Honeywell SOFTWARE
SERIES 600/6000 |

INTEGRATED DATA STORE
REFERENCE MANUAL

Honeywell

SERIES 600/6000

INTEGRATED DATA STORE
REFERENCE MANUAL

SUBJECT:

General Description, Data Organization, Source Language, Programming Information, Operational Char-
acteristics, and Capabilities of the Integrated Data Store (I-D-S) System.

SPECIAL INSTRUCTIONS:

This manual, order number BR69, Rev. 0, is a reprint of CPB-1565B, dated January 15, 1971. The new order
number is assigned to be consistent with the overall Honeywell publications numbering system. The contents
of this reprinted manual are the same as for CPB-1565B. Both CPB-1565B and BR69, Rev. 0, completely su-
persede the previous edition (CPB-1565A) and incorporate the information published in TIB 1565A-1,
1565A-2, and 1565A-3. New features implemented in Series 600 System Development Letter 3.3 are also

included. New information and changes since the last edition are indicated by change bars; deletions are indi-
cated by asterisks.

INCLUDES UPDATING PAGES PUBLISHED AS ADDENDUM A IN AUGUST, 1971, WHICH IN-
CLUDE NEW FEATURES IMPLEMENTED IN SERIES 600 SYSTEM DEVELOPMENT LETTER
4.0 AND SERIES 6000 SYSTEM DEVELOPMENT LETTER B.

DATE:
January, 1971

ORDER NUMBER: BR69 (Formerly CPB-1565)
Rev. 0

Preface

This manual describes the Integrated Data Store (I-D-S) system, which is
an information-oriented method of integrating the operating functlon of a
business. I-D-S reduces the system and programming cost associated with
implementing some other types of integrated business systems. It uses

direct-access storage as an extension of memory and provides an efficient

data organization technique.

Since I-D-S is used to extend the functions of the COBOL language, the
reader should have a working knowledge of COBOL before using this manual.

The I-D-S program is identified by catalog numbers CD600H5.100 and
CD600H7.000 in the Program Library.

© 1968, 1969, 1970, General Electric Company, U.S.A.
© 1971, Honeywell Information Systems Inc.

Contents

Page

INTRODUCTION 1
DATA ORGANIZATION 3
I-D=S CHAINS + v v 4 o+ o o 4 o o o o o o o o o e e v v v i 4
Multiple Chains ¢ « o v v v v v v v v e e 5
STRUCTURE REPRESENTATION . © v v v 4 o o o o o o o o v v . 8
SUMMARY OF DATA STRUCTURES . v v v 4 v 4 o o o o o o v v . 12
Record ClassesS. .« . v & & v v v o o . e e e e e e 4 W 13
I-D=S RECORDS. + v + v v v v v v v 4 v e e e e e e e e 14
Linking Detail Records of a Chain . . + o « v . « . . . 15
Selecting laster Record of a Chain. e e . 15
Chain Ordering. « . v v v v v v v e v e, 16
Prime Chain 0. 17
Chain Processing. v v v v v v u .. 17
Chain Tables. v v v v v e e e e e 18
I-D-S PROGRAMMING LANGUAGE 23
IDENTIFICATION DIVISION. « v v v & o o o o v v v v . o . . 23
ENVIRONMENT DIVISION .+ + ¢ v ¢ 4 v v o o o o v v v v v . . 23
Configuration Section, IDS-Special-Names Paragraph. . . 25
Input-Output Section, File-Control Paragraph. 27

DATA DIVISION. .« & v ¢ v 4 v v v v e e e e e i e e, . . 28
File Description. + « v « e e e e 28
Complete I-D-S File Description Entry 29
Record Description. v v v v v v e e e u e 31
Complete I-D-S Record Description Entry 33
Type. « o o o o 0 o o L s e e e e e e e e e e e o 34
Retrieval Via« < . .. e e e e 35
Page-Range.« o .« v . .00 e e e e e e e 38
Place Near. . . v v v v 4 4 o v v v v v e e e, 40
Interval. o . o 0000 s e e e e e e e e 41
Authority . . . o o v . L L0 0 e s e e e e e e e 42
Chain Definition. o e e e e e e e . 43
Complete Chain Definition Entry 44
Haster/Detail . o . o v .« o v . v e e e e e e 45
Chain-Order « v v v v v v v v e e e e 47
Linked Prior. « v v v v v v v v e e e e e 50
Randomize o . 0 0 .. e e e e e e e e 51
bDuplicates. . v « v ¢ v v v v v e e e, .. 52

iii

iv

Ascending/Descending. . « .« « « <« « o . .
Select. o« o & ¢ ¢ ¢ o e e e e e e e e e .
Match-Key . . + ¢« « ¢ ¢ ¢« ¢« o o « o o« o =
SYNonym « « « « o o o o o o o o s o s o o
Linked-Master . « « « o o o o o &+ o o o o

PROCEDURE DIVISION . &+ « ¢ o o o o o o o o o o
I-D-S Imperative Statements
ClOSE v v v« o o o o o o o s o o « o o o o
DEDUYG ¢« &« o o v o o o o o« o o o o s o s s
Delet. v o« o« ¢ o o o o o o o o o o o o
GOo: o o o o o o o o o o o o o o o o o o =
Head. « ¢ ¢ ¢ ¢ o o o o o o o o o o =
Modify. o o + ¢ ¢« o ¢ o ¢ o e e e 4 e e
MOVE:e o & o o o o o o o o o o o o o o o =«
OpPeN. v ¢ « o o o o o o o o s o o o o +
RetrievVe. o« o o o« o o o o o o o o o =
Return. . . .« ¢ o« ¢ o o o o« o «
SOYte o ¢ ¢ o o o o o o o o s o o o
Store . . e e e e s e e e e e
I-D-S Condltlonal Statements. . + « .« o
Ife @ v 6 6 4 e o o o o s o o o o o e o .

Perform . . . ¢« o ¢ « o o o o o« o o

USE v ¢ o o o« o o o o o o o o o o o o o o

TRANSLATOR PROCESSING

PAGE EJECT AND COMDK LABELING. « + « @« ¢ « o
Page Eject in the Listing
COMDK Labeling. . . . « ¢« « o o o o« o « &

S IDS CONTROL CARD DESCRIPTION

SAMPLE OUTPUT PRODUCED BY THE I-D-S TRANSLATOR

DECK SETUPS. ¢ + ¢ « o o o o o o o o o o o o« =«
Translate and Compile
Translate, Compile, and Execute

OBJECT PROGRAM EXECUTION . « & ¢ o o o o o

. .

I-D-S DATA FILE STRUCTURE DESCRIPTIONS

DEFINITION STRUCTURE e e e e e e s
Communication Control Block e e e e e e e
Record Definition Entry . . . « ¢« « « .« .
Detail Definition . « ¢« ¢ ¢« & o o ¢« « + &
Master Definition
Field Definition. . « ¢ ¢ o « o o« o o« o =«
Control DefinitioN. « « & « ¢ o« o « o « =

SAMPLE OUTPUT. . « &« & o o o o s o

.QRD - RECORD DEFINITION . &« ¢« o o o o o » o =

.QDD - DETAIL DEFINITION . . ¢« « o« o ¢ « o« o =
.QMD - [ASTER DEFINITION . ¢ ¢ ¢ o & o o o o =
.QFD - FIELD DEFINITION. . . . « « ¢« o « « « =
.QCD — CONTROL DEFINITION. .« ¢ « « o« o « o + =«

101

101
103
104
107
110
112
114
116
120
121
122
123
124

OPERATIONAL CHARACTERISTICS

I-D-S DATA FILE INITIALIZATION
CREATING AN I-D-S DATA FILE

Creating a Permanent I-D-S Data File.
Creating a Temporary I-D-S Data File.
Mixing Temporary and Permanent Files.,.

ACCESSING AN I-D-S FILE. v ¢ v 4 v o o«
Subfile Allocation. « « « « .« + . .
Subfile Deallocation.

I-D-S JOURNAL FILE . . ¢ v ¢ o o o o o =
I-D-S Journal File Configuration. .
Journal Record Format
Closing Journal Files
Journal Override.

Journal File Map. .« « « o o o o o
RECOVING AN I-D-S DATA FILE.« . .
I-D-S EXECUTION REPORT . + v ¢ v o o o«

MEMORY I[IANAGEMENT

ASSIGNMENT OF I-D-S BUFFERS AND WORK AREAS

With a $ USE Card .« « « « v v o o .
Without a $ USE Card.
SLAVE I-D-S CONTROL TABLE. &+« v + @« & o« .

Total Control Entry« . .

Individual File Entries
I-D-S INVENTORY RECORDS. . v +v v o o«
Buffer Format . . . « ¢« ¢ « « « . .

Buffer Strategy for Inventory Buffer.

Record Description.
I-D=-S DATA PAGES . . ¢ ¢« ¢ ¢ ¢ v o o o .
Buffer Format
Buffer Strategy for Page Buffers. .
Page Description.
I-D-S DATA RECORDS .+ + ¢ v « o o v o o

I-D-S UTILITY PROGRAIIS AND SUBROUTINES
PERMANENT I-D-S DATA FILE. . . . « « « .

TEMPORARY I-D-S DATA FILE.« .
TEMPORARY AND PERMANENT I-D-S DATA FILE.

-

UTILITY PROGRAM AND SUBROUTINE DESCRIPTIONS.
Randomizing Analyzer/Calc Pre-Load Sort

Program (QUTC) . . . +

-

Storage Tape Dump/Print Utility Routine
Page Initialize Utility Routine (QUTI).
Journal Tape Dump Utility Program (QUTJ). . . .

Data Base Load/Print Utility Routine

Utility

(QUTD) .

(QuTL) . .

Journal Record Selector Utility Program (QUTP).

Page

125

125
126
126
129
131
132
132
136
136
137
137
142
143
144
145
147

151

151
151
152
154
155
156
158
158
159
159
1ol
161l
le6
167
173

177

177
178
178
179

180
187
192
195
199
206

Page

bLxecution Information Report Program (QUTR) 210
Selected Record Sort utility Program (QUTS) 213
File Utility Program (QUTU) . + o o o o + o o o o « o« = 217
Directive Processor and Service Subroutine (.QDIR). . . 232
Trace and Print Record, Debuyg, and Utility Subroutine
(WQSTC) e v & & o ¢ o o« o o o o o o o o o« o o« o o = 237
Verify and Print Utility Subroutine (.QUTF) 244
APPENDIX A. RESLERVED WORDS 249
APPENDIX B. I-D-S ERROR CONDITIONS 251

APPENDIX C. GE-600 COBOL/I-D-S/FORTRAN COMMUNICATION

AND OVERLAYING 257
APPENDIX D. PRIIARY SUBROUTINES 297
APPENDIX E. SAMPLE DECK SETUPS 299
APPLNDIX F. REFERENCE CODE MANIPULATION 307
INDLX 309

vi

lllustrations

14.
15.
le6.
17.
18.
19.
20.
21.
22.

23.

Chain Association « ¢ v v v 4 . . .
I-D-S Chain « v 4 ¢ v v v v ¢ 4« v e e e e e
Master Record of Two Chains
I-D-S Shorthand « ¢ v v v « « o .
Purchase Order Data Structure + . . .
Chain Network v v & v v v v v v v o o .
Legal and Illegal I-D-S Data Structures
I-D-S RecOord. « v &« v ¢ v 4 o o o « v o o o o W
Chain Processing. « o o o o o o o o o o o o « .
Chain with Dummy Reference Codes.
Chain Table After Retrieval of Detail 2
Chain Table Backed Up to Detail 1

Chain Table for a PRIOR Processable Chain After
Retrieval of Detail 1. « « « o « .

Chain Table after Direct Retrieval of Detail 2.
Chain Table--PRIOR and HEADED
I-D-S Compilation and Execution Process
I-D-S Definition Structure.
Format of Communication Control Block Entry . .
Format of Record Definition Entry
llachine Format for Detail Definition Entry. . .
Machine Format for llaster Definition Entry. .

Machine Format for Field Definition Entry . . .

Machine Format for Control Definition Entry . .

Page

11
12
14
18
19
19

20

20
21
22
92
102
103
105
107
110
112

114

vii

Figure

24.
25.
26,

27A.

27B.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38-42.

43.

viii

I-D-S Data File Structure
1-D-S Data File Allocation.

I-D-S Data File Deallocation. . . .

. - . . . - .

Operational Sequence to Re-establish an I-D-S

Data File. . .« « « « ¢« ¢« « « .
Alternate Operation to Re-establish
Labeled Common .QAREA
Slave I-D-S Control Table
Inventory Record Buffer
Inventory Record. . . . « ¢ « « .+ .
Data Page Buffer.,
Page Buffer Activity Table.
Chain Concept of Buffer Activity. .
Base Page Header Record
Pagette Header Record
Data Record . « « « ¢ o o« o o« o« o &«
Sample Output « « « &

Sample .QSTC Output « « « .

an I-D-S Data

Page

145
146
153
154
158
160
163
166
167
168
171
173
230

243

1. Introduction

Integrated Data Store (I-D-S) 1is an information-oriented method of
integrating the operating functions of a business. Its use reduces the
high systems and programming costs associated with implementing some
other types of integrated business systems. As a general-purpose system,
it uses mass random access storage as an extension of memory and
provides an efficient data organization technique. In addition, a simple
but effective language is used to operate the system.

Present procedural languages offer programming convenience in field and
sequential record processing. However, they are 1inadequate for
processing records in the random environment of mass storage. The I-D-S
language provides a simplified means for record processing in the
environment of mass random access storage.

Language statements such as those for read/write operations produce
serial rather than random actions. Ordinarily, the burden of organizing
data records and designing the logic involved in processing and
maintaining these records is placed upon the programmer. ilany of these
processing and maintenance functions are performed automatically by the
I-D-S software system.

2. Data Organization

Data organization refers to the interrecord relationships established
within the I-D-S data-file. The record is the basic unit of data. Record
association is achieved through chains which provide cross-reference
linkages between records. These chains provide the integrating force
which is implied in the name Integrated Data Store.

L

Next Next
Record In Record In
#176 Chain X #849 Chain X
147 176
Chain X
Next
Record In
#147 Chain X
849

Figure 1. Chain Association

I-D-S records are stored only once. Conventional approaches to file
organization often require records, or certain fields in the records, to
be repeated in several files. With the ability to integrate records into
any number of chains (as required by the system), the same data fields
are available no matter which of 1its <chains are processed. This
technique has five important advantages:

1. Additional space required for duplicate records is eliminated,
resulting in a reduction in the total storage capacity
regquired.

2. The work of data maintenance is greatly reduced, as there 1is
only one record to retrieve and modify.

ly
modified is eliminated. Since there 1is only one copy, any
incorrect information will be quickly recognized and corrected.

3. The possibility that one copy of a record will not be proper

4, All reports drawn from the file will be consistent, since there
is only one set of facts (records).

5. Due to the linking capability, the homogeneity of a file needs
no longer to exist and records of different types may Dbe
intermixed to achieve a better utilization of the storage
capacity.

I-D-S CHAINS

An I-D-S chain is illustrated in Figure 2.

All records in a chain are associated in a closed loop, with the last
detail linked back to the master. Its characteristics are:

Contains one master record and any number of detail
records

Links records together in an endless loop

Associates related records in meaningful sequences

Records are to be defined by the user as to their relationship within a
chain--as master or detail records. These relationships are specified,
when the chaining relationship is described, in the data description.

A chain is a set of records that are linked together to form a logical
relationship between records.

A lMaster Record is the head of a set of records that make up a chain.
There must be one and only one Master Record for each chain. Detail
records are the other records that are members of the set or chain.

MASTER

Detail 1 Detail n

N
DN

Detail 2

DN

Figure 2. I-D-S Chain

Multiple Chains

Chains exist for two separate but closely related reasons. First, the
source documentation or problem analysis shows that a portion of the
information is often cross-referenced. An example is a personnel record
with a variable number of deductions and work experiences.

This kind of information is easily structured by building a personnel
master record type. Two chain types are created containing the personnel
record as the master record. As many deduction records as necessary are
linked into the deduction chain as details. Work experience for the
employee involved is handled in a 1like manner. Both chains are now
linked to the same master record, as shown in Figure 3.

The second case involves the 1logical association of several source
documents. Relating all the purchase order information for a given
vendor to the vendor information is an example. A purchase order chain

asscciates all of the purchase order records with their vendor record.
I-D-S chains have several structural aspects which should be emphasized:
All similar chains are grouped by chain type.

A chain type is named with a symbolic name. There will be as many
chains of the chain type as there are master records for that chain
type.

Each chain can have only one master record. Its type is the same
for all chains of the same type.

Any number of detail records may be in a chain. A chain may even
contain more than one type of detail record.

Detail records cannot be stored unless their master record already
exists in the file.

Whenever a master record is deleted, 1its entire chain is also
removed.

WORK
XPERIENCE } DEDUCT ION
#1 #1
PERSONNEL
RECORD
MASTER
WORK
EXPERIENCE DEDUCT ION
CHAIN | A) CHAIN
WORK
EXPERIENCE DEDUCT ION|
#2 #2
WORK
EXPERIENCE DEDU;TION
#n "

Figure 3. Master Record of Two Chains

The master record of the chain contains a code which references the
first detail in the chain.

A record may be defined to be a member in as many chains as are
required. It may be defined as master in one chain and detail in
another,

A record cannot be defined as a detail +to itself, directly or
indirectly.

As records are stored in the system, they are automatically 1linked
into their defined chains.

When a record is deleted, the chains in which it is a detail record
are automatically modified to relink around the deleted record,
which will eventually be physically deleted.

STRUCTURE REPRESENTATION

A special graphic technique called I-D-S shorthand has been developed to
display records and their chaining relationships.

Its use 1is particularly important in developing an over-all view when

planning a database structure. This technique (see Figure 4) uses a
block shape to designate a record type--employee (record type 1) and
deduction (record type 2)--and an arrow connecting two Dblocks to

designate a chain type. The arrow points from the master to the detail,
as shown in Figure 4.

Employee
(master record)

Deductign Chain
L 4

Deduction
(detail record)

(Expanded Version)

Employee
(master))
Deduction #1 (Deduction) Deduction #n
(detail) CHAIN (detail)
Deduction #2)
o (detail)

Figure 4. I-D-S Shorthand

In the foregoing example of I-D-S shorthand, the vertical
block-arrow-block sequence carries the following message:

1. There are a number of records in the system of the master type
(one for each employee).

2. Each of these records is the master of a chain of the specified
type (deduction).

3. There are a number of records of the detail type (deductions 1,
2, 3, 4, etc.) in each such chain.

The purchase order data structure (Figure 5) shows how a vendor record
and a particular order record from the example shown in Figure 6 is
normally structured in the I-D-S system.

Vendor
Record

VENDOR 34692

Purchase Order Chain

ORDER 147A l
ITEM 1 Purchase Inventory
Order Item
ITEM 2 Record Record
ITEM 3

Order Item Chain

l Inventory on Order Chain
Order /
Item
Record

Figure 5. Purchase Order Data Structure

The purchase order contains four groups of information.

1. Information about the vendor--such as his name, address, and
vendor code.

2. Information about the order--such as the order number, due
date, mode of transportation, and dollar value.

3. Information about the order item--such as delivery date,
guantity, unit price, and extended dollar value.

4. Information about the inventory item—--such as its
identification and description.

The data structure in Figure 5 shows all four groups and their chain
associations with only four blocks and three arrows. To expand this
structure, four different record types would be designed to carry the
information contained in the four groups:

Vendor record--There would be a vendor record for every vendor with
whom the business is concerned:

1. It would be the master record of a purchase order chain.

2. Thus, the vendor record is only a master.

Purchase order record--There would be an order record for each
order currently stored in the system:
1. It would be a detail in the purchase order chain.

2. Each order, in turn, would be the master of an order item
chain.

3. Thus, the purchase order record is both a master and a
detail.

Order item record--There would be an order item record for each
item on each order:

1. It would be a detail in the inventory on order chain.
2. It would be a detail in the order item chain.

3. Thus, the order item record is a detail in two chains.

10

Inventory item record--There would be an inventory record for each
inventory item currently stored in the system:

It would be the master record of the inventory on order chain.

One expanded data structure concerning Vendor # 34692 for the above
records is shown in Figure 6.

Vendor
[#34692
Order Purchase Order
y #122A Order #2074 | ~
Chain
} L
()
Order
f-— #147A
Inventory Item #1 PSESZise Item #3 Inventory
Item CCC Qey. 10 Item Qty. 25 Item BBB
I I Chain 3
Item #2
— Qty. 20 ‘j
Inventory
_ Item #1 On Order Item #1 AJ
Qty. 15 Chain Qty. 5
_ J L J
Inventory
Item AAA

Figure 6. Chain Network

11

SUMMARY OF DATA STRUCTURES

By using I-D-S$ shorthand, very complex data structures may be

in a condensed and understandable form. Figure 7 shows a quick
of data structures which are legal and illegal within I-D-S. A
definition (item 6), where the master becomes its own detail,

allowed.

12

presented
summary
circular

is

7

Figure 7.

Illegal
Structure

Legal and Illegal I-D-S Data Structures

not

Record Classes

I-D-S provides three distinct record classes. The designation of the
data records as to class is the option of the systems designer and is
based on the storage and retrieval requirements of these data records.

1-D-5 record processing requires that there be some aspect of every
record which makes it unique, or different from any other record. All
records are unique by virtue of their reference code. Some records are
also unique because they contain one or more data fields--such as a
drawing number, order number, and pay number--where no duplicate vlues
are allowed.

CALCULATED RECORDS. Any set of records within the system can be
classified as a calculated record. Its storage and retrieval are based
upon the contents of one or more data fields. The contents of these
fields are externally specified values--such as employee numbers, part
numbers, or order numbers. The contents of these fields are processed
through a randomizing procedure which determines a page number for an
initial storage location. The record is stored on this page. If space is
not available on the calculated page, the record is stored on the next
successive page with available space. The subsequent retrieval of this
record follows this same basic procedure.

SECONDARY RECORDS. Secondary records are wunique by their chain
relationship to a specified type of master record. The item records
associated with a purchase order (master) record are good examples of
secondary order records. These records are stored and retrieved by first
locating the purchase order record and then stepping through the order
item chain to locate the item record by comparison of its item number
field.

PRIMARY RECORDS. Records designated in the data description as primary
are unique only as a result of their reference codes. Generally primary
records are used in place of calculated records where the external
assignment of identification fields, such as part number or order
number, is not required. In these cases, an internally generated number
(the reference code) is assigned and used as the key field for storage
and retrieval.

13

I-D-S RECORDS

The I-D-S record contains a set of data fields which colle
describe the contents of the record. I-D-S augments these records w
identification and chain fields (or chain pointers) as shown in Figure
8.

77
+ r - —
——
Identification Data Fields Chain Fields
Field

Figure 8. I-D-S Record

There is at least a chain field generated for each chain the record
participates in.

The chain fields contain the reference codes of other I-D-S records.
They point from one record to the next, creating a circular association
of records (see Figure 1).

These associations are automatically processed according to the data
descriptions and the procedural commands executed. The arrows in Figure
1 indicate the 1linking actually carried out through storing the
reference code of one record in the body of the prior record.

A reference code is the relative logical (as opposed to physical)
address of a data record. It consists of a page number and a line
number. The reference code is used by I-D-S to develop and assign a
unique address to each data record as it is stored on the mass storage
device. Once a record is assigned a reference code, it maintains that
reference code until it is physically deleted.

The reference code in its 24-bit binary form is available to the user in
a communication area called DIRECT-REFERENCE immediately after the
record is stored. For internal use, I-D-S uses a binary number of the
form:

XXXXXXYY

where X is the octal page number and Y is the octal line number.

14

The page number is a sequential number permanently assigned to each page
which defines where in the I-D-S environment the page is stored. It
occupies three character positions and permits 262,143 pages per I-D-S
file. At execution time page numbers are converted to actual mass
storage device addresses by the I-D-S mapping routine.

The line number defines where a record is stored within a page. Line
numbers are not sequential within the page because new records are
always stored at the end of a page. Line numbers of deleted records are
made available for use by new records; the first available line number
(the first line number not in use) is assigned to a new record as it is
stored into a page. The line number occupies one character and permits
63 line numbers per page.

For example, a reference code (as contained in DIRECT~REFERENCE) of
00010029 decimal becomes 00023455 when converted to octal. This then is
page 234 (octal), line 55 (octal).

Linking Detail Records of a Chain

In order to insert a new detail record in a chain, three steps are
required:

l. Physical storage space must be found.

2. The appropriate master and its chain must be selected.

3. The record must be inserted in that chain according +to the
chain ordering rules.

Selecting Master Record of a Chain

There are two rules under which the master record is selected for a new
detail record. These are:

1. Select Unique Master--This rule uses the record retrieval
criterion, established in the data definition for the master
record, to retrieve the particular master record indicated by
the data values currently stored in the match control field of
Working-Storage.

2. Select Current Master--This rule wuses the last record

processed, of the master record type, as the master record of
the new detail.

15

Chain Ordering

All chains in the Integrated Data Store sy

methods

3

ordered in of six

st e
selected by the system designer with the CHAIN-ORDER clause in

0
1)

the I-D-S language.

The CHAIN-ORDER clause must be used in each Master Chain Definition

entry.

The six

1.

16

options of the CHAIN-ORDER clause are:

Sorted--With this option all of the records of the chain are
maintained in a single sequence regardless of the number of
record types in the <chain. With this option the same
sorting-key(s) must be used to sort the various records.

Sorted Within Type--With this option the records of the chain
are maintained in sequence within record type, independent of
other types.

NOTE: When either of the sorted options is specified, details
are added to the chain based upon the contents of the
defined sort control fields of the detail records.

First--This option causes the detail to be added as the first
detail record in the chain relative to the master record.

Last--This option causes the detail to be added as the last
detail record in the chain relative to the master record.

Before--This option causes the insertion of the detail record
just before the current record in the chain. This option may be
used only in conjunction with the Current IMaster selection
rule.

After--This option causes the insertion of the detail record
just after the current record of the chain. This option may be
used only in conjunction with the Current IMaster selection
rule.

Prime Chain

Access time in present disc-type random access memories varies greatly,
since it depends on the position of the desired record relative to the
record last accessed. The I-D-S organization of records acknowledges
this factor of hardware design and stores new detail records as close as
possible to the master record of the chain. When a detail record is
specified as a detail in several chains, a prime chain may be chosen and
defined by the systems designer preparing the data description.
Selection of a prime chain should be based upon an estimate of the most
active chain. Thereafter, when an I-D-S page is retrieved which contains
the master record of a prime chain, it is highly probable that the
detail records of that chain will also be contained in that page or a
page closely associated with it. The prime chain is the chain used to
retrieve a secondary record by the RETRIEVE command, unless specified
otherwise by the data description.

Chain Processing

I-D-5 offers complete flexibility in the retrieval of records within a
chain by providing three methods of chain inter-linking.

Chain NEXT. The definition of a record as a memory of a chain
automatically provides the record with a chain-next field. This is the
manner in which all chains are constructed. Each record contains a
chain-next field which contains the reference code of the next record in
the chain.

Chain PRIOR (optional). I-D-S provides a chain-prior field for all
records in a chain when the chain is specified by the system designer as
prior processable. This field contains the reference code of the prior
record in the chain. This permits the chain to be processed efficiently
in a backward direction, as well as forward (through the automatic NEXT
chain field).

Chain IMASTER (optional). I-D-S provides a chain-master field for all
detail records in a chain when specified in the data description. This
field contains the reference code of the master record of the chain.
Retrieval of the master record is much faster with this ability to
address the master record directly from any detail in the chain.
Processing need not access all the detail records in the process of
seeking the master.

17

These methods are illustrated in Figure 9.

MASTER

\nx o =2
/ﬁow—t-ﬁ

NP [M NP TM
elr a r|ad
Detail #1 if Detail #n elE|E
Xlo}] e X g e
t r r t r
NP
T a
Detail #2 M H
X |O e
r
t r
Figure 9. Chain Processing
Chain Tables

Chain tables are used internally by I-D-S subroutines. A chain table 1is
built by I-D-S for each chain defined. The programmer can reference
selective information in the chain table, and a knowledge of what they
are and how I-D-S uses them can help in designing efficient chains.

A chain table comprises four entries: MASTER, PRIOR, CURRENT and NEXT.
Refer to "Chain Processing" for a description of these entries. As I-D-S
traverses a chain, the entries are updated with the reference codes of
the data records that are being retrieved.

Figure 10 shows a chain using dummy reference codes.

18

Master Record
Ref Code = 101

Detail 1 . Detail 3
Ref Code = 105 Chain A Ref Code = 407

Detail 2
Ref Code = 205

Figure 10. Chain with Dummy Reference Codes

To interpret the dummy reference codes: master record is 101, detail
record 1 is 105, detail record 2 is 205, and detail record 3 is 407.

Assume only the reference code of the master record is known. When I-D-S
is asked to get detail record 2 of chain A, I-D-S retrieves the master
record of chain A and traverses the chain until the detail record 2 is
found. While I-D-S is traversing the chain, it is updating the chain
table. When detail record 2 is found, the chain table appears as shown
in Figure 11.

Master 101
Prior 105
Current 205
Next 407

Figure 11. Chain Table After Retrieval of Detail 2

19

Although the chain is not PRIOR processable and is not LINKED TO MASTER,
detail 1 is directly available with a RETRIEVE PRIOR OF CHAIN A command.
Because of the PRIOR entry in the chain table (in Figure 11), I-D-S
would not traverse the chain forward through detail 3, master record,
etc., to locate detail 1 but would retrieve it directly at the location
stored at the PRIOR entry in the chain table. However, after detail 1 is
retrieved by "backing up," the record prior to detail 1 is not Kknown.
Therefore, the chain table would now appear as shown in Figure 12.

Master 1ol
Prior 000
Current 105
Next 205

Figure 12. Chain Table Backed Up to Detail 1

If a RETRIEVE PRIOR OF CHAIN A were executed at this point, I-D-S would
have to traverse the chain until it found the PRIOR (in this case, the
master) record.

If the chain had been defined as PRIOR processable, the chain table
would be updated as shown in Figure 13.

Master 101
Prior 101
Current 105
Next 205

Figure 13. Chain Table for a PRIOR Processable Chain
after Retrieval of Detail 1

20

If a chain were not PRIOR processable, I-D-S could back up one record as
though it were PRIOR processable if the prior record in the <chain had
been passed.

Assume that the reference code of detail 2 is known and the chain is
neither HEADED nor PRIOR processable. If a RETRIEVE DIRECT is executed,
the chain table is updated as shown in Figure 14.

Master 000 (Unknown)
Prior 000 (Unknown)
Current 205
Next 407

Figure 1l4. Chain Table after Direct Retrieval of Detail 2

Since the chain is neither PRIOR processable nor HEADED (LINKED TO
MASTER) and I-D-S did not pass the PRIOR record or the MASTER record in
getting to the CURRENT record, I-D-S does not know the reference code of
the MASTER or the PRIOR record in this chain. It knows where the NEXT
record is because of the chain-next field in detail record 2.

If the chain has been defined as PRIOR processable and HEADED and I-D-S
had retrieved detail 2 DIRECT, the chain table would appear as shown in
Figure 15.

21

In this case, MASTER and PRIOR references were available from the

Master 101
Prior 105
Current 205
Next 407

Figure 15. Chain Table--PRIOR and HEADED

fields in detail record 2.

22

chain

3. [|-D-S Programming Language

The source language of I-D-S is an extension of GE-600 Line COBOL;
therefore, formats and language specifications of COBOL must be adhered
to when preparing a source program.

IDENTIFICATION DIVISION

The purpose and usage of the Identification Division are identical with
those defined for GE-600 Line COBOL, with no special function for I-D-S.

Fixed paragraph names are used as keys in the division. They identify
the type of information contained in the paragraph. Paragraphs which may
be included in the division are:

IDENTIFICATION DIVISION.
PROGRAM-ID.

AUTHOR.

DATE-WRITTEN.
DATE-COMPILED.

SECURITY.

REMARKS .

ENVIRONMENT DIVISION

All portions of the Environment Division are used as defined by GE-600
Line COBOL, in addition, I-D-S includes the IDS-SPECIAL-NAMES paragraph
and the SELECT IDS sentence of the FILE-CONTROL paragraph.

The following illustration is an example of the Environment Division
with the use of these two I-D-S functions.

23

24

ENVIRONMENT DIVISTION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. GE-635.

.

OBJECT-COMPUTER. GE-635.

IDS-SPECIAL-NAMES.
IDS BLOCK...

INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT IDS file-name ASSIGN TO file-code-1.

I-0-CONTROL.
APPLY...

CONFIGURATION SECTION
IDS~SPECIAL-NAMES

Configuration Section, IDS-Special-Names Paragraph

Function: To indicate to the I-D-S translator which statements are to
be selectively translated. To allow definition of a unique
labeled common area for the generated structure of an TI-D-S
program. To allow RECORD, CHAIN and FIELD names to be
included with the generated structure. To indicate to the
COBOL compiler all translator generated sections and code are
to be suppressed from the COBOL source listing.

Format Option 1:

IDS-SPECIAL-NAMES.

ALL
PROCESS DEBUG STATEMENTS
LEVEL alpha-1 THRU alpha-2
Format Option 2:

IDS-SPECIAL-NAMES.

IDS BLOCK integer-1.

Format Option 3:

IDS-SPECIAL-NAMES.

INCLUDE STRUCTURE NAMES.

Format Option 4:

IDS-SPECIAL-NAMES.

APPLY LIST SUPPRESSION

Notes:

1. This paragraph may be omitted when its provisions are not used
in the source-program.

Rev. August 1971

25

26

The PROCESS DEBUG STATEMENTS option 1is a compiler directing
clause that allows the programmer to specify that all or
certain selected debugging statements in the source program are
to be processed. Debugging statements can be identified by a
single character (A-I) in column 7 of the coding form. When the
programmer wants all the debugging statements 1in the source
program processed, he specifies this by writing PROCESS ALL
DEBUG STATEMENTS. When the programmer wants certain debugging
statements processed, he specifies this by writing PROCESS
LEVEL alpha-1 DEBUG STATEMENTS. When this is done, only those
debugging statements with the specified character (alpha-1)
appearing in column 7 are processed.

In addition, the programmer can specify that a range of
debugging statements are to be processed by writing PROCESS
LEVEL alpha-1 THRU alpha-2 DEBUG STATEMENTS. When this is done,
all the debugging statements in the range specified (alpha-1
THRU alpha-2) are processed. Note that when debugging
statements identified by a single character in column 7 appear
in the source program and the PROCESS DEBUG STATEMENTS option
is not included in the source program, those statements with a
character in column 7 are unconditionally bypassed (i.e., not
processed). The PROCESS ALL DEBUG STATEMENTS option has no
effect on statements that have nothing, a hyphen, or an
asterisk in column 7.

Rev. August 1971

In option 2 the value of integer-1 may be 01 through 99.

If Option 2 is used, the labeled common area in which the I-D-S
generated structure is assembled will be identified by a symbol
of the form "I(integer-1)". If Option 2 is not used, the
default symbol for this area will be ".IDS..". (Refer to the
GE-600 Line General Loader Reference Manual, CPB-1008, for a
discussion of labeled common.)

Example:
IDS-SPECIAL~-NAMES.
IDS BLOCK 66.

This would cause the symbol "I66" to be used for the 1I-D-S
generated structure block.

Option 3 is used to cause the names of RECORDS, CHAINS and
FIELDS to be assembled into the definition structure of the
I-D-S-STRUCTURE SECTION.

Option 3 will have primary use for programs that use the TRACE
and PRINT RECORD, DEBUG, and Utility Subroutine .QSTC, (Chapter
8).

Option 4 gives the user the ability to suppress printing of all
translator generated coding from the COBOL source listing.

The following will be suppressed from the COBOL source listing:

a. All I-D-S generated structure within the Working-Storage
Section.

b. All generated calls to the I-D-S subroutines within the
Procedure Division.

c. The generated Macro calls within the I-D-§ Structure
Section.

d. All generated tables and constants.
e. All generated Enter Definitions.

The statements in IDS~SPECIAL-NAMES paragraph may be in any
desired order.

Rev. August 1971

26.1

INPUT-OUTPUT SECTION
FILE-CONTROL

Input-Output Section, File-Control Paragraph

Function: To assign an I-D-S file name and to specify the 1logical

Format:

device on which it resides.

FILE-CONTROL.

Notes:

SELECT IDS file-name ASSIGN TO file-code-1.

The SELECT IDS entry must be used only once to identify the
I-D-S data file.

Other optional clauses of the SELECT entry as specified for
COBOL should not be used with the SELECT IDS sentence.

File-code-1 must be a two-character word consisting of two
letters (A,....,Z) or a letter and a digit (0,....,9). Each
file code must be unique with respect to other file codes in
the program.

27

DATA DIVISION

T

I n+

The description of the I-D-S data file is contai
of the Data Division called the IDS Secti
physically follow the Working-Storage Section, i

the Constant Section.

ol

ned in a special section
n This section must

on.
f present, and precede

The IDS Section contains a File Description, Record Description, and
Chain Definition as required to describe the complete data file.

The following illustration shows the fixed sections of the Data Division
in the order in which they must appear in the source program. A section
may be omitted if it is not needed.

Data Division.

File Section.
Working-Storage Section.
IDS Section.

Constant Section.

Report Section.

File Description

The File Description entry provides information regarding the physical
characteristics of the I-D-S data file. The entry is wused only for
documentation purposes and must appear only once in the I-D-S source
program and must be the first entry in the IDS Section.

The entry consists of a level indicator, a file name, and a series of
clauses which define the physical characteristics of the I-D-S file. The
mnemonic level indicator MD is used to identify the start of the File
Description entry and to distinguish it from the Record, Field and Chain
Descriptions. The format for the complete I-D-S File Description entry
follows.

28

COMPLETE I-D-S FILE
DESCRIPTION ENTRY

Complete |I-D-S File Description Entry

Function:

Format:

To describe the physical structure of an I-D-S file.

MD file-name [}PAGE CONTAINS integer-1 CHARACTERS]

Notes:

I:;FILE CONTAINS integer-2 PAGES:I .

The file-name must be identical to the one wused in the
SELECT IDS sentence of the FILE-CONTROL paragraph of the
Environment Division.

Other optional phrases of the File Description entry as
specified for COBOL do not apply to the IDS Section and must
not be used.

The PAGE size (integer-1) specified may be any value up to a
maximum of 4096 characters. However, the most efficient use of
the storage capacity of the mass storage device involved should
be considered when establishing the page size.

The FILE clause expresses the total physical storage
requirements of the I-D-S file. This value must be equivalent
to or less than the capacity which has been reserved for the
file by the allocation procedure of GECOS. See the GE-600 Line
Comprehensive Operating Supervisor (GECOS* III) Reference
Manual, CPB-1518, for a discussion of the allocation of
permanent random disc or drum files. The maximum number of
pages possible within the I-D-S page numbering system is
262,143.

Page and file size is for documentation only; it is not used
during execution.

*GECOS,

Trademark

29

30

Page and file size clauses are not required.

The clauses may appear in any order within the
entry must end with a perio

Example:

IDS SECTION.
MD DATA-BASE: PAGE CONTAINS 1920 CHARACTERS;
FILE CONTAINS 100000 PAGES.
01 UNIT-MASTER-REC;
TYPE IS 070;
RETRIEVAL VIA MASTR FIELD;
02 MASTR;SIZE 8 NUMERIC.
98 UNIT CHAIN MASTER;
CHAIN-ORDER IS SORTED.

entry.

The

Record Description

Record Description entries are used to:

1. Provide information to I-D-S regarding the external format
of each logical record type as it will exist within a page
on the external storage device.

2. Define internal Working-Storage areas which serve as
communication interfaces between the user's routine and
the I-D-S data file.

3. Provide parameters which control I-D-S$ processing. These
parameters are defined at levels 01 and 98.

The external format of an I-D-S record consists of control fields and
data fields. Records are stored as fixed-length records. Each record
contains identification fields, a chain field for each chain association
specified, and as many characters of data as required by the 1level 02
entries.

The level 02 entries are packed into the records, and records are packed
into pages on a character-oriented basis. Computer word orientation is
never used. When a record is retrieved from the storage device, the data
fields of the record are available to the user only after they are moved
to working storage. Before storing a record, the Working-Storage area
must first have been initialized with the data fields of the record to
be stored.

The I-D-S Translator creates an internal Working-Storage area for each
level 02 entry. The area created may contain subfields which are defined
by lower level entries and may be separately referenced by user COBOL
procedure statements. However, I-D-S operates only on wunits of data
defined by the level 02 entry. Therefore, any field that is to serve
either as a control field or that is to be modified by I-D-S must be
defined as a level 02 entry.

The Translator produces parameters from the clauses that are defined at
levels 01 and 98. Lower level entries (03-49) may be used to define
subfields of the level 02 entry. Any legal COBOL description clause may
be used as long as it does not contradict the description provided for
the level 02 entry. For a further clarification of the GE-600 Line COBOL
Reference Manual, CPB-~1652,

The parameters are described in detail on the following pages.

31

The level 02 data names may not be used for qualification. Qualification
of lower level entries up to level 02 is permissible. If the same data
name occurs as an 02 entry for different record types, the same
Working-Storage area will be shared by the various records inveolved,

Standard COBOL record description clauses allowed at 1level 02 are
REDEFINES and FILLER. They do not generate Working-Storage areas.

REDEFINES may be used for redefinition of an area previously defined.
This enables COBOL procedural statements to reference the
Working-Storage area by either of its definitions. The field-oriented
functions of I-D-S (MOVE, MODIFY), however, respond only to the original
definition of the field.

The use of FILLER as a data-name creates space in the external format
only.

Although the PICTURE clause is the significant element of the level 02
description, any of the standard COBOL clauses may be wused with the
following exceptions:

OCCURS

RENAMES
Editing clauses
COPY

32

COMPLETE I-D-S RECORD
DESCRIPTION ENTRY

Complete I-D-S Record Description Entry
Function: To specify the parameters which define an I-D-S record.

Format:

01 record-name; TYPE IS integer-1

field-name FIELD
; RETRIEVAL VIA chain-name-1 CHAIN
CALC

integer-2 TO integer-3
; PAGE-RANGE IS
field-name-1 TO field-name-2
[;PLACE NEAR chain-name-2 CHAIN]
[;INTERVAL IS integer-4 PAGES]

[;AUTHORITY IS integer-5]

Notes:

1. Each of the above clauses is applicable only at record level
0l.

2. Record-name must be unique, since qualification by file name is
not meaningful.

3. The clauses may appear in any order within the entry. The
entry must end with a period.

4. All format considerations are as specified for COBOL.

33

TYPE

Function: To define the Record Type code tc be wused for
purposes for each record type within I-D-S.

Format: TYPE IS integer-1
Notes:
1. This clause is required for each level 0l entry.

2. Integer-1 may be any value from 1 to 999.

34

RETRIEVAL VIA

Retrieval Via
Function: To specify procedures for retrieving and storing a record.
Format:
field-name FIELD
; RETRIEVAL VIA chain~name-1 CHAIN
CALC
Notes:
1. This clause is required for each level 01 entry.

2.

Records specified for RETRIEVAL VIA field-name FIELD are
referred to as primary records.

Field-name must be defined at level 02 in this record. It must
be specified as:

02 field-name PICTURE 9(8).

The field is not stored in the record; it exists only in
working storage. The field-name FIELD is called the prime
retrieval field.

If the user wishes to retrieve a primary record using the
RETRIEVE record-name RECORD statement of the Procedure
Division, he must first initialize the field-name with the
reference code of the record to be retrieved.

When a primary record is stored, its reference code 1is placed
into DIRECT-REFERENCE. The user may specify the page where he
wishes a primary record stored by placing its reference code in
the DIRECT-REFERENCE. Zeros may also be stored in
DIRECT-REFERENCE which causes the record to be stored on a page
most convenient to I-D-S.

Placement of primary records can be modified by the PAGE-RANGE,
PLACE NEAR, and INTERVAL clauses.

Rev. August 1971

35

36

Records specified for RETRIEVAL VIA chain-name-1 CHAIN are
referred to as secondary records and are retrieved by their
association in the named chain. The chain-name-l CHAIN 1is the
prime retrieval chain for the record.

Ciaaadaill 10X T ICCO

When the RETRIEVAL VIA chain-name-l1 CHAIN clause is used, the
record must be specified at 1level 98 as chain-name-1l CHAIN
DETAIL.

When the RETRIEVE record-name RECORD statement of the Procedure
Division is used, the master record of the chain-name-1 CHAIN
is first retrieved. Then the specific detail record is found by
searching the chain.

If the CHAIN-ORDER is FIRST or LAST, then the RETRIEVAL VIA
chain-name CHAIN clause causes the record to be stored on the
page of the master record of the chain named in the clause.
Otherwise, the record is stored in the page of the current
record of the chain named. When a secondary record is stored,
I-D-S places its binary reference code into DIRECT-REFERENCE.
Placement of secondary records can be modified by PAGE-RANGE,
PLACE-NEAR, and INTERVAL clauses.

Records specified for RETRIEVAL VIA CALC CHAIN are referred to
as calculated records.

RETRIEVAL VIA CALC CHAIN operates the same as RETRIEVAL VIA
chain-name-1 CHAIN, except that the master record of the chain
is a Page Header record. The CALC CHAIN is called the prime
retrieval chain for the record.

When the RETRIEVAL VIA CALC CHAIN clause is wused, the record
must be specified at level 98 as a CALC CHAIN DETAIL.

When the RETRIEVE record-name RECORD statement of the Procedure
Division is used, the Page Header record is first retrieved.
Then the specific detail record is found by searching the CALC
chain. The Page Header record 1is found by randomizing the
values in the control fields defined in the detail record to be
retrieved. The number resulting from the randomization 1is
mapped into the effective page range of the detail record to be
retrieved, thereby yielding the page number of the Page Header
record whose CALC chain is to be searched.

Rev. August 1971

The RETRIEVAL VIA CALC CHAIN clause causes the record to be
stored on the page calculated by randomizing on control fields
and mapping into the effective page range of the record.

Placement of calculated records may be modified by the
PAGE-RANGE clause. PLACE NEAR and INTERVAL clauses do not apply
to calculated records.

These three RETRIEVAL procedures provide a basis for
classification of each record as one of the following:

Primary = Retrieved directly via reference code

Secondary - Retrieved via its chain association

Calculated - Randomized to the page containing the chain
which leads to the record.

Subsequent discussions of I-D-S will refer to records using these
terms.

37

PAGE-RANGE

Page-Range

Function:

Format:

Notes:

38

To provide a method for p

lacing
designated segment of an I

aCLlrt
-D-5

integer-2 TO integer-3
; PAGE-RANGE IS
field-name-1 TO field-name-2

Integer-2 and integer-3 represent the first and last page
numbers of a series of pages in which records of a particular
type are stored. If integer-2 is greater than integer-3, the
series of pages wraps around the end of the file and terminates
at a lower page number.

For example, if a 900-page file contained record types A, B,
and C, each record type could be isolated in a segment of the
file by specifying a page range of 1 to 300 for A, 301 to 600
for B, and 601 to 900 for C.

The page numbers must fall within the total number of pages
specified for the file.

Different types of records may share the same page range.

The PAGE-RANGE clause delimits the action of the RETRIEVAL VIA,
PLACE NEAR, and INTERVAL clauses.

The PAGE-RANGE clause may be used for calculated records.

If PAGE-RANGE is not specified, the range 1is assumed to be
equal to the page range of the entire file.

If the field name option is used, field-name-1 and field-name-2
must be defined in Working-Storage.

Example:

77 field-name-1 PIC 9(6) COMP-1.
77 field-name-2 PIC 9(6) COMP-1.

The page range values must be placed in field-name-1 and

field-name-2 prior to STORE of the record or prior to
of the record.

Example:

IDS SECTION.
MD DATA-BASE; PAGE CONTAINS 1920 CHARACTERS;
FILE CONTAINS 100000 PAGES.
01 UNIT-MASTER-REC;
TYPE IS 070;
RETRIEVAL VIA MASTR FIELD;
02 MASTR PICTURE 9(8).
98 UNIT CHAIN MASTER;
CHAIN-ORDER IS SORTED.

01 UNIT-REC;
TYPE IS 010;
RETRIEVAL VIA CALC CHAIN;
PAGE RANGE IS 1 TO 20000.

01 QuUAD4
TYPE IS 004
RETRIEVAL VIA CALC CHAIN
PAGE-RANGE IS RNG-1 TO RNG-2.

RETRIEVE

39

PLACE
NEAR

Place Nea

Function:

Format:

r

To store a record physically near the master record of a
specified chain.

[fPLACE NEAR chain-name-2 CHAIN]

Notes:

1.

40

Chain-name-2 must be a defined chain name. The record to be
placed must be specified at level 98 as a detail of the chain
named in the PLACE NEAR clause.

The PLACE NEAR clause may only be wused with primary and
secondary records.

If the CHAIN-ORDER is SORTED, SORTED WITHIN TYPE, FIRST or
LAST, the record is stored on the page of the master record of
the chain named in the PLACE-NEAR clause. Otherwise, the record
is stored in the page of the current record of the chain.

If a current record of the type named exists, the INTERVAL
clause supersedes this clause.

The PAGE-RANGE clause supersedes this clause when a conflict
occurs.

Records stored using this clause are subject to the overflow
rule.

Interval

Function:

Format:

INTERVAL

To enable uniform distribution of records of a given type
across the I-D-S file.

I:;INTERVAL IS integer-4 PAGES]

Notes:

1.

2.

Integer-4 represents the number of pages which will be skipped
when a record is stored.

The INTERVAL clause may only be used with primary and secondary
records.

Normally, primary records are stored physically according to a
reference code furnished by the user. Secondary records are
stored physically near the master record of the chain specified
in the RETRIEVAL VIA chain-name-1 CHAIN clause or according to
a PLACE NEAR clause. When INTERVAL is used, the above criteria
apply only to the first record of the stored type. That is, if
I-D-S has not processed a record of this type, the CURRENT
record value is zero and INTERVAL is not in effect. Subsequent
records are stored integer-4 pages away from the current record
of the specified type. The current record is either the 1last
record of the type stored or the last record of the type
retrieved.

For example, if the last record of type A is stored on page 5
and interval is 3, the next record of type A would be stored on
page 8.

The INTERVAL clause is used normally for initial file loading
of primary master records. By specifying an interval, the user
can ensure sufficient space between the master records to store
the detail records in their chains.

When INTERVAL reaches the end of the page-range or end of the
file, it reverts either to the beginning of the page-range or
to the beginning of the file.

Records stored using this clause are subject to the overflow
rule.

Application of INTERVAL by I-D-S is not continuous between
computer runs. If it is to continue from day to day, it must be
reinitialized by retrieving the last record of the type
processed in the previous run which makes it current in this
run. Storage may continue from this point.

41

AUTHORITY

Authority

Function: To safeqguard data in a record against unauthorized reference
or modification.

Format:

EAUTHORITY Is integer—S]

NOTE: Integer-5 may be any value not exceeding 4095(10). The wvalue
supplied is used as a lock for data in any record of this type.
When this record is referred to during execution, a key must have
been supplied that matches the lock. The key is supplied by the
OPEN statement which is defined in the Procedure Division.

42

Chain Definition

A record belongs to at least one, and possibly many chains. A Chain
Definition entry must exist for each <chain in which the record is
included. All Chain Definition entries for a given record must
immediately follow the Record Description entries for that record.

The Chain Definition entry consists of a level 98 indicator which names
the chain that a level 01 record is either a detail or master in, a
chain name, and a series of clauses which define the characteristics of
the chain. The complete Chain Definition entry skeleton and a detailed
description of the clauses follow.

43

COMPLETE CHAIN
DEFINITION ENTRY

Complete Chain Definition Entry

Function: To name and describe the interrecord relationship between a
master and detail record and to direct the placement of a
record into the I-D-S file.

Format Option 1 (Master):

98 chain-name-1 CHAIN MASTER

SORTED WITHIN TYPE
SORTED
; CHAIN-ORDER IS FIRST
LAST
BEFORE
AFTER

I:; LINKED TO PR101§|

Format Option 2 (Detail):

98 chain-name-2 CHAIN DETAIL
CALC

ERANDOMIZE ON field-name-1 [;RANDOMIZE..ﬂ
ARE FIRST

;DUPLICATES ARE LAST
NOT ALLOWED

ASCENDING

~

ASCENDING...
KEY IS field-name-2 [;

DESCENDING DESCENDING., ..
EASCENDING RANGE KEY IS field—name—i]

;SELECT UNIQUE MASTER]
CURRENT

[;MATCH—KEY IS field-name-4 E\/IATCH—KEY..ED

[EMATCH-KEY IS field—name-S{%YNONY field-name-4 EQECH—KEY..ZH
SYN

E LINKED to MASTEI{I

44

MASTER/DETAIL

Master /Detail

Function:

To describe a record as either a detail or master of a chain.

Format Option 1:

98 chain-name-1 CHAIN MASTER

Format Option 2:

CALC

98 {Ehain—name-i} CHAIN DETAIL

Notes:

This entry must be a level 98.

Option 1 defines a record as the master record of a chain
structure. One option 1 entry is required for each chain
structure for which the record is the master. A single chain
structure can have only one master record but a single record
can be the master of more than one chain structure.

In the example below UNIT-REC is a master record in the
SUB-UNIT CHAIN, the ASSIGNMENT CHAIN and the COMPLEMENT CHAIN.

Option 2 defines a record as a detail record in a chain
structure. One option 2 entry is required for each chain
structure in which the record is a detail. A record may be a
detail in more than one chain structure. A single chain
structure can be made up of any number of detail record types.

In the example below UNIT-REC is a detail record in the CALC
CHAIN and the UNIT CHAIN.

The record may be a master in one chain structure and a detail
in another. In this case, both options are required for that
record. A record may not be defined as both MASTER and DETAIL
in the same chain.

In the example below, UNIT-REC is a master record in the
SUB-UNIT CHAIN, the ASSIGNMENT CHAIN and the COMPLEMENT CHAIN.
It is also a detail record in the CALC CHAIN and UNIT CHAIN.

45

46

6.

If the RETRIEVAL VIA chain-name-1 CHAIN or RETRIEVAL VIA CALC
CHAIN clause is used in the level 01 Record Description entry,
an option 2 entry must name the appropriate chain structure.

The following statements illustrate this rule:

01 SUB-UNIT REC;
TYPE IS 030;
RETRIEVAL VIA SUB-UNIT CHAIN;
PAGE-RANGE IS 1 TO 20000.
02 SUB-UNIT-CODE; SIZE 4 NUMERIC.
98 SUB~UNIT CHAIN DETAIL;

Example:

01 UNIT-REC;
TYPE IS 010;
RETRIEVAL VIA CALC CHAIN;
PAGE RANGE IS 1 TO 20000.
02 UNIT-CODE: SIZE 4 NUMERIC.
03 DIVISION-CODE: SIZE 1 NUMERIC.
03 DEPARTMENT-CODE: SIZE 1 NUMERIC.
03 GROUP-CODE: SIZE 1 NUMERIC.
03 SECTION-CODE: SIZE 1 NUMERIC.
02 REPORTING-UNIT: SIZE 4 NUMERIC.
02 ORG-NAME: SIZE 20 ALPHANUMERIC.
02 TOTAL-BUDGET: SIZE 7 NUMERIC.
98 CALC CHAIN DETAIL;
RANDOMIZE UNIT-CODE.
98 SUB-UNIT CHAIN MASTER;
CHAIN-ORDER IS SORTED.
98 ASSIGNMENT CHAIN MASTER;
CHAIN-ORDER IS FIRST,
98 COMPLEMENT CHAIN !MASTER;
CHAIN-ORDER IS SORTED.
98 UNIT CHAIN DETAIL;
SELECT CURRENT MASTER;
ASCENDING KEY IS UNIT-CODE;
DUPLICATES NOT ALLOWED.

CHAIN-ORDER

Chain-Order
Function: To specify the criteria for sequencing detail records within
a chain.
Format:
SORTED WITHIN TYPE
;CHAIN-ORDER IS SORTED
FIRST
LAST
BEFORE
AFTER
Notes:
1. This clause must be used in each Master Chain Definition entry
(option 1).
2. 1If either SORTED or SORTED WITHIN TYPE is used, detail records

are positioned in the chain according to the value of their
sort control fields.

If SORTED is wused, the various records of the chain are
maintained in a single sequence regardless of the number of
record types in the chain. The size and class of sort control
fields of the various records must be identical.

