HONEYWELL

MULTICS
PROGRAMMER'’S
REFERENCE
MANUAL

SOFTWARE

MULTICS

PROGRAMMER’S REFERENCE MANUAL
ADDENDUM A

SUBJECT
Changes and Additions to the Manual

SPECIAL INSTRUCTIONS

This is the first Addendum to AG91-04, dated February 1985. Change bars in the
margins indicate technical changes and additions; asterisks denote deletions.

Note:
Insert this cover behind the manual cover to indicate the manual is
updated with Addendum A.

SOFTWARE SUPPORTED
Multics Software Release 12.0

ORDER NUMBER
AG91-04A January 1987

47170

Brintad in US.A. Honeywell

COLLATING INSTRUCTIONS

To update the manual, remove old pages and insert new pages as follows:

Remove Insert

31,32 31,32

3-5 through 3-8 3-5 through 3-8
3-8.1, blank

3-59 through 3-62 3-59 through 3-62

4-15,4-16 4-15,4-16

5-13,5-14 5-13,5-14

6-19, 6-20 6-19, 6-20

7-71,7-72 7-71,7-72
7-72.1, blank

B-7 through B-10 B-7 through B-10

B-29 through B-32 B-29 through B-32

G-1 through G4 G-1 through G4
G4.1,G4.2

G-7 through G-12 G-7 through G-12
G-12.1, blank

G-19, G-20 G-19, G-20

G-23,G-24 G-23,G-24
G-24.1, blank
H-16.1, blank

H-17,H-18 H-17, H-18

H-18.1, blank

The information and specifications in this document are subject to change without notice. Consult
your Honeywell Marketing Representative for product or service availability.

11/86

©Honeywell Information Systems Inc., 1987 File No.: 1113, 1U13 AG91-04A

MULTICS
PROGRAMMER’S REFERENCE MANUAL

SUBJECT

Reference Material Describing the Overall Mechanics, Conventions, and Usage
of the Multics System

SPECIAL INSTRUCTIONS

This publication supersedes the previous edition of the manual, Order No.
AG91-03, dated February 1983, and its associated addendum, Addendum A,
dated December 1983.

Section 6 is completely rewritten and does not contain change indicators. Sec-
tion 10 ig now and dnog not nnntn{n chanaa indicatare In all athar cantinng
WAVAL AWV A0 LIUTTYY QUAN VLD AV YV vuiavcoLax U.lLu-l.J.s\./ AALIVALVEAUUVL ID. X1l A1l Vwiivil OuvLvuviviiaw
change bars in the margin indicate new and changed information and asterisks
denote deletions. See the “Significant Changes” section in the Preface for a

description of changed information.

SOFTWARE SUPPORTED

Multics Software Release 11.0

ORDER NUMBER

AG91-04 February 1985

Honeywell

PREFACE

The Multics Programmer’s Reference Manual contains general information about the
Muitics command and programming environments. It describes such subjects as the command
language, the storage system, and the input/output system.

The following are the primary reference manuals for user and system programmers of the
Multics system. These manuals contain general information and may be referenced throughout
this document. For convenience, these references are as follows:

Document Referenced In Text As

Multics Programmer's Reference Manual Programmer's Reference
(Order No. AG91)

Multics Commands and Active Functions Commands
(Order No. AG92)

Multics Subroutines and 1/0 Modules Subroutines
(Order No. AG93)

Each section/appendix of this document is structured according to the heading hierarchy
shown below. Each heading indicates the relative level of the text that follows it.

LEVEL HEADING FORMAT
1 (highest) ALL CAPITAL LETTERS, BOLD TYPE FACE
2 Initial Capital Letters, Bold Type Face
3 ALL CAPITAL LETTERS, ITALICS TYPE FACE
4 Initial Capital Letters, [talics Type Face

The information and specifications in this document are subject to change without notice. This
document contains information about Honeywell products or services that may not be available
outside the United States. Consult your Honeywell Marketing Representative.

©Honeywell Information' Systems Inc., 1985 File No.: 1L13,1U13 AG91-04

Significant Changes in AG93-04

The description of the Multics storage system in Section 2 has been updated to reflect the
support of extended entry types.

Section 3 contains new material on date/time values.
Section 4 now includes information describing the inplementation of extended entry types.

The description of the Multics input/output system in Section 5 has been updated to reflect
the addition of a new 1/0 module {(mtape_) used for tape input/output. Since the new mtape_
1/0 module accepts a file open, close, and detach description, the programming/implementation
instructions have also been updated to reflect this capability.

Section 6 (Multics Security) has been completely rewritten.
New conditions generated by the data management sof tware have been added to Section 7.
Section 10 is a new section describing the new data management software.

There are changes to the description of the Multics standard magnetic tape format in
Appendix F.

i AG91-04

CONTENTS

Section 1 Multics Concepts and Characteristics 1-1
System Concepts v i, 1-1
Systemn Characteristics 1-2

Segments ot e e e 1-3
Virtual Memory 1-3
Paging e 1-4
Process e 1-4
Selective Sharing 1-5
Access Control List 1-6
Access Isolation Mechanism 1-6
Ring Structure 1-6
System Administration 1-7
User Interfaces 1-7
Environment Shaping. 1-7
System Software 1-8
PL/T . . . e e 1-8
FORTRAN i 1-8
BASIC e 1-8
COBOLt 1-8
APL oo 1-8
PASCAL i i e e e e 1-9
ALM . .. e e 1-9
Qedx e 1-9
Ted e 1-9
Emacs it i e e e e e e 1-9
Communications Software 1-9
Sort/Merge, 1-9
GCOS Environment Simulator 1-10
Multics Graphics System 1-10
Multics Data Base Manager 1-10
Multics Report Program Generator 1-10
Logical Inquiry and Update System 1-10
Word Processing 1-10
Extended Mail Facility 1-10
Executive Mail 1-11
Forum 1-11
Executive Forum 1-11
Transaction Processing Tools 1-11
The FAST/DFAST Facility 1-11
Menu Creation Facilities i-ii
Inter-Multics File Transfer Facility 1-11
Report Writer 1-11
File Transfer To and From Personal Computers .. 1-11
Other Support Facilities and Tools 1-12
Access to the System 1-12

iv AG91-04

Service to Large and Small Users 1-13

System Design« 1-13
"~ Continuous Operation o... 1-13
System Reliability 1-13
Glossary of Multics Terms 1-14
Section 2 Multics Storage System oo 2-1
Segment References 2-1
Logical Volumes 2-2
Logical Volume Attachment 2-4
Master Directories 2-4
Storage System Entry Types 2-6
Segment e e 2-6
Directory i i i e e e e e e 2-6
Link e e e e e e 2-6
Multisegment File 2-6
Data Management File 2-6
Extended Entry Types 2-7
Entry Attributes 0., 2-7
System Directories 2-13
Section 3 Naming, Command Language, and Terminal Usage 3-1
Constructing and Interpreting Names 3-1
Entrynames 3-1
Pathnames 3-2
Archive Component Pathnames 3-4
Star Names o0 i v v i e e e e 3-5
Constructing Star Names 3-5
Interpreting Star Names 3-5
Equal Names 3-7
Constructing Equal Names 3-7
Interpreting Equal Names 3-8
Archive Component Pathnames and Equal Names . 3-12
Reference Names 3-14
Entry Point Names 3-15
Command, Subroutine, Condition, and 1/0 Switch
Names e nenenn. 3-16
Request IDs 3-16
Date/Time Names 317
Date/Time Input Values 3-17
Time Strings (DT Values) 3-17
Date/Time Output Values 3-23
Time Format 3-23
List of Format Keywords 3-23
Command Language 3-31
Command Environment 3-32
Simple Command Line 3-32
Compound Command Line 3-33
Reserved Characters and Quoted Strings 3-34
Iteration 3-35
Active SITINgs 3-36
Concatenation« 3-39
Typing Conventions oo v v v .. 3-40
Canonical Form 3-41

v AG91-04

Canonicalization, 3-43

Column Assignment 3-44
Overstrike Canonicalization 3-44
Overstrike Canonicalization Exampies 3-45
Replacement Canonicalization 3-45
Replacement Canonicalization Examples 3-47
Erase and Kill Characters 3-48
Examples of Erase and Kill Processing 3-50
Escape Sequences v vttt 3-51
Typing Convention Examples 3-52
Column Canonicalization Examples 3-53
Erase, Kill, and Escape Examples 3-53
Terminal Qutputv.... 3-56
Carriage Motion, 3-56
Delays e e e e e e e e e e e e e e e 3-57
Output Escape Sequences 3-58
Continuation Lines 3-58
End-of-Page Processing 3-58
Escape Conventions on Various Terminals 3-58
Selectric Devices 3-59
Upper—Case-Only Devices 3-60
Execuport 300 3-60
CDI Model 1030 3-61
Flow Control i it 3-61
Input Flow Control 3-61
Output Flow Control 3-62
Block Transfer 3-62
Section 4 Multics Programming Environment 4-1
Program Preparation 4-1
Programming Languages 4-1
Creating and Editing the Source Segment 4-2
Creating an Object Segment 4-3
Object-Segment Format 4-4
Debugging Facilities 4-5
Writing a Command 4-5
Writing an Active Function 4-7
Address Space Management 4-9
Dynamic Linking 4-9
Search Rules 4-10
Binding 0. 4-11
Making a Segment Known 4-12
Address Space Management Subroutines 4-13
Multics Stack Segments 4-14
Stack Header e e e e e e e e e e e e 4-14
Stack Frames 4-14
Combined Linkage Region 4-14
Clock Services v v v i v i e i e e e e e 4-14
Access to System Clocks 4-15
Facilities for Timed Wakeups 4-16
Writing a Process Overseer 4-16
Process Initialization 4~-17
Process Overseer Functions 4-19
Some Notes on Writing a Process Overseer 4-21

vi AGI91-04

Direct Process Overseers
Handling of Quit Signals
Creating an Extended Entry
Interactive Subsystem Programming Environment
Subsystem Invocations
Use of sci_ptr and info_ptr in Interactive
Subsystems
Stand-Alone Invocations
Monitoring Subsystem Usage
The Subsystem Environment
Subsystem Request Loop
Subsystem Request Language
Modifying the Standard Request Processor
The rp_options Structure
Defining a Request Language
Abbreviation Processing
Writing Subsystem Requests
Argument Processing
Error Handling
The Apply Request
Subsystem Requests and Multics Commands
Subsystem Areas and Temporary Segments . . .
Using exec_coms in Subsystems
Tailoring the Subsystem Environment
Replaceable Procedures for cpescape and
unknown_request
Request Loop Replaceable Procedures
Other Replaceable Procedures
Subsystem Documentation Facilities
Subsystem Info Segments and Directories
Using the Standard Requests Info Segments
Subsystem Debugging Facilities
Subsystem Request Tables
Standard Requests and Standard Request Tables
Using Standard Requests
Defining Request Tables
Using the Request Macros
Syntaxo e
The request Macro
The set_default_flags Macro
The unknown_request Macro
The multics_request Macro
The set_default_multics_flags Macro
The set_default_multics_doc Macro

Section 3 input and Ouiput Facilities
Multics Input/QOutput System

System Input/QOutput Modules

How to Perform Input/Output

Input/Output Switches

Attaching a Switch

Opening a Switch

Closing a Switch

Detaching a Switch

vii

4-45
4-46
4-47
4-47
4-48
4-49
4-50
4-50
4-51
4-51
4-52
4-52
4-53
4-53
4-55
4-55
4-56
4-57
4-58

5-1
5-1
5-2
5-4
5-7
5-7
5-8
5-9
5-9

AG91-04

Synonym Attachments 5-10

Standard Input/Output Switches 5-14
Initialization of External Pointer Variables . .. 5-14
inierrupted Input/Ouiput Operations 5-14
Programming Language Input/Output Facilities 5-15
File Input/Output 5-15
Unstructured Files 5-16
Sequential Files 5-16
Blocked Files 5-17
Indexed Files 5-18
File Opening« ... 5-20
File Closing, 5-22
File Position Designators 5-22
Terminal Input/Output 5-24
ty_ SUpport e e e e 5-24
window_io_ Support (the Video System) 5-24
What is a Window 5-24
Window Capabilities 5-25
Positioning the Cursor 5-25
Selective Erasure 5-26
Scrolling 5-26
Selective Alteration 5-26
Miscellaneous 5-26
Real-Time Editing 5-27
The Erase Character 5-27
The Kill Character 5-27
The Line Editor 5-27
Moving the Cursor 5-28
Deleting Characters and Words 5-28
Retrieving Deleted Text 5-28
Other Editor Requests 5-30
Writing Editor Extensions 5-31
Line Editor Routines 5-32
Window Editor Utilities 5-35
End-Of-Window Processing 5-37
More Processing 5-37
Output Buffering 5-38
Structure of the Video System 5-38
IO Modules 5-38
Subroutines 5-39
Command 5-39
Using the Video System e 5-39
Attaching the Video System 5-39
Detaching the Video System 5-42
Design Requirements for Windows 5-43
Create Window Operation 5-44
Important Window Requests 5-44
Change Window Operation 5-47
Desiroy Window Operation 5-47
Clear Window Operation 5-49
Magnetic Tape Input/Qutput 5-49
Magnetic Tape Input/Output in Releases Previous
to MR 11.0 5-49
Magnetic Tape Input/Qutput in MR 11.0 5-50

viii AG91-04

Bulk Input and Output
Printed Output
Vertical Format Control
Punched—Card Cutput
Punched-Card Input
Access Required for Card Input

Card Input Registration and Password .

Card Input Access Control Segment . . .
Station Access Control Segment
Control Card Information
Bulk Data Input
Control Card Format of a Card Deck for
Bulk Data Input
Remote Job Entry
Format of a Card Deck for Remote Job
Entry
Remote Job Entry with Foreign Computer
Systems e e
Submitting Card Decks to a Remote
System e e

Receiving Output from a Remote System .
Format of an Output File Transmitted to
) Multics for Online Perusal
Implementation Of Input/Output Modules
I/0 Control Blocks
I/0 Control Block Structure
Attach Pointers
Open Pointers
Entry Variables
Synonyms e
Writing an IO Module
Design Considerations
Implementation Rules
Attach Operation
Open Operationoo.o....
Close Operation
Detach Operation
Modes and Control Operations
Performing Control Operations From Command
Level
Other Operations
Quter Modules
Resource Control Package
Relationship of RCP to Other 1/0 Facilities . . .
Summary of RCP Actions
Reservation, Assignment, and Attachment
Resource Reservation
Device Assignment
Device Attachment
Device Limits
Resource Naming Conventions
Device Names
Volume Names
I70 Workspaces

ix

5-57

5-57
5-58

5-58
5-59

5-59
5-59

5-60
5-61
5-62

5-64
5-64
5-65

5-66,
5-67
5-68
5-69
5-71
5-7

5-74
5-75

5-175

5-87

AG91-04

Resource Management Facility
Summary of Resource Management Facility Actions
Acquiring Resources
Naming Rules for Attributes

Access Control Interface with RCP and Resource
Managementt i i e
Access Control Segments
Access Class Ranges
RCP Effective Access

Section 6 Multics SECUTLY . . . v v v v v e e e e e e '

WOILLES ¢ v 6 v 6 0 o o & o o s o & s o .

Access Control Lists PR
Objects Subject to Access Control
Access Identifier
Access Modes

Access Modes on Entries in the Storage System
Access Modes on Resources Protected by RCP
Access Modes on Communications Channels .
Access Modes on Daemon Source Names . .
Creating, Modifying, Listing, and Deleting Items in
an Access Control List
Granting Access to Groups of Individuals
Using the Asterisk Character
Missing Components
Calculating Access Rights
Initial ACL’s e e e e
SysDaemon Entries
ACL Entry for the Creating User
User-Defined Initial ACL's
Access Control Segments
Access Control Segments for RCP Resources
Access Control Segments for Communications
Channels
Access Control Segments for Daemon Source
Names,

Access Isolation Mechanism
AIM Classification System
Policy Rules and Objectives
Relationships Between AIM Attributes
Setting AIM Attributes e

Enabling AIM
Marking of Data
Segment
Directory
Message Segment
Mailboxes
Marking of Users
Marking of RCP Resources
Marking of Communication Channels
AIM Access Rules
Segments e e e e e e
Directories it

5-94

Message Segments 6-20

Interprocess Communication 6-20
Inter-System AIM 6-20
The Ring Mechanism 622
Advantages of the Ring Mechanism 6-22
Ring Attributes and Access Control 6-22
Ring Brackets 6-23
Write Bracket 6-23
Read Bracket 6-23
Execute Bracket 6-23
Gate Bracket 6-24
Null Accesst iie .. 6-24
Using the Ring Mechanism 6-24
Implementing Ring Protection 6-28
Setting Segment Ring Brackets 6-28
Modifying Segment Ring Brackets 6-29
Directory Ring Bracket Validation Level and
Access Rights 6-29
Validation Level 6-30
Directory Ring Bracket Access Rights ... 6-30
Setting Directory Ring Brackets 6-31
Modifying Directory Ring Brackets 6-31
User Ring Brackets 6-31
Trusted Path 6-32
Section 7 Handling Unusual Occurrences 7-1
Printed Messages i i i i 7-1
Status Codes 7-2
Creation of Status Code Tables 7-3
List of System Status Codes and Meanings 7-4
Conditions i e 7-26
Multics Condition Mechanism 7-26
Example of the Condition Mechanism 7-28
On Unit Activated by All Conditions 7-30
Continuation of Search 7-30
Interaction with the Multics Ring Structure 7-32
Nonstandard Location of On Unit for Special
Conditions e e 7-32
Action Taken by the Default Handler 7-32
System Condition Wall 7-33
Signalling Conditions in a User Program 7-33
Obtaining Additional Information About a
Condition 7-33
Machine Condition Data Structure T34
Information Header Format 7-37
PL/I Condition Data Structure e e . 7-38
System Conditions and Default Handler T-40
List of System Conditions 7-42
Nonlocal Transfers and Cleanup Procedures 7-83
Epilogue Handling 7-84
Faults e e e e 7-84
Simulated Faults 7-84
Null Pointer 7-85
Process Termination Fault 7-85

xi AG91-04

Section 8 Backup e e e
DUmping v o v i v v it e e e e e e

Incremental Dumps

Consolidated Dumps

Complete Dumps

Recovery e e

Section 9 Administrative Controls e

Administrative Hierarchy

System Administrators

Project Administrators

USers . . . i i e e e e e e e e e e e e e e

Administrative Capabilities

Pricing
Interactive And Foreground Absentee Usage .

