

DPS 8/C CONFIGURATION GUIDE

HONEYWELL CONFIDENTIAL AND PROPRIETARY

This document and the information contained herein are confidential to and the property of Honeywell Information Systems Inc. and are made available only to Honeywell employees for the sole purpose of conducting Honeywell's business. This document, any copy thereof and the information contained herein shall be maintained in strictest confidence; shall not be copied in whole or in part except as authorized by the employee's manager; and shall not be disclosed or distributed (a) to persons who are not Honeywell employees, or (b) to Honeywell employees for whom such information is not necessary in connection with their assigned responsibilities. Upon request, or when the employec in possession of this document no longer has need for the document for the authorized Honeywell purpose, this documentand any copies thereof shall be returned t the employe's manager.
There shall be no exceptions to the terms and conditions set forth
herein except as authorized in writing by the responsible Honeywell Vice President.

HONEYWELL CONFIDENTIAL \& PROPRIETARY

Abstract

This document and the information contained herein are confidential to and the property of Honeywell Information Systems Inc. and are made available only to Honeywell employees for the sole purpose of conducting Honeywell's business. This document, any copy thereof and the information contained herein shall be maintained in strictest confidence; shall not be copied in whole or in part except as authorized by the employee's manager; and shall not be disclosed or distributed (a) to persons who are not Honeywell employees, or (b) to * Honeywell employees for whom such information is not necessary in connection with their assigned responsibilities. Upon request, or when the employee in possession of this document no longer has need for the document for the authorized Honeywell purpose, this document and any copies thereof shall be returned to the employee's manager. There shall document and any copies thereof shall be returned to the employee's manager. There shall by the responsible Honeywell Vice President.

CP-6
DPS 8/C Configuration Guide

PREFACE

This guide attempts to provide nearly complete freestanding information for configuring any portion of a CP-6 DPS 8/C system. Included in this outline are only the DPS 8/C systems announced in March 1981 and updated by subsequent announcements. In addition, this material covers all peripherals which are the most current for DPS 8/C and the Level 66/DPS B and C systems. To configure CP-6 central systems and front end processors for other than DPS 8/C systems use the CP-6 Configuration Guide, Revision 6, February 23, 1981, available from the CP-6 Program Office.

The guide is constructed to be as self-teaching as possible and to provide for configuring both initial system orders and subsequent add-ons.

Material in this outline dealing with DPS 8/C central systems consists mainly of a set of charts and brief summaries which are designed to be largely self-explanatory. By following the appropriate flowcharts and tables you will be able to configure any initial system order or add-on order accurately.

This material is divided into gross functional sections. Be sure to read the Table of Contents in full before using the configuration material. The table will show you the pattern of approach used in configuring.

Section 1 summarizes key general rules and policies which govern configuration of DPS 8/C systems. Before doing any configuring you should always review Section 1.

Section 2 provides master flowcharts which identify the sequence and components to be considered in configuring. Detach the pertinent flowchart(s) and keep it in view while you use it to access other portions of this material in order to configure easily, completely, and accurately. The flowchart has chapter references to other sections for detailed information on configuration of the components at each level of the flowchart.

Section 3 contains overview configurators to give you the perspectives for complete systems.

Section 4 covers the configuring of central systems and memory sizes. Included in this section are all marketing identifiers for all central systems. outside the United States. Consult your Honeywell Marketing Representative.

CP-6
DPS 8/C Configuration Guide

Section 5 covers the configuring of the components needed within each IOM. These components relate to physical and logical IOM channels for peripheral subsystems and IOM aggregate load considerations.

Sections 6 through 9 cover the configuring of unit record, magnetic tape, mass store, and console subsystems.

Section 10 introduces you to some generic terms and concepts related to data communications and front end processors (FEPs).

Section 11 covers the configuration of the DN8/C FEP.
Section 12 deals with manually controlled peripheral switches.
Section 13 includes the motor-generator sets and circumstances dealing with their use.

Section 14 covers CP-6 software products.
Site preparation information for DPS 8/C may be found in the Site Preparation Manual for DPS 8/20, 8/44 (Order Number DL64) and in the DPS 8 (Freestanding) Site Preparation Manual for DPS 8/52/62/70 (Order Number DN01). Site preparation information for configurable DPS 6 peripheral equipment may be found in the DPS 6 Systems Site Preparation Manual (Order Number CP77-00).

CONTENTS

		ag
Section 1.	Peripheral and Communications Subsystems per CP-6 System Lower Speed Subsystems Higher Speed Peripherals	$\begin{aligned} & 1-1 \\ & 1-2 \end{aligned}$
Section 2.	Master Flowcharts for DPS 8/C Configuring DPS 8/47C/49C Systems DPS 8/52C/62C/70C Systems	$2-1$ $2-2$
Section 3.	Configurator Overview DPS 8/47C/49C/20C/44C DPS 8/52C/62C/70C	$\begin{aligned} & 3-1 \\ & 3-3 \end{aligned}$
Section 4.	Central System Configuring Ordering the Central System (CPS) DPS 8/47C/49C CPS Identifiers DPS 8/52C/62C/70C CPS Identifiers Ordering Extra CPUs, SCUs, IOMs for DPS 8/47C/49C Ordering Extra CPUs, SCUs, IOMs for DPS 8/52C/62C/70C DPS 8/C Memory Configurators Computing Memory Requirements for DPS 8/C Memory Interleaving Aspects Configuration Examples for Initial Orders and Additions	$\begin{aligned} & 4-1 \\ & 4-2 \\ & 4-3 \\ & 4-4 \\ & 4-5 \\ & 4-6 \\ & 4-8 \\ & 4-18 \\ & 4-19 \end{aligned}$
Section 5.	Configuring Within Any IOM Base IOM and Extra IOMs Physical Channels and Logic Boards Assigning Logical Channels to Physical IOM Channels Subsystems Allowing Multiple Logical Channels Per Physical Channel Unit Record Processor Subsystems Magnetic Tape Processor Subsystems Disk Subsystems Subsystems Allowing Only a Single Logical Channel Per Physical Channel FEPs Consoles IOM Aggregate Load Considerations IOM Configuring - An Example	$\begin{aligned} & 5-1 \\ & 5-3 \\ & 5-5 \\ & 5-10 \\ & 5-10 \\ & 5-10 \\ & 5-10 \\ & 5-11 \\ & 5-11 \\ & 5-11 \\ & 5-12 \\ & 5-13 \end{aligned}$

CONTENTS (Cont.)

		Page
Section 6.	Unit Record Subsystems Configuring the DPS 8 Unit Record Processor (URP) Subsystems	6-1
	Example of DPS 8 URP Configuring	6-8
	Configuring Supported DPS 6 Unit Record Equipment	6-9
	Example of DPS 6 Unit Record Configuring	6-11
Section 7.	Magnetic Tape Subsystems	
	Configuring Magnetic Tape Subsystems	7-1
	Magnetic Tape Subsystem Configuring Example	7-11
Section 8.	Mass Storage Subsystems	
	Configuring Mass Storage Subsystems	8-1
	Configurator for MSP8000 Subsystems (SingleChannel 1×16) for DPS $8 / 47 \mathrm{C} / 49 \mathrm{C}$ Only	8-7
	Configurator for MSP8002 Subsystem (Dual-Channel 2×16) for DPS 8/47C/49C Only	8-9
	Configurator for MSP0611 Freestanding Subsystem (Single-Channel 1×16) for any DPS 8/C Subsystem	8-11
	Configurator for MSP0612 Freestanding Subsystem ($2 \times 16,2 \times 30,2 \times 32$) for any DPS 8/C Subsystem	8-13
	Configuring Example for Mass Storage	8-15
Section 9.	Configuring Consoles	
	Configuration Rules for IOM-Connected Console	9-1
	Subsystem for DPS 8/C Systems	
	Console Subsystem (CSU6601)	9-1
	Auxiliary Console Adapter (CSF6602)	9-3
	Console Switch Feature (CSF6606)	9-5
Section 10.	Generics of Data Communications - Front End Processors (FEPs)	10-1
Section 11.	Configuring DATANET 8/C Front End Processor (FEP)	
	Required Configuration Components	11-1
	Networking Considerations	11-2
	Configuring the DATANET 8/C	11-3
	DN 8/C FEP-Related Marketing Identifiers and Their Functions	11-6
	Supported Terminals	11-12
	Async Profiles	11-12
	3270 Profiles	11-15
	RBT Profiles	11-15

```
CONTENTS (Cont.)
```

Section 11.		Page
	FEP Throughput Calculations and CI Board Packaging Tables	11-16
	CIBs	11-16
	Physical Board Size	11-16
	Throughput Load Factor	11-18
	Protocol Type	11-18
	TP Forms Processing	11-28
	Unit Record Devices	11-33
	Remote FEPs	11-34
	Determination of Remote FEP Link Speed	11-35
	DATANET 8/C Configuration Examples	
	Example \#1	11-36
	Example \#2	11-38
	Example \#3	11-40
	Example \#4	11-43
Section 12.	Peripheral Switches	
	Configuring Manual Peripheral Switch Subsystems	12-1
	Examples of Use of Manual Peripheral Switches	
	Example 1	12-3
	Example 2	12-4
	Example 3	12-5
Section 13.	Configuring Motor-Generator and Control Sets	13-1
Section 14.	Software	14-1
Appendix A.	Checklist Configurator	

CONTENTS (Cont.)		Page
FIGURES		
Figure 4-1.	DPS 8/C Central System Components	4-1
Figure 4-2.	DPS 8/20C/44C Memory Configurator	4-6
Figure 4-3.	DPS 8/47C/49C Sample Memory Configurator	4-6
Figure 4-4.	DPS 8/52C/62C/70C Memory Configurator	4-7
Figure 5-1.	Physical Channel Configurator	5-3
Figure 5-2.	Physical Channel and Logical Channel Concepts	5-9
Figure 6-1.	Configurator for URP0600/8000	6-3
Figure 6-2.	Configurator for URP in MFP8001	6-3
Figure 6-3.	Configurator for URAs and Associated Unit Record Devices	6-4
Figure 6-4.	Configurators for URP8011/8012/8013	6-4
Figure 6-5.	Configurator for PRU0901/1201	6-5
Figure 6-6.	Configurator for DPS 6 Unit Record Equipment	6-10
Figure 7-1.	Single-Channel MTP Configurator	7-4
Figure 7-2.	Dual-Channel MTP Configurator	7-5
Figure 8-1.	MSP8000 Block Diagram	8-7
Figure 8-2.	MSP8002 Block Diagram	8-9
Figure 8-3.	MSP0611 Block Diagram	8-11
Figure 8-4.	MSP0612 Block Diagram	8-13
Figure 9-1.	CSU6601 Block Diagram	9-2
Figure 9-2.	CSF6602 Block Diagram	9-4
Figure 10-1.	Typical Front End Processor Components	10-1
Figure 11-1.	DATANET 8/C Block Diagram	11-3
Figure 11-2.	DATANET 8/C Memory Configurability	11-7
Figure 11-3.	CI Physical Board Sizes	11-16
Figure 11-4.	ASYNC Input Performance	11-19
Figure 11-5.	ASYNC Output Performance, Non-Transparent	11-20
Figure 11-6.	ASYNC Output Performance, Transparent	11-21
Figure 11-7.	HASP, 2780, 3780 Input \& Output Performance	11-23
Figure 11-8.	3270 Input Performance	11-24
Figure 11-9.	3270 Output Performance	11-25
Figure 11-10.	FEP TP Forms Performance, Systems Input	11-29
Figure 11-11.	FEP TP Forms Performance, Systems Output	11-30
Figure 11-12.	URP Performance	11-33
Figure 11-13.	Remote FEP Performance - Input \& Output, No Transaction Processing	11-34
Figure 11-14.	DATANET 8/C Configuration Example \#4	11-50
Figure 12-1.	PSU0200 Configurator	12-2
Figure 12-2.	PSU0201 Configurator	12-2
Figure 12-3.	Switching Between Two Device Processors	12-3
Figure 12-4.	Switching Between Two Physical IOM PSI Channels	12-4
Figure 12-5.	Switching Between Two Device Processors and Between Two IOM Physical Channels	12-5

CONTENTS (CO		Page
Figure A-1	DPS 8/47C/49C Central Systems and Major Subsystems	A-5
Figure A-2	DPS 8/52C/62C/70C Central Systems and Major Subsystems	A-6
Figure A-3	IOM-Connected Console	A-7
Figure A-4	Communications Subsystem	A-8
Figure A-5	Magnetic Tape Subsystem	A-9
Figure A-6	Mass Storage Subsystem	A-10
Figure A-7	Unit Record Subsystem	A-11
Figure A-8	DPS 6 Peripherals	A-13
Figure A-9	Peripheral Switches	A-14
Figure A-10	Motor Generators/Capacitor Ridethroughs	A-15
TABLES		
Table 5-1.	Configurator for Logical Channel Assignments	5-6
Table 5-2.	Estimated Device Bandwidths	5-12
Table 5-3.	Solution to IOM Configuration Example	5-14
Table 6-1.	DPS 8 Unit Record Devices	6-2
Table 7-1.	MTU Characteristics	7-2
Table 7-2.	Required Number of MTU Addressing Adapters	7-8
Table 7-3.	MTU Density Features	7-10
Table 8-1.	MSP8000 Configuration	8-8
Table 8-2.	MSP8002 Configuration	8-10
Table 8-3.	MSP0611 Configuration	8-12
Table 8-4.	MSP0612 Configuration	8-14
Table 11-1.	DATANET 8/C Board Slot Assignments	11-5
Table 11-2.	CIB Throughput Capacity	11-16
Table 11-3.	DATANET 8/C Channel Interface Physical Board Sizes	11-17

SECTION 1
Peripheral and Communications Subsystems Per CP-6 System

LOWER SPEED SUBSYSTEMS

	Min	Max
Card reader or card reader/punch	0	As needed (See Note 2)
Card punch	0	As needed (See Note 2)
Printer	0	As needed (See Note 2)
FEP	1	(See Note 1) (See Note 3)
Console (IOM-connected)	1	4 (See Note 4)

Notes:

1. Maximum of 12 local FEP's per system. Maximum of 4 remote FEP's per local FEP. Maximum of $16 \mathrm{FEP's}$ per system (including both local and remote FEPs). See Section 11.
2. Maximum of 2 unit record devices on URP8012/8013. Maximum of 4 unit record devices on URP8011 and on URP in MFP8001 for DPS $8 / 47 \mathrm{C} / 49 \mathrm{C}$. Maximum of 8 devices on other URPs. Maximum of 6 unit record devices on each Front End Processor.
3. One Front End Processor (FEP) included with CPS81XX. Every FEP requires a minimum of one $C I B$ and one async $C I$, neither included in base price. One additional CIB and one sync CI (Bell 201C modem or equivalent) per $C P-6$ system (neither included in base price) is strongly recommended for a sync line to interface to the automated system for software support and distribution of patches.
4. FEP-connected consoles may be added as needed.

Min Max

Magnetic tapes	1 (See Note 1)	As needed (See Note 2)
Disk storage	157 M Bytes	As needed (See Note 4)
	(See Note 3)	

Notes:

1. One tape unit is normally used for the initial system boot.
2. The maximum is 8 tape units on single-channel MTP, 16 on dual-channel MTP. Maximum of 8 tapes on MFP8001.
3. Needed for CP-6 Operating System, support and temporary files.
4. See permissible maximum combinations per MSP in Section 8.

SECTION 2
Master Flowcharts for DPS 8/C Configuring

DPS 8/47C/49C SYSTEMS

Required Per System

1 MT Subsystem
1 MS Subsystem
1 CIB \& 1 async line
1 CSU6601 console
1 212A modem \& comm. line

DPS 8/20C, 8/44C Options
\(\left.$$
\begin{array}{l}\begin{array}{l}\text { SCU Upgrade }- \text { MXK8007 } \\
\text { Extra SCU - MXC8003 }\end{array}
$$

\hline Extra IOM - MXU8003\end{array}\right\}\)| Maximum |
| :---: |
| 1 each |

(3 \& 4 CPU configurations available via RPQ after system upgrade with CPK8366)

