
CP·6

C Language Reference

III

SUBJECT

CP-6

C LANGUAGE REFERENCE

Reference Information for the Bull CP-6 C Language and Library

SPECIAL INSTRUCTIONS

This edition is a new publication.

SOFTWARE SUPPORTED

C Version BOO under CP-6 Operating System EOO

DATE

June 1990

ORDER NUMBER

HA17-00

Worldwide
Information
Systems

Bull _

Preface

This publication is a reference document for the BOO version of the CP-6 C language
compiler, running on the EOO version of the C P -6 operating system. C P -6 C is an enhanced
version of the American National Standard for Information Systems - Programming
Language C (ANSI X3.159-1989). This reference is intended for programmers familiar with
the C language and with the CP-6 operating environment.

UNIX is a registered trademark of AT&T.

The Bull Los Angeles Development Center Documentation Group authors, edits, reviews
and creates laser print masters with integrated text and graphics using CP-6 CAP (Computer
Aided Publication).

Readers of this document may report errors or suggest changes through a STAR on the
CP-6 STARLOG system.

Bull disc:lailll5 the bnplied warranties of merchantability and fltnen for a
particular purpose and rnakes no express warranties except as rnay be stated
in ita written agreement with and for ita customer. In no event is Bull liable to
anyone for any indirect, special 01' consequential damages.

The information and speciflcations in this document are subject to change
without notice. Consult 70ur Bull Sales Representative for product or service
availabilit7·

Copyright 0 Bull HN Information Systems Inc., 1990 File No.: 1 WI3 HAI7-00

Table of Contents

Section 1. Introduction to the C Compiler.... .. 1-1
Compilation Environment ... 1-1

Structuring Programs ... 1-1
Translation Phases .. 1-1
Diagnostics ... 1-2
Listings ... 1-2

Compiling and Linking C Programs ... 1-3
C Compiler Options .. 1-4

Execution Environment ... 1-6
Program Startup ... 1-6
Program Execution ... 1-6
C Run Unit Invocation ... 1-7

CP-6 Standard Invocation .. 1-7
UNIX-Like Invocation ... 1-8

Program Termination ... 1-8
Environmental Considerations .. 1-9

Character Set ... 1-9
Trigraph Sequences ... 1-9

Character Display Semantics ... 1-10
Signals and Interrupts ... 1-12

Section 2. Lexical Elements...... .. 2-1
Keywords .. 2-2
Identifiers .. 2-3

Scopes of Identifiers ... 2-4
Linkages of Identifiers ... 2-4
N arne Spaces of Identifiers .. 2-5
Storage Durations of Objects .. 2-5
Types .. 2-6
Compatible Type and Composite Type 2-9

Constants ... 2-10
Floating Constants .. 2-10
Integer Constants .. 2-11
Enumeration Constants .. 2-12
Character Constants ... 2-13

String Literals ... 2-15
Operators ... 2-16
Punctuators ... 2-16
Header Names ... 2-1 7
Preprocessing Numbers .. 2-18
Comments ... 2-18

HA17-00 111

Table of Contents

Section 3. Data Conversions. .. 3-1
Arithmetic Operands ... 3-1

Characters and Integers ... 3-1
Signed and Unsigned Integers ... 3-2
Floating and Integral ... 3-2
Floating Types ... 3-2
Usual Arithmetic Conversions ... 3-2

Other Operands .. 3-3
Lvalues and Function Designators ... 3-3
void .. 3-4
P oin ters .. 3-4

Section 4. Expressions... .. 4-1
Primary Expressions .. 4-2
Postfix Operators ... 4-2

Array Subscripting .. 4-3
Function Calls .. 4-4
Structure and Union Members .. 4-5
Postfix Increment and Decrement Operators 4-7

U nary Operators ... 4-7
Prefix Increment and Decrement Operators 4-7
Address and Indirection Operators .. 4-8
U nary Arithmetic Operators .. 4-8
sizeo£ Operator ... 4-9

Cast Operators .. 4-10
Multiplicative Operators ... 4-11
Additive Operators .. 4-11
Bitwise Shift Operators .. 4-13
Relational Operators .. 4-13
Equality Operators .. 4-14
Bitwise AND Operator .. 4-15
Bitwise Exclusive 0 R Operator .. 4-16
Bitwise Inclusive OR Operator ... 4-16
Logical AND Operator .. 4-1 7
Logical OR Operator .. 4-17
Conditional Operator .. 4-18
Assignment Operators ... 4-19

Simple Assignment .. 4-19
Compound Assignment .. 4-20

Comma Operator .. 4-21
Constant Expressions .. 4-21

IV HA17-00

Table of Contents

Section 5. Data Declarations.... .. 5-1
Storage-Class Specifiers ... 5-2
Type Specifiers ... 5-3

Structure and Union Specifiers .. 5-4
Enumeration Specifiers .. 5-6
Tags .. 5-7

Type Qualifiers ... 5-9
Declarators .. 5-10

Pointer Declarators .. 5-11
Array Declarators ... 5-12
Function Declarators (including Prototypes) 5-13

Type Names ... 5-15
Type Definitions ... 5-16
Initialization .. 5-1 7

Section 6. Statements ... 6-1
Labeled Statements ... 6-1
Compound Statement or Block ... 6-2
Expression and Null Statements ... 6-2
Selection Statements .. 6-3

if Statement ... 6-3
svi t ch Statement .. 6-4

I teration Statements .. 6-5
while Statement .. 6-5
do Statement ... 6-5
f or Statement .. 6-5

Jump Statements 0 ••••••••••••••••••••••••• 6-6
goto Statement ... 6-6
continue Statement .. 6-7
break Statement .. 6-8
return Statement .. 6-8

Section 7. External Data Definitions.. .. 7-1
Function Definitions .. 7-2
External Object Definitions ... 7-4

Section 8. Preprocessing Directives .. 8-1
Conditional Inclusion ... 8-3
Source File Inclusion .. 8-4
Macro Replacement ... 8-6

Argument Substitution ... 8-8
Operator ... 8-8
Operator .. 8-8
Rescanning and Further Replacement 8-9
Scope of Macro Definitions .. 8-9

Line Control ... 8-11

HA17-00 v

Table of Contents

Error Directive .. 8-12
Pragma Directive .. 8-12

C P -6 Preprocessing Pragmas .. 8-12
Null Directive ... 8-14
Predefined Macro Names .. 8-14

Section 9. Introduction to the C Library. .. 9-1
Definitions of Terms .. 9-1
Headers .. 9-1

ANSI Standard Headers .. 9-2
CP-6 C Headers .. 9-2
Reserved Identifiers ... 9-2

Errors <errno.h> ... 9-3
Limits <float. h> and <limits. h> .. 9-4
Common Definitions <stddef. h> ... 9-4
Use of Library Functions .. 9-5
Diagnostics <assert. h> .. 9-6

assert Macro .. 9-6

Section 10. Character Handiing <ctype.h> Functions 10-1
Character Testing Functions ... 10-1

isalnum Function ... 10-1
isalpha Function ... 10-1
iscntrl Function ... 10-2
isdigi t Function ... 10-2
isgraph Function ... 10-2
islower Function ... 10-2
isprint Function ... 10-3
ispunct Function ... 10-3
isspace Function ... 10-3
isupper Function ... 10-3
isxdigi t Function .. 10-4

Character Case Mapping Functions .. 10-4
tolower Function ... 10-4
toupper Function ... 10-4

Section 11. Localization <locale .h> Functions 11-1
Locale Control .. 11-2

set locale Function ... 11-2
Numeric Formatting Convention Inquiry 11-3

localeconv Function .. 11-3

VI HA17-00

Table of Contents

Section 12. Mathematics <math.h> Functions 12-1
Treatment of Error Conditions ... 12-1
Trigonometric Functions ... 12-1

acos Function ... 12-2
asin Function ... 12-2
atan Function ... 12-2
atan2 Function .. 12-3
cos Function .. 12-3
sin Function .. 12-3
tan Function .. 12-4

Hyperbolic Functions .. 12-4
cosh Function ... 12-4
sinh Function ... 12-4
tanh Function ... 12-5

Exponential and Logarithmic Functions 12-5
exp Function .. 12-5
frexp Function .. 12-5
ldexp Function .. 12-6
log Function .. 12-6
log10 Function ~... 12-6
modf Function -................................. 12-7

Power Functions ... 12-7
pOll Function .. 12-7
sqrt Function ... 12-8

Nearest Integer, Absolute Value, and Remainder Functions 12-8
ceil Function ... 12-8
fabs Function ... 12-8
floor Function .. 12-9
fmod Function ... 12-9

Section 13. Non-Local Jumps <setjmp.h> 13-1
Calling Environment ... 13-1

setjmp Macro ... 13-1
longjmp Function ... 13-2

Section 14. Signal Handling <signal.h> 14-1
Signal Handling Macros ... 14-2

SIG _DFL Macro ... 14-2
SIG_ERR Macro ... 14-2
SIG_IGN Macro ... 14-2

Signal Types .. 14-2
SIGABRT Signal .. 14-3
SIGALRM Signal .. 14-3
SIGFPE Signal .. 14-3
SIGHUP Signal .. 14-4
SIGILL Signal ... 14-4

HA17-00 Vll

Table of Contents

SIGINT Signal .. 14-4
SIGSEG\l Signal .. 14-.1:\

SI G TERM Signal .. 14-5
The SIGUSRI and SIGUSR2 Signals 14-6

Signal Handling and Sending .. 14-6
signal Function ... 14-6
raise Function .. 14-7

Section 15. Variable Arguments <stdarg.h> 15-1
·Variable Argument List Access Macros 15-1

va_start Macro ... 15-2
va_arg Macro ... 15-2
va_end Macro ... 15-3

Section 16. Input/Output <stdio.h> Functions 16-1
Introduction ... 16-1
Streams ... 16-2
Stream Buffering .. 16-3

Mapping Text Streams to the CP-6 File System 16-4
Text Stream Positioning ... 16-5
Mapping Binary Streams to the CP-6 File System 16-5
Binary Stream Buffering ... 16-5

Files .. 16-6
Operations on Files .. 16-6

remove Function ... 16-7
rename Function ... 16-7
tmpfile Function ... 16-8
tmpnam Function ... 16-8

File Access Functions .. 16-9
fclose Function '/'" ... 16-9
fflush Function ... 16-9
fopen Function ... 16-10
freopen Function .. 16-12
setbuf Function .. 16-13
setvbuf Function .. 16-13

Formatted Input/Output Functions 16-13
fprintf Function .. 16-14
fscanf Function .. 16-17
printf Function .. 16-22
scanf Function ... 16-22
sprintf Function .. 16-22
sscanf Function .. 16-23
vfprintf Function ... 16-23
vprintf Function .. 16-24
vsprintf Function ... 16-24

Character Input/Output Functions 16-25

viii HA17-00

Table of Contents

fgete Function 00 00000 16-25
fgets Function 00 0 0 0 0 0 16-25
fput e Function 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 16-26
fputs Function. 0 0 0 0 0 0.0000000000.000. 0 0 0 • 0 0 0000000000. 0 0 o ••• 0000000000. 16-26
gete Function. 0 0.0. 00.0000000000. 0 0 0 00.000000000000000000. 0 • 0 0 o. 0 0 00000 16-27
getehar Function 0 0 0 000 0 • 0 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 000 0 • 0 0 000 0 0 0 0 • 0 0 0 0 16-27
gets Function 00' 0 •• 0000000000000000000.00000000000000 ••• 0.0.000000. 0 0 0 0 16-28
pute Function 00.000000000000000. o. 0 0 0 • 0 0 0.0000000000000. 0 0 0000000000000 16-28
putehar Function 00. 0 0 0 0 0 0 000 0 000 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 • 0 0 0 0 0 0 •• 0 • 0 0 0 0 16-29
puts Function. 00. 0 0 0 0 0 0 0 0 0 0 0 0 0 000000. 0 0 0 ••• 0000000000. 0 0 00000000000. 0 0 0 16-29
ungete Function 00.000. 0 0 0 0 0 00000000000. 0 o. 0.000000.000.00.00000 •• 0. 0.0. 16-29

Direct Input/Output Functions 000. 0.0000000 •• 0 0 0 0 000000. 0 0 o. 0 0 o. 0.000 •• o. 16-30
fread Function •• 0 0 • 0 0 • 0 0 0 0 0 0 0 0 • 0 0 0 • 0 0 0 0 0 •• 0 0 0 •• 0 0 0 0 0 0 0 0 • 0 ••• 0 0 0 0 0 •• 0 • o. 16-30
fwri te Function 000.00000000000. 0 0 0 00.00 •• 00. 0 0.0000. 0 • o. o. 0 0 0 0 0 •• 0.0.0. 16-31

File Positioning Functions 0 0 •••••••••••••• 0 •••••••• 0 0 ••••• 0 • 0 0 •• 0 ••• 0 0 0 0 0 0 16-31
f get po s Function 0 • 0 0 • 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16-31
fseek Function 000000000000000000000000000000000000000.000000000000 00000 16-32
fsetpos Function 0 0 0 • 0 0 0 0 0 000 0 000 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000 0 • 0 0 0 0 0 0 0 0 0 0 0 0 • 0 16-32
ft ell Function 0 0 0 0 • 0 • 0 0 • 0 0 0 0 • 0 0 0 0 • 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16-33
rewind Function 0 0 0 0 0 0 0 0 • 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 . 0 0 0 0 16-33

Error-Handling Functions 0 ••• 0 ••• 00. 00' • o. 0 0.000.00.000000.0.0000000000.0. 16-33
elearerr Function • 0 •• 0 ••••••• 0 • 0 0 0 0 ••• 0 0 0 • 0 0 0 • 0 0 0 0 •. 0 0 0 • 0 0 0 •• 0 • 0 • • • • •• 16-34
f eof Function •••••••••••••• 0 •• 0 •••••• 0 • 0 •••••••••••• 0 •• 0 ••.•• 0 •• 0 ••••. 0 16-34
f error Function •••••••.•.•. 0 •••.••.•• 0 0 •••. 0 . 0 0 0 • 0 •. 0 . 0 ..• 0 • 0 ••••• 0 0 • o. 16-34
perror Function •••••••• 0 ••••••••••••••••••••••• 0 0 • 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 o. 16-35

Section 17. General Utility <stdlib.h> Functions 17-1
String Conversion Functions o. 0 0 • 0 0 0 0 • 0 • 0 • 0 0 •• 0 0 • 0 • 0 0 0 0 0 • 0 • 0 0 • • • • • • • • • • • • •• 17-2

atof Function •••••••••••••••••••••••••• 0 •••• 0 •••• 0 • 0 • • • • • • • • • • • • • • • • • • •• 17-2
atoi Function ••• 17-2
atol Function •••••••••••••••••••••••••• o •••• 0 •••• 0 ••••• '0' • 0 ••••• 00 •• 000 17-3
strtod Function 0 •• 0 • 0 0 •• 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 • 0 0 • 0 •• 0 0 0 0 0 ••• 0 ••• 0 17-3
strtol Function ••••• 0 ••••••••••••••••••••••••••• 00.0000 ••• 0 •••• 0.000. 0 • 0 17-4
strtoul Function ••••• 0 0 •••• 0 •••••••••••• 0 ••••••••••.•••••••••••• 0 •• 0 0 • 0 17-5

Pseudo-Random Sequence Generation Functions ••••• 0 • 0 •••• 0 0 0 0 ••••••• 0 • 0 0 17-6
rand Function • 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 • 0 0 0 • 0 0 0 0 0 0 ••• 0 0 • 0 0 0 . 0 0 0 • 0 • 0 • 0 0 0 0 0 0 0 0 0 0 • 0 • 0 17-6
srand Function 0 0 ••••• 0 • 0 • 0 ••• 0 • 0 •••• 0 0 • 0 •• 0 • 0 • 0 0 0 0 0 0 0 • 0 • 0 • 0 • 0 • 0 ••• 0 •• 0 0 0 17-7

Memory Management Functions • 0 •• 0 • 0 • 0 •••••••••••••• 0 •• 0 ••• 0 ••••• 0 ••••• 0 17-7
ealloe Function •••• 0 0 •• 0 0 0 0 •• 0 • 0 •••••••••••••••• 0 • 0 0 • 0 • 0 0 • 0 0 • 0 0 0 •• 0 • 0 0 o. 17-8
free Function 0 ••••••• 0 •• 0 0 0 0 0 0 0 • 0 •• 0 ••• 0 0 ••• 0 0 • 0 • 0 • 0 0 ••• 0 • 0 •• 0 •• 0 0 • • • • •• 17-8
ma.lloe Function ••••••••• 0 • 0 •• 0 • 0 •• 0 0 • 0 ••• 0 0 • 0 • 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 • 0 0 •• 17-8
realloe Function ••• 0 0 0 0 • 0 •• 0 •••• 0 • 0 • 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 •• 0 0 0 0 0 0 •••• 0 •• 0 0 • 0 17-9

Communication with the Host Environment •••• 0 • 0 • 0 0 0 0 • 0 0 0 •• 0 • 0 • 0 0 • 0 0 •• 0 0 0 17-9
abort Function o. 0 ••• 0 • 0 ••• 0 •••••••••• 0 •••• 0 •••• 0 0 0 •• 0 • 0 •.• 0 0 0 0 0 •• 0 0 0 ••• 0 17-9
atexit Function ••••••••••• 0 •• 0 •••• 0. 00000. 0.0 ••• 0 0.00.0.0.00.0.0 •• 0 •• 0.17-10
exit Function •••••• 0 •••••••••• 0 •••• 0 •••••••• 0 •••• 0 •• 0 • 0 •• 0 ••••••••••••• 17-10

HA17-00 IX

Table of Contents

getenv Function .. 17-11
syst em Function .. 17-11

Searching and Sorting Utilities .. 17-11
bsearch Function .. 17-12
qsort Function ... 17-12

Integer Arithmetic Functions ... 17-13
abs Function ... 17-13
di v Function ... 17-13
labs Function " ... 17-14
ldiv Function .. 17-14

Multibyte Character Functions ... 17-14
mblen Function ... 17-14
mbtowc Function .. 17-15
wctomb Function .. 17-15

M ultibyte String Functions ... 17-16
mbstowcs Function ... 17-16
wcstombs Function ... 17-16

Section 18. String Handling <string.h> Functions 18-1
String Function Conventions ... 18-1
Copying Functions ... 18-1

IDaIDcpy Function ... 18-1
meIDInove Function ... 18-2
strcpy Function ... 18-2
strncpy Function ... 18-3

Concatenation Functions .. 18-3
strcat Function ... 18-3
strncat Function ... 18-4

Comparison Functions ... 18-4
memcmp Function ... 18-4
strcInp Function ... 18-5
strcoll Function ... 18-5
strncmp Function ... 18-5
strxfrm Function ... 18-6

Search Functions .. 18-6
memchr Function ... 18-6
strchr Function ... 18-7
strcspn Function ... 18-7
strpbrk Function ... 18-7
strrchr Function ... 18-8
strspn Function ... 18-8
strstr Function ... 18-8
strt ok Function ... 18-9

Miscellaneous Functions ... 18-9
memset Function .. 18-10
strerror Function ... 18-10
strlen Function .. 18-10

x HA17-00

Table of Contents

Section 19. Date and Time <time.h> Functions 00000000000000000000000 19-1
Components of Time 00 ••• 0. 0 19-1
Time Manipulation Functions 0 0 ••• 0 0 0 • 0 0 ••• 0 0 0 •• 0 0 •• 0 0 • 0 • 0 •• 0 •••• 0 0 •• 0 • 0 0 0 0 19-2

clock Function . 0 0 0 0 0 0 0 0 0 0 •• 0 0 000 0 0 0 0 0 • 0 0 0 0 0 0 0 0 • 0 0 0 • 0 0 0 • 0 0 • 0 0 0 • 0 0 • 0 • 0 0 • 0 0 19-2
difftime Function 0 0 0 0 • 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 •• 0 0 • 0 • 0 • 0 ••• 00 0 0 • 0 •• 0 0 • 0 19-2
mkt ime Function 0 0 0 • 0 0 0 0 • 0 0 0 • 0 0 0 0 0 •• 0 0 0 0 0 • 0 0 •• 0 0 0 0 0 0 • 0 0 • 0 0 0 0 0 0 • 0 0 • 0 ••• 0 •• 19-3
time Function .. 00000.000000000000. 000.0000000000000000.0 •• 0 •• 000.0.00000 19-4

Time Conversion Functions .. 0.0 •• 0000.0000.0.00 •••• 0.00000. 0.0 •• 0 .00 •• 0 0 o. 19-4
asctime Function 000 0 0 0 0 0 • 0 0 • 0 0 0 0 0 0 .00 0 .00 •• 0 0 0 0 0 0 0 •• 0 •• 0 0 • 0 0 0 0 • 0 0 • 0 0 •• 0 19-4
ctime Function 0000 •• 0.0.00000000000.0 •• 000000000.00000000000000000 0.0000 19-5
gmt ime Function ... 0 0 • 0 0 ••• 0 • 0 0 • 0 0 • 0 • 0 • 0 0 • 0 0 0 0 0 0 • 0 0 0 0 • 0 0 • 0 • 0 • 0 0 0 0 •• 0 0 0 • o. 19-5
local time Function 0 0 0 • 0 • 0 • 0 0 0 • 0 0 • 0 • 0 • 0 • 0 0 0 • 0 0 0 0 0 0 • 0 • 0 0 0 • 0 0 0 0 0 • 0 0 • 0 0 0 0 0 0 19-6
strft ime Function 0 0 •• 0 • 0 •• 0 • 0 0 • 0 0 0 0 0 •• 0 • 0 0 • 0 0 0 0 0 0 •••• 0 •••••• 0 • • • • • • • • •• 19-6

Section 20. CP-6 Library Extensions 0 • 0 •••• 0 •• 0 0 • 0 •• 0 • 0 0 ••• 0 •• 0 •• 0 • 0 • 0 20-1
File Access Extensions 0 0 • 0 0 0 ••••• 0 0 0 •••• 0 0 0 • 0 ••• 0 0 •••• 0 0 0 0 0 • 0 0 •••• 0 0 0 0 0 0 • •• 20-1

touch Function 0.0 ••••• 0.0000.0.0.0 •• 000 •• 00 ••• o ••• 0 0 0 •••• 0 •• 0 ••• 0 •••• 000 20-1
fllildfid Function .. 0 •••••• 0. 0 • o. 0 •••• 00 ••• 0 ••• 0 ••••• 00' •• 0000 ••••• 0 •••• 20-2
finform Function 0.00.00 ••• 000 •• 0.00.0.00.0.000. 0000 •••••••••• 0.0 ••• 0.0. 20-3

Memory Management Extensions 0 • 0 ••••• 0 •••••• 0 0 0 0 • 0 • 0 0 ••••••• 0 • •• 20-5
alloca Function 0 •• 0 0 • 0 •• 0 •••••••••••••••••••• 0 ••••• 0 •••••• 0 ••••••••••• o. 20-5

Virtual Memory Management Extensions 0 ••••••••• 0 •••••••• 0 ••••••••• 0 • • •• 20-6
vcalloc Function 0 ••••••••••••••••••••••••••• 0 •••••••••• 0 •••• 0 • • • •• 20-6
vfree Function 0 0 0 •••••••••• 0 0 •••• 0 0 ••••••• 0 •••••• 0 ••• 0 • • • • • • •• 20-7
vmalloc Function 0 • 0 ••••••••• 0 • 0 ••••••••••• 0 0 •••••••••• 0 •• 0 20-7
vmemini t Function . 0 ••••••• 0 0 •• 0 •• 0 •••• 0 •••• 0 •••• 0 •••• 0 ••••••••••• 0 • • • •• 20-7
vmemscrub Function 0 •• 0 •••••••••• 0 ••• 0 •• 0 ••••••••••••• 0 •••••• 0 •••••••• 0. 20-8
vrealloc Function .. 0 ••••••• 0 ••••• 0 ••••• 0 0 0 •••• 0 •••• 0 •• 0 • 0 •••• 0 • • • • • • • •• 20-8

Communication with Host Environment Extensions . 0 •• 0 •••••••••••••• 0 0 • •• 20-9
get opt Function ... o ••••••••••••••••••• 0 ••••••••••••••••• 0 •••••••• 0 •••••• 20-9
lsenv Function 0 .0 •••••••••••••• 0 ••••••••••••• 0 •••••••••••••••••• 20-10
sleep Function 0 ••••••••••••••••• 0 ••••••••••••••••••••••••••••• 20-11
ulimi t Function ... 0 •••••••••••••••••• 0 ••••••••••••••••••••••••••••• 0 • •• 20-11
uname Function 0 •••••••••• 0 ••••• 0 •• 20-11

Appendix A. Language Syntax Summary 0 ••• 0. 0 ••• A-I
Lexical Grammar 0 ••••••••••••••••• 0 ••••••••••••••••••••••••••• A-I

Tokens 0 ••• A-I
Keywords 0 0 • 0 •• 0 0 ••• 0 •• 0 0 ••••• 0 •• 0 • 0 ••••• 0 • 0 0 0 • 0 0 • 0 0 ••••••• 0 ••• 0 •• 0 A-I
Identifiers .. 000 ••• 000 •• 0.0 •• 0" • o ••••• 0 0 • 0 .0 •••• 0.0 ••• 0. 0 ••••• 0.0 •• 0000 •••• ~-2
Constants 0 ••• 0 •• 0 0.0 •• 0 0 0 0 0.0 •• 0 0 • 000000 ••• 0.00 ••••• 0.0. 0 • 0 o ••••• 0. 0 •• 0 •• A-2
String Literals . 0 •• 0 0 • 0 •••• 0 • 0 •• 0 0 • 0 0 0 0 0 0 • 0 ••• 0 • 0 •• 0 • 0 ••••• 0 0 ••••• 0 • 0 0 •• 0 o. A-4
Operators 0 0 •• 0 ••••• 0 • 0 •• 0 ••••• 0 • 0 •••••••••• 0 •••••• 0 • 0 •• 0 •••• 0 0 ••••• 0 •••• 0 A-5
Punctuators 0 ••••••••• 0 •••••••••••••• 0 ••••••••••••••••• 0 ••••••• A-5
Header Names 0 ••• A-5
Preprocessing Numbers ... 0 ••• A-6

HA17-00 Xl

Table of Contents

Phrase Structure Grammar ... '" A-6
Expressions .. A-6
Declarations ... A-8

Statements .. l\ -11

External Definitions ... A -12
Preprocessing Directives .. A-12

Appendix B. Library Summary ... B-1
Errors <errno.h> .. B-1
Common Definitions <stddef . h> ... B-1
Diagnostics <assert. h> .. B-1
Character Handling <ctype.h> ... B-1
Localization <locale. h> ... B-2
Mathematics <math. h> ... B-2
Non-Local Jumps <setjmp.h> .. B-2
Signal Handling <signal.h> .. B-3
Variable Arguments <stdarg. h> .. B-3
Input/Output <stdio.h> ... B-3
General Utilities <stdlib.h> ... B-5
String Handling <string. h> .. B-6
Date and Time <time.h> ... B-6
System Information <uts_name. h> B-7
Virt ual Memory Management <valloc. h> B-7

Appendix C. Debugging C Programs C-l
DELTA Overview ... C-1

Invoking DELTA .. C-1
DELTA Summary of Commands ... C-4
DELTA Stored Commands ... C-4

DELTA Conditional Execution ... C-5
DELTA Attached Commands .. C-7
DELTA Immediate Commands .. C-7

Displaying Variables .. C-7
Static Functions .. C-8

DELTA Toggle Commands .. C-8
DELTA Housekeeping/Miscellaneous Commands C-8

DELTA Commands .. C-9

XlI HA17-00

Table of Contents

Appendix D. Interfacing PL-6 and Assembler Routines to C D-l
Data Types .. D-l
C Calling Sequence .. D-2
PL-6 Receiving Sequence ... D-2
Double Word Aligned Parameters .. D-4
Returning Function Results .. D-6
Object Unit Names .. D-7
Writing I/O Routines in PL-6 .. D-8
Useful Entries in the C Run-time Library D-8

XBI_SET_ERRNO Subroutine ... D-8
XBI_SET_STREAM_ERRNO Subroutine D-8
XBI_GET_ERRNO Subroutine ... D-9
XBI_GET_CP6_DCBNUMBER Subroutine D-9
XBI_CLOSE_DCBS Subroutine .. D-9
XB$INIT _ CLIB Subroutine .. D-9

Appendix E. Porting C Programs to CP-6 Systems E-l
Implementation-defined Behavior ... E-1

The Environment ... E-2
Use of Identifiers ... E-2
Character Set .. E-2
Integral Data Types .. E-3
Array and Pointer Data Types .. E-3
Floating Point Data Types ... E-5
Structure and Union Data Types = •••••••••••••••••••••••••••• E-5
Function Execution ... E-6
The Preprocessor ... E-6
The C Library .. E-7

Common Extensions to ANSI C ... E-10
Specialized Identifiers ... E-10
Scopes of Identifiers ... E-I0
Writable String Literals ... E-10
Other Arithmetic Types ... E-11
Function Pointer Casts .. E-ll
Non-int Bit-field Types ... E-l1
The fortran and asm Keywords ... E-l1
Multiple External Definitions .. E-l1
Empty Macro Arguments .. E-ll
Predefined Macro Names .. E-12
Extra Arguments for Signal Handlers E-12
Additional Stream Types and File-opening Modes E-12

Appendix F. Environmental Limits F-l
Translation Limits .. F-1
Numerical Limits ... F-2

Sizes of Integral Types <limits .h> F-2
Characteristics of Floating Types <float .h> F-4
Summary of Floating-Point Representation F-6

HA17-00 Xlll

Table of Contents

Index ... i-I

List of Tables

Table 1-1. Trigraph Sequences ... 1-10
Table 1-2. Alphabetic Escape Sequences 1-11
Table 1-3. Escape Sequence Values ... 1-11
Table 2-1. Escape Sequences ... 2-14
Table 16-1. fopen Mode Keywords 16-11
Table 20-1. FILE_SET Fields ... 20-4
Table C-l. Housekeeping Commands C-9
Table C-2. Execution Control Commands C-ll
Table C-3. Execution Tracing Commands C-12
Table C-4. Memory Display and Modification Commands C-12
Table C-S. Mode Control Commands C-13
Table C-6. Miscellaneous Commands C-13
Table C-7. Keywords Used with KILL and SHOW C-14
Table C-S. EOM Characters and Sub-Commands C-17
Table C-9. Format Specifiers .. (,;-1 ~

Table D-l. C Data Type Correspondence D-l

List of Figures

Figure 1-1. C Program Example .. 1-3
Figure D-l. PL-6 Routine Example ... D-3
Figure D-2. PL-6 Materialize Example D-3
Figure D-3. Double "",°ord Alignment Example D-S
Figure D-4. BMAP Example ... D-6
Figure D-S. PL-6 Function Example .. D-7

XlV HA17-00

About This Manual

The contents of this manual are grouped into 20 sections and 6 appendixes, providing the
following information:

Section 1 introduces the user to the CP-6 C compiler, and describes compiler invo­
cation, the translation and execution environments, and environmental considerations
such as the character set and numerical limits.

Sections 2 through 8 describe the CP-6 C language.

Section 2 presents the lexical elements of CP-6 C.

Section 3 describes data conversion.

Section 4 describes expressions.

Section 5 describes data declarations.

Section 6 describes statements.

Section 7 describes external data definitions.

Section 8 describes preprocessing directives.

Sections 9 through 20 describe the CP-6 C library.

Section 9 introduces the user to the CP-6 C library, and describes headers, errors,
limits, common definitions, library functions, and diagnostics.

Section 10 describes character handling functions.

Section 11 describes localization functions.

Section 12

Section 13

Section 14

Section 15

Section 16

Section 17

Section 18

Section 19

Section 20

HA17-00

describes mathematics functions.

discusses nonlocal jumps.

discusses signal handling.

discusses variable arguments.

describes input/output functions.

describes general utility functions.

describes string handling functions.

describes date and time functions.

describes CP-6 extensions to the C library.

xv

About This Manual

The appendixes are as follows:

Appendix A summarizes the CP-6 C ianguage.

Appendix B summarizes the CP-6 C library functions.

Appendix C describes how to debug C programs with DELTA.

Appendix D describes how to interface PL-6 and assembler routines to CP-6 C.

Appendix E describes portability issues.

Appendix F describes environmental limits of CP-6 C.

On-Line HELP Facility

CP-6 C has an on-line HELP facility. CP-6 C programmers can display the syntax and
descriptions of language elements and library functions, and related information. For a
list of HELP topics for CP-6 C from the system command level (!), enter the following at
the terminal:

HELP eCC) TOPICS

Related Documents

Following is the list of related manuals:
CP-6 Programmer Reference, Order Number CE40
CP-6 DELTA Reference, Order Number CE39
CP-6 PL-6 Reference, Order Number CE44.

Manuals may be ordered using Form No. HB-2BOB from:

Bull HN Information Systems Inc.
Customer Services Operation
Publications Order Entry
141 Needham Street
MA35/219
Newton Highlands, MA 02161 U.S.A.

or may be ordered by telephone:

(617) 552-5199

(ICN) 552-5199 (FAX)

XVI HA17-00

About This Manual

Notation Conventions

In the syntax notation used in the Language sections (2-8), syntactic categories (nontermi­
nals) are indicated by italic type, and literal words and character set members (terminals)
by bold type. A colon (:) following a nonterminal introduces its definition. Alternative
definitions are listed on separate lines, except when prefaced by the words "one of". An
optional symbol is indicated by the subscript "opt", so that

{ expressionopt }

indicates an optional expression enclosed in braces.

In the Library sections (9-20), literal words and character set members are indicated in
bold type. In the Synopses, variables are shown in italic type.

Where CP-6 IBEX commands and DELTA debugger commands are explained, command
keywords are indicated by bold type; variables to be supplied by the user are indicated by
italic type. The following notation is used to show optional and required elements IBEX
and DELTA commands:

• Brackets ((f) enclose elements or lists of elements that are optional.

• Braces ({ }) enclose lists of values or keywords from which one value or keyword must
be chosen.

• Within a list of optional or required choices, the OR bar (I) separates each value or
keyword from the next.

• An ellipsis (...) indicates that a previous element may be repeated.

HA17-00 XVll

Section 1

Introduction to the C Compiler

The CP-6 C compiler translates C source files into object files and uses a run-time library
for the execution of C programs. Other CP-6 tools such as the linker (LINK) are necessary
to create runable programs.

The CP-6 debugger, DELTA, is available for use in debugging and checking out programs.
DELTA provides the ability to set breakpoints on either data or statements and to displa.y
C variables.

Compilation Environment

The following paragraphs describe the CP-6 C compilation environment. C programs are
typically located in CP-6 consecutive or keyed files.

Structuring Programs

An entire C program need not be compiled all at the same time. The text of the program
may be organized into one or more source files. A source file together with all the headers
and source files included by the preprocessing directive #include, less any source lines
skipped by any of the conditional inclusion preprocessing directives, is called a object unit.
Previously compiled object units may be preserved as object files or in LEMUR libraries.
The separate object units of a program communicate by calls to functions whose identifiers
have external linkage, manipulation of objects whose identifiers have external linkage, or
manipulation of data files. Object units may be separately compiled and then later linked
to produce an executable program.

Translation Phases

The precedence among the syntax rules of translation is specified by the following phases:

HA17-00 Translation Phases 1-1

Introduction to the C Compiler

1. Physical source file characters are mapped to the source character set (introducing new­
line characters for end-of-line indicators) if necessary, Trigraph sequences are replaced
by corresponding single-character internal representations.

2. Each instance of a new-line character and an immediately preceding backslash character
is deleted, splicing physical source lines to form logical source lines.

3. The source file is decomposed into preprocessing tokens} and sequences of white-space
characters (including comments). A source file may not end in a partial preprocessing
token or comment. Each comment is replaced by one space character. New-line
characters are retained. \Vhite-space characters other than new-line are retained.

4. Preprocessing directives are executed and macro invocations are expanded. A
#incl ude preprocessing directive causes the named header or source file to be processed
from phase 1 through phase 4, recursively.

5. Each source character set member and escape sequence in character constants and
string literals is converted.

6. Adjacent character string literal tokens are concatenated, and adjacent wide string
literal tokens are concatenated.

7. White-space characters separating tokens are no longer significant. Each preprocessing
token is converted into a token. The resulting tokens are syntactically and semantically
analyzed and translated.

8. All external object and function references are resolved. All such translator output
is collected into an object unit which contains information needed for execution in its
execution environment.

Diagnostics

The C compiler writes diagnostic messages through M$DO. Each diagnostic message contains
the source line on which the problem occurred and a message indicating the reason. The
compiler produces warning messages and error messages. Warnings indicate something
may be wrong; error messages indicate a failure to correctly compile the program. A
successful compilation is indicated by the Step Condition Code (STEPCC) being set to zero.

Listings

The C compiler writes a listing of the source program through M$LO. The listing includes
each line of the source file being compiled (and optionally the include files) along with any
diagnostics associated with various source lines.

A summary of the compilation is provided which, at the end, indicates the number of
diagnostic messages and the full names of all the include files.

1 As described in Section 2, Lexical Elements, the process of dividing a source file's characters into
preprocessing tokens is context-dependent. For example, see the handling of < within a #include
preprocessing directive.

1-2 Listings HA17-00

Introduction to the C Compiler

Compiling and Linking C Programs

The C compiler is invoked by the following IBEX command:

! cc jsource]j, update] j{oNiOVERiINTO} jobjectjf, list]] j(options)]

where:

source specifies the file that contains C source code.

update specifies a file containing updates to the source file.

ON requests an error if the object or list file currently exists.

OVER specifies that the object or list file is to be overwritten if it exists.

INTO specifies that the object or list file is to be extended if it exists.

object specifies the disk file to contain the generated object code.

list specifies the file to receive the generated listing.

options specifies one or more compiler options, separated by commas. (These are
described in the next subsection.)

Figure 1-1 provides an example of entering, compiling, linking, and running a C program.

!build hello:c
EDIT E02 here

1.000 maine) {
2.000 printf(tlHello, world!\n tl);
3.000 }
4.000

!CC hello:c over hello:o,*:ls
CC.BOO here at 15:02 Tue Jan 2 1990
!LINK hello:o over hello
LINK E02 here
* :SHARED_C.:SYS (Shared Library) associated.
* No linking errors.
* Total program size = 3K.
!hello.
Hello, world!

Figure 1-1. C Program Example

HA17-00 Compiling and Linking C Programs 1-3

Introduction to the C Compiler

C Compiler Options

The CP-6 C compiler accepts the following options:

ANS/I} causes the use of extensions to the ANSI C language be flagged.

BU/ILTIN} / (fun/,fun, ... j) } requests that the compiler recognize certain library
functions and generate code to perform it without calling the library or with a
special calling sequence that significantly speeds up the execution. If no function
names are specified, all functions which the compiler knows how to build in are
recognized; otherwise, only those specific functions will be recognized. If the source
file includes the header file which defines these functions, they will be built in by
default without specifying this option (see Section 9, Use of Library Functions).
The possible builtin functions include the following: abs, atan, atan2, cos, exp,
fabs, log, log10, memchr,memcmp,memcpy, memmove, memrchr,memset, pow, sin,
sinh, sqrt, strcat, strchr, strcmp, strcpy, strlen, tan, and tanh.

CP6SRCH requests that include files be located by strictly following the search list in
the order specified. The default is CP6SRCH.

DEF /INE} (namel/=textJ/, name2/=text), ... j) defines preprocessor variables with the
optionally provided text. text may be a number, an identifier, or a single quoted
string.

DMAP requests a data map for declared variables. The data map displays the location,
type, and size for each variable.

KR requests Kernighan and Ritchie language where ANSI differs.

LND/IRECT} requests the preprocessor to include line number directives. The default
is LND lRECT .

La requests listing of the generated code. The default is NLO.

LS requests listing of the source input. The default is LS unless the IBEX command
DONT LIST was entered.

LU requests listing of the updates. The default is NLU.

N/O J BU/IlTIN] / (/unf,/un, ... j) } requests that the compiler refrain from building
in certain library functions. If no function names are specified, all functions which
the compiler knows how to build in are assumed; otherwise, only those specific
functions will not be built in. Even if the source file includes the header file which
defines these functions, they will not be built in. The possible built-in function
names are listed under the BUILTIN option.

NDEF fINE} (name f, name}) causes the named predefined preprocessor variables to
be undefined. The variable names affected may be TM_l66, TS_CP6, __ l66 __ ,
CP6, __ lINE __ , __ FIlE __ , __ DATE __ , __ TlME __ , and __ STDC __ .

NlND!IRECT} causes the preprocessor to suppress the inc;lusion of line number direc­
tives. The default is lNDlRECT.

1-4 C Compiler Options HA17-00

Introduction to the C Compiler

NLO suppresses listing of the generated code. The default is NLO.

NLS suppresses listing of the source code. The default is LS.

NLU suppresses listing of the updates. The default is NLU.

NOPT!IMIZEj ! (opt!, opt, ... j) j requests that the compiler not perform various
optimizations. If the individual optimizations are not explicitly specified, then
the compiler does not perform any of its possible optimizations. The list of
optimizations is the same as for the OPTIMIZE option.

NOU suppresses generation of an object file. The default is OU.

NPMAP suppresses the procedure map. The default is NPMAP.

NUl requests that the compiler not include updates. The default is NUl.

NWAfRNj suppresses the listing of warning messages. The default is WARN.

OPT!IMIZEj ! (opt!, opt, ... j) j requests that the compiler perform various opti­
mizations. If the individual optimizations are not explicitly requested, then the
compiler performs all of its optimizations. The individual optimizations are as fol­
lows: PEEPjHOLEj, INL!INE], SUBE!XPR], STR/ENGTHj, LOOPB{RANCH], CON!STANT],
PRO/PAGATION], and REG!ISTERSj. By default, the PEEPHOLE and REGISTER opti­
mizations are performed.

OPTUI reports no error when an update file does not exist.

OU requests generation of an object unit. (This option may not be specified with the
PREPROCESS option.) The default is OU.

PMAP requests a procedure map for functions. The procedure map displays the
location, statement type, and approximate execution cost for each statement. The
default is NPMAP.

PREP /ROCESS j causes the compiler to preprocess the source and write it through M$OU.

{S/EAjRCHISEAR!CHj} (jid!,jid, ... j) requests that the compiler locate include files by
searching the specified accounts. If jid includes a filename part, then that part is
prefixed to the include file name (or the include file name replaces the ? character
in the jid). The compiler always adds the account :LIBRARY to the end of the search
list. The default is CP6SRCH.

S/TATICj F/UNCTIONj SIUFFIXj = 'string' requests that string be used as the suffix
added to static function names to make them unique. By default, CP-6 C generates
a unique name for every static function by using the name of the first nonstatic
function or, if there are no nonstatic functions, the name of an extern variable
defined in the file.

STR!INGS j = {READ !ONL y jIWRITE!ABLEj} requests that the compiler put strings in
write-protected memory or writeable memory. By default, a C program may not
alter a character string constant. The default is STRINGS=READONL Y.

UI requests that the compiler include updates. The default is NUl unless the UI
filename is specified on the command line.

HA17-00 C Compiler Options 1-5

Introduction to the C Compiler

UNIXSRCH requests that nested include files be located by the UNIX method. If the
file name is enclosed in angle brackets «filename», then the search is the same
as for the CP6SRCH option. Otherwise, for file names enclosed in double quotes
("filename"), the search begins as if the search list were preceded by the search list
entry used to locate the including source file. The default is CP6SRCH.

WA(RN J requests the listing of warnings for recoverable errors. The default is WARN.

Execution Environment

The following paragraphs describe the CP-6 C execution environment.

Program Startup

The function called at program startup is named main. CP-6 C has no required prototype
for this function. It can be defined with no parameters:

int main (void) /* ... */

or with two pararneters (referred to here as argc and argv, though any naUles luay be
used, as they are local to the function in which they are declared):

int main(int arge, ehar *argv[]) /* ... */

If they are defined, the parameters to the main function obey the following constraints:

• The value of arge is a positive integer.

• argv [arge] is a null pointer.

• The array members argv [0] through argv [arge-1] inclusive contain pointers to
strings, which are tokens from the invocation line. The intent is to supply to the
program information determined prior to program startup from the user or other
programs.

• The string pointed to by argv [0] represents the program name. If the value of arge is
greater than one, the strings pointed to by argv [1] through argv [arge-1] represent
the program parameter3.

• The parameters arge and argv and the strings pointed to by the argv array are
modifiable by the program, and retain their last-stored values between program startup
and program termination.

Program Execution

A program may use all the functions, macros, type definitions, and objects described in
the library sections (9-20) of this manual.

1-6 Program Execution HA17-00

Introduction to the C Compiler

C Run Unit Invocation

A C run unit can be invoked using either CP-6 Standard Invocation or a nonstandard
UNIX-like invocation. In both cases, command line arguments and options are passed to
the C program via the argc and argv parameters to the main function. In either case,
argv [0] contains the name of the run unit (as entered by the user) and stderr is opened
to the current M$DO DCB setting.

CP-6 Standard Invocation

To perform CP-6 standard invocation, the run unit must first be linked with the STDINVOC
option. The syntax for CP-6 standard invocation is:

!ru (debl, deb2 ({ onloverlinto} (deb31(, deb411 ((options) 1

The options list contains one or more options separated by commas or white space. The
entire options list including the parentheses is provided as a single argv string. When
the program is executed, the C library opens stdin to the current M$SI DCB setting and
stdout to the current M$LO DCB setting.

Example:

!blast OVER *OUT (LS,special,fizz)

If the run unit blast was linked with the options (DCB1=M$SI ,DCB3=M$LO, STDINVOC),
then in this example stdout is opened to the file *OUT using mode v. stdin is opened to
the device ME using using mode r (if M$SI has not been set in IBEX). The parameters to
the main function would have the following values:

argc == 2
argv[O] -- "blast"
argv[1] -- "(LS,special,fizz)"
argv[2] -- (char *)0

When running C run units linked with standard invocation, the M$SI and M$LO DCBs are
automatically opened as stdin and stdout. Other command line DCBs may be used by
C programs, but the C library does not open them automatically. To open the other
command line DCBs, the fopen or freopen function must be called with the file name
argument "dcb=debname" or "#n", where n is a command line DCB number (1, 2, 3, or 4).

HA17-00 C Run Unit Invocation 1-7

Introduction to the C Compiler

UNIX-Like Invocation

UNIX-like invocation occurs if the run unit is not linked with the STDINVOC option. The
syntax is:

! ru / { token /token .. .j I redirection_specification } ... j

where:

token is a contiguous sequence of non-white-space characters. White-space characters
may be included in a token by enclosing them in single quotes. Single quotes are
included in tokens by preceding them with a backslash character.

redirection_specification is of the form:
{ < I > I > > } /white-space j token

"<" specifies input redirection. The following token is treated as a file name and
the stdin stream is connected to that file for reading.

">" specifies output redirection. The following token is treated as a file name
and the stdout stream is connected to that file for writing.

"»" specifies output append redirection. The following token is treated as a
file name and the stdout stream is connected to that file for writing. If the file
already exists, output is appended to the end of the file.

Tokens that are not part of a redirection specification are put into the argv list.

Example:

!ru >gorp fizz foo-bar

The stdout stream is opened to the file gorp. The stdin stream is opened to the ME
device.

The parameters to the main function would have the values:

argc -- 3
argv[O] -- "ru"
argv[l] -- "fizz"
argv[2] -- "foo-bar"
argv[3] -- (char *)0

Program Termination

A return from the initial call to the main function is equivalent to calling the exit function
with the value returned by the main function as its argument. If the main function executes
a return that specifies no value, the step condition code STEPCC is set to O.

1-8 Program Termination HA17-00

Introduction to the C Compiler

Environmental Considerations

The following paragraphs describe the environment in effect during compilation.

Character Set

In a character constant or string literal, members of the character set may be represented
by the character set or by e5cape 5equence5 consisting of the backslash (\) followed by one
or more characters. A byte with all bits set to 0, called the null character, terminates a
character string literal.

The basic character set has the following members:

the 26 upper-case letters of the English alphabet:

A B C D E F G H I J K L M
N 0 p Q R 5 T U V W X Y Z

the 26 lower-case letters of the English alphabet:

a b c d e f g h i j k 1 m
n 0 p q r s t u V II X Y z

the 10 decimal digits:

0 1 2 3 4 5 6 7 8 9

the following 32 graphic characters:

" # r. I: () * + / c J

< = > ? [\] { } $

and the following white-space characters:
5pace-character
horizontal- tab
vertical-tab
form-feed

Trigraph Sequences

A trigraph 5equence5 is a special 3-character group that is used to define a single character
that is not part of the ISO ANSI code set. Table 1-1 shows the trigraph sequences with
the corresponding single character each represents.

HA17-00 Character Set 1-9

Introduction to the C Compiler

Trigraph Meaning

??= #

??([

??/ \
??)]

??' -
??< {

??! I
??> }

??- -
Table 1-1. Trigraph Sequences

No other trigraph sequences exist. Each? that does not begin one of the trigraphs listed
above is not changed.

Example:

The following source line

printf("Eh???/n");

becomes (after replacement of the trigraph sequence ?? /)

printf("Eh?\n");

Character Display Semantics

The active position is that location on a display device where the next character output by
the fputc function would appear. The intent of writing a printable character (as defined
by the isprint function) to a display device is to display a graphic representation of that
character at the active position and then advance the active position to the next position
on the current line. If the active position is at the final position of a line (if there is one),
CP-6 typically adds an automatic new line.

Alphabetic escape sequences representing nongraphic characters in the execution character
set produce actions on display devices (terminals) described in Table 1-2.

1-10 Character Display Semantics HA17-00

Introduction to the C Compiler

Escape Sequence Meaning

\a (alert) Produces an audible or visible alert when displayed
on a terminal. The active position is not changed.

\b (back~pace) Moves the active position to the previous position
on the current terminal line. If the active position
is at the initial position of a line, the behavior
depends on the terminal type.

\f (form feed) Moves the active position to the initial position at
the start of the next logical page.

\n (new line) Moves the active position to the initial position of
the next line.

\r (carriage return) Moves the active position to the initial position of
the current line.

\ t (horizontal tab) Moves the active position to the next horizontal
tabulation position on the current line. If the
active position is at or past the last defined
horizontal tabulation position, the behavior depends
on the terminal type.

\ v (vertical tab) Moves the active position to the initial position of
the next vertical tabulation position. If the active
position is at or past the last defined vertical
tabulation position, the behavior depends on the
terminal type.

Table 1-2. Alphabetic E~cape Sequence~

As shown in Table 1-3, each of these escape sequences produces a unique value which can
be stored in a char object.

Escape Sequence Value

\a 7

\b 8

\f 12

\r 13

\t 9

\v 11

Table 1-3. E~cape Sequence Values

HA17-00 Character Display Semantics 1-11

Introduction to the C Compiler

Signals and Interrupts

The functions in the library are not guaranteed to be re-entrant and may modify objects
with static storage duration. This means that they should not be executed from signal
handling functions.

1-12 Signals and Interrupts HA17-00

Section 2

Lexical Elements

This section describes the lexical elements of the C language: keywords, identifiers,
constants, string literals, operators, punctuators, header names, preprocessing numbers,
and comments. These are shown in the syntax below. For each individual element, syntax,
description, constraints, semantics, and examples are presented where appropriate.

Syntax:

token:
keyword
identifier
constant
string-literal
operator
punctuator

preprocessing-token:
header-name
identifier
pp-number
character-constant
string-literal
operator
punctuator
each non-white-space character that cannot be one of the above

Constraints:

Each preprocessing token that is converted to a token has the lexical form of a keyword,
an identifier, a constant, a string literal, an operator, or a punctuator.

HA17-00 2-1

Lexical Elements

Semantics:

A token is the minimal lexical element of the language in translation phases 7 and 8.
The categories of tokens are: keywords, identifiers, constants, string literals, operators,
and punctuators. A preprocessing token is the minimal lexical element of the language
in translation phases 3 through 6. The categories of preprocessing token are: header
names, identifiers, preprocessing numbers, character constants, string literals, operators,
punctuators, and single non-white-space characters (except ' and II) that do not lexically
match the other preprocessing token categories. Preprocessing tokens can be separated
by white space; this consists of comments (described at the end of this section), white­
space characters (space, horizontal tab, new-line, vertical tab, and form-feed), or both.
As described in Section 8, Preprocessing Directives, in certain circumstances during
translation phase 4, white space (or the absence thereof) serves as more than preprocessing
token separation. White space may appear within a preprocessing token only as part of a
header name or between the quotation characters in a character constant or string literal.

If the input stream has been parsed into preprocessing tokens up to a given character,
the next preprocessing token is the longest sequence of characters that could constitute a
preprocessing token.

Examples:

The program fragment 1Ex is parsed as a preprocessing number token (one that is not a
vaiid floating or integer constant token), even though a parse as the pair of preprocessing
tokens 1 and Ex might produce a valid expression (for example, if Ex were a macro defined
as +1). Similarly, the program fragment 1E1 is parsed as a preprocessing number (one that
is a valid floating constant token), whether or not E is a macro name.

The program fragment x+++++y is parsed as x ++ ++ + y , which violates a constraint on
increment operators, even though the parse x ++ + ++ y might yield a correct expression.

Keywords

Syntax:
keyword: one of

auto
break
case
char
const
continue
default
do

Semantics:

double
else
enum
extern
float
for
goto
if

int
long
register
return
short
signed
sizeof
static

struct
switch
typedef
union
unsigned
void
volatile
while

The above tokens (entirely in lowercase) are reserved (in translation phases 7 and 8) for
use as keywords and cannot be used otherwise.

2-2 Keywords HA17-00

Lexical Elements

Identifiers

Syntax:

identifier:
nondigit
identifier nondigit
identifier digit

nondigit: one of
a b c d e f g h i j k 1 m
n 0 p q r s t u v v x y z
A B C D E F G H I J K L M
N 0 p Q R S T U V W X Y Z

$

digit: one of
0 1 2 3 4 5 6 7 8 9

Description:

An identifier is a sequence of nondigit characters, including the underscore (_) and the
lower-case and upper-case letters, and digits. The first character is a nondigit character.
In CP-6 C, "$" is permitted to occur in an identifier. Use the ANSI option to restrict
identifiers.

Constraints:

In translation phases 7 and 8, an identifier may not consist of the same sequence of
characters as a keyword.

Semantics:

An identifier denotes an object, a function, or one of the following entities described in
Sections 4 through 8: a tag or a member of a structure, union, or enumeration; a typedef
name; a label name; a macro name; or a macro parameter. A member of an enumeration
is called an enumeration constant. Macro names and macro parameters are not considered
further here, because prior to the semantic phase of program translation any occurrences
of macro names in the source file are replaced by the preprocessing token sequences that
constit ute their macro definitions.

The default maximum identifier length is 64 characters.

Implementation Limits:

CP-6 C uses only the first 64 characters of an internal name (a macro name or an identifier
that does not have external linkage) or ezternal name (an identifier that has external
linkage). In names, the case of letters is significant.

HA17-00 Identifiers 2-3

Lexical Elements

Scopes of Identifiers

An identifier is vi.5ible (i.e., can be used) only within a region of program text called its
.5 cope. There are four kinds of scopes: function, file, block, and function prototype. (A
function prototype is a declaration of a function that declares the types of its parameters.)

A label name is the only kind of identifier that has function .5cope. It can be used (in a
goto statement) anywhere in the function in which it appears, and is declared implicitly by
its syntactic appearance (followed by a : and a statement). Label names must be unique
within a function.

Every other identifier has scope determined by the placement of its declaration (in a
declarator or type specifier). If the declarator or type specifier that declares the identifier
appears outside of any block or list of parameters, the identifier has file .5 Cope, which
terminates at the end of the object unit. If the declarator or type specifier that declares
the identifier appears inside a block or within the list of parameter declarations in a
function definition, the identifier has block scope, which terminates at the } that closes
the associated block. If the declarator or type specifier that declares the identifier appears
within the list of parameter declarations in a function prototype (not part of a function
definition), the identifier has function prototype scope, which terminates at the end of the
function declarator. If an outer declaration of a lexically identical identifier exists in the
same name space, it is hidden until the current scope terminates, after which it again
becomes visible.

Two identifiers have the same scope if and only if their scopes terminate at the same point.

Structure, union, and enumeration tags have scope that begins just after the appearance
of the tag in a type specifier that declares the tag. Each enumeration constant has scope
that begins just after the appearance of its defining enumerator in an enumerator list. Any
other identifier has scope that begins just after the completion of its declarator.

Linkages of Identifiers

An identifier declared in different scopes or in the same scope more than once can be made
to refer to the same object or function by a process called linkage. There are three kinds
of linkage: external, internal, and none.

In the set of object units and libraries that constitutes an entire program, each instance of
a particular identifier with ezternallinkage denotes the same object or function. Within
one object unit, each instance of an identifier with internal linkage denotes the same object
or function. Identifiers with no linkage denote unique entities.

If the declaration of an identifier for an object or a function has file scope and contains
the storage-class specifier static, the identifier has internal linkage.

2-4 Linkages of Identifiers HA17-00

Lexical Elements

If the declaration of an identifier for an object or a function contains the storage-class
specifier extern, the identifier has the same linkage as any visible declaration of the
identifier with file scope. If there is no visible declaration with file scope, the identifier has
external linkage.

If the declaration of an identifier for a function has no storage-class specifier, its linkage
is determined exactly as if it were declared with the storage-class specifier extern. If the
declaration of an identifier for an object has file scope and no storage-class specifier, its
linkage is external.

The following identifiers have no linkage: an identifier declared to be anything other than
an object or a function; an identifier declared to be a function parameter; a block scope
identifier for an object declared without the storage-class specifier extern.

Within a object unit, the same identifier must not appear with both internal and external
linkage.

N arne Spaces of Identifiers

If more than one declaration of a particular identifier is visible at any point in a object
unit, the uses that refer to different entities are specified by the syntactic context. Thus,
there are separate name spaces for various categories of identifiers, as follows:

• Label names (specified by the syntax of the label declaration and use).

• Tags of structures, unions, and enumerations (specified by following any10f the
keywords struct, union, or enum).

• Members of structures or unions; each structure or union has a separate name space
for its members (specified by the type of the expression used to access the member via
the . or -) operator).

• All other identifiers, called ordinary identifiers (declared in ordinary declarators or as
enumeration constants).