If SORTED WITHIN TYPE is wused, records of the chain are
maintained in sequence within a record +type, independent of
other types. This does not mean that there is an implied major
sort by record type code. It means only that when a given type
of record is considered, it is in sequence by its own sort key.

An example of a SORTED and SORTED WITHIN TYPE chain follows.

47

48

Sorted Chaii"’/”””—____——:__d

CHAIN-MASTER

TYPE 1
VALUE 56

\

TYPE 2
VALUE 67

AN

\

TYPE 4
VALUE 101

/

TYPE 3
VALUE 90

/

TYPE 1 TYPE 4
VALUE 68 VALUE 89
TYPE 3 TYPE 2
VALUE 78 VALUE 79

Sorted Within Type Chain

J—

TYPE 1
VALUE 56

CHAIN-MASTER\

TYPE 3
VALUE 90

/

\

TYPE 2
VALUE 67

TYPE 4
VALUE 101

N

TYPE 3
VALUE 78

AN

/

TYPE 1
VALUE 68

/

TYPE 4
VALUE 89

TYPE 2
VALUE 79

The last four forms, FIRST, LAST, BEFORE, and AFTER, of this
clause cause a detail record to be inserted in the chain
relative to some other record in the chain. These options are:

FIRST Insert detail record in chain immediately following the
master record,

LAST Insert detail record in chain immediately preceding the
master record.

BEFORE Insert detail record in chain immediately preceding the
current record of chain.

AFTER Insert detail record in chain immediately following the
current record of chain.

The current record of a chain will always be the master record
if SELECT UNIQUE MASTER has been specified.

The selection of the BEFORE and LAST Options causes I-D-S to
create an extra chain field which contains the reference code
of the immediately preceding record of the chain.

BEFORE causes the creation of this field in all record types of
the chain. LAST introduces this field in the master record type
only.

The BEFORE and AFTER forms are compatible only with the SELECT
CURRENT MASTER clause.

If the chain has been defined as LINKED TO PRIOR and the
CHAIN-ORDER IS BEFORE clause is used, the records in the chain
are assigned only one chain field PRIOR; there is no
duplication of chain fields.

When a record is defined as a detail of a calculated chain, no

order is maintained because calculated chains have no defined
sequence control.

49

LINKED PRIOR

Linked Prior

Function:

Format:

Notes:

50

To provide an additional chain field in each record of a
chain which contains the reference code of the immediately
preceding record in the chain. This field allows a chain to
be traversed in either direction.

ELINKED TO PRIO}EI

This clause is used only in the Master Chain Definition entry
(option 1). It provides a prior chain field in each record of
the chain so that the chain may be traversed in either
direction. This feature is especially serviceable when using
either the RETRIEVE PRIOR or MODIFY verbs. It also enables the
immediate removal of a deleted record which would otherwise
stay linked in this chain until the chain was traversed again.

Chain PRIOR fields have two disadvantages. First, the record
size is increased to provide space for the additional field.
Second, the linking process is slower because the chain PRIOR
field of the next record must be adjusted when a new record is
inserted.

When the CHAIN-ORDER IS BEFORE clause 1is specified, I-D-S
automatically provides a chain PRIOR field for all record types
defined for that chain.

When the CHAIN-ORDER IS LAST is specified, I-D-S automatically
provides a chain PRIOR field for the master record only.

RANDOMIZE

Randomize

Function: To specify those fields of a calculated record used to
generate the page number for record placement and retrieval.
Format:

ERANDOMIZE ON field-name-1 ERANDOMIZE..J:]

1. RANDOMIZE must be used for each calculated record.

2, Field-name-1 must be a level 02 field contained in the record
being stored or retrieved.

3. The randomizing routine of I-D-S uses as many fields as are
specified.

4. The word RANDOMIZE must precede each control field specified.
5. The fields designated as RANDOMIZE fields are compared at
record storage time. An attempt to store a record with

identical RANDOMIZE field values will be rejected as an error.

6. This clause may only be used when RETRIEVAL VIA CALC CHAIN is
specified at level 0l.

51

DUPLICATES

Duplicates

Function: To specify whether records with identical sort key values may
exist in a chain and, if permitted, what ordering action
should be taken.

Format:
ARE FIRST
; DUPLICATES ARE LAST
NOT ALLOWED
Notes:

1. This clause must be used and only used when the chain has been
defined as a sorted chain by the CHAIN-ORDER clause.

2. When duplicates are allowed, the new detail may be positioned
as the FIRST or LAST of the string of records with identical
sort key values.

3. If duplicates are not allowed and an attempt is made to 1link
records with identical sort key values (STORE or MODIFY), an
error code is placed in the ERROR-REFERENCE communication area
and the duplicate record is rejected.

It is the user's responsibility to examine this communication
area.

4. Duplicates are not allowed in a CALC chain; however, it is not
necessary to write the DUPLICATES NOT ALLOWED clause. Since
CALC chains have no sequence, 1-D-S ensures that there are no
duplicates by searching the entire CALC chain before attempting
to store a new CALC record.

52

Ascending /Descending

Function:

Format

~e

Format
[:
Notes:

1.

2.

ASCENDING/DESCENDING

To specify those data fields which control the sequence

detail records in a chain.

Option 1:

ASCENDING

KEY IS field-name-2

DESCENDING

Option 2:

ASCENDING...

~

DESCENDING

ASCENDING RANGE KEY IS field—name—%]

This clause must be used when a chain has been defined as
SORTED or SORTED WITHIN TYPE chain.

For example:

01 UNIT-MASTER-REC;

02
98

TYPE IS 070;

RETRIEVAL VIA MASTR FIELD.
MASTR; SIZE 8 NUMERIC.
UNIT CHAIN MASTER;
CHAIN-ORDER IS SORTED.

01 UNIT-REC;

TYPE IS 010;

RETRIEVAL VIA CALC CHAIN;

PAGE RANGE IS 1 TO 20000.
UNIT-CODE; SIZE 4 NUMERIC.
REPORTING-UNIT; SIZE 4 NUMERIC.
ORG-NAME; SIZE 20 ALPHANUMERIC.
TOTAL-BUDGET; SIZE 7 NUMERIC.
UNIT CHAIN DETAIL;

ASCENDING KEY IS UNIT-CODE;

DUPLICATES NOT ALLOWED;

SELECT UNIQUE MASTER;

MATCH-KEY IS MASTR.

of

Field-name-2 must be a level 02 field entry within the record
the above example, UNIT-CODE meets this

being defined.

requirement. However, field-name-2 may not be a level 02
entry which has been specified at level 01 as a

In

field-name FIELD. In the above example MASTR cannot be a KEY.

field
RETRIEVAL VIA

53

54

3 nr 1 1 3 ~ -~ AA~FS ot n
When multiple sort control keys are required to define a chair

sequence, the various field-names must be presented in sequence
from major control field to minor, thus establishing the sort
level of each field. Each sort control key must be
independently defined as either ASCENDING or DESCENDING.

When ASCENDING is used, the sorted sequence will be from lowest
value of key to highest value.

When DESCENDING is used, the sorted sequence will be from
highest value of key to lowest value.

Option 2, ASCENDING RANGE KEY is used when the record is to
serve as a range master. A range master is a detail record in a
sorted chain. In addition, it is the master of a chain which
includes detail records falling within the range of the range
master. The value contained in field-name-3 controls the
ascending sequence of the range masters. It also defines the
upper range limit of details referenced by the range master.

Range masters are used primarily to segment long sorted chains.
The purpose is to reduce access time in reaching the detail
records.

The ASCENDING RANGE KEY clause modifies the search method of
the RETRIEVE record-name RECORD and STORE record-name RECORD
statements by searching the chain until the sort key value of
the retrieved record is equal to or greater than the
working-storage value of the record to be retrieved or stored.

If the RANGE option is not specified, the chain 1is searched
until the sort key value of the retrieved record is equal to
the working-storage value of the record to be retrieved.

A payroll master chain structure of employee detail records 1is
illustrated below:

Payroll Employee
Master |p——¥ Detail
Record Record

Master Chain

By introducing range masters into the structure, the one long
chain could be divided into several smaller ones. The structure
would look 1like this:

Payroll Payroll Employee

Master Range ——— P Detail

Record Master Record
Master Chain Range Chain

The steps used to create this structure include:
1. Define Payroll Master record.
a. Designate it master record of Payroll-Master chain.

b. Designate CHAIN-ORDER as SORTED or SORTED WITHIN
TYPE.

2. Define Payroll Range Master record.
a. Name within it a field RANGE-NO.

b. Designate it as a detail record in the
Payroll-Master chain.

Cc. Name RANGE-NO field as an ASCENDING RANGE KEY.

d. Designate it master record of Payroll-Range chain.
3. Define Employee Detail record.

a. Name within it a field EMPL-NO.

b. Designate it as a detail record in Payroll-Range
chain.

€. Name RANGE-NO as MATCH-KEY for the Payroll-Range
chain.

d. Name EMPL-NO as a sort key or match-key for this
record.

At execute time the user would identify a range master by
placing an employee number into RANGE-NO in working-storage.
I-D-S selects the first range master in sequence whose value in
RANGE-NO is equal to or greater than the value placed in
RANGE-NO in working-storage. Once the range master is found,
the detail record can be stored or retrieved along its chain by
using EMPL-NO as control.

55

SELECT

Select

Function:

To specify the rule for selecting a specific master record
from all master records of a given type when a detail record
is being stored or retrieved by the RETRIEVE record-name
RECORD statement or STORE record-name RECORD statement.

Format:
UNIQUE
; SELECT MASTER
CURRENT
Notes:

1. One of the two forms of the SELECT clause must be used in each
Chain Description entry which specifies a level 98 chain
detail. The SELECT clause does not apply to a CALC CHAIN DETAIL
because the Page Header record (specified by the output of the
randomizing procedure) is the unique master to be selected.

2. When UNIQUE is specified, the master is selected by matching
the data field values in a master record with those initialized
by the user in working storage. The fields to be initialized
are those specified as MATCH-KEY fields in the level 98 entry.

3. When CURRENT is specified, the master of a chain relevant to

56

current detail record of the named chain is selected. If the
current record of the named chain is already the master, then
it is selected. The responsibility for establishing the current
master of the chain-name is left to the user.

MATCH-KEY

Match-Key

Function:

Format:

To specify those fields which must be initialized by the user
in working-storage to allow unique identification of the
master record of a chain.

E&ATCH—KEY is field-name-4 [;:MATCH—KEY. . J]

Notes:

1.

This clause applies only to option 2 of the Chain Definition
Entry. It must be used in conjunction with the SELECT UNIQUE
MASTER clause.

Only those fields necessary to uniquely select the appropriate
master need be specified. If the master is a detail record in a
higher level chain structure, match-key fields for selection of
its master are named with it, but need not be named with this
record. For example:

Master
Record A

¢ Chain A

Master
Record B

¢ Chain B

Detail
Record C

When Master Record B is defined as a detail in Chain A,
match-key fields are named for Master Record A. When Detail
Record C is defined as a detail in Chain B, match-key fields
are named for Master Record B, not for Master Record A.

57

58

The fields named in MATCH-KEY clauses depend upon the RETRIEVAL
clauses specified for each of the higher-level master records

defining the hierarchical structure which includes this record
as a detail

The following rules should be used in naming the appropriate
master record fields with MATCH-KEY clauses in this record.

If the master record is defined as a primary record by the
RETRIEVAL VIA field-name FIELD clause, the field-name must
be named as a MATCH-KEY field-name for the detail record.

If the master record is defined as a secondary record by the
RETRIEVAL VIA chain-name CHAIN clause, each of +the data
fields which control the retrieval of the master record must
be named as MATCH-KEY field names in this detail record.
Thus, it is necessary that the master record be either in a
sorted chain (sort keys) or a calculated chain (randomize
keys) .

If the master record is defined as a calculated record by
the RETRIEVAL VIA CALC CHAIN clause, the RANDOMIZE fields
for that master must be named as MATCH-KEY fields.

All applicable MATCH-KEY fields must be initialized in working
storage with the desired values before storing the record or
before retrieving it wusing the RETRIEVE record-name RECORD
verb. This includes the match-key fields for all higher level
master records involved in the chaining structure even though
the fields were not named with this record.

Synonym

Function:

Format:

SYNONYM

To specify an alternate name for a field defined as a
MATCH-KEY field.

EMATCH—KEY Is l:field—name-S {SYNONYM}] field—name-{l
SYN

Notes:

1.

The use of the SYNONYM option within the MATCH-KEY clause
defines an alternate name (field-name-5) for the MATCH-KEY
field (field-name-4).

The alternate name (field-name-5) must have been previously
defined in the Working-Storage Section in exactly the same
format as the MATCH-KEY field for which it is an alternate.

Example:

MASTER RECORD MASTER RECORD
TYPE X TYPE X
Control Field=100 Control Field=200
DETAIL CHAIN A DETAIL CHAIN B DETAIL

TYPE Y

Detail record type Y is defined in chain structures A and B.
Chains A and B have the same record type (X) as their master
records. Therefore, each of the two different master records of
type X must be uniquely identified when the type Y detail
record is stored.

I-D-5S stores the detail record into Chain A with one store
operation. The master record control field is named with a
MATCH-KEY clause when detail Y is defined in both chains. In
addition, for Chain B, an alternate working-storage area is
named using the SYNONYM clause. Before storing the record, the
user must initialize field-name-4 for the master record control
field to 100 and the SYNONYM field-name-5 with 200.

59

LINKED-MASTER

Linked-Master

Function: To provide an extra chain field for each detail record of the

Format:

chain which points to the master record of the chain.

[;LINKED TO MASTER]

Note:

60

This optional clause can improve the operation of the system by
providing a direct path from each detail to the master of the
chain, thus eliminating the need for processing all of the
intervening detail records serially.

PROCEDURE DIVISION

Execution of I-D-S procedural statements will STORE, RETRIEVE, MOVE TO
WORKING-STORAGE, MODIFY and DELETE records. In addition, these
statements will maintain the structure of the data file created by the
defined chain relationships.

The communication interface between I-D-S procedural statements and the
balance of the COBOL Procedure Division is the working-storage areas
which are established for each level 02 field defined in the field
description entries of the I-D-S Section. All COBOL references to data
from the I-D-S file are to these working-storage areas.

The procedural statements of I-D-S may appear anywhere in the context of
the COBOL Procedure Division. An I-D-S sentence must be preceded by
ENTER IDS and terminated by a period. The sentence may contain any
number of I-D-S statements. A paragraph name or section name may be
assigned to an I-D-S sentence in a manner consistent with normal COBOL
format.

The following pages describe these various statement and verb formats.

I-D-S Imperative Statements

The imperative statements included in this section are provided as a
part of the I-D-S language to extend the function of the basic STORE and
RETRIEVE verbs. The DELETE, HEAD, MODIFY and MOVE statements apply only
to the RETRIEVE verb; the DEBUG and GO statements may be used with
either verb. OPEN must be used prior ~to any other I-D-S statements;
CLOSE is self-explanatory.

When these statements are used, they must occur in the order in which
they are to be executed. They may be contained within the sentence
beginning with the basic verb and ending with a period, or they may be
used as separate sentences preceded by ENTER IDS.

The specific formats of these statements and detailed discussions of the
restrictions and limitations associated with each appear on the
following pages.

61

CLOSE

Close

Function: To transfer all modified I-D-S pages currently residing in
the core buffers to the mass storage unit.

Format OPTION 1:

CLOSE
Format OPTION 2:
CLOSE WITH LOCK

Notes:

1. This statement must be executed before any COBOL STOP RUN
statement. No automatic closing takes place.

2., OPTION 2 will insure that the data base cannot be opened again
during the execution of the run unit.

3. See (Chapter 6, Accessing an I-D-S File) for Sample Deck set
up.

62

Debug

Function:

Format:

DEBUG

To permit the selective dumping of pages, records, current
data of program chain tables, or records of chain. The output
produced will appear on the system execution report.

BUFFER BUFFER

DEBUG CURRENT RECORD ; (RECORD...

Notes:

1.

CCBLOC CCBLOC

Echain—n ame-2 CHAIE

E?RACE chain-name-3 CHAI@]

Chain-name-2 and chain-name-3 must be names of chains as
defined by level 98 entries in the 1IDS Section of the Data
Division.

The BUFFER option will result in an octal/BCD printout of the
current page of the I-D-S data file.

The RECORD option will result in an octal/BCD printout of the
logical record last accessed by a successful STORE or RETRIEVE
verb.

The CCBLOC option will result in a printout of the following
format:

DIRECT REFERENCE Ref. Code in octal Ref. Code in BCD
FIRST REFERENCE Ref. Code 1n octal Ref. Code in BCD
LAST REFERENCE Ref. Code 1in octal Ref. Code in BCD
RECORD TYPE Rec. Type in octal Rec. Type in BCD
ERROR REFERENCE Error Code in BCD

The chain-name-2 CHAIN clause will result in an octal/BCD
printout of the reference codes of the named chain as follows:

CHAIN TABLE HEAD Ref. Code in octal Ref. Code in BCD
CHAIN TABLE PRIOR Ref. Code in octal Ref. Code in BCD
CHAIN TABLE CURRENT Ref. Code in octal Ref. Code in BCD
CHAIN TABLE NEXT Ref. Code in octal Ref. Code in BCD

The TRACE chain-name-3 CHAIN clause will result in a
side-by-side octal/BCD printout of all of the records contained
within the specified chain.

63

DELETE

Delete

Function:

Format:

64

To delete the current record of the program and remove it
from all chains in which it is a detail to make the record
unavailable for processing and, optionally, to perform
certain functions when specified detail record types are
accessed during the deletion process.

;DELETEr-CURRENT record-name-~1 RECORD [?g record-name-2 DETAIL

L

[égzg TO WORKING—STORAGEJ

E@ chain-name-1 CHAIN Ei@il
EEMOM procedure-name—a

E;_O TO procedure-name-‘2:l:|

OTHERWISE

ON record-name-3 DETAIL...
ELSE

The record deleted by the DELETE statement is the record last
retrieved (CURRENT) by the RETRIEVE verb.

The deletion process deletes a record only when there are no
dependent details in its chains. When details are present, the
system first attempts to delete the dependent detail records.
Since the hierarchical data structure of I-D-S may involve many
levels of detail records, this statement should be used with
care.

The execution of a DELETE statement makes the record retrieved
unavailable for any further processing, and an attempt to
reference such a record results in an error condition.

The conditional statement ON record-name-2 DETAIL is used only
when it is necessary to interrupt the deletion process when a
dependent detail of the type named by record-name-2 is
encountered. When the statement is used, various imperative
statements immediately following are executed prior to the
actual deletion of the detail record. After the execution of
these statements, the deletion process is continued unless one
of the statements was a GO TO statement. In this case, control
is not returned to the deletion process. When the record
encountered is not the type named by record-name-2 it is
compared with the type named by record-name-3. The reserved
words OTHERWISE or ELSE separate the tests for different record
types that may be encountered. A record encountered which does
not match any of the specified record types is deleted in the
normal manner.

As a record is deleted it is not implicitly moved to working
storage.

The CURRENT record-name-1 RECORD option causes the record type
of the record named to be compared with the record type in the
current record definition. If they are not equal, an error code
(R10) is returned to the user and no deletion takes place.

65

GO

Go
Function:
Format:
160
Notes:
1.
2.
3.
4,

66

To depart from the normal in-line sequence of procedures.

TO procedure-name-1l

Procedure-name—-1 may be any COBOL or I-D-S procedural paragraph
in the Procedure Division.

When this statement is encountered within the I-D-S sentence,
all subsequent statements are bypassed and control 1is
transferred to the procedure named.
GO TO may be used with:

If ERROR...

If record-name...

ON record-name DETAIL...

GO TO must be used with:

RETRIEVE EACH AT END...

Head

Function:

Format:

HEAD

To retrieve the master record of the chain specified and to
move its data fields to working storage making it available
for processing.

;HEAD chain-name-1 CHAIN EHEAD..J

Notes:

The chain-name-1 must be a chain defined by a level 98 entry.

If no records of this named chain have been processed, or if
the last record has been deleted, an error condition is noted.

A data structure in I-D-S shorthand is shown below.

REC-AD

CHAIN-A2
REC-YR

CHAIN-Y REC-AC

CHAIN-AL

REC-XR REC-AB

CHAIN-X CHAIN-A

In this case, assume that REC-AA was the record initially
retrieved by the RETRIEVE verb. At this point, three chains
include REC-AA, therefore, three possible master records may be
referenced by the HEAD statement. Notice, however, that once
HEAD has been used to reference CHAIN-A, the next higher level
CHAIN-Al can be referenced.

67

68

After execution of this statement, the master records retrieved
are the CURRENT records of their respective types. They become
the CURRENT records in each chain in which they are defined as
details. However, they are not the CURRENT records in chains in
which they are defined as master records. In those chains, the
detail record which leads to the master is the CURRENT record.

Note that the function of the statement is very similar to that
of the RETRIEVE MASTER RECORD statement, except for the manner
in which CURRENT of chain is maintained (Note 5).

Example:
Assume chains X, Y, A, and A1 are not PRIOR processable or

HEADED (linked to MASTER). The chain tables show REC-AA after
it has been retrieved via chain-X and before execution of the

HEAD CHAIN-A CHAIN statement. Note that there is a chain table
for each chain in which REC-AA is a detail record.

REC-AA REC-AA REC-AA

Chain-X Chain-Y Chain-A
MASTER REC-XR MASTER Unknown MASTER Unknown
PRIOR REC-AA-1 PRIOR Unknown PRIOR Unknown
CURRENT REC-AA CURRENT REC~-AA CURRENT REC-AA
NEXT REC-AA+]1 NEXT REC-AA+1 NEXT REC-AA+1

After execution of the HEAD CHAIN-A CHAIN statement,
tables appear as shown below.
chains X and Y remain unchanged. The only change to the chain-A

table is that the
updated with the reference code of the master record. Thus,
a RETRIEVE NEXT or PRIOR of chain X, Y,
is the CURRENT record from which I-D-S moves to
PRIOR data record of chain X, Y, or A.

chain

table's

Note that the

MASTER position

or A is issued,
the NEXT

chain

the chain

tables

has been

REC-AA

REC-AA REC-AA REC-AA

Chain-X Chain-Y Chain-A
MASTER REC-XR MASTER Unknown MASTER REC-AB
PRIOR REC-AA-1 PRIOR Unknown PRIOR Unknown
CURRENT REC-AA CURRENT REC-AA CURRENT REC-AA
NEXT REC-AA+1 NEXT REC-AA+1 NEXT REC-AA+1

After the HEAD CHAIN-A CHAIN
Al table is updated as shown below.

statement is

REC-AB
Chain-Al

MASTER

Unknown

PRIOR

Unknown

CURRENT

REC-AB

NEXT

REC-AB+1

executed,

the

chain

69

MODIFY

Modify

Function:

To modify the contents of all or selected fields of the
current record and/or to relink any chain which may be
affected by the modification of a control field.

Format Option 1:

s MODIFY field-name-1 E?ield—name—Z..Z]

Format Option 2:

;MODIFY CURRENT record-name [E}eld—name—l E}ield-name-Z..jI]

Notes Option 1:

70

1.

The fields to be modified must be 1level 02 entries. The
contents of working storage are moved to the equivalent field
of the current record which is in a data page buffer.

Field-name-1l, field-name-2, may be control fields for the
record. Modifying these fields can result in the record being
logically repositioned within the I-D-S environment. Depending
on the type of control field involved, I-D-S will take the
following actions:

Modifying a sort key field. The record is relinked into its
chain according to the new value of the sort field. The sort
field in the record is then modified.

Modifying a randomize field. The record is relinked into a
new CALC chain according to the new value of the randomize
field. The randomize field in the record is then modified.

In relinking a record in a chain, I-D-S uses all the control
fields in working storage defined in the record for that chain.
Therefore, the user must not only initialize the control field
to be modified, but the others as well. Depending upon the
control fields involved, I-D-S will take the following action:

Modifying a match-key field named to uniquely identify a
master record. The record is relinked ~to the new master
uniquely identified by the new value in the match-key field.
Since the field is not in the detail record, no actual field
modify occurs.

Modifying field-name-5 of a MATCH-KEY IS field-name-5
SYNONYM field-name-4 clause. The record is relinked to a new
master record along the chain for which +the clause was
named. The new master was uniquely identified by the new
value in field-name-5. In this case, field-name~5 may or may
not be a field in the record on disc. If it is, it is
modified. If it is not, no further action is taken.

In no case is a record ever physically moved from one page to
another in the I-D-S environment. Therefore, an attempt to
modify the prime retrieval field of a primary record results in
an error condition. Such a modify could result in a record
needing to be moved from one page to another.

If the successful execution of the MODIFY statement would
create DUPLICATE records in chains where they are not allowed,
the modification will not be executed and an error occurs.

Notes Option 2:

1.

2.

Notes for option 1 also apply to option 2.

The record type of the record named is compared with the record
type in the current record definition. If they are not equal,
an Rll error code is returned to the user and no modification
takes place.

If the field name option is not specified, all fields in the
record are modified.

71

HMOVE

Function: To move all or selected fields of the current record (record

11
last processed) to working storage, or to move the contents
of a chain table to working storage.

Format Option 1:

;MOVE TO WORKING-STORAGE E%eld-name-l Eﬁield—name-Z.{j]

Format Option 2:

CHAIN TABLE
MASTER
MOVE chain-name-1 PRIOR TO field-name-3
CURRENT
NEXT

Notes:

1. The implied source of an option 1 MOVE is the current record
(last RETRIEVE or STORE).

2. Option 1 must be used before any reference can be made to the
data in the record.

3. When the statement includes the list of fields identified by
field-name-1, field-name-2, etc., only those fields are moved
to working storage. Otherwise, all fields are moved.

4. When CHAIN TABLE is used in option 2, the master, prior,
current, and next chain fields of the named chain are moved to
four contiguous subfields specified by field-name-3.
Field-name-3 should be equivalent to the form:

01 field-name-3

02 Master-chain PICTURE 9(6) COMP-1
02 Prior-chain PICTURE 9(6) COMP-1
02 Current-chain PICTURE 9(6) COMP-1
02 Next-chain PICTURE 9(6) COMP-1

5. When MASTER, PRIOR, CURRENT, or NEXT is used in option 2, the
specified chain-table entry is moved to field-name-3.
Field-name-3 should be equivalent to the form:

02 field-name-3 PICTURE 9(6) COMP-1

72

Open
Function:

Format:

OPEN

To initialize the processing of an I-D-S data file.

RETRIEVAL

OPEN FOR

UPDATE

[@ITH AUTHORITY-KEY integer—z]

Notes:

1.

2.

This statement must be executed before any other I-D-S verb is
executed.

When the I-D-S file is opened for RETRIEVAL, the STORE, DELETE,
and MODIFY statements of I-D-S are not operative. An attempt to
use these statements under these conditions results in an error
condition during program execution. Logically deleted records
will not be physically deleted. If FOR RETRIEVAL or UPDATE is
not specified, UPDATE is assumed by I-D-S.

The AUTHORITY-KEY clause enables access to various record types
which may be protected by a defined AUTHORITY code. (See Data
Division, Record Description.) The value of integer-1 may not
exceed 4095(10).

When this clause is used, each reference to a record of the
I-D-S file involves a match of the AUTHORITY value defined for
the record with the AUTHORITY-KEY supplied. When a valid match
occurs, the I-D-S5 verb is allowed to function normally.
Otherwise, the function of the verb is aborted and an error
condition is returned to the user's program.

The exact details of the matching process may be modified with
each installation to suit individual requirements.

73

RETRIEVE

Retrieve

Function:

To retrieve a record and make it available for processing.

Format Option 1:

(((record-name-1 W
RECORD
CURRENT record-name-1
NEXT
RETRIEVE < PRIOR RECORD OF chain-name-2 CHAIN

MASTER

EACH AT END GO TO procedure-name-l

. DIRECT J

Format Option 2:

RETRIEVE NEXT RECORD OF CALC CHAIN

Notes:

74

1.

2,

Record-name-1 must be the name of the record level 01 entry
defined in the IDS Section of the Data Division.

Chain-name-2 must be the name of a chain defined by a level 98
entry in the IDS Section of the Data Division.

Regardless of the option used, this verb causes the record
referenced to be retrieved and made available in the memory
buffer. This action may or may not require that a page be
transmitted from the mass storage device, since the record may
already be in memory. No other action, such as moving the
record to working storage takes place.

The reference code of the record retrieved is accessible in the
communication cell named DIRECT-REFERENCE after the retrieval
process is completed.

Of the seven options available with the RETRIEVE verb, two may
be classified as absolute. This means that only one record will
satisfy the retrieval specification when one of the following
options is used.

RETRIEVE record-name-1 RECORD

The record retrieval action is predicated upon the RETRIEVAL
VIA clause defined in the level 01 entry in the IDS Section
of the Data Division. The record retrieved depends on the
values contained in the control fields of working storage
which uniquely identify the record.

If the record is retrieved VIA field-name FIELD, the
contents of the named field (the reference code of the
record to be retrieved) are used.

If the record is retrieved VIA CALC CHAIN, the contents of
the RANDOMIZE fields are used.

If the record 1is retrieved VIA chain-name CHAIN, the

contents of its MATCH-KEY and ASCENDING and DESCENDING sort
key fields are used.

RETRIEVE DIRECT

The record to be retrieved is identified by the reference
code stored in a communication cell named DIRECT-REFERENCE.
The user is responsible for initializing the communication
cell prior to the execution of this command.

The other five options may be classified as context dependent,
since the actual record retrieved is dependent upon previous
record processing.

RETRIEVE CURRENT record-name-1 RECORD

The record retrieved will be the current record of
record-name-1 specified. If no record of this name has been
processed, or if the last record processed has been deleted,
an erxror condition is noted.

NEXT
RETRIEVE PRIOR RECORD OF chain-name-2 CHAIN
MASTER

Record retrieval depends upon the current record of the
chain named. If NEXT or PRIOR 1is used, the appropriate
record is retrieved regardless of the record type. If MASTER
is specified, the master record of the chain named 1is
retrieved. If no records of the chain have been processed,
or if the last record has been deleted, such that no records
exist in the chain, an error condition is noted.

75

76

RETRIEVE EACH AT END GO TO procedure-name-1l

This option facilitates a reference code ascending seguence
serial search of the I-D-S data file. This statement will

retrieve the first record, in ascending reference code
sequence, that has a reference code value equal to or
greater than the reference code value stored in the

FIRST-REFERENCE communication cell named. However, if the
reference code value of the retrieved record is equal to or
greater than the value stored in the communication cell
named LAST-REFERENCE, control is transferred to
procedure-name-1.

When a record is retrieved, the sum of its reference code
value plus one will be stored in FIRST-REFERENCE, which
initializes it for a subsequent execution of RETRIEVE EACH.

An option 2 entry record retrieval depends on the CURRENT
record within the chain specified. If NEXT 1is used, the
appropriate record is retrieved regardless of the record type.
These record specifiers can be used only 1if some record has
already been processed which is a member of the CALC chain.

If a record cannot be retrieved according to the specifications
of the retrieval statement, an error condition is noted.

The record retrieved is recorded as the CURRENT record of its
type and the CURRENT record in each chain in which it is a
master or detail.

Example:

The following statements will retrieve the master and detail
records of the calc chain. The master of the calc chain is the
Page Header record.

COMPUTE DIRECT-REFERENCE = page-number * 64,
ENTER IDS.
RETRIEVE DIRECT (master of calc chain)
IF ERROR ...
RETRIEVE NEXT of CALC chain.
IF RECORD-TYPE = 1000 GO TO end-chain.

Return

Function:

Format:

RETURN

To relink the selected records of a specific chain into the
order as returned by the sort. To return the data fields of
the I-D-S record to Working-Storage.

RETURN chain-name-1 CHAIN

Notes:

1.

AT END GO TO procedure-name-1

RETURN can only be used within an OUTPUT PROCEDURE associated
with a SORT statement for sort-file-1l. Any other use of a
RETURN statement will lead to unpredictable results at object
execution time.

The execution of the RETURN statement causes the next record in
sorted order (according to the keys 1listed in the SORT
statement) to control the retrieval of the corresponding I-D-S
record in chain-name-1. The I-D-S record is then relinked into
its ordered position in chain-name-1 as though the CHAIN-ORDER
is described as AFTER. The chain will appear as: MASTER, lst
record from sort, 2nd record from sort, etc.

The data fields of the sorted selected I-D-S record will be
moved to the I-D-S working-storage fields. The record returned
from sort will not be available for processing in the record
area associated with sort-file-1.

The I-D-S record will be current of program, current of type,

and current of chain-name-1. The record will not be current in
any other chains in which it participates.

77

78

Example:

FILE SECTION.

SD ST-FILE.

DATA RECORD IS SORTR.

01 SORTR.
02 PRIOR-REF
02 CUR-REF
02 KEY-1 PIC
02 KEY-2 PIC

SORT-CALL SECTION.
SORT ST-FILE ON ASCENDING KEY KEY-1, KEY-2.
INPUT PROCEDURE IS PHASE-1.
OUTPUT PROCEDURE IS PHASE-2.

ENTER IDS.
RETURN

TST-CHAIN CHAIN

PIC 9(6)
PIC 9(6)
9999,

999999,

AT END GO TO PHASE-2X.

coMP-1.
coMp-1.

SORT

Sort

Function: To sort the selected records of a specific chain into the
specified order.

Format:
ASCENDING
SORT sort-file-1 ON KEY field-name-1
DESCENDING
ASCENDING
[fleld—name 2. .:l KEY ...
DESCENDING

INPUT PROCEDURE IS section-name-1 [?HRU section-name-%]

USING file-name-2

GIVING chain-name-1 CHAIN

Notes:

1 The COBOL SORT is used to accomplish the sort of the selected
I-D-S records.

2.. All rules of COBOL SORT must be observed. The I-D-S exceptions
are discussed in the following notes.

3. The sort-file-1l Record Description must be equivalent to the
form:

01 SORT-IDS-REC.

02 Prior-ref PIC 9(6) COMP-1.
02 Current-ref PIC 9(6) COMP-1,
02 Sort-key-1

The prior-ref field must be the first entry
in the sort record.

The current-ref field must be the second
entry in the sort record.

79

80

The INPUT PROCEDURE must:
RETRIEVE the I-D-S records from the specific chain.

MOVE the PRIOR reference or zero to the prior-ref
field.

MOVE the CURRENT reference to the current-ref
field.

MOVE the data fields into the sort KEYS. (Other
data may be placed in the sort record; however,
I-D-S will not make use of the data.)

RELEASE the sort record.

The GIVING chain-name-1 CHAIN clause means that all sorted
records in sort-file-1 are used during the relink process to
control the retrieval of the corresponding I-D-S record in
chain-name-1, The I-D-S records are relinked into chain-name-1
as though the CHAIN-ORDER is described as AFTER. The chain will
appear as MASTER, lst record from sort, 2nd record from sort,
etc.

If the prior-ref field is set to =zero the execution of the
relink function may be inefficient.

The chain may contain multiple record types. If only one type
of record is selected for sorting, the selected sorted records
will appear in order following the master record. The remaining
record types will retain their relative order in the chain
after all of the selected sorted records.

The USING file-name-2 option requires file-name-2 to be of the
described format. The records must be equivalent to records
which would result by using the INPUT PROCEDURE option. All
records must be present in the selected chain.

At the completion of SORT the last record in the sort sequence
will be current of program, current of type, current of
chain-name-1, and its data fields will be moved to the I-D-S
working-storage fields. It will not be current in any other
chains in which it participates.

10. Example:

FILE SECTION.
SD ST-FILE.
DATA RECORD IS SORTR.

01 SORTR.
02 PRIOR-REF PIC 9(6) COMP-1
02 CUR-REF PIC 9(6) COMP-1.
02 KEY-1 PIC 9999,
02 KEY-2 PIC 999999,

SORT-CALL SECTION.

ENTER IDS.

SORT ST-FILE ON ASCENDING KEY KEY-1, KEY-2
INPUT PROCEDURE IS PHASE-1
GIVING TST-CHAIN CHAIN.

ENTER IDS.

RETRIEVE MSTR.
LOOPA.
ENTER IDS.

RETRIEVE NEXT TST-CHAIN CHAIN,
ENTER IDS.

IF MSTR RECORD GO TO P1lLAST.
ENTER IDS.

IF DET-2 RECORD GO TO LOOPA.
ENTER 1IDS.

MOVE.

MOVE FIELDAl TO KEY-2.

MOVE FIELDB1 TO KEY-1.
ENTER IDS.

MOVE TST-CHAIN PRIOR TO PRIOR-REF.
ENTER IDS.

MOVE TST-CHAIN CURRENT TO CUR-REF.

STORE

Store

Function:

Format:

ace record into ie I-D-S dat le, +tc esta 1 any
chain f[ields which have been defined, and to make the record
available for processing.

STORE record-name-1 RECORD

Notes:

82

1.

2.

Record-name-1 must be defined as a level 01 entry in the 1IDS
Section of the Data Division.

When this verb is used, the following is assumed:

Working-Storage for this record has been initialized with the
data contents for the record.

Any other control fields required to provide unique
identification of the master records of the defined chains
which include record-name-l1 have been initialized in their
respective working-storage areas.

The record is placed into the file as defined by the PLACE
NEAR or RETRIEVAL VIA clauses of the Record Description entry.

The reference code assigned to the record is left in the
communication cell DIRECT-REFERENCE after the storage process
is complete.

The record is recorded as the CURRENT record of its type and
the CURRENT record in each chain in which it is a master or
detail.

If the storage process creates a duplicate record in violation
to any DUPLICATES NOT ALLOWED clause, or if the wunique or
range master selected cannot be retrieved, the storage process
is terminated with all linkages restored as before and an
error condition is noted.

When a primary record is stored, its reference code 1is moved
to the working-storage field named by the RETRIEVAL VIA
field-name FIELD clause.

10.

Placement of records by I-D-S is influenced by the RETRIEVAL
VIa, PAGE-RANGE, PLACE NEAR, and INTERVAL Clauses. The
following summaries show priority of record storage criteria.
If PAGE-RANGE is specified and the resultant page number falls
outside the page range, the page number is always scaled down
to fall within the page range.

Primary records are stored as follows:

a. If INTERVAL is specified and the current page is not zero,
on the page calculated by INTERVAL plus page of current
record of the type.

b. If not as a, above, on the page specified in
DIRECT-REFERENCE, if it is not =zero.

¢. If not as a or b, above, and if PLACE NEAR is specified
and the CHAIN-ORDER is SORTED, SORTED WITHIN TYPE, FIRST,
or LAST, on the page of the master record of the chain
named in the PLACE clause.

d. If not a, b, or ¢, above, on the page of +the current
record of the chain-name.

e. If none of the above, on a page most convenient to I-D-S.

Secondary records are stored as follows:

a. If INTERVAL is specified and the current page is not zero,
on the page calculated by INTERVAL plus page of current
record of the type.

b. If not as a, above, and if PLACE NEAR is specified and the
CHAIN-ORDER is SORTED, SORTED WITHIN TYPE, FIRST, or LAST,
on the page of the master record of the chain named in the
PLACE clause.

c. If not as a or b, above, on the page of the current record
of the chain-name.

d. If not as a, b, or ¢, above, and if the CHAIN-ORDER of the
RETRIEVAL VIA chain is SORTED, SORTED WITHIN TYPE, FIRST
or LAST, on the page of the master record of the chain
named in the RETRIEVAL VIA chain-name CHAIN clause.

e. If none of the above, on the PAGE of the current record of
the RETRIEVAL VIA chain.

83

84

11.

12.

Calculated records are stored as follows:

On the page calculated by randomizing the contents of fields
named in the RANDOMIZE ON field-name clause.

Record storage is subject to the following Overflow rule:

If space is not available in the specified page, the record is
placed on the first page in the direction of ascending page
numbers in which there is available space as determined by
search of the inventory records. Pages which do not have
inventory records are bypassed until all pages controlled by
inventory are searched. If space is not found by the inventory
search, then all pages not controlled by inventory are
searched. The boundaries specified by the use of a PAGE-RANGE
clause are observed in this process.

I-D-S Conditional Statements

The conditional statements of I-D-S are logical extension of the basic
STORE and RETRIEVE verbs. Generally, they involve the key word IF,
followed by the condition to be tested, followed by the imperative
statements to be performed.

I-D-S conditional statements are of two general forms; either form may
appear in the string of statements following a basic verb.

The specific formats of these statements and a discussion of their
restrictions and limitations follow.

Following the explanation of the IF-clause formats, PERFORM and USE,
which also are conditional, are discussed.

85

IF

if
Function: To conditionally transfer control to an alternate procedure.

Format Option 1:

;IF record-name-1 RECORD statement-1 [istatement-2..{]

OTHERWISE
statement-3 Estatement-él . :l
ELSE

Format Option 2:

OTHERWISE
;1IF ERROR statement-1 statement-2 ;statement-3.{]
ELSE

Notes Option 1:

1. The IF record-name-1l RECORD clause is specifically designed to
support those retrieval statements where the type of record to
be retrieved is unknown until after the retrieval is complete.
Specifically, the IF record-name clause may only be wused in
conjunction with RETRIEVE DIRECT, RETRIEVE EACH, RETRIEVE NEXT
and RETRIEVE PRIOR.

2. Statement-1, 2, 3, 4 may be any one of the following
statements: MOVE TO WORKING-STORAGE, IMODIFY, DELETE, HEAD,
PERFORM, or GO TO. In addition, statement-3 may be another IF
record-name clause. This allows multiple test-branch logic
based on record type.

3. The record type field in the record just retrieved is compared
with the record type named by record-name-1l, If the record
types are the same, statement-1 and subsequent statement-2's
are executed in sequence and then control is transferred to the
next sentence in the program. A GO TO procedure-name statement
may be used as either statement-l or statement-2 to <cause a
transfer to some alternate sentence in the program.

If the record retrieved is not the type specified, then control
is transferred around statement-1 and subsequent statement-2's
to statement-3, or to the next sentence in the absence of an
OTHERWISE or ELSE phrase.

86

Notes Option 2:

1.

2.

This form may only follow a STORE or RETRIEVE verb or a MODIFY,
DELETE, HEAD, or MOVE imperative statement.

Statement-1 may only be a GO TO or a PERFORM imperative.
Statement-2, statement-3, etc., may be any imperative statement
appropriate to the basic verb, or a conditional of form 1, if
appropriate.

The IF ERROR clause tests the occurrence of any logical error
as a result of the last I-D-S statement. The specific errors
which may occur are a function of the statement executed. The
user program may determine the type of error by referring to
the ERROR-REFERENCE communication cell.

If an error occurs because of hardware, data description, or
improper use of an I-D-S function, the program is brought to an
orderly halt, the file closed and the program aborted and
memory dumped, 1f requested, with the appropriate error
message.

If a data-dependent error is detected by I-D-S, an error code
will be stored in ERROR-REFERENCE and control will pass to the
IF ERROR STATEMENT.

The execution of a subsequent I-D-S statement will reset the
error code stored in ERROR-REFERENCE.

87

PERFORM

Perform

Function: To depart from the normal in-line sequence of procedures in
order to execute a specific procedure and then return to the
normal sequence.

Format:

; PERFORM procedure-name-1 [?HRU procedure—name—g]

Notes:

1. Procedure-name-1 may be any COBOL procedural paragraph 1in the
Procedure Division.

2. For other details concerning the PERFORM statement see the
GE-600 Line COBOL Reference Manual, CPB-1652. Only the simple
PERFORM (option 1) is recognized within an I-D-S sentence.

3. PERFORM may be used with:
IF ERROR...
IF record-name...
ON record-name DETAIL...
4., If PERFORM is used with ON record-name DETAIL, the procedure

performed may not contain any I-D-S functions. The THRU
procedure-name-2 may not be used.

88

Use

Function:

Format:

USE

To specify procedures to be executed for I-D-S error
conditions which are in addition to the standard procedures
supplied by I-D-S.

USE procedure-name-1 [@HRU procedure—name—é]

EJI TH TRACE]

error-code-1 E'error—code—2..3.

ON

ANY ABORT

The USE clause may appear anywhere within the Procedure
Division.

The procedures specified will be executed by COBOL PERFORM.
The procedures may not contain I-D-S statements. The activity

will be aborted if any I-D-S statements are executed while the
USE procedures are being performed.

The I-D-S error codes used as error-code-1 and error-code-2,
etc., are defined in Appendix B.

This clause may be used as many times as necessary to define
appropriate procedures for specified error conditions.

Not all error codes need be specified. Selected error codes
may appear in only one USE statement.

The ANY ABORT option may be used only once, and no other option
may be used with it.

When a trace is made, a plain language statement defining the
error and, when possible, the records or chains involved
appears on the execution report. (See Appendix B.) All fatal
I-D-5 error conditions are traced prior to aborting.

89

90

The trace prints (1) the name of the subroutine called, (2) the
name of the subroutine that called it, and (3) the alter number
from which (1) was called. The trace continues to the point at
which the main program is the calling routine. An example is

AdOWIL 2oC L0OW

IDS ERROR
RETRIEVE NEXT IN CHAIN NO CURRENT EXISTS MT0010-DT0020
TRACE OF ABOVE ERROR FOLLOWS —-----
QUIT CALLED BY .QFWD AT ALTER 000149
:QFWD CALLED BY .QCHN AT ALTER 000131
:QCHN CALLED BY C.LDIN AT ALTER 000054
TRACE END

Example:

PROCEDURE DIVISION.
START-PARA.

ENTER IDS.
USE ERROR-PARA-1 ON DO1.

ERROR-PARA-1.
DISPLAY "DUPLICATE RECORD FOUND".

ENTER IDS.
USE ABORT-PARA-1 THRU ABORT-END
ON 15,31.

ABORT—-PARA-1.
DISPLAY "RECOVERY REQUIRED - DELETE REPORTS".

ABORT-END.
CLOSE IN-FILE, OUT-FILE.

4. Translator Processing

The I-D-S Translator is a system program which is called from system
storage by the $ IDS control card. :

At the time of allocation for the I-D-S Translator, sufficient resources
(memory and peripheral devices) are allocated to provide for COBOL. When
the Translator has completed its function, it passes control to COBOL
using the GECOS entry point GECALL. Figure 16 is a flow diagram of the
compilation process of an I-D-S program.

PAGE EJECT AND COMDK LABELING

Page Eject in the Listing

The user can indicate that he desires a page eject in the 1listing by
including a *EJECT card at the appropriate point. A *EJECT (starting in
column 7) is treated as comments by the translator and causes a page
eject in the listing before the printing of the *EJECT card. The *EJECT
is passed to COBOL and causes a subsequent print and page eject in the
COBOL portion of the listing.

COMDK Labeling

The translator uses the contents of columns 73-80 of the first source
card encountered and includes it in columns 73-80 of any compressed deck
created by the translator. Labeling and sequencing conform to the
specifications of IOEDIT (see GE-600 Line File and Record Control,
CPB-1003) .

91

I-D-S COBOL
Source \
Language

I-D-S
Translator

Source
Listing

Y

COBOL
Library COBOL Listing
Compiler and
Exception
Report
1
|
1
|
GMAP :
Input :
1
Assembly
GMAP Listing
Object
Code

- ———— ——— -

Load
GELOAD Map

Subrouting ---- Indirect Processing

Library

(Includes I-D-S Subroutines)

Figure 16. I-D-S Compilation and Execution Process

92

$ IDS CONTROL CARD DESCRIPTION

The $ IDS control card is used to call the I-D-S Translator. The operand
field is used to specify the system options.

Example:
1 8 16
!]
$ \IDS loptions
| !
Options available with I-D-S/COBOL are listed below; standard options

are underlined.

LSTIN

NLSTIN

LSTOU

NLSTOU
NDECK

DECK

COMDK

NCOMDK

DUMP

NDUMP

ON6

COPY
NCOPY

SYMTAB

An I-D-S listing and COBOL input listing will be prepared

No I-D-S listing of input will be prepared. Option is reset
to LSTIN prior to calling COBOL

A listing of assembled object program output will be
prepared by GMAP

No listing of output will be prepared
No binary object program deck will be prepared

A binary object program deck will be prepared as output by
GMAP

A compressed deck of the source program will be prepared
during translation

No compressed deck of the source program will be prepared

Slave core dump will be produced if activity terminates
abnormally

Only a panel dump of program registers will be produced if
activity terminates abnormally

COBOL will generate a REF ON so that GMAP will build a
Symbol Reference Table

A COBOL copy prepass is required (see rule 4)
No COBOL copy prepass is required

GMAP will prepare a listing of the Symbol Reference Table
(if one has been built) even though NLSTOU is also specified

93

Rules:

94

The $ IDS control card must precede the source cards of each
program or subprogram to be processed and must precede any
other control card associated with that activity.

The options can be listed in any order in the cperand field.

If no options are specified in the operand field, GECOS |wuses
the standard options (underlined).

All source decks which use the COPY clause or the RENAMING file
option (see GE-600 Line COBOL, CPB-1652) must wuse the COPY
option.

SAMPLE OUTPUT PRODUCED BY THE I-D-S TRANSLATOR

54975

02 u%9-

PAGE i
1SDLel? CHGQ2
26=68 10,291 GEEJ0 INTEGRATED STORE TRANSLATOR

[DS ALTER NQOS,

J0001
Jgooe
00003
30004
o0005
oouQe
20007
Jooos
J0009
00010
60011
20012
40013
00014
J001s
20016
40017
30018
00019
J0020
30021
20022
30023
20024
Jo02s
s0u26
w002/

10028
J0029
30030
40031
40032
40033
30034
30035
Jou3e
600u37

000030

000050
000060
000070
000080
000090
000100
600110
600130
000U150

06ud99p

000409
000410
060420

IDENTIFICATION DJVISION
PROGRAM=ID, 5IDS .,
AUTHOR, VANDERBUR ,
DATE-WRITTEN ,
ENVIRONMENT DIVISIOQON,
CONF JGURATIUN SECTIUN.
SOURCE~CUMPUTER, GLE~-035,
0BJECT=COMPUTER, GE=635y
INPUT=QUTPUT SECTION,
FILE=-CONTROL.
SELECT 1DS TEST=FILE ASSIGN TO TF,
[~0=CONTROL
DATA DIVISIUN,
FILE SECTIOW,
WORKING=STORAGE SECTIUN
77 PAGER PICTURE 999999 COMPUTATIONALZ1 ,
77 COUNT FICTURE 9(6) CUMPUTATIONAL-1 ,
77 LIMIT=1S PICTURE 999999 COMPUTATIONAL=1 .
77 CTILR PICTURE 9(6)
01 LOCPER ,
(5 L[IMITER PICTURE 9(6) ,
¢s FILLER SIZ2& 74
01 GONOGO
¢5 TSTIT PICTURE XXXXXX
88 LGOUN VALUE "GO "
05 FILLER S1ZE 74 ,
IDS SECTION.
01 CCa3LOXK ,
02 DIRECT=REFERENCE SIZE IS 6 LSAGE IS CUMPUTATIUNAL=L
SYNCRRrRONTIZED RIGHT,
J2 FIRST=REFERENCE Sifk IS 8 USAGE 1S COMFUTATIONAL-1
SYNCHRONIZED KIGHT,
02 LAST-REFEREHCE SIZE IS 8 USAGE Is COMPUTATIUNAL=1
SYNCRRONIZED RIunl,
§2 RECORD-TYPE SiZE IS 4 USAGE IS CnoMPUTATIONAL-1
SYNCHRO~N]ZED RIGHT,
g2 REC~FILE SIZE iS 6 CLASS IS ALPHANUMERIC
VALUE IS wOoQCLTE",
{2 ERRON-REFERENCE SITZE IS 3 CLASS 1S ALPHANUMERIC
SYNCHRONIZFD KlenT,
MO TEST-FILE
PAGE CUNTAINS 1920 CHARACTERS
FILE CONTAINS 48C PAGES,
§1 PRIME=ER TYPE 555 RETRIEVAL VIA PRIME FIlELD ,
C2 PRIME PICTURE 99999969 .
N2 ABCUEF PICTUKE 999 .
01 THE=-MASTER
TYPe 18 997
RETRIEVAL VIA CALC CHAIN
PAGE~RANGF 121 TU 121

95

54975 02

IDS ALTER

u0038
00039
30040
Jo041
00042

J0043
Joo44

J0045
40046
30047
J0048
J0049
30050
20051
y0o0s2
200538
u0054
20055
20056
20057
J0058
40059
J0060
00061
Jp0n62
210063
J0064
Joues
20066
Jous7
10068
30069
10070
Joo71
30072
Jog07z3
30074
J0075
Jgo07e6
30077
J0U78
J0u7y
s0UR0
50081
Jou82
JO0UR3
J0U0&4
Jou8s
40086
J00R7

96

NOS,

¢?2
02
945

98

98
01

NoN mE el
NN

01

G2
02
93
9R

01

e
2
93

94

(]
-

U2
9a
98

01

PAGE 2
1SDL~=12 CHGQ2

§9=-26-68 10.291 GFE6Q0 INTEGKATED STORE TRANSLATUR

MASTER=F JELD PICTUKE 999999 ,
MASTER~LATA PICTURE X(12) ,
CALC CHAIN DETAIL
RANLUOMIZE ON MpSTeReFIELD ,
THE=CHAIN CHAIN MASTER CHAINeQOKNDER
IS SURTED WITHIN TYPE,
PAGE-TABLE CHAIN MASTER CHAIN=ORDER 1S SORTED ,
Quapl
TYyPE 15 001
RETRIEVAL VIA CALC CHAIN

.

QUADL=NUM PICTURE 99999% ,
GUADL=-FIELD SIZE 24 ,

CALC CHAIN DETAIL

RANDUMIZE ON GUAUL-NUM

THE=CHAIN CHAIN LETAIL SELECT CURRENT
ASCENDING KEY 1S QUAUL=NUM,

QUADZ

TYPE S 282

RETRIEVAL VIA CALC CHAIN

QUADZ2-NUHM PICTURE 999999 ,
GUADZ2«FIELD SIZE 24 .,

CALC CHAIN DETAIL

RANDUMIZE On QUADZeNUM

THE=CHAIN CHAIN UETALL SELECT CURRENT
ASCENDING KFY IS WUADZ=NUM,

QuaDn3

TYPE IS 733

RETRIEVAL V1A CALC CRAIN

GUAD3=NUM PICTURE 999999
WUADS~FIELD SIze 24 ,

CALC CHAIN DETAIL

RANDOMIZE ON QUAD3I~NUM

THE=CHAIN CrHAIN DETAIL SELECT CURRENT
ASCENDING KFY IS WUALS=NUM,

DUAD4

TYPE S 704

RETRIFVAL VIA CALC CHAIN

QUANG=NUM RICTURE 999999 ,
QUAD4=FIELD SIZE 24 ,

CALC CHAIN DETAIL

RANDOMIZE ON WUAD4~NUM

THE=CHAIN CHaIN UETAIL SELECT CURREMT
ASCENDING KEY 1S QUAD4=-NUM,

PAGE~LIST

TYPE IS 82

DECK SETUPS

The following deck setups show the most common wuses of the I-D-S
Translator: (1) translate and compile; and (2) translate, compile, and
execute.

Translate and Compile

1 8 16
| !
$ |IDENT 1
$ 1IDS !
! |
'
| . : Source Program
| |
b
$ IENDJOB
***EQOF 1 I

With the above deck setup, the I-D-S Translator is called, and the
source program is translated into a form acceptable to COBOL. COBOL 1is
called to compile the translated program. Since no options are specified
in the $ IDS card, standard I-D-S/COBOL options are used.

97

Transiate, Compiie, and Execute

The deck setup above assumes a temporary I-D-S data

1 8 16
I T
$ ITDENT |
$ PROGRAM } TU
S DATA '
I .
[=D1rect1ves
S |"f11e" IAl ,Options
S IDATA {I
: . | Directives
|
S :IDS | options
. |
: . |Source program
|
$ lEXECUTE | ptl ons
S I"gilen fc,Options
| l fc is the same file code
I | specified in the File Code
| I Section of the user's program
$ IDATA | .0
- |
. | Directives
I . |
$ [ENDJOB |
***EOF | |

base

where

can reference any mass storage device such as PRMFL, DISC, MASS,

98

"file"
etc.

OBJECT PROGRAM EXECUTION

The I-D-S object program consists of a modular set of subroutines which
interpretively execute the I-D-S commands, GELOAD 1loads these
subroutines as a result of the calls generated by the compilation
process.

Because of the interpretive mode of execution, the complete data
description of the I-D-S data file, also generated by the Translator,
must be available to these routines.

Example:

Deck setup for execution using an I-D-S permanent data file.