Extra CPU	CPU8119 for DPS 8/47C CPU8121 for DPS 8/49C	$\begin{aligned} & \text { Max } 1 \\ & \operatorname{Max} 3 \end{aligned}$
SC	$\begin{array}{ll} \hline \text { MXK8007 } & 2-5 \text { port ex } \\ \text { MXK8009 } & 5-8 \text { port ex } \\ \hline \end{array}$	pansion exansion
Extra SCU	MXC8003 (5 port)	Max 1
Extra IOM	MXU8003	Max 1
```Tandem Systems use 1 RSF8001-Redundant System Facility 2 CPS81XX-Central Systems 2 MXK8007-SCU Expansions 2 CSU6601-Consoles```		

(See p. 3-2 for notes)

Notes: - Performance upgrade Kit DPS 8/20C (CPS8114) to 8/44C (CPS8116) is CPK8113.

- CPU upgrade: CPU8114 to CPU8116 is CPK8119.
- Performance upgrade Kit DPS 8/44C (CPS8116) to 8/49C (CPS8121) is CPK8366.
- Performance upgrade Kit DPS 8/44CD (CPS8117) to 8/49C (CPS8121 and CPU8121) is CPK8367.
- CPU upgrade: CPU8116 to CPU8121 is CPK8368.
- Central System upgrade DPS 8/47C (CPS8119) to 8/49C (CPS8121) is CPK8362.
- CPU upgrade: CPU8119 to CPU8121 is CPK8365.



## SECTION 4

## ORDERING THE CENTRAL SYSTEM (CPS)

This is the configuration which is the heart of each initial order. It is obtained by use of the CPS marketing identifier for the model you want to order. The base CPS identifier is the first identifier that you write on your initial order. All additions at the time of the initial order or after the system has been installed are made to the base CPS system. The base CPS system is also known as the base system, basic system, or base mainframe.

The components of each DPS 8/C Central System are illustrated in Figure 4-1.


* Includes diskette, for maintenance purposes
** 30 cps terminal, included for maintenance purposes
Figure 4-1. DPS 8/C Central System Components
Each CPS identifier gives you a complete central system as shown:
One CPU and one SCU, a base quantity of memory, one IOM, plus one Central Processor Addressing feature or port (CPA) in the CPU and one IOM Addressing feature or port (MXA) in the IOM, one Data Communications Subsystem, including one Host Connection, one Communications Subsystem connected, 30 cps Console and one diskette (the console and diskette are included for maintenance purposes). Components in the central system do not have individual identifiers.

DPS $8 / 47 \mathrm{C} / 49 \mathrm{C}$ central systems may be connected together via the Redundant Systems Facility (RSF8001), provided both systems have upgraded to a 5 port SCU with the SCU Expansion (MXK8007). DPS 8/52C/62C/70C central systems may be connected together via the Redundant Systems Facility (RSF8002).

- CPS8119 for DPS 8/47C
- CPK8362 Upgrade Kit from CPS8119 to CPS8121
- CPS8121 for DPS 8/49C

Each CPS identifier includes:

- Central system cabinet (CSC).
- CPU, SCU, IOM - 1 each, with connecting cables and addressing features. IOM includes 20 logic board slots for physical I/O channels.
- Memory: 12M bytes on the DPS 8/47C (expandable to 32M bytes in 2 or 4 M byte increments - requires MXC8003, additional 5 port SCU, beyond 16 M bytes). 16 M bytes on the DPS $8 / 49 \mathrm{C}$ (expandable to 32 M bytes in 2 or 4 M byte increments--requires MXC8003, additional 5 port SCU).
- Power supply for all components within the central system cabinet.
- Space for one MSP8000 or one dual channel MSP8002.
o Space for one MFP8001 or one MTP8001 or one URP8000. The peripheral processors themselves are not included in CPS8119/8121 identifiers.
- All items above contained in the central system cabinet.
- One freestanding Data Communications subsystem with one Host Connection, one Communications Subsystem connected, 30 cps Console and one diskette (the console and diskette are included for maintenance purposes).
- Requires one standard dial up line and one 1200 baud asynchronous modem (must be Bell 212A, or Vadic Triple Modem (3451P, 3451S), or Rixon T212A, or equivalent) for use with the diagnostic processing functions. Neither the line nor the modem is included in the CPS.


## DPS 8/52C/62C/70C CPS Identifiers

- CPS8173 for DPS 8/52C
o CPK8176 Upgrade Kit from CPS8170 (DPS 8/50C) to CPS8173 (DPS 8/52C)
- CPK8164 Upgrade Kit from CPS8173 to CPS8174
- CPS8174 for DPS 8/62C
o CPK8172 Upgrade Kit from CPS8174 to CPS8178
- CPS8178 for DPS 8/70C

Each CPS identifier includes:

- One CPU and its power supply.
- 16M bytes main memory. All are expandable to 64 M bytes. MXC8002 required for each 16 M bytes or fraction thereof above initial 16 M bytes.
o One IOM with own power supply and inclusion of 36 logical board slots for physical I/O channels. Capacity for 18 more board slots for I/O channels via MXF8005 Channel Expansion option.
- CPU, SCU, IOM and Data Communications Subsystem (which also includes one Host Connection, one Communications Subsystem connected, 30 cps Console and one diskette). Connecting cables and addressing features are included in CPS identıfier.
- Requires 1) MG and one PSS8002 Battery Backup on each SCU (neither included in CPS), or 2) one PSS8000 Capacitor Ride-Through for each CPU/IOM and one PSS8002 Battery Backup on each SCU, or 3) UPS.
o Requires one standard dial up line and one 1200 baud asynchronous modem (must be Bell 212A, or Vadic Triple Modem (3451P, 3451S), or Rixon T212A, or equivalent) for use with the diagnostic processing functions. Neither the line nor the modem is included in the CPS.

QRDERING EXTRA CPUS, SCUS, IOMS FOR DPS 8/47C/49C
One additional SCU, IOM and/or CPU can be ordered initially, or later as additions on DPS 8/47C. One additional SCU and IOM and up to three additional CPUs can be ordered initially, or later as additions on DPS 8/49C.

- Maximum of two SCUs, two IOMs and two CPUs per DPS 8/47C System.
o Maximum of two SCUs, two IOMs and four CPUs per DPS 8/49C System.
o Marketing identifiers
- SCU: MXK8007 SCU Port Expansion (2 - 5 Port)

MXK8009 SCU Port Expansion (5 - 8 Port)
MXC8003 Additional (5 Port) SCU

- IOM: MXU8003 Additional IOM (requires MXK8007)
- CPU: CPK8113 Performance increase DPS 8/20C (CPS8114) to DPS 8/44C (CPS8116) - requires CPK8119 if system includes CPU8114; requires SFS6130, if installed, be replaced with SFS6135.
CPK8119 CPU8114 to CPU8116 performance increase (requires CPK8113).
CPU8119 Additional DPS 8/47C CPU (requires MXK8007).
CPU8121 Additional DPS 8/49C CPU (requires MXK8007, requires MXK8009 and 2nd CSU6601/6602 for 3rd CPU on a system).
CPK8362 Central System increase DPS 8/47C (CPS8119) to DPS 8/49C (CPS8121) - requires CPK8365 if system includes CPU8119; requires SFS6135, if installed, be replaced with SFS6145.
CPK8365 CPU8119 to CPU8121 performance increase (requires CPK8362).
CPK8366 Performance increase DPS 8/44C (CPS8116) to performance of DPS 8/49C (CPS8121) - requires CPK8368 if system includes CPU8116; requires SFS6135, if installed, be replaced with SFS6145.
CPK8367 Performance increase DPS 8/44CD (CPS8117) to performance of DPS 8/49C (CPS8121 and CPU8121); requires SFS6135, if installed, be replaced with SFS6 145.
CPK8368 CPU8116 to CPU8121 performance increase (requires CPK8366).
- Tandem System:

RSF8001 Redundant System Facility for CPS8119/8121 requires MXK8007 installed in each SCU.

All necessary connecting cables and addressing features are automatically included. Each CPU and each IOM is cross-barred to each SCU by Customer Services at the site. You must supply cable lengths.

## ORDERING EXTRA CPUS, SCUS, IOMs FOR DPS 8/52C/62C/70C

Up to 3 more SCUs and/or IOMs can be ordered initially, or later as additions on DPS 8/52C/62C/70C. One additional CPU may be ordered for DPS 8/52C/62C. Up to 5 more CPUs can be ordered initially, or later as additions on DPS 8/70C, provided that the combined total of CPUs and IOMs are less than or equal to 8.
o Maximum of four SCUs, IOMs per DPS 8/52C/62C/70C system. Maximum of two CPUs on DPS 8/52C/62C. Maximum of six CPUs on DPS 8/70C, so long as the combined total of CPUs plus IOMs are less than or equal to eight.
o Marketing identifiers

- SCU: MXC8002 Additional SCU
- IOM: MXU8002 Additional IOM

MXF8005 IOM Expansion (36 to 54 slots)

- CPU: CPU8173 Additional DPS 8/52C CPU

CPU8174 Additional DPS 8/62C CPU
CPU8178 Additional DPS 8/70C CPU
CPK8176 Performance increase, DPS 8/50C (CPS8170)
to DPS 8/52C (CPS8173) - requires CPK8177 if system includes CPU8170; requires SFS6140, if installed, be replaced with SFS6145.
CPK8164 Performance increase, DPS 8/52C (CPS8173) to DPS 8/62C (CPS8174) - requires CPK8174 if system includes CPU8173; requires SFS6145, if installed, be replaced with SFS6150.
CPK8172 Performance increase, DPS 8/62C (CPS8174) to DPS 8/70C (CPS8178) - requires CPK8178 if system includes CPU8174; requires SFS6150, if installed, be replaced with SFS6 155.
CPK8177 CPU8170 to CPU8173 performance increase (requires CPK8176).
CPK8174 CPU8173 to CPU8174 performance increase (requires CPK8164).
CPK8178 CPU8174 to CPU8178 performance increase (requires CPK8172).

- Tandem System:

RSF8002 Redundant System Facility for CPS8173/8174/8178.

- All necessary connecting cables and addressing features are automatically included. Each CPU and each IOM is cross-barred to each SCU by Customer Services at the site. You must supply cable lengths.


## DPS 8/C MEMORY CONEIGURATORS

DRS 8/20C. 8/44C Total Memory Size


Figure 4-2 DPS 8/20C, 8/44C Memory Configurator

DPS 8/47C, 8/49C Total_Memory Size

	12 M8	14 MB	16 мв		18 мв	20 MB	22 мв	24 M8	26 Mв	28 мв	30 мв	32 мв
CPS8119	Standard	CMM8002	CMM8002	MXC8003	CMm8002							
		Смm8003			CMM8003		CMM8003		CMm8003		CMM8003	
CPS8121				MXC8003	CMM8002	CMM8002	смм 8002	Смм8002	смм8002	CMM8002	Смм 8002	CMM8002
					смм88003		CMM8003		Смм>8003		смм88003	

## DPS 8/50C, 8/52C, 8/62C, 8/70C Total Memory Size



- Ps88002 required for all DP8 8/50C, 8/52C, 8/82C, 8/70C syatems without UPS.

Figure 4-4 DPS 8/50C, 8/52C, 8/62C, 8/70C Memory Configurator

Marketing identifiers (MI) for memory are given in the following listing.

System MI Description
DPS 8/20C/44C CMM8002
DPS 8/47C/49C CMM8002
DPS 8/47C/49C CMM8003
DPS 8/50C/52C/62C/70C CMM8020
$2 M$ bytes main memory
2 M bytes main memory
4 M bytes main memory
2 M bytes main memory

The Control Unit Battery Backup (PSS8002) provides up to 4 minutes of power to storage units. One is required for each 16 M bytes, or fraction thereof, on DPS 8/50C/52C/62C/70C without UPS. Not available on DPS 8/20C/44C/47C/49C.

To upgrade memory size on an installed DPS 8/C system, using identifiers from the listing above, add the appropriate number of increment identifiers for the total size you want, less the identifiers already used for the currently installed memory size. On the DPS 8/50C/52C/62C/70C, add one MXC8002 for each 16 M bytes or fraction thereof above the initial 16 M bytes. If no UPS, add one PSS8002 for each 16 M bytes or fraction thereof on the DPS 8/50C/52C/62C/70C. On the DPS 8/20C/44C, add one MXK8007 and one MXC8003 if a total of more than 8 MB is configured on the system. On the DPS $8 / 47 \mathrm{C} / 49 \mathrm{C}$, add one MXC8003 if a total of more than 16 MB is configured on the system.

Example: To increase an installed DPS 8/50C from its present 16 M-byte to 28 M-byte memory you order 6 CMM8020. 1 PSS8002 and 1 MXC8002.

Memory interleaving is not available on DPS 8/20C/44C/47C/49C. The memory interleaving aspects of the DPS 8/50C/52C/62C/70C are discussed later in this section.

## COMPUTING MEMORY REOUIREMENTS FOR DPS 8/C

Memory requirements for DPS 8/C systems are broken down into four parts.

- Operating System
- Compilers
- Programs
- Other activities

The total estimated memory requirement for a DPS 8/C system is equal to the sum of the requirements for each of the four parts plus an allowance for growth and peak loads.

Operating System - The basic minimum operating system memory requirement is approximately 3.240 K bytes. To this minimum, add the following, as needed:

Added_Item	Size (K bytes)
Additional CPUs (beyond 1 CPU)	$40 \times$ (\# CPUs - 1)
Additional FEPs (beyond 2 FEPs)	$24 \times$ (非 FEPs - 2)
Mail system	120
Beam/Move system (SCOTTY)	152
IDS (Data Base Control System)	132
Transaction Processing	48
Fortran/Basic/APL Lib (:SHARED_COMMON)	120
COBOL/Sort Lib (:SHARED_COBOL)	144
COBOL Lib without Sort (:SHARED_COB)	76
RPG Lib (:SHARED_RPG)	80
Pascal Lib (:SHARED_PASCAL)	72

Compilers - Each compiler used requires a quantity of memory. For each compiler this memory consists of two parts, data and shared procedure. The table below shows the memory sizes for each compiler. In using the table, note that:
$n=$ the number of concurrent users of the compiler. For FORTRAN and COBOL $n=n_{1}$ (\# users with programs <200 lines) $+n_{2}$ (\# users with programs >200 lines)
$m=$ the minimum of $n$ or 4 .

Compiler:

FORTRAN
COBOL
FPL
PASCAL
PL6*
RPG

Size (K bytes)
Shared Procedure
$\left(128 \times n_{1}\right)+\left(160 \times n_{2}\right)+172+(80 \times m)$
$\left(160 \times n_{1}\right)+\left(200 \times n_{2}\right)+82+(120 \times m)$
$(80 \times n) \quad+192$
$(140 \times \mathrm{n}) \quad+88+(112 \times \mathrm{m})$
$(160 \times n) \quad+40+(200 \times m)$
$(88 \times n)+76+(48 \times m)$

* Note that users of SPSS have memory requirements similar to those shown here for PL6.

Programs - The numbers given below yield the minimum memory requirements for the program types shown. In all cases, compensation must be made for large programs and data sizes.

The constants represent sharable procedure. The coefficients of $n$ represent data (i.e., $n=$ the number of users for that program).

Program Type


FORTRAN $(4 \times n)+4$
PL6 $(4 \times n)+4$
RPG $(8 \times n)+4$

PASCAL
$(4 \times n)+4$
COBOL (using: SHARED_COBOL)
$(32 \times \mathrm{n})+4$
COBOL (using:SHARED_COB)
$(20 \times n)+4$
Any above under DELTA
Add (40 x n)
Any above using IDS
Add (52 x n)
(Note this must also be added to APL or BASIC as required.)
Any above running in TP Add (12 x \# of TP user slots)
$T P$ instances (52 x \# of instances) +64
Other Actiyities - The numbers given here are representative of moderate sized programs. As noted, compensation must be made for large programs. Again, $n=$ the number of concurrent users of an activity.

Activity	Size (K bytes)		
	Data	Shared_Procedure	
Each CP-6 User	( $16 \times \mathrm{n}$ )		
IBEX	(16 x n )		
Editor	( $28 \times \mathrm{n}$ )	+	84
APL (depends on program)	( $52 \times \mathrm{n}$ )	+	352
BASIC (depends on program)	(44 x n )	+	324
IDP	( $32 \times \mathrm{n}$ )	+	120
LINK (depends on program)	( $96 \times \mathrm{n}$ )	+	152
SORT (uses as much memory as it is given)	( $56 \times \mathrm{n}$ )	+	56
MERGE (uses as much memory as it is given)	(52 $\times$ n)	+	56
PCL	( $36 \times \mathrm{n}$ )	$+$	96
STATS	( $32 \times \mathrm{n}$ )	+	96
MAIL	(28 $\times$ n)	+	48
SEND	( $32 \times \mathrm{n}$ )	+	28
TEXT	(64. $\times$ n)	+	196

Growth and peak load allowance - Use 10-20\% of the sum of the memory requirements for compilers, programs and other activities.

Examples 1 and 2 point out the differences in memory requirements between installations exercising tight control of memory and those which do not constrain its use.

## Example 1

A single CPU system to run eighty users in a pure time sharing system for students with tight controls on on-line memory use. All compilations will be done in a single batch stream. Other off-hour data processing will be done, but will be less demanding than the peak hour student load. Fortran, Basic, APL, Pascal, and PL6 will be the languages used. COBOL and SORT will be required for the DP activities, but will not be used by students. The expected mix of users is: 20 in IBEX, 25 in EDIT, 2 in PCL, 10 in Basic, 5 in APL, and the remaining 18 running their own programs averaging 20 K bytes data and 8 K bytes procedure.

Operating System
Size (K bytes)
Item
Base Operating System 3240
Fortran/Basic/APL Lib 120
Pascal Lib 72
Cobol/Sort Lib 144
Operating System Total $=\overline{3576 K}$ bytes

## Compilers

Note that all compilations will be done in a single batch stream (i.e., one at a time) and that this will handle the peak load. Hence the compiler requirement is equal to the worst case situation which in this example would be a greater than 200 line FORTRAN compilation.

Data
$(160 \times 1)$

Shared Procedure
$172+(80 \times 1)$

Size (K bytes)
412

## Programs

The problem states that the memory requirements for programs is:
Data Shared Procedure Size (K bytes)
$18 \times((20 \times 1)+8)=504$
Note that the problem states that each of 18 users are running their own programs, i.e., they are not using shared procedures. Also note that the sizes specified (in the problem) are above the minimum program sizes allowed.

## Other Activities

Item	Data		Shared Procedure		Size (K Bytes)
Each CP-6 User	(16 x 80)			$=$	1280
IBEX	(16 x 20)			=	320
Editor	(28 x 25)	$+$	84	=	784
APL	( $52 \times 5$ )	+	352	=	612
BASIC	(44 $\times 10$ )	+	324	=	768
PCL	$(36 \times 2)$	+	96	=	168
	Other	iv	es Total	$=$	3932K Bytes

## Growth and peak load allowance.

Use $15 \%$ of the sum of the memory requirements for compilers, programs and other activities.

| Compilers | $=412$ |
| :--- | :--- | ---: |
| Programs | $=504$ |
| Other Activities | $=3932$ |
|  | $\overline{4848} \mathrm{~K}$ Bytes $\times 0.15=727 \mathrm{~K}$ Bytes |

Total memory requirement is:

Item	Size (K_Bytes)
Operating System	3576
Compilers	412
Programs	504
Other Activities	3932
Allowance	727
System Total	
	9151 K Bytes
	$-\infty 12 \mathrm{MB}$ on DPS $8 / 47 \mathrm{C}$

The same single CPU system to run eighty time sharing users and off hours data processing work requiring COBOL and SORT. A smaller set of languages will be used than in Example 1. However, there is no plan to constrain compilations to batch, and heavy use of a large statistical package (SPSS) is anticipated. The expected mix of users is: 10 in IBEX, 10 in EDIT, 20 in SPSS, 10 in FORTRAN ( 5 small, 5 large), 10 in PASCAL, 2 in PL6, and 18 running assorted user programs averaging 20 k bytes data and $8 k$ bytes procedure.

Operating System	Size_(K bytes)
Item	3240
Base Operating System	120
Fortran/Basic/APL Lib	72
Pascal Lib	144
Cobol/Sort Lib	
Operating System Total	$=\overline{3576 K}$ bytes

Compilers


Compilers Total $=\overline{8668} \mathrm{~K}$ Bytes

## Programs

The problem states that the memory requirements for programs is:
Data Shared Procedure Size (K bytes)
$18 \times((20 \times 1)+8)=504$
Note that the problem states that each of 18 users are running their own programs, i.e., they are not using shared procedures. Also note that the sizes specified (in the problem) are above the minimum program sizes allowed.

Other Activities

Item	Data		Shared Procedure		Size (K Bytes)
Each CP-6 User	(16 x 80)			=	1280
IBEX	(16 x 10)			=	160
Editor	(28 x 10)	+	84	=	364
	Other	iv	ies Total	=	1804K Bytes

## Growth and peak load allowance.

Use $15 \%$ of the sum of the memory for compilers, programs, and other activities.

| Compilers | $=8668$ |
| :--- | :--- | ---: |
| Programs | $=504$ |
| Other Activities | $=1804$ |
|  | $\overline{10976 \mathrm{~K}}$ Bytes $\times 0.15=1646 \mathrm{~K}$ Bytes |

Total memory requirement is:
Item Size (K Bytes)
Operating System ..... 3576
Compilers ..... 8668
Programs ..... 504
Other Activities ..... 1804
Allowance ..... 1646
System Total 16198K Bytes
A 16MB DPS 8/C system would just minimally meet these memoryrequirements, 18MB might be preferable.

## Example 3

A dual CPU system is to be configured with 5 FEPs to run a mixture of timesharing, batch, and TP. Approximately 200 TP terminals are expected to be connected to two $T P$ instances, each of which will have 10 user slots. The TPAPS will be COBOL/IDS programs and approximately 10 distinct ones will be in use at any time. The batch load is expected to be 5 batch streams running an assortment of programs with an average total memory requirement of 200 K bytes. 100 time sharing users are expected in two groups. The first group ( 50 users) run one of two large engineering design programs. The second group is doing program development. The users break down as follows:

TP 20 user slots each with 72 K bytes data and 10 shared COBOL/IDS programs each with approximately 164 K bytes procedure.
Batch
Timesharing 50 users, each with an average of 84 K bytes data, using 2 shared Fortran programs, each with approximately 164 K bytes procedure.
10 users IBEX
20 users EDIT
3 users Fortran Compiler
3 users Cobol Compiler
7 users debugging Fortran programs, with an average size of 164 K bytes procedure and 84 K bytes data.
7 users debugging Cobol programs, with an average size of 164 K bytes procedure and 72 K bytes data.

Memory requirements are derived as follows:
Operating System
Item
Base Operating System 3240
Additional CPU 40
Additional FEPs 72
IDS 132
TP
48
Fortran/Basic/APL Lib 120
Cobol/Sort Lib 144
Total Operating System $=\overline{3796 K}$ bytes

## Compilers

Type	Data		Shared Procedure		Size (K Bytes)
FORTRAN	(160 x 3)	+	$172+(80 \times 3)$	$=$	892
COBOL	(200 x 3)	+	$82+(120 \times 3)$	=	1042
			Total Compilers	$=$	1934K Bytes

## Programs

Type	Data		Procedure		Size (K Bytes)
Batch	(200 $\times 5$ )			$=$	1000
Timesharing					
FORTRAN	(42 x 50)	$+$	164	$=$	2264
	(42 x 50)	$+$	164	=	2264
FORTRAN - debug*	(84 x 7)	+	(164 x 7)		
Add DELTA	+(40 $\times 7)$			=	2016
COBOL - debug	$(72 \times 7)$	+	$(164 \times 7)$		
Add DELTA	+(40 x 7)			=	1932
TP					
COBOL	(72 x 20)	$+$	$(164 \times 10)$		
Add IDS	+(52 x 20)				
Add TP	+(12 x 20)			$=$	4360
TP Instances	$(52 \times 2)$	+	64	$=$	168

* Note that programs being debugged are not shared.

Other Actiyities

Item	Data		Shared Procedure		Size (K Bytes)
Each CP-6 User	$(16 \times 125)$			=	2000
IBEX	(16 $\times 10$ )			$=$	160
Editor	(28 x 20)	+	84	=	644
	Total	her	Activities	=	2804K Bytes

## Growth and peak load allowance

Use $15 \%$ of the sum of the memory for compilers, programs and other activities.

Compilers	$=$	1934
Programs	$=14004$	
Other Activities	$=2804$	

18742 K Bytes $\times 0.15=2811 \mathrm{~K}$ Bytes
Total memory requirement is:

Item	Size_(K_Bytes)
Operating System	3796
Compilers	1934
Programs	14004
Other Activities	2804
Allowance	2811
System Total	
	$25,349 \mathrm{~K} \mathrm{Bytes}$
	$-->26 \mathrm{MB}$ on DPS 8/47C/49C/

## Memory Interleaving Aspects

The DPS 8/50C, DPS 8/52C, DPS 8/62C and DPS 8/70C support 2-way interleaving on one SCU with configurations of 16 M bytes. Requires memory to be evenly divided on each of the two memory ports of SCU. As noted above, memory interleaving is not available on DPS 8/47C/49C.

DPS $8 / 50 \mathrm{C}$, DPS $8 / 52 \mathrm{C}, 8 / 62 \mathrm{C}$ and $8 / 70 \mathrm{C}$ may have more than one SCU , to a total of four in one system.

- If two SCUs exist in one system, 4-way interleaving is possible. Requires same amount of memory on each of the four memory ports involved (two per SCU).
- If three SCUs exist in one system, 4-way interleaving is possible on two of the SCUs, 2-way interleaving on the third SCU.
- If four SCUs exist in one system, two sets of 4-way interleaving are possible.

Interleaving causes physical memory addresses to be distributed sequentially across two memory ports on one SCU (2-way) or across four memory ports (two ports each for two SCUs for 4-way).

- Example of 2-way interleaving:

Addresses		Port 1		Port 2
Addresses		0-1		2-3
	4-5		6-7	
	8-9		10-11	
	etc.		etc.	

- Example of 4-way interleaving addresses

SCU 1 SCU 2

Port 1	Port_2	Port 1	Port_2
$0-1$	$2-3$	$4-5$	$6-7$
$8-9$	$10-11$	$12-13$	$14-15$
$16-17$	$18-19$	$20-21$	$22-23$
etc.	etc.	etc.	etc.

Interleaving increases the effective speed of memory where memory locations are accessed in sequence. Allows the restore portion of a memory cycle on one memory port to be overlapped by the fetch portion of next memory cycle from next port in succession.

## CONFIGURATION EXAMPLES FOR INITIAL ORDERS AND ADDITIONS

1. Examples of initial central system order.
o Customer wants DPS 8/47C system with 14M bytes memory
1 CPS8119 DPS 8/47C central system with 12M bytes 1 CMM8002 2M byte Expansion
o Customer wants DPS 8/49C with 16M bytes memory

1 CPS8121 DPS 8/49C central system with 16M bytes
o Customer wants dual DPS 8/70C with 32M bytes total

1	CPS8178	1 DPS 8/70C central system, 16M bytes
1	CPU8178	1 Additional CPU (Specify Cable Lengths)
1	MXC8002	1 Additional SCU (Specify Cable Lengths)
8	CMM8020	16 M bytes Additional Memory
2	PSS8002	2 Control Unit Battery Backups
3	PSS8000	3 Capacitor Ride-Throughs

o Customer wants DPS 8/52C with 16M bytes memory
1 CPS8173 DPS 8/52C central system with 16 M bytes
1 PSS8002 1 Control Unit Battery Backup
2 PSS8000 2 Capacitor Ride-Throughs
2. Examples of additions to central system orders.
o Customer has DPS 8/20C installed with 6M bytes. Wants memory upgrade to 8 M bytes.

1 CMM8002 $6 M$ bytes to $8 M$ bytes
o Customer has a 1-CPU, 1-IOM DPS 8/70C installed with 16 M bytes and 2 SCUs (1 optional). Wants to add a second CPU.

1 CPU8178 2nd CPU (specify cable length)
1 PSS8000 Capacitor Ride-Through for 2nd CPU

- Customer has DPS 8/44C installed. Wants a second IOM.

1 MXK8007	SCU Port Expansion
1 MXU8003	2nd IOM

SECTION 5
Configuring Within Any IOM

This section shows how to determine the number of physical and logical I/O cnannels required for the peripheral subsystems you wish for your system.

You must determine the quantity of logic boards required to contain the electronic logic for the number and type of physical I/O channels you desire. You must also determine whether there are sufficient channel board slots and logical channels available on a standard basis or via option to contain the needed logic boards in the DPS 8/C system you wish to configure.

In addition, you must determine IOM aggregate loads for the quantity of physical I/O channels you wish. (CP-6 does not require the manual assignment of Data Rate expansion (DRE) facilities as does GCOS.)

## BASE IOM AND EXTRA IOM'S

The IOM included within CPS8XXX identifier has no type number. All IOMs configured for the DPS 8/47C/49C are integrated and all IOMs for the DPS 8/52C/62C/70C are freestanding, i.e., not integrated. The designation "freestanding" is retained for low profile components which are not physically integrated. These components may, however, be bolted together and may not actually be freestanding from one another.

Integrated IOMs may be obtained in three ways (DPS 8/47C/49C only):

- One is included in the base DPS 8/47C/49C.
- One more (MXU8003) may be ordered optionally on the initial DPS 8/47C/49C. The SCU Port Expansion, MXK8007 is a prerequisite. Maximum quantity of integrated IOMs on the DPS 8/47C/49C is two.
o One more (MXU8003) may be ordered optionally as an add-on to an installed DPS 8/47C/49C. Prerequisites and limits are the same as in the preceding paragraph.

All necessary cables and addressing features are automatically included to crossbar each IOM to each SCU. You must specify cable lengths.

Freestanding IOMs may be obtained in three ways (DPS 8/52C/62C/70C only):
o One is included in base CPS identifier of freestanding systems.

- One (MXU8002) or more may be ordered optionally on your DPS 8/52C/62C/70C initial order along with the CPS components. Maximum quantity of freestanding IOMs on the DPS 8/52C/62C/70C is four.
o One (MXU8002) or more may be ordered optionally as add-on components to a DPS 8/52C/62C/70C after your system has been installed. Limits are the same as in the preceding paragraph.

Each freestanding IOM, whether optional or included in CPS identifier, has its own power supply.

For each extra IOM ordered for DPS 8/52C/62C/70C all necessary cables and addressing features are automatically included to cross-bar each IOM to each SCU. You must specify cable lengths.

When two or more IOMs exist in a DPS 8/52C/62C/70C system it is desirable to split the two channels of dual-channel MTPs and MSPs, one channel to each of two IOMs. This allows the entire MT or disk subsystem to be accessible even if one IOM is lost.

## PHYSICAL CHANNELS AND LOGIC BOARDS

In order to determine the quantity of physical channels required, and the number of logic boards (board slots) needed and provided, use the Physical Channel Configurator illustrated in Figure 5-1.

PHYSICAL CHANNEL CONFIGURATOR
LOGIC BOARD SLOTS IN IOM
FOR PHYSICAL CHANNELS (b)
MXF8005

(a) MSP800 2

(a) For DPS 8/47C/49C only. URP8000, MTP8001, MFP8001 are mutually exclusive within a cabinet.
(b) Each peripheral processor price includes 1 IOM channel except 2 are included for URP8011, MSP0612, MSP8002; also 2 are included for MFP8001, one for URP portion and one for MTP portion.

Figure 5-1. Physical Channel Configurator

The top portion of the Configurator in Figure 5-1 snows how many slots are provided and can be optionally obtained to hold the logic boards for physical I/O channels in IOM.

- DPS $8 / 47 \mathrm{C} / 49 \mathrm{C}$ IOM provides a fixed complement of 20 slots included in CPS identifier price. No additional slots are available.
o DPS 8/52C/62C/70C IOMs provide a fixed complement of 36 slots included in CPS identifier price. One MXF8005 Channel Expansion option is available for each IOM to provide 18 more board slots. Each additional IOM on DPS 8/52C/62C/70C provides the same base complement of 36 slots in its price and provision for one MXF8005 option in each added IOM.

The lower portion of the Configurator in Figure 5-1 shows the quantity of logic boards (thus board slots) in IOM needed to terminate each I/O cable from a peripheral processor.

- Each solid line from a peripheral processor represents the main channel(s) for the processor. MSP8002, MSP0612 peripheral processors include two simultaneous main channels in their price. MTP0611 can be configured with a second simultaneous channel. The second MTP0611 simultaneous channel is required if the MTP0611 is to service 9 to 16 tape units in its subsystem.
o The dotted lines from certain peripheral processors imply the optional switched channel feature applied to a main channel. No switched channel path can have I/O simultaneously with its associated main channel. No dual-channel peripheral processor thus can have more than two data transfers in operation simultaneously, no matter how many switched channel features are used.

NOTE: Each switched channel feature defines a data transfer path and an IOM channel in its price.

- Total the board slots required for each data path termination required (main channels and swithced channels). Compare this to the total slots available.

If you cannot configure the desired number of peripheral subsystems and their complement of physical channels and switched paths, REGROUP and consider these alternatives:

- In case of a freestanding IOM use the Channel Expansion Option MXF8005.
o Bid a second IOM if the prospect will allow it.
o Use fewer simultaneous channels and/or switched paths.
- Use fewer subsystems of same type.
- Use fewer subsystems.
o Use different mix of subsystems.
o Change from DPS 8/47C/49C to DPS 8/52C/62C/70C, if possible.
- If possible, connect UR devices through DN8/C and use no unit record processor.

Determine next the logical channels or data paths which must be assigned to each physical channel and switched path, and the quantity which may optionally be assigned.

## ASSIGNTNG LOGICAL CHANNELS TO PHYSICAL IOM CHANNELS

Each IOM supports up to 32 logical channels (up to 24 on DPS 8/47C/49C without MXK8007). No options are available. (A logical channel expansion, providing support for up to a total of 56 logical channels, may be requested via RPQ for DPS 8/52C/62C/70C.)

See Table 5-1 for a listing of Logical Channel Assignments.

TABLE 5-1. CONFIGURATION FOR LOGICAL CHANNEL ASSIGNMENTS

1	$!$		1		$!$	
1	1		1		1	ADDED
$!$	$!$	PHYSICAL	$!$	LOGICAL	1	USEFUL
1 PERIPHERAL	1	CHANNELS	1	CHANNELS	$!$	LOGICAL
1 PROCESSOR	1	REQUIRED (b)	1	REQUIRED (c)	1	CHANNELS (d)
1	1		1		1	
$!$	!		1		$!$	
! URP (PLUS 1-4/1-8	$!$	1	$!$	1 PER	$!$	
$!$ DEVICES) (a)	1		1	DEVICE	$!$	--
1	1		1		1	
1	1		1		$!$	
1 MSP SGL - CHANNEL	1	1	$!$	1	$!$	1-3
1	1		1		1	
1	$!$		$!$		$!$	
$!$ MSP DUAL - CHANNEL	1	2	1	2	1	1-3 PER
1 l	1		1		$!$	PHY. CH.
1	1		1		1	
1 (a)	1		$!$		$!$	
! MTP SGL - CHANNEL	$!$	1	1	1	1	0-1
1	1		1		1	
$!$	1		1		!	
1 MTP DUAL - CHANNEL	1	2	1	2	1	0-1 PER
1 MTP DUAL	1		$!$		$!$	PHY. CH.
1	1		1		1	
1	1		$!$		$!$	
1 CSU6601	1	1	1	1	$!$	--
1	1		1		1	
1	$!$		1		$!$	
1 DN 8/C	1	1	1	1	1	--
1	1	-	1		1	

(a) Including URP and MTP in MFP8001 for DPS 8/47C/49C.
(b) Each peripheral processor includes one physical IOM Channel in its price, except URP8011, MSP8002/0612 which includes two.
(c) Don't forget the freestanding MTP, MSP allow for switched path features to be added to each Physical Channel. Each termination in IOM is a Physical Channel and must be allotted separate logical channels(s), the same quantity for each termination.
(d) Optional but valuable in increasing subsystem throughput.

The following paragraphs detail the rules for the assignment of IOM logical channels to physical channels.

- Every main and switched physical IOM channel must be assigned one logical channel or data path. URP, MTP, MSP may use more than one logical channel per physical channel, as explained below.
- Assignment is established onsite by Customer Services according to the mix of required and optional logical channels specified by you.
- A table showing the assignment of logical to physical channels and of physical channels to peripherals is given to CP-6 at system startup time. Accordingly, CP-6 always knows what logical channels to use (thus physical channels) to reach a given peripheral processor, console, or FEP.
- In effect CP-6 "sees" the peripherals it wants to reach via the logical channels.
- The logical channel concept provides a link to slave program buffer areas - their size and locations. Without such a link, the transfer path to/from memory could not be established.

The following paragraphs explain the reasons for assigning more than one IOM logical channel to a physical cnannel.

1. Use of multiple logical channels per physical channel allows multiple places to which CP-6 can send or can queue I/O commands.

- As long as a logical channel is available, CP-6 can queue in it the next I/O command for a given subsystem, even though the physical channel is busy with data transfers for a prior operation initiated through anucher logical channel. Otherwise, with a single logical channel, the physical and logical channel would be tied up during the data transfer and interrupt sequence, preventing the overlapped stacking of the next I/O command by CP-6. CP-6 would have to wait for an opportunity to gain access to the single channel.
- The effect here is potentially greater subsystem throughput by using the physical channel more efficiently, stacking commands in front of the subsystem at any time as long as a logical channel is available.
- Looking at it another way, the use of more than one logical channel per physical channel (block multiplexing) allows multiple I/O operations to be in some stage of execution concurrently. There can be as many concurrent stages as logical channels assigned to the subsystem involved. In the URP, e.g., there could be as many as eight card reading/card punching/line printing operations simultaneously, using one physical channel.

2. Assigning more than one logical channel to a physical channel can help achieve the following advantages:

- Greater subsystem throughput
o Use of fewer physical channels
- Larger number of $I / O$ operations in some stage of execution concurrently
- Better use of physical channels
o Increased subsystem throughput by combining with rotational position sensing (RPS) in disk subsystems.

Figure 5-2 illustrates the concept of multiple logical channels/paths per physical channel.


Figure 5-2. Physical Channel and Logical Channel Concepts

UNIT RECORD PROCESSOR SUBSYSTEMS
In Unit Record Processor (URP) subsystems there must be one and only one logical channel assigned to each unit record device connected to URP. A specific logical channel is assigned to each device.

- URP can handle up to 8 unit record devices (URP0600/8000), or up to 4 unit record devices (URP in MFP8001, URP8011), or up to 2 unit record devices (URP8012/8013).
- URP, in combination with its channel and 1 to 8 logical channels in IOM, performs a block (unit record) multiplexing function, allowing up to 8 devices to run simultaneously. URP buffers a full physical record from/for each device and assigns each record to the IOM physical channel as soon as the last record has transferred. Each URP unit record device must be permanently preassigned to a logical channel to be used by CP-6 in issuing commands for it. The logical channel controls the transfer into memory into/from the proper buffer area for the device concerned.


## MAGNETIC TAPE PROCESSOR SUBSYSTEMS

In Magnetic Tape Processor (MTP) subsystems a second (added) logical channel may optionally be assigned to each physical channel.

The value of the second logical channel for each physical channel is that it allows CP-6 to send a new command to an open logical channel, even though the physical channel may be transferring data under command of another logical channel assigned to the subsystem. As soon as the first operation terminates, a second could be initiated immediately from the command standing by in the second logical channel. CP-6 could then send another command to the first logical channel, which is now open again, etc. If only one logical channel is used, $\mathrm{CP}-6$ cannot have any next command standing by when a command is already in operation.

## DISK SUBSYSTEMS

A normal useful maximum of logical channels for each IOM physical channel termination related to a mass store subsystem is four.

MSP and disk spindles obtain automatic latency reduction via rotational position sensing and block multiplexing of the physical channel(s) involved. Both features can increase subsystem throughput and should always be used, at least on single-channel subsystems. They depend on multiple logical channels per subsystem.

The number of logical channels assigned for a subsystem shoud not normally exceed the number of spindles in the subsystem. There is no gain with a greater number of logical channels.

In CP-6, using multiple logical channels gives relatively more performance improvement than does using multiple physical channels. It is desirable to have as many logical channels as it is expected to have concurrent seeks in progress.

With dual channel MSPs, subsystems commands are more frequently (than with single channel MSPs) serviced almost as soon as they are delivered to the subsystem. As a result, there is relatively less chance to have command queues build up and thus there is less relative effect from multiple logical channels in a dual-channel subsystem than in a single channel subsystem. Dual-channel subsystems will probably give greater throughput in all cases, especially where the subsystem includes more than four or five disk spindles.

Subsystems Allowing Only A Single Logical Channel Per Physical Channel
FEPs
One and only one logical channel must be assigned per IOM-connected (local) FEP. No optional logical channels are permitted.

CONSOLES
One and only one logical channel must be assigned per IOM-connected console. No optional logical channels are permitted.

Determine next the IOM aggregate load to ensure adequate IOM capacity.
The IOM's maximum aggregate bandwidth is 4000 K bytes. One simple test of IOM load is based purely on bandwidth. By adding up the maximum bandwidth for those devices that will require individual data paths, a certain level of capacity can be perceived. However, due to peripheral processor buffering considerations, the actual bandwidth used may be less. This is especially true for communications equipment. Conversely, certain high speed magnetic tape and disk devices have a finite 'tolerable delay factor' that, combined with the IOM channel priority of the devices, can restrict the IOM to a subset of the permissible bandwidth.

Table 5-2 lists estimated device bandwidths along with a constant 'T' (the tolerable delay factor) that attempts to take these variations into consideration. The devices have been listed in the recommended I/O channel priority order (from highest to lowest). It must be recognized that this method is offered as a general guide in estimating IOM loading and as such is not intended to establish any finite limit on peripheral configurations for a specific application. Unit Record and Communications Processor equipment values are excluded because of their negligible impact.

TABLE 5-2. ESTIMATED DEVICE BANDWIDTHS

Device	Description	Bandwidth $\qquad$	171	Channel Priority
MTU0610	200 ips 6250 bpi MTU	1250	19	Highest
MSU0402/0451	78.6/157.2 mb disk	803	21	2nd Highest
MTU0630	125 ips 6250 bpi MTU	781	29	3rd Highest
MTU0630	75 ips 6250 bpi MTU	469	31	
MTU06 10	200 ips 1600 bpi MTU	320	34	-
MTU0500/0630	125 ips 1600 bpi MTU	200	40	
MTU0630	75 ips 1600 bpi MTU	120	51	Etc.
MTU0500	125 ips 800 bpi MTU	100	80	-
MSU0501	1101 mb disk	1200	250	
Unit Record P	ipnerals			
Communication	Processor			Lowest
The IOM load equation is: $\mathrm{L}=6(\mathrm{~N}+1)-\mathrm{T}$				
$T=$ tolerable delay factor for specific peripheral characteristics				