Storage Durations of Objects

An object has a storage duration that determines its lifetime. There are two storage
durations: static and automatic.

An object whose identifier is declared with external or internal linkage, or with the storage­
class specifier static, has static storage duration. For such an object, storage is reserved
and its stored value is initialized only once, prior to program startup. The object exists
and retains its last-stored value throughout the execution of the entire program. 2

1 There is only one name space for tags even though three are possible.
2 In the case of a volatile object, the last store may not be explicit in the program.

HA17-00 Storage Durations of Objects 2-5

Lexical Elements

An object whose identifier is declared with no linkage and without the storage-class specifier
static has automatic storage duration. Storage is guaranteed to be reserved for a new
instance of such an object on each normal entry into the block with which it is associated,
or on a jump from outside the block to a labeled statement in the block or in an enclosed
block. If an initialization is specified for the value stored in the object, it is performed on
each normal entry, but not if the block is entered by a jump to a labeled statement. Storage
for the object is no longer guaranteed to be reserved when execution of the block ends in
any way. (Entering an enclosed block suspends but does not end execution of the enclosing
block. Calling a function suspends but does not end execution of the block containing the
call.) The value of a pointer that referred to an object with automatic storage duration
that is no longer guaranteed to be reserved is indeterminate.

Types

The meaning of a value stored in an object or returned by a function is determined by
the type of the expression used to access it. (An identifier declared to be an object is the
simplest such expression; the type is specified in the declaration of the identifier.) Types
are partitioned into object types (types that describe objects), function types (types that
describe functions), and incomplete types (types t~at describe objects but lack information
needed to determine their sizes).

An object declared as type char is large enough to store any member of the character set.
If a member of the required source character set enumerated in Section 1 is stored in a
char object, its value is guaranteed to be positive. If other quantities are stored in a char
object, the value is truncated and treated as non-negative integers.

There are four signed integer types, designated as signed char, short int, int, and long
int. (The signed integer and other types may be designated in several additional ways, as
described in Section 5, Data Declarations.) The types short int, int, and long int are
the same size in CP-6 C.

An object declared as type signed char occupies the same amount of storage as a "plain"
char object. A "plain" int object occupies 4 bytes (36 bits), which is large enough to
contain any value in the range INT _MIN to INT _MAX as defined in the header <lim t s . h>.
In the list of signed integer types above, the range of values of each type is a subrange of
the values of the next type in the list.

For each of the signed integer types, there is a corresponding (but different) unsigned
integer type (designated with the keyword unsigned) that uses the same amount of
storage (including sign information) and has the same alignment requirements. The
range of non-negative values of a signed integer type is a subrange of the corresponding
unsigned integer type, and the representation of the same value in each type is the same. 3 A

3 The same representation and alignment requirements are meant to imply interchangeability as
arguments to functions, return values from functions, and members of unions.

2-6 Types HA17-00

Lexical Elements

computation involving unsigned operands can never overflow, because a result that cannot
be represented by the resulting unsigned integer type is reduced modulo the number that
is one greater than the largest value that can be represented by the resulting unsigned
integer type.

There are three floating types, designated as float, double, and long double. The set
of values of the type float is a subset of the set of values of the type double; the set of
values of the type double is the same as the set of values of the type long double. A
float occupies four bytes; a double or a long double occupies eight bytes.

The type char, the signed and unsigned integer types, and the floating types are collectively
called the basic types. Even though two or more basic types have the same internal
representation, they are nevertheless different types.

The three types char, signed char, and unsigned char are collectively called the character
types.

An enumeration comprises a set of named integer constant values. Each distinct
enumeration constitutes a different enumerated type.

The void type comprises an empty set of values; it is an incomplete type that cannot be
completed.

Any number of derived types can be constructed from the object, function, and incomplete
types, as follows:

• An array type describes a contiguously allocated non empty set of objects with a
particular member object type, called the element type. Array types are characterized
by their element type and by the number of elements in the array. An array type is
said to be derived from its element type, and if its element type is T, the array type
is sometimes called "array of T". The construction of an array type from an element
type is called "array type derivation".

• A .structure type describes a sequentially allocated nonempty set of member objects,
each of which has an optionally specified name and possibly distinct type.

• A union type describes an overlapping nonempty set of member objects, each of which
has an optionally specified name and possibly distinct type.

• A function type describes a function with specified return type. A function type is
characterized by its return type and the number and types of its parameters. A function
type is said to be derived from its return type, and if its return type is T, the function
type is sometimes called "function returning T". The construction of a function type
from a return type is called "function type derivation".

• A pointer type may be derived from a function type, an object type, or an incomplete
type, called the referenced type. A pointer type describes an object whose value
provides a reference to an entity of the referenced type. A pointer type derived from
the referenced type T is sometimes called "pointer to T". The construction of a pointer
type from a referenced type is called "pointer type derivation".

HA17-00 Types 2-7

Lexical Elements

These methods of constructing derived types can be applied recursively.

The type char, the signed and unsigned integer types, and the enumerated types are
collectively called integral types. Floating types are represented by using hexadecimal
floating point numbers.

Integral and floating types are collectively called arithmetic types. Arithmetic types and
pointer types are collectively called scalar types. Array and structure types are collectively
called aggregate types.4

An array type of unknown size is an incomplete type. It is completed, for an identifier of
that type, by specifying the size in a later declaration (with internal or external linkage). A
structure or union type of unknown content (as described in Section 5, Data Declarations)
is an incomplete type. It is completed, for all declarations of that type, by declaring the
same structure or union tag with its defining content later in the same scope.

Array, function, and pointer types are collectively called derived declarator types. A
declarator type derivation from a type T is the construction of a derived declarator type
from T by the application of an array, a function, or a pointer type derivation to T.

A type is characterized by its type category, which is either the outermost derivation of a
derived type (as noted above in the construction of derived types), or the type itself if the
type consists of no derived types.

Any type so far mentioned is an unqualified type. Each unqualified type has three
corresponding qualified versions of its type: a const-qualified version, a volatile-qualified
version, and a version having both qualifications. The qualified or unqualified versions
of a type are distinct types that belong to the same type category and have the same
representation and alignment requirements. 5 A derived type is not qualified by the qualifiers
(if any) of the type from which it is derived.

A pointer to void has the same representation and alignment requirements as a pointer
to a character type. Similarly, pointers to qualified or unqualified versions of compatible
types have the same representation and alignment requirements.6Pointers to other types
need not have the same representation or alignment requirements.

4 Note that aggregate type does not include union type because an object with union type can only

contain one member at a time.
S The same representation and alignment requirements are meant to imply interchangeability as

arguments to functions, return values from functions, and members of unions.
6 The same representation and alignment requirements are meant to imply interchangeability as

arguments to functions, return values from functions, and members of unions.

2-8 Types HA17-00

Lexical Elements

Examples:

The type designated as "float *" has type "pointer to float". Its type category is
pointer, not a floating type. The canst-qualified version of this type is designated as
"float * const" whereas the type designated as "const float *" is not a qualified type
- its type is "pointer to canst-qualified float" and is a pointer to a qualified type.

Finally, the type designated as "struct tag (* [5]) (float)" has type "array of pointer
to function returning struct tag". The array has length five and the function has a single
parameter of type float. Its type category is array.

Compatible Type and Composite Type

Two types have compatible type if their types are the same. Additional rules for determining
whether two types are compatible are described in Section 5, Data Declarations, for type
specifiers, type qualifiers, and declarators. 7Moreover, two structure, union, or enumeration
types declared in separate object units are compatible if they have the same number of
members, the same member names, and compatible member types; for two structures, the
members must be in the same order; for two structures or unions, the bit-fields must have
the same widths; for two enumerations, the members must have the same values.

All declarations that refer to the same object or function must have compatible type.

A compo~ite type can be constructed from two types that are compatible; it is a type that
is compatible with both of the two types and satisfies the following conditions:

• If one type is an array of known size, the composite type is an array of that size.

• If only one type is a function type with a parameter type list (a function prototype),
the composite type is a function prototype with the parameter type list.

• If both types are function types with parameter type lists, the type of each parameter
in the composite parameter type list is the composite type of the corresponding
parameters.

These rules apply recursively to the types from which the two types are derived.

For an identifier with external or internal linkage declared in the same scope as another
declaration for that identifier, the type of the identifier becomes the composite type.

Examples:

Given the following two file scope declarations:

int feint (*)(), double (*)[3]);
int feint (*)(char *), double (*)[]);

The resulting composite type for the function is:

int feint (*)(char *), double (*)[3]);

7 Two types need not be identical to be compatible.

HA17-00 Compatible Type and Composite Type 2-9

Lexical Elements

Constants

Syntax:

constant:
floating-constant
integer-constant
enumeration-constant
character-constant

Constraints:

The value of a constant must be in the range of representable values for its type.

Semantics:

Each constant has a type, determined by its form and value, as detailed in Section 5, Data
Declarations.

Floating Constants

Syntax:

floating-constant:

2-10

fractional-constant exponent-partopt floating-sujJixopt
digit-sequence exponent-part floating-sujJixopt

fractional-constant:
digit-sequence opt . digit-sequence
digit-sequence .

exponent- part:
e szgnopt digit-sequence
E signopt digit-sequence

sIgn: one of
+

digit-sequence:
digit
digit-sequence digit

floating-suffix: one of
f 1 F L

Floating Constants HA17-00

Lexical Elements

Description:

A floating constant has a significand part that may be followed by an exponent part and a
suffix that specifies its type. The components of the significand part may include a digit
sequence representing the whole-number part, followed by a period (.), followed by a digit
sequence representing the fraction part. The components of the exponent part are an e
or E followed by an exponent consisting of an optionally signed digit sequence. Either the
whole-number part or the fraction part must be present; either the period or the exponent
part must be present.

Semantics:

The significand part is interpreted as a decimal rational number; the digit sequence in
the exponent part is interpreted as a decimal integer. The exponent indicates the power
of 10 by which the significand part is to be scaled. If the scaled value is in the range of
representable values (for its type), the result is the smaller representable value immediately
adjacent to the nearest representable value.

An unsuffixed floating constant has type double. If suffixed by the letter f or F, it has
type float. If suffixed by the letter 1 or L, it has type long double.

Integer Constants

Syntax:

integer-constant:
decimal-constant integer-suffizopt
octal-constant integer-suffixopt
hexadecimal-constant integer-suffixopt

decimal-constant:
nonzero-digit
decimal-constant digit

octal-constant:
o
octal-constant octal-digit

hexadecimal-constant:
Ox hezadecimal-digit
OX hexadecimal-digit
hexadecimal-constant hexadecimal-digit

nonzero-digit: one of
1 234 5 6 789

HA17-00 Integer Constants 2-11

Lexical Elements

octal-digit: one of
o 1 234 5 6 7

hexadecimal-digit: one of
o 1 234 5 6 7 8 9
abc d e f
ABC D E F

integer-suffix:
unsigned-suffix long-suffixopt
long-suffix unsigned-suffixopt

unsigned-suffix: one of
u U

long-suffix: one of
I L

Description:

An integer constant begins with a digit, but has no period or exponent part. It may have
a prefix that specifies its base and a suffix that specifies its type.

A decimal constant begins with a nonzero digit and consists of a sequence of decimal digits.
An octal constant consists of the prefix 0 optionally followed by a sequence of the digits
o through 7 only. A hexadecimal constant consists of the prefix Ox or OX followed by a
sequence of the decimal digits and the letters a (or A) through f (or F) with values 10
through 15 respectively.

Semantics:

The value of a decimal constant is computed base 10; that of an octal constant, base 8;
that of a hexadecimal constant, base 16. The lexically first digit is the most significant.

The type of an integer constant is the first of the corresponding list in which its value can
be represented. Unsuffixed decimal: int, long int, unsigned long inti unsuffixed octal
or hexadecimal: int, unsigned int, long int, unsigned long inti suffixed by the letter u
or U: unsigned int, unsigned long inti suffixed by the letter I or L: long int, unsigned
long int; suffixed by both the letters u or U and I or L: unsigned long int

Enumeration Constants

Syntax:
enumeration-constant:

identifier

Semantics:

An identifier declared as an enumeration constant has type int.

2-12 Enumeration Constants HA17-00

Lexical Elements

Character Constants

Syntax:

character-constant:
'c-char-sequence '
L' c-char-sequence '

c-char-sequence:
c-char

c-char:

c-char-sequence c-char

any member of the source character set except
the single quote (,), backslash (\), or new-line character

escape-sequence

escape-sequence:
. simple-escape-sequence
octal-escape-sequence
hexadecimal- escape-sequence

simple-escape-sequence: one of
\' \" \1 \\
\a \b \f \n \r \t \v

octal-escape-sequence:
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit

hexadecimal-escape-sequence:
\x hexadecimal-digit
hexadecimal- escape-sequence hexadecimal-digit

Description:

An integer character constant is a sequence of one or more multibyte characters enclosed
in single quotes, as in 'x' or 'ab'. A wide character constant is the same, except prefixed
by the letter L. With a few exceptions detailed in Table 2-1, the elements of the sequence
are any members of the source character set.

The single quote (,), double quote ("), question mark (1), backslash (\), and arbitrary
integral values are representable as the escape sequences shown in the following table:

HA17-00 Character Constants 2-13

Lexical Elements

I Character Constant I Escape Sequence

single quote (,) \ '
double quote (") \"
question mark (?) \?
backslash (\) \\
octal integer \ octal digit8

hexadecimal integer \xhexadecimal digit8

Table 2-1. Escape Sequence8

The double quote (") and question mark (?) are representable either- by themselves or by
the escape sequences \" and \?, respectively; the single quote (,) and backslash (\) are
represented by the escape sequences \' and \ \, respectively.

The octal digits that follow the backslash in an octal escape sequence are taken to be part
of the construction of a single character for an integer character constant or of a single
wide character for a wide character constant. The numerical value of the octal integer so
formed specifies the value of the desired character or wide character.

The hexadecimal digits that follow the backslash and the letter x in a hexadecimal escape
sequence are taken to be part of the construction of a single character for an integer
character constant or of a single wide character for a wide character constant. The
numerical value of the hexadecimal integer so formed specifies the value of the desired
character or wide character.

Each octal or hexadecimal escape sequence is the longest sequence of characters that can
constitute the escape sequence.

In addition, certain nongraphic characters are representable by escape sequences consisting
of the backslash \ followed by a lower-case letter: \a, \b, \f, \n, \r, \t, and \v. 8 No other
escape sequence may be used.

Semantics:

An integer character constant has type into The value of an integer character constant
containing a single character that maps into a member of the character set is the numerical
value of the representation of the mapped character interpreted as an integer. An integer
character constant containing up to four characters may be used to specify an integer
value. If an escape sequence is not recognized in a character constant, the backslash (\)
is removed from the string. If an integer character constant contains a single character or
escape sequence, its value is the one that results when an object with type char whose
value is that of the single character or escape sequence is converted to type into

A wide character constant has type vchar_t, an integral type defined in the <stddef .h>
header as char. The value of a wide character constant containing a single multibyte
character that maps into a member of the extended execution character set is the wide
character (code) corresponding to that multibyte character, as defined by the mbtovc
function, with a locale of "C".

8 The semantics of these characters are discussed in Section 1.

2-14 Character Constants HA17-00

Lexical Elements

String Literals

Syntax:

~tring-literal:

"~-char-~equenceopt II

L" ~-char-Jequenceopt "

J-char-Jequence:

~-char:

Description:

J-char
J-char-Jequence J-char

any member of the source character set except
the double-quote ("), backslash (\), or new-line character

eJcape-sequence

A character string literal is a sequence of zero or more multibyte characters enclosed in
double quotes, as in "xyz". A wide string literal is the same, except prefixed by the letter
L.

The same considerations apply to each element of the sequence in a character string literal
or a wide string literal as if it were in an integer character constant or a wide character
constant, except that the single quote (,) is representable either by itself or by the escape
sequence (\'), but the double quote (") is representable by the escape sequence (\").

Semantics:

In translation phase 6, the multibyte character sequences specified by any sequence
of adjacent character string literal tokens, or adjacent wide string literal tokens, are
concatenated into a single multibyte character sequence.

In translation phase 7, a byte or code of value zero is appended to each multibyte character
sequence that results from a string literal or literals.9The multibyte character sequence is
then used to initialize an array of static storage duration and length just sufficient to
contain the sequence. For character string literals and wide string literals, the array
elements have type char, and are initialized with the individual bytes of the multibyte
character sequence.

Identical string literals may not be distinct. The program should not attempt to modify a
string literal because, by default, CP-6 C puts strings in read-only memory.

9 A character string literal need not be a string (see Section 18), because a null character may be

embedded in it by a \0 escape sequence.

HA17-00 String Literals 2-15

Lexical Elements

Examples:

This pair of adjacent character string literals

U\x12" "3"

produces a single character string literal containing the two characters whose values are
\x12 and' 3', because escape sequences are converted into single members of the execution
character set just prior to adjacent string literal concatenation.

Operators

Syntax:
operator: one of

[] () ->
++ I: * + sizeof
/ ~ « » < > <= >= -- != 1:1: I I
?
= *= /= ~= += -= «= »= 1:= = 1=

Constraints:

The operators [], (), and? : occur in pairs, possibly separated by expressions. The
operators # and ## may appear in macro-defining preprocessing directives only.

Semantics:

An operator specifies an operation to be performed (an evaluation) that yields a value,
yields a designator, produces a side effect, or a combination thereof. An operand is an
entity on which an operator acts.

Punctuators

Syntax:
punctuator: one of

[] () {} *
Constraints:

= #

The punctuators [], (), and { } occur in pairs, possibly separated by expressions,
declarations, or statements. The punctuator # may appear in preprocessing directives
only.

Semantics:

A punctuator is a symbol that has independent syntactic and semantic significance but
does not specify an operation to be performed that yields a value. Depending on context,
the same symbol may also represent an operator or part of an operator.

2-16 Punct uators HA17-00

Header Names

Syntax:
header-name:

<h-char-sequence>
" q-char-sequence"

h-char-sequence:
h-char
h-char-sequence h-char

h-char:
any member of the source character set except

the new-line character and>

q-char-sequence:
q-char

q-char:

q-char-sequence q-char

any member of the source character set except
the new-line character and "

Constraints:

Lexical Elements

Header name preprocessIng tokens may appear only within a #include preprocessIng
directive.

Semantics:

The sequences in both forms of header names are mapped into CP-6 file names representing
headers or external source file names, as specified in Section 8, Preprocessing Directives.

The characters " \, ", or 1* should not appear in the sequence between the < and>
delimiters. Similarly, the characters J, \, or 1* should not appear in the sequence between
the" delimiters.lo

Examples:

The following sequence of characters:

Ox3<1/a.h>1e2
#include </a.h>
#define const.memberl$

forms the following sequence of preprocessing tokens (with each individual preprocessing
token delimited by a { on the left and a } on the right):

{Ox3}{<}{1}{/}{a}{.}{h}{>}{1e2}
{#}{include} {<1/a.h>}
{#}{define} {const}{.}{member}{I}{$}

10 Thus, sequences of characters that resemble escape sequences should not be used.

HA17-00 Header Names 2-17

Lexical Elements

Preprocessing Numbers

Syntax:

pp-number:
digit
. digit
pp-number digit
pp-number nondigit
pp-number e s'tgn
pp-number E s'tgn
pp-number

Description:

A preprocessing number begins with a digit optionally preceded by a period (.) and
may be followed by letters, underscores, digits, periods, and e+, e-, E+, or E- character
sequences.

Preprocessing number tokens lexically include all floating and integer constant tokens.

Semantics:

A preprocessing number does not have type or a value; it acquires both after a successful
conversion (as part of translation phase 7) to a floating constant token or an integer
constant token.

Comments

Except within a character constant, a string literal, or a comment, the characters 1*
introduce a comment. The contents of a comment are examined only to find the characters
*1 that terminate it.l1

11 Thus comments do not nest.

2-18 Comments HA17-00

Section 3

Data Conversions

Several operators convert operand values from one type to another automatically. This
section specifies the result that occurs from such an implicit conver.sion, as well as those
that result from a cast operation (an explicit conver.sion). This section summarizes the
conversions performed by most ordinary operators; it is supplemented as required by the
discussion of each operator in Section 4, Expressions.

Conversion of an operand value to a compatible type causes no change to the value or the
representation.

Arithmetic Operands

The types of arithmetic operands are described in the following paragraphs.

Characters and Integers

A char, a short int, an int bit-field, their signed or unsigned varieties, or an object that
has enumeration type may be used in an expression wherever an int or unsigned int
may be used. If an int can represent all values of the original type, the value is converted
to an int; otherwise it is converted to an unsigned into These are called the integral
promotion.s.1 All other arithmetic types are unchanged by the integral pron10tions.

The integral promotions preserve value including sign. As discussed As discussed under
Types in Section 2, a "plain" char is treated as unsigned.

1 The integral promotions are applied only as part of the usual arithmetic conversions; to certain

argument expressions; to the operands of the unary +, -, and - operators; and to both operands of the

shift operators; as specified by their respective sections.

HA17-00 Characters and Integers 3-1

Data Conversions

Signed and Unsigned Integers

When an integer is converted to another integral type and the value can be represented
by the new type, its value is unchanged.

When a signed integer is converted to an unsigned integer with equal or greater size and
the value of the signed integer is non-negative, its value is unchanged. Otherwise, if the
unsigned integer has greater size, the signed integer is first promoted to the signed integer
corresponding to the unsigned integer; the value is converted to unsigned by adding to it
one greater than the largest number that can be represented in the unsigned integer type. 2

When an integer is demoted to an unsigned integer with smaller size, the result is the
non-negative remainder on division by the number one greater than the largest unsigned
number that can be represented in the type with smaller size. When an integer is demoted
to a signed integer with smaller size, or an unsigned integer is converted to its corresponding
signed integer, the result is truncated if the value cannot be represented.

Floating and Integral

\Vhen a value of floating type is converted to integral type, the fractional part is discarded. 3

When a value of integral type is converted to floating type and the value being converted
is in the range of values that can be represented but cannot be represented exactly, the
result is the nearest lower value.

Floating Types

When a float is promoted to double or long double, or a double is promoted to long
double, its value is unchanged.

When a double is demoted to float or a long double is demoted to double or float,
and the value being converted is in the range of values that can be represented but cannot
be represented exactly, the result is the nearest lower value.

Usual Arithmetic Conversions

Many binary operators that expect operands of arithmetic type cause conversions and yield
result types in a similar way. The purpose is to yield a common type, which is also the
type of the result. This pattern is called the usual arithmetic conversions, as follows:

2 In a two's-complement representation, there is no actual change in the bit pattern except filling the
high-order bits with copies of the sign bit if the unsigned integer has greater size.

3 The remaindering operation performed when a value of integral type is converted to unsigned type is
not performed. Thus the range of portable floating values is [0, Utype_MAI +1).

3-2 Usual Arithmetic Conversions HA17-00

Data Conversions

• First, if either operand has type long double, the other operand is converted to long
double.

• Otherwise, if either operand has type double, the other operand is converted to double.

• Otherwise, if either operand has type float, the other operand is converted to float.

• Otherwise, the integral promotions are performed on both operands. Then the
following rules are applied:

If either operand has type unsigned long int, the other operand is converted to
unsigned long int.
Otherwise, if one operand has type long int and the other has type unsigned
int, and a long int can represent all values of an unsigned int, the operand of
type unsigned int is converted to long int; if a long int cannot represent all the
values of an unsigned int, both operands are converted to unsigned long into
Otherwise, if either operand has type long int, the other operand is converted to
long into
Otherwise, if either operand has type unsigned int, the other operand is converted
to unsigned into
Otherwise, both operands have type into

The values of floating operands and of the results of floating expressions may be represented
in greater precision and range than that required by the type. 4

Other Operands

The following paragraphs describe the lvalue, function designator, and void expressions,
and pointers.

Lvalues and Function Designators

An lvalue is an expression (with an object type or an incomplete type other than void)
that designates an object.5 When an object is said to have a particular type, the type is
specified by the lvalue used to designate the object. A modifiable lvalue is an lvalue that
does not have array type, does not have an incomplete type, does not have a const-qualified
type, and if it is a structure or union, does not have any member (including, recursively,
any member of all contained structures or unions) with a const-qualified type.

4 The cast and assignment operators still perform their specified conversions.
5 The name "lvalue" comes originally from the assignment expression E1 = E2, in which the left operand

E1 must be a (modifiable) lvalue. It is perhaps better considered as representing an object "locator
value" . What is sometimes called "rvalue" is in this manual described as the "value of an expression".

An obvious example of an lvalue is an identifier of an object. As a further example, if E is a unary
expression that is a pointer to an object, *E is an lvalue that designates the object to which E points.

HA17-00 Lvalues and Function Designators 3-3

Data Conversions

Except when it is the operand of the sizeof operator, the unary i operator, the ++
operator, the -- operator, or the left operand of the ; operator or an assignment operator 7

an lvalue that does not have array type is converted to the value stored in the designated
ob ject (and is no longer an lvalue). If the lvalue has qualified type, the value has the
unqualified version of the type of the lvalue; otherwise the value has the type of the lvalue.
An lvalue that has an incomplete type and does not have array type should not be used.

Except when it is the operand of the sizeof operator or the unary i operator, or is a
character string literal used to initialize an array of character type, or is a wide string
literal used to initialize an array with element type compatible with wchar _ t, an lvalue
that has type "array of type" is converted to an expression that has type "pointer to type"
that points to the initial element of the array object and is not an lvalue.

A function designator is an expression that has function type. Except when it is the
operand of the sizeof operator60r the unary i operator, a function designator with type
"function returning type" is converted to an expression that has type "pointer to function
ret urning type".

void

The (nonexistent) value of a void expression (an expression that has type void) n1ay not be
, • ,. "'J ,. 'J ___ • (• \ L l' ...1 usea In any way, ana Impllcn or eXpllCH converSIons ~ except to v01d) ll1ay not ue applleu

to such an expression. If an expression of any other type occurs in a context where a void
expression is required, its value or designator is discarded. (A void expression is evaluated
for its side effects.)

Pointers

A pointer to void may be converted to or from a pointer to any incomplete or object type.
A pointer to any incomplete or object type may be converted to a pointer to void and
back again; the result compares equal to the original pointer.

For any qualifier q, a pointer to a non-q-qualified type may be converted to a pointer to
the q-qualified version of the type; the values stored in the original and converted pointers
compare equal.

An integral constant expression with the value 0, or such an expression cast to type void
*, is called a null pointer constant. If a null pointer constant is assigned to or compared
for equality to a pointer, the constant is converted to a pointer of that type. Such a
pointer, called a null pointer, is guaranteed to compare unequal to a pointer to any object
or function.

Two null pointers, converted through possibly different sequences of casts to pointer types,
compare equal.

8 Because this conversion does not occur, the operand of the sizeof operator remains a function
designator and violates the constraint in Section 4, Expressions.

3-4 Pointers HA17-00

Section 4

Expressions

An expression is a sequence of operators and operands that specifies computation of a
value, designates an object or a function, generates side effects, or performs a combination
thereof.

Between the previous and next sequence point, an object may have its stored value modified
at most once by the evaluation of an expreSSIon. The prior value is accessed only to
determine the value to be stored.)

Except as indicated by the syntax20r otherwise specified later (for the function-call
operator (), ii, II, ?:, and comma operators),- the order of evaluation of subexpressions
and the order in which side effects take place are both unspecified.

Some operators (the unary operator -, and the binary operators «, », i, .. , and I,
collectively described as bitwise operators) have operands of integral type. These operators
ret urn values that depend on the internal representations of integers.

1 This paragraph renders non-portable statement expressions such as

i = ++i + 1;

while allowing

i = i + 1;

2 The syntax specifies the precedence of operators in the evaluation of an expression, which is the same

as the order of the major subsections of this section, highest precedence first. Thus, for example, the

expressions allowed as the operands of the binary + operator are those expressions defined in Primary

Expressions through Additive Operators, in this section. The exceptions are cast expressions as
operands of unary operators and an operand contained between any of the following pairs of operators:

grouping parentheses (), subscripting brackets [], function-call parentheses (), and the conditional

operator ":. These are all described in this section.

Within each major subsection, the operators have the same precedence. Left- or right-associativity is

indicated in each subsection by the syntax for the expressions discussed therein.

HA17-00 4-1

Expressions

An exception can occur during the evaluation of an expression (that is, if the result is not
.,....,"'+ 'h~"""'a+l· r"", lhr rl~-hTl~d nT' not ;n t 1,P T'~Tl(J'P nf T'PT\T'Po;;:pntahlp V~ 111 po;;: fnr 1to;;: tvnp) NnrTn~ 11v
J..1.J.c.&.o\lJ.J."-'J..L.I. U '-"'J..J..J '-'.I.£.J..'-" '-'.&..... '"&. "'.&. ... "" ... ,.,..., 0"" ,-,,L ... ""'" 1" "" _ - .. _ ... --- - - ".1 r -,- ... -- _J ,

an exception condition is raised and the program is aborted.

For each expression and operator discussed in this section, syntax, description, constraints,
semantics, and examples are presented where appropriate.

Primary Expressions

Syntax:
. .

przmary- expresszon:

Semantics:

identifier
constant
string-literal
(expression)

An identifier is a primary expression, provided it has been declared as designating an object
(in which case it is an lvalue) or a function (in which case it is a function designator).

A constant is a primary expression. Its type depends on its form and value, as detailed in
Section 2, Lexical Elements.

A string literal is a primary expression. It is an lvalue with type as detailed in Section 2,
Lexical Elements.

A parenthesized expression is a primary expression. Its type and value are identical to
those of the unparenthesized expression. It is an lvalue, a function designator, or a
void expression if the unparenthesized expression is, respectively, an lvalue, a function
designator, or a void expression.

Postfix Operators

Syntax:
postfix-expression:

4-2

. .
prlmary- expre.sslon
postfix-expre.ssion [expre.s.non]
po.stfix-expression (argument-expres.sion-lisiopi)

po.stfix-expre.s.sion . identifier
po.stfix- expre.ssion - > identifier
postfix-expres.sion ++
po.stfix- expre.s.sion

argument-expression-list:
a.ssignment- expre.s.sion
argument-expre.s.sion-li.st , a.s.signment-expres.sion

Postfix Operators HA17-00

Expressions

Array Subscripting

Constraints:

One of the expressions has type "pointer to object type", the other expression has integral
type, and the result has type "type".

Semantics:

A postfix expression followed by an expression in square brackets ([]) is a subscripted
designation of an element of an array object. The definition of the subscript operator []
is that E1 [E2] is identical to (* (E1 + (E2))). Because of the conversion rules that apply
to the binary + operator, if E1 is an array object (equivalently, a pointer to the initial
element of an array object) and E2 is an integer, E1 [E2] designates the E2-th element of
E1 (counting from zero).

Successive subscript operators designate an element of a multidimensional array object. If
E is an n-dimensional array (n ~ 2) with dimensions i x j x ... x k , then E (used as other
than an lvalue) is converted to a pointer to an (n - 1)-dimensional array with dimensions
j x ... x k . If the unary * operator is applied to this pointer explicitly, or implicitly as a
result of subscripting, the result is the pointed-to (n - 1)-dimensional array, which itself
is converted into a pointer if used as other than an lvalue. It follows from this that arrays
are stored in row-major order (last subscript varies fastest).

Examples:

Consider the array object defined by the following declaration:

int :x [3] [5] j

Here, x is a 3 x 5 array of ints; more precisely, x is an array of three element objects,
each of which is an array of five ints. In the expression x [i], which is equivalent to
(* (x+ (i))), x is first converted to a pointer to the initial array of five ints. Then i is
adjusted according to the type of :x, which conceptually entails multiplying i by the size of
the object to which the pointer points, namely an array of five int objects. The results are
added and indirection is applied to yield an array of five ints. When used in the expression
x [i] [j], that in turn is converted to a pointer to the first of the ints, so x [i] [j] yields
an into

HA17-00 Array Subscripting 4-3

Expressions

Function Calls

Constraints:

The expression that denotes the called function 3has type pointer to function returning
void or returning an object type other than an array type.

If the expression that denotes the called function has a type that includes a prototype, the
number of arguments must agree with the number of parameters. Each argument has a
type such that its value may be assigned to an object with the unqualified version of the
type of its corresponding parameter.

Semantics:

A postfix expression followed by parentheses () containing a possibly empty, comma­
separated list of expressions is a function call. The postfix expression denotes the called
function. The list of expressions specifies the arguments to the function.

If the expression that precedes the parenthesized argument list in a function call consists
solely of an identifier, and if no declaration is visible for this identifier, the identifier is
implicitly declared exactly as if, in the innermost block containing the function call, the
declaration

extern int identifier();

appeared.4

An argument can be an expression of any object type. In preparing for the call to a
function, the arguments are evaluated and each parameter is assigned the value of the
corresponding argument. 5The value of the function call expression is specified in Section
6, Statements.

If the expression that denotes the called function has a type that does not include a
prototype, the integral promotions are performed on each argument, and arguments
that have type float are promoted to double. These are called the default argument
promotions.... The number of arguments should agree with the number of parameters.
The function should be defined with a type that does not include a prototype, and the
types of the arguments after promotion should be compatible with those of the parameters
after promotion. If the function is defined with a type that includes a prototype and
the types of the arguments after promotion are not compatible with the types of the

3 Most often, this is the result of converting an identifier that is a function designator.
4 That is, an identifier with block scope declared to have external linkage with type function without

parameter information and returning an into It should not be defined as having type "function
returning int".

5 A function may change the values of its parameters, but these changes cannot affect the values of the
arguments. On the other hand, it is possible to pass a pointer to an object, and the function may
change the value of the object pointed to. A parameter declared to have array or function type is
converted to a parameter with a pointer type as described in Section 7, External Data Definitions.

4-4 Function Calls HA17-00

Expressions

parameters, or if the prototype ends with an ellipsis (, ...), an error is reported if there
is not a type conversion that produces the correct type.

If the expression that denotes the called function has a type that includes a prototype, the
arguments are implicitly converted, as if by assignment, to the types of the corresponding
parameters. The ellipsis notation in a function prototype declarator causes argument type
conversion to stop after the last declared parameter. The default argument promotions
are performed on trailing arguments. If the function is defined with a type that is not
compatible with the type (of the expression) pointed to by the expression that denotes the
called function, an error is reported and default conversions occur.

No other conversions are performed implicitly; in particular, the number and types of
arguments are not compared with those of the parameters in a function definition that
does not include a function prototype declarator.

The order of evaluation of the function designator, arguments, and subexpressions within
the arguments is unspecified, but there is a sequence point before the actual call.

Recursive function calls are permitted, both directly and indirectly through any chain of
other functions.

Examples:

In the function call

(*pf[f1()]) (f2(), f3() + f4())

the functions f1, f2, f3, and f4 may be called in any order. All side effects are completed
before the function pointed to by pf [f1 ()] is entered.

Structure and Union Members

Constraints:

The first operand of the. operator has a qualified or unqualified structure or union type,
and the second operand names a member of that type.

The first operand of the -) operator has type "pointer to qualified or unqualified structure"
or "pointer to qualified or unqualified union", and the second operand names a member of
the type pointed to.

Semantics:

A postfix expression followed by a dot (.) and an identifier designates a member of a
structure or union object. The value is that of the named member and is an lvalue if the
first expression is an lvalue. If the first expression has qualified type, the result has the
so-qualified version of the type of the designated member.

A postfix expression followed by an arrow (-») and an identifier designates a member of a
structure or union object. The value is that of the named member of the object to which

HA17-00 Structure and Union Members 4-5

Expressions

the first expression points, and is an Ivalue. 6If the first expression is a pointer to a qualified
.L ___ - .Lh- _____ 14 L ~ - 4be -- -uall'fied ~·e-~:~~ ~+. 1....,. ,..,...,. .n.+ f 1..0 rleC';gT"l ""'fed 1'T'\emhe?" Ly pe, L e l-~~UIL 11(1.~ "1 ;:'V-\.f v 1 ~.1VI.1 VI !.HC- Ii) p~ V.L lJH'L. U ':).1 uu." .1U .lHJ.l.

With one exception, if a member of a union object is accessed after a value has been stored
in a different member of the object, the behavior is nonportable. 10ne special guarantee
is made in order to simplify the use of unions. If a union contains several structures that
share a common initial sequence, and if the union object currently contains one of these
structures, the common initial part of any of them may be inspected. Two structures
share a common initial .sequence if corresponding members have compatible types (and,
for bit-fields, the same widths) for a sequence of one or more initial members.

Examples:

If f is a function returning a structure or union, and x is a member of that structure or
union, f () . x is a valid postfix expression but is not an lvalue.

The following is a valid fragment:

union {
struct {

int alltypesj

} u;

1. on' J ... ,

struct {
int type;
int intnode;

} ni;
struct {

} nf;

int
double

type;
doublenode;

/* ... */
u.nf.type = 1;
u.nf.doublenode = 3.14;
/* ... */
if (u.n.alltypes == 1)

/* ... */ sin(u.nf.doublenode) /* ... */

6 If I:E is a valid pointer expression (where I: is the "address-of' operator, which generates a pointer to

its operand) the expression (I:E)->MOS is the same as E.MOS.

7 The "byte orders" for scalar types are invisible to isolated programs that do not indulge in type

punning (for example, by assigning to one member of a union and inspecting the storage by accessing

another member that is an appropriately-sized array of character type).

4-6 Structure and Union Members HA17-00

Postfix Increment and Decrement Operators

Constraints:

Expressions

The operand of the postfix increment or decrement operator has qualified or unqualified
scalar type and is a modifiable lvalue.

Semantics:

The result of the postfix ++ operator is the value of the operand. After the result is
obtained, the value of the operand is incremented (that is, the value 1 of the appropriate
type is added to it). See the discussions of additive operators and compound assignment
later in this section for information on constraints, types, conversions, and the effects of
operations on pointers. The side effect of updating the stored value of the operand occurs
between the previous and the next sequence point.

The postfix -- operator is analogous to the postfix ++ operator, except that the value of
the operand is decremented (that is, the value 1 of the appropriate type is subtracted from
it).

Unary Operators

Syntax:
unary- expreJJzon:

poJtjix-expreJJion
++ unary- expreJJion
-- unary-expreJJzon
unary-operator caJt-expreJJion
sizeof unary-expreJJion
sizeof (type-name)

unary-operator: one of
I; * +

Prefix Increment and Decrement Operators

Constraints:

The operand of the prefix increment or decrement operator has qualified or unqualified
scalar type and is a modifiable lvalue.

Semantics:

The value of the operand of the prefix ++ operator is incremented. The result is the new
value of the operand after incrementation. The expression ++E is equivalent to (E+=1).
See the discussions of additive operators and compound assignment later in this section for
information on constraints, types, side effects, conversions, and the effects of operations
on pointers.

The prefix -- operator is analogous to the prefix ++ operator, except that the value of the
operand is decremented.

HA17-00 Prefix Increment and Decrement Operators 4-7

Expressions

Address and Indirection Operators

Constraints:

The operand of the unary 1 operator is either a function designator or an lvalue that
designates an object that is not a bit-field and is not declared with the register storage­
class specifier.

The operand of the unary * operator has pointer type.

Semantics:

The result of the unary 1 (address-of) operator is a pointer to the object or function
designated by its operand. If the operand has type "type", the result has type "pointer to
type".

The unary * operator denotes indirection. If the operand points to a function, the result
is a function designator; if it points to an object, the result is an lvalue designating the
object. If the operand has type "pointer to type", the result has type "type". If an invalid
value has been assigned to the pointer, the behavior of the unary * operator cannot be
predicted.8

Unary Arithmetic Operators

Constraints:

The operand of the unary + or - operator has arithmetic type; of the - operator, integral
type; and of the ! operator, scalar type.

Semantics:

The result of the unary + operator is the value of its operand. The integral promotion is
performed on the operand, and the result has the promoted type.

The result of the unary - operator is the negative of its operand. The integral promotion
is performed on the operand, and the result has the promoted type.

The result of the - operator is the bitwise complement of its operand (that is, each bit in
the result is set if and only if the corresponding bit in the converted operand is not set).

8 It is always true that if E is a function designator or an lvalue that is a valid operand of the unary t

operator, *tE is a function designator or an lvalue equal to E.

If *P is an lvalue and T is the name of an object pointer type, the cast expression *(T)P is an lvalue
that has a type compatible with that to which T points.

Among the invalid values for dereferencing a pointer by the unary * operator are a null pointer, an
address inappropriately aligned for the type of object pointed to, and the address of an object that has
automatic storage duration when execution of the block with which the object is associated has
terminated.

4-8 U nary Arithmetic Operators HA17-00

Expressions

The integral promotion is performed on the operand, and the result has the promoted type.
The expression -E is equivalent to (ULONG_MAX-E) ifE is promoted to type unsigned long,
and to (UINT_MAX-E) if E is promoted to type unsigned into (The constants ULONG_MAX
and UINT_MAX are defined in, the header <limits.h>.)

The result of the logical negation operator ! is 0 if the value of its operand compares
unequal to 0, or 1 if the value of its operand compares equal to O. The result has type
int. The expression ! E is equivalent to (O==E).

sizeof Operator

Constraints:

The sizeof operator may not be applied to an expression that has function type or an
incomplete type, to the parenthesized name of such a type, or to an lvalue that designates
a bit-field object.

Semantics:

The sizeof operator yields the size (in bytes) of its operand, which may be an expression
or the parenthesized name of a type. The size is determined from the type of the operand,
which is not itself evaluated. The result is an integer constant.

When applied to an operand that has type char, unsigned char, or signed char, (or a
qualified version thereof) the result is 1. When applied to an operand that has array type,
the result is the total number of bytes in the array.9When applied to an operand that has
structure or union type, the result is the total number of bytes in such an object, including
internal and trailing padding.

The value of the result depends upon the argument type, and its type (an unsigned integral
type) is size_t defined in the <stddef .h> header.

Examples:

A principal use of the sizeof operator is in communication with routines such as storage
allocators and I/O systems. A storage-allocation function might accept a size (in bytes)
of an object to allocate and return a pointer to void. For example:

extern void *alloc(size_t);
double *dp = alloc(sizeof *dp);

The alloc function ensures that its return value is aligned suitably for conversion to a
pointer to double.

Another use of the sizeof operator is to compute the number of elements in an array:

sizeof array / sizeof array[O]

9 When applied to a parameter declared to have array (or function) type, the sizeof operator yields the
size of the pointer obtained by converting as in Section 3, Data Conversion; see Section 7, External
Data Definitions.

HA17-00 sizeof Operator 4-9

Expressions

Cast Operators

Syntax:

cast- expression:
unary- express 'ton
(type-name) cast-expression

Constraints:

Unless it specifies void type, the type name specifies qualified or unqualified scalar type
and the operand has scalar type.

Semantics:

Preceding an expression by a parenthesized type name converts the value of the expression
to the named type. This construction is called a cast. lO A cast that specifies no conversion
has no effect on the type or value of an expression.

Conversions that involve pointers (other than as permitted by the constraints in this
section) are specified by means of an explicit cast; they have CP-6specific aspects, as
follows:

• A pointer may be converted to an integral type. The size of integer required is an int
and the value is zero if the pointer is the NULL pointer; otherwise, it is the pointer value
exclusive OR'ed with octal 06014.

• An arbitrary integer may be converted to a pointer. The result is a NULL pointer if the
integer is zero; otherwise, it is the integer value exclusive OR'ed with octal 06014.

• A pointer to an object or incomplete type may be converted to a pointer to a different
object type or a different incomplete type. The resulting pointer might not be valid
if it is improperly aligned for the type pointed to. It is guaranteed, however, that a
pointer to an object of a given alignment may be converted to a pointer to an object
of the same alignment or a less strict alignment and back again; the result compares
equal to the original pointer (an object that has character type has the least strict
alignment).

• A pointer to a function of one type may be converted to a pointer to a function of
another type and back again; the result compares equal to the original pointer. A
converted pointer must not be used to call a function that has a type that is not
compatible with the type of the called function.

10 A cast does not yield an lvalue. Thus a cast to a qualified type has the same effect as a cast to the

unqualified version of the type.

4-10 Cast Operators HA17-00

Multiplicative Operators

Syntax:

multiplicative-expression:
cast-expression

Constraints:

multiplicative-expression * cast-expression
multiplicative-expression / cast-expression
multiplicative-expression % cast-expression

Expressions

Each of the operands has arithmetic type. The operands of the % operator have integral
type.

Semantics:

The usual arithmetic conversions are performed on the operands.

The result of the binary * operator is the product of the operands.

The result of the / operator is the quotient from the division of the first operand by the
second; the result of the % operator is the remainder. In both operations, the value of the
second operand may not be zero, or the SIGFPE signal is raised (see Section 14).

When integers are divided and the division is inexact, and both operands are positive, the
result of the / operator is the largest integer less than the algebraic quotient; the result
of the % operator is positive. If either operand is negative, the result of the / operator
is the largest integer less than or equal to the algebraic quotient. The sign of the result
of the a%b operator is negative if a is negative. If the quotient alb is representable, the
expression (a/b) *b + a%b equals a.

Additive Operators

Syntax:

additive- expression:

Constraints:

multi plicati ve -express ion
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression

For addition, either both operands have arithmetic type, or one operand is a pointer to an
object type and the other has integral type. (Incrementing is equivalent to adding 1.)

For subtraction, one of the following must hold:

HA17-00 Additive Operators 4-11

Expressions

• Both operands have arithmetic type.

• Both operands are pointers to qualified or unquaiified versions of compatible object
types.

• The left operand is a pointer to an object type, and the right operand has integral
type. (Decrementing is equivalent to subtracting 1.)

Semantics:

If both operands have arithmetic type, the usual arithmetic conversions are performed on
them.

The result of the binary + operator is the sum of the operands.

The result of the binary - operator is the difference resulting from the subtraction of the
second operand from the first.

For the purposes of these operators, a pointer to a nonarray object behaves the same as
a pointer to the first element of an array of length one with the type of the object as its
element type.

\Vhen an expression that has integral type is added to or subtracted from a pointer, the
result has the type of the pointer operand. If the pointer operand points to an element of
an array object, and the array is large enough, the result points to an element offset from
the original element such that the difference of the subscripts of the resulting and original
array elements equals the integral expression. In other words, if the expression P points to
the i-th element of an array object, the expressions (P)+N (equivalently, N+(P») and (P)-N

(where N has the value n) point to, respectively, the i+n-th and i-n-th elements of the array
object, provided they exist. Moreover, if the expression P points to the last element of an
array object, the expression (P)+1 points one past the last element of the array object,
and if the expression Q points one past the last element of an array object, the expression
(Q)-1 points to the last element of the array object. If both the pointer operand and the
result point to elements of the same array object, or one past the last element of the array
object, the evaluation should not produce an overflow. Unless both the pointer operand
and the result point to elements of the same array object, or the pointer operand points
one past the last element of an array object and the result points to an element of the
same array object, the result should not be used as an operand of the unary * operator.

When two pointers to elements of the same array object are subtracted, the result is the
difference of the subscripts of the two array elements. The size of the result is an int, and
its type is ptrdiff _ t defined in the <stddef. h> header. Both pointers should point to
elements of the same array object, or one past the last element of the same array object.

4-12 Additive Operators HA17-00

Bitwise Shift Operators

Syntax:
shift-expression:

additive- expression
shift- expression > > additive- expression
shift-expression « additive-expression

Constraints:

Each of the operands has integral type.

Semantics:

Expressions

The integral promotions are performed on each of the operands. The type of the result is
that of the promoted left operand. The value of the right operand should not be negative
or greater than or equal to the width in bits of the promoted left operand.

The result of E1 « E2 is E1 left-shifted E2 bit positions; vacated bits are filled with
zeros. If E1 has an unsigned type, the value of the result is E1 multiplied by the quantity
2 raised to the power E2, reduced modulo ULONG_MAX+1 if E1 has type unsigned long,
UINT_MAX+1 otherwise. (The constants ULONG_MAX and UINT_MAX are defined in the header
<lind ts. h>.)

The result of E1 » E2 is E1 right-shifted E2 bit positions. If E1 has an unsigned type or if
E1 has a signed type and a non-negative value, the value of the result is the integral part
of the quotient of E1 divided by the quantity 2 raised to the power E2. If E1 has a signed
type and a negative value, vacated bit positions of E1 are filled with 1 's.

Relational Operators

Syntax:
relational- expression:

shift-expression

Constraints:

relational-ezpre8sion < 8hift-expre88ion
relational-ezpre88ion > 8hift-ezpres8ion
relational-ezpre8sion <= 8hift-expres8ion
relational-ezpre8sion >= shift-expression

One of the following must hold:

• Both operands have arithmetic type.

• Both operands are pointers to qualified or unqualified versions of compatible object
types.

• Both operands are pointers to qualified or unqualified versions of compatible incomplete
types.

HA17-00 Relational Operators 4-13

Expressions

Semantics:

If both of the operands have arithmetic type, the usual arithmetic converSIons are
performed.

For the purposes of these operators, a pointer to a nonarray object behaves the same as
a pointer to the first element of an array of length one with the type of the object as its
element type.

When two pointers are compared, the result depends on the relative locations in the
address space of the objects pointed to. If the objects pointed to are members of the
same aggregate object, pointers to structure members declared later compare higher than
pointers to members declared earlier in the structure. Pointers to array elements with
larger subscript values compare higher than pointers to elements of the same array with
lower subscript values. All pointers to members of the same union object compare equal.
The objects pointed to should be members of the same aggregate or union object, with
the following exception. If the expression P points to an element of an array object and
the expression Q points to the last element of the same array object, the pointer expression
Q+1 compares higher than P, even though Q+1 does not point to an element of the array
object.

If two pointers to an object or incomplete types both point to the same object, or both
point one past the last element of the same array object, they compare equaL If two
pointers to an object or incomplete types compare equal, both point to the same object,
or both point one past the last element of the same array object. 1 1

Each of the operators < (less than), > (greater than), <= (less than or equal to), and >=
(greater than or equal to) yields 1 if the specified relation is true and 0 if it is false. I2The
result has type int.

Equality Operators

Syntax:

equality- expre~~ion:
relational- expre~~ion

Constraints:

equality-expre~~ion -- relational- expre~~ion
equality-expre~~ion ! = relational-expre~~ion

One of the following must hold:

11 Invalid pointer operations, such as accesses outside array bounds, should be avoided because of possible

adverse effects on subsequent comparisons.
12 The expression a<b<c is not interpreted as in ordinary mathematics. As the syntax indicates, it means

(a<b)<cj in other words, "if a is less than b compare 1 to Cj otherwise compare 0 to c".

4-14 Equality Operators HA17-00

Expressions

• Both operands have arithmetic type.

• Both operands are pointers to qualified or unqualified versions of compatible types.

• One operand is a pointer to an object or incomplete type and the other is a qualified
or unqualified version of void.

• One operand is a pointer and the other is a null pointer constant.

Semantics:

The == (equal to) and the ! = (not equal to) operators are analogous to the relational
operators except for their lower precedence.13Where the operands have types and values
suitable for the relational operators, the semantics detailed in Relational Operators, earlier
in this section, apply.

If two pointers to object or incomplete types are both null pointers, they compare equal.
If two pointers to object or incomplete types compare equal, they both are null pointers,
or both point to the same object, or both point one past the last element of the same
array object. If two pointers to function types compare equal, either both are null pointers
or both point to the same function. If one of the operands is a pointer to an object or
incomplete type and the other has type pointer to a qualified or unqualified version of
void, the pointer to an object or incomplete type is converted to the type of the other
operand. -

Bitwise AND Operator

Syntax:

AND-expression:
equality- expression
AND-expression I: equality-expression

Constraints:

Each of the operands has integral type.

Semantics:

The usual arithmetic conversions are performed on the operands.

The result of the binary I: operator is the bitwise AND of the operands (that is, each bit
in the result is set if and only if each of the corresponding bits in the converted operands
is set).

13 Because of the precedences, "a<b == c<d" is 1 whenever a<b and c<d have the same truth value.

HA17-00 Bitwise AND Operator 4-15

Expressions

Bitwise Exclusive OR Operator

Syntax:

exclu.sive- OR-expre.s/Jion:

AND -expre.s/J ion

exclu.sive- OR-expression ... AND-expression

Constraints:

Each of the operands has integral type.

Semantics:

The usual arithmetic conversions are performed on the operands.

The result of the" operator is the bitwise exclusive OR of the operands (that is, each bit
in the result is set if and only if exactly one of the corresponding bits in the converted
operands is set).

Bitwise Inclusive OR Operator

Syntax:

inciu/Jive- OR-expres/Jion:

exclusive- OR-expression

inclusive- 0 R- expression I exclusive- 0 R- expression

Constraints:

Each of the operands has integral type.

Semantics:

The usual arithmetic conversions are performed on the operands.

The result of the I operator is the bitwise inclusive OR of the operands (that is, each bit
in the result is set if and only if at least one of the corresponding bits in the converted
operands is set).

4-16 Bitwise Inclusive OR Operator HA17-00

Logical AND Operator

Syntax:

logical-AND-expression:
inclusive- OR-expression
logical-AND-expression 1;1; inclusive- OR-expression

Constraints:

Each of the operands has scalar type.

Semantics:

Expressions

The 1;1; operator yields 1 if both of its operands compare unequal to 0; otherwise it yields
o. The result has type int.

Unlike the bitwise binary I; operator, the 1;1; operator guarantees left-to-right evaluation;
there is a sequence point after the evaluation of the first operand. If the first operand
compares equal to 0, the second operand is not evaluated.

Logical OR Operator

Syntax:

logical- OR-expression:
logical-AND-expression

logical- OR-expression II logical-AND-expression

Constraints:

Each of the operands has scalar type.

Semantics:

The II operator yields 1 if either of its operands compare unequal to 0; otherwise it yields
o. The result has type into

Unlike the bitwise I operator, the II operator guarantees left-to-right evaluation; there is
a sequence point after the evaluation of the first operand. If the first operand compares
unequal to 0, the second operand is not evaluated.

HA17-00 Logical OR Operator 4-17

Expressions

Conditional Operator

Syntax:

conditional- expre~~ion:
logical- OR-expre~sion
logical- OR-expression ? express'ton

Constraints:

The first operand has scalar type.

conditional- expression

One of the following must hold for the second and third operands:

• Both operands have arithmetic type.

• Both operands have compatible structure or union types.

• Both operands have void type.

• Both operands are pointers to qualified or unqualified versions of compatible types.

• One operand is a pointer and the other is a null pointer constant.

• One operand is a pointer to an object or incomplete type and the other is a pointer to
a qualified or unqualified version of void.

Semantics:

The first operand is evaluated; there is a sequence point after its evaluation. The second
operand is evaluated only if the first compares unequal to 0; the third operand is evaluated
only if the first compares equal to 0; the value of the second or third operand (whichever
is evaluated) is the result. 14

If both the second and third operands have arithmetic type, the usual arithmetic
conversions are performed to bring them to a common type, and the result has that type. If
both the operands have structure or union type, the result has that type. If both operands
have void type, the result has void type.

If both the second and third operands are pointers or one is a null pointer constant and the
other is a pointer, the result type is a pointer to a type qualified with all the type qualifiers
of the types pointed to by both operands. Furthermore, if both operands are pointers to
compatible types or differently qualified versions of a compatible type, the result has the
composite type; if one operand is a null pointer constant, the result has the type of the
other operand. Otherwise, one operand is a pointer to void or a qualified version of void,
in which case the other operand is converted to type pointer to void, and the result has
that type.

14 A conditional expression does not yield an lvalue.

4-18 Conditional Operator BA17-00

Assignment Operators

Syntax:

assignment-expression:
conditional- expression
unary-expression assignment-operator

assignment-operator: one of
= *= /= %= += -= «= »=

Constraints:

ass ign m e nt- express ion

i= = 1=

An assignment operator has a modifiable lvalue as its left operand.

Semantics:

Expressions

An assignment operator stores a value in the object designated by the left operand. An
assignment expression has the value of the left operand after the assignment, but is not
an lvalue. The type of an assignment expression is the type of the left operand unless the
left operand has qualified type, in which case it is the unqualified version of the type of
the left operand. The side effect of updating the stored value of the left operand occurs
between the previous and the next sequence point.

The order of evaluation of the operands is unspecified.

Simple Assignment

Constraints:

One of the following must hold: 15

• The left operand has qualified or unqualified arithmetic type, and the right has
arithmetic type.

• The left operand has a qualified or unqualified version of a structure or union type
compatible with the type of the right.

• Both operands are pointers to qualified or unqualified versions of compatible types,
and the type pointed to by the left has all the qualifiers of the type pointed to by the
right.

• One operand is a pointer to an object or incomplete type, and the other is a pointer
to a qualified or unqualified version of void; the type pointed to by the left has all the
qualifiers of the type pointed to by the right.

• The left operand is a pointer, and the right is a null pointer constant.

15 The asymmetric appearance of these constraints with respect to type qualifiers is due to the conversion
(specified in Section 3, Data Conversion) that changes !values to "the value of the expression", which
removes any type qualifiers from the type category of the expression.

HA17-00 Simple Assignment 4-19

Expressions

Semantics:

In simple assignment (=), the value of the right operand is converted to the type of the
assignment expression and replaces the value stored in the object designated by the left
operand.

If the value being stored in an object is accessed from another object that overlaps in any
way the storage of the first object, then the overlap must be exact and the two objects
must have qualified or unqualified versions of a compatible type.

Examples:

In the program fragment

int f(void);

char c;

1* . .. *1
1* ... *1 ((c = f()) == -1) 1* ... *1

the int value returned by the function may be truncated when stored in the char and
then converted back to int \Xlidth prior to the comparison. Since "plain" c~.ar has the
same range of values as unsigned char (and char is narrower than int), the result of
the conversion cannot be negative, so the operands of the comparison can never compare
equal. Therefore, the variable c should be declared as int.

Compound Assignment

Constraints:

For the operators += and -= only, either the left operand is a pointer to an object type
and the right has integral type, or the left operand has qualified or unqualified arithmetic
type and the right has arithmetic type.

For the other operators, each operand has arithmetic type consistent with those allowed
by the corresponding binary operator.

Semantics:

A compound assignment of the form E1 op =E2 differs from the simple assignment expression
E1=E1 op (E2) only in that the lvalue E1 is evaluated only once.

