Attributes) - 11-38 E-11
OTECHO Function (Terminal Echo) - 11-39 E-11
)TERMINAL Specifying Input/Output Device - 1-2 8-10 8-40 11-22
Terminal Control System Functions - E-11
Terminal I/O System Functions - 11-37
Terminal status information - 11-38
terminal type - 11-22
terminal windows - 11-40
Terminals without APL Characters, Operation from - 1-1
Text editing functions - 1-3 E-10
Text Editing System Functions - 11-31
Text index - 11-32

i-18 Index CE38-03

U

V

time - 11-14 11-18 11-21
time stamp - A-4
Timeout period - 11-39
oTIN Function (Terminal Input) - 11-38 E-11
oTIX Function (Text Index) - 11-32
oTLEX Function (Text Lexemes) - 11-34
tokenizing - 11-32
oTR Function (Set/Query Trace) - 11-5
oTRACE System Function (Tracing Execution) - 7-23 E-6
tracing execution - 7-23 8-27 11-5 A-4 A-7
Translate text - 9-10
TRANSPARENCY - 16-4
Transpose function - 5-27

dyadic - 3-29
monadic - 3-29

Trigonometric and Hyperbolic Algorithms - A-2
Trigonometric functions - 3-18 A-2
oTS Function (Time Stamp) - 11-21 E-4
oTSQZ Function (Terminal Mnemonic Translation) - 11-39 E-11
OTT Function (Terminal Type) - 11-22 E-4
OTT Variable (Terminal Type) - 8-40
oTTIHE Function (Terminal Timeout) - 11-39 E-11
oTWINDOW Function (Terminal Windows) - 11-40 E-11
type - 3-13 3-35 5-40
Type function - 3-26 5-40 A-5
Types of Input - 3-39

OUA Function (User Account) - 11-22 E-8
OUL Function (User Load) - 11-23 E-4 E-8
OUNSET Function (Unset DCB) - 16-12 E-13
user account - 11-22
User Accounts - 8-4
User function extensions - 1-3
User Input versus Computer Output - 2-3
user load - 11-23
User prompts - 8-36
User-Defined Functions - 7-1
User-defined functions, Editing - 7-11
User-defined, Displaying - 7-8
Using Blind I/O - 16-1

Value in Package - 14-4
Value of a Variable versus its Name - 4-2
Variable Names used in System Function Summaries - 11-3
Variable versus its Name, Value of - 4-2
Variables - 3-5 11-1
Variables and Functions - 2-7
Variables Local to a Defined Function - 7-4
Variables, System - E-4
)VARS Listing Global Variable Names - 8-10 8-41 10-1 14-1 A-8
vector - 5-41
vector assignment - 1-4 3-37
Vector notation - 1-3 3-2
verify input - 11-23
oVERSION Function (Version) - 11-24 E-8
Vertical Format Control - 9-9 16-5
VFC - 16-4
oVFC Function (Set Line Spacing) - 9-9 E-12
oVI Function (Verify Input) - 11-23 E-8

CE38-03 Index i-19

W

x

\

OWA Function (Workspace Available) - 11-24 E-4
wait - 11-8
wait for shared variable event - 11-31
width-11-2
)WIDTH Setting line Width - 3-41 8-6 8-42
width of line - 3-41
window - 16-12
Window Clipping Variables - 15-37
workspace - 3-4
Workspace Available - 11-24
Workspace Concept - 8-2
Workspace Management Functions - 11-3
Workspace Management System Functions - 11-6
Workspace name - 2-3
workspace -

copy - 8-15
writing record in a file - 12-8
writing records - 12-10
)WSID Identifying the A~tive Workspace - 2-3 8-6 8-43 11-25
OWSID Function (Workspace Identifier) - 11-25 E-8

OXL Function (Translate Text) - 9-10 E-12

i-20 Index CE38-03

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

CP-6
TITLE APL REFERENCE MANUAL

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Your comments will be investigated by appropriate technical personnel

and action will be taken as required. Receipt of all forms will be

acknowledged; however, if you require a detailed reply, check here. 0

FROM: NAME __ __

TITLE __ __

COMPANY __ ___

ADDRESS __ ___

ORDER NO. CE38-04

DATED MAY 1986

DATE __________ __

PLEASE FOLD AND TAPE-
NOTE: U.S. Postal Service will not deliver stapled forms

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 39531 WALTHAM, MA 02154

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

ATTN: PUBLICATIONS, MS486

Honeywell

NO POSTAGE
NECESSARY
IF MAILED

INTHE
UNITED STATES

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

CP-6
TITLE APL REFERENCE MANUAL

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Your comments will be investigated by appropriate technical personnel

and action will be taken as required. Receipt of all forms will be

acknowledged; however, if you require a detailed reply, check here. D

FROM: NAME __ _

TITLE __ _

COMPANY __ _

ADDRESS __ __

ORDER NO. CE38-04

DATED MAY 1986

DATE _____ _

,-LEASE FOLD AND TAPE-
NOTE: U.S. Postal Service will not deliver stapled forms

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 39531 WALTHAM, MA 02154

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

ATTN: PUBLICATIONS, MS486

Honey",ell

IIII
NO POSTAGE
NECESSARY
IF MAILED

INTHE
UNITED STATES

)

Together, we can find the answers.

Honeywell
Honeywell Information Systems

U.S.A.: 200 Smith St., MS 486, Waltliam, MA02154
Canada: 155 Gordon Baker Rd., Willowdale, ON M2H 3N7

Mexico: Av. Constituyentes 900, 11950 Mexico, D.F. Mexico
U.K.: Great West Rd., Brentford, Middlesex TW8 9DH Italy: 32 Via Pirelli, 20124 Milano

Australia: 124 Walker St., North Sydney, N.S.W. 2060 S.E. Asia: Mandarin Plaza, Tsimshatsui East, H.K.

45575, 5C686, Printed in U.S.A. CE3B-04