```
 N = 1 for the highest priority device attached,
 can be considered a qualified connection to an IOM channel with
IOM CONFIGURING - AN EXAMPLE
Assume a CP-6 system includes the following:
 1 Dual-Channel MSP using MSUO451s
1 Single-channel MTP using
 3 GCR tape units e 200 ips, and
 1 PE tape unit e 75 ips
1 URP
1 1600-1pm printer
1 1200-1pm printer
2 low-speed card readers
1 card punch
1 console
1 auxiliary console
F FEPs
```

    \(N=2\) for the second highest priority device attached, etc.
    If the value of \(L\) is negative, the peripheral, for which \(T\) was chosen,
    priority N. A positive value for \(L\) indicates that a timing overrun can
    occur, and the value of \(L\) indicates the probable occurrence of an
    overrun. If the value of \(L\) is 6 or less, the frequency of timing
    overruns, in most applications, will be minimal with no measurable
    effect on system performance. If the value of \(L\) is between 6 and 12,
    the application should be examined closely. If the vlaue of \(L\) is
    greater than 12, the configuration should be considered invalid.
    Table 5-3 lists the IOM-related features necessary for this configuraiton.

TABLE 5-3. SOLUTION TO IOM CONFIGURATION EXAMPLE

Quantity	MeIe	Description	\# of Physical $\qquad$	Max. \# of Useful Logical $\qquad$ Channels	$6(N+1)-T=L$
1	MSP06 12	Dual Channel MSP	6	8	--
1-16	MSU0451	157.2 mb disk	-	-	$\begin{aligned} & 6(2+1)-21=-3 \\ & 6(3+1)-21=3 \end{aligned}$
1	MTP0611	Single Channel MTP	3	2	-- $6(1+1)=19$
3	MTU0610	GRC tape, 200 ips	-	-	$6(1+1)-19=-7$
1	MTU0630	PE tape, 75 ips .	-	-	Covered by higher priority MTU0610 on same channel
1	URP0600	Unit Record Processor	3	-	
1	PRU1600	1600 lpm printer	-	1	--
1	PRU1200	1200 lpm printer	$\cdots$	1	--
2	CRU0501	5001 pm card reader	-	2	--
1	PCU0121	Card punch	-	1	--
1	CSU6601	Console	1	1	--
1	CSU6602	Auxiliary Console	1	1	--
1	CPS81XX	Central System - includes one FEP	1	1	--
3	DCU8011	FEP	3	3	--
			18	21	

The number of physical slots, 18, is less than the 20 permitted on DPS 8/47C/49C and the 36 permitted on DPS 8/52C/62C/70C (without expansion).

The number of logical channels, 21, is less than the 32 available.

L ranges from -7 to +3 , in all cases falling below the +6 value requiring close examination and well below the +12 value which indicates an invalid configuration.

Therefore, all equipment included can be configured on one IOM.

## SECTION 6

Unit Record Subsystems

DPS 8 Unit Record equipment may be attached to a CP-6 Central System and DPS 6 Unit Record equipment may be attached to a CP-6 FEP, although none is required. In this section, DPS 8 equipment is reviewed first, followed by the supported DPS 6 equipment.

## CONFIGURING THE DPS 8 UNIT RECORD PROCESSOR (URP) SUBSYSTEMS

The following configuration elements must be included per DPS 8 unit record subsystem:
o URP (unit record processor) - MFP8001 for DPS 8/47C/49C includes URP and MTP.
o URA (unit record addressing) - For each unit record unit/device, select the specific URA for that unit/device. Not required with URP8011/8012/8013.

- DPS 8 unit record devices from list in Table 6-1.

Multiple URPs can be used on a DPS 8/C system. The following URPs are available for DPS 8/C systems.

- URP0600 - freestanding, own power supply, usable with any DPS 8/C system. Up to 8 devices.
o URP8000 - contained in central system cabinet (CSC) of DPS 8/47C/49C or in MXU8003 IOM cabinet. Shares power supply in cabinet. Mutually exclusive within a cabinet with MTP8001 and MFP8001. Up to 8 devices.
- MFP8001 - contained in central system cabinet (CSC) of DPS 8/47C/49C or in MXU8003 IOM cabinet. Snares power supply in cabinet. Up to 4 unit record devices supported by URP portion of MFP8001. MTP also included in MFP8001. MFP8001 is mutually exclusive within a cabinet with URP8000 and MTP8001. URP and MTP portions have individual channels and can operate simultaneously.
o URP8011 - contained in the IOM of DPS 8/C. Shares power supply in cabinet. Up to 2 printers and up to 2 card devices.
- URP8012 - contained in the IOM of DPS 8/C. Shares power supply in cabinet. Up to 2 card devices.
- URP8013 - contained in the IOM of DPS 8/C. Shares power supply in cabinet. Up to 2 printers.

TABLE 6-1. DPS 8 UNIT RECORD DEVICES

Device	Model	Max Per URP	Speed
Card readers	CRU1050	$1-2$	1050 cpm
	CRU0501	$1-2$	500 cpm
Card punches	PCU0121	$1-2$	$100-400 \mathrm{cpm}$
Printers			
	PRU1200	$1-6$	To 1200 lpm
	PRU1600	$1-6$	To 1600 lpm
	PRU0901	$1-2$	To 900 lpm
	PRU1201	$1-2$	To 1200 lpm

* PRUO901/1201 supported only on URP8011/8013. The only printers supported on URP8011/8013 are the PRUuy01/1201.

The maximum number of unit record devices is two on URP8012/8013, four on URP8011/MFP8001, eight on other URPs. Maximums may be chosen from these for each type of device:

- 2 CRU1050 or 2 CRU0501 or 1 each
- 2 PCUO121
- 6 PRU1200/1600 printers
- 2 PRU0901/1201 printers

The following rules should be used in configuring a URP subsystem.
Every unit record device in URP subsystem must be configured with a specific unit record adapter or addressing feature (URA) which is related to the device type. (URA features not required for URP8011/ 8012/8013.)

Options are identified by dotted lines or boxes. In general, options are priced features beyond the standard complement included in basic URP or device price.

You must show on your order any pertinent item with a type number.

Figure 6-1 illustrates a configurator for URPO600/8000
o Order URAs and unit record devices as needed.
o URP0600 - freestanding, usable on any DPS 8/C system.
o URP8000 - in Central System Cabinet of DPS 8/47C/49C or in MXU8003 IOM cabinet. Cannot be used within the same cabinet with MTP8001 or MFP8001.


Figure 6-1. Configurator for URP0600/8000

Figure 6-2 illustrates the configurator for URP in MFP8001.
o Order URAs and unit record devices as needed.
o MFP8001 - in Central System Cabinet of DPS 8/47C/49C or in MXU8003 IOM cabinet. Cannot be used within the same cabinet with MTP8001 or URP8000.


Figure 6-2. Configurator for URP in MFP8001

Configurator for URAs and associated unit record devices are illustrated in Figure 6-3. Each device must have one specific URA associated with it. These URAs relate to all URPs and to URP portion of MFP8001.


Figure 6-3. Configurator for URAs and Associated Unit Record Devices Figure 6-4 illustrates the configurators for URP8011/8012/8013.


Figure 6-4. Configurators for URP8011/8012/8013

Figure 6-5 illustrates the configurator for PRU0901/1201.


* Two print belts included with PRU0901/1201. A single type must be specified from the supply catalog.

Figure 6-5. Configurator for PRU0901/1201
The following listing summarizes the marketing identifiers (MI) related to URP subsystems.

MI	Description	Remarks
URP0600	Freestanding URP (1x8)	All URPs include 1 IOM Channel. Any DPS 8/C system.
URP8000	URP in Central System Cabinet (1x8) or in MXU8003 cabinet	DPS $8 / 47 \mathrm{C} / 49 \mathrm{C}$ only.   Mutually exclusive within a cabinet with MFP8001 and MTP8001.
MFP8001	URP (1x4) and MTP (1x8) in Central System Cabinet or in MXU8003 cabinet	DPS 8/47C/49C. Mutually exclusive within a cabinet with URP8000 and MTP8001.
URP8011	Embedded Unit Record Processor (1x4) Contained in IOM.	Up to 2 PRU0901/1201 and up to 2 card devices.
URP8012	Embedded Unit Record Processor (1x2) Contained in IOM.	Up to 2 card devices.
URP8013	Embedded Unit Record Processor (1x2) Contained in IOM.	Up to 2 PRU0901/1201.


MI	Description	Remarks
URF0040	Unit Record Addressing (URA) Expansion for URP0600/8000	Handles up to 4 more intermixed URAs beyond standard maximum of 4. Required if more than 4 devices are configured.
PCU0121	100 to 400-cpm Card Punch	Optional
URA0050	Unit Record Addressing for PCU0121	1 required per Punch.
CRU1050	1050-cpm Card Reader	
CRU0501	500-cpm Card Reader	
URA0052	Unit Record Addressing for CRU1050	1 required per CRU1050
URA0056	Unit Record Addressing for CRU0501	1 required per CRU0501
CRF0030	Pedestal for CRU0501	Optional
PRU1200	Belt Printer	At least one belt required per PRU1200.
URA0054	Unit Record Addressing for PRU1200	1 required per PRU1200
PRK 1216	PRU1200 to PRU1600 Upgrade Kit	
PRU1600	Belt Printer	At least one belt required per PRU1600.
URA0055	Unit Record Addressing for PRU1600	1 required per PRU1600
PRF0022	Expansion of PRU1200/1600 from 136 to 160 Print Columns	
PRB0500	64-character BCD Belt for PRU1200/1600	$\begin{aligned} & \text { Nominal speed } \\ & =\quad 975 \mathrm{lpm} \text { for PRU1200 } \\ & =\quad 1325 \mathrm{lpm} \text { for PRU1600 } \end{aligned}$
PRB0513	$\begin{aligned} & \text { 64-character ASCII Belt for } \\ & \text { PRU1200/1600 } \end{aligned}$	$\begin{aligned} & \text { Nominal speed } \\ & =\quad 975 \mathrm{lpm} \text { for PRU1200 } \\ & =\quad 1325 \mathrm{lpm} \text { for PRU1600 } \end{aligned}$
PRB0524	64-character Belt, with OCR-A/B numeric font for PRU1200/1600	$\begin{aligned} & \text { Nominal speed } \\ & =\quad 975 \mathrm{lpm} \text { for PRU1200 } \\ & =1325 \mathrm{lpm} \text { for PRU1600 } \end{aligned}$


MI	Description	Remarks
PRB0600	$\begin{aligned} & \text { 96-character ASCII Belt for } \\ & \text { PRU1200/1600 } \end{aligned}$	$\begin{aligned} & \text { Nominal speed } \\ & =\quad 700 \mathrm{lpm} \text { for PRU1200 } \\ & =\quad 985 \mathrm{lpm} \text { for PRU1600 } \end{aligned}$
PRU0901	Belt Printer. Price includes power stacker and two print belts. (Belts must be ordered from the supply catalog.)	Requires URP8011 or URP8013
PRU1201	Belt Printer. Price includes power stacker and two print belts. (Belts must be ordered from the supply catalog.)	Requires URP8011 or URP8013
PRB3600	```96-character ASCII Belt for PRU0901/1201```	Must be specified from the supply catalog.
PRB3500	64-character BCD Belt for PRUO901/1201	Must be specified from the supply catalog.
PRB3513	64-character ASCII Belt for PRU0901/1201	Must be specified from the supply catalog.
PRB3524	64-character ASCII Belt with OCR-A/B numeric font for PRUO901/1201	Must be specified from the supply catalog.
PRK0901	PRU0901 to PRU1201 Upgrade Kit	
PRF0045	Static Eliminator for PRUO901/ 1201	Desirable if humidity falls below 30\%.
URF8000	Printer Optical Cable Adapter	For PRUO901/1201 only. Requires F80-YYYY.
F80-YYYY	Optical Cable with Connectors	Allows printer placement 100-2000 meters from centiral system. YYYY is length in meters. Prerequisite is URF8000.
MXF8008	Exchange of URP Attachment   Feature (to DPS 8 Systems only) wire wrap to hard copper, in the IOM.	For URP0600 installed on non DPS-8 systems (equipment removed and replaced by MXF8008 becomes the property of Honeywell upon removal.) One required for each peripheral processor channel.

## Example of DPS 8 URP Configuring

Assume you are bidding a DPS 8/47C and that you want a URP subsystem with a card reader, card punch, and two 1600 lpm printers. The 1600 1 pm printers are each to have both 64-character (BCD) and 96-character (ASCII) printing capability. The URP and MTP are to be integrated within the Central System Cabinet.

You would order as follows:

Qty	MI	Description
	MFP8001	MTP and URP Integrated in Central System Cabinet
1	CRU0501	Card Reader
1	URA0056	Unit Record Addressing for CRU0501
1	PCU0121	Card Punch
1	URA0050	Unit Record Addressing for PCU0121
1	PRU1600	Belt Printer
2	URA0055	Unit Record Addressing for PRU1600
2	PRB0500	64-Character BCD Belt for PRU1600
2	PRB0600	96-Character ASCII Belt for PRU1600
2	CRF0030	Pedestal for CRU0501 (Optional)
1		

Each DN 8/C FEP included in CP-6 Central Systems and the DCU8011 FEP contains a Multiple Device Controller (MDC). Card reader and/or line printer device pacs may be attached to the MDC. Up to two DPS 6 Unit Record devices may be attached via this MDC. A second MDC (or MDC expander) may be ordered which allows attachment of up to four additional DPS 6 unit record devices. Thus, up to six DPS 6 unit record devices may be added via each FEP.

Model	Description	Prerequisites
MDC9640	MDC Peripheral Port Expander,   accommodates up to four additional   peripheral Device Pacs.	CPS81XX or DCU8011,   CRM9630
	Device Pac for Card Reader	DCE8002

Figure 6-6 illustrates a configuration diagram for DPS 6 Unit Record Equipment


* A single diskette is included as part of the DN 8/C for maintenance purposes.

Figure 6-6. Configurator for DPS 6 Unit Record Equipment

## Example of DPS 6 Unit Record Configuring

Assume you are bidding one DPS 6 440-1pm uppercase/lowercase printer attached to a DPS 8/C system via the FEP.		
In addition to the Communications features ordered on the DATANET 8/C, you would order as follows:		
Oty	MI	Description
1	PRM9630	Device Pac for printer
1	PRU96 18	Band printer
1	PRB2600	96 Character Band

SECTION 7
Magnetic Tape Subsystems

CQNFIGURING MAGNETIC TAPE SUBSYSTEMS

The following configuration elements are required:

- MTP0611 (magnetic tape processor), MTP8001, or MFP8001 (contains MTP and URP). Each MTP handles any combination of MTUs described below. MTP0611 is freestanding, with own power supply, and can be used on any DPS 8/C system. MFP8001 and MTP8001 are contained in CSC of DPS 8/47C/49C and shares Central System Cabinet power supply (or can be available in the MXU8003 IOM cabinet, sharing that cabinet's power supply).
- MTU (magnetic tape units)
- Multiples of any MTU type number can be used in any combination.
- Must be a minimum of one tape unit per DPS 8/C system. Review Section 1 for minimum and maximum peripherals.
- MTU density feature
- Every tape unit must be equipped with only one density feature from the MTU features table below. Density features are upgradeable onsite by Customer Services.
- Each tape unit when equipped with the desired density feature has one 7-track read/write head or one 9-track read/write head, not both.
- See Table 7-3 for a complete list of density features.
- MTA (magnetic tape addressing) - one per 4 tape units, two for first 8 units in case of dual-channel MTP. See Table 7-2.
o Second IOM physical channel (MTF1151) - required if more than 8 tape units will be configured in a tape subsystem; optional otherwise. Maximum of 16 MTUs per subsystem.

The following restrictions apply to 7-track tapes.

- Support by RPQ only.
o No ANS standard labeled tape support (i.e., no managed file formats).
o 7-track tapes may not be used as CP-6 Boot tapes or as any other system tape.
- CP-6 will not support a 7-track only system.
- From a resource management point of view, 7-track tapes will be supported in a "foreign device" mode and not be included in the general magnetic tape resource pool for general use. 7-track must be explicitly requested, in all cases.

Table 7-1 provides a listing of magnetic tape unit characteristics.

TABLE 7-1. MTU CHARACTERISTICS MTU0500 (RPQ Only) MTU0610 MTU0630

Automatic threading	Y	Y	Y
Forward speed (ips)	125	200	$75 / 125$
Cartridge load option	Y	Y	Std.
Rewind speed (ips)	500	640	500
Power windows	Y	Y	Y
Recording format	$\mathrm{NRZI/PE}$	$\mathrm{NRZI/PE/GCR}$	NRZI/PE/GCR
7 -track operation	RPQ	N	N
Interrecord gap	.75 in.	NA	NA
$556-$ bpi character rate	52.3 K Bytes	NA	NA
$800-b p i$ character rate	$75.2 K$ Bytes	NA	NA



Figure 7-1 illustrates the configurator for a single-channel MTP (1x8 subsystem).


Figure 7-1. Single-Channel MTP Configurator

$$
7-4
$$

Figure 7-2 illustrates the configurator for a freestanding dual-channel MTP (2x16 subsystem).

- Second channel (MTF1151) required if more than 8 units are used in a subsystem.
- Each channel is cross-barred to each tape unit.


Figure 7-2. Dual-Channel MTP Configurator