1 8 16
T T
$ \IDENT :IDSOO,DATABASEMGR,
$ [USERID IDSFOURYQUADS DATABASE
S loBJECT |
Lo !
Pt I
|- |
$ IDKEND |
$ [EXECUTE :
$ ILIMITS .
S IPRMFL IAl,R/W,R,IDSFOURYQUAD/QUADOl
$ IPRMFL A2, R/W, R, IDSFOURYQUAD /QUAD02
s PRMFL {A3,/R/W, R, IDSFOURYQUAD /QUADO 3
S [PRMFL {A4,R/W, R, IDSFOURYQUAD /QUADO 4
. |
I . |
(I I

99

5. |-D-S Data File Structure Descriptions

DEFINITION STRUCTURE

The Definition Structure required by I-D-S is a list structure which
reflects the description of the records of the I-D-S data file. It
defines the master/detail relationships between records, chain
claracter6stics, and the physical and control characteristics of every
field of every record type in the I-D-S data file.

The organization of a Definition Structure wusing the I-D-S shorthand
technique is shown in Figure 17.

101

Field CHAIN

Communication

Control
Block

Record
Definition

Field
Definition

Modify CHAIN

Detail ggélﬂ

Master CHAIN

Master
Definition

Chain CHAIN

Detail
Definition
Control CHAIN
Control
Definition

Figure 17.

I-D-S Definition Structure

The Definition Structure is described in the following sections.

102

Communication Control Block

The Communication Control Block entry must be supplied as the master of
the Record-Type Chain. It serves as the communication area for data
which must be passed between the wuser's program and the I-D-S
subroutines. The machine format of the entry is shown in Figure 18.

Bits
0 5 11 17 23 29 35

LOC-CCB 0 O MBZ DIRECT-REFERENCE

+1 MBZ FIRST-REFERENCE

+2 MBZ LAST-REFERENCE

+3 MBZ Record Type

+4 Record Type Chain Next MBZ File Code

+5 MBZ ERROR-REFERENCE

+6 MB2Z AUTHORITY MBZ OPEN Mode

Figure 18. Format of Communication Control Block Entry

The bit structure of the format shown in Figure 18 serves the following
purposes:

LOC-CCB Symbolic location of Communication Control Block.
0-5 Definition Type--an octal code of 00.
6-11 Must be zero.
12-35 DIRECT-REFERENCE--a reference code of the record last

processed by any STORE or RETRIEVE.

LOC-CCB+1
0-11 Must be zero.
12-35 FIRST-REFERENCE--reference code of the first record to be
retrieved by the RETRIEVE EACH verb. The value is supplied by
the user's program. After each retrieval, the I-D-S

subroutines modify the value to the next reference code.

103

LOC-CCB+2

LOC-CCB+3
0-11

12-35

LOC-CCB+4

0-17

18-23

24-35

LOC-CCB+5

18-29

30-35

Must be zero.

LAST-REFERENCE--a value supplied by
this reference code is reached, the
execute the AT END procedure.

the user's program. When
RETRIEVE EACH verb will

Must be zero.

Record type of the last record processed by any STORE or
RETRIEVE. The value is supplied by an I-D-S subroutine.

Record Type Chain Next--the assigned symbol of the first
Record Definition Structure.

Must be zero.

File Code--the user-supplied, two-character file code
assigned to the I-D-S data file.

Must be zero.

ERROR-REFERENCE--a BCD code for an error condition

encountered during execution. If there is no error, the value

supplied by I-D-S will be zero.

Must be zero.
AUTHORITY~--a value supplied by the user.
Must be zero.

OPEN Mode--a processing mode supplied via the OPEN routine.

Record Definition Entry

A Record Definition entry must be supplied for each data record type in

the I-D-S data file.
the Page Header record.
Master Chain,
Record-Type Chain.,

104

In addition, one such entry must be supplied for
The Record Definition entry is the master of the
Detail Chain, and the Field Chain; it is a detail of the

The format is shown in Figure 19.

LOC-SYM 0 1 |MBZ| Record Type Record Size |MBZ |S |P| R
+1 Page Interval Master Chain Next
+2 Field Chain Next Detail Chain Next
+3 Authority Current Record Reference Code
+4 Record Type Chain Next MBZ
+5 Minimum Page Range Maximum Page Range

0 5 8 11 17 29 35

Figure 19. Format of Record Definition Entry

The bit structure of the format shown in Figure 19 serves the following

purposes:

LOC-SYM

18-29

30-32

33

34

35

Symbol equivalent to the record name.

Definition Type--an octal code of 01.

Must be zero.

Record Type--a number from 1 to 999 assigned to each data
record; 1000(10) is assigned to the Page Header record; for

a Pagette Header record, the number is 1003(10).

Record Size--number of characters in the record including all
control and chain fields.

Must be zero.

S--Storage Classification Indicator

0--Record is stored relative to the chain defined as the
Retrieval Chain for this record.

1--Record is stored relative to the chain defined as the
Storage Chain, which is not the same as' the Retrieval
Chain.

P--Page Range Indicator

0--Absolute Page Range not specified for this record type

(see LOC-SYM+5).

l--Absolute Page Range is specified (see LOC-SYM+5).

R--Retrieval Classification Indicator

0--Secondary or calculated record
1--Primary record

105

LOC~-SYM+1

0-17

18-35

LOC-SYM+2

0-17

18-35

LOC-SYM+3

0-11

12-35

LOC-SYM+4

0-17

18-35

106

Page Interval--Number of pages

page in which the last record of this type was

the
This

to be skipped relative to
stored.

only applies to primary or secondary records.

Master Chain Next--the assigned symbol of the first Master
Definition for this record. If this record is not the master
of any chain, this is the assigned symbol of the Record
Definition.

Field Chain Next--assigned symbol of the first Field

Definition for this record. If
this is the assigned symbol of

Detail Chain Next--assigned
Definition for this record. If
in any chain, then this is the
Definition.

AUTHORITY--A value

supplied by the

there are no data fields,
the Record Definition.

then

symbol of the first Detail
this record is not the detail
assigned symbol of the Record

user not to exceed

4095 (10) which serves as a lock for the data contained in the

record. Reference to this record during program execution
allowed only when a matching key is specified by

calling sequence.

Current Record Reference Code--reference

record stored or retrieved of

is

the .QOPEN

code of the last

this record type. This is

supplied by I-D-S during execution.

Record Type Chain Next--assigned symbol of
Definition of the Definition Structure.

Record Definition entry, this

the next Record
Uf this is the 1last

field contains the symbolic

location of the Communication Control Block.

Must be zero.

LOC-SYM+5
(For P, see LOC-SYM, bit 34.)
If P = 1, then:

0-17 Minimum Page Range--the first page number of a range of pages
into which all records of this type are to be stored.

18-35 Maximum Page Range--the last page number of a range of pages
into which all records of this type are to be stored.

If P

0 and LOC-SYM+5, bits 0-35 = 0, then:
No Page Range is specified for this record type.
If P = 0 and LOC-SYM+5, bits 0-35 # 0, then:

0-17 Minimum Page Range Pointer~-points to a word in which bit
positions 18-35 contain the first page number of a range of
pages into which all records of this type are to be stored.

18-35 Maximum Page Range Pointer--points to a word in which bit
positions 18-35 contain the last page number of a range of
pages into which all records of this type are to be stored.

Detail Definition

A Detail Definition entry must be supplied each time a record is a
detail in some chain. If a record is a detail in three different chains,
three Detail Definition entries must be supplied. The Detail Definition
entry is a detail of the Chain Chain and of the Detail Chain. It is also
the master of the Control Chain. The machine format of this entry is
shown in Figure 20.

bits 0 5 8 11 17 25 29 31 35
Data
LOC-SYM 0 4 |MBZ Record MBZ Order DUP [CIU(S|R
Type
+1 (Chain Chain Next Control Chain Next
+2 |Chain Chain Head Detail Chain Next
+3 |Next Position MBZ Detail Chain Head
+4 |Prior Position Head Position MBZ

Figure 20. Machine Format for Detail Definition Entry

107

The areas in the format shown in Figure 20 serve the following purposes:

LOC-SYM

18-25

26-29

30-31

32

33

34

35

108

Symbol assigned to this entry.
Definition Type--an octal code of 04.
Must be zero.

Data Record Type--same as that specified by
Definition entry for this record.

Must be zero.

Order--a code to represent the chain-order of

the Record

the various

details of this <chain. Note that when several different

record types are defined as details of the same
chain-order must be the same for all records. The
for a CALC chain must be 11(8) for after current.

Octal Code Chain-order
06 Sorted Within Type
04 Sorted
10 First in Chain
00 Last in Chain
01 Before Current
11 After Current

DUP--Duplicate Records Indicator

00--Not allowed
01--Allowed First
ll1--Allowed Last

C--CALC Chain Detail Indicator

0--Not a CALC Chain
1--CALC Chain

E——Chain Master Indicator

0--The master of this chain is a unique master
retrievable via the MATCH-KEY fields defined
for this chain.

1--The master of this chain is the current
master record of its type.

S--Storage Chain Indicator

0--Record is not stored relative to this chain.
l1--Record is stored relative to its logical
position in this chain.

R--Retrieval Chain Indicator

0--Associative retrieval of this record not
possible via this chain. -

l--Associative retrieval of this record must be
via this chain.

chain, the
chain-order

LOC-SYM+1

0-17

18-35

LOC-SYM+2

LOC-SYM+3

0-11

12-17

18-35

LOC-SYM+4

0-11

12-23

24-35

Chain Chain Next-—-assigned symbol of the next Detail
Definition of this chain if there is more than one detail
record type in the <chain. If there 1is only one Detail
Definition or if this is the last of several, then this is
the assigned symbol of the Master Definition for this chain.

Control Chain Next--assigned symbol of the first Control
Definition for this chain or, if none, the symbol assigned to
this Detail Definition.

Chain Chain Head--~assigned symbol of the Master Definition of
this chain.

Detail Chain Next--assigned symbol of the next Detail
Definition for this record if the record is a detail in more
than one chain. If there is only one Detail Definition or if
this is the last of several, then this is the assigned symbol
of the Record Definition for this record.

Next Position--the character position, relative to the first
character of the record, in which the first character of the
chain next pointer is found.

If this is a CALC chain detail, the NEXT chain field must be
the first field following the Record Size Field of the
record; that is, it must be defined as beginning in character
position 5.

Must be zero.

Detail Chaln Head--assigned symbol of the Record Definition
for this record.

Prior Position--the character position, relative to the first
character of the record, in which the first character of the
chain prior pointer is found. If the chain is not prior
processable, this value is zero.

When a detail record of a given chain contains a prior
pointer, all records of the chain must contain a prior
pointer.

Head Position--the character position, relative to the first
character of the record, in which the first character of the
chain head pointer is found. If the chain is not a headed
chain, this character is zero.

Must be =zero.

109

Master Definition

A Master Definition entry must be supplied each time a record is defined
as the master of some chain. The Master Definition is a detail of the
Master Chain and the master of the Chain Chain. The machine format of
this entry is shown in Figure 21.
Bits 0 5 11 17 35
LOC-SYM 0 2 |[MBZ Data Record Master Chain Head
Type
+1 Chain Chain Next Master Chain Next
+2 MBZ Reference Code of Chain Masteg
+3 Next Position Reference Code of Chain Prior
+4 Prior Position Reference Code of Chain Current
+5 MBZ Reference Code of Chain Next
+6 MBZ Reference Code of Key Record
Figure 21. Machine Format for Master Definition Entry

The areas in the format shown in Figure 21 serve the following purposes:

LOC-SYM Symbol equivalent to chain name.
0-5 Definition Type--an octal code of 02
6-7 Must be zero.
8-17 Data Record Type--same as that specified for the Record
Definition entry for this record.
18-35 Master Chain Head--assigned symbol of the Record Definition
entry for this record.
LOC-SYM+1
0-17 Chain Chain Next--assigned symbol of the first Detail
Definition for this chain. If the chain has no detail records
defined, then this is the symbol of this Master Definition.
18-35 Master Chain Next--assigned symbol of the next Master
Definition if this record is the master of more than one
chain. If the record is the master of only one chain or the

110

master of the
symbol of the

last of several chains, then this coding is the
Record Definition for this record.

LOC-SYM+2

LOC-SYM+3

0-11

12-35

LOC-SYM+4

0-11

12-35

LOC-SYM+5

Must be zero.

Reference Code of Chain Master--reference code of the Master
Record of the chain defined by this Master Definition. This
value is supplied by I-D-S during execution.

Next Position--the character position, relative to the first

character of the record, in which the first character of the
chain next pointer is found.

Reference Code of Chain Prior--reference code of the prior
record of the chain defined by this Master Definition. This

is supplied by I-D-S during execution.

Prior Position--the character position, relative to the first

character of the record, in which the first character of the
chain prior pointer is found. If the master record is not
prior processable, this value is zero.

Reference Code of Chain Current--reference code of the
current record of the chain defined by this Master

Definition. This value is supplied by I-D-S during execution.

Must be zero.

code of the
Definition.

Reference Code of Chain Next--reference
record of the chain defined by this Master
is supplied by I-D-S during execution.

next
This

Must be zero.

Reference Code of Key Record--reference code of the record to
which a record will be relinked if there is an error in
modification. This code is supplied by I-D-S during
execution.

111

Fieid Definition

A Field Definition entry must be supplied for each data field contained
in the record. (Note that Field Definitions are nat supplied for the 1In
addition, if the record is defined as a secondary record, a Field
Definition must be supplied for all MATCH-KEY fields defined. If the
record is defined as a primary record, a Field Definition must be
supplied for the field which is equivalent to the reference code. The
Field Definition entry is a detail in the Field Chain and is the master
of the Modify Chain. The machine format of the entry is shown in Figure
22.

0 5 17 24 33 35
Loc-SYM |1 0 MBZ C | AF [U [MBZ Field Increment
+1 Location of Working Field Size MB Z First
Storage Char.
+2 Field Chain Next Modify Chain Next

Figure 22. Machine Format for Field Definition Entry

The areas in the format shown in Figure 22 serve the following purposes:

LOC-SYM Symbol assigned to this entry.
0-5 Definition Type--an octal code of 10.
6-17 Must be zero.
18 C--Computational Mode Indicator (*)

0--Noncomputational field recorded in BCD.
l--Computational field recorded in binary. (The
implied size is 6 or 12 characters.)

19-20 AF--Arithmetic Form (%)
If bit 18=1 then:
00--Single Precision, Fixed Point
0l--Single Precision, Floating Point

10--Double Precision, Fixed Point
11--Double Precision, Floating Point,

112

21

22-23

24-35

LOC-SYM+1

0-17

18-29

30-32

33-35

LOC-SYM+2

0-17

If bit 18=0 then:

00--Alphanumeric

0l--Alphabetic

10--Numeric

11--Signed numeric (sign indicated by zone bits of
low-order character of the field).

U--Unique Field Indicator

0--Field is not a unique or control field
1--Field is unique and required for identification
of the record

When this record is a primary record its unique field is, by
definition, the reference code. Since a Field Definition
entry is not supplied for the reference code, a separate
entry must be supplied to define the working-storage location
for the field which is equivalent to the reference code. This
entry must not include the Field Definition specifications
indicated in this section by (*), since the field is not
actually contained in the data record. I-D-S assumes that the
format of this field in working storage is eight characters,
BCD numeric.

Must be zero.

Field Increment (*) --character position of the first
character of a field; increment zero is the first character
of the record.

Location of Working Storage--assigned symbol of the leftmost
word of working storage defined for this field. The symbol is
equivalent to the field name.

Field Size--the number of characters in the field as it
exists in the record or in working storage.

Must be zero.

First Character--position of the first character of the field
within the first word of working storage.

Field Chain Next--assigned symbol of the next Field
Definition of this record, if there is more than one field in
the record. If there is only one field or if this is the last
of several, then this value is the assigned symbol of the
Record Definition for the record.

113

18-35 Modify Chain Next--assigned symbol of the first Control

Definition for this field or, if the field is not a control
field, the symbol of this Field Definition.

Control Definition

A Control Definition entry must be supplied each time a field is defined
as a control field of some chain. A control field is defined as a sort
field, MATCH-KEY field, or a RANDOMIZE field. The Control Definition
entry is a detail of the Modify Chain and of the Control Chain. The
machine format of this entry is shown in Figure 23.

0 5 14 17 35
LOC-SYM |2 0 MBZ R | CNTL Control Chain Head
+1 Location of MATCH-KEY Control Chain Next

Field Definition

+2 Modify Chain Head Modify Chain Next

Figure 23. Machine Format for Control Definition Entry

The areas in the format shown in Figure 23 serve the following purposes:

LOC-SYM Symbol assigned to this entry.
0-5 Definition Type--an octal code of 20
6-13 Must be zero.
14 R--Match Control Indicator

0--Equal match required
1--Match equal or greater (Range Record)

15-17 CNTL--Control field type

001--RANDOMIZE control field
01l0--Sort Control ascending sequence
0ll--Sort Control descending sequence
100--MATCH-KEY control field

18-35 Control Chain Head--assigned symbol of the Detail Definition
of the chain controlled by this Control Definition.

114

LOC-SYM+1

0-17 Location of MATCH-KEY Field Definition--assigned symbol of
the MATCH-KEY Field Definition associated with this SYNONYM
Field. If there is no SYNONYM, this symbol is zero.

18-35 Control Chain Next--assigned symbol of the next Control
Definition for the chain. If this is the last or only Control
Definition, then the <code 1is the symbol of the Detail
Definition.

When several sort control fields are defined for a given
chain, they must occur in sequence from major sort control to
minor sort control.

LOC-SYM+2
0-17 Modify Chain Head--assigned symbol of the Field Definition
for this control field.
18-35 Modify Chain Next--assigned symbol of the next Control

Definition if this field is a control field in some other
chain. If this is the last or only Control Definition for
this field, then the code 1is the symbol of the Field
Definition.

A definition structure produced by the I-D-S Translator and a definition
structure as expanded by GMAP appear on the following pages.

115

9TT

1DS ALYER NCS,

B ~ETC
RL2435 ,0FD
ETC
ETC

RL2434 ,0FD

ETC

ETC

RC2437 ,0CD
) _ETC
AL7&33 ,ORD
o ETC
RL7238 40DD
ETC

ETC

ETC
_RL7&36 40QDD
TC

EYC
ETC
RL7235 ,QFD
EYC
o ETC
EYC
ETC
RC7237 ,0CD
ETC
_RL4737 éaan

ETC
RL4742 ,QDD
_ETC
ETC
ETC
TRLA740 QDD
ETC
ETC
ETC
AL4739 ,0FD
ETC
T TEYC
RL4738 (OFD
ETC
ETC
RL4741 ,0CD
ETC
“RL3481 ,ARD
ETC
ETC

ETC

RL7e34 ,aFD

42447 09 08-C6-69 17,473

GEODD INTEGRATED STORE TRANSLATOR

CALC

" 0sUs00001>,0024,FC5697,PD2434,

RDZ43>,)RDS697,
QUADS=F1ELD
0s0s00000%,0006,FC5953,RD2433,

’ _RD£137'RD 953,

QUADI=NUM
J131R02436.PN2430.2N2434,RD2434,
0

002,000043,0,0,0,000000,
RN7233)RD7238,R07235,0000,RD4737,
400000,000000,Q0AD2
002:340,0,C,1,0,

0 RD?ase nn7233.nu47a2.no4097.RD7235,
aoa9,uuou ocoo,

THh CHAIN

G02s13,0,1,0,1,

" 1/RO7433,RD7233,RD4740,RD8129,RD7237,

6005,v0006,0000,

cALC .

0s0s00Q01°,0024,F C4353¢RD7234,
072350RD4353!

QUAD2=FIELD
0.0,00000%,0006,¢FC1025,RD7233,

RD7237 RDlO?5o

QulDZ*NUM
0:131RU7236.RD7236,RD7234,RD7234,
0

003,000043,0,0,0,000000,

“RDOA737,R04742,RU4739,0000,RD4481,

00G000,000000,QUAD]
oni.iu,o 0,1,C,

U/ RD4/40,KDa7374RD4097,RDA097,RD4742,
0039,0000,0000,

THE=CHAIN

“003.33,0,1,0,1,

42RD4737,RD4737+1RD4484,RDB129,RD4741,
0ous,u000,0000,

CALC

G,0,00004>,0024,FC1537,RD4738,
RDA73¥,R01537,

"QUADLI-FIELD ~

0,0,000009, 00C6+rCBO65,RDA737,
RDA741,RLB065,

QUADI=NUM
0,31RU4740,RD4740,RD4738,RD4738,

0

99y,00003%,0,1,0,000000,
RN780Y,RN4464,RD4483,0000,RD0513,
v0y121,000121,THE~MASTER

¥SDL =2 CHGUQ

1INd1N0O 31dNWVS

LTT

42447 05

08-(6-69

IBS ALTER NCS,

RC7E09 ,qQMD

EYC

RL4097 4OMD

17,473

GE®SQD INTEGRATED STORE TRANSLATQR

990,RD4097,RD4481,RD0196,0031,0000,
PAGE=TABLE
99UsRD4481,RD4481,RD5062,0027,0000,

ETC THE®=GHALN

RL4484 ,0DD 990411,0,1,0,1,
ETC 1.R04451.nn4aa1.nnexz9.pna129.RD4485.
ETC woo5,0000,3000,
ETC caLL

RL4483 ,0FD 9,0000U0012,0012,FC032¢,RD4482,
EYC RNA48S,RD1321,
ETC MASTER=LATA

RLC4482 ,afD 0,0,0u000%,0006,FC1089,RD448Y,
_ETC RD448>,R01089,
ETC HASTER-FIELD

RE4485 40CD

ETC

|; +RU4464,RD4484,RD4482,RD4482,

RL0513 ,QRD 1000 V00G22,0,0+1,000000,
EYC RDB12Y,ROUS13,R03543,0000,CCBLQC,
EYC 000000,000000, XPAGEHHEAD!X

"TRCEI29 ,oMD

1060, Rno5is,R00513 RD5060,000%,0000,

~_ETC CALC
USE
_JRA 1'%052,,,
[S9000 ZEro 00U000, 000002
FE0001 yFD 2670,10/990
" DEOUUY "ZERO 0,03
AI'!ES| NULL
T TENTER coBoL,

ENTER DEFINITIQONS

T SYMBOL RD3137 EQUALS

LINEwNQ

" SYMBOL FC3137 EQUALS INITIAL CHARACTER OF

L INEwNQ
L INE=NO

~JDS S1ZE

g0ou02 EQUALS

SYMBOL RD147§ EQUALS

PAGE~NQ

PAGE=NO

PAGE=NQ

TSYMBOL FC1473 EGUALS INITIAL GHARACTER af
IDs s1zE

UoQuUQ6 EQUALS

SYMBOL RE1217 EQUALS
_GUAD4=FIELD

TSYMBOL FG1217 EQUALS INITIAL CHARACTER

QUAD4=FIELD

10§ STZE
QUAD4~F1ELD

g00u24 EQUALS

SYMAOU RE7873 EQUALS
QUADG=NIIN
"SYMROL FC7673 EGUALS INITIAL CHARACTER

OF

QF

ISDL=2 CHGOO

8TT

42447 09

08-06"69 17,499

U00<16

000247 000500004170 009

000220

090223
00022
09022

000221 160QO0UDQ0OQ17 0QU

00022 0U0755001400 o3u

000223 004224 Qo422t 033

090224
o - 0go224
000224 100000000013 “Cwv

oonzng“gco7549009no O;U

000226 004470 004227 08¢

- T s 00227
0y0227
— U027 "ZCIU0I0042I4 ~ OGI
—oT T gUUe30 0UNGOU 004214 003
-~ - -QQUedl 004224 04224 033
T3
0u023¢
T T 000232
000232 011750002603 oGy
00033 00000V 004240 009
000234 004232 004732 038
000235 000000000000 00U
000236 0CU744 QDONUN O3y

T ogngze

0C0Qo000goONY Opu

510S

004240 004170 G338 0 T T
NC OF BINARY CARD 51Ds0032

»22
23
524

- 575

226
527

5248
2e

530
531
532

RD4483

RO¥482°

RD4485

RDUB13

ZERO

T ZERO

YFD

VFD.

1 QFD
ETC
ETC

JVFD

VFD
ZERO
1QFD
ETC
ETC
VFO
VFD

ZERO

G0C0

0
T DA/20,8/0,1/70,3/74418/RD%484
CNTL, RD4484 CON CHN WD,

ETC

CVFD

ZERD
ZERO
ETC
ETC

VFD
ETC

ZERD

VFD

ZERD

RpB129

DETAIL OF CALC CHAIN

..Rpgl2e CHN CHN NXT, RD4485 _ CON NXT._
RDB129,RD4481

 RD8129 CHN CHN HD, RD44B1 DET NXT,
12/0005,6/0,18/RD4481
0005 POS NXT, RD4481 DET CHN HD
_.__i2/s0000,12/0000,32/0 B
0000 RRIOR, 0000 HEAD

0,0,000045,0012,FC0321,RD4482,

RD4483,RD0321,
MASYER=DATA

9 CAF, O

- 06/10,12/0,3/0,1/0,2/0,12/000015
U, 090012 FLD INCRy

18/RD0321,12/0042,3/0,3/FC0321

RDO32Y WS, 0012 FLD sz, FC0321 FST CH,
RD4482,RD4483
RD4482 FLD CHN NXT, RD4483 MOD CHN NxY

MASTERWDATA

RD4485,RD108Y,
MASTER=FIELD

 ewseF [E DeNAMES#4e
T, 0,000009,0006,FC1089,RD4481,

06/40,12/0,3/0,1/0,2/0,12/000009

-0 CaF, O U,

0000QY FLD INCRy

18/RD1089,12/0006,3/0,37FC1089

rRD{Dg® " WS, 0006 FLD Sz, FCi089 FST CH,
RD4484,RD448Y

RD4481 FLD CHN NXT, RD4485 MQOD CHN NXT
MASTERwFJELD #oesF]ELD"NAMEswws

0 2, 1
0,’]D4434

D,1,RD4484,RU4484,RD4487,RD4482,

9 LaC SyN wés,, RD4484 CON, CHAIN NEXT

RD4482,RDA48
RD4432

MOD CH WEAD, RD4482
JORD "7 °1000,000022;40,0,1,00000¢0,

MOD CHN NXT

'RD8129,RD6513,RD0513,0000,CCBLOC,
000000,000000, XPAGE"HEADXX
06/4,2/0,10/1000,127000022,3/0,

REC S]ZE)»

MST CHN NEXT,
DET CHN NXT,

170,170,471

19900 RECURD TYPE, 0UQD22
0 s, 0 P, TR,
000000,RD8L2Y

000000 PG INT, RD8129
RDO513,RD0513

RDO513 FLD CHN NXT, RDO513
12/0000,24/0

Gnoo’ “AUTHORTTY,

cegloc,0

cesLor REC TYPE CHN NXT

6TT

42447 09 0E~(H-6Y 17,494 51US

0Cne37 oLagpg yngnun tiyu LERN ¢20000,0Q00000
Crglon paskE P oMM, 000U0D PAGE R MAX
KOAGE~HEANXX ##s#RECORVZNAMEw##w

Nty ay 283 RR1Z% 0D 1700,RDOBLS,RN0513,RD50600,0005,0000,
Nyligdi PRY ETC ¢aLc
0Cnedd 0Nel/bungagidg Gy VU G4/2,2/0,10/1030,187/RD0Y1L3
1100 REC TYPL% RDO913 MST CHN KD
GUNed4l 0Capdy (64202 (3 ZERND RY5060,RD0O5LS
K560 CHM CuN NXT, RDOS1L3 MST CHN NXT,
END CP EINARY UaPy BT5SUNLT
UCredz oLUcLLAQOUNY gy VFD 12/0,24/0
D0nNg4d GlhoOunNLeEny Gyu ViU 12/70175,24/90
Gres PUS NEXT,
C0Med4d nLuLGUNEOUNL Gyu VFL i2/70020,24/10
ongo POS PRINR
Nundiaz 285 s
MASTER OF CALC CHAIN
TUNHL 239 LSE
00née1d oCtg1s 7100 0y CGlu D386 TRA oINS,
0Cné1l nlCuybu yoOooL? L 537 L8IULD ZERD ¢cngegn,o0o00e
Dopele nluLounNGL/3e Gy 3B ERUUl1 yFL 26/10,10/990
DCNELT nCLnNu ynunes eyu 2389 nglULL ZERN C,03
Nuletls 240 L, TS, NyULL
541 % ENTER DEFINTITIQNS
00n€14 cCcEiviby 7010 2 Ggu 247 EQUeN2 TSX1 JOHRET pov238
b4 3 EDITP VX nuu23y

.QRD - RECORD DEFINITION

Line

RECORD TYPE

RECORD SIZE

S - STORAGE CLASSIFICATION INDICATOR

P - PAGE RANGE INDICATOR

R - RETRIEVAL CLASSIFICATION INDICATOR

PAGE INTERVAL

MASTER CHAIN NEXT

DETAIL CHAIN NEXT

GlelalalclelelelololselelolE

2 FIELD CHAIN NEXT
2 AUTHORITY
2 RECORD TYPE NEXT
3 MINIMUM PAGE RANGE
3 MAXIMUM PAGE RANGE
3 RECORD NAME
FORMAT
RDxXxXxxX .QRD XXX, XXXXXX X, X, X, XXXXXX, Line 1

ETC RDxxxXX , RDXxxX , RDXXXX ,XXXX, RDXXxX, Line 2

ETC xxxxxx,xxxxxx,xl!O) Line 3
TRANSLATOR OUTPUT (see preceding Definition Structure sample)
RD7233 .QRD 002,000043,0,0,0,000000,

ETC RD7233,RD7238,RD7235,0000,RD4737
ETC 000000,000000,QUAD2

120

.QDD - DETAIL DEFINITION

(See Figure 20.

Machine Format for Detail Definition Entry.)

Line| Item

EEEEOOOCLEEOOVWEEEO

RECORD TYPE

CHAIN ORDER

DUPLICATE RECORD INDICATOR
CALC CHAIN DETAIL INDICATOR
U = CHAIN MASTER INDICATOR
S - STORAGE CHAIN INDICATOR
R - RETRIEVAL CHAIN INDICATOR
DETAIL CHAIN NEXT

DETAIL CHAIN HEAD

CHAIN CHAIN NEXT

CHAIN CHAIN HEAD

CONTROL CHAIN NEXT

NEXT POSITION

PRIOR POSITION

HEAD POSITION

CHAIN NAME SPECIFIED BY 98 LEVEL

FORMAT

RDXXXX

QO OEEE

.QDD XXX , XX, X ,X,X,X, Line 1
@
ETC C)7<>,RDx ’ RD}@(X ’ RDxx , RDxxxx , RDXXXX, Line 2
ETC x@x R xx R x@x R Line 3
ETC xO) Line 4

TRANSLATOR OUTPUT (see preceding Definition Structure sample)

RD7238

.QDD 022,10,0,0,1,0

ETC 0,RD7236 ,RD7233,RD4742,RD4097,RD7238,

ETC 0039,0000,0000,
ETC THE-CHAIN

121

.QMD - MASTER DEFINITION

21. Machine Format for Master
Definition Entry.)

IV Y .

Line

Item
1 (:) RECORD TYPE

(:) MASTER CHAIN NEXT

(:) MASTER CHAIN HEAD
1 (:) CHAIN CHAIN NEXT

(:) NEXT POSITION

(:) PRIOR POSITION

@

CHAIN NAME SPECIFIED BY 98 LEVEL

RDxXXX .QMD xxx,RDxxxx,RDx;xx,RDxxxx,xxxx,xxxx, Line 1

ETC x(30) Line 2
TRANSLATOR OUTPUT (see preceding Definition Structure sample)

RD7809 .QMD 990,RD4097,RD4481,RD0196,0031,0000,
ETC PAGE-TABLE

122

.QFD - FIELD DEFINITION

(See Figure 22. Machine Format for Field Definition Entry.)

Line| Item

1 (:) COMPUTATION MODE AND
ARITHMETIC FORM
ALPHANUMERIC BCD FIELD
ALPHABETIC BCD FIELD
NUMERIC BCD FIELD
SIGNED NUMERIC BCD FIELD
SINGLE PRECISION FIXED POINT BINARY FIELD
SINGLE PRECISION FLOATING POINT
BINARY FIELD
DOUBLE PRECISION FIXED POINT BINARY FIELD
DOUBLE PRECISION FLOATING POINT
BINARY FIELD
U - UNIQUE FIELD INDICATOR

s WO

nn

6
7

FIELD INCREMENT

FIELD SIZE

FIRST CHARACTER

FIELD CHAIN NEXT

MODIFY CHAIN NEXT

LDEOOO®EOE

2 LOCATION OF WORKING STORAGE
3 FIELD NAME
FORMAT
RDxxxx .QFD (:X:)xxﬁ;Lx xé%l FCEELX s RDxxXxx, Line 1
ETC RDXxXX, RDx ’ Line 2

ETC x§;%>

TRANSLATOR OUTPUT (see preceding Definition Structure sample)

RD2345 .QFD 0,0,000015,0024,FC5697 ,RD2434
ETC RD2435,RD5697,
ETC QUAD3-FIELD

123

.QCD - CONTROL DEFINITION

(See Figure 23. Machine Format for Control
Definition Entry.)

H
ot
o
2

Line

R-MATCH CONTROL INDICATOR
CNTL - CONTROL FIELD TYPE
CONTROL CHAIN HEAD
CONTROL CHAIN NEXT

MODIFY CHAIN HEAD

MODIFY CHAIN NEXT

OOOOEO®OE

LOCATION OF MATCH-KEY FIELD DEFINITION

FORMAT

RDxxxX .QCD X,X,RDxxxx,RDxxxx, RDxxxx,RDxxxxXx, Line 1

ETC RDXXXX Line 2
TRANSLATOR OUTPUT (see preceding Definition Structure sample))

RD2437 .QCD 0,1,RD2438,RD2436,RD2434,RD2434,
ETC 0

124

6. Operational Characteristics

I-D-S provides the following capabilities:

A controlled, concurrent access to a common I-D-S structured data
file which is created by the File System Activity;

A common journal file for the automatic collection of journal
records from each of multiple I-D-S activities in execution;

An integrated set of utility routines to enable recovery and/or
restart following a condition which requires restoration of the
data file.

Concurrent access to a common I-D-S data file is provided through the
concept of subfile definition and allocation. A subfile is defined as a
set of pages that fall within the total I-D-S data file. This range may
be either the complete I-D-S data file or a portion. The File System
Activity ($ FILSYS) procedures allow the creation, modification, and
deletion of subfiles within an I-D-S file.

At execution time, the I-D-S user specifies the subfiles which must be
allocated to his activity. Each subfile requested is given an associated
access mode.

I-D-S DATA FILE INITIALIZATION

Prior to the operation of any I-D-S program, the mass storage device
must have been initialized with a Page Header record as the first record
of each page in the I-D-S data file.

The I-D-S utility program QUTI accomplishes this I-D-S data file
initialization.

125

CREATING AN 1-D-S DATA FILE

An I-D-S data file may be created on one or m
with different hardware characteristics. It ¢
or a combination of the two. In creating th
location of pages must be considered.

r many mass storage devices
t ient; temporary,

a e 3]
is file, the number and

The various directives necessary for creating an I-D-S data file are
described below. Only the I-D-S options are included. Refer to the
GE-600 Line GECOS III File System Reference Manual, CPB-1513, for a
detailed description of the GECOS III File System.

Creating a Permanent |-D-S Data File

A permanent I-D-S data file is created by wusing the file system
FCREAT/IDS/ directive. The options used with FCREAT/IDS/ are:

BASESIZE/n/ Base size is required; /n/ defines the maximum size of
the complete I-D-S data file; /n/ must be greater than
or equal to 1 and less than or equal to 262143. If
multiple files are created to form the complete I-D-S
data file, the value of /n/ must be identical on all
directives.

RNG/rl,r2/ The page-range 1is required to define the pages
contained in the file; rl and r2 are the beginning and
ending page numbers respectively; rl must be less than
or equal to r2; the wvalues of rl and r2 must be
greater than or equal to 1 and less than or equal to
262143. This range may be either the complete I-D-S
data file or a portion.

PAGESIZE/n/ The page size is optional. If it is omitted, a size
of 320-words is assumed. When it is present,/n/ must
be greater than or equal to 40 and less than or equal
to 640. This allows a different page size in each
subfile within the complete I-D-S data file.

When /n/ is present, the actual page size used will be
adjusted, if necessary, to reflect a multiple of
sector size of the hardware device for this file. (For
a DSU200 Magnetic Disc Subsystem, page size will be 40
x 21, where n is an integer and Kn<4. For a DSU270 or
a DSUl67 or for an MDS200 Magnetic Drum Subsystem,
page size will be 64 x n, where n is an integer and

126

LINESPERPAGE/n/

INVENTORY /n/

Lines per page is optional. If it 1is omitted or
greater than 63, 63 lines per page 1is assumed. When
/n/ is present and less than 63, multiple copies of
data pages are created to satisfy all 63 line flags.

Inventory is optional. If it is omitted, a value of
75 is assumed. When /n/ is present it defines the
percentage of page £fill, which controls inventory
update; /n/ may contain the word "NO" to allow
exclusion of inventory pages and processing.

A sample deck setup to create a permanent I-D-S data file follows. It
consists of 480 pages in the complete I-D-S data file but it is created
as four files, each with 120 pages.

1 8 16
{ i

S :SNUMB |

S |IDENT

S |[FILSYS

S [PRIVITY I

CRMAST IDSFOURYQUAD /IDSFOURYQUAD, PASSWORD /DATABASE/,
SIZE/100/

CCREAT IDSFOURYQUAD ,PASSWORD/DATABASE /

USERID IDSFOURYQUADS DATABASE

CPOS IDSFOURYQUAD

FCREAT/IDS/ QUADO1,BASESIZE/480/,RNG/1,120/,
PAGESIZE/160/,LINESPERPAGE/32/,
INVENTORY/25/,SIZE/13/,MODE/RAND/,
DEVICE/DS3/

FCREAT/IDS/ QUADO2,BASESIZE/480/,RNG/121,240/,
PAGESIZE/320/,LINESPERPAGE /63/,
INVENTORY/75/,SIZE/11/,MODE /RAND/,
DEVICE/ST1l/

FCREAT/IDS/ QUADO3,BASESIZE/480/,RNG/241,360/,
PAGESIZE/320/,LINESPERPAGE/63/,
INVENTORY/75/,SI%ZE/11/,MODE/RAND/,
DEVICE/DS2/

FCREAT/IDS/ QUADO4,BASESIZE/480/,RNG/361,480/,
PAGESIZE/320/,LINESPERPAGE/63/,
INVENTORY/75/,SIZE/11/,MODE /RAND/,
DEVICE/DS2/

$ ENDJOB

***EOF

The above control cards will create an I-D-S data file structure as
shown in Figure 24.

127

System Master
Catalog

User's Master
Catalog

]
‘%HHEHH’| ‘HHHHHF’ ¢%H%HH3' (%HHEHHP

Figure 24. I-D-S Data File Structure

The name in the System Master Catalog is the USERID assigned by the
CRMAST directive. This is the name I-D-S will use as the I-D-S data file

name.,

To have
control
contain
restart

128

access to this I-D-S data file, the user must supply a $ USERID
card in the execution deck setup. The I-D-S journal records will
this name, which will be used by the I-D-S utility routine when
and recovery is required.

Creating a Temporary |I-D-S Data File

A temporary I-D-S data file 1is created by
directives with the I-D-S execution activity.
contained in the .Q data file.

The directive format is:

1 8 16

T |

I

FDS [CREATE jattributes
I |

The attributes are separated by commas.
The attribute names may be the complete name or

FILECODE (FC) /fc/ File code is used to ass
this directive with the
"File" card such as:

including IDS Create
.These directives are

the abbreviation.

ociate the attributes on
file code on the $

BASESIZE(BSSZ) /n/

RANGE (RNG) /rl,xr2/

PAGESIZE (PGSZ) /n/

S DISC fc,lud,#random links

Base size is required on at least one directive
card submitted for an I-D-S execute. If multiple
directives are submitted, the value of /n/ must
be identical; /n/ defines the maximum size of
the complete I-D-S data file; /n/ must be
greater than or equal to 1 and less than or
equal to 262143.

Page-range is required to define the pages
contained in a file; rl and r2 are the
beginning and ending page numbers respectively;
rl must be less than or equal to r2 and the
value of rl and r2 must be greater than or equal
to 1 and less than or equal to 262143. This
range may be either the complete I-D-S data file
or it may be a portion.

Page size is optional. If it is omitted, a size
of 320 words is assumed. When it is present, /n/
must be greater than or equal to 40 and less
than or equal to 640. This allows a different
page size in each subfile within the complete
I-D-S data file.

129

LINESPERPAGE (LPP) /n/

INVENTORY (INV) /n/

when /n/ is present the actual page size used
will be adjusted, if required, to reflect a
multiple of sector size of the hardware device
for this file. (For a DSU200 Magnetic Disc
Subsystem, page size will be 40 x 2B, where n is
an integer and Il<n<4. For a DSU270 or a DSUlé67
or for an MDS200 Magnetic Drum Subsystem, page
size will be 64 x n, where n is an integer and
1<n<10.)

Lines per page is optional. If it is omitted or
greater than 63, 63 lines per page is assumed.
When /n/ is present and less than 63, multiple
copies of data pages are created to satisfy all
63 line flags.

Inventory is optional. If it is omitted, a value
of 75 is assumed. When /n/ is present it defines
the percentage of page £fill, which controls
inventory update; /n/ may contain the word "NO"
to allow exclusion of inventory pages and
processing.

The deck setup below will create a temporary I-D-S data file to be wused
by the I-D-S activity.

130

1 8 16
|]
$ |SNUMB |
S JIDENT [
S I0BJECT |
{ |
.
$ DKEND }
g [EXECUTE | DUMP
LIMITS
$ Ip1sc la1,a1s,13r
$ Ib1sc la2,a2s,11R
$ Ipsc IA3,A3S,11R
$ Iprsc |Ad,AdS,11R
s lpaTa |-Q
IDS :CREATE |FC/Al/,BSSZ/480/,RNG/1,120/,PGSZ/160/,
| [LPP/32/,INV/25/
IDS |CREATE |FC/A2/,BSSZ/480/,RNG/121,240/,PGSZ/320/,
LPP/63/,INV/75/
1ps lcreate Irc/a3/,RNG/241,360/
IDS lcCrREATE IFC/RA4/,RNG/361,480/
$ lENDJOB 1
* kX EOF : :

Mixing Temporary and Permanent Files

An I-D-S data file is subordinate to the GECOS-III file system. The
I-D-S data file may be created on one or many mass storage devices with
different hardware characteristics. This facility allows selected I-D-S
record types to be given page-ranges, which may then be directed to a
specific hardware device when the file is created. I-D-S utility
routines provide for selective file dump and reload. It is possible that
an application may require that pages residing on one type of hardware
be dumped and then reloaded on another type of hardware.

Two hypothetical cases where the user may want to mix permanent and
temporary files follow:

A user may want to establish a page range for records that are only used
weekly or monthly. For this application, the page range would not be
created as a permanent file. Instead the page range would be created as
a temporary file, the data stored, and the file dumped to tape.

When the records are to be used, the temporary file is established, the
file is reloaded from the dumped tape, and the program is executed using
this file in conjunction with the permanent file. Again, the file is
dumped to tape and saved for the next weekly or monthly run.

Another example of mixed permanent and temporary files is wusing a
temporary file for the work area of execute activities. In this usage, a
permanent file would not be required for the delete process, since this
temporary area would be purged at the end of the activity.

131

ACCESSING AN i-D-S FILE

Each subfile requested must have been created previously as an I-D-S
data file. A $ PRMFL control card is required for each subfile. Refer to
CPB-1518 for a complete discussion of options used. The I-D-S options
are discussed below:

1 8 16
i i
$ IPRMFL, Ifc,Permit,Mode,File String
S |PRMFL ifc,/LUD,Permit, Mode,File String

PERMIT is an option describing the I-D-S usage. Multiple access modes
may be used. If used, they are separated by slashes (/). The wvalid
options are:

WRITE - The user requests the subfile for updating records.

READ - The user requests the subfile for retrieving records.

RECOVERY -~ The user requests access to an aborted subfile to
reestablish the integrity of the subfile.

Examples:
1 8 16
i 1
S :PRMFL lAl,READ,R,IDSFOURYQUAD/QUADOI
1
S :PRMFL :A2 ,READ/WRITE,R,IDSFOURYQUAD /QUADO02
! I
S]PRMFL :A3,RECOVERY/READ/WRITE,R,IDSFOURYQUAD/QUADO3
|

132

Sample deck set up of LUD Option,

used with

the "CLOSE WITH LOCK"

statement for dynamic release of I-D-S file.

1 8 16
[i
$ IIDENT]
$ IlUSERID :
[.
I |
: . : (First Activity)
$ |PRMFL 1A1/D1S,R/W,R,FILE STRING
S IPRMFL in2/D2S,R/W,R,FILE STRING
I . I
b |
! . ! (Last Activity)
S ?ILE :TF,DlR,lR
S FILE IG,D2R, 1R
| |

Table A shows the action taken when the LUD option is used.

DISPOSITION | pERMANENT FILE TEMPORARY FILE

CODE
File is made unavailable File is made unavailable

R to the run unit. to the run unit.
File space is available to |File is available for
the system for allocation. | allocation to other jobs.
File is made unavailable File is made unavailable
to the run unit. to the run unit.

S File space is held for File is NOT available for
allocation to other allocation to other jobs.
activities in this job. File is held for

allocation to other
activities in this job.

Table A.

133

An I-D-S activity which includes a reguest for subfiles is not allocated
until all requested subfiles are allocated. The subfile allocation
criteria are shown in Figure 25.

SUBFILE ALLOCATION ACCESS REQUESTED
CONDITION

READ WRITE RECOVERY

FILE IN ABORT STATE X X X

FILE BUSY WRITE (UPDATE) X X X

FILE BUSY READ (RETRIEVE) X X X

FILE NOT BUSY X X X

ACTION

DENY ALLOCATION X X |X

DELETE ALLOCATION REASON CODE 15 15 16 {16 |16

PERMIT ALLOCATION X IX X |X

Figure 25. I-D-S Data File Allocation

134

Since a READ access mode does not alter the contents of a subfile,
several I-D-S activities can share a subfile in READ mode. If a subfile
is allocated to an activity in the READ mode, it can also be allocated
to any other I-D-S activity which wishes to use it in the READ mode.
Allocation of the subfile would be denied, however, to any activity
requesting WRITE usage for a subfile which is already allocated for READ
usage.

While there can be concurrent users of a subfile in READ mode, there can
be only one active user for a subfile in the WRITE access mode. All
other allocation requests for the subfile would be denied until the
activity which is doing the UPDATE has terminated.

Subfiles allocated in the WRITE access mode are marked in ABORT status
if the activity aborts. A subfile in ABORT status will be allocated by
requesting RECOVERY access mode in addition to READ and WRITE.

The individual responsible for maintaining the I-D-S data file must
prepare the necessary input for a RECOVERY run. The wutility routines
which aid in this preparation are discussed later.

The abort indicator is turned off for an aborted subfile after a
successful RECOVERY run is made on that subfile. It is then available
for normal allocation.

135

Subfile Deallocation

I-D-S data files are deallocated at activity termination. Figure 26
shows the deallocation activity and the action taken.

ACTIVITY TERMINATION FILE BUSY ACCESS MODE
CONDITION READ WRITE| RECOVERY]
NORMAL X X X
ABNORMAL X X X
ACTION

SET FILE ABORT ON X X
SET FILE NORMAL Xl x| X X

SET FILE ABORT OFF X

Figure 26. I-D-S Data File Deallocation

I-D-S JOURNAL FILE

A journal file is a recording of all I-D-S data file page transactions.
Journal information is collected on the accounting file tape from each
of multiple I-D-S activities in execution, thus providing a single
source file that is used to reestablish a data file to some previously
known status in the event that the file should lose 1its integrity. A
journal tape is labeled and is a single file. Multiple reel output may
be produced depending on the Jjournalization required.

When an end of reel is reached or an activity with write permission
aborts, a reel swap or unit switch occurs. Two operator inputs permit
the accounting file to be closed for I-D-S purposes:

IDSEJ Close the accounting file with an EOF trailer label when
all I-D-S jobs known to the system are complete.

IDSER Close the accounting file with an EOR trailer 1label at
the time of the request.

136

1-D-S Journal File Configuration

The I-D-S Journal file is configured on the system accounting file tape
at system startup time by adding the I-D-S options to the Startup $
ACCOUNT control card. Refer to the GE-600 Line GECOS III Startup
Software Maintenance Document, CPB-1489.

The I-D-S options are:

IDSs This option indicates that the I-D-S journal records are
to be included on the system accounting file as record
type 13(8).

BUFSIZ/n This option sets the size of the collecting buffers for
I-D-S journal records and the accounting records. If

omitted, then /n is assumed to be 320. The value /n must
be set to at least 12 words larger than the maximum page
size that may be placed on the journal file. If a journal
record is encountered which is greater in size than the
collecting buffer, the slave program will be terminated
with a D2 abort code.

RETENTION/n This option allows the retention period in days required
for label checking/writing to be established for the
I-D-S journal file.

Journal Record Format

Journal records are produced as record type 13(8) on the system Error
and Accounting file which must be configured at system startup time and
must be assigned to magnetic tape. Override options are discussed later.

With the exception of block size, records are written in standard system
format as described in the GE-600 Line File and Record Control Reference
Manual, CPB-1003. The block size is as large as the buffer size defined
on the startup $ ACCOUNT control card.

The various formats for record type 13(8) that can be recorded on the
journal tape appear below followed by definitions of terms common to all
types.

137

Slave Begin Sync, Record Type 03. This record

beginning of each I-D-S slave activity.

Word Contents
1 Record control word for journalizing
2 Checksum
3 SNUMB
4 Start date (MMDDYY)
5 Start time (HH.TTT)
6 .Indicators (bits 0-11)
Activity number (bits 27-35)
7 Not used
8.} I-D-S data file name
9

Subroutine .QOPEN generates this record and

stores

is written

it

in

the

at

the

slave

program prefix as follows. (See also "I-D-S Data Pages" in Chapter 7 for
special conditions that apply when using disc sort.)

138

Location in Word Contents
Prefix (decimal)

54 000010 000013
(Size) (Type)

55 Checksum

56 SNUMB

57 MMDDYY

58 HH.TTT

59 030 Activity #

60 0

61

62 ~ I-D-S data file name

Page Image Record, Record Types 05 and 06. There are two types of Page
Image records (BEFORE and AFTER) written to the journal tape. The
indicator word defines the type. A BEFORE page image is written before a
page is modified. An AFTER page image is written after the modification.

Word Contents
1 Record control word for journalizing
2 Checksum
3 Job number
4 Start date (MMDDYY)
5 Start time (HH.TTT)
6 Indicators (bits 0-11)

Activity number (bits 27-35)

7 Lines per page (bits 0-17)
Sequence number (bits 18-35)
8
} I-D-S data file name
9
10-n Activity page image

Slave End Sync, Record Type 04. This record is written when an I-D-S
slave program terminates. The termination code is stored in the record.

Word Contents
1 Record control word for journalizing
2 Checksum
3 Job number
4 Start date (MMDDYY)
5 Start time (HH.TTT)
6 Indicators (bits 0-11)
Activity number (bits 27-35)
7 Termination code
8} I-D-S data file name
9

139

Journal Record, Record Type 09. This record is written when subroutine
.QSTB is used to gather type B subroutine execution information. (See
QUTR Program writeup in Chapter 8.)

Word Contents
1 Record control word for journalizing
2 Checksum
3 Job number
4 Start date (MMDDYY)
5 Start time (HH.TTT)
6 Indicators (bits 0-11)

Activity number (bits 27-35)

7 Alter number of call to subroutine

8} I-D-S data file name

lg Control word (see following explanation)
11 Number of reads } for any given

12 Number of writes control word

(word 10)

The control word format (word 10) is as follows:

0 56 17 18 23 24 35

Code Type - 1 MBZ Type - 2

where:
Code is one of the following function values:

- Store record type

- Retrieve record type

- Retrieve current record type
- Retrieve direct

Retrieve each

- Retrieve next of chain

- Retrieve prior of chain
- Retrieve master of chain
- Head of chain

10 - Modify record type

11 - Delete record type

12 - Debug

Wo~NauUd WwNh -
}

Type - 1 is the record type for the preceding function
or the record type of the master of a chain.

Type - 2 is the record type of a detail of a chain.

140

Definition of Terms

Checksum

Date

Time

Indicators

Record Type

Lines per Page

Termination Code

I-D-S Date
File-Name

The checksum of all words (other than the checksum
word) in the record.

A 6-character field indicating month, day, and year
the record was written. For slave End Sync records,
it is the date the corresponding Slave Begin Sync
record was written.

Time the activity was started expressed in hours,
decimal point, and thousandths of an hour in BCD
format (HH.TTT). For Slave End Sync or Page Image
records, it is the time in the corresponding Slave
Begin Sync record.

A l-word indicator which defines the record type
and contains the activity number.

A l-character BCD field that appears in bits 6-11
of the indicator word. The record type indicators
are shown below:

TYPE 3 Slave Begin Sync (SLVBGN)
TYPE 4 Slave End Sync (SLVEND)
TYPE 5 Before Page Image (BEFORE)
TYPE 6 After Page Image (AFTER)
TYPE 9 Statistics

The lines per page for the Before/After Page Image.

A 2-character code in bits 27-35 of the Slave End
Sync record. Termination codes are:

00 Normal activity termination

00 Normal job termination

cc Abnormal termination; cc is a
2-character alphanumeric
abort code.

A 12-character name, left justified. This name is
taken from the $ USERID card.

141

Job Number A 5-character SNUMB for the job, left justified and
followed by an ignore character.

1820 s

Activity Number A 9-bit binary job activity number

Sequence Number A binary sequence number carried in the Page Image
records. BEFORE records are sequenced by 1 in
ascending order starting with 1. AFTER records are
sequenced in descending order starting with all
binary 1's in bits 18-35.

Record control word

for journalizing A control word that contains the number of words in
the record in bits 0-17 and defines it as record
type 13(8), right-justified, in bits 18-35.

Closing Journal Files

The system-configured journal tape collects the journal data as one long
file. From an operational point of view, it is necessary to periodically
"close" one journal file and start another. This closing, followed by an
opportunity to dismount and replace the Jjournal tape, 1is done
automatically when there is a master mode abort.

The operator may periodically request that a journal file be closed and
another file started. He does this by requesting control and using the
IDSEJ typein. The system response to this input is shown in the
following table.

CONDITION ACTION
An I-D-S activity is in IDSEJ DELAY message is typed
execution. out. The I-D-S journal file

will be closed when there is
no I-D-S activity in

execution.
No I-D-S activity is in An end-of-file is recorded on
execution. the journal tape and a dismount

message is issued.

142

Journal Override

Journal records are automatically written to the system-configured Error
and Accounting tape; however, there are two activity override options
available. Option 1 permits the user to request his own tape; option 2
suppresses all journalization.

The control card format for option 1 is:

1 8 16
1 i

$:TAPE :JX,XlD,,,,IDS—JOURNAL
1 !

If a tape file JX is assigned for an activity, all journal record

types =-- the Slave Begin Sync, Slave End Sync, and all BEFORE and
AFTER records and all statistics records -- are written to this
file.

The control card format for option 2 is:

1 8 16
B |
|
$;EXECUTE}DEBUG
i

DEBUG in the variable field of the $ EXECUTE control card causes
bit 11 of the Program Switch Word to be set ON which prevents any
journal records from being generated.

Examples:

1. The Slave Begin Sync, Slave End Sync, BEFORE and AFTER records
are written to the user-supplied file JX.

1 8 16
I i
S IDENT I
S {OBJECT |
Coe
[|
1 * |
$ |DKEND |
$ [EXECUTE |Options
$ }TAPE :JX,XlD,,,,IDS—JOURNAL

143

2.

No journalization takes place.

1 8 16
; !
S IIDENT :
S IOBJECT |
ro !
Lo |
s bkenp |
$ [EXECUTE | DEBUG

Journal File Map

A map of
produced
file has
activity

A sample

WJINL 01

ie

15

38
117
133
138
140
142
143
149
150
151
153
155
156
161
162

144

all Sync records contained on the I-D-S
by executing the

Journal

file may be

.QUTJ I-D-S utility routine (1) when a journal
been made available after the abnormal termination of an I-D-S
the operator requests an end-of-file condition.