Background Absentee Usage

170 Daemon Usage

Other Charges

Apportioning System Capacity

Load-Control Groups

Work Classes

Access Control,

Gate ACCESS . . v i i e e e e e

Device Access v i i

Volume ACCESS i .t

Absentee and Daemon Queues

Storage Quota e e e e e e e e e e

Section 10 Multics Data Management
Introduction
Features and Benefits of Multics Data Management
Data Management Files
Creating Data Management Files
Data Management Files as Protected Entities .
Accessing Data Management Files
Manipulating Data Management Files
Using MRDS with Data Management
Building an MRDS Data Management Database . .
Using MRDS Applications with DM Files
Data Storage and Retrieval Services
Relation Manager
The Relation Manager and MRDS Database
Requests
Relations and Data Management Files
Record Manager
Index Manager
Coliection Manager« . v v v u...
File Manager
File Manager and DM File Manipulation
File Manager and Integrity Services
File Manager as a Direct Interface
Integrity Services 0.

xit

AG91-04

Transactions and Database Consistency
Defining Transactions
Building Transactions in Existing MRDS

Applications
Transaction Definition Table

Concurrent Access Control
Locking Conventions
Deadlock Detection and Resolution

Recovery Procedures
Transaction Failure
Process Failure

Role of the Daemon
Abandoning a Transaction
Crash Recovery
Conventions and Use of Before Journals
Creating and Opening Before Journals . . .
Manipulating Before Journals in the File
System

DMS Initialization

DMS Shutdown
DMS Shutdown as Part of a Multics Shutdown
DMS Shutdown as a Privileged Request
Shutdown Information

User Warning
Begin Shutdown
User Shutdown
User Bump Time
Daemon Logout
Administering Data Management

Installation Considerations

Creating a Data Management System Directory . . .

Shaping the Run-Time Environment

Daemon Registration

AIM Considerations

Monitoring Performance

Command Level Interface to Data Management

User Commands

Administrative Commands

Appendix A Multics Character Sets oo vt v .
ASCII Character Set

Printing Graphic Characters

Control Characters

Nonstandard Control Character

Unused Characters

Muitics Exiended Character Set

Appendix B Defining Terminals and Naming Channels Within the
Multics Communications System
Terminals and Channels
Attachments e e
Data Transformation
Terminal Type Concept
Terminal Type and Line Type

Xiii

AG91-04

Terminal Type Table and Terminal Type File B-3

Setting Terminal Types B-3
Changing Terminal Type Definitions B-4
Terminal Type Table B-4
Syntax of the TTF B-6
Generalized Character Specifications B-6
Terminal Type Entry B-7
Video Table Definition B-14
Modes Operation B-18
Global Statements B-22
Conversion Table Entry B-23
Translation Table Entry B-24
Function Key Table Entry B-2§
Example B-26
Special Characters Table Entry B-26
Default Types B-28
Answerback Table B-29
Preaccess Commands B-30
Examples c..... B-30
Names of Communications Channels B-33
T& DChannel B-34
Examples B-34
Appendix C Punched-Card Input Qutput and Returned Qutput Control

Records i i C-1
Bulk Data Input C-1
Control Cards for Bulk Data C-2
+DATA e C-3
+PASSWORD C-3
+HAIM .. e C-4
+FORMAT e C-4
+CONTROLc.co.... C-5
+INPUT C-5
User Data Cards C-6
Remote Job Entry C-6
Example of Remote Job Entry C-7
Control Cards for Remote Job Entry C-1
+RIE C-7
+PASSWORD C-8
+RJECONTROL C-9
+RJEARGS, C-9
+EPILOGUEo.... C-10
+ABSIN e e C-10
++FORMAT and ++INPUT C-10
User Absentee Commands C-11
Card Formatso, C-11
Card Input Conversion Modes C-11
Deck Size C-12
Errors e e e e e C-12
Punched Card Qutput C-12
Card-Output Conversion Modes C-13
Punched-Card Codes C-14
Card-Input Escape Possibilities C-23
Returned Output Control Records C-24

Xiv. AGI1-04

+IDENT C-25

+CONTROL C-25
+FORMAT i it i it C-26
+INPUT e e c-27
Appendix D Standard Data Types o ittt ittt D-1
Summary of Data Descriptor Types D-1
Symbolic Names for Data Descriptor Types D-2
Other Symbolic Names D4
Standard Data Type Formats D-5
ATTAYS . o o o e e e e e e e e e e e D-29
Appendix E List of Names with Special Meanings E-1
Reserved I/0 Switch Names E-1
Reserved Segment Names E-2
Reserved Segment—-Name Suffixes E-4
Reserved Object—-Segment Entry Point E-8
Appendix F Multics Standard Magnetic Tape Format F-1
Standard Tape Format F-1
Standard Record Format F-1
Physical Record Header F-2
Physical Record Trailer F-4
Administrative Records F-4
Standard Tape Label Record F-5
Bootable Tape Label Record F-5
End of Reel Record F-9
Density and Parity F-9
Data Padding F-9
Compatibility Consideration F-9
Standard Checksum F-10
Algorithm F-10
Appendix G Multics Standard Object Segment with Symbol Table
Organization v v v i e e e e e e e e e e G-1
Format Of An Object Segment G-1
Structure of the Text Section G-3
Entry Sequence, G-3
Gate Segment Entry Point Transfer Vector G4
Structure of the Definition Section G5
Definition Section Header G-7
Expression Word G-11
Type Pair 0. G-11
Trap Word G-13
Initialization Structure for Type 5 System and Type
6Links G-13
Definition Hash Table G-14
Structure of the Static Section G-17
Structure of the Linkage Section G-18
Linkage Section Header G-18
Internal Storage Area G-20
Links e G-20
First-Reference Trap G-23
Structure of the Symbol Section G-24

Xv AGI1-04

Symbol Block Header
Source Map
Relocation Information
Structure of the Object Map
Generated Code Conventions
Text Section v i i i i it e e e
Entry Sequence

Text Relocation Codes
Definition Section
Definition Relocation Codes

Implicit Definitions

Linkage Section

Intarnal Qta
1IwTids 5O

Links
Linkage Relocation Codes
Static Section e e e
Symbol Section,
Structure of Bound Segments
Internal Link Resolution
Definition Section
Binder Symbol Block
Bind Map
Symbol Table Organization
The PL/I Symbol Block
The PL/I Runtime Symbol Table
The Runtime_Token Node
The Runtime_Block Node
The Entry Info Block
The Pascal "with" Block
The Runtime_Symbol Node
Encoded Values
Controlled Variable Control Block
Picture Information Block
The Pascal Runtime Symbol Node
Additional Information About Pascal
Symbol Nodes
Special Runtime Symbol Data Type Codes . . .
The Statement Map

Appendix H Standard Execution Environment
Standard Stack and Link Area Formats
Multics Stack
Stack Header
Multics Stack Frame
Linkage Offset Table
Internal Static Offset Table
Subroutine Calling Sequences
Call Operator e e
Entry Operator
Push Operator
Return Operator
Short Return Operator
Pseudo-op Code Sequences
Register Usage Conventions

Xvi

H-13
H-14
H-14
H-15

AG91-04

Appendix [

Appendix J

Index

Figure 1-1.
Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 3-1.
Figure 5-1.

Figure 6-1.
Figure 6-2.
Figure 7-1.
Figure 9-1.
Figure D-1.

Figure D-2.

Figure D-3.

Figure D-5.
Figure D-6.
Figure D-7.
Figure D-8.
Figure D-9.

Figure D-10.
Figure D-11.
Figure D-12.
Figure D-13.
Figure D-14.
Figure D-15.
Figure D-16.
Figure D-17.

Argument List Format H-16

Parameter Descriptors H-22
Data Base Descriptions oo o -1
Name i ittt i et e e I-1
Usage I-i
sys_infoo -2
whotab I-4
Standard Request Tables And Standard Requests J-1
Standard Request Tables -1
Standard Requests J-2
.................................. i-1
//iustrations
Process Characteristics Per Ring 1-5
Storage System Hierarchy 2-3
Relationship of Directories to Logical Volumes 2-5
Directory Hierarchy 2-14
Sample Storage Hierarchy 3-3
Interrelationship between User Code, iox_, RCP, 101, and
the I/0 Module i 5-81
Gate Mechanism, 6-26
Logical Flow in Homework Program 6-27
Simplified Handler Algorithm 7-31
Multics Administrative Hierarchy 9-1
Single—~Precision, Unpacked, Floating—Point Binary—Operand
Format @i i e e e e D-6
Single-Precision, Packed, Floating-Point Binary-Operand
Format i it e D-6
Double-Precision, Unpacked, Floating-Point Binary-Operand
Format e e D-7
Double~Precision, Packed, Floating—Point Binary—Operan
Formatl o it e e e e e e e e e e D-7
Typical Type 9 Decimal Datum D-9
Typical Type 10 Decimal Datum D-9
ITS Pointer Formato D-10
Packed Pointer Datum Format D-11
Offset Datum Format_ D-11
Typical Type 29 Datumo ... D-13
Typical Type 30 Datum D-14
Typical Type 35 Datum«c........ D-15
Typical Type 36 Datum D-16
Typical Type 38 Datum D-16
Typical Type 39 Datum D-17
Typical Type 41 Datum D-17
Typical Type 42 Datum D-18

Xvii AG91-04

Figure D-18.
Figure D-19.
Figure D-20.
Figure D-21.
Figure D-22.

Figure D-23.
Figure D-24.

Figure G-1.
Figure G-2.
Figure G-3.
Figure G-4.
Figure H-1.
Figure H-2.
Figure H-3.

Table 5-1.
Table 5-2.
Table 5-3.
Table 5-4.
Table 5-5.
Table 5-6.
Table 5-7.
Table 5-8.
Table A-1.
Table C-1.

Table C-2.
Table C-3.
Table D-1.

Table G-1.
Table G-2.

Single-Precision, Unpacked, Floating-Point Hex-Operand
Format R T T
Single-Precision, Packed, Floating-Point Hex-Operand
Formal i i i i ittt it e it e e
Double-Precision, Unpacked, Floating-Point Hex-Operand
Format @ e e e
Double-Precision, Packed, Floating-Point Hex—Operand
Format i it i e e e
Typical Type 81 Datum
Typical Type 83 Datum
Floating-Point Binary Generic Format
Sample Definition List
Definition Hash Table
Structure of a Link,
Structure of a Bound Segment
Stack Header Format
Stack Frame Format

Opening Modes and Allowed Input/Output Operations ..
Opening Modes Supported by I/0 Modules
File Types and Allowed Input/QOutput Operations
Compatible File Attachments
File Position Designators at Open
Translations of Paper Motion Commands in Output Files . .
I/O WOTKSPaCes . . . & v v v v it et e e e e e e e
RCP Effective Access i i i i i i
ASCII Character Set on Multics
Correspondence Between ASCII Characters and EBCDIC
CharaCters i i i e i e e e e e e e e e e e
Summary of Extensions to EBCDIC to Obtain Multics
Standard Codes
Summary of Differences Between Multics Standard Card
Codes and Proposed ASCII Standard Card Codes
Overpunched Sign Encoding
Contents of Pascal Symbol Nodes
Data Type Codes Used by Variables vs. Types

Xviii

Tables

5-12
5-13
5-19
5-21
5-23
5-61
5-88
5-94
A-2

C-16
C-22
C-23
D-14

G-69
G-71

AG9I1-04

SECTION 1
MULTICS CONCEPTS AND CHARACTERISTICS

The first part of this section is a brief introduction to the Multics system.
Many items mentioned here are described in detail in other sections of this manual.
Refer to the contents and index of this document to locate desired information. When
necessary, the user is referred to other manuals.

The second part of this section is a glossary of Multics terms. A reference that
directs the reader either to a section of this manual or to another manual is supplied
with most of the terms defined.

SYSTEM CONCEPTS

Multics is a unique combination of hardware, software, communications capabilities,
and supervisory techniques. The system provides capabilities that have long been sought
by research, government, academic, and network-oriented computer users——those users
who require unique security, system development, and centralized data base features.

Setting Multics apart from other offerings in the general purpose computer
market is 1its ability to provide total resources on demand. Computer systems
previously have been measured in terms of memory size, speed, and hardware cost, but
Multics is gauged by its ability to provide the most cost—efficient environment for
problem solving. Productivity of the system is high because all Muliics software—including
the operating system supervisor, user programs, and data files——is free of main
memory constraints and of any particular hardware configuration.

1-1 AG9I1-04

The ability to share data within the framework of a general purpose,
time-sharing system, is a vital feature of Multics that can be directly applied to
administrative problems, applications requiring a multiuser accessible data base, and
general application of the computer to very complicated problems. The attention paid
i0 mechanisms to provide and control privacy is of direct interest for many
applications dealing with proprietary information.

Multics offers a number of additional capabilities that go well beyond those
provided by many other systems. Those which are most significant from a user’s point
of view are described in this section. Perhaps the most important aspect of all is that
a single system comprises all of these capabilities simultaneously. The major design
concepts of the Multics system include:

° Virtual memory designed to make addressable memory seem virtually
infinite
o Selective sharing of information through controlled access that is

regulated by both software and hardware

. Security mechanisms enforced by hardware: this includes the Multics
Ting structure

. Structural administration, allowing decentralized control and management
of system resources

° Flexible user interfaces, allowing a wide variety of programming
environments

° Remote terminals as the normal mode of system access

° Efficient service to all users whether their use of system resources is

very large or very small

. Continuous operation through the use of dynamic hardware configuration
techniques and online software maintenance and system administration

° Open—-ended, modular system design that anticipates the evolution of
technological improvements and the expansion of user requirements

SYSTEM CHARACTERISTICS

The following paragraphs describe the major characteristics of the Multics system.
These characteristics are integral parts of the Multics system and cannot be separated
from the system—-yet in many instances, use of these capabilities is optional to the
individual user.

1-2 AGY1-04

Segments

The segment is the unit of storage of the Multics storage system analogous to a
file on other systems. A segment can range in size from 0 to 255K (K equals 1024)
36-bit words. On Multics, all information is grouped into nondirectory and directory
segments. A nondirectory segment is a collection of instructions or data specified by a
user. A directory segment is a catalog of subordinate segments, created and maintained
by users via the supervisor. The directory concept is the key to several Multics
features including storage structure, administrative control, search rules, and naming
conventions.

A user can create a segment by issuing a command (e.g., create) from command
level or via a call statement from within a program. A user has control over every
segment he creates. The segment attributes mentioned above provide the user with
extensive control over the manipulation and sharing of the segments he creates. (See
"Selective Sharing” below.) A user may specify the individuals who have access to his
segments. Also levels of protection (rings) can be specified as a further control over
the same segments.

Virtual Memory

The Multics virtua! memory makes all segments in the storage system directly
addressable. An address in Multics, as used by the hardware, consists of two
components: the first identifies a segment and is called a segment number; the other
specifies a location within that segment.

A segment number is assigned by the supervisor and associated with the specified
segment by user request, provided the user has the necessary access privileges. This
request is often done implicitly as part of some other supervisor function.

Once a segment number has been provided by the supervisor, user software can
reference the segment directly with appropriate machine instructions. The data or code
of the segment so referenced is automaticallv brought into main memory, if necessary,
so that the processor can use it.

Since the physical movement of information between secondary storage and main
memory is totally automatic, it is of no concern to the programmer when he is
constructing his application. A user does not have to be concerned with where and on
what devices his segments reside. Because of the demand paging technique described
below, users need not be concerned about overlaying or partitioning program modules
to satisfy limited main memory resources. Since conventional input/output is not

1 3 Aultine < a1 1 1if1ad
required programming on Multics is greatly simplified.

~.1-3 AG91-04

Paging

Since segments can be different sizes, it may be impractical to have an entire
segment in main memory when in use. Therefore Multics segments are automatically
subdivided into fixed-size (1024 words) storage units called pages. When a segment is
referenced, the page referenced is automatically retrieved from secondary storage and
placed in any available "frame" in main memory. When main memory is filled and
more frames are needed, some pages have to be displaced. Pages not used recently are
moved to secondary storage so that new pages may be transferred to main memory.