```
The following listing provides the magnetic tape processor (MTP)
```

components with marketing identifiers (MI).

MI
MTP0611

MFP8001

MTP8001

MTF1152

MTF 1151

Description
Freestanding Magnetic Tape
Processor. Handles up to 8 tape units ( $1 \times 8$ ) or up to 16 with MTF1151 (2x16). Includes IOM physical channel. Requires MTF1159 and/or MTF1160 feature(s).

Contained in DPS 8/47C/49C CSC or in MXU8003 IOM cabinet. Includes $1 \times 8$ MTP and MTP IOM physical channel, plus $1 \times 4$ URP and its IOM channel. Both URP and MTP operate simultaneously. Cannot be used in the same cabinet with MTP8001 or URP8000. Requires MTF1159 and/or MTF1160 feature(s).

Contained in DPS 8/47C/49C CSC or in MXU8003 IOM cabinet. 1x8 MTP, including MTP IOM physical channel. Cannot be used in the same cabinet with MFP8001 or URP8000. Requires MTF1159 and/or MTF1160 feature(s).

Switchable Non-simultaneous Channel. Makes an MTP channel software-switchable. Includes IOM physical channel for termination of switched channel path. Maximum of one per MTP0611/MTF1151/MFP8001/ MTP8001.

Dual Simultaneous Channel (device procesor channel) for MTP0611. Includes IOM channel.

## Remarks

Required if MFP8001 or MTP8001 are not used.

Required if MTP8001 or MTP0611 are not used.

Required if MTP0611 or MFP8001 are not used.

Optional

Required to support more than 8 units. Optional otherwise. Requires redundant options MTF1158/1159/ 1160 if these were configured in MTP0611.

MI	Description	Remarks
MTA1152	Magnetic Tape Addressing Adapter	1 per 4 MTUs (a)
MTF1158	7-track support, for 556/800 bpi density. MTF1159 required.	Optional (b)
MTF1159	9-track support, for NRZI recording ( 800 bpi ) and PE recording (1600 bpi).	X (b, c)
MTF1160	9-track support, for PE recording (1600 bpi) and GCR recording (6250 bpi).	$X(b, c)$
PSS8001	Capacitor Ridethrough for MTP0611.	Option
MXF8007	Exchange of Disk or Tape Processor Attachment Feature (to DPS 8 systems only) - IOM wire wrap channel replaced with hard copper.	For installed MTP0601/ 0610, XTP9310. One required per channel. Equipment removed and replaced by MXF8007 becomes the property of Honeywell upon removal.

## Notes:

a. Two required for first eight tape units if MTF1151 is configured, i.e., if you are configuring a dual simultaneous channel MTP0611. See Table 7-2.
b. Two required if you are configuring a dual simultaneous channel MTP0611.
c. Either MTF 1159 or MTF1160 is required. MTF1158 use requires MTF1159. MTF1158/1159/1160 may all be present in same MTP.

Table 7-2 shows the quantities of required magnetic tape unit addressing adapters (MTA1152). Each MTA1152 interfaces to up to 4 tape units and to a device processor channel. Two MTAs are required for the first 8 tape units in a dual simultaneous channel MTP0611.

TABLE 7-2.
REQUIRED NUMBER OF MTU ADDRESSING ADAPTERS


```
The following listing provides descriptions and marketing identifiers
for the magnetic tape unit components. After selecting a tape unit,
you must select a tape density feature from Table 7-3. Density feature
establishes transfer rate. K Bytes indicate thousands of 8-bit bytes
per second instantaneous transfer rate.
```


## MI Description

MTU0500 125 ips, 25 K Bytes to 200K Bytes. (RPQ only)

MTU0610 200 ips, 160 K Bytes to 1250 K Bytes.
MTU0630 75/125 ips, 60K Bytes to 781K Bytes.
Table 7-3 lists MTU density and other features and marketing identifiers.

Every tape unit must have only one density feature. Density feature establishes the transfer rate. In addition to a density feature for each MTU, there must also be 7-track and/or 9-track support feature(s) in each MTP. These support features (MTF1158/1159/1160) are identified earlier in this section.

TABLE 7-3. MTU DENSITY FEATURES

MTU0500 (RPQ only)   125 inches per second		MTU06 10   200 inches per second		MTU06309-track density	
MTF0016:	$\begin{aligned} & \text { 7-track density, } \\ & 556 / 800 \mathrm{bpi} \end{aligned}$	MTF0607:	9-track density, $800 / 1600 \mathrm{bpi}$	MTF0634	75 ips, PE/NRZI Feature, $800 / 1600 \mathrm{bpi}$
MTF0018:	Cartridge Load, factory installed option	MTF0608:	```9-track density, 1600/6250 bpi```	MTF0635	75 ips, PE/GCR   Feature, 1600/6250 bpi
MTF0019:	Cartridge Load, field installed option	MTF0678:	Kit to upgrade MTF0607 to MTF0608	MTF0636	125 ips, PE/NRZI Feature, 800/1600 bpi
MTF0020:	Optional High Altitude Adapter, for altitudes 4000-7500 ft.			MTF0637	$125 \mathrm{ips}, \mathrm{PE} / \mathrm{GCR}$ Feature, 1600/6250 bpi
MTF0021:	Optional High Altitude Adapter, field installed for altitudes 4000-7500 ft.			MTK0630	Upgrade MTF0634 to MTF0635 Performance
MTF0022:	Optional DC Power-On Meter, factory installed only			MTK0631	Upgrade MTF0636   to MTF0637   Performance
MTF0023:	Optional Tape   Movement Meter, factory installed only			MTK0632	Upgrade MTF0634   to MTF0636   Performance
				MTK0633	Upgrade MTF0635   to MTF0637   Performance
				MTK0634	High Altitude Adapter

## Magnetic Tape Subsystem Configuring Example

A DPS $8 / 47$ C prospect wants a tape subsystem with six 9-track units, 4 of which are $800 / 1600$ bpi units and 2 of which are $1600 / 6250$ bpi units.

You should order as follows:

Qty	MI	Description
1	MFP8001	Magnetic tape processor with one IOM channel, plus URP with one IOM channel.
1	MTF1159	9-track NRZI/PE support (800/1600 bpi).
1	MTF1160	9-track PE/GCR support (1600/6250 bpi).
2	MTA1152	Magnetic tape addressing features or ports on MTP. Each handles 4 tape units.
6	MTU0610	9-track, 200 ips tape units.
4	MTF0607	9-track density, 800/1600 bpi.
2	MTF0608	9-track density, 1600/6250 bpi.

## SECTION 8

Mass Storage Subsystem

## CONEIGURING MASS STORAGE SUBSYSTEMS

The following are the required mass storage subsystem configuration elements.

- MSPXXXX (mass store processor) - choose one or more MSPs consistent with packaging of DPS 8/C mainframe (CSC-oriented or freestanding), with number of simultaneous channels desired, and with type of disk spindle used. Every DPS 8/C system must include a mass storage subsystem. See Section 1 for minimum and maximum peripherals complement.
o Disk device adapter (MSF10XX) - required with MSUO4XX spindles. These features supply the proper "personality" for the MSP to interface to MSU04XX spindles. Device adapters for MSU0501 are standard in each MSP.
- MSAXXXX (device addressing) - choose one for every four MSUO4XX (4 spindles) and one for every two MSU0501 (4 spindles).
- MSUOXXX (mass store unit) - with announcement of MSU05XX, an ambiguity was introduced in use of the word "unit". Prior to MSU05XX, a unit was equal to a spindle, but a MSUO5XX (unit) provides for 2 spindles. In this section, "spindle" is used as the unambiguous term for the device which contains one disk reading/writing pack or head disk assembly (HDA).
o RPS (rotational position sensing) feature - one MSF000X required per MSU04XX spindle. MSU0501 includes RPS feature for each spindle.
o Dual access feature - one required per disk unit when two channels are cross-barred in the mass store subsystem. This feature provides an access path to each spindle from each channel. No more than two MSP channels can be used to access any given spindle.
- Two-channel cross-bar feature - included in dual-channel MSPs (MSP8002/ 0612 ) to allow each channel to access each spindle when dual access feature is installed in MSU.
o Device native mode feature (firmware to enable access of 512 word sectors used in MSU0501) - one required per MSP channel if MSU0501 used.

The following listing provides MSP and disk unit/spindle components and marketing identifiers (MI) or type number (CSC = Central System Cabinet)

MI	Description	Required or Option
	Integrated MSPs	
MSP8000	Single-channel MSP for DPS 8/47C/ 49C. Contained in CSC or in MXU8003 IOM cabinet. Maximum of two per system. One IOM channel included. Maximum of 16 spindles in specific combinations of MSUO 4 XX and/or MSU0501.	One MSP of some type required per DPS 8/C system.
MSP8002	Dual-channel MSP version of MSP8000 for DPS $8 / 47 \mathrm{C} / 49 \mathrm{C}$. Maximum of two per system. Consists of two crossbarred MSPs in CSC or in MXU8003 IOM cabinet. Maximum of 16 spindles in specific combinations of MSUO $4 \times X$ and/or MSU0501. Two IOM channels included.	One MSP of some type required per DPS 8/C system.
	Features for MSP8000/8002	
MSF8003	Switched IOM channel. Runs nonsimultaneously with main IOM channel on same MSP8000 or same MSP in MSP8002. Maximum of one to three per MSP8000 and one to three per MSP in MSP8002.	Option
	Features for MSP8000	
MSF8000	Device adapter for MSU04XX on MSP8000. Maximum of one per MSP8000.	Required for MSU04XX.
MSA8000	Addressing capability for 4 MSU04XX for MSP8000. Maximum 4 per MSP8000.	One required per 4 MSU04XX (4 spindles).
MSA8001	Addressing capability for 2 MSU0501 (4 spindles) for MSP8000. Maximum of 4 per MSP8000.	One required per 2 MSU0501 (4 spindles).



MI	Description	Required or 0ption
	Features for MSP0611/0612	
MSF1144	Switched IOM channel. Runs nonsimultaneously with main IOM channel. Maximum of three per MSP0611 and three per MSP in MSP06 12.	Option
PSS8001	Capacitor Ridethrough Option for MSP0611/0612.	Option
	Features for MSP0611	
MSF1140	Device adapter for MSUO4XX on MSP0611. Maximum one per MSP0611.	Required to use MSU04XX.
MSA1140	Addressing capability for 4 MSUO4XX On MSP0611. Maximum 4 per MSP06 11.	One required per 4 MSUO4XX (4 spindles).
MSA1141	Addressing capability for 2 MSU0501 on MSP0611. Maximum 4 per MSP0611.	One required per 2 MSU0501 (4 spindles).
MSK06 12	Upgrade kit, MSP0611 to MSP06 12. Provides second MSP, second IOM channel and cross-barring of both IOM channels to each spindle. Existing MSF1140, MSA1140, MSA1141 must be replaced by separately ordered MSF1141, MSA1142, MSA1143 according to spindle types used (MSU04XX, MSU0501).	Option
	Features for MSP0612	
MSF1141	Device adapter for MSU04XX on MSP0612. Maximum of one per MSP0612.	Required to use MSU04XX.
MSA1142	Addressing capability for 4 MSUO4XX on MSP0612. Maximum of 4 on MSP0612.	One required per 4 MSUO4XX (4 spindles).
MSA1143	Addressing capability for 2 MSU0501 on MSP0612. Maximum of 8 on MSP06 12.	One required per 2 MSU0501 (4 spindles).
MSF1142	MSU0501 Expansion for MSP06 12. Provides support for 9 to 15 MSU0501. Maximum of one per MSP0612.	```Required if 9 to 15 MSU0501 used, i.e., }18\mathrm{ to 30 spindles.```

## Features for MSP0611/0612/80 (0/8002

MSF0015 Device Native Mode Feature. Firmware to enable access of 512 word sectors used in MSU0501.

MXF8007 Exchange of Disk or Tape Processor Attachment Feature (to DPS 8 systems only) - IOM wire wrap channel replaced with hard copper.

One required for each MSP channel using MSUO501.

For installed MSP0603/0607/ 0609, XSP9310. One required per channel. Equipment removed and replaced by MXF8007 becomes the property of Honeywell upon removal.

## Disk Unit/Spindle Components

MSU0501 1101 MB disk unit with two spindles. Nonremovable disk modules. Includes rotational position sensing (RPS) feature per spindle. May be freely intermixed in same subsystem.

MSF0011 Dual access feature for MSU0501.

MSF0501 Additional (spare) MSU0501 HDA (disk module).

Note: Title to this HDA or upgrade passes to and vests in HIS when installed on lease or rental MSUO501. On written request by customer, HIS will pass title to the removed HDA in exchange for receiving title to the previously purchased spare when installed as a permanent substitute.

At least one MSU0501 required if nonremovable storage wanted.

One required for each MSU0501 disk unit (2 spindles) for dual-channel MSPs (MSP8002, MSP0612). Permits each channel to be cross-barred to each spindle.

Option, purchase only.

MI	Description   MSU0402
	78.2 MB removable-pack disk unit.   One spindle. Upgradeable onsite   to MSU0451 by MSK4025.
MSU0451	158.4MB removable-pack disk unit.   One spindle. Same essential as   MSU0402 except with double capacity.
MSF0007	RPS feature for MSU0402/0451
MSF0006	Dual-access feature for MSU0402/   0451

Required or Option
MSU04XX required if removable storage wanted. MSU04XX mixable in same subsystem.

Required per MSU0402/0451 disk spindle.

One required per MSU0402/ 0451 (spindle) for dualchannel MSPs (MSP8002, MSP0612). Permits each channel to be crossmbarred to each spindle.

Configurator For MSP8000 Subsystem (Single-Channel 1×16) - For DPS 8/47C/49C 0nly

The block diagram for MSP8000 is illustrated in Figure 8-1.


Figure 8-1. MSP8000 Block Diagram

Table 8-1 illustrates the configuration table for MSP8000.

TABLE 8-1. MSP8000 CONFIGURATION
The permissible maximum combinations of 16 spindles for MSP8000 are:

1. 16 MSUO4XX
2. 8 MSU0501
3. 12 MSUO4XX and 2 MSU0501
4. 8 MSU04XX and 4 MSU0501
5. 4 MSUO4XX and 6 MSU0501

$\begin{aligned} & 8 / 47 C \\ & 8 / 49 C \end{aligned}$	$\begin{gathered} \text { MSP } \\ 8000 \\ 1 \times 16 \end{gathered}$	COM-   BINA-   TION \# (FROM ABOVE)	mSU04x X ITEMS				MSU0501 ITEMS			$\begin{gathered} \mathrm{Msk} \\ 8002 \end{gathered}$	MSF 8003   (d)
			MSF8000 DEVICE ADAPTER	$\begin{aligned} & \text { MSU } \\ & 04 \times \mathrm{X} \end{aligned}$	$\begin{gathered} \text { MSA } \\ 8000 \\ \text { Addr (a) } \end{gathered}$	$\begin{gathered} \text { MSF } \\ 0007 \\ \text { RPS (b) } \end{gathered}$	$\begin{aligned} & \text { MSU } \\ & 0501 \end{aligned}$	$\begin{gathered} \text { MSA } \\ 8001 \\ \text { Addr (c) } \end{gathered}$	MSF   0015		
		1	1	1-16	1-4	1-16	-	-	-		
		2	-	-	-	-	1-8	1-4	1		
		3	1	1-12	1-3	1-12	1-2	1	1		
		4	1	1-8	1-2	1-8	1-4	1-2	1		
		5	1	1-4	1	$1-4$	1-6	1-3	1		

a) 1 per 4 MSU04XX ( 4 spindles)
b) 1 per MSU04XX
c) 1 per 2 MSUO501 ( 4 spindles)
d) Maximum quantity is three

## Configurator For MSP8002 Subsystem (Dual-Channel 2x16) - For

 DPS 8/47C/49C OnlyFigure 8-2 illustrates the block diagram for MSP8002.


Figure 8-2. MSP8002 Block Diagram

Table 8-2 illustrates the configuration table for MSP8002.

TABLE 8-2. MSP8002 CONFIGURATION
The permissible maximum combinations of 16 spindles per MSP8002 are:

1. 16 MSU04XX
2. 8 MSU0501
3. 12 MSUO4XX and 2 MSU0501
4. 8 MSUO4XX and 4 MSU0501
5. 4 MSUO4XX and 6 MSU0501

$\begin{aligned} & 8 / 47 C \\ & 8 d .495 \end{aligned}$	$\begin{gathered} \text { MSP } \\ 8002 \\ 2 \times 16 \end{gathered}$	COM-   BINA-   TION   (FROM   ABOVE)	MSU04XX ITEMS					MSU0501 ITEMS				MSF   (d)
			$\begin{array}{\|c} \hline \text { ISF8101 } \\ \text { DEVICE } \\ \text { ADAPTER } \end{array}$	$\begin{aligned} & \text { MSU } \\ & 04 X X \end{aligned}$	$\begin{aligned} & \text { MSA } \\ & 8102 \\ & \text { ADDR (a) } \end{aligned}$	MSF 0007   (b)	MSF 0006   (1)	$\begin{aligned} & \text { MSU } \\ & 0501 \end{aligned}$	$\begin{aligned} & \text { MSA } \\ & 8103 \\ & \text { ADDR (c) } \end{aligned}$	MSF 0011 (g)	$\begin{aligned} & \text { MSF } \\ & 0015 \end{aligned}$	
		1	1	1-16	1.4	$1-16$	1-16	-	-	-	-	1-6 OPTIONAL SWITCHEDIOM CHANNELS (e)
		2	-	-	-	-	-	1.8	1-4	1-8	2	
		3	1	1.12	1-3	1-12	1-12	1-2	1	1-2	2	
		4	1	$1-8$	1-2	1-8	1-8	1-4	1-2	1-4	2	
		5	1	1-4	1	1.4	1-4	1-6	1-3	1-6	2	

a) 1 Per 4 MSUO4XX (4 spindles)
b) RPS feature required. 1 per MSU04XX.
c) 1 per 2 MSU0501 ( 4 spindles)
d) Maximum quantity is six.
e) 1-3 per MSP in MSP8001
f) Dual access feature required. 1 per MSU04XX (spindle)
g) Dual access feature required. 1 per MSU0501 (2 spindles)

Configurator For MSP0611 Freestanding Subsystem (Single-Channel $1 \times 16$ )For Any DPS 8/C Subsystem

Figure 8-3 illustrates the block diagram for MSP0611.


Figure 8-3. MSP0611 Block Diagram

Table 8-3 illustrates the configuration table for MSP0611.

TABLE 8-3. MSP0611 CONFIGURATION
The permissible maximum combinations of 16 spindles for MSP0611 are:

1. 16 MSUO4XX
2. 8 MSU0501
3. MSUO4XX and MSU0501 totaling 16 spindles

ANY DPS 8 MODEL	$\begin{aligned} & \text { MSP } \\ & 0611 \end{aligned}$	COM-   BINA-   TION   (FROM   ABOVE)	MSU04XX ITEMS				MSU0501 ITEMS			$\begin{aligned} & \text { MSK } \\ & 0612 \end{aligned}$	MSF 1144   (d)	$\begin{aligned} & \text { PSS } \\ & 8001 \end{aligned}$
			MSF1140   DEVICE   ADAPTER	$\begin{aligned} & \text { MSU } \\ & \text { O4XX } \end{aligned}$	$\begin{gathered} \text { MSA } \\ 1140 \\ \text { ADDR (a) } \end{gathered}$	$\begin{gathered} \text { MSF } \\ 0007 \\ \text { RPS (b) } \end{gathered}$	$\begin{aligned} & \text { MSU } \\ & 0501 \end{aligned}$	$\begin{gathered} \text { MSA } \\ 1141 \\ \text { ADDR (c) } \end{gathered}$	$\begin{aligned} & \text { MSF } \\ & 0015 \end{aligned}$			
		1	1	1-16	1-4	1-16	-	-	-			$\begin{gathered} \stackrel{\pi}{0} \\ \frac{5}{0} \\ \hline \end{gathered}$
		2	-	-	-	-	1-8	1-4	1			
		3	1	$1-14$	$1-4$	1-14	$1-7$	1-4	1	$\frac{5}{0} \frac{0}{5}$	$\stackrel{?}{1}$	

a) 1 per 4 MSUO4XX (4 spindles)
b) 1 per MSUO4XX
c) 1 per 2 MSUO501 ( 4 spindles)
d) Maximum quantity is three.

```
Configurator For MSP0612 Freestanding Subsystem (\(2 \times 16,2 \times 30,2 \times 32\)) -
``` For Any DPS 8/C System

Figure 8-4 illustrates the block diagram for MSP0612.


Figure 8-4. MSP0612 Block Diagram

Table 8-4 illustrates the configuration table for MSP0612.
TABLE 8-4. MSP0612 CONFIGURATION
The permissible maximum combinations for MSP0612 are:
1. \(2 \times 16\) MSU04XX (16 spindles)
2. \(2 \times 15\) MSU0501 (30 spindles)
3. \(2 \times 1\)-16 MSU04XX and 1-8 MSU0501. Total 32 spindles.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{5}{*}{ANY
DPS 8 MODEL} & \multirow{5}{*}{\[
\begin{aligned}
& \text { MSP } \\
& 0612 \\
& 2 \times 16 \\
& 2 \times 30 \\
& 2 \times 32
\end{aligned}
\]} & \multirow[t]{2}{*}{\begin{tabular}{l}
COM. \\
BINA- \\
TION \(/\) \\
(FROM \\
ABOVE)
\end{tabular}} & \multicolumn{5}{|c|}{MSU04XX ITEMS} & \multicolumn{5}{|c|}{MSU0501 ITEMS} & \multirow[b]{2}{*}{\begin{tabular}{l}
MSF
1144 \\
(d)
\end{tabular}} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { PSS } \\
& 8001
\end{aligned}
\]} \\
\hline & & & MSF1141 DEVICE ADAPTER & \[
\begin{aligned}
& \text { MSU } \\
& \text { O4XX }
\end{aligned}
\] & \[
\begin{gathered}
\text { MSA } \\
1142 \\
\text { ADDR (a) }
\end{gathered}
\] & MSF 0007 (b) & \begin{tabular}{l}
MSF
0006 \\
(1)
\end{tabular} & \[
\begin{gathered}
\text { MSU } \\
0501
\end{gathered}
\] & \[
\begin{gathered}
\text { MSA } \\
1143 \\
\text { AODR (c) }
\end{gathered}
\] & \begin{tabular}{l}
MSF
0011 \\
(g)
\end{tabular} & \[
\begin{aligned}
& \text { MSF } \\
& 0015
\end{aligned}
\] & \begin{tabular}{l}
MSF1142 \\
(h)
\end{tabular} & & \\
\hline & & 1 & 1 & 1-16 & 1-4 & 1-16 & 1 -16 & - & - & - & - & - & \[
\begin{aligned}
& \text { O} \\
& \text { تِ }
\end{aligned}
\] & \[
\] \\
\hline & & 2 & - & - & - & - & - & \(1-15\) & 1-8 & 1.15 & 2 & 0.1 & & ভ \\
\hline & & 3 & 1 & 1-16 & 1.4 & 1-16 & \(1-16\) & 1-8 & 1.4 & 1-8 & 2 & - &  & \\
\hline
\end{tabular}
a) 1 per 4 MSUO 4 XX ( 4 spindles)
b) RPS feature required. Per MSU04XX.
c) 1 per 2 MSU0501 ( 4 spindles)
d) Maximum quantity is six
e) 1-3 per MSP in MSPO6 12
f) Dual access feature required. 1 per MSUO4XX (spindle)
g) Dual access feature required. 1 per MSU0501 (2 spindles).
h) 1 required if \(9-15\) MSU0501 used ( \(18-30\) spindles), maximum of 1 per MSP06 12.

\section*{Configuring Example For Mass Storage}

A DPS 8/47C prospect wants a 2-channel (2 MSPs) subsystem. Prospect will start with four MSU0451 spindles and three MSU0501 units (6 spindles).

MSP8002 MSP for lowest price
MSU0451 4 Spindles
MSF0007 RPS per MSU0451 spindle
MSF0006 Dual access feature per MSU0451 spindle
MSF8101 Device adapter for MSU0451
MSA8102 Device addressing for MSU0451
MSF0501 6 spindles, 3 units
MSF0011 Dual access feature per MSU0501 unit (2 spindles)
2 MSA8103 Device addressing for MSU0501
2 MSF0015 Native Mode Features for MSU0501.

SECTION 9
Configuring Consoles

\section*{CONFIGURATION RULES FOR IOM-CONNECTED CONSOLE SUBSYSTEMS FOR DPS 8/C SYSTEMS}

One IOM-connected Console CSU6601 is required for each DPS 8/C system.

\section*{Console Subsystem (CSU6601)}

At least one CSU6601 is required in each DPS 8/C system. Each base CSU6601 includes an adapter and IOM channel, a 12-inch CRT screen, keyboard, a 120-cps dot matrix printer, a connection to the DPS 8/C system DPU (Diagnostic Processor Unit), and a communication line interface for remote maintenance purposes.

The display screen (12-inch CRT) has space for 1920 characters ( 80 characters times 24 lines).

The adapter unit provides two terminal-oriented communication line interfaces of EIA RS-232-C type. This allows the use of modem bypass units or modems to position the console printer, CRT, and keyboard remotely to the DPS 8 system, if desired.
- Master interface (MI) - prime connection for keyboard and CRT as part of base CSU6601.
o Slave interface (SI) - a connection slaved off the master interface. Base printer of CSU6601 connects to SI.

Figure 9-1 illustrates the block diagram of base CSU6601 and options.


Figure 9-1. CSU6601 Block Diagram
The following listing provides the marketing identifiers (MI) and descriptions for base CSU6601 and options.

MI Description
CSU6601 Base console with power supply, 12-inch CRT screen, keyboard, 120-cps printer, IOM channel, master interface (MI), slave interface (SI), adapter (in IOM). At least one required per DPS 8/C system.

CSU6602 Auxiliary console with keyboard and 120-cps printer. As additional console used remotely or locally. Includes CSF6602 Auxiliary Console Adapter.

CSF6601 Console table for CRT, printer, and keyboard. Includes indicator pod with emergency power disconnect switch, initialize switch, bootload switch, and processor activity indicator. Adjusts to sitdown or standup heights.
```