11,341

1DS UTILITY RQUTINE =

09-27-68
09-27-68
09-27-68
09-27-68
09«27-68
09=-27-68
09-27-~68
09-27-68
09-27-68
09-27-68
09=-27-68
09~27-68
09=27-68
39-27-68
09~27-68
09-27-68
09-27-68

or, (2)
journal file map follows.
09=27«68

SLVBGN 1-QUTl

SLVEND 1-0uUTy

SLVBGN 1~TST03
SLVBGN 1-TST3C
SLVEND 1-TsT03
SLVEND 1-TST3C
SLVBGN 1-QUTDL
SLVEND 1-QuUTDL
SLVBGN 2-QUTDL
SLVEND 2-QUTDL
SLVBGN 1-TST4a
SLVBGN 1-TS748
SLVEND 1-TST4A
SLVEND 1-78748
SLVBGN 1-TsT4C
SLVEND 1-TSsT4C
SLVBGN 1-QuUTD

SLVEND 1-QUTD

09-27-68

1DS JUOURNAL TAPE REPORT
2 QUTY = VERSION

11,199
11,199
11,210
11.211
11,210
11,211
11,222
11,222
11,227
11.227
11,237
11,238
11,237
11.238
11,2490
11,240
11,247
11.247

080
0490
030
039
040
040
030
040
039
040
0390
030
0490
040
030
040
030
049

080168,
0 IDSFOURYQUAD
80 1DSFIURYQUAD
0 IDSFOURYQUAD
0 I1DSFOURYQUAD
00 JUOSFOURYQUAD
00 IDSFIOURYQUAD
0 IDSFOURYQUAD
00 IDSFOURYQUAD
0 JDSFIOURYQUAD
00 IDSFJOURYQUAD
0 IDSFOURYQUAD
0 IDSFOURYQUAD
00 IDSFOURYQUAY
00 JDSFOURYQUAD
0 IDSFOURYQUAD
00 [DSFOURYQUAD
0 1DSFOUKRYQUAD

00

1DSFOURYQUAD

RECOVERING AN I-D-S DATA FILE

All I-D-S slave programs interface with GECOS-III through the MME GEIDSE
incorporated in the I-D-S object-time subroutines. The MME enables the
subroutines to record page images on a system configured journal tape.
BEFORE page images are written +to the journal tape prior to the
modification of a page; AFTER page images are written to the Jjournal
tape following meodification of the page. When recovery of the data file
is desired, the Jjournal tapes containing the required pages are
processed as illustrated in Figure 27A. Figure 27B illustrates an
alternate method.

I-D-S
SLAVE
PROGRAM GECOS-III
\ OPERATING
SYSTEM

(OPTIONAL)

QUTJ LISTING

DIRECTIVES

(CRITERIA) [QUTP

(OPTIONAL)
_______________ QULJ LISTING
_____ (OPTIONAL) _ _ fqursj—sd LISTING
I-D-S
DIRECTIVE » quru DATA
(LOAD OPTION) FILE

Figure 27A. Operational Sequence to Re-establish an I-D-S Data File

145

I-D-S

SLAVE
PROGRAM | GECOS-III N
T~ OPERATING

\‘{ SYSTEM

(OPTIONAL)
(LoAD opTIONs) ¥ ~ UL —— — — —-| LISTING

DIRECTIVES

I-D-8
DATA
FILE

Figure 27B. Alternate Operation to Re-establish an I-D-S Data File

146

The individuals responsible for maintaining the data base establish the
selection criteria for obtaining the appropriate pages from the journal
tape. This is done using the information from the Journal Tape Map or
from a complete journal dump created by the QUTJ utility routine. The
QUTP utility routine selects pages from the journal tape. The QuUTS
utility routine then sorts the selected page image records and purges
multiple page images having the same page number. The sorted output
consists of the first BEFORE or the last AFTER image for a given page
number as required for the data file reload. The QUTU utility routine
reloads the output to the appropriate portions of the data file.

Since rollback does not reestablish the data file to a previous
condition, the MME GECHEK and MME GEROLL should not be used by an I-D-S
program.

I-D-S EXECUTION REPORT

I-D-S appends information about the data base to the execution report.
This information includes (1) the attributes of the data base (2) total
input/output performed on the data base, and (3) input/output performed
on the data base as a function of each I-D-S subroutine. Formats of the
three types of information are shown in the following examples and are
explained by the notes corresponding to the circled callouts.

Example 1l: Data Base Attributes

Files Allocated -- the number of permanent and/or temporary
IDS files allocated to the activity

Range =-- the smallest and largest page number present in the
files

<:) Basesize -- the value to be used in the randomize routine
(:) Buffers -- the number of page buffers present

An entry appears under each of the following heads for each file or
subfile:

(:) Filecode -- the file code referenced by the program

(:) Range -- the range for this file or subfile

147

<E> Pagesize -- the page size for this file or subfile
Pages/Page -- the number of pages per page for the file or
subfile
(:) Lines/Page =-- the number of lines per page for the file or
subfile
Links Aloc -- the number of links allocated to the file or
subfile
Links Nec -- the number of 1links necessary to contain the

pages defined for the file or subfile

Access Mode =-- the mode in which the file or subfile is being
accessed
Inventory -- the percentage value at which inventory will be

®© ® 6

updated on the file or subfile

O ® ® ®

1 FILES ALLOCATED, RANGE 1 - 100 BASESIZE 100 BUFFERS 29

FILECODE RANGE PAGESIZE PAGES/PAGE LINES/PAGE LINKS ALOC LINKS NEC ACCESS MODE INVENTORY

Al 1- 100 320 1 63 20 9 WRITE 75

® 60 6 O ®© o O 6

148

Example 2: Total 1/0 Performed on Data Base

The following are shown for each file or subfile:

(:) File Code -- the file code referenced by the program
of Reads -- the total number of reads that occurred on the
file or subfile
(:) # of Writes -- the total number of writes that occurred on the
file or subfile
<:> Inventory Reads =-- the number of inventory reads that occurred
on the file or subfile
<:) Inventory Writes -- the number of inventory writes that

occurred on the file or subfile

I-D-S UTILIZATION REPORT

FILE CODE # OF READS # OF WRITERS INVENTORY READS INVENTORY WRITES

TF 258 2883 1 1

® ©) ® ® ©)

149

Example 3: 1/0 Performed on Data Base as a Function of Each I-D-S
Subroutine

This report is produced by the I-D-S close subroutine. Counts are
accumulated for each primary entry subroutine -- that is, each
subroutine called by the object program. These are Xknown as type A
(.QSTA) subroutine execution statistics. (An additional, more detailed
(type B) report can also be produced as a separate output at the user's
option. For this report the .QSTB subroutine is used to accumulate the
statistics on the journal file, and the QUTR program produces the
report. See the QUTR writeup in Chapter 8 for details.)

The type A report contains the following information:
Primary entry subroutine name
Total number of times subroutine was called

Total number of reads for execution of the subroutine

CHONORC,

Total number of writes for execution of the subroutine

SUBROUTINE STATISTICS

NAME NO. TIMES CALLED NO. READS NO. WRITES
.QSTOR 18 6 10
.QGET 18 0 2
.QCHN 88 0 6
.QMDFY 18 0 24

® ® ©) ®

150

/. Memory Management

ASSIGNMENT OF |-D-S BUFFERS AND WORK AREAS

The I-D-S subroutines require data page buffer areas and working areas.
The user defines the size of these areas by employing one of the two
following procedures.

With a $ USE Card

A Labeled Common area (.QAREA) may be specified by the GELOAD control
card shown below:

1 8 16
1 1

S lUSE l.QMAX/1/, .QAREA/n/, .QMIN/1/
']

The $§ USE control card must be inserted before the $ EXECUTE card in the
object deck so that GELOAD will encounter it prior to loading the I-D-S
subroutines from the library. Refer to the GE-600 Line General Loader
Reference Manual, CPB-1008.

The value supplied for /n/ must be large enough to contain the working
area plus at least three page buffers., The following formula may be used
to determine the total space required. '

(NF*10) + 10 + ((MP + 21)*NB) + NO +(I + 3)

where NF is the number of files allocated
MP is maximum page size allocated in words
*NB is number of page buffers
I is maximum sector size for files containing
inventory. (For DSU200, I = 40; for all other
mass storage devices I = 64.)
*NO is number of page buffers which overlay .QOPEN.

*The total number of buffers (TB) must be at least three. TB = NB+NO,
where NO is determined by the following formula:

NO = 81l6/(MP+20)

151

When a sort is included as part of an I-D-S activity, a $ USE card must
be used to constrain the work area of one of the systems. If this is not
done, both systems will compete for the area not assigned to other
program segments.

A sample deck setup for an I-D-S sort wusing disc sort and temporary
I-D-S files follows. With this setup, the sort work area will be the
core storage remaining from the § LIMITS card after subtracting the user
program size and the I-D-S page buffer size (.QAREA).

1 8 16
] 1
$ IIDENT |
$ 'UsE |-QMAX/1/, .QAREA/5000/, .QMIN/1/
$ loBJECT |USERPROGRAM
$ lEXECUTE
$ lLIMITS |10, 32K
S :DISC ITF,D1S, 10R
S |PISC Is1,x1R,5R
S \DATA i.Q
1DS ICREATE 'FC/TF/,BSS%/100/,RNG/1,100/
$ [ENDJOB |
***EOF | [

Without a $ USE Card

When the $ USE control card procedure is not used, the .QOPEN I-D-S
subroutine attempts to use the area in memory not assigned to other
program segments. The size of this available area is inserted in word
37(8) of the slave program prefix by GELOAD during the loading process.
As in the procedure above, the available area is divided into a work
area and some number of buffers, depending on the size of the area. A
minimum of three buffers must be established or the slave program will
be terminated. The .QOPEN subroutine modifies the content of word 37(8)
to reflect the usage of this area.

When the file is opened, the size of .QAREA is determined and then wused
in the following manner (see Figure 28):

1. Slave I-D-S Control Table - this table consists of 10 control
words plus 10 words for each I-D-S subfile (temporary or
permanent) assigned to the activity.

2. Inventory Record Buffer - this area is equal to three words
more than the largest inventory sector allocated.

3. Page Buffer Activity Table - this table contains one word for
each page buffer.

152

Data Page Buffers - these buffers are equal to the page size of
the largest page allocated plus 20 decimal words.

The first inventory buffer exists as defined in Figure 28. The

other inventory buffers and their

headers are generated by

.QOPEN and overlay the code in .QOPEN that may be executed only
once. As many buffers exist as will fit in the overlay area.

Total Control Work Area A
First File Entry _ _ __ _
nth File Entry
Header for Inventory Buffer O
Inventory Buffer
Activity Table R
__BL_lff(.a_r_C——lvi o = — A Length of either
- - - - .QAREA or an open
area from 378
Header for Buffer n
Data Page Buffer n J—
Header for Buffer 0
- 00 - 07T Largest page
Data Page Buffer O B size plus
————— i Header
Figure 28. Labeled Common .QAREA

153

SLAVE I-D-S CONTROL TABLE

Figure 29 shows a Slave I-D-S Control Table used by the I-D-S
subroutines to honor the attributes of an I-D-S data file. Each subfile
may be different, such as page size and percent of page f£fill for
inventory. The I-D-S subroutines use a common GEFRC file control block
to do all I-D-S data page and inventory page I/O on the mass storage. To
accomplish this, the file control block control information is kept in
the SICT Table for each unique file. It is then placed into the file
control block when an I/0 request for a page is needed. The total length
of the table is dependent on the number of files allocated.

Bits O 1718 35
Word 0| Pointer to Current Entry MBZ T
1| Maximum Page Size Base Size o
2| Lowest Page Number Highest Page Number E
3| Maximum Inventory Sector Page Buffer Size j
4 2
o
: (@
6 MBZ MBZ -
7 S > S
8
9 MBZ Count of Entries
0 | RANGE R1 RANGE R2
1| Inventory Write Counter Page Size
2| Pages/Page No. Lines Per Page
3] RBA of Current Inventory Inventory Percent Fill §
4 | Inventory Read Counter RBA Current Page g
5| Sectors/Page Sector Size j
6 | Gross Write Counter Gross Read Counter E
7 | Base RBA of Inventory FILCBHO [18-35]
8 | FILCB-5 [18-35] FILCB-1 [18-35]
___2 Access Mode FILCB-4 [24-35]

Figure 29. Slave I-D-S Control Table

154

The description of the Slave I-D-S Control Table (SICT) follows.

Total Control Entry

Word 0
bits
0-17

18-35

Word 1
bits
0-17

18-35

Word 2
bits
0-17

18-35

Word 3
bits
0-17

18-35

Word 4
through
Word 8

Word 9
bits
0-17

18-35

Pointer to current entry - the address of the SICT table entry
which contains the relative block address of the page number
last requested via the I-D-S mapping subroutine.

Must be zero.

Maximum page size - the value in words of the largest page
size allocated.

Base size - the total number of pages in the I-D-S data file.

Lowest page number - the lowest page number allocated.

Highest page number - the highest page number allocated. Must
be less than or equal to the value in the base size.

Maximum inventory sector - the size in words of the largest
inventory sector allocated.

Page buffer size - the maximum page size plus 20 decimal to
include the pvage header area.

Must be zero.

Must be zero.

Count of entries - the number of subfiles allocated to form
this I-D-S data file.

155

Individual

Word 1
bits
0-17

18-35

Word 2

bits
0-17

18-35

Word 3
bits
0-17

18-35

Word 4
bits
0-17

18-35

156

File Entries

RANGE Rl - the lowest page number assigned to the subfile.

RANGE R2 - the highest page number assigned to the subfile. R2
must be greater than or equal to Rl.

Inventory write counter - a counter for the number of times an
inventory record has been written to the file.

Page size - the page size in words defined for the file. The
page size must be greater than or equal to 40 and less than or
equal to 640.

Pages/page No. - the number of pages as developed by dividing
63 by the number of lines per page.

Lines per page - the number of lines that may be used in any
page or pagette.

RBA of current inventory - the Relative Block Address (RBA) of
the current inventory record. Inventory records are physically
stored beginning in the first sector, following the last data
page of the file.

Inventory percent £ill - the number of characters that may be
placed in a page of this file before the inventory adjustment
routines are called. If the wvalue 1is negative (bit 18=1),
there are no inventory records, therefore, there 1is no
inventory processing.

Inventory read counter - a counter for the number of times an
inventory record has been read from this file.

RBA current page - the Relative Block Address of the last page
number accessed in this subfile.

Word 5
bits
0-17

18-35

Word 6
bits
0-17

18-35

Word 7
bits
0-17

18-35

Word 8
bits
0-17

18-35

Word 9
bits
0-17

18-35

Sectors/Page - the number of sectors within a page. The size
is calculated by dividing sector size of the mass storage
device into the page size.

Sector size - the sector size of the hardware device of this
file.

Gross write counter - a counter for the number of times data
pages or inventory records have been written to the file.

Gross read counter - counter for the number of times data
pages or inventory records have been read from the file.

Base RBA of inventory - relative block address of the
beginning of inventory for the file.

FILCB+0 - contents of the GEFRC file control block.

FILCB-5 (18-35) - contents of the GEFRC file control block.

FILCB-1 (18-35) - contents of the GEFRC file control block.

Access mode -~ the access permissions requested from the $§
PRMFL card for this file or the permissions granted for the $
DISC or the $ MASS control card for this file.

Bits 0 READ (RETRIEVE)
1 WRITE (UPDATE)
2 Not used by I-D-S
3 RECOVERY
4-17 ©Not used by I-D-S
FILCB-4 (24-35) - file code for the file.

157

I-D-S INVENTORY RECORDS

To minimize mass storage seek and transfer time, a number of inventory
records are maintained in numerous buffers in memory.

Buffer Format

The I-D-S inventory record buffer format is shown in Figure 30.

Bits O 1112 1718 35
Word O | Pointer to Next Buffer Buffer Number

Inventory 1 MBZ Beginning Reference Code
Header
Work'Area 2 MBZ Ending Reference Code

T 3 | Beginning Page No. AE%Z Record Type Begin Line No.
Inventory £
Record Area n MBZ Ending Reference Code
Through

‘ Space Available

Figure 30. Inventory Record Buffer

A description of the Inventory Record buffer follows:

INVENTORY RECORD WORD AREA

Word O
bits
0-17 Address of the next Inventory buffer header (this 1list is
circular).
18-35 The number of this buffer (starting at 0).
Word 1
bits
0-11 Must be zero.
12-35 The beginning reference code of the Inventory record 1in the

buffer.

Bits 12 - 29 Page number
30 - 35 Line number

158

Word 2

bits
0-11 Must be zero.
12-35 The ending reference code of the Inventory record in the
buffer.
Bits 12 - 29 Page number
30 - 35 Line number
Word 3
through
word n Inventory record area.

Buffer Strategy for Inventory Buffer

If the inventory is needed for a page and the inventory record is not in
memory, it is read into the inventory buffer defined as empty; and words
1 and 2 of the buffer header are updated.

The next inventory buffer as defined by word 0 of the header is then
established as the empty buffer. Its contents are written back to the
data file if the contents have been altered.

Record Description

Inventory records are physically stored at the end of the file for the
page-range specified. They are record type 1002(10). The Inventory
record size is equal to the sector size of the device on which it is
stored. Thus the number of pages covered by one Inventory record is
variable; it is equal to 3 x (sector size-2). On a DSU204 one link holds
inventory for 10,944 pages; on a DSU270 or a DSUle7 one 1link holds
inventory for 11,160 pages.

The initial inventory of space available will be the page size (in
characters) less the space occupied by the Page Header record (22
characters).

159

The Inventory record format is shown in Figure 31.

Bits
Word O

Must-Write Switch

'—> MBZ

0 1112 17181920 2930 35
Beginning Page Number A /> Record Type Beginning
Line No.
MBZ Ending Reference Code

Space Available

Figure 31. Inventory Record

The bit configuration for an Inventory record follows:

Word 0
bits
0-17

18

19

20-29

30-35

Word 1
bits
0-11

12-35

160

Beginning page number that 1is contained 1in the Inventory
record.

Must-Write switch - an indicator used by I-D-S subroutines to
determine if this record has been modified since retrieval.

Must be zero.

Record type - a value of 1002 (10) assigned to each Inventory
record.

Beginning line number of the beginning page for this Inventory
record.

Must be zero.

Ending Reference Code that 1is contained in this Inventory
record.

Bits 12 - 29 Page number
Bits 30 - 35 Line number

Word 2

bits
0-11 Space available in characters for the Reference Code contained
in word 0, bits 0-17 and 30-35.
12-23 Space available for the next ascending page (this may be a
pagette).
24-35 Space available for the next page.

Word 2 is repeated for consecutive pages until bits 24-35 of
word n is the space, in characters, available in the page
defined by the ending reference code (bits 12-35 of word 1).

I-D-S DATA PAGES

To minimize mass storage seek and transfer time, a number of data pages
are maintained in numerous buffers in memory. The number of buffers
depends on the amount of space available in .QAREA after loading the
program.

The greater the number of data pages kept in memory, the greater the
possibility that the one needed next will already be there. To further
improve the possibility of finding the page desired in memory, the I-D-§
subroutines keep track of page utilization (record activity) and hold
the most recently active pages in memory. Pages infrequently accessed
are retired from memory as others are called in. The I-D-S subroutines
note which pages have been modified and only the modified pages are
written back to mass storage.

Buffer Format

The I-D-S page buffer format is shown in Figure 32.

The description of the Data Page Buffer follows.

161

Word O
bits
0-17

18-35

Word 1
bits
0-11

12-35

Word 2
bits
0-11

12-35

Word 3
bits
0-23

24-35

le2

Pointer to the next buffer. This will be 2zero in the last

buffer.

Buffer number - the number of the buffer beginning with zero.

Must be zero.

The beginning reference code of the I-D-S data page in the

buffer.

Bits 12 - 29 Page number
30 - 35 Line number

Must be zero.

The ending reference code of the
buffer.

Bits 12 - 29 Page number
30 - 35 Line number

Must be zero.

I-D-S data page in the

Character space available in the I-D-S data page when read

from the mass storage device.

Bits O 56 1112 17181920 2324 2627 2930 35
+ Word O | Pointer to Next Buffer Buffer Number
1 MBZ Beginning Reference Code of I-D-S Data Page
2 MBZ Ending Reference Code of I-D-S Data Page
Page Character
Header 3 MBZ Space Available
Work
Area 4 | Available Line Flag Indicator
5
6 MBZ
L 4 7
A
8
9 | Wwork Area for GEFRC I/0 Control
10
11| Size Accounting Record Type
12 | Checksum
Journal 13 | Job Number
Tape
Header 14 | Start Date
15 | Start Time
Journal P
16 MBZ Record Type MBZ Activity Number
17 | Lines/pg. for B/A Page Image Sequence Number
18
I-D-S Data File Name
v 19
j ‘.__
20 | Page Number A|B| Record Type
Through . .
Word n CALC Chain NEXT ——————pi¢—Space Available —plt—
I-D=-S
Data Available Line Number Flags
Page
—_—Pp MBZ
A 4

Figure 32.

Data Page Buffer

163

Word 4
bits
0-35

Word 5
through
Word 7

Word 8
through
Word 10

Word 11
bits
0-17

18-35

Word 12
bits
0-35

Word 13
bits
0-35

Word 14
bits
0-35

Word 15
bits
0-35

164

Available line flag indicator of the I-D-S data page when read
from the mass storage device.

line flags available

=0
0 line flags not available

Must be zero.

JOURNAL TAPE CONTROL AREA

Work area for GEFRC I/0 control - <contains an I/0O control
word, Block Serial number and Record Control word.

Contains the number of words in the record when written to the
journal tape.

Contains the value 13(8) to define the accounting record type.

Checksum - all words (other than the checksum word) in the
record.

Job number - the five character SNUMB for the job, left
justified and followed by an ignore character.

Start date - month, day, year the activity started, in BCD
format (MMDDYY).

Start time - time the activity started expressed in hours,
decimal point, and thousandths of an hour in BCD format
(HH.TTT) .

Word 16
bits

12-26

27-35

Word 17
bits
0-17

18-35

Word 18
through
Word 19
bits
0-35

Word 20
through
Word n

Must be zero.
A l-character BCD field that defines the journal record type.

Type 5 Before Page Image (BEFORE)
Type 6 After Page Image (AFTER)

Must be =zero.

Activity number - a 9-bit binary job activity number.

Lines per page for the Before/After Page Image.

Sequence number - a binary sequence number. BEFORE records
are incremented by 1, starting with 1. AFTER records are
decremented by 1, starting with -1.

I-D-S Data File Name - a l2-character name left justified.

I-D-S DATA PAGE AREA

The area which contains the I-D-S data page when read from the
mass storage device.

165

Buffer Strategy for Page Buffers

Each time a page is brought into memory its buffer number is placed at
the head of a buffer table. If a page already in memory is used again,
its buffer number moves to the head of the table. Thus, the most
frequently used pages are at the top of the table and the pages with
little or no recent use are at the bottom of the table. Buffer space 1is
always available for reading a data page. To make a buffer available,
the page at the bottom of the list is written back to the mass storage
device, provided there has been activity updating that page. This buffer
is called the EMPTY buffer; it is the buffer with lowest activity.

The order of the chain is defined in an Page Buffer Activity Table
(Figure 33) which contains one word for each page buffer in .QAREA. The
activity chain shown in Figure 34 is a closed circular 1loop of buffer
numbers.,

There is always an EMPTY buffer whose NEXT is the buffer of highest
activity.

The PRIOR of the buffer of highest activity is the EMPTY buffer.

The other buffers in the Page Buffer Activity Table have, in the PRIOR
column (bits 0-17), the buffer number of the next higher (more recent)
activity. The NEXT column (bits 18-35) contains the buffer number of the
next lower (less recent) activity.

For example, if buffer 5 is the EMPTY buffer, then buffer 4 is the most
active buffer.

Buffer

Number O PRIOR 1718 NEXT 35
0 4 2
1 3 5
2 0 3
3 2 1
4 5 0
5 1 4

Figure 33. Page Buffer Activity Table

166

Decreasing
Activity

Figure 34. Chain Concept of Buffer Activity

Page Description
There are two types of I-D-S data pages:

Base Page
I-D-S Pagette

The I-D-S data page consists of a fixed size which is assigned when the
I-D-5 file is created. It may contain any combination of logical record
types linked into their respective chains. Each type has its own
specific length. Related record types are associated and linked
according to their data content and may be stored within the same page.
Space is fully utilized by packing these records within the page.

Every page begins with a unique Page Header record. This record contains
several control fields used by the I-D-S subroutines, as follows:

1. Reference address of the page (page number) .

2. Space available for additional records.

3. 1I/0 control indicating whether the page has been altered since
retrieval.

4. Chain field indicating reference code of the first record of a
chain of calculated records, all of which randomize to this

page.

5. Line numbers available for assignment within the page.

167

Base Page. The format of the
35

Characters

Word O

168

Base Page Header record is shown in

Must-Write Switch
(bit 18)
Before-Image Switch
(bit 19)
0 1 2 3 4 5
! |
Reference Code IA Record [
Page Number : Type :
0 1 2 3 4 5
| |
CALC Chain ! Space
NEXT Link | Available 1
1 1
0 1 2 3 4 5
Available Line Number Flags —
Begin First Data Record Area
0 1 2 3 } 4 5
o MBZ
Bits 22-23

Figure 35.

Base Page Header Record

Figure

The bit configuration for the Base Page Header record follows:

Word O

bits
0-17

18

19

20-29

30-35

Word 1

bits
0-17

18-29

30-35

Word 2

bits
0-35

Reference code page number - a number from 1 through 262,143.
During file initialization, each page requested by the user is
assigned a unique number within this range.

Must-Write switch - an indicator used by I-D-S to determine if
a page has been altered since retrieval.

Before-~Image switch - an indicator used by I-D-S to indicate
that a page to be modified has been written to the journal
tape prior to the modification.

Record type - a code of 1000(10) assigned to each Page Header
record.

First character of the CALC chain NEXT Link - a pointer to the
first CALC record contained in the chain. If no CALC records
are present, it points to itself. (The Page Header record is
the defined master of the CALC chain.)

CALC Chain NEXT Link

Space available - current status of available space for
storing records within a page.

Available line number flags (0-5) - an indicator used by I-D-S
to determine line numbers available for assignment within a
page:

0
1

line number available
line number not available

There are 64 line number flags. They are numbered left to
right starting with zero. Line number 0 is always used; it is
line number of the Page Header record. A maximum of 63 data
records can be stored to a page.

Available line number flags (6-41)

169

Word 3

bits
0-21 Available line number flags (42-63).

22-23 Must be zero.
End of Page Header record. The length of the record 1is 22
characters.

24-35

through

word n Bits 24-35 of word 3 through bit 35 of word n contain data

records.

Pagette. A pagette is introduced by setting the value of lines per page
to less than 63. By dividing the lines per page into 63, the number of
pages required to hold 63 line flags is developed. The first of these
pages is called the BASE page. It contains a Page Header record (type
1000 decimal) which is the master record of the CALC chain for this page
number. The remaining pages are called PAGETTES. They contain a Pagette
Header record (type 1003 decimal). They are not the master of any chain.

The available line number flags begin in the base page. For example, if
the lines per page equal 21, this would require (63/21=3) pages to hold
the 63 line number flags. Pages will have the line number flags set off
for line numbers not allowed in the page. Thus, a base page will have
line number flags as follows:

1 - 21 Available
22 - 63 Not available

Pagette number 1 will have:

1 - 21 ©Not available
22 - 42 Available
43 - 63 Not available

Pagette number 2 will have:

1 - 42 Not available
43 - 63 Available

170

The pagette allows users to increase the number of reference codes in
their I-D-S data file. This facility is probably most useful on some
portion of the total file that has been filled by large records.

For example, let record size be equal to the available space in a page
such that one logical record fills a page. This record may be a
dictionary record. When this record is stored the wuser eliminates 62
available reference codes. Thus, if several records are stored, several
hundred potential reference codes are eliminated.

The user may choose to increase the page size such that several large
records may fit into a single page, but practical limits on page size
must be observed. Thus, the next approach may be to limit the lines per
page, making available all 63 lines (reference codes) for each page.

The Pagette Header record format is shown in Figure 36.

Must-Write Switch

Before-Image Switch

Bits O 1112 1718192021222324 2930 35
1st Character
Word O| Reference Code Page Number A|B|Record Type of Page No.
1 Last 2 Characters Beginning Character Space — >
of Page Number Line Number JAvailable
2 Available Line Number Flags 1
3 g Begin Data Record Area

L.

Figure 36. Pagette Header Record

The bit configuration for the Pagette Header record follows:

Word O
bits
0-17 Reference code pagette number - a number from 1 through
262,143. During initialization, each pagette is assigned a
unique number within this range.
18 Must-Write switch - an indicator used by the I-D-S subroutines

to determine if a pagette has been modified since retrieval.

171

[
O

20-29

30-35

Word 1
bits
0-11

12-17

18-29

30-35

Word 2
bits
0-35

Word 3
bits
0-21

22-23

' 24-35
through
word n

172

d by the 1I-D-8

been written to the

Before-Image switch - an indicator
subroutines to indicate that a pagette has
journal tape prior to modification.

Record type - a value of 1003 (10) assigned to each Pagette
Header record.

First character of the pagette number, which forms the
beginning reference code.

Last two characters of the pagette number, which forms the
beginning reference code.

Beginning line number of pagette - first available line number
that may be placed in the pagette.

Space available - characters of available space for storing
records within the pagette.

Available line number flags (0 through 5) - an indicator used
by I-D-S to determine which line numbers are available for
assignment within a pagette:

0
1

line number available
line number not available

There are 64 line number flags. They are numbered left to
right starting with 0. Line number 0 is always used; it is the
number of the Pagette Header record.

Available line number flags (6-41)

Available line number flags (42-63)
Must be zero.

End of Pagette Header record. The length of the record is 22
characters.

Bits 24-35 of word 3 through bit 35 of word n contain data
records.

I-D-S DATA RECORDS

Data records of I-D-S are fixed-format, fixed-length; that is, the
length and format of a specific type of record, such as payroll or
inventory, are fixed by the specifications of the systems designer.
Records of many different types, each with its own length and format,
may be used in the system. To maintain control, each record must have
the same identification fields at the beginning. These fields are (1)
line number portion of the reference code, (2) record type and (3)
record length. The rest of the record consists of data and chain fields
to suit the application requirements.

Records may have any number of data fields, each defined as some number
of decimal, alphabetic or alphanumeric characters. Fields may vary in
size from one character to many characters, as for a drawing or part
number or an employee's name. These fields must be specified by the
systems designer.

The format of the data record is shown in Figure 37.

I'—> Delete Switch

Bits O 56 1718 2324 2930 35

Word 0 | Line No. D| Record Type Record Size < ‘

1 CALC Chain NEXT———————®= Begin Data Fields

— — ——
- — —— —
s — — —
— —— —

n Chain Pointer Reference Code §

Figure 37. Data Record

173

The bit configuration for a data record follows:

word O
bits
0-5

18-29

30-35 and
Word 1
bits

0-17

18-35
through
word n

Word n
bits
0-23

174

Line number - a number from 1 to 63. A unique number is
assigned to each data record as it is stored in a page. This
number combined with the page number from the Page Header
record completes the reference code.

Delete switch - an indicator used by the I-D-S subroutines to
recognize a record that is logically but not physically
deleted. When all chain pointers in a record are equal to
zero, the record will then be physically deleted and its 1line
number wi'l be made available for use in the page.

Record type - a unique number from 1 to 999 used to identify
different kinds of data records. The numbers 1000 and greater
are reserved for use by I-D-S.

Record size - the number of characters in the record including
all control fields, data fields and chain pointers. The line
number is character 1 of a record.

CALC chain NEXT - the reference code of the NEXT record in the
CALC chain. If this is the last record in the CALC chain, it
will contain a reference code of the Page Header record which
is the master of this CALC chain. The chain pointer defined as
detail of CALC chains. All other records do not contain this
pointer and the data begins in this area.

Bits 30-35 and

0-11 Page number
12-17 Line number

Beginning of available space for data characters. The data may
be n characters in length.

The Chain pointers begin in the character position immediately
following the last data character.

The chain pointer reference code is 24 bits in length.

Bits 0-17 Page number
18-23 Line number

There may not be any chain pointers in the record if it is not a member
of any chain, such as a Primary record; or the only pointer may be the
CALC chain NEXT. The presence of chain pointers is dependent on the
description of the I-D-S record. The type of chain pointer, NEXT, PRIOR,
HEAD, and the chain it is pointer for is described in the definition
structure associated with this record type.

175

8. |-D-S Utility Programs and Subroutines

The following I-D-S wutility programs and wutility subroutines are
described in this chapter:

Programs:

Randomizing Analyzer/Calc Pre-Load Sort Utility Program (QUTC)
Storage Tape Dump/Print Routine (QUTD)

Page Initialize Utility Routine (QUTI)

Journal Tape Dump (QUTJ)

Data Base Load/Print Utility Routine (QUTL)

Journal Record Selector (QUTP)

Execution Information Report (QUTR)

Selected Record Sort (QUTS)

File Utility (QUTU)

Subroutines:

Directive Processor (.QDIR)
Trace and Print Record (.QSTC)
Verify and Print (.QUTF)

I-D-5 execution activities may require that permanent, temporary, or a
mixture of an I-D-S data file be used. The following examples of deck
setups may be applied to all I-D-S utility programs and subroutines and
user execute activities.

PERMANENT I-D-S DATA FILE

The following deck setup is for a permanent I-D-S data file.

177

1 8 16
T 1
S JIDENT :IDSOO,DATABASEMGR, PERM IDS FILE
S IUSERID JIIDSFQURYQUADSDATARASE
b !
o, |
$:PRMFL 1,R/W,R,IDSFOURYQUAD/QUADO1
$ |PRMFL 2,R/W,R,IDSFOURYQUAD/QUADO2
S IPRMFL |A3,R/W,R,IDSFOURYQUAD/QUADO3
$:PRMFL ;A4,R/W,R,IDSFOURYQUAD/QUAD04
[{
L.
$ [ENDJOB |
***EOF | |

TEMPORARY I-D-S DATA FILE

The following deck setup is for a temporary I-D-S data file.

1 8 16
1 T
$ lIDENT :IDSOO,DATABASEMGR, TEMP IDS FILE
b, |
(. |
$ [MASS |Al,X1S,13R
$ |pISC IA2,X25,11R
$ |DRUM IA3,X38, 11R
$ [MASS \A4,X48,11R
$ IDATA 1.Q
DS IcREATE IFC/Al/,BASESIZE/480/,RANGE/1,120/,
: | PAGESIZE/160/,LINESPERPAGE /32/,
| | INVENTORY/25/
IDS |CREATE IFC/A2/,BSSZ/480/,RNG/121,240/,PGSZ/320/
IDS (CREATE |FC/A3/,RNG/241,360/
IDS ICREATE lFC/A4/,RNG/361,480/,PAGESIZE/64/,LPP/15/
$ |DATA IT*
|- !
I . I
$ IENDJOB |
***EOF | [

TEMPORARY AND PERMANENT I-D-S DATA FILE

The following deck setup is for a mixed temporary
data file.

178

and permanent

I-D-S

The permanent I-D-S data file attributes were supplied when the file was
created; the temporary attributes must agree with the permanent

attributes.

1 8 16
' T
S lIDENT lIDSOO,DATABASEMGR, MIXED IDS FILE
S [USERID :IDSFOURYQUAD$DATABASE
] .
| |
< |PRMF hl,R/W,R,IDSFOURYQUAD/QUADOl
S [MASS 2,X25,11R
S [pISC A3,X3S,11R
S [PRMFL lrn4,R/W,R, IDSFOURYQUAD /QUADO 4
S |DATA I.Q
1DS ICREATE Cc/A2/,BSSZ/480/,RNG/121,240/,PGSZ/320/
1DS ICREATE C/A3/,RNG/241,360/
¢ IDATA jL*
P |
S l[ENDJOB |
k**kEOF | :
|

UTILITY PROGRAM AND SUBROUTINE DESCRIPTIONS

Descriptions of the I-D-S utility programs and utility subroutines
presented on the following pages.

are

179

QUTC

Randomizing Analyzer /CALC Pre-Load Sort Utility Program (QUTC)

The QUTC utility program performs two distinct functions depending wupon
the directive option chosen.

1. The ANAL option utilizes the user supplied directive cards to
generate numbers which are randomized to produce base page
numbers and the total number of times each base page number 1is
returned by the CALC routine. This information is printed on
the Base Page Report. In addition, should the page number occur
more than 63 (maximum lines per page) times, or any smaller
number supplied by the user, this and the page number of the
first page having space available will be indicated on the
Overflow Report.

2. The RAND or RANDA option is used to sort CALC records into base
page sequence prior to loading the data base. The user's input
file must contain only one record type and must be 1in system
standard format. A minimum of one control field for randomizing
must be specified and a maximum of three control fields may be
specified. These control fields must appear on the directive
card in the order in which randomization is to be performed.

The total number of records randomizing to each page is accumulated and
printed on the Base Page Report. In addition, a control for overflow is
maintained which forces all overflow records to be sorted to the end of
the file. The page which has overflow and the first page with space
available is indicated on the Overflow Report.

Printing of these two reports may be suppressed by wuse of the RAND
option.

Directive

General Format:

1 8 16
; |

1Ds loPTION IGENERATE/,OPTION/,
[ETC :CONTROL/OPTION/,
[ETC |CONTROL /OPTION/,

| leae
| I

180

ANAL OPTION

This option generates page numbers based on control parameters explained
below,

INPUT:
Directive cards

OUTPUT:
IDS BASE PAGE REPORT
IDS OVERFLOW REPORT
Control for ANAL option on directive card:
RNG/P1,P2/ Specifies the page range to be analyzed.

MAX/nn...n/ Specifies the largest number to be randomized.

INCR/nn...n/ Specifies the increment to be added for each iteration.

FILL/nn/ Specifies the point at which the page will be considered
full.
Example:
1 8 16
l T
|
IDS |OPTION IGENERATE/,ANAL/,
lETC IRNG/1,100000/,MAX/50000/,
IETC IINCR/2/,FILL/32/

RANDA OPTION

This option takes a user's file of CALC records, randomizes on specified
control fields, producing a base page number, sorts the file into page
number sequence with all overflow records sorted to the end of the file
and produces two reports.

INPUT:
USER's CALC file
Directive cards

OUTPUT:
Sorted CALC file
IDS BASE PAGE REPORT
IDS OVERFLOW REPORT
Control for RANDA option on directive card:

RNG/P1,P2/ Specifies the page range into which records are to be
stored.

181

[S2]
[l
[

N

CF/C

14

FILL/nn/

Example:

1 8

Specifies fields to be used for randomizing.

Cl reflects the beginning character of the field relative
to one.

L1 reflects the lengths in characters of the control field.

A minimum of one control field must be specified and a
maximum of three may be given.

Specifies the point at which a page will be considered

full. If this parameter is not supplied 63 records per page
is assumed.

16

DS |OPTION |GENERATE/,RANDA/,RNG/500,1000/,

1B
|E
RAND OPTION

This option h
that no repor

TC |cF/2,6/,CF/20,5/,CF/10,2/,
TC IFILL/63/

as the same effect as the RANDA option with the exception
ts are produced.

Example:
1 8 16
;]
IDS |[OPTION :GENERATE/,RAND/,RNG/IO,200/,
|ETC ICF/8,10/,FILL/8/
Directive Restrictions

1. Dire

ctives are examined to ensure that columns 1-3 contain IDS,

that columns 8-13 contain OPTION and that the first parameter
in the variable field is GENERATE.

2. All
This

182

control parameters are required with the exception of FILL.
is assumed to be 63 when not specified.

Operation

1.

kx %k

*k
* %
* %
* %
* %

*kk

* k%

* %

* k%

Deck Setup for RANDA Option:

1 8 16

T]
S !IDENT IVTA00 , YOUNGMAN ,K72

I

S 'brROGRAM IQUTI Activity 1.
$ hiass |Al,D1S, 10R
$ IDATA [-Q
IDS ICREATE fC/Al/,BSSZ/100/,RNG/1,100/
S |DATA |L*
DS [INITIAL |1,100
$ |PROGRAM [QUTC Activity 2.
S lLtMrTs 10,26k, ,
$ IMaASS |Al,AlR,25L (Work file)
S IMASS B1l,B1R,25L (Work file)
S ITAPE |T1,T1D,,1234, ,USER-IN (User's input file)
S ITAPE |¢1,¢1b,,, ,USER-SORTED (User's output file)
S MASS [S1,S1R,10R (Sort work file)
S MASS D1,D1R,10R (Work IDS file)
$ |SYSOUT P1 (Report file)
S IDATA |-Q
IDS CREATE {FC/D1/,BSSZ/100/,RNG/1,100/
S IpATA L
IDS J[OPTION |GENERATE/, RANDA/, RNG/1,30000/,
TDS lETC cr/2,6/,CF/20,5/,CF/10,2/,FILL/63/
S ENDJOB |
%% *EOF | |

The required file codes are Al and D1 respectively. The file code
Al on LUD D1S in activity 1 is used as file code D1 on LUD DI1R in
activity 2. This file must be mass storage.

The required file codes are as defined in the example. Tape or mass
storage are acceptable as file types.

The BASESIZE and RANGE for the work I-D-S file may be computed in
the following manner using the RANGE from the OPTION directive:

((maximum range - minimum range)+1l) /300=BSSZ
((30000 -1)+1)/300=100

The PAGESIZE for this file must be 320 words and the LINES per page
must be 63.

183

1 8 16
]]
S :IDENT WTAOO,YOUNGMAN,K?Z
S :PROGRAM louTz Activity 1.
* 1S |MASS la1,Dp1s, 10R
S |DATA -2
*kok ;DS |CREATE IFS/AI/,BSSZ/lOO/,RNG/l,100/
|DATA I
IDS JINITIAL '1,100
| I
$ |[PROGRAM pUTc Activity 2.
S ILIMITS 110, 26K
** g IMASS Al,AlR,25L (Work file)
kIS IMASS iB1,B1R,25L (Work file)
* 1S [MASS [S1,S1R,10R (Sort work file)
*x g MASS |p1,D1R, 10R (Work I-D-S file)
S SYSOUT Pl (Report file)
S |DATA 1.0
**% IIDS |CREATE |Fc/Dl/,BSSZ/100/,RNG/1,100/
$ DATA jI*
*%% DS =OPTION |GENERATE /,ANAL/, RNG/1,30000/,
IDS IETC INCR/1/,FILL/63/,MAX/100000/
S ENDJOB
** *xEQF | |

* Same as for RANDA Option.
** game as for RANDA Option.

*** Same as for RANDA Option.

3. Subroutines Called:

.QOPEN - opens mass storage device files and builds tables to
describe them,

.QDIR - reads directives.

.OMEX - writes messages on the execution report.

.QSFD - advances subfields of the variable field of directive for
processing.

.QCALC - computes a base page number.

184

PAGF NUMPRFER

G8T

N® 0OF RFCOPDS

DI NF \)J'I‘JW'\DAV#\I\I'J’I\HUTFJ’N\ANJ‘DP‘JIU\N'J\JJ»‘C)"

PAGE

IDS BASF PAGE REPORT
MUMBER NR OF RECORDS

[N
+
NV WD F

~ o}
~ M
-
G‘O‘J‘M'\)PND’N(}J\J“HI‘\J\\IL"/JO)'\JNF‘\DU‘OD

PAGE NUMBER

PAGE 001
NR OF RECORDS

-
NFWODF W&

(=

-

(%

WOV EFEFFNNWENTNO NN SN U

98T

RAENDOMIZFD 190

Rl
2¢€
L8
57
77

STAREN ON

10
=7
27
L9
€9
78

IDS OVERFLOKW RFPORPT

PANDOMIZED TO

24
36
L8
48
57
80

STOPED ON

25
27
49

5¢
81

RANQOMIZEN TO

24
36
L8
57
77
80

PAGE 001
STORED ON

25
27
%9
58
78
82

QUTD

Storage Tape Dump/Print Utility Routine (QUTD)

QUTD dumps to tape and/or prints all or selected portions of the
appropriate storage devices allocated to the I-D-S data file. The
portions of the file to be processed and the output media are specified
by input data cards (directives).

Directives

Directive fields begin in column 16 and are separated by commas. One or
more ETC cards may be used to continue the fields if they run beyond
column 72. Each card to be continued must end with a complete field,
followed by a comma.

There are four directives recognized by QUTD.

1 8 16
]
1DS {DUMP !RNG/Pl,P2/

= :null

The DUMP directive causes pages Pl through P2 to be written on magnetic
tape. If the variable field is null, all pages of the file are written
on magnetic tape. The file code for the magnetic tape is OT. RNG/P1,P2/
is the only option valid for this directive.

1 8 16
: I

IDS [PRINT IRNG /P1,P2/,...,
] | Print option
|

The PRINT directive causes Pl through P2 to be written in print format
and directed to SYSOUT via file code P*, If RNG is not specified, all
pages of the file are written.

Print Options

NULL Prints nonempty pages and indicates empty pages.

EMPTY Prints nonempty pages and the page header for each
empty page rather than indicating a succession of
empty pages only by a first page entry and a last
page entry.

187

TYPES/A,B,C,.../ Prints only the record types specified by A,B,C,
etc. (to a maximum of 10 types).

DELETE Produces a file containing reference code, size
and record type of all records deleted but still
present on the file.

1 8 16
|]

IDS |DPRINT lRNG /P1,P2/,.../
{PDUMP |

The DPRINT/PDUMP directive (either form is acceptable) causes pages Pl
through P2 to be written on magnetic tape and to be sent to SYSOUT 1in
print format, via file code P*. Either directive 1s a combination of the
DUMP and PRINT directives. A null variable field causes all pages of the
file to be written. All print options listed above are acceptable with
either of these directives.

1 16

[]
| .
IDS OR |(not examined)
|

TE o

The EOR directive forces an end-of-reel condition on the magnetic tape
file.

PAGE: XXXXX XX ACTIVE PAGE SIZE: XXXX CH.
WD: LN: TYPE:
XXX XX XXXX IOCTALI IOCTALl lOCTAEJ [OCTA%J [BCD]

|OCT§EJ IOCTA%J [6CTAL| lOCTAEJ [BCD]

focTaL| [OCTA%J |OCTAL] [QCTAL] [BCD]

XXX XX XXXX IOCTAQJ IOCTAEJ IOCTALI IOCTALJ IBCDI

PAGE: XXXXX XX ACTIVE PAGE SIZE: XXXX CH. PAGE EMPTY
AND ALL INTERVENING PAGES

PAGE XXXXX XX ACTIVE PAGE SIZE: XXXX CH. PAGE EMPTY

188

Tape Format

The data sent to the output tape file is written as variable length,
logical records using the GEFRC subroutine PUT. The file is in standard
system format with the exception of block size which is 1602 words. The
Page Image record format is:

Word Contents

0 Accounting Record Header. The number of data words in the
record is specified in bits 0-17. The record type, octal
000013, is contained in bits 18-35.

1 Checksum.

2 SNUMB in bits 0-29., Ignore character (octal 17) in bits 30-35.
3 Date as MMDDYY.

4 Start time in hours and thousandths of hours as HH.TTT.

5 Record type in bits 0-11 as 10. Bits 12-35 are presently

unused and are zero.

6 This word is presently unused and is zero.

7 First six characters of user identification.
8 Second six characters of user identification.
9-n Active page image.

Execution Report

An execution report is produced as part of the wuser output. It
describes, in chronological order, the functions performed as specified
in the directives. In addition, error conditions are included to advise
the user of exception conditions.

189

The following deck setups can be used to execute QUTD from the software
library.
1. Example for temporary files.
1 8 16
] i
$ IIDENT I
$ [PROGRAM louTD
$ LIMITS lopTIONS
S IMASS lAl,XlR,lSR (required file code)
S ITAPE :OT,X2S,,,,DUMP-FILE (required file code)
$ lrAPE DE,X3S,,,,DELETE-FILE (required file code)
$ IpaTa o
IDS ICREATE ‘FC/Al/,BSSZ/480/,RNG/l,l20/,LPP/63/
$ IbaTA Ig*
1DS 'bpump :DELETE/
$ [ENDJOB |
** *EOF | |

a. Pages 1 through 120 will be written to tape (file code OT).

b. All nonempty pages will be printed on P* and all empty pages
will be indicated with a beginning and ending page number.

c. All records logically but not physically deleted from the file

will be written to tape (file code DE) and flagged
printed report.

190

on the

2. Example for permanent files.

1 8 16
|]

S IIDENT !
S PROGRAM iQUTD
S LIMITS |OPTIONS
S [USERID |IDSFOURYQUAD $DBASE

S |PRMFL |TF ,R/W,R, IDSFOURYQUAD$DBASE /QUADO 1
S [PRMFL |TG,R/W,R,IDSFOURYQUADS$DBASE /QUADO2
S IPAPE QT ,X2S,,, ,DUMP-FILE

5 IpaTA IT*
IDS [DUMP IRNG/1,120/
DS [DPRINT lEMPTY /, TYPES /100,101,102/
E [ENDJOB |

**BOF | |

This deck setup will result in the following:

a. Pages 1 through 120 (file code TF) will be written to
(file code OT).

b. File code TG, in its entirety, will be written to tape.

¢. All page headers and all record types 100, 101 and 102 on
code TG will be printed.

tape

file

191

QUTI

Page Initialize Utility Routine (QUTI)

QUTI initializes all or selected portions of the appropriate storage
devices allocated to the I-D-S data file with the page headers and
creates or updates the inventory records. The portions of the file to be
processed are specified by an input data card (directive). The
attributes of the file are acknowledged during the initialization
process.

Directives
There are two directives recognized by .QUTI.
1 8 16

] I
INITIAL [P1,P2
| |

1DS

The initial directive causes pages Pl through P2 to be initialized
with their page headers and the inventory records to be created as
required.

1 8 16
! i

IDS |HEADER (P1,P2
| 1

The header directive causes pages Pl through P2 to be initialized
with their page headers and the inventory records to be updated as
required. This requires that the portion of the file must have been
previously initialized by the initial directive. This directive
allows a portion of the file to be purged and the inventory to be
reset.

Directive Restrictions

1. The argument P2 must be greater than or equal to the argument
P1.

2. Directives are examined to ensure that columns 8-13 contain a
legal directive code as described. Directives 1in error are
written on the execution report followed by appropriate
comments.

192

Execution Report

An execution report 1is produced as part of the user output. It
describes, in chronological order, the functions performed as specified
in the directives. In addition, error conditions are included to advise
the user of exception conditions.

Operation

1. Deck setup.

The following deck setup will initialize a permanent I-D-S data

file.
1 8 16
| |
$ |SNUMB :QUTI
$ |IIDENT IDS00,DATABASEMGR
$ IUSERID |IDSFOURYQUADS$DATABASE
$ IPROGRAM |QUTI
$ |PRMFL lAl,R/W,R,IDSFOURYQUAD/QUADO1
IDS IINITIAL 11,120
$ IENDJOB |
***EOF | |

The following deck setup can be used to initialize a temporary
I-D-S data file.

1 8 16
I i

$ IsnumB louTr

$ |IDENT 'IDS00,DATABASEMGR,TEMP FILE

$ [PROGRAM lguTI

$ 1"file" lor Al,X1S,13R (Al is the required file code)

$ DATA .o

IDS |CREATE lFc/Al/,BSSZ/480/,RNG/1,120/,PGSZ/192/,
| I LpP/32/,INV/25/

$ JDATA IT*

IDS JINITIAL |1,120

$ JENDJOB |

** *EOF | I

2. Subroutines called.
.QDIR - reads directives.

.QMEX - writes messages on the execution report.

193

194

«QSFD

.QDIRC
.QDIRP

.QOPEN

.QRTAB

.QSICT

.QTAB1

.QTAB2

.QTAB3

<QWAIT

.QBCD

. QMCH

.QINV1
LQWRIT
«QPHI

.QCLOS

.QMAP1

ocation in memory to

(=)

moves blocks of words from one

another.

supplies a tallied I/0O list for pages to be read from
the mass storage device(s).

advances subfields of the variable field of directive
for processing.

closes the directive file.
establishes the file code (I*) for directives.

opens the mass storage device file(s) and builds the
tables that describe them.

verifies that the requested pages are allocated and
builds the tables, by device, for the required page
ranges.

points indirectly to the mass storage device file
descriptions.

contains table of FROM page ranges.

contains table of TO page ranges.

contains the number of entries, minus one, in .QTABl/
:QTAB2., This count is in bits 0-17. Bits 18-35 are

not examined.

insures that all outstanding I/0 on the mass storage
device is completed.

converts binary to BCD and replaces leading zeros
with blanks.

moves blocks of characters from one location in
memory to another.

updates inventory.
performs buffered writing to the mass storage device.
generates the page headers.

closes the files and generates the I/0 statistic
report.

calculates the relative sector.

QUTJ

Journal Tape Dump Utility Program (QUTJ)

QUTJ dumps selected portions of tapes in the standard I-D-S journal
format. This includes tapes created by master mode or slave mode
journalization, and tapes produced by either QUTU, QUTP, or QUTS.

Directive
One directive is recognized by the QUTJ program.
1 8 16

|
IDS ISYSTEM
|

The SYSTEM directive causes only record types 3 and 4 (SLVBGN and
SLVEND) to be printed on the report. All other record types are
ignored.

Printer Format

The record types recognized by QUTJ are printed in the format shown
below.

Record Type | Column 1 | Column 2 | Column 3 [Column 4 |Column 5 | Column 6 |Column 7 Column 8 |Column 9 |Column 10

Slave Begin | Logical SLVBGN AA-SSSSS Date Time Record Sequence 12 Charac- Blank
Record Type Word ter user
Number Ip

Slave End Logical SLVEND AA-SSSSS Date Time Record 12 charac- Blank
Record Type ter user
Number ID

BEFORE Image } Logical BEFORE AA-SSSSS Date Time Record Sequence {12 charac- Page
Record Type Word ter user Number
Number Ip

AFTER Image | Logical AFTER AA-SSSSS Date Time Record Sequence 12 charac-{ Page
Record Type Word ter user Number
Number

QUTU Image Logical QUTU AA-SSSSS Date Time Record Sequence 12 charac- Page
Record Type Word ter user Number
Number ID

195

Column Description

Column 2

Column 5
Column 6

Column 8

Column 10

196

Two asterisks appear in this column if the checksum of this
record is in error.

DATE is displayed in the form of MM-DD-YY.
TIME is displayed as HH.TTT, hours and thousandths of hours.

This word is the abort code for SLVEND records. A code of 00
is used for end of activity and end of job.

The SEQUENCE word is zero for all record types except BEFORE
and AFTER. BEFORE page image records are incremented by 1,
starting with 1 in bits 18-35. AFTER page image records are
decremented by 1, starting with -1.

The PAGE NUMBER is the first 18 bits of the first word of
the page image followed by the line number.

Execution Report

QUTJ writes the printed output on the execution report via SYSOUT. The
input tape label is the first line of the report.

Operation

The following deck setup can be used to execute QUTJ.

1 8 16
| |
$ |IDENT |
$ IPROGRAM QUTJ
S ILIMITS IOptions
S :TAPE jIN,Options (IN is required file code)
S \ENDJOB |
***EQOF | !

Sample Output

The following page illustrates the output format produced by QUTJ; the
input tape was a master mode journal tape.