Address mapping at the hardware level allows the system to determine whether
or not a page of a referenced segment is in main memory. If the page is not in

main memor a missing page excention occurs (called a "page fault"). The svstem

pEEL-2 S IRV H L LIS) AAATALD APV WaAVWRPLVIL VVWLiYD (Vadive O o 1% Aliw Sy OoLvwill

software intervenes at this point and processes the page fault by locating the desired
page of the storage system in secondary storage and transferring it to main memory.
This procedure is automatic; and the time involved is not noticeable to the user.
During this phase, the process that generated the page fault may relinquish control of
the processor and the system may dispatch the processor to another process. (See
"Process” below.) Once the page does arrive in main memory, the system notifies the
"waiting" process and schedules it for continued execution. Consequently, only those
pages that are currently needed are in main memory at any one time.

Process

A process may be defined as the way the system is seen by a logged—in user; in
essence, a user’s process is the user’s (virtual) machine. Multiprogramming multiplexes
teal processors between users’ processes, making it appear that each user has a
processor at his service. A user’s process executes programs sequentially.

The system creates a process for each user at login time. (For information on
logging in and out on the system, see the New Users” /ntroduction to Multics,
Part /, Order No. CH24.) Within the constraints imposed by the supervisor, users and
project administrators may cusiomize their processes as desired: the commands,
command processor, and environment provided by the system can all be replaced in
users’ processes by their own code.

Each user’s process executes programs fairly independent of other users’ processes.
Information may be shared between processes, allowing sharing of programs and
communication between processes (if desired).

Each process has its own address space and is made up of three parts. These
parts are described in the process’ descriptor segment; basically, they are the process’
characteristics in ring 0, ring 1, and ring 4, the user ring (for a further discussion of
Multics ring structure, see "Selective Sharing" below). For instance, each process has a
separate stack and linkage area for each ring that it executes in. On the other hand,
each process has other attributes that are the same no matter which ring it is
executing in. A good example of that is the descriptor segment. Figure 1-1 indicates
which things are per process and which per ring.

1-4 AG91-04

descriptor segment Process Initialization Table
Known Segment Table (KST) process directory
Process Description Segment (PDS)
ring O ring 1 ring L
stack (%) stack_] stack_b
static (%) linkage area linkage area
(static) (static)
supervisor data search rules search rules
bases mai lboxes 1/0 attachment
table
language /0
temporary
segments
user programs
user data

Figure 1-1. Process Characteristics Per Ring

Ring 0 comprises the segments of the central supervisor. It is in this ring that
each process’ segment numbers are assigned. The Known Segment Table, in which
these numbers are kept, then applies, of course, to an entire process, and that process
can directly reference only those segments that have been assigned a segment number
by calls to supervisor programs.

Ring 1 contains system routines such as those that manage mailboxes and queues.
Ring 2 is used, in large part, for system data bases. Ring 3 is reserved mostly for
other administrative routines such as those that are specific to a particular site. Most
user processes start running in ring 4. Rings 5 through 7 are used by programmers
writing their own protective subsystems. The classic example of this is a teacher who
runs student programs in ring 5 and the grading program in ring 4. Rings 6 and 7
lack access to most system software, so the subsystem designer can create severely
limited
programming environments.

SELECTIVE SHARING

Segments are data objects that exist independently of any process. The system
manages the physical location of pages of segments. If the pages are in use, they will
be in main memory. If several users have the same segment known in their process,
they will reference the same physical locations of main memory when referencing it.
Per-user "copies” or "images" of segments can be created under special circumstances,
but generally segments are shared. Hence, several users referencing a given segment
may use its contents t0 communicate, given that access has been appropriately granted.
Furthermore, several processes using the same program use the same physical pages,
contributing to effective use of main memory.

1-5 AGI91-04

Access Control List

Each segment has an access control list (ACL) that names the individuals who
have access to the segment and describes the type of access they have. Through the
ACL, a user can grant specific access to individual users or groups of users to permit
easy, controlled sharing of information. Different access rights can be granted to
different users of the same segment. The hardware enforces access control during the
execution of each individual machine instruction.

Access Isolation Mechanism

The access isolation mechanism (AIM) allows administrators of the system to
define several levels of privilege, which the system itself rigidly enforces. Enforcing
the separation of these levels is totally independent of other access controls or user
action. The use of this administrative mechanism ensures privacy by preventing
inadvertent disclosure of information between these privilege levels, even by those who

own the information.

Ring Structure

A further refinement to selective sharing is provided by special hardware that
implements the Multics ring structure. Ring structure is an advanced form of
protection capability that permits the ready construction of protected data bases.
Privileged users may have complete access to the data base and can control (by
program) the information less privileged users can see.

Logically, the ring structure is eight concentric rings, each representing the level
of privilege accorded io procedure segments executed in that ring. The highest level
of privilege is the innermost ring, designated as ring 0; the outermost is ring 7.
Privileged ring segments, such as a supervisor and special user subsystems, are
protected from uncontrolled use by less-privileged rings. These segments can only be
used by procedures in less—privileged rings if called via a special "gate"” mechanism,
and the user must have access to the individual segment as well.

The Multics ring implementation makes it possible to:

° Create protected programs and data bases for controlled use by other
users

. Implement a supervisor program in rings with differing degrees of
privilege

. Debug a program in an unprivileged ring and then move it to a

privileged ring with no recompilation or modification

1-6 AG91-04

SYSTEM ADMINISTRATION

All information stored online on Multics is organized into a tree-structured
hierarchy. Within this hierarchy, directories catalog segments residing below them in
the tree. (See Section 2, "Storage System.") The organization of the body of users on
Multics is patterned after the organization of the storage system. Users are grouped
by the system administrator into projects, which are generally under the control of a
project administrator. The project administrator may impose special disciplines on users
within his project. For example, the project administrator defines the initial procedure
in a process for users under his project. The project administrator also allocates
storage quota to individual users based on the quota granted his project by the system
administrator. The distribution of authority between the system adminisirator and
project administrator results in a decentralized control of the system. *

The facilities required io manage a Multics site are integrated into the system
itself. In the area of financial control, the Multics system accounts for use of
resources on a per—user basis and organizes these accounts based upon project and
system administration. Users can be allocated quotas according to storage space, central
processor utilization, or dollar amounts based on the current billing rates. Users,
project administrators, and the system administrator can interrogate quota amounts and
usage at any time.

USER INTERFACES

Multics has an open-ended design with a uniform interface for both user-written
and system-provided commands. The user can create or manipulate segments residing
in various user directories while at command level or from within a program. Users
can create commands and subsystems of arbitrary complexity. The interfaces available
to system-provided commands and subsystems are available to the user and are
documented elsewhere in this manual (see in particular, Sections 4 and 5, and
Appendixes G, H, and I).

ENVIRONMENT SHAPING

A Multics user is not restricted to the programming environment defined by the
standard system but can alter this environment for private use or use an altered
environment that a project administrator provides or imposes on him. As an example,
the project administrator may offer some of his users only a subset of the full system
(a limited service system), or he may create a completely separate environment (a
closed subsystem) that bears no resemblance to the standard Multics environment and
requires no knowledge of the Multics system itself. These environment changes are
made possible by a large number of Multics mechanisms. Primary contributors are:

) Modular system design that allows easy replacement of a specific
operating system module without affecting other modules

) Implementation of the system in the PL/I language, which permits easy
interfacing with operating system modules

1-7 AG91-04

° Project administration features, which permit the installation and
management of a new environment

. Security and protection features, which keep the environment separate
from the other users in an aimosphere of mutuai protection

SYSTEM SOFTWARE

The Multics system includes a full complement of software facilities. These
software facilities include several language processors, various communications products,
a data base management capability, word processing software, and a host of specialized
facilities for various utility functions. These software facilities are listed below.

PL/1

The PL/I compiler for Multics offers a full selection of language facilities and
access to the advanced features of Multics. PL/I is the recommended programming
language for Multics users. Multics PL/I conforms to the American National Standards
Institute standard (ANSI X3.53-1976) for the language and the ISO International
Standard 6160-1979.

FORTRAN

The Multics FORTRAN compiler conforms to the American National Standards
Institute (ANSI X3.9-1978) FORTRAN. Multics FORTRAN is a superset of the ANSI
standard FORTRAN and is source language compatible with L66/GCOS8§ FORTRAN.
Multics FORTRAN complies with the Federal Information Processing Standard (ANSI
X3.9-1978) for the FORTRAN language.

BASIC
The Multics BASIC is compatible with the Dartmouth Version 6 BASIC and
contains all the functional capabilities of the L66/GCOS8 BASIC compiler. Except for

minor differences, it conforms to the ANSI Standard for Minimal BASIC (ANSI
X3.60-1978).

COBOL
This compiler is a subset of the ANSI standard COBOL (ANSI X3.23-1974) and

of the Federal Information Processing Standard (FIPS 21-1). It is source language
compatible with L66/GCOS8, COBOL-74.

APL

APL is a powerful interpretive language available to Multics users. The Multics
APL interpreter is compatible with other common APL implementations.

1-8 AGI1-04

PASCAL

Multics PASCAL is based on the standard ISO Pascal. Extensions are available to
augment the standard and make PASCAL programming on Multics easier and more
versatile. Pascal is a popular language because of its carefully chosen control structures
and powerful data structuring capabilities.

ALM

ALM is the assembly language on Multics. It is commonly used for privileged
supervisor code, compiler support operations and utility packages. It is not recommended
for general use.

QEDX

The gedx editor is used to create and edit ASCII segments. Through its macro
capabilities, it also qualifies as a minor interpretive language.

TED

The ted editor is used to create and edit ASCII segments. It is an extended
version of gedx, designed to facilitate macro writing.

EMACS

The Emacs editor is an integrated editing, text preparation, and screen
management system designed to take advantage of the features of modern display
terminals.

Communications Software

Multics supports a wide variety of specialized tools for communications support.
Both synchronous and asynchronous protocols are supported. Multics can be configured
as a host system for remote job entry workstations or, conversely, Multics can be used
as a remote workstation to a foreign host. Also supported is a capability 1o allow
DPS 6 systems to be used as satellite systems via an X.25 protocol interface facility.

Sort/Merge

The Sort/Merge subsystem provides generalized file sorting and merging capabilities,
specialized for execution by user supplied parameters. The Sort orders an unranked
file according to the values of one or more specified key fields in the user’s records.
The Merge collates the contents of up to ten ordered files according to the value of
one or more key fields. Input and output files associated with the Sort/Merge
subsystem can have any file organization and be on any storage medium. Records can
be either fixed or variable length.

1-9 AG91-04

GCOS Environment Simulator

The GCOS environment simulator, together with several Multics facilities, permits
GCOS batch-processing jobs to be run under the control of Multics and provides
some job-scheduling facilities. Invoked via the Multics gcos command, the simulator
immediately runs one GCOS job in the user’s process. The user’s terminal is treated
as the GCOS operator’s console.

Multics Graphics System

The Multics Graphics System (MGS) provides a general purpose terminal-independent

interface through which user or application programs can create, edit, store, display,
and animate graphic constructs.

Multics Data Base Manager

The Multics Data Base Manager is written to interface with any programming
language that supports a call statement. It is based on the Multics relational data store
(MRDS). MRDS supports the relational model of data base organization.

Multics Report Program Generator

The Multics Report Program Generator (MRPG) is a language translator used to
generate a PL/I source program from an MRPG source program with the purpose of
generating formatted reports.

Logical Inquiry and Update System

The Logical Inquiry and Update System (LINUS) is a facility for accessing
centralized MRDS data bases, as well as user—defined private data bases. The complete
data base management capability provided by LINUS includes both retrieval and update
operations. The LINUS language (LILA) is used to specify data; it is a high-level
nonprocedural language that can be understood by individuals who are not necessarily
computer specialists. The LINUS report generator permits both technical and
non-technical users to obtain formatted reports.

Word Processing
The Multics word processing system, WORDPRO, consists of a set of commands
that assist users in the input, update, and maintenance of high quality documents. The

commands provide tools for text formatting, Speedtype, dictionaries for hyphenation
and spelling, and list processing.

Extended Mail Facility

The Multics Mail Facility consists of the read_mail, send_mail, and print_mail
commands, which enable users to send, receive, and process mail.

1-10 AG91-04

Executive Mail

The Multics Executive Mail Facility uses menus to assist users in sending,
reading, and processing mail.
Forum

Multics Forum is an online meeting system that enables users to attend a
meeting by reading proceedings that have been stored online and entering proceedings
for other participants in the meeting to read.
Executive Forum

The Multics Executive Forum facility is a menu-driven interface to the Forum

subsystem. Users are provided with a list of operations that can be selected by typing
a number or letter.

Transaction Processing Tools

The Multics Transaction Processing subsystem provides a specialized environment
for applications that interact with a data base.

The FAST/DFAST Facility

FAST and DFAST operate as subsystems under Multics to provide a time-sharing
environment supporting BASIC and FORTRAN program development. (The DFAST
command repertoire and language conventions are based on the Dartmouth Time-sharing
System with extensions for compatibility with Multics.)

Menu Creation Facilities

Multics menu creation facilities consist of commands and subroutines that can be
used by application programmers to create and manage menus.
Inter~Multics File Transfer Facility

The Inter-Multics File Transfer Facility permits users to easily transfer files and
subtrees between Multics systems.
Report Wriier

The Multics Report Writer (MRW) provides the capabilities to utilize formatied
data extracted from sources other than Multics Relational Data Store data bases. It
consists of an end-user oriented subsystem request interface, and a programmer

subroutine interface. It was designed to serve the needs of the casual and experienced
user.

1-11 AG91-04

File Transfer To and From Personal Computers

Multics supports three protocols that enable users to transfer files between
Multics and microcomputers. These protocols consist of a file transfer protocol,
Kermit, and two data transfer protocols, XMODEM and IBM PC-to-Host (Multics).
Kermit consists of the basic Kermit file transfer protocol and the Kermit server.
XMODEM and IBM PC-to-Host (Multics)are implemented by I0 modules that may be
used to transfer files by way of either the micro_transfer command or through a
user-created file interface system. Users wishing to design their own data transfer
protocols may also use the micro_transfer command to act as an interface between the
Multics file system and the respective user data transfer protocol.

The probe, debug, and trace commands permit a user to analyze and correct a
compiled program at both the original source level and the more specific machine
register level.

The Multics Subsystem Utilities (ssu_) provide a general-purpose interface for
implementing interactive subsystems, such as the Extended Mail Facility and Forum, in
an environment analogous to Multics command level. Detailed information on the use
of this facility is contained in Section 4.

Performance measurement tools permit the user to analyze his program’s behavior
so that optimum applications software can readily be developed.

Interuser communication facilities, both immediate and deferred, permit online
messages to be transmitted among users.

Online documentation facilities provide the user with useful information and
document preparation tools.

For easy reference, the standard commands and subroutines provided by the
Multics system are listed according to function in the respective Commands and
Subroutines manuals.

ACCESS TO THE SYSTEM

The primary means of accessing the Multics system is from a remote terminal.
The system accepts input from a terminal, interprets the user’s request, and invokes
the software component to perform the desired function. The software component can
be either system or user supplied: there is no distinction at the command or
subroutine level. The command language allows recursive, iterative commands and the
embedding of function calls in the command line.

1-12 AG91-04

The command processor is a shared, replaceable module, written in PL/I. The
design of the command processor thus permits an extremely wide range of interfaces
to all system facilities either on a controlled or open—ended basis. The project
administrator can require a user to interface with a special version of the command
processor, thereby limiting the software requests or commands available to him.

The Multics system does not usually differentiate between interactive and batch
users, except that a batch user (called absentee in Multics) is not available to answer
any questions the system may ask and must therefore anticipate such questions and
have prepared answers ready.

SERVICE TO LARGE AND SMALL USERS

The Multics system automatically assigns system resources to a user in proportion
to the size of his task. System functions (such as locating and retrieving information
from secondary storage) are invoked on a demand basis, as the detailed requirement is
encountered by the program. This not only relieves the programmer of the burden of
predicting in advance his use of system resources, but also prevents an additional
burden on the system caused by programmers calling for more resources than they
need. By default, the system controis the automatic aliocation of resources for ali
users. In addition, the system and project administrators can set storage quotas on a
user and even impose limits on the amount of system resources that the user can
consume in a given time interval.

SYSTEM DESIGN

The designers of the Multics system were determined from the very beginning to
develop a system that could both evolve as a body of software on a given machine
and sustain a movement across hardware generations. To attain this goal, they
implemented a2 modular design. Operating system modules may be easily replaced on a
system or individual user basis. In addition, most of the Multics operating system is
written in PL/I, which makes the system even more flexible and easy to modify.

Continuous Operation

Various system features contribute to the Multics characteristic of continuous
operation:

) Central processors and memory units may be added or subtracted
without shutting down the system

° User programs and the system itself need not change structure in any

vemwr wirhatarrmne Adyao ~ AL LAmn oo s ol rrren £2omnn %~
way whatever duc to differences in hardware comnfigiration

° Tasks required to manage the system can be performed without
interrupting service; these tasks include metering system or user
behavior, invoking management subsystems such as accounting and
billing, or even updating the bulk of the system software capabilities
and facilities

1-13 AG91-04

System Reliability

Information stored online on a Multics system is protected by two distinct types
of backup systems, one which uses the normal hierarchy mechanisms to access data,
referred to as the hierarchy backup system, and another which operates at the physical
storage volume level, referred to as the volume backup system. Both backup systems
dump onto magnetic tape any segment whose contents have been changed during the
backup interval. The length of the backup interval and the segments to be protected
can be set by the system administrator. A straightforward technique permits the
retrieval of a segment from either type of backup tape and its reinclusion in the
online storage system. There also is a subsystem called the "salvager” that examines the
online storage system after a failure, corrects improper directories, and informs
operations personnel of missing or damaged segments. These may then be retrieved
from the backup tapes. Another subsystem, the "scavenger," performs the same

il W& Ddbh bl p N SLR LS ELe)) SBVayalllill, (38 L SLAVCESl L2l 88 L 2241

function as the physical volume salvager without having to remove the affected volume
from service.