 TTF0200 A sitdown-height pedestal option for
 auxiliary printer and keyboard.
 DKF7201 A sitdown-height pedestal for auxiliary
12-inch CRT and keyboard.
CSF6604 A 23-inch, large-screen monitor to be
connected to 12-inch CRT and displaying what
is shown on it. A 50-foot cable is supplied.
Cable length up to }1000\mathrm{ feet can be obtained
by ordering the W09-0001C cable assembly in
the desired length. Refer to the Terminals
Sales Reference Handbook Price Catalog
(CG32), Section 4 for configuration and
pricing.
CSF6605 Ceiling mount for CSF6604 to eliminate need
for table for the 23-inch monitor.

```

\section*{Auxiliary Console Adapter - CSF6602}

This adapter is similar to that for the CSU6601, but is not necessarily related to the CSU6601. It has its own IOM channel. Provides a lowcost means for use of a separate CRT and optional 23-inch, large-screen monitor. Use of CSF6602 is independent of CSU6601, except when the Extended System Control Feature (CSF6606) is used to link CSU6601 Base Console and CSF6602 with its attached CRT and keyboard. CSF6606 is discussed later in this section.

Note: The official title of CSF6602 is Auxiliary Keyboard/Display Attachment Feature.

Figure 9-2 illustrates the block diagram of CSF6602 and related features.

e Optional 50 -foot cable is standard for connection to MI.
* 2 modems with communication line between (no distance limit) or 2 modem bypass units with up to 2500 cable-feet between them. If no modems or bypasses are used, the cable length from Adapter to CRT/KB/printer is 50 feet.

Figure 9-2. CSF6602 Block Diagram

The following listing provides the marketing identifiers (MI) and descriptions for CSF6602 Auxiliary Console Adapter (Auxiliary Keyboard Display Attachment Feature).
\begin{tabular}{ll} 
MI & \begin{tabular}{l} 
Description
\end{tabular} \\
CSF6602 & \begin{tabular}{l} 
Auxiliary Console Adapter (in IOM) with power supply, IOM \\
channel, master interface (MI), and slave interface (SI). \\
Required to use CSF6603 and CSF6604. (Ordered separately, \\
or included in price of CSU6602 Auxiliary Console.)
\end{tabular} \\
CSF6603 & 12-inch CRT with keyboard. Requires CSF6602.
\end{tabular}

\section*{Console Switch Feature - CSF6606 (Official Title is Extended System Control Feature)}

This switch feature provides a variety of switching functions for backup purposes.
o Where CSU6601 is used by itself, but with local or remote auxiliary console devices, the switch can be used to select which console device (local or auxiliary) will be the operational console device.
o Where CSU6601 and Auxiliary Console Adapter CSF6602 are used (thus two adapters and two IOM channels) the CSF6606 Console Switch Feature can be used to switch console devices between the two adapters.
- Requires CSF6601 Console Table to contain switch logic.

SECTION 10
Generics of Data Communications
Front End Processors (FEPs)

Figure 10-1 illustrates the block diagram of typical components of Front End Processors (FEPs). The numbers shown within the figure correlate to the paragraph numbers in the following discussion.

-•AVAILABLE FROM SSTD

Figure 10-1. Typical Front End Processor Components
1. Terminal selection exerts a major configuring effect. Some terminal considerations:
o Terminal type: batch, keyboard (CRT, hardcopy, or both). May affect the choice of communication Channel Interface (CI).
- Terminal operating speed in bits per second, baud rate, or characters per second. Determines minimum line speed and modem speed to be selected.
- FDX (full-duplex) or HDX (half-duplex) operation of the line and terminal. May affect choice of modem, line type, or CI type. HDX is only supported for synchronous terminals.
o Synchronous or asynchronous physical transmission technique. Affects modem type and choice of CI.
o Line discipline or link protocol used by terminal. May affect CI choices in FEP; may determine whether synchronous or asynchronous transmission technique is to be used. BSC (Binary Synchronous Communications) protocol, for example, requires a specific BSCoriented CI. HDLC and asynchronous protocols also require specific CIs. May affect choice of modem used.
o Modem selection is directly affected by terminal selection and line speed.
o In addition, some terminals use a current loop type of interface which sometimes does not use modems. (Current Loop is a transmission technique that recognizes current flow rather than voltage levels. It has traditionally been used in teletypewriter networks incorporating batteries as the transmissin power source.) Current loop is only supported for asynchronous terminals. (Modems are sometimes not used for RS-232, also.)
2. Modem stands for modulator-demodulator, a device for transforming signals between the line and the device at the end of the line. Other generic names -- data set, digital subset, subset, coupler.
- Most commonly a modem (or equivalent device) will be needed at each end of a line obtained from a public carrier company. Thus modem costs can become significant.
- Modems are often either for synchronous or asynchronous transmission. In synchronous operation the modem at each end furnishes timing signals to keep each end of the line in synchronization with the other. If the modem used does not provide timing signals in synchronous transmission cases, a timing device must be attached to the terminal.
- The use of either 2-wire or 4-wire lines may affect modem choice or whether or not a modem is used.
3. Channel Interface (CI) is attached to a Channel Interface Base (CIB) which is in turn contained within an FEP. (Another name sometimes used for CI is Communication Line Adapter - CLA.)

CI is a termination point or connection point into the FEP for one or two lines. The path for a given line through a CI is often called a channel, or sometimes, a subchannel.

This section refers to "line" in the sense of (1) links provided directly or indirectly by public service carriers, such as telephone companies (such companies are also known as common carriers), and (2) "In-plant" type links or lines do not involve public service carriers and sometimes do not require modems. Some line considerations affecting configuring are:
o Whether public lines (also known as dialed, switched or dial-up lines) or private lines (also known as leased or direct lines) are used. Private lines do not involve dialing. There is, in effect, a permanent path established. This may affect modem choice and modem attachments.
o If private lines are involved, various levels of line conditioning are available from the telephone company to regulate line quality noise level, error probability, etc. Private lines may or may not use modems depending on the type of interface: current loop without modems, EIA RS-232 or EIA RS-422 without modems (i.e., direct connect), EIA RS-232 with modems. Only one interface type may be used per line.

0 Whether line is to be used on half-duplex (HDX), two-way alternate (TWA) basis, or full-duplex (FDX) basis. FDX lines can be used on either a TWA basis or two-way simultaneous basis (TWS). This may affect modem type.
o Whether line is used for both data and voice transmission, called DUV (data under voice). Normally the use of suen transmission does not affect the modem or CI choice.

There are multiple types of CIs, some very general, some specialized. Some CIs interface one line each, some two lines each.

CIs are not included in the base FEP price but must be configured. Every line must terminate at a CI, regardless of the type of line, whether by common carrier or in-plant connection.
4. CIB (channel interface base) provides common service logic for a number of CIs, the number of CIs varying with CI type. (Another name sometimes used for CIB is Multi-Line Communications Processor - MLCP.)

The CIB is completely general in its capabilities. Any line speed, code set, link protocol, or transmission technique supported by our FEP hardware is supported by CIB.CIs on any given CIB must be of the same type; no mixing of ASYNC, SYNC, or HDLC on the same CIB. Mixing of SYNC \((2780,3780\), HASP, 3270 ) on the same CIB is permitted.

CIBs are not included in the base FEP price but must be configured.
5. Base FEP. (Other names sometimes used for FEP are either Communications Processor, or Front-End Network Processor - FNP). Maximum of 12 local FEPs per system, maximum of 16 FEPs (local and remote) per system.

Attributes which may affect operation of the FEP include:
- Echoplex (FDX only) - With echoplex (echo on), the FEP will echo back to the terminal whatever is entered or typed in. Without echoplex (echo off), no echo of the input stream is sent to the originating terminal. Echoplex is typically used with time sharing and other applications terminals. It would not be used when an FEP receives data from another computer.
- Transparent terminal I/O - Permits a device to transmit data which will not in any way be edited by the FEP. The FEP essentially is transparent to the I/O operation. Typically used for special devices with unique control characters (e.g., graphics devices).
6. Connection to DPS 8/C IOM is provided by a DIA (direct interface adapter). Included in base CPS81XX FEP, not included in DCU8011. The DIA also includes a physical channel in the IOM.
7. Modem Bypass. Used for in-plant connections. No telephone line furnished by a common carrier such as AT\&T. Modem bypass units perform same basic function as modems.

Cable length restrictions exist between two successive modem bypass units but additional units can be inserted into the line to act as repeaters or signal strengtheners. In-plant connection is considerably cheaper (long-term) than use of modems and common carrier lines.
8. Direct Connect. Another way to use in-plant connection. Direct connect features cannot be repeated in series. An in-plant line is established by a cable with no involvement of a common carrier. Advantage: lower costs. Disadvantage: no access to telephone network, no way to dial another destination.

RS232 asynchronous direct connect is assured to work for distances of up to 50 feet (up to 1000 feet under ideal conditions). The current loop asynchronous approach of in-plant connection is for distances up to 1000 cable feet. RS422 asynchronous direct connect is for distances up to 4000 feet at 19.2 K baud.

SECTION 11
Configuring DATANET 8/C Front End Processor (FEP)

\section*{REQUIRED CONFIGURATION COMPONENTS}
- Base FEP (included in DPS 8/C central system CPS81XX or as DCU8011) (FEPs are also sometimes callea Elther Communications Processors, or Front-end Network Processors - FNPs).
- DPS 8/C Host Connection (included in central system CPS81XX; not included in DCU8011).
- Console (CIB connected. Required and included in central system CPS81XX. Not required or included in DCU8011 but recommended for each site using DCU8011 as a remote FEP.). Requires one async line, not included in central system CPS81XX or in DCU8011.
- One or more communication Channel Interfaces (CIs). (CIs are also sometimes called Communications Line Adapters (CLAs).) One CI per FEP is required for an async line for the console. One CI per CP-6 system is recommended for a sync line needed as a prerequisite for interfacing to the automated system for software support and distribution of patches.
- Eyery line (sometimes called a subchannel or channel) must terminate in a CI from any common carrier or any in-plant connection.
- Every CI represents electronic logic on circuit boards for which space is provided in "slots" in one or more general-purpose Channel Interface Bases (CIBs).
o Sufficient quantity of CIBs to connect the quantity of CIs needed to support the desired number of lines and protocols. Only one type of CI (SYNC, ASYNC, HDLC) per CIB is permitted. DN 8/C does not include any CIBs in base price, but one or more must be configured in order to provide for the CIs needed to connect the lines to the FEP. (CIBs are also sometimes called Multi-Line Communications Processors (MLCPs).)
o One or more in-plant connection features if lines are not furnished by common carrier companies. In-plant connection is by use of modem bypass or direct connect features, or by use of terminals of the current loop interface type. Each must connect to an appropriate CI.

\section*{NETHORKING CONSIDERATIONS}

CP-6 supports two kinds of FEPs: local (to the central system) and remote (from the central system). Local FEPs are connected to the central system via the DCE8006 Host Connection option. Remote FEPs are connected to local FEPs via High-Level Data Link Control (HDLC) lines. Other than for this method of connection to the system, local and remote FEPs are identical (i.e., they have the same line connectability and functionality).

DPS 8/C Networking constraints are as follows:
- Minimum of one local FEP required (included with CPS81XX).
- Maximum of 12 local FEPs per system.
- Maximum of 16 FEPs per system.
- Maximum of 4 remote FEPs per local FEP.
- Each local FEP can connect to one and only one host.
- Each remote FEP can connect to one and only one local FEP.
o Only one level of remote FEP is allowed (i.e., no remote FEP to remote FEP connections are possible).

\section*{CONFIGURING THE DATANET 8/C}

Figure 11-1 illustrates the DATANET 8/C block diagram. CP-6 Basic System (M.I. SFS6120), Access Modes (M.I. SFS6121) and the Communications System (M.I. SFC6120) is the required software. (The Remote Communications Software (M.I. SFC6121) is required per each remote FEP.)

(See p. 11-4 for notes)
Figure 11-1. DATANET 8/C Block Diagram

\section*{Notes:}
(a) Part of FEP included with central system CPS81XX.
(b) Part of DCU8011.
(c) Expansion to 128 lines requires use of power supply in a second cabinet (included with DCE8004).
(d) Requires DCE8002 (64 line chassis).
(e) Requires DCE8002 (64 line chassis) and DCE8004 (128 line chassis).
(f) Diskette included in DN 8/C for maintenance purposes and for booting remote FEPs. (Blank media [Honeywell Product Number M4101, single sided diskette] for creating remote FEP boot diskette must be ordered via a Supply Requisition.)
* 512 K bytes per memory increment, DCM8008, DCM8005. 1M byte per bus slot.

Table 11-1 illustrates the board slot assignments for the DATANET 8/C.

TABLE 11-1. DATANET 8/C BOARD SLOT ASSIGNMENTS
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{} & & (CPS81XX or DCU8011) \\
\hline & & (CPS81XX or & + \\
\hline & & DCU8011) & DCE8002 \\
\hline Total & CPS81XX or & + & + \\
\hline Slots & DCU8011 & DCE8002 & DCE8004 \\
\hline 1 & SCF & SCF & SCF \\
\hline 2 & CPU & Cache & Cache \\
\hline 3 & CIP & CPU & CPU \\
\hline 4 & MDC 1 & CIP & CIP \\
\hline 5 & Coupler & MDC 1 & MDC 1 \\
\hline 6 & CIB 1 & MDC 2 & MDC 2 \\
\hline 7 & CIB 2 & Coupler & Coupler \\
\hline 8 & MEM 2 & CIB 1 & CIB 1 \\
\hline 9 & MEM 1 & CIB 2 & CIB 2 \\
\hline 10 & TERMINATOR & CIB 3 & CIB 3 \\
\hline 11 & & CIB 4 & CIB 4 \\
\hline 12 & & CIB 5 & CIB 5 \\
\hline 13 & & CIB 6 & CIB 6 \\
\hline 14 & & CIB 7 & CIB 7 \\
\hline 15 & & CIB 8 & CIB 8 \\
\hline 16 & & Reserved & CIB 9 \\
\hline 17 & & Reserved & CIB 10 \\
\hline 18 & & Reserved & CIB 11 \\
\hline 19 & & MEM 2 & CIB 12 \\
\hline 20 & & MEM 1 & Jumper \\
\hline 21 & & & CIB 13 \\
\hline 22 & & & CIB 14 \\
\hline 23 & & & CIB 15 \\
\hline 24 & & & CIB 16 \\
\hline 25 & & & Reserved \\
\hline 26 & & & Reserved \\
\hline 27 & & & Reserved \\
\hline 28 & & & Reserved \\
\hline 29 & & & MEM 2 \\
\hline 30 & & & MEM 1 \\
\hline
\end{tabular}

Note: One CIB and one sync CI strongly recommended for a sync (HASP) line (Bell 201C modem or equivalent) as a prerequisite for interfacing to the automated system for software support and distribution of patches.

\section*{DATANET 8/C FEP-RELATED MARKETING IDENTIFIERS AND THEIR FUNCTIONS}

\section*{The following listing provides all DATANET 8/C FEP-related marketing identifiers (MI) and their functions. The list applies to base FEP included in CPS81XX and to DCU8011.}

\section*{MI Description}

Base FEP
DCU8011 A freestanding FEP with 1024K bytes memory, a chassis for up to 16 line connections, and a 256 K bytes diskette. No console, no DPS 8/C Host Connection, and no CIBs or CIs are included in the DCU8011. (The FEP included in the CPS81XX includes one DCU8011, one DCE8006, and one Communications Subsystem connected, 30 cps console, DCF8008 [included for maintenance purposes]. No CIBs or CIs are included with this FEP.) Maximum of 16 CIBs may be configured.

NOTE - Blank media (Honeywell Product Number M4101, single sided diskette) for creating remote FEP boot diskette must be ordered via a Supply Requisition.

\section*{Host Connect Option (Coupler)}

DCE8006 DPS 8/C Host Connection from the DCU8011 FEP to the DPS 8/C IOM. A maximum of one may be configured. CPS81XX includes one DCU8011, one DCE8006, one Communications Subsystem connected, 30 cps console - a DCF8008, (included for maintenance purposes).

\section*{Console Options}

DCF8006 120 cps communications console for the Datanet 8/C.
DCF8008 30 cps communications console for the Datanet 8/C. One is included with the CPS81XX. Requires one async line Channel Interface, which is not included in the CPS81XX. One console (terminal) of any type is recommended for each site using DCU8011 as a remote FEP.

\section*{Memory Expansion}

DCM8008 512 K bytes memory increment for the Datanet \(8 / \mathrm{C}, 1024-1536 \mathrm{~K}\) bytes.

DCM8005 512K bytes memory increment for the Datanet 8/C, 1536-2048K bytes.

Figure 11-2 illustrates the FEP memory configurability.



DCM8008

DCM8005

Figure 11-2. DATANET 8/C Memory Configurability

Estimated DATANET memory requirements for DPS 8/C features are given below. (These estimates assume standard, as shipped control and tuning parameters.)
\begin{tabular}{|c|c|c|}
\hline Kernel & \(=\) & 376 K bytes \\
\hline Host Link & \(=\) & 24 K bytes \\
\hline ASYNC & \(=\) & 44 K bytes + 2.4 K bytes per terminal \\
\hline Connection of Remote FEPs (memory required in local FEP) & \(=\) & 40 K bytes +60 K bytes per remote FEP \\
\hline Connection to Local FEP (memory requried in remote FEP) & \(=\) & 60 K bytes \\
\hline IMP & = & 400 bytes per instance of IMP (usually one instance of IMP per async terminal) \\
\hline BSC & \(=\) & 32 K bytes \\
\hline  & \(=\) & 18 K bytes +8 K bytes per terminal \\
\hline 3270 (requires BSC) & \(=\) & 26 K bytes + 5 K bytes per terminal \\
\hline URP & \(=\) & 28 K bytes + 4 K bytes per device \\
\hline ```
Forms Interpreter
(for Transaction
    Processing)
``` & \(=\) & 120 K bytes +6 K bytes per terminal (in addition to async or 3270 per terminal amounts) + program buffer, size determined by site. (Typical size \(=112 \mathrm{~K}\) bytes, enough for six, 18 K -byte programs +4 K bytes for overflow.) \\
\hline
\end{tabular}

\section*{Performance Enhancement}

DCE8003 Processor power module enhancement (cache) for the DN 8/C FEP. Provides performance increase of approximately 20\%. Prerequisite is DCE8002 (64 lines). Requirement for DCE8003 is dependent on throughput considerations. See NFEP Throughput Calculations and CI Board Packaging Tables" later in this section for a discussion of throughput factors.

Line Connection Expansion
DCE8002 Additional chassis for line configurability for the DCU8011, from the 16 base connections to a maximum of 64 lines. Only one can be configured.

DCE8004 Additional chassis and cabinet for DCU8011 line configurability from 64 lines to a maximum of 128 lines. Prerequisite is DCE8002 (64 lines). Maximum of one can be configured.

Channel Interface Base (CIB)
DCF8007 Channel Interface Base (CIB) for the FEP. Maximum of 16 may be configured. Requires DCE8002 (64 line connections) if more than two CIBs are configured. Requires DCE8002 and DCE8004 if more than eight CIBs are configured.

One CIB accommodates up to four Channel Interface (CIs) with one transmission type (asynchronous, synchronous or HighLevel Data Link Control (HDLC)) per CIB.

Channel Interface (CI) Options (all include 50 ft . cables)
DCF8009 Dual asynchronous channel package, EIA RS-422-A, up to 19,200 bps each. RPQ only.

DCF8011 Terminates two synchronous lines (2780, 3780, HASP or 3270) at up to \(19,200 \mathrm{bps}\) each. Each line can run at different speed. EIA RS-232-C interface. EBCDIC code. HDX only. Connects Dataphone 201, 208, 209, 212A, 303 or equivalent modems, DCF8026 modem by-pass, or direct connect.

DCF8012 Terminates two asynchronous lines at up to 19,200 bps each. Each line can run at different speed. EIA RS-232-C interface. FDX only. 8-11 format for 110 and 200 baud. 8-10 format for all other speeds. For Dataphone 103, 113, 212A or equiva- lent modem, modem bypass, or direct connect.

DCF8020 Terminates one line at up to \(19,200 \mathrm{bps}\). For HDLC link protocol (e.g., remote FEP). Bit-oriented protocol. EIA RS-232-C interface. FDX only. For modems, modem bypass, or direct connect.

DCF8022 Terminates one line in broadband (wideband) range at up to \(72,000 \mathrm{bps}\). HDLC link protocol (e.g., remote FEP). Bitoriented protocol. FDX only. Bell 301/303 compatible.

DCF8023 Terminates one line at up to \(72,000 \mathrm{bps}\). HDLC link protocol (e.g., remote FEP). For CCITT V. 35 interface. Bit-oriented protocol. FDX only.

DCF8036 Two async current loop ports, to 9,600 bps. FDX only.

\section*{Modem Bypass Option}

DCF8026 Universal Modem Bypass feature for connection to one synchronous or asynchronous line (cable). Minimum of two per line: one at FEP end, other at terminal end. Maximum cable length between two successive bypass units is 2500 feet. Intermediate bypass units can be used as line signal repeaters or strengtheners. Cable used between the DCF8026 is customer-furnished and is specified as two pair of loosely twisted inside telephone cable equivalent to the Alpha Wire Inc. No. 1302. Speed to 19.2 K bps for synchronous or 1800 bps for asynchronous.

\section*{Direct Connect Option}

Connection may also be mede without modems, using an adapter connector, cable Product Number W18-0001C (Honeywell Part Number 60128766, Rev C), which connects the CI cable to the terminal's cable or to another CI cable. Synchronous line clocking may be provided by either the CIB or the terminal (if so equipped); however, all CIs on the same CIB using CIB clocking must run at the same speed.

CIBs Packaged with Channel Interface Options
DCF8030 CIB and eight async RS-232-C ports

DCF8032 CIB and eight sync RS-232-C ports
DCF8034 CIB and eight current loop ports
DCF8038 CIB and one broadband sync port, Bell 301/303 compatible, with modem cable

DCF8040 CIB and one broadband HDLC port, V. 35 CITT compatible, with modem cable

DCF8042 CIB and one broadband sync. port, V. 35 CITT compatible, with modem cable

DCF8044 CIB and one broadband HDLC port, Bell 301/303 compatible, with modem cable

\section*{Unit Record Equipment}

DPS 6 Unit Record equipment may be attached to the DN 8/C. See Section 6 for configuration information and example.

\section*{Attachment Feature}

MXF8009 Exchange of FEP Attachment Feature (to DPS 8 systems only) wire wrap to hard copper, in the IOM. For installed, non DPS 8 FEPs. Equipment removed and replaced by MXF8009 becomes the property of Honeywell upon removal.

\section*{SUPPORTED TERMINALS}

Most asynchronous, full duplex, ASCII terminals are quickly and easily supportable via CP-6 Profiles; however, a few special features of a few devices may not be able to be utilized. Currently supported profiles include those shown below. (The terminals should support cursor positioning to make full use of CP-6 T.P.) In addition, all terminals compatible with these are also supported.