197

GJNL1L 01

198

i0-01~68

i1,092

1DS UTILITY ROUTINE =

SLVBGN
BEFORE
BEF ORE
BEFORE
BEFORE
BEFORE
BEF ORE
BEF ORE
BEF ORE
BEF ORE
BEF ORE
BEF ORE
BEFORE
BEF ORE
BEF ORE
BEFORE
BEF ORE
AFTER

BEFORE
AFTER

BEFORE
AFTER

BEFORE
AFTER

BEFQRE
AFTER

BEFQRE
AFTER

BEFORE
AFTER

BEFQRE
AFTER

BEFQRE
AFYER

BEFQRE
AFTER

BEFQRE
AFTER

BEF QRE
AFTER

BEF QRE
AFTER

BEF ORE
SLVBGN
AFTER

BEF ORE
BEFORE
AFTER

BEF ORE
BEF ORE

1-7S763
1-T5T03
1-7ST03
1-1ST03
1-75703
1-75703
1-7s703
1-75703
1-75703
1-TsT03
1-Ts703
1-TST03
1-TST03
1-7Ts703
1-7S703
1-75703
1-7S703
1-7s703
1-75703
1-75T03
1-7s703
1-7s703
1-75703
1-7s703
1-7s703
1-7ST03
1-75703
1-7sT03
1-1s703
1-7sT03
1-7sT03
1-7s703
1-7sT03
1-7sT03
1-7s703
1-7S703
1-75703
1-7sTp3
1-7STp3
1-7s703
1-75T03
1-TsT03
1-7s703
1-7sT7T3C
1-7sT03
1-7sT03
1-TST3C
1-78703
1-7sST03
1-TS73C

10~01~868
10~01-68
1C=-01-68
1C=-01-68
10~-01-68
10~-01-68
15~01-~68
10~01-68
1C~01-68
1Ce01~68
10~01-68
1(=01-68
10-01-68
10~01-68
10=-01-68
10-01-68
10=01-68
10~01~68
10-01-68
10=01-68
13»01-68
1{0«01-68
10m1=68
10~01~68
10mQL~68
{0w01a68
16~01-68
16=01-68
10w(1~68
{Cw01-68
1g~01-68
1Cw(1~-68
10~01~68
10=01-68
10-01-68
15~01-68
10=01-68
10-01-68
10~01 =68
10~01~68
10~Q1~068
10-01-68
10~01~68
10-01-68
10~01~68
1C-01-68
10~01~68
10~01~68
10~01-68
10~01~68

IUS JOURNAL TaAPE REPORT
1QUTY = VERSION

11,037
11,037
11,037
11,037
11,037
11,037
11,037
11,037
11,037
11,037
13,037
11,037
11,037
11,037
11,037
11,037
11,037
11,037
11,037
11,037
11,037
11,037
11,037
11,037
11,037
11,037
11,037
11,037
11,037
11,037
£1,037
11|037
11,037
11,037
11,037
11,037
11,037
11,037
114037
11,037
114037
11,037
11,037
11,038
114037
11,4037
114038
11,037
11.037
11,038

039
050
050
050
050
050
050
050
050
050
050
050
050
050
050
050
050
060
050
060
050
060
050
060
050
060
050
060
050
060
050
060
050
060
050
060
050
060
050
060
050
060
050
030
060
050
050
060
050
050

080168,

s s e s e
VEGNFLPOOYOONOIOVAEWNLFO

16
262142
17
262141

262136
23
262135
24

262134
25
262133
26

262132
27
262131
28
262130
29

0
262129
30

1
262428
31

2

IDSFOURYQUAD
1DSFOURYQUAD
1DSFOURYQUAD
1DSFOURYQUAD
I1DSFOURYQUAD
IDSFOURYQUAD
IDSFOURYQUAD
1DSFOURYQUAD
10SFOURYQUAD
1DSFOURYQUAD
1DSFOVRYQUAD
1DSFOURYQUAD
IDSFOURYQUAD
IDSFOURYQUAD
IDSFOURYQUAD
IDSFOURYQUAD
1DSFOURYQUAD
1DSFOURYGQUAD
{USFOURYQUAD
I1DSFOURYQUAD
1DSFOURYQUAD
IDSFOURYQUAD
1DSFOURYQUAD
1DSFOURYQUAD
1DSFOURYQUAD
IDSFOURYQUAD
1DSFOVRYQUAD
IDSFOURYQUAD
IDSFOURYQUAD
IDSFOURYQUAD
IDSFOURYQUAD
I1DSFOURYQUAD
1DSFOURYQUAD
IDSFOURYQUAD
1DSFOURYQUAD
IDSFOURYQUAD
tDSFOURYQUAD
I1DSFOURYQUAD
IDSFOURYQUAD
I1DSFOURYQUAD
1DSFOURYQUAD
1DSFOURYQUAD
I1DSFOURYQUAD
IDSFOURYQUAD
IDSFOURYQUAD
10DSFOURYQUAD
IDSFOURYQUAD
1DSFOURYQUAD
1DSFOURYQUAD
IDSFOURYQUAD

446
44y
142
115

262

COWOOUWVOOOODOOWOOOOOVLVOOOOLLDOOOAOODVLOOLOLOADOLDADLDODO

OOV OO

QUTL

Data Base Load/Print Utility Routine (QUTL)

QUTL loads and/or prints all or selected I-D-S pages from an input file.
The input file may be:

e Dump File created by QUTD
® Selected File created by QUTS

® System Statistical Collection File or User Journal File (JX)

DIRECTIVES

The QUTL utility is controlled through the following directive:

1 8 16
i T

IDS :OPTION 'Function/lnput Descriptor/,
IETC [Pescriptor options/,
IETC IPRINT OPTIONS/

Directive fields being in column 16, they are terminated by a slash (/)
and are separated by commas. One or more ETC cards may be used to
continue the fields. A directive card to be continued must end with a
complete field, followed by a comma.

Operation

The operation of the utility varies depending upon the type of input
file. The utility is written in a modular (overlay) manner such that
only the coding needed to accomplish the desired function is engaged.

There are three INPUT DESCRIPTOR options recognized by the utility:
DTAPE

STAPE
JTAPE

The directive options applicable for each type of INPUT DESCRIPTOR and
resulting operation are described as though three unique wutilities
actually exist.

The Printer Format and Tape Formats are common to the three modes of
operation.

Rev. August 1971

199

DTAPE

DTAPE - Input Descriptor

tor indicates that the input file
tility QUTD.

3
4

The use of DTAPE as thc Input De
contains data produced by t I

c

DIRECTIVE OPTIONS

FUNCTION

LOAD Causes specified pages to be written on the mass storage
device.

PRINT Causes specified pages to be written in print format and
directed to SYSOUT via file code P*.

LPRINT These options (either form 1is acceptable) cause the

PLOAD specified pages to be written on the mass storage device
and to be sent to SYSOUT in print format via file code P*.
Either directive is a combination of the PRINT and LOAD
functions.

EOR Forces a unit switch on the input magnetic tape file.

RNG/P1,P2/ Specifies the page range to be reloaded and/or printed. If
no range is present the entire range of all subfiles
allocated is assumed. The argument P2 must be greater than
or equal to Pl.

PRINT OPTIONS

EMPTY Prints non-empty pages and the page header for each empty
page rather than indicating a succession of empty pages
only by a first page entry and last page entry.

TYPES/A,B,C,../ Prints only the record types specified by A,B,C,...(to
a maximum of 10 types).

DELETE Produces a file containing reference code, size and record
type of all records logically but not physically deleted
from the file. The required file code is DE.

Rev. August 1971

200

Directive Examples:

1 8 16
| T
1 |
iDs IOPTION IDTAPE/,LOAD/
| |
This requests reloading of all pages for all files allocated to the
activity.

1 8 16
IIDS :OPTION :DTAPE/,PLOAD/
I {
This requests reloading of all pages for all files allocated to the
activity and printing of all nonempty pages with all empty pages being
indicated with a first page and last page entry.

1 8 16
1

iDs IOPTION :DTAPE/,PLOAD/,EMPTY/,
:ETC ITYPES/100,200/,RNG/18500,25000/,
[ETC IDELETE /

This requests reloading of all pages for the specified range, printing
of all page headers and any records of the specified types. A file of
all deleted records will also be produced.

Execution Report

An execution report is produced as a part of the output. It describes in
chronological order, the functions performed as specified in the
directive. In addition, error conditions are included to advise the user
of exception conditions.

The input and output files are double buffered to obtain maximum
throughput. The input file must contain consecutive pages for the files
allocated or the PAGE-RANGE specified on the directive card. If
nonconsecutive pages are encountered during execution, and error comment
is written on the execution report and the program is aborted with a D2
reason code.

Inventory records will be created for the file or PAGE-RANGE re-loaded
if applicable.

The minimum core requirement for this activity is 16K.

Rev. August 1971

201

Operation

The following deck setup can be used to cxccute QUTL from

library.

software

ot
.

®

1. Example for temporary files.

This

1 8 16
! |
$ '1DENT | (options)
S PROGRAM IQUTL
S ILIMITS | (options) (minimum 16K)
$ IMass |Al,X1R,15R
$ ITaPE |IN,x2S,,1234, ,DUMP-FILE (Required File code)
S ITAPE |DE,X3S,,,,DELETE~-FILE (Required File code)
$ ipAaTA 1-Q
IDS ICREATE \FC/Al/,BSSZ/480/,RNG/1,120/
$ IDATA |I*
IDS |OPTION |DTAPE/ ,PLOAD/ ,RNG/1,120/,DELETE/
$ |ENDJOB |

deck setup will result in the following:

a. Pages 1 through 120 will be written to the mass storage device.

b. All non-empty pages will be printed on P* and all empty pages
will be indicated with a beginning and ending page number.

c. All records logically but not physically deleted from the data
base will be written to tape (file code DE) and flagged on the
printed report.

2. Example for permanent files:

202

1 8 16

] T
S lIDENT :(options)
S IPROGRAM IQUTL
$ (LIMITS (options)
S JUSERID IIDSFOURYQUAD$DBASE
$ |PRMFL ITF,R/W,R,IDSFOURYQUAD$DBASE/QUADOl
S |PRMFL TG,R/W,R,IDSFOURYQUAD$DBASE/QUADO2
$ |PRMFL |TH,R/Q,R,IDSFOURYQUAD$DBASE/QUAD03
$ \PRMFL |TI,R/Q,R,IDSFOURYQUAD$DBASE/QUADO4
S ITAPE |IN,X2S,,1234, ,DUMP-TAPE (Required File code)
$ IDATA |I*
IDS |OPTION |IDTAPE/,PLOAD/ ,EMPTY/,RNG/121,240/

|

1

Rev. August 1971

This deck setup will result in the following:

a. Pages 121 through 240 will be written on the mass storage
device.

b. All non-empty pages and page headers for all empty pages will
be printed on P¥*.

Rev. August 1971

203

STAPE

STAPE - Input Descriptor

The use of STAPE as the Input Descriptor indicates that the input file
contains data as produced by the I-D-S utility QUTS.

Input File

The input file is standard system formats with the exception of block
size, which is 1602 words. The data on the file must have been written
as output by the I-D-S utility QUTS; therefore it must consist of either
the first BEFORE or last AFTER for each page supplied as input and only
one image for each page will be present.

DIRECTIVE OPTIONS

FUNCTION

LOAD Causes specified pages to be written on the mass
storage device.

PRINT Causes specified pages to be written in print format
and directed to SYSOUT via file code P*,

LPRINT These options (either form 1is acceptable) cause

PLOAD specified pages to be written on the mass storage
device and to be sent to SYSOUT in print format via
file code P*. Either directive is a combination of
the PRINT and LOAD functions.

EOR Forces a unit switch on the input magnetic tape
file.

DESCRIPTOR OPTIONS

RNG/P1,P2/ Specifies the page range to be reloaded and/or

printed. If no range is present, the entire range of
all subfiles allocated is assumed. The argument P2
must be greater than or equal to P1l.

Rev. August 1971

204

PRINT OPTIONS

TYPES/A,B,C,.../ Prints only the record types specifies by A,B,C,...
(to a maximum of 10 types).

DELETE Produces a file containing reference code, size and
record type of all records 1logically but not

physically deleted from the file. The required file
code is DE.

DIRECTIVE EXAMPLES

1 8 16
N T

| |
IDS |OPTION ,STAPE/,LOAD/
[[

This requests reloading of all pages found on the input tape for all
files allocated.

1 8 16
! i

IDS lOPTION |STAPE/,PLOAD/,RNG/27500,35000/
1 |

This requests reloading and printing of all pages found for the
specified range.

Execution

An execution report is produced as a part of the output. It describes in
chronological order, the functions performed as specified in the
directive. In addition error messages are included to advise the user of
exception conditions.

Since pages are non-consecutive on this type load and each page must be
processed based on the page number found in the record, the input is
double buffered and the output is accomplished from the input buffer.

Minimum core requirement for this type load is 14K.

Inventory records will be updated for each page reloaded if applicable.

Rev., August 1971

205

The following deck setup can be used to execute QUTL from the software
library.

1. Example for temporary files.

1 8 16
] T
S :IDENT l(options)
S |PROGRA.M 'QUTL
S JLIMITS |(options)
S |MASS Al ,X1R,15R (required File code)
S |TAPE 'IN,XZS,,1234,,DUMP—FILE (Required File code)
$ |DATA o
IDS |CREATE |rc/nl/,BSS2,/480/,RNG/1,120/
$ {DATA J1*
I1DS {OPTION |STAPE/ ,LOAD/
$ |ENDJOB I
| |

This causes reloading all pages found on the input tape for all files
allocated.

2. Example for permanent files:

1 8 16

! I
$:IDENT | (options)
$ |PROGRAM JQUTL
$ jLIMITS | (options) (minimum 14K)
$ JUSERID IIDSFOURYQUAD$DBASE
$ |PRMFL TF,R/W,R, IDSFOURYQUAD$DBASE/QUADOL
$ |PRMFL lrG,R/W,R, IDSFOURYQUAD$DBASE /QUADO 2
$ |PRMFL l7H,R/Q,R, IDSFOURYQUADSDBASE/QUADO 3
$ IPRMFL lp1,R/W,R, IDSFOURYQUADS DBASE/QUADO 4
$ ITAPE |IN,X25,,1234,,SELECT-FILE
$ IDATA lI*
IDS lOPTION |STAPE/ ,PLOAD/ ,RNG/100,200/
$ |ENDJOB |

! !

This requests reloading and printing of all pages found for the
specified range.

Rev. August 1971

205.1

JTAPE

JTAPE - Input Descriptor

The use of JTAPE as the Input Descriptor indicates that the input file
contains data of the System Statistical Collection Tape or a User
Journal File (JX

Input File

The input file may be one or more reels of the master mode System
Statistical Collection tape or User Journal File. The file must be in
system standard format with the exception of block size, which is 1602
words.

DIRECTIVE OPTIONS

FUNCTION

LOAD Causes specified pages to be written on the mass

. storage device.

PRINT Causes specified pages to be written in print format
and directed to SYSOUT via file code P*,

LPRINT These options (either form 1is acceptable) cause

PLOAD specified pages to be written on the mass storage
device and to be sent to SYSOUT in print format via
file code P*. Either directive is a combination of
the PRINT and LOAD functions.

EOR Forces a unit switch on the input magnetic tape
file.

NORWD Suppresses rewinding of the input tape at the end of

each directive.

Rev. August 1971

205.2

DESCRIPTOR OPTIONS

RNG/P1,P2/

Specifies the page range to be loaded and/or printed
If no range is present, the entire range of all
subfiles allocated is assumed. The argument P2 must
be greater than or equal to Pl.

SNUMB/XXXXX/,ACT/Al,A2/ This selects page images for the specified

FILE/FILENAME/

PAGE/1,2,3.../

DATE/YYMMDD/

SNUMB starting with activity Al through
activity A2. If only activity Al is specified,
that is the only activity to be selected. 1If
no activity is specified, all page images for
the SNUMB are looked at.

This selects page images associated with the
specified filename. If this option is used, it must
be the only directive to be processed.

This option provides selection of specific pages.
When this option is used, a FILE/FILENAME/ must be
specified. A maximum of 10 pages may be specified on
one directive.

This option, in conjunction with FILENAME or SNUMB,
accomplishes selection of records with a date equal
to or greater than the one specifed.

DATE/YYMMDD/,TIME/HHTTT/ This provides selection of records with a date

AFTER
BEFORE

PRINT OPTIONS

TYPES/A,B,C,.../

DELETE

205.3

and time equal to or greater than that
specified.

Specifies either BEFORE or AFTER images are to be
loaded. If neither option 1is specifed, BEFORE is
assumed.

Prints only the record types specified by A,B,C,...
(to a maximum of 10 types).

Produces a file containing reference code, size and
record type of all records logically but not
physically deleted from the file. The required file
code is DE.

Rev. August 1971

DIRECTIVE EXAMPLES

1 8 16
IDS :OPTION :JTAPE/,PLOAD/,SNUMB/12345/,
|ETC IACT/05/

This loads and prints the first BEFORE images found on the journal tape
for SNUMB 12345, activity 5. All nonempty pages and page headers for all
empty pages will be printed on P*.

1 8 16
' |

IDS :OPTION :JTAPE/,PLOAD/,FILE/IDSFOURYQUAD/,
|[ETC IDATE/700608/,TIME/13.058/,AFTER/

This loads all AFTER page images found on the journal tape for SNUMB

12345, activity 5. All nonempty pages and page headers for all empty
pages will be printed on P*,

1 8 16
| |

DS :OPTION IJTAPE/,PLOAD/,FILE/IDSFOURYQUAD/,
|IETC IDATE/700608/,TIME/13.058/,AFTER/

This loads all AFTER page images found on the journal tape tape for file
IDSFOURYQUAD with a date and time egual to or greater than the one

specified. All nonempty pages will be printed and all empty pages will
be indicated.

Execution

An execution report is produced as part of the user output., It
describes, in chronological order, the functions performed as specified
in the directives. In addition, error conditions are included to advise
the user of execution conditions.

Considerations

This type load utilizes a tape which will probably contain multiple
before and after images for each page; therefore, when loading before
images a control must be maintained to ensure that only the first before
image of each page is written to the data base. This is accomplished
through utilization of a page-flag "bit-buffer".

Rev. August 1971

205.4

In order to allow dynamic construction of the bit-buffer at execution
time, the amount of core required for the bit buffer is based on the
accumulated ranges of all subfiles allocated to the job and the
accumulated ranges specified on the directive cards. It 1is the wuser's
responsibility to provide enough core to accommodate this requirement.

The minimum core requirement for this version of QUTL (excluding the
bit-buffer) is 15K. A formula for calculating the bit buffer size per
subfile or range is described below:

(MAX. RANGE - MIN. RANGE +1) *PAGES-PER-PAGE/36

= Number of words of core required per subfile or range

Total core required would be the sum of all subfile or range
computations plus 15K.

EXAMPLE

A program aborts leaving two subfiles to be recovered. One subfile has a
page-range of 1 - 10000 while the second subfile contains pages 10001 -
20000 for a total of 20,000 pages. If no range is specified on the QUTL
Girectives, enough core (556 words) must be allocated to construct a bit
buffer large enough to map 2000 pages. However, suppose the
determination can be made, based on knowledge of the aborted program,
that only pages 9000 - 12000 were affected, this range may then be
specified on the directive and only encugh core (84 words) to map 3000
pages would be required.

Multiple directives may be processed with one execution of QUTL;
however, they will be processed in the order in which they appear in the
job stream. Consider the following example:

1 8 16

! |
IDS :OPTION |JTAPE/,LOAD/,SNUMB/12345/,ACT/2/
1DS JOPTION {JTAPE/ ,LOAD/,SNUMB/23456/,ACT/2,5/

All before images for SNUMB/12345/,ACT/2/ will be looked at on the first
pass of the accounting tape. The bit buffer will be checked to ensure
only the first before image of each page is written to the data base.

Rev. August 1971

205.5

The Journal tape will be rewound and the second directive, SNUMB/23456/
activities two through five will be processed. The page flag bits set by
the first directive will be checked while processing the second
directive, so that should each job have changes the same pages in the
data base, only the first before image written by the first directive is
restored. At completion of the QUTL activity, the data base would be
restored to a point prior to any changes made by either job.

The user may suppress rewinding of the accounting tape between
directives by specifying NORWD on the directive cards. This option
should be used when the jobs to be recovered were run in sequence rather
than concurrently.

Operation

The following deck setup can be used to execute QUTL from the software
library:

Example for permanent files:

1 8 16
! |
$ |IDENT | (options)
$:PROGRAM | QUTL
S LIMITS !(options) (minimum 15K + bit buffer)
S IUSERID 'IDSFOURYQUAD$DBASE
S |PRMFL TF,R/W,R,IDSFOURYQUAD$DBASE/QUAD0l
$ IPRMFL lG, RECOVERY/R/W, R, IDSFOURYQUADS DBASE /QUADO 2
S ITAPE lIN,X2S,,1234,,JOURNAL-TAPE (Required File Code)
$ IDATA :I*
IDS lopTION \JTAPE/,LOAD/,SNUMB/56789/,ACT/01,05/ ,NORWD/
IDS !OPTION [JTAPE/ ,LOAD/SNUMB/567890/,ACT/02/
$ \ENDJOB |
| 1

This deck setup will result in the following:

1. The first before image of each page associated with SNUMB 56789
activity 1 through activity 5 found on the journal tape will be
written to the I-D-S DATA BASE IDSFOURYQUAD.

2. The NORWD directive prevents rewinding the journal tape prior
to processing the next directive.

3. The first before image of each page associated with SNUMB
567890 activity 2, not reloaded when processing the first
directive, will be reloaded on file IDSFOURYQUAD.

Rev. August 1971

205.6

Printer Format

The format of pages selected for printer output is shown below:

PAGE: XXXXX XX ACTIVE PAGE SIZE: XXXX CH.

WD: LN: TYPE:

XXX XX xxxx |ocTaL| [ocraL] [ocTaL] [ocTaL] [BCD |
[ocTaL| |ocTan] [ocTaL] [ocTaL] [BCD |
[OCTAL | [ocTaL] [ocTAL] [ocTAaL| [BCD |

XX XX xxxx [ocranL] [ocTaL]| [ocTaL] [ocTaL] [BCD]

PAGE: XXXXX XX ACTIVE PAGE SIZE: XXXX CH. PAGE EMPTY

AND ALL INTERVENING PAGES
PAGE XXXXX XX ACTIVE PAGE SIZE: XXXX CH. PAGE EMPTY
Input File Format

The data read from the input tape file consists of variable length,
logical records. The file 1is in standard system format with the
exception of block size which is 1602 words. The record format is:

Word Contents

0 Accounting Record Header. The number of data words in the record
is specified in bits 0-17. The record +type, octal 000013, is
contained in bits 18-35.

1 Checksum.

2 SNUMB in bits 0-29. Ignore character (octal 17) in bits 30-35.

3 Date as MMDDYY.

4 Start time in hours and thousanths of hours as HH.TTT.

5 Record type in bits 0-11 as 10. Bits 12-35 are presently unused
and are zero.

6 This word is presently unused and is zero.

7 First six characters of user identification.

Rev. August 1971

205.7

8 Second six characters of user identification.
9-n Active page image.
Delete File FORMAT

The optional output file of records logically but not physically deleted
from the data base is in standard system format. The record format is:

Woxrd Contents

0 Reference code. Page number in bits 12 - 29, Line number in bits
30 - 35.

1 Record type.

2 Record size in characters.

Rev. August 1971

205.8

QUTP

Journal Record Selector Utitity Program (QUTP)

QUTP selects records from an I-D-S journal tape according to
user-supplied criteria and writes them on an output tape.

Directives

Two types of control cards are recognized by QUTP: SELECT and ETC. The
first card must be a SELECT; the second is optional.

1 8 16

1
kns lsELECT |£1,£2,£3
|

where fl must be AA/SSSSS. This field specifies the Activity and
SNUMB of the corresponding Slave Begin record which must be
found to initiate interrogation of +this criterion. The
AA/SSSSS format must be one or two digits for the activity
number, slash, and five digits for the SNUMB.

f2 must be AA/SSSSS. This field specifies the Activity and
SNUMB (which must be the same SNUMB as in fl) of the
corresponding Slave End record which must be found to
terminate interrogation of this criterion.

f3 is either B, A, or null. This field specifies the type of
record to be selected for interrogation. If this field is
null, B is implied. If ETC cards are present, this field is
ignored. B stands for Before and A stands for After.

Two SELECT card examples are:

1 8 16

|
DS 1SELECT h/53607,l/53607,B
DS ISELECT P2/88802,l3/88802,A

The ETC card is optional. It is used to specify that only BEFORE or
AFTER records for a given page range are to be selected for output.
The format of this directive is:

1 8 16

! i
|ETC f£1/£2/£3,£f1/£2/£3, ...etc...
i I
where fl is B or A meaning BEFORE or AFTER.
f2 is the lower limit of a page range.

£f3 is the upper limit of a page range.

NOTE: 1<f2<f£3<262,143

206

Several page range specifications may be placed on one ETC card,
but each triplet must be separated from the next one by a comma. A
slash must separate each element of a triplet. If several page
range specifications are placed on one ETC card, the last data
character must be followed by a blank, and the blank must appear
prior to or in column 72. Several ETC cards may follow a SELECT
card as long as the maximum of 8 +triplets per SELECT is not
exceeded.

If ETC card(s) follow a SELECT, then field f3 of the SELECT card is
ignored since this option is specific for each page range.

Two ETC card examples are:

1 8 16
i i
IETC IB/129/352,7/26243/53409
IETC 1A/1/100,A/10/20

Directive Restrictions

A maximum of 50 directives is allowed. Following each SELECT directive,
there may be a maximum of eight page range specifications.

Tape Format

The input data for this program can be one or more reels of master mode

journal tape information. The file must be in standard system format
with the exception of block size, which is 1602 words.

207

Records are written on the output file in standard system format with
the exception of block size. Two types of records may appear on the

output tape:

Word

0

9-n

BEFORE and AFTER. Their format is:
Contents
Accounting Record Header. The number of data words in the
record is specified in bits 0-17. The record type, octal
000013, is contained in bits 18-35.

Checksum.

SNUMB in bits 0-29. Ignore character (octal 17) in bits
30-35,

Date as MMDDYY.
Start time in hours and thousandths of hours as HH.TTT.

Record type in bits 0-11 as 10. Bits 12-35 are presently
unused and are zero.

Lines per page for this page image (bits 1-17).
First six characters of user identification.
Second six characters of user identification.

Active page image.

Execution Report

A detailed execution repcrt is printed by QUTP. The report is divided
into two parts. Part 1 is a listing of the directives and part two is
the summary report.

Operation

208

1.

Deck setup.

The following deck setup can be used to execute QUTP.

1 8 16
l 1

S IIDENT

S IPROGRAM IQUTP

S ILIMITS !Options

$ TAPE :IN,Options (IN is required file
| | code for the input tape)

$ ITAPE IOT,Options (OT is required file

code for the output tape)

I Directives

$ IENDJOB |

*kkEOF | |

QUTP performs three distinct functions to select the specified
records.

PROCESSING DIRECTIVES. The directives are read as data from the
input file I*. Each card is checked for errors in both content
and format. If errors are present, an error comment is written
with the card image on the execution report; and a switch is
set so that a D2 abort occurs when all directives have been
scanned, but before processing of the input tape is initiated.
When scanning is complete and no error has occurred, a sequence
number 1is assigned to the directive and printed on the
execution report. The criterion is then stored in memory. Since
all criteria are resident in core, the user need not order
them,

RECORD INTERROGATION. As each input record is read from tape,
its record type is examined to determine how it should be
handled.

The SLVBGN and SLVEND records are used to initiate and
terminate testing on a criterion. For example, if a criterion
specifies all BEFORE records within a specific SLVBGN-SLVEND,
the criterion is turned on when the matching SLVBGN is
encountered to interrogate BEFORE records and output those that
match. Correspondingly, the matching SLVEND +turns off the
criterion. This technique allows inactive criteria to be
quickly recognized and bypassed.

The BEFORE and AFTER records are matched against specific
criteria. If the tests are successful, the records are written.

SUMMARY REPORT. After all criteria are satisfied or an
end-of-file 1is reached on the input file, a summary report is
produced on the execution report. Specific «criteria of each
directive and the number of output records for the directive
are shown.

209

QUTR

Execution Information Report Program (QUTR)

m T - - < ram o 3 £ e 3 rarcay 3
QUTR selects type B information records from an I-D-S journal £

a
sorts the records, and produces an execution information report.

Input Tape Format

The input file is standard system format except for a maximum block size
of 1602 words.

Operation
1. Subroutine .QSTB.

For each SNUMB-activity that engages subroutine .QSTB, type B
statistics are collected on the I-D-S journal file as a type 09
record. These are the records used as input by QUTR. Thus, to
provide this input, the following loader control card must be
included in the job stack for the activity:

1 8 16
] 1
|
$:USE PQSTB
|

Type B information is then accumulated by .0STB for each
primary entry subroutine (that is, each subroutine called by
the object program).

210

Notes:

Deck Setup.

The following deck setup shows the appropriate control cards
for (1) collecting type B statistics on the Jjournal file and

(2)

© ©

@0 0O ©0O Cee® 6 ©

® e

executing QUTR.

1 8 16
$:IDENT '
$ IUSERID I
$ lUSE].QSTB
$ loBJECT |
: . I
| |
I
$ | pREND !
$!EXECUTE |
S PRMFL
$ |TAPE lsx,x1s,,,,I-D-S JOURNAL
| I
. |
| . |
$ |[PROGRAM [QUTR
S SYsouT Pl
S lrAPE 1,X1R
S ITAPE 1,X2R,,99999
S INTAPE S1,T,?2
S [ENDJOB 1
** *EOR |

Beginning of activity.

Provides for collecting type B information in type 09
journal records.

Object deck.
User-created journal file.
Other user files (and end of activity).

Beginning of second activity (for producing a type B
statistics report).

Pl is required output file code.

Al is required input journal tape file code. (Note that
this is the journal file created in first activity.)

Bl is required file code for sort work file (scratch tape) .

S1 is required file code for the first of +two collation
tapes needed by GE-600 Line Sort/llerge.

211

Sample Output

A sample
callouts

I/0
Tota

Tota

@R QOO

ALTER FUNCTION

135
166
169
179
184
215
217
282
291
300
309
410

©

212

STORE
RETRIEVE
RETRIEVE
DELETE
RETRIEVE
RETRIEVE
RETRIEVE
STORE
STORE
STORE
STORE

STORE

Record

output for QUTR is shown on the
are keyed to the following notes:

Record type

1 number of reads for execution of the subroutine

1 number of writes for execution of the subroutine

RECORD TYPE 990
RECORD TYPE 990
NEXT OF CHAIN 990 4

RECORD TYPE 4

NEXT OF CHAIN 990 50
DIRECT

NEXT OF CHAIN 1000 4
RECORD TYPE 1
RECORD TYPE 2 @
RECORD TYPE 3

RECORD TYPE 4

RECORD TYPE 50

" - R’_j

@ ®

Function (similar to I-D-S statement)

Number of times the call was executed

CALLS

21
20
20
19
19

20

®

following page.

Number of times the subroutine was executed

ZERO I/0

N W - O

19

19

20

without

READS

The

circled

Alter number (from GMAP codes) of the call to the subroutine

type of chain master followed by record type of a detail

requiring

WRITES

18
18

19

o »v s U e O

QUTS

Selected Record Sort Utility Program (QUTS)

QUTS sorts and merges records selected from an I-D-S journal tape. The
sorted and merged records may be used to reload the user data base when
recovery to a previous file status is desired.

Input Tape Format

The input file is standard system format with the exception of block
size, which is 1602 words. The data on the input file must have been
written as output by the I-D-S Journal Record Selector (QUTP) ;
therefore, it must consist of BEFORE and AFTER record types only.

Output Tape Format
The output files are standard system format with the exception of block
size, which is 1602 words. The data on the output files consists of the
first BEFORE or last AFTER record for each page supplied as input.
Execution Report
QUTS produces an execution report as part of the wuser output. This
report describes in chronological order the functions performed during
the execution. In addition, error messages are included to advise the
user of exception conditions.
Operation
1. Deck setup.
The following deck setup describes the appropriate control

cards for executing QUTS using tapes. Disc sort may also be
used instead of tapes.

1 8 16

] |

IIDENT !
$ IPROGRAM 1QUTS
$ ILIMITS 110, 24K
$ lrapE jIN,Options
$ lTAPE IOT ,Options
$ |TAPE :OU,Options
$ |NTAPE S1,0ptions,3
S |JENDJOB I
***EOF | I

213

A limit card is required. The minimum is 19K, however for sort
to run with greater efficiency a 1limit of at least 24K is
suggested.

IN is the required input file code.
OT is the required file code for the first output file.

OU is the required file code for the second output file. (This
file need not be present if the input to QUTS consists only of
records from a single file; that is, one file name.)

S1 is the required file code for the first of three collation
tapes required by GE-600 Line Sort/Merge. A minimum of three
collation tapes is required.

2. QUTS consists of input coding and output coding elements
coupled to the standard GE-600 Line Sort/Merge. The individual
functions performed are described below.

INPUT CODING. The input coding element reads and preprocesses all input

records from the input file:

A sequence number is placed in bits 0-17 of the seventh word of all
BEFORE and AFTER records. For each BEFORE record, the sequence
number is ascending and ranges in value from 1 to 777777(8). For
each AFTER record, the sequence number is descending and ranges in
value from 777777(8) to 1. This sequence number preserves the
chronological order of the input records in cases where start times
may be identical for two different activities.

Each input record is tested to ensure that only record types 05 and
06 comprise the input. Invalid records are dumped in octal format
on the execution report accompanied by an appropriate error
comment. An indicator is set when invalid records are encountered
so that the program terminates with a D2 code after all input
records are processed.

SORT CODING. The standard GE-600 Line Sort/Merge is wused to arrange
input records in the desired order for output. The fields wused for
sorting and their sequence are:

214

Sequence Field Size Field Description
lst (major key) 2 words File-name

2nd 18 bits Page number

3rd 10 bits Page

4th 2 characters Record type

5th 1 word Sequence number
6th 24 bits CALC chain next

OUTPUT CODING. Two files are available for output in this coding
element. A control break on file-name results in closing the first
output file and opening the second output file, The specific functions
performed in the output coding element are:

a. The sequence number in bits 0-17 of the sixth word 'is set to
zero.

b. The page number of the current record is compared to the page

number of the previous record and, if they are the same, the
current record is not written to the output file.

215

QUTT

QUTT Not Available

QUTT Tape Conversion Utility Program is no longer available.

216

QUTU

File Utility Program (QUTU)

QUTU performs the following I-D-S utility functions, depending upon the
directives chosen:

® File initialize (INIT directive): establishes page headers and
initializes inventory.

e File print/graph (PRINT directive): prints requested pages,
record types, and inventory; graphs space and lines wused for
requested pages; and prints a record type usage report.

® File movement (WRITE directive): moves requested pages from one
file to another. (This is a DUMP/LOAD facility.)

e File reformat (WRITE directive): changes page size and/or lines
per page of requested pages while performing file movement to a
tape or random file.

Directives

Directive fields begin in column 16 and are separated by commas. One or
more ETC cards may be used to continue the fields if they run beyond
column 72. Each card to be continued must end with a complete field,
followed by a comma. A directive card followed by one ETC card is shown
below.

1 8 16

' i
I
|

IDS |INIT
ETC

FC/XX/,RNG/A,B/,RNG/C,D/,
RNG/E,F/,RNG/G,H/, ...

Formats for the program input directives are shown below, arranged by
program function. Directive restrictions are listed at the conclusion of
the format explanations.

Function l: File Initialize (random files only; if file is
tape, directive is ignored)

1 8 16

T

|
IDS INIT

¥
| FC/XX/,RNG/A,B/,RNG/C,D/, ...

where FC/XX/ is the file to be initialized. This field must
be present.

For permanent random files: XX is as defined on the $PRMFL
card.

For temporary random files: XX is Al for the first file, A2
for the second, etc.

217

RNG/A,B/ is a page range to be initialized.
If no range field is present, the entire range of the file
is initialized. A must be less than or equal to B, and B
must be less than or equal to 262,144,

RNG/C,D/, if present, is a second page range to be
initialized. A maximum of 8 ranges will be considered on
one directive.

Example for permanent files:

1 8 16

$ SNUMB

$ IDENT

$ PROGRAM QUTU

$ LIMITS 10,24K

$ USERID IDSFOURYQUAD $DBASE

S PRMFL TF,R/W,R,IDSFOURYQUAD/QUADOL
$ PRMFL TG,R/W,R,IDSFOURYQUAD/QUADO 2
IDS INIT FC/TF/,RNG/1,120/

IDS INIT FC/TG/,RNG/121,240/

Example for temporary files:

1 8 16

s SNUMB

S IDENT

S PROGRAM QUTU

S LIMITS 10,24K

S MASS Al,X1s,11R

$ MASS A2,X2S,22R

$ DATA .Q

IDS CREATE FC/Al/,BSSZ/480/,RNG/1,120/,LPP/63/
IDS CREATE FC/A2/,BSSZ/480/,RNG/121,240/,LPP/32/
S DATA I*

IDS INIT FC/al/

IDS INIT FC/A2/

218

Function 2: File Print/Graph

1 8 16
| I
1DS IPRINT IFC/XX/,RNG/A,B/,RNG/C,D/,...,
! | print option
where FC/XX/ is the file to be printed; and
RNG/A,B/ are the ranges of that file to be
RNG/C,D/ printed.

Example for permanent files:

1 8 16
l)
$ ISNUMB |
$ |IDENT
S |PROGRAM QUTU
$ (LIMITS 110,24K
$ |USERID :IDSFOURYQUAD$DBASE
S |PRMFL TF,R/W,R,IDSFOURYQUAD/QUADO1
$ IPRMFL |, TG,R/W,R,IDSFOURYQUAD/QUADO2
$ IDATA \I*
IDS IPRINT |[FC/TF/,RNG/1,10/,PAGES
IDS IPRINT IFC/TG/,EMPTY

Example for temporary files:

1 8 16
|]
$ ISNUMB |
S IDENT |
S IPROGRAM IQUTU
$ [LIMITS 110,24K
$ IMASS IAl,X1R,11R
$ IMASs la2,x2R,22R
$ IpaTa 1.0
IDS |cCREATE IFC/Al/,BSSZ/480/,RNG/1,120/,LPP/63/
IDS |CREATE :FC/AZ/,BSSZ/480/,RNG/121,240/,LPP/32/
$ |DaTA JI*
IDS |[PRINT IFC/ALl/
IDS IPRINT IFC/A2/,RNG/121,150/,GRAPH
The print options and their resulting actions are as follows (each

option generates a different report code to prevent report "shuffling"
on SYSOUT; only one option is allowed per PRINT directive but a maximum
of 8 PRINT directives is allowed):

NULL Results in the same action as PAGES (see below).

EMPTY Prints nonempty pages and prints a line for each
empty page rather than indicating a succession of
empty pages only by a first-page entry and a
last-page entry. An inventory printout is
included.

219

Function 3:

220

GRAPH

GRAPH /N/

INV

PAGES

RECORD

TYPES/A,B,C,.../

1 8 16

Prints a graph showing, for
percent of space used and number

each page, the
of lines used in

the page.

Prints a graph showing, for each N pages and/or
pagettes, the average percent of space used and
average number of lines used per page. Note: Use

caution in interpreting averages that include two

different page sizes.

Prints inventory only.

Prints nonempty pages, indicates empty pages, and
prints inventory.

Prints a report of record types usage within each
of the specified ranges.

Because of the large buffer space required, a
record type usage report cannot be generated for
both the input and output file over the same
range. If two reports are requested, the second
request is ignored.

Prints only the record types specified by &A,B,C,
etc. (to a maximum of 8 types).

File Movement/Reformat

where FC/XX/
RNG/A,B/
RNG/C,D/

ONFC/YY/

PAGE/SZ,LPP/

t |
IDS |WRITE | FC/XX/,RNG/A,B/,RNG/C,D/,...,
| |

ONFC/YY/,PAGE/SZ ,LPP/

is the file to be read; and
are the ranges of that file.

is the file to be written. For temporary
random files, YY must be Al,A2, etc.

indicates the reformatting parameters
for a tape output file. (This field 1is
not used if the output file is random.

Page format on random output files 1is
defined by the file attributes.)

SZ is page size in words.
LPP is lines per page.

must
tape
the
the

If PAGE is present, both parameters
be present. If the output file 1is
and the PAGE field is not present,
output format will be the same as
input format.

Example for permanent files:

1 8 16
[} 1
$ IsNuMB |
S JIDENT |
S |USERID :IDSFOURYQUADSDBASE
S IPROGRAM QUTU
S ILIMITS :10,24K
$ |PRMFL \TF ,R/W,R, IDSFOURYQUAD/QUADO 1
2 :PRMFL TG,R/W,R,IDSFOURYQUAD/QUADO 2
TAPE DT,X1S
| 14
S :DATA II*
IDS WRITE IFC/TF/,ONFC/DT/
1DS IWRITE :FC/TG/,ONFC/DT/
|
| . .
: And the reloading of the files from
s | : the dump tape
|PROGRAM lQUTU
$ ILIMITS '10,24K
S IPRMFL |TF,R/W,R, IDSFOURYQUAD /QUADO1
S :PRMFL :TG,R/W,R,IDSFOURYQUAD/QUADO2
TAPE DT, X1D
g :DATA :1*'
IDS [WRITE |FC/DT/,ONFC/TF/
IDS IWRITE IFC/DT/,ONFC/TG/

221

Example of initialize, execute, dump,

and reload for temporary files:

1 8 16
! i
$ ISNUMB |
$ IIDENT !
$ IPROGRAM |QUTU
$ lLIMITS 110,24K
$ IMASS Ia1,x1s,11R
$ IMASS la2,x25,22R
$ IDATA Lo
1DS CREATE |FC/Al/,BSSZ/480/,RNG/1,120/,LPP/63/
1DS CREATE |FC/A2/,BSSZ/480/,RNG/121,240/,LPP/32/
$ |DATA |T*
IDS |INIT |[FC/Al/
IDS JINIT |[FC/A2/
-

User's Program to be executed with its required
control cards

- —————
|

$ IPROGRAM |QUTU
$ ILIMITS 10,24K
$ | TAPE DT, X6S
*k g IMASS Al,X2S,22R
$ |DATA .Q
** |IDS ICREATE |FC/Al/,BSSZ/480/,RNG/121,240/,LPP/32/
$ IDATA I*
#* ITps wRITE =FC/A1/,RNG/121,240/,ONFC/DT/

—

And the reloading of that file from the dump tape

W

$:PROGRAMlQUTU
$ JLIMITS :10,24K
*k IS |MASS Al,X2R,22R
$ |TAPE |DT, X6R
S |DATA e
** |IDS ICREATE |FC/Al/,BSSZ/480/,RNG/121,240/,LPP/32/
$ IDATA |I*
** |IDS IWRITE IFC/DT/,RNG/121,240/,0NFC/Al/
**NOTE: FC/Al/ is used to reference the file which in the first
activity was created and defined as FC/A2/.
Directive Restrictions
Besides the restrictions included in the discussions of the various
directives, the following apply:
1. A maximum of 8 INIT, 8 PRINT, and 8 WRITE directives will be

processed.

222

10.

A maximum of 8 RNG fields will be considered on any one
directive,

A maximum of 8 record types will be considered on any one PRINT
directive TYPES field.

When a range is defined on a directive, the input file must
contain that entire range with pages in sequence.

If no RNG field is present on a PRINT or WRITE directive, any
pages found on the input file that can be written to SYSOUT
(with PRINT) or the output file (with WRITE) will be handled.

Only SDL-1 (and later) dump format tapes will be read and
written,

24,000 words of core storage are necessary for program
execution.

Any output tape files must contain ranges which do not require
writing on one tape, then on another and then on the first
again. For example, the following is legal:

Ranges Tapes
1 - 100
1
200 - 1000
1001 - 1100
2
1700 - 1800

The following is illegal:

Ranges Tapes
1 - 100
1
200 - 1000
101 - 150 2

Since subroutine OPEN is used, all rules defined by OPEN for
overlapping ranges, etc., hold for this utility, if a random
file is involved.

Only SDL-2 (and later) sorted journal tapes may be processed.

Printer Format

The printer output formats for the PRINT options are described below and
illustrated in the "Sample Outputs" section. The circled numerals refer
to the corresponding callouts on the sample outputs (Figures 38-41).

223

PAGES option (see Figure 38):

OOCOO CEEG GO ©® OO

Notes:

224

(]
.

PAGE XXXXXX XXXXXX: page number in octal, then decimal.

xx LINES xx USED: total number of lines existing on this page,
number of these used; both in decimal.

SIZE, CHAR; USED xxxx, AVAIL xxxxXx: number of characters wused,
number still available; both in decimal. (Sum of these is size
in number of characters.)

BEGINNING LINE NUMBER xx: beginning line number of page.

CALC CHAIN NEXT xxxxxXxxxX: contents of the CALC chain NEXT
field (octal).

LN xx xx: line number in octal, then in decimal.
TP xxxx: data record type in decimal.
SZ xxxx: record size in characters (decimal).

W+xxx: number of words from beginning of the page.
Cxx : beginning character in the word W+xxx.

XXXXXXXXXX: octal control word, equivalent to @,@, and .
Contents of line defined in @,@,, and .

Octal data.

BCD data, equivalent to octal data on same printed line.

Same information as in @,@,,@ andfor next line.

If a page is empty, only the following appears:
PAGE xxXXXXX XXXxxXXx PAGE EMPTY

If two or more succeeding pages are empty, the following
appears after the line shown above:

THRU
PAGE XXXXXX XXXxxxX PAGE EMPTY

Selecting the PAGES option also causes an inventory for the
range (as shown for the INV option) to be printed by SYSOUT.

EMPTY option:

The output for this option is the same as for PAGES (including an
inventory), except that for each empty page - that is, succeeding pages
as well as single ones - the following appears:

PAGE XxXXXXXX XXXXXX PAGE EMPTY
TYPES option:

The output for this option is the same as for PAGES, except for the
following:

l. No inventory is included.
2. Only the selected record types are printed.

3. If a page contains records but none are of the requested types,
the following appears:

PAGE XXXXXX XXXXXX NO REQUESTED RECORD TYPES

INV option (see Figure 39):

©)

XXXXXX XXXXXX : Page number in octal, then decimal
© LINE
XX XX : Line number in octal, then decimal
(:) #AVAIL
XXX : Percent of space available, shown

in either of two ways:

a. When the space used in the page is less than the percentage
specified in the wuser's inventory update request, this
condition is indicated by a #AVAIL of xx (where xx is 100#
minus the inventory update request). Thus, this indication
shows only that the inventory update request percentage has
not been exceeded.

b. When the space used in the page is greater than the
percentage specified in the wuser's inventory update
request, this condition is indicated by a #AVAIL xx (where
xx 1s the actual percentage of total space that is still
available).

(:) THRU : Indicates that, for the pages from the
page and line preceding this word
through the page and line following,
the AVAIL is the same.

225

RECORD option (see Figure 40):

GRAPH and GRAPH/N/ options

226

®
®

®

RECORD TYPE

XXX : I-D-S record type.
SIZE
XXX : Record size in characters. (The size
is flagged by an asterisk if it is
inconsistent.)
NUMBER
XXXX : Number of occurrences of record

type within

<:> NUMBER DELETED

®

©

O,

OOOOOO

specified range.

Number of this record type logically

deleted within the specified range.

XXXX :
LOW PAGE
XXXX : Page number
record type
HIGH PAGE
XXXX : Page number
record type
RANGE

of first occurrence of
within the specified range.

of last occurrence of
within the specified range.

XXXX = XxXxx : Specified range for report.

Page numbers.

(see Figure 41):

Scale for percent of space used (0 - 100).

Scale for number of lines used (0 - 63).

character, showing percent of space used.

character, showing number

of lines used.

X character, used when # and # values coincide.

Notes:

l. For GRAPH/N/, the numbers of the pages at interval N appear in
the column at 1 . The symbols opposite these numbers represent
averages for the percent of space used and number of lines used
within the interval.

2. Multiple entries for the same page number can occur if GRAPH
(rather than GRAPH/N/) 1s specified when pagettes are included.

Tape Format

The data sent to the output tape file is written as variable length,
logical records using the GEFRC subroutine PUT. The file is in standard
system format with the exception of block size which is 1602 words. The
Page Image record format is:

Word Contents
0 Accounting Record Header. The number of data words in the

record is specified in bits 0-17. The record type, octal
000013, is contained in bits 18-35.

1 Checksum.

2 SNUMB in bits 0-29. Ignore character (octal 17) in bits 30-35,

3 Date as MMDDYY.

4 Start time in hours and thousandths of hours as HH.TTT.

5 Record type in bits 0-11 as 10. Bits 12-35 are presently unused
and are zero.

6 UTL in bits 0-17 to indicate utility tape rather than journal
tape. Bits 18-35 unused.

7 First six characters of user identification.

8 Second six characters of user identification.

9-n Active page image.

Execution Report

An execution report is produced as part of the user output. It includes
open and close reports for any random files used (see examples 1 and 2,
respectively, in Chapter 6, "I-D-S Execution Report") and a list of the
directives used in order of execution. (See Figure 42 in "Sample
Outputs" section for example of directive list.)

227

The report may also include any of the following error messages (all but
9 describe conditions causing a program abort):

no.

228

1.

10.

FILE CODE XX RANGE REQUESTED NOT IN FILE

A range has been defined by a directive for a random file (XX)
which is inconsistent with the range defined in the file
attributes.

FILE CODE XX CANNOT HANDLE REDUNDANT RANGE

Range had been defined by a directive for this file (XX) with
an intervening range requested by another file (see "Directive
Restrictions," no. 9).

CANNOT HANDLE MORE THAN 8 FILES

More than 8 directives of any one type (INIT, PRINT, WRITE)
have been input.

PREVIOUS CARD FATAL ERROR

The preceding card contains an error -- no file code, missing
comma, or missing slash.

PREVIOUS CARD TOO MANY RANGES
More than eight ranges are defined on the preceding directive.
PREVIOUS CARD TOO MANY RECORD TYPES

More than eight record types are defined on the preceding
directive.

FILE CODE XX INPUT IS NOT SEQUENTIAL

The file (XX) does not contain all of the pages defined by a
following range field.

FCXX ON FCXX PAGE TOO SMALL

In reformatting, the output page size is not large enough to
contain the lines to be written in the page.

FILE CODE XX CHECKSUM ERROR

A checksum error has been found on file XX. This is noted but
the program does not abort. (See also "Directive
Restrictions," no. 7.)

FILE CODE XX DATA READ NOT PAGE OR PAGETTE

The file XX does not contain page images. This is the result
of a bad tape or bad random file.

Operation

The following deck setup can be used to execute QUTU.

1 8 16
| |
S IIDENT I
S IUSERID |
S :PROGRAM IQUTU
S JLIMITS 110,24000
$ |JPRMFL
$ IDISC]
S IDRUM or IOptions
S IMASS :
S ITaAPE |Options
i
l .
I _
| . Directives
.
.
$ IENDJOB
***EOF I

Sample Outputs

Figures 38-42 on the following pages show the various sample outputs
mentioned in the "Printer Format" and "Execution Report" sections.

229

©

®

O

©

A

®

A

4 N N 7 N N Y
PAGE 000003 000003, 32 LINES 32 USED SIZE,CHAR) USED 1415,AVAIL 505 BEGINNING LINE NUMBER 1 CALC CHAIN NEXT 00000301
LN 01 01sTP 0001,5SZ 0203,We 3,C 4 0100010313 000003100000 000006061103 020031244325 511462202631 003800006693201DLERSS F1
— — 254324202020 202020202020 202020010745 031103060400 ELD L7N39364n
450100020302 030366000503 244500040105 004500014545 N1023233W0S3DNO415QNGLINN
@ @ 212145450005 n30000000000 060527536227 433121622120 AANNO530000065GRSGLIASA
202045010607 642020202045 200304076420 202020452045 N167y N 347y NN
204520204520 202020000001 254520202020 202020202020 N N 001EN
202020202020 202020202020 202020202020 204520202020 N
202020202020 202020204520 202020202020 202020202020 N
202100000302 A0032
LN 02 02.TP 0026,5Z 0014,%s 37,C 3 0200320046 000500050300 000303 050530033
“ J ~— J
—~—
Figure 38. Sample PAGES Option Output
PAGE LINE X%AVAly PAGE LINE X%AVAlL PAGE LINE %AVAIL
000001 000001 0% 01 0 000001 000001 41 33 >75 THRU 000003 000003 06 0Q >75
000003 000003 03 01 0 000003 000003 41 33 >73 000004 000004 04 04 0
000004 000004 41 33 >75 THRU 000007 000007 00 CO >75 000007 000007 04 0% 0
000010 000008 00 0O 0 000010 000008 01 01 >75 THRU 000045 000013 00 00 >75
000015 000013 0% 01 0 000015 000013 41 33 >75 THRY 000017 000015 00 00 75
000017 000015 01 01 0 000047 000018 41 33 7?5 000020 000016 04 01 0
000021 000047 4n 32 02 000021 000017 41 33 >75 THRU 000025 000021 00 00 75
—— —_— ———
Figure 39. Sample INV Option Output
USAGE RECORD TYPE _ _ SIZE NUMBER NUMBER DELETED LOW PAGE HIGH PAGE RANGE 1 - 50
0 1 50
f —— - g J

2 139 377
— —— —
© ® ©

Figure 40.

©

Sample RECORD Option Output

®

©

®

1€e

KEY: % OF SPACE USE

"
e

‘ D.
NG, OF LINES USED
__AN INTERSECTION OF x AND #

nou
(> 3

. — . SO, N . B

SCALE % =0

SCALE # =0
.+

+ O D
+ ONON

- + +

h)

o ©0im o wls win e
i
| I s .
i ! o . ‘.
: :) ‘ ;
' i
2

1
]
t
+
+
*
+
+
+
+
+

_SCALE # =0 _ 0 _. 0 0 0

9 S 0
1 2 3 4 5 6
BCALE X =0 . __ 0 0 0 .. 0 0

o~

100

o
o O

Figure 41. Sample GRAPH Option Output

41632 01 08-12-69 14,778

" TPRINT FC/T2/,RNG/1.50/
_PRINT _ FC/T2/,RNG/1,50/,GRAPH

FC/T2/,RNG/1,50/,RECORD

DIRECTIVE®
DIRECTIVE:
DIRECTIVE:

PRINT

Figure 42.

Sample QUTU Execution Report Directive List

QDIR

Directive Processor and Service Subroutine (.QDIR)

.QDIR is a collection of ten different subroutines designed to provide
common functions for I-D=-S wutility programs and subroutines. Each
different function is defined by its SYMDEF name:

232

.QDIRF

This symbol identifies word -4 of the file control block for the
data file. Bits 24-35 of this word contain the file code for the
data file. If the user wishes to use his own file code, +then he
must initialize these bits prior to any call to .QDIR or .QSFD. The
assumed directive file code is I*.

«QDIR

This subroutine opens the file for directives and reads the
directive into memory. Columns 8-13 are left justified and stored
in a cell pointed to by the user in the calling sequence. This
value is also returned to the user in the A-register.

As each directive is read from the data file, columns 1 through 84
(14 words) are moved to a working buffer. The 1literal words
DIRECTIVE: precede this buffer., After the move is completed, the
.QMEX subroutine is called to print the literal and the card image
on the execution report. A slew to the next line is given with each
line of printing.

In addition, a tally word is initialized to point to column 16 of
the directive for scanning the variable field through calls to the
.QSFD entry point.

ETC cards are also read by this subroutine.

The calling sequence is:

1 8 16
I |
ECALL 1.QDIR (ARG1)ALT1
|
where:
ARGl = The location for the contents of

columns 8-13 of the directive.

ALT1 The location for an end of file exit.

.QSFD

This entry point 1is called to scan the variable field of a
directive starting in column 16. Each call to this entry point will
scan a maximum of 12 characters, if a delimiter is not encountered.
The valid delimiters are comma, blank, and slash.

The n characters are returned left justified with trailing blanks
in the AQ-register as well as being returned to the three cells
pointed to by the user in the «calling sequence. The delimiter
character is not returned.

The third word pointed to by the calling sequence will contain
three values:

Bits 0-17: The number of characters in the subfield.
Bits 18-23: The delimiter character found.

Bits 24-35: The value required for a right shift of
the AQ-register in order to right Jjustify
the subfield.

It should be noted that if the value in 0-17 is =zero, then the
value in bits 24-35 will be 72.

If more than 12 characters are present in the subfield then only
the first 12 characters are returned to the user. The tally word
for the scan is advanced through the next delimiter. The character
count in bits 0-17 of the user's argument will contain the total
number of characters in the subfield.

The calling sequence is:
1 8 16

T

T

|
kALL rQSFD(ARGl)
|

where:

ARGl = The address of three consecutive
cells for return information. The
first two «cells will contain the
subfield, left justified, with
trailing blanks. The third word will
contain the three values described
above.

.QDIRC

This subroutine closes the directive file. If only one file code is
used with .QDIR, the user need not call this subroutine.

233

234

.OBCD

This subroutine converts a number from binary to BCD and replaces
leading zeros with blanks. The number to be converted may not be
larger than 999,999(10). If the binary number is zero, it will be
converted to five blanks and a zero.