4-20 Compound Assignment HA17-00

Expressions

Comma Operator

Syntax:

express'l,on:
assignment- expression
expression , assignment-expression

Semantics:

The left operand of a comma operator is evaluated as a void expression; there is a sequence
point after its evaluation. The right operand is then evaluated; the result has its type and
value. 16

Examples:

As indicated by the syntax, in contexts where a comma is a punctuator (in lists of
arguments to functions and lists of initializers), the comma operator as described in this
section cannot appear. On the other hand, it can be used within a parenthesized expression
or within the second expression of a conditional operator in such contexts. In the function
call

f(a, (t=3, t+2), c)

the function has three arguments, the second of which has the value 5.

Constant Expressions

Syntax:

con8tant- ezpre88ion:
conditional- ezpre88ion

Description:

A con8tant ezpre88ion will be evaluated during translation rather than run time, and
accordingly may be used in any place that a constant may be used.

Constraints:

Constant expressions do not contain assignment, increment, decrement, function-call,
or comma operators, except when they are contained within the operand of a sizeof
operator. 17

Each constant expression evaluates to a constant that is in the range of representable
values for its type.

16 A comma operator does not yield an Ivalue.
17 The operand of a sizeof operator (described earlier in this section) is not evaluated, and thus any

operator described in this section may be used.

HA17-00 Constant Expressions 4-21

Expressions

Semantics:

An expression that evaluates to a constant is required in several contexts. I8

An integral constant expression has integral type and can only have operands that are
integer constants, enumeration constants, character constants, sizeof expressions, and
floating constants that are the immediate operands of casts. Cast operators in an integral
constant expression can only convert arithmetic types to integral types, except as part of
an operand to the sizeof operator.

More latitude is permitted for constant expressions in initializers. Such a constant
expression evaluates to one of the following:

• An arithmetic constant expression.

• A null pointer constant.

• An address constant.

• An address constant for an object type plus or minus an integral constant expression.

An arithmetic constant expression has arithmetic type and can only have operands that
are integer constants, floating constants, enumeration constants, character constants, and
sizeof expressions. Cast operators in an arithmetic constant expression can only convert
arithmetic types to arithmetic types, except as part of an operand to the sizeof operator.

An address constant is a pointer to an Ivalue designating an object of static storage
duration, or to a function designator; it is created explicitly, using the unary t operator,
or implicitly, by the use of an expression of array or function type. The array-subscript
([]) and member-access (. and -» operators; the address (t) and indirection (*) unary
operators; and pointer casts may be used in the creation an address constant, but the value
of an object may not be accessed by use of these operators.

The semantic rules for the evaluation of a constant expression are the same as for
nonconstant expressions.

18 An integral constant expression must be used to specify the size of a bit-field member of a structure,
the value of an enumeration constant, the size of an array, or the value of a case constant. Further
constraints that apply to the integral constant expressions used in conditional-inclusion preprocessing
directives are discussed in Section 8, Preprocessing Directives.

4-22 Constant Expressions HA17-00

Section 5

Data Declarations

This section describes the data declarations of the C language: storage-class specifiers,
type specifiers, type qualifiers, declarators, type names, type definitions, and initializers.
For each declaration, syntax, constraints, semantics, and examples are presented where
appropriate.

Syntax:

declaration:
declaration-specifiers init-declarator-listopt ,

declaration-specifiers:
storage-class-specifier declaration-specifiersopt
type-specifier declaration-specifiers opt

type-qualifier declaration-specifiersopt

init-declarator-list:
init-declarator
init-declarator-list , init-declarator

init-declarator:
declarator
declarator = initializer

Constraints:

A declaration must declare at least a declarator, a tag, or the members of an enumeration.

If an identifier has no linkage, there may be no more than one declaration of the identifier
(in a declarator or type specifier) with the same scope and in the same name space, except
for tags as specified later in this section.

All declarations in the same scope that refer to the same object or function must specify
compatible types.

HA17-00 5-1

Data Declarations

Semantics:

A declaration specifies the interpretation and attributes of a set of identifiers. A declaration
that also causes storage to be reserved for an object or function named by an identifier is
a definition.]

The declaration specifiers consist of a sequence of specifiers that indicate the linkage,
storage duration, and part of the type of the entities that the declarators denote. The
init-declarator-list is a comma-separated sequence of declarators, each of which may have
additional type information, an initializer, or both. The declarators contain the identifiers
(if any) being declared.

If an identifier for an object is declared with no linkage, the type for the object must
be complete by the end of its declarator, or by the end of its init-declarator if it has an
initializer.

Storage-Class Specifiers

Syntax:
~torage-cla~~-~pecifier:

typedef
extern
static
auto
register

Constraints:

At most one storage-class specifier may be gIven In the declaration specifiers In a
declaration.

Semantics:

The typedef specifier is called a "storage-class specifier" for syntactic convenience only; it
is discussed in Type Definitions, later in this section. The meanings of the various linkages
and storage durations are discussed in Section 2, Lexical Elements.

A declaration of an identifier for an object with storage-class specifier register suggests
that access to the object be as fast as possible.2

The declaration of an identifier for a function that has block scope can have no explicit
storage-class specifier other than extern.

1 Function definitions have a different syntax, described in Section 7, External Data Definitions.
2 CP-6 C treats any register declaration simply as an auto declaration. However, whether or not

addressable storage is actually used, the address of any part of an object declared with storage-class
specifier register may not be computed, either explicitly (by use of the unary t operator as discussed
in Section 4, Expressions) or implicitly (by converting an array name to a pointer as discussed in
Section 3, Data Conversion). Thus the only operator that can be applied to an array declared with
storage-class specifier register is sizeof.

5-2 Storage-Class Specifiers HA17-00

Type Specifiers

Syntax:

type-.specifier:
void
char
short
int
long
float
double
signed
unsigned
.struct-or-union-.specifier
enum-.specifier
typedef-name

Constraints:

Data Declarations

Each list of type specifiers must be one of the following sets (delimited by commas, when
there is more than one set on aline); the type specifiers may occur in any order, possibly
intermixed with the other declaration specifiers:

• void

• char

• signed char

• unsigned char

• short, signed short, short int, or signed short int

• unsigned short or unsigned short int

• int, signed, signed int, or no type specifiers

• unsigned or unsigned int

• long, signed long, long int, or signed long int

• unsigned long or unsigned long int

• float

• double

• long double

• struct-or-union specifier

• enum-specifier

• typedef-name

HA17-00 Type Specifiers 5-3

Data Declarations

Semantics:

Specifiers for structures, unions, and enumerations are discussed later in this section, as
are declarations of typedef names. The characteristics of the other types are discussed in
Section 2, Lexical Elements.

Each of the above comma-separated sets designates the same type. In some C compilers,
the field type signed int (or signed) may differ from int (or no type specifiers).

Structure and Union Specifiers

Syntax:

struct-or-union-specifier:
struct-or-union identifieropt { struct-declaration-list }
struct-or-union identifier

struct-or-union:
struct
union

struct-declaration-list:
struct-declaration
struct-declaration-list struct-declaration

struct-declaration:
specifier-qualifier-list struct-declarator-list

s pecifier- qualifier-list:
type-specifier specifier-qualifier-listopt
type-qualifier specifier-qualifier-listopt

struct-declarator-list:
struct-declarator
struct-declarator-li.st , struct-declarator

struct-declarator:
declarator
declarator opt

Constraints:

constant- expression

A structure or union may not contain a member with incomplete or function type. Hence
it may not contain an instance of itself (but may contain a pointer to an instance of itself).

The expression that specifies the width of a bit-field is an integral constant expression that
has non-negative value that may not exceed the number of bits in an ordinary object of
compatible type. If the value is zero, the declaration may not have a declarator.

5-4 Structure and Union Specifiers HA17-00

Data Declarations

Semantics:

As discussed in Section 2, Lexical Elements, a structure is a type consisting of a sequence
of named members, whose storage is allocated in an ordered sequence, and a union is a
type consisting of a sequence of named members, whose storage overlaps.

Structure and union specifiers have the same form.

The presence of a struct-declaration-list in a struct-or-union-specifier declares a new type,
within an object unit. The struct-declaration-list is a sequence of declarations for the
members of the structure or union. The struct-declaration-list should contain at least one
named member. The type is incomplete until after the} that terminates the list.

A member of a structure or union may have any object type. In addition, a member may
be declared to consist of a specified number of bits (including a sign bit, if any). Such a
member is called a bit-field;3its width is preceded by a colon.

A bit-field must have type int, unsigned int, or signed into A "plain" int bit-field is
treated as a "signed int". A bit-field is interpreted as an integral type consisting of the
specified number of bits.

CP-6 C allocates bit fields in units of 36-bit words. If enough space remains, a bit-field
that immediately follows another bit-field in a structure is packed into adjacent bits of the
same unit. If insufficient space remains, a bit-field that does not fit is put into the next
unit. The order of allocation of bit-fields within a unit is high-order to low-order. The
addressable storage unit is word-aligned.

A bit-field declaration with no declarator, but only a colon and a width, indicates an
unnamed bit-field.4 As a special case of this, a bit-field structure member with a width of
o indicates that no further bit-field is to be packed into the unit in which the previous
bit-field, if any, was placed.

Each non-bit-field member of a structure or union object is aligned according to its type.

Within a structure object, the non-bit-field members and the units in which bit-fields
reside have addresses that increase in the order in which they are declared. A pointer to
a structure object, suitably converted, points to its initial member (or if that member is
a bit-field, then to the unit in which it resides), and vice versa. There may therefore be
unnamed holes within a structure object, but not at its beginning, as necessary to achieve
the appropriate alignment.

The size of a union is sufficient to contain the largest of its members. The value of at most
one of the members can be stored in a union object at any time. A pointer to a union
object, suitably converted, points to each of its members (or if a member is a bit-field,
then to the unit in which it resides), and vice versa.

There may also be unnamed padding at the end of a structure or union, as necessary to
achieve the appropriate alignment were the structure or union to be an element of an array.

3 The unary i (address-of) operator may not be applied to a bit-field object; thus there are no pointers
to or arrays of bit-field objects.

4 An unnamed bit-field structure member is useful for padding to conform to externally-imposed layouts.

HA17-00 Structure and Union Specifiers 5-5

Data Declarations

Enumeration Specifiers

Syntax:

enum-specifier:
enum identifier opt { enumerator-list }
enum identifier

enumerator-list:
enumerator
enumerator-list , enumerator

enumerator:
enumeration-constant
enumeration-constant = constant-expression

Constraints:

The expression that defines the value of an enumeration constant must be an integral
constant expression tha~ has a value representable as an int.

Semantics:

The identifiers in an enumerator list are declared as constants that have type int and
may appear wherever such are permitted. 5 An enumerator with = defines its enumeration
constant as the value of the constant expression. If the first enumerator has no =, the
value of its enumeration constant is 0. Each subsequent enumerator with no = defines its
enumeration constant as the value of the constant expression obtained by adding 1 to the
value of the previous enumeration constant. (The use of enumerators with = may produce
enumeration constants with values that duplicate other values in the same enumeration.)
The enumerators of an enumeration are also known as its members.

Each enumerated type is compatible with type int.

Examples:

enum hue { chartreuse, burgundy, claret=20, winedark };
1* . .. *1
enum hue col, *cp;
1* . .. *1
col = claret;
cp = lcol;
1* ... *1
1* ... *1 (*cp != burgundy) 1* ... *1

makes hue the tag of an enumeration, and then declares col as an object that has that
type and cp as a pointer to an object that has that type. The enumerated values are in
the set {O, 1,20, 21}.

5 Thus, the identifiers of enumeration constants declared in the same scope are all distinct from each
other and from other identifiers declared in ordinary declarators.

5-6 Enumeration Specifiers HA17-00

Data Declarations

Tags

Semantics:

A type specifier of the form

struct-or-union identifier { struct-declaration-list }
or

anum identifier { enumerator-list }

declares the identifier to be the tag of the structure, union, or enumeration specified by the
list. The list defines the structure content, union content, or enumeration content. If this
declaration of the tag is visible, a subsequent declaration that uses the tag and that omits
the bracketed list specifies the declared structure, union, or enumerated type. Subsequent
declarations in the same scope must omit the bracketed list.

If a type specifier of the form

struct-or-union identifier

occurs prior to the declaration that defines the content, the structure or union is an
incomplete type.6 1t declares a tag that specifies a type that may be used only when the
size of an object of the specified type is not needed. 7If the type is to be completed, another
declaration of the tag in the same scope (but not in an enclosed block, which declares a
new type known only within that block) defines the content. A declaration of the form

struct-or-union identifier ;

specifies a structure or union type and declares a tag, both visible only within the scope
in which the declaration occurs. It specifies a new type distinct from any type with the
same tag in an enclosing scope (if any).

A type specifier of the form

struct-or-union { struct-declaration-list }
or

anum { enumerator-list}

specifies a new structure, union, or enumerated type, within the object unit, that can only
be referred to by the declaration of which it is a part.8

6 A similar construction with enum does not exist and is not necessary as there can be no mutual
dependencies between the declaration of an enumerated type and any other type.

7 It is not needed, for example, when a typedef name is declared to be a specifier for a structure or
union, or when a pointer to or a function returning a structure or union is being declared. (See
incomplete types in Section 2, Lexical Elements.) The specification must be complete before such a

function is called or defined.
8 Of course, when the declaration is of a typedef name, subsequent declarations can make use of the

typedef name to declare objects having the specified structure, union, or enumerated type.

HA17-00 Tags 5-7

Data Declarations

Examples:

This mechanism allows declaration of a self-referential structure:

struct tnode {
int count;
struct tnode *left, *right;

};

specifies a structure that contains an integer and two pointers to objects of the same type.
Once this declaration has been given, the declaration

struct tnode s, *sp;

declares s to be an object of the given type and sp to be a pointer to an object of the given
type. With these declarations, the expression sp->left refers to the left struct tnode
pointer of the object to which sp points; the expression s .right->count designates the
count member of the right struct tnode pointed to from s.

The following alternative formulation uses the typedef mechanism:

typedef struct tnode INODE;
struct tnode {

int count;
TNODE *left, *right;

};

TNODE s, *sp;

To illustrate the use of prior declaration of a tag to specify a pair of mutually-referential
structures, the declarations

struct s1 { struct s2 *s2p; /* ... */ }; /* D1 */
struct s2 { struct s1 *s1p; /* ... */ }; /* D2 */

specify a pair of structures that contain pointers to each other. Note, however, that if s2
were already declared as a tag in an enclosing scope, the declaration D1 would refer to
it, not to the tag s2 declared in D2. To eliminate this context sensitivity, the otherwise
vacuous declaration

struct s2;

may be inserted ahead of D1. This declares a new tag s2 in the inner scope; the declaration
D2 then completes the specification of the new type.

5-8 Tags HA17-00

Type Qualifiers

Syntax:

type-qualifier:
const
volatile

Constraints:

Data Declarations

The same type qualifier may not appear more than once in the same specifier list or qualifier
list, either directly or via one or more typedefs.

Semantics:

The properties associated with qualified types are meaningful only for expressions that are
Ivalues.9

No attempt should be made to modify an object defined with a const-qualified type through
use of an lvalue with non-const-qualified type. Nor should an attempt be made to refer to
an object defined with a volatile-qualified type through use of an lvalue with non-volatile­
qualified type.] 0

An object that has volatile-qualified type is assumed to be modified in ways unknown to
the compiler or have other unknown side effects.

If the specification of an array type includes any type qualifiers, the element type is so­
qualified, not the array type. The specification of a function type should not include any
type qualifiers, since they are ignored.]]

For two qualified types to be compatible, both must have the identically qualified version
of a compatible type. The order of type qualifiers within a list of specifiers or qualifiers
does not affect the specified type.

Examples:

An object declared

extern const volatile int real_tiMe_clock;

may be modifiable by hardware, but cannot be assigned to, incremented, or decremented
within this compilation unit.

The following declarations and expressions illustrate the behavior when type qualifiers
modify an aggregate type:

9 CP-6 C often places a const object that is not volatile in a read-only region of storage.
10 This applies to those objects that behave as if they were defined with qualified types, even if they are

never actually defined as objects in the program (such as an object at a memory-mapped input/output
address).

11 Both of these can only occur through the use of typedefs.

HA17-00 Type Qualifiers 5-9

Data Declarations

const struct s { int memj } cs = { 1 }j
struct s ncs; 1* the object ncs is modifiable */
typedef int A[2J [3J;
con s t A a = {{ 4, 5, 6}, {7, 8, 9}}; I * a rra y of a rra y of con s tin t * I
int *pi;
const int *pcij

ncs = cs;
cs = nCSj

pi = incs.mem;
pi = ics.memj
pci = ics.memj
pi = a[OJj

1* valid *1
I * violate~ modifiable lvalue con~traint for = * I
1* valid *1
I * violate~ type con~traint~ for = * I
1* valid *1
I * invalid: a [oJ ha~ type "const int *" *1

Declarators

Syntax:

declarator:

5-10

pointer opt direct-declarator

dir-ect-declarator:
identifier
(declarator)
direct-declarator [con~tant-expressionopt J
direct-declarator (parameter- type-list)
direct-declarator (identifier-listopt)

pointer:
* type-qualifier-listopt

* type-qualifier-listopt pointer

type-qualifier-li~t:
type-qualifier
type-qualifier-list type-qualifier

parameter-type-list:
parameter-list
parameter-list , . . .

parameter-list:
parameter- declaration
parameter-list , parameter-declaration

parameter-declaration:
declaration-specifiers declarator

Declarators HA17-00

declaration-specifiers abstract-declarator opt

identifier-list:
identifier
identifier-li~t , identifier

Semantics:

Data Declarations

Each declarator declares one identifier, and asserts that when an operand of the same
form as the declarator appears in an expression, it designates a function or object with the
scope, storage duration, and type indicated by the declaration specifiers.

In the following subsections, consider a declaration

T Dl

where T contains the declaration specifiers that specify a type T (such as int) and Dl is
a declarator that contains an identifier ident. The type specified for the identifier ident in
the various forms of declarator is described inductively using this notation.

If, in the declaration "T Dl", Dl has the form

identifier

then the type specified for ident is T.

If, in the declaration "T Dl", Dl has the form

(D)

then ident has the type specified by the declaration "T D" . Thus, a declarator in parentheses
is identical to the unparenthesized declarator, but the binding of complex declarators may
be altered by parentheses.

Pointer Declarators

Semantics:

If, in the declaration "T Dl", Dl has the form

* type-qualifier-listopt D

and the type specified for ident in the declaration "T D" is "derived-declarator-type-list T",
then the type specified for ident is "derived-declarator-type-list type-qualifier-list pointer to
T". For each type qualifier in the list, ident is a so-qualified pointer.

For two pointer types to be compatible, both must be identically qualified and both must
be pointers to compatible types.

HA17-00 Pointer Declarators 5-11

Data Declarations

Examples:

The following pair of declarations demonstrates the difference between a "variable pointer
to a constant value" and a "constant pointer to a yariable yalue":

const int *ptr_to_constant;
int *const constant_ptr;

The contents of an object pointed to by ptr_ to_constant may not be modified through
that pointer, but ptr _to_constant itself may be changed to point to another object.
Similarly, the contents of the int pointed to by constant_ptr may be modified, but
constant_ptr itself always points to the same location.

The declaration of the constant pointer constant _ptr may be clarified by including a
definition for the type "pointer to int":

typedef int *int_ptr;
const int_ptr constant_ptr;

declares constant_ptr as an object that has type "const-qualified pointer to int".

Array Declarators

Constraints:

The expression delimited by [and] (which specifies the size of an array) is an integral
constant expression that has a value greater than zero.

Semantics:

If, in the declaration "T Dl", Dl has the form

D [constant- ezpressionopt]

and the type specified for ident in the declaration "T D" is "derived-declarator-type-list T",
then the type specified for ident is "derived-declarator-type-list array of T" .12 If the size is
not present, the array type is an incomplete type.

For two array types to be compatible, both must have compatible element types, and if
both size specifiers are present, they must have the same value.

Examples:
float fa[ll] , *afp[17];

declares an array of float numbers and an array of pointers to float numbers.

Note the distinction between the declarations:

extern int *x;
extern int y [] ;

The first declares x to be a pointer to int; the second declares y to be an array of int of
unspecified size (an incomplete type), the storage for which is defined elsewhere.

12 When several "array of" specifications are adjacent, a multidimensional array is declared.

5-12 Array Declarators HA17-00

Data Declarations

Function Declarators (including Prototypes)

Constraints:

A function declarator may not specify a return type that is a function type or an array
type.

The only storage-class specifier that may occur in a parameter declaration is register.

An identifier list in a function declarator that is not part of a function definition must be
empty.

Semantics:

If, in the declaration "T Dl", Dl has the form

D (parameter-type-list)
or

D (identifier-listopt)

and the type specified for ident in the declaration "T D" is "derived-declarator-type-list T",
then the type specified for ident is "derived-declarator-type-list function returning T".

A parameter type list specifies the types of, and may declare identifiers for, the parameters
of the function. If the list terminates with an ellipsis (, ...), no information about the
number or types of the parameters after the comma is supplied.13The special case of void
as the only item in the list specifies that the function has no parameters.

In a parameter declaration, a single typedef name in parentheses is taken to be an abstract
declarator that specifies a function with a single parameter, not as redundant parentheses
around the identifier for a declarator.

The storage-class specifier in the declaration specifiers for a parameter declaration, if
present, is ignored unless the declared parameter is one of the members of the parameter
type list for a function definition.

An identifier list declares only the identifiers of the parameters of the function. An empty
list in a function declarator that is part of a function definition specifies that the function
has no parameters. The empty list in a function declarator that is not part of a function
definition specifies that no information about the number or types of the parameters is
supplied.

For two function types to be compatible, both must specify compatible return types. 14The
parameter type lists, if both are present, must agree in the number of parameters and in
use of the ellipsis terminator; corresponding parameters must have compatible types. If
one type has a parameter type list and the other type is specified by a function declarator
that is not part of a function definition and that contains an empty identifier list, the

13 The macros defined in the <stdarg .h> header (Section 15) may be used to access arguments that
correspond to the ellipsis.

14 If both function types are "old style", parameter types are not compared.

HA17-00 Function Declarators (including Prototypes) 5-13

Data Declarations

parameter list cannot have an ellipsis terminator, and the type of each parameter must
be compatible 'with the type that results from the application of the default argument
promotions. If one type has a parameter type list and the other type is specified by a
function definition that contains a (possibly empty) identifier list, both must agree in the
number of parameters, and the type of each prototype parameter must be compatible with
the type that results from the application of the default argument promotions to the type
of the corresponding identifier. (For each parameter declared with function or array type,
its type for these comparisons is the one that results from conversion to a pointer type, as
in Section 7, External Data Definitions. For each parameter declared with qualified type,
its type for these comparisons is the unqualified version of its declared type.)

Examples:

The declaration

int f(void), *fip(), (*pfi)();

declares a function f with no parameters returning an int, a function fip with no
parameter specification returning a pointer to an int, and a pointer pfi to a function
with no parameter specification returning an into It is especially useful to compare the
last two. The binding of *fip() is *(fip(», so that the declaration suggests, and the
same construction in an expression requires, the calling of a function fip, and then using
indirection through the pointer result to yield an into In the declarator (*pfi) (), the
extra parentheses are necessary to indicate that indirection through a pointer to a function
yields a function designator which is then used to call the function; it returns an into

If the declaration occurs outside of any function, the identifiers have file scope and external
linkage. If the declaration occurs inside a function, the identifiers of the functions f and
fip have block scope and either internal or external linkage (depending on what file scope
declarations for these identifiers are visible), and the identifier of the pointer pfi has block
scope and no linkage.

Here are two more intricate examples:

int (*apfi[3])(int *x, int *y);

declares an array apfi of three pointers to functions returning into Each of these functions
has two parameters that are pointers to into The identifiers x and yare declared for
descriptive purposes only and go out of scope at the end of the declaration of apfi. The
declaration

int (*fpfi(int (*) (long) , int»(int, ...);

declares a function fpfi that returns a pointer to a function returning an into The function
fpfi has two parameters: a pointer to a function returning an int (with one parameter of
type long), and an into The pointer returned by fpfi points to a function that has one
int parameter and accepts zero or more additional arguments of any type.

5-14 Function Declarators (including Prototypes) HA17-00

Data Declarations

Type Names

Syntax:

type-name:
specifier-qualifier-list abstract-declarator opt

abstract-declarator:
pointer
pointer opt direct-abstract-declarator

direc t- abs tract- declarator:

Semantics:

(abstract-declarator)
direct-abstract-declarator opt [constant-ezpressionopt]

direct-abstract-declaratoropt (parameter-type-listopt)

In several contexts it is desired to specify a type. This is accomplished using a type name,
which is syntactically a declaration for a function or an object of that type that omits the
identifier .15

Examples:

The constructions

(a) int
(b) int *
(c) int * [3]
(d) int (*) [3]

(e) int *()
(f) int (*)(void)
(g) int (*const [])(unsigned int, ...)

name respectively the types (a) int, (b) pointer to int, (c) array of three pointers to
int, (d) pointer to an array of three ints, (e) function with no parameter specification
returning a pointer to int, (f) pointer to function with no parameters returning an int,
and (g) array of an unspecified number of constant pointers to functions, each with one
parameter that has type unsigned int and an unspecified number of other parameters,
ret urning an in t .

15 As indicated by the syntax, empty parentheses in a type name are interpreted as "function with no

parameter specification", rather than redundant parentheses around the omitted identifier.

HA17-00 Type Names 5-15

Data Declarations

Type Definitions

Syntax:

typedef-name:
identifier

Semantics:

In a declaration whose storage-class specifier is typedef, each declarator defines an
identifier to be a typedef name that specifies the type specified for the identifier in the
way described at the beginning of this section. A typedef declaration does not introduce
a new type, only a synonym for the type so specified. That is, in the following declarations:

typedef T type_ident;
type_ident D;

type_ident is defined as a typedef name with the type specified by the declaration
specifiers in T (known as T), and the identifier in D has the type "derived-declarator-type­
li5t T" where the derived-declarator-type-li5t is specified by the declarators of D. A typedef
name shares the same name space as other identifiers declared in ordinary declarators. If
the identifier is redeclared in an inner scope or is declared as a member of a structure or
union in the same or an inner scope, the type specifiers cannot be omitted in the inner
declaration.

Examples:

After
typedef int MILES, KLICKSP();
typedef struct { double reJ im; } complex;

the constructions

MILES distance;
extern KLICKSP *metricp;
complex Xi

complex z, *zp;

are all valid declarations. The type of distance is int, that of metricp is "pointer to
function with no parameter specification returning int" , and that of x and z is the specified
structure; zp is a pointer to such a structure. The object distance has a type compatible
with any other int object.

After the declarations

typedef 5truct sl { int Xi } tl, *tpl;
typedef struct s2 { int Xi } t2, *tp2;

type tl and the type pointed to by tpl are compatible. Type tl is also compatible with
type struct sl, but is not compatible with the types struct 52, t2, the type pointed to
by tp2, and into

5-16 Type Definitions HA17-00

The following obscure constructions:

typedef signed int t;
typedef int plain;
struct tag {

}j

unsigned t:4j
const t:5j
plain r:5j

Data Declarations

declare a typedef name t with type signed int, a typedef name plain with type int,
and a structure with three bit-field members: one named t that contains values in the
range [0,15], an unnamed const-qualified bit-field which (if it could be accessed) would
contain values in at least the range [-15,+15], and one named r that contains values in
the range [-16,+15]. The first two bit-field declarations differ in that unsigned is a type
specifier (which forces t to be the name of a structure member), while const is a type
qualifier (which modifies t which is still visible as a typedef name). If these declarations
are followed in an inner scope by

t f(t (t))j
long tj

then a function f is declared with type "function returning signed int with one
unnamed parameter with type pointer to function returning signed int with one unnamed
parameter with type signed int", and an identifier t with type long.

On the other hand, typedef names can be used to improve code readability. All three of
the following declarations of the signal function specify exactly the same type, the first
without making use of any typedef names:

typedef void fv(int)j
typedef void (*pfv)(int);
void (*signal(int, void (*)(int)))(int);
fv *signal(int, fv *)j
pfv signal(int, pfv)j

Initialization

Syntax:

initializer:
a.s.signment- ezpre3.sion
{ initializer-li.st }
{ initializer-li.st , }

initializer-liAt:
initializer
initializer-liAt , initializer

HA17-00 Initialization 5-17

Data Declarations

Constraints:

There may be no more initializers in an initializer list than there are objects to be
initialized.

The type of the entity to be initialized is an object type or an array of unknown size.

All the expressions in an initializer for an object that has static storage duration or in an
initializer list for an object that has aggregate or union type are constant expressions.

If the declaration of an identifier has block scope, and the identifier has external or internal
linkage, the declaration may not have an initializer for the identifier.

Semantics:

An initializer specifies the initial value stored in an object.

All unnamed structure or union members are ignored during initialization.

If an object that has static storage duration is not initialized explicitly, it is initialized
implicitly as if every member that has arithmetic type were assigned 0 and every member
that has pointer type were assigned a null pointer constant. If an object that has automatic
storage duration is not initialized explicitly, its value is indeterminate.

The initializer for a scalar is a single expression, optionally enclosed in braces. The initial
. value of the object is that of the expression; the same type constraints and conversions as
for simple assignment apply.

A brace-enclosed initializer for a union object initializes the member that appears first in
the declaration list of the union type.

The initializer for a structure or union object that has automatic storage duration is either
an initializer list as described below, or is a single expression that has compatible structure
or union type. In the latter case, the initial value of the object is that of the expression.

The rest of this section deals with initializers for objects that have aggregate or union type.

An array of character type may be initialized by a character string literal, optionally
enclosed in braces. Successive characters of the character string literal (including the
terminating null character if there is room or if the array is of unknown size) initialize the
elements of the array.

An array with element type compatible with vchar _ t may be initialized by a wide string
literal, optionally enclosed in braces. Successive codes of the wide string literal (including
the terminating zero-valued code if there is room or if the array is of unknown size) initialize
the elements of the array.

Otherwise, the initializer for an object that has aggregate type is a brace-enclosed list of
initializers for the members of the aggregate, written in increasing subscript or member
order. The initializer for an object that has union type is a brace-enclosed initializer for
the first member of the union.

If the aggregate contains members that are aggregates or unions, or if the first member
of a union is an aggregate or union, the rules apply recursively to the subaggregates or

5-18 Initialization HA17-00

Data Declarations

contained unions. If the initializer of a subaggregate or contained union begins with a left
brace, the initializers enclosed by that brace and its matching right brace initialize the
members of the subaggregate or the first member of the contained union. Otherwise, only
enough initializers from the list are taken to account for the members of the subaggregate
or the first member of the contained union. Any remaining initializers are left to initialize
the next member of the aggregate of which the current sub aggregate or contained union is
a part.

If there are fewer initializers in a brace-enclosed list than there are members of an aggregate,
the remainder of the aggregate is initialized implicitly the same as objects that have static
storage duration.

If an array of unknown size is initialized, its size is determined by the number of initializers
provided for its elements. At the end of its initializer list, the array no longer has incomplete
type.

Examples:

The declaration

int x[] = { 1, 3, 5 };

defines and initializes x as a one-dimensional array object that has three elements, as no
size was specified and there are three initializers.

float y[4] [3] = {
{ 1, 3, 5 },
{ 2, 4, 6 },
{ 3, 5, 7 },

};

is a definition with a fully bracketed initialization: 1, 3, and 5 initialize the first row of y
(the array object y [0]), namely y [0] [0], y [0] [1], and y [0] [2]. Likewise the next two
lines initialize y [1] and y [2]. The initializer ends early, so y [3] is initialized with zeros.
Precisely the same effect could have been achieved by:

float y[4] [3] = {
1, 3, 5, 2, 4, 6, 3, 5, 7

};

The initializer for y [0] does not begin with a left brace, so three items from the list are
used. Likewise the next three are taken successively for y [1] and y [2]. Also,

float z[4] [3] = {
{ 1 }, { 2 }, { 3 }, { 4 }

};

initializes the first column of z as specified and initializes the rest with zeros.

struct { int a[3] , b; } v[] = { { 1 }, 2 };

HA17-00 Initialization 5-19

Data Declarations

is a definition with an inconsistently bracketed but legal initialization. It defines an array
with two element structures: il [0] . a [0] is 1 and 'W [lJ . a [oJ is 2; all the other elements
are zero.

The declaration

short q[4] [3] [2] = {
{ 1 },
{ 2, 3 },
{ 4, 5, 6 }

};

contains an incompletely but consistently bracketed initialization. It defines a three­
dimensional array object: q [0] [0] [0] is 1, q [1] [0] [0] is 2, q [1] [0] [1] is 3, and 4,
5, and 6 initialize q [2] [0] [0], q [2] [0] [1], and q [2] [1] [0], respectively; all the rest
are zero. The initializer for q [0] [0] does not begin with a left brace, so up to six items
from the current list may be used. There is only one, so the values for the remaining
five elements are initialized with zero. Likewise, the initializers for q [1] [0] and q [2] [0]
do not begin with a left brace, so each uses up to six items, initializing their respective
two-dimensional subaggregates. If there had been more than six items in any of the lists,
a diagnostic message would have been issued. The same initialization result could have
been achieved by:

_l. __ ... _rill r"ll r,.,1 = .I ~.LLVL " 'i L"%J L"'J L"'-J l.

1, 0, 0, 0, 0, 0,
2, 3, 0, 0, 0, 0,
4, 5, 6

}j

or by:

short q [4] [3] [2] = {
{

{ 1 },
},
{

{ 2, 3 },
},
{

{ 4, 5 },
{ 6 },

}
}j

in a fully-bracketed form.

Note that the fully-bracketed and minimally-bracketed forms of initialization are, In
general, less likely to cause confusion.

Finally, the declaration

char s [] = "abc", t [3] = "abc";

5-20 Initialization HA17-00

Data Declarations

defines "plain" char array objects sand t whose elements are initialized with character
string literals. This declaration is identical to

char s [J = {) a),) b),) C),) \ 0) },
t [J = {) a),) b),) c) };

The contents of the arrays are modifiable. On the other hand, the declaration

char *P = "abc";

defines P with type "pointer to char" that is initialized to point to an object with type
"array of char" with length 4 whose elements are initialized with a character string literal.
If any attempt is made to use p to modify the contents of the array, the SIGSEGV signal is
raised. The compilation option STRING=WRITEABLE allows strings to be overwritten.

HA17-00 Initialization 5-21

Section 6

Statements

This section describes the statement types of the C language: labeled, compound,
expression and null, selection, iteration, and jump. For each statement type or statement,
syntax, constraints, semantics, and examples are presented where appropriate.

Syntax:
8tatement:

labeled-8tatement
compound-8tatement
expre88ion-8tatement
8election-8tatement
iteration-8tatement
jump-8tatement

Semantics:

A 8tatement specifies an action to be performed. Except as indicated, statements are
executed in sequence.

A full e:cpre88ion is an expression that is not part of another expression. Each of the
following is a full expression: an initializer, the expression in an expression statement, the
controlling expression of a selection statement (if or switch), the controlling expression
of a while or do statement, each of the three (optional) expressions of a for statement,
and the (optional) expression in a return statement.

Labeled Statements

Syntax:
labeled-8tatement:

identifier : 8tatement
case con8tant-ezpression
default : statement

Constraints:

8tatement

A case or default label appears only in a switch statement. Further constraints on such
labels are discussed under the switch statement, later in this section.

Semantics:

Any statement may be preceded by a prefix that declares an identifier as a label name.
Labels in themselves do not alter the flow of control, which continues unimpeded across
them.

HA17-00 Labeled Statements 6-1

Statements

Compound Statement or Block

Syntax:

compound-statement:
{ declaration-listopt statement-listopt }

declaration-list:
declaration
declaration-list declaration

statement-list:
statement
statement-list statement

Semantics:

A compound statement (also called a block) allows a set of statements to be grouped into one
syntactic unit, which may have its own set of declarations and initializations.initializations
(as discussed in Section 2, Lexical Elements). The initializers of objects that have
automatic storage duration are evaluated, and the values are stored in the objects in
the order in which their declarators appear in the object unit.

Expression and Null Statements

Syntax:

expression-statement:
express'tonopt

Semantics:

The expression in an expression statement is evaluated as a void expression for its side
effects.}

A null statement (consisting of just a semicolon) performs no operations.

Examples:

If a function call is evaluated as an expression statement for its side effects only, the
discarding of its value may be made explicit by converting the expression to a void
expression by means of a cast:

int p(int)j
1* . .. *1
(void)p(O)j

1 Such as assignments, and function calls which have side effects.

6-2 Expression and Null Statements HA17-00

In the program fragment

char *s;
/* ... */
while (*s++ != '\0')

Statements

a null statement is used to supply an empty loop body to the iteration statement.

A null statement may also be used to carry a label just before the closing} of a compound
statement, as shown in the following:

while (loopl){
/* ... */
while (loop2) {

}

/* ... */
if (want_out)

goto end_loopl;
/* ... */

/* ... */
end_loopl:
}

Selection Statements

Syntax:
selection-statement:

Semantics:

if (expression) statement
if (expression) statement else statement
swi t ch (expression) statement

A selection statement selects among a set of statements depending on the value of a
controlling expression.

if Statement

Constraints:

The controlling expression of an if statement has scalar type.

Semantics:

In both forms, the first substatement is executed if the expression is not equal to o. In the
else form, the second substatement is executed if the expression is equal to o. If the first
substatement is reached via a label, the second substatement is not executed.

An else is associated with the lexically immediately preceding else-less if that is in the
same block (but not in an enclosed block).

HA17-00 if Statement 6-3

Statements

svitch Statement

Constraints:

The controlling expression of a svi tch statement has integral type. The expression of each
case label is an integral constant expression. No two of the case constant expressions in
the same svi tch statement may have the same value after conversion. There may be
at most one default label in a svitch statement. (Any enclosed svitch statement may
have a default label or case constant expressions with values that duplicate case constant
expressions in the enclosing svi tch statement.)

Semantics:

A svi t ch statement causes control to jump to, into, or past the statement that is the
switch body, depending on the value of a controlling expression, and on the presence of
a default label and the values of any case labels on or in the switch body. A case or
default label is accessible only within the closest enclosing svi tch statement.

The integral promotions are performed on the controlling expression. The constant
expression in each case label is converted to the promoted type of the controlling
expression. If a converted value lliatches that of the prollioted controlling expression,
control jumps to the statement following the matched case label. Otherwise, if there is
a default label, control jumps to the labeled statement. If no converted case constant
expression matches and there is no default label, no part of the switch body is executed.

Examples:

In the artificial program fragment

switch (expr)
{

int i = 4;
f (i) j

case 0:
i = 17;

default:
/* falls through into default code */

printf("%d\n", i);
}

the object whose identifier is i exists with automatic storage duration (within the block)
but is never initialized, and thus if the controlling expression has a nonzero value, the
call to the printf function will access an indeterminate value. Similarly, the call to the
function f cannot be reached.

6-4 switch Statement HA17-00

Statements

Iteration Statements

Syntax:

iteration-statement:
while (expression) statement
do statement while (expresszon) j

for (expressionopt ; expressionopt ; expresszonopt) statement

Constraints:

The controlling expression of an iteration statement has scalar type.

Semantics:

An iteration statement causes a statement called the loop body to be executed repeatedly
until the controlling expression compares equal to O.

while Statement

The evaluation of the controlling expression takes place before each execution of the loop
body.

do Statement

The evaluation of the controlling expression takes place after each execution of the loop
body.

for Statement

Except for the behavior of a continue statement in the loop body, the statement

for (expression-l ; expression-2 ; expression-3) statement

and the sequence of statements

expression-l j

while (expression-2) {
statement
expression- 3 ;

}

HA17-00 for Statement 6-5

Statements

are equivalent. 2

Both expression-l and expression-3 may be omitted. Each is evaluated as a void expression.
An omitted expression-2 is replaced by a nonzero constant.

Jump Statements

Syntax:

jump-statement:

Semantics:

goto identifier
continue ;
break ;
return expressionopt

A jump statement causes an unconditional jump to another place.

goto Statement

Constraints:

The identifier In a goto statement names a label located somewhere In the enclosing
function.

Semantics:

A goto statement causes an unconditional jump to the statement prefixed by the named
label in the enclosing function.

Examples:

It is sometimes convenient to jump into the middle of a complicated set of statements.
The following outline presents one possible approach to a problem based on these three
assumptions:

1. The general initialization code accesses objects only visible to the current function.

2. The general initialization code is too large to warrant duplication.

3. The code to determine the next operation must be at the head of the loop (to allow it
to be reached by continue statements, for example).

2 Thus ezpre66ion-l specifies initialization for the loop. ezpreuion-2, the controlling expression, specifies
an evaluation made before each iteration, such that execution of the loop continues until the expression
compares equal to o. ezpreuion-3 specifies an operation (such as incrementing) that is performed after
each iteration.

6-6 goto Statement HA17-00

The code for these assumptions is as follows:

1* ... *1
goto first_time;
for (;;) {

}

I * determine next operation * I
1* ... *1
if (need to reinitialize) {

1* reinitialize-only code *1
1* . .. *1

first_time:

}

I * general initialization code * I
1* . .. *1
continue;

I * handle other operations *1
1* ... *1

continue Statement

Constraints:

A continue statement appears only in or as a loop body.

Semantics:

Statements

A continue statement causes a jump to the loop-continuation portion of the smallest
enclosing iteration statement; that is, to the end of the loop body. More precisely, in each
of the statements

while (/* . .. */) { do { for (/* ... */) {

1* . .. *1 1* . .. *1 1* . .. *1
continue; continue; continue;
1* . .. *1 1* . .. *1 1* ... *1

contin: j contin: j contin: ;
} } while (/* ... */)j }

unless the continue statement shown is in an enclosed iteration statement (in which case
it is interpreted within that statement), it is equivalent to goto contin;. 3

3 Following the contin: label is a null statement.

HA17-00 continue Statement 6-7

Statements

break Statement

Constraints:

A break statement appears only in or as a switch body or loop body.

Semantics:

A break statement terminates execution of the smallest enclosing svi tch or iteration
statement.

return Statement

Constraints:

A return statement with an expression may not appear in a function whose return type
is void.

Semantics:

A return statement terminates execution of the current function and returns control to
its caller. A function may have any number of return statements, with and without
expreSSIons.

If a return statement with an expression is executed, the value of the expression is returned
to the caller as the value of the function call expression. If the expression has a type
different from that of the function in which it appears, it is converted as if it were assigned
to an object of that type.

A return statement without an expression should not be executed when the value of the
function call is used by the caller. Reaching the} that terminates a function is equivalent
to executing a return statement without an expression.

6-8 return Statement HA17-00

Section 7

External Data Definitions

This section describes the function definitions and external object definitions of the C
language. Syntax, constraints, semantics, and examples are presented where appropriate
to the definition types.

Syntax:

object-unit:
external-declaration
object-unit external-declaration

external-declaration:
function-definition
declaration

Constraints:

The storage-class specifiers auto and register may not appear in the declaration specifiers
in an external declaration.

There may be no more than one external definition for each identifier declared with internal
linkage in an object unit. If an identifier declared with internal linkage is used in an
expression (other than as a part of the operand of a sizeof operator), there must be
exactly one external definition for the identifier in the object unit.

Semantics:

As discussed in Section 1 under Compilation Environment, the unit of program text after
preprocessing is an object unit, which consists of a sequence of external declarations. These
are described as "external" because they appear outside any function (and hence have file
scope). As discussed in Section 5, Data Declarations, a declaration that also causes storage
to be reserved for an object or a function named by the identifier is a definition.

An external definition is an external declaration that is also a definition of a function or
an object. If an identifier declared with external linkage is used in an expression (other
than as part of the operand of a sizeof operator), somewhere in the entire program there
must be exactly one external definition for the identifier.]

1 Thus, if an identifier declared with external linkage is not used in an expression, there need not be an
external definition for it.

HA17-00 7-1

External Data Definitions

Function Definitions

Syntax:

function-definition:
declaration-specifiers opt declarator declaration-listopt compound-statement

Constraints:

The identifier declared in a function definition (which is the name of the function) must
have a function type, as specified by the declarator portion of the function definition. 2

The return type of a function must be void or an object type other than array.

The storage-class specifier, if any, in the declaration specifiers may be either ext ern or
static.

If the declarator includes a parameter type list, the declaration of each parameter must
include an identifier (except for the special case of a parameter list consisting of a single
parameter of type void, in which there cannot be an identifier). A declaration list cannot
follow.

If the declarator includes an identifier list, each declaration in the declaration list must
have at least one declarator, and those declarators must declare only identifiers from the
identifier list. An identifier declared as a typedef name cannot be redeclared as a parameter.
The declarations in the declaration list cannot contain a storage-class specifier other than
register and cannot contain initializations.

Semantics:

The declarator in a function definition specifies the name of the function being defined and
the identifiers of its parameters. If the declarator includes a parameter type list, the list
also specifies the types of all the parameters; such a declarator also serves as a function
prototype for later calls to the same function in the same object unit. If the declarator

2 The type category in a function definition cannot be inherited from a typedef:

typedef int F(void)i
F f, gi
F f { / •...• / }

F g() { / ••..• / }

int f(void) { / •...• / }
int g() { / •...• /}
F .e(void) { / •...• / }
F .«e»(void) { / •...• /
int (.fp)(void)i
F .Fpi

7-2

/. type F il "function of no argumenb returning int" ./
/. f and g both have type compatible with F ./

/. WRONG: Iyntaz/conltraint error ./
/. WRONG: declarel that g returnl a function */
/* RIGHT: f hal type compatible with F ./

/. RIGHT: g hal type compatible with F ./

/. e return6 a pointer to a function ./
} /. 6ame: parenthelel irrelevant */

/. fp poinb to a function that hal type F ./
/. Fp poinb to a function that ha6 type F ./

Function Definitions HA17-00

External Data Definitions

includes an identifier list, the types of the parameters may be declared in a following
declaration list. Any parameter that is not declared has type int.

A function that accepts a variable number of arguments cannot be defined without a
parameter type list that ends with the ellipsis notation.

On entry to the function, the value of each argument expression is converted to the type of
its corresponding parameter, as if by assignment to the parameter. Array expressions and
function designators as arguments are converted to pointers before the call. A declaration
of a parameter as "array of type" is adjusted to "pointer to type", and a declaration of a
parameter as "function returning type" is adjusted to "pointer to function returning type",
as in Section 3, Data Conversion. The resulting parameter type is an object type.

Each parameter has automatic storage duration. Its identifier is an Ivalue.3

Examples:

extern int max(int a, int b)
{

return a > b ? a : b;
}

Here, extern is the storage-class specifier and int is the type specifier (each of which may
be omitted, as they are the defaults); max(int a, int b) is the function declarator; and

{ return a > b ? a : b; }

is the function body. The following similar definition uses the identifier-list form for the
parameter declarations:

extern int max(a, b)
int a, b;
{

return a > b ? a : bj
}

Here, int a, b; is the declaration list for the parameters (which may be omitted, as it is
the default). The difference between these two definitions is that the first form acts as a
prototype declaration that forces conversion of the arguments of subsequent calls to the
function, whereas the second form does not.

To pass one function to another, the following could be used:

int f(void)j
1* . .. *1
g(f);

Note that f must be declared explicitly in the calling function, as its appearance in the
expression g (f) was not followed by (.

3 A parameter is in effect declared at the head of the compound statement that constitutes the function
body, and therefore may not be redeclared in the function body (except in an enclosed block).

HA17-00 Function Definitions 7-3

External Data Definitions

Then the definition of g might read:

g(int (*funcp)(void))
{

/* ... */ (*funcp)() /* or funcp() ... */
}

or, equivalently,

g(int func(void))
{

/* ... */ func() /* or (*func)() ... */
}

External Object Definitions

Semantics:

If the declaration of an identifier for an object has file scope and an initializer, the
declaration is an external definition for the identifier.

A declaration of an identifier for an object that has file scope without an initializer, and
without a storage-class specifier or with the storage-class specifier static, constitutes a
tentative definition. If an object unit contains one or more tentative definitions for an
identifier, and the object unit contains no external definition for that identifier, then the
behavior is exactly as if the object unit contains a file scope declaration of that identifier,
with the composite type as of the end of the object unit and with an initializer equal to o.
If the declaration of an identifier for an object is a tentative definition and has internal
linkage, the declared type cannot be an incomplete type.

Examples:
int ii = 1 ; /* definition, external linkage * /
static int i2 = 2; /* definition, internal linkage * /
extern int i3 = 3; /* definition, external linkage * /
int i4; /* tentative definition, external linkage * /
static int is; /* tentative definition, internal linkage * /
int ii; /* valid tentative definition, refers to previous * /
int i2; /* Linkages of Identifiers, in Section 2, linkage
disagreement */ int i3; /* valid tentative definition, refers to
prevIous */
int i4; /* valid tentative definition, refers to previous * /
int is; /* Linkages of Identifiers, in Section 2, linkage
disagreement */
extern int ii; /* refers to previous, whose linkage IS external */
extern int i2; /* refers to previous, whose linkage IS internal */
extern int i3; /* refers to previous, whose linkage IS external */
extern int i4; /* refers to previous, whose linkage IS external */
extern int is; /* refers to previous, whose linkage IS internal */

7-4 External Object Definitions HA17-00

Section 8

Preprocessing Directives

This section describes the types and uses of the preprocessing directives of the C language:
conditional inclusion, source file inclusion, macro replacement, line control, error directive,
pragma directive, null directive, and predefined macro names. The syntax of the directives
follows; constraints, semantics, and examples are presented where appropriate for the
various directive types.

Syntax:

preproce88ing-file:
groupopt

group:
group-part
group group-part

group-part:
pp-tokensopt new-line
ii-section
control-line

ii-section:
ii-group elif-groupsopt else-grouPopt endil-line

if-group:
if constant-ezpression new-line grouPopt
ifdef identifier new-line group opt
ifndef identifier new-line grouPopt

elil-groups:
elil-group
elil-groups elil-group

e lil-gro up:
elif constant-ezpression new-line groupopt

HA17-00 8-1

Preprocessing Directives

else-group:
else new-line group opt

endif-line:
endif new-line

control-line:
include pp-tokens new-line
define identifier replacement-list new-line
define identifier lparen identifier-listopt) replacement-list new-line
undef identifier new-line
line pp-tokens new-line
error pp-tokensopt new-line
pragma pp-tokensopt new-line
new-line

lparen:
the left parenthesis character without preceding white space

replacement-list:
pp- tokens opi

pp-tokens:
preprocessing-token
pp- tokens preprocessi ng- token

new-line:
the new-line character

Description:

A preprocessing directive consists of a sequence of preprocessing tokens that begins with
a # preprocessing token that is the first character in the source line (optionally after white
space) and is ended by the next new-line character.]

Constraints:

The only white-space characters that may appear between preprocessing tokens within a
preprocessing directive (from just after the introducing # preprocessing token through just
before the terminating new-line character) are space and horizontal-tab (including spaces
that have replaced comments or possibly other white-space characters in translation phase
3).

1 Thus preprocessing directives are commonly called "lines". These "lines" have no other syntactic
significance, as all white space is equivalent except in certain situations during preprocessing (see the #

character string literal creation operator later in this section).

8-2 HA17-00

Preprocessing Directives

Semantics:

The compiler can process and skip sections of source files conditionally, include other source
files, and replace macros. These capabilities are called preprocessing, because conceptually
they occur before translation of the resulting object unit.

The preprocessing tokens within a preprocessing directive are not subject to macro
expansion unless otherwise stated.

Conditional Inclusion

Constraints:

The expression that controls conditional inclusion must be an integral constant expression
except that it may not contain a cast; identifiers (including those lexically identical
to keywords) are interpreted as described below;2and it may contain unary operator
expressions of the form

defined identifier
or

defined (identifier)

which evaluate to 1 if the identifier is currently defined as a macro name (that is, if it is
predefined or if it has been the subject of a #define preprocessing directive without an
intervening #undef directive with the same subject identifier), or to 0 if it is not.

Each preprocessing token that remains after all macro replacements have occurred is in
the lexical form of a token.

Semantics:

Preprocessing directives of the forms

if con3tant-ezpre3sion new-line groupopt
elif con3iant-ezpression new-line groupopt

check whether the controlling constant expression evaluates to nonzero.

Prior to evaluation, macro invocations in the list of preprocessing tokens that will become
the controlling constant expression are replaced (except for those macro names modified by
the defined unary operator), just as in normal text. The token defined is not generated
as a result of this replacement process; use of the defined unary operator must match one
of the two specified forms prior to macro replacement. After all replacements due to macro
expansion and the defined unary operator have been performed, all remaining identifiers
are replaced with the pp-number 0, and then each preprocessing token is converted into a
token. The resulting tokens comprise the controlling constant expression which is evaluated

2 Because the controlling constant expression is evaluated during translation phase 4, an identifier either
is or is not a macro name.

HA17-00 Conditional Inclusion 8-3

Preprocessing Directives

according to the rules under Constant Expressions, in Section 4, using arithmetic that has
the ranges specified under Numerical Limits in .. A~ ppendix F, except that ir.t and unsigned
int act as if they have the same representation as, respectively, long and unsigned
long. This includes interpreting character constants, which may involve converting escape
sequences into execution character set members. The numeric value for these character
constants matches the value obtained when an identical character constant occurs in an
expression.3 Also, a single-character character constant is unsigned.

Preprocessing directives of the forms

ifdef identifier new-line group opt
ifndef identifier new-line group opt

check whether the identifier is or is not currently defined as a macro name. Their conditions
are equivalent to #if defined identifier and #if ! defined identifier, respectively.

Each directive's condition is checked in order. If it evaluates to false (zero), the group that
it controls is skipped, and skipped directives are processed only through the name that
determines the directive in order to keep track of the level of nested conditionals. The rest
of the directives' preprocessing tokens are ignored, as are the other preprocessing tokens
in the group. Only the first group whose control condition evaluates to true (nonzero) is
processed. If none of the conditions evaluates to true, and there is a #else directive, the
group controlled by the #else is processed; lacking a #else directive; all the groups until
the #endif are skipped.4

Source File Inclusion

Constraints:

A #include directive identifies a header or source file that is to be processed.

Semantics:

A preprocessing directive of the form

include <h-char-8equence> new-line

3 Thus the constant expression in the following #if directive and if statement is guaranteed to evaluate
to the same value in these two contexts:

#if 'z' - '8' -- 25

if (, z, - '8' -- 25)

4 As indicated by the syntax, a preprocessing token may not follow a #else or #endif directive before
the terminating new-line character. However, comments may appear anywhere in a source file,
including within a preprocessing directive.

8-4 Source File Inclusion HA17-00

Preprocessing Directives

searches the directories specified by the command line SEARCH option (which always
terminates with the current file management account and the : LIBRARY account) for a file
identified uniquely by the fid between the < and> delimiters, and causes the replacement
of that directive by the entire contents of the header.

A preprocessing directive of the form

include II q-char-.5equence ll new-line

causes the replacement of that directive by the entire contents of the source file identified
by the specified sequence between the II delimiters. The named source file is searched as
if the directive read was

include <h-char-sequence> new-line

with the identical contained sequence (including> characters, if any) from the original
directive unless the UNIXSRCH option was specified. The effect of the UNIXSRCH option is
to start the search at the search list entry used to locate the file containing the include
directive.

A preprocessing directive of the form

include pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The preprocessing
tokens after include in the directive are processed just as in normal text. (Each identifier
currently defined as a macro name is replaced by its replacement list of preprocessing
tokens.) The directive resulting after all replacements must match one of the two previous
forms. 5

The characters within the include source file designation are treated as a CP-6 file
identifier, with the following restrictions:

1. The case of the source file designator is significant.

2. The filename portion of the CP-6 fid is limited to 31 characters.

3. All "\" characters with the exception of the character preceding the file name are
turned into "?" characters.

4. If the file identifier contains a "." character, the identifier is first treated as if it
contained an account designation. If the corresponding file exists, it is included.

5. Otherwise, all "." characters in the file identifier are turned into":" characters, and
the search list is used to locate the file.

5 Note that adjacent string literals are not concatenated into a single string literal (see Translation

Phases in Section 1); thus an expansion that results in two string literals is an invalid directive.

HA17-00 Source File Inclusion 8-5

Prepro cessing Directives

A #include preprocessing directive may appear in a source file that has been read because
of a #incl ude directive in another file, up to a nesting limit of 10 (see Translation Limits,
in Appendix F).

Examples:

The most common uses of #include preprocessing directives are as in the following:

#include <stdio.h>
#include "myprog.h"

This example illustrates a macro-replaced #include directive:

#if VERSION == 1
#define INCFILE "vers1.h"

#elif VERSION == 2
#define INCFILE "vers2.h"

#else
#define INCFILE "versN.h"

#endif
1* . .. *1
#include INCFILE

Macro Replacement

Constraints:

1* and 50 on *1

Two replacement lists are identical if and only if the preprocessing tokens in both have
the same number, ordering, spelling, and white-space separation, where all white-space
separations are considered identical.

An identifier currently defined as a macro without use of lparen (an object-like macro)
may be redefined by another #define preprocessing directive, provided that the second
definition is an object-like macro definition and the two replacement lists are identical.

An identifier currently defined as a macro using lparen (a function-like macro) may be
redefined by another #define preprocessing directive, provided that the second definition
is a function-like macro definition that has the same number and spelling of parameters,
and the two replacement lists are identical.

The number of arguments in an invocation of a function-like macro must agree with the
number of parameters in the macro definition, and a) preprocessing token must terminate
the invocation.

A parameter identifier in a function-like macro is uniquely declared within its scope.

8-6 Macro Replacement HA17-00

Preprocessing Directives

Semantics:

The identifier immediately following the define is called the macro name. There is one
name space for macro names. Any white-space characters preceding or following the
replacement list of preprocessing tokens are not considered part of the replacement list
for either form of macro.

If a # preprocessing token, followed by an identifier, occurs lexically at the point at which
a preprocessing directive could begin, the identifier is not subject to macro replacement.

A preprocessing directive of the form

define identifier replacement-list new-line

defines an object-like macro that causes each subsequent instance of the macro name6 to
be replaced by the replacement list of preprocessing tokens that constitute the remainder
of the directive. The replacement list is then rescanned for more macro names as specified
below.