\section*{ASYNC Profiles}
\begin{tabular}{|c|c|}
\hline Profile Name & Terminal Description \\
\hline ADDS25 & ADDS (Regent) 25 \\
\hline ADDS60 & ADDS (Regent) 60 \\
\hline ADDS60TP & ADDS (Regent) 60, without ELO \\
\hline ADDS200 & ADDS (Regent) 200 \\
\hline ADDS580 & ADDS (Consul) 580 \\
\hline ADDS980 & ADDS (Consul) 980 \\
\hline ADDSVPA1 & ADDS Viewpoint Model A1 \\
\hline ADDSVPA2 & ADDS Viewpoint Model A2 \\
\hline ANNAMB & Ann Arbor Ambassador \\
\hline BEEDM20 & Beehive DM20 \\
\hline CDI1203 & Computer Devices Inc 1203 (Miniterm) \\
\hline CDI1203S & Computer Devices Inc 1203S (Miniterm) \\
\hline CDI1205 & Computer Devices Inc 1205 (Miniterm) with narrow platen \\
\hline CDI1205W & Computer Devices Inc 1205 (Miniterm) with wide platen \\
\hline CDI2200 & Computer Devices Inc 2200 (Miniterm) with narrow platen \\
\hline CDI2200H & Computer Devices Inc 2200 (Miniterm) on high-speed (>1200 baud) line \\
\hline CDI2200W & Computer Devices Inc 2200 (Miniterm) with wide platen \\
\hline CDI2200HW & Computer Devices Inc 2200 (Miniterm) high-speed line, wide platen \\
\hline CTR6300 & Centronics 6300 \\
\hline DBL1550 & Diablo 1550 \\
\hline DBL1610 & Diablo 1610 \\
\hline DBL1620 & Diablo 1620 \\
\hline DBL1641 & Diable 1641 \\
\hline DECDS120 & Digital Equipment LA36 with Datasouth 120 \\
\hline DECLA120 & Digital Equipment LA120 \\
\hline DECLA34 & Digital Equipment LA34 \\
\hline DECLA36 & Digital Equipment LA36 \\
\hline DECLA36SD & Digital Equipment LA36 with SUPERDEC board \\
\hline DECVT100 & Digital Equipment VT100 \\
\hline DECVT100W & Digital Equipment VT100, wide \\
\hline DECVT131 & Digital Equipment VT131 \\
\hline DECVT131W & Digital Equipment VT131, wide \\
\hline DECVT50 & Digital Equipment VT50 \\
\hline DECVT52 & Digital Equipment VT52 \\
\hline DECVT52W & Digital Equipment VT-1xx in VT52 mode, wide \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Profile Name & Terminal Description \\
\hline DTM1520 & Datamedia Elite 1520A \\
\hline DY4VGT100 & DY-4 Systems VGT-100 \\
\hline GETN300 & GE Terminet 300 \\
\hline GT100 & General Terminal GT 100 \\
\hline GT 400 & General Terminal GT 400 \\
\hline GT400TP & General Terminal GT 400 for TP \\
\hline HP2645 & Hewlett Packard 2645 \\
\hline HP9845 & Hewlett Packard 9845 \\
\hline HTH14 & Heath H14 Printer \\
\hline HTH19 & Heath H19 \\
\hline HTH19A & Heath H19 (ANS mode) \\
\hline HTH89 & Heath H89 \\
\hline HZL1000 & Hazeltine 1000 \\
\hline HZL1500 & Hazeltine 1500 \\
\hline HZL1520 & Hazeltine 1520 \\
\hline HZL2000 & Hazeltine 2000 \\
\hline HZL2000P & Hazeltine 2000 Printer \\
\hline HZLMOD1 & Hazeltine Modular 1 \\
\hline IBM3101-1X & IBM 3101-1X \\
\hline IBM3101-2X & IBM 3101-2X \\
\hline IBMPC-H89 & IBM Personal Computer in Heath H89 mode \\
\hline INFI100 & Infoton I-100 \\
\hline INFI400 & Infoton I-400 \\
\hline INFSTL & Infoton Satellite \\
\hline INFVST & Infoton Vistar \\
\hline INTI & Intertec Intertube I \\
\hline INTII & Intertec Intertube II \\
\hline INTSII & Intertec Superbrain II \\
\hline LSIADM31 & Lear Siegler Inc ADM 31 \\
\hline LSIADM3A & Lear Siegler Inc ADM 3A \\
\hline LSIADM5 & Lear Siegler Inc ADM 5 \\
\hline MCRACTIV & Microterm ACT-IV \\
\hline NEC5510 & NEC 5510 (Spinwriter) \\
\hline NEC5515 & NEC 5515 (Spinwriter) \\
\hline NEC5520 & NEC 5520 (Spinwriter) \\
\hline NEC5525 & NEC 5525 (Spinwriter) \\
\hline PE550 & Perkins Elmer 550 \\
\hline PRU1002 & Honeywell PRU1002 \\
\hline PRU1003 & Honeywell PRU1003 \\
\hline PRU1005 & Honeywell PRU1005 \\
\hline SDS420 & SDS (Scientific Data Systems) 420 \\
\hline SNRKTM380 & Synertek KTM 3/80 \\
\hline SOROC120 & Soroc 120 \\
\hline TEK4010 & Tektronix 4010 \\
\hline TEK4010L & Tektronix 4010, long, narrow \\
\hline TEK4013 & Tektronix 4013 \\
\hline TEK4013L & Tektronix 4013, long, narrow \\
\hline TEK4023 & Tektronix 4023 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Profile Name & Terminal Description \\
\hline TEK4024 & Tektronix 4024 \\
\hline TEK4025 & Tektronix 4025 \\
\hline TEK4027 & Tektronix 4027 \\
\hline TI725 & Texas Instruments 725 \\
\hline TI733 & Texas Instruments 733 \\
\hline TI743 & Texas Instruments 743 \\
\hline TI745 & Texas Instruments 745 \\
\hline TI783 & Texas Instruments 783 \\
\hline TI785 & Texas Instruments 785 \\
\hline TI787 & Texas Instruments 787 \\
\hline TI810 & Texas Instruments 810 \\
\hline TI820 & Texas Instruments 820 \\
\hline TLR1000 & Teleray 1000 \\
\hline TLR3300 & Teleray 3300 \\
\hline TRS80M1 & Radio Shack TRS-80 Model 1 \\
\hline TRS80M2 & Radio Shack TRS-80 Model 2 \\
\hline TVI912A & Televideo TVI-912A \\
\hline TVI912C & Televideo TVI-912C \\
\hline TVI920 & Televideo TVI-920 \\
\hline TVI950 & Televideo TVI-950 \\
\hline TTY33 & Teletype Model 33 \\
\hline TTY35 & Teletype Model 35 \\
\hline TTY37 & Teletype Model 37 \\
\hline TTY43 & Teletype Model 43 \\
\hline TWU1002 & Honeywell TWU1002 \\
\hline TWU1003 & Honeywell TWU1003 \\
\hline TWU1005 & Honeywell TWU1005 \\
\hline TWU9101 & Honeywell TWU9101 \\
\hline TWU9104 & Honeywell TWU9104 \\
\hline TWU9106 & Honeywell TWU9106 \\
\hline VC303A & Volker Craig VC303A \\
\hline VC403A & Volker Craig VC403A \\
\hline VC404 & Volker Craig VC404 \\
\hline VC414H & Volker Craig VC414H \\
\hline VIP7100 & Honeywell VIP 7100 \\
\hline VIP/105 & Honeywell VIP 7105 \\
\hline VIP7200 & Honeywell VIP 7200 \\
\hline VIP7201 & Honeywell VIP 7201 \\
\hline VIP7205 & Honeywell VIP 7205 \\
\hline VIP7301 & Honeywell VIP 7301 \\
\hline VIP7801 & Honeywell VIP 7801 \\
\hline VIP 7802 & Honeywell VIP 7802 \\
\hline XRX850 & Xerox 850 \\
\hline XRX1760 & Xerox 1760 \\
\hline XRX7015 & Xerox 7015 \\
\hline ZENZ19 & Zenith Z19 \\
\hline ZENZ89 & Zenith 289 \\
\hline
\end{tabular}

\section*{3270 Profiles}

IBM "3270" and all compatible terminals of other manufacturers. Included are 3271, 4, 6, 7, 8, 9 (without color support) controllers and keyboard displays (polled EBCDIC BSC only; point to point and/or multi-drop; clusters and/or single device; for time sharing and T.P.; APL character set not supported). 328X attached printers may be supported by RPQ.

\section*{RBT Profiles}

HASP multileaving \(360 / 20\) mode compatible devices (both master and slave) including other CP-6 systems, CP-V systems, the Level 6 HASP IRBT package and XEROX 530 XSP systems. (EBCDIC BSC; transmits transparent, receives either transparent or non-transparent automatically.)

IBM 2780 and 3780 or compatible terminals (non-transparent EBCDIC BSC). CP-6 does not emulate 2780 or 3780 terminals.

The configurability of CIs is affected by three items: CIBs, physical board size, and throughput load factor.

CIBs
CIs on any given CIB must be of the same type; no mixing of async, sync or HDLC on the same CIB. Mixing of sync (e.g., 2780,3780 , HASP, 3270) on the same CIB is permitted.

In addition, a maximum of 1 active broadband line per CIB should be observed. CIB maximum throughputs can be derived from Table-11-2.

TABLE 11-2. CIB THROUGHPUT CAPACITY

\section*{Protocol}

Async (full duplex)

Sync (half duplex)

HDLC (full duplex)

\section*{Maximum Lines per CIB}

49600 baud, simultaneous input plus output (e.g., microcomputer),
or,
89600 baud, mostly output (e.g., timesharing).

89600 baud, or 172,000 baud

89600 baud, or, 172,000 baud.
(Preferred placement of CI types within the FEP cabinet, from top to bottom, is as follows: Async, Sync, HDLC, Broadband Sync, Broadband HDLC.)

Physical Board Size
Channel Interfaces are either quarter- or half-board sizes depending on their specific functionality. The physical capacity of each CIB is either four quarter-boards, two half-boards, or two quarter-boards and one half-board Channel Interfaces as illustrated in Figure 11-3.

Figure 11-3. CI Physical Board Sizes

To determine the CI fit on the CIBs, use Table 11-3.

TABLE 11-3. DATANET 8/C CHANNEL IITERFACE PHYSICAL BOARD SIZES
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Marketing \\
Identifier
\end{tabular} & Description & Board_Size & Lines/Board \\
\hline DCF8009 & Dual Async, EIA RS-422-A & 1/4 & 2 \\
\hline DCF8011 & Dual Sync, EIA RS-232-C & 1/4 & 2 \\
\hline DCF80 12 & Dual Async, EIA RS-232-C & 1/4 & 2 \\
\hline DCF8020 & Single HDLC, EIA & 1/4 & 1 \\
\hline DCF8022 & Single HDLC Wideband Channel & 1/2 & 1 \\
\hline DCF8023 & Single HDLC Wideband & 1/2 & 1 \\
\hline DCF8030 & CIB and eight Async RS-232-C Ports & 4/4 & 8 \\
\hline DCF8032 & CIB and eight Sync RS-232-C Ports & 4/4 & 8 \\
\hline DCF8034 & CIB and eight Current Loop Ports & 4/4 & 8 \\
\hline DCF8036 & Two Async Current Loop Ports & 1/4 & 2 \\
\hline DCF8038 & CIB and One Broadband Sync Port, 301/303 & 1/4 & 1 \\
\hline DCF8040 & CIB and One Broadband HDLC Port V. 35 CITT & 1/2 & 1 \\
\hline DCF8042 & CIB and One Broadband Sync Port V. 35 CITT & 1/4 & 1 \\
\hline DCF8044 & CIB and One Broadband HDLC Port 3u1/303 & 1/2 & 1 \\
\hline
\end{tabular}

\section*{Throughput Load Factor}

The FEP has a limit to the total communication load it can handle. In order to calculate whether this limit has been exceeded, throughput factors based on protocol type have been estimated and are discussed below. These estimates should be used as guidelines to aid in configuring FEPs. Figures 11-4 through 11-13 assume standard tuning, SUPER, and FEPCOM parameters, and represent throughput characters (char/min) as measured between the host and the FEP.

Figures 11-4 through 11-13 assume 1024, 1536 or 2048 K bytes of FEP memory. Configurations with 768, 1280 or 1792 K bytes of FEP memory may experience performance penalties averaging approximately 10\%.

In addition to protocol type, the effect of TP forms processing and the effect of DATANET-connected unit record devices and remote FEPs must also be considered in total throughput calculations. These factors are discussed at the end of this section.

In addition to total FEP throughput factors, a maximum of 1 active broadband line per CIB should be observed.

PROTOCOL TYPE.

Communications processors, referred to as FEPs in this discussion, are normally configured to support a customer's required throughput expressed in characters per minute. The throughput available from a particular FEP is independent of the number of lines and the individual line speeds.

The charts describing the FEP consumption for each different protocol are broken down between asynchronous and synchronous communications. Communications load estimates can be plotted on these charts assuming you know the character rate/minute and the typical message length.

Figures 11-4 to 11-6 illustrate FEP consumption for asynchronous operations.

Figure 11-4. ASYNC Input Performance
* Non-transparent ASYNC input is for normal time-sharing. Transparent ASYNC input is for connections such as micro-computers and other devices that require a transparent data stream (i.e., no echo, no character translation, no IMP, and no special character detection).

Figure 11-5. ASYNC Output Performance* Non-Transparent (Time-Sharing)
* Based on VIP7801 profile - medium to high capability terminal with direct cursor control.

- ー - IS STANDARD TUNING PARAMETERS*
- IS MODIFIED TUNING PARAMETERS **

RECORD SIZE IN CHARACTERS

Figure 11-6. ASYNC Output Performance Transparent
* Dashed lines are for standard tuning parameters, which are optimized for normal time-sharing and do not provide high throughput for large records.
** Solid lines are for modified tuning parameters, given below, which are recommended for record sizes greater than 120.

Async Blocking Value \(=10,000\) bytes (standard \(=2000\))
Async Unblocking Value \(=2,000\) bytes (standard \(=500\))
Big Output Buffer Byte Size \(=1,024\) bytes (standard \(=256\))
Memory requirements triple for those terminals which use these modified tuning parameters.

If the customer wishes to upgrade the line speeds for interactive asynchronous terminals, the following general rule may be used as a guideline.

Quadrupling the line speed (four times faster) causes a \(50 \%\) increase in the output character rate. The input rate remains constant.

If the customer wishes to attach intelligent devices on a communications line (minicomputer w/instruments, peripherls, etc.), the required character rate and typical record length is determined by an analysis of the application. Record length may be defined, for example, as the average number of characters per read or per write.

In some cases asynchronous applications do not require echo operations on input. If so, use the top half of Figure \(11-4\) to determine FEP utilization.

To summarize, the following information must be obtained:
o Total asynchronous input rate from all terminals in characters per minute and/or desired input rate from minicomputers, etc. Also determine if echoplex (non-transparent mode) is required.
o Average asynchronous input message/line length (divide character rate by number of interactions).
- Total asynchronous output rate to all terminals and/or desired output rate to minicomputers, etc.
- Average asynchronous output message/line length (divide character rate by number of terminal writes).

Figures 11-7 to 11-9 illustrate FEP consumption for synchronous communications.

The HASP, 2780 and 3780 protocols require the same amount of FEP capacity for input and output. The FEP has a somewhat higher capacity for 3270 output than for 3270 input. The required character rate and message length is determined by an analysis of the application. Synchronous comunications activities occur at a lower priority than asynchronous activities. A temporary overload of the FEP capacity will result in slower synchronous I/O but no loss of data.

Figure 11-7. HASP, 2780, 3780 Input \& Output Performance

Figure 11-8. 3270 Input Performance

Figure 11-9. 3270 Output Performance
```

Another term that is used to help determine the FEP load for
synchronous applications is called the device duty cycle. This is
determined by evaluation of the percentage of available time that a
particular device (e.g., card reader, line printer, etc.) must run at
its rated speed. If a }300\textrm{lpm}\mathrm{ printer is only required to run 25% of
the time, then its duty cycle is 25%. This means that the applications
load will permit printing to be slowed down to as much as 25% of 300
lpm or 75 lpm depending on the FEP consumption of other concurrent
operations.
To calculate application dependent character rates per minute, use these three elements in the following way: Device rated speed (in units per minute) $x$ average unit character length $x$ duty cycle percentage $=$ total characters/minute. For example, assume 60 characters per line (unit) for a 300 lpm printer with a $25 \%$ duty cycle. The formula would calculate as follows: 300 lpm x 60 char/line $\times 25 \%$ duty cycle $=$ 4500 char/min synchronous output.

```

\section*{Communications Load Example}
```

The following example may help clarify the load calculation process.
Assume that a customer desires the following communications equipment on his system:
Synchronous Operations:
HASP Workstation with 200 -cpm reader, 600-lpm printer Average characters per card: 20; Duty cycle $=75 \%$ Average characters per line: 60; Duty cycle $=75 \%$
HASP Workstation with 1200-lpm printer Average characters per line: 60; Duty cycle $=25 \%$
Asynchronous Operations:
Time Sharing Terminals (111)
Input rate (echo on): 60 char/min/terminal; 10 char/message Output rate: $\quad 500$ char/min/terminal; 40 char/message
Graphic Scope (1)
Input rate (echo on): 60 char/min; 10 char/message
Output rate: 1500 char/min; 40 char/message
Minicomputer (1)
Input rate (echo off): 14,400 char/min; 60 char/message

```
```

Communications Load Example (Continued)

```
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{7}{|c|}{Character Fates} \\
\hline & Qty & Message Input & Length Output & \begin{tabular}{l}
Duty \\
Cycle
\end{tabular} & Total Char/Min & \[
\begin{gathered}
\% \\
\text { EEP }
\end{gathered}
\] & From Figure \\
\hline 1st Workstation: & 1 & \[
\begin{array}{r}
200 \mathrm{cpm} \\
20
\end{array}
\] & \[
\begin{array}{r}
600 \mathrm{lpm} \\
60
\end{array}
\] & 75\% & \[
\begin{aligned}
& \text { Input } 3,000 \\
& \text { Output } 27,000
\end{aligned}
\] & \[
\begin{array}{r}
3 \\
10
\end{array}
\] & \[
\begin{aligned}
& 11-7 \\
& 11-7
\end{aligned}
\] \\
\hline 2nd Workstation: & 1 & & \[
\begin{array}{r}
1200 \mathrm{lpm} \\
60
\end{array}
\] & 25\% & Output 18,000 & 7 & 11-7 \\
\hline Async Terminals: & \[
\begin{aligned}
& 112 \text { In } \\
& 111 \text { Out }
\end{aligned}
\] & \[
\begin{aligned}
& 60 \mathrm{cpm} \\
& 10
\end{aligned}
\] & \[
\begin{gathered}
500 \mathrm{cpm} \\
40
\end{gathered}
\] & & \[
\begin{array}{lr}
\text { Input } & 6,720 \\
\text { Output } & 55,500
\end{array}
\] & \[
\begin{aligned}
& 65 \\
& 37
\end{aligned}
\] & \[
\begin{aligned}
& 11-4{ }^{a} \\
& 11-5
\end{aligned}
\] \\
\hline Graphic Scope: & \[
\begin{aligned}
& 1 \text { In* } \\
& 1 \text { Out }
\end{aligned}
\] & & \[
\begin{array}{r}
1500 \mathrm{cpm} \\
40
\end{array}
\] & & Output 1,500 & 1 & 11-5 \\
\hline Minicomputer: & 1 & \[
\begin{gathered}
14,400 \mathrm{cpm} \\
60
\end{gathered}
\] & & & Input 14,400 & 24 & \(11-4{ }^{\text {b }}\) \\
\hline Total FEP Load & & & & & & 147 & \\
\hline
\end{tabular}
* Included with Async. Terminals - In
a Use the "Non-Transparent" scale
b Use the "Transparent" scale

Thus 2 FEPs would be required to ensure desired throughput.

Figures 11-10. and 11-11. are used to estimate the FEP performance consumption used in handling a specified Forms Processing load.

In this document we refer to only two types of forms processing, "system input" and "system output" transactions. System input transactions are characterized as involving a read of some amount of information from a terminal and writing that information to the Host system for processing. System output transactions are characterized as involving a read from the Host for information that is subsequently displayed on a terminal.
```

SYSTEM INPUT = TERMINAL READ + HOST WRITE
SYSTEM OUTPUT = HOST READ + TERMINAL WRITE

```

For each transaction, find the correct slope on the appropriate chart for the average field size. Locate where this slope intersects with the appropriate number of fields. Read down to the horizontal axis for the \% FEP consumption \(x 1000\) for each transaction.

The \% FEP consumption \(x 1000\) for each transaction is multiplied by the actual transaction rate per hour/1000 (as the chart is based upon 1000 transactions per hour).

Do this for each forms application and sum to get the total transaction processing \% FEP consumption.

Note that the number of physical terminals connected to the FEP does not dictate the performance of the machine. Only when the terminals are doing something as part of transactions do they affect the performance of the FEP. This aspect is implicit in Figures 11-10 and 11-11. Also, Figures 11-10 and 11-11 assume an average amount of user forms processing.

Figure 11-10. FEP TP Forms Performance, Systems Input (1000 Transactions Per Hour)

Figure 11-11. FEP TP Forms Performance, Systems Output (1000 Transactions Per Hour)

The following example will help clarify the load calculation process for TP Forms Processing.

Suppose that we determine that a customer has four applications which we will call A, B, C, and D. Applications A and B are data collection applications (another way of saying they process system input transactions). Application \(C\) performs Inquiry and Response operations (another way of saying that \(C\) does both system input and system output operations). Finally, application D generates reports (another way of saying that it processes system output transactions).

Application A, which processes system input transactions, reads 2 fields from the terminal which total 20 characters. This application is expected to process 1800 system input transactions per hour.

Application \(B\), which also processes system input transactions, reads 40 fields comprising 300 bytes of information. It is expected to handle 120 system input transactions per hour.

Application \(C\), which processes system input and system output transactions, reads 3 fields totaling 12 bytes from the terminal which it sends to the Host for processing. It receives 550 bytes in response and displays those bytes in 40 fields. Application \(C\) is expected to process 1200 transactions per hour.

Application D, which processes system output transactions, receives 1000 bytes from the Host and writes them to the terminal as 100 fields. It is expected to produce 20 reports per hour.

This set of programs and their \% FEP consumption can be described as follows:

Note that the numbers in the column labeled "Fields" are either Input Fields (if the transaction type is system input) or Output Fields (if the transaction type is system output). Note also that there are two entries (lines) for Application \(C\) which processes both system input and system output transactions.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Application & Transaction Type & Fields & Total Bytes & \begin{tabular}{l}
Bytes/ \\
Field
\end{tabular} & \begin{tabular}{l}
Rate/ \\
Hour
\end{tabular} & Trans \%FEP/1000 & Figure & \[
\underset{F E P}{q}
\] \\
\hline A & System Input & 2 & 20 & 10 & 1800 & 5 & 11-10 & 9 \\
\hline B & System Input & 40 & 300 & 7.5 & 120 & 55 & 11-10 & 7 \\
\hline C & System Input & 3 & 12 & 4 & 1200 & 5 & 11-10 & 6 \\
\hline & System Output & 40 & 550 & 13.75 & 1200 & 15 & 11-11 & 18 \\
\hline D & System Output & 100 & 1000 & 10 & 20 & 33 & 11-11 & - - \\
\hline & & & & & & & Total & 41\% \\
\hline
\end{tabular}

Thus, the applications in this example would require approximately \(41 \%\) of a DN8/C FEP to complete their tasks.
```

A more precise estimate of the % FEP consumption may be made by using
the following equations:
systems input: tms = 64+(17\timesf)+(2.5 x b )
systems output: tms = 56.4 + (7 x f) +(.112 x b)
where tms = the time in milliseconds required to process a transaction
f = the number of fields in the transaction
b = the total number of bytes in the transaction.
To get the \% FEP consumption, compute tms for each transaction, multiply tms by the transaction rate per hour, sum the results for all transaction types and divide the total by 2.67 million.
Using this method in the above example yields the following:
Application Transaction Type Fields Bytes tms Rate/Hr ms.used

A	System Input	2	20	148	1800	266,400
B	System	Input	40	300	1494	120
C	System Input	3	12	145	1200	179,280
	System Output	40	550	398	1200	477,600
D	System Output	100	1000	868	20	17,368
						Total
				114,648		

$1114648=42 \%$ of an FEP 2670000

```

\section*{UNIT RECORD DEVICES}

Figure 11-12 illustrates the FEP consumption for unit record devices. In Figure 11-12 use the " 40 char icter record" line for all card reader record lengths. Use the other lines as appropriate for line printer calculations.

Figure 11-12. URP Performance

\section*{REMOTE FEPS}

Figure \(11-13\) is used to compute the load a remote FEP places on a local FEP. It should be used in calculating local FEP consumption, both input and output.

Figure 11-13 should be used for all work on the remote FEP, except Transaction Processing. If Transaction Processing is done on the remote FEP, add \(5 \%\) to the number computed by using Figure 11-13, to get the total load \% the remote FEP places on its local FEP.

Use Figures 11-4 through 11-12 for calculating the remote FEP consumption from the devices attached to it.

Figure 11-13 assumes frame size of 1024 bytes, which is the CP-6 default for Non-Public Data Network (PDN) connections. PDN connections require a frame size of 146 bytes which doubles FEP consumption.

AVERAGE RECORD SIZE IN BYTES

Figure 11-13. Remote FEP Performance - Input and Output, No Transaction Processing

Determination of Remote FEP Link Speed
One-half of the HDLC (X.25) link bandwidth in each direction between a local and a remote FEP is available for user data (i.e., terminals and devices on the remote FEP). If this is exceeded, non-symbiont output (e.g., timesharing terminals) has priority over symbiont output (e.g., URP, HASP, 2780,3780), although symbiont output will never be completely locked out.

Example: The following devices are on a remote FEP:
- 20, 30 cps asynchronous time-sharing terminals, 15 of which may be outputting currently.
- 1, 440 lpm URP printer with an average record length of 50 columns and a duty cycle of \(40 \%\).

The 15 outputting asynchronous time-sharing terminals will consume 450 bytes per second of bandwidth (\(30 \mathrm{cps} x 15\) terminals \(=450\) bytes per second). The 440 lpm printer will consume 146 bytes per second of bandwidth (\(440 \mathrm{lpm} x 50\) columns divided by 60 seconds per minute \(x .40\) duty cycle \(=146\) bytes per second). Therefore, a 9600 baud link is needed between the local and the remote FEP \((450+146=596\) bytes per second; 596 x 8 bits per byte x \(2=9536\) baud). Input is insignificant in this example.

\section*{DATANET 8/C CONFIGURATION EXAMPLES}

\section*{Example 非}

\section*{Customer requires}

50 Time sharing (T/S) async lines
Assume
30300 baud - Avg. input message size \(=10\) char/line
Avg. output message size \(=40\) char/line Avg. input typing rate \(=30 \mathrm{char} / \mathrm{min}\). Avg. terminal output rate \(=425\) char \(/ \mathrm{min}\).
and 201200 baud - Avg. input message size \(=10\) char/line Avg. output message size \(=40\) char/line Avg. input typing rate \(=30 \mathrm{char} / \mathrm{min}\). Avg. terminal output rate \(=650 \mathrm{char} / \mathrm{min}\).

19600 baud async line for input from a minicomputer - echo off; Avg. 60 char message; duty cycle \(80 \%\)

Spare CIBs and async lines for backup.