The calling sequence is:

1 8 16
v |
|LDA 'BINARY
CALL |.QBCD

| 1
(value returned in the Q-register)

.QCLR

This subroutine clears n words to a preset value. The argument list
specifies the number of words to be cleared, the address of the
area to be cleared, and a pointer to the value to be stored in the
area.

The calling sequence is:

1 8 16
T 1

lcaLL |-QCLR (15, BUF , =6HBBLBLE)

[|

. QCSM

This subroutine calculates the checksum of a specified number of
words starting at a given location. If the starting location is
given as A, then the word at A+l will be skipped (not added into
the checksum) .

The calculated checksum is returned to the user in the A-register.

The calling sequence is:

1 8 1o
| T
|
IcALL 1. QCSM (ARGL , ARG2)
1 1
where:
ARGl = The number of words to be
checksummed.

ARG2 = Address of word 0 of data to be
checksummed.

Note: If the number of words to be checksummed is 0, 1, or 2, then

the first word of data 1is returned to the wuser as the
checksum.

Rev. August 1971

« QMCH

This subroutine moves n characters from address A, starting
character position Al, to address B, starting character position
Bl.

The calling sequence is:
1 8 16

1]

|

|ICALL E. QMCH (15 ,BUFA, 3,BFRB,0)
I

Starting character positions must be from 0 through 5.

. QMEX

This subroutine is called to write messages on the execution
report. Messages must be less than or equal to 22 words in length.
If a length of zero is given, a line of blanks will be written and
the specified slew code will be appended to the end of the line.
Messages greater than 22 words in length will be truncated to 22
words.

The calling sequence is:
1 8 16

1

i

icaLL 1 QMEX (ARG1,MSG , SLEW)
1

where:
ARGl = The number of words in the message

MSG = The address of the message

The number of 1lines to be slewed
after printing. (See the GEFRC
routines, IOEDIT and PRINT, for slew
code rules.)

SLEW

If a fourth argument is present (the value in the argument has no
bearing) in the call, then a 'Top of Page' will be issued prior to
printing the line requested by the caller. After the top of page is
issued, a heading line is printed with the SNUMB, activity number
and date followed by a double space. Then the caller's 1line is
printed. If the caller wants Jjust a top of page without any
information printed, he should write the call as:

1 8 16

v T

]]
:CALL ?QMEX(0,0,SLEW,O)

The zero word count in the above printed call will cause a line of
blanks to be printed with the slew code specified.

235

236

QMWD
This subroutine moves n words from address A to address B.
The calling sequence is:
1 8 16
1

|
|CALL iQMWD(lS,BUFl,BUFZ)
|

. QPBK

This subroutine is called to journalize a page. The page will be
sent to the user's journal file if it is present. If no user's file
is present, then the page will be journalized to the I-D-S system
journal.

The calling sequence is:

1 8 16
! |

learL ; QPBK (FCB, PTR)
|

where:
FCB = The LOCSYM of the file control block
for the journal file.

PTR = The address of a word which points to
the origin of the data to be
journalized. This origin 1is the
location of the accounting header
word which precedes the page.

The record size for journalization is
obtained from bits 0-17 of the
accounting header word.

It is the user's responsibility to checksum the record and store
the checksum in the record prior to calling .QPBK. The file control
block defined by the user for the journal file must specify only
one buffer.

QSTC

Trace and Print Record, Debug, and Utility Subroutine (.QSTC)

The .QSTC subroutine generates a trace entry for all calls to I-D-S
primary subroutines (except for .QOPEN and .QCLOSE). In addition, each
time a call is issued to one of the following primary subroutines, .QSTC
prints the current record:

.QSTOR .QCHN
.QGET .QHEAD
.QGETC .QMDFY
.QGETD . QMOVE
.QGETE .QDELETE

The trace data and the record to be printed are directed to P* unless
otherwise specified by the user. The user can direct this output to his
own file, if desired.

Trace data and print record entries are generated on P* or a users' file
for all I-D-S record types, for each I-D-S primary subroutine (those
listed above), and for the entire page range of the I-D-S file unless
otherwise specified by the user. The user has the option of selecting:

1. Which primary subroutine(s) should be traced.

2. Which record(s) should be printed.

3. Up to five different page ranges within the I-D-S file.

4, Which record types (up to a maximum of 50) should be traced or
printed.

The .QSTC subroutine is controlled through the following I-D-S
Directive.

1 8 16
| i

IDS :OPTION IDEBUG OPTIONS, FILE OPTION,
[ETC IDIRECTIVE/OPTION/,
[ETC IDIRECTIVE/OPTION/,

[ETC ..
I |

DEBUG OPTIONS

e PRTREC This Debug Option causes the contents of the current
record to be printed after the completion of an I-D-S
call. Sample output is shown in Figure 43.

® TRACE This Debug Option causes a trace data 1line to be
generated each time one of the previously listed I-D-S
primary subroutines is called. Sample output is shown
in Figure 43.

Note: Either PRTREC or TRACE or both PRTREC and TRACE must be
specified.

237

FILE

OPTI

2

Ol

<

e ONFC/xx/ The inclusion of ONFC/xx/ causes the trace data and/or
the output generated as a result of PRTREC to be
directed to the users' file with the file code xx. If
ONFC/xX/ is not included, the output is directed to
P*.

DIRECTIVES

e NULL Provides the full capabilities of the option
specified.

e ALL Provides the full capabilities of the option
specified.

e DO Only the specified options will be performed.

e DONTDO Processing of the specified options is inhibited.

OPTIONS

e TYPES/nnn,...,nnn/

Depending on the specified directive, this option allows or
inhibits the tracing and/or printing of specified record types.
A maximum of 50 different record types can be specified.
® VERBS/XXX,...,XXx/
Depending on the specified directive, this option allows or
inhibits the tracing and/or printing of the current record as a
result of a call to an I-D-S function. The allowable verbs are:
RETRIEVE
RETRIEVEEACH (or EACH)
RETRIEVENEXT (or NEXT)
RETRIEVECURRENT (or CURRENT)
RETRIEVEDIRECT (or DIRECT)
HEAD
STORE
MODIFY
MOVE
DELETE
e RNG/1B,lE,...,5B,5E/

238

Depending on the specified directive, this option allows or
inhibits the tracing and/or printing of current I-D-S records
that are within a specified page range. 1B...5B specify
beginning page numbers; 1lE...5E specify ending page numbers. A
maximum of five different page ranges may be specified.

RESTRICTIONS

e For the same option, specification of a DONTDO directive
overrides the specification of a DO directive.

e Both the DONTDO and the DO directives apply to both the TRACE
and PRTREC functions.

® Imbedded blanks cause the processing of an OPTION card to be

terminated.
EXAMPLES
1 8 16
i |
IDS lOPTION |TRACE
i i

This causes a trace data line to be generated on P* each time one
of the previously listed I-D-S primary subroutines is called.

1 8 16

i |
LDS IOPTION :PRTREC,ALL

1
This causes a print record entry on P* for all I-D-S record types
and for each I-D-S primary subroutine (those previously listed) for
the entire range of the I-D-S file.

1 8 16
:]
1DS |OPTION |TRACE,DO/TYPES/001,942/,

IETC IDONTDO/VERBS /MOVE ,STORE /
! !

This causes the tracing of only the record types 001 and 942 for
the entire range of the I-D-S file and inhibits +tracing of the
I-D-S verbs MOVE and STORE for those record types. The output is
directed to P*.

1 8 16
T T
| I

IDS IOPTION ITRACE, PRTREC,ONFC/AB/,
ETC |DO/RNG/001,005,009,010/,
ETC IALL/TYPES/,DO/VERBS/,
IETC IRETRIEVE ,MODIFY , DELETE /

This causes the tracing and printing of all record types referred
to by the verbs RETRIEVE, MODIFY, and DELETE that are within the
page ranges 001 to 005 and 009 to 010. The trace data and print
record are directed to the user's file with the code 2AB.

239

1 8 16
] 1
S IDATA o
DS IOPTION PRTREC,DO/TYPES/941/,
IETC {DO/VERBS /RETRIEVE/,

;ETC PO/RNG/016,900/
This example causes all record type 941 (name and address record)

to be printed each time a RETRIEVE verb accesses a record type 941
between pages 016 and 900. The output is directed to P*.

DECK SETUPS

The following deck setup may be used to execute on an I-D-S PRMFL.

1 8 16
|]

$ |IDENT lIIDSTST,PAT

$ |[USERID | IDSFOURYQUAD$DATABASE
|{OBJECT PROGRAM

S JUSE ;.QSTC

$ |EXECUTE

$ (PRMFL |Al,R/W,R,IDSFOURYQUAD/QUAD1

$ [DATA 1.Q

IDS |OPTION [PRTREC,TRACE,ALL

S |[END JOB |

***EQF | |

The following deck setup may be wused to execute a program using a
temporary I-D-S file. ‘

1 8 16
l)
S IIDENT !IDSTST,PAT
:OBJECT PROGRAM
5 |USE |-QSTC
S |JEXECUTE
S |IDISC la1,x1R,9R
$ ITAPE IB1,x2D
$ |DATA .o
1IDS |CREATE |FC/Al/,BSS2/100/,RNG/1,100/
IDS OPTION |TRACE,ONFC/B1/,DONTDO/RNG/1,50/
S [ENDJOB |
***EOF | |

Note: To provide the TRACE and PRTREC options the following LOADER
control card must be included in the job stack for the activity.

1 8 16
[}

|
$ IUSE }QSTC

240

USER ENTRY POINT

A users' entry point has been provided which enables the printing of the
current I-D-S record. This entry is available to the user regardless of
whether PRTREC or TRACE has been specified.

1 8 16
l 1]
|
|SYMREF |QSTA4
ICALL IQSTA4(ARG) ;
|

where ARG is a one word working storage location to be used as a
line count.

STANDARD ERROR OPTION

If TRACE is specified by the user and an I-D-S error occurs, an error
message is generated to the output file code specified by the wuser.
Refer to Figure 43 for example.

SUBROUTINE RESTRICTIONS

1. If the user entry point (QSTA4) is called, all output generated
is directed to P*.

2. 1If any field within an I-D-S record exceeds 84 characters, only
the first 84 will be printed by the PRTREC module. If a field
is modified, the PRTREC module shows the result of the entire
field.

3. If the modify verb is called to modify a record with more than
100 fields, modify flags appear on the first 100 fields
modified; all others are not flagged.

4. 1If this subroutine is used with a user program which has not
been compiled using the .QNAMS macro, the field and record name
areas of all output will contain unpredictable data. This
condition will also cause faulty printing in some cases.

To include this macro, the user must include the following code
within the Procedure Division ~after the first ENTER 1IDS.

statement.
14 22
| |
|ENTER |GMAP .
1. QNAMS |
IcoBOL .

:ENTER i

5. If ONFC/XX/ file option is used and the specified file 1is not
defined as having variable-length records or if file is not
assigned as a printed file, the results are unpredictable.

241

6. If ONFC/XX/ file option is used and the specified file is not
opened before the first I-D-S statement, all output is directed
to P*,

QUTPUT DESCRIPTION

Figure 43 shows typical TRACE and PRTREC output. A description of all
generated data fields follows:

Complete trace entry

®E

Complete PRTREC entry showing fields names and field content
TRACE heading

GMAP alter number within program where I-D-S call was issued
Current type of I-D-S operation

Current record type

Page and line number of current I-D-S record

PRTREC header shows type of I-D-S operation, record name, and
page and line number of current I-D-S record

Field-name of record
Field contents

Control field - this field shows field wusage, allowable
contents are:

OO GOEOGE

RDM - Randomize field key

STA - Sorted ascending field key

STD - Sorted descending field key

MAT - Match key or synonym field
(:) Data Type:

AN - Alphanumeric

A - Alpha

N - Numeric

SN - Signed Numeric

SFX - Single precision, fixed point
SFP Single precision, floating point
DFX - Double precision, fixed point
DFP - Double precision, floating point

Note: All field contents that are not BCD will be printed in
OCTAL.

I-D-S error entry with error code

®G

An (*) will 2opear by each field name which had its contents
changed by the user calling the I-D-S modify routine

242

€Eve

66536 05 09-29-69 21.173 <:>

dkdkk IDS~TRACE * ALTER NO.- 293
(:) DATREC

STOR DATDET 120/ 2 0992

Fkkkk IDS-TRACE * ALTER NO.- 293
DATREC

' STOR DATDET 120/ 3» 0992

Fkdkk [DS-TRACE * ALTER NO.- 263

XXXXX AN IDS ERROR HAS OCCURED, ERROR CODE

DATREC
STOR DATDET 120/ 3 0992
#kkdk IDS-TRACE * ALTER NO.- 282
DATREC
GET DATMAT 120/ 1 0992
BASE2
0001
Fkk%% IDS-TRACE * ALTER NO,- 303
DATREC
CHN DATDET 120/ 2 0992
“##kdk% IDS-TRACE * ALTER NO.- 319
DATREC
MDFY DATDET 120/ 2 0992

Figure 43.

®

CTYPE-STOR
MAT CALDAT
9998
CTYPE-STOR

O)

RTYPE- 993 PG/LN=
STA ACTDAT
999999

RTYPE- 993 PG/LN-
STA ACTDAT

MAT CALDAT.
9999 \@ 999999

CTYPE-STOR

- Dol } (:)

MAT CALDAT
9999
CTIYPE-GET
RDM X1
0000
YYYMON
0001
CTYPE-CHN
MAT CALDAT
9999
CTYPE-MDFY
MAT CALDAT
9998

Sample

RTYPE - 993 PG/LN-

ng(;;lDAT

999999
RTYPE- 992 PG/LN-
X3
00000006
PERMAX
07
RTYPE- 993 PG/LN-
STA ACTDAT
999999
RTYPE- 993 PG/LN-
STA ACTDAT
999999

.QSTC Output

O]

120/ 2} @

CODDAT
4
120/3
CODDAT
e
120/ 3
CODDAT
5
120/ 1
WKGWK YYY
00005 0068
FSTMON
SFX 0001
120/ 2
CODDAT
5
120/ 2 @
CODDAT *
4

QUTF

Verify and Print Utility Subroutine {(.QUTF)

QUTF verifies the integrity of a page and formats and prints I-D-S data
base information received from QUTU, QUTL or QUTD.

The calling sequences are:

1 8 16
1]
lcaLL LQUTFl(ARGl,ARGZ)
I]
This entry point must be called first to initialize .QUTF. ARGl is
the name of the file control block to which the dump output is
sent. Normally, this is the file control block for SYSOUT, P*.

ARG2 is the symbolic location of four words that are included in
the title line of the dump output. Normally, it is name and version
of QUTU, which produces the output from QUTD, QUTL, or QUTU.

1 8 16
] |

{CALL |- QVFY (ARG1,ARG2,ARG3) ARG4
| 1
This entry point is called for each page that is to be verified.

ARGl is the location of a word which contains the 24 bit page
reference code, right justified.

ARG2 is the address of the first word of the page to be verified.
ARG3 is the location of a word which specifies whether the page
will be dumped on the printer via SYSOUT. If the word is =zero, no
printing will be performed. If the word is nonzero, the page will
be printed. In addition, if this word is nonzero it must be
preceded by and followed by two words of zeroes.

ARG4 is the location of the user's alternate exit which 1is taken
whenever a page cannot be verified.

The following checks are performed to verify the integrity of a
page:

e The page number supplied by the caller (ARGl) equals the page
number in the input record.

e Every line present in the page has its line flag properly set.
® The sum of record sizes equals the active page size.

e Line flags are not set for lines that are not contained in the
page.

244

If any one of these tests fails, an appropriate error message is written
on the execution report followed by a snapshot of the page in error. The
registers shown in the panel portion of the snapshot dump display the
following information:

X0 The page number supplied by the caller in argument 1.

X1 The current word address within the page where processing was
being performed when the error occurred.

X2 The current character position in the word described by index
register 1.

X3 The usable page size expressed in characters.
X4 The available space expressed in characters.
X5 The active page size expressed in characters.

X6 The number of characters in the page which have already Dbeen
processed.

X7 The number of the current line being processed.

AR/

QR The current status of the available line flags, left justified.
These flags are taken from working storage and some bits may
not be present for those lines already processed.

As each page is verified, secondary entry points of .QUTF are called to
format and print the page, if required. These entry points are described
below:

1 8 16
1 i
lCALL 1. QUTF2 (ARG1,ARG2)
1

This entry point is called at the beginning of each page. It supplies
information to .QUTF concerning the page number and the active page
size.

ARGl is the location of the page number, in binary, right justified.

ARG2 is the 1location of the active page size, in binary, right
justified.

245

1 8 16

i
CALL ! .QUTF3(ARG1,ARG2,ARG3)
The third entry point is called to print each line. ARGl is the location
of the word number within the page for this line. The value 1is binary,
right justified.

ARG2 is the location of a tally word containing the address and starting
character position of the line.

ARG3 is the location of an indicator. If ARG3 is 0, the Page Header
(line 0) is sent for printing. If ARG3 is #0 and negative, a normal line
is sent for printing.

Printer Format

The format of pages selected for printer output is shown below:

PAGE: XXXXX XX ACTIVE PAGE SIZE: XXXX CH.

WD: LN: TYPE:

xxx xx xxxx |ocran| |ocran| [octan| focTan| [sep]

locraL| |ocran| |ocTan| |octan| |[Bcp

locTaL| [octan| focTan| [octaL| (ool

xxx xx xxxx |octaL| [octan| [|octaL] [ocran] [Bep]

Execution Report

The output produced by the .QUTF subroutine is written on the file
provided by the user in his call to .QUTFl. The report code 1is 25(10).
Output is produced by calling the PRINT and EPRINT subroutines of GEFRC.
The GEFRC subroutine IOEDIT 1is wused for page numbering and format
control.

Operation

QUTF is used by QUTD and QUTL to print data base pages in the desired
format. It is made available to the utility routines from the subroutine
library through the use of the SY!NREF feature of GMAP. QUTF is not
freestanding and cannot be called except through the user's own program.

Sample Output

An I-D-S Selective Tape Dump report wusing .QUTF is shown on the
following page.

246

Lv?

JUSEX 93 09-25-68
100
103
105
108
111
114
117
12y
122
125
128
131
134
137
139
142
145
148
151
154
156
i59
162
165
168
171
173
176
179
182

PAGEY 122« 1

wDi

LNt

VD NVt A GO

N e =
[ARN R

o
(G

ey
o

12,074
50
52
5%

1US SELECTIVE PAGR DiyMP KWEPQRT

4200620021
4335620602100
44

4500

460062
47006200
5000620021
510062002100
52

5300

540062
55006200
5600623021
570062802100
60

61900

620062
63006200
5400620021
650062002100
66

6700

700062
71000200
7200620021
730062802100
74

7500

760062
77000200

S]LES 617

000172775000
U100

520062
03006200
0400620021
050062802100
0o

07090

100062
11006200
1200820021
136062002100
14

15090

160062
17000200
2000620021

000000040203
005000060700
006290210000
6203021000990
0021000q0C0%
210000090102
000000090505
000004020500
006200210000
6200521000000
£021000g0003
210006000403
000000040210
000001060000
0062002100080
620021000008
002100000903
210000000206
00000007110t
0000020305609
006200210000
620021090000
002100000002
2106000000111
600000020207
000000040408
206200210000
6200210900080
002100090001
2100000001¢3

CHARACTERS

017200242777
620021000000
602100000001
210000000208
000000010003
600002091190
206200210000
620021000000
02100090001
210000000103
000000090401
000000010700
£06200210090
620021000000
002106000009
210000000495
405000030005

nNc0100017125
0100017296

nco103010001
010402000100
n40000010001
020001000172
n00100017215
0100017156

000207030001
030206000100
050500010001
n00001000172
0100100017155
n106017201

000307060001
040701000100
060100010001
n2o0ol000172
000100017170
0100017104

000301020001
030403000100
110700010001
100001000171
000100017165
0100017103

000204100001
020711000100
061100010001
n40001000171

777777777700
010603000100
100400010001
050001000171
000100017147
03100017203

000007000001
061211000200
£20000010001
010001000171
620100017173
0100017263

000003950001
ncn506000100
100700010001
070001000171
non160017124

080168 VERSION UF

00017177
017227
7145

25

00017175
017232
7162

31

00017221
g17222
7133

41

00017225%
017237
7106

30

00017113
017164
7132

27

900CQ000
017176
7242

72

0001712%
017140
7144

57

60017137
017112
7237

31

WWUTD,

PAGE 2

K0S0A00000301012€
L0SQAQ000670101¢6
M0S0A00013101012¢
NQS0A000442010106
00S0A00014001012ZN
POSQAQ001120101¢E
Q0S040000550104 ¢4
ROS0AQ00425010127
~050400027301012=
$05S040003260101¢8
«0S0A000355010128
y0S0A000430010%e1
j0S0A00042801012)
t0S0A0001600101e1
«0S0A0003760101%A
/0S0A0004710101¢8
S0S0A00036101012,
T0S0A0002620101 %)
U0S0A00029101012Y
VOS0AQ00236010124
WOSO0A00031R20101¢F
X0S0A0003430301«\
Y0S0A000297010126
Z0S0A00019801012ZH
*0S0A00022701012V
,050A000044010423
%0S0A00024801012#
50S0A00027901012V
"0S0A000169010124
10S0A000134010126G

01e1Qp01+0DGI1111100000
1050A00016301012"
20S0A0001840101¢K
30S0A00021501017«
40S0A00010501012P
5050A00020901013
60S0A00007001012F
7050400009901012¢
80S0A0001200104ZM
90S0A00015101012°
{080AD0004401012,
#0S0A0000170101 st
0080A00003501012\
1050A00005604012¢
»>05040000870101«7
7050400045701012!
050400030501012D

Appendix A.

Reserved Words

I-D-S RESERVED WORDS

I-D-S uses all the reserved words specified for COBOL. In addition, it
employs the reserved words listed below. The user must avoid using words
on both these lists for data-names.

ABORT
ALLOWED

ANY
AUTHORITY
AUTHORITY-KEY
BUFFER

CALC

CCBLOC
CCBLOXK
CHAIN
CHAIN-ORDER
CURRENT
DEBUG
DELETE
DIRECT

DIRECT-REFERENCE

DUPLICATES

EACH
ERROR-REFERENCE
FIELD
FIRST-REFERENCE
HEAD

IDS
IDS-SPECIAL-NAMES
INTERVAL
LAST-REFERENCE
LINKED

MASTER
MATCH-KEY

MD

MODIFY

NEAR

PAGE-RANGE
PRIOR

I-D-S GENERATED GMAP SYMBOLS

GMAP symbols defined in
reserved system symbols.

PROCESS
RANDOMIZE
REC-FILE
RECORD-TYPE
REPLACE
RETRIEVAL
RETRIEVE
SORTED
STORE

SYN
SYNONYM
TABLE
TRACE
UNIQUE
UPDATE
VIA
WITHIN
WORKING

location field must not conflict with

(See GE-600 Line Programming Reference llanual,

CPB-1004.) Symbols in the form LLNNNN, where L is any letter and N is a
number, must not be defined in the location field of GMAP statements.

249

Appendix B. 1-D-S Error Conditions

Two types of error conditions may occur during I-D-S program execution.

The code, I-D-S source, and description for error conditions of
types are shown in the following sections.

DATA-DEPENDENT ERROR CONDITIONS

Testing for data-dependent error conditions must be incorporated in
procedural logic of the user program. Codes for this type of error
stored in the communication cell ERROR-REFERENCE for reference by
user program. The various codes are listed in the following table.
each code is shown the I-D-S source of the error condition and
description as printed by the TRACE option of the USE statement.
description will be printed if the TRACE option is selected. (See
USE description in Chapter 3 for an example of TRACE output.)

The key to abbreviations in the descriptions is shown below:

RT - record type MT - master record type
REF - reference code DT - detail record type

both

the
are
the
With
its
This
the

XXXX - variable inserted by TRACE

Error Code Source Description from Trace

RO1 QASC No current record reference code
record type XXXX

RO2 QASC Record retrieved logically
deleted RTXXXX REFXXXXXXXX

RO3 QASC Request retrieval of record
RTXXXX got RTXXXX

RO4 QASC No record on chain MTXXXX-DTXXXX
or structure error for record
type XXXX

RO5 QGTC Retrieve current, current equals

zero rec-type XXXX

Rev. August

1971

251

ROG6 QGTD Retrieve direct and direct refer-
ence equals zero

RO7 QGTD Retrieve direct and record is
logically deleted

ROS QMRA Line number not on specified page
ref code XXXXXXXX
RO9 OBIC Page requested is not allocated
QSMT reference code XXXXXXXX
R10 QDLT Illegal delete request of RTXXXX
want RTXXXX
R11 QMDF Illegal modify request of RTXXXX
want RTXXXX
R12 QMNO Working storage for page range
QCAL zero record type XXXX
D01 QTLN Store of unallowed duplicate
record type XXXX
S01 QMNO No space available for record
type XXXX

ERROR CONDITIONS CAUSING ABORT

Improper use of I-D-S functions, invalid data file definition, and
unrecoverable hardware malfunctions cause an automatic trace and abort
of the user program. In addition, a memory dump occurs.

Whenever an I-D-S program aborts, the I-D-S data file is first CLOSED,
with the appropriate pages restored to the mass storage device,

1f the trace cannot acquire a link on mass storage for an overlay, the
following error comment may occur:

CANNOT TRACE ERROR, INADEQUATE SPACE

The various abort reason codes are listed in the following table. With
each code is shown the I-D-S source of the error condition and its trace
description.

Note that while they are included in this table, codes 65 through 88 are
not associated with an abort condition, but have been added solely to
permit the printing of an appropriate error message while TRACE-ing the
non-fatal errors discussed above. These codes may be encountered in a
memory dump, or among the inner workings of the I-D-S subroutines, but
will otherwise be invisible to the user.

Rev. August 1971

252

The key to abbreviations in the descriptions is shown below:

RT - record type MT - master record type
REF - reference code DT - detail record type
CC - communication XXXX - variable inserted
control by TRACE
Reason Code Source Description from Trace *
04 QAUT Authority key does not match
record type XXXX
05 QSMT No records returned from sort l
06 QRLN Read error - check error refer-

ence in CC block

07 QRLN Record retrieved logically
deleted RTXXXX REFXXXXXXXX

08 QRLN No position prior pointer chain
MTXXXX - DTXXXX

09 QRLN No detail definions for this
chain MTXXXX
10 QASC Retrieval via missing for record
type XXXX
11 QASC Detail in too many chains record
QDLT type XXXX or/master of too many |
QSTO chains record type XXXX
12 QASC No unique field for primary
record - record type XXXX
13 QGTD No record definition has been |
QRLN established
14 QHED Chain next equal zero chain - 1

MT XXXX-DTXXXX

Rev. August 1971

253

254

[
n

16

17

18

19

20

24

25

26

27

29

30

31

32

33

34

35

QDLT
QMDF
QSTO

QMDF
QMOV

QDLT

QFWD

QGDE

QGDE

QSTO

QSTOR

QTYP
QRLN

QDLT
QUDC
QRLN
QMRA
QSBF

QSMT

QBIC
QSMT

QIV3
QIV4
QFWD
QIOS

QSMT
QBIC

Field of modify/move not in
record type XXXX

No current record of program
on delete

Retrieve next in chain no
current exists MTXXXX-DTXXXX

Invalid control definition
record type XXXX

Control field error, equals
zero for record type XXXX

No unique field on store
for record type XXXX

No storage chain specified
for record type XXXX

Record retrieved not
specified for chain
MTXXXX~DTXXXX

Delete action list is
invalid

No position next pointer chain
MTXXXX-DTXXXX

Record size conflict for record
type XXXX

Attempt to write not update,
reference code XXXXXXXX

Invalid page size for reference
code XXXXXXXX

Page requested is not
allocated reference code
XXXXXXXX

Read/write error

No empty buffer for REND

Rev. August 1971

36

52

53

54

55

56

57

58

59

60

65
66
67
68
69
70
71
72
73

74

QRDN

OTLN

QTLN

QTLN

QTLN

QBIC

QDLN

QTLN

QIV3

QTLN

QRLN

QOPE

Attempted update while in READ
only mode

Record cannot be linked
chain MTXXXX-DTXXXX

Error trying to retrieve
prior chain MTXXXX-DTXXXX

Error trying to retrieve
next chain MTXXXX-DTXXXX

Error trying to retrieve new chain
MTXXXX-DTXXXX

Page read is not page requested,
reference code XXXXXXXX

Next of chain is equal to zero
chain MTXXXX-DTXXXX

Attempt to link, next equals
zero chain MTXXXX-DTXXXX

Inventory read not one
requested

Next in chain not retrievable
chain MTXXXX-DTXXXX

Error in file definition at
open time

(See Error Code "RO1")
(See Error Code "R02")
(See Error Code "RO3")
(See Error Code "R04")
(See Error Code "RO5")
(See Error Code "RO6")
(See Error Code "RO7")
(See Error Code "R0O8")
(See Error Code "RO9")

(See Error Code "R10")

Rev. August 1971

255

256

75
76
80
88

129

130

All others

QCHN
QDBG
QDLT
QGET
QGTC
QGTD
QGTE
QHED
QMDF
QMOV
QRLN
QSTO

QCHN
QDBG
QDLT
QGET
QGTC
QGTD
QGTE
QHED
QMDF
QMOV
QRLN
QSTO

(See Error Code
(See Error Code
(See Error Code

(See Error Code

llRll")
n Rlzll)
"Dol")

llsol")

File unopened but access requested

Primary subroutine entry during

error processing

Error code undef

ined

Rev. August 1971

Appendix C. GE-600 COBOL/I-D-S/FORTRAN
Communication and Overlaying

This appendix explains the procedures and techniques to follow when
overlaying a COBOL program, using the 1Integrated Data Store (I-D-S)
software and mixing FORTRAN programs with COBOL or the COBOL/I-D-S
software on a GE-600 system.

OVERLAYING A COBOL PROGRAM

Basis for Overlaying

Most programs should be segmented and overlayed when they become large.
The memory allocated to a program will vary among sites. That is, some
sites will have a billing formula to compute the cost of a computer run.
If a particular computer run requires, for example, more than 40k of
memory, the user's cost will have a very drastic increase after this
limit has been reached.

In a multiprogramming system, the more memory required for a particular
program decreases the effectiveness of the overall system. So, there is
a justification for increasing the charge for a program when a set
memory limit has been exceeded.

Many programs can be overlayed to reduce their memory requirements.
These programs may have sections that are utilized only once or just a
few times. These sections definitely do not have to reside in memory for
the entire duration of a computer run. Other sections which do not have
direct references to one another can be swapped in and out of memory,
also under user control.

Segmentation

To accomplish overlaying, the program must be divided into subroutines,
subprograms, or segments, whichever term you wish to choose. The term
subprogram is used in this appendix. This program, when divided, will
consist of numerous subprograms, each compiled separately or each
appearing to be an entity or program.

257

Thus, each subprogram will be a separate COBOL compilation, each with an
Identification Division, Environment Division, Data Division, and
Procedure Division. Each program will have a uniqueness to depict that
they are subprograms. These features, imbedded in the programs, are
various transfers, entry points, exits, and common data storage areas.

Communication Between Subprograms

Once a subprogram exists, the means of communicating with the other
subprograms (and also examining constant or variable data wused in
different subprograms) must be accomplished.

First, the method of passing constant or variable information between
the subprograms. In COBOL, use the labeled common area method. These
areas are defined in each subprogram that use any of the constant or
variable information. The following example will show how to set up the
labeled common areas so that the different subprograms can examine the
same data.

Subprogram MAIN

000010 IDENTIFICATION DIVISION.
000020 PROGRAM-ID. MAIN.

000140 ENVIRONMENT DIVISION.

000180 SPECIAL-NAMES.
000190 BLOCK 31 IS ENTRY-REC THRU LAST-REC.

000320 DATA DIVISION.
000330 FILE SECTION.

000500 WORKING-STORAGE SECTION.
000510 01 ENTRY-REC.

000520 02 OTHER-LEVELS SIZE IS 48 NUMERIC.
000530 01 LAST-REC.
000540 02 MORE-LEVELS SIZE IS 42 NUMERIC.

258

Subprogram NEXTPG

000010 IDENTIFICATION DIVISION.
000020 PROGRAM-ID. NEXTPG.

000120 ENVIRONMENT DIVISION.

.

000150 SPECIAL-NAMES.
000160 BLOCK 31 IS REC-ENTRY THRU REC-LAST.

000400 DATA DIVISION.
000410 FILE SECTION.

000550 WORKING-STORAGE SECTION.
000560 01 REC-ENTRY.

000570 02 DATA-HERE SIZE IS 48 NUMERIC.
000580 01 REC-LAST.
000590 02 MORE-DATA SIZE IS 42 NUMERIC.

The preceding example shows the entries necessary for communication in
the Environment Division and Data Division of two subprograms. The
labeled common area is the same in both since Block 31 was mentioned,
and the size of the 01 records is consistent.

At load time, one labeled common area called C31 (COBOL always prefixes
the integer with the Character C) will be generated. The total size will
be 90 characters, In subprogram MAIN, references to the common area
(C31) will be by the name OTHER-LEVELS and MORE-LEVELS; whereas in
subprogram NEXTPG, references to this same common area (C31l) will be by
the name DATA-HERE and MORE-DATA.

Since subprograms MAIN and NEXTPG are compiled separately, the names can
be the same or different. The important concepts to remember from this
example are that only one labeled common area (C3l) will be generated
when subprogram MAIN is loaded, and any subsequent subprogram referring
to the identical area (C31) will have its references adjusted to this
area.

When a COBOL program is divided into subprograms, transferring control
during execution from one subprogram to another is done by using the
CALL statement. If a return to the calling subprogram is desired, then
the EXIT statement is used.

The following example shows the basic method of using the CALL and EXIT
statements.

259

Subprogram SNOOPY

o
(e}
o
o
'_l
[Nl
o
o o
N

0 IDENTIFICATION DIVISION.
0 PROGRAM-ID. SNOOPY.

oo

00149 040010 PROCEDURE DIVISION.

00191 041080 ENTER LINKAGE MODE.
00193 041100 CALL CHKSEG

Transfer is to the PROGRAM-ID whose location is the first
executable statement in the PROCEDURE DIVISION of subprogram
CHKSEG.

Subprogram CHKSEG

00001 010010 IDENTIFICATION DIVISION.
00002 010020 PROGRAM-ID. CHKSEG.

.

00092 040010 PROCEDURE DIVISION.

00104 043120 200-CALL-CK-END.
00105 043150 EXIT.

When EXIT is reached, execution returns to the next statement
after CALL CHKSEG in subprogram SNOOPY.

NOTE: This example consists of excerpts taken from the program included
with this appendix.

Transferring control to entries other than the PROGRAM-ID 1is
accomplished by defining ENTRY POINTS in the program referred to. By
using the ENTRY POINT statement, a SYMDEF 1is generated making entry
possible at that particular point from any other subprogram.

260

When ENTRY POINT is written in a subprogram to return to the «calling
subprogram, the EXIT statement with the name of +this ENTRY POINT is
written.

The following illustrates the proper usage of the ENTRY POINT and EXIT.

$ FORTRAN
COMMON /C20/ITABLE (20)

CALL SNOOPY

CALL ENTABC

The CALLs above are from a FORTRAN
subprogram. They could have been from
a COBOL subprogram which had ENTER
LINKAGE MODE preceding each CALL.

$ COBOL
00001 010010 IDENTIFICATION DIVISION.
00002 010020 PROGRAM-ID. SNOOPY.

00150 040022 PROCEDURE DIVISION.

00240 044014 ENTER LINKAGE MODE.
00241 044015 ENTRY POINT ENTABC.
00242 044016 ENTER COBOL.

00349 045261 309-PROGRAM-EXIT.

00350 045262 EXIT ENTABC.
00351 045263 310-SNOOPY-EXIT.
00352 045280 EXIT PROGRAM.

NOTE: This example consists of excerpts taken from the program included
with this appendix.

261

Overlaying Procedure

The program is now chopped into many subprograms; each contains the
necessary statements to refer to other subprograms.

To overlay, a few more statements have to be inserted into the
subprograms. These statements are the CALL's to load specific
subprograms from the H* file. In an overlay job, the overlays are not
retained in memory but are stored on a peripheral to be loaded only when
requested by the user. (See GE-600 Line General Loader, CPB-1008 for a
complete explanation of the general overlaying method.)

There are two subroutines in the subroutine library (L*) to 1load the
overlays. They are LINK and LLINK. When overlaying a program, the CALL
LLINK loads the overlay and returns control to the statement following
the CALL. The CALL LINK loads the overlay and returns control to the
overlay. It is not possible to return to the statement following the
CALL LINK after executing the overlay. Use the CALL LLINK so that you
can retain control in a situation where a main subprogram will control
transfer to an overlay brought into memory.

The following example illustrates the procedure to follow when
overlaying a COBOL program. In the example, the subprogram SNOOPY
resides in memory the duration of the execution, and subprograms CHKSEG,
SAVSEG, and LOASEG are loaded into memory by the CALL LLINK statements
located in SNOOPY.

262

$ SNUMB
$ IDENT
$ COBOL
00001 010010
00002 010020

00033 020010

00052 020300
00054 020310
00055 020320
00056 020330

00149 040010

00191 041080
00192 041090
00193 041100

00199 041160
00200 041170
00201 041180

00207 042030
00208 042040
00209 042050

$ LINK
$ COBOL
00001 010010
00002 010020

00092 040010

00104 043120
00105 043150

12345
HA963

+ERICKSON

IDENTIFICATION DIVISION,
PROGRAM-ID. SNOOPY.

DATA D

IVISION.

WORKING-STORAGE SECTION.
77 SEG-1 PICTURE X(6) VALUE IS

77 SEG-2
77 SEG-3
PROCEDURE DIVISION.

ENTER LINKAGE MODE.
CALL LLINK USING

ENTER LINKAGE MODE.
CALL LLINK USING

ENTER LINKAGE MODE.
CALL LLINK USING

LINKAA

CALL CHKSEG

CALL LOASEG

CALL SAVSEG

PICTURE X(6) VALUE IS
PICTURE X(6) VALUE IS

SEG-1

SEG-3

SEG-2

IDENTIFICATION DIVISION.
PROGRAM-ID. CHKSEG.

PROCED

200-CA
EX

URE DIVISION.

LL-CK-END.
IT.

"LINKAA",
"LINKBB".
"LINKCC".

263

S LINK LINKBB,LINKAA

$ COBOL

00001 010010 IDENTIFICATION DIVISION.
00002 010020 PROGRAM-ID. SAVSEG.

00091 040010 PROCEDURE DIVISION.

00103 043200 200-CALL-SA-END.

00104 043230 EXIT.
$ LINK LINKCC,LINKBB
$ COBOL

00001 010010 IDENTIFICATION DIVISION.
00002 010020 PROGRAM-ID. LOASEG.

00091 040010 PROCEDURE DIVISION.

.

00103 043160 200-CALL-LO-END.
00104 043190 EXIT.

NOTE: This example consists of excerpts taken from the program included
with this appendix.

USING I-D-S WITH A COBOL OVERLAYED PROGRAM

Since the I-D-S statements are coded within the COBOL subprograms, there
are certain procedures that must be considered.

A Communications Control Block (CCBLOC) must be established in a labeled
common area. Normally, the CCBLOC is located in the COBOL program and
the remaining structure is located in a labeled common area (.IDS...).
When a program is divided into subprograms, each subprogram must be able
to examine the CCBLOC. If it is isolated in the first subprogram loaded,
then the remaining subprograms loaded will not be able to communicate
with the CCBLOC.

264

To establish the CCBLOC in a labeled common area, write the following
coding:

00014 010060 ENVIRONMENT DIVISION.

00018 010091 SPECIAL-NAME.
00023 010096 BLOCK nn is CCBLOXK.
(nn is a 1 or 2 digit integer).

This is essentially the most important feature to realize when
overlaying a COBOL/I-D-S program.

Another method to consider is placing the structure in a different
labeled common area other than the .IDS.. area. Since the program is
segmented, it is now possible to execute more than one I-D-S file. 1In
this situation the first file must be closed before the second can be
opened and executed. In other words, only one file can be in the open
mode. The reason for this is that the page buffers for a file must be
flushed before executing another file.

FORTRAN - INTERFACING WITH COBOL AND I-D-S

A FORTRAN program can easily communicate with the COBOL/I-D-S software.
The knowledge that a FORTRAN user needs of COBOL is minimal, and if a
FORTRAN user would like to utilize the I-D-S features, again the COBOL
coding required and understanding can be minimal.

How to Communicate Between Compilers
Reiterating what was mentioned regarding COBOL segmentation--
1. Labeled common areas generated by the COBOL compiler are a one

or two integer number always prefixed by the Letter C.

2. Entries into the Procedure Division can be made by referring to
the PROGRAM-ID or ENTRY POINT name.

3. Return to the calling program is via the terminal EXIT
statement of the EXIT name statement.

With these facts about the COBOL compiler, a FORTRAN user can create a
program using these two together.

265

The FORTRAN subprogram contains labeled common areas corresponding to
the COBOL areas. Variables and/or constants stored in these areas should
have the same classification. That is, if a variable has been defined as
floating point in one subprogram, it is defined as floating point in the
other. Illustration of the above statements is depicted in the following
examples with the addition of I-D-S.

S SNUMB 24788
$ IDENT HA96 3 ,ERICKSON
$ OPTION FORTRAN
S FORTRAN
SUBROUTINE GENO
COMMON /C35/IDATA,FLTNUM,IADD, —--—---
CALL MAINPG
CALL SECPRG
END
$ ENTRY GENO
S USE .QMAX/1/, .QAREA/2000/, .QMIN/1/
S IDS

000010 IDENTIFICATION DIVISION.
000020 PROGRAM-ID. MAINPG.

.

020010 ENVIRONMENT DIVISION.
020020 SPECIAL-NAMES.

020030 BLOCK 20 IS CCBLOXK.
020040 BLOCK 35 IS ENTRY-REC THRU LAST-REC.

030100 IDS SECTION
030101 MD IDS-PORTION PAGE CONTAINS 1920 CHARACTERS

030102 FILE CONTAINS 1000 PAGES.

030103 01 ENTRY-REC —===—==—w—--

030104 02 DATA-HERE SIZE IS 9(6) COMPUTATIONAL-3.
030105 02 MORE-DATA SIZE IS 9(8) COMPUTATIONAL-2.
030106 02 ADD-MORE-DATA SIZE IS 9(6) COMPUTATIONAL-3.

030115 01 INNER-RECORDS == -m—mmmmm

030130 01 LAST-REC -—===——=————n
02 THATS-ALL SIZE IS 9(7) COMPUTATIONAL-2.

266

040010 PROCEDURE DIVISION.

040200 GO TO MAIN-EXIT.

040201 ENTER LINKAGE MODE.

040202 ENTRY POINT SECPRG.

040203 ENTER IDS.

040204 RETRIEVE ENTRY-REC.

040205 BACK-TO-FORT.

040206 EXIT SECPRG.

040207 MAIN-EXIT.

040208 EXIT.

040209 END PROGRAM.

$ EXECUTE

$ DISC DF,X2R, 2R

$ DATA .Q

IDS CREATE FILECODE/DF/,BASESIZE/1000/,RANGE/1,1000/,
ETC PAGESIZE/320/

$ ENDJOB

The contents of the labeled common area, C35, actually contain the I-D-S
working storage area for all 02 levels beginning at record ENTRY-REC
through record LAST-REC. Thus the equivalent values in C35 are the
following:

FORTRAN COBOL TYPE

IDATA DATA-HERE Fixed Point Integer
FLTNUM MORE~-DATE Floating Point

IADD ADD-MORE~-DATE Fixed Point Integer

Consideration When Mixing Software

The 01 levels are always begun at an even memory location. Problems
could occur when trying to pass information between COBOL and FORTRAN in
the labeled common areas. To avoid this, check the labeled common size
generated from the COBOL compiler and adjust the FORTRAN subprogram so
that the correct data will be examined.

FORTRAN programs, at execution time, have file control blocks and
buffers generated by the loader in the unused portion of slave memory.
I-D-S checks word 37 (octal) of the slave prefix area to determine the
size of unused memory and establishes as many page buffers as possible
in this area. So now there is a major conflict of interest. Solution: At
load time, create a labeled common area for the page buffers and other
I-D-S control tables by inserting a $ USE control card. Now the FORTRAN
I/0 routines can use unused slave memory without conflict.

267

89¢

11]

0001
0002
0003
06004
0008
000¢
0007
0008
0009
0010
0012
0014
0015
0017
0018
6020
0021
0023
0024
0028
002¢
0027
0028
002y
0030

TOTAL CARD COUNT THI>

86226 ENTERED 519609 AT 80,024 FROM CD RDR

SNUMB
IDENT
PROGRAM
LIMITS
pIsC
DATA
DATA
OPTION
([
0BJECT
0BJECT
LINK
0BJECT
W INK
0BJECT
LINK
0BJVECT
EXECUTE
LIMITS
D1sC
DIsc
DATA
SYSouT
DATA
ENDUOB

VAR ANA N BN AN ARA ANV RAANAIINAN

86226
HA963,RUDILPH
QuUTyY

124K
A1,X1S,9R

,Q

]l

FORTRAN
JAMAX/1/, QAR

SDL=2+CHGOO
LINKAA
SPL=2-CHGOO
LINKBH, LINKAA
SDL-2-CHGOO
LINKCC, L INKBB
SDL~-2-CHGOO

125K
Me,x2s,8R
TF,X1S,9R
. Q

PR

CRr

® BEGIN ACTIV]TY =01- QuUTU 0

s NORMAL TERMINATION

STARTY 8.026
STOP 027

LAPSE 0,001

AT 0037
LINES
LIMIT 50
FC D TYPE
0 R MASS @

{e R MASS »
Al S MASS

LisT 20 LINES

o BEGIN ACTIVITY ~02- GELOAD 0

® NORMAL TERMINATION

START g¢,027
$TQP 0,033

LAPSE 0,006

AT 0467
LINES 5
LIMIT 50
FC D TYPE
T+ D MASS
+G R MASS «
CR R MASS #
R® R MASS #
He D MASS
L® R MASS

INITIALIZE TEMPORARY DATA BASE

CORE REQUIREMENTS OF QUTU

TEMPORARY MASS STORAGE FILE

TEMPORARY]+D+S DATA FILE FOR DIRECTIVES
DATA STORAGE FILE

EA/1877/,,QMIN/ Y/

F10;66102057000000000
140:598020570SNOOPY00
114:805020570CHKSEGOD
110:611020570SAVSEGOQ
140:619020570L0ASEGOD

INCREASE STORAGE SIZE

TEMPORARY MASS STORAGE FILE

TEMPORARY 1+D-S8 DATA FILE FOR DIRBCTIVES

ASSIGN PRINTER TO QUTPUT MEDIA CONVERSION
TEMPORARY FILE FOR CARD INPUT

JOB ¢ 000160

2/06/70 SWs030000000000

10 INDICATORS 5020

20 PROC D.Ogos 1/0 0loo00 IU 43 MEMORY
00 LIMIT 0,050 LIMIY Cu 13 MaT

BUSY [P/AT FP/RT 1S/8C F8/#E ADDRESS L#/T#

13 0 0 1 1 0-01-01 902
57 0 0 1 1 0-04~01 902
701 0 0 9 9R 0-01<0% 904
2/06/70 SW=000000000000
70 INDICATORS 1000
43 PROC 10,0019 140 0.003 IU §3 MEMORY
00 LIMIT 0,0500 LIMIT CU 13 MeT

BUSY 1P/AT FP/RT 1S/WC FS/#E ADDRESS L#/T#

119 0 0 9 IR 0-01~01 904
38 0 0 1 i 0-01-0¢ 903
40 0 0 b 1 0-01-01 903

380 0 0 12 12 0-01-0% 902

2694 0 0 8 8R 0-01-014 913
4731 0 0 25 25R 0-01-04 325

27K
761

69¢

85091 01 02-05-70 14,810

1 COMMON/C20/ 1 TABLE(24)/C21/1CK+ILO,ISA

2 'Y

3 CALL SnooPY

4]

5 CALL ENTABC 2
) -

7 IToT=ICK+1LO+1ISA 3
8 PRINT 11, 1CK 4
[11 FORMAT(42H NUMBER OF CHECKING ACCOUNT REFORDS READ =,16) 7
10 PRINT 12, 1L0 A 7
11 12 FORMAT (30N NUMBER OF LOAN RECORDS READ =.16) 10
12 PRINT 13, 1§A 10
13 13 FQRMAT(40H NUMBER OF SAVING ACCOUNT RECOWDS READ =,16) 13
14 PRINT 15, 70T 13
15 15 FORMAT(31H TOTAL NUMBER OF RECORDS READ s,16) 16
16 STOP 16
17 END 17

23260 WORDS OF MEMORY USED BY TH1S COMPILATION

NOTE: This is a FORTRAN program that was compiled illustrating just a
labeled common area (C20) and two CALL statements which reference
COBOL programs.

oLec

85091 01 02-05-7¢ 14,818

PREFACE
PROGRAM BREAK 132
COMMON LENGTH 0
v COUNT BITS 5

PRIMARY SYMDEF ENTRY
B 0

SECONDARY SYMDEF ENTRY

BLOCK LENGTH

cao0 30
cet 3

LS

SYMREF

3 ENTABC
4 LFCNV.
5 LFEXIT
6 L.FFIL.
7 .FPRN,

10 SNOOPY

END OF BINARY CARD 00000006
132 |S THE NEXT AVAILABLE LOCATION, GMAP AID 051169

THERE WERE NO WARNING FLAGS IN THE ABGVE ASSEMBLY

ee 18715 WORDS OF MEMORY WERE USED BY GMAP FOR THIS ASSEMaLY.

TLZ

86222

01 02-05-70 14,799 GE600 INTEGRATED STORE TRANSLATOR 1SDL~2 CHGOO

10S ALTER NOS.

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050

010010 [DENTIFICATION DIVISION,

010020 PROGRAM-ID. SNQOPY,

010030 AUTHOR, GEORGE A RUDOLPH,

010040 DATE-WRITTEN, MAY 1969,

010050 INSTALLATION. G E =~ PHOENIX,

010051 REMARKS, THIS PROGRAM LOADS DATA FROM THE CAoD READER

010052 ONTQ A TEMPQORARY DISC FILE :

010053 DEPENDING ON THE ACCOUNT TYPE ROUTINES ARE
010054 CALLED YO STORE THE DATA

010055 WHEN ALL OF THME RECORDS HAVE REEN
010056 STORED ON THE DATA BASE THWEY aRE
010057 RETRIEVED AND PRINTED ON A CONTROL
010058 REPORT.

010060 ENVIRONMENT DIVISION,

010070 CONFIGURATION SECTION,

010080 SOURCE-CQOMPUTER. GE-635,

010090 OBJECT-COMPUTER. GE=635.

010091 SPECIAL~NAMES.

010092 GETIME IS TODAYS-DATE,

010093+ DEFINES A LABLED COMMON AREA FOR THE [D§ nOMMUNICATION

010094+ CONTROL BLOCK AND RECORD DEFINATIONS FOR ®EGMENTATION
BLOCK 21 1S NUCK THRU NUSA.

010095 BLOCK 10 1S CCELOXK.

010096 BLOCK 20 1S ENTRY=REC THRU LOAN-REC.

010200 INPyUT-QUTPUT SECTION.

010210 FILE<~CONTROL.

010215 SELECT PRINT-UNIT ASSIGN TO PR FOR LISTINa.
010220 SELECT CARD-READER ASSIGN TO CR FOR CARDS.
010225« ASSIGN IDS FILE NAME AND DEVICE

010230 SELECT IDS YEST-FILE ASSIGN TO TF,

010240 [-0-CONTROL. .
010245 APPLY SYSTEM STANDARD FORMAT ON PRINT-UNI?,
010250 APPLY SYSTEM STANDARD FORMAT ON CARD-READBR,

020010 DATA DIVISION.
020020 FILE SECTION,
020021 FD PRINT=UNITY

020022 LABEL RECORDS ARE STANDARD

020023 DATA RECORD 1S PRINT-LINE.

020024 01 PRINT-LINE PICTURE X(132y.
020030 FD CARD-READER

020040 LABEL RECORDS ARE STANDARD

020050 DATA RECORD IS CARD=IN.

020060 01 CARD-IN.

020070 02 ACCT-TYPE PICTURE XX,
020080 88 LOAN-ACCT VALUE "LQ".

020090 88 SAVE-ACCT VALUE "SA",

020200 88 CHECK~ACCY VALUE nCgw,

020210 02 CUST-NO-IN PICTURE 9(6),
020220 02 ACCT=-NQ-IN PICTURE 9(6),
020230 02 CUST-NAME=~IN PICTURE X(26).

Lz

86222

01 02-05-70 14,7

1DS ALTER NOS.

00051
00052
00053
00054
00055
00056
00057
00058
00059
00060
00061
00062
00063
00064
00065
00066
00067
00068
00069
00070
00071
00072
00073
00074
00075
00076
00077
00078
00079
00080
00081
00082
00083
00084
00085
00086
00087
00088
00089
00090
00091
00092
00093
00094
00055
00096
0009/
00098
00099
00100

020240
020250

02 AMOU
02 FILL

99 GES0O INTEGRATED STORE TRANSLATOR

NT=IN
ER

020300 WORKING=STORAQE SECTION,

0203054
020310
020320
020330

020340
020350
020360
020370
020380
020390
020400
020410
020420
020430
020440
020450
020460
020479
020480
020490
020500
020519
020529
020539
020549
020559
020560
020570
020580
020590
020600
020610
020620
020639
020649
020659
020660
020679
020680
020690
020700
020710
020720
020730

77
77
77
77
77
77
01

01

01

CODING TO DEFINE YHE LINKAGE FOR

PICTURE
PICTURE

9¢10)u99.
X34y,

SEGMENTATION

SEG-1 PICTURE Xx(6) VALUE IS "LINKAA".
SEG-2 PICTYURE Xx(6) VALUE IS "“LINKBB".
SEG~3 PICTURE X(6) VALUE IS "LINKCE".
NUCK PICTURE 9(6) COMP-1.
NUL® PICTURE 9(6) COMP~-1.
NUSA PICTURE 9(6) COMP~1.
WORK=~LINE,
02 HEAD-ONE,
03 FILLER PICTURE X(44).
03 TITLE-1 PICTUYRE X(49).
03 FILLER PICTURE X(42).
02 HEAD-TWO REDEFINES HEAD-ONE.
03 FILLER PICTURE X(62).
03 MONTW-P PICTURE Z9.
03 DASH-1 PICTURE X.
03 DAy-p PICTYRE 29.
03 DASK-2 PICTURE X.
03 YEAR-P PICTYRE 99.
03 FILLER PICTURE X(62).
02 HEAD~THREE REDEFINES WMEAD~TWO.
03 FILLER PICTYRE X(24).
03 TITLE-10 PICTYRE X(19).
03 FILLER PICTYRE x«sg.
03 TITLE-20 PICTURE X(1%),
03 FILLER PICTURE X(8),
03 TITLE-30 PICTYRE X(10).
03 FILLER PICTYRE X(14).
03 TITLE-40 PICTURE X(6},
03 FILLER PICTYRE Xx(32).
02 DETAIL-LINE REDEFINES HEAD-THREE,
03 FILLER PICTURE X(28)
03 CUST-NO-P PICTYRE 9(61).
03 FILLER PICTURE X(16).
03 TYPE-P PICTYRE X(8y,
03 FILLER PICTURE X(14).
03 ACCT-NO-P PICTURE 96y,
03 FILLER PICTURE X(9)y.
03 AMQUNT=-P PICTURE Z+222.272+222.499-.
03 FILLER PICTURE X(28).
DATE~AND-TIME,
02 MONTH PICTYRE 99.
02 DAY PICTURE 99.
02 YEAR PICTURE 99,
02 TIME PICTURE 9(8)
USAGE IS COMPUTATIONAL-1.
DISPLAY-FIELD PICTURE 9(8).

1SDL=2 CHGOO

€Le

86222 01

1DS ALTER NOS.