A preprocessing directive of the form

define identifier lparen identifier-listopt) replacement-list new-line

defines a function-like macro with arguments, similar syntactically to a function call. The
parameters are specified by the optional list of identifiers, whose scope extends from their
declaration in the identifier list until the new-line character that terminates the #define
preprocessing directive. Each subsequent instance of the function-like macro name followed
by a "(" as the next preprocessing token introduces the sequence of preprocessing tokens
that is replaced by the replacement list in the definition (an invocation of the macro). The
replaced sequence of preprocessing tokens is terminated by the matching")" preprocessing
token, skipping intervening matched pairs of left and right parentheses preprocessing
tokens. Within the sequence of preprocessing tokens making up an invocation of a function­
like macro, new-line is considered a normal white-space character.

The sequence of preprocessing tokens bounded by the outside-most matching parentheses
forms the list of arguments for the function-like macro. The individual arguments within
the list are separated by comma preprocessing tokens, but comma preprocessing tokens
between matching inner parentheses do not separate arguments. Any argument (before
argument substitution) should consist of at least one preprocessing token. Sequences of
preprocessing tokens should not be within the list of arguments that would otherwise act
as preprocessing directives.

6 Since, by macro-replacement time, all character constants and string literals are preprocessing tokens,

not sequences possibly containing identifier-like subsequences (see Translation Phases in Section 1), they

are never scanned for macro names or parameters.

HA17-00 Macro Replacement 8-7

Preprocessing Directives

Argument Substitution

After the arguments for the invocation of a function-like macro have been identified,
argument substitution takes place. A parameter in the replacement list, unless preceded
by a # or ## preprocessing token or followed by a ## preprocessing token (see below),
is replaced by the corresponding argument after all macros contained therein have been
expanded. Before being substituted, each argument's preprocessing tokens are completely
macro replaced as if they formed the rest of the object unit; no other preprocessing tokens
are available.

Operator

Constraints:

Each # preprocessing token in the replacement list for a function-like macro is followed by
a parameter as the next preprocessing token in the replacement list.

Semantics:

If, in the replacement list, a parameter is immediately preceded by a # preprocessing token,
both are replaced by a single character string literal preprocessing token that contains
the spelling of the preprocessing token sequent:e for the corresponding argument. Each
occurrence of white space between the argument's preprocessing tokens becomes a single
space character in the character string literal. \\Thite space before the first preprocessing
token and after the last preprocessing token comprising the argument is deleted. Otherwise,
the original spelling of each preprocessing token in the argument is retained in the character
string literal, except for special handling for producing the spelling of string literals and
character constants. A \ character is inserted before each" and \ character of a character
constant or string literal (including the delimiting" characters). The replacement that
results is a valid character string literal.

Operator

Constraints:

A ## preprocessing token may not appear at the beginning or at the end of a replacement
list for either form of macro definition.

Semantics:

If, in the replacement list, a parameter is immediately preceded or followed by a
preprocessing token, the parameter is replaced by the corresponding argument's
preprocessing token sequence.

For both object-like and function-like macro invocations, before the replacement list is re­
examined for more macro names to replace, each instance of a ## preprocessing token in the
replacement list (not from an argument) is deleted and the preceding preprocessing token
is concatenated with the following preprocessing token. The resulting token is available
for further macro replacement.

8-8 ## Operator HA17-00

Preprocessing Directives

Rescanning and Further Replacement

After all parameters in the replacement list have been substituted, the resulting prepro­
cessing token sequence is rescanned with the rest of the source file's preprocessing tokens
for more macro names to replace.

If the name of the macro being replaced is found during this scan of the replacement list
(not including the rest of the source file's preprocessing tokens), it is not replaced. If any
nested replacements encounter the name of the macro being replaced, it is not replaced.
These nonreplaced macro name preprocessing tokens are no longer available for further
replacement even if they are later (re)examined in contexts in which that macro name
preprocessing token would otherwise have been replaced.

The resulting completely macro-replaced preprocessing token sequence is not processed as
a preprocessing directive even if it resembles one.

Scope of Macro Definitions

A macro definition lasts (independent of block structure) until a corresponding #undef
directive is encountered or (if none is encountered) until the end of the object unit.

A preprocessing directive of the form

undef identifier new-line

causes the specified identifier to no longer be defined as a macro name. It is ignored if the
specified identifier is not currently defined as a macro name.

Examples:

The simplest use of this facility is to define a "manifest constant" , as in:

#define TABSIZE 100

int table[TABSIZE];

The example below defines a function-like macro whose value is the maximum of its
arguments. It has the advantages of working for any compatible types of the arguments and
of generating in-line code without the overhead of function calling. It has the disadvantages
of evaluating one or the other of its arguments a second time (including side effects) and
generating more code than a function if invoked several times. It also cannot have its
address taken, as it has none.

#define max(a, b) ((a) > (b) ? (a) : (b))

The parentheses ensure that the arguments and the resulting expreSSIon are bound
properly.

HA17-00 Scope of Macro Definitions 8-9

Preprocessing Directives

To illustrate the rules for redefinition and re-examination, the sequence

#define x 3
#define f(a) f(x * (a))
#undef x
#define x 2
#define g f
#define z z [0]
#define h g('"
#define mea) a(w)
#define w 0,1
#define tea) a
f(y+l) + f(f(z)) % t(t(g)(O) + t)(l);
g(x+(3,4)-w) I h 5) t m

(f) "'m(m) ;

results in

f(2 * (y+l)) + f(2 * (f(2 * (z[O])))) % f(2 * (0)) + t(l);
f(2 * (2+(3,4)-0,1)) I f(2 * ('" 5)) t f(2 * (O,l))"'m(O,l);

To illustrate the rules for creating character string literals and concatenating tokens, the
sequence

#define str(s)
#define xstr(s)
#define debug(s, t)

#define INCFILE(n)
#define glue(a, b)
#define xglue(a, b)
#define HIGHLOW
#define LOW

debug(l, 2);

s
str(s)
printf("x" # s "= %d, x" # t "= %s", \

x ## s, x ## t)
vers ## n 1* from previous #include example *1
a ## b
glue(a, b)
"hello"
LOW", world"

fputs(str(strncmp("abc\Od", "abc", '\4') 1* this goes away *1
== 0) str(: I\n), s);

#include xstr(INCFILE(2).h)
glue(HIGH, LOW);
xglue(HIGH, LOW)

results in

printf("x" "1" "= %d, x" "2" "= %s", xl, x2);
fputs("strncmp(\"abc\\Od\", \"abc\", '\\4') == 0" ": I\n", s);
#include "vers2. h" (after macro replacement, before file acceJJ)
"hello";
"hello" ", llorld"

or, after concatenation of the character string literals,

printf(tlxl= .%d, x2= %s", xl, x2);

8-10 Scope of Macro Definitions HA17-00

Preprocessing Directives

fputs(/lstrncmp(\/labc\\Od\/I, \/labc\", '\\4') == 0: =\n" , s);
#include /lvers2. h /I (after macro replacement, before file access)
"hello/lj
/lhello, world/l

Space around the # and ## tokens in the macro definition is optional.

And finally, to demonstrate the redefinition rules, the following sequence is valid:

#define OBJ_LIKE (1-1)
#define OBJ_LIKE /* white space */ (1-1) /* other */
#define FTN_LIKE(a) (a)
#define FTN_LIKE(a)(/* note the white space */ \

a /* other stuff on this line
*/)

But the following redefinitions are invalid:

#define OBJ_LIKE
#define OBJ_LIKE
#define FTN_LIKE(b)
#define FTN_LIKE(b)

Line Control

Constraints:

(0)
(1 - 1)
(a)
(b)

/* different token Jequence */
/* different white space */
/* different parameter usage */
/* different parameter spelling */

The string literal of a #line directive, if present, is a character string literal.

Semantics:

The line number of the current source line is one greater than the number of new-line
characters read or introduced in translation phase 1 in translation phase 1 (see Translation
Phases, in Section 1) while processing the source file to the current token.

A preprocessing directive of the form

line digit-Jequence new-line

behaves as if the following sequence of source lines begins with a source line that has a
line number as specified by the digit sequence (interpreted as a decimal integer). The digit
sequence may not specify zero, nor a number greater than 32767.

A preprocessing directive of the form

line digit-Jequence II s-char-sequenceopt /I new-line

sets the line number similarly and changes the presumed name of the source file to be the
contents of the character string literal.

HA17-00 Line Control 8-11

Preprocessing Directives

A preprocessing directive of the form

line pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The preprocessing tokens
after line on the directive are processed just as in normal text. (Each identifier currently
defined as a macro name is replaced by its replacement list of preprocessing tokens.) The
directive resulting after all replacements must match one of the two previous forms and is
then processed as appropriate.

The compiler uses the line numbers and source file name for printing error messages,
and makes them available to the programmer through the built-in macros __ LINE __ and
__ FILE

Error Directive

Semantics:

A preprocessing directive of the form

error pp-tokensopt new-line

produces a diagnostic message that includes the specified sequence of preprocessing tokens.

Pragma Directive

Semantics:

A preprocessing directive of the form

pragma pp-tokenJopt new-line

behaves in a system-dependent manner. Any pragma that is not recognized is ignored.

CP-6 Preprocessing Pragmas

The CP-6 Preprocessing pragmas provide control over the listing output. Listings may be
controlled by turning listing on or off, turning listing of include files on and off, skipping
lines, and ejecting the current page.

8-12 CP-6 Preprocessing Pragmas HA17-00

Preprocessing Directives

Syntax:

listing- control
pragma LIST ON new-line
pragma LIST OFF new-line

include-file-listing-control
pragma LIST INCLUDE_ON new-line
pragma LIST INCLUDE_OFF new-line

listing-space-control
pragma LIST SPACE integer-decimal-constantopt new-line
pragma LIST EJECT new-line

Constraints:

The LIST keyword is used to signify the start of the listing pragmas. This keyword
is immediately followed by a second keyword which selects the required listing state or
operation. The SPACE listing operation may optionally be followed by an integer constant
count of lines to space.

Semantics:

The listing generator can be in a state where listing output is (or is not) being generated,
and in a state where include files will (or will not) be listed. These states are controlled
by the following LIST pragma controls:

Control Meaning

ON Default. Listing output will be generated.

OFF Listing output will not be generated for subsequent
lines (up to a LIST_ON pragma).

INCLUDE_ON Listing output will be generated for header files.

INCLUDE_OFF Default. Listing output will not be generated for
header files.

Explicit blank space may be requested in listing output by using the SPACE and EJECT
LIST pragmas as follows:

HA17-00 CP-6 Preprocessing Pragmas 8-13

Preprocessing Directives

I Control !11eaning

EJECT The next source line will be displayed on the next
output page.

SPACE The next source line will be displayed after 1 (the
default) or integer-decimal-constant blank lines.

Null Directive

Semantics:

A preprocessing directive of the form

new-line

has no effect.

Predefined Macro Names

The following macro names are predefined by CP-6 C:

LINE__ Is the line number of the current source line (a decimal constant).

__ FILE__ Is the presumed name of the source file (a character string literal).

__ DATE__ Is the date of translation of the source file (a character string literal of
the form "Mmm dd yyyy", where the names of the months are the same as those
generated by the asctime function, and the first character of dd is a space character
if the value is less than 10).

__ TlME__ Is the time of translation of the source file (a character string literal of the
form "hh:mm:ss", as in the time generated by the asctime function).

__ STDC __ Is the decimal constant 1, intended to indicate a conforming ANSI C

implementation.

CP6 Is defined when compiling on a CP-6 system. Its value is l.

L66 Is defined when compiling on a CP-6 system. Its value is l.

TS CP6 When the strict ANSI conformance option is not specified, this variable IS

defined with a value of 1.

TM_L66 When the strict ANSI conformance option IS not specified, this variable IS

defined with a value of 1.

8-14 Predefined Macro Names HA17-00

Preprocessing Directives

The values of the predefined macros (except for __ LINE __ and __ FILE __) remain constant
throughout the object unit.

None of these macro names, nor the identifier defined, may be the subject of a #define
or a #undef preprocessing directive. All predefined macro names begin with a leading
underscore followed by an upper-case letter or a second underscore (unless the strict ANSI
conformance option is not specified).

HA17-00 Predefined Macro Names 8-15

Section 9

Introduction to the C Library

This section presents an overview of the CP-6 C library headers, definitions, and functions.

Definitions of Terms

A string is a contiguous sequence of characters terminated by and including the first null
character. A "pointer to" a string is a pointer to its initial (lowest addressed) character.
The "length" of a string is the number of characters preceding the null character, and its
"value" is the sequence of the values of the contained characters, in order.

A letter is a printing character in the execution character set corresponding to any of the
52 required lower-case and upper-case letters in the source character set, listed in Section
1.

The decimal-point character is the character used by functions that convert floating-point
numbers to or from character sequences to denote the beginning of the fractional part of
such character sequences.} It is represented in the text and examples by a period.

Headers

Each library function is declared in a header, whose contents are made available by the
#include preprocessing directive. The header declares a set of related functions, plus any
necessary types and additional macros needed to facilitate their use.

1 The functions that make use of the decimal-point character are localeconv, fprintf, fscanf, printf,

sCanf, sprintf, sscanf, vfprintf, vprintf, vsprintf, atof, and strtod.

HA17-00 Headers 9-1

Introduction to the C Library

ANSI Standard Headers

The standard headers are:

<assert.h>
<ctype.h>
<errno.h>
<float.h>
<limits.h>

<locale.h>
<math.h>
<setjmp.h>
<signal.h>
<stdarg.h>

<stddef.h>
<stdio.h>
<stdlib.h>
<string.h>
<time.h>

Headers may be included in any order; each may be included more than once in a given
scope, with no effect different from being included only once, except that the effect of
including <assert. h> depends on the definition of NDEBUG. If used, a header must be
included outside of any external declaration or definition, and it must first be included
before the first reference to any of the functions or objects it declares, or to any of the
types or macros it defines. However, if the identifier is declared or defined in more than
one header, the second and subsequent associated headers may be included after the initial
reference to the identifier. The program may not have any macros with names lexically
identical to keywords currently defined prior to the inclusion.

CP-6 C Headers

These header files provide access to CP-6 specific structures for CP-6 Host functions:

<b$dcb_c.h>
<b$jit_c.h>
<b$roseg.h>
<b$tcb_c.h>
<cp_6_subs.h>

Reserved Identifiers

<fileinfo.h>
<memory.h>
<uts_name.h>
<valloc.h>
<xu_cp6_c.h>

<xu_macro_c.h>
<xu_perr_c.h>
<xu_subs_c.h>
<xux$interface_m.h>

Each header declares or defines all identifiers listed in its associated section, and optionally
declares or defines identifiers which are always reserved either for any use or for use as file

scope identifiers.

Identifiers are reserved as follows:

9-2 Reserved Identifiers HA17-00

Introduction to the C Library

• All identifiers that begin with an underscore and either an upper-case letter or another
underscore are always reserved for any use.

• All identifiers that begin with an underscore are always reserved for use as identifiers
with file scope in both the ordinary identifier and tag name spaces.

• Each macro name listed in any of the following sections is reserved for any use if any
of its associated headers is included.

• All identifiers with external linkage in any of the following sections are always reserved
for use as identifiers with external linkage. 2

• Each identifier with file scope listed in any of the following sections is reserved for use
as an identifier with file scope in the same name space if any of its associated headers
is included.

No other identifiers are reserved. If the program declares or defines an identifier with the
same name as an identifier reserved in that context (other than as described under Use
of Library Functions later in this section), section), compilation errors (or runtime errors)
may result. 3

Errors <errno. h>

The header <errno. h> defines several macros, all relating to the reporting of error
conditions.

The macros are

EDOM
ERANGE

which expand to integral constant expressions with distinct nonzero values; and

errno

which expands to a modifiable lvalue that has type int, the value of which is set to a
positive error number by several library functions. errno is an identifier declared with
external linkage. A program should not define an identifier with the name errno.

The value of errno is zero at program startup, but is never set to zero by any library
function. 4The value of errno may be set to nonzero by a library function call whether or
not there is an error.

2 The list of reserved identifiers with external linkage includes errno, setjrnp, and va_end.
3 Since macro names are replaced whenever found, independent of scope and name space, macro names

matching any of the reserved identifier names must not be defined if an associated header, if any, is
included.

4 Thus, a program that uses errno for error checking should set it to zero before a library function call,
then inspect it before a subsequent library function call.

HA17-00 Errors <errno. h> 9-3

Introduction to the C Library

Limits <float. h> and <limits. h>

The headers <float. h> and <limits. h> define several macros that expand to various
limits and parameters.

The macros, their meanings, and the constraints (or restrictions) on their values are listed
under Numerical Limits, Appendix F.

Common Definitions <stddef. h>

The following types and macros are defined in the standard header <stddef . h>. Some are
also defined in other headers, as noted in their respective sections.

The types are

typedef int ptrdiff_tj

which is the signed integral type of the result of subtracting two pointers;

typedef int size_t;

which is the unsigned integral type of the result of the sizeof operator; and

typedef char wchar_tj

which is an integral type whose range of values can represent distinct codes for all members
of the largest extended character set specified among the- supported locales.

The macros are

#define NULL (void*)O

which expands to a null pointer constant; and

off setof (type, member-designator)

which expands to an integral constant expression that has type size_ t, the value of which
is the offset in bytes, to the structure member (designated by member-designator), from
the beginning of its structure (designated by type). The member-designator is such that
gIven

static type t;

then the expression l(t. member-designator) evaluates to an address constant. (The
specified member must not be a bit-field.)

9-4 Common Definitions <stddef. h> HA17-00

Introduction to the C Library

Use of Library Functions

An argument to a function must not have an invalid value (such as a value outside the
domain of the function, a pointer outside the address space of the program, or a null
pointer). If a function argument is described as being an array, the pointer actually passed
to the function must have a value such that all address computations and accesses to objects
(that would be valid if the pointer did point to the first element of such an array) are in fact
valid. Some functions declared in a header may be defined as a macro, so library functions
should not be declared explicitly if their headers are included. Any macro definition of a
function can be suppressed locally by enclosing the name of the function in parentheses,
because the name is then not followed by the left parenthesis that inhibits expansion of
a macro function name. For the same syntactic reason, the address of a library function
can be taken even if it is also defined as a macro. The use of #undef to remove any macro
definition will also ensure that an actual function is referred to.

Library functions can also be declared, either explicitly or implicitly, and used without
including the associated header. A function that accepts a variable number of arguments
should be declared either explicitly or by including its associated header.

Examples:

The function atoi may be used in any of several ways:

• By use of its associated header (possibly generating a macro expansion):

#include <stdlib.h>
const char *str;
1* ... *1
i = at oi (str) j

• By use of its associated header (assuredly generating a true function reference):

or

#include <stdlib.h>
#undef atoi
const char *strj
1* . .. *1
i = atoi(str);

#include <stdlib.h>
const char *strj
1* ... *1
i = (atoi)(str)j

• By explicit declaration:

HA17-00

extern int atoi(const char *);
const char *strj
1* . .. *1
i = atoi(str);

Use of Library Functions 9-5

Introduction to the C Library

• By implicit declaration:

const char *str;
/* ... */
i = atoi(str);

Diagnostics <assert. h>

The header <assert. h> defines the assert macro and refers to another macro,

NDEBUG

which is not defined by <assert .h>. If NDEBUG is defined as a macro name at the point in
the source file where <assert. h> is included, the assert macro is defined simply as

#define assert(ignore) ((void)O)

The assert macro is implemented as a macro, not as an actual function. The macro
definition may not be suppressed in order to access an actual function.

assert Macro

Synopsis:

#include <assert.h>
void assert(int expression);

Description:

The assert macro puts diagnostics into programs. \\Then it is executed, if the value of the
expression is false (that is, compares equal to 0), the assert macro writes information
about the particular call that failed (including the text of the argument, the name of the
source file, and the source line number - the latter are respectively the values of the
preprocessing macros __ FILE __ and __ LINE __) on the standard error file stderr.5 1t then
calls the abort function.

Returns:

The assert macro returns no value.

5 The message is written with the form:
Assertion failed in file zyz:c, line nnn: ezpre6610n

•••• e run-time error
•••• Exceptional condition "Abort signal" occurred
•••• IBI-00197-7 The program issued an abort signal (SIGABRT).

Traceback follows:
IBI_RAISE_SIGNAL+.40 I T511 IBI_DEFAULT_SIGNAL_H.ANDLER
raise+.40 I TS11 IBI_RAISE_SIGNAL
abort+.6 I TS11 raise
_assert+.33 I TS11 abort
main:10 t ,.11 [MISe] I TS11 _assert

9-6 assert Macro HA17-00

main:O".l [INITIALIZE] / T510 IBI_C5TARTUPD
Bottom frame

M$ERR issued by user.

HA17-00 assert Macro

Introduction to the C Library

9-7

Section 10

Character Handling <ctype. h> Functions

The header <ctype. h> declares several functions useful for testing and mapping characters.
In all cases the argument is an int, the value of which is representable as an unsigned
char or equal to the value of the macro EOF. The argument must not have any other value.

The term printing character refers to a member of the values from Ox20 (space) through
Ox7E (tilde), each of which occupies one printing position on a display device. The term
control character refers to a member of the values from 0 (NUL) through OxlF (US) and the
value Ox7F (DEL).

Character Testing Functions

The functions in this subsection ret urn nonzero (true) if and only if the value of the
argument c conforms to that in the description of the function.

isalnum Function

Synopsis:

#include <ctype.h>
int isalnum(int c)j

Description:

The isalnum function returns 1 for any character for which isalpha or isdigi t is true;
otherwise, it returns o.

isalpha Function

Synopsis:

#include <ctype.h>
int isalpha(int c)j

Description:

The isalpha function returns 1 for any character for which isupper or islover is true;
otherwise, it returns o.

HA17-00 isalpha Function 10-1

Character Handling <ctype. h> Functions

iscntrl Function

Synopsis:

#include <ctype.h>
int iscntrl(int c)j

Description:

The iscntrl function returns 1 for any control character; otherwise, it returns O.

isdigi t Function

Synopsis:

#include <ctype.h>
int isdigit(int c)j

Description:

The isdigi t function returns 1 for any decimal-digit character (as defined under Character
C_4- =_ c __ ~=~_ 1 \. ~~h~_'n.:"'~ :+ _.n.+H_", ... ()
.::n:;L Jl1 •. :n:;\...LJVl1 i), V"I.U::;1 YVH:I~, J" 1~"UJ.J.J." v.

i sgraph Function

Synopsis:

#include <ctype.h>
int isgraph(int c)j

Description:

The isgraph function returns 1 for any printing character except space (, ,); otherwise,
it returns O.

islover FUnction

Synopsis:

#include <ctype.h>
int islower(int c)j

Description:

The islover function returns 1 for any character that is a lower-case letter; otherwise it
returns O.

10-2 islover Function HA17-00

isprint Function

Synopsis:

#include <ctype.h>
int isprint(int c);

Description:

Character Handling <ctype. h> Functions

The isprint function returns 1 for any printing character including space (, '); otherwise,
it returns O.

ispunct Function

Synopsis:

#include <ctype.h>
int ispunct(int c);

Description:

The ispunct function returns 1 for any printing character that is neither space (, ,) nor
a character for which isalnum is true; otherwise, it returns O.

isspace Function

Synopsis:

#include <ctype.h>
int isspace(int c);

Description:

The isspace function returns 1 for any character that is a standard white-space character;
otherwise, it returns O. The standard white-space characters are space (, ,), form feed
(, \f'), new-line (, \n'), carriage return (, \r'), horizontal tab (, \t'), and vertical tab
('\v').

i supper Function

Synopsis:

#include <ctype.h>
int isupper(int c);

Description:

The isupper function returns 1 for any character that is an upper-case letter; otherwise
it returns O.

HA17-00 isupper Function 10-3

Character Handling <ctype. h> Functions

i sxdigi t Function

Synopsis:

#include <ctype.h>
int isxdigit(int c);

Description:

The i sxdigi t function returns 1 for any hexadecimal-digit character (as defined in Section
2, Lexical Elements); otherwise, it returns o.

Character Case Mapping Functions

The tolower and toupper functions control character case conversions.

tolower Function

Synopsis:

#include <ctype.h>
int tolower(int c);

Description:

The tolower function converts an upper-case letter to the corresponding lower-case letter.

Returns:

If the argument is a character for which isupper is true and there is a corresponding
character for which islower is true, the tolower function returns the corresponding
character; otherwise the argument is returned unchanged.

toupper Function

Synopsis:

#include <ctype.h>
int toupper(int c);

Description:

The toupper function converts a lower-case letter to the corresponding upper-case letter.

Returns:

If the argument is a character for which islower is true and there is a corresponding
character for which isupper is true, the toupper function returns the corresponding
character; otherwise the argument is returned unchanged.

10-4 toupper Function HA17-00

Section 11

Localization <locale. h> Functions

The header <locale. h> declares two functions, one type, and defines several macros.

The type is

struct lconv

which contains members related to the formatting of numeric values. The structure
contains the following members. The semantics of the members and their normal ranges
are explained under Numeric Formatting Convention Inquiry, later in this section. In the
"C" locale, the members have the values specified in the comments.

char *decimal_point; 1*" *1
char *thousands_sep; 1* *1
char *grouping; 1* *1-
char *int_curr_symbol; 1* *1
char *currency_symbol; 1* *1
char *mon_decimal_pointj 1* *1
char *mon_thousands_sepj 1* *1
char *mon_grouping; 1* *1
char *positive_sign; 1* *1
char *negative_signj 1* *1
char int_frac_digitsj 1* CHAR_MAX *1
char frac_digitsj 1* CHAR_MAX *1
char p_cs_precedesj 1* CHAR_MAX *1
char p_sep_by_spacej 1* CHAR_MAX *1
char n_cs_precedesj 1* CHAR_MAX *1
char n_sep_by_spacej 1* CHAR_MAX *1
char p_sign_posnj 1* CHAR_MAX *1
char n_sign_posnj 1* CHAR_MAX *1

The macros defined are NULL described under Common Definitions in Section 9); and

LC_ALL
LC_COLLATE
LC_CTYPE
LC_MONETARY
LC_NUMERIC
LC_TlME

which expand to integral constant expressions with distinct values, suitable for use as the
first argument to the set locale function.

HA17-00 11-1

Localization <locale. h> Functions

Locale Control

Locale control is accomplished with the setlocale function, as described below.

setlocale Function

Synopsis:

#include <locale.h>
char *setlocale(int category, const char *locale);

Description:

The setlocale function selects the appropriate portion of the program's locale as specified
by the category and locale arguments. The setlocale function may be used to
change or query the program's entire current locale or portions thereof. The value
LC_ALL, for category, names the program's entire locale; the other values for category
name only a portion of the program's locale. LC_COLLATE affects the behavior of the
strcoll and strxfrm functions. LC_CTYPE affects the behavior of the character-handling
functions1and the multibyte functions. LC_MONETARY affects the monetary formatting
information returned by the localeconv function. LC_NUMERIC affects the decimal-point
character for the formatted input/output functions and the string conversion functions,
as well as the nonmonetary formatting information returned by the localeconv function.
LC_TIME affects the behavior of the strftime function.

A value of "C" for locale specifies the minimal environment for C translation; a value of
"" for locale specifies the native environment which is "c".

The locales supported by CP-6 Care C (the default locale), USA, and ENGLISH_CANADA.

At program startup, the equivalent of

setlocale(LC_ALL, "C");

is executed.

Returns:

If a pointer to a string is given for locale and the selection can be honored, the setlocale
function returns a pointer to the string associated with the specified category for the new
locale. If the selection cannot be honored, the setlocale function returns a null pointer
and the program's locale is not changed.

A null pointer for locale causes the setlocale function to return a pointer to the string
associated with the category for the program's current locale; the program's locale is not
changed.

The pointer to string returned by the set locale function is such that a subsequent call
with that string value and its associated category will restore that part of the program's
locale. The string pointed to may not be modified by the program, but may be overwritten
by a subsequent call to the setlocale function.

1 The only functions in Section 10 whose behavior is not affected by the current locale are isdigi t and
isxdigit.

11-2 set locale Function HA17-00

Localization <locale. h> Functions

Numeric Formatting Convention Inquiry

The localeconv function is used in formatting numeric quantities as described below.

localeconv Function

Synopsis:

#include <locale.h>
struct lconv *localeconv(void);

Description:

The localeconv function sets the components of an object with type struct lconv with
values appropriate for the formatting of numeric quantities (monetary and otherwise)
according to the rules of the current locale.

The members of the structure with type char * are pointers to strings, any of which (except
decimal_point) can point to "", to indicate that the value is not available in the current
locale or is of zero length. The members with type char are non-negative numbers, any
of which can be CHAR_MAX to indicate that the value is not available in the current locale.
The members include the following:

char *decimal_point
The decimal-point character used to format nonmonetary quantities.

char *thousands_sep
The character used to separate groups of digits before the decimal-point character
in formatted nonmonetary quantities.

char *grouping
A string whose elements indicate the SIze of each group of digits In formatted
nonmonetary quantities.

char *int_curr_symbol
The international currency symbol applicable to the current locale. The first three
characters contain the alphabetic international currency symbol in accordance with
those specified in ISO .1217 Code8 for the Repre8entation of Currency and Fund8.
The fourth character (immediately preceding the null character) is the character
used to separate the international currency symbol from the monetary quantity.

char *currency_symbol
The local currency symbol applicable to the current locale.

char *mon_decimal_point
The decimal point used to format monetary quantities.

char *mon_thousands_sep
The separator for groups of digits before the decimal point in formatted monetary
quantities.

HA17-00 localeconv Function 11-3

Localization <locale. h> Functions

char *mon_grouping
A string vvhose elements
monetary quantities.

char *positive_sign

the SIze group

The string used to indicate a non-negative formatted monetary quantity.

char *negative_sign
The string used to indicate a negative formatted monetary quantity.

char int_frac_digits
The number of fractional digits (those after the decimal point) to be displayed in
an internationally formatted monetary quantity.

char frac_digits
The number of fractional digits (those after the decimal point) to be displayed in
a formatted monetary quantity.

char p_cs_precedes
Set to 1 or 0 if the currency _symbol respectively precedes or succeeds the value
for a non-negative formatted monetary quantity.

char p_sep_by_space
Spt. t.o 1 or 0 if t.hp currencv svmbol re.~npd.lve.lv 1~ or 1~ not ~e.narat.e.d hv a ~nar.e. --- -- - -- - -- ---- --------J--J------ ---r-------., -- -- -- ---- --r-------- -.; -- -r---

from the value for a non-negative formatted monetary quantity.

char n_cs_precedes
Set to 1 or 0 if the currency _symbol respectively precedes or succeeds the value
for a negative formatted monetary quantity.

char n_sep_by_space
Set to 1 or 0 if the currency _symbol respectively is or is not separated by a space
from the value for a negative formatted monetary quantity.

char p_sign_posn
Set to a value indicating the positioning of the posi ti ve_sign for a non-negative
formatted monetary quantity.

char n_sign_posn
Set to a value indicating the positioning of the negative_sign for a negative
formatted monetary quantity.

The elements of grouping and m~n_grouping are interpreted according to the following:

CHAR_MAX No further grouping is to be performed.

o The previous element is to be repeatedly used for the remainder of the digits.

other The integer value is the number of digits that comprise the current group. The
next element is examined to determine the size of the next group of digits before
the current group.

11-4 localeconv Function HA17-00

Localization <locale. h> Functions

The value of p_sign_posn and n_sign_posn is interpreted according to the following:

o Parentheses surround the quantity and currency_symbol.

1 The sign string precedes the quantity and currency _symbol.

2 The sign string succeeds the quantity and currency _symbol.

3 The sign string immediately precedes the currency _symbol.

4 The sign string immediately succeeds the currency _symbol.

Returns:

The localeconv function returns a pointer to the filled-in object. The structure pointed
to by the return value should not be modified by the program, and may be overwritten by
a subsequent call to the localeconv function. In addition, calls to the setlocale function
with categories LC_ALL, LC_MONETARY, or LC_NUMERIC may overwrite the contents of the
structure.

HA17-00 localeconv Function 11-5

Section 12

Mathematics <math. h> Functions

The header <math. h> declares several mathematical functions and defines one macro. The
functions take double-precision arguments and return double-precision values. Integer
arithmetic functions and conversion functions are discussed in Section 17, General Utilities.

The macro defined is

HUGE_VAL

which expands to a positive double expression, not representable as a float.

Treatment of Error Conditions

The behavior of each mathematical function is defined for all representable values of its
input arguments. Each function executes as if it were a single operation, without generating
any externally visible exceptions.

For all functions, a domain error occurs if an input argument is outside the domain over
which the mathematical function is defined. The description of each function lists any
required domain errors. On a domain error, the function returns an indeterminate value;
the value of the macro EDOM is stored in errno.

Similarly, a range error occurs if the result of the function cannot be represented as a
double value. If the result overflows (the magnitude of the result is so large that it cannot
be represented in an object of the specified type), the function returns the value of the
macro HUGE_VAL, with the same sign (except for the tan function) as the correct value of
the function; the value of the macro ERANGE is stored in errno. If the result underflows
(the magnitude of the result is so small that it cannot be represented in an object of the
specified type), the function returns zero.

Trigonometric Functions

The trigonometric functions are described in the following subsections.

HA17-00 Trigonometric Functions 12-1

Mathematics <math. h> Functions

acos Function

Synopsis:

#include <math.h>
double acos(double x);

Description:

The acos function computes the principal value of the arc cosine of x. A domain error
occurs for arguments not in the range [-1, +1].

Returns:

The acos function returns the arc cosine in the range [0, 7r] radians.

asin Function

Synopsis:

#include <math.h>
double asin(double x);

Description:

The asin function computes the principal value of the arc sine of x. A domain error occurs
for arguments not in the range [-1, +1].

Returns:

The asin function returns the arc sine in the range [-~, +~] radians.

atan Function

Synopsis:

#include <math.h>
double atan(double x);

Description:

The atan function computes the principal value of the arc tangent of x.

Returns:

The atan function returns the arc tangent in the range [-~, +~] radians.

12-2 atan Function HA17-00

Mathematics <math. h> Functions

atan2 Function

Synopsis:

#include <math.h>
double atan2(double y, double x);

Description:

The atan2 function computes the principal value of the arc tangent of y / x, using the signs
of both arguments to determine the quadrant of the return value. A domain error occurs
if both arguments are zero.

Returns:

The atan2 function returns the arc tangent of y/x, in the range [-7r, +7rJ radians.

cos Function

Synopsis:

#include <math.h>
double cos(double x);

Description:

The cos function computes the cosine of x (measured in radians).

Returns:

The cos function returns the cosine value.

sin Function

Synopsis:

#include <math.h>
double sin(double x);

Description:

The sin function computes the sine of x (measured in radians).

Returns:

The sin function returns the sine value.

HA17-00 sin Function 12-3

Mathematics <math. h> Functions

tan Function

Synopsis:

#include <math.h>
double tan(double x);

Description:

The tan function returns the tangent of x (measured in radians).

Returns:

The tan function returns the tangent value.

Hyperbolic Functions

The cosh, sinh, and tanh functions are described below.

cosh Function

Synopsis:

#include <math.h>
double cosh(double x);

Description:

The cosh function computes the hyperbolic COSIne of x. A range error occurs if the
magnitude of x is too large.

Returns:

The cosh function returns the hyperbolic cosine value.

sinh Function

Synopsis:

#include <math.h>
double sinh(double x);

Description:

The sinh function computes the hyperbolic sine of x. A range error occurs if the magnitude
of x is too large.

Returns:

The sinh function returns the hyperbolic sine value.

12-4 sinh Function HA17-00

Mathematics <math. h> Functions

tanh Function

Synopsis:

#include <math.h>
double tanh(double x);

Description:

The tanh function computes the hyperbolic tangent of x.

Returns:

The tanh function returns the hyperbolic tangent value.

Exponential and Logarithmic Functions

The exponential and logarithmic functions are described in the following subsections.

exp Function

Synopsis:

#include <math.h>
double exp(double x);

Description:

The exp function computes the exponential function of x. A range error occurs if the
magnitude of x is too large.

Returns:

The exp function returns the exponential value.

frexp Function

Synopsis:

#include <math.h>
double frexp(double value, int *exp);

Description:

The frexp function breaks a floating-point number into a normalized fraction and an
integral power of 2. It stores the integer in the int object pointed to by expo

Returns:

The frexp function returns the value x, such that x is a double with magnitude in the
interval of [~, 1) or zero, and value equals x times 2 raised to the power *exp. If value
is zero, both parts of the result are zero.

HA17-00 frexp Function 12-5

Mathematics <math. h> Functions

ldexp Function

Synopsis:

#include <math.h>
double ldexp(double x, int exp);

Description:

The ldexp function multiplies a floating-point number by an integral power of 2. A range
error may occur.

Returns:

The ldexp function returns the value of x times 2 raised to the power expo

log Function

Synopsis:

#include <math.h>
double log(double

Description:

-,. AI,

The log function computes the natural logarithm of x. A domain error occurs if the
argument is negative. A range error occurs if the argument is zero.

Returns:

The log function returns the natural logarithm.

log10 Function

Synopsis:

#include <math.h>
double log10(double x);

Description:

The log10 function computes the base-ten logarithm of X. A domain error occurs if the
argument is negative. A range error occurs if the argument is zero.

Returns:

The log10 function returns the base-ten logarithm.

12-6 log10 Function HA17-00

Mathematics <math. h> Functions

modf Function

Synopsis:

#include <math.h>
double modf(double value, double *iptr);

Description:

The modf function breaks the argument value into integral and fractional parts, each of
which has the same sign as value. It stores the integral part as a double in the object
pointed to by iptr.

Returns:

The modf function returns the signed fractional part of value.

Power Functions

The pow and sqrt functions are described below.

pow Function

Synopsis:

#include <math.h>
double pow(double x, double y)j

Description:

The pOll function computes x raised to the power y. A domain error occurs if x is negative
and y is not an integral value or when x is zero and y is less than or equal to zero. A range
error occurs if the result value is too large to represent.

Returns:

The pOll function returns the value of x raised to the power y.

HA17-00 pOll Function 12-7

Mathematics <math. h> Functions

sqrt Function

Synopsis:

#include <math.h>
double sqrt(double x);

Description:

The sqrt function computes the non-negative square root of x. A domain error occurs if
the argument is negative.

Returns:

The sqrt function returns the value of the square root.

Nearest Integer, Absolute Value, and Remainder Functions

The ceil, fabs, floor, and fmod functions are described below.

ceil Function

Synopsis:

#include <math.h>
double ceil(double x);

Description:

The ceil function computes the smallest integral value not less than x.

Returns:

The ceil function returns the smallest integral value not less than x, expressed as a
double.

fabs Function

Synopsis:

#include <math.h>
double fabs(double x);

Description:

The fabs function computes the absolute value of a floating-point number x.

Returns:

The fabs function returns the absolute value of x.

12-8 fabs Function HA17-00

Mathematics <math. h> Functions

floor Function

Synopsis:

#include <math.h>
double floor(double x)j

Description:

The floor function computes the largest integral value not greater than x.

Returns:

The floor function returns the largest integral value not greater than x, expressed as a
double.

fmod Function

Synopsis:

#include <math.h>
double fmod(double x, double Y)j

Description:

The fmod function computes the floating-point remainder of x/y.

Returns:

The fmod function returns the value x - i * y, for some integer i such that, if y is nonzero,
the result has the same sign as x and magnitude less than the magnitude of y. If y is zero,
the fmod function returns zero.

HA17-00 fmod Function 12-9

Section 13

Non-Local Jumps <setjmp.h>

The header <setjmp.h> defines the macro setjmp, and declares one function and one
type, for bypassing the normal function call and return discipline. This facility is useful
for dealing with unusual conditions encountered in a low-level function of a program.

The type declared is

jmp_buf

which is an array type suitable for holding the information needed to restore a calling
environment.

setjmp is a macro. The macro definition may not be suppressed in order to access an
actual function.

Calling Environment

The setjmp macro and the longjmp function save and restore the calling environment,
respectively, as described below.

setjmp Macro

Synopsis:

#include <setjmp.h>
int setjmp(jmp_buf env);

Description:

The setjmp macro saves its calling environment in its jmp_buf argument for later use by
the longjmp function.

Returns:

If the return is from a direct invocation, the setjmp macro returns the value zero. If the
return is from a call to the longjmp function, the set jmp macro returns a nonzero value.

Environmental Constraints:

An invocation of the setjmp macro should appear only in one of the following contexts:

HA17-00 setjmp Macro 13-1

Non-Local Jumps <setjmp.h>

• The entire controlling expression of a selection or iteration statement.

• One operand of a relational or equality operator with the other operand an integral con­
stant expression, with the resulting expression being the entire controlling expression
of a selection or iteration statement.

• The operand of a unary! operator with the resulting expression being the entire
controlling expression of a selection or iteration statement.

• The entire expression of an expression statement (possibly cast to void).

longjmp Function

Synopsis:

#include <setjmp.h>
void longjmpejmp_buf env, int val);

Description:

The longjmp function restores the environment saved by the most recent invocation of
the setjmp macro in the same invocation of the program, with the corresponding jmp_buf
argument. If there has been no such invocation, or if the function containing the invocation
o(ihe setjmp macro has terminated execution1in the interim, the behavi;r is undefined.

All accessible objects have values as of the time longjmp was called, except that the values
of objects of automatic storage duration that are local to the function containing the
invocation of the corresponding set jmp macro that do not have volatile-qualified type and
have been changed between the setjmp invocation and longjmp call are indeterminate.

As it bypasses the usual function call and return mechanisms, the longjmp function
executes correctly in contexts of interrupts, signals, and any of their associated functions.
However, the longjmp function may not be invoked from a nested signal handler (that
is, from a function invoked as a result of a signal raised during the handling of another
signal).

Returns:

After longjmp is completed, program execution continues as if the corresponding
invocation of the setjmp macro had just returned the value specified by val. The longjmp
function cannot cause the setjmp macro to return the value 0; ifval is 0, the setjmp macro
returns the value 1.

1 For example, by executing a return statement or because another longjmp call has caused a transfer
to a setjmp invocation in a function earlier in the set of nested calls.

13-2 longjmp Function HA17-00

Section 14

Signal Handling <signal. h>

The header <signal. h> declares a type and two functions and defines several macros, for
handling various ~ignals (conditions that may be reported during program execution).

The type defined is

which is the integral type of an object that can be accessed as an atomic entity, even in
the presence of asynchronous interrupts.

The macros defined include

SIG_DFL
SIG_ERR
SIG_IGN

which expand to constant expressions with distinct values. These values have a type
compatible with the second argument to and the return value of the signal function; each
value compares unequal to the address of any declarable function. Additional macros,
each of which expands to a positive integral constant expression that is the signal number
corresponding to the specified condition, are as follows:

SIGABRT
SIGALRM
SIGFPE
SIGHUP
SIGILL
SIGINT
SIGSEGV
SIGTERM
SIGUSRl
SIGUSR2

All signal numbers are positive.

HA17-00 14-1

Signal Handling <signal. h>

Signal Handling Macros

The three signal handling macros are described here along with their uses.

SIG _DFL l\1acro

This macro is a constant expression whose type is "pointer to function". This value
is suitable as the second argument to the signal function to request the default signal
handler. The default signal handler will display a description of the signal, display the call
history, and stop execution when a signal using this handler is raised.

SIG_ERR Macro

This macro is a constant expression whose type is "pointer to function". This value is
returned by the signal function when the signal request cannot be honored. This is not
a valid signal handler and therefore is not accepted as the second argument of the signal
function.

SIG_IGN Macro

This macro is a constant expression whose type is "pointer to function". The value is
suitable as the second argument to the signal function to request ignoring of a signal.
This signal handler keeps itself as the handler and returns. This signal handler is only
permitted to handle the following signals:

SIGABRT
SIGALRM
SIGINT
SIGTERM
SIGUSR1
SIGUSR2

Signal Types

The various types of signals and their use are explained below.

14-2 Signal Types HA17-00

Signal Handling <signal. h>

SIGABRT Signal

Description:

This signal is raised by calling the abort function or by assertion failures which use the
assert macro.

Semantics:

The initial handler for this signal is SIG_DFL. If the signal handler returns to its caller,
this signal is immediately repeated to the new signal handler which by default will cause
program termination. The signal handling function may longjmp to continue execution.
The default handling for this signal is to display a C run-time error message, display the
call history at the time of the signal, and stop execution.

SIGALRM Signal

Description:

This signal is reserved for future use.

SIGFPE Signal

Description:

This signal is raised for division by zero, fixed point overflow, floating point overflow and
floating point underflow.

Semantics:

The initial state of this signal is SIG_DFL. If the signal handler returns to its caller, this
signal is immediately repeated to the new signal handler which by default will cause
program termination (via SIG_DFL handling). The signal handling function may longjmp
to continue execution. The default handling for this message is to display a C run-time
error message, display the call history at the time of the signal, and stop execution.

If the signal handler for this signal is set to SIG_IGN, the result of the erroneous operation
is set to an appropriate value and program execution continues after the point of the
error. The "appropriate" value depends upon the fault that occurred. For example, when
overflow occurs, the value is set to the largest value that can be represented.

HA17-00 SIGFPE Signal 14-3

Signal Handling <signal. h>

SIGHUP Signal

Description:

This signal is raised when the user's terminal is disconnected from the system.

Semantics:

The default handler for this signal is SIG_IGN which causes the disconnect event to be
ignored and terminates program execution. If the signal handler returns to its caller,
execution continues at the point of the signal. When the SIGHUP signal handler is called,
the signal handler for SIGHUP is set to SIG_IGN. This event may be used to complete any
database accesses or save the current status of the process.

SIGILL Signal

Description:

This signal is raised if the program tries to execute an illegal or nonexistent instruction.

Semantics:

The default handler for this signal is SIG_DFL. If the signal handler returns to its caller,
the signal is immediately repeated to the new signal handler which by default will cause
program termination via SIG_DFL. The signal handling function may longjmp to continue
execution.

The default handling for this signal is to display a C run-time error message, display the
call history at the time of the signal, and stop execution.

SIGINT Signal

Description:

This signal is raised when a time-sharing user interrupts the program either by using the
break key or the escape-B sequence.

Semantics:

The default signal handler is SIG_IGN which causes the command processor to get control
when a break event occurs. The signal handler may return to continue execution at the
point of interruption, or longjmp to continue execution at a location specified by an earlier
setjmp.

After the SIGINT handler is entered, it must immediately establish a new handler for this
signal or all subsequent break events will be ignored.

14-4 SIGINT Signal HA17-00

Signal Handling <signal.h>

SIGSEGV Signal

Description:

This signal is raised when the program makes an invalid memory access. This includes the
following traps: security faults, page faults, programmed faults and various other hardware
faults.

Semantics:

The initial handler for this signal is SIG_DFL. If the signal handler returns to its caller, this
signal is immediately raised to the new signal handler which by default will cause program
termination through the SIG_DFL handler. The signal handling function may longjmp to
continue execution.

The default handling for this signal is to display a C run-time error message, display the
call history at the time of the signal, and stop execution.

SIGTERM Signal

Description:

This signal is raised when the program exits.

Semantics:

The default handler for this signal is SIG_IGN which causes the exit event to be ignored
and terminates program execution. If the signal handler returns to its caller, execution
continues at the point of the signal.

The exit function and return from the main function do not raise SIGTERM. In addition,
termination due to the default signal handler does not raise SIGTERM. All other exits cause
SIGTERM to be raised.

When the SIGTERM signal handler is called, the signal handler for SIGTERM is set to SIG_IGN.

This signal may be raised for many reasons including

1. A non-C function executing an M$EXIT, M$ERR or M$XXX monitor call.

2. A monitor service request that had an error which did not specify error handling.

3. Invocation of another program via the M$LDTRC monitor service.

4. An exceptional condition which could not be handled. This will not normally occur.

5. The operator "errored" the user.

6. A resource limit (such as CPU time, or output) was exceeded.

7. The operator "aborted); the user.

HA17-00 SIGTERM Signal 14-5

Signal Handling <signal. h>

The SIGUSRI and SIGUSR2 Signals

Description:

These signals are provided for use by C programs. These signals are not raised by the C
library under any conditions.

Semantics:

The initial handler for these signals is SIG_DFL. If the signal handler returns to its caller,
execution resumes at the point the event was raised. The signal handling function may
establish a new handler for the signal and may also longjmp to continue execution.

The default handling for these signals is to display a C run-time error message, display the
call history at the time of the signal, and stop execution.

Signal Handling and Sending

The signal and raise functions specify signal handling and sending, respectively, as
described below.

signal Function

Synopsis:

#include <signal.h>
void (*signal(int sig, void (*func)(int)))(int);

Description:

The signal function chooses one of three ways in which receipt of the signal number sig
is to be subsequently handled. If the value of func is SIG_DFL, default handling for that
signal will occur. If the value of func is SIG_IGH, the signal will be ignored. Otherwise,
func must point to a function to be called when that signal occurs. Such a function is
called a signal handler.

When a signal occurs, if func points to a function, first the equivalent of signal(sig,
SIG_DFL); is executed. Next the equivalent of (*func) (sig) j is executed. The function
func may terminate by executing a return statement or by calling the abort, exit, or
longjmp function. If func executes a return statement and the value of sig was S IGFPE
or any value corresponding to a computational exception, the behavior is undefined. In
any case, the program will resume execution at the point at which it was interrupted.

If the signal occurs other than as the result of calling the abort or raise function, the
behavior is undefined if the signal handler calls any function in the standard library other
than the signal function itself (with a first argument of the signal number corresponding
to the signal that caused the invocation of the handler) or refers to any object with static

14-6 signal Function HA17-00

Signal Handling <signal.h>

storage duration other than by assigning a value to a static storage duration variable of
type volatile sig_atomic_ t. Furthermore, if such a call to the signal function results
in a SIG_ERR return, the value of errno is indeterminate.}

At program startup, the equivalent of

signal(sig, SIG_IGN)j

is executed for SIGINT and SIGTERM; the equivalent of

signal(sig, SIG_DFL);

is executed for all other signals.

Returns:

If the request can be honored, the signal function returns the value of func for the most
recent call to signal for the specified signal sig. Otherwise, a value of SIG_ERR is returned
and a positive value is stored in errno.

raise Function

Synopsis:

#include <signal.h>
int raise(int sig);

Description:

The raise function sends the signal sig to the executing program. The following signals
may be raised:

SIGABRT
SIGALRM
SIGINT
SIGTERM
SIGUSR1
SIGUSR2

Attempting to raise any other signals results in an error.

Returns:

The raise function returns zero if successful, nonzero if unsuccessful.

1 If any signal is generated by an asynchronous signal handler, the behavior is undefined.

HA17-00 raise Function 14-7

Section 15

Variable Arguments <stdarg .h>

The header <stdarg. h> declares a type and defines three macros, for advancing through
a list of arguments whose number and types are not known to the called function when it
is compiled.

A function may be called with a variable number of arguments of varying types. As
described in Section 7, External Data Definitions, its parameter list contains one or more
parameters. The rightmost parameter plays a special role in the access mechanism, and
will be designated parmN in this description.

The type declared is

which is a type suitable for holding information needed by the macros va_start, va_arg,

and va_end. If access to the varying arguments is desired, the called function should
declare an object (referred to as ap in this section) having type va_list. The object ap
may be passed as an argument to another function.

Variable Argument List Access Macros

The va_start, va_end, and va_arg macros described In this section are not actual
functions. The va_start and va_end macros must be invoked in order to access a function.
The va_start and va_end macros are invoked in the function accepting a varying number
of arguments, if access to the varying arguments is desired.

HA17-00 Variable Argument List Access Macros 15-1

Variable Arguments <stdarg. h>

va_ start Macro

Synopsis:

#include <stdarg.h>
void va_ start (va_Ii st ap, parmN) j

Description:

The va_start macro must be invoked before any access to the unnamed arguments.

The va_start macro initializes ap for subsequent use by va_arg and va_end.

The parameter parmN is the identifier of the rightmost parameter in the variable parameter
list in the function definition (the one just before the , ...). The parameter parmN may
not be declared with the register storage class, with a function or array type, or with
a type that is not compatible with the type that results after application of the default
argument promotions.

Returns:

The va_start macro returns no value.

Synopsis:

#include <stdarg.h>
type va_arg (va_list ap, type) j

Description:

The va_arg macro expands to an expression that has the type and value of the next
argument in the call. The parameter ap must be initialized by the va_start macro. Each
invocation of va_arg modifies ap so that the values of successive arguments are returned
in turn. The parameter type is a type name specified such that the type of a pointer to an
object that has the specified type can be obtained simply by postfixing a * to type. There
must be an actual next argument, and type must be compatible with the type of the actual
next argument (as promoted according to the default argument promotions).

Returns:

The first invocation of the va_arg macro after that of the va_start macro returns the
value of the argument after that specified by parmN. Successive invocations return the
values of the remaining arguments in succession.

15-2 HA17-00

Variable Arguments <stdarg. h>

va_end Macro

Synopsis:

#include <stdarg.h>
void va_end(va_list ap)j

Description:

The va_end macro facilitates a normal return from the function whose variable argument
list was referred to by the expansion of va_start that initialized the va_list ape The
va_end macro modifies ap so that it is no longer usable (without an intervening invocation
of va_start).

Returns:

The va_end macro returns no value.

Examples:

The function f1 gathers into an array a list of arguments that are pointers to strings (but
not more than MAXARGS arguments), then passes the array as a single argument to function
f2. The number of pointers is specified by the first argument to flo

#include <stdarg.h>
#define MAXARGS 31
void f1(int n_ptrs, ...)

va_list ap;
char *array[MAXARGS] j
int ptr_no = OJ
if (n_ptrs > MAXARGS)

n_ptrs = MAXARGSj
va_start(ap, n_ptrs)j
while (ptr_no < n_ptrs)

array[ptr_no++] = va_arg(ap, char *);
va_end(ap)j
f2(n_ptrs, array);

Each call to f1 should have visible the definition of the function or a declaration such as:

void f1(int, ...);

HA17-00 va_ end Macro 15-3

Section 16

Input/Output <stdio .h> Functions

Introduction

The header <stdio. h> declares three types, several macros, and many functions for
performing input and output.

The types declared are size_ t (described under Common Definitions, in Section 9);

FILE

which is an object type that holds the information needed to control an I/O stream,
including its file position indicator, a pointer to its associated buffer, an error indicator
that records whether a read/write error has occurred, and an end-oj-file indicator that
records whether the end of the file has been reached; and

fpos_t

which is an object type that holds the information needed to uniquely specify a position
within a file.

The macros include NULL (described under Common Definitions, in Section 9) and the
following:

IOFBF
IOLBF

_IONBF

which expand to integral constant expressions with distinct values, for use as the third
argument to the setvbuf function;

BUFSIZ

which expands to an integral constant expression, which is the size of the buffer used by
the setbuf function;

EOF

which expands to a negative integral constant expression that is returned by several
functions to indicate end-oj-file (that is, no more input from a stream);

HA17-00 Introduction 16-1

Input/Output <stdio. h> Functions

which expands to an integral constant expression that is the maximum number of files that
can be open simultaneously;

which expands to an integral constant expression that is the size needed for an array of
char large enough to hold the longest file name string that can be opened;

L_tmpnam

which expands to an integral constant expression that is the size needed for an array of
char large enough to hold a temporary file name string generated by the tmpnam function;

SEEK_CUR
SEEK_END
SEEK_SET

which expand to integral constant expressions with distinct values, for use as the third
argument to the fseek function;

TMP_MAX

which expands to an integral constant expression that is the minimum number of unique
file names generated by the tmpnam function;

stderr
stdin
stdout

which are expressions of type "pointer to FILE" that point to the FILE objects associated,
respectively, with the standard error, standard input, and standard output streams.

Streams

Input and output, whether to or from physical devices such as terminals and tape drives, or
whether to or from files supported on structured storage devices, are mapped into logical
data streams, whose properties are more uniform than their various inputs and outputs.
Two forms of mapping are supported, for text streams and for binary streams.

A text stream is an ordered sequence of characters composed into lines, each line consisting
of zero or more characters plus a terminating new-line character. The last line does not
require a terminating new-line character when writing a file, as a new line is automatically
added when the file is read. Data read in from a text stream will compare equal to the
data that were earlier written out to that stream only if: the data consists only of printable
characters and the control characters horizontal tab and new-line; no new-line character is
immediately preceded by space characters; and the last character is a new-line character.

16-2 Streams HA17-00

Input / Output <stdio. h> Functions

Space characters that are written out immediately before a new-line character may not
appear when read in.

A binary stream is an ordered sequence of characters that transparently record internal
data. Data read in from a binary stream compare equal to the data that were earlier
written out to that stream.

Stream Buffering

The C Library allows either fully buffered, line buffered, or unbuffered to be specified
for a stream. The actual meaning of these attributes is likely to vary between C
implementations. Fully buffered is the default when a stream is opened. A different
buffering attribute can be requested by calling the setbuf or setvbuf functions.

Fully buffered requests the use of FSFA (Fast Sequential File Access) routines. If the stream
cannot be opened with FSFA, then line buffered is used.

Line buffered requests the use of M$READ and M$WRITE to read and write entire lines of
text.

Unbuffered is treated as line buffered when I/O is directed to a file since unbuffered I/O
is not meaningful in a record-oriented file system. Terminal I/O is the only case in which
unbuffered I/O may be used. It is not possible to efficiently implement unbuffered input
on CP-6 systems, so when this behavior is required, specially written PL-6 routines are
necessary.

Unbuffered output can be useful when writing to a terminal. If unbuffered is specified on
a stream connected to a terminal, the stream is opened with CP-6 mode ORG=TERMINAL.
However, if CP-6 C were to immediately write every character sent to the terminal as it
was generated to an unbuffered stream, there would be excessive overhead. For example,
if a large quantity of output were generated using putc function calls, there would be
an M$WRITE monitor call for each character written. Because of the poor performance
that this behavior would produce, a compromise between efficiency and functionality is
provided. Functions that normally generate more than one character of output flush
output immediately; functions in this category include printf, fputs, puts and fwri teo
Functions that generate a single character of output (fputc, putc and put char) buffer
their output. Buffered output is flushed when a function that flushes output immediately
is called or when the fflush function is executed. To ensure that output appears before a
newline character is written, the fflush function must be executed at appropriate places
in the program.

The fflush function only flushes output directed to the terminal device. If a stream is
connected to a file, CP-6 C waits until a newline character is written before writing the
new record.