GLOSSARY OF MULTICS TERMS

absentee
A facility for running background jobs (noninteractive processes). (See the
enter_abs_request command in the Commands manual.)

access attributes
See access modes below.

access class
An access isolation mechanism (AIM) attribute that denotes the sensitivity of
information contained in a segment, directory, multisegment file, or message in
a message segment. An access class is associated with an entrv for its lifetime.
(See "Nondiscretionary Access Control” in Section 6.)

access control
The mechanism for determining who can reference or modify segments (files)
and directories. (See "Discretionary Access Control” in Section 6.)

access control list (ACL)
A set of access identifiers specifying who can access a segment or directory.
Associated with each access identifier is a set of allowed modes of access to
that segment or directory. There is an ACL for each segment and each
directory. See initial access control list below. (See "Discretionary Access
Control" in Section 6.)

access isolation mechanism (AIM)
The mechanism used to guarantee that only authorized persons access certain
classes of information. (See "Nondiscretionary Access Control" in Section 6.)

access modes
A way to identify the kinds of access that can be set for a segment or
directory. The access modes for segments are rtead (r), write (w), execute (e),
and null (n). Those for directories are status (s), modify (m), append (a), and
null (n). See extended access below. (See "Discretionary Access Control" in
Section 6.)

1-14 AG91-04

active function
A function specified in a command line whose value (a character string)
becomes part of an expanded reevaluated command line. (See "Active Strings"
in Section 3.)

AIM
See access isolation mechanism above.

ALM
The assembly language on Multics, used primarily for programs that must
closely interface with the hardware. (See the alm command in the Commands
manual).

alternate name(s)

A segment, directory, multisegment file, or link can have more than one name
and may be referred to equally well by any one of its names. One of the
names is the primary name. The others are called secondary names or |
addnames. A segment often has more than one name because it is a program
with alternate entry points; commands often have short names as well as long
ones for convenience in typing (i.e., cwd instead of change_wdir). (See primary
names below.)

answering service
The subsystem that runs in the Initializer process and logs users in and out.
(See Initializer.)

archive
A segment used to conserve space. When storing a group of segments, the
contents of the individual segments can be packed together in an archive to
eliminate breakage in the last page of each segment. (See the archive command
in the Commands manual.)

attach
The act of associating an 1/0 switch with a file, or other I/O switch. For
example, the normal output switch (user_output) is usually attached to the
terminal, but can be attached to a file via the file_output command. (See 1/0
module below.)

authorization
An access isolation mechanism (AIM) attribute of a process that denotes the
range of information the process can access. An authorization is associated with 4
a process for its lifetime. (See Section 6.)

backup

See hierarchy backup and volume backup below.

before journal
A storage unit that is used for storing the images of a data management file
before it is modified. Before journals are implemented as extended entry types. |

bind
See bound segment below.

bit count
An index to the last bit of useful information in a segment. For example, a

1-15 AGI1-04

segment that contains 43 characters starting at the beginning has a bit count of
387 (9+43). (A segment may, however, contain useful data independent of its
bit count.) (See "Entry Attributes” in Section 2.)

blocked
The state a process is in when it is not executing and is waiting for some
event to occur (such as the user typing a command line).

bound segment
A group of (usually related) object segments bound into one object segment to
save space and speed up references (calls, etc.) between them. The process of
binding segments is similar to linkage editing on other systems and is done by
use of the bind command. (See the bind command in the Commands manual.)

branch
An item cataloged in the storage system that is not a link.

canonicalization
The conversion of a terminal input line into a standard (canonical) form. This
is done so that lines that appear the same on the printed page, but that may
have been typed differently (i.e., characters oversiruck in a different order),
appear the same to the system.

carriage return
A carriage return means that the typing mechanism moves to the first column
of the next line. On the Multics system, this action is the result of the ASCII
line feed character. The terminal type determines which keys the user presses
to perform the equivalent action (e.g., RETURN, LINE SPACE, or NL).

character
A hardware-related unit of information that on the Multics system is 9 bits or
6 bits. The Multics system native mode character set is 9-bit ASCII, although
the hardware does support additional character sets.

closed subsystem
A separate environment that bears no resemblance to and has no knowledge of
the Multics system itself. (See "Programming Environment" in Section 1.)

command
A program designed to be called by typing its name at a terminal. Most
commands are system maintained, but any user program that takes only
character string input arguments and no output arguments can be used as a
command. (See "Command Language” in Section 3.)

command level
The process state in which lines input from a user’s terminal are interpreted by
the system as a2 command (i.e., the line is sent to the command processor). A
user is at command level at login when a command completes or encounters an
error, or is stopped by issuing the quit signal. Command level is normally
indicated by a ready message. (See "Command Environment™ in Section 3.)

command processor
The program that interprets the lines input at command level and calls the
appropriate programs, after processing parentheses and active functions. (See
"Command Environment” in Section 3.)

1-16 AGI91-04

component (of an archive)
One of the segments placed in an archive. (See the archive command in the
Commands manual.)

component (of an eniryname)
A logical part of an entryname. Entryname components are separated by a
period. (See suffix below and "Entrynames” in Section 3.)

control argument
An argument to a command that specifies the command’s execution in some
way. System control arguments begin with a hyphen, such as =-all, -long, or
-hold. The meaning of each control argument accepted by a specific command
is given as part of the description of the command. Many control arguments
have standard abbreviations such as -lg for —long.

crash (FNP)
an unplanned termination of service from the front end network processor
causing a disconnection of the process. The process can be saved and
reconnected when the -save_on_disconnect control argument has been used with
the login command.

crash (system)
An unplanned termination of system availability caused by problems in
hardware and/or software, often signalled by the message: MULTICS NOT IN
OPERATION. Processes cannot be reconnected after a system crash.

data management file |
a unit of storage within the Multics storage system. Data management (DM) i
files can be implemented with concurrency control and recovery supporl. At |
present, the ability to use DM files is available only to programs accessing files |
through the Multics Relational Data Store (MRDS) facility. |

daemon
One of several system service processes that perform such tasks as process
creation, backup, network control, and printing segments on the line printer.

detach
Inverse of attach (see above).

direciory
A catalog of entries in the storage system. The directory contains information |

about the attributes of these entries and information about the physical device
on which the data is stored. (See Section 2, "Storage System.”)

directory (home)
The directory that is the working directory of a user when he first logs in to
the system (also known as the initial working directory). Usually this directory
has a pathname of the form:

>udd>Project_id>Person_id

See directory (working) below.

1-17 AG91-04

directory (master)
A directory whose segments reside on a different logical volume than those of
its parent directory.

directory (parent
The immediately superior directory.

directory (upgraded)
Any directory that has an access class greater than that of its parent.

directory (working)
Identifies the user’s current location within the storage system with regard to
pathnames. Any pathname the user types that does not begin with a greater
than (>) character is considered relative to the working directory. By default,
this directory is used by the search rules. (See "Search Rules" in Section 4.)

directory hierarchy
The tree-structured organization of the logical contents of the Multics storage
system. (See Section 2, "Storage System.")

discretionary access control
Allows individual users to grant or deny other users access to their segments
and directories at their own discretion.

dprint, dpunch (for Daemon print and Daemon punch)
A queued request to the system to output on a line printer (or card punch)
the contents of a segment or multisegment file. (See the enter_output_request,
dprint, and dpunch commands in the Commands manual.)

dump
See hierarchy backup below.

dynamic linking
The resolution of symbolic external references at execution time (that is, the
first time the symbol is actually referenced). (See link pair below and
"Dynamic Linking" in Section 4.)

effective access
The actual access mode that the system enforces for each reference or use of a
segment or directory. Nondiscretionary access control can restrict, but not
extend, the access granted by the discretionary controls.

entry
An item cataloged in the Multics Storage System (e.g., segments).

entry bound

For protection purposes, control must not be passed to a gate procedure at
other than its defined entry points. To enforce this restriction, the first n
words of a gate segment with n entrv points must be an entry point transfer
vector, To ensure that only these entries can be. used, the hardware enforced
entry bound of the gate segment must be set so that the segment can be
entered only at the first n locations. See the hcs_$set_entry_bound description
in the Subroutines manual.

1-18 AG91-04

entry point
An address in an object segment referred to by a symbolic name; e.g., that
which would be produced by the PL/I or FORTRAN procedure, subroutine, or
entry statements.

entry point name
The name associated with an entry point in an object segment. The entry point
name is found by the dynamic linker. (See "Entry Point Names" in Section 3.)

entryname
A name given to an item cataloged in the storage system. It may contain one |
or more components, separated by periods. All names given to entries within
one directory are unique, but need not be different from names defined in
other directories. (See "Entrynames" in Section 3.)

equal convention
A method used by many commands to specify one or more characters in a
group of entrynames. (See "Equal Convention” in Section 3.)

error codes
See status codes below.

exclamation point convention
See unique name below.

exec_com (ec)
A facility for executing a list of commands taken from a segment. It includes
argument passing and conditional branching capabilities. (See the exec_com
command in the Mu/tics Commands and Active Functions manual, Order No.
AG92.)

extended access
An additional field of access modes used with certain extended eniry types to
further restrict operations on the entry type. (See "Access Modes" in
Section 5.)

extended entries

Storage system entries that represent an extension beyond the five standard
entry types (segments, directories, links, MSFs, and DM files) are called
extended entry types. These extended entries are used to implement special
functions, usually by using ring brackets to protect the data contained therein.
Most file system commands have been enhanced to operate on all types of
extended entries, performing operations as if the extended entries were
segments. This is done using a standard subroutine interface, fs_util_, for
performing the operations, rather than calling the hcs_ subroutine directly.
Each of the extended entry types is identified by a suffix appended to the
entryname. The sysiem-suppiied exiended entry types are listed below, but a
programmer can create others:

1-19 AGI1-04

Name Suffix

mai lbox .mbx
forum meeting .forum
message segment .ms
before journal .bj
person name table .pnt

fault
A hardware signal similar to an interrupt that may cause the signalling of a
condition. (See "Faults” in Section 7.)
file
A term that stands for segment and/or multisegment file.
frame
See stack below.
gate

The only point at which a procedure in an outer ring can transfer to a
procedure in an inner ring. (See "Intraprocess Access Control" in Section 6.)

hardcore (hardcore supervisor)
The set of routines that perform the supervisory functions of the system. The
hardcore executes in ring 0.

help files
See info segments below.

hierarchy backup
The hierarchy backup system dumps (copies) user segments and directories onto
removable storage (magnetic tape). The dumping is conventionally done using
the processes Backup.SysDaemon and Dumper.SysDaemon. The information
dumped can be recovered by the operations staff at the user’s request. (See
Section 8, "Backup.")

home directory
See directory (home) above.

impure procedure
A procedure that modifies itself. Such a procedure is not recommended.

info segments
The segments whose contents are printed by invoking the help command. These
segments, sometimes called help files, give information about the system. The
system info segments are kept in the directory >documentation>info_segment.
(>doc>info). The info segments that are peculiar to an installation are kept
in >doc>iml_info_segments, (See the help command in the Commands
manual.)

initial access control list
A list that specifies what the access control list of a newly created segment or
directory will be. There are separate initial access control lists for segments
and directories for each ring. (See "Initial ACLs" in Section 6.)

1-20 AGI91-04

initial working directory
See directory (home) above.

Initializer
The system control process that logs users in and out and keeps accounting
statistics. This is the only process that creates and destroys other processes. Its
access identifier is Initializer.SysDaemon.z.

initiate
The act of associating a reference name with a given segment in the storage
system. The segment must be part of the user’s "address space” (made known),
and the supervisor entries will do this automatically if necessary. A reference
name is said to be initiated for a given segment. (See "Reference Names” in
Section 3.)

1/0 module
A program that processes input and output requests directed to a given switch.
It may perform operations on other switches, or call the supervisor.

1/0 switch
See switch below.

10.SysDaemon
The User_id of the system process that does dprinting and dpunching.

I0SIM
Obsolete term. See 1/0 module above.

library_dir_dir (1dd)
The starting directory of the subtree in which the source and object modules
of the system are stored. (See Section 2, "Storage System.")

limited service system
A subset of the Multics system imposed on users by the project administrator.
(See "Programming Environment” in Section 1.)

link
(1) An entry in a directory that specifies the pathname of an entry in
another directory. It allows references to items in other directories as if
they were actually contained in the working directory. Links eliminate
the need for multiple copies of segments.
2 An external symbolic reference. See link pair below.
link pair

An indirect word in a procedure segment’s linkage section through which all
references to some external data or procedure are made. Until the link is
snapped, it contains symbolic information about the exiernal object. A iink pair
initially contains a code that causes a fault, and invokes the dynamic linker,
when first used in a process. The linking, if successful, puts the actual address
of the procedure or data referenced in the link pair.

linkage section
1) The portion of a procedure object segment that is a pure template for
impure data needed by the procedure at runtime.
2 The impure copy made from this template. (See dynamic linking above.)

1-21 AG91-04

listener

The program that reads command lines from the terminal and passes them to
the command processor.

logical volume
A set of physical volumes that are always mounted together.

mailbox
See Person_id.mbx.

main memory frame
A 1024 36-bit word block of main memory that holds a page of a segment.
(See "Paging” in Section 1.)

making a segment known _
Specifying the pathname of a segment to the supervisor, and receiving a
segment number in return. The segment may then be referenced by that
segment number in the process. (See "Making a Segment Known" in Section 4.)

master directory
See directory (master) above.

memory units
A measure of the usage a user makes of the system memory resources.

message segment
A special type of segment that is managed by Multics supervisor programs and
is not directly accessible to the user. A message segment is simply a permanent
place to hold interprocess messages, e.g., dprint and dpunch requests.

Multics card code (MCC)
A code for punched card input and output. It is essentially the IBM standard
EBCDIC card code. This is the default code for the dpunch command. (See
"Punched Card Codes" in Appendix C.)

muitiple names
See alternate names above.

multisegment file (MSF)
A file that occupies more than one segment, i.e., a file larger than 261,120
words. May only be manipulated by certain programs. (See "Multisegment
Files" in Section 2.)

nondiscretionary access control
Also referred to as administrative access control, it is wused to restrict
discretionary controls in order to enforce the policies of the system administrator
and of the organizations served by the system. The system administrator
(through AIM) guarantees that only authorized persons may access certain
classes of information. -

object segment
A procedure or data segment produced as the result of a compilation with a
system—defined format. An executable object segment can be directly executed
by a process. Object segments may also be searched and linked to by the
dynamic linking mechanism. (See "Creating an Object Segment” in Section 4.)

1-22 AG91-04

page
A 1024 36-bit word block of data within a segment.

page control
The routines that manage the transfer of pages beitween secondary siorage and
main memory frames. (See "Paging” in Section 1.)

parent directory
See directory (parent) above.

password
A character string that enables an individual user to enter the system; it is
known only to that user and the program that controls access to the system.
When supplied with the user’s Person_id at log in time, it validates the .true
identity of the user. A password can be from one to eight characters long.
The characters may be any characters from the ASCII character set except
space and semicolon. The backspace character is also allowed and is counted as
a character when used. The password used for interactive logins cannot be
"quit," "help,” "HELP," or "7" because these have special meaning to the
password processor. If you enter a password of "quit,” the login attempt is
terminated. Typing a password of "help,” "HELP,” or "?" produces an
explanatory message, and the request for your password is repeated. (See
Section 2, in the New Users’ [ntroduction to Multics, Part [, QOrder No. CH24).

pathname
A character string that specifies a segment by its position in the directory
hierarchy. The pathname can be relative or absolute (see below). (See
"Pathnames" in Section 3.)

pathname (absolute)
A concatenation of a segment’s entryname with all superior directories leading
back to the storage system root. (See "Pathnames" in Section 3.)

pathname (relative)
A pathname that names a segment in its relation to the working directory.
(See "Pathnames" in Section 3.)

person name table (PNT)
System table containing all Person_ids (persons and fictitious persons) registered
on Multics with their encoded password, default project, address, and ceriain
other data.

Person_id
A unique name assigned to each user of the system. It is usually some form
of the user’s name and contains both uppercase and lowercase characters. It
may not contain blank characters. Associated with the Person_id is a single
password. The Person_id and the password can be used to identify. a person on
several projects. (See Section 2 in the New Users' /ntroduction to Multics,
Part /, Order No. CH24).

Person_id.mbx

A message segment used to convey messages between processes. (See the
print_mail and accept_messages commands in the Commands manual.)

1-23 AG91-04

physical volume
A disk pack. Sometimes the combination of pack and disk drive is referred to
as the physical volume.

pointer
An address value. On Multics, an address consists basically of a segment
number and an offset within the segment.

primary name
The main name associated with a segment, directory, multisegment file, or link.
(See the list command in the Commands manual.)

process

A program or group

(2}

p of programs in execution; an address space and an
execution point. Each logged-in user a has process. (See "Process” in
Section 1.)

process directory
A directory containing those segments that are meaningful only during the life
of a process. These segments include the stack(s), free storage, PIT, and various
temporary segments. '

process initialization table (PIT)
The segment (in the process directory) that contains information about process
initialization, i.e., Person_id and Project_id, home directory, attributes, and
accounting data. See the user_info_ description in the Subroutines manual.

process overseer
A procedure called during process initialization that sets up the environment. It
then calls the listener to start reading commands.

project
An arbitrary set of users grouped together for accounting and access control
purposes.

project administrator
A person who has the access to specify spending limits and other attributes for
the users on a particular project.

project definition table (PDT)
An administrative data base that defines all people authorized to use an
account.

project master file (PMF)
An ASCII file giving the names, attributes, and account limits of the users on
a particular project. It is compiled into a project definition table.