02-05-70 14,799 GE600 INTEGRATED STORE TRANSLATOR 1SDL=-2 CHGOO

00101 030010 }DS SECTIQN.,

00102
00103
00104
00105
00106
00107
00108
00109
00110
00111
00112
00113
00114
00115
00116
00117
00118
00119
00120
00121
00122
00123
00124
00125
00126
00127
00128
00129
00130
00131
00132
00133
00134
00135
00136
60137

630020 MD
030030
030040
030050 01
030060
030070
030080
030090
030200
030210
030230
030240
030250 01
030260
030270
030290
030300
031010
031020
031030
031040
031050
031060
031070
031080
0310990
031200
031210 01
031220
031230
031250
0312690
031270
031280
0312990
032010 01

01 CCBLOXK ,
02 DIRECT-REFERENCE SIZE IS 8 USAGE IS QOMPUTATIONAL-L
SYNCHRONIZED RIGHT.)
02 FIRST-REFERENCE SIZE IS 8 USAGE IS COMPUTATIONAL-~1
SYNCHRONIZED RIGHT.
02 _AST-REFERENCE SIZE IS 8 USAGE IS COMPHTATIONAL-1
SYNCHRONIZED RIGHT, ;
02 RECORD-TYPE SIZE IS 4 USAGE IS COMPUTATIONAL=~1
SYNCHRON[ZED RIGHT.]
02 REC-FILE SIZE IS 6 CLASS I3 ALPHANUMERRIC
VALUE IS nQO00TF",
02 ERROR-REFERENCE SIZE IS 3 CLASS IS ALPNANUMERIC
SYNCHRONIZED RIGHTY,
TEST-FILE
PAGE CONTAINS 1920 CHARACTERS
FILE CONTAINS 100 PAGES,
ENTRY-REC
TYPE 1S 010
RETRIEVAL VIA CALC CHAIN
PAGE-RANGE 1S 1 70 1.
02 ENTRY-FIELD PICTYRE 9(6),
98 CALC CHAIN DETAIL
RANDOMIZE ON ENTRY=FIELD,
98 CUST-NO-CHN CHAIN MASTER
CHAIN=ORDER IS SORTED.,
CUST-NO~-REC
TYPE IS 020
RETRIEVAL VIA CUST-NO=CHN CHAIN.
02 (CuST-NO~DSU PICTURE 9(6).
02 CUST-NAME-DSU PICTURE Xx(28),
98 CuST-NQ-CHN CHAIN DETAIL
DUPLICATES NOT ALLOWED
ASCENDING KEY IS GUST-NO~DSU
SELECT CURRENT MASTER,
98 CHECK-CHN CHAIN MASTER
CHAIN~QRDER 1S FIRST.
98 SAVE-CHN CHAIN MASTER
CHAIN~QRDER IS FIRST.
98 LOAN-CHN CHAIN MASTER
CHAIN-QRDER 15 FIRST.

CHECK-REC

TYPE IS 021

RETRIEVAL VIA CHECK~CHN CHAIN,

02 CuST-Np-CK PICTURE 9(6).

02 ACCT-NQO-CK PICTYRE 96y,

02 AMOUNT-CK PICTURE S9(10:v99,

98 CHECK-CHN CHAIN DETAIL
SELECT CURRENT MASTER,
SAVE-REC

vLz

86222

01 02-05-70 14,799 GE600 INTEGRATED S'ORE TRANSLATOR

I1DS ALTER NOS,

00138
00139
00140
00141
0014¢
00143
00144
00145
0014¢
00147
00148
00149
0015¢
00151
00152
00153
00154
0015%
00156
00157
00158
00159
00160
00161
00162
00163
00164
00165
00166
00167
00168
0016y
00170
00171
00172
00173
00174
0017%»
00176
0017/
00178
00179
00180
00181
00182
00183
00184
00185
00186
00187

032020
032030
032050
032060
032079
032080
032210
032220
032230
032240
032260
032279
p3228¢
032290
032320
040010
040022
040023
0640024
040025
040030e
040040
040050
040055
040057s
040060
040070
040080
040081
040082
040083
040084
040090
040100
040110
040120
040130
04rli40
040150
040160
040170
040180
040190
040200
040210
640220
040230
040240
040250
641010

01

TYPE 1S 022

RETRIEVAL VIA SAVE-CH\ CHAIN,

02 CUST-NO-SA PICTURE 9(6y.

02 ACCT-NO-SA PICTURE 9(6),

02 AMOUNT-SA PICTURE S§9(104v99,

98 SAVE-CHN CHAIN DETAIL
SELECT CURRENT MASYER,

LOAN-REC

TYPE 1S 023

RETRIEVAL VIA LOAN-CHN CHAIN,

02 CUST-NO-LO PICTURE 96},

02 ACCT-NQ-LO PICTURE 9(6y.

02 AMOUNT-LO PICTURE S9(301v99.

98 LOAN-CKHnN CHAIN DETAIL
SELECY CURRENT MASTER,

PROCEDURE DIVISION,
010-START,

ACCEPT DATE~-AND~-TIME FROM TODAYS-DATE.
OPEN INPUT CARU-READER
QUTPUT PRINT-UNIT,
OPEN IDS DATA BASE
ENTER 1IDS,
OPEN,
MOVE 000001 TO ENTRY-FIELLD.
CREATE ENTRY RECQRD
ENTER 1DS.
STORE EMTRY-REC
IF ERRQ® G TO 100-RET-MST-ENTRY-ERR,

ENTER IDS.

DEBUG CURRENT EUFFER
~ECORD
ceBLoc.,

020-READ-CARDS,

READ CARD-RFADER AT END GO TO 310-SNOOPY-£XIT,
IF LOAN-ACCT OR SAVE-ACCT OR CHECK-aCCT
GO TC 030-FROCFSS~CARL.
DISPLAY "INVALID CaRD CODE".
DISPLAY CARD-INn.
GO 10 020-RFAD-CARDS.

030-PROCESS-CARD,

ENTER 1DS,
RETRIEVF ENTRY-REC RECORD
1F ERRQOR GO 70 100-RET-MST-ENTRY-ERR.

040-RET-CUST-RE®,

ENTER IDS.
RETRIEVF NEXT RECORD 0F CUST-NO-CHN CuWAIN
IF ERRQR GC 70O 110-RET-MST-ERR ELSE
IF ENTRY-REC RECORD GO TO 0c0-STOREeMaT-REC
ELSE MOVE.

IF CUST=NO-IN IS EQUAL TO CUST-.0-DSU

tSDL=-2

CHGGO

SLT

86222

I1DS ALTER NOS.

00188
00189
00190
00191
00192
00193
00194
00195
00196
00197
00198
00199
00200
00201
00202
00203
00204
00205
00206
00207
00208
00209
00210
00211
00212
00213
00214
00215
00216
00217
00218
00219
00220
00221
00222
00223
00224
00225
00226
00227
00228
00229
00230
00231
00232
00233
00234
00235
00236
00237

01 02-05-70 14,799 GE6ON INTEGRATED STORE TRANSLATOR

041020
041030

GO TO 050~STORE~-DETAIL.
GO TO 040~RET-CUST-REC.

041040 050-STORE-DETAIL,

041050
041060

041065«
041070e
041080
041090
041100
041110
041130

IF LOAN=ACCY GC TO 060-STORE-LOAN.
IF SAVE~ACCT GO TO 070~STORE-SAVE,
ADD 1 TO NUCK.
CALL CHECKING SEGMENT
CREATES AND STORES CHECK-REC RECORD
ENTER LINKAGE MODE.
CALL LLINK USING SEG-1
CALL CHKSEG
ENTER COBOL.
GO TO 020-~READ~CARDS.

041140 060-STORE=LOAN,

040045«
040050«
041160
041170
041180
041190
041210

ADD 1 TO NULO.
CALL LOAN SEGMENT
CREATES AND STORES LOAN-REC RECOQRD
ENTER LINKAGE MODE,
CALL LLINK ysING §gG-3
CALL LOASEG
ENTER COBOL.
GO TO 020-READ-CARDS,

042010 070-STORE~-SAVE,

042015+
042020«
042030
042040
042050
042060
042080

ADD 1 TO NySA.
CALL SAVING SEGMENT
CREATES AND STORES SAV-REC RECORD
ENTER LINKAGE MODE.
CALL LLINK USING SEG-2
CALL SAVSEG
ENTER COBOL.
GO TQ 020-READ=CARDS,

042090 08C-STQRE-MST-REC,

042091«
042100
042110
042120
042130
042140
042141
042142
042143
042143
042150
043010
043020
043030
043040
043050
043060
043070

CREATE AND STORE CUSTOMER NUMBER RECORD
MOVE CUST=NO-IN TO CUST-NO-DSU.
MOVE CUST=NAME<IN TO CUST=-NAME-DSU.
ENTER DS,
STORE CUST~NO-REC
IF ERRQR GO TO 150~STQRE~CUST~REC-ERR.

ENTER [DS.
DEBUG CURRENT BUFFER
RECORD
cCBLOC.

GO TO 050-STYORE-~DETAIL,

100~RET~MST«ENTRY-ERR.,

DISPLAY "RETRIEVE ERROR"™.
DISPLAY "FILE ENTRY RECORD".
GO TQ 300-wRAP=UP,

110~RET-MST-ERR,

DISPLAY "RETRIEVE ERROR".
DISPLAY "CUSTOMER RECORD",

1SDL=2 CHGOD

9LC

86222 01 02-05-70 14,799 GE6Q0O INTEGRATED STORE TRANSLATOR 1SDL-2 CHGOO
I1DS ALTER NOS.

00238 043080 GO To 040-RET-CUST-REC,
00239 043210 150~STQRE-CUST-REC=ERR.

00240 043220 DISPLAY "STORE ERROR",
00241 043230 DISBLAY "CUSTOMER RECORD".
00242 043240 GO TQO 020~READ-=CARDS.

00243 043241+

00244 043242+« THIS IS THE ENTRY PROINT RQUTINE THAT
00245 043243« 1S CALLED By THE FORTRAN PROGRAM
00246 043244

00247 044014 ENTER LINKARE MoDE,

00248 044015 ENTRY POINT ENTABC,

00245 044016 ENTER COBOL.

00250 044020 MOVE SPACES TQ WORK=LINE.

00251 044030 WRITE PRINT~LINE FROM WORK~-LINE

00252 044040 BEFORE ADVANCING YO ToP OF PAGE.

00253 044045« SET UP AND PRINT REPORT HEADINGS B

00254 044050 MOVE "CUSTOMER NUMBERS AND ACCOUNTS STOREN ON DATA FILE"
00255 044060 TO TITLE-L.

00256 044070 WRITE PRINT=-LINE FROM WORK-LINE BEFORE ADVANCING 2 LINES,
00257 044080 MOVE SPACES TO WORK<-LINE.

00258 044090 MOVE MONTH TO MONTH-P,

00259 044100 MOVE DAY YQ DAY-P,

00260 044110 MOVE YEAR TO YEAR-P,

00261 044130 MOVE "-" TO DASH-1, DASH-2.

00262 044140 WRJTE PRINT=LINE FROM WORK-LINE BEFORE ADVANCING 2 LINES,
00263 044150 MOVE SPACES TO WORK=LINE.

00264 044160 MOVE “CUSTQMER NUMBER"™ TO TIT_E-10.

00265 044170 MOVE “TYPE OF ACCOUNT"™ TO TITLE-20.

00266 044180 MOVE "ACCOUNT NO™ TO TITLE-30,

00267 044190 MOVE "AMQUNT"™ TO TITLE-40,

00268 044200 WRITE PRINT=L INE FROM WORK-LINE BEFORE ADVANCING 2 LINES,
00269 044210 MOVE SPACES TO WORK=LINE.

00270 044220 MOVE 000001 TO ENTRY-FIELD.

00271 044230 ENTER DS,

00272 044240 RETRIEVF ENTRY-REC RECORD

00273 044250 IF ERROR GO TO 209~RET-ENY=-ERR.

00274 044260 201~GEY-CUST~CHN,

00275 044279 WRITE PRINT-LINE FROM WORK-LINE BEFORE ADVANCING 1 LINES,

00276 044275« RETRJEVE AND PRINT CUSTOMER NUMBER RECORD®
00277 044280 ENTER IDS,

00278 044290 RETRIEVE NEXT RECORD OF CUST~NO-CHN CwWAIN
00279 044300 IF ERROR B0 70 210~RET-CUST-ERR ELSE
00280 044310 iIF ENTRY-REC RECORD GQ TO 206-CREAT«ERROR
00281 044320 ELSE MOVE,

00282 044330 MOVE CUST-NO-DSU TO CUST-NO-P,

00283 044340 203-GET-CHECK-REC,

00284 044345« RETRIEVE AND PRINT DETAIL RECORDS OF CHECw=CHN CHAIN
00285 044350 ENTER DS,

00286 044360 RETRIEVE NEXT RECORD OF CWECK=CHN CHATN

00287 044370 IF ERRQR GO0 TO 214~RET-CK-ERR ELSE

LLZ

86222 01 02-05-70 14,799 GESQ0 INTEGRATED STORE TRANSLATOR 1SDL=2 CHGOO
IDS ALTER NOS.

00288 044380 IF CUST-NO-REC RECORD GO Y0 204-GET-SaVE-REC

00289 044390 ELSE MOVE.

00290 044400 MOVE "CHECKING" TO TYPE-P.

00291 044410 MOVE ACCT~NO-CK TO ACCT=ND-P,

00292 044420 MOVE AMOUNT-CK YO AMOUNT-R.

00293 044430 WRITE PRINT=-LINE FROM WORK-LINE BEFORE ADvANCING 1 LINES,
00294 044440 MOVE SPACES 70 WORK=LINE.

00295 044450 GO TO 203-GET~CHECK=RECY

00296 044460 204-GET-SAYE-REC, R
00297 0444650 RETRIEVE AND PRINY DETAIL RECORDS OF SAVE«CHN CHAIN
00298 044470 ENTER [DS.

00299 044480 RETRIEVE NEXT RECQRD OF SAVE~-CHN CHAlw

00300 044490 IF ERRQR G0 TO 212~RET-5A~ERR ELSE

00301 044500 IF CUST=NO~REC RECORD GO YO 205~GE&T«LAAN-REC

00302 044510 ELSE MOVE,

00303 044520 MOVE "SAVINGS " TO TYPE-P,

00304 044530 MOVE ACCT-NO-SA TO ACCY-NO-P.

00305 044540 MOVE AMOUNT~SA TO AMOUNT-R.

00306 044550 WRITE PRINT-LINE FROM WORK~LINE BEFQRE ADVANCING i LINES,
00307 044560 MOVE SPACES TO WORK~LINE.

00308 044570 GO TQ 204«~GET-SAVE-REC.

00309 044580 205~GET~-LQAN-REC,
00310 044585+« RETRIEVE AND PRINT DETAIL RECORDS OF LOAN=CWN CHAIN
00311 044590 ENTER 1DS.

00312 044600 RETRIEVE NEXT RECORD OF LOAN=CHN CHAlN
00313 044610 IF ERRQR GO TO 213~RET-LO~ERR ELSE |
00314 044620 1f CUST-NO=REC REGORD GO T0 201-GET«CiIST-CHN
00315 044630 ELSE MQVE.

00316 044640 MOVE "LOAN " TO TYPE~P.

00317 044660 MOVE ACCT~NO-LO TO ACCT-NO-P.

00318 044670 MOVE AMOUNT-LQO TO AMOUNT-R,

00319 044680 WRITE PRINT=LINE FROM WORK-LINE BEFORE ADVANCING 1 LINES,
00320 044690 MOVE SPACES TO WORK=LINE.

00321 044700 GO TO 205~-GET-LOAN-REC,

00322 044710 206-CREAT-ERROR,

00323 044720 WRITE PRINT~LINE FROM WORK-LINE BEFORE
00324 044730 ADVANCING T0 TOP OF PAGE,

00325 044820 ENTER IDS.

00326 044830 DEBUG CURRENT BUFFER

00327 044840 RECORD

00328 044850 CCBLOC

00329 044855 TRACE CUST~NO=-CHN CHAIN.

00330 044870 GO TO 300-WRAP=UP,

00331 044920 209-RET-ENT=ERR,

00332 044930 DISPLAY "RETRIEVE ERROR".

00333 044940 DISPLAY "FILE ENTRY RECORD".

00334 044950 GO TO 300-WRAP=UP.,

00335 044960 210~RET=CUST-ERR,

00336 044970 DISPLAY "RETRIEVE ERRORw,

00337 044980 DISRLAY "CUSTOMER RECORD",

8LC

86222

61 02-05-70 14,799 GESOO INTEGRATED STORE TRANSLATOR 1SDL=2 CKGOO

1DS ALTER NOS.

00338
00339
00340
00341
00342
00343
00344
00345
00346
00347
00348
00349
00350
00351
00352
00353
00354
00355
00356
00357
00358
00359

044990 GO TO 201=GET-CUST-CHN,
045100 211-RET-CK-ERR,

045110 DISPLAY "RETRIEVE ERROR".
045120 DISPLAY "CHECK RECORD",
045130 GO TO 203=GEY<=CHECK~RECY
045140 212-RET-SA-ERR,

045150 DISPLAY "RETRIEVE ERROR".
045160 DISPLAY "SAVING RECORD",
045170 eg TQ 204=GET-SAVE-REC,
045180 213+RET-LO-ERR,

045190 DISPLAY "RETRIEVE ERRQR»,
045200 DISPLAY "LOAN RECORD",
045210 GO TO 205-GET~LOAN~REC,
045220 300-NRAR-UP.

045240 CLOSE CARD-READER, PRINT-UNIT,
045245 CLOSE IDS DATA BASE
045250 ENTER 1DS,

045260 CLOSE.

045261 309-PROGRAMEX]T,

045262 EXIT ENTABGC,

045270 310-SNCOPY-EXIT.

045280 EXIT PROGRAM,

1DS=STRUCTURE SECTION,
ENTER GMAP ,
PMC oN
BLOCK +I1D8,,
RD0O641 ,QRD 023,000033,0,0,0,000000.

ETC RDO641,RD0645,RE0643,0000,RD627X,
ETC 000000,000000,LOAN=REC

RD0645 ,qDD 023,1040,0,1+1, A
ETC 1,RD0&41,RD0641,RD4609,RD4609,RA0645,
ETC 06029,0000,0000,
ETC LOAN=CHN

RD0643 ,QFD 0,0,000011,0006,FC4610,RD0644,
ETC RDGS43,RD4640,
ETC ACCT=NO~LO

RD0644 ,afD 3,0,000017,0012,FC6209,RD0G42,
ETC RDO644,RDE209,
ETC AMOUNT=L0

RPO642 ,BFD 0,0,000005,0006,FC1153,RD0641,
ETC RD0642,RD1153,
ETC CUST=NO-LO

RD6273 ,QRD 022,000033,0,0,0,000000,
ETC RD6273,RD6277,R06275,0000,RD166M,
ETC 000000,000000,SAVE-REC

rRD6277 ,@DD 022,10,0,0,1,1,
ETC 1,RD6273,RD4273,RD5889,RD5889,RN6277,
ETC 0029,0000,0000.
ETC SAVE=CHN

RP6275 ,QFD 0,0,000011,0006,FC7745,RD6276,

6LC

86226

01 02-

05-70 14,794 GE600 INTEGRATED STORE TRANSLATOR 1SDL=2

1DS ALTER NOS.

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039

010010
010020
010030
010040
010050
010051
010052
010053
010060
010970
010080
010090
010091
010092
010095
010096
010200
010210
010220
010230
010240
010250
020010
020020
020030
020040
020050
020060
020070
020080
820090
020200
020210
020229
020230
020249
020250
020300
030010

JDENTIFICATION DIVISION,
PROGRAM-1D. CHKSEG,
AUTHOR, GEORGE A RUDOLPH.
DATE~WRITTEN, MAY 1969.
INSTALLATION, G~E = PHOENIXY
REMARKS, THIS 1S THE CHECKING SEGMENT WHICH Iw CALLED BY
THE MAIN PROGRAM SNOOPY TO CREATE AND STORE
CHECK-REC RECORDS,
ENVIRONMENT DIVISION,
CONFIGURATION SECTION.,
SOURCE-COMPUTER. GE~635,
0BJECT-COMPUTER. GE=-635,
SPEC]AL-NAMES,
GETIME IS TODAYS-DATE,
BLOCK 10 1S CCBLOXK,
8LOCK 20 IS ENTRY=REC THRU LOAN-REC.
INPUT-QUTPUT SECTION.
FILE~CONTROL .
SELECT CARD-READER ASSIGN 70 CR FOR CARDS.
SELECT 1DS TEST-FILE ASSIGN TO TF,
1=0~CONTROL ,
APPLY SYSTEM STANDARD FORMAT ON CARD-READER,
DATA DIVISION.
FILE SECTION,
FD CARD<-READER
LABEL RECORDS ARE STANDARD
DATA RECORD {S CARD=IN,
01 CARD-IN,

02 ACCT-TYPE PICTURE XX,
88 | OAN-ACCT VALUE "L0".
88 SAVE-ACCT VALUE "SA".
88 (CNECK-ACCT VALUE "CKv»,
g2 CUST-Np-IN PICTURE 9¢6).,
02 ACCY-NQ-IN PICTURE 9¢6).,
02 CUST-NAME=IN PICTURE X(28).
02 AMOUNY-IN PICTURE 9¢(10)v99.
02 FILLER PICTYRE X(34).

WORK]NG=STORAGE SECTION,

1DS SECTION,
01 CCBLOXK .
02 DIRECT~REFERENCE SIZE IS 8 USAGE 1S COMPUTATIONAL-Y
SYNCHRONIZED RIGHT, 3
02 FIRST-REFERENCE SIZE 1S 8 USAGE IS COMAUTATIONAL-1
SYNCHRONIZED RIGHT.
02 LAST-REFERENCE SI1ZE 1S 8 USAGE IS COMPNTATIONAL-1
SYNCHRONIZED RIGHT. 3
02 RECORD~TYPE SIZE 18 4 USAGE IS COMPUTAYIONAL=-1
SYNCHRONIZED RIGHT. .
02 REC-FILE SIZE IS 6 CLASS IS ALPHANUMERIC
VALUE IS "0000TF",

CHGOO

08¢

86226 01

I1DS ALTER NOS,

00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
00057
00058
00059
00060
00061
00062
00063

- 00064

00065
00066
00067
00068
00069
00070
00071
00072
00073
00074
00075
00076
00077
00078
00079
00080
00081
00082
00083
00084
00085
00086
00087

030020
030030
030040
030050
030060
030070
030080
030090
030200
030210
030230
030240
030250
030260
030270
030290
030300
031010
031020
031030
031040
031050
031060
031070
031080
031090
031200
031210
031220
031230
031250
031269
031270
031280
031290
032010
032020
032030
032050
032060
032070
032080
032210
032220
032230
032240
032260
032279

MD

01

01

01

01

01

02-05-70 14,791 GES00 INTEGRATED STORE

TRANSLATOR 1SDL-2 CHGOO

02 ERROR-REFERENCE SIZE IS 3 CLASS IS ALPWANUMERIC

SYNCHRONI2ED RIGHT,

TEST-FILE

PAGE CONTAINS 1920 CHARACTERS

FILE CONTAINS 100 PAGES,

ENTRY-REC

TYPE IS 030

RETRIEVAL VYIA CALC CHAIN

PAGE~RANGE 1§ 1 70 &,

02 ENTRY~FIELD PICTYRE

98 CALC CHAIN DETAIL
RANDOM]ZE ON ENTRY=FIELD,

98 GCUST-NO=CHN CHAIN MASTER
CHAIN=QRDER IS SORTED.

CUST-NOwREC

TYPE 1S 020

RETRIEVAL VIA CUST-NO=CHN CHAIN.

02 CuST-NO-DSU PICTURE

02 CUST-NAME~DSU PICTYRE

9$8 (CyST-NQO=~CHN CHAIN DETAIL
DUPLICATES NOT ALLOWED
ASCENDING KEY 1S CUST-NO-DSU
SELECT CURRENT MASTER,

98 CHECK~CHN CHAIN MASTER
CHAIN-QDRDER IS FIRSTY.

98 SAVE-CHN CHAIN MASTER
CHAIN-QRDER [S FIRST.

98 LOAN-CMN CHAIN MASTER
CHAIN-QRDER IS FIRST.

CHECK-REC

TYPE 1S 021

RETRIEVAL VIA CHECK=CMN CHAIN,

02 CUST-NO-CK PICTURE

02 ACCT-NO-CK PICTYRE

02 AMOUNT-CK PICTURE

98 CHECK=CHN CHAIN DETAIL
SELECT CURRENT MASTER,

SAVE~-REC

TYPE 1S 022

RETRIEVAL VIA SAVE-CHN CHAIN,

02 CyST-NQ-S4A PICTURE

02 ACCT-NO-SA PICTURE

02 AMOUNT=SA PICTURE

98 SAVE-CHN CHAIN DETAIL
SELECT CURRENT MASTER.

LOAN-REC

TYPE IS 023

RETRIEVAL VIA LOAN~CHN CHAIN.

02 CUST-NO-LO PJCTURE

02 ACCY=NO-LO PICTURE

96y,

9¢6y,
X(260),

916y,
96y,
S9(101V99,

96y,
9(6y.
SP(101ve9,

9¢6y,
9¢6y,

18¢

86224

01 02

-05-790

1DS ALTER NOS.

00088
00089
00090
00091
00092
00093
00094
00095
00096
00097
00098
00099
00100
00101
00102
00103
00104

032280
032290
032320
040010
042000
042020
042030
042040
042050
042060
042070
042080
043170
043180
043190
043200
043230

14.836

02 AMOUNT

9

8 LOAN-C
SELECT

GE600 INTEGRATED STORE TRANSLATOR

-L0 PICTURE S9(¢10iv99,
HN CHAIN DEYTAIL
CURRENT MASTER,

PROCEDURE DIVISION,

100-5

AVE=PARA,

MOVE CUST=NO-IN TO CUST-NO-SA,
MOVE ACCT=NO=-IN TO ACCT-NO-SA,
MOVE AMOUNT=IN YO AMOUNT=SA.

E

NTGR 1DS.
STORE
IF ERR

SAVE=REC RECORD
OR GO TO 140-STORE-SA-ERR.

GO TO 200=CALL<~SA=END,
140~STORE~SA=ERR,

DISRLAY "STORE ERROR",

DISPLAY "SAVE RECORDS",
200-~CALL~SA=END,

Exlt

1DS=STRUO

TURE SECT]ON,

ENTER GMAP

RD0641

RDO645

RD0D643

RDO644

RD0642

RD6273

RRD6277

RD6275

RD6276

PMC
gLoCK
+QRD
ETC
ETC
+abD
ETC
ETC
ETC
1QFD
ETC
ETC
.‘rn
ETC
ETC
+QFD
ETC
ETC
1QRD
ETC
ETC
QDD
ETC

ETC

ON

UL

023,000033,0,0,0,000000,
RDO644,RD0O645,RD0643,0000,RD6273,
000000,000000,LOAN-REC
023,10,0,0,1,1,
4,RD0641,RD0O641,RD4609,RD4609,RN0645,
0029,0000,0000,

LOANSCHN
0,0+000014,0006,FC4610,RD0644,
RD0643,RD4640,

ACCY=NO~LD
3,0,000017,0012,FC6209,RD0642,
RDO644,RD6209,

AMOUNT=LO
0,0,000005,0006,FC1153,RD0641,
RD0642,RD1133,

CUST=NO=-LO
022,000033,0,0,0,000000,
RD6273,RD6277,RD6275.0000,RD146%,
000000,000000,SAVE=REC
022010:0:0!101' -
4,RD6273,RD8273,RD5889,RD5889,RN6277,
0029,0000,0000,

SAVE=CHN
0,0,000011,0006,FC7745,RD6276,
RD6275,RD7745,

ACCTeNO=SA
3,0,000017,0012,FC3437,RD6274,
RD6276,RD3137¢

AMOQUNT=SA

18DL~2

CHGOO

Z8¢

86224

01 02-

05-70 14,836 GE60D INTEGRATED STORE TRANSLATOR ISDL~=2 CHGOO

IDS ALTER NOS,

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039

010010
010020
010030
010040
010050
010051
010052
010053
010060
010070
010080
010090
010091
010092
010095
010096
010200
010210
010220
010230
010240
010250
020010
020020
020030
020040
020050
020060
020070
020080
020090
020200
020210
020220
020230
020240
020250
020300
030010

IDENTIFICATION DIVISION,

PROGRAM=1D, SAYSEG,

AUTHOR, GEORGE A RUDOQLPM,

DATE=WRITTEN, MAY 1969.

INSTALLATION, G E = PHOENIX,

REMARKS. THIS IS THE SAVING SEGMENT WHICH 1S CALLED BY
THE MAIN PROGRAM SNOQPY TQ CREATE AND STORE
SAVE-REC RECORDS,

ENVIRONMENT DIVISION,

CONFIGURATION SECTION,

SOURCE~COMPUTER, GE=635,

DBJECT=COMPUTER, GE<635,

SPEC]AL-NAMES.

GETIME IS TODAYS-DAYE,
BLOCK 10 1S CCBLOXK,
BLOCK 20 1S ENTRY=REC THWRU LOAN-REC.

INPUT-QUTPUT SECTION,

FILE=CONTROL,

SELECT CARD-READER ASS$IGN TO CR FOR CARDS.
SELECT IDS TESTFILE ASSIGN TO TF,

J=0-CONTROL,

APPLY SYSTEM STANDARD FORMAT ON CARD-READSR,

DATA DIVISION,

FILE SECTION,

FD CARP-READER
LABEL RECORDS ARE STANDARD
DATA RECORD 1S CARD=IN,

04 CARD-IN,
02 ACCT-TYPE PICTYRE XX,
88 LOAN-ACCT VALUE "LO",
88 SAVE-ACCT VALUE "san,
88 CWECK=ACCY VALUE "Ck",
02 CUST=-NQO=~IN PICTURE #(6),
02 ACCY-NQ=IN PICTURE 9(6),
02 CUST-NAME=IN PICTURE X(29).
02 AMOUNT-~IN PICTURE 9(10)v99.

02 FILLER PICTURE X(31).
WORKING-STORAGE gECTION,
IDS SECT]ON,
01 CCBLOXK .
02 DIRECT=REFERENCE SIZE 1S 8 USAGE 18 COMPUTATIONAL-Y
avucnnoulzsn RIGHT.
2 FIRST-REFERENCE SIZE 1S 8 USAGE IS COMAUTATIONAL=~1
SYNCHRONIZED RIGHT,
02 LASTeREFERENCE SI1ZE IS 8 USAGE 1S COMPHTATIONAL=1
SYNCHRON[ZED RIGHY,
02 RECORD«TYPE SIZE 18 4 USAGE IS COMPUYA?IONAL-1
SYNCHRON]ZED RIGHT, B
02 REC=FILE S12E IS 6 CLASS I8 ALPHANLMERIC
VALUE IS n»Q000TFn,

€8¢

86225 01 02-05-70 14,809 GE600 INTEGRATED STORE TRANSLATOR 1SDL=2 CHGOO

1DS ALTER NOS.

00040 030020 MD
00041 030030
00042 030040
00043 030050 0%
00044 030060
00045 030070
00046 030080
00047 030090
00048 030200
00049 030210
00050 030230
00051 030240
00052 030250 01
00053 030260
00054 030270
00055 030290
00056 030300
00057 031010
00058 031020
00059 031030
00060 031040
00061 031050
00062 031060
00063 031070
00064 031080
00065 031090
00066 031200
00067 031210 01
00068 031220
00069 031230
00070 031250
006071 031260
00072 031270
00073 031280
00074 031290
00075 032010 0%
00076 032020
00077 032030
00078 032050
00079 032060
00080 032070
00081 032080
00082 032210
00083 032220 01
00084 032230
00085 032240
00086 032260
00087 032279

02 ERROR-REFERENCE SIZE 1S 3 CLASS IS ALPWANUMERIC
SYNCHRONJ2ED RIGHT,
TEST-FILE
PAGE CONTAINS 1920 CHARACTERS
FILE CONTAINS 100 PAGES,
ENTRY-REC
TYPE 1S 010
RETRJEVAL VIA CALC CHAIN
PAGE-RANGE 1§ 1 70 1,
02 ENTRY-FIELD
98 CALC CHAIN DETAIL
RANDOM]2ZE ON ENTRY-FIELD,
98 CUST-NO-CHN CHAIN MASTER
CHAIN=QRDER 1S SORTED,
CUST=NO»REC
TYPE 1S 020
RETRIEVAL VIA CUST-NO=CHN CHAIN,
02 CUST-NQ«DSU PICTURE 9¢6y.
02 CUST-NAME=DSU PICTURE x(26),
98 CUST-NO~CHN CHAIN DETAIL
DUPLICATES NOT ALLOWED
ASCENDING KEY IS CUST~-NC-DSU
SELECT CURRENT MASTER,
98 CHECK=CMN CHAIN MASTER
CHAIN=QRDER IS FINST.
98 SAVE~CHN CHAIN MASTER
CHAIN=QRDER 18 FIRST.
98 L OAN-CHN CHAIN MASTER
CHAIN=ORDER IS FINST,

PICTURE 9(6),

CHECK-REC

TYPE IS 021

RETRIEVAL VIA CHECK=CHN CHAIN,

02 CuST-NQ~CK PJCTUYRE 9¢6),

02 ACCT-ND~CK PICTURE 9(6),

02 AMOUNT-CK PICTURE S9(104V99.,

98 CHECK~CHN CHAIN DETAIL
SELECT CURRENT MASTER,

SAVE~REC

TYPE IS 022

RETRIEVAL VIA SAVE-CHN CHAIN.

02 CUST=NQwSA PICTYRE 96y,

02 ACCT-NO-SA PJCTURE 9(by,

02 AMOUNT-SA PICTURE S9(310vv99,

98 SAVE-CHN CHAIN DETAIL
SELECYT CURRENT MASTER.

LOAN-REC

TYPE IS 023

RETRIEVAL VIA LOAN-CHN CHAIN,

02 CUST-NO-LO PICTURE 9(6),
02 ACCT=NO=-0 PICTURE 9(86)y,

v8c

86226 01 02-05-70
1DS ALTER NOS,
00088 032280 02

00089 032299 98
00090 032320

14,794 GE600 INTEGRATED STQRE TRANSLATOR

AMOUNT-LO PICTURE S9(10yv99,
LOAN-CHN CHAIN DEYAIL
SELECT CURREBNT MASTER.

1SDL~2 CHGOO

G8¢

86226 01 02-05-70 14,794 GESQ0 INTEGRATED STORE TRANSLATOR 1SDL~2 CHGOO
1DS ALTER NOS,
00091 0B0000«EJECT

00092 080010 PROCEDURE DIVISIOQN,
00093 081050 100~CHECK=PARA,

00094 081070 MOVE CUST=NO-IN TO CyUST=No-CK,
00095 081080 MOVE ACCT~NO-IN TO ACCT-NO-CK,
00096 081090 MOVE AMOUNT~IN TO AMOUNT-CK.
00097 081100 ENTER 1DS.,

00098 081110 STORE CHECK=REC REGORD
00099 081120 IF ERROR GO TO 120~STORE-CK-ERR.
00100 081130 GO TO 200~CALL-CK=END,

00101 083090 120-STORE-CK-ERR,

00102 083100 DISPLAY "STORE ERROR",

00103 083110 DISRLAY "CHECK RECORD",

00104 083120 200-CALL-CK=END.

00105 083150 ExITt,

1DS-STRUCTURE SECTION,
ENTER GMAP ,
PMC on
BLOCK ,1DS..
RD0O641 ,QRD 023,000033,0,0,0.000000,

ETC RDQ641,RDO645,RD0643,0000,RD627N,
ETC 000000,000000,L0AN~-REC

RD0645 ,QDD 023.,10,0,0,1.1,
ETC 1/RDO641,RDO641,RD4609,RD4609,RN0645,
ETC 0029,0000,0000,
ETC LOAN=CHN

RD0643 ,@QFD 0,0,000011,0006,FC4610,RDD644,
ETC RD0&43,RD4640,
ETC ACCT=NO~-LO

RD0644 ,aFD 3,0.000017,0012,FC6209,RD0642,
ETC RDQ644,RD6209,
ETC AMOUNT=-LO

RD0642 ,QFD 0,0,000005,0006,FC1453,RD0641,
ETC RD0642,RD1153,
ETC CUST=NO~-LO

RD6273 ,QRD 022,000033,0,0,0+000000.
ETC RD6273,RD6277,RD6275,0000,RD166W,
ETC 000000,000000,SAVE~REC

RD6277 ,0DD 022,10,0,0,4,1, .
ETC 1,RD6273,RD6273,RD5889,RD5889,RN6277,
ETC 0029,0000,0000,
ETC SAVE=CHN

RD6275 ,QFD 0.0.000011,8006,FC7745,RD6276,
ETC RD6275,RD7745,
ETC ACCT=NO=-SA

RD6276 ,qFD 3,0,000017,0012,FC33137,RD6274,
ETC RD6276,RD3137,
ETC AMOUNT=SA

RD6274 ,QFD 0.0,000005,0006,FC1025,RD6273,
ETC RD6274,RD1025,

98¢

86225 01 02-05-70 14,8909 GE60D INTEGRATED STORE TRANSLATOR 1SDL=2 CHGOOD
I1DS ALTER NOS.

00001 010010 IDENTIFICATION DIVISION,

00002 010020 PROGRAM=ID. LOASEG,

00003 010030 AUTHOR, GEORGE A RUDOLPH.

00004 010040 DATE-WRITTEN, MAY 1969,

00005 010050 INSTALLATION. G E = PHOENIXY

00006 010051 REMARKS. THIS IS THE LOAN SEGMENT WHICH IS CalLLED BY
00007 010052 THE MAIN PROGRAM SNOOPY TQ CREATE AND SYORE
00008 010053 LOAN-REC RECORDS.

00009 010060 ENVIRONMENT DIVISION,

00010 010070 CONFJGURATION SECTION,

00011 010080 SOURCE-COMPUTER, GE-635,

00012 010090 OBJECT-COMPUTER, GE-635,

00013 010091 SPECIAL~-NAMES,

00044 010092 GETIME IS TODAYS-DATE,
00015 010095 BLOEK 10 1S CCBLOXK.
00016 010096 BLOEK 20 1§ ENTRY-REC THRU LOAN-REC,

00017 010200 INPYT=-QUTPUT SECTION.
00018 010210 FILE~CONTROL.

00019 010220 SELECT CARD-READER ASSIGN T0 CR FOR CARDS.
00020 010230 SELECT 1DS TEST-FILE ASSIGN TOQ TF,

00021 010240 [~-0-CONTROL.

00022 010250 APPLY SYSTEM STANDARD FORMAT ON CARD-READSR,

00023 020010 DATA DIVISION,
00024 020020 ;lLE SECTION.
¢}

00025 020030 CARD-READER

00026 020040 LABEL RECORDS ARE STANDARD

00027 020050 DATA RECORD 1S CARD-IN,

00028 020060 01 CARB~IN,

00029 020070 02 ACCT-TYPE PICTURE Xx.
00030 020080 88 LOAN-ACCT VALUE "LQ",

00031 0200%0 88 SAVE-ACCT VALUE PSA".

00032 020200 88 CHWECK=-ACCT VALUE PCKn,

00033 020210 02 CUST-Ng-IN PICTURE 96y,
00034 020220 02 ACCY-NQO~IN PICTYRE 9¢6),
00035 020230 02 CUSTNAME=IN PICTURE X(2%).
00036 g2p249 02 AMOUNT-IN PICTURE 9¢10)u99.
00037 020250 02 FILLE PICTURE X(31).

R

00038 020300 WORKING«STORAGE SECTION,

00039 030010 DS SECT]ON.
01 CCBLOXK .)
02 DIRECT-REFERENCE S{ZE 1S 8 USAGE IS COMPUTATIONAL-Y
SYNCWRONIZED RIGHT.)
02 FIRST~REFERENCE SIZE 1S 8 USAGE IS COMRUTATIONAL-1
SYNCHRON]Z2ED RIGHT,
02 LAST~REFERENCE SIZE IS 8 USAGE 1S COMPuTAT]ONAL-1
SYNCHRONIZED RIGHT, B
02 RECORD=-TYPE SIZE 18 4 USAGE IS COMPUTAYIONAL-1
SYNCHRONIZED RIGHT. .
02 REC-FILE S!1ZE 1S 6 CLASS IS ALPHANUMERIC
VALUE IS nQQQO0TF»,

L8¢

86224

01 02-05-70 14,836 GE600 INTEGRATED STORE TRANSLATOR 1SDL=2 CHA00

10S ALTER NOS,

00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
00057
00058
00059
00060
00061
00062
00063
00064
00065
60066
00067
00068
00069
00070
00071
00072
00073
00074
00075
00076
00077
00078
00079
00080
00081
00082
00083
00084
00085
00086
00087

030020
030030
030040
030050
030060
030070
030080
030090
030200
030210
030230
030240
030250
030260
030270
030290
030300
031010
031020
031030
031040
0310%0
031060
031070
031080
031090
031200
031210
031220
031230
0312%0
031260
031270
031280
031290
032010
032020
032030
032050
032060
032070
032080
032210
032220
032230
032240
032260
032279

MD

01

01

01

01

01

02 ERROR-REFERENCE SIZE IS I CLASS IS ALPUANUMERIC
SYNCHRON[ZED RIGHY.
TEST~FILE
PAGE CONTAINS 1920 CHARACTERS
FILE CONTAINS 100 PAGES,
ENTRY=REC
TYPE IS 010
RETRIEVAL VIA CALC CHAIN
PAGE~RANGE 1§ 1 TO 1,
02 ENTRY=FIELD PICTURE 9(6),
98 CALC CHAIN DETAIL
RANDOMI2ZE ON ENTRY=FIELD,
98 CUST-NQ=CWN CHAIN MASTER
CHAIN=QRDER IS SORTED,
CUST=-NO=-REC
TYPE [S 020
RETRJEYAL VIA CUST~NO=CHN CHAIN,
02 CUST-NO=DSU PICTURE 9(6),
02 CUST-NAME=DSU PICTURE X(28).
98 CUST-NG=CHN CHAIN DETAIL
DUPLICATES NOT ALLOWED
ASCENDING KEY IS CUST-ND-DSU
SELECT CURRENT MASTER.
98 (CHECK=CHN CHAIN MASTER
CHAIN-QRDER 1S FIRST,
98 SAVE-CHN CHAIN MASTER
CHAIN-QRDER 18 FIRST,
98 LOAN-CHN CHAIN MASTER
CHAIN-QORDER 18 FIRST,

CHNECK<REC
TYPE IS 028
RETRIEVAL V1A CHECK=CHN CHAIN,
02 CuST=NQ=CK PICTURE 9(6),
02 ACCT-Np-CK PICTURE 9(6).,
02 AMOUNT-CK PICTURE $9(101V99.
98 CHECK-CHN CHAIN DETAIL

SELECT CURRENT MASTER,
SAVE~REC
TYPE IS 022
RETRIEVAL VIA SAVE-CHN CHAIN,
02 CUST~NO~SA PICTURE 9¢6),
02 ACCT=-NQ-SA PICTYRE 9(6y,
02 AMOUNT=SA PICTUYRE SP(10vv99,
98 SAVE<CHN CHAIN DETAIL

SELECY CURRENT MASTER,
LOAN~REC
TYPE 1S 023
RETRIEVAL VIA LOAN~CHN CHAIN,
02 CUST=-NC-LO PICTURE 96},
02 ACCT=NQ-LO PICTURE 96y,

88¢

86225

01 02

-05-70

1DS ALTER NOS.

00088
00089
00090
00091
00092
00093
00094
00095
00096
00097
00098
00099
00100
00101
00102
00103
00104

032280
0322990
032320
040010
041130
041150
041160
041170
041180
041190
041200
041210
043130
043140
043150
043160
043190

02
98

100-L0AN=PARA,

14,809

AMOUNT=-LO

GE60O0 INTEGRATED STQRE TRANSLATOR

PICTURE 59(104v99,

LOAN-CHN CHAIN DETAIL
SELECT CURRENT MASTER.,
PROCEDURE DIVISION,

MOVE CUST-NO-IN TO CUST-NO-LO.
MOVE ACCT=NO-IN TO ACCT=NO-LO.
MOVE AMOUNT=IN TO AMOUNT-LO.

ENTER IDS.

STORE LOAN=REC RECORD
IF ERRQR GO TO 130-STORE-LO-ERR.
GO TQ 200=CALL-LO=END,
130-STORE~LO~ERR,
DISPLAY "STORE ERROR",
DISPLAY "LOAN RECORD",
200~CALL=LO™END.

x1T,
1DS-STRUCTURE SECT]ON,

ENTRR GMAP

RDO641

RD0645

RD0643

RDOG4A4

RDD642

RD6273

RD6277

RD6275

RD6276

PMC
BLOCK
1QRD
ETC
ETC
+QDD
ETC
ETC
ETC
yQF D
ETC
ETC
«QFD
ETC
ETC
1QFD
ETC
ETC
1 QRD
ETC
EYC
190D
ETC
ETC
ETC
1QFD
ETC
ETC
+QFD
ETC
ETC

oN

v 108,

023,000033,0,0,0,000000,
RD0641,RD0645,RD0643,0000.RD6271,
000000,0000004L0AN-REC
023.10,0,0,8,1,
1:RD0641.R00641yRD4609:R04609.R5064!:
0029,0000,0000,

LOAN=CHN
0.0:000011,0006;FC4610,RD0644,
RDO643,RD4640,

ACCT=NO-LO
3,0+000017,0012,FC6209,RDDO42,
RDO644,RD6209

AMOUNT-LO
0,0,00000%,0006,FC1153,RD0641,
RD0842,RD1153¢

CUST~NO=-LO
022,000033,0,0,0,000000,
RD6273,RD6277,RD6275,0000,RD1668,
000000,000000,SAVE~REC
022;10;0.0:101:
1:RDO?73.RDO?731RD5589,RD5389.Rn6277.
0029,0000,0000,

SAVE~CHN
0,0,000011,0006,FC7745,RD6276,
RD8275,RD7745,

ACCT=NO~-SA
3,0,000017,0012,FC3137,Rp6274,
RD6276,RD3137,

AMOUNT=-8A

1SDL-2

CHGOO

68¢

86226 02
ORIGIN

056570
054560

051540
047322

047260

047122
046526

045244

045006
044670
043440
041412

041322
041254
040614
040472
037436
037420
037364
036770
036410
036234
035772
035734
035654
035630
035362
035160
034776
034706
034614
034500

02-06-70
053069

020570
BLOCK COMMON
020570
BLOCK COMMON

110268
102949

110268
073069
110268

102969

110248
110268
073069
082869
BLOCK COMMON
073069
073069
073069
073069
073069
110268
110268
080769
073069
073069
073069
110268
110268
110268
073069
073069
073069
110268
110268
073069

00,02/

ENTRY LOCATION

s
s
vitaea
c20
C.LDIN
108,
CR

+SETU.
+FRDD.
FEIL.
+FEOF,
+FSLEW
«FOPEN
FXOP,
FXEM

FXDVCK
+FXSWL
WF1D0,
L INK

+@QDBUG
+QOPEN
tQMAX
+QCHN
1QGET

+QSTOR
+QMOVE
tQTLNK
+QUCCB
+1QSDSW
»QMNO
+QASC
1QCALC
+QGDET
1QSYN
+QUPDC
«QAUTH
»QFWD
+QLNKL
+QUDCH
«QRUND
QIYPX
+QADJU

ENTRY LOCATION

ENTRY LOGATION

SUBPROGRAMS INCLUDED IN DECK,

1 QMAX/1/4, . QAREA/1577/: ., QMIN/L/

OPTION FORTRAN
USE

056570

056540 cay
054572 P
054346 gggo Y
0516214
SUBPROGRAMS

051543

051024 »FWRD,
051061 +FRTN,
047260

047122

046532 EXIT
046721 +FGTFB
046047 +FXEM,
046127 FXALT
046034 JFXSW2
045122

044700 LLINK
043440 WS.138
041412 +QTABY
061776 WOMIN
041322 N5,186
041254 w5312
040614 H3,127
040472 H5,180
037436 «QTALY
037420 W9, 131
037364 HB,126
036770 H5,119
036410 H5,192
036234 +QCALY
035772 M9, 111
035734 H5,128
035654 H5,134
035630 H5,103
035362 H3,110
035344 + QLNKS
034776 H9,133
034706 H3.125
034614 H8,130
034500 +QINSH

056534
85457!
56534

0BTAINED FROM

0507356
051060

046736
046926
045244
046143
046036

044676
044655
043344
056722
p4ag4e0s
041335
041236
040607
037704
037433
037434
037355
036763
036372
036227
035766
035731

035348
035152
034770
034702
034607

SYSTEM LIBRARY,

+FPRN
+FRCD,

+FEXIT
JFaov,
+FXMC,
FXDv

FXSW3
IDLINK

«QTAB2

H5,129

H5,105

«QLSW

H5,101

030756
091024

046736
046530
046032
046440
046040
044723

043379

040461

036404

035353

034613

ENTRY LOCAT]ON

ABC 055232
0565}0

«FPUN. (50752
+DBCNY 051073
+FBAD, 047105
ANYERR 046155
FXFDV (46436
ERRLK 046463
LENTRY 044671

H3,3122 043426

+ADLNK 035160

PAGE
ENTRY LOCATION

PR 053060

+FCNY. 047647
+BDCNV 031814
«FBFTB 047306
FXOPT Q46066

FXCODE 046046
«FLTPR 046368

H5,108 035354

067¢

86226 02 02~06-70 ov.027

ORIGIN 053069 ENTRY LOCATION ENTRY LOCATION ENTRY LOGATION ENTRY LOCAT]ON ENTRY LOCATION

034262 073069 +QMRAC 034262 H5.124 (34473

034222 110268 JQPACK Q34222 H5,123 (342%7

034010 073069 LQUIT 034010 LQUITX 034203 JQUITY 034067 N5,132 034246

033344 073049 .QCLOS 033344 H5,107 034004

p32172 073069 ,QB8IC 032172 +QFLSH 033130 ,QSBEF 033222 +QSEMT 032676 H5,104 033336

031760 110268 CQINV2 031760 N5,160 032164

031672 110268 JQLAR 031672 +QLOCK 031707 JQRLS 034733 H5,152 031755

031572 073069 +QINVL 031572 5,159 (031666

031266 073069 JQINV3 031266 H5,161 Q31564

031210 073069 LQINV4 032210 H8,162 031262

031036 073069 ,GMAPL1 031036 H5,163 031205

030554 110268 «QRTAB 030554 ,QTABY 030762 HS.,164 031032

030344 073069 «Gl0os 030367 COWRIT 030344 +QREAD 030353 JORDB 030342 LQWAIT 030368
45,165 030550

027462 073069 JQWKA 027511 JOIRBA 027514 JQAVAL 027533 +QIREF 027531 CQINIT 027912
,QlPOS 027513 JOFOP Q27607 LQPMLY 087610 2 QRELYV 027631 LQERTB 027613
ouTce 027631 OUTFD 027620 .QIDCW 087515 JFINV 027587 JEINY 027540
JIDSF 027472 +IJRNL 027504 ,QSiCT 027517 +QACT 027820 .QMBYF 027523
L INVBF 027530 JQEWA 027536 .QLCCB 0@7522 JOVECT 027527 +QCBYF 027324
JQEMTY 027528 +QDBGS 027524 2QCDSW 0237526 +QCREC 027532 +QCURD 027533
+QCURT 027534 .QDPSW 027538 JONFN 087536 +OBARG 027544 JQICTR 027542
1@STST 027544 LQGAST 027550 +QGCST 027554 ,QGDST 027560 LQGEST (27964
+QCHST 027570 JOHDST 027574 JQMFST 0237600 QDLST 0276Q¢ JQECAC 027612
H5.,166 030340

026264 110268 JQUIF 026264 JQUTF 820264 JQUTFR2 836328 JQUTFJ 926480 JQVFY 026712
LQVFY4 027121 +QVFY 27442 «QVFY] 7454 N5,145 027453

024712 073069 ,QBCD 024712 JGCLR 024745 LQGCSM 084765 ,GDIR 025022 .QDIRC 025652
«QDIRF 025116 +QMCH 026047 SQMEX 026103 JGMWD 026383 JQPBK 026177
,QSFD 025672 LGDIR9 025130 HS,154 026256

024702 073069 JQSTA Q24702 JQSTAL 024702 .QSTAZ 034704 H5,137 024706

024440 102969 JCNTRY 024530 JCMXIT Q24543 JCMSER 0Q4456 JCMENT 024441 LCMRET 024478
L,CMPSH 024456 JCMPOP 024467 LCMUST 034509 JCMUET 024545 .CMUEX 024822
. F1CB 024679

024426 102969 JCUDATE 024434 JCTALY Q24427 LCTMPD 024430 JCTMPY 024432 .C1020 024434

024340 110268 JCMSTK 024347 JCMSTE (24424

023756 073069 +CGOPN 023760 (CTEOF 024247 L.CIOER 084311 JCIOEI 024330

023456 110268 (COSWR 023457

023310 1310268 ,C0SYS 023312

023132 073069 ,ClCON 023135 LClTYp 023133 ,COCBF 033266 «COS1Z 023244 JOXXXX 023436

023050 110268 ,COBUF 023076 (CLINE (2307¢ ,CIBUF 023052

022402 110268 JCNFXA 022414 JCNFXB 022661 JCNFX1 QR2404

022370 110268 LCEDD? 022371

022362 110268 JCEDO5 022343

022244 110268 JCERPL 022243

022166 110268 +CESSN 022167

022132 110268 WCEITL 022134 LCEGET 022140 JCEPVW 022163

022012 110268 ,CERSN 022013 LCETSS 022127 JCETSN 032044

021732 110268 JCETLS (21734 JCESTL 021734 ,CERTL 021735 (CEDLS 022000 .CEC4R 02200%
+CEDEC 022005 +CECHA 022006 +CESSW 031776 JCNNUM 021736 .CNQY1 021736

+CEQUL 021736 CNQU2 021737 ,CEQU?2 021737 LCEZST 021740 (CENOP 021744

T6C

86226 02
ORIGIN

021726
021676

021604
021510
021426
021332
021302
021026
020540

020454
020404
029270

017562

017554
017040

016742
016202

015530

015512
015412
015220
015172
015114
015042
014550

14400

14274

014214
013476

013474
013442

02-06-70
053049

110268
102969

110268
110268
110268
110268
110268
072569
110268

110268
073069
110268

073069

073069
073069

110268
073069

073069

110268
073069
110268
110268
110268
110268
073069
110268
110268

110268
110268

110268
110268

00,027

ENTRY LOGCATION

+CESAY
+CMEND
+CCCCC
BEGIN
«CTDMP
XXEND
WGHRIT
+GREAD
1GWATT
«GSTOT
+GSTIN
+GEPRN
«GPRNT
PRT032
+GIOPG
+GWTRC
+GEDIT
+GEQ66
+GEO7L
+GGTBK
+1GAGET
«GOPNR
1GCOPY
PUT
+GP1SZ
+GOPEN
«GCLSE
CLOSE
+GBNRY
+GRLSE
+1GR20D
1GBCD
+GR225
+GR250
1GR275
«GR377
+GR980
+GR999
+GR960
+GINHD
+GOVRL
1GINID
»GR99Q

ALLOCATED CORE
OBJECT PROGRAM
RELOCATABLE

021742
ga1726
021717
021712
021715
021714
021604
021519
021426
021332
021302
021026
020540
020743
020454
020404
020279
020370
020374
017562
017564
017554
017040
017046
016742
016202
015530
015530
015512
015412
015220
015172
015114
015042
014550
014434
014274
014304
014214
013503
013504
013474
013442

LINK

ENTRY LOCATION

+CEOPS

X4060

+CTCOR
XDymp

L,CTFIN
+GAWR]
+GAREA
sGANAT
SETOUT
SETIN

EPRINT
+GAPRN
PRT035
10P021
+GAWTR
+GED62
«GBO67
,GE072
GETBK

+GCLSR
COPY

+GACOP
+GAPTS
+GAOPE
«GACLS

+GARLS

+GR385
+GR979

1GOUTH
+GLREA

+GR99Y

RANGE
000000 THRU 061777
013440 THRU 061777

LINKAA

021777

021720
Q21743
021745
021677
021604
021540
021426
021332
021302
021026
020540
020752
020530
020404
020363
020374
020378
017562

017554
017040
017040
016742
016202
p15530

015442

814373
14372

913502
013562

§13463

ENTRY LOGATION

X1091
CORECT
+CTION
XTHI11
WRITE
READ
WATT

PRTO04
PRTQ51
10PQ24
WTREC
+GEOSY
+GAED!
EDATE
+GGET

+GGETR
+GPTBK
+GAPTB
PUTSZ
OPEN
+GR185

RELSE

+GR375
+GRIIX

WGINTL
+GRCVY

15AUGS

091721
091713
091716
021677
091604
0R1510
031426

020579
020770
080533
02040¢
020364
080270
080376
087564
047554
047043
047043
046742
0{6202
015634

045412

etk
4300
043501
043476
043470
S12E
062000
044340

ENTRY LOCAT]ON

X1095
1CTCMT
x4000
,COUIT

PRTQ24
PRTO002

1GED64
1GEQ&8
ETIME
GET

1GPUTR
PUTBK
1GAPUT

1GR186

+GRI7X
yGR984

+GOUTL

021722
021734
021748
021677

020747
020872

020368
020372
020377
047564

017554
047043
017046

015725

014493
014336

013500

ENTRY LOCATION

+CTBEG 021712
XCMNT 021714
+CTEND 021477

PRTO031 020736
PRINT 020540

+GEO65 020367
+GEQ69 020373
TQEDIT 020870
+GAGTB 047862

+GPUT 0347046
+GFR67 017534

+GR178 015643

«GR3I9Q 0}4‘73
+GR9B5 014372

JGUSWH 013477

86226 02

262

ORIGIN 053069

oes NON FATAL ERROR »
013320 02057¢
BLOCK COMMON

ess NON FATAL ERROR *
e#e NON FATAL ERROR ®
sas NON FATAL ERROK ©

" A5
BLOCK COMMON

ass NON FATAL ERROR »
see NON FATAL ERROR «

een N

ON FATAL ERROR #
013320

020570
BLOCK COMMON

02-06-70 00,

nes

ENTRY LOCATION ENTRY _LOCATION ENTRY LOGATION

SUBPROGRAMS INCLUDED IN DECK.