HA17-00 Stream Buffering 16-3

Input/Output <stdio. h> Functions

CP-6 C provides the ability to set the prompt to be used on terminal reads. The prompt
is set when any of the stream-accessing functions is used (fgetc~ getc~ fgets~ or fread).
When a read from the terminal is about to take place, CP-6 C first checks to see if the
stream from which the read is going to occur has any queued output pending. If it does,
or if stdout has queued output to the terminal pending, then that output is used to set
the prompt. This prompt remains until another read occurs with queued terminal output.

Mapping Text Streams to the CP-fi File System

Mapping from a C text stream into a CP-6 file transforms each line in the text stream
into a record. Newline characters do not appear in a file; each record implicitly ends with
a new line character.

Text files created by C are consecutive files; however, a text stream may read from any
type of CP-6 file.

The size of the buffer used to read text streams may be specified using setvbuf function.
The buffer should be large enough to handle the longest record to to be read or written in
the file.

CP-6 C does not support the "r+" and "v+" modes on text streams.1When these modes
are specified on a text stream, the stream is opened as a binary stream instead of a text
stream. A ppend-Update mode (" a+") is handled properly as this requests that all writes
are done at the end of the stream regardless of the position of the stream at the time of
the write. When opening a file in II a+ II mode, the type of the file is examined to determine
if the file should be opened as a binary or text stream. If the file type is cb (or if the
file does not exist), the file is opened as a binary stream; otherwise, it is opened as a text
stream.

1 CP-6 C does not support read-update or write-update mode for text streams because there are two
cases that cannot be handled correctly:

1. A newline character cannot be written at a position that contains a non-newline character. To

maintain a consistent file structure it would be necessary to split the record containing the
character into two records. As records cannot be inserted into a consecutive file, this cannot be

done.

2. A non-newline character cannot be written at a position that contains a newline character. To

maintain a consistent file structure, it would be necessary to join the record containing the
character with the following record. As records cannot be deleted in a consecutive file, this cannot

be done.

16-4 Stream Buffering HA17-00

Input/Output <stdio.h> Functions

Text Stream Positioning

The fseek function provides the ability to position to a specified position in a stream.
Positioning in text streams is very restricted; it is only possible to position to points that
have been previously "remembered" by a call to the ftell function or to the beginning or
the end of the file.

Mapping Binary Streams to the CP-6 File System

The basic operations on binary streams are reading, writing and positioning.

Positioning works differently for binary streams than for text streams. The fseek function
is used to position to any absolute or relative position in a binary stream. Binary streams
are implemented in CP-6 C using keyed files with fixed size records. Because the records
have a fixed size, it is possible to translate a character position in a binary stream to a
record number and position within the record.

Binary files created by C are keyed files with edit keys that start at 0.001 and increment
by 0.001. It is possible to read binary files produced by non-C programs. To do this:

1. The file must have fixed size records (the last record in the file can be short).

2. The setvbuf function must be used to provide a buffer to the stream that is the same
size as the records in the file.

3. If the file is keyed, it must have appropriate keys. The following COpy command puts
correct keys onto a file:

!COPY file OVER file (In(.001,.001),ty=cb)

If a binary stream is open to a device, then TRANS=YES is specified on all reads and writes.

Binary Stream Buffering

When a binary stream is connected to a file, the only type of buffering provided is line
buffered in which M$READ and M$WRITE are used to read and write entire records.

Unbuffered is available for streams connected to a device. If a terminal device is connected,
the stream is opened with ORG=TERMINAL and the terminal attribute ACTONTRN is set. This
allows read activation to occur when a newline (CR) character is read.

As is the case for text files, functions that generate a single character of out put buffer
their output; functions that normally generate more than one character of output flush it
immediately.

HA17-00 Stream Buffering 16-5

Input/Output <stdio .h> Functions

Files

A stream is associated with an external file, which may be a physical device, by opening
a file, which may involve creating a new file. Creating an existing file causes its former
contents to be discarded, if necessary. If a file can support positioning requests (such as
a disk file, as opposed to a terminal), then a file position indicator associated with the
stream is positioned at the start of the file, unless the file is opened with append mode, in
which case it is positioned at the end of the file. The file position indicator is maintained
by subsequent reads, writes, and positioning requests, to facilitate an orderly progression
through the file. All input takes place as if characters were read by successive calls to the
fgetc function; all output takes place as if characters were written by successive calls to
the fputc function.

Binary files are not truncated, except as defined under the fopen function later in this
section. A write on a text stream causes all records in the associated file to be deleted
beyond that point.

A file is disassociated from a controlling stream by closing the file. Output streams are
flushed (any unwritten buffer contents are written) before the stream is disassociated from
the file. The value of a pointer to a FILE object is indeterminate after closing the associated
file, including the standard text streams. A file on which no characters have been written
by an output stream will actually exist, with no data.

The file may be subsequently reopened, by the same or another program execution, and its
contents reclaimed or modified (if it can be repositioned at its start). If the main function
returns to its original caller, or if the exit function is called, all open files are closed, hence
all output streams are flushed before program termination.

The address of the FILE object used to control a stream is significant; a copy of a FILE
object will not serve in place of the original.

At program startup, three text streams are predefined and need not be opened explicitly:
standard input (for reading conventional input), standard output (for writing conventional
output), and standard error (for writing diagnostic output). When opened, the standard
error stream is not fully buffered; the standard input and standard output streams are
fully buffered if and only if the stream does not refer to an interactive device.

Functions that open additional, nontemporary files require a file name, which is a string
containing a CP-6 file identifier.

Operations on Files

The functions that perform operations on files are described below.

16-6 Operations on Files HA17-00

Input/Output <stdio. h> Functions

remove Function

Synopsis:

#include <stdio.h>
int remove(const char *filename);

Description:

The remove function causes the file whose name is the string pointed to by filename to
be deleted. If the remove function is successful, a subsequent attempt to open that file
using that name will fail, unless it is created anew. If the file is open, the remove function
deletes the file when all readers have closed the stream, or reports an error if the file is
being updated.

Returns:

The remove function returns zero if the operation succeeds, nonzero if it fails.

rename Function

Synopsis:

#include <stdio.h>
int rename(const char *old, const char *new);

Description:

The rename function causes the file whose name is the string pointed to by old to be
henceforth known by the name given by the string pointed to by new. The file named old
is no longer accessible by that name. If a file named by the string pointed to by new exists
prior to the call to the rename function, an error occurs. The rename function may not
change the account in which the file resides.

Returns:

The rename function returns zero if the operation succeeds; it returns nonzero if it fails/in
which case if the file existed previously it is still known by its original name.

2 Among the reasons the rename function may fail are that the file is open or that it is necessary to

copy its contents to rename it.

HA17-00 rename Function 16-7

Input / Output <stdio. h> Functions

tmpfile Function

Synopsis:

#include <stdio.h>
FILE *tmpfile(void);

Description:

The tmpfile function creates a temporary binary file that is automatically removed when
it is closed or at program termination. If the program terminates abnormally, an open
temporary file is removed. The file is opened for update with "vb+" mode.

Returns:

The tmpfile function returns a pointer to the stream of the file that it created. If the file
cannot be created, the tmpfile function returns a null pointer.

tmpnam Function

Synopsis:

#include <stdio.h>
char *tmpnam(char *s);

D escript io n:

The tmpnam function generates a string that is a valid file name and that is not the same as
the name of an existing file. Files created using strings generated by the tmpnam function
are temporary only in the sense that they are star files that are deleted at logoff time. It
is still advisable to use the remove function to remove such files when their use is ended,
and before program termination.

The tmpnam function generates a different string each time it is called, up to TMP _MAX
times. If it is called more than TMP _MAX times, an error is reported by returning a NULL
pointer.

Returns:

If the argument is a null pointer, the tmpnam function leaves its result in an internal static
object and returns a pointer to that object. Subsequent calls to the tmpnam function modify
the same object. If the argument is not a null pointer, it is assumed to point to an array
of at least L_ tmpnam chars; the tmpnam function writes its result in that array and ret urns
the argument as its value. The value of TMP _MAX is 999.

16-8 tmpnam Function HA17-00

Input / Output <stdio. h> Functions

File Access Functions

The file access functions are described in the following subsections.

fclose Function

Synopsis:

#include <stdio.h>
int fclose(FILE *stream);

Description:

The fclose function causes the stream pointed to by stream to be flushed and the
associated file to be closed. Any unwritten buffered data for the stream are written to
the file; any unread buffered data are discarded. The stream is disassociated from the file.
If the associated buffer was automatically allocated, it is deallocated.

Returns:

The f close function returns zero if the stream was successfully closed, or EOF if any errors
were detected.

fflush Function

Synopsis:

#include <stdio.h>
int fflush(FILE *stream);

Description:

If stream points to an output stream or an update stream in which the most recent
operation was not input, the fflush function causes any unwritten data for that stream
to be written to the file.

If stream is a null pointer, the fflush function performs this flushing action on all streams.

Returns:

The fflush function returns EOF if a write error occurs; otherwise it returns zero.

HA17-00 fflush Function 16-9

Input / Output < stdio . h> Functions

f open Function

Synopsis:

#include <stdio.h>
FILE *fopen(const char *filename, const char *mode);

Description:

The fopen function opens the file whose name is the string pointed to by filename, and
associates a stream with it.

The argument mode points to a string beginning with one of the following sequences:

r
v
a
rb
vb
ab
r+
'9+

a+
r+b or rb+
v+b or vb+
a+b or ab+

Open text file for reading.
Truncate to zero length or create text file for writing.
Append; open or create text file for writing at end-of-file.
Open binary file for reading.
Truncate to zero length or create binary file for writing.
Append; open or create binary file for writing at end-of-file.
Open text file for update (reading and writing).
Truncate to zero length or create text file for update,
Append; open or create text file for update, writing at end-of-file.
Open binary file for update (reading and writing).
Truncate to zero length or create binary file for update.
Append; open or create binary file for .update, writing at end-of-file.

Opening a file with read mode (, r' as the first character in the mode argument) fails if
the file does not exist or cannot be read.

Opening a file with append mode ('a' as the first character in the mode argument) causes
all subsequent writes to the file to be forced to the then current end-of-file, regardless of
intervening calls to the fseek function.

When a file is opened with update mode (, +, as the second or third character in the
above list of mode argument values), both input and output may be performed on the
associated stream. However, output may not be directly followed by input without an
intervening call to the fflush function or to a file positioning function (fseek , fsetpos,
or rewind), and input may not be directly followed by output without an intervening call
to a file positioning function, unless the input operation encounters end-of-file. Opening
(or creating) a text file with update mode opens (or creates) a binary stream.

When opened, a stream is fully buffered if and only if it can be determined not to refer to
an interactive device. The error and end-of-file indicators for the stream are cleared.

The CP-6 version of the fopen function permits a specific DeB to be opened by supplying
an illegal file name in one of two forms which has special interpretation:

16-10 fopen Function HA17-00

Input / Output <stdio. h> Functions

#n In this case, the n must be one of the integers "1", "2", "3" or "4". This form
requests that the stream be opened to one of the command line file names (by
convention, "#1" is the input file position, "#2" is the update file position, "#3" is
the object file position and "#4" is the listing file position).

dcb=name In this case, the DeB name is explicitly supplied. The DeB to be opened can
be arranged from the command line by using CP-6 link options or it could be a
DeB for which the user has specified an IBEX set command.

When a DeB is explicitly requested, the mode argument to fopen is treated differently when
the DeB has been "set" with one of the following options:

Fun=Create J Exist=Oldfile If these options are specified (the command line verb
INTO can implicitly request it), the file is opened in append mode ("all) regardless
of the mode specified on the call.

Fun=Create J Exist=Error If the mode is "v" then the fopen successfully opens the
file only if the file does not currently exist. This mode can be requested implicitly
by using the command line verb ON or TO.

The CP-6 fopen function also provides the ability to specify a number of open options in
the mode parameter. The mode string must begin with the sequence outlined previously
which indicates the basic kind of operations that are required upon the stream. The
additional options are used to further control the actual behavior of the stream (CP-6
device or file type dependent). The initial mode may optionally be followed by a blank and
keywords separated by blanks request various options. The "fopen mode keywords" table
contains the keywords accepted by fopen. If a keyword is found which is not recognized,
the rest of the string is ignored.

HA17-00

Keyword

oldfile

nevfile

error

named

scratch

ctg

none

share in

all

Meaning

If creating, update original file if it exists.

If creating, replace original file if it exists.

If creating, report an error if the file exists.

If creating, create a permanent file.

If creating, create a temporary file.

If creating, catalog file immediately.

Allow multiple readers or one updater.

Allow one updater and multiple readers.

Allow multiple updaters and readers.

Table 16-1. fopen M ode Keywords

fopen Function 16-11

Input / Output <stdio. h> Functions

I Keyword
I ~:a:!;! opens, ,...""+ density to 800 bpi. d800 i:n.:'L

d1600 For tape opens, set density to 1600 bpi.

d6250 For tape opens, set density to 6250 bpi.

terminal Program will supply all terminal positioning.

x364 Translate X3.64 controls for terminal type.

ur If creating, create a unit-record file.

keyed If creating, create a keyed file.

consec If creating, create a consecutive file.

comp If creating, compress records in disk file.

Table 16-1. fopen Mode Keywords (part 2)

Returns:

The fopen function returns a pointer to the FILE object controlling the stream. If the
open operation fails, fopen returns a null pointer.

freopen Function

Synopsis:

#include <stdio.h>
FILE *freopen(const char *filename, const char *mode,

FILE *stream);

Description:

The freopen function opens the file whose name is the string pointed to by filename and
associates the stream pointed to by stream with it. The mode argument is used just as in
the fopen function. 3

The freopen function first attempts to close any file that is associated with the specified
stream. Errors encountered while closing the stream are not reported. The error and
end-of-file indicators for the stream are cleared.

Returns:

The freopen function returns a null pointer if the open operation fails. Otherwise, freopen
returns the value of stream.

3 The primary use of the freopen function is to change the file associated with a standard text stream
(stderr, stdin, or stdout), as those identifiers are not modifiable lvalues to which the value returned
by the f open function may be assigned.

16-12 freopen Function HA17-00

Input / Output <stdio. h> Functions

setbuf Function

Synopsis:

#include <stdio.h>
void setbuf(FILE *stream, char *buf);

Description:

Except that it returns no value, the setbuf function is equivalent to the setvbuf function
invoked with the values _IOFBF for mode and BUFSIZ for size, or, if buf is a null pointer,
with the value _IONBF for mode.

Returns:

The setbuf function returns no value.

setvbuf Function

Synopsis:

#include <stdio.h>
int setvbuf(FILE *stream, char *buf, int mode, size t size);

Description:

The setvbuf function may be used only after the stream pointed to by stream has been
associated with an open file and before any other operation is performed on the stream.
The argument mode determines how stream will be buffered, as follows: _IOFBF causes
input/output to be fully buffered; _IOLBF causes input/output to be line buffered; _IONBF
causes input/output to be unbuffered. If buf is not a null pointer, the array it points to
may be used instead of a buffer allocated by the setvbuf function. 4The argument size
specifies the size of the array. The contents of the array at any time are indeterminate.

Returns:

The setvbuf function returns zero on success, or nonzero if an invalid value is given for
mode or if the request cannot be honored.

Formatted Input/Output Functions

The formatted input/output functions are described in the following subsections.

4 The buffer must have a lifetime at least as great as the open stream, so the stream must be closed
before a buffer that has automatic storage duration is deallocated upon block exit.

HA17-00 Formatted Input/Output Functions 16-13

Input/Output <stdio. h> Functions

fprintf Function

Synopsis:

#include <stdio.h>
int fprintf(FILE *stream, const char *format, ...);

Description:

The fprintf function writes output to the stream pointed to by stream, under control of
the string pointed to by format which specifies how subsequent arguments are converted
for output. There must be sufficient arguments for the format. If the format is exhausted
while arguments remain, the excess arguments are evaluated but are otherwise ignored.
The fprintf function returns when the end of the format string is encountered.

The format must be a character string. The format is composed of zero or more
directives: ordinary characters (not %), which are copied unchanged to the output stream;
and conversion specifications, each of which results in fetching zero or more subsequent
arguments. Each conversion specification is introduced by the character %. After the %,
the following appear in sequence:

• Zero or more flags (in any order) that modify the meaning of the conversion
specification.

• An optional minimum field width. If the converted value has fewer characters than the
field width, it will be padded with spaces (by default) on the left (or right, if the left
adjustment flag, described below, has been given) to the field width. The field width
takes the form of an asterisk * (described below) or a decimal integer. 5

• An optional precision that gives the minimum number of digits to appear for the d,
i, 0, u, x, and X conversions; the number of digits to appear after the decimal-point
character for e, E, and f conversions; the maximum number of significant digits for
the g and G conversions; or the maximum number of characters to be written from a
string in s conversion. The precision takes the form of a period (.) followed either by
an asterisk * (described below) or by an optional decimal integer; if only the period is
specified, the precision is taken as zero. A precision may not appear with any other
conversion specifier.

• An optional h specifying that a following d, i, 0, u, x, or X conversion specifier applies to
a short int or unsigned short int argument (the argument will have been promoted
according to the integral promotions, and its value will be converted to short int
or unsigned short int before printing); an optional h specifying that a following n
conversion specifier applies to a pointer to a short int argument; an optional 1 (ell)
specifying that a following d, i, 0, u, x, or X conversion specifier applies to a long int
or unsigned long int argument; an optional 1 specifying that a following n conversion
specifier applies to a pointer to a long int argument; or an optional L specifying that
a following e, E, f, g, or G conversion specifier applies to a long double argument. An
h, 1, or L may not appear with any other conversion specifier.

• A character that specifies the type of conversion to be applied.

5 Note that 0 is taken as a flag, not as the beginning of a field width.

16-14 fprintf Function HA17-00

Input/Output <stdio .h> Functions

A field width, or preCISIon, or both, may be indicated by an asterisk instead of a digit
string. In this case, an int argument supplies the field width or precision. The arguments
specifying field width, or precision, or both, appear (in that order) before the argument
(if any) to be converted. A negative field width argument is taken as a - flag followed
by a positive field width. A negative precision argument is taken as if the precision were
omitted.

The flag characters and their meanings are:

The result of the conversion will be left-justified within the field. If this flag is
omitted, the result will be right-justified.

+ The result of a signed conversion will always begin with a plus or minus sign. If
this flag is omitted, the result will begin with a sign only when a negative value is
converted.

space If the first character of a signed conversion is not a sign, or if a signed conversion
results in no characters, a space will be prefixed to the result. If the space and +
flags both appear, the space flag will be ignored.

The result is to be converted to an "alternate form". For 0 conversion, it increases
the precision to force the first digit of the result to be a zero. For x (or X) conversion,
a nonzero result will have Ox (or OX) prefixed to it. For e, E, f, g, and G conversions,
the result will always contain a decimal-point character, even if no digits follow it.
(Normally, a decimal-point character appears in the result of these conversions only
if a digit follows it.) For g and G conversions, trailing zeros will not be removed
from the result. Other conversions do not use this flag.

o For d, i, 0, u, x, X, e, E, f, g, and G conversions, leading zeros (following any
indication of sign or base) are used to pad to the field width; no space padding is
performed. If the 0 and - flags both appear, the 0 flag will be ignored. For d, i, 0,

u, x, and X conversions, if a precision is specified, the 0 flag will be ignored. Other
conversions do not use this flag.

The conversion specifiers and their meanings are:

d, i The int argument is converted to signed decimal in the style f- jdddd. The
precision specifies the minimum number of digits to appear; if the value being
converted can be represented in fewer digits, it will be expanded with leading
zeros. The default precision is 1. The result of converting a zero value with a
precision of zero is no characters.

0, u, x, X The unsigned int argument is converted to unsigned octal (0), unsigned
decimal (u), or unsigned hexadecimal notation (x or X) in the style dddd; the
letters abcdef are used for x conversion and the letters ABCDEF for I conversion.
The precision specifies the minimum number of digits to appear; if the value being
converted can be represented in fewer digits, it will be expanded with leading zeros.
The default precision is 1. The result of converting a zero value with a precision
of zero is no characters.

HA17-00 fprintf Function 16-15

Input / Output <stdio. h> Functions

f The double argument is converted to decimal notation in the style (-jddd.ddd,
where the number of digits after the decimal-point character is equal to the
precision specification. If the precision is missing, it is taken as 6; if the precision
is zero and the # flag is not specified, no decimal-point character appears. If a
decimal-point character appears, at least one digit appears before it. The value is
rounded to the appropriate number of digits.

e ,E The double argument is converted in the style (-jd.ddde±dd, where there is
one digit before the decimal-point character (which is nonzero if the argument is
nonzero) and the number of digits after it is equal to the precision. If the precision
is missing, it is taken as 6; if the precision is zero and the # flag is not specified, no
decimal-point character appears. The value is rounded to the appropriate number
of digits. The E conversion specifier will produce a number with E instead of e

introducing the exponent. The exponent always contains at least two digits. If the
value is zero, the exponent is zero.

g, G The double argument is converted in style f or e (or in style E in the case of
a G conversion specifier), with the precision specifying the number of significant
digits. If the precision is zero, it is taken as 1. The style used depends on the value
converted; style e (or E) will be used only if the exponent resulting from such a
conversion is less than -4 or greater than or equal to the precision. Trailing zeros
are removed from the fractional portion of the result; a decimal-point character
appears only if it is followed by a digit.

c The int argument is converted to an unsigned char, and the resulting character
is written.

s The argument must be a pointer to an array of character type. 6 Characters from
the array are written up to (but not including) a terminating null character; if
the precision is specified, no more than that many characters are written. If the
precision is not specified or is greater than the size of the array, the array must
contain a null character.

p The argument is a pointer to void. The value of the pointer IS converted to a
sequence of printable characters, as unsigned octal.

n The argument is a pointer to an integer into which is written the number of
characters written to the output stream so far by this call. No argument is
converted.

Y. A Y. is written. No argument is converted. The complete conversion specification
is Y.Y..

6 No special provisions are made for multibyte characters.

16-16 :fprintf Function HA17-00

Input / Output <stdio. h> Functions

An argument may not be, or point to, a union or an aggregate (except for an array of
character type using %s conversion, or a pointer using %p conversion).

In no case does a nonexistent or small field width cause truncation of a field; if the result of
a conversion is wider than the field width, the field is expanded to contain the conversion
result.

Returns:

The fprintf function returns the number of characters written to the output stream, or
a negative value if an output error occurred.

Environmental Limit:

The maximum number of characters produced by any single conversion is 509.

Examples:

The following prints a date and time in the form "Sunday, July 3, 10:02", where weekday
and month are pointers to strings:

#include <stdio.h>
1* . .. *1
fprintf(stdout, "%s, %s %d, %.2d:%.2d\n",

weekday, month, day, hour, min);

The following prints 7r to five decimal places:

#include <math.h>
#include <stdio.h>
1* . .. *1
fprintf(stdout, "pi = %.5f\n", 4 * atan(1.0»;

fscanf Function

Synopsis:

#include <stdio.h>
int fscanf(FILE *stream, const char *format, ...);

Description:

The fscanf function reads input from the stream pointed to by stream, under control of
the string pointed to by format that specifies the admissible input sequences and how they
are to be converted for assignment, using subsequent arguments as pointers to the objects
to receive the converted input. There must be sufficient arguments for the format. If the
format is exhausted while arguments remain, the excess arguments are evaluated but are
otherwise ignored.

The format is a character string. The format is composed of zero or more directives: one or
more white-space characters, an ordinary multibyte character (neither % nor a white-space
character), or a conversion specification. Each conversion specification is introduced by
the character %. After the %, the following appear in sequence:

HA17-00 fscanf Function 16-17

Input/Output <stdio. h> Functions

• An optional assignment-suppressing character *.

• An optional decimal integer that specifies the maximum field width.

• An optional h, 1 (ell), or L indicating the size of the receiving object. The conversion
specifiers d, i, and n must be preceded by h if the corresponding argument is a
pointer to short int rather than a pointer to int, or by 1 if it is a pointer to long
into Similarly, the conversion specifiers 0, u, and x must be preceded by h if the
corresponding argument is a pointer to unsigned short int rather than a pointer to
unsigned int, or by 1 if it is a pointer to unsigned long int. Finally, the conversion
specifiers e, f, and g must be preceded by 1 if the corresponding argument is a pointer
to double rather than a pointer to float, or by L if it is a pointer to long double.
An h, 1, or L must not appear with any other conversion specifier.

• A character that specifies the type of conversion to be applied. The valid conversion
specifiers are described below.

The f scanf function executes each directive of the format in turn. If a directive fails,
as detailed below, the fscanf function returns. Failures are described as input failures
(due to the unavailability of input characters), or matching failures (due to inappropriate
input).

A directive composed of white-space character(s) is executed by reading input up to the
first non-white-space character (which remains unread), or until no more characters can
be read.

A directive that is an ordinary character is executed by reading the next characters of the
stream. If one of the characters differs from one comprising the directive, the directive
fails, and the differing and subsequent characters remain unread.

A directive that is a conversion specification defines a set of matching input sequences, as
described below for each specifier. A conversion specification is executed in the following
steps:

• Input white-space characters (as specified by the isspace function) are skipped, unless
the specification includes a [, c, or n specifier.

• An input item is read from the stream, unless the specification includes an n specifier.
An input item is defined as the longest matching sequence of input characters, unless
that exceeds a specified field width, in which case it is the initial subsequence of that
length in the sequence. The first character, if any, after the input item remains unread.
If the length of the input item is zero, the execution of the directive fails. This condition
is a matching failure, unless an error prevented input from the stream, in which case
it is an input failure.

• Except in the case of a % specifier, the input item (or, in the case of a %n directive, the
count of input characters) is converted to a type appropriate to the conversion specifier.
If the input item is not a matching sequence, the execution of the directive fails. This
condition is a matching failure. Unless assignment suppression was indicated by an *,
the result of the conversion is placed in the object pointed to by the first argument
following the format argument that has not already received a conversion result. This
object should have an appropriate type, and the result of the conversion must be
represented in the space provided.

16-18 f scanf Function HA17-00

Input/Output <stdio .h> Functions

The following conversion specifiers are valid:

d 11atches an optionally signed decimal integer, whose format is the same as expected
for the subject sequence of the strtol function with the value 10 for the base
argument. The corresponding argument is a pointer to integer.

i Matches an optionally signed integer, whose format is the same as expected for the
subject sequence of the strtol function with the value 0 for the base argument.
The corresponding argument is a pointer to integer.

o Matches an optionally signed octal integer, whose format is the same as expected
for the subject sequence of the strtoul function with the value 8 for the base
argument. The corresponding argument is a pointer to unsigned integer.

u Matches an optionally signed decimal integer, whose format is the same as expected
for the subject sequence of the strtoul function with the value 10 for the base
argument. The corresponding argument is a pointer to unsigned integer.

x Matches an optionally signed hexadecimal integer, whose format is the same as
expected for the subject sequence of the strtoul function with the value 16 for
the base argument. The corresponding argument is a pointer to unsigned integer.

e J f ,g Matches an optionally signed floating-point number, whose format is the same
as expected for the subject string of the strtod function. The corresponding
argument is a pointer to floating.

s Matches a sequence of non-white-space characters.7The corresponding argument is
a pointer to the initial character of an array large enough to accept the sequence
and a terminating null character, which will be added automatically.

[Matches a nonempty sequence of characters8from a set of expected characters
(the scanset). The corresponding argument is a pointer to the initial character
of an array large enough to accept the sequence and a terminating null character,
which will be added automatically. The conversion specifier includes all subsequent
characters in the format string, up to and including the matching right bracket (J).
The characters between the brackets (the scanlist) constitute the scanset, unless
the character after the left bracket is a circumflex (...), in which case the scanset
contains all characters that do not appear in the scanlist between the circumflex
and the right bracket. If the conversion specifier begins with [] or [... J, the right
bracket character is in the scanlist and the next right bracket character is the
matching right bracket that ends the specification; otherwise the first right bracket
character is the one that ends the specification. If a - character is in the scanlist
and is not the first, nor the second where the first character is a ... , nor the last
character, the - is treated as an ordinary character.

7 No special provisions are made for multibyte characters.
8 No special provisions are made for multibyte characters.

HA17-00 fscanf Function 16-19

Input / Output < stdio . h> Functions

c Matches a sequence of characters90f the number specified by the field width (1 if
no field width is present in the directive). The corresponding argument is a pointer
to the initial character of an array large enough to accept the sequence. No null
character is added.

p Matches an unsigned octal integer, which should be the same as the set of
sequences that may be produced by the %p conversion of the fprintf function.
The corresponding argument is a pointer to a pointer to void. If the input item
is a value converted earlier during the same program execution, the pointer that
results should compare equal to that value.

n No input is consumed. The corresponding argument is a pointer to integer into
which is written the number of characters read from the input stream so far by this
call to the f scanf function. Execution of a %n directive does not increment the
assignment count returned at the completion of execution of the fscanf function.

% Matches a single %; no conversion or assignment occurs. The complete conversion
specification is %%.

The conversion specifiers E, G, and X are also valid and behave the same as, respectively,
e, g, and x.

If end-of-file is encountered during input; conversion is terminated. If end-of-file occurs
before any characters matching the current directive have been read (other than leading
white space, where permitted), execution of the current directive terminates with an input
failure. Otherwise, unless execution of the current directive is terminated with a matching
failure, execution of the following directive (if any) is terminated with an input failure.

If conversion terminates on a conflicting input character, the offending input character is
left unread in the input stream. Trailing white space (including new-line characters) is
left unread unless matched by a directive. The success of literal matches and suppressed
assignments is not directly determinable other than via the %n directive.

Returns:

The fscanf function returns the value of the macro EOF if an input failure occurs before any
conversion. Otherwise, the fscanf function returns the number of input items assigned,
which can be fewer than provided for, or even zero, in the event of an early matching
failure.

Examples:

The call:

#include <stdio.h>
1* . .. */
int n, i; float Xj char name[50]j
n = fscanf(stdin, "%d%f%s", li, lx, name)j

9 No special provisions are made for multibyte characters.

16-20 fscanf Function HA17-00

Input/Output <stdio .h> Functions

with the input line:

25 54.32E-1 thompson

will assign to n the value 3, to i the value 25, and to x the value 5.432; and name will
contain thompson \0. Or:

#include <stdio.h>
1* . .. *1
int i; float x; char name[50];
fscanf(stdin, "%2d%f%*d %[0123456789]", ii, ix, name);

with input:

56789 0123 56a72

will assign to i the value 56 and to x the value 789.0, will skip 0123, and name will contain
56\0. The next character read from the input stream will be a.

The following accepts repeatedly from stdin a quantity, a unit of measure, and an item
name:

#include <stdio.h>
1* . .. *1
int count; float quanti char units [21] , item[21];
while (!feof(stdin) II !ferror(stdin)) {

}

count = fscanf(stdin, "%f%20s of %20s",
lquant, units, item);

fscanf(stdin,"%*["'\n]tI);

If the stdin stream contains the following lines:

2 quarts of oil
-12.8 degrees Celsius
lots of luck
10.0 LBS of fertilizer
100 ergs of energy

the execution of the above example is analogous to the following assignments:

quant = 2; strcpy(units, "quarts"); strcpy(item, "oil");
count = 3;
quant = -12.8; strcpy(units, "degrees");
count = 2; 1* "C" fail8 to match "0" *1
count = 0; 1* "I" fail8 to match "%f" *1
quant = 10.0; strcpy(units, "LBS"); strcpy(item, "fertilizer");
count = 3;
count = 0; 1* "100e" fail8 to match "%f" *1
count = EOF;

HA17-00 fscanf Function 16-21

Input/Output <stdio. h> Functions

printf Function

Synopsis:

#include <stdio.h>
int printf(const char *format, ...);

Description:

The printf function is equivalent to fprintf with the argument stdout interposed before
the arguments to printf.

Returns:

The printf function returns the number of characters written to stdout, or a negative
value if an output error occurred.

scanf Function

Synopsis:

#include <stdio.h>
int scanf(const char *format, ...);

Description:

The scanf function is equivalent to f scanf with the argument stdin interposed before
the arguments to scanf.

Returns:

The scanf function returns the value of the macro EOF if an input failure occurs before any
conversion. Otherwise, the scanf function returns the number of input items assigned,
which can be fewer than provided for, or even zero, in the event of an early matching
failure.

sprintf Function

Synopsis:

#include <stdio.h>
int sprintf(char *s, const char *format, ...);

Description:

The sprintf function is equivalent to fprintf, except that the argument s specifies an
array into which the generated output is to be written, rather than to a stream. A null
character is written at the end of the characters written; it is not counted as part of the
returned sum. Copying must not take place between objects that overlap.

Returns:

The sprint! function returns the number of characters written into the array, not counting
the terminating null character.

16-22 sprintf Function HA17-00

Input / Output < stdio . h> Functions

sscanf Function

Synopsis:

#include <stdio.h>
int sscanf(const char *s, const char *format, ...)j

Description:

The sscanf function is equivalent to f scanf, except that the argument s specifies a string
from which the input is to be obtained, rather than from a stream. Reaching the end of
the string is equivalent to encountering end-of-file for the fscanf function. Copying must
not take place between objects that overlap.

Returns:

The sscanf function returns the value of the macro EOF if an input failure occurs before any
conversion. Otherwise, the sscanf function returns the number of input items assigned,
which can be fewer than provided for, or even zero, in the event of an early matching
failure.

vfprintf Function

Synopsis:

#include <stdarg.h>
#include <stdio.h>
int vfprintf(FILE *stream, const char *format, va_list arg)j

Description:

The vfprintf function is equivalent to fprintf, with the variable argument list replaced
by arg, which is initialized by the va_start macro (and possibly subsequent va_arg calls).

Returns:

The vfprintf function returns the number of characters written to the output stream, or
a negative value if an output error occurred.

Examples:

The following shows the use of the vfprintf function in a general error-reporting routine:

#include <stdarg.h>
#include <stdio.h>

void error(char *function_name, char *format, ...)
{

HA17-00 vfprintf Function 16-23

Input/Output <stdio. h> Functions

}

va_list args;

va_startCargs, format);
/ * print out name of function causing error * /
fprintf(stderr, "ERROR in %s: ", function_name);
/ * print out remainder of message * /
vfprintf(stderr, format, args);
va_end(args);

vprintf Function

Synopsis:

#include <stdarg.h>
#include <stdio.h>
int vprintf(const char *format, va_list arg);

Description:

The vprintf function is equivalent to printf, with the variable argument list replaced by
arg, ,vhich is initialized by the va_start macro (and possibly subsequent va_arg calls).

Returns:

The vprintf function returns the number of characters written to stdout, or a negative
value if an output error occurred.

vsprintf Function

Synopsis:

#include <stdarg.h>
#include <stdio.h>
int vsprintf(char *s, const char *format, va_list arg);

Description:

The vsprintf function is equivalent to sprintf, with the variable argument list replaced
by arg, which is initialized by the va_start macro (and possibly subsequent va_arg calls).
Copying must not take place between objects that overlap.

Returns:

The vsprintf function returns the number of characters written into the array, not
counting the terminating null character.

16-24 vsprintf Function HA17-00

Input / Output <stdio. h> Functions

Character Input/Output Functions

The character input/output functions are described in the following subsections.

fgetc Function

Synopsis:

#include <stdio.h>
int fgetc(FILE *stream);

Description:

The fgetc function obtains the next character (if present) as an unsigned char converted
to an int, from the input stream pointed to by stream, and advances the associated file
position indicator for the stream.

Returns:

The fgetc function returns the next character from the input stream pointed to by stream.
If the stream is at end-of-file, the end-of-file indicator for the stream is set and fgetc
returns EOF. If a read error occurs, the error indicator for the stream is set and fgetc
ret urns EOF. 10

fgets Function

Synopsis:

#include <stdio.h>
char *fgets(char *s, int n, FILE *stream);

Description:

The fgets function reads at most one less than the number of characters specified by
n from the stream pointed to by stream into the array pointed to by s. No additional
characters are read after a new-line character (which is retained) or after end-of-file. A
null character is written immediately after the last character read into the array.

Returns:

The fgets function returns s if successful. If end-of-file is encountered and no characters
have been read into the array, the contents of the array remain unchanged and a null
pointer is returned. If a read error occurs during the operation, the array contents are
indeterminate and a null pointer is returned.

10 An end-of-file and a read error can be distinguished by use of the feof and ferror functions.

HA17-00 fgets Function 16-25

Input/Output <stdio. h> Functions

fput c Function

Synopsis:

#include <stdio.h>

int fputc(int c, FILE *stream);

Description:

The fputc function writes the character specified by c (converted to an unsigned char)
to the output stream pointed to by stream, at the position indicated by the associated

file position indicator for the stream, and advances the indicator appropriately. If the file

cannot support positioning requests, or if the stream was opened with append mode, the
character is appended to the output stream.

Returns:

The fputc function returns the character written. If a write error occurs j the error

indicator for the stream is set and fput c ret urns EOF.

fput s Function

Synopsis:

#include <stdio.h>

int fputs(const char *s, FILE *stream);

Description:

The fputs function writes the string pointed to by s to the stream pointed to by stream.
The terminating null character is not written.

Returns:

The fputs function returns EOF if a write error occurs; otherwise it returns a non-negative
value.

16-26 fputs Function HA17-00

Input/Output <stdio. h> Functions

gete Function

Synopsis:

#inelude <stdio.h>

int gete(FILE *stream);

Description:

The gete function is equivalent to fgete, except that since it is implemented as a macro,
it evaluates stream more than once, so that argument should never be an expression with
side effects.

Returns:

The gete function returns the next character from the input stream pointed to by stream.

If the stream is at end-of-file, the end-of-file indicator for the stream is set and gete returns
EOF. If a read error occurs, the error indicator for the stream is set and gete returns EOF.

get char Function

. Synopsis:

#inelude <stdio.h>

int getehar(void);

Description:

The get char function is equivalent to gete with the argument stdin.

Returns:

The getehar function returns the next character from the input stream pointed to by
stdin. If the stream is at end-of-file, the end-of-file indicator for the stream is set and

getehar returns EOF. If a read error occurs, the error indicator for the stream is set and
get char ret urns EOF.

HA17-00 getehar Function 16-27

Input/Output <stdio. h> Functions

get s Function

Synopsis:

#include <stdio.h>
char *gets(char *s);

Description:

The gets function reads characters from the input stream pointed to by stdin, into the
array pointed to by s, until end-of-file is encountered or a new-line character is read. Any
new-line character is discarded, and a null character is written immediately after the last
character read into the array.

Returns:

The gets function returns s if successful. If end-of-file is encountered and no characters
have been read into the array, the contents of the array remain unchanged and a null
pointer is returned. If a read error occurs during the operation, the array contents are
indeterminate and a null pointer is returned.

putc Function

Synopsis:

#include <stdio.h>
int putc(int c, FILE *stream)j

Description:

The putc function is equivalent to fputc, except that since it is implemented as a macro,
it evaluates stream more than once, so that argument should never be an expression with
side effects.

Returns:

The putc function returns the character written. If a write error occurs, the error indicator
for the stream is set and putc returns EOF.

16-28 putc Function HA17-00

Input/Output <stdio. h> Functions

putchar Function

Synopsis:

#include <stdio.h>
int putchar(int c);

Description:

The putchar function is equivalent to putc with the second argument stdout.

Returns:

The putchar function returns the character written. If a write error occurs, the error
indicator for the stream is set and putchar returns EOF.

puts Function

Synopsis:

#include <stdio.h>
int puts(const char *s);

Description:

The puts function writes the string pointed to by s to the stream pointed to by stdout,
and appends a new-line character to the output. The terminating null character is not
written.

Returns:

The puts function returns EOF if a write error occurs; otherwise it returns a non-negative
value.

ungetc Function

Synopsis:

#include <stdio.h>
int ungetc(int c, FILE *stream)j

HA17-00 unget c Function 16-29

Input/Output <stdio. h> Functions

Description:

The ungetc function pushes the character specified by c (converted to an unsigned char)
back onto the input stream pointed to by stream. The pushed-back character will be
returned by a subsequent read on that stream. A successful intervening call to a file
positioning function (fseek, fsetpos, or rewind) with the same stream discards the
pushed-back character for the stream. The external storage corresponding to the stream
is unchanged.

One character of pushback is available. If the ungetc function is called more than once on
the same stream without an intervening read or file positioning operation on that stream,
the operation fails.

If the value of c equals that of the macro EOF, the operation fails and the input stream is
unchanged.

A successful call to the ungetc function clears the end-of-file indicator for the stream. The
value of the file position indicator for the stream after reading or discarding the pushed­
back character is the same as it was before the character was pushed back. For a text
stream, the value of its file position indicator after a successful call to the ungetc function
is unspecified until the pushed-back character is read or discarded. For a binary stream, its
file position indicator is decremented; if its value was zero before a call, it is indeterminate
after the call.

Returns:

The ungetc function returns the character pushed back after converSlon, or EOF if the
operation fails.

Direct Input/Output Functions

The fread and fwri te functions are described below.

fread Function

Synopsis:

#include <stdio.h>
size_t fread(void .ptr, size_t size, size_t nmemb,

FILE *stream);

Description:

The fread function reads, into the array pointed to by ptr, up to nmemb elements whose
size is specified by size, from the stream pointed to by stream. The file position indicator
for the stream (if defined) is advanced by the number of characters successfully read. If an
error occurs, the resulting value of the file position indicator for the stream is indeterminate.
If a partial element is read, its value is indeterminate.

16-30 fread Function HA17-00

Input / Output < stdio. h> Functions

Returns:

The fread function returns the number of elements successfully read, which may be less
than nmemb if a read error or end-of-file is encountered. If size or nmemb is zero, fread
returns zero and the contents of the array and the state of the stream remain unchanged.

fwrite Function

Synopsis:

#include <stdio.h>
size_t fwrite(const void *ptr, size t size, size t nmemb,

FILE *stream);

Description:

The fwri te function writes, from the array pointed to by ptr, up to nmemb elements
whose size is specified by size, to the stream pointed to by stream. The file position
indicator for the stream (if defined) is advanced by the number of characters successfully
written. If an error occurs, the resulting value of the file position indicator for the stream
is indeterminate.

Returns:

The fwri te function returns the number of elements successfully written, which will be
less than nmemb only if a write error is encountered.

File Positioning Functions

The file positioning functions are described in the following subsections.

fgetpos Function

Synopsis:

#include <stdio.h>
int fgetpos(FILE *stream, fpos_t *pos);

Description:

The fgetpos function stores the current value of the file position indicator for the stream
pointed to by stream in the object pointed to by pos. The value stored contains internal
information usable by the f setpos function for repositioning the stream to its position at
the time of the call to the fgetpos function.

Returns:

If successful, the fgetpos function returns zero. On failure, the fgetpos function returns
nonzero and stores the (positive) error number value in errno.

HA17-00 fgetpos Function 16-31

Input/Output <stdio. h> Functions

fseek Function

Synopsis:

#include <stdio.h>
int fseek(FILE *stream, long int offset, int whence);

Description:

The fseek function sets the file position indicator for the stream pointed to by stream.

For a binary stream, the new position, measured in characters from the beginning of the
file, is obtained by adding off set to the position specified by whence. The specified
position is relative to

• the beginning of the file if whence is SEEK_SET,

• the current value of the file position indicator if whence is SEEK_CUR, or

• end-of-file if whence is SEEK_END.

For a text stream, offset is either zero or a value returned by an earlier call to the ftell
function on the same stream, and whence is SEEK_SET.

A successful call to the fseek function clears the end-of-file indicator for the stream and
undoes any effects of the ungetc function on the same stream. After an fseek call, the
next operation on an update stream may be either input or output.

Returns:

The fseek function returns nonzero only for a request that cannot be satisfied.

f setpos Function

Synopsis:

#include <stdio.h>
int fsetpos(FILE *stream, const fpos_t .pos);

Description:

The fsetpos function sets the file position indicator for the stream pointed to by stream
according to the value of the object pointed to by pos, which must be a value obtained
from an earlier call to the fgetpos function on the same stream.

A successful call to the fsetpos function clears the end-of-file indicator for the stream and
undoes any effects of the ungetc function on the same stream. After an fsetpos call, the
next operation on an update stream may be either input or output.

Returns:

If successful, the fsetpos function returns zero. On failure, the fsetpos function returns
nonzero and stores the (positive) error number value in errno.

16-32 fsetpos Function HA17-00

Input/Output <stdio.h> Functions

ftell Function

Synopsis:

#include <stdio.h>
long int ftell(FILE *stream);

Description:

The ftell function obtains the current value of the file position indicator for the stream
pointed to by stream. For a binary stream, the value is the number of characters from
the beginning of the file. For a text stream, its file position indicator contains internal
information, usable by the fseek function for returning the file position indicator for the
stream to its position at the time of the ftell call. The difference between two such return
values is not a meaningful measure of the number of characters written or read.

The position returned by ft ell is only correct for positions within the first 217 records
and record positions within the first 219

- 1 bytes.

Returns:

If successful, the ftell function returns the current value of the file position indicator
for the stream. On failure, the ftell function returns -1L and stores the (positive) error
number value in errno.

rewind Function

Synopsis:

#include <stdio.h>
void rewind(FILE *stream)i

Description:

The rewind function sets the file position indicator for the stream pointed to by stream
to the beginning of the file. It is equivalent to

(void)fseek(stream, OL, SEEK_SET)

except that the error indicator for the stream is also cleared.

Returns:

The rewind function returns no value.

Error-Handling Functions

The error-handling functions are described in the following subsections.

HA17-00 Error-Handling Functions 16-33

Input IOutput <stdio. h> Functions

clearerr Function

Synopsis:

#include <stdio.h>
void clearerr(FILE *stream);

Description:

The clearerr function clears the end-of-file and error indicators for the stream pointed
to by stream.

Returns:

The clearerr function returns no value.

feof Function

Synopsis:

#include <stdio.h>
int feof(FILE *stream);

Description:

The feof function tests the end-of-file indicator for the stream pointed to by stream.

Returns:

The feof function returns nonzero if and only if the end-of-file indicator is set for stream.

f error Function

Synopsis:

#include <stdio.h>
int ferror(FILE *stream);

Description:

The f error function tests the error indicator for the stream pointed to by stream.

Returns:

The ferror function returns nonzero if and only if the error indicator is set for stream.

16-34 f error Function HA17-00

Input / Output <stdio. h> Functions

perror Function

Synopsis:

#include <stdio.h>
void perror(const char *s);

Description:

The perror function maps the error number in the integer expression errno to an error
message. It writes a sequence of characters to the standard error stream thus: first (if s is
not a null pointer and the character pointed to by s is not the null character), the string
pointed to by s followed by a colon (:) and a space; then the error message string followed
by a new-line character. The contents of the error message strings is the same as those
returned by the strerror function with argument errno.

Returns:

The perror function ret urns no value.

Example:

The following C program

maine) {
FILE *fp;

}

fp = fopen(tI**BOGUS**",tlr");
perror(IIExample of perror()II);

when run, results in the following output:

Example of perror(): **** FMI-M00113-2 File **BOGUS** does not exist in DP#SYS.I

HA17-00 perror Function 16-35

Section 17

General Utility <stdlib.h> Functions

The header <stdlib. h> declares four types, several functions of general utility, and several
macros.

The types declared are size_ t and wchar _ t (both described under Common Definitions,
in Section 9),

div_t

which is a structure type that is the type of the value returned by the di v function, and

Idiv_t

which is a structure type that is the type of the value returned by the Idiv function.

The macros defined include NULL (described under Common Definitions, in Section 9) and
the following:

EXIT_FAILURE

and

EXIT_SUCCESS

which expand to integral expressions that may be used as the argument to the exit
function to return unsuccessful or successful termination status, respectively, to the host
environment;

RAND_MAX

which expands to an integral constant expression, the value of which is the maximum value
returned by the rand function; and

MB_CUR_MAX

which expands to a positive integer expression whose value is the maximum number of
bytes in a multibyte character for the extended character set specified by the current
locale (category LC_CTYPE), and whose value is never greater than ME_LEN_MAX.

HA17-00 17-1

General Utility <stdlib. h> Functions

String Conversion Functions

The string conversion functions are described in the following subsections.

The functions atof, atoi, and atol do not affect the value of the integer expression errno
on an error.

atof Function

Synopsis:

#include <stdlib.h>
double atof(const char *nptr);

Description:

The atof function converts the initial portion of the string pointed to by nptr to double
representation. Except for not setting errno on error, it is equivalent to

strtod(nptr, (char **)NULL)

Returns:

The atof function returns the converted value.

atoi Function

Synopsis:

#include <stdlib.h>
int atoi(const char *nptr)j

Description:

The atoi function converts the initial portion of the string pointed to by nptr to int
representation. Except for not setting errno on error, it is equivalent to

(int)strtol(nptr, (char **)NULL, 10)

Returns:

The atoi function returns the converted value.

17-2 atoi Function HA17-00

General Utility < stdli b . h> Functions

atol Function

Synopsis:

#include <stdlib.h>
long int atol(const char *nptr);

Description:

The atol function converts the initial portion of the string pointed to by nptr to long
int representation. Except for not setting errno on error, it is equivalent to

strtol(nptr, (char **)NULL, 10)

Returns:

The atol function returns the converted value.

strtod Function

Synopsis:

#include <stdlib.h>
double strtod(const char *nptr, char **endptr);

Description:

The strtod function converts the initial portion of the string pointed to by nptr to
double representation. First it decomposes the input string into three parts: an initial,
possibly empty, sequence of white-space characters (as specified by the isspace function);
a subject sequence resembling a floating-point constant; and a final string of one or more
unrecognized characters, including the terminating null character of the input string. Then
it attempts to convert the subject sequence to a floating-point number and returns the
result.

The expected form of the subject sequence is an optional plus or minus sign, then a
nonempty sequence of digits optionally containing a decimal-point character, then an
optional exponent part as defined in Section 2, Lexical Elements, but no floating suffix. The
subject sequence is defined as the longest initial subsequence of the input string, starting
with the first non-white-space character, that is of the expected form. The subject sequence
contains no characters if the input string is empty or consists entirely of white space, or
if the first non-white-space character is other than a sign, a digit, or a decimal-point
character.

If the subject sequence has the expected form, the sequence of characters starting with
the first digit or the decimal-point character (whichever occurs first) is interpreted as a
floating constant according to the rules set forth in Floating Constants, in Section 2, except
that if neither an exponent part nor a decimal-point character appears, a decimal point is
assumed to follow the last digit in the string. If the subject sequence begins with a minus

HA17-00 strtod Function 17-3

General Utility <stdlib. h> Functions

sign, the value resulting from the conversion is negated. A pointer to the final string is
stored in the object pointed to by endptr, provided that endptr is not a null pointer.

If the subject sequence is empty or does not have the expected form, no conversion is
performed; the value of nptr is stored in the object pointed to by endptr ~ provided that
endptr is not a null pointer.

Returns:

The strtod function returns the converted value, if any. If no converSIon could be
performed, zero is returned. If the correct value is outside the range of representable
values, plus or minus HUGE_VAL is returned (according to the sign of the value), and the
value of the macro ERANGE is stored in errno. If the correct value would cause underflow,
zero is returned and the value of the macro ERANGE is stored in errno.

strtol Function

Synopsis:

#include <stdlib.h>
long int strtol(const char *nptr, char **endptr, int base);

Description:

The strtol function converts the initial portion of the string pointed to by nptr to long
int representation. First it decomposes the input string into three parts: an initial,
possibly empty, sequence of white-space characters (as specified by the isspace function);
a subject sequence resembling an integer represented in some radix determined by the
value of base; and a final string of one or more unrecognized characters, including the
terminating null character of the input string. Then it attempts to convert the subject
sequence to an integer and returns the result.

If the value of base is zero, the expected form of the subject sequence is that of an integer
constant as described in Section 2, Lexical Elements, optionally preceded by a plus or minus
sign, but not including an integer suffix. The value of base must be between 2 and 36; the
expected form of the subject sequence is a sequence of letters and digits representing an
integer with the radix specified by base, optionally preceded by a plus or minus sign, but
not including an integer suffix. The letters from a (or A) through z (or z) are ascribed the
values 10 to 35; only letters whose ascribed values are less than that of base are permitted.
If the value of base is 16, the characters Ox or OX may optionally precede the sequence of
letters and digits, following the sign if present.

The subject sequence is defined as the longest initial subsequence of the input string,
starting with the first non-white-space character, that is of the expected form. The subject
sequence contains no characters if the input string is empty or consists entirely of white
space, or if the first non-white-space character is other than a sign or a permissible letter
or digit.

17-4 strtol Function HA17-00

General Utility <stdlib. h> Functions

If the subject sequence has the expected form and the value of base is zero, the sequence of
characters starting with the first digit is interpreted as an integer constant according to the
rules set forth in Integer Constants, in Section 2. If the subject sequence has the expected
form and the value of base is between 2 and 36, it is used as the base for conversion,
ascribing to each letter its value as given above. If the subject sequence begins with a
minus sign, the value resulting from the conversion is negated. A pointer to the final
string is stored in the object pointed to by endptr, provided that endptr is not a null
pointer.

If the subject sequence is empty or does not have the expected form, no conversion is
performed; the value of nptr is stored in the object pointed to by endptr, provided that
endptr is not a null pointer.

Returns:

The strtol function returns the converted value, if any. If no converSIon could be
performed, zero is returned. If the correct value is outside the range of representable
values, LONG_MAX or LONG_MIN is returned (according to the sign of the value), and the
value of the macro ERANGE is stored in errno.

strtoul Function

Synopsis:

#include <stdlib.h>
unsigned long int strtoul(const char *nptr, char **endptr,

int base);

Description:

The strtoul function converts the initial portion of the string pointed to by nptr to
unsigned long int representation. First it decomposes the input string into three parts:
an initial, possibly empty, sequence of white-space characters (as specified by the isspace
function); a subject sequence resembling an unsigned integer represented in some radix
determined by the value of base; and a final string of one or more unrecognized characters,
including the terminating null character of the input string. Then it attempts to convert
the subject sequence to an unsigned integer and returns the result.

If the value of base is zero, the expected form of the subject sequence is that of an integer
constant as described in Integer Constants, in Section 2, optionally preceded by a plus
or minus sign, but not including an integer suffix. The value of base must be between
2 and 36; the expected form of the subject sequence is a sequence of letters and digits
representing an integer with the radix specified by base, optionally preceded by a plus or
minus sigri, but not including an integer suffix. The letters from a (or A) through z (or
z) are ascribed the values 10 to 35; only letters whose ascribed values are less than that
of base are permitted. If the value of base is 16, the characters Ox or OX may optionally
precede the sequence of letters and digits, following the sign if present.

HA17-00 strtoul Function 17-5

General Utility <stdlib. h> Functions

The subject sequence is defined as the longest initial subsequence of the input string,
starting with the first non-white-space character, that is of the expected form. The subject
sequence contains no characters if the input string is empty or consists entirely of white
space, or if the first non-white-space character is other than a sign or a permissible letter
or digit.

If the subject sequence has the expected form and the value of base is zero, the sequence of
characters starting with the first digit is interpreted as an integer constant according to the
rules set forth in Integer Constants, in Section 2. If the subject sequence has the expected
form and the value of base is between 2 and 36, it is used as the base for conversion,
ascribing to each letter its value as given above. If the subject sequence begins with a
minus sign, the value resulting from the conversion is negated. A pointer to the final
string is stored in the object pointed to by endptr, provided that endptr is not a null
pointer.

If the subject sequence is empty or does not have the expected form, no conversion is
performed; the value of nptr is stored in the object pointed to by endptr, provided that
endptr is not a null pointer.

Returns:

The strtoul function returns the converted value, if any. If no converSIon could be
performed; zero is returned. If the correct value is outside the range of representable
values, ULONG_MAX is returned, and the value of the macro ERANGE is stored in errno.

Pseudo-Random Sequence Generation Functions

The rand and srand functions are described below.

rand Function

Synopsis:

#include <stdlib.h>
int rand(void);

Description:

The rand function computes a sequence of pseudo-random integers In the range 0 to
RAND_MAX.

Returns:

The rand function returns a pseudo-random integer.

17-6 rand Function HA17-00

General Utility <stdlib.h> Functions

srand Function

Synopsis:

#inelude <stdlib.h>
void srand(unsigned int seed);

Description:

The srand function uses the argument as a seed for a new sequence of pseudo-random
numbers to be returned by subsequent calls to rand. If srand is then called with the same
seed value, the sequence of pseudo-random numbers is repeated. If rand is called before
any calls to srand are made, the same sequence is generated as when srand is first called
with a seed value of 1.

Returns:

The srand function returns no value.

Examples:

The following functions define a portable implementation of rand and srand:

static unsigned long int next = 1;

int rand(void)
{

/* RAND_MAX assumed to be 32767 */

next = next * 1103515245 + 12345;
return (unsigned int)(next/65536) % 32768;

}

void srand(unsigned int seed)
{

next = seed;
}

Memory Management Functions

The ordering and location of the objects allocated by successive calls to the ealloe, malloe,
and realloe functions cannot be depended upon. The pointer returned if the allocation
succeeds is suitably aligned so that it may be assigned to a pointer to any type of object
and then used to access such an object or an array of such objects in the space allocated
(until the space is explicitly freed or reallocated). Each such allocation yields a pointer to
an object disjoint from any other object. The pointer returned points to the start (lowest
byte address) of the allocated space. If the space cannot be allocated, a null pointer is
returned. If the size of the space requested is zero, the value returned is a null pointer.
The value obtained when pointer refers to freed space is indeternlinate.

The ealloe, free, malloe, and realloe functions are described below.

HA17-00 Memory Management Functions 17-7

General Utility <stdlib.h> Functions

ealloe Function

Synopsis:

#inelude <stdlib.h>
void *ealloe(size_t nmemb, size t size);

Description:

The ealloe function allocates space for an array of nmemb objects, each of whose size is
size. The space is initialized to all bits zero.I

Returns:

The ealloe function returns either a null pointer if the allocation cannot be made, or a
pointer to the allocated space.

free Function

Synopsis:

#inelude <stdlib.h>
void free(void *ptr);

Description:

The free function causes the space pointed to by ptr to be deallocated, that is, made
available for further allocation. If ptr is a null pointer, no action occurs. Otherwise,
the argument must match a pointer returned earlier by the ealloe, malloe, or realloe
function, and the space must not have been previously deallocated by a call to free or
realloe.

Returns:

The free function returns no value.

malloe Function

Synopsis:

#inelude <stdlib.h>
void *malloe(size_t size);

Description:

The malloe function allocates space for an object whose SIze IS specified by size and
whose value is indeterminate.