Project_id
The name assigned to a project.

1-24 AG91-04

pure procedure
A procedure that does not modify itself.

quit request
Several commands that read input from the kevboard use the typed request
"quit" or "q" to indicate to them that the user is done. This is not the same
as issuing the quit signal

quit signal
A method used to interrupt a running program. The quit condition is raised by
pressing the key on a terminal, such as ATTN, BRK, INTERRUPT. This
condition normally causes the printing of QUIT followed by establishment of a
new command level. (See "System Conditions” in Section 7.)

quote
A character used to delimit strings in commands and source programs. On
Multics this is the double quote, ASCII octal 042, not to be confused with the
single quote or apostrophe, octal 047.

Taw access
Also referred to as the raw mode, it is the access mode granted a process to
an object by discretionary access control. Raw access to an object is computed
from the access control list (ACL), ring brackets, and AIM attributes of the
object. (See discretionary access control.)

ready message
A message that is printed each time a user is at command level. Printing this
message may be inhibited. or the user may define his or her own ready
message. The standard system ready message telis the time of day, the number
of CPU seconds and pages of information brought into main memory since the
last ready message, and the current listener level (if greater than 1).

reconnect.ec
An exec_com segment, prepared by the user and stored in the home directory,
that is invoked automatically when the user connects to a disconnected process.
It is often used to execute commands such as set_tty, to ensure that terminal
modes are what the user desires them to be. When a terminal is disconnected,
none of its modes, set by defaull or by set_tty commands, are remembered.
This is because the old modes may not be appropriate to the terminal that is

used to reconnect to the process. Thus, if the user typically sets various
terminal modes in the start_up.ec, or by explicit command, it may be helpful
to make a reconnect.ec, which also sets these modes. For the same reason that
the system does not retain modes across process disconnection, the user should
not automatically set modes that may conflict with the characteristics of any of
the terminals that might be used. An example of a device-independent terminal

characteristic that the user might choose to alter is line—editing characters.

record
(1) The smallest unit of disk allocation, containing 1024 36-bit words (4096
characters).
2) In PL/I and FORTRAN, a block of data transferred during input or
output.

1-25 AG91-04

recursion
The ability of a procedure to invoke itself.

teference name
When a segment is made Xknown 10 a process, a symbolic name may be
associated with it for the duration of that process. This is called initiation. By
default this is the file system entryname found by the linker when searching
for a program. Reference names need not be the same as any of the segment’s
entrynames. (See "Reference Names" in Section 3.)

relative pathname
See pathname (relative).

retrieval
The process of copying a segment or directory back into the directory
hierarchy from backup tapes. This is normally done by the operations staff
using Retriever.SysDaemon at the request of the wuser. (See Section 8,
"Backup.")

ring
A particular level of privilege at which programs may execute. Lower
numbered rings are of higher privilege than higher numbered ones. The
supervisor program runs in ring 0, most user programs run in ring 4. (See
Section 6.)

ring brackets
A set of integers associated with each segment that define in what rings that
segment may be written, read, called, or executed. (See Section 6.)

root
The directory that is the base of the directory hierarchy. All other directories
are subordinate to it. It has an absolute pathname of >. (See Section 2,
"Storage System.")

scheduler
See traffic controller below.

search rules
A list of directories that are searched to find a command, subroutine, or data
item referenced symbolically. Each directory is examined, in order, to find the
given external name. Search rules are not used when a segment is addressed by
its pathname, which explicitly specifies the directory containing the segment.
(See "Search Rules" in Section 2.)

segment
Basic unit of information within the Multics storage system. Each segment has
access attributes, at least one name, and may contain data, programs, or be
empty (null). (See "Segments" in Section 1.)

shrick names

See unique names below.

1-26 AG91-04

snap (to snap a link)
The process of finding that segment (and entry point in the segment) that is
referenced by a link pair and replacing the link pair with a pointer to that
entry point. This is part of the dynamic linking mechanism, by which external
symbolic references (subroutine calis, PL/I external variables, FORTRAN
common blocks) are resolved while the program is running.

standard service system (SSS)
A group of commands and subroutines that are provided as part of the
standard Multics system. They are located in the directories
>system_library_standard and >system_library_1. (See Section 2, "Storage
System.”)

stack
A pushdown list where active procedures maintain private regions used for
temporary variables and interprocedure communication. (See "Stack Header” and
"Stack Frames" in Section 4.)

standard entry type |
A storage system entry type that is created in ring 0 is a standard entry type. i
Specifically, segments, links, multisegment files, data mangement files, and |
directories are the standard entries in the Multics file system. |

star convention
A method used by many commands to specify a group of segments and/or
directories using one name (a star name). (See "Star Convention" in Section 3.)

start_up.ec
An exec_com segment, prepared by the user and stored in the home directory,
that is invoked automatically when the user logs in. It is often used to execute
commands such as read_mail, abbrev, and accept_messages. Start_up exec_coms
can also be written for an entire project or site, to serve either as a default
start_up.ec for users who do not have their own or as an additional start_up.ec
that executes for all users when they establish a new process. These are placed
in either the project directory or the directory >scl.

status
(1) command for printing attributes of a directory entry
(2) one of the access modes on directories
(3) a coded state word returned by peripheral devices
{See status code below.)

status code
A value returned by a subroutine indicating either the success of or the reason
for failure to accomplish the requested action. Associated with standard system
error codes are certain predefined messages that tell what happened. (See
"Status Codes" in Section 8.)

1-27 AG91-04

subsystem
A collection of programs that provide a special environment for some
particular purpose, such as editing, calculation, or data management. It may
perform its own command processing, file handling, and accounting. A
subsystem is said to be closed if:

1. all necessary operations can be handled within the subsystem
2. no way exists to use the normal Multics environment from within the
subsystem

suffix
The last component of an entryname with multiple components (components are
separated by a period () that usually specifies the type of segment, for
example, pll, mbx, and list. (See Appendix E. "List of Names with Special
Meanings.")

switch
A path in the I/0 system through which information is sent. (See attach and
detach above and Section 5, "Input and Output Facilities.")

SysDaemon

The Project_id with which most of the system daemons login to perform their
functions. See daemon above.

system administrator
A person who has the access 1o register users, create projects, perform
accounting runs, and perform other functions necessary for the administration
of the system.

System Administrator Table (SAT)
a binary table specifying the projects that use the system, the privileges granted
to these projects, and their project administrators.

system_control_dir (scl, system_control_1)
The directory that contains those segments and directories used to control the
operation of the system including the answer table, who table, person name
table, project PDTs, etc.

1-28 AG91-04

terminal ID
A character string that identifies a particular terminal at an installation.

terminal type
A characier siring that identifies the terminai device, e.g., TN300, for one
similar to the GE TermiNet 300. The terminal type is associated with the
user’s terminal and/or the modes associated with terminal input/output.

terminate
The opposite of initiate: to delete reference names for a segment. This is
sometimes done to substitute one version of a command or subroutine for
another that had been known to the process. (See "Reference Names” in
Section 3.)

traffic controller
The module in the system that determines when a process is to run and how
long it will run. It also notifies processes of events that have occurred such as
timers, I/0O events, and signals from other processes.

translation (translator)
The process of compiling a source language program or data base into an
object segment. (See "Creating an Object Segment" in Section 4.)

unique name (shriek name, exclamation point convention)
A name, generated from a system clock value, that is guaranteed to be
different from any other name so generated {e.g., !BBBnZNigLQddRJg).

upgraded directory
See directory (upgraded) above.

user_dir_dir (udd)
The user directory directory, which contains all project directories. Its
pathname is >udd, and all user segments and directories are subordinate to it.
(See "Pathnames" in Section 3.)

User_id

A character string representing a user or group of users (also referred to as
"access identifier"). It consists of three components: Person_id.Project_id.tag. A
User_id is often used as an argument to a command. Depending on the
specific command, sometimes all the componenis are not specified {for exampie,
the tag component is often omitted). The star convention may be used, also
depending on the command being invoked. (Refer to the relevant command
description in the Commands manual to see if the command in question accepts
these conventions.)

volume backup
A Dbackup system which operates at the physical storage volume level. It
provides physical volume rebuilding in the event of a failure, as well as
segment and subtree retrieval.

volume label
A label on each physical volume that identifies that volume to the system.

1-29 AG91-04

VTOC

Volume table of contents. Each physical volume contains a VTOC containing
information about the segments on that volume.

who tabie (whotab)
A segment that contains a list of users who are currently logged in together
with certain attributes such as log in time, load, and terminal type.

wired segment

A vportion of the system that (of necessity) remains resident in the main
memory at all times; e.g., page control, teletype buffers, etc.

word
A hardware-related unit of information that on Multics is 36 bits.

working directory (working_dir)
See directory (working) above.

1-30 AG91-04

SECTION 2
MULTICS STORAGE SYSTEM

The basic unit of storage in the Multics storage system is the segment. Segments
form a tree-structured data base that is organized by a hierarchy of directories. As
shown in Figure 2-1, any segment or directory can be located by its entry in the
directory immediately superior to it. That directory is located in the same manner by
its entry in a superior directory and so on, up to the root of the tree. The
immediately superior directory is also referred to as either the containing or parent
directory.

SEGMENT REFERENCES

All segment references begin at the root of the tree and consist of a2 string of
entrynames ending with the name of the target segment. Such a string of entrynames
is called an absolute pathname. The greater than character (>) is used to separate
entrynames and is also used at the beginning of the pathname (by convention, the root
directory is never explicitly specified). In Figure 2-1 the absolute pathname for the
segment named "chess" is:

>udd>0thers>Jones>chess

The syntax of enirynames and pathnames is given in detail in "Entrynames” and
"Pathnames” in Section 3.

2-1 AG91-04

LOGICAL VOLUMES

Segments in the storage system hierarchy are stored on disk volumes. These disk
volumes are organized into groups called logical volumes. A logical volume consists of
one or more disk volumes used by the storage system to contain segments. Storage is
allocated on logical volumes according to the following rules so that, generally, related
segments will reside on the same logical volume.

1. All segments immediately inferior to a particular directory reside on the
same logical volume.

2. When a directory is created, the logical volume on which its inferior
segments will reside is set; and this attribute cannot be changed except
by deleting and re—creating the directory. The logicai volume is the

same as for the new directory’s parent unless a master directory for a

logical volume is being created by a special call (master directories are

described later in this section).

2-2 AG91-04

root
udd
Project_id Othe?s
Person_id Jones
[
1 epsilon) (chess i
sub_dir1 sub_dir2
Figure 2-1.

root directory

first directory level inferior to the root

second level of inferior directories

third level of inferior directories

segments in the third-level directories

fourth-level directories {user’s working directory)

Storage System Hierarchy

AGI1-04

When a logical volume is created, a registration record is created for it. This
record contains the following information:

list of the physical disk volumes comprising the logical volume

owner identification

public or private switch

list of master directories

list of users with quota accounts

Each Multics system has a special logical volume, called the root logical volume,
that contains all directories in the storage hierarchy. The root logical volume is always
mounted (this means that all the disk volumes comprising it are mounted) and the
information contained on it is always available. The segments themselves may not be
mounted all the time, since all but the root logical volume can be be mounted and
demounted by the operator at the user’s request. Segments are available to users only
when the logical volume on which they reside is mounted.

Logical Volume Attachment

Segments stored on public logical volumes can simply be referred to when
needed by a process. When a segment is stored on a private logical volume, a process
must attach the volume (via the attach_lv command) before it can use the segment.
The volume remains attached until the process explicitly detaches it (via the detach_lv
command). Many processes can use such a segment simultaneously, but each process
individually must attach the logical volume. Access to the volume is checked when the
attach request is made. The user must have rw access to the access control segment
(ACS) associated with the volume. The ACS is maintained by the volume’s owner. If
a process attempts to use a segment on a private logical volume that it has not
attached, an error indication will be returned by the system.

Master Directories

When a new directory is created, its segments will, by default, reside on the
same logical volume as the segments of its parent directory. If the segments in the
new directory are lo reside on some other logical volume, a master directory must be
created (this is done using the -logical_volume control argument of the create_dir
command). A master directory is simply the point where the hierarchy "branches out"
to another logical volume. Figure 2-2 illustrates the relationship among directories,
master directories, and logical volumes.

All master directories for a given logical volume are listed by name in the
registration record for the volume. A master directory possesses attributes in the same
manner as other directories except that quota for the master directory is not drawn
from the guota account of the containing directory but from a master directory -quota
account maintained in the logical volume registration record. In order to create a
master directory on a logical volume, the user must have a quota account on the
logical volume with unallocated quota sufficient to satisfy the request.

2-4 AG91-04

master directory

for

,l, logical volume A

>Smith

>Smith>test

Y

master directory
for
‘ logical volume B

>Smith>fprogs

for

master directory

‘ logical volume A

> Smiih>fprogs> ftest

}

\ B

AN A\ A\ A\ '
v N 7/ N 7 N /7 - AN
N VAR /
A4 N

Logical Volume A

Logical Volume B

Figure 2-2. Relationship of Directories to Logical Volumes

2-5

AGI1-04

STORAGE SYSTEM ENTRY TYPES

The basic elements within the Multics storage system are segments and
directories. Multics supports additional entry types that are maintained for convenience
or to aid programmers who require a storage medium with special qualities or
attibutes. The various entry types are described below.

Segment

The segment is the unit of storage of the Multics System that is analogous to
a file on other systems. A segment is a collection of instructions or data specified by
a user.

Directory

A directory is a catalog of subordinate entries.

Link

A link entry is a reference to an entry in another directory. The reference is
made by giving the pathname of the target entry.

Multisegment File

Very large data bases may exceed the size of a single segment. In such cases,
Multics treats this data base as a group of segments in a single muliisegment file. The
segments are grouped under a common directory whose multisegment file indicator is
set. The directory and its contents are called a multisegment file (MSF).

Any directory whose multisegment file indicator is not 0 is an MSF. For an
MSF, this indicator is a count of the number of segments it contains. Not all of the
attributes listed above are applicable to MSFs. Some of the attributes are the same
for any entry: however, due to the nature of an MSF when viewed as a file, many
of the attributes are implemented differently. For example, the bit count of an MSF
is the sum of the bit counts of the segments it contains. The access control list for
an MSF directory applies to all of the segments it contains. The safety swtich
attribute can be used; however, if it is set for one of the segments in the MSF, it
should be set for all of them. For more specific information on these and other
attributes of MSFs, refer to the msf_manager_ subroutine in the Mu/ltics Subroutines
and //0 Modules manual, Order No. AG93.

Most standard system programs that work on segments also work on MSFs.
However, some commands and subroutines will give unpredictable results when used on
MSFs. The programmers should consult the individual command or subroutine
description before invoking it on an MSF.

2-6 AG91-04

Data Management File |

A data management (DM) file is composed of a set of pages known as control
itervals, numbered from 0 through N and adddressable only through software calls to
the file manager. Data is accessed by specifying a control interval number, byte
offset, and length.

Data management files can be implemented with concurrency control and
recovery support. At present the ability to use data management files is available only
to programs accessing files through the Multics Relational Data Store (MRDS) facility.

Extended Entry Types |

The Multics storage system supports special-case entry types, called extended
entry types. The following system—supplied storage system elements have been
implemented as extended entries: mailboxes, forum meetings, message segments, before
journals, and the person name table. These entry types are called extended entry types
because the Multics storage system has been enhanced (extended) to treat these storage
elements as segments (even though they are structured differently than segments). Each
of the extended entry types is identified by a suffix appended to the entry name, as
described below:

Name suffix
mai lbox .mbx
forum meeting .forum
message segment .ms
before journal .bj
person name table .pnt

Users should note that the extended entry types specified above are those available
with the Honeywell-supplied system. User—created file system objects can also be
implemented as extended types, if desired. See Section 4 for information on the
creation of extended entries.

ENTRY ATTRIBUTES !

Entry attributes are listed below. Not all of the attributes listed below are]
applicable to all entry types. |

A process may perform explicit modification of an attribute by calling a
standard storage system subroutine. Implicit modification is automatic and occurs as a
result of some change to the target entry. For example, when data is written into an |
existing segment, the date-time contents modified attribute is changed.

access class *
The access class of an entry is established when the entry is created. It is used
to restrict access to users who meet specific security requirements. The access
class attribute cannot be modified. Access class characteristics are described in
detail in Section 6. *

2-7 AG91-04

access control list

The access control list (ACL) maintains a list of access names, specifying classes
of users who are allowed access to the entry and, for each class, the mode of
access permitted. The access specified may be nuil, indicating that no access is
permitted. The ACL attribute is used in conjunction with the access class
attribute to determine access rights when a particular process refers to the
entry. An ACL can be explicitly modified. See Section 6 for a complete
discussion of access control.

author

The author attribute of an entry is the access identifier of the process that
created the entry. This attribute cannot be modified.

bit count

The bit count attribute gives the length (in bits) of the entry. The bit count
can be modified by any process with write access to the segment and is
maintained by the user rather than the system. Any procedure that modifies
the segment length should also modify the bit count since many system
commands and subroutines depend on its accuracy.

bit count author

The bit count author attribute contains the access identifier of the process that
last set the bit count. This attribute is automatically updated when the bit
count is set.

complete volume dump switch

This attribute controls whether an entry is to be dumped during a complete
volume dump of the physical volume on which it resides. The default is to
dump. This attribute should only be disabled if the data can be easily
recreated. This attribute is unavailable for segments on private logical volumes
unless the process has attached the logical volume.

copy switch

The copy switch is used to determine whether the entry itself or a copy of
the entry is made available when an attempt is made to modify the segment.
If the copy switch is "off,” all processes share the original entry and only
those processes with write access can perform write operations. If the copy
switch is "on,"” the above holds true for the original entry, but processes
without write access are automatically given their own copies of the entry.
These copies (made-in the process directory) can be modified and are retained
for the life of the process.