\section*{Solution}

Throughput calculations.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Item & \[
\begin{gathered}
\text { Terminal } \\
\text { Speed } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { (1) } \\
\# \\
\text { Lines }
\end{gathered}
\] & \begin{tabular}{l}
(2) \\
Avg. Msg. Length
\end{tabular} & ```
 (3)
Terminal Rate
 Char/Min
Per Terminal
``` & \[
\begin{gathered}
\text { (1) } \times(3) \\
\text { Total } \\
\text { Char/Min. }
\end{gathered}
\] & \[
\begin{gathered}
\% \\
\text { EEP }
\end{gathered}
\] & Figure \\
\hline T/S & 300 baud Input & 30 & 10 & 30 & 900 & 8\% & \(11-4\)
Non-Transparent \\
\hline & 300 baud Output & 30 & 40 & 425 & 12,750 & 7\% & 11-5 \\
\hline & 1200 baud Input & 20 & 10 & 30 & 600 & 4\% & Non-Transparent \\
\hline & 1200 baud Output & 20 & 40 & 650 & 13,000 & 8\% & 11-5 \\
\hline
\end{tabular}

Total T.S. \(=27 \%\)
Minicomputer 9600 baud Async Line
*Assume 8-10 format. Therefore
9600 baud \(=960 \mathrm{char} / \mathrm{sec}\).
960 char \(/ \mathrm{sec} \times 60 \mathrm{sec} / \mathrm{min} \times 80 \%\) duty Total FEP \(=105 \%\)--> Cache cycle \(=46,080 \mathrm{char} / \mathrm{min}\).

46,080* 78\% 11-4 Transparent

Memory calculations
Configuration
\(50 \mathrm{~T} / \mathrm{S}\) Async Terminals \(\pm 1\) Minicomputer (terminal)
51 Terminals
\begin{tabular}{|c|c|c|}
\hline Kernel & & 376K bytes \\
\hline Host Link & & \(=24 \mathrm{~K}\) bytes \\
\hline Async = & 44 K bytes \(+(51\) terminals x 2.4K Bytes/terminal) & \(=166.4 \mathrm{~K}\) bytes \\
\hline Total FEP & & \[
\begin{aligned}
= & 566.4 \mathrm{~K} \text { bytes } \\
& ->1024 \mathrm{~K} \text { bytes }
\end{aligned}
\] \\
\hline
\end{tabular}

Required Configuration Components
\begin{tabular}{cll} 
Quantity & \multicolumn{1}{c}{ MI } & \begin{tabular}{l} 
Description
\end{tabular} \\
1 & CPS81XX & \begin{tabular}{l} 
Central system - includes \\
DATANET \(8 / C\), console, coupler, \\
diskette, 1024 K bytes of FEP memory
\end{tabular} \\
1 & DCE8002 & \begin{tabular}{l} 
Additional chassis for 16 to 64 \\
line configurability.
\end{tabular} \\
1 & DCE8003 & \begin{tabular}{l} 
Processor Power Module - Cache
\end{tabular} \\
8 & VIP7801 & \begin{tabular}{l} 
Channel Interface Base + 4 Async \\
Channel Interfaces (8 Async Ports)
\end{tabular} \\
50 & T/S Terminals
\end{tabular}

\section*{Example \#2}

\section*{Customer requires}

75 Async Transaction Processing (T.P.) lines for 7 applications having the following attributes.

Application Transaction Type Fields Total Bytes Rate/Hour
\begin{tabular}{llrrr} 
A & System Input & 3 & 15 & 250 \\
& System Output & 10 & 100 & 250 \\
B & System Input & 1 & 10 & 600 \\
& System Output & 4 & 120 & 600 \\
C & System Input & 5 & 40 & 100 \\
D & System Input & 2 & 20 & 400 \\
E & System Input & 5 & 50 & 1500 \\
F & System Input & 10 & 30 & 1000 \\
G & System Output & 50 & 2000 & 30
\end{tabular}

These applications require 14 Forms Programs, each averaging 18 K bytes, although only 10 of these programs are required to be active at one time.

1 FEP-connected printer 600-lpm; Avg. Print Line 60 char; Duty cycle 50\%.

Spare CIBs and lines for backup
Solution

Throughput calculations

Total Bytes/ Rate/ Trans \% \%
Mode Application Transaction Type Fields Bytes Field Hour EEP/1000 Figure EEP
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline T.P. & A & System I & Input & 3 & 35 & 5 & 5 & 250 & 6 & 11-10 & 1.5 \\
\hline & & System O & Output & 10 & 100 & 10 & & 250 & 6 & 11-11 & 1.5 \\
\hline & B & System I & Input & 1 & 10 & 10 & 0 & 600 & 4 & 11-10 & 2.4 \\
\hline & & System O & Output & 4 & 120 & 30 & & 600 & 5 & 11-11 & 3.0 \\
\hline & C & System I & Input & 5 & 40 & 8 & 8 & 100 & 8 & 11-10 & 0.8 \\
\hline & D & System I & Input & 2 & 20 & 10 & & 400 & 5 & 11-10 & 2.0 \\
\hline & E & System I & Input & 5 & 50 & 10 & & 1500 & 10 & 11-10 & 15.0 \\
\hline & F & System I & Input & 10 & 30 & 3 & 3 & 1000 & 12 & 11-10 & 12.0 \\
\hline & G & System O & Output & 50 & 2000 & 40 & & 30 & 24 & 11-11 & 0.7 \\
\hline & & & & & & & & & Total & T.P. = & 39\% \\
\hline \begin{tabular}{l}
FEP \\
Perioheral
\end{tabular} & & Device Speed-LPM & Duty Cycle & & \[
\begin{aligned}
& \text { Total } \\
& \text { ines/Min }
\end{aligned}
\] & & \[
\begin{aligned}
& \text { Char/ } \\
& \text { Line }
\end{aligned}
\] & & Char
Min. & Figure & \[
\begin{gathered}
\% \\
\text { FEP }
\end{gathered}
\] \\
\hline Printer & & 600 & 50\% & & 300 & & 60 & & 18000 & 11-12 & 6\% \\
\hline & & & & & & & & & Tot & \(1 \mathrm{FEP}=\) & 44\% \\
\hline & & & 11- & & & & & & & P37-02 & \\
\hline
\end{tabular}

HONEYWELL CONFIDENTIAL AND PROPRIETARY


\section*{Example \#3}

\section*{Customer requires}

50 Async Transaction Processing (T.P.) lines for 7 applications having the following attributes.
\begin{tabular}{clccr} 
Application & Transaction Type & Fields & Total Bytes & Rate/Hour \\
& & & & \\
A & System Input & 3 & 15 & 170 \\
& System Output & 10 & 100 & 170 \\
B & System Input & 1 & 10 & 400 \\
& System Output & 4 & 120 & 400 \\
C & System Input & 5 & 40 & 70 \\
D & System Input & 2 & 20 & 225 \\
E & System Input & 5 & 50 & 1000 \\
F & System Input & 10 & 30 & 700 \\
G & System Output & 50 & 2000 & 20
\end{tabular}

These applications require 14 Forms Programs, each averaging 18K bytes, although only 10 of these programs are required to be active at one time.

A minicomputer as a workstation, connected over a 2400 baud 3780 line. The workstation will include:

1 Printer 600-lpm; Avg. print line 60 char;
Duty cycle 30\%
1 Reader 500-cpm; Avg. card length 20 char; Duty cycle 10\%

1 Operator's Console - may be connected either through CP-6 IOM or via any spare FEP line.

Spare CIBs and Async lines for backup.

\section*{Solution}

Throughput calculations
Total Bytes/ Rate/ Trans \% \%
Mode Application Transaction Type Fields Bytes Field Hour FEP/1000 Figure FEP
\begin{tabular}{lllrrrrrrr} 
T.P. & A & System Input & 3 & 15 & 5 & 170 & 6 & \(11-10\) & 1 \\
& System Output & 10 & 100 & 10 & 170 & 6 & \(11-11\) & 1 \\
& B & System Input & 1 & 10 & 10 & 400 & 3 & \(11-10\) & 1 \\
& System Output & 4 & 120 & 30 & 400 & 4 & \(11-11\) & 2 \\
& C & System Input & 5 & 40 & 8 & 70 & 9 & \(11-10\) & 1 \\
& D & System Input & 2 & 20 & 10 & 225 & 4 & \(11-10\) & 1 \\
E & System Input & 5 & 50 & 10 & 1000 & 10 & \(11-10\) & 10 \\
F & System Input & 10 & 30 & 3 & 700 & 12 & \(11-10\) & 8 \\
G & System Output & 50 & 2000 & 40 & 20 & 24 & \(11-11\) & - \\
& & & & & & & Total T.P. & \(=\) & \(25 \%\)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Work Stat. & \[
\begin{aligned}
& \text { RBT } \\
& \text { Device }
\end{aligned}
\] & \[
\begin{gathered}
\# \\
\text { Lines }
\end{gathered}
\] & Avg. Msg. Length (Char/Line) & Printer/Reader Speed LPM/CPM & Duty Cycle & Total Char/Min. & Figure & \[
\begin{gathered}
\boldsymbol{q} \\
F E P
\end{gathered}
\] \\
\hline \multirow[t]{4}{*}{3780} & Printer & 1 & 60 & 600 & 30\% & 10,800 & 11-7 & 4\% \\
\hline & Reader & 1 & 20 & 500 & 10\% & 1,000 & 11-7 & 1\% \\
\hline & & & & & Total & Workstation & = & 5\% \\
\hline & & & & & Total & FEP & \(=\) & 30\% \\
\hline
\end{tabular}

Memory Calculations
\begin{tabular}{lrl} 
Configuration & 50 & T.P. Async Terminals \\
& 10 & Forms Programs \\
& 1 & 3780 RBT Workstation (Terminal)
\end{tabular}
\begin{tabular}{|c|c|}
\hline Kernel & \(=376 \mathrm{~K}\) bytes \\
\hline Host Line & \(=24 \mathrm{~K}\) bytes \\
\hline Async \(=44 \mathrm{~K}\) bytes + ( 50 terminals \(\times 2.4 \mathrm{~K}\) bytes/terminal & \(=164 \mathrm{~K}\) bytes \\
\hline \begin{tabular}{l}
Forms Int \(=120 \mathrm{~K}\) bytes \(+(50\) terminals \(\times 6 \mathrm{~K}\) bytes \(/\) terminal \()\) \\
+ (Program Buffer \(=10\) Programs \(x 18 \mathrm{~K}\) bytes/ \\
Program +8 K bytes, arbitrary overflow assignment).
\end{tabular} & \(=608 \mathrm{~K}\) bytes \\
\hline BSC & \(=32 \mathrm{~K}\) bytes \\
\hline \(\mathrm{RBT}=18 \mathrm{~K}\) Bytes \(+(1\) terminal \(\times 8 \mathrm{~K}\) Bytes/terminal \()\) & \(=26 \mathrm{~K}\) bytes \\
\hline Total FEP & \[
\begin{aligned}
= & 1230 \mathrm{~K} \text { bytes } \\
& -\infty 1536 \mathrm{~K}
\end{aligned}
\] \\
\hline
\end{tabular}

Required Configuration Components
\begin{tabular}{ccl} 
Quantity & MI & \begin{tabular}{l} 
Description \\
1
\end{tabular} \\
\hline 1 & CPS81XX & \begin{tabular}{l} 
Central system - includes DATANET 8/C, \\
console, coupler, diskette, 1024K bytes \\
of FEP memory.
\end{tabular} \\
7 & DCF8002 & \begin{tabular}{l} 
Additional Chassis for 16 to 64 lines \\
configurability.
\end{tabular} \\
1 & DCF8007 & \begin{tabular}{l} 
Channel Interface Base + 4 Async Channel \\
Interfaces (8 Async Ports).
\end{tabular} \\
1 & DCF8011 & \begin{tabular}{l} 
Channel Interface Base
\end{tabular} \\
1 & VIP7801 & Channel Interface - 2 sync lines \\
50 & Memory Increment 1024-1536K bytes
\end{tabular}

\section*{Example 非}

\section*{Customer requires}

Remote \(\operatorname{FEP}(s)\) with 20 async T.P. lines and a 300 lpm printer for 3 applications having the following attributes;

Application \(A\) is quite capable and performs several different kinds of things -- which involve several different combinations of system input and system output transactions. Applications B and C are "report" applications. These applications only process system output transactions.
\begin{tabular}{clrrr} 
Program & Transaction & Fields & \begin{tabular}{c} 
Total \\
Bytes
\end{tabular} & Rate/Hr \\
A & System Input & 5 & & \\
& System Output & 50 & 70 & 125 \\
& System Input & 3 & 750 & 50 \\
& System Input & 60 & 90 & 150 \\
& System Output & 3 & 10 & 40 \\
& System Output & 150 & 1800 & 75 \\
& B & System Output & 300 & 1700 \\
C & System Output & 5 & 80 & 500
\end{tabular}

These applications require 8 Forms Programs each averaging 25 K bytes, although only 4 of these programs are required to be active at one time.

The remote FEP(s) will also have:
100 T/S Async Lines
60. 300 baud - Avg. input message size \(=10\) char/line Avg. output message size \(=40\) char/line Avg. input typing rate \(=30 \mathrm{char} / \mathrm{min}\). Avg. terminal output rate \(=425\) char \(/ \mathrm{min}\).

401200 baud - Avg. input message size = 10 char/line Avg. output message size \(=40\) char/line Avg. input typing rate \(=30\) char \(/ \mathrm{min}\). Avg. terminal output rate \(=650\) char \(/ \mathrm{min}\).

\section*{Customer Requires (Con't)}

In addition to the remote \(F E P\) requirements, the customer requires.
100 local T/S Async Lines

60300 baud - Avg. input message size \(=10\) char/line
Avg. output message size \(=40\) char/line
Avg. input typing rate \(=30\) char \(/ \mathrm{min}\).
Avg. terminal output rate \(=425\) char \(/ \mathrm{min}\).

401200 baud - Avg. input message size \(=10\) char/line
Avg. output message size \(=40\) char/line
Avg. input typing rate \(=30\) char/min.
Avg. terminal output rate \(=650\) char \(/ \mathrm{min}\).

125 local Async T.P. Lines, for 7 applications having the following attributes:

Application Transaction Type Fields Total Bytes Rate/Hour
\begin{tabular}{llrrr} 
A & System Input & 3 & 15 & 420 \\
& System Output & 10 & 100 & 420 \\
B & System Input & 1 & 10 & 1000 \\
& System Output & 4 & 120 & 1000 \\
C & System Input & 5 & 40 & 170 \\
D & System Input & 2 & 20 & 625 \\
E & System Input & 5 & 50 & 2500 \\
F & System Input & 10 & 30 & 1700 \\
G & System Output & 50 & 2000 & 50
\end{tabular}

These applications require 14 Forms Programs, each averaging 18 K bytes, although only 10 of these programs are required to be active at one time.

19600 baud Async line for input from a minicomputer - echo off; Avg. 60 char. message; duty cycle \(80 \%\)

\section*{Customer Requires (Cont'd)}

3 Sync lines for remote batch
CP-6 as a workstation to a foreign host
4800 baud HASP line FEP Printer - 600-1pm; Avg. Print Line 60 char; Duty cycle \(40 \%\)
Host Connected Reader - \(500-\mathrm{cpm}\); Avg. Card Length 40 char; Duty cycle 20\%

Operator's Console

A minicomputer as a workstation
2400 baud 3780 line Printer \(600-1 \mathrm{pm}\); Avg. print line 60 char; Duty cycle \(30 \%\)
Reader \(500-\mathrm{cpm} ;\) Avg. card length 20 char; Duty cycle 10\%

Operator's Console
2400 baud line to a CP-6 support computer (used-to expedite transmittal of software patches to the customer and transmittal of customer problems to Honeywell).

FEP Printer 600-lpm; Avg. Print line 60 char; Duty cycle 50\%
Spare CIBs and lines for backup.

\section*{Solution}

Throughput calculations, remote FEP
Total Bytes/ Rate/ Trans \% \% Mode Application Transaction Type Fields Bytes Field Hour EEP/1000 Eigure EEP
\begin{tabular}{lllrrrrrr} 
T.P. & A & System Input & 5 & 40 & 8 & 125 & 9 & \(11-10\) \\
& System Output & 50 & 750 & 15 & 50 & 18 & \(11-11\) & 1 \\
& System Input & 3 & 20 & 7 & 150 & 7 & \(11-10\) & 1 \\
& System Input & 60 & 900 & 15 & 50 & 125 & \(11-10\) & 6 \\
& System Output & 3 & 10 & 3 & 400 & 4 & \(11-11\) & 2 \\
& System Output & 150 & 1800 & 12 & 75 & 48 & \(11-11\) & 4 \\
& & System Output & 300 & 1700 & 6 & 75 & 87 & \(11-11\) \\
\hline & B & System Output & 5 & 80 & 16 & 500 & 6 & \(11-11\) \\
& & & & & & &
\end{tabular}

Total T.P. \(=\overline{25 \%}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & Terminal
\(\qquad\) & \[
\begin{gathered}
\text { (1) } \\
\# \\
\text { Lines }
\end{gathered}
\] & \begin{tabular}{l}
(2) \\
Avg. Msg. Length
\end{tabular} & \begin{tabular}{l}
(3) \\
Terminal Rate Char/Min \\
Per Terminal
\end{tabular} & ```
(1) x (3)
    Total
Char/Min.
``` & Figure & \[
\begin{gathered}
\% \\
\text { EEP }
\end{gathered}
\] \\
\hline T/S & 300 baud Input & 60 & 10 & 30 & 1,800 & \begin{tabular}{l}
\[
11-4
\] \\
Non-Transparent
\end{tabular} & 16\% \\
\hline & 300 baud Output & 60 & 40 & 425 & 25,500 & 11-5 & 14\% \\
\hline & 1200 baud Input & 40 & 10 & 30 & 1,200 & \begin{tabular}{l}
\[
11-4
\] \\
Non-Transparent
\end{tabular} & 8\% \\
\hline & 1200 baud Output & 40 & 40 & 650 & \[
26,000
\] & 11-5 & 16\% \\
\hline & & & & & Tot & al \(\mathrm{T} / \mathrm{S}=\) & 54\% \\
\hline & & & & & Remo & te FEP Total = & 79\% \\
\hline
\end{tabular}

\section*{. . 1 remote FEP is adequate.}

\section*{Solution (Cont.)}

Throughput calculations, local FEP.
\begin{tabular}{lcccc}
Mode & Bytes/Record & Char/Min & Eigure & \& FEP \\
Remote FEP & & & & \\
T.P. & & & & \(5 \%\) \\
T/S & 25 & 54,500 & \(11-13\) & \(22 \%\)
\end{tabular}

Total Remote FEP \(=27 \%\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & Terminal
\(\qquad\) & \[
\begin{gathered}
\text { (1) } \\
\text { \# } \\
\text { Lines }
\end{gathered}
\] & \begin{tabular}{l}
(2) \\
Avg. Msg. Length
\end{tabular} & \begin{tabular}{l}
(3) \\
Terminal Rate Char/Min Per Terminal
\end{tabular} & \[
\begin{aligned}
& \text { (1) } \times(3) \\
& \text { Total } \\
& \text { Char/Min. }
\end{aligned}
\] & Figure & \[
\begin{gathered}
q \\
\text { EEP }
\end{gathered}
\] \\
\hline T/S & 300 baud Input & 60 & 10 & 30 & 1,800 & \begin{tabular}{l}
\[
11-4
\] \\
Non-Transparent
\end{tabular} & 16\% \\
\hline & 300 baud Output & 60 & 40 & 425 & 25,500 & 11-5 & 14\% \\
\hline & 1200 baud Input & 40 & 10 & 30 & 1,200 & \begin{tabular}{l}
11-4 \\
Non-Transparent
\end{tabular} & 8\% \\
\hline & 1200 baud Output & 40 & 40 & 650 & 26,000 & 11-5 & 16\% \\
\hline
\end{tabular}
\[
\text { Total T/S }=54 \%
\]

Total Bytes/ Rate/ Trans \% \%
Application Transaction Type Fields Bytes Field Hour EEP/1000 Figure EEP
\begin{tabular}{lllrrrrrrr}
T.P. & A & System Input & 3 & 15 & 5 & 420 & 6 & \(11-10\) & 3 \\
& System Output & 10 & 100 & 10 & 420 & 6 & \(11-11\) & 3 \\
& B & System Input & 1 & 10 & 10 & 1000 & 3 & \(11-10\) & 3 \\
& System Output & 4 & 120 & 30 & 1000 & 4 & \(11-11\) & 4 \\
& C & System Input & 5 & 40 & 8 & 170 & 9 & \(11-10\) & 2 \\
& D & System Input & 2 & 20 & 10 & 625 & 4 & \(11-10\) & 3 \\
& E & System Input & 5 & 50 & 10 & 2500 & 10 & \(11-10\) & 25 \\
& F & System Input & 10 & 30 & 3 & 1700 & 12 & \(11-10\) & 20 \\
G & System Output & 50 & 2000 & 40 & 50 & 24 & \(11-11\) & 1 \\
& & & & & & & Total T.P. & \(=\) & \(64 \%\)
\end{tabular}

Throughput calculations, local FEP (Cont.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Work Stat. & \[
\begin{aligned}
& \text { RBT } \\
& \text { Device }
\end{aligned}
\] & \[
\begin{gathered}
\# \\
\text { Lines }
\end{gathered}
\] & Avg. Msg. Length (Char/Line) & Printer/Reader Speed LPM/CPM & Duty Cycle & Total Char/Min. & \[
\underset{\text { FEP }}{\frac{q}{6}}
\] & Figure \\
\hline HASP & Printer & 1 & 60 & 600 & 40\% & 14,400 & 5\% & 11-7 \\
\hline & Reader & 1 & 40 & 500 & 20\% & 4,000 & \(2 \%\) & 11-7 \\
\hline \multirow[t]{4}{*}{3780} & Printer & 1 & 60 & 600 & 30\% & 10,800 & 4\% & 11-7 \\
\hline & Reader & 1 & 20 & 500 & 10\% & 1,000 & 1\% & 11-7 \\
\hline & \[
\begin{aligned}
& \text { CP-6 } \\
& \text { Support }
\end{aligned}
\] & 1 & - & - & - & - & 0* & \\
\hline & & & & & Total & RBT \(=\) & 12\% & \\
\hline
\end{tabular}

Total Char/Min \(=\) Avg. Msg. Length * Device Speed * Duty Cycle

Minicomputer \(\quad 9600\) baud Async Line \(\quad 46,080 \%\) 78\% 11-4
Avg. Message Length \(=60\) Char/Line Transparent
* Infrequent, low levels of use. FEP consumption assumed negligible.
** Assume 8-10 format. Therefore 9600 baud \(=960\) char/sec. \(960 \mathrm{char} / \mathrm{sec} \times 60 \mathrm{sec} / \mathrm{min} \times 80 \%\) duty cycle \(=46,080 \mathrm{char} / \mathrm{min}\).

Throughput calculations, local FEP (Cont.)
\begin{tabular}{lccccccc}
\begin{tabular}{c}
FEP \\
Peripherals
\end{tabular} & \begin{tabular}{c}
Device \\
Speed-LPM
\end{tabular} & \begin{tabular}{c}
Duty \\
Cycle
\end{tabular} & \begin{tabular}{c}
Total \\
Lines/Min
\end{tabular} & \begin{tabular}{c}
Char/ \\
Line
\end{tabular} & \begin{tabular}{c}
Char/ \\
Mrinter
\end{tabular} & 600 & \(50 \%\)
\end{tabular}
- . 3 FEP's required

To configure these you assume the following.
FEP \#1
```

50 T/S + Minicomputer
27% + 78% = 105% (Processor power module enhancement
(cache) required to handle volume on one FEP.)

```

FEP \#2
\[
\begin{aligned}
50 \text { T/S } & + \text { HASP }+ \text { CP-6 Support }+ \text { RFEP }+3780 \\
27 \% & +7 \%+0 \%+27 \%+5 \%=66 \%
\end{aligned}
\]

FEP * 3
125 T.P. + FEP Printer \(64 \%+6 \%=70 \%\)

Note: Cache recommended above 90\% FEP utilization to ensure adequate capacity for peak loads.

* May be connected either through CP-6 IOM or via any spare FEP line.

Figure 11-14. DATANET 8/C Configuration
Example \#4

Remote FEP link speed determination.

The remote FEP has both Transaction Processing and timesharing activities on it.

For Transaction Processing, the user data requirements are:

Total
\begin{tabular}{clrrrr}
Program & Transaction & Bytes & Rate/Hr & Bytes/Hr & Bytes/Sec \\
& & & & & \\
A & System Input & 40 & 125 & 5,000 & 1 \\
& System Output & 750 & 50 & 37,500 & 10 \\
& System Input & 20 & 150 & 3,000 & 1 \\
& System Input & 900 & 50 & 45,000 & 13 \\
& System Output & 10 & 400 & 4,000 & 1 \\
& System Output & 1800 & 75 & 135,000 & 38 \\
B & System Output & 1700 & 75 & 127,500 & 35 \\
C & System Output & 80 & 500 & 40.000 & 11
\end{tabular}

Total T.P. \(=110\)
For timesharing, the user data requirements are (from throughput calculations, remote FEP)

54,500 char \(/ 60\) min \(=908\) char(bytes) min sec sec.

The total FEP user data requirement is \(110+908=1018\) Bytes sec.

The baud link required is thus:
\(1018 \frac{\text { bytes }}{\text { sec }} \times \frac{8 \text { bits }}{\text { byte }} \times 2=16,288\) bps \(\rightarrow 19,200 \mathrm{bps}\)
Therefore, the DCF8020, 19,200 bps HDLC link can be used.