Returns:

The malloe function returns either a null pointer if the allocation cannot be made, or a
pointer to the allocated space.

1 Note that this is not the same as the representation of floating-point zero or a null pointer.

17-8 malloe Function HA17-00

General Utility <stdlib.h> Functions

realloe Function

Synopsis:

#inelude <stdlib.h>
void *realloe(void *ptr, size t size);

Description:

The realloe function changes the size of the object pointed to by ptr to the size specified
by size. The contents of the object are unchanged up to the lesser of the new and old
sizes. If the new size is larger, the value of the newly allocated portion of the object is
indeterminate. If ptr is a null pointer, the realloe function behaves like the malloe
function for the specified size. Otherwise, ptr must match a pointer returned earlier by
the ealloe, malloe, or realloe function, and the space must not have been previously
deallocated by a call to free or realloe. If the space cannot be allocated, the object
pointed to by ptr is unchanged. If size is zero and ptr is not a null pointer, the object
it points to is freed.

Returns:

The realloe function returns either a null pointer if the allocation cannot be made, or a
pointer to the possibly moved allocated space. -

Communication with the Host Environment

The functions used in communication with the CP ... 6 host environment are described in
the following subsections.

abort Function

Synopsis:

#inelude <stdlib.h>
void abort(void)j

Description:

In the absence of a SIGABRT signal handler, the abort function causes the program to
terminate with abnormal status. If a SIGABRT handler is present, it can either terminate
the program with abnormal status or longjmp to continue execution at a location specified
by an earlier set jmp. Open output streams are flushed and all open streams are closed.
The execution of the current program terminates.

Returns:

The abort function does not return to its caller.

HA17-00 abort Function 17-9

General Utility <stdli b. h> Functions

atexi t Function

Synopsis:

#include <stdlib.h>
int atexit(void (*func)(void));

Description:

The atexi t function registers the function pointed to by func, to be called without
arguments at normal program termination. Registered functions are called in the reverse
order of their registration.

Implementation Limits:

CP-6 C supports the registration of 32 functions.

Returns:

The atexi t function returns zero if the registration succeeds, nonzero if it fails.

exit Function

Synopsis:

#include <stdlib.h>
void exit(int status);

Description:

The exit function causes normal program termination to occur. No more than one call to
the exit function may be executed by a program.

First, all functions registered by the atexi t function are called, in the reverse order of
their registration.2

Next, all open output streams are flushed, all open streams are closed, and all files created
by the tmpfile function are removed.

Finally, control is returned to the CP-6 operating system. If the value of status is zero
or EIIT_SUCCESS, STEPCC is set to o. If the value of status is EIIT_FAILURE, STEPCC is
set to 4. If the status returned is an integer less than 512, STEPCC is set to that value;
otherwise, status is treated as a CP-6 error code.

Returns:

The exit function cannot return to its caller.

2 Each function is called as many times as it was registered.

17-10 exit Function HA17-00

General Utility <stdlib .h> Functions

getenv Function

Synopsis:

#include <stdlib.h>
char *getenv(const char *name)j

Description:

The getenv function searches for an IBEX variable (see the CP-6 Programmer Reference,
CE40, for the IBEX LET command) that matches the string pointed to by name.

Returns:

The getenv function returns a pointer to a string containing the value of the variable.
The string pointed to must not be modified by the program and will be overwritten by
a subsequent call to the getenv function. If the specified name cannot be found, a null
pointer is returned.

system Function

Synopsis:

#include <stdlib.h>
int system(const char *string);

Description:

The system function passes the string pointed to by string to the CP-6 operating system
for execution by the command processor, which is IBEX by default for time-sharing and
batch users. A null pointer may be used for string to inquire whether a command
processor exists.

Returns:

If the argument is a null pointer, the system function returns nonzero. If the argument is
not a null pointer, the system function returns zero if the command executed successfully,
or non-zero if an error has occurred.

Searching and Sorting Utilities

The bsearch and qsort functions are described below.

HA17-00 Searching and Sorting Utilities 17-11

General Utility <stdli b. h> Functions

bsearch Function

Synopsis:

#include <stdlib.h>
void *bsearch(const void *key, const void *base,

size_t nmemb, size_t size,
int (*compar)(const void *, const void *));

Description:

The bsearch function searches an array of nmemb objects, the initial element of which is
pointed to by base, for an element that matches the object pointed to by key. The size
of each element of the array is specified by size.

The comparison function pointed to by compar is called with two arguments that point
to the key object and to an array element, in that order. The function returns an integer
less than, equal to, or greater than zero if the key object is considered, respectively, to
be less than, to match, or to be greater than the array element. The array consists of all
the elements that compare less than, all the elements that compare equal to, and all the
elements that compare greater than the key object, in that order. 3

Returns:

The bsearch function returns a pointer to a matching elernent of the array, or a null
pointer if no match is found.

q sort Function

Synopsis:

#include <stdlib.h>
void qsort(void *base, size_t nmemb, size_t size,

int (*compar)(const void *, const void *))j

Description:

The qsort function sorts an array of nmemb objects, the initial element of which is pointed
to by base. The size of each object is specified by size.

The contents of the array are sorted into ascending order according to a comparison
function pointed to by compar, which is called with two arguments that point to the
objects being compared. The function returns an integer less than, equal to, or greater
than zero if the first argument is considered to be respectively less than, equal to, or greater
than the second.

Returns:

The qsort function returns no value.

3 In practice, the entire array is sorted according to the comparison function.

17-12 q sort Function HA17-00

General Utility <stdlib. h> Functions

Integer Arithmetic Functions

The abs, div, labs, and ldiv functions are described below.

abs Function

Synopsis:

#include <stdlib.h>
int abs(int j);

Description:

The abs function computes the absolute value of an integer j. If the result cannot be
represented, an integer overflow occurs.4

Returns:

The abs function returns the absolute value.

div Function

Synopsis:

#include <stdlib.h>
div_t div(int numer, int denom);

Description:

The di v function computes the quotient and remainder of the division of the numerator
. numer by the denominator denom. If the division is inexact, the resulting quotient is the

integer of lesser magnitude that is the nearest to the algebraic quotient. The result quot
* denom + rem equals numer.

Returns:

The di v function ret urns a structure of type di v _ t, comprising both the quotient and the
remainder. The structure contains the following members:

int quot; / * quotient * /
int rem; /* remainder */

4 The absolute value of the most negative number cannot be represented.

HA17-00 di v Function 17-13

General Utility <stdlib.h> Functions

labs Function

Synopsis:

#include <stdlib.h>
long int labs(long int j);

Description:

The labs function is similar to the abs function, except that the argument and the returned
value each have type long int.

ldi v Function

Synopsis:

#include <stdlib.h>
ldiv_t ldiv(long int numer, long int denom);

Description:

The ldi v function is similar to the di v function, except that the arguments and the
members of the returned structure (which has type ldi v _ t) all have type long into

Multibyte Character Functions

The behavior of the multibyte character functions is affected by the LC_CTYPE category of
the current locale. These functions are provided for compatibility with the ANSI standard
since the CP-6 system provides no multibyte characters.

The mblen, mbtowc, and wctomb functions are described below.

mblen Function

Synopsis:

#include <stdlib.h>
int mblen(const char *s, size t n);

Description:

If s is not a null pointer, the mblen function determines the number of bytes constituting
the multibyte character pointed to by s. The mblen function is equivalent to:

mbtowc((wchar_t *)0, s, n);

Returns:

If s is a null pointer, the mblen function returns a zero value, since multibyte character
encodings do not have state-dependent encodings. If s is not a null pointer, the mblen
function returns 0 (if s points to the null character), returns the number of bytes that
constitute the multibyte character (if the next n or fewer bytes form a valid multibyte
character), or returns -1 (if they do not form a valid multibyte character).

17-14 mblen Function HA17-00

General Utility <5tdlib. h> Functions

mbtovc Function

Synopsis:

#include <5tdlib.h>
int mbtovc(vchar_t *pvc, con5t char *5, 5ize_t n);

Description:

If 5 is not a null pointer, the mbtovc function determines the number of bytes constituting
the multibyte character pointed to by 5. It then determines the code for the value of
type vchar_t that corresponds to that multibyte character. (The value of the code
corresponding to the null character is zero.) If the multibyte character is valid and pvc is
not a null pointer, the mbtovc function stores the code in the object pointed to by pvc.
At most n bytes of the array pointed to by 5 will be examined.

Returns:

If 5 is a null pointer, the mbtovc function returns a zero value, since multibyte character
encodings do not have state-dependent encodings. If 5 is not a null pointer, the mbtovc
function ret urns 0 (if 5 points to the null character), ret urns the number of bytes that
constitute the converted multibyte character (if the next n or fewer bytes form a valid
multibyte character), or returns -1 (if they do not form a valid multibyte character).

In no case will the value returned be greater than n or the value of the MB_CUR_MAX macro.

vctomb Function

Synopsis:

#include <5tdlib.h>
int vctomb(char *5, vchar_t vchar);

Description:

The vctomb function determines the number of bytes needed to represent the multibyte
character corresponding to the code whose value is vchar (including any change in shift
state). It stores the multibyte character representation in the array object pointed to by
5 (if 5 is not a null pointer). At most, MB_CUR_MAX characters are stored.

Returns:

If 5 is a null pointer, the vctomb function returns a zero value, since multibyte character
encodings do not have state-dependent encodings. If s is not a null pointer, the vctomb
function returns -1 if the value of wchar does not correspond to a valid multibyte character,
or returns the number of bytes that constitute the multibyte character corresponding to
the value of wchar.

In no case will the value returned be greater than the value of the MB_CUR_MAX macro.

HA17-00 wctomb Function 17-15

General Utility <stdlib. h> Functions

Multibyte String Functions

The behavior of the multibyte string functions is affected by the LC_CTYPE category of the
current locale.

The mbstovcs and vcstombs functions are described below.

mbstowcs Function

Synopsis:

#include <stdlib.h>
size_t mbstowcs(vchar_t *pwcs, const char *s, size_t n);

Description:

The mbstowcs function converts a sequence of multibyte characters from the array pointed
to by s into a sequence of corresponding codes and stores not more than n codes into the
array pointed to by pvcs. No multibyte characters that follow a null character (which
is converted into a code with value zero) will be examined or converted. Each multibyte
character is converted as if by a call to the mbtovc function.

No more than n elements will be modified in the array pointed to by pwcs. If copying
takes place between objects that overlap, the behavior is undefined.

Returns:

If an invalid multibyte character is encountered, the mbstovcs function returns (size_ t)-
1. Otherwise, the mbstovcs function returns the number of array elements modified,5not
including a terminating zero code, if any.

vcstombs Function

Synopsis:

#include <stdlib.h>
size_t vcstombs(char *s, const vchar_t *pwcs, size_t n);

Description:

The vcstombs function converts a sequence of codes that correspond to multibyte
characters from the array pointed to by pvcs into a sequence of multibyte characters and
stores these multibyte characters into the array pointed to by s, stopping if a multibyte
character would exceed the limit of n total bytes or if a null character is stored. Each code
is converted as if by a call to the vctomb function.

No more than n bytes will be modified in the array pointed to by s. If copying takes place
between objects that overlap, the behavior is undefined.

5 The array will not be null- or zero-terminated if the value returned is n.

17-16 vcstombs Function HA17-00

General Utility <stdlib. h> Functions

Returns:

If a code is encountered that does not correspond to a yalid multibyte character, the
wcstombs function returns (size_ t) -1. Otherwise, the llcstombs function returns the
number of bytes modified, not including a terminating null character, if any. 6

6 The array will not be null- or zero-terminated if the value returned is n.

HA17-00 vcstombs Function 17-17

Section 18

String Handling <string. h> Functions

String Function Conventions

The header <string. h> declares one type, functions (described in this section), and one
macro useful for manipulating arrays of character type and other objects treated as arrays
of character type. The type is size_ t and the macro is NULL (both described under
Common Definitions, in Section 9). Various methods are used for determining the lengths
of the arrays, but in all cases a char * or void * argument points to the initial (lowest
addressed) character of the array. If an array is accessed beyond the end of an object, the
behavior is undefined.

Copying Functions

The copying functions are described in the following subsections.

memcpy Function

Synopsis:

#include <string.h>
void *memcpy(void *s1, const void *s2, size t n)j

Description:

The memcpy function copies n characters from the object pointed to by s2 into the object
pointed to by s1. If copying takes place between objects that overlap, the behavior is
undefined.

Returns:

The memcpy function returns the value of s1.

HA17-00 memcpy Function 18-1

String Handling <string. h> Functions

memmove Function

Synopsis:

#i~clude <string.h>

void *memmove(void *51, const void *52, size t n);

Description:

The memmove function copies n characters from the object pointed to by 52 into the object
pointed to by 51. Copying takes place by first copying the n characters from the object
pointed to by 52 into a temporary array of n characters that does not overlap the objects
pointed to by 51 and 52; then the n characters from the temporary array are copied into
the object pointed to by 51.

Returns:

The memmove function rei urns the value of s 1.

strcpy Function

Synopsis:

#include <string.h>

char *strcpy(char *51, con5t char *52);

Description:

The strcpy function copies the string pointed to by 52 (including the terminating null
character) into the array pointed to by 51. If copying takes place between objects that
overlap, the behavior is undefined.

Returns:

The 5trcpy function returns the value of 51.

18-2 5trcpy Function HA17-00

String Handling <string. h> Functions

strncpy Function

Synopsis:

#include <string.h>
char *strncpy(char *s1, const char *s2, size t n)j

Description:

The strncpy function copies not more than n characters (characters that follow a null
character are not copied) from the array pointed to by s2 to the array pointed to by s1. 1 If
copying takes place between objects that overlap, the behavior is undefined.

If the array pointed to by s2 is a string that is shorter than n characters, null characters
are appended to the copy in the array pointed to by s 1 until n characters in all have been
written.

Returns:

The strncpy function returns the value of s1.

Concatenation Functions

The strcat and strncat functions are used to append a string to the end of another
string.

strcat Function

Synopsis:

#include <string.h>
char *strcat(char *s1, const char *s2);

Description:

The strcat function appends a copy of the string pointed to by s2 (including the
terminating null character) to the end of the string pointed to by s 1. The initial character
of s2 overwrites the null character at the end of 51. If copying takes place between objects
that overlap, the behavior is undefined.

Returns:

The strcat function returns the value of s1.

1 Thus, if there is no null character in the first n characters of the array pointed to by 52, the result will

not be null-terminated.

HA17-00 strcat Function 18-3

String Handling <string. h> Functions

strncat Function

Synopsis:

#include <string.h>
char *strncat(char *sl, canst char *s2, size t n);

Description:

The strncat function appends not more than n characters (a null character and characters
that follow it are not appended) from the array pointed to by s2 to the end of the string
pointed to by s1. The initial character of s2 overwrites the null character at the end of
s1. A terminating null character is always appended to the result. 2If copying takes place
between objects that overlap, the behavior is undefined.

Returns:

The strncat function returns the value of s1.

Comparison Functions

The sign of a nonzero value returned by the comparison functions memcmp, strcmp, and
strncmp is determined by the sign of the difference between the values of the first pair of
characters (both interpreted as unsigned char) that differ in the objects being compared.

All of the comparison functions are described in the following subsections.

memcmp Function

Synopsis:

#include <string.h>
int memcmp(const void *sl, const void *s2, size_t n);

Description:

The memcmp function compares the first n characters of the object pointed to by s1 to the
first n characters of the object pointed to by 52.3

Returns:

The memcmp function returns an integer greater than, equal to, or less than zero, relative
to the object pointed to by s1 being greater than, equal to, or less than the object pointed
to by s2.

2 Thus the maximum number of characters that can be placed in the array pointed to by s 1 is
strlen(s 1)+n+l.

3 The contents of "holes" used as padding for alignment within structure objects are indeterminate.
Strings shorter than their allocated space and unions may also cause problems in comparison.

18-4 memcmp Function HA17-00

String Handling < string. h> Functions

strcmp Function

Synopsis:

#include <string.h>
int strcmp(const char *sl, const char *s2);

Description:

The strcmp function compares the string pointed to by sl to the string pointed to by s2.

Returns:

The strcmp function returns an integer greater than, equal to, or less than zero, relative
to the string pointed to by sl being greater than, equal to, or less than the string pointed
to by s2.

strcoll Function

Synopsis:

#include <string.h>
int strcoll(const char *sl, const char *s2);

Description:

The strcoll function compares the string pointed to by sl to the string pointed to by
s2, both interpreted as appropriate to the LC_COLLATE category of the current locale.

Returns:

The strcoll function returns an integer greater than, equal to, or less than zero, relative
to the string pointed to by sl being greater than, equal to, or less than the string pointed
to by s2 when both are interpreted as appropriate to the current locale. In CP-6 C this is
equivalent to the strcmp function.

strncmp Function

Synopsis:

#include <string.h>
int strncmp(const char *sl, const char *s2, size_t n);

Description:

The strncmp function compares not more than n characters (characters that follow a null
character are not compared) from the array pointed to by sl to the array pointed to by
s2.

Returns:

The strncmp function returns an integer greater than, equal to, or less than zero, relative
to the possibly null-terminated array pointed to by sl being greater than, equal to, or less
than the possibly null-terminated array pointed to by s2.

HA17-00 strncmp Function 18-5

String Handling <string. h> Functions

strxfrm Function

Synopsis:

#include <string.h>
size_t strxfrm(char *sl, const char *s2, size t n);

Description:

The strxfrm function transforms the string pointed to by s2 and places the resulting string
into the array pointed to by s1. The transformation is such that if the strcmp function is
applied to two transformed strings, it returns a value greater than, equal to, or less than
zero, corresponding to the result of the strcoll function applied to the same two original
strings. No more than n characters are placed into the resulting array pointed to by sl,
including the terminating null character. If n is zero, s 1 may be a null pointer. If copying
takes place between objects that overlap, the behavior is undefined.

Returns:

The strxfrm function returns the length of the transformed string (not including the
terminating null character). If the value returned is n or more, the contents of the array
pointed to by s 1 are indeterminate.

Examples:

The value of the following expression is the SIze of the array needed to hold the
transformation of the string pointed to by s:

1 + strxfrm(NULL, s, 0)

Search Functions

The search functions are described in the following subsections.

memchr Function

Synopsis:

#include <string.h>
void *memchr(const void *s, int c, size_t n)j

Description:

The memchr function locates the first occurrence of c (converted to an unsigned char) in
the initial n characters (each interpreted as unsigned char) of the object pointed to by s.

Returns:

The memchr function returns a pointer to the located character, or a null pointer if the
character does not occur in the object.

18-6 memchr Function HA17-00

String Handling <string. h> Functions

strchr Function

Synopsis:

#include <string.h>
char *strchr(const char *s, int c);

D escript io n:

The strchr function locates the first occurrence of c (converted to a char) in the string
pointed to by s. The terminating null character is considered to be part of the string.

Returns:

The strchr function returns a pointer to the located character, or a null pointer if the
character does not occur in the string.

strcspn Function

Synopsis:

#include <string.h>
size_t strcspn(const char *s1, const char *s2);

Description:

The strcspn function computes the length of the maximum initial segment of the string
pointed to by s1, which consists entirely of characters not from the string pointed to by
s2.

Returns:

The strcspn function returns the length of the segment.

strpbrk Function

Synopsis:

#include <string.h>
char *strpbrk(const char *s1, const char *s2);

Description:

The strpbrk function locates the first occurrence in the string pointed to by s1 of any
character from the string pointed to by s2.

Returns:

The strp brk function ret urns a pointer to the character, or a null pointer if no character
from s 2 occurs in s 1.

HA17-00 strpbrk Function 18-7

String Handling <string. h> Functions

strrchr Function

Synopsis:

#include <string.h>
char *strrchr(const char *5, int c);

Description:

The strrchr function locates the last occurrence of c (converted to a char) in the string
pointed to by s. The terminating null character is considered to be part of the string.

Returns:

The strrchr function ret urns a pointer to the character, or a null pointer if c does not
occur in the string.

strspn Function

Synopsis:

#include <string.h>
size_t strspn(const char *sl, const char *s2);

Description:

The strspn function computes the length of the maximum initial segment of the string
pointed to by sl, which consists entirely of characters from the string pointed to by s2.

Returns:

The strspn function returns the length of the segment.

strstr Function

Synopsis:

#include <string.h>
char *strstr(const char *sl, const char *s2);

Description:

The strstr function locates the first occurrence in the string pointed to by s 1 of the
sequence of characters (excluding the terminating null character) in the string pointed to
by s2

Returns:

The strstr function returns a pointer to the located string, or a null pointer if the string
is not found. If s2 points to a string with zero length, the function returns s1.

18-8 strstr Function HA17-00

String Handling <string. h> Functions

strtok Function

Synopsis:

#include <string.h>
char *strtok(char *51, const char *s2);

Description:

A sequence of calls to the strtok function breaks the string pointed to by sl into a
sequence of tokens, each of which is delimited by a character from the string pointed to
by s2. The first call in the sequence has sl as its first argument and is followed by calls
with a null pointer as their first argument. The separator string pointed to by s2 may be
different from call to call.

The first call in the sequence searches the string pointed to by s 1 for the first character
that is not contained in the current separator string pointed to by s2. If no such character
is found, then there are no tokens in the string pointed to by sl and the strtok function
returns a null pointer. If such a character is found, it is the start of the first token.

The strtok function then searches from there for a character that is contained in the
current separator string. If no such character is found, the current token extends to the
end of the string pointed to by sl, and subsequent searches for a token will return a null
pointer. If such a character is found, it is overwritten by a null character, which terminates
the current token. The strtok function saves a pointer to the following character, from
which the next search for a token will start.

Each subsequent call, with a null pointer as the value of the first argument, starts searching
from the saved pointer and behaves as described above.

Returns:

The strtok function returns a pointer to the first character of a token, or a null pointer
if there is no token.

Examples:

#include <string.h>
static char str[] = "?a???b",#c"j
char *tj

t = strtok(str, II?"). 1* t points . ,
t = strtok(NULL, " II). 1* t points , ,
t = strtok(NULL, "#,"); /* t points

to the token
to the token
to the token

t = strtok(NULL, "'111). /* t is a null pointer *1 . ,

Miscellaneous Functions

"a" */
"??b"
"c" */

The memset, strerror, and strlen functions are described below.

HA17-00 Miscellaneous Functions

*1

18-9

String Handling <string. h> Functions

memset Function

Synopsis:

#include <string.h>
void *memset(void *s, int c, size t n);

Description:

The memset function copies the value of c (converted to an unsigned char) into each of
the first n characters of the object pointed to by s.

Returns:

The memset function returns the value of s.

strerror Function

Synopsis:

#include <string.h>
char *strerror(int errnum);

Description:

The strerror function maps the error number in errnum to an error message string.

Returns:

The strerror function returns a pointer to the string, the contents of which is the message
associated with the error code. The array pointed to must not be modified by the program,
and will be overwritten by a subsequent call to the strerror function. .

strlen Function

Synopsis:

#include <string.h>
size_t strlen(const char *s);

Description:

The strlen function computes the length of the string pointed to by s.

Returns:

The strlen function returns the number of characters that precede the terminating null
character.

18-10 strlen Function HA17-00

Section 19

Date and Time <time. h> Functions

Components of Time

The header <time. h> defines two macros, four types, and several functions (described
in this section) for manipulating time. Many functions deal with a calendar time that
represents the current date (according to the Gregorian calendar) and time. Some functions
deal with local time, which is the calendar time expressed for some specific time zone, and
with Daylight Saving Time, which is a temporary change in the algorithm for determining
local time. The local time zone and Daylight Saving Time are not supported by CP-6 C.

The macros defined are NULL (described under Common Definitions, in Section 9); and

CLK_TCK

which is the number per second of the value returned by the clock function.

The types declared are size_ t (described under Common Definitions, in Section 9);

clock_t

and

which are arithmetic types capable of representing times; and

struct tm

which holds the components of a calendar time, called the broken-down time. The structure
contains at least the following members, in any order. The semantics of the members and
their normal ranges are expressed in the comments.}

int tm_secj
int tm_min;
int tm_hourj
int tm_mday;

/* ~econd~ after the minute - [0, 61} */
/* minutes after the hour - [0, 59} */
/* hours ~ince midnight - [0, 23} */
1* day of the month - /1, 31} */

1 The range [0, 61] for tm_sec allows for as many as two leap seconds.

HA17-00 Components of Time 19-1

Date and Time <time. h> Functions

int tm_monj /* months since January - /0, 11/ */
int tm_yearj /* years since 1900 * /
int tm_wday; /* days since Sunday - /0, 6/ */
int tm_ydayj /* days since January 1 - /0, 365/ */
int tm_isdstj /* Daylight Saving Time flag */

The value of tm_isdst is negative since the information is not available.

Time Manipulation Functions

The time manipulation functions are described in the following subsections.

clock Function

Synopsis:

#include <time.h>
clock_t clock(void);

Description:

The clock function determines the processor time used.

Returns:

The clock function returns the processor time used by the program since the beginning
of program execution. To determine the time in seconds, the value returned by the clock
function should be divided by the value of the macro CLK_ TCK. 2

di:f:ft ime Function

Synopsis:

#include <time.h>
double di:f:ftime(time_t time1, time_t timeO);

Description:

The di:f:ftime function computes the difference between two calendar times: time1 -
timeO.

Returns:

The di:f:ftime function returns the difference expressed in seconds as a double.

2 In order to measure the time spent in a program, the clock function is called at the start of the
program; then its return value is subtracted from the value returned by subsequent calls.

19-2 di:f:ftime Function HA17-00

Date and Time <time. h> Functions

mktime Function

Synopsis:

#include <time.h>
time_t mktime(struct tm *timeptr);

Description:

The mktime function converts the broken-down time, expressed as local time, in the
structure pointed to by timeptr into a calendar time value with the same encoding as
that of the values returned by the time function. The original values of the tm_ wday and
tm_yday components of the structure are ignored, and the original values of the other
components are not restricted to the ranges indicated above. On successful completion,
the values of the tm_wday and tm_yday components of the structure are set appropriately,
and the other components are set to represent the specified calendar time, but with their
values forced to the ranges indicated above. The final value of tm_mday is not set until
tm_mon and tm_year are determined.

Returns:

The mktime function returns the specified calendar time encoded as a value of type time_ t.
If the calendar time cannot be represented, the function returns the value (time_t)-1.

Examples:

What day of the week is July 4, 2001?

#include <stdio.h>
#include <time.h>
static const char *const wday[] = {

"Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday", "-unknovn-"

};
struct tm time_str;
1* . .. *1
time_str.tm_year = 2001 - 1900;
time_str.tm_mon = 7 - 1;
time_str.tm_mday = 4;
time_str.tm_hour = 0;
time_str.tm_min = 0;
time_str.tm_sec = 1;
time str.tm_isdst = -1;
if (mttime(ttime_str) == -1)

time_str.tm_wday = 7;
printf("%s\n", wday[time_str=tm_vday]);

HA17-00 mkt ime Function 19-3

Date and Time <time .h> Functions

time Function

Synopsis:

#include <time.h>
time_t time(time_t *timer);

Description:

The time function returns the current calendar time. The encoding of the value is a CP-6
Universal Time Stamp (UTS) which is milliseconds since January 1,1978.

Returns:

The time function returns the current calendar time. If timer is not a null pointer, the
return value is also assigned to the object it points to.

Time Conversion Functions

Except for the strftime function, these functions return values in one of two static objects:
a broken-down time structure and an array of char. Execution of any of the functions will
overwrite the information returned in either of these objects by any of the other functions.

The time conversion functions are described in the following subsections.

asctime Function

Synopsis:

#include <time.h>
char *asctime(const struct tm *timeptr);

Description:

The asctime function converts the broken-down time In the structure pointed to by
t imeptr into a string in the form

Sun Sep 16 01:03:52 1973\n\0

using the equivalent of the following algorithm:

char *asctime(const struct tm *timeptr)
{

static const char wday_name[7] [3] = {
"Sun", "Mon" , "Tue", "Wed", "Thu", "Fri", "Sat"

};
static const char mon_name[12] [3] = {

"Jan", "Feb", "Mar", "Apr", "May", "Jun",

19-4 asctime Function HA17-00

Date and Time <t ime . h> Functions

}

Returns:

"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
};
static char result[26];
sprintf(result, "%.3s %.3s%3d %.2d:%.2d:%.2d %d\n",

vday_name[timeptr->tm_vday],
mon_name[timeptr->tm_mon] ,
timeptr->tm_mday, timeptr->tm_hour,
timeptr->tm_min, timeptr->tm_sec,
1900 + timeptr->tm_year);

return result;

The asctime function returns a pointer to the string.

ctime Function

Synopsis:

#include <time.h>
char *ctime(const time_t *timer);

Description:

The ctime function converts the calendar time pointed to by timer to local time in the
form of a string. It is equivalent to:

asctime(localtime(timer))

Returns:

The ctime function returns the pointer returned by the asctime function with that broken­
down time as argument.

gmtime Function

Synopsis:

#include <time.h>
struct tm *gmtime(const time_t *timer);

Description:

The gmtime function returns a NULL pointer since Coordinated Universal Time (UTe) IS

not available.

Returns:

The gmtime function returns a NULL pointer since UTe is not available.

HA17-00 gmt ime Function 19-5

Date and Time <t ime . h> Functions

local time Function

Synopsis:

#include <time.h>
struct tm *localtime(const time_t *timer);

Description:

The localtime function converts the calendar time pointed to by timer into a broken­
down time, expressed as local time.

Returns:

The local time function returns a pointer to that object.

strftime Function

Synopsis:

#include <time.h>
size_t strftime(char *s, size_t maxsize,

COTLst char corl.st struct tm *timeptr);

Description:

The strftime function places characters into the array pointed to by s as controlled by
the string pointed to by format. The format string consists of zero or more conversion
specifiers and ordinary characters. A conversion specifier consists of a % character followed
by a character that determines the behavior of the conversion specifier. All ordinary
characters (including the terminating null character) are copied unchanged into the array.
If copying takes place between objects that overlap, the behavior is undefined. No more
than maxsize characters are placed into the array. Each conversion specifier is replaced
by appropriate characters as described in the following list. The appropriate characters
are determined by the values contained in the structure pointed to by timeptr.

%a is replaced by the locale's abbreviated weekday name.

%A is replaced by the locale's full weekday name.

%b is replaced by the locale's abbreviated month name.

%B is replaced by the locale's full month name.

%c is replaced by the locale's appropriate date and time representation.

%d is replaced by the day of the month as a decimal number (01 - 31).

%H is replaced by the hour (24-hour clock) as a decimal number (OO - 23).

%I is replaced by the hour (12-hour clock) as a decimal number (01 - 12).

19-6 strftime Function HA17-00

Date and Time <time. h> Functions

%j is replaced by the day of the year as a decimal number (001 - 366).

%m is replaced by the month as a decimal number (01 - 12).

%M is replaced by the minute as a decimal number (00 - 59).

%p is replaced by the locale's equivalent of the AM/PM designations associated with a
12-hour clock.

%5 is replaced by the second as a decimal number (00 - 61).

%U is replaced by the week number of the year (Sunday as the first day of week 1) as
a decimal number (00 - 53).

%w is replaced by the weekday as a decimal number (0 - 6; Sunday represented by
0).

%W is replaced by the week number of the year (Monday as the first day of week 1) as
a decimal number (00 - 53).

%x is replaced by the locale's appropriate date representation.

%X is replaced by the locale's appropriate time representation.

%y is replaced by the year without century as a decimal number (00 - 99).

%Y is replaced by the year with century as a decimal number.

%Z is replaced by the time zone name or abbreviation, or by no characters if no time
zone is determinable.

%% is replaced by %.

If a conversion specifier is not one of the above, the behavior is undefined.

Returns:

If the total number of resulting characters including the terminating null character is not
more than maxsize, the strftime function returns the number of characters placed into
the array pointed to by s not including the terminating null character. Otherwise, zero is
returned and the contents of the array are indeterminate.

HA17-00 strftime Function 19-7

Section 20

CP-6 Library Extensions

The run-time library provides a number of additional functions not found in ANSI C. These
library functions extend capabilities in these areas: File Access, Memory Management, and
Communication with Host Environment.

File Access Extensions

The extensions to file access capabilities are the touch, fvildfid, finform functions.

touch Function

Synopsis:

#include <stdio.h>

int touch(const char *filename);

Description:

The touch function causes the CP-6 Last modified time for the specified file to be changed
to the current time.

Returns:

The touch function returns zero if the operation succeeds, nonzero if it fails.

HA17-00 touch Function 20-1

CP-6 Library Extensions

fwildfid Function

Synopsis:

#include <stdio.h>
fwildfid(char *wildstr, int num, int wildch);

Description:

The fwildfid function returns the names of files in a CP-6 directory, one at a time.

The first argument is a pointer to the wild-card file name string. The second argument is
the number of filenames found which match the wild-card criteria. The third argument is
the character used to represent wild-carding which is "?" typically on CP-6 systems.

This function returns CP-6 file identifiers which match the wild-carded file name string
argument. A full CP-6 input fid is supported but only the filename portion may be wild­
carded. The result of this function is a pointer to the next file identifier which matches
the search criteria.

The num argument is used to determine when the wild-card string has changed. If num
is equal to 0, then the first file matching the search criteria is returned. The remaining
files which match the search criteria are returned by calling this function with num set not
equal to 0, but otherwise with the same arguments.

Returns:

The result of this function is a pointer to a character string which will be over-written by
the next call.

Examples:

20-2

!b example_fwildfid:c
1.000 /* Sample fwildfid() demonstration program
2.000
3.000
4.000
5.000
6.000
1.000
8.000
9.000

10.000
11.000
12.000
13.000
14.000
15.000
16.000
11.000

#include <stdio.h>

main(int argn, char *argv[]) {
int i;
if (argn < 2) {

printf("usage:
exit(O);
}

/* Should be at least one wild-card */
!y.s wild [wild ...]\ntl , argv[O]);

for (i=1 ; i<argn ;) { /* process each wild-card */
char *wild = argv[i++]; /* wild-card */
char *fid; /* result fid */
int fcnt = 0; /* number matching wild */
while (fid = fwildfid(wild, fcnt++, '?'»

printf(tlY.s\n", fid);
}

fwildfid Function HA17-00

CP-6 Library Extensions

18.000 }
19.000

!cc example_fwildfid:c over *:o,*:ls
CC.BOO here at 12:48 Wed Apr 4 1990
!link *:0 over *RU
LINK E02GOO here
* :SHARED_C.:SYS (Shared Library) associated.
* Library file :LIB_SYSTEM.:SYS used.
* No linking errors.
* Total program size = 3K.
!*RU a?
a:c.XXX
a:o:do.XXX
a:y.XXX
align:c.XXX
!l a?
a:c a:o:do

4 files listed

finform Function

Synopsis:

#include <stdio.h>
#include <cp_6_subs.h>
#include <fileinfo.h>

a:y align:c

int finform(FILE *fp, FILE_SET *info)j

Description:

This function provides information about the specified stream such as the full CP- 6 file
identifier, the mode of opening, the organization of the file, the number of lines per page,
the output width and many more attributes.

The include file <cp_6_subs. h> can be used to obtain the values of manifest constants for
the various fields. This include file defines all of the names defined in the PL-6 include
file CP _6_SUBS. : LIBRARY. Many of the fields returned by the finform function are unions
which means that their value is only meaningful when correctly accessed. For example,
the field info->file_org. ur. width is meaningful only if the field info->org is equal to
the value of the define CP6_ OR found in cp_6_subs. h.

Table 20-1 shows the fields stored in info and their meaning.

HA17-00 finform Function 20-3

CP-6 Library Extensions

Field Name

info->fun
info->acs

info->org
info->asn
info->fid

info->file_org.ur.width

info->file_org.ur.lines

info->file_org.indexed.keyl

info->file_org.indexed.keyx

info->file_org.fprg.fprg
info->file_org.fprg.profile

info->file_org.se.nrecs
info->file_org.se.spare

info->file_asn.file.nrecs

info->file_asn.uc.wlen
info->file_asn.uc.wwid

info->file_asn.uc.vinline
info->file_asn.uc.vincol

Table 20-1.

Meaning

Function used on M$OPEN

ACS used on M$OPEN
ORG used on M$OPEN
ASN used on M$OPEN
CP-6 file identifier

Output width

Lines per page

Indexed file key length

Indexed file key position

fprg name

profile name

Number of seam records

N umber of requested records

Number of records in file

Terminal window length

Terminal window width

Starting line of window

Starting column of window

The information supplied in the result returned by finform depends upon the "asn" of
the file and upon the "org" of the file. A union is used to select the appropriate union
structure to interpret the result.

Returns:

The finform function returns zero if the operation succeeds, nonzero if it failed.

Examples:

!b example_finform:c
EDIT E02GOO here

1.000 1* Sample finform() demonstration program *1

20-4 finform Function HA17-00

CP-6 Library Extensions

2.000
3.000 #include <cp_6_subs.h>
4.000 #include <fileinfo.h>
5.000 #include <stdio.h>
6.000
7.000 maine) {
8.000 FILE *f = fopen("LP", "w ur");
9.000 unsigned lpp = -1, width = -1;

10.000 FILE_SET finfo;
11.000
12.000 if (!finform(f, ifinfo) ii finfo.org -- CP6_OR) {
13.000 lpp = finfo.file_org.ur.lines;
14.000 width = finfo.file_org.ur.width;
15.000 }
16.000
17.000 printf("Width=%d,Lines=%d\n", width, lpp);
18.000 }
19.000

!cc example_finform:c over *:o,*:ls
CC.BOO here at 12:31 Wed Apr 4 1990
!link *:0 over *RU
LINK E02GOO here
* :SHARED_C.:SYS (Shared Library) associated.
* No linking errors.
* Total program size = 3K.
!*RU
Width=110,Lines=39

Memory Management Extensions

The extension to Memory Management is the alloca function.

alloca Function

Synopsis:
#include <stdlib.h>
void *alloca(size_t size);

Description:

The alloca function allocates space for an object whose size is specified by size in the
current auto frame, whose allocation is automatically freed when the currently executing
function returns. The value of the object is indeterminate.

Returns:

The alloca function returns a NULL pointer if the allocation cannot be made, or a pointer
to the allocated space.

HA17-00 alloca Function 20-5

CP-6 Library Extensions

Virtual Memory Management Extensions

These functions are based upon the },lemory Management Functions in Section 7. They
provide access to a CP-6 virtual data segment which allows the user to access much more
memory than the 256k words available through the standard routines. With the exception
of the vmemini t function, these functions work exactly like the same function without the
leading "v". The vmemini t function must be executed before any of the other virtual
memory functions are used.

The ordering and location of objects allocated by successive calls to vcalloc, vmalloc, and
vrealloc cannot be depended upon. In particular, the memory allocated by successive
executions of these functions may be in different CP- 6 data segments which makes pointer
comparisons and pointer differences misleading other than for comparisons for equality or
for the NULL pointer value. The pointer returned when the allocation succeeds is suitably
aligned so that it may be assigned to a pointer of any type of object and then used to access
such an object in the space allocated (until the space is explicitly freed or reallocated).
Every allocation yields a pointer to an object disjoint from any other object. The pointer
returned points to the start (lowest address) of the allocated space. If the space cannot
be allocated, a NULL pointer is returned. The maximum allocation size of a single block of
memory is 1048552 characters. If the space requested is zero, a IJULL pointer is returned.

vcalloc Function

Synopsis:

#include <valloc.h>

void *vcalloc(size_t nmemb, size_t size);

Description:

The vcalloc function allocates space for an array of nmemb objects, each of whose size is
size characters. The space is initialized to all bits zero.]

Returns:

The vcalloc function returns a NULL pointer if the allocation cannot be made, or a pointer
to the allocated space.

1 Note that this is not the same as the representation of floating-point zero or a NULL pointer.

20-6 vcalloc Function HA17-00

vfree Function

Synopsis:
#inelude <valloe.h>
void vfreeCvoid *ptr);

Description:

CP-6 Library Extensions

The vfree function causes the space pointed to by ptr to be deallocated, that is, made
available for further allocation. If ptr is a NULL pointer, no action occurs. If the argument
does not match a pointer earlier returned by the vealloe, vmalloe or vrealloe functions,
or if the space has been deallocated by a call to vfree or vrealloe function is indeterminate
and likely to seriously damage the virtual heap.

Returns:

The vfree function returns no value.

vmalloe Function

Synopsis:
#inelude <valloe.h>
void *vmalloeCsize_t size);

Description:

The vmalloe function allocates space for an object whose size is specified by size and
whose value is indeterminate.

Returns:

The vmalloe function returns a NULL pointer if the allocation cannot be made, or a pointer
to the allocated space.

vmeminit Function

Synopsis:
#inelude <valloe.h>
int vmeminitCsize_t vspaee, int vtype, size t vbaeking);

Description:

This function must be called before any of the other virtual memory management functions.
Its purpose is to initialize the CP-6 virtual data segment that will be used for allocation.
The total amount of virt ual memory available for allocation will be vspaee pages of 4096
bytes. The minimum virtual memory backing is 3 pages of 4096 characters. The actual
number of pages used to back the virtual segment is selected by the vtype argument whose
value selects one of the following algorithms:

HA17-00 vmemini t Function 20-7

CP-6 Library Extensions

1) the backing memory will be vbacking physical pages;

2) the backing memory will be the total number of pages currently available to this user
minus vbacking (subject to the minimum of 3 backing pages);

3) the backing memory will be the percentage of the available memory as indicated by the
value of vbacking. If the vbacking value is 80 then 80 percent of available memory
will be used to back the virtual data segment (subject to the minimum of 3 backing
pages).

Returns:

The vmemini t function ret urns zero if successful.

vmemscrub Function

Synopsis:
#include <valloc.h>
void vmemscrub(void);

Description:

The vmemscrub function is used to release all memory blocks that are currently allocated
in the virtual data segment. Pointers to these objects become obsolete and the associated
memory will be re-allocated on future calls to vmalloc, vrealloc or vcalloc.

Returns:

The vmemscrub function returns no value.

vrealloc Function

Synopsis:
#inelude <valloe.h>
void *vrealloe(void *ptr, size_t size);

Description:

The vrealloe function changes the size of the object pointed to by ptr to the size specified
by size. The contents of the object will be unchanged up to the lesser of the new and
old sizes. If the new size is larger, the value of the newly allocated portion of the object is
indeterminate. If ptr is a NULL pointer, the vrealloe function behaves like the vmalloe
function. Otherwise, if ptr does not match a pointer previously returned by the vealloe,
vmalloe or vrealloe function, or if the space has been deallocated by a previous call to
the vfree or vrealloe function, the behavior is indeterminate. If the space cannot be
allocated, the object pointed to by ptr is unchanged. If size is zero and ptr is not a NULL
pointer, the object that it points to is freed.

Returns:

The vrealloe function returns either a NULL pointer or a pointer to the possibly moved
allocated space.

20-8 vrealloe Function HA17-00

CP-6 Library Extensions

Communication with Host Environment Extensions

The extensions to Communication with the Host Environment include the get opt , lsenv,

sleep, ulimi t, and uname functions.

get opt Function

Synopsis:

#include <stdlib.h>

int getopt(int argc, char *argv[], char *opstr);

extern char *optarg;

extern int

extern int

Description:

optind;

opterr;

The get opt function is a command line parser. It returns the next option letter in argv

that matches a letter in opstr. opstr is a string of recognized option letters; if a letter is
followed by a colon, the option is expected to have an argument that mayor may not be
separated from it by white space. The extern variable optarg is set to point to the start
of the option argument on return from getopt.

get opt places the index of the next argument to be processed in optind. This variable
must be initialized to 1 before the first call to to getopt.

When all options have been processed (i.e. up to the first non-option argument), get opt

returns EOF. The special option "--" may be used to delimit the end of the options; in this
case, EOF will be returned when "--" would be processed and the "--" will be skipped.

Returns:

The getopt function prints an error message on stderr and returns a question mark ('? ')

when it encounters an option letter not included in opstring. This error message may be
disabled by setting opterr to zero. If the option letter was found in opstring then the
get opt function returns the letter.

HA17-00 getopt Function 20-9

CP-6 Library Extensions

lsenv Function

Synopsis:
#include <stdlib.h>
char *lsenv(char *name);

Description:

The lsenv function searches for the next IBEX variable after the argument name. If there
is none, a NULL pointer is returned. To get the first command variable name, a string of
zero length is used.

Returns:

The lsenv function returns a pointer to the name of the next command variable. The
string pointed to must not be modified by the program and will be overwritten by a
subsequent call to the lsenv function. If there is no next command variable, a null pointer
is returned.

Example:

The following example program prints the names of all of the IBEX variables that are
currently defined.

EDIT E02GOO here
1.000 /* Example of lsenv function
2.000 #inc1ude <stdlib.h>
3.000
4.000 maine) {
5.000 char *var = lsenv(tltI);
6.000
7.000
8.000
9.000

10.000
11.000
12.000 }
13.000

if (var)
do {

printf("%s\ntl , var);
} vhi1e (var = lsenv(var));

else printf(tlNo IBEX variab1es\n tl);

!cc example_1senv:c over *:o,*:ls
CC.BOO here at 17:01 Mon Apr 9 1990
!link *:0 over *RU (unsat=:LIB_C.:SYS)
LINK E02GOO here
* :SHARED_C.:SYS (Shared Library) associated.
* Library file :LIB_C.:SYS used.
* No linking errors.
* Total program size = 3K.
!*RU
LAST_LOGON_TIME
LOGON_FAILURE_COUNT

20-10 1senv Function HA17-00

sleep Function

Synopsis:
#include <stdlib.h>
unsigned sleep(unsigned seconds);

Description:

CP-6 Library Extensions

The sleep function takes seconds seconds to complete execution. The actual number of
seconds that sleep may be less than the requested because any signal will terminate the
sleep. Also the suspended time may be longer due to the scheduling of other tasks on the
system.

Returns:

The sleep function returns the number of seconds remaining to be slept. A nonzero value
occurs when a signal caused termination of the sleep «CTL-Y>go can also cause this to
happen).

ulimi t Function

Synopsis:
#include <stdlib.h>
unsigned ulimit(int cmd)j

Description:

The ulimi t function returns the maximum number of bytes available to be allocated by
this process. The result value does not include space available through the malloc function
that has been allocated but is not currently used. The argument cmd must have the value
3.

Returns:

The ulimi t function returns the number of bytes that are currently available for allocation
from the CP-6 system. ulimit reports an error condition by returning a value less than
zero.

uname Function

Synopsis:
#include <uts_name.h>
int uname(struct utsname *name)j

Description:

The uname function returns information identifying the current CP-6 system in the
structure pointed to by name. The utsname structure is defined in the include file
uts_name. h and contains the following fields:

HA17-00 uname Function 20-11

CP-6 Library Extensions

sysname is a string containing the site name.

TLodename is a string containing the unique SITE ID assigned by Bull.

version is a string containing the version of the CP-6 operating system.

release is a string containing the patch level of the system.

machine is a string containing the name of the cpu.

Returns:

The uname function returns a non-negative value upon successful completion; otherwise, it
returns -1.

20-12 uname Function HA17-00

Lexical Grammar

Tokens

token:
keyword
identifier
constant
string-literal
operator
punctuator

pre process ing- token:
header-name
identifier
pp-number
character-constant
string-literal
operator
punctuator

Appendix A

Language Syntax Summary

each non-white-space character that cannot be one of the above

Keywords

keyword: one of

auto double
break else
case enum
char extern
const float
continue for
default goto
do if

HA17-00

int
long
register
return
short
signed
sizeof
static

struct
switch
typedef
union
unsigned
void
volatile
while

Keywords A-I

Language Syntax Summary

Identifiers

i'/Prl Ii hp.,.·
~--'~-~JW-' •

nondigit
identifier nondigit
identifier digit

nondigit: one of
a b c d e
n 0 p q r
A B C D E
N 0 p Q R

$

digit: one of
0 1 2 3 4 5

Constants

con~tant:

floating-con~tant

inieger-con~iani

enumeration-con~tant

character-con~tant
floating-con~tant:

f g h i j k 1 m
s t u v w x y z
F G H I J K L M
S T U V W X Y Z

6 7 8 9

fractional-constant exponent-partopt floating-suffixopt

A-2

digit-~equence exponent-part floating-~uffixopt

fractional- con~tant:
digit-~equenceopt . digit-~equence
digit-~equence

exponent-part:
e Slgnopt digit-sequence
E signopt digit-sequence

s'tgn: one of
+

digit-sequence:
digit
digit-sequence digit

floating-suffix: one of
f 1 F L

Constants HA17-00

integer-constant:
decimal-constant integer-sujJixopt
octal-constant integer-sujJixopt
hexadecimal-constant integer-sujJixopt

decimal-constant:
nonzero-digit
decimal-constant digit

octal-constant:
o
octal-constant octal-digit

hexadecimal-constant:
Ox hexadecimal-digit
OX hexadecimal-digit
hexadecimal-constant hexadecimal-digit

nonzero-digit: one of
1 234 5 6 789

octal-digit: one of
o 1 2 345 6 7

hexadecimal-digit: one of
o 1 2 345 6 7 8 9
abc d e f
ABC D E F

integer-suffix:
unsigned-suffix long-suffixopt
long-suffix unsigned-suffixopt

unsigned-suffix: one of
u U

long-suffix: one of
1 L

enumeration-constant:
identifier

character-constant:
'c-char-sequence '
L J c-char-sequence J

c-char-sequence:
c-char

HA17-00 Constants

Language Syntax Summary

A-3

Language Syntax Summary

c-char:

c-char-sequencE c-char

any member of the source character set except
the single quote (,), backslash (\), or new-line character

escape-sequence

escape-sequence:
simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence

simple-escape-sequence: one of
\' \" \? \\
\a \b \f \n \r \t \v

octal- escape-sequence:
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit

hexadecimal-escape-sequence:
\x hexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit

String Literals

A-4

string-literal:
II s-char-sequenceopt II

L" h II s-c ar-sequenceopt

s-char-sequence:
s-char

s-char:

s-char-sequence s-char

any member of the source character set except
the double-quote ("), backslash (\), or new-line character

escape-sequence

String Literals HA17-00

Language Syntax Summary

Operators

operator: one of

[] () ->
++ l * +
/ % « » < >
?

= *= /= %= +=

Punctuators

punctuator: one of

[] () {} *

Header Names

header-name:
< h- c har-~ equence>
II q-char-~equence"

h-char-~equence:

h-char
h-char-sequence h-char

h-char:

sizeof
<= >= -- I-

-= «= »= l= =

= #

any member of the source character set except
the new-line character and >

q-char-sequence:
q-char

q-char:

HA17-00

q-char-sequence q-char

any member of the source character set except
the new-line character and II

Header Names

II II

1=

A-5

Language Syntax Summary

Prepro cessing Numb ers

pp-number:
digit
. digit
pp-number digit
pp-number nondigit
pp-number e sign
pp-number E slgn
pp-number .

Phrase Structure Grammar

Expressions

A-6

. .
przmary-expresszon:

identifier
constant
string-literal
(expression)

postfix- expre,-t;,-t;ion:
. .

prlmary- expreSSIon
postfix-expression [expreSSIon]
postfix-expression (argument-expression-listopt)
postfix-expression . identifier
postfix- expression - > identifier
postfix- expression ++
postfix- expression

argument-expression-list:
assignment- expression
argument-expression-list , assignment-expression

unary- expresszon:
postfix- expression
++ unary- expression
-- unary-expresSIon
unary-operator cast-expression
sizeof unary-expression
sizeof (type-name)

unary-operator: one of
I: * +

cast-expression:
unary- expresSIon
(type-name) cast-expression

Expressions HA17-00

Language Syntax Summary

multiplicative- expression:
cast- expressi-on
multiplicaiive- expression * cast- expression
multiplicative- expression / cast- expression
multiplicative- expression % cast- expression

additive- expression:
multiplicative- expression
additive- expression + multiplicative- expression
additive- expression - multiplicative- expression

shift-expression:
additive- expression
shift-expression » additive-expression
shift-expression « additive-expression

relational- expression:
shift- expression
relational- expression <
relational- expression >
relational-expression <=
relational-expression >=

equality- expression:
relational-expression

shift-expression
shift- expression
shift- expression
shift- expression

equality- expression -- relational- expression
equality-expression ! = relational-expression

AND-expression:
equality- expression
AN D- expression t equality- expression

exclusive- OR-expression:
AND-expression
ezclusive- 0 R-ezpression ... AND- ezpression

inclusive- OR-expression:
ezclusive- OR-ezpression
inclusive- OR-ezpression / exclusive- OR-ezpression

logical-AND-expression:
inclusive- OR-ezpression
logical-AND-ezpression tt inclusive- OR-expression

logical- OR-expression:
logical- AN D- expression
logical- OR-expression / / logical-AND-expression

conditional- expression:
logical- OR-expression
logical- OR-expression ? expresszon

assignment- ezpression:
conditional- express ion

conditional- expression

unary-ezpression assignment-operator assignment-expression
assignment-operator: one of

= *= /= %= += -= «= »= t= = /=

HA17-00 Expressions A-7

Language Syntax Summary

expreSSlon:
assignment- expression
expression , assignment- expression

cons tant- expression:
conditional- expression

Declarations

declaration:

A-8

declaration- spec ifier s init- dec lara tor-lis topt

declaration-specifiers:
storage-class-specifier declaration-specifiers opt

type-specifier declaration-specifiersopt
type-qualifier declaration-specifiers opt

init- declarator-list:
init-declarator
init-declarator-list , init-declarator

init- declarator:
declarator
declarator = initializer

storage- c lass-spec ifier:
typedef
extern
static
auto
register

type-specifier:
void
char
short
int
long
float
double
signed
unsigned
struct-or-union-specifier
enum-specifier
typedef-name

struct-or-union-specifier:
struct-or-union identifier opt { struct-declaration-list }
struct-or-union identifier

Declarations HA17-00

struct-or-union:
struct
union

struct- declaration-list:
struct-declaration
struct-declaration-list struct-declaration

struct-declaration:
specifier-qualifier-list struct-declarator-list

s pecifier- qualifier-lis t:
type-specifier specifier-qualifier-listopt
type-qualifier specifier-qualifier-listopt

struct- dec larator-list:
struct-declarator
struct-declarator-list , struct-declarator

s truc t- dec larator:
declarator
declarator opt : constant- expression

enum-specifier:
enum identifier opt { enumerator-list }
enum identifier

enumerator-list:
enumerator
enumerator-list , enumerator

enumerator:
enumeration-constant
enumeration-constant = constant-expression

type-qualifier:
const
volatile

declarator:
pointer opt direct-declarator

direct-declarator:
identifier
(declarator)
direct-declarator [constant-expressionopt]
direct-declarator (parameter-type-list)

HA17-00 Declarations

Language Syntax Summary

A-9

Language Syntax Summary

A-IO

direct-declarator (identifier-listopt)

pointer:
* type-qualifier-listopt
* type-qualifier-listopt pointer

type- qualifier-list:
type-qualifier
type-qualifier-list type-qualifier

parameter-type-list:
parameter-list
parameter-list , . . .

parameter-list:
parameter-declaration
parameter-list , parameter-declaration

parameter-declaration:
declaration-specifiers declarator
declaration-specifiers abstract-declarator opt

identifier-list:
identifier
identifier-list , identifier

type-name:
specifier-qualifier-list abstract-declaratoropt

abstract-declarator:
pointer
pointer opt direct-abstract-declarator

direct-abstract-declarator:
(abstract-declarator)
direct-abstract-declarator opt [constant- expressionopt]
direct-abstract-declaratoropt (parameter-type-listopt)

typedef-name:
identifier

initializer:
assignment- expression
{ initializer-list }
{ initializer-list , }

initializer-li.9t:
initializer
initializer-list , initializer

Declarations HA17-00

Language Syntax Summary

Statements

statement:
labeled-statement

compound-statement
expression-statement
selection-statement
it eration- s tate men t
jump-statement

labeled-statement:
identifier : statement
case constant-expression
default : statement

compound-statement:

statement

{ declaration-listopt statement-listopt }

declaration-list:
dec laration
declaration-list declaration

statement-list:
statement
statement-list statement

expression-statement:

expresszonopt
selection-statement:

if (expression) statement
if (expression) statement else statement
switch (expression) statement

iteration-statement:
while (expression) statement
do statement while (expressIon) ;

for (expressionopt j expresslonopt ; expresslonopt) statement
jump-statement:

HAI7-00

goto identifier
continue ;

break j

return expressionopt

Statements A-II

Language Syntax Summary

External Definitions
object- unit:

external- dec la ration
object-unit external- declaration

external-declaration:
function-definition
declaration

function-definition:
declaration-specifiers opt declarator declaration-listopt compound-statement

Preprocessing Directives
preprocessing-file:

A-12

groupopt

group:
group-part
group group-part

group-part:
pp-tokensopt new-line
if-section
control-line

if-section:
if-group elif-groupsopt else-grouPopt endif-line

if-group:
if constant-exprelJsion new-line groupopt

ifdef identifier new-line group opt

ifndef identifier new-line group opt

elif-groups:
elif-group
elif-groups elif-group

elif-group:
elif constant-exprelJsion new-line groupopt

ellJe-group:
else new-line group opt

endif-line:
endif new-line

Preprocessing Directives HA17-00

Language Syntax Summary

control-line:
include
define

pp-tokens new-line
identifier replacement-list new-line

define
undef

identifier lparen identifier-listopt) replacement-list new-line
identifier new-line

line pp-tokens new-line
error pp-tokensopt new-line

pragma pp-tokensopt new-line
new-line

lparen:
the left parenthesis character without preceding white space

replacement-list:
pp- tokens opt

pp-tokens:
preprocessing-token
pp-tokens preprocessing-token

new-line:
the new-line character

HA17-00 Preprocessing Directives A-13

Appendix B

Library Summary

This appendix summarizes the CP-6 C library macros, types, and functions.