2-8 AGI1-04

current length %

The current length attribute gives the length in pages of an entry. This |
attribute is modified by the system when data is stored beyond the existing
current length or when the entry is truncated. This attribute is not available |
for entries on private logical volumes unless the process has attached the logical |
volume.

damaged switch *

This attribute controls a switch that curtails access to entries damaged by a |
device error or system crash. When damage occurs, the entry should be |
inspected to determine whether its contents can be recreated or the entry |
retrieved. The damaged switch is automatically set to "off" when an entry is |
truncated to zero words. This attribute is unavailable for entries on private |
logical volumes unless the process has attached the logical volume.

date and time dumped *

This attribute records the time at which a backup copy of the entry was last
made by the hierarchy dumper. This attribute is unavailable for entries on |
private logical volumes unless the process has attached the logical volume.

date and time contents modified *

This attribute records the approximate time at which the contents of the entry
were last modified. The date-time-contents-modified (DTCM) attribute of a2
non-directory entry (except for f, below) is set whenever the transparent—modify
switch (in the ASTE) is off, and:

(@) the entry is created,

(b the entry is truncated,

() the DTCM is the subject of an inquiry and the entry has been
modified since the last time the DTCM was set,

d@) the entry is deactivitated after having been modified since the last time
the DTCM was set,

(e) the last in—core page of the entry drifts out of memory and the entry
was modified since the last time the DTCM was set,

(f) the segment is a directory and an inferior (active) entry has its DTCM
set for any of the above reasons, or

® the hierarchy or volume reloader calls to explicitly set DTCM.

Except for privileged operations, the DTCM is set to the current time. The
DTCM is set in the VITOCE for non-active entries and in the ASTE for active

entries. Whenever the VITOCE is updated from the ASTE, the ASTE DTCM
value is placed in the VTOCE.

2-9 AG91-04

The dumpers and reloaders set the transparency switches for entries in order to
insure that the DTCM values reflect the values that were dumped. The

transparent-modify switch is always set for directories, so that only directory
DTCM is updated when:

(a) an entry DTCM is updated for any entry below the directory, or
(b) an operation occurs that updates the date-time-entry-modified attribute
of any entry below the directory.

+ date and time entry modified
This attribute records the last time any attribute of the entry was modified. It
is implicitly updated after any modification.

« date and time used

This attribute records the last time the target entry was referenced. The
date-time-used (DTU) attribute is set whenever the transparent—use switch (in
the ASTE) is off, and:

(a) the entry is created.
(b) the entry is the subject of an inquiry and has pages in memory,

©) the entry is deactivated with pages in memory,
(d) the hierarchy or volume reloader calls to explicitly set the DTU, or
(e) the last in—-core page of the entry drifts out of memory.

Except for privileged operations, the DTU is always set to the current time.
The DTU is set only in the VTOCE for non-active entries and in the ASTE
for active entries. Whenever the VIOCE is updated from the ASTE, the ASTE
DTU value is placed in the VTOCE.

The dumpers and reloaders set the transparency switches for entries in order to
insure that the DTU values reflect the values that were dumped.

date and time volume dumped

This attribute records the time a volume dumper process dumps the entry
contents to tape.

« dnzp switch

The "don’t null zero pages" (dnzp) switch is used to control how pages of a

| an entry that contain only words of zeroes are represented on disk. If the
switch is off (i.e., null zero pages), then pages that contain all zeroes are not
actually written on the disk and are not charged against quota; instead, they
have a "null" address placed in their file map. If the switch is on (i.e., don’t
null zero pages), then a page of zeroes is treated just like any other page and
is written to disk and charged against quota.

2-10 AG91-04

entry point bound *

The entry point bound attribute provides a way of limiting which locations of
a gate entry may be targets of a call. The hardware does not permit an
inward call to the entry if the word number specified in the call is equal to |
or greater than the entry point bound word number. '

incremental volume dump switch *

This attribute controls whether an entry is to be dumped by the volume |
dumper during an incremental dump cycle. The default is to dump. The
incremental volume dump should be distinguished from the complete volume
dump; this switch can be turned off with relative safety for things that are
seldom modified. This attribute is unavailable for entries on private logical l
volumes unless the process has attached the logical volume.

initial access control lists

£ 3

An ACL is created for each new entry in a directory by copying the initial
ACL from the containing directory. The initial ACL contains default values
(see Section 6 for these) and can be explicitly modified by any process that,
has modify access to the directory at validation level. No access to the
conlaining directory is required.

logical volume identifier *.

The logical volume identifier for a directory identifies the logical volume to be
used for entries created in a particular directory. Its value is either inherited
from the parent directory or explicitly set by supplying the -logical_volume
control argument to the create_dir command. The value of this attribute cannot
be changed after the directory is created.

logical volume identifier .

The logical volume identifier for a segment names the logical volume on which |
the segment’s contents are stored. Its value is set when the entry is created |
and cannot be modified. i

master directory switch *

The master directory switch indicates whether or not a directory is a master,
one whose entries reside on a different logical volume than those of its parent

directory. The switch is turned on when the directory is a master directory
and turned off when it is not. *

2-11 AG91-04

maximum length

The maximum length attribute sets a limit on the size an entry can attain.
Maximum length is accurate to units of 1024 words. The maximum value in
words is 255K (K = 1024). This attribute is not available for entries on private
logical volumes unless the process has attached the logical volume.

multisegment file indicator

This attribute is used to indicate that the directory is associated with a
multisegment file. The value of the attribute is the number of segments
(components) in the file. The multisegment file indicator is implicitly modified
by multisegment file primitives when the number of components of the file
changes. The user can also modify it by using the set_bit_count command.

names
Each entry can have many names. The first name returned by the storage
system is called the primary name. For more information on names, see
"Entrynames™ in Section 3.

quota

The quota attribute gives the maximum number of storage records permitted to
entries in a particular directory.

records used

The records used attribute gives the amount of secondary storage (in records)
occupied by the entry. This attribute is implicitly modified when there is any
change to the number of nonzero records used. This atiribute is not available
for entry on private logical volumes unless the process has attached the logical
volume.

ring brackets
The ring brackets attribute is used in connection with other access control

mechanisms to determine access rights to the target entry. See Section 6 for a
complete discussion of ring brackets.

2-12 AG9Y91-04

safety switch

The safety switch attribute is used to protect an entry from deletion. If the
safety switch is set, the user is asked if the entry should be deleted before a
deletion command or request is executed on the entry.

security out—of-service switch

When this switch is on, the directory in which it occurs and all inferior
entries cannot be referenced. The switch is automatically set when an access |
class discrepancy is detected. This attribute can only be modified by a system
security administrator.

type *

The type attribute indicates the entry type. The type attribute cannot be |
modified.

unique identifier

The unique identifier attribute is a number assigned when an entry is created
to distinguish it from all other entries in the storage system. This attribute
cannot be modified.

use count *
This attribute is a count of the number of page faults taken on an entry since |
its creation. This attribute is unavailable for segments on private logical
volumes unless the process has attached the logical volume.

SYSTEM DIRECTORIES

A single directory hierarchy is used for both system and user segments. Figure
2-3 shows, at the upper level of the storage hierarchy, the basic structure assumed by
the Multics system. Additional segments and directories can be created at this level of
the structure as well as at lower levels.

As shown in Figure 2-3, several system direciories are contained in the roof.
These are always present and are described below.

2-13 AG91-04

{root
directory)

I

sysie ml— process_ daemon_ user_ system_ system _
control_1 dir_dir dir_dir dir_dir libraries library_
unbundied
A 1 | T)
Directories and LC'I&,dD_J . d é b
segments of the All commands and S tel iced
eparately price
absentee gzgkm”;‘ a":)éé?s subroutines provided- commands and
.ms P as part of Multics subroutines
except separately
: ~ priced items
Plus miscellaneous account-
ing, log, line One
usage, and pass- {name= directory 3 One
word segments process-id) per (project directory
process name) per
I project
linker
area One
(user directory
~ J name) per
user’

Plus other temporary segments created as needed

L.ﬂ—_}

Personal segments
and directories
of this user

Figure 2-3. Directory Hierarchy

system_control_1

This directory contains information associated with system accounting,
user authorization, and logging—-in procedures. Project administration
tables are stored in a directory subtree beginning at this directory. The
following three segments are the only generally accessible ones entered
in system_control_1: the table printed by the who command; the
message of the day; and absentee queue segments.

process_dir_dir
This directory contains a process directory for each currently active
process. The name of an individual process directory is derived from
the unique identification of the process. A process directory contains
temporary segments created by a process and retained only for the life
of that process.

2-14

AGI1-04

When a process is created, a process directory is established with the six
initial segments described below:

process data segment (PDS)
A supervisor data base, the PDS keeps a record accessible only
to the supervisor.

known segment table (KST)
A supervisor data base, the KST contains the correspondence
between segment numbers and segments known to the associated
process. This segment is accessible only to the supervisor.

process initialization table (PIT)
The PIT contains information that is used to initialize the
process.

descriptor segment (DSEG)
A supervisor data base, the DSEG contains the correspondence
between segment numbers and their absolute memory addresses
and access permissions. This segment is accessible only to the
supervisor. It is always segment 0.

stack_n
This segment contains the stack used for PL/I automatic
variables and for subroutine call and return operations. One
stack segment is created for each active ring; the last character
of the stack name is the ring number. The ring 0 stack, unlike
the others, is not kept in the process directory; it is kept in
system_library_1. Actually, there are a number of these stacks in
ring 0, and they are multiplexed among running processes.

unique_name.area.linker
This segment, managed by linker, contains interprocedure links
and PL/I internal static storage. If the total requirements for
linkage information and static storage exceed the length of a
segment, additional segments are created as needed under a
similar name. In addition, each active ring has its own linkage
segment. In addition, the linkage area also contains other system
storage (e.g., external static and fortran common).

Other segments that are created by various Multics subsystems and
editors are also commonly found in the process directory.

daemon_dir_dir

This directory contains segments that support system daemon processes,
such as automatic file backup and bulk (card and printer) input and
output. The queues of the I/0 facilities are the only generally
accessible segments in this subtree.

2-15 AG91-04

user_dir_dir

This directory is the beginning of a tree containing all segments
belonging to individual users. It contains entries for a set of directories,
one for each project. Each project directory generally contains one
personal directory (home directory) for each user associated with that
project. Individual users can create their own directories, inferior to
their own personal directory.

system_libraries
The standard Multics commands and subroutines are combined in the
following system libraries:

system_library_standard
system_library_1
system_library_tools
system_library_unbundled
system_library_obsolete

The procedures in these directories are documented in the Commands
and Subroutines manuals. A library of unbundled software
(system_library_unbundled) may also be present. Unless the user specifies
otherwise, these directories (except for system_library_obsolete) are
included in the list of directories to be searched during dynamic
linking. See "Dynamic Linking" and "Search Rules" in Section 4.

2-16 AG91-04

SECTION 3

NAMING, COMMAND LANGUAGE, AND
- TERMINAL USAGE

CONSTRUCTING AND INTERPRETING NAMES

The various types of names used on Multics are constructed and interpreted
according to certain definite, fixed conventions. The names discussed below are
entrynames, pathnames, star names, equal names, reference names, offset names,
command names, subroutine names, condition names, request identifiers (IDs), and 1/0
switch names. User names are discussed under "Access Control" in Section 6 since
they are primarily used to specify access control information.

Entrynames

An entryname is the name of an entry (segment, directory, etc.) in the file
system. An entryname consists of at least one nonblank and no more than 32 ASCII
characters. Any entry can have more than one entryname. In general, entrynames
consist of uppercase and lowercase alphabetic characters, digits, underscores (_), and
periods (.). The underscore is used to simulate a space for readability; e.g., 2 segment
might be named delta_new. (Including a space in an entryname is permitted, but is
cumbersome, since the command language uses spaces to delimit command names and
arguments.) The period is used (o separaie components of an entryname, where a
component is a logical part of the name. Null components (i.e., zero length l
components) should not exist. A null component results if its name begins or ends |
with a period or contains two adjacent periods. Several system conventions (e.g., the |
star convention and equal convention both described below) operate on components.
Also, compilers implemented on Multics expect the language name to be the last
component of the name of a source segment to be compiled, e.g., square_root.pll for
the name of a PL/I source segment. See "Program Preparation” in Section 4 for .
details on programming conventions.

Only the greater than (>) character is prohibited in entrynames, since it is used
to form pathnames as described below. Since standard commands attach special
meanings to them, several other characters are not recommended for entrynames,
including the less than (<), asterisk (+), question mark (7), percent sign (%), equal sign
(=), dollar sign ($), quotation mark ("), two consecutive colons (:), vertical bar (|), |
and parentheses characters. In addition, all ASCII control characters (e.g., space, tab,
carriage return, etc.) are not recommended for use in entrynames because some of
these characters have a special meaning in the command language, and the others are
hard to use (they do not print out correctly and are difficult to type). Non-ASCII
characters are not permitted in entrynames.

01/87 3-1 AG9I1-04A

Pathnames

A pathname is a sequence of entrynames. Each entryname except the last in a
pathname is the name of a directory eniry {or link to a directory entry) in the
storage system hierarchy. (See "Directory Contents” in Section 2.) The last entryname

| in a pathname is the name of an entry (segment, directory, etc.). The last entryname

| in a pathname can be a starname or an equalname, or the pathname may be followed

| by an archive component name, an offset, or a symbolic definition. Each entry in the
hierarchy has an entry in a superior directory.

Any entry can be found by following the appropriate entries from a designated
directory through inferior directories. The length of a pathname must not exceed 168
characters. An absolute pathname traces an entry from the root directory; a relative
pathname traces an entry from the current working directory.

An absolute pathname is formed from a sequence of entrynames, each preceded
by a greater than character. Each greater than character denotes another level in the
storage hierarchy. The entryname following the initial greater than character designates
an entry in the root directory (see Figure 3-1, below). An example of an absolute
pathname is:

>udd>Project_id>Person_i d>e§s ilon

The directory named user_dir_dir (udd) is immediately inferior to the root; Project_id
is an entry in udd; Person_id is an entry in Project_id; and epsilon is an entry in
Person_id. Each intermediate entry in the chain can be either a directory or a link to
2 directory. The final entry, epsilon, can be a directory, a segment, a multisegment
file, a link, a data management file, or one of the exiended entry types. A maximum
of 16 levels of directories is allowed from the root to the final entryname.

A relative pathname looks like an absolute pathname except that it does not
contain a leading greater than character, and can begin with less than characters as
explained below. It is interpreted by commands as a pathname relative to the user’s
working directory. The simplest form of relative pathname is the single name of an
entry in the user’s working directory. For example, in Figure 3-1, the relative
pathname beta refers to the entry beta in the user’s working directory sub_dir2. On a
slightly more complex level, the relative pathname my_dir>omega refers to the entry
omega in the directory my_dir, which is immediately inferior to the user’s working
directory sub_dir2.

A less than character can be used at the beginning of a relative pathname to
indicate that the directory immediately superior to the working directory is where the
following entryname is to be found. The less than character can be used to denote
levels in the storage hierarchy similar to the use of the greater than character. Each
less than character represenis one level up the hierarchy (toward the root), starting at
the current working directory. In this way, a directory several levels superior to the
current working directory can be searched for the first entryname in the relative
pathname.

01/87 3-2 AGY91-04A

root

udd
Project_id Others
Person_id Jones
L
< epsilon , < chess >
sub_dir1 sub_dir2
alpha be:—\ ‘ delta_new ’
my_dir older
. J
omega delta_old
Figure 3-1.

root directory

first directory level inferior to the root

second level of inferior directories

third level of inferior directories

segments in the third-level directories

fourth-level directories (user’s working directory
in accompanying examples)

segments {or directories, or links} in directories
inferior to the working directory

fifth level of inferior directories

segments (or directories, or links)

Sample Storage Hierarchy

3-3

AG91-04

The following examples (using the sample hierarchy in Figure 3-1) show some
relative pathnames and the absolute pathnames of the segments they identify when the
user’s working directory is:

>udd>Project_id>Person_id>sub_dir2

Reiative Pathname Segment

delta_new >udd>Project_id>Person_id>sub_dir2>delta_new
older>delta_old >udd>Project_id>Person_id>sub_dir2>older>delta_old
<sub_dirl>alpha >udd>Project_id>Person_id>sub_dir1>alpha

<<<0thers>Jones>chess >udd>0thers>Jones>chess

Archive Component Pathnames

If the final component of a pathname contains a ":" sequence, it is not
interpreted as the name of an entry, but rather as a specification of an archive name
and the name of a component in the archive. The string preceding the "::" sequence
is interpreted as the archive name; the suffix ".archive” need not be specified. since it
is assumed. The string following the "::" sequence is interpreted as the name of the
component in the archive. Only one ":" sequence may appear in the final component
of a pathname. The component name may be up to 32 characters in length; the name
of the archive may be up to 32 characters including the ".archive" suffix, or 24
omitting 1it.