FEP memory calculations are as shown below:
FEP \#1
Configuration \begin{tabular}{ll}
50 & T/S Async Terminals \\
+1 & Minicomputer (terminal)
\end{tabular}
\begin{tabular}{ll}
Kernel & \(=376 \mathrm{~K}\) bytes \\
Host Link & \(=24 \mathrm{~K}\) bytes \\
\begin{tabular}{ll}
Async \(=44 \mathrm{~K}\) bytes +\begin{tabular}{c}
\((51\) terminals \(\times 2.4 \mathrm{~K}\) bytes/ \\
terminal \()\)
\end{tabular} & \(=166.4 \mathrm{~K}\) bytes \\
\hline Total FEP 1 &
\end{tabular} & \(=566.4 \mathrm{~K}\) bytes \\
&
\end{tabular}

FEP \#2

\begin{tabular}{|c|c|}
\hline \begin{tabular}{rll}
Configuration & 125 & T.P. Async Terminals \\
& 10 & Forms Programs \\
& 1 & FEP Connected Line Printer
\end{tabular} & \\
\hline Kernel & \(=376 \mathrm{~K}\) bytes \\
\hline Host Link & \(=24 \mathrm{~K}\) bytes \\
\hline \[
\text { Async }=44 \mathrm{~K} \text { bytes }+\begin{gathered}
(125 \text { terminals } \times 2.4 \mathrm{~K} \text { bytes/ } \\
\text { terminal })
\end{gathered}
\] & \(=344 \mathrm{~K}\) bytes \\
\hline ```
Forms Int = 120K bytes + (125 terminals x 6K bytes/
 terminal) + (Program Buffer =
 10 Programs x 18K bytes/Program
 + 8K bytes, arbitrary overflow
 assignment)
``` & \(\doteq 1058 \mathrm{~K}\) bytes \\
\hline URP \(=28 \mathrm{~K}\) Bytes + (1 device \(\times 4 \mathrm{~K}\) Bytes/deyice) & \(=32 \mathrm{~K}\) bytes \\
\hline Total FEP 3 & \[
\begin{aligned}
& =1834 \mathrm{~K} \text { bytes } \\
& -->2048 \mathrm{~K} \text { byt }
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Remote FEP}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{lrl} 
Configuration & 100 & T/S Async Terminals \\
& 20 T. P. Async Terminals \\
& 10 Forms Programs \\
& 1 & FEP Connected Line Printer
\end{tabular} & \\
\hline Kernel & \(=376 \mathrm{~K}\) bytes \\
\hline ```
Async = 44K bytes + (120 terminals x 2.4K bytes/
    terminal)
``` & \(=332 \mathrm{~K}\) bytes \\
\hline Connection to local FEP & \(=60 \mathrm{~K}\) bytes \\
\hline URP \(=28 \mathrm{~K}\) bytes \(+(1\) device x 4 K bytes/device \()\) & \(=32 \mathrm{~K}\) bytes \\
\hline \[
\begin{aligned}
\text { Forms Int }=120 \mathrm{~K} \text { bytes }+ & (20 \text { terminals } \times 6 \mathrm{~K} \text { bytes/ } \\
& \text { terminal) }+ \text { (Program Buffer }= \\
& 4 \text { Programs } \times 25 \mathrm{~K} \text { bytes/Program } \\
& +4 \mathrm{~K} \text { bytes, arbitrary overflow } \\
& \text { assignment) }
\end{aligned}
\] & \(=344 \mathrm{~K}\) bytes \\
\hline Total Remote FEP & \[
\begin{aligned}
&=1144 \mathrm{~K} \text { bytes } \\
&-\infty 1536 \mathrm{~K} \text { byt }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{FEP1 Remote Remen} \\
\hline FEP1 & FEP2 & FEP3 & FEP & M.I. & Description \\
\hline \multirow[t]{3}{*}{1} & \multirow{3}{*}{1} & \multirow{3}{*}{1} & & CPS81XX & Central System - includes DATANET 8/C, console, coupler, diskette, 1024 K bytes of FEP memory. \\
\hline & & & 1 & DCU8011 & Additional Freestanding FEP \\
\hline & & & 1 & DCF8008 & 30 cps Communications Console \\
\hline \multirow[t]{2}{*}{1} & 1 & 1 & 1 & DCE8002 & Additional Chassis for 16 to 64 line configurability. \\
\hline & 1 & 1 & 1 & DCE8004 & Additional Chassis for 64-128 line connectability. \\
\hline \multirow[t]{2}{*}{1} & & & & DCE8003 & Processor Power Module-Cache \\
\hline & 1 & 1 & & DCE8006 & Host Connection - Coupler \\
\hline \multirow[t]{9}{*}{8} & 7 & 16 & 15 & DCF8030 & Cnannel Interface Base +4 Async Cnannel Interface (8 Async Ports) \\
\hline & 2 & & 1 & DCF8007 & Channel Interface Base \\
\hline & 2 & & & DCF80 11 & Channel Interface - 2 Sync Lines \\
\hline & 1 & & 1 & DCF8020 & Channel Interface - 19,200 bps HDLC Link \\
\hline & 1 & 1 & 1 & PRM9630 & Line Printer Device Pac \\
\hline & & & 1 & PRU96 17 & 300 LPM Printer \\
\hline & 1 & 1 & & PRU96 18 & 600 LPM Printer \\
\hline & & 1 & 1 & DCM8008 & Memory Increment 1024-1536K bytes \\
\hline & & 1 & & DCM8005 & Memory Increment 1536-2048K bytes \\
\hline 50 & 50 & 125 & 120 & VIP7801 & T/S and T.P. Terminals \\
\hline
\end{tabular}

SECTION 12
Peripheral Switches

\section*{CONFIGURING MANUAL PERIPHERAL_SWITCH_SUBSYSTEMS}

The following is a listing of manual peripheral switch subsystem marketing identifiers (MI) and uneir functions.

\section*{MI Description}

PSU0200 Switch console and power supply. Includes one physical PSI channel (URP/MTP/MSP) in IOM and one PSFU511.

PSU0201 Switch console and power supply. Same as PSUO200 except that no IOM channel is included. Includes one PSF0511.

PSF0511 Manual switch unit to switch a device to one of two device processors or to select one of two devices to switch to a device processor. Does not include a cnannel in IOM. Usable with URP and MTP devices only. Could also be used to switch a PSI channel in IOM between two device processors URP, MTP, or MSP.

PSF0512 Manual switch unit to switch a device processor to one of two IOM PSI type physical channels. Includes one IOM PSI channel. Usable with URP, MTP, and MSP only.

\section*{Remarks}

Every manual switch subsystem must include only one switch console, either PSUO200 or PSU0201. Each console handles up to 16 switch units.

Each console includes one. May be mixed with PSF0512 to maximum of 16 switch units per console.

May be mixed with PSF0511 to maximum of 16 switch units per console.

Figure 12-1 illustrates the configurator for PSUO200 manual peripheral switch subsystem.

Standard To 15 More Optional Switch Units

Figure 12-1. PSU0200 Configurator

Figure 12-2 illustrates the configurator for PSU0201 manual peripheral switch subsystem.

Standard
To 15 More Optional Switch Units

*3 channel spaces (board slots) required in the IOM.

Figure 12-2. PSU0201 Configurator

\section*{Example 1}

Figure 12-3 illustrates the switching of a peripheral device between two device processors. For example, to switch a tape unit between two MTPs or a card reader between two URPs.

Note: The reverse approach could also be used, i.e., to select one of two devices to connect a device processor.

Figure 12-3. Switching Between Two Device Processors

\section*{Example 2}

Figure 12-4 illustrates the switching of a device processor between two physical IOM PSI channels. For example, to switch an MTP between two physical IOM PSI channels.

Note: The reverse approach could also be used, i.e., to select one of two device processors to connect to an IOM PSI channel. Since only one IOM channel is required, and one each would have been included in the prices of the device processors, PSU0201 would be the lower priced approach. PSU0201 price does not include an IOM channel, which would be superfluous in this case.

Figure 12-4. Switching Between Two Physical IOM PSI Channels

\section*{Example 3}

Figure 12-5 illustrates the switching of a device between two device processors and switching a device processor between two IOM physical channels.

In this example you would order one PSF0511 switch unit in addition to the PSUO200 console, which includes one PSFO511. Note that this example could be handled by configuring a PSUO201 console and one PFSO512 switch unit at a slightly higher cost.

Figure 12-5. Switching Between Two Device Processors and Between Two IOM Physical Channels

SECTION 13
Configuring Motor-Generator and Control Sets

The following are the marketing identifiers for the motor-generator control units and motor-generators.

MI Description
MGS6001 Motor-Generator Control Unit \& Motor Generator 31.1 kVA, \(60 \mathrm{~Hz}, 208 / 440 \mathrm{Vac}\) Input

MGS6002 Motor-Generator Control Unit \& Motor Generator 62.6 kVA, \(60 \mathrm{~Hz}, 440 / 480 \mathrm{Vac}\) Input

MGS6003 Motor-Generator Control Unit \& Motor Generator 62.6 kVA, \(50 \mathrm{~Hz}, 380 \mathrm{Vac}\) Input

MGS6004 Motor-Generator Control Unit \& Motor Generator 62.6 kVA, \(60 \mathrm{~Hz}, 208 \mathrm{Vac}\) Input

At least one set must be ordered for each DPS 8/52C/62C/70C system if the PSS8000 Capacitor Ride-Through options or UPS are not used. In some cases two may be desirable, depending on the size of the system. The DPS \(8 / 47 \mathrm{C} / 49 \mathrm{C}\) include a built-in power ride-through of 100 ms , i.e., the ability to continue operation through a power interruption of up to 100 ms . For components contained in the DPS 8/47C/49C Central System Cabinet, it may not be necessary to use a motor-generator set (MGS). An MGS may be desirable on these systems if they contain freestanding controllers in their configuration. The need or desirability of an MGS should always be carefully evaluated by the customer, in conjunction with an HIS Customer Services representative.

To be more competitive in bidding new systems, you may choose not to include the price of the motor-generator and control set as part of the system proposal. The motor-generator ride-through (duration of one second) and electrical noise reduction capabilities would be beneficial to most computer systems; therefore, it should be considered a site preparation item and included in the site prep section of your proposals, but denoted as "to be provided separately" or "not included in proposal pricing" so as to help avoid any confusion or claim.

Motor generator and control sets are used in applying power in an orderly fashion and in regulating the electrical quality fed to the hardware. They level out voltage variations and compensate for power interruptions for one second. The length of period is affected by the load imposed by the configuration. Check with Customer Services for specific figures.

Determine which model to order in the following way:
1. Decide on your complete system configuration - central system, peripherals, FEPs, and consoles.
2. Refer your configuration to your pertinent Customer Services branch. They will use data on the kVA load applied by each component in your configuration. Adding the individual kVA loads gives a total figure which determines which MGS type number to order. Do not skimp on the MGS used. Discuss with Customer Services the need or desirability of using two units in the specific customer case. The price of these units is often significant in the typical total system price, but they serve a very important function in helping maintain the DPS 8/C system in an available condition.
3. The sets are heavy, bulky, noisy, and unattractive. They do not require the same air conditioning levels as the DPS 8/C systems themselves. Frequently, they are installed away from people in order to avoid noise and appearance problems. For this reason it may be undesirable to bid a minimal MGS. Your customer will grow. Where practicable discuss the alternatives and costs with your customer and suggest some growth leeway before an MGS swap would be involved.

While electric utility power systems are reliable, they serve many loads of varying characteristics. The loads are switched off and on continuously. Frequently, voltage transients upset computer systems. By using a flywheeltype, motor-generator set to supply power to critical devices, the effects of voltage transients and short duration voltage dips can be reduced.

It is recommended that battery backup units (PSS8002), when used, be connected directly to the main power system rather than through the motor generator unit. This is due to the fact that the motor generator will likely not be in the same room as the battery backup and thus in the event of a power interruption, the system operator may not be able to physically access and activate the MGS unit before the battery backup system loses power.

A tiered packaging structure for CP-6 software is currently in effect. The CP-6 software packages are linked to the performance level of the host CP-6 hardware. Marketing Identifiers for CP-6 software packages are given below.

Marketing
Identifier
Description
8/47C Software package
8/49C/52C Software package
8/62C Software package
8/70C Software package

For each of the Marketing Identifiers above, the package contains:
Control Program-6 (SFS6 120)
Access Modes (SFS6121)
Local Communications (SFC6120)
FORTRAN (SFL6120)
APL (SFL6 121)
BASIC (SFL6122)
RPG-II (SFL6 123)
COBOL 74 (SFL6124)
PL-6 (SFL6 125)
Assembler (SFP6120)
Math Library (SFR6001)
TEXT (SFP6121)
SORT/MERGE (SFU6 120)
SYSTEM AIDS (SFU6011)
Transaction Processing (SFS6 122)
TP Forms Processor (SFU6121)
In the event of any Central Processor upgrade, the license for this CP-6 Software Package will terminate. Honeywell will license an equivalent CP-6 Software Package in accordance with license fees and terms as applicable to the upgraded Central Processor. (The new CP-6 Software Package Marketing Identifier must be ordered and the new Software Package must be installed.)

If the package is not chosen, the items may be ordered individually as follows:
```

    Marketing
    Identifier Description _
    SFS6120 Control Program-6
    SFS6121 Access Modes
    SFC6120 Local Communications
    SFL6120 FORTRAN
    SFL6121 APL
    SFL6122 BASIC
    SFL6123 RPG-II
    SFL6124 COBOL 74
    SFL6125 PL-6
    SFP6120 Assembler
    SFR6001 Math Library
    SFP6121 TEXT
    SFU6120 SORT/MERGE
    SFU6011 SYSTEM AIDS
    SFS6122 Transaction Processing
    SFU6121 TP Forms Processor
    In addition, separate, non-packaged items are:
Marketing
Identifier
SFD6121 IDS II
SFD6120 IDP
SFC6121 Remote Communications (one required per remote FEP)
SFH6200 Personal Computing Facility
SFD6110 ARES
SFH6201 Electronic Mail

```

\section*{Example}

An 8/52C customer desiring the software package, IDS II and IDP would order the software package on DPS 8/52C (SFS6145), IDS II (SFD6121) and IDP (SFD6120), Should the customer upgrade to 8/62C performance, the new software would be the software package on DPS 8/62C (SFS6150), IDS II (SFD6121) and IDP (SFD6120). (SFS6 150 must be ordered and installed.)

\section*{APPENDIX A}

\section*{CHECKLIST CONFIGURATOR}

\author{
This appendix is also published as a freestanding document, Order No. DP54
}

\section*{PREFACE}
This checklist configurator provides helpful information for ordering
DPS \(8 / C\) system components and options. This document should be used
in conjunction with the DPS \(8 / C\) Configuration Guide, Order No. DP37. in conjunction with the DPS 8/C Configuration Guide, Order No. DP37.
© Honeywell Information Sytems Inc., 1983
CONTENTS

Page

Figure A-1. DPS 8/47C/49C Central Systems and Major Subsystems A-5
Figure A-2. DPS 8/52C/62C/70C Central Systems and Major A-6 Subsystems

Figure A-3. IOM-Connected Console A-7
Figure A-4. Communications Subsystem A-8
Figure A-5. Magnetic Tape Subsystem A-9
Figure A-6. Mass Storage Subsystem A-10
Figure A-7. Unit Record Subsystem A-11
Figure A-8. DPS 6 Peripherals A-13
Figure A-9. Peripheral Switches A-14
Figure A-10. Motor Generators/Capacitor Ridethroughs A-15

This checklist configurator provides a convenient way to determine that 1) all required components of a CP-6 DPS \(8 / \mathrm{C}\) system are included in an order, and 2) that all required prerequisites are in fact, ordered for desired options. This checklist will assist in generating correct, connectable systems; it will not ensure that system or component performance, load balancing, redundancy, etc. requirements will be met. These parameters are discussed in the appropriate chapters of the CP-6 DPS 8/C Configuration Guide.

To use the checklist configurator, first determine which DPS \(8 / C\) model is desired. Locate that model on either Figure A-1 or Figure A-2 and check the indicated marketing identifier (M.I.). For each DPS 8/C model, required components are indicated by solid lines. (All items indicated as Basic are automatically included with the system M.I. and do not have to be ordered individually.) Optional components are indicated by dotted lines. Components having prerequisites are indented below their prerequired components. Additional relevant configuration rules are given in the indicated footnotes. By checking off the M.I.s for all required components, desired options, and necessary prerequisites, complete and accurate configurations may be established.

DPS 8/47C, 8/49C Central Systems and Major Subsystems
Figure A-1
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { Central Systems } \\
& \text { DPS 8/52C, } \\
& \text { 8/62C, 8/70C }
\end{aligned}
\]} & \multirow[t]{4}{*}{(DPS 8/52C) \(\qquad\) -Upgrade to DPS 8/62C --------Additional DPS 8/52C CPU I - Add CPU upgrade to CPU8174 -} & (1) & CPS8173 \\
\hline & & (10) & CPK8164 \\
\hline & & & CPU8173 \\
\hline & & & CPK8174 \\
\hline \multirow[t]{6}{*}{} & or-(DPS 8/62C) & & CPS8174 \\
\hline & -Upgrade toDPS 8/70C ------- & (11) & CPK8172 \\
\hline & Additional DPS \(8 / 62 \mathrm{C}\) CPU & & CPU8174 \\
\hline & - Add CPU upgrade to CPU8178 - & (8) & CPK8178 \\
\hline & (DPS 8/70 & & CPS8178 \\
\hline & -Additional CPUs (max. of 5) - - - - - & & CPU8178 \\
\hline
\end{tabular}
- IOM (Basic) - \(\mathbf{3 6}\) slots

-Memory (16 MB Basic)

\((2,3,4)\)
CMM8020
- Battery back-up
(3) PSS8002
-IOM-connected console (see Figure A - 3)
-Communication subsystem (see Figure A-4)
-Magnetic tape subsystem (see Figure A-5)
-Mass storage subsystem (see Figure A - 6)
-Motor generators/capacitor ridethroughs (see Figure A-10)
-Unit record subsystem (see Figure A-7)
1 Peripheral switches (see Figure A-9)
-Tandem Systems - (6) RSF8002

Notes:
(1) Includes 1 CPU, SCU and IOM, 16 MB main memory, 1 communications subsystem with host connect, and 1 communications subsystem connected console.
(2) 1 SCU required per 16 MB of memory or fraction thereof.
(3) 1 PSS 8002 required per 16 MB of memory or fraction thereof for all CP6 systems without UPS.
(4) Up to a max. of 64 MB .
(5) Total number of CPUs and IOMs must be 8 or less.
(6) Requires two CPS8173/8174/8178, oneRSF8002 to comprise a tandem system.
(7) Requires CPK 8164.
(8) Requires CPK8172.
(10) Requires CPK8174 if system includes CPU8173.
(11) Requires CPK8178 if system includes CPU8174.

DPS 8/52C, 8/62C, 8/70C Central Systems and Major Subsystems
Figure A-2

Notes:
(1) Auxillary console adapter CSF6602 included in price of CSU6602 auxillary console.
(2) Perequisite is auxillary console adapter CSF6602.
(3) Requires at least 2 console devices.

Notes: (1) Max. of 15 (up to 11 may be local).
(1a) Each FEP includes 1 MDC with a maintenance diskette, 1 - 16 lines connectibility, and 1024 KB memory as basic. All aise not shown as basic must be configured.
(2) At least \(1 \mathrm{CIB} \& 1\) async Cl required per FEP; none included in base price 1.4 Cls per CIB , for \(1-8\) lines per CIB , max. of 64 Cls and 128 lines per FEP. Max. of 16 CIBs per FEP. Up to 2 CIBs for up to 16 lines in base FEP. With DCE8002 up to 8 CIBs for up to 64 lines. With DCEBO04 up to 16 CIBs for up to 128 lines.
(3) Minimum of 2 per affected line. 1 at FEP and, other at terminal end.
(4) Requires 1 async line. 1 console (terminal) of any type recommended for each site using DCU8011 as a remote FEP.

\section*{Communications Subsystem}

Figure A-4

\section*{Magnetic Tape Subsystem}
-Magnetic Tape Processors

Lequired features and options
\(\stackrel{\text { Magnetic tape addressing }}{\longrightarrow}\)
(4) MTA 1152
MTF 1159
MTF1160
MTF1158
MTF1152
LMagnetic Tape Units

(7) MTU0500
(6) MTF0016
MTF0018
MTF0019
MTF0020
MTF0021
MTF0022
MTF0023
and/or

and/or

0
0
0
0
0
0

\begin{tabular}{|c|c|}
\hline & MTU0610 \\
\hline \multirow[t]{2}{*}{(6)} & MTF0607 \\
\hline & MTF0678 \\
\hline \multirow[t]{2}{*}{(6)} & MTF0608 \\
\hline & MTU0630 \\
\hline \multirow[t]{5}{*}{(6)} & MTF0634 \\
\hline & MTK0632 \\
\hline & MTK0631 \\
\hline & MTK0630 \\
\hline & MTK0633 \\
\hline \multirow[t]{2}{*}{(6)} & MTF0635 \\
\hline & MTK0633 \\
\hline \multirow[t]{2}{*}{(6)} & MTF0636 \\
\hline & MTK0631 \\
\hline \multirow[t]{2}{*}{(6)} & MTF0637 \\
\hline & MTK0634 \\
\hline
\end{tabular}
Notes:
(1) MFP8001, URP8000, MTP8001 are mutually exclusive within a cabinet.
(2) Avaitable on DPS 8/47C, 8/49C only.
(3) Required to support more than 8 units. Optional otherwise. Requires redundant features MTF \(1158 / 59 / 60\) if these are configured in MTP0611.
(4) 1 required per each 1 - 4 MTUs. 2 required for first 1 - 8 units if MTF 1151 configured.
(5) MTF 1159 required.
(6) 1 unique density feature required per MTU.
(7) RPQ only.

Magnetic Tape Subsystem
Figure A - 5

```

Unit Record
Subsystem
I-Unit Record Processors*

```

```

and/or
I- - 64 character belt with OCR-A/B numeric font $-----------\infty$
and/or
I--- 96 character ASCII belt - - - - - - - - - - - - - - -
O. PRB0600

```

```

PRF0022

-     - Upgrade to $1600 \mathrm{lpm} \quad---------------------\infty$
--Belt printer (1600 lpm) addressing $-------------------\infty$

```

```

(4) URA0055
(5, 7) PRU1600
PRB0500
and/or
I- - -64 character ASCII belt
and/or
I- - 64 character belt with OCR-A/B numeric font $-----------\infty \quad$ PRB0524
and/or
I- - 96 character ASCII belt $--------------------\infty \quad \bigcirc \quad$ PRB0600
PRF 0022

```
Notes:
(1) MFP8001, URP8000, MTP8001 are mutually exclusive within a cabinet.
(2) Available on DPS 8/47C, 8/49C only.
(3) URPO600/8000 only. Required if more than 4 devices are configured per URP.
(4) 1 addressing feature required per UR device. 1 URP required per 8 addressing features or 1 MFP required per
 4 addressing features.
(5) Each UR device requires 1 addressing feature.
(6) Maximum 2 CRU0501 or 2 CRU 1050 per MFP/URP, or one of each.
(7) At least 1 belt required per PRU1200/1600.
- Embedded URP's . their devices and features are shown on Part 2 of Figure A-7.

\section*{Unit Record Subsystem}

Notes:
(8) Up to 2 PRU0901/1201 and 2 card devices.
(9) Up to 2 card devices only. No printers.
(10) Up to 2 PRU0901/1201 only. No card devices.
(11) URP8011/8013 only. Price includes 2 print belts of same type.
(12) Not available on URP8013.
(13) Print belts must be ordered from the supply catalog.

\section*{Unit Record Subsystem}

Figure A-7 Part 2

DPS 6 Peripherals
Figure A-8

Peripheral Switches
Figure A-9 \(\qquad\)

Notes:
(1) At least 1 MGS or capacitor ridethroughs required for DPS 8/52C, 8/62C, 8/70C if UPS is not used.

\section*{Motor Generators/Capacitor Ridethroughs}

Figure A-10

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form
TITLE \begin{tabular}{ll}
CP-6 8/C CONFIGURATION GUIDE \\
DPS
\end{tabular}\(\quad\) ORDER NO. \begin{tabular}{l}
DP37-02 \\
OATED \\
MAY 1983
\end{tabular}

ERRORS IN PUBLICATION

\section*{SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION}

Your comments will be investigated by appropriate technical personnel and action will be taken as required. Receipt of all forms will be acknowledged; however, if you require a detailed reply, check here. \(\qquad\)

FROM: NAME
DATE \(\qquad\)
TITLE \(\qquad\)
COMPANY \(\qquad\)
ADDRESS \(\qquad\)

\section*{PLEASE FOLD AND TAPE-}

NOTE: U. S. Postal Service will not deliver stapled forms

NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

\section*{BUSINESS REPLY MAIL \\ FIRST CLASS PERMIT NO. 39531 WALTHAM, MA02154}

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

ATTN: PUBLICATIONS, MS486

Together, we can find the answers.

\section*{Honeywell}

Honeywell Information Systems
U.S.A.: 200 Smith St., MS 486, Waltham, MA 02154

Canada: 155 Gordon Baker Rd., Willowdale, ON M2H 3 N 7
U.K.: Great West Rd., Brentiord, Middlesex TW8 9 9DH Italy: 32 Via Pirelli, 20124 Milano

Mexico: Avenida Nuevo Leon 250, Mexico 11, D.F. Japan: 2-2 Jinbou-Cho Kanda, Chiyoda-Ku Tokyo Australla: 124 Walker St., North Sydney, N.S.W. 2060 S.E. Asia: Mandarin Plaza, Tsimshatsui East, H.K```