Errors <errno. h>

EDOM
ERANGE
errno

Common Definitions <stddef. h>

NULL
off setof (type, member-designator)
ptrdiff_t
size_t
wchar_t

Diagnostics <assert. h>

NDEBUG
void assert(int expression);

Character Handling <ctype. h>

int isalnum(int c);
int isalpha(int c);
int iscntrl(int c) ;
int isdigit(int c) ;
int isgraph(int c)j
int islower(int c)j
int isprint(int c);
int ispunct(int c);
int isspace(int c)j
int isupper(int c)j
int isxdigit(int c);
int tolower(int c);
int toupper(int c);

HA17-00 Character Handling <ctype. h> B-1

Library Summary

Localization <locale. h>

LC_ALL
LC_COLLATE
LC_CTYPE
LC_MONETARY
LC_NUMERIC
LC_TlME
NULL
struct lconv
char *setlocale(int category, const char *locale)j
struct lconv *localeconv(void)j

Mathematics <math. h>

HUGE_VAL
double acos(double x);
double asin(double x);
double atan(double x);
double atan2(double y, double x)j
double cos(double x);
double sinCdouble x);
double tan(double x)j
double cosh(double x);
double sinh(double x);
double tanh(double x);
double exp(double x);
double frexp(double value, int *exp);
double ldexp(double x, int exp);
double log(double x)j
double log10(double x);
double modf(double value, double *iptr);
double pow(double x, double y);
double sqrt(double x);
double ceil(double x);
double fabs(double x);
double floor(double x);
double fmod(double x, double y);

Non-Local Jumps <setjmp.h>

jmp_buf
int setjmp(jmp_buf env);
void longjmp(jmp_buf env, int val);

B-2 Non-Local Jumps <setjmp.h> HA17-00

Signal Handling <signal. h>

sig_atomic_t
SIG_DFL
SIG_ERR
SIG_IGN
SIGABRT
SIGALRM
SIGFPE
SIGHUP
SIGILL
SIGINT
SIGSEGV
SIGTERM
SIGUSR1
SIGUSR2
void (*signal(int sig, void (*func)(int)))(int)j
int raise(int sig);

Variable Arguments <stdarg. h>

va_list
void va_start (va_list ap, parmN);
type va_arg(va_list ap, type);
void va_end(va_list ap);

Input/Output <stdio. h>

_IOFBF
_IOLBF
_IONBF
BUFSIZ
EOF
FILE
FILENAME_MAX
FOPEN_MAX
fpos_t
L_tmpnam
NULL
SEEK_CUR
SEEK_END
SEEK_SET
size_t
stderr
stdin
stdout

HA17-00 Input/Output <stdio.h>

Library Summary

B-3

Library Summary

B-4

TMP_MAX
int remove(const char *filename);
int renameCconst char *old, const char *new);
FILE *tmpfile(void);
char *tmpnam(char *s);
int fclose(FILE *stream);
int fflush(FILE *stream);
FILE *fopen(const char *filename, const char *mode)j
FILE *freopen(const char *filename, const char *mode,

FILE *stream);
void setbuf(FILE *stream, char *buf);
int setvbuf(FILE *stream, char *buf, int mode, size t size);
int fprintf(FILE *stream, const char *format, ...);
int fscanf(FILE *stream, const char *format, ...);
int printf(const char *format, ...);
int scanf(const char *format, ...);
int sprintf(char *s, const char *format, ...);
int sscanf(const char *s, const char *format, ...);
int vfprintf(FILE *stream, const char *format, va_list arg);
int vprintf(const char *format, va_list arg);
int vsprintf(char *s, const char *format, va_list arg);
int fgetc(FILE *stream);
char *fgats(char *s, int n, FILE *stre&~);
int fputc(int c, FILE *stream);
int fputs(const char *s, FILE *stream);
int getc(FILE *stream);
int getchar(void);
char *gets(char *s);
int putc(int c, FILE *stream);
int putchar(int c);
int puts(const char *s);
int ungetc(int c, FILE *stream);
size_t fread(void *ptr, size_t size, size_t nmemb,

FILE *stream);
size_t fwrite(const void *ptr, size_t size, size_t nmemb,

FILE *stream);
int fgetpos(FILE *stream, fpos_t *pos);
int fseek(FILE *stream, long int offset, int whence);
int fsetpos(FILE *stream, const fpos_t *pos);
long int ftell(FILE *stream);
void rewind(FILE *stream);
void clearerr(FILE *stream);
int feof(FILE *stream);
int ferror(FILE *stream);
void perror(const char *s);
int touch(const char *filename);
char *fwildfid(const char *filename, int num, int wildch);
int finfor.m(FILE *stream, FILE_SET *info);

Input/Output <stdio. h> HA17-00

Library Summary

General Utilities <stdlib. h>

EXIT_FAILURE
EXIT_SUCCESS
MB_CUR_MAX
NULL
RAND_MAX
div_t
ldiv_t
size_t
wchar_t
double atof(const char *nptr);
int atoi(const char *nptr);
long int atol(const char *nptr);
double strtod(const char *nptr, char **endptr);
long int strtol(const char *nptr, char **endptr, int base);
unsigned long int strtoul(const char *nptr, char **endptr,

int base) j
int rand(void);
void srand(unsigned int seed);
void *calloc(size_t nmemb, size_t size);
void free(void *ptr);
void *malloc(size_t size);
void *realloc(void *ptr, size_t size);
void abort(void);
int atexit(void (*func)(void»j
void exit(int status);
char *getenv(const char *name);
int system(const char *string);
void *bsearch(const void *key, const void *base,

size_t nmemb, size_t size,
int (*compar)(const void *, const void *»j

void qsort(void *base, size_t nmemb, size_t size,
int (*compar)(const void *, const void *»;

int abs (int j) j
div_t div(int numer, int denom)j
long int labs(long int j)j
ldiv_t ldiv(long int numer, long int denom);
int mblen(const char *s, size_t n)j
int mbtowc(wchar_t *pvc, const char *s, size_t n)j
int wctomb(char *s, wchar_t vchar)j
size_t mbstowcs(wchar_t *pwcs, const char *s, size_t n);
size_t wcstombs(char *s, const vchar_t *pwcs, size_t n);
void *alloca(size_t size);
int getopt(int argc, char *argv[], char *opstr)j
char *lsenv(char *name)j
unsigned ulimit(int cmd)j
unsigned sleep(int seconds)j

HA17-00 General Utilities <stdlib.h> B-5

Library Summary

String Handling <string. h>
'TTTT T
l~ULL

size t
void *memcpy(void *sl, const void *s2, size_t n);
void *memmove(void *sl, const void *s2, size_t n);
char *strcpy(char *sl, const char *s2);
char *strncpy(char *sl, const char *s2, size_t n);
char *strcat(char *sl, const char *s2);
char *strncat(char *sl, const char *s2, size_t n);
int memcmp(const void *sl, const void *s2, size_t n);
int strcmp(const char *sl, const char *s2);
int strcoll(const char *sl, const char *s2);
int strncmp(const char *sl, const char *s2, size_t n);
size_t strxfrm(char *sl, const char *s2, size_t n)j
void *memchr(const void *s, int c, size_t n)j
char *strchr(const char *s, int c)j
size_t strcspn(const char *sl, const char *s2);
char *strpbrk(const char *sl, const char *s2);
char *strrchr(const char *s, int c);
size_t strspn(const char *sl, const char *s2)j
char *strstr(const char *sl, const char *s2);
char *strtok(char *sl, const char *s2);
void *memset(void *s, int c, size_t n);
char *strerror(int errnum)j
size t strlen(const char *s)j

Date and Time <time.h>

CLK_TCK
NULL
clock_t
time_t
size_t
struct tm
clock_t clock(void)j
double difftime(time_t time1, time_t timeO);
time_t mktime(struct tm *timeptr);
time_t time(time_t *timer)j
char *asctime(const struct tm *timeptr)j
char *ctime(const time_t *timer);
struct tm *gmtime(const time_t *timer);
struct tm *localtime(const time_t *timer)j
size_t strftime(char *s, size_t maxsize,

const char *format, const struct tm *timeptr);

B-6 Date and Time <t ime . h> HA17-00

Library Summary

System Information <uts_name. h>

struct uts_name
int uname(struct utsname *name);

Virtual Memory Management <valloc. h>

void *vcalloc(size_t nmemb, size_t size);
void vfree(void *ptr);
void *vmalloc(size_t size);
void vmeminit(size_t vspace, int vtype, size_t vbacking);
void vmemscrub(void);
void *vrealloc(void *ptr, size_t size);

HA17-00 Virtual Memory Management <valloc. h> B-7

Appendix C

Debugging C Programs

The purpose of this section is to give an overview of the CP-6 debugging system, DELTA,
for use as an aid in debugging C programs. For details regarding items in this section the
DELTA manual or HELP facility should be consulted.

DELTA is a self-contained external debugging system which does not require specially
compiled versions of a program for debugging. The same program which will be used for
production can be debugged with DELTA; the use of DELTA does not require the program
to be any larger or slower.

Running a program under DELTA allows the user to control and observe its execution.
DELTA makes it possible to stop the program at any point (procedure breakpoints), trace
the program flow (all transfers, or just subroutine and function calls) and allows the user
to examine the values of program variables anytime, by name. The user can also change
the value of a variable and test the value of a variable using the result to conditionally
specify the actions of DELTA. DELTA also allows the user to step through the program
one statement at a time to help pinpoint a problem. DELTA interfaces with the monitor's
fault handler, catching any trap or fault caused by the program, reporting the fault, and
allowing the user to examine and/or change the value of program variables and perhaps
continue execution of the program after a fault occurs.

DELTA Overview

This section is presented in two parts. The first part is an overview of DELTA as it applies to
the C programmer. The second part contains a summary of the available DELTA commands.

Invoking DELTA

DELTA may be entered at three times during the life of a program: as it starts execution,
during execution and after a program aborts.

Most debugging sessions are begun by starting the program to be debugged under DELTA.
This is accomplished by using the IBEX u command:
!u
!fid.

This command brings a run unit named fid into memory and prepares it for execution.
DELTA is entered with the user program ready to run. DELTA prints the current value of
the instruction counter, the program start address.

HA17-00 Invoking DELTA C-l

Debugging C Programs

Example:

!u
! c_rununit.
DELTA xxx HERE Ie = main:O [INITIALIZE]
>

This method can be used on-line and in batch. The user may now use any of the DELTA
commands, or just say go to begin execution. Ie is the Instruction Counter and indicates
the address that is about to be executed.

Example:

!u
!mycomp. me on oufile,lp (ls,ou)
DELTA xxx HERE Ie = main:O [INITIALIZE]
>

DELTA may be associated with a running program at any time. This is useful when a
program appears to be looping or is in a bad or unexpected state, and the user wants to
interrupt execution and see which statement is in execution, or look at program variables.
To associate DELTA after the program has been started type <CTRL><Y>. IBEX prompts
with a double bang (!!). Type DELTA to associate DELTA with the interrupted program.

Example:

!MYPROG.

Program does not prompt as expected, loop is suspected. User enters <CTRL><Y>.

! !DELTA
DELTA xxx HERE Ie = initvals:54".3 [ASSIGNMENT]
>

This method is only available on-line.

\\Then a user program aborts, IBEX holds the image of the run unit in memory. The user
can associate DELTA with the image by typing DELTA immediately after the abort message.

C-2 Invoking DELTA HA17-00

Debugging C Programs

Example:

!*RU
SECURITY 2 FAULT ~ strlen_+.224/ SCM (AR,RL,O),(O,O,O,.3),(0,0,0),.0
**** C run-time error
**** Exceptional condition "Hardware_Detected_Fault" occurred

at location
strlen_+.224/ SCM (AR,RL,0),(0,0,0,.3),(0,O,O),.0
**** HFA-M00521-6 Security 2 fault

Traceback follows:
XBI_RAISE_SIGNAL+.23/ TSX1 XBI_DEFAULT_SIGNAL_HANDLER (+.1250)
XBI_PRINT+.1634/ TSX1 strlen_+.3(XBI$STRLEN_) (+.1242)
printf_+.33/ TSX1 XBI_PRINT (+.56)
main:4".14 [CALL] / TSX1 printf
main:O".l [INITIALIZE] / TSXO __ XBI_CSTARTUP
Bottom frame

M$ERR issued by user.
!DELTA
DELTA E02FOO here IC = strlen +.224
>

DELTA reports the IC value at the time of the fault. Any DELTA command can be issued,
and the program can be continued by the go command.

If DELTA is already associated, depressing the break key will cause the running program
to be interrupted. DELTA will report the current IC position and prompt for input.

DELTA uses the prompt character> when it is waiting for the user to input a command at
the terminal. All commands should be ended with the <RETURN> key on the keyboard. Do
not use <LINEFEED>.

By default, DELTA uses a special End-of-Message (EOM) character set (see Table C-8).
These are characters which terminate the input mode and activate DELTA. The complete
list of DELTA EOM characters are: I, <LINEFEED>, <TAB>, <RETURN>, [, {,], }, /, and
=. Most of the special EOM characters are used only when debugging at the assembly or
machine language level. However,] and }, which have the same effect, are a shorthand
for the step command and are very convenient for stepping through a program. In order
to enter any of these characters without activation to DELTA, for instance in a character
string constant for the let command, DELTA's special activation set must be turned off.
This is done with the kill eom command. The eom command turns the special activation
set back on.

HA17-00 Invoking DELTA C-3

Debugging C Programs

DELTA Summary of Commands

Tables C-l through C-6 display the repertoire of DELTA commands. During a debugging
session, the user controls the execution of the run unit. This control is achieved primarily
with the at, on, and when commands. These three commands are referred to collectively
as Breakpoint Commands. Since these commands allow DELTA to assume control of the
run unit, the remainder of the DELTA commands may be considered as complements to
them.

The commands issued to DELTA are acted upon at different times. Some are executed
immediately; others are stored for subsequent execution based upon some specific
occurrence, and some are executed in conjunction with those which have been stored.
DELTA commands can assume one or more of the following attributes:

1. Stored

2. Attached

3. Immediate

4. Toggled

DELTA Stored Commands

Stored commands instruct DELTA to perform an action at some later time based upon the
arrival of the Instruction Counter at a specific location or upon the occurrence of some
specific event (the at, on, and when commands primarily). When issued, these commands
are assigned an identification number (id) either by the user or by DELTA if the user does
not; this is included in DELTA's report to the user each time the command is activated.
Stored commands may have other commands attached to them which are to be executed
whenever the stored command is activated.

General Syntax:

A stored command and its attachments are issued in the form:

lid] /Jtored_command]!; attachment!; attachment] .. .]

The command line ends with a carriage return or end-of-record.

Example:

10 at 200;display netpay,grosspay,deductions <RET>

C-4 DELTA Stored Commands HA17-00

Debugging C Programs

Notes:

1. The stored command "at 200" was assigned an id of "10" by the user. If a stored
command with the same id already existed, it would be replaced.

2. The single "display" attachment will display three variables within the user's run
unit: netpay, grosspay, and deductions.

3. The semicolon (;) is used to separate attachments.

Note: Stored commands can be continued onto a new line if the previous line ends with a
semicolon and the new line begins with an attachment.

In the above example, the programmer directs DELTA to set a breakpoint at statement 200
in the current procedure. \\Then the Instruction Counter reaches this location, DELTA will
report the breakpoint at the user's terminal and then display the requested variables. If
the user does not wish to interact with DELTA following the display, the command can be
written:

10 at 200;display netpay,grosspay,de~uctions;go

With the command written in this form, DELTA will not stop after performing the display
but will cause the run unit to resume execution as though the breakpoint has not occurred.

DELTA Conditional Execution

All stored commands may be formed to specify varying levels of conditional execution by
using the if conditional. For example:

at payroll:22 if netpay eq Ojdisplay deductjgo

In this example, if specifies conditional execution. When line 22 of the subroutine payroll
is reached, netpay will be examined to determine if its value is zero. If its value is not
zero, DELTA will not report to the user nor will any of the attachments be executed. The
program will continue as if no breakpoint has been specified.

HA17-00 DELTA Stored Commands C-5

Debugging C Programs

Format:

if var logicaL operator cons

Parameters:

var is any variable reference. Variable references are described In detail under Display
and Modification of Program Variables in this section.

logicaL operator is any of:

Operator Meaning

= eq Equal

>< <> ne Not equal

< It Less than

> gt Greater than

<= =< Ie Less than or equal

>= => ge Greater than or equal

cons is any constant literal: an integer, bit, pointer or character string. The format for
constants is completely specified in the description of the let command under Display
and Modification of Program Variables.

NOTE: Remember that the character = cannot be used unless the kill eom command
has been issued. Instead, the mnemonic version (e.g., eq, ge) may be used.

The value described by var is compared with the constant value. If the logical relation
is true, the stored command is reported and its attachments executed (if the condition
was on a stored command), or the attachment is executed (if the condition was on an
attachment).

Specification of an if condition is allowed on almost all DELTA commands. Specific
instances where the if is not allowed are noted in the description of the commands.

Taking into account the if condition, the complete specification of stored commands is:

lid} stored"-command [if var logicaLoperator cons}

[; attachment [if var logicaL operator cons}

[; attachment [if var logicaL operator cons}} ... }

C-6 DELTA Stored Commands HA17-00

Debugging C Programs

DELTA Attached Commands

110st DELTA commands may be issued as attachments to any stored commands. The
exceptions are step, xeq, and all stored commands.

DELTA Immediate Commands

A command (other than a stored command) assumes the immediate attribute whenever it
is issued in-line. In the interactive mode this occurs whenever DELTA has issued its prompt
character (». In the batch mode this occurs whenever DELTA reads a command.

Example:

>display netpay

In this context, display is being used in an immediate way.

Displaying Variables

Since DELTA does not understand the C language syntax, the C compiler generates schema
compatible with a PLl-like language. The result is that variables declared as pointers
display as pointers under DELTA, and to obtain the value they point at, the user must
"de-reference" them with PLI syntax. For example, to display the value that the integer
pointer variable intp points at, the user would enter:

>display intp->O\s
intp->O = 123

For pointers to C struct variables, the struct name is used (with a minor change) and
must appear before the field name to display. The structure name is renamed slightly so
that there will not be a name clash between the name of the structure and that of another
variable. The renamed structure begins with the string "s_" and ends with the single
character "#". For example, if the following declaration is found in a C source file:

struct example {
struct example *next;
int ex_val;
char ex_name[8]j
} *exp;

HA17-00 Displaying Variables C-7

Debugging C Programs

the following commands may be entered in DELTA to display the value of the exp variable:

>display exp->s_example#.next
exp->s_example#.next = .31274-0-0,$L56
>display exp->s_example#.ex_val
exp->s_example#.ex_val = 8
>display exp->s_example#.ex_name(3:5)
exp->s_example#.ex_name(3) = 'd'
exp->s_example#.ex_name(4) = 'a'
exp->s_example#.ex_name(5) = 'y'

Static Functions

When functions are declared to be static, the C compiler generates a function name based
upon the first global definition it finds in the file. (First it searches through all function
names; then if no global functions are defined, it searches through all data names.) The
resulting name of the static function consists of the static function name, followed by the
"#" character followed by the name of the global definition. For example, if a file contains a
definition of the global function II'.air., and a static function called test; then under DELTA
the static function's name would be test#main.

DELTA Toggle Commands

Certain of the commands in the housekeeping category set toggles within DELTA. These
toggles may be reset by the kill command or their status determined by the show
command.

DELTA Housekeeping/Miscellaneous Commands

The commands discussed under this heading are those which influence the behavior of
the DELTA processor itself. Their purpose is to provide the greatest possible flexibility in
specifying the manner in which the user wishes to communicate with DELTA, how DELTA
is to communicate with the user, how it is to interact with the run unit, and how it is to
deal with both predictable and unpredictable events which occur during the execution of
the run unit.

All of the commands in this category affect, in some manner, the way in which DELTA
behaves in a given situation. Some set toggle switches which DELTA examines to determine
whether or not a given activity is enabled or disabled. Others override certain default
assumptions which are automatically established when DELTA is invoked. The default
toggle settings and the default assumptions are those which would normally be specified.

C-8 DELTA Housekeeping/Miscellaneous Commands HA17-00

Debugging C Programs

DELTA Commands

Tables C-l through C-6 contain an alphabetized list of the DELTA commands by category.
Table C- 7 contains the keywords used with the kill and show commands. Table C-8
contains the EOM characters and sub-commands. Table C-9 contains the format specifiers
of the format command.

Command Function

AC[TIVE] I IN [ACTIVE]
Activates or deactivates a single or a range of stored commands.

A [LTERNATE] V [ARIABLES]
Specifies alternate debug schema to be searched when an
unqualified variable reference is not satisfied by searching the
current schema.

BY [PASS]
Bypasses assembler program units during stepping. This command
sets a toggle within DELTA.

C [OPY]
Causes DELTA output to be copied on the user terminal when the
specified destination for output is other than the user terminal.
This command sets a toggle within DELTA.

DE [FINE]
Associates a value or location with a symbol.

DO
Executes the attachments to a stored command or a group of
commands identified by the SAVE command.

EC [HO]
Causes input to be echoed to an output device when DELTA input
is from a device other than an on-line terminal. This command
sets a toggle within DELTA.

EO[M]
Set or reset special activation (end of message) character set. This
command sets a toggle within DELTA.

FO[RMAT]
Specifies default format for MODIFY and EVALUATE display output.

KE[EP] ITRAPIIG[NORE]
Direct DELTA's handling of asynchronous events and other
exceptional conditions.

Table C-1. Housekeeping Commands

HA17-00 DELTA Commands C-9

Debugging C Programs

I Command Function

K[ILL]
Deactivates a toggle or removes a stored command or a range of
stored commands.

o [N] A [BORT]
Specifies activities to occur upon abort.

o [N] E[XIT]
Specifies activities to occur upon normal exit.

OU[TPUT]
Specify destination for DELTA output.

PRO [MPT]
Sets the DELTA prompt character (default is ».

RA [NGE]
Specify range of offsets from defined symbol to be used for position
reporting.

R[EAD]
Causes DELTA to read other than the normal input stream.

REP [ORT]
- - - -~ -' - "'-

_ --1---1 ___ ~
- - - ---~ -' -'---0 -- r-~--'---- --r~-~---o·

Directs DRTTA 's forrn~ttinp' of no~ition rpnort;TlO'

SA [VE]
Stores and remembers a single or a range of stored commands.

SC[HEMA]
Activates or deactivates schema usage or sets current schema. This
command sets a toggle within DELTA.

SH [OW]
Displays the status of toggled options, keyword options or a single
or range of stored commands and attachments.

SI[LENT] IUN[SILENT]
Activates or deactivates the reporting of a single or a range of
stored commands.

SY[NTAX]
Allows specification of FORTRAN, COBOL, or C input syntax.

UP [DATE]
Updates stored commands or attachments of stored commands.

U[SE] N[ODE]
Activates schema(s) associated with a specific overlay node.

Table C-l. Houaekeeping Commanda (part!)

C-IO DELTA Commands HA17-00

Debugging C Programs

Command Function

ALI[BJ
Specifies return/altreturn from M$ALIB call to DELTA.

A[TJ
Sets an instruction breakpoint.

B [REAKJ
Passes control to user interrupt routine.

EX [ITJ
Exits from a run unit invoked by M$LINK and returns to the
linking program, or continues an M$LDTRC or M$SAVE.

G [0]
Proceeds with program execution.

G [0] S[TEP]
Goes to a specified location and executes one step.

G [0] T[RAP]
Passes control to user's event handling routine when DELTA has
been entered for an exceptional or asynchronous event.

G [0] T[RAP] STEEP]
Same as GOTRAP except that one step is executed.

o [N] C[ALL]
Sets breakpoints on a specific procedure call.

o [N] [X] C [ALLS]
Sets breakpoints on all procedure calls. If X is specified, sets
breakpoints only on external procedure calls.

o [N] N [ODE]
Sets a breakpoint on a specific overlay.

O[N] N [ODES]
Sets breakpoints on all overlays.

S[TEP]
Steps by statement or instruction.

UNSH[ARE]
Unshares an autoshared program and/or library so the user can
have execution control.

W[HEN]
Sets a data breakpoint.

Table C-2. E:cecution Control Commands

HA17-00 DELTA Commands C-ll

Debugging C Programs

Command

xc [ON]

Command

H[ISTORY]

PL[UGH]

Function

Passes control to the user's exit control procedure simulating an
exit condition.

Table C-2. Execution Control Command5 (part 2)

Function

Displays contents of history buffer (filled by TRACE).

(Acronym for "Procedure List Used to Get Here"). Traces back
through the automatic stack and lists the return addresses leading
to the arrival at the current procedure point.

T[RACE] T[RANSFERS]
Traces all transfer instructions.

T[RACE] [X]C[ALLS]
Traces entry to all rocedures. If X is s ecified ~ p p trace entr y to
external procedures only.

Table C-3. Execution Tracing Command5

Command Function

D[ISPLAY]
Displays the value of a variable or the contents of an address.

DU[MP]
Dumps a specified range of memory in octal or hexadecimal
format. Optionally allows no suppression of duplicate lines.
Optionally provides ASCII translation.

E[VALUATE]
Evaluates an expression and reports its value in a specified format.
Reports the address of a program entity by segment and offset.

F[IID]
Searches memory under mask and optionally su bstit utes under
mask.

L[ET]
Changes the value of a variable or the contents of an address.

Table C-./. Memory Di5play and Modification Command3

C-12 DELTA Commands HA17-00

Debugging C Programs

Command Function

M[ODIFY]
Displays the contents of an address and optionally replaces it with
new contents.

PMD
Dumps specified portions of a program which terminates
abnormally.

STO [RE]
Modifies a range of memory. Optionally performs the modification
under mask.

Table C-4. A1emory Display and Modification Commands (part 2)

Command Function

AN [LZ]
Associates the schemas for the CP-6 Monitor, or associates the
schema from the specified file, and sets DELTA's domain of
reference to that of the running monitor, a specified system dump
file, or the running program.

RU[M]
Invokes the Run Unit Modification mode, optionally specifying the
number of buffers to use for faster I/O (up to 10, default is 5).

Table C-5. Mode Control Commands

Command Function

EB[D] or Q [UIT]
Unconditionally exits to the command processor.

HELP
Provides HELP via the HELP facility.

LI EST]
Lists changes made during Run Unit Modification.

PROT [ECT]
Sets Protect mode (disallows LET, MODIFY store).

SAD
Special Access Descriptor allows addressing through a Monitor
descriptor for privileged users.

Table C-6. Miscellaneous Commands

HA17-00 DELTA Commands C-13

Debugging C Programs

Command Function

UNF [ID]
Performs M$UNFID on specified DCB.

X[EQ]
Executes an assembler instruction.

Table C-6. 4~fiscellaneous Commands (part 2)

Keyword Meaning with Kill Meaning with Show

AL [L] Remove all stored Display status of all
commands. stored commands,

toggle options, and
modes.

A [LTERNATE] Discontinue use of Show status of toggle
V [ARIABLES] alternate variables. and schema name if

any.

AN [LZ] Return to debug mode. Show status of toggle.
l. r-rc:::l
~L""'.J Remove all AT Display all AT

breakpoints and their breakpoints and their
attachments. attachments.

B [YPASS] Do not bypass step Show status of toggle.
reporting in assembler
modules.

C[OPY] Discontinue COPYing. Show status of toggle.

D[EF] Remove a specific Not applicable.
named DEFINED symbol.

DEFS Remove all DEF INED Display all defined
symbols. symbols.

DEL [TA] Causes DELTA to be Not applicable.
disassociated from the
current run unit being
debugged.

EC [HO] Discontinue ECHOing. Show status of toggle.

E[OM] Deactivate the EOM Show status of toggle.
character set.

F[ORMAT] Set display formats for Display current default
MODIFY and EVAL back formats for MODIFY and
to initial defaults. EVAL.

Table C-7. Keyword~ U~ed with KILL and SHOW

C-14 DELTA Commands HA17-00

Debugging C Programs

Keyword Meaning with Kill Meaning with Show

I [GNOREJ Not applicable. Display which
exceptional condition
groups and/or names
are being ignored.

K[EEPJ Not applicable. Display which
exceptional conditions
will be intercepted and
reported by DELTA.

o [NJ A [BORTJ Remove ON ABORT Display ON ABORT
breakpoint and its breakpoint and its
attachments. attachments.

o [NJ C [ALLsJ Remove all ON CALL (S) Display all ON CALL (S)
commands and their commands and their
attachments. attachments.

o [NJ E [XITJ Remove ON EXIT Display ON EXIT
breakpoint and its breakpoint and its
attachments. attachments.

o [NJ N [ODESJ Remove all ON NODE (S) Display all ON NODE (S)
commands and their commands and their
attachments. attachments.

P[ROTECT] Discontinue PROTECT Display PROTECT mode.
mode.

R[ANGE] Not applicable. Display value of range
specification for relation
position reporting.

RE[PORT] Not applicable. Display reporting mode
for position reporting.

RU[M] Return to debug mode. Show status of toggle.

SAD Not applicable. Display special access
descriptor number.

SA [VES] Remove all SAVE Display all SAVE
commands and their commands and their
attachments. attachments.

Table C-7. Keyword5 U5ed with KILL and SHOW (part 2)

HA17-00 DELTA Commands C-15

Debugging C Programs

Keyword :tYleaning with Kill 1-1eaning with Show

SC[HEMA] Discontinue schema Display the position
usage. which defines the

current schema, as set
by the instruction
counter or the SCHEMA
command.

S[TEP] Default to step by Show stat us of STEP
statement. mode.

SY[NTAX] Not applicable. Display which input
syntax DELTA is
currently accepting.

T[RACE] Discontinue tracing. Display all TRACE
commands.

TRAP Not applicable. Display which
exceptional conditions
will be passed to the
trap handler in the
target run unit.

W [HENS] Remove all WHEN Display all WHEN
breakpoints and their breakpoints and their
attachments. attachments.

FEP Keywords:

DEL [TA] fprg-res Causes DELTA to be Not applicable.
disassociated from the
specified FEP program.

FP[RGS] Not Applicable. Displays the state of all
existing FEP programs
being de bugged.

fprg-res Not Applicable. Display the state of the
specified FEP program.

Table C-7. Keyword8 U8ed with KILL and SHOH' (part 3)

C-16 DELTA Commands HA17-00

Character Su b- Command

Linefeed N[EXT]

Up Arrow P[REV]

Left Bracket o [PEN]
Left Brace

Tab Character Asterisk (*)

Debugging C Programs

Action Indicated

Open next memory cell for modify.
Cell will be opened and displayed as if
it has been addressed directly with a
MODIFY command.

Open previous cell for modify. The
cell preceding the current cell will be
opened and displayed as if it has been
addressed directly with a MODIFY
command.

Re-open and re-display the last cell
addressed by a MODIFY command.
DELTA remembers the address of the
last cell (if any) referenced in a
MODIFY command.

Indirect addressing. Display and open
for modification the cell specified by
the contents of the currently open cell.
The interpretation of the address
contained within the cell is dependent
upon the format of the current display.
If the current display is in pointer
format, then the "segid" portion of the
pointer is used to determine the
appropriate segment, and the word
offset portion of the pointer
determines the offset within the
segment. If the current display is in
relative format, then the right half
(the least significant eighteen bits) of
the currently open cell is assumed to
specify an address in the instruction
segment. If the current display is in
other than pointer format, then the
left half (the most significant eighteen
bits) of the currently open cell is
assumed to specify an address in the
instruction segment.

Table C-B. EOM Characters and Sub- Commands

HA17-00 DELTA Commands C-17

Debugging C Programs

Character Sub-Command
r\ .. ., I

L \IJ I None

None *L [\f]

None *R [\f]

None *P [\f]

FEP EOM Characters:

None *L [\f]

None *R[\f]

None *P [\f]

None *SP [\f]

Action Indicated

Same as * except do not open the cell
for modification. Optionally a format
specifier may be used.

Treat left 18 bits as an address
regardless of displayed format.
Optionally a format specifier may be
used.

Same as *L except that the right half
(the least significant eighteen bits) of
the currently open cell is assumed to
specify an address in the instruction
segment. Optionally a format specifier
may be used.

Treat contents of the currently open
cell as a pointer regardless of the
format in which it was displayed.
Take same action as for the tab EOM
character or the * sub-command.

I Optionally a format specifier may be
used.

Invalid for FEP programs.

Invalid for FEP programs.

Treats the contents of the currently
open cell (2 words) as a pointer. Take
the same action as for the tab EOM
character or the * sub-command.
Optionally a format specifier may be
used.

Treats the contents of the currently
open cell (1 word) as a 16 bit address.
Take the same action as for the tab
EOM character or the * sub-command.
Optionally a format specifier may be
used.

Table C-B. EOM Character~ and Sub- CommandJ (part 2)

C-1B DELTA Commands HA17-00

Debugging C Programs

Character Sub-Command Action Indicated

Tab Character Asterisk (*) Indirect Addressing. Display and open
for modification the cell(s) starting at
the address specified by the contents
of the currently open cell(s). The
interpretation of the address contained
within the cell(s) is dependent upon
the format of the current display. If
the current display is in instruction
format, pointer format or relative
format, the least significant 20 bits of
the currently open cell (2 words) is
assumed to specify an address. If the
current display is in octal, unsigned
integer, signed integer, bit, or hex
format, the contents of the currently
open cell (1 word) is assumed to
specify an address. Other formats will
be errored.

Table C-B. EOM Characters and Sub-Commands (part 3)

Specifier Meaning

A[R] Display left 24 bits of a word as word-char-bit.
Example:
.35-2-5

B [IT] Display in binary format. Ezample:
'010110100'B

C [HAR] Character. Ezample:
'ABCD'

D [ESCR] Descriptor. Example:
.46000,BD=.75777-3,
FL=.643,WSR=7,TY=O

EB [CDIC] EBCDIC Character. Ezample:
'694E'

E[PTR] Displays left half of word as
ENTDEF+.offset[:stmnt#] Example:
PROGB+.374 :27

Table C-9. Format Specifiers

HA17-00 DELTA Commands C-19

Debugging C Programs

I Specifier I Meaning

F [LOAT] Floating point binary. Single precision for 36-bit
items, double precision for 72- bit items. E;xample:
5.789604E+76

I [NSTR] Assembly language instruction. E;xample:
LDQ .1,DL

J [DE] JIT Dot ERR. Displays error message for the value
stored in JIT. ERR. E;xample:
FMN-MOOl13-0
File does not exist

o [CTAL] Octal digits with leading zeroes suppressed.
E;xample:
.1024

P[TR] Pointer . word-char-bit, segid. E;xample:
. 35-2-7,$LSO

R[EL] Relative. Primary ENTDEF+ offset[,:stmnt#,
substmnt, offset] or SYMDEF + offset.
E;xample:

IPROGA+.6 :12".1(LOOP)
REM [EMBER] Remember. E;xample:

TEST: 6 (LABEL) [ASSIGNMENT] (+.4)
S [BIN] Signed binary (decimal). E;xample:

-357
T[IME] Convert UTS to display format. Example:

13:52:36.82 06/25/79
U[BIN] Unsigned binary (decimal). E;xample:

357
V [ECTOR] Vector. Example:

.6245-0-0,$LSO,BD=.14-2,
FL=.777,TY=NORMAL SHRINK

X Hexadecimal. Example:
'Fl00CS40D'X

Xl Pseudo-hexadecimal. Leading bit of each byte
ignored. Example:
'FOF8F6F4'X

Table C-Y. Format SpecijierJ; (part 2)

C-20 DELTA Commands HA17-00

Debugging C Programs

Specifier Meaning

Z [ERO] Displays a word value in octal with leading zeroes.
Example:
.000000001024

Table C-9. Format Specifier~ (part:J)

HA17-00 DELTA Commands C-21

Appendix D

Interfacing PL-6 and Assembler Routines to C

Data Types

U nary conversions applied to function arguments greatly reduce the number of data
types that must be handled by run-time library routines. ANSI C retains the same
unary conversions as defined in Kernighan and Ritchie for compatibility. Use of function
prototypes, as defined in ANSI C, has minor effects on the unary conversions done to
function arguments.

The following table summarizes the correspondence between C data types and PL-6 data
types. The type received by the PL-6 subroutine depends upon the C argument type and
whether or not the C function definition of the PL-6 subroutine has a prototype.

Description C Type PrototypePL-6 Type PL-6 Type

signed integer short SBIN(36) SBIN(36)

int SBIN(36) SBIN(36)

long SBIN(36) SBIN(36)

unsigned integer unsigned short UBIN(36) UBIN(36)

unsigned UBIN(36) UBIN(36)

unsigned long UBIN(36) UBIN(36)

character char CHAR(1) SBIN(36)

floating point float BIT(36) ALIGNED BIT(72) DALIGNED

double BIT(72) DALIGNED BIT(72) DALIGNED

pointer type * PTR PTR

array name[] PTR PTR

enumeration enum SBIN(36) SBIN(36)

function name() EPTR EPTR

Table D-l. C Data Type Correspondence

HA17-00 Data Types D-l

Interfacing PL-6 and Assembler Routines to C

C Calling Sequence

CP-6 C makes use of the standard CP-6 calling sequence, with the benefit that it allows
modules written in other languages to be linked with those written in C.

The standard calling sequence normally expects the calling routine to pass a list of pointers
to the actual parameters to the called routine. This is an efficient way to handle parameter
passing in languages that use call by reference argument passing. Languages like Fortran
and PL-6 fall into this category. The C language on the other hand uS'es call by value
argument passing exclusively.

To reduce procedure call overhead, the standard calling sequence is modified slightly for C.
The called routine passes a block of memory containing the values of the act ual parameters,
instead of a list of pointers to the actual parameters. C uses the same setup routines that
other compilers use; the setup routines copy a block of parameter values into the local
stack frame instead of a list of pointers.

PL-6 Receiving Sequence

PL-6 routines expect to receive pointers to the argument values, but this is not the way C
passes arguments. There are two ways in which a PL-6 routine can receive the arguments
from a C function:

1. The first method may be used if all actual parameters are pointers or are word-sized.

• If an actual parameter is a pointer then the PL-6 routine can declare the parameter
to be the type of object that the pointer points at. For example, if the actual
parameter is of type (int *) then the formal parameter should be declared to be
of type SBIN.

• If an actual parameter is not a pointer, the formal parameter may be declared to be
of any type because the only operation that can be done on the formal parameter
is to take its address. The reason for this is that the location in the stack frame
that PL-6 believes contains a pointer to the actual parameter really contains the
value of the actual parameter. The value of the actual parameter can be made
accessible however, by declaring a local variable of the right type, REDEF'ing it as
a pointer and assigning the AD DR of the formal parameter to the pointer variant.
This is more easily understood by examining Figure D-l.

2. The second method can be used in all cases. It involves

• Declaring the PL-6 routine to have no parameters.

• MATERIALIZEing $PRO which points to the argument list.

• Copying the argument list into local memory.

D-2 PL-6 Receiving Sequence HA17-00

Interfacing PL-6 and Assembler Routines to C

C main program

maine)
{

}

int i, jj
i = 1j
j = 2j
ADDP1TOP2(i, ij)j

P L- 6 routine

ADDP1TOP2: proe(P_i, j)j

del P_i
del j

del i
del i_as_ptr redef i

i_as_ptr = addr(P_i)j
j = j + ij

end ADDP1TOP2j

sbinj /* type is irrelevant here */
sbinj

sbinj
ptr;

/* i nov has value passed from C */

Figure D-l. P L- 6 Routine Ezample

The previous example illustrates the use of the first method to implement a function which
has a word-sized parameter and pointer parameter.

I

e main program

maine)
{

}

int i, j j
i = 1j
j = 2j
ADDP1TOP2(i, Ij)j

P L= 6 routine

Figure D-2. PL-6 Materialize Ezample

HA17-00 PL-6 Receiving Sequence D-3

Interfacing PL-6 and Assembler Routines to C

ADDP1TOP2: proe materialize($PRO in parameterS);

del parameterS

del 1

del 1

P
2 i
2 j

arg,
2 i
2 j

del based int

ptr;

based(parameter$),
sbin,
ptr;

sbin,
ptr; /* pointer to int */

sbin based;

arg = p; /* eopy value of aetual parameters to loeal memory */
arg.j -> based_int = arg.j -> based_int + arg.i;

end ADDP1TOP2;

Figure D-2. P L- 6 Materialize Example (part 2)

Figure D-2 illustrates the use of MATERIALIZE to interface PL-6 routine to C. Strictly
speaking, the "arg" structure is redundant as the based "p" structure could be used to
access the parameters. The advantage of copying the parameters to a local variable is that
PL-6 is able to generate faster code for the routine, p~rticularly if parameters are accessed
more than once.

Double Word Aligned Parameters

double parameters (and float parameters when a function prototype is not used) result in
a double word value being passed. The DPS 8 hardware requires that double word variables
be double word aligned; that is, they must begin on even word boundaries. Argument lists
constructed by C are double word aligned when necessary.

When writing assembler routines, note that $PRO points to an even word location if there
is a double value being passed. There may be filler words in the parameter block to ensure
that double values are correctly aligned.

D-4 Double Word Aligned Parameters HA17-00

Interfacing PL-6 and Assembler Routines to C

C main program

maine)
{

}

double a, bj
a = 4.0j
b = 2.0j
COPY_DOUBLE(la, b)j

PL-6 routine

COPY_DOUBLE: proc materializee$PRO in parameter$)j

del parameter$ ptrj

del 1 p daligned basedeparameter$),
2 a ptr,
2 * sbin, 1* Filler to bound b correctly
2 b bit(12) dalignedj

del 1 arg daligned,
2 a ptr,
2 * sbin, 1* Filler ... */
2 b bit(12) dalignedj

del based_double bit(12) daligned basedj

*/

arg = pj /* copy parameters into local stack frame */
arg.a -) based double = arg.bj

end COPY_DOUBLEj

Figure D-3. Double Word Alignment Example

The previous example illustrates the PL-6 header code that has to be used to pass a double
type parameter.

HA17-00 Double Word Aligned Parameters D-5

Interfacing PL-6 and Assembler Routines to C

C rrtain program

double COPY_VALUE();
maine)
{

double a, b;
a = 2.0;
b = 4.0;
b = COPY_VALUE(a);
if (b != a)

printf ("**ERROR**\n");
}

BMAP routine

ENTDEF
* Return double argument

USE
COPY_VALUE EQU

DFLD
TRA
END

COPY_VALUE, 1

*
OJ ,PRO
1,X1

Figure D-4. BMAP Example

The previous example illustrates a BMAP routine that accepts a single double parameter.

Returning Function Results

CP-6 C expects float and double type function results to be returned in the EAQ register
and expects all other function result types returned in the Q register. This is consistent
with other CP-6 language processors.

Since user-defined functions are not available in PL-6, two special routines are provided by
the C library to permit PL-6 subroutines to appear to be functions. These two routines,
XB_RETURN_ORDINAL_RESULT or XB_RETURN_REAL_RESULT return from the PL-6 subroutine
with the argument as the result.

These special routines assume that they are called from a routine that has a stack frame.
They do not work if the PL-6 routine has the NOAUTO attribute.

D-6 Returning Function Results HA17-00

Interfacing PL-6 and Assembler Routines to C

C main program

maine)
{

}

int i = 4, j = 5;
j = NOOP(i);
if (j != 4)

printf ("**ERROR**\n");

PL-6 Function

NOOP: proc materialize ($PRO in parameter$);

dcl parameter$ ptr;
dcl based_int sbin based;
dcl i sbin;

dcl XB_RETURN_ORDINAL_RESULT entry(1);

i = parameter$ -> based_inti
call XB_RETURN_ORDINAL_RESULT(i); /* Return parameter */

end NOOP;

Figure D-5. P L- 6 Function Example

The previous example demonstrates the use of XB_RETURN_ORDINAL_RESULT.

Object Unit Names

PL-6 and BMAP entry names are always in uppercase regardless of how they were entered
in the source file. Identifiers are case sensitive in C; all C run-time library functions have
lowercase names.

PL-6 or BMAP object files can be changed to have lowercase ENTDEF names by using the X
account tool FALCON. For example:

!FALCON.X object_file

HA17-00 Object Unit Names D-7

Interfacing PL-6 and Assembler Routines to C

Writing I/O Routines in PL-6

The include file xb_stdio_i6 found in the : LIBRARY account contains macros for the C
FILE structure and other I/O related structures.

Useful Entries in the C Run-time Library

The following entry points in the C run-time library are of use to programmers interfacing
PL-6 routines to C.

Synopsis:

%include CP_6j
%VLP_ERRCODE (FTPN=supplied_error)j
CALL XBI_SET_ERRNO (supplied_error)j

Description;

The XBI_SET_ERRNO routine places an error code into the global errno variable that is
visible to C functions. The error code comes from supplied_error, or if the routine is
called with no arguments, from the al treturn frame of the TCB.

Synopsis:

%include CP_6j
%include xb_stdio_i6;
%File_Header (NAME=F);
%VLP_ERRCODE (FPTN=supplied_error)j
CALL XBI_SET_STREAM_ERRNO (F, supplied_error);

Description:

The XBI_SET_STREAM_ERRNO routine places an error code into the global errno variable
that is visible to C functions. The error code comes from supplied_error, or if the routine
is called with no arguments, from the al treturn frame of the TCB. The DCB number of the
stream on which the error occurred is extracted from F.

D-8 HA17-00

Interfacing PL-6 and Assembler Routines to C

Synopsis:

%inelude CP_6;
%VLP_ERRCODE (FPTN=error)j
CALL XBI_GET_ERRNO (error);

Description:

The XBI_GET_ERRNO routine returns the current value of errno converted to a CP-6 error
code.

Synopsis:

del dd_number sbin;
CALL XBI_GET_CP6_DCBNUMBER (deb_number);

Description:

The XBI_GET_CP6_DCBNUMBER routine returns the DCB number associated with errno. If
the most recent error was not an I/O error, the value zero will be returned.

Synopsis:

CALL XBI_CLOSE_DCBS;

Description:

The XBI_CLOSE_DCBS routine closes all currently open streams, except stderr.

XB$INIT_CLIB Subroutine

Synopsis:

CALL XB$INIT_CLIB ()

Description:

The XB$INIT_CLIB routine initializes the C run-time library for programs that do not have
a C main program, but want to use C I/O.

HA17-00 XB$INIT_CLIB Subroutine D-9

Appendix E

Porting C Programs to CP-6 Systems

This appendix outlines the major pitfalls encountered when porting C applications to CP-6
systems. Programs which claim to be portable or have been ported to a number of other
systems can still run into problems because:

1. The operating systems to which it has been ported are all the same.

This is the most common problem. For example, programs written for and used
exclusively in a UNIX environment can be quite portable to other UNIX systems, but
when ported to a non-UNIX system it is found that they use features of UNIX not
generally available under other operating systems.

Of course, CP-6 C has been written with porting these applications in mind; however,
there are cases that cannot be duplicated as the program might expect.

2. The compilers that have been used create the same environment.

This is similar to the first point but slightly different. An example of this would be
assuming that shorts are 2 chars and ints are. 4 chars. This works on many (if not
most) systems but not on CP-6 where int, short and long are all represented with
the same size.

3. The architectures are all very similar.

This addresses the areas where the biggest problem might exist in porting programs
to CP-6 systems. On CP-6, the bit pattern used to represent a floating point 0.0 and
the bit pattern to represent the NULL pointer are not the same as the bit pattern for an
int value of o. Many programs make this non-portable mistake and claim .portability.

The rest of this section attempts to address the issues involved in porting applications to
CP-6 systems.

Implementation-defined Behavior

Even when an application compiles with a standard conforming C compiler, its portability
is not guaranteed. This is because it may be relying upon the implementation-defined
behavior of the compiler and system upon which it is running. This section points out
the implementation-defined elements of the C language which can cause problems when
porting applications to CP-6 systems.

HA17-00 Implementation-defined Behavior E-1

Porting C Programs to CP-6 Systems

The Environment

• The main function in some implementations of C takes an extra argument \'\:hich is not
available with CP-6 C. This argument is,called the environment pointer and contains
pointers to character strings which define the environment variables.

On CP-6, these variables are available through the getenv and lsenv functions
(getenv is also available on other standard conforming systems).

• Terminals and their full use varies from system to system. On CP-6 systems, the
terminal can be open in x364 mode which makes any terminal appear to be like
a VT 100 terminal. On other systems there are different techniques used to obtain
terminal independence.

Use of Identifiers

Programs that consistently name their identifiers or limit their length to 64 characters
will not have problems on CP-6 systems. Otherwise, the following problems may be
encountered:

• Every ANSI standard conforming C implementation provides at least 31 significant
characters in a non-external identifier. CP-6 C provides 64 significant characters.
This may cause problems with older programs where the minimum was not as large.

• Every ANSI standard conforming C implementation provides at least 6 significant
characters in an external identifier. CP-6 C provides 64 significant characters. Again
this can cause problems if an application was written knowing that only the first n

characters mattered and therefore did not name the external items consistently.

• Some C implementations do not distinguish differences between upper and lower case
letters in external identifiers. CP-6 C does provide this distinction so programs that
have been written which do not honor the distinction will not work correctly.

Character Set

• If programs depend upon displaying characters that are not in the 7-bit ASCII character
set, their portability to CP-6 systems is limited. Additionally, if the program depends
upon the actions of a specific terminal and control characters, it may not be portable
(although CP-6 C does permit special characters to be sent to a terminal).

• CP-6 C does not provide unique display for multibyte characters. All characters in
CP-6 Care 7-bit ASCII.

• CP-6 C uses 9 bits to represent the char data type. This is unlike most systems
which use 8 bits. Programs which depend upon this (such as assuming a value being
truncated to 8 bits when stored in a char) must be modified.

E-2 Character Set HA17-00

Porting C Programs to CP-6 Systems

• When more than one character is found in an integer character constant (such as
'abcd') the actual value varies from system to system and even the ordering of
the individual characters within the constant may vary from system to system. In
particular, on CP-6 systems since 9-bit chars are used, the values will be much larger
than on systems with 8-bit chars.

• Finally, on CP-6 C, the default char data type is an unsigned value whose range is
o through 511. On other systems, the char data type may be signed and 8 bits so
the range on those systems is -128 through 128. The default char data type may be
changed to signed using the command line option char=signed.

Integral Data Types

Implementations of C differ in the size and actual bit representations of the various integral
data types. There are also a number of operators where the result depends upon the
machine architectures.

• Programs may rely upon the representations and range of values of the various
integral types (char, short, int, and long). 11any implementations provide distinct
representations for each of these basic sizes. On CP-6, only char has a different
representation from the other integral types. Programs which depend upon a short
being 2 chars or holding a more restricted range of values than int will need to be
modified.

• The right shift of a negative signed integral value differs from implementation to
implementation. On some systems, the shift preserves the sign and on others, it does
not. CP-6 C does preserve the sign.

• Bitwise operations on negative integers are not portable. This is because the result of
the operation depends upon the size (in bits) of the value.

• The remainder of the integer division operator 'I. may differ for negative arguments.
CP-6 provides a negative remainder when the dividend is negative; otherwise, the
remainder is positive.

• The result of converting an integer to a shorter signed integer, or the result of converting
an unsigned integer to a signed integer of equal length differs when the final value
cannot be represented. The CP -6 system truncates the most significant bits and
attempts to preserve the actual bit pattern being converted.

Array and Pointer Data Types

CP-6 C is very sensitive to the correct usage of pointers. In particular:

• Illegal pointers very quickly generate signals indicating incorrect usage. Pointers are
not simply integers, they contain the following information:

HA17-00 Array and Pointer Data Types E-3

Porting C Programs to CP-6 Systems

1. A 12-bit segment identifier. This field is in the least significant 12 bits if the pointer
is viewed as an int.

CP-6 C programs always have three distinct segments containing user data. The
instruction segment contains the text of the functions and all static data. The
auto segment contains the local (non-static) variables for all currently executing
functions. Finally the data returned by the malloe and realloe functions is in
the third segment.

2. A 20-bit byte offset within the segment. This field is in the most significant 20 bits
if the pointer is viewed as an int.

3. A 4-bit bit offset. This is always zero for pointers created by C, but it enables a
pointer to point down to the bit level.

It should be obvious that treating a pointer as an int using casts or within a union is
not portable. If an application being ported to the CP-6 system does this, it will need
to be modified.

• On CP-6 systems, a special segment is reserved for the NULL pointer. The
representation of this pointer (as an int) is not zero. This can can cause problems
with porting programs when, for example, the program uses the calloe function to
allocate a structure and then assumes that the pointers in that structure will be NULL.
Of course, the compiler does correctly cast the integer value zero to a NULL pointer and
it also initializes static Illenlory to r~ULL for static pointers.

• Casting between a pointer and an integer changes the bit pattern. As indicated by the
previous point, a NULL pointer is not zero; therefore, when a cast from an integral type
to pointer occurs (or pointer to integral type), the compiler actually modifies the bit
pattern. The compiler reports a warning in most of these cases so that they may be
located.

• The integral data type required to hold the maximum size of an array can vary between
systems. It is always best to use the type size_t defined in the header file <stddef .h>.
CP-6 C is not very sensitive to this as any of the integral types other than char are
capable of holding these values.

• The integral data type required to hold the maximum difference between two pointers
to elements of the same array can vary. It is always best to use the type ptrdiff _ t
defined in the header file <stddef .h>. CP-6 C is not sensitive to this as any of the
integral types other than char are capable of holding these values.

• When pointers that are not part of the same array object are subtracted, the answer
is not meaningful if the pointers point to objects in different segments.

This is also true when comparing pointers. If they are not in the same segment then
comparisons for anything other than equality are not meaningful.

• If a function that is expected to return a result uses a return statement without a
value, then the actual value returned is indeterminate.

E--4 Array and Pointer Data Types HA17-00

Porting C Programs to CP-6 Systems

Floating Point Data Types

The floating point data type is the area of greatest divergence between systems. The
areas of divergence include the range of values that may be represented (indicated in
the <float. h> header file), whether truncation or rounding occurs, and the direction of
truncation and rounding.

The most likely problem to occur porting programs which perform floating point arithmetic
is that some programs expect that the bit pattern for an integer value of zero is the same
as the bit pattern for a floating point zero. This is not true on CP-6 systems. The solution
to this is similar to the solution for programs which make the same assumption about NULL
pointers.

CP-6 C floating point representation is difficult for even a smart program to discern because
it uses hexadecimal normalization with a result that is 1 bit short in the last hexadecimal
digit.

Structure and Union Data Types

• When a value is stored in a union using one member and later is accessed using another
member, there can be portability problems.

Depending upon the actual member types, the problems can range from the expected
field sizes being incorrect to expecting a NULL pointer to be equal to an int value of
zero.

• C compilers are different in the manner in which they position members within a
structure. On CP-6 systems, members of type char or structures which contain only
members of type char immediately follow each other in memory. Members of the other
integral types (including enum) as well as members of the float type are always aligned
on the next word boundary. Finally, members containing double or long double are
aligned on the next double word boundary. This means that there may be unused
chars preceding a member which requires alignment.

Programs which depend upon the alignment requirements of other compilers may need
modification. This would normally not be a problem unless binary data written by one
compiler needed to be read by another compiler.

• Bit-fields within a member may cause problems. For example, CP-6 C can allocate up
to 36 bits within each into In addition, the actual bit-fields are allocated from left to
right within a word (that is, the most significant positions are filled first).

• Bit-fields in CP-6 C cannot straddle a word boundary. Some implementations permit
this. This is normally not a problem ..

HA17-00 Structure and Union Data Types E-5

Porting C Programs to CP-6 Systems

Function Execution

• Functions may depend upon the order in which side effects occur within expressions.
This is dependent upon the actual compiler (and possibly the version of the compiler)
used to create the application.

• Side effects include the actual timing of assignments particularly when a variable is
post incremented in an expression and used elsewhere in the same expression.

Other problems in this area may include the order in which arguments to functions
are evaluated if they contain side effects or call other functions. CP-6 C evaluates the
function's arguments from left to right within the argument list and then evaluates the
expression which represents the function to be called.

• When a label is defined in a C function, its scope is function-wide. This is not true for
all old compilers so there will be problems if an application defines a label more than
once within a function body.

• When a function is called, and the definition an_d the reference to the function both
had prototypes, the system automatically checks for the correct number of arguments
at link time. This does not guarantee that the types of the arguments are correct but
it is a good first order check. Most of the library functions will cause linker errors to
be reported if they are called using their standard header include file at compile tin1e.

When a function is called, and the definition or references was not a prototype, there
is no argument checking by the linker. If the function reference has fewer arguments
than the function expects, the unsupplied arguments will have the value 06014 if they
are integral values; pointers will have the NULL value; floating-point variables will have
very small (but non-zero) values.

If the expected types of the arguments do not agree between the calling and called
function, there will be problems which need to be addressed if the types are non­
integral.

The Preprocessor

When porting programs to CP-6 systems, problems may be found in the following areas:

• All of the header files that an application expects to find may not be available on CP-6
systems. The application may rely upon header files which are not a part of standard
C or which are not available in CP-6 C.

E-6

There is no simple method of dealing with this problem. Often such applications are
doing things which are done differently on CP-6 systems. In porting such applications,
determine why the missing header file is being used and then try to use a method
provided by the C standard to perform it, or find the way it is done on CP-6 systems.

The Preprocessor HA17-00

Porting C Programs to CP-6 Systems

• The method of locating include files may be different. Since what constitutes a legal
file name varies from system to system, this may be a simple task or it may be more
complex. Note that by default, CP-6 C does not honor the distinction between include
files mentioned within angle brackets «fid.h» or quoted ("fid.h").

CP -6 C does provide a method of translating file names mentioned in include directives
into legal CP-6 file identifiers. This is used to minimize the number of actual source
changes necessary to port an application.

• The #pragma directive on CP-6 C provides listing control. \\Then an unrecognized
pragma is encountered, it is ignored.

The C Library

CP-6 C provides more functions and capabilities than the ANSI standard requires; however,
there is a large number of system-specific functions that C programs often use. In order to
port these programs, it is necessary to either modify the program to use standard features,
modify the program to not use the unsupported feature, or to write a CP-6 version of this
capability.

• The values stored in errno when an error is reported by the library vary from system
to system. On CP-6 C, the value is a slightly modified CP-6 error code. Some systems
use a small integer to represent these codes; on CP-6 systems they are always very
large integers.

This also precludes the use of the value in errno as an index into a table of system
error messages (as is done on some systems). Use the perror or strerror function to
obtain the actual text of error messages.

• Some systems supply signals that are not available on CP-6 C. Use of these signals
indicates use of an unsupported system feature which must be modified.

• Signals have default states in every implementation which may not be identical to the
default for another implementation. Also, signals may be disabled as the signal handler
for a given signal is entered. Normal use of the standard signals is extremely portable;
however, problems may be encountered in the above system-dependent areas.