Example:

print >udd>Sample>Smith>source::blank.pl]

This command prints the component blank.pll in archive
>udd>Sample>Smith>source.archive.

NOTE:
Not all commands are prepared to manipulate archive components, and hence do not
interpret this syntax. If an archive component pathname is given to a command that
cannot manipulate archive components, the error message:

Archive component pathname not permitted.
is printed. In particular, commands that create or write into segments generally do not

implement this syntax. To determine whether a particular command implements this
syntax, consult the Commands manual description.

3-4 AGY91-04

Star Names

Many commands accept starnames to identify the entities to be examined or
operated upon. Starnames are names containing wildcard characters used to specify sets
of entities or to facilitate typing. The star convention defines the wildcard characters
and matching criteria. :

Starnames are constrained by the application. Commands that use starnames to
match file or directory names permit the final entryname in a pathname to be a
starname. In this case, the starname is also an entryname and is subject to the
restrictions on entrynames such as the 32 character limit. Such a command would
match the starname against the names of all of the entries in the directory (as
determined from the pathname) and select those entries of appropriate type which
have at least one matching name. ‘

A starname matches links if the command utilizing the star convention operates
on the link itself. In general, commands do not work upon the targets of links
matching a starname. Similarly, a starname matches every entryname of an entry if it
operates on name attributes. Otherwise, an entry is generally selected only once even
if it has several names matched by the starname.

RULES FOR CONSTRUCTING STAR NAMES

1 A starname is a character string.

2 A starname is made up of components. Components are delimited by
the beginning and end of its name, and by the period () character,
referred to as a dot.

3 Each question mark (?) character appearing in a starname is treated as
a special character.

4, Each asterisk or star (*) character appearing in a starname is treated as
a special character.

5. Each occurrence of two consecutive asterisks (*#), called a doublestar,
appearing in a starname is treated specially.

6. Each component consisting only of a doublestar, called a doublestar
component, is treated specially.

1. Three

1ree Or more consecutive asterisks (#*x) are invalid,

INTERPRETING STAR NAMES

A starname is compared to a set of names; names that satisfy the following criteria
are considered to match the starname.

1. If the starname contains no special characters (stars or question marks),
then the rules for PL/I string comparison are used.

01/87 3-5 AG91-04A

01/87

2. Trailing ASCII space characters are not significant.

3. Each nonspecial character matches itself literally. The matching constructs
must be in one-to-one correspondence between the starname and th
matched name, in the same order.

4, Each question mark matches exactly one character within a component,

so it matches any single character except dot.

5. Each star matches any number of characters within a component, so it
matches any number (including zero) of any character except dot.

6. Each doublestar matches any number of characters, including zero.

7. Each doublestar component matches any number of entire components,

including zero. Note that the dot or dots delimiting the doublestar
component match component boundaries, and if zero components are
matched, they match the same boundary. The boundary can be a dot or
the beginning or end of the matched name.

The following examples illustrate some common forms for star names.

179777797777777

identifies all 15 character one-component entries beginning with !
(called unique names because such names are generated by the
unique_chars_ subroutine, described in the Subroutines manual, and by
the unique active function) in the user’s working directory.

ad?
identifies all three—character one-component entries in the user’s working
directory that begin with ad.
ad?#
identifies all one-component entries in the user’s working directory that
begin with ad and have three or more characters.
*
identifies all one—component entries in the user’s working directory.
*_data ’
identifies all one—component entries whose first component ends with
_data preceded by any number of other characters (including none).
* *
identifies all two-component entries in the user’s working directory.
*.pll
identifies all two—component entries in the user’s workmg directory that
have pll as their second component.
prog*.pll

identifies all two—component entries whose first component begins with
the letters prog followed by any number of other characters (including
none), and whose second component is pil.

3-6 AG91-04A

sub_dir>my_prog.new.*
identifies all three-component entries in the directory sub_dir (which is
- immediately inferior to the user’s working directory) that have my_prog.new
as their first and second components.

interest_*_data.*.* :
identifies all three-component entries whose first component begins with
interest_, ends with _data, and has any number of characters (including
none) in between.

* %.my_seg
identifies all entries with two or more components of which the last is
my_seg.

*%
identifies all entries in the user’s working directory.

¥ pll
identifies all entries with pll as the last (and possibly only) component.
my_prog.*#*
identifies all entries with my_prog as the first (and possibly only)
component.

sub_dir>prog?.%%.pll
identifies all entries in the directory sub_dir (which is immediately
inferior to the user’s working directory) with two or more components,
of which the first component has exactly five characters and begins
with prog, and the last component is pll.

f00
identifies any one-component entries in the user’s working directory that
has the substring "foo" in their name.

**fo0*
identifies any name in the user’s working directory which has the
substring "foo" in its last component.

* ko ok Kk
identifies all entries in the user’s working directory. Any name which

contains at most one single star component, at least one doublestar
component, and nothing else will match anything.

01/87 3-7 AGI1-04A

Equal Names

Some commands that accept more than one pathname as their arguments allow
the entrynames of pathnames following the first, or source, pathname to be
equalnames. This is generally to be expected if the command allows the source
entryname to be a starname. An equal name is an entryname containing special
characters that represent one or more characters from the entryname (or entrynames,
when a star name is used) that corresponds to it. Commands that accept equal names
provide a powerful mechanism for mapping certain character strings from the first
pathname into the second pathname of a pair. Use of the equal convention reduces
the typing required for the second pathname, and it can be essential for mapping
character strings from entrynames identified by a star name into the equal name,
because these character strings are not known when the command is issued.

CONSTRUCTING EQUAL NAMES
An equal name-is constructed according to the following rules:

L An equal name is an entryname. Therefore, it is composed of a string
of 32 or fewer ASCII printing graphics or spaces, none of which can
be the greater than (>) character. Unlike an entryname, an equal name
cannot contain control characters such as backspace, tab, or newline.

2. An equal name is composed of one or more nonnull components. This
means that an equal name cannot begin or end with a period () and
cannot contain two or more consecutive periods.

3. Each percent sign (%) character appearing in an equa'l name component
is ireated as a special characier.

4, FEach equal sign (=) appearing in an equal name component is treated as
a special character.

5. An equal name component consisting only of a double (==) or triple
equal sign (===) is treated as a special component.

6. An equal name containing four or more consecutive equal signs is
illegal.

INTERPRETING EQUAL NAMES

An equal name maps characters from the entrynames that match the star name
(first entryname) into the second entryname of a pair according to the following rules:

1. Each percent sign (%) in an equal name component represents the single
character in the corresponding component and character position of the
corresponding entryname. An error occurs if the corresponding character
does not exist. :

01/87 ' 3-8 AG91-04A

01/87

2. An equal sign (=) in an equal name component represents the
corresponding component of a corresponding entryname. An error occurs
“if the corresponding component does not exist. An error also occurs if
an equal sign appears in a component that also contains a percent
character. Only one equal sign can appear in each equal name
component, except for a double or triple equal sign component, as
noted in the next two rules.

3. The double equal sign (==) component of an equal name represents all
components of an entryname that have no other corresponding components
in the equal name. Often, the double equal sign component represents
more than one component of the corresponding entryname. If so, the
number of components represented by the entire equal name is the same
as the number of components in the entryname. When the equal name
contains the same number of components or more components than the
entryname, a double equal sign is meaningless and, therefore, ignored.
(See the examples below.) Only one double equal sign component can
appear in an equal name.

4, The triple equal sign (===) component of an equal name represents the
entire corresponding entryname. The triple equal sign component is used
to add components to a name (see below). Only one triple equal sign
component may appear in an equal name and no other component of
that equal name may contain percent signs or equal signs.

The rules above impose no restrictions on the form of the entrynames identified
by the equal name. These names can contain null components. However, the rename
and add_name commands cannot be called with arguments that contain null
components, because these commands treat their arguments as either star names or
equal names. The -name control argument of the rename and delete_name commands
can be used to change or delete entrynames that contain null components, control |
characters, or other characters reserved by the star, equal, archive, or virtual pointer |
conventions. (See the Commands manual for descriptions of the rename and |
delete_name commands.) Entrynames present in directories have usually been subjected |
to validity tests for entrynames and thus are usually valid. i

3-8.1 AGY91-04A

This page intentionally left blank.

01/87 AG91-04A

The following examples illustrate how equal names might be used in rename and

add_name commands.

First, the single equal sign. The command:
rename random.data_base ordered.=

is equivalent to:

rename random.data_base ordered.data_base

and the command:
add_name world.data =.statistics =.census
is equivalent to:

add_name world.data world.statistics world.census

The command:
rename random.data.base =.=
is equivalent to:

rename random.data.base random.data

The star convention is used in the command:

rename *.data_base =.data

to rename all two—component entrynames with data_base as their second component so

these entrynames have, instead, a second component of data.

The command:

rename program.pil old_=.=
is equivalent to:

rename program.pll old_program.pll

and the command:

add_name data first_=_set

is equivalent to:

add_name data first_data_set

3-9

AGI91-04

An error would be produced by the command:

rename alpha beta.=.gamma

because the first eniryname of the pair does not contain a component corresponding
to the equal sign in the second name.

Next, the double equal sign. In the two examples that follow, the first entryname has
components that correspond to the double equal sign in the equal name of each pair.
As a result, the number of components represented by the equal name is the same as
the number of components in the first entryname. The command:

rename one.two.three 1.==

is equivalent to:

rename one.two.three 1.two.three

and the command:

add_name one.two.three.four.five 1.==.5

is equivalent to:

add_name one.two.three.four.five 1.two.three.four.5

In the example that follows, the equal name contains the same number of components
as the entryname. Therefore, the double equal sign does not correspond to any
components of the entryname and is ignored. The commands:

rename alpha.beta ==.x.
rename alpha.beta x.y
rename alpha.beta x.=

‘<|I‘<

are all equivalent to:
rename alpha.beta x.y

In the next example, since the equal name contains more components than the
entryname, the double equal sign corresponds to no components of the entryname and
is ignored. The command:

add_name able ==.baker.charlie

is equivalient to:

add_name able baker.charlie

3-10 AG91-04

The command:

add_name *¥%.ec ==.absin
uses the star convention to add a name to each entry with an entryname whose last
(or only) component is ec. The last component of this new name is absin instead of
ec, and the first components (if any) are the same as those of the original name
ending in ec (e.g., the name alpha.absin would be added to the entry named alpha.ec).
The command:

rename foo.test.pll ==.0ld
is equivalent to:

rename foo.test.pll foo.test.old
With the triple equal sign, this command becomes:

rename foo.test.pll ===.0ld
and is equivalent to:

rename foo.test.pll foo.test.pll.old

because the triple equal sign represents the entire corresponding entryname. For the
same reason, the command:

add_name alpha.** ===,
adds the name "alpha.l" to "alpha", "alpha.pll.l1" to "alpha.pll”, etc.
Note that a triple sign component in an entryname implies that the new name will
have more components than the old name. This is different from a double equal sign

component as can be seen if the command:

add_name alpha.** ==,

is used instead. The latter command has a different effect. For example, it attempts
to add the name "alpha.l" to both "alpha.pll" and "alpha.list", leading to a name
duplication error.
The command:

rename 7?77%.data %%%.=
renames all two—component entrynames that have a last component of data and a first
component containing three or more characters so that the first component is
truncated to the first three characters and the second component is data (e.g.,
alpha.data would be renamed alp.data). The command:

rename *.data %%%.=

3-11 AGI91-04

results in an error if the first component of any name matching *.data has fewer than
three characters.

Archive Component Pathnames and Equai Names

Some commands that accept pairs of pathnames as their arguments (e.g., the
compare_ascii command described in Commands manual) allow either or both of the
pathnames to be archive component pathnames (e.g., source:blank.pll as described in
an earlier part of this section). The first pathname may contain star names as part of
the archive name (that portion of the pathname before the double celon (:)) and the
component name (that portion appearing after the double colon). The second pathname
may also be an archive component pathname, and it may use equal names in the
archive name and the component name. This usage makes it easy for the user to
request an operation on one or more components in an archive and either segments or
components in other archives where the segment/component names are constructed
from the original component name using equal names. Additionally, if the operation is
to be performed on two components, the name of the second archive may also be
derived from the name of the first archive using equal names. The two portions of
an archive component pathname, the archive name and the component name, are
treated separately by the star and equal name conventions. Thus, for instance, a triple
equal sign used in the archive name will append only the corresponding archive name,
not the entire pathname. The command:

compare_ascii source.ll::my_data ===.ud::my_data
is equivalent to:
compare_ascii source.ll::my_data source.ll.ud::my_data

The rules for constructing and interpreting equal names in the two portions of an
archive component pathname are identical to those for ordinary equal names described
earlier in this section.

The following rules are used to determine whether to apply a given equal name
to the archive or component name specified in the first (source) pathname when
constructing the second (target) pathname:

1. If neither the source nor target pathnames are archive component
pathnames, an equal name in the target pathname is applied to the
source pathname just as described in the previous section on equal
names.

2. If the source pathname is not an archive component pathname, but the
target pathname is an archive component pathname, an equal name in
the target component name is applied to the source entryname; an equal
name is not permitted in the target archive name in this case.

3-12 AG91-04

3. If the source pathname is an archive component pathname, but the
target pathname is not an archive component pathname, an equal name
in the target entryname is applied to the source component name, not
the source archive name.

4, If both the source and target pathnames are archive component
pathnames, an equal name in the target archive name is applied to the
source archive name, and an equal name in the target component name
is applied to the source component name. When applying the equal

name 1o the source archive name, ".archive” suffix is removed from the
archive name.

The following examples illustrate the use of archive component pathnames and
equal names in the compare_ascii command.
The command:

compare_ascii test.pil source::old.===
is equivalent to:

compare_ascii test.pll source::old.test.pl]
and compares the segment "test.pll” with the component "old.test.pll” in the archive
"source.archive”.
The command:

compare_ascii source.s::print_data.pll ===.ud::===
is equivalent to:

compare_ascii source.s::print_data.p!l source.s.ud::print_data.pll
and compares the component named “print_data.pll” in the two archives, "source.s.archive”
and "source.s.ud.arhive".
The command:

compare_ascii my_prog.pll ===::his_prog.==
is invalid because there is no archive name in the source pathname corresponding to
the "===" in the target pathname.
Finally, the command:

compare_ascii tools::my_prog.pll his_prog.==
is equivalent to:

compare_ascii tools::my_prog.p!l his_prog.pll

3-13 AGI1-04

Reference Names

A reference name is a name used to identify a segment that has been made
known by the user. Initiating a reference name for a segment is one way to make a
segment known to the user’s process. (See "Making a Segment Known” in Section 4
and "Process” in Section 1.) A segment can be made known via the initiate command
(described in the Commands manual) and the hcs_S$initiate and hcs_S$initiate_count
subroutines (documented in the Subroutines manual). When a segment is made known
and a reference name initiated for the segment, its reference name is entered into the
reference name table. If the user uses the initiate command to initiate a reference
name for a segment, the reference name need not have any similarity to the
entryname of the segment. For example:

initiate >udd>Project_id>Person_id>debug newdebug

makes the segment named debug in the user’s home directory known with the
reference name newdebug.

A segment can be addressed by its reference name either from command level
or from within a program. When a segment 1is addressed, the hcs_$make ptr
subroutine (described in the Subroutines manual) uses search rules to locate the desired
segment. By default. the first search rule is "initiated_segments”, causing the reference
name table, listing reference names for segments, to be searched first. If the segment
has not been made known and a reference name has not been initiated for the
segment, the search continues until a segment with an entryname that matches the
reference name is found. (Search rules are described in detail under "Search Rules” in
Section 4.)

A reference name is associated only with segments made known in a process.
The same reference name can be used in two different processes to refer to two
different segments. Also, a reference name/segment binding exists only for the
duration of the process in which it is specified. It is possible to break that binding
by making the segment unknown, thus causing all external references (links) from
other segments to the unknown segment to be unsnapped and causing the segment to
no longer be known in the process (by any reference name). Any reference name of
an unknown segment can be used again in the process to refer to a different segment.
(See the descriptions of the terminate and terminate_refname commands in the
Commands manual and the term_, hcs_$terminate_file, and hcs_$terminate_seg subroutines
in the Subroutines manual.) For example, there is a system command named debug. If
the user has made a segment in his home directory known with the reference name
debug, every time he calls debug he gets the version in his home directory rather than
the system provided version of debug. If the user wants to call the system version of
the command, he must first make the segment in his home directory unknown.

A user must keep his search rules in mind when he initiates and terminates
reference names. For example, if a user has initiated the reference name debug for a
segment in his home directory and he aiso has a segmeni named debug in his working
directory, every time he calls debug he gets the version in his home directory. If he
wishes to use the version of debug in his working directory, he must first terminaie
the reference name debug for the segment in his home directory. Future calls to
debug then find the version in the user’s working directory unless home directory

3-14 AG91-04

appears before working directory in his search rules. If this is the case, the user must
explicitly initiate the reference name debug for the segment in his working directory.