C..DIN LOADED PREVIOUSLY
CHKSEG 013333 C,CHKS 013427

,1DS.. 054346 c10 054336 c20 [1.I3:214
SUBPROGRKAMS OBTAINED FROM SYSTEM L IBRARY,
RANGE S1ZE
ALLOCATED CORE 000000 THRU 061777 062000
0BUECT FROGRAM
KELOCATABLE 043320 THRU 061777 0dp4e60
MISSING ROUTINE ,CFiCB
MISSING ROUTINE LOASEG
MISSING ROUTINE SAVSEG
H LINK LINKBB,LINKAA
suBPROGRAMS INgLUDED IN DECK,
C.LDIN AD PREVIOUSLY
SAVSEG 5?3353 C.SAVS 013427
1DS,. 084346 c10 054336 cgo 086540
SUBPROGRAMS OBTAINED FRQM SYSTEM LIBRARY,
RANGE S12€E
ALLOCATED CORE 000000 THRU 061777 062000
0BJECT PROGRAM
RELOCATABLE 043320 THRU 061777 044460
MISSING ROUTINE .CFICB
MISSING ROUTINE LOASEG
H L INK LINKCC,L INKBB
SUBPROGRAMS INCLUDED IN DECK,
C.LDIN LOADED PREV]OUSLY
LOASEG 013333 C.LOAS 013426
L 10S,. 054346 c40 054336 c20 086540
SUBPROGKAMS OBTAINED FROM SYSTEM LIBRARY,
RANGE S1ZE
ALLOCATED CORE 000000 THRY 061777 062000

ENTRY LOCATION

CR

CR

CR

051614

091644

051614

ENTRY LOCATION

€6¢C

86226 02 02-06-70 00,

ORIGIN 053069

s#e NGN FATAL ERROR

027

ENTRY LOCATION ENTRY LOCATJON ENTRY LOGATION ENTRY LOCAT]ON

O0BJECT PROGRAM

RELOCATABLE 013320 THRU 061777 044460

MISSING ROUTINE .CFICB

s p1sc He, x2S, 8R
H pisc TF,X3S,9R
s DATA 0
$ SYSQUT PR
$ DATA CR

FcB AND BUFFER SPACE

TEMPORARY MASS STORAGE FILE

TEMPORARY 1-DeS DATA FILE FOR DIRECTIVES
ASSIGN PRINTER 70 QUTPUT MEDIA CONVERSION
TEMPORARY FILE FOR CARD INPYT

AVALLABLE 000101 THRU 013315 043215
FILE CTRL BLKS 013166 THRU 013316 000131
MAXIMUM BUFFER SPACE REQUIRED 004200

ENTRY LOCATION

21K, 1S THE MINIMUM MEMORY NEEDED TO LOAD THIS ACTIVITY WITH ALL FILES OPEN

EXECUTION PKOGRAM ENTERED AT 056579

THERE WERE 000009 WARNING FLAGS IN THE ABOVE LOAD

¥6¢

CUSTOMER NUMBERS AND ACCOUNTS STORED ON DATA FILE

CUSTOMER NUMBER TY

000123

000235

001100

004444
055555
123456

666111

SNUMB = 86226, ACTIVITY

2-6-70
PE OF ACCOUNT ACCOUNT NO
CHECKING 003302
SAVINGS 000022
LOAN 002301
CHECKING 024501
SAVINGS 000501
SAVINGS 002403
LOAN 000302
CHECKING 000904
LOAN 000703
CHECKING 005503

COBOL Program Output

= 02, REPORT CODE = 52,

NUMBER OF CHECKING ACCOUNT RECORDS READ = 4
NUMBER OF LOAN RECORDS READ = 3

NUMBER OF SAVING ACCOUNT RECORDS READ = 3
TOTAL NUMBER OF RECORDS READ = 10

FORTRAN Program Output

RECORD COUNT

It

1,9

00004

AMOUNT

.74
.00
.10
145.71

.09
.01

.00
87,654.32
10.00

5.83

Appendix D. Primary Subroutines

Primary subroutines are those subroutines which are called directly as a
result of an I-D-S verb. The primary subroutine then calls other
subroutines to perform the function. The following is a 1list of the
I-D-S verbs and the corresponding primary subroutine which is called as
a result of the verb.

I-D-S Verb Primary Subroutines
CLOSE .QCLOS
DELETE .QODLTE
HEAD -QHEAD
MODIFY .QMDFY
MOVE . QMOVE
OPEN .QOPEN
RETRIEVE <QGET
RETRIEVE CURRENT «QGETC
RETRIEVE DIRECT .QGETD
RETRIEVE EACH <QGETE
RETRIEVE MASTER
RETRIEVE NEXT '} .QCHN
RETRIEVE PRIOR
STORE .QSTOR

295

Appendix E. Sample Deck Setups

COMPILE AND EXECUTE PERMFILES

The following Deck Setup will compile and execute an I-D-S
using a permanent I-D-S data file.

1 8 16

I
$ IIDENT :IDSOO,PERMFILE
$:USERID {IDSFOURYQUADS DATABASE
$ | IDS |

yI-D-S SOURCE DECK OR COMDK
$ |EXECUTE |
$ |PRMFL IAl,R/W,R,IDSFOURYQUADS DATABASE /QUADOL
$ IPRMFL IA2 ,R/W, R, IDSFOURYQUAD $DATABASE /QUAD 02
$:PRMFL |A3,R/W,R,IDSFOURYQUADS$ DATABASE /QUADO3
$ PRMFL |a4,R/W,R,IDSFOURYQUAD$DATABASE /QUADO 4
$ ENDJOB |
***EOF | |

program

297

EXECUTE USING TEMPORARY FILES

The following Deck Setup will execute an I-D-S object program using
temporary files. NOTE: The QUTU activity will initialize the database.

1 8 16
|

$:IDENT 'IDS00, TEMPFILE
$ PROGRAM |QUTU
$!LIMITS [r24k
$ |MASS jAl,X1S,11R
$ |PISC IA2,X2S,22R
$ IDRUM :A3,X3S,11R
$ DATA .Q
IDS }CREATE \FC/Al/,BSSZ%/480/,RNG/1,120/
IDS |CREATE |FC/A2/,BSS%/480/,RNG/121,240/,1PP/32/
iDs |CREATE :FC/A3/,BSSZ/480/,RNG/241,360/
$ |DATA I*
1DS JINIT :FC/Al/
IDS (INIT [FC/n2/
IDS JINIT FC/A3/
$ JOBJECT

II-D-S (OBJECT DECK
$ IDKEND
$ |[EXECUTE :
$ iMASS T1,X1s,11R
$ JDISC |T2,X2S,22R
$ |DRUM IT3,X35,11R
S JDATA 1.Q
IDS ICREATE :FC/Tl/,BSSZ/480/,RNG/l,120/
IDS ICREATE |FC/T2/,BSSZ/480/,RNG/121,240/,LPP/32/
IDS ICREATE IFC/T3/,BSSZ/480/,RNG/241,360/

IENDJOB |
* % kEOF | |

298

COMPILE AND EXECUTE USING PERMANENT AND TEMPORARY FILES

The following Deck Setup will compile and execute an I-D-S program using
permanent and temporary files. NOTE: The QUTU activity will reload the
temporary file from tape.

1 8 16

i i
S I pENT 1IDS00,MIXEDFILES
S (USERID |IDSFOURYQUAD$DATABASE
S PROGRAM 1QUTU
S ILTMITs 1,24k
3 Iprsc la1,x2s,22R
S ITAPE IDT, X6D
S IpAaTA 1.Q
IDS ICREATE IFC/Al/,BSSZ/480/,RNG/121,240/,LPP/32/
5 |[DATA |T*
DS [WRITE |FC/DT/,RNG/121,240/,0NFC/ALl/
S IDS !

|I-D-S SOURCE DECK OR COMDK
S |JEXECUTE !
3 |PRMFL :Tl,R/W,R,IDSFOURYQUADSDATABASE/QUADOl
S IDISC \T2,X2S,22R
S |PRMFL T3,R/W,R, IDSFOURYQUADS$DATABASE /QUADO 3
5 |PRMFL T4,R/W,R,IDSFOURYQUADSDATABASE /QUADO 4
3 |DATA .0
DS ICREATE IFCc/T2/,BSS%/480/,RNG/121,240/,LPP/32/
S |ENDJOB |
***EOF | I

PRINT A PERMANENT FILE

The following Deck Setup is an example of a QUTU activity which prints a
permanent file.

1 8 16
| i
$ JIDENT 1IDS00,PRINT
S JUSERID |IDSFOURYQUADSDATABASE
S IPROGRAM |QUTU
$ ILIMITS 1,24k
S IPRMFL, 'TF,R/w,R,IDSFOURYQUADsDATABASE/QUADO1
S }PRMFL lTG,R/W,R,IDSFOURYQUAD$DATABASE/QUAD02
S DATA I*
IDSs {PRINT :FC/TF/,RNG/l,lO/,PAGES
IDS [PRINT (FC/TG/,EMPTY
S |ENDJOB |

*k kEOF |]

299

TRACE ENTRY

The following Deck Setup will compile and execute an I-D-S program using
an I-D-S Permanent File and will generate a trace entry for all calls to
the I-D-S primary subroutines.

1 8 16
T T
$ IIDENT =IDSOO,TRCEDATA
$ |USERID |IDSFOURYQUADSDATABASE
$ l1ps |
l1-p-S SOURCE DECK OR COMDK
$ luse 1.QSTC
$ lEXECUTE |
$ DATA 1.0
IDs |OPTION ITRACE
$ |PRMFL ial,R/W,R,IDSFOURYQUADSDATABASE /QUADOL
$ |PRMFL IA2,R/W,R,IDSFOURYQUAD$ DATABASE /QUADO 2
$ |PRMFL |A3,R/W,R, IDSFOURYQUAD $DATABASE /QUADO3
$ IPRMFL 1a4,R/W,R,IDSFOURYQUADS DATABASE /QUADO 4
$ IENDJOB
**x *EOF | |

EXECUTE QUTJ

Deck Setup to execute QUTJ from the Software Library.

1 8 16
1]
$ IIDENT IIDS00,JOURNAL
$ 'PROGRAM IQUTJ
$ [LIMITS lOPTIONS
S |TAPE IIN,X1D,,1234, ,JOURNAL-TAPE
$ \DATA h*
IDS [SYSTEM
$ IENDJOB |
** *EQOF f |

300

EXECUTE QUTP

Deck Setup to execute QUTP from the Software Library.

1 8 16
' I

S l1pENT IIDS00 ,PICKER

S lpROGRAM lguTP

S lLtmiTs lopTIONS

$:TAPE JIN,X1D,,1234, ,JOURNAL~TAPE

S TAPE OT ,X28

$ lbaTa T*

1DS 'SELECT |1/53607,1/53607,B

1DS ISELECT 112/88802, 13/88802,B

S [ENDJOB |

* % * EOF | |

EXECUTE QUTS

Deck Setup for executing QUTS from the Software Library.

1 8 16
[T
S lIDENT I1DS00,SORT
$ iPROGRAM QUTS
$ [LIMITS :10,17k
$ \TAPE IN,X2D
$ |TAPE 0T, X3S, ,99999
s |TAPE I0U,X4S,,99999
s INTAPE IS1,X5R,3
$ [ENDJOB
***EOF |

301

EXECUTE QUTI AND QUTC

Deck Setup for executing QUTI and QUTC from the Software Library.

1 8 16
| |
$ 'IDENT |IDS00,CALC
$ lPROGRAM |QUTI
$ IMaSS jAl,D1S,10R
$ IDATA 1.Q
1DS ICREATE !FC/Al/,BSSZ/100/,RNG/1,100/
$ |DATA 1+
IDS JINITIAL !1,100
$ \PROGRAM | QUTC
S ILIMITS 10,26k
$ |TAPE |A1,AlR,,, ,WORK1
3 ITAPE {B1,B1R,,, ,WORK2
S ITAPE \T1,T1D,,1234,,USER-IN
S ITAPE Ic1,c1D,,,,USER-SORTED
S INTAPE Is1,S1R, 3
S IMASS \D1,D1R,10R
S IsysouT Pl
S \DATA l.g
DS lcrREaTE |FC/D1/,BSSZ/100/,RNG/1,100/
S :DATA IT*
1DS OPTION |GENERATE/,RANDA/,RNG/1, 30000/
S ENDJOB |
%% *EOF | |

EXECUTE QUTD

Deck Setup for executing QUTD from the Software Library.

1 8 16
' i
$ 'IDENT IIDS00 , DUMP
$ PROGRAM |QUTD
$ JLIMITS IOPTIONS
$ IUSERID 'IDSFOURYQUAD$DBASE
$ {PRMFL TF,R/W,R, IDSFOURYQUAD $DBASE /QUADO1
S IPRMFL ITG,R/W,R, IDSFOURYQUADSDBASE /QUADO2
S ITAPE loT,x2s,,,,DUMP-FILE
$ IpaTA 1%
DS purp |
S \ENDJOB |
***EOF | i

302

EXECUTE QUTL

Deck Setup for executing QUTL from the Software Library.

1 8 16
U 1

S :IDENT IIDS00,LOAD

S \PROGRAM QUTL

S ,LIMITS |OPTIONS

S MASS 1al,X1R,15R

S ITAPE IN,X2S,,1234, ,DUMP-FILE

g :TAPE |DE,X3S,,,,DELETE-FILE
DATA .Q

DS :CREATE :FC/Al/,BSSZ/480/,RNG/l,lZO/

S |DATA I*

éDS |OPTION :PLOAD/,RNG/l,120/,DELETE/
|[ENDJOB

**¥*LOF] |

COLLECTING TYPE B STATISTICS

Deck Setup for collecting type B statistics on the journal file
executing QUTR from the Software Library.

1 8 16

' v

|

s | IDENT IIDS00 ,STATISTICS
S IUSERID :IDSFOURYQUAD$DATABASE
S USE 1.QSTB
S JOBJECT !
S IDKEND |
S IEXECUTE |
S \PRMFL Al,R/W,R,IDSFOURYQUADS DATABASE /QUADO1
< ITAPE \JX,%x1S,,,,I-D-S-JOURNAL
S IPROGRAM IQUTR
S :SYSOUT P1
S | TAPE Al,X1R,,,,I-D-S-JOURNAL
S TAPE IB1,x2R,,99999
S |NTAPE Is1,T,?2
S |[ENDJOB |
k **EQF | |

Activity 1 is the execution of an 1IDS program which provides
collection of type B information on the user-created Jjournal file
tape) .

Activity 2 is the execution of QUTR.

and

for
(JX

303

Appendix F. Reference Code Manipulation

EXTRACT A PAGE NUMBER

Procedure Division statements similar to the following may be used to
extract a page number from a reference code.
COMPUTE PAGE-NO = DIRECT-REFERENCE /64.
EXTRACT A LINE NUMBER
Procedure Division statements similar to the following may be used to
extract a line number from a reference code.
a. Assume PAGE-NO was previously extracted.
COMPUTE LINE-NO = DIRECT-REFERENCE - (PAGE-NO * 64).
b. Assume PAGE-NO was not previously extracted.
COMPUTE LINE-NO = DIRECT-REFERENCE - ((DIRECT-REFERENCE/64)*64)
CREATE A REFERENCE CODE
Procedure Division statements similar to the following may be used to

create a reference code.

a. Assume PAGE-NO has previously been initialized with the desired

page number.

b. Assume LINE-NO has previously been initialized with the desired

line number.

305

COMPUTE DIRECT-REFERENCE = (PAGE-NO *64) + LINE-NO.

>

E-NC PIC 9(6) COMP-1.
;-NO PIC 9(2) COMP-1.

~ =]
~N
t
H
Z @
3]

IDS SECTION
01 CCBLOXK.
02 DIRECT-REFERENCE PIC 9(8) COMP-1.

306

Index

01

level 01 and 98

02

level 02

03

Slave Begin Sync Record Type 03

TYPE 3 Slave Begin Sync (SLVBGN)

Slave End Sync (SLVEND)

Before Page Image (BEFORE)
Before Page Image (BEFORE)

After Page Image (AFTER)
After Page Image (AFTER)

Statistics

level 01 and 98

concurrent access
READ access mode
WRITE access mode
RECOVERY access mode

3
4

TYPE
5

TYPE

Type
6

TYPE

Type
9

TYPE
98
ACCESS
ACCESSING

ACCESSING AN I-D-S FILE

31

31

138

141

141

141
165

141
165

141

31

125
135
135
135

132

307

ACTIVITY
File System Activity ($ FILSYS)
Activity Number
Page Buffer Activity Table
Page Buffer Activity Table
activity chain

AFTER
AFTER
TYPE 6 After Page Image (AFTER)
AFTER page images
Type 6 After Page Image (AFTER)

ALL
ALL

ALLOCATION
Subfile Allocation
subfile allocation criteria
I-D-S Data File Allocation

ALLOWED
DUPLICATES NOT ALLOWED clause

ALTER
GMAP alter number

ANALYZER/CALC

Randomizing Analyzer/CALC Pre-Load Sort Utility

AREA
ERROR-REFERENCE communication area
labeled common area
labeled common area (.IDS...)

AREAS
ASSIGNMENT OF I-D-S BUFFER AND WORK AREAS

ASCENDING
ASCENDING RANGE KEY
ASCENDING

ASCENDING/DESCENDING
Ascending/Descending

ASSIGNMENT
ASSIGNMENT OF I-D-S BUFFER AND WORK AREAS

ATTRIBUTES
attributes of an I-D-S data file

AUTHORITY
Authority

AVAILABLE
available line flag

308

125
142
152
166
166

47
141
145
165

238

132
134
134

82

242

180

52
259
264

151

54
75

53

151

154

42

245

BASE

Base Page 168

Data Base Load/Print Utility Routine (QUTL) 199
BASIS

Basis For Overlaying 257
BCD

BCD 234
‘BEFORE

BEFORE 47

CHAIN-ORDER IS BEFORE 49

TYPE 5 Before Page Image (BEFORE) 141

BEFORE page images 145

Type 5 Before Page Image (BEFORE} 165
BEGIN

Slave Begin Sync Record Type 03 138

TYPE 3 Slave Begin Sync (SLVBGN) 141
BETWEEN

Communication Between Subprograms 258

How to Communicate Between Compilers 265

pass information between COBOL and FORTRAN 267
BINARY

binary 234
BLOCK

Communication Control Block 103

GEFRC file control block 154

Communications Control Block (CCBLOC) 264
BUFFER

ASSIGNMENT OF I-D-S BUFFER AND WORK AREAS 151

Inventory Record Buffer 152

Page Buffer Activity Table 152

Data Page Buffer 153

Buffer Format 158

Buffer Strategy for Inventory Buffers 159

Buffer Format l61

Data Page Buffer 163

Buffer Strategy for Page Buffers 166

EMPTY buffer 166

Page Buffer Activity Table 166
BUFFERS

Buffer Strategy for Inventory Buffers 159

Buffer Strategy for Page Buffers 166
CALC

CALC chain 70

309

CALCULATED
CALCULATED RECORDS
calculated records
calculated chain
Calculated records

CALL
CALL statement
CALL LLINK
CALL LINK

CALLING
return to the calling subprogram

CALL'S
CALL's to load specific subprograms

CARD
$ IDS control card
$ IDS CONTROL CARD DESCRIPTION
$ USERID control card
$ PRMFL control card
$ USE control card

CATALOG
System Master Catalog

CCBLOC

Communications Control Block (CCBLOC)

CHAIN
Linking Detail Record of a Chain
Selecting Master Record of a Chain
Chain Ordering
Prime Chain
Chain Processing
Chain NEXT
Chain PRIOR (optional)
Chain MASTER (optional)
Chain Tables
Chain Definition
Chain Definition
Chain Definition Entry
calculated chain
CALC chain
activity chain

CHAINS
I-D-S CHAINS
Multiple Chains

CHAIN-ORDER
CHAIN-ORDER
Chain-Order
CHAIN-ORDER IS BEFORE

310

13
38

84

259
262
262

259

262

91

128

132
267

128

264

(S0 =%

40

49

CHARACTERISTICS
OPERATIONAL CHARACTERISTICS

CHECKSUM
Checksum
checksum
checksum

CLASSES
Record Classes

CLAUSE
COBOL record description clause
PICTURE clause
Editing clause
PAGE-RANGE clause
INTERVAL clause
PAGE-RANGE clause
RETRIEVAL VIA clause
DUPLICATES NOT ALLOWED clause
USE clause

CLOSE
Close

CLOSING
Closing Journal Files

COBOL
COBOL record description clause
COBOL procedural statements
OVERLAYING A COBOL PROGRAM
USING I-D-S WITH A COBOL OVERLAYED PROGRAM
FORTRAN ~ INTERFACING WITH COBOL AND I-D-S
pass information between COBOL and FORTRAN

CODE
R11l error code
reference code
reference code
Termination Code
directive file code is I*
REFERENCE CODE MANIPULATION

COMDK
PAGE EJECT AND COMDK LABELING
COMDK Labeling

COMMON
labeled common
labeled common area
labeled common area (.IDS...)

COMMUNICATE
How to Communicate Between Compilers

125

141
234
236

13

62

142

32
32
257
264
265
267

25
259
264

265

311

COMMUNICATION
ERROR-REFERENCE communication area
Communication Control Block
Communication Between Subprograms

COMMUNICATIONS

Communications Control Block (CCBLOC)

COMPILE
Translate and Compile
Translate, Compile, and Execute

COMPILERS

How to Communicate Between Compilers

COMPLETE
Complete trace entry
Complete PRTREC entry

CONCURRENT
concurrent access

CONDITIONAL
I-D-S Conditional Statements

CONDITIONS
I-D-S ERROR CONDITIONS

CONFIGURATION
Configuration Section
I-D-S Journal File Configuration

CONSIDERATION
Consideration When Mixing Software

CONSTANT
Constant Section

CONTENTS
Field contents

CONTROL
$ IDS control card
S IDS CONTROL CARD DESCRIPTION
Communication Control Block
Control Definition
.QCD - CONTROL DEFINITION
$ USERID control card
$ PRMFL control card
Record control word
Slave I-D-S Control Table
SLAVE I-D-S CONTROL TABLE
GEFRC file control block
Slave I-D-S Control Table
Slave I-D-S Control Table (SICT)

312

52
103
258

264

97
98

265

242
242

125

85

251

25
137

267

28

242

91

93
103
114
124
128
132
142
152
154
154
154
155

CONTROL (continued)
Total Control Entry
Control field
transferring control during execution
Communications Control Block (CCBLOC)
$ USE control card

COPY
cobrY

CREATING
CREATING AN I-D-S DATA FILE
Creating a Permanent I-D-S Data File
Creating a Temporary I-D-S Data File

CRITERIA
subfile allocation criteria

CRMAST
CRMAST directive

CURRENT
SELECT CURRENT MASTER
CURRENT record
CURRENT record
Current type of I-D-S operation
Current record type
Page and line number of current I-D-S record

DATA
DATA ORGANIZATION
SUMMARY OF DATA STRUCTURES
DATA DIVISION
Data Division
Data Division
I-D-S DATA FILE STRUCTURE DESCRIPTION
I-D-S DATA FILE INITIALIZATION
CREATING AN I-D-S DATA FILE
Creating a Permanent I-D-S Data File
I-D-S Data File Structure
I-D-S data file name
Creating a Temporary I-D-S Data File
.Q data file
I-D-S data file
I-D-S Data File Allocation
RECOVERING AN I-D-S DATA FILE
Data Page Buffer
attributes of an I-D-S data file
I-D-S DATA PAGES
Data Page Buffer
I-D-S DATA RECORDS
PERMANENT I-D-S DATA FILE
TEMPORARY I-D-S DATA FILE
TEMPORARY AND PERMANENT I-D-S DATA FILE
Data Base Load/Print Utility Routine (QUTL)
Data Type

155
242
259
264
267

32

126
126
129

134

128

28

74

82
101
125
126
126
128
128
129
129
131
134
145
153
154
16l
163
173
177
178
178
199
242

313

DATE
Date

DEALLOCATION
Subfile Deallocation

DEBUG
Debug
DEBUG OPTIONS

DECK
DECK SETUPS
deck setup for an I-D-S sort
SAMPLE DECK SETUPS

DEFINING
defining ENTRY POINTS

DEFINITION
Chain Definition
Chain Definition
Chain Definition Entry
DEFINITION STRUCTURE
Record Definition Entry
Detail Definition
Master Definition
Field Definition
Control Definition
+.QRD - RECORD DEFINITION
.ODD - DETAIL DEFINITION
+.QMD - MASTER DEFINITION
.QFD - FIELD DEFINITION
+.QCD - CONTROL DEFINITION

DELAY
IDSEJ DELAY

DELETE
Delete

DESCENDING
DESCENDING

DESCRIPTION
File Description
Record Description
File Description
I-D-S File Description Entry
Record Description
COBOL record description clause
I-D-S Record Description Entry
$ IDS CONTROL CARD DESCRIPTION
I-D-S DATA FILE STRUCTURE DESCRIPTION
Record Description
Page Description

314

141

136

63
237

97
152
295

260

28

44
101
104
107
110
112
114
120
121
122
123
124

142

64

75

28
28
28
29

32
33

101
159
le7

DESCRIPTIONS
UTILITY PROGRAM AND SUBROUTINE DESCRIPTIONS

DETAIL
Linking Detail Record of a Chain
detail records
Detail Definition
.QDD - DETAIL DEFINITION

DIRECT
RETRIEVE DIRECT

DIRECTIVE
CRMAST directive
Directive Processor and Service Subroutine (.QDIR)
directive file code is I*
directive
variable field of a directive
directive
I-D-S Directive

DIRECTIVES
DIRECTIVES

DIRECT-REFERENCE
DIRECT-REFERENCE
DIRECT-REFERENCE

DISC
$ DISC

DIVISION
IDENTIFICATION DIVISION
ENVIRONMENT DIVISION
DATA DIVISION
Procedure Division
PROCEDURE DIVISION
Data Division
Data Division

DO
DO

DONTDO
DONTDO

DUMP
Journal Tape Dump Utility Program (QUTJ)

DUMP /PRINT
Storage Tape Dump/Print Utility Routine (QUTD)

DUPLICATE
DUPLICATE records

179

15
41
107
121

86

128
232
232
232
233
233
237

238

75
82

157

238

238

195

187

71

315

DUPLICATES

Duplicates
DUPLICATES NOT ALLOWED clause

TTODTAT

transferring control during execution

EACH

RETRIEVE EACH

EDITING

Editing clause

EJECT

PAGE EJECT AND COMDK LABELING
Page Eject in the Listing

EMPTY

EMPTY buffer

END

TYPE 4 Slave End Sync (SLVEND)
ENTER

ENTER IDS
ENTRIES

Individual File Entries

ENTRY

I-D-S File Description Entry
I-D-S Record Description Entry
Chain Definition Entry
Record Definition Entry
Total Control Entry

USER ENTRY POINT

user entry point (QSTA4)
Complete trace entry
Complete PRTREC entry

I-D-S error entry

defining ENTRY POINTS

ENTRY POINT statement,

ENVIRONMENT

ENVIRONMENT DIVISION

ERROR

R1l error code

I-D-S error

I-D-S error entry
I-D-S ERROR CONDITIONS

ERROR~REFERENCE

316

ERROR-REFERENCE communication area
ERROR-REFERENCE
ERROR-REFERENCE

52
82

259

86

32

91
91

166

141

71
241
242
251

52

251

ETC
ETC

EXAMPLES
Examples

EXECUTE
Translate, Compile, and Execute

EXECUTION
OBJECT PROGRAM EXECUTION
I-D-S EXECUTION REPORT
Execution Report
Execution Report
execution report
Execution Report
transferring control during execution

EXECUTION INFORMATION
Execution Information Report Program (QUTR)

EXIT
EXIT statement

FIELD
prime retrieval field
sort key field
randomize field
match-key field
Field Definition
.QFD - FIELD DEFINITION
variable field of a directive
Field contents
Control field

FIELD-NAME
Field-name of record

FILE
file name
File Description
File Description
I-D-S File Description Entry
I-D-S DATA FILE STRUCTURE DESCRIPTION
File System Activity ($ FILSYS)
I-D-S DATA FILE INITIALIZATION
CREATING AN I-D-S DATA FILE
Creating a Permanent I-D-S Data File
I-D-S Data File Structure
I-D-S data file name
Creating a Temporary I-D-S Data File
.Q data file
I-D-S data file
ACCESSING AN I-D-S FILE
I-D-S Data File Allocation

206

143

98

99
147
196
208
235
246
259

210

259

134

317

FILE (continued)
I-D-S JOURNAL FILE
I-D-S Journal File Configuration
Journal File Map
RECOVERING AN I-D-S DATA FILE
attributes of an I-D-S data file
GEFRC file control block
Individual File Entries
PERMANENT I-D-S DATA FILE
TEMPORARY I-D-S DATA FILE
TEMPORARY AND PERMANENT I-D-S DATA FILE
File Utility Program (QUTU)
directive file code is I*
journal file
FILE OPTION

FILES
Mixing Temporary and Permanent Files
Closing Journal Files

FILE-CONTROL
File-Control Paragraph
FILE-CONTROL paragraph

FILE-NAME
file-name

FILLER
FILLER

FILSYS
File System Activity ($ FILSYS)

FIRST
FIRST
FIRST

FIRST-REFERENCE
FIRST-REFERENCE

FLAG
line flag
available line flag

FORMAT
Journal Record Format
Buffer Format
Buffer Format
Tape Format
Printer Format

FORTRAN
FORTRAN - INTERFACING WITH COBOL AND I-D-S
FORTRAN subprogram
pass information between COBOL and FORTRAN

318

136
137
144
145
154
154
156
177
178
178
217
232
236
238

131
142

27
29

29

32

125

40
47

76

244
245

137
158
161
207
246

265
266
267

GECALL
GECALL

GECHEK
MME GECHEK and MME GEROLL

GEFRC
GEFRC file control block

GEIDSE
MME GEIDSE

GENERATED
I-D-S GENERATED GMAP SYMBOLS

GEROLL
MME GECHEK and MME GEROLL

GMAP
GMAP alter number
I-D-S GENERATED GMAP SYMBOLS

GO
Go

HEAD
Head

HEADER
PRTREC header

HEADING
TRACE heading

IDENTIFICATION
IDENTIFICATION DIVISION

IDS
SELECT IDS
IDS Section
ENTER IDS
IDS Section
IDS Section
$ IDS control card
$ IDS CONTROL CARD DESCRIPTION

IDSEJ
IDSEJ typein
IDSEJ DELAY

IDS-SPECIAL~-NAMES
IDS-Special-Names Paragraph

IF
IF

91

147

154

145

249

147

242
249

66

67

242

242

23

27
28
61
74
82
93

142
142

25

86

319

IMAGE

TYPE 5 Before Page Image (BEFORE)

TYPE 6 After Page Image (AFTER)

Type 5 Before Page Image (BEFORE)

Type 6 After Page Image (AFTER)
IMAGES

BEFORE page images
AFTER page images

IMPERATIVE
I-D-S Imperative Statements

INDICATOR
level indicator MD
Indicator

INDIVIDUAL
Individual File Entries

INFORMATION
pass information between COBOL and FORTRAN

INITIALIZATION
I-D-S DATA FILE INITIALIZATION

INITIALIZE
Page Initialize Utility Routine (QUTI)

INPUT-OUTPUT
Input-Output Section

INTERFACING
FORTRAN - INTERFACING WITH COBOL AND I-D-S

INTERVAL
INTERVAL
INTERVAL clause
Interval
INTERVAL

INVENTORY
inventory records
Inventory Record Buffer
I-D-S INVENTORY RECORDS
Buffer Strategy for Inventory Buffers

directive file code is I*

I-D-S
I-D-S CHAINS
I-D-S RECORDS
I-D-S PROGRAMMING LANGUAGE
I-D-S File Description Entry
I-D-S Record Description Entry

320

141
141
165
165

145
145

61

28
141

156

267

125

192

27

265

38
40
41
83

84
152
158
159

232

I-D-S (continued)

I-D-S Imperative Statements 61
I-D-S Conditional Statements 85
I-D-S DATA FILE STRUCTURE DESCRIPTION 101
I-D-S DATA FILE INITIALIZATION 125
CREATING AN I-D-S DATA FILE 126
Creating a Permanent I-D-S Data File 126
I-D-S Data File Structure 128
I-D-S data file name 128
Creating a Temporary I-D-S Data File 129
I-D-S data file 131
ACCESSING AN I-D-S FILE 132
I-D-S Data File Allocation 134
I-D-S JOURNAL FILE 136
I-D-S Journal File Configuration 137
RECOVERING AN I-D-S DATA FILE 145
I-D-S EXECUTION REPORT 147
ASSIGNMENT OF I-D-S BUFFER AND WORK AREAS 151
deck setup for an I-D-S sort 152
Slave I-D-S Control Table 152
SLAVE I-D-S CONTROL TABLE 154
attributes of an I-D-S data file 154
Slave I-D-S Control Table 154
Slave I-D-S Control Table (SICT) 155
I-D-S INVENTORY RECORDS 158
I-D-S DATA PAGES 161
I-D-S DATA RECORDS 173
I-D-S UTILITY PROGRAMS AND SUBROUTINES 177
PERMANENT I-D-S DATA FILE 177
TEMPORARY I-D-S DATA FILE 178
TEMPORARY AND PERMANENT I-D-S DATA FILE 178
I-D-S Directive 237
I-D-S error 241
Current type of I-D-S operation 242
Page and line number of current I-D-S record 242
I-D-S5 error entry 242
I-D-S modify routine 242
I-D-S RESERVED WORDS 249
I-D-S GENERATED GMAP SYMBOLS 249
I-D-S ERROR CONDITIONS 251
USING I-D-S WITH A COBOL OVERLAYED PROGRAM 264
FORTRAN - INTERFACING WITH COBOL AND I-D-S 265
1/0
I/0 request for a page 154
JOB
Job Number 142
JOURNAL
I-D-S JOURNAL FILE 136
I-D-S Journal File Configuration 137
Journal Record Format 137
Closing Journal Files 142

321

JOURNAL (continued)
Journal Override
Journal File Map

Journal Tape Dump Utility Program (QUTJ)
Journal Record Selector Utility Program (QUTP)

journal file

KEY
ASCENDING RANGE KEY
sort key field
sort key

LABELED
labeled common
labeled common area
labeled common area (.IDS...)

LABELING
PAGE EJECT AND COMDK LABELING
COMDK Labeling

LANGUAGE
I-D-S PROGRAMMING LANGUAGE

LAST
LAST
LAST

LAST-REFERENCE
LAST-REFERENCE

LEVEL
level indicator MD
level 01 and 98
level 02

LINE

Page and line number of current I-D-S record

line flag
available line flag

LINK
CALL LINK

LINKED
LINKED TO PRIOR
Linked Prior

LINKED-MASTER
Linked-Master

LINKING
Linking Detail Record of a Chain

LISTING
Page Eject in the Listing

322

143
144
195
206
236

54
70
75

25
259
264

91
91

23

40
47

76

28
31
31

242
244
245

262

49
50

60

15

91

LLINK
CALL LLINK

LOAD
CALL's to load specific subprograms

LOAD/PRINT
Data Base Load/Print Utility Routine (QUTL)

MACRO

.QNAMS macro
MANAGEMENT

MEMORY MANAGEMENT
MANIPULATION

REFERENCE CODE MANIPULATION
MAP

Journal File Map
MASS

$ MASS
MASTER

Selecting Master Record of a Chain
Chain MASTER (optional)
primary master records
SELECT UNIQUE MASTER
SELECT CURRENT MASTER
master record

range master

master record

Master Definition

.QMD - MASTER DEFINITION
System Master Catalog

MASTER/DETAIL
Master/Detail

MATCH-KEY
Match-Key
match-key field
MATCH-KEY

MD
level indicator MD

MEMORY
MEMORY MANAGEMENT

MESSAGES
messages

262

262

199

241

151

303

144

157

15

17

49
49
71
82

110
122
128

45

57

75

28

151

235

323

MIXING

Mixing Temporary and Permanent Files 131

Consideration When Mixing Software 267
MME

MME GEIDSE 145

MME GECHEK and MME GEROLL 147
MODE

READ access mode 135

WRITE access mode 135

RECOVERY access mode 135
MODIFY

MODIFY 32

Modi fy 70

I-D-S modify routine 242
MOVE

MOVE 32

Move 72
MULTIPLE

Multiple Chains 5
NAME

file name 27

I-D-S data file name 128
NEAR

PLACE NEAR 38

Place Near 40

PLACE NEAR 41

PLACE NEAR 82

PLACE NEAR 83
NEXT

Chain NEXT 17

RETRIEVE NEXT 86
NOT

DUPLICATES NOT ALLOWED clause 82
NULL

NULL 238
NUMBER

Job Number 142

Activity Number 142

Sequence Number 142

GMAP alter number 242

Page and line number of current I-D-S record 242
OBJECT

OBJECT PROGRAM EXECUTION 99

324

OCCURS
OCCURS

ONFC/XX/
ONFC/xx/

OPEN
OPEN statement
Open

OPERATION
Current type of I-D-S operation

OPERATIONAL
OPERATIONAL CHARACTERISTICS

OPTION
FILE OPTION

OPTIONAL
Chain PRIOR (optional)
Chain MASTER (optional)

OPTIONS
DEBUG OPTIONS
OPTIONS

ORDERING
Chain Ordering

ORGANIZATION
DATA ORGANIZATION

OVE RFLOW
Overflow rule

OVERLAYED

USING I-D-S WITH A COBOL OVERLAYED PROGRAM

OVERLAYING
OVERLAYING A COBOL PROGRAM
Basis For Overlaying
Overlaying Procedure

OVERRIDE
Journal Override

PAGE
PAGE EJECT AND COMDK LABELING
Page Eject in the Listing

TYPE 5 Before Page Image (BEFORE)

TYPE 6 After Page Image (AFTER)
BEFORE page images

AFTER page images

Page Buffer Activity Table

32

238

42
73

242

125

238

17
17

237
238

16

84

264

257
257
262

143

91

91
141
141
145
145
152

325

PAGE (continued)
Data Page Buffer
I/0 request for a page
Data Page Buffer
Type 5 Before Page Image (BEFORE)
Type 6 After Page Image (AFTER)
Buffer Strategy for Page Buffers
Page Buffer Activity Table
Page Description
Base Page
Page Initialize Utility Routine (QUTI)
top of page

Page and line number of current I-D-S record

PAGES
I-D-S DATA PAGES

PAGETTE
Pagette

PAGE-RANGE
Page-Range
PAGE-RANGE clause
PAGE-RANGE clause
page-range
PAGE-RANGE

PARAGRAPH
IDS-Special-Names Paragraph
File-Control Paragraph
FILE~-CONTROL paragraph

PASS
pass information between COBOL and FORTRAN

PERFORM
Perform

PERMANENT
Creating a Permanent I-D-S Data File
Mixing Temporary and Permanent Files
PERMANENT I-D-S DATA FILE
TEMPORARY AND PERMANENT I-D-S DATA FILE

PICTURE
PICTURE clause

PLACE
PLACE NEAR
Place Near
PLACE NEAR
PLACE NEAR
PLACE NEAR

POINT
USER ENTRY POINT
user entry point (QSTA4)
ENTRY POINT statement,

326

153
154
163
165
165
166
166
167
168
192
235
242

l6l

170

38
38
40

83
25

27
29

267

88

126
131
177
178

32

241
241
260

POINTS
defining ENTRY POINTS

PRE~-LOAD
Randomizing Analyzer/CALC Pre-Load Sort Utility

PRIMARY
PRIMARY RECORDS
primary and secondary records
primary records
primary master records
primary record
primary record
PRIMARY SUBROUTINES

PRIME
Prime Chain
prime retrieval field

PRINT
Verify and Print Utility Subroutine (.QUTF)

PRINTER
Printer Format

PRIOR
Chain PRIOR (optional)
LINKED TO PRIOR
Linked Prior
RETRIEVE PRIOR

PRMFL
$ PRMFL control card
S PRMFL

PROCEDURAL
COBOL procedural statements

PROCEDURE
Procedure Division
PROCEDURE DIVISION
Overlaying Procedure

PROCESSING
Chain Processing
TRANSLATOR PROCESSING

PROCESSOR

Directive Processor and Service Subroutine (.QDIR)

PROGRAM ,
OBJECT PROGRAM EXECUTION
UTILITY PROGRAM AND SUBROUTINE DESCRIPTIONS
Journal Tape Dump Utility Program (QUTJ)
Journal Record Selector Utility Program (QUTP)

260

180

17
35

244

246

17
49
50
86

132
157

32

42
262

17
91

232

99
179
195
206

327

PROGRAM (continued)
Execution Information Report Program (QUTR)
Selected Record Sort Utility Program (QUTS)
File Utility Program (QUTU)

OVERLAYING A COBOL PROGRAM

USING I-D-S WITH A COBOL OVERLAYED PROGRAM

PROGRAMMING
I-D-S PROGRAMMING LANGUAGE

PROGRAMS
I-D-S UTILITY PROGRAMS AND SUBROUTINES

PRTREC
PRTREC
Complete PRTREC entry
PRTREC header

QSTA4
user entry point (QSTA4)

QUTD
Storage Tape Dump/Print Utility Routine (QUTD)

QUTI
Page Initialize Utility Routine (QUTI)

QUTJ
QUTJ
Journal Tape Dump Utility Program (QUTJ)

QUTL
Data Base Load/Print Utility Routine (QUTL)

QUTP
Journal Record Selector Utility Program (QUTP)
QUTP

QUTR
Execution Information Report Program (QUTR)

QUTS
Selected Record Sort Utility Program (QUTS)

QUTU
QUTU utility routine
File Utility Program (QUTU)

R11
R1l1 error code

RANDOMIZE
Randomize
randomize field
RANDOMIZE

328

210
213
217

257

L3

264

23

177

237
242
242

241

187

192

147
195

199

206
206

210

213

147
217

71

51
70
75

RANDOMIZING
Randomizing Analyzer/CALC Pre-Load Sort Utility

RANGE
ASCENDING RANGE KEY
range master

READ
READ access mode

RECORD
Record Classes
Linking Detail Record of a Chain
Selecting Master Record of a Chain
Record Description
Record Description
COBOL record description clause
I-D-S Record Description Entry
master record
primary record
CURRENT record
CURRENT record
primary record
master record
master record
Record Definition Entry
.QRD - RECORD DEFINITION
Journal Record Format
Slave Begin Sync Record Type 03
Record Type
Record control word
Inventory Record Buffer
Record Description
Journal Record Selector Utility Program (QUTP)
Selected Record Sort Utility Program (QUTS)
Current record type
Page and line number of current I-D-S record
Field-name of record

RECORDS
CALCULATED RECORDS
SECONDARY RECORDS
PRIMARY RECORDS
I-D-S RECORDS
calculated records
primary and secondary records
secondary records
primary records
primary master records
detail records
DUPLICATE records
Secondary records
Calculated records
inventory records
I-D-S INVENTORY RECORDS
I-D-S DATA RECORDS

180

54
82

135

329

RECOVERING
RECOVERING AN I-D-S DATA FILE

RECOVERY
RECOVERY access mode

REDEFINES
REDEFINES

REFERENCE
re ference code
reference code
REFERENCE CODE MANIPULATION

RENAMES
RENAMES

REPORT
I-D-S EXECUTION REPORT
Execution Report
Execution Report
Execution Information Report Program (QUTR)
execution report
Execution Report

REPRESENTATION
STRUCTURE REPRESENTATION

REQUEST
I/0 request for a page

RESERVED
I-D-S RESERVED WORDS

RETRIEVAL
Retrieval Via
prime retrieval field

RETRIEVAL
RETRIEVAL
RETRIEVAL
RETRIEVAL
RETRIEVAL
retrieval

VIA
VIA
VIA clause
VIA
VIA
statements

RETRIEVE

RETRIEVE
Retrieve
RETRIEVE
RETRIEVE DIRECT
RETRIEVE EACH
RETRIEVE NEXT
RETRIEVE PRIOR

RETURN
Return
RETURN statement
return to the calling subprogram

330

145

135

32

74
76
303

32

147
196
208
210
235
246

154

249

RNG/1BlE. ..5B5E/
RNG/1B,1E,...,5B,5E/

ROLLBACK
rollback

ROUTINE
QUTU utility routine
Storage Tape Dump/Print Utility Routine (QUTD)
Page Initialize Utility Routine (QUTI)
Data Base Load/Print Utility Routine (QUTL)
I-D-S modify routine

RULE
Overflow rule

SAMPLE
SAMPLE DECK SETUPS

SECONDARY
SECONDARY RECORDS
primary and secondary records
secondary records
Secondary records

SECTION
Configuration Section
Input-Output Section
IDS Section
Working-Storage Section
Constant Section
IDS Section
IDS Section

SEGMENTATION
Segmentation

SELECT
SELECT IDS
SELECT UNIQUE MASTER
SELECT CURRENT MASTER
Select
SELECT

SELECTED
Selected Record Sort Utility Program (QUTS)

SELECTING
Selecting Master Record of a Chain

SELECTOR
Journal Record Selector Utility Program (QUTP)

SEQUENCE
Sequence Number

238

147

147
187
192
199
242

84

15

206

142

331

SERVICE

Directive Processor and Service Subroutine (.QDIR) 232
SETUP

deck setup for an I-D-S sort 152
SETUPS

DECK SETUPS 97

SAMPLE DECK SETUPS 295
SICT

SICT Table 154

Slave I-D-S Control Table (SICT) 155

SICT table 155
SLAVE

Slave Begin Sync Record Type 03 138

TYPE 3 Slave Begin Sync (SLVBGN) 141

TYPE 4 Slave End Sync (SLVEND) 141

Slave I-D-S Control Table 152

SLAVE I-D-S CONTROL TABLE 154

Slave I-D-S Control Table 154

Slave I-D-S Control Table (SICT) 155
SLVBGN

TYPE 3 Slave Begin Sync (SLVBGN) 141
SLVEND

TYPE 4 Slave End Sync (SLVEND) 141
SOFTWARE

Consideration When Mixing Software 267
SORT

sort key field 70

sort key 75

Sort 79

deck setup for an I-D-S sort 152

Randomizing Analyzer/CALC Pre-Load Sort Utility 180

Selected Record Sort Utility Program (QUTS) 213
SORTED

SORTED 40

SORTED WITHIN TYPE 40

SORTED WITHIN TYPE 47

SORTED 47
SPECIFIC

CALL's to load specific subprograms 262
STATEMENT

OPEN statement 42

RETURN statement 77

CALL statement 259

EXIT statement 259

ENTRY POINT statement, 260

332

STATEMENTS

COBOL procedural statements 32

I-D-S Imperative Statements 61

I-D-S Conditional Statements 85

retrieval statements 86
STATISTICS

TYPE 9 Statistics 141
STORAGE

Storage Tape Dump/Print Utility Routine (QUTD) 187
STORE

STORE 39

Store 82

STORE 85
STRATEGY

Buffer Strategy for Inventory Buffers 159

Buffer Strategy for Page Buffers 166
STRUCTURE

STRUCTURE REPRESENTATION 8

I-D-S DATA FILE STRUCTURE DESCRIPTION 101

DEFINITION STRUCTURE 101

I-D-S Data File Structure 128
STRUCTURES

SUMMARY OF DATA STRUCTURES 12
SUBFILE

subfile 125

Subfile Allocation 132

subfile allocation criteria 134

Subfile Deallocation 136
SUBPROGRAM

return to the calling subprogram 259

FORTRAN subprogram 266
SUBPROGRAMS

Communication Between Subprograms 258

CALL's to load specific subprograms 262
SUBROUTINE

UTILITY PROGRAM AND SUBROUTINE DESCRIPTIONS 179

Subroutine .QSTB 210

Directive Processor and Service Subroutine (.QDIR) 232

.QSTC subroutine 237

Verify and Print Utility Subroutine (.QUTF) 244
SUBROUTINES

I-D-S UTILITY PROGRAMS AND SUBROUTINES 177

PRIMARY SUBROUTINES 293
SUMMARY

SUMMARY OF DATA STRUCTURES 12

333

SYMBOLS

I-D-S GENERATED GMAP SYMBOLS 249
SYMDEF

SYMDEF 232
SYNC

Slave Begin Sync Record Type 03 138

TYPE 3 Slave Begin Sync (SLVBGN) 141

TYPE 4 Slave End Sync (SLVEND) 141
SYNONYM

Synonym 59
SYSTEM

File System Activity ($ FILSYS) 125

System Master Catalog 128
TABLE

Slave I-D-S Control Table 152

Page Buffer Activity Table 152

SLAVE I-D-S CONTROL TABLE 154

SICT Table 154

Slave I-D-S Control Table 154

Slave I-D-S Control Table (SICT) 155

SICT table 155

Page Buffer Activity Table 166
TABLES

Chain Tables 18
TAPE

Storage Tape Dump/Print Utility Routine (QUTD) 187

Journal Tape Dump Utility Program (QUTJ) 195

Tape Format 207
TEMPORARY

Creating a Temporary I-D-S Data File 129

Mixing Temporary and Permanent Files 131

TEMPORARY I-D-S DATA FILE 178

TEMPORARY AND PERMANENT I-D-S DATA FILE 178
TERMINATION

Termination Code 141
TIME

Time 141
TOP

top of page 235
TOTAL

Total Control Entry 155

334

TRACE
TRACE

Complete trace entry
TRACE heading

TRACE

TRANSFERRING

transferring control during execution

TRANSLAT

E

Translate and Compile
Translate, Compile, and Execute

TRANSLATOR
TRANSLATOR PROCESSING

TYPE
Type

SORTED WITHIN TYPE
SORTED WITHIN TYPE
Slave Begin Sync Record Type 03

Recor
TYPE
TYPE
TYPE
TYPE
TYPE
Type
Type

d
3

U100

Type

Slave Begin Sync (SLVBGN)
Slave End Sync (SLVEND)
Before Page Image (BEFORE)
After Page Image (AFTER)
Statistics

Before Page Image (BEFORE)
After Page Image (AFTER)

Current type of I-D-S operation
Current record type
Data Type

TYPEIN

IDSEJ typein

TYPES/NNN. ..NNN/
TYPES/nnn,...,nnn/

UNIQUE

SELECT UNIQUE MASTER

USE
Use

USE clause
$ USE control card

USER

USER ENTRY POINT
user entry point (QSTA4)

USERID

$ USERID control card

USING

USING I-D-S WITH A COBOL OVERLAYED PROGRAM

237
242
242
251

259

97
98

91

34

47
138
141
141
141
141
141
141
165
165
242
242
242

142

238

49

89

267

241
241

128

264

335

UTI

LITY

QUTU utility routine

I-D-S UTILITY PROGRAMS AND SUBROUTINES
UTILITY PROGRAM AND SUBROUTINE DESCRIPTIONS
Randomizing Analyzer/CALC Pre-Load Sort Utility
Storage Tape Dump/Print Utility Routine (QUTD)
Page Initialize Utility Routine (QUTI)

Journal Tape Dump Utility Program (QUTJ)

Data Base Load/Print Utility Routine (QUTL)
Journal Record Selector Utility Program (QUTP)
Selected Record Sort Utility Program (QUTS)
File Utility Program (QUTU)

Verify and Print Utility Subroutine (.QUTF)

VARIABLE

variable field of a directive

VERBS/XXX...XXX/

VER

VIA

VERBS/XXX 4+ o« ; XXX/

IFY
Verify and Print Utility Subroutine (.QUTF)
verify

Retrieval Via
RETRIEVAL VIA
RETRIEVAL VIA
RETRIEVAL VIA clause
RETRIEVAL VIA
RETRIEVAL VIA

WHEN

WIT

WIT

Consideration When Mixing Software

H
USING I-D-S WITH A COBOL OVERLAYED PROGRAM
FORTRAN - INTERFACING WITH COBOL AND I-D-S

HIN
SORTED WITHIN TYPE
SORTED WITHIN TYPE

WORD

Record control word

WORDS

I-D-S RESERVED WORDS

WORK

ASSIGNMENT OF I-D-S BUFFER AND WORK AREAS

WORKING-STORAGE
Working-Storage Section

336

147
177
179
180
187
192
195
199
206
213
217
244

233

238

244
244

267

264
265

40
47

142

249

151

28

WRITE
WRITE access mode

$
$ IDS control card
$ IDS CONTROL CARD DESCRIPTION
File System Activity ($ FILSYS)
$ USERID control card
$ PRMFL control card
$ PRMFL
$ DISC
$ MASS
$ USE control card
.IDS...
labeled common area (.IDS...)
.Q
.Q data file
.QOBCD
<.QBCD
.QCD
.QCD - CONTROL DEFINITION
«.QCLR
.QCLR
.QCSM
.QCSM
. QDD
.QDD - DETAIL DEFINITION
.QDIR
Directive Processor and Service Subroutine
.QDIRC
.QDIRC
.QFD
.QFD - FIELD DEFINITION
. QMCH
.QMCH
. QMD
.QMD - MASTER DEFINITION
. QMEX
QMEX
« QMWD
«QMWD

135

91

125
128
132
157
157
157
267

264

129

234

124

234

234

121

232

233

123

235

122

235

236

337

. QNAMS

.QNAMS macro

.QPBK

«QPBK

.QRD

.QRD - RECORD DEFINITION

.QSFD

.QSFD

.QSTB

Subroutine .QSTB

.QSTC

.QSTC subroutine

.QUTF

Verify and Print Utility Subroutine
.QUTF

.QUTF1

.QUTF1

.QUTF2

.QUTF2

.QUTF3

.QUTF3

.QVFY

338

.QVFY

(.QUTF)

241

236

120

233

210

237

244
246

244

245

246

244

00.

f
[

INE 00000000000000000000000000000000000000

see CUTAL(

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form*

ORDERNO:] BR69, REV. 0
TITLE: SERIES 600/6000 INTEGRATED DATA —
STORE REFERENCE MANUAL DATED: | JANUARY, 1971
ERRORS IN PUBLICATION:
SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION:
(Please Print)
FROM: NAME DATE
COMPANY
TITLE
ADDRESS

Your comments will be promptly investigated by appropriate technical personnel, action will be taken as
required, and you will receive a written reply. if you do not require a written reply, please check here.D

q.;oooooopoooooooqe“_or\,g LINE e ® @«

POSTAGE WILL BE PAID BY:

HONEYWELL INFORMATION SYSTEMS

60 WALNUT STREET
WELLESLEY HILLS, MASS. 02181

ATTN: U.S. GROUP PUBLICATIONS, MS 050

A

Honeywell

0000000000 00OOCCGOIONOIOOGOIONOITOTS

A
FOLD ALONG LiNE

l...”.....'g.......... 00000000OCOCGOIOGIOIODS

FOLD ALONG LINE

The Other Computer Company:
Honeywell

HONEYWELL INFORMATION SYSTEMS

2628
51071
Printed in U.S.A. BR69, Rev. 0

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026.0
	026.1
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205.0
	205.1
	205.2
	205.3
	205.4
	205.5
	205.6
	205.7
	205.8
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	replyA
	replyB
	xBack