• The rules for constructing file names vary from system to system. Even for programs
which are maximally portable, constructing file names may involve modifying the
source. On CP-6 C, file names are split into four pieces:

1. Packset name. The packset name (not normally used) identifies the physical device
where the file resides. This is normally only used when the file resides on a device
that is not publicly mounted. The packset name looks like DP#snOOOO where snOOOO
indicates the name of the packset.

2. File name. The file name is separated from the packset name by a slash. The slash
is optional if the packset name is not present. The file name consists of 1 to 31
characters from the set a-z, A-Z, 0-9 and _$: [\] -{} 1- ,

HA17-00 The C Library E-7

Porting C Programs to CP-6 Systems

3. Account name. If the account name is present, it consists of 1 to 8 characters from
the 7-bit ASCII set, SP through -. The file name and account are separated by a
single "." character.

4. Password. The optional password, if present, consists of any bit pattern, preceded
by a "." character which separates it from the account (or two" ." characters if
the account is not present).

• The use of the system function is very system dependent. On CP-6 systems, the
command is interpreted by the IBEX processor which may in turn start up another
program to complete the command. The exact syntax of commands varies from system
to system; therefore, the text used as the command will need to be modified when
porting an application to CP -6 systems.

• The full list of current environment names may be determined by using the lsenv
function. Additionally, the current environment names may be modified using the
system function which contains an IBEX let command. Some programs may expect
certain environment variables to exist which are created, by convention, on other
systems. In this case the application may need modification.

• The ANSI standard permits some identifiers to be macros or actual identifiers. Examples
include errno, setjmp, va_end, va_start, and va_argo Portable applications should
not declare library functions; the definitions in the system header file should be used.

• Portable applications should also not refer to the value stored by the fgetpos function
or the actual value returned by the ftell and time functions.

• The value returned when a mathematical function is reporting a domain error varies
from system to system. CP-6 C attempts to return a value that is meaningful. Portable
applications should never depend upon the value returned when an error occurs. This
is not normally a problem when porting applications to CP-6 systems.

• When an underflow occurs in the mathematical library functions, the situation is not
always reported by all systems. CP- 6 C does not report this situation unless it leads
to an error. Portable applications should not depend on underflow being reported in
any way. This is not normally a problem when porting applications to CP-6 systems.

• The fmod function may return zero or report a domain error when the second argument
is zero. In CP-6 C, a zero is returned. Applications which depend upon a domain error
being reported may have to be modified. This is not normally a problem when porting
applications to CP-6 systems.

• The actual data in a file varies from system to system when a new-line character has
not been written as the last character of a text stream. CP-6 C adds a terminating
new-line character. Other systems may not add a new line. Portable applications
should ensure that a new-line character is written. This is not normally a problem
when porting applications to CP-6 systems.

• Space characters immediately preceding a new-line character in a text stream may
not be physically written on some systems. On CP-6 systems the space characters are
written. Applications that depend upon space characters before the new-line character
may need to be modified. This is not a normally a problem when porting applications
to CP-6 systems.

E-8 The C Library HA17-00

Porting C Programs to CP-6 Systems

• Some systems pad the end of a binary stream with null characters. CP-6 C does not
pad. Applications that depend upon padding may need to be modified. This is not
normally a problem when porting applications to CP-6 systems.

• When a file is opened in append mode, its actual position for reading varies from
system to system. On CP-6 systems, the stream is positioned at the end of file which
means that an attempt to read will immediately receive an EOF indication. In order to
read the file on CP-6 systems it is necessary to use the rewind function before reading.

• The contents of a file varies from system to system when a write occurs on a text
stream with the file not positioned at the end. CP-6 C only permits text streams to
be written at the end-of-file position ("a+" or "w" mode). Requesting any other mode
forces the file to be opened in binary mode ("w+" or "r+" modes). Applications that
try to modify text files in this way will probably require modification to create binary
files.

• Programs that rely upon the system-dependent meaning of the file buffering mecha­
nisms other than fully buffered may need to be modified. CP-6 C implements fully
buffered output for all files irrespective of the buffering requested. Programs which
use the setvbuf function (or the setbuf function with a NULL pointer as its second
argument) may exhibit this problem. In particular, the unbuffered mode to terminals
may not cause immediate writes of characters to terminals. Applications that depend
upon the meaning of these modes on other systems may need to be modified.

• Zero-length files may not be created on some systems. On CP-6 systems zero-length
files are simply files to which no data was written. Portable applications should not
depend upon empty files not being created. This is not normally a problem when
porting applications to CP-6 systems.

• On some systems a file may not be opened more than once. On CP-6 systems a file
may be opened for input many times. This is not normally a problem when porting
programs to CP-6 systems.

• On some systems, the remove function may not delete a file that is currently opened
by the current or another user. On CP-6 systems, the remove function may be used
to delete a file even while it is being read by the current user or other users. It
is made immediately inaccessible for new readers and physically deleted when all the
current input readers have closed the file. This is not normally a problem when porting
programs to CP-6 systems.

• Some systems do not report an error when the rename function attempts to rename a
file to a file name that already exists. On CP-6 systems, an error is reported in this
situation. Portable programs should not depend upon the existing file being deleted
and no error being reported.

• The meaning of the %p conversion specification of the printf function varies from
system to system. In CP-6 C, this conversion specification requests a word in unsigned
octal. Portable programs should avoid using this conversion specification.

• The meaning of the %p conversion specification of the scanf function varies from
system to system, In CP-6 C, this conversion specification requests the octal input be
converted into a word value. This is not normally a problem when porting applications
to CP-6 systems.

HA17-00 The C Library E-9

Porting C Programs to CP-6 Systems

• The meaning of the - character in the scanlist of the 'I. [] specification of the seanf
function varies from system to system. On CP-6 systems it is treated as that specific
character. On other systems it may also mean a range of characters when preceded
and followed by another character. For maximal portability it is always best to put
the - character at the beginning of the list of characters.

• The treatment of a zero passed to the ealloe, malloe and realloe functions varies
from system to system. CP-6 C politely returns a NULL pointer but other systems
may not be as forgiving. For maximal portability, these functions should not be called
requesting a block of memory of zero bytes. This is not normally a problem porting
programs to C P -6 systems.

• The final status of files varies from system to system when the abort function is
called. Some implementations may not close the files. On CP-6 systems, all open files
are flushed and closed.

Common Extensions to ANSI C

Many C implementations contain extensions to the standard. Often an extension is
implemented in many compilers which then makes the distinction of portable applications
difficult to determine when they use one of these common extensions. This section will
attempt to point out the more common extensions and indicate which ones are implemented
in CP-6 C.

Specialized Identifiers

In CP-6 C, the $ character may be used in identifiers. Other implementations may go so
far as to allow the national use characters from the 7-bit ASCII character set to be used in
identifiers.

Scopes of Identifiers

Function declarations and variables declared with the keyword extern have file scope
independent of the actual scope at which the variable was declared. This means that once
an extern variable is declared (even within a function), its definition is remembered for
the rest of the compilation.

Writable String Literals

By default, string literals in CP-6 systems are not modifiable. Additionally, there is only
one copy of a particular literal made even if it appears multiple times within a file.

When the command line option strings=vri te is given, then the compiler puts string
literals in static writeable memory and makes new copies of the literal for every reference.

E-IO Writable String Literals HA17-00

Porting C Programs to CP-6 Systems

Other Arithmetic Types

Some compilers provide additional types such as long long int which is not available in
CP-6 C. CP-6 C provides only the standard C arithmetic data types.

Function Pointer Casts

A pointer to an object or to void may be cast to a pointer to a function in CP-6 systems
as well as the inverse; that is, a pointer to a function may be cast to a pointer to void
or an object. This is very system dependent and programs which do this will need to be
modified.

N on-int Bit-field Types

Any integral type may be used as a bit-field type in CP-6 C. Because only the char bit­
field type is a different size, bit-fields may be declared as a part of a 36-bit word or as part
of a 9-bit character.

The fortran and asm Keywords

The fortran keyword is not necessary on CP-6 systems (since C uses the same calling
sequence as all other CP-6 compilers). Programs that use this keyword should be modified;
or a #define fortran command should be used to remove it.

The asm keyword is not available in CP-6 C. This keyword is used to insert assembler code
into the program and is by definition therefore not portable. Any program which uses this
keyword will need to be modified.

Multiple External Definitions

A variable whose type is extern may contain only one definition in the C program. Some
systems permit multiple definitions. In order to port a program like this, all but one of
the definitions should have the extern keyword inserted and any initializers removed.

Empty Macro Arguments

Some C preprocessors permit an argument to consist of no tokens. CP-6 C requires that
there be at least one token as an argument. A message of the form: "(warning) argument
mismatch, name" is reported in this case. CP-6 C does not expand such a macro use.

HA17-00 Empty Macro Arguments E-ll

Porting C Programs to CP-6 Systems

Predefined Macro Names

This is perhaps the most common extension. 1\10st C compilers permit macro names to be
defined on the command line, before the program has started compilation. CP-6 C also
permits this, although the exact way that this is done does vary from system to system
(see the command line option define).

Also a number of preprocessor variables are automatically defined for every compilation
(unless an ndefine command line option is provided). These variables include TS_CP6,
TM_L66 and _CP6_.

Extra Arguments for Signal Handlers

Some systems call the signal handlers with arguments in addition to the signal number.
CP-6 C does not do this and therefore any code which depends upon this behavior will
have to be modified.

Additional Stream Types and File-opening Modes

The actual mapping of files to stream types varies in different C implementations and
systems. CP-6 files are record-oriented whereas many other systems have file systems
where the files are simply byte streams. It may be necessary to modify applications which
expect to read files as byte streams to use binary file?

CP-6 also supplies a number of file opening modes which are not portable. On CP-
6 systems, if ported code uses special mode arguments to open files, the program will
most likely not function properly. The mode arguments will have to be modified to work
correctly on CP-6 systems.

E-12 Additional Stream Types and File-opening Modes HA17-00

Appendix F

Environmental Limits

The environmental limits for the CP-6 C compiler are presented In the following
subsections.

Translation Limits

The compiler can translate and execute programs that contain instances of everyone of
the following limits.

• Nesting levels of compound statements, iteration control structures, and selection
control structures are limited by available memory.

• There may be 10 nesting levels of conditional inclusion.

• Pointer, array, and function declarators (in any combinations) modifying an arithmetic,
a structure, a union, or an incomplete type in a declaration are limited by available
memory.

• Nesting levels of parenthesized declarators within a full declarator are limited by
available memory.

• Nesting levels of parenthesized expressions within a full expreSSIon are limited by
available memory.

• There may be 64 significant initial characters in an internal identifier or a macro name.

• There may be 64 significant initial characters in an external identifier.

• The number of external identifiers in one object unit is limited by available memory.

• The number of identifiers with block scope declared in one block is limited by available
memory.

• The number of macro identifiers simultaneously defined in one object unit is limited
by available memory. .

• The number of parameters in one function definition is limited by available memory.

• The number of arguments in one function call is limited by available memory.

• There may be 200 parameters in one macro definition.

• There may be 200 arguments in one macro invocation.

• There may be 509 characters in a logical source line.

HA17-00 Translation Limits F-l

Environmental Limits

• The number of characters in a character string literal or wide string literal (after
concatenation) is limited by available memory.

• There may be 1,048,576 bytes in an object.

• There may be 10 nesting levels for #included files.

• The number of case labels for a switch statement (excluding those for any nested
swi tch statements) is limited by available memory.

• The number of members in a single structure or union is limited by available memory.

• The number of enumeration constants in a single enumeration is limited by available
memory.

• The number of levels of nested structure or union definitions in a single struct­
declaration-list is limited by available memory.

Numerical Limits

The numerical limits, as specified in the headers <limits .h> and <float .h>, are explained
below.

Sizes of Integral Types <limits. h>

The values given below are constant expressions suitable for use in #if preprocessing
directives. Moreover, except for CHAR_BIT and MB_LEN_MAX, the following expressions have
the same type as would an expression that is an object of the corresponding type converted
according to the integral promotions. Their values are equal or greater in magnitude
(absolute value) to those shown, with the same sign.

• Number of bits for smallest object that is not a bit-field (byte):

CHAR_BIT 9

• Minimum value for an object of type signed char:

-256

• Maximum value for an object of type signed char:

255

• Maximum value for an object of type unsigned char:

511

• Minimum value for an object of type char:

o

F-2 Sizes of Integral Types <limits. h> HA17-00

Environmental Limits

• Maximum value for an object of type char:

CHAR_MAX 511

• Maximum number of bytes in a multibyte character, for any supported locale:

ME_LEN_MAX 1

• 11inimum value for an object of type short int:

SHRT_MIN -34359738368

• Maximum value for an object of type short int:

SHRT_MAX +34359738367

• Maximum value for an object of type unsigned short int:

USHRT_MAX 68719476736

• Minimum value for an object of type int: -

INT_MIN -34359738368

• Maximum value for an object of type int:

INT_MAX +34359738367

• Maximum value for an object of type unsigned int:

UINT_MAX 68719476736

• Minimum value for an object of type long int:

LONG_MIN -34359738368

• Maximum value for an object of type long int:

LONG_MAX +34359738367

• Maximum value for an object of type unsigned long int:

ULONG_MAX 68719476736

HA17-00 Sizes of Integral Types <limits. h> F-3

Environmental Limits

Characteristics of Floating Types <float. h>

The following parameters are used to define the model for each floating-point type:

s sign (± 1)
b base or radix of exponent representation (an integer > 1)
e exponent (an integer between a minimum emin and a maximum emax)
p precision (the number of base- b digits in the significand)
fk non-negative integers less than b (the significand digits)

A normalized floating-point number x(fl > 0 if x -# 0) is defined by the following model:

p

x s x be X L fk X b - k, emin < e < emax
k=I

All except FLT_RADIX and FLT_ROUNDS have separate names for all three floating­
point types. The floating-point model representation is provided for all values except
FLT_ROUNDS.

The rounding mode for floating-point addition is characterized by the value of FLT _ROUNDS
as follows:

-1 indeterminable
o toward zero
1 to nearest
2 toward positive infinity
3 toward negative infinity

The CP-6 C compiler has a value of 0 (rounds toward zero).

, The characteristics of the floating-point system are as follows:

• Radix of exponent representation, b:

16

• Number of base-FLT_RADIX digits in the floating-point significand, p:

F-4

FLT_MANT_DIG
DBL_MANT_DIG
LDBL_MANT_DIG

6 /* .75 */
15 /* .75 */
15 /* .75 */

Characteristics of Floating Types <float. h> HA17-00

Environmental Limits

• Number of decimal digits, q, such that any floating-point number with q decimal digits
can be rounded into a floating-point number with p radix b digits and back again
without change to the q decimal digits,

l (- 1) X 10 b J + { 1 if b is ~ power of 10
p gIO 0 otherwIse

FLT_DIG 8
DBL_DIG 20
LDBL_DIG 20

• Minimum negative integer such that FLT_RADIX raised to that power mInus 1 IS a
normalized floating-point number, emin:

FLT_MIN_EXP
DBL_MIN_EXP
LDBL_MIN_EXP

-129
-129
-129

• Minimum negative integer such that 10 raised to that power IS In the range of
normalized floating-point numbers, 110gIO bemin

- 1 l:
FLT_MIN_10_EXP
DBL_MIN_10_EXP
LDBL_MIN_10_EXP

-155
-155
-155

• Maximum integer such that FLT_RADIX raised to that power minus 1 is a representable
finite floating-point number, emax :

FLT_MAX_EXP
DBL_MAX_EXP
LDBL_MAX_EXP

+126
+126
+126

• Maximum integer such that 10 raised to that power is in the range of representable
finite floating-point numbers, lloglO((1 - b-P) x bemax J:
FLT_MAX_10_EXP
DBL_MAX_10_EXP
LDBL_MAX_10_EXP

+152
+152
+152

• Maximum representable finite floating-point number, (1 - b-P) x bemn
:

FLT_MAX
DBL_MAX
LDBL_MAX

8.37988E152
8.3798799562141231863E152
8.3798799562141231863E152

• The difference between 1.0 and the least value greater than 1.0 that is representable
in the given floating point type, b 1 -

p :

FLT_EPSILON
DBL_EPSILON
LDBL_EPSILON

HA17-00

1.1920928E-7
1.7347234759768070944E-18
1.7347234759768070944E-18

Characteristics of Floating Types <float. h> F-5

Environmental Limits

• Minimum normalized positive floating-point number, bemin-l:

FLT_MIJI!
DBL_MIN
LDBL_MIN

4.661463E-156
4.6614629570001292146E-156
4.6614629570001292146E-156

Summary of Floating-Point Representation

The following summarizes the floating-point representation and the appropriate values in
a <float. h> header for type float :

F-6

Xc = S

XcI S

FLT_RADIX
FLT_MANT_DIG
FLT_EPSILON
FLT_DIG
FLT_MIN_EXP
FLT_MIN
FLT_MIN_l0_EXP
FLT_MAX_EXP
FLT_MAX
FLT_MAX_10_EXP
DBL_MANT_DIG
DBL_EPSILON
DBL_DIG
DBL_MIN_EXP
DBL_MIN
DBL_MIN_10_EIP
DBL_MAX_EXP
DBL_MAX
DBL_MAI_l0_EIP
LDBL_MANT_DIG
LDBL_DIG
LDBL_MIN_EXP
LDBL_MIN_l0_EIP
LDBL_MAX_EIP
LDBL_MAX_l0_EIP
LDBL_MAX
LDBL_EPSILON
LDBL_MIN

x 2e x

x 2e x

6

L fk X

k=1

15

L fk X

k=1

16-k ,

16-k ,

-128

-128

16
6

< e

< e

1. 1920928E-7
8

<

<

-129
4.661463E-156

-155
+126

8.37988E152
+152

15
1.7347234759768070944E-18

20
-129

4.6614629570001292146E-156
-155
+126

8.3798799562141231863E152
+152

15
20

-129
-155
+126
+152

8. 3798799562141231863E152
1.7347234759768070944E-18
4.6614629570001292146E-156

Summary of Floating-Point Representation

+127

+127

HA17-00

Index

\0 null character 1-9, 2-15
+= addition assignment operator 4-19
+ addition operator 4-11
i address operator 4-7
[] array subscript operator 4-3
* asterisk punctuator 2-16, 5-11
\ backslash character 2-13
\ \ backslash-character escape sequence

2-13
i= bitwise AND assignment operator

4-19
i bitwise AND operator 4-15
... bitwise exclusive OR operator 4-16
I bitwise inclusive OR operator 4-16
{} braces punctuator 2-16,5-17,6-2
[] brackets punctuator 2-16, 4-3, 5-12
() cast operator 4-10

colon punctuator 2-16, 5-4
J comma operator 4-21
/* */ comment delimiters 2-17
? conditional expression 4-18

decrement operator 4-2, 4-7
/= division assignment operator 4-19
/ division operator 4-11
\" double-quote-character escape

sequence 2-13
ellipsis punctuator 2-16, 5-13
ellipsis, unspecified parameters

5-13
= equal-sign punctuator 2-16, 5-1, 5-19
== equality operator 4-14
\ escape character 2-13
"'= exclusive OR assignment operator

4-19
... exclusive OR operator 4-16
() function-call operator 4-4
> greater~than operator 4-13
>= greater-than-or-equal-to operator

4-13

HA17-00

I = inclusive OR assignment operator
4-19

++ increment operator 4-2, 4-7
* indirection operator 4-7
! = inequality operator 4-14
«= left-shift assignment operator 4-19
« left-shift operator 4-13
< less-than operator 4-13
<= less-than-or-equal-to operator 4-13
ii logical AND operator 4-17

logical negation operator 4-7, 4-9
I I logical OR operator 4-1 7
% modulus operator 4-11
*= multiplication assignment operator

4-19
* multiplication operator 4-11
Operator 2-16, 8-8
Operator 2-16, 8-8
() parentheses punctuator 2-16, 5-13
-- postfix decrement operator 4-7
++ postfix increment operator 4-7
-- prefix decrement operator 4-7
++ prefix increment operator 4-7
punctuator 2-16, 8-1
\? question-mark escape sequence 2-13
%= remainder assignment operator 4-19
% remainder operator 4-11
»= right-shift assignment operator 4-19
» right-shift operator 4-13
j semicolon punctuator 2-16, 5-1, 6-2
= simple assignment operator 4-19
\, single-quote-character escape sequence

2-13
structure member operator 4-2

-> structure pointer operator 4-2
struct ure / union member operator

4-5
-) structure/union pointer operator 4-5
-= subtraction assignment operator

4-19

i-I

Index

- subtraction operator 4-11
?? ! trigraph sequence, I 1-10
?? / trigraph sequence, \ 1-10
??< trigraph sequence~ { 1-10
??> trigraph sequence,} 1-10
??= trigraph sequence, # 1-10
?? (trigraph sequence, [1-10
??) trigraph sequence,] 1-10
??' trigraph sequence, - 1-10
??- trigraph sequence, - 1-10
- unary minus operator 4-7, 4-8
+ unary plus operator 4-7, 4-8

A

\a alert escape sequence 1-11, 2-13
abort Function 9-6, 17-9
abs Function 17-13
absolute-value functions 12-8,17-13,

17-14
abstract declarator, type name 5-15
acos Function 12-2
addition assignment operator, += 4-19
addition operator, + 4-11
Additional Stream Types and

File-opening Modes E-12
additive expression 4-11
Additive Operators 4-11
Address and Indirection Operators 4-8
address operator, I: 4-7
aggregate initialization 5-18
aggregate types 2-8
alert escape sequence, \a 1-11, 2-13
alignment of structure members 5-5
alignment restriction 4-10
alloca Function 20-5
AND operator, bitwise, I:
AND operator, logical, 1:1:

i-2

4-15
4-17

ANSI Standard Headers 9-2
argument promotion, default 4-4
Argument Substitution 8-8
argument, function 4-4
arithmetic conversions, usual 3-2
Arithmetic Operands 3-1
arithmetic operators 4-11
arithmetic operators, unary 4-8
arithmetic types 2-8
Array and Pointer Data Types E-3
array argument 7-3
array declaration 5-12
Array Declarators 5-12
array initialization 5-18
array subscript operator, [] 4-3
Array Subscripting 4-3
array type 2-7
array type conversion 3-4
arrow operator, - > 4-5
ASCII character set 1-9
asctime Function 19-4
asin Function 12-2
assert Macro 9-6
assignment expression 4-19
Assignment Operators 4-19
associativity of operators 4-1
asterisk punctuator, * 2-16, 5-11
Asterisk, EOM sub-command C-17
atan2 Function 12-3
atan Function 12-2
atexit Function 17-10
atof Function 17-2
atoi Function 17-2
atol Function 17-3
auto storage class 5-2
automatic storage duration 2-6

HA17-00

B

\ b backspace escape sequence 1-11,

2-13

backslash character, \ 1-2, 1-9

backslash-character escape sequence, \ \

2-13

backspace escape sequence, \b 1-11,

2-13

basic character set 1-9

basic types 2-7

binary stream 16-3

Binary Stream Buffering 16-5

bit-field declaration 5-5

bit-field structure member 5-5

bitwise AND assignment operator, cI:=

4-19

Bitwise AND Operator 4-15

Bitwise Exclusive OR Operator 4-16

Bitwise Inclusive OR Operator 4-16

bitwise operators 4-1, 4-13,4-15,4-16

Bitwise Shift Operators 4-13

block 6-2

block identifier scope 2-4

block structure 2-4, 6-2

bold type convention XVll

braces punctuator, {} 2-16, 5-17, 6-2

brackets punctuator, [] 2-16, 4-3,

5-12

break Statement 6-6, 6-8

broken-down-time type 19-1

bsearch Function 17-12

BUFSIZ 16-1, 16-13

byte 4-9

HA17-00

Index

c
C Calling Sequence D-2
C Compiler Options 1-4
C program 1-1
C Run Unit Invocation 1-7
call by value 4-4
Calling Environment 13-1
calloc Function 17-8
carriage-return escape sequence, \r

1-11, 2-13
case label 6-1, 6-4
case mapping functions 10-4
cast expression 4-10
Cast Operators 4-10
ceil Function 12-8
char type 2-6, 3-1, 5-3
character array initialization 5-18
Character Case Alapping Functions

10-4
Character Constants 1-2, 1-9, 2-13
Character Display Semantics 1-10
Character Handling < ct ype . h> 10-1,

B-1
character handling header 10-1
Character Input/Output Functions

16-25
Character Set 1-9, E-2
character string literal 1-2, 2-15
Character Testing Functions 10-1
character type conversion 3-1
character types 2-7, 3-4, 5-18
character-integer conversion 3-1
Characteristics of Floating Types

<float .h> F-4
Characters and Integers 3-1
CHAR_BIT macro F-2
CHAR_MAX macro F -3
CHAR_MIN macro F -2
char_t type 17-1
clearerr Function 16-34
CLK_ TCK macro 19-1, 19-2
clock Function 19-2
clock_t type 19-1, 19-2
collating sequence, character set 1-9
colon punctuator, 2-16, 5-4
Comma Operator 4-21

i-3

Index

comma operator" 4-21
command processor 1 7 -11
comment delimiters, / * * / 2-1 7
Comments 1-2, 2-2, 2-17, 2-18
Common Definitions <stddef. h> 9-4,

B-1
Common Extensions to ANSI C E-I0
common initial sequence 4-6
Communication with Host Environment

Extensions 20-9
Communication with the Host

Environment 17-9
Comparison Functions 18-4
compatible type 2-9, 5-3, 5-9
Compatible Type and Composite Type

2-9
Compilation Environment 1-1
Compiling and Linking C Programs 1-3
complement operator," 4-8
Components of Time 19-1
composite type 2-9
Compound Assignment 4-20
compound assignment operators 4-20
Compound Statement or Block 6-2
Concatenation Functions 18-3
conditional expression, ? 4-18
Conditional Inclusion 8-3
Conditional Operator 4-18
const type qualifier 5-9
const-qualified type 2-8, 3-3, 5-9
Constant Expressions 4-21
constant, character 2-13
constant, enumeration 2-3, 2-12
constant, floating 2-10
constant, integer 2-11
constant, primary expression 4-2
Constants 2-10, A-2

i-4

content, structure / union/ enumeration
5-7

contiguity, memory allocation 17-7
continue Statement 6-6, 6-7
control character 10-1, 10-2
control characters 1-9
conversion by assignment 4-20
conversion by return 6-8
conversion of function name 3-4
conversion, arithmetic operands 3-1
converSIon, array 3-4
conversion, characters and integers 3-1
conversion, explicit 3-1
conversion, floating and integral 3-2
conversion, floating types 3-2, 3-3
conversion, function 3-4
conversion, function arguments 4-5, 7-3
conversion, implicit 3-1
conversion, pointer 3-4
conversion, signed and unsigned integers

3-2
conversion, void type 3-4
conversions, data 3-1
conver.sions, usual arithmetic 3-2
Coordinated Universal Time (UTe 19-5
Copying Functions 18-1
cos Function 12-3
cosh Function 12-4
CP6 macro 8-14
CP-6 C Headers 9-2
CP-6 Preprocessing Pragmas 8-12
CP-6 Standard Invocation 1-7
ctime Function 19-5
ctype.h header 10-1

HA17-00

D

data streams 16-2
Data Types D-l
Date and Time <time .h> B-6

DATE macro 8-14
DBL_ macros F -4
debugging C-l
decimal constant 2-11
decimal digits 1-9
decimal-point character definition 9-1
declaration of function 5-13
declaration of pointer 5-11
Declarations A-8
declarations, data 5-1
declarator specifiers 5-1
declarator type derivation 2-8, 5-11
Declarators 5-10

4-7
4-7

decrement operator, postfix, -­
decrement operator, prefix, -­
default argument promotions 4-4
default initialization 5-18
default label 6-1, 6-4
#define 8-7
#defined preprocessing operator 8-3
definition 5-1
Definitions of Terms 9-1
DELTA C-1
DELTA Attached Commands C-7
DELTA Commands C-9
DELTA Conditional Execution C-5
DELTA Housekeeping/Miscellaneous

Commands C-8
DELTA Immediate Commands C-7
DELTA Overview C-l
DELTA Stored Commands C-4
DELTA Summary of Commands C-4
DELTA Toggle Commands C-8
DELTA commands C-3
DELTA EOM characters C-3
derived declarator types 2-8
derived types 2-7
Diagnostics 1-2
Diagnostics <assert. h> 9-6, B-1
difftime Function 19-2
Direct Input/Output Functions 16-30
Displaying Variables C-7

HA17-00

Index

div Function 17-13
division assignment operator, /= 4-19
division operator, / 4-11
div_t type 17-1
do Statement 6-5
domain error 12-1
dot operator,. 4-5
double constant 2-10
double type 2-7, 2-11, 5-3
double type conversion 3-2, 3-3
Dou ble ",Tord Aligned Parameters D-4
double-float conversion 3-2
double-quote-character escape sequence,

\" 2-13

E

- bitwise complement operator 4-7, 4-8
EDOM macro 9-3, 12-1
element type 2-7
#elif preprocessing directive 8-3
ellipsis, unspecified parameters, ...

5-13
#else preprocessing directive 8-4
else statement 6-3
Empty Macro Arguments E-11
empty statement 6-2
end-of-file indicator 16-1, 16-25
end-of-file macro, EOF 16-1
#endif preprocessing directive 8-4
enum type 2-7, 5-3, 5-6
enum-specifier 5-6
enumerated types 2-7
Enumeration Constants 2-3, 2-12
enumeration content 5-7
enumeration members 5-6
Enumeration Specifiers 5-6
enumeration tag 2-5, 5-7
enumerator 5-6
The Environment E-2
environment 1-1
environment functions 17-9
Environmental Considerations 1-9
environmental limits F-1
EOF macro 10-1, 16-1
equal-sign punctuator, = 2-16, 5-1, 5-19

i-5

Index

equal-to operator, == 4-14
equality expressions 4-14
Equality Operators 4-14
ERANGE macro 9-3~ 12-1, 17-4, 17-5,

17-6
errno macro 9-3, 12-1, 14-7, 16-35,

17-2
error conditions
Error Directive

12-1
8-12

error indicator 16-1, 16-25, 16-26
#error preprocessing directive 8-12
error, domain 12-1
error, range 12-1
Error-Handling Functions 16-33, 18-10
Errors <errno. h> 9-3, B-1
escape sequences 1-9, 1-10, 2-13
evaluation 2-16, 4-1
exception 4-2
exclusive OR assignment operator, -=

4-19
exclusive OR operator, - 4-16
executable program 1-1
Execution Environment 1-6
execution environment, character sets

1-9
execution environmental limits F-2
execution sequence 6-1
exi t Function 17-10
EXIT_FAILURE macro 17-1, 17-10
EXIT_SUCCESS macro 17-1, 17-10
exp Function 12-5
explicit conversion 3-1
explicit conversion operator 4-10
exponent-part, floating constant 2-10
Exponential and Logarithmic Functions

12-5
expressIon 4-1
Expression and Null Statements 6-2
expression statement 6-2
expression, primary 4-2
expression, unary 4-8
Expressions A-6
extern storage class 5-2
extern storage-class specifier 2-5, 5-2,

7-2
external data definitions 7-1

i-6

External Definitions 7-1, A-12
external linkage 2-4
external name, length of 2-3
External Object Definitions 7-4
Extra Arguments for Signal Handlers

E-12

F

\f form-feed escape sequence 1-11, 2-13
fabs Function 12-8
fclose Function 16-9
feof Function 16-34
ferror Function 16-34
fflush Function 16-9
fgetc Function 16-25
fgetpos Function 16-31
fgets Function 16-25
File Access Extensions 20-1
File Access Functions 16-9
file identifier 16-6
file identifier scope 2-4, 7-1

FILE macro 8-12, 8-14, 9-6
file name 16-6
FILE object type 16-1
file operations 16-6
file position indicator 16-6
File Positioning Functions 16-31
file, closing 16-6
file, creating 16-6
file, opening 16-6
FILENAME_MAX 16-2
Files 16-6
finform Function 20-3
float type 2-7, 5-3
float type conversion 3-2, 3-3
float-double conversion 3-2
float.h header 9-4, F-2
Floating and Integral 3-2
floating arithmetic functions 12-8
Floating Constants 2-10
Floating Point Data Types E-5
floating suffix, f or F 2-10
Floating Types 2-8, 3-2
floating-integer conversion 3-2

I floating-point numbers 2-10

HA17-00

floor Function 12-9
FL T _ macros F -4
fmod Function 12-9
fopen Function 16-10
FOPEN_MAX macro 16-2
for Statement 6-5
form-feed character 1-9, 2-2
form-feed escape sequence, \f 1-11,

2-13
Formatted Input/Output Functions

16-13
fpos_ t object type 16-1
fprintf Function 16-14
fputc Function 16-26
fputc function 1-10
fputs Function 16-26
fread Function 16-30
free Function 17-8
freopen Function 16-12
frexp Function 12-5
f scanf Function 16-1 7
fseek Function 16-32
fsetpos Function 16-32
ftell Functjon 16-33
full expression 6-1
fully buffered stream 16-6
function argument 4-4
function body 7-3
Function Calls 4-2, 4-4
Function Declarators (including

Prototypes) 5-13
Function Definitions 5-13, 7-2
function designator 3-3
Function Execution E-6
function identifier scope 2-4
function library 1-1, 9-5
function name argument 7-3
function name, length of 2-3
function parameter 1-6, 4-4
Function Pointer Casts E-ll
function prototype 2-4, 4-4, 5-14, 7-2
function prototype identifier scope 2-4

HA17-00

Index

function return 6-8
function type conversion 3-4
function types 2-6
function, recursive call 4-5
function-call operator, () 4-4
function-like macro 8-6
fwildfid Function 20-2
fwri te Function 16-31

G

General Utilities < stdli b . h> B-5
general utility library 17-1
getc Function 16-27
getchar Function 16-27
getenv Function 17-11
getopt Function 20-9
gets Function 16-28
gmt ime Fun ction 19-5
goto Statement 6-6
goto Statement 2-4, 6-6
graphic characters 1-9
greater-than operator, > 4-13
greater-than-or-equal-to operator, >=

4-13

H

Header Names 2-1, 2-17, 8-4, A-5
Headers 9-1
hexadecimal constant 2-11
hexadecimal digit 2-11, 2-13
hexadecimal escape sequence 2-13
horizontal-tab character 1-9, 2-2
horizontal-tab escape sequence, \ t 1-11,

2-13
HUGE_VAL macro 12-1, 17-4
Hyperbolic Functions 12-4

i-7

Index

I

identifier list 5-10
identifier name space 2-5
identifier scope 2-4
identifier type 2-6
identifier, linkage of 2-4
identifier, maximum length 2-3
identifier, reserved 9-2
Identifiers 2-3, 4-2, A-2
#if preprocessing directive 8-1, 8-3
if Statement 6-3
if-else statement 6-3
#ifdef preprocessing directive
#ifndef preprocessing directive

8-4

8-1, 8-4
8-1,

Implementation-defined Behavior E-l
implicit conversion 3-1
implicit function declaration 4-4
implicit initialization 5-18
#incl ude preprocessing directive 1-1,

1-2, 8-2, 8-4
inclusive OR assignment operator, 1=

4-19
inclusive OR operator, I 4-16
incomplete types 2-6
increment operator, postfix, ++ 4-7
increment operator, prefix, ++ 4-7
indirection operator, * 4-7
inequality operator, ! = 4-14
Initialization 2-6, 3-4, 5-17, 6-2
initialization in blocks 6-2
initialization of automatics 5-18
initialization of statics 5-18
initializer braces 5-1 7
initializer, string literal 3-4, 5-18
Input/Output <stdio. h> B-3
input/output header 16-1
int type 2-6, 2-12, 3-1, 3-2, 5-3
Integer Arithmetic Functions 17-13
integer character constant 2-13
Integer Constants 2-11
integer suffix 2-11
integer type 2-6
integer type conversion 3-1, 3-2
integer-character conversion 3-1

i-8

integer-floating conversion 3-2
integer-long conversion 3-1
integer-pointer conversion 3-4, 4-} 0
integer-unsigned conversion 3-2
integral constant expression 4-22
Integral Data Types E-3
integral promotions 3-}

integral type conversion 3-2
integral types 2-8
interactive device 16-6, 16-10
internal linkage 2-4
internal name, length of 2-3
interrupts 1-12
INT _MAX macro F -3
INT _MIN macro F -3
Introduction 16-1
Invoking DELTA C-l

IOFBF macro 16-1, 16-13
IOLBF macro 16-1, 16-13

I _IONBF macro 16-1, 16-13
isalnum Function 10-1
isalpha Function 10-1
iscntrl Function 10-2
isdigi t Function 10-2
isgraph Function 10-2
islower Function 10-2
isprint Function 1-10, 10-3
ispunct Function 10-3
isspace Function 10-3
isupper Function 10-3
isxdigi t Function 10-4
Iteration Statements 6-5

J

jum_buf array 13-1
Jump Statements 6-6

K

Keywords 2-2, A-I

HA17-00

L

_L66 macro 8-14
label name 2-4, 2-5
Labeled Statements 6-1
labs Function 17-14
language syntax summary A-I
LC_ALL 11-1
LC_COLLATE 11-1
LC_CTYPE 11-1
LC_MONETARY 11-1
LC_NUMERIC 11-1
lconv structure type 11-1
LC_TIME 11-1
LDBL_ macros F-4
ldexp Function 12-6
ldiv Function 17-14
ldiv_t type 17-1
leading underscore in identifier 9-3
left-shift assignment operator, «= 4-19
left-shift operator,« 4-13
Left bracket, EOM character C-17
length function 18-10
length of names 2-3
less-than operator, < 4-13
less-than-or-equal-to operator, <= 4-13
letter definition 9-1
lexical elements 1-2, 2-1
Lexical Grammar A-I
library 1-1, 9-1
library functions, use of 9-5
library summary B-1
library terms 9-1
Limits <float .h> and <limits .h> 9-4
limits, environmental F-l
limits, numerical F-2
limits, translation F-l
limits.h header 9-4, F-2
#line 8-11
Line Control 8-11
__ LIIE __ macro 8-12, 8-14, 9-6
line number 8-11

HA17-00

Linefeed, EOM character C-17
lines 1-2, 8-2, 16-2
lines, logical 1-2
lines, preprocessing directive 8-2
Linkages of Identifiers 2-4
list of keywords 2-2
Listings 1-2
Locale Con trol 11-2
locale.h header 11-1
localeconv Function 11-3
localization 11-1
Localization <locale. h> B-2
localtime Function 19-6
log10 Function 12-6
log Function 12-6
logarithmic functions 12-5
Logical AND Operator 4-1 7
logical AND operator, 1:1: 4-17
logical negation operator,! 4-9
Logical OR Operator 4-17
logical OR operator, I I 4-17
logical source lines 1-2
long constant 2-12
long dOll ble suffix, 1 or L 2-11

Index

long double type 2-7, 2-11, 5-3
long double type conversion 3-2, 3-3
long int type 2-6, 5-3
long integer suffix 2-12
long type 2-6, 5-3
long-integer conversion 3-2
long-unsigned conversion 3-2
longjmp Function 13-2
LONG_MAX macro F-3
LONG _MIN macro F -3
loop body 6-5
lsenv Function 20-10
L_ tmpnam macro 16-2
lvalue 3-3, 4-2, 4-7, 4-19
Lvalues and Function Designators 3-3

i-9

Index

M

macro definition scope 8-9
macro function versus definition 9-5
macro invocation 8-7
macro name 8-7
macro name definition F-l
macro names, predefined 8-14
macro parameters 8-7
r.nacro preprocessor 8-1
Macro Replacement 8-6
macro, redefinition of 8-6
main function 1-6
malloc Function 17-8
Mapping Binary Streams to the CP-6

File System 16-5
Mapping Text Streams to the CP-6 File

System 16-4
math.h header 12-1
Mathematics <math. h> B-2
MB_CUR_MAX macro 17-1
mblen Function 17-14
MB_LEN_l-IAX macro F-3
mbstovcs Function 17-16
mbtovc Function 17-15
member-access operators,. and -> 4-5
memchr Fun ction 18-6
memcmp Fun ction 18-4
memcpy Fun ction 18-1
memmove Function 18-2
Memory Management Extensions 20-5
Memory Management Functions 17-7
memset Function 18-10
minus operator, unary, - 4-8
Miscellaneous Functions 18-9
mktime Function 19-3
modf Function 12-7
r.nodifiable lvalue 3-3
modulus function 12-7
Multibyte Character Functions 17-14
multibyte characters 2-13, 17-14, 17-16,

F-3

i-l0

multibyte functions 17-14, 17-16
Alultibyte String Functions 17-16
multidimensional array 4-3
Alultiple External Definitions E-ll
multiplication assignment operator, *=

4-19
multiplication operator, * 4-11
multiplicative expressions 4-11
lVlultiplicative Operators 4-11

\n new-line escape sequence
Name Spaces of Identifiers
name, file 16-6
named label 2-5, 6-1
NDEBUG macro 9-6

1-11, 2-13
2-5

Nearest Integer, Absolute Value, and
Remainder Functions 12-8

new-line character 1-2, 2-2, 8-2, 8-11
new-line escape sequence, \n 1-11, 2-13
NEXT, sub-command C-17
no linkage 2-4
Non-int Bit-field Types E-l1
Non-Local Jumps <setjmp .h> B-2
nongraphic characters 1-10, 2-14
nonlocal jumps header 13-1
not-equal-to operator, ! = 4-14
null character, \0 1-9, 2-15
Null Directive 8-14
null pointer 3-4
null pointer constant 3-4
null preprocessing directive 8-14
null statement 6-2
number, floating point 2-7, 2-10
Numeric Formatting Convention Inquiry

11-3
Numerical Limits F-2

HA17-00

o
object definitions 7-4
object types 2-6
object unit 1-1, 7-1
Object Unit Names D-7
object-like macro 8-6
octal constant 2-11
octal digit 2-11, 2-13
\ octal digit!; octal-character escape

sequence 2-13
octal escape sequence 2-13
offsetof macro 9-4
OPEN, EOM sub-command C-17
operand 2-16, 4-1
operating system 17-11
Operations on Files 16-6
operator, unary 4-8
Operators 2-16, 4-1, A-5
OR assignment operator, exclusive, - =

4-19
OR assignment operator, inclusive 1=

4-19
OR operator, exclusive, - 4-16
OR operator, inclusive I 4-16
order of evaluation of expressions 4-1
order of memory allocation 17-7
ordinary identifier name space 2-5
Other Arithmetic Types E-l1
Other Operands 3-3

p

parameter 7-2
parameter type list 5-13
parameter, ellipsis, ... 5-13
parameter, function 4-4
parameter, main function 1-6
parameters, program 1-6
parentheses punctuator, () 2-16, 5-13
parenthesized expression 4-2
permitted form of initializer 4-22
perror Function 16-35
Phrase Structure Grammar A-6
physical source lines 1-2
PL-6 Receiving Sequence D-2

HA17-00

Index

plus operator, unary, + 4-8
pointer arithmetic 4-12
pointer comparison 4-14
pointer conversion 4-10
Pointer Dec1arators 5-11
pointer operator, -) 4-5
pointer to function 7-3
pointer to function returning type 4-4
pointer type 2-7
pointer type conversion 3-4
pointer, null 3-4
pointer-integer conversion 4-10
pointer-pointer conversion 3-4
Pointers 3-4
position indicator, file 16-6
postfix decrement operator, -- 4-7
postfix expressions 4-2
Postfix Increment and Decrement

Operators 4-7
postfix increment operator, ++ 4-7
Postfix Operators 4-2
pow Function 12-7
Power Functions 12-7
Pragma Directive 8-12
precedence of expression operators 4-1
precedence of syntax rules 1-1
Predefined Macro Names 8-14, E-12
prefix decrement operator, -- 4-7
Prefix Increment and Decrement

Operators 4-7
prefix increment operator, ++ 4-7
preprocessing concatenation 1-2, 8-8
preprocessing directive lines 8-2
Preprocessing Directives 1-2, 8-1, A-12
Preprocessing Numbers 2-2, 2-18, A-6
preprocessing tokens 1-2, 2-2, 8-2
PREV, EOM sub-command C-17
Primary Expressions 4-2
printf Function 16-22
printing character 1-10, 10-1, 10-3
program diagnostics 9-6
Program Execu tion 1-6
program file 1-1
program Image 1-1
program name, argv [0] 1-6
program parameters 1-6
Program Startup 1-6

i-II

Index

program structure 1-1
Program Termination 1-8
promotions, default argument 4-4
promotions, integral 3-1
prototype, function 2-4, 4-4, 5-14, 7-2
Pseudo-Random Sequence Generation

Fun ctions 17-6
ptrdiff_t type 9-4
Punctuators 2-16, A-5
putc Function 16-28
put char Function 16-29
puts Function 16-29

Q

qsort Function 17-12
qualified types 2-8
qualified version 2-8
question-mark escape sequence, \? 2-13

R

\r carriage-return escape sequence 1-11,
2-13

raise Function 14-7
rand Fun ction 17-6
RAND_MAX macro 17-1, 17-6
range error 12-1
realloc Fun ction 17-9
recursive function call 4-5
redefinition of macro 8-6
reentrancy rules 1-12
referenced type 2-7
register storage class 5-2
relational expressions 4-13
Relational Operators 4-13
remainder assignment operator, %= 4-19
remainder operator, % 4-11
remove Fun ction 16-7
rename Function 16-7
Rescanning and Further Replacement

8-9
Reserved Identifiers 9-2
reserved words 2-2

i-12

restore calling environment function
13-2

return Statement 6-6, 6-8
Ret urning Fun ction Results D-6
rewind Function 16-33
right-shift assignment operator, > >=

4-19
right-shift operator,» 4-13
rvalue 3-3

s
save calling environment function 13-1
scalar types 2-8
scanf Function 16-22
SCHAR_MAX macro F-2
SCHAR_MIN macro F-2
scope of externals 7-4
Scope of Macro Definitions 8-9
Scopes of Identifiers 2-4, E-I0
Search Functions 17 -11, 18-6
Searching an d Sorting Utili ties 17-11
SEEK_CUR macro 16-2
SEEK_END macro 16-2
SEEK_SET macro 16-2
Selection Statements 6-3
self-referential structure 5-8
semicolon punctuator,; 2-16, 5-1, 6-2
send signal 14-7
separate compilation 1-1
sequence points 4-1, 6-1
sequencing of statements 6-1
setbuf Function 16-13
setjmp Macro 13-1
setjmp.h header 13-1
setlocale Function 11-2
setvbuf Function 16-13
shift expressions 4-13
shift operators 4-13
shift state, change in 17-15
shift states 17 -15
short int type 2-6, 5-3
short int type conversion 3-1
short type 2-6, 5-3
SHRT _MAX macro F-3
SHRT _MIN macro F-3
side eHects 4-1

HA17-00

SIGABRT macro 14-1
SIGABRT Signal 14-3
SIGALRAI Signal 14-3
sig_atomic_t type 14-1
SIG_DFL Macro 14-2
SIG_ERR Macro 14-2
SIGFPE macro 14-1
SIGFPE Signal 14-3
SIGHUP Signal 14-4
SIG_IGN Macro 14-2
SIGILL macro 14-1
SIGILL Signal 14-4
SIGINT macro 14-1
SIGINT Signal 14-4
signal Function 14-6
signal handler 1-12
Signal Handling <signal. h> B-3
Signal Handling and Sending 14-6
Signal Handling Macros 14-2
Signal Types 14-2
signal.h header 14-1
signals 14-1
Signals and Interrupts 1-12
Signed and Unsigned Integers 3-2
signed char type 2-6
signed char type conversion 3-1
signed character 3-1
signed integer types 2-6, 2-11, 3-2
signed type 2-6, 5-3
significand part, floating constant 2-11
SIGSEGV macro 14-1
SIGSEGV Signal 14-5
SIGTERM macro 14-1
SIGTERM Signal 14-5
Simple Assignment 4-19
simple assignment operator, = 4-19
sin Function 12-3
single-quote-character escape sequence,

\' 2-13
sinh Function 12-4
sizeof Operator 4-9
sizeof operator 4-7
Sizes of Integral Types <limits. h> F-2
size_ t type 9-4
sleep Function 20-11
sort functions 17-11

HA17-00

Index

source character set 1-9
Source File Inclusion 8-4
source files 1-1
source text 1-1
space character 1-2, 1-9, 2-2
Specialized Identifiers E-I0
specify signal handling 14-6
sprintf Function 16-22
sqrt Function 12-8
srand Function 17-7
sscanf Function 16-23
standard header, float. h 9-4, F-2
standard header, limits.h 9-4, F-2
standard header, stdarg.h 15-1
standard header, stddef. h 9-4
standard headers, ANSI 9-2
standard streams 16-2, 16-6
state-dependent encoding, no 17-14,

17-15
Statements 6-1, A-II
Static Functions C-8
static storage duration 2-5
static storage duration and reentrancy

1-12
static storage-class specifier 2-4, 2-5,

5-2, 7-2
stdarg.h header 15-1
__ STDC __ macro 8-14
stddef.h header 9-4
stderr file 16-2
stdin file 16-2
stdio.h header 16-1
stdlib.h header 17-1
stdout file 16-2
storage allocator 4-9
storage duration 2-5
Storage Durations of Objects 2-5
storage order of array 4-3
storage-class declaration 5-2
Storage-Class Specifiers 5-2
strcat Function 18-3
strchr Function 18-7
strcmp Function 18-5
strcoll Function 18-5
strcpy Function 18-2
strcspn Function 18-7
Stream Buffering 16-3

i-13

Index

stream, fully buffered 16-6
stream, line buffered 16-3
stream, standard error, stderr 16-2,

16-6
stream, standard input, stdin 16-2,

16-6
stream, standard output, stdout 16-2,

16-6
stream, unbuffered
Streams 16-2
strerror Function
strftime Function

16-3

18-10
19-6

String Conversion Functions 17-2
string definition 9-1
String Function Conventions 18-1
String Handling <string. h> B-6
string handling header 18-1
string length 9-1, 18-10
String Literals 1-2, 1-9, 2-15, 4-2,

5-18, A-4
string.h header 18-1
strlen Function 18-10
strncat Function 18-4
strncmp Function 18-5
strncpy Function 18-3
strpbrk Function 18-7
strrchr Function 18-8
strspn Function 18-8
strstr Function 18-8
strtod Function 17-3
strtok Function 18-9
strtol Function 17-4
strtoul Function 17-5
Structure and Union Data Types E-5
Structure and Union Members 4-5
Structure and Union Specifiers 5-4
structure content 5-7
structure declaration 5-4
strucfure initialization 5-18
structure member name 2-5
structure reference 4-5
structure tag 2-5, 5-7
structure/union arrow operator, -> 4-5
structure/union dot operator,. 4-5
structure/union member name space

2-5

i-14

stru ct ure / union type 2-7, 5-5
Structuring Programs 1-1
strxfrm Function 18-6
subscript operator 4-2
su bscripting, explanation of 4-3
subtraction assignment operator, -=

4-19
subtraction operator, - 4-11
suffix, floating constant 2-10
suffix, integer constant 2-11
Summary of Floating-Point

Representation F-6
switch body 6-4
switch case label 6-1, 6-4
switch default label 6-1, 6-4
svi tch Statement 6-3, 6-4
syntax notation xvii
syntax rules, precedence of 1-1
syntax summary, language A-I
system Function 17-11
System Information <ut s_name . h> B-7

T

\t horizontal-tab escape sequence 1-11,
2-13

tab characters 1-9
tabs, white space 2-2
Tab Character, EOM character C-17
tag name space 2-5
tag, enumeration 5-7
tag, structure/union 5-7
Tags 5-7
tan Function 12-4
tanh Function 12-5
tentative definition 7-4
text stream 16-2
Text Stream Positioning 16-5
The C Library E-7
The fortran and asm Keywords E-11
The Preprocessor E-6
The SIGUSRl and SIGUSR2 Signals

14-6
time and date header 19-1
time components 19-1
Time Conversion Functions 19-4

HA17-00

time Function 19-4
__ TIME __ macro 8-14
Time Manipulation Functions 19-2
time.h header 19-1
time_t type 19-1
tm structure type 19-1
TM_L66 macro 8-14
tmpfile Function 16-8
TMP _MAX macro 16-2
tmpnam Fun ction 16-8
Tokens 1-2, 2-2, 8-2, A-I
tolover Function 10-4
touch Function 20-1
toupper Function 10-4
translation environment 1-1
Translation Limits F-l
Translation Phases 1-1
Treatment of Error Conditions 12-1
Trigonometric Functions 12-1
Trigraph Sequences 1-9
TS_CP6 macro 8-14
type category 2-8
type conversion by return 6-8
type conversion rules 3-2
type conversions 3-1
type declaration 5-11
Type Definitions 5-16
Type Names 5-15
type of string 4-2
Type Qualifiers 5-9
Type Specifiers 5-3
type, character 2-7, 3-4, 5-18
type, compatible 2-9, 5-3, 5-9
type, composite 2-9
type, const-qualified 2-8, 5-9
type, function 2-6
type, incomplete 2-6
type, object 2-6
type, qualified 2-8
type, unqualified 2-8
type, volatile-qualified 2-8, 5-9
typedef declaration 5-2, 5-16
typedef specifier 5-2, 5-3, 5-16
Types 2-6

HA17-00

Index

u
UCHAR_MAX macro F-2
UINT _MAX macro F -3
ulimi t Function 20-11
ULONG _MAX macro F-3
uname Function 20-11
Unary Arithmetic Operators 4-8
unary expreSSIon 4-7
unary minus operator, - 4-8
Unary Operators 4-7
unary plus operator, + 4-8
unbuffered stream 16-3
#undef 8-9
#undef preprocessing directive 8-2, 8-9,

9-5
underscore character 2-3
underscore, leading, in identifier 9-3
ungetc Function 16-29
union content 5-7
union declaration 5-4
union initialization 5-18
union member name 2-5
union reference 4-5
union tag 2-5, 5-7
union type specifier 2-7, 5-3, 5-4
Universal Time Stamp (UTS) 19-4
UNIX -Like Invocation 1-8
unqualified type 2-8
unqualified version 2-8
unsigned character 3-1
unsigned constant 2-12
unsigned integer suffix, u or U 2-12
unsigned integer types 2-6, 2-12
unsigned type 2-6, 3-2, 5-3
unsigned type conversion 3-2
unsigned-integer conversion 3-2
UpArrow, EOM character C-17
Use of Identifiers E-2
Use of Library Functions 9-5
Useful Entries in the C Run-time Library

D-8
USHRT_MAX macro F-3
Usual Arithmetic Conversions 3-2
UTe 19-5
UTS 19-4

i-15

Index

v
\ __ •. __ ~:_~1 ~~l.... ___ ~~ ___ ~ •• _~ __
\ V VCl LH .. (11- LC1U C::)\ .. C1pC; ~C;y' UC;H~C;

2-13
va_arg Macro 15-2
va_end Macro 15-3
va_list type 15-1

, " .l.-.l..l.,

"Variable Argument List Access Alacros
15-1

Variable Arguments <stdarg. h> B-3
variable arguments header 15-1
va_start Macro 15-2
vcalloc Function 20-6
vertical-tab character 1-9, 2-2
vertical-tab escape sequence, \v 1-11,

2-13
vfprintf Function 16-23
vfree Function 20-7
Virtual Memory Management

<valloe. h> B-7
Virtual Memory Management Extensions

20-6
visibility of identifiers 2-4
vma.lloe Function 20-7
vmemini t Function 20-7
vmemserub Function 20-8
void 3-4
void expression 3-4
void type 2-7, 3-4, 5-3
void type conversion 3-4
volatile type qualifier 5-9
volatile-qualified type 2-8, 5-9

i-I6

vprintf Function
vrealloe Function
vsprintf Function

w

16-24
20-8
16-24

wehar _ t array initialization 5-18
wehar_t type 2-14, 2-15, 9-4
westombs Function 17-16
wetomb Function 17-15
while Statement 6-5
white space 1-2, 2-2, 8-2, 10-3
wide character 2-14
wide character constant 2-13
wide string literal 1-2, 2-15
Writable String Literals E-I0
Writing I/O Routines in PL-6 D-8

x
\x hexadecimal digits

hexadecimal-character escape
sequence 2-13

XBI_CLOSE_DCBS Subroutine D-9
XBI_GET_CP6_DCBNUMBER Subroutine

D-9
XBI_GET_ERRNO Subroutine D-9
XB$INIT_CLIB Subroutine D-9
XBI_SET_ERRNO Subroutine D-8
XBI_SET_STREAM_ERRNO Subroutine D-8

HA17-00

Technical Publications Remarks Form

TITLE CP-6 C Language Reference

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Your comments will be investigated by appropnate technical personnel

and action will be taken as required. Receipt of all forms Will be
acknowledged; however. if you reqUire a detailed reply. check here. 0

PLEASE FILL IN COMPLETE
ADDRESS BEWW.

l

FROM: NAME __ ___

TITLE

COMPANY __ __

ADDRESS __ __

ORDER NO. HA17-00

DATED JUNE 1990

DATE ____ _

::ASE FOLD AND TAPE -
ITE: U.S. Postal Service will not deliver stapled forms

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.39531 WALTHAM, MA

POSTAGE \A/ILL BE PAID BY ADDRESSEE

BULL HN Information Systems Inc.
ATTN: Publications - MA02-305C
Technology Park
Billerica, MA 01821-9904

111"11.1.1 •• 1.1.1.1 •• 11111.1 •• 1 •• 111111 ••• 1.1.1.1.1

Bull •

I
w
Z
:J
C)

9
c(.­
:::>
()

I
I
r

I
I
I
I
I
I
I ·---1

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

I
I
I
I
I
I
I
r

L.c

Bull HN Information Systems Inc.

Corporate Headquarters: Technology Park. Billerica. MA 01821-4199
Mexico: Hamburgo No. 64. Col Juarez Delegacion Cuauhtemoc. 06600 Mexico. D.F.

U.K.: Great West Rd .. Brentford. Middlesex TW8 9DH. England Italy: 32 Via Pirelli. 20124 Milan
Canada: 155 Gordon Baker Rd .. North York. Ontario. M2H 3P9 New Zealand: 14/16 Liverpool Street. Auckland 1

Asia: 4!F, Shu: on Centre. 6-8 Harbour Rd .. Wanchai, Hong Kong Australia: 124 Walker Street North Sydney. NS.W. 2060

Printed in U.S.A. HA17-00