Individual reference name/segmeni name bindings can be iterminaied in a process
without making the segment unknown unless the reference name removed is the only
one on the segment. (See the descriptions of the terminate_single_refname command in
the Commands manual and the term_, hcs_$terminate_name, and hcs_$terminate_noname
subroutines in the Subroutines manual.) If a user has called the system version of the
debug command and later wants to make known the version of debug in his home
directory with the reference name debug, he must first terminate the reference name
to the system version. For example:

terminate_single_refname debug
initiate >udd>Project_id>Person_id>debug debug

causes calls to debug to invoke the routine in >udd>Project_id>Person_id with one
exception: other system routines bound together with debug (via the bind command
described in the Commands manual) continue to invoke the system routine since those
links were presnapped when the routines were bound together. The terminate,
terminate_single_refname, and terminate_refname commands and the term_ subroutine
unsnap dynamic links, whereas the hcs_ entry points (described in the Subroutines
manual) do not unsnap links.

Entry Point Names

Procedures frequently have more than one entry point, and data segments
frequently have internal locations that are known externally by symbolic names. The
names of entry points and internal locations are generically called entry point names.
Each designates symbolically an offset within a segment. The location specified can be
referred to by the construction ref_nameS$entry_point_name where the dollar sign
separates the reference name and entry point name.

in many cases the entry point to a procedure has the same name as the segment
itself (or the segment has several entrynames corresponding to the names of its entry
points). A shorthand notation allows the entry point name to be assumed to be the
same as the reference name. For example:

call square_root (n);
x is interpreted to mean:

call square_root$square_root (n);
and the command line:

rename a b

is equivalent to:

rename$rename a b

3-15 AG91-04

If the user has renamed a procedure segment (perhaps to preserve an old copy)
or created a storage system link to a segment using a different name, the full
reference name/entry point name construction must thereafter be used when referring
to that segment as a procedure or external data segment. For example, a PL/I
subroutine compiled with subr_name as the label of its procedure statement and then
renamed new_name must be referred to as new_name$subr_name.

Command, Subroutine, Condition, and 1/0 Switch Names
These types of names all have some conventions in common.
. Each is required to be 32 characters or less in length.

° All ASCII characters are legal in any position except as noted in the
following points and "Entrynames" above.

. System subroutine names end in an underscore to prevent conflicts with
subroutine names given by users. Users can easily avoid conflicts by not
having an underscore as the last character of any of their subroutine
names.

° Condition and 1/0 switch names that are part of the system, according
to the new convention, end in an underscore to help prevent conflicts
with names given by users. See the appendix entitled "List of Names
with Special Meaning"” for a list of previously established condition and
I/0 switch names that do not end in an underscore.

. Command and subroutine names should not contain a period; i.e., they
should have only one component.

Request IDs

Several system facilities operate by having users enter requests in one or more
queues. These requests are processed by the system at some later time. Examples of
such facilities include the absentee facility and the I/0 daemon facility. (See the
descriptions of the enter_abs_request, dprint, and dpunch commands in the Commands
manual.)

There are a number of commands that operate on requests that are already in
the queues, for example to list them, cancel them, or change their priority. These
commands need to identify a particular request. Often the pathname or entryname of
the segment associated with the request is sufficient to uniquely identify it. However,
sometimes several requests are associated with the same segment, and there can be
other reasons why the segment name alone is an unsuitabie identifier of the request.

3-16 AG91-04

In these cases the request ID may be used to select one request from a group.
The request ID is based on the date and time at which the request was entered into
the queue. The full request ID is a 19 character decimal number, of the form
YYMMDDhhmmss. ffffff, giving the year, month, day, hour, minute, second, and
6-digit fractional second (in Greenwich Mean Time) at which the request was entered,
In many cases, the six digits to the immediate left of the decimal point (hhmmss) are
unique among all requests currently in the system. Often, fewer than six digits are
unique. When requests are entered in rapid succession by a single command line, they
can have the same seconds digit in their IDs, and the tenths digit is required for
uniqueness. (If a user tries to get a request ID using the clock command or the |
date_time_$format subroutine, he must specify -zone GMT to get a valid request ID.) |

The 8 character ID, hhmmss.f, is printed by default by the request listing
commands; printing of the longer ID can be requested by a control argument. The
commands that take a request ID argumeni accept any number of digits, before or
after the decimal point (with a decimal point being assumed after the rightmost digit
if none is typed). The ID is accepted provided that it matches only one request in
the group being selected from. If it matches more than one, the user is told how
many, and instructed to supply more digits of the ID.

Date/Time Names

Multics use of date/time values is described in the following subsections. Multics
accepts dates from the year 0001 through 9999. The Julian calendar is used for dates
from 0001-01-01 through 1582-10-04. The Gregorian calendar is used for dates from
1582-01-15 through 9999-12-31. (The dates from October 5, 1582 through October 14,
1582 do not exist; they were dropped when the Gregorian calendar was adopted.) The
leap day is always February 29. The lower limit on dates of January 1, 0001 A.D., is
used since it begins the era; the upper limit of December 31, 9999, was chosen to
limit year numbers to four digits. The time zones as now defined are used regardless
of the year. The Multics date/time software does not account for "leap seconds”, and,
therefore, the difference between any two binary clock values that are precisely an
integral number of days (hours, minutes, seconds, etc.) apart is guaranteed to be
evenly divisible by the number of microseconds in a day (hour, minute, second, etc.).

DATEITIME INPUT VALUES

Often the user must supply date and time information to a command. Programs
that accept date and time information use the convert_date_to_binary_ subroutine (see
the Subroutines manual) to convert a time string to an internal (binary) value.

Time Strings (DT Values)

The time string can have up to six parts: adverbial offset, date, time, day of
week, signed offset, and time zone. Adverbial offsets, if present, must appear leftmost
in the string. Beyond that, all the parts are optional and can be in any order. The
parts can be made up of alphabetic fields, numeric fields, and special characters.

3-17 AGI91-04

An alphabetic field is made up of letters and must contain a whole word or an
abbreviation (often made up of the first three letters of the word). No distinction is
made between uppercase and lowercase characters. Although this description gives
examples in English, each of the words is available in several languages. Any of these
ianguages can be used in time strings, but all words within a given string must be in
the same language. To see the languages defined on a site, the user can type

display_time_info -lang

A numeric field consists of an optionally signed integer of one or more decimal
digits. The special characters that can be used in either alphabetic or numeric fields
are: the slash (/), the period (.), the colon (:), the plus (+), the minus (-), and the
comma (,). Blanks are not required between alphabetic and numeric fields in the time
strings: however they are required between two numeric fields unless the second field
begins with a plus (+) or minus sign. For example,

2dayshhours10minutes
12L45.17+7hours
10/17/79Wednesday

Unless otherwise indicated in the command description, the input time string
must be specified as a single argument. This means quotations must enclose time
strings that contain spaces. Alternatively underscores are used instead of blanks in the
time string. For example,

09/25/79__1kL2.6_+5_hours

Usually when entering a time string, the time zone is omitted. Ailthough the
time zone is seldom seen, it is very important: it determines the interpretation of
items given in the time string; it is also involved in defaults supplied for missing
items. All defaults are taken from the current absolute time, adjusted by a working
time zone. If a zone is specified in the string, that becomes the working Zzone;
otherwise the process default time zone is used.

This means that whether the user converts a string with an explicit zone, such as
"XXXX_ast", or sets the process default to "ast" and then converts the string "XXXX",
the same absolute time is returned. {(Note that setting the process default also
influences output conversion, while giving an explicit time zone does not.) To display
the default zone, the user can type

print_time_defaults zone

The six parts of the time string are described below. In these descriptions
whenever an assumed value is mentioned, it refers to the current date/time adjusted to
the working zone.

1. date
is the day of the year; it can be specified only once. The user can supply a
date using normai date format, calendar date format, day of the week, date
keywords, fiscal week, request—id, or can -omit it entirely. If no date is
present, it is assumed to be the next occurrence of the time specified; for
instance, "10A" gives the date on which 10:00am next occurs. If no date and
time is given, the current date is used.

3-18 AGI91-04

In normal date format, the user can specify dates as month (or month
abbreviation), day of month, and year; or as day of month, month, and year.
The year is optional and, if omitted, is assumed to be the year in which the
date occurs next; that is, if today is March 16, 1985, then March 20 is
equivalent to March 20, 1985; while March 12 is the same as March 12, 1986.
There are three forms of normal date:

16 March 16 March 1985
March 16 March 16 1985 March 16, 1985 (The comma is optional)
3/16 3/16/85 3/16/1985

The calendar date format allows the user to supply dates as a year, month, and
day of month, separated by minus signs. This is the International Standards
Organization (ISO) standard format. The year is required, and the user can
give it as a year of the century. For example,

85-12-31 or 1985-12-31
represents December 31, 1985.

The day of the week is a date specifier if present with no other form of
date. It then selects the first occurrence of the named day after today. The
date keywords are "yesterday”, "today", and "tomorrow™; for instance,

6:35A today
yesterday +120days

The fiscal week is of the form FWyyyyww. FW is the fiscal indicator (in
English), yyyy is the year number, and ww is the week number. The fiscal
week begins on Monday and ends on Sunday. This form converts to the date
of Monday, but the user can select a day within the week by adding a day
name; for example, "FW198413 m" gives "03/26/84 0000. Mon", while
"FW198413 m Wed" gives "03/28/84 0000. Wed". The user can separate the
fiscal indicator from the number, but the ordering must remain, i.e.,
"FW185425" or "FW 185425", but not "185425 FW".

A request-id is a 19-character string used by several programs in the system,
such as list_output_request. It contains a complete date from year, in century,
down through microseconds in this form

yymmddHHMMSS . SSSSSS

If the user provides no zone, it is interpreted in GMT, not the process
default. A request—id specifies a time as well as a date, so the user can give
no other time specification.

day of week

is a day of the week (e.g., Monday) and can be present only once. When the
day of the week is present along with one of the other forms of date
specification, that date must fall on the indicated day of the week.

3-19 AG91-04

time

is the time of day and can only be present once. If omitted, it is assumed to
be the current time. The user can give time as 24-hour format, 12-hour
format, or the time keyword "now". The 24-hour time format consists of a
four=digit number foliowed by a period: hhmm., where hh represents hours
and mm minutes. The user can follow this number by an optional decimal
fraction—of -a~minute field (e.g., hhmm.m). Also acceptable are hours and
minutes fields separated by colons (hh:mm). The user can optionally follow this
by either a fraction—of—a-minute field (hh:mm.m) or a seconds field (hh:mm:ss).
The seconds, in turn, can include a fraction—of-second field (e.g., hh:mm:ss.s).
Examples of 24-hour time are:

154.1.5
1545.715
15:45
15:45.715
15:45:42
15:45:42.08

The user must end the 12-hour time format with a meridiem designator (i.e.,
A, P, am, pm, noon (n), midnight (m)). The user can indicate midnight and
noon by giving just the meridiem designator. The user can precede the
designator by time expressed as hours, hours:minutes, or hours:minutes:seconds
(including an optional fraction of a second or fraction of a minute). Examples
of 12-hour time are:

midnight

5 am

5:L5A
3:59:59.000001pm
11:07:30.5pm

12 n

There is a set of illegal times—-24:00-24:59--which are handled anyway. These
are taken to mean 00:00-00:59 of the following day: midnight (00:00) is the
beginning of a day, not the end.

signed offset
is an adjustment to be made to the clock value specified by the other fields.
The user can supply offsets in any the following units:

year years yr
month months mo
week weeks wk
day days da
hour hours hr
minute minutes min
second seconds sec

microsecond microseconds usec

3-20 AG91-04

Each unit can be present one or more times, each preceded by an optionally
signed fixed point number. If offset fields are the only thing present, the
offsets are added to the default values of date and time, as described above.

If the month offset results in a nonexistent daie (e.g., "Jan 31 3 months"
would vield April 31), the last date of the resulting month is used (i.e., April
30). Examples of offset fields are:

3 weeks -60 hours (60 hours before 3 weeks after now)
1.5 hr 5min {(an hour and 35 minutes from now)
1 hour 5 minutes (an hour and five minutes from now)

The order in which offset values are applied to the clock value can affect the
resultant clock value. Offset values are applied in the following order:

year, month, week, day, hour, minute, second, microsecond

"Monday 6 am 2 weeks" means "two weeks after the next occurrence of
Monday, at 6:00 am on that day".

Assuming that today is September 25, 1985, then

10/1 -1 day +1 month
results in a clock value for 10/31/85, rather than for 10/30/85.

Note: There is also a nonoffset use of these words, available in combination
with the word "this". These: combinations are not forms, but can be
used in building date and time — parts— For - -example;
"this_month_1,_this_year" or "this_hour:23" is valid, while just "this_day"
is not. The exact form of this combination varies according to the
language used. In some languages the word for "this" changes
according to the gender of the unit it is applied to; in others there
may be a single word that does the job.

adverbial offset

is a before/after kind of adjustment that can be used any number of times.
The user can recognize it by the presence of "before™, "on". or "after” in the
time siring. If present, it must appear first. These are the forms available:

DAY-NAME before
DAY-NAME on or before
DAY-NAME before or on
DAY-NAME after
DAY-NAME on or after
DAY-NAME after or on
SIGNED-OFFSETs before
SIGNED-OFFSETs after

3-21 AG91-04

When adverbial offsets are present, they partition a time string into a series of
adjustments followed by a base time. These sections are processed from right
to left. The example below has 3 sections: first "6:00 am 400sec" is handled,
supplying all necessary defaults and making the ordinary (400sec) offset
adjustment; then "Monday afier” is applied to give a new value; finally "2 wk
-5min after” is applied to this new value to give the final value.

2 wk -5min after Monday after 6:00 am L0Osec
20 minutes before now

2 days after today

2500 weeks after 1776-7-4

Tue after Mon on or after 11/1

The last item describes election day in the USA: the first Tuesday after the
first Monday in November.

zZone

is the time zone to be used in making the conversion to Greenwich mean
time, which is the internal form of all clock readings. It can be either a zone
differential or any of the zone abbreviations known at your site. A 2zone
differential is a five-character string, "sHHMM" (s is a sign, HH is a
two—digit hour, and MM 1is a two-digit minute).. The user can use this only
immediately following a time specification: "12:15-0330" says that 12:15 is the
local time, and -0330 specifies that the local time was generated by subtracting
3.5 hours from GMT. To list the zone abbreviations known at a site, type:

display_time_info -zones

If any defaults are needed, the current instant is broken down into years,
months, days, and so forth with respect to a "working zome". This working
zone can make much difference because, for example. at a given instant it can
be Tuesday in New York and Wednesday in Bankok, or it can be 22:07 in
London and 3:37 in Singapore. Thus the zone is as important for week days
and years as it is for hours and minutes.

Many of the date/time commands allow vou to supply a "-zone X" argument.

In this case, X can be any of the zones known at a site; it can’t be a time
differential.

3-22 AGI1-04

DATEITIME OUTPUT VALUES

One important way to get a clock value into a readable form is by the
- date/time commands (calendar_clock, day, etc). The first argument to the clock
command is 2 control string describing the format wanted. All other date/time
commands have intrinsic formats. Command use of clock values is really going from a
readable form to a readable form without keeping the internal value.

By convert_date_to_binary_, an input time string is converted to internal form.
This is the usual form for storing dates in data bases. To convert one of these into a
readable form, the user can call upon date_time_ to get a 24-character form like this:

03/1L4/79 0000.0 cet Fri

But when other formats are needed, date_time_$format is available. It takes a clock
value and a control string describing the format wanted and returns a string ready for
printing.

An effort has been made to make all date/time outputs from the system
software be usable as date/time inputs to system software, but the control string
mechanism is so flexible that the user can easilv use it to generate formats that are
not recognizable. Also there are strings that are apparently recognized, but which are
ambiguous, for instance, "7/1/82"; in the United States this means the 7th month,
first day, but in many European countries this would mean the 7th day of the first
month. Multics follows the American interpretation.

Time Format

The control string to date_time_$format is either a keyword or a character string
consisting of text and/or selectors. The selectors are always identified by a leading
circumflex characier (*). There are two types of selectors: A<keyword>, which allows
a keyword to be embedded within a format, and the general form AXX. XX is a
two-letter code that specifies what information is wanted. The user can place an
optional PL/I picture specification between the # and XX if the default form is not
adequate. If the control string does not contain any circumflex characters, it must
then be one of the known set of keywords. Each keyword identifies a control string
for a predetermined format named by that keyword.

List of Format Keywords

all
A9999yc~Amy-Adm__ AHd:AMH:499.(6)9UMA7zd_Aza_Ada Afi A(6)9fw “ma dyAdy
derde UchUc.

calendar_clock
A9999yc-Amy-Adm__ AHd:AMH:*99.(6)9UM_*za_~da.

clock
A9999yc-Amy-~dm AHd:AMH:499.(6)9UM #za Ada.

3-23 AG91-04

date
is the process default value for date.

date_time
is the process default value for date and time.

iso_date
A9999yc~Amy-~dm.

iso_date_time
A9999yc-Amy-Adm AHd:AMH:ASM Aza.

iso_long_date
A9999yc~Amy-Adm Ada.

iso_long_date_time
A9999yc~Amy-~dm AHd:AMH:299.(6)9UM Aza.

iso_long_time
AHA:AMH:299.(6)9UM.

iso_time
AHd:AMH:ASM.

multics_date
Amy/~dm/Myc.

multics_date_time

Amy/Adm/Aye AHdA99v.9MH Axxxxza®xxxda.
muitics_time

AHd:AMH.

request_id
AycAmyAdmAHdA"MHA99.(6)9UM.

Note: The output from this keyword is specified in the process default time zone. To
obtain a valid request ID, specify —zone GMT when you supply the request_id
keyword. See "Request IDs" in this section.

system_date_time
is the system default value for date and time.

system_date
is the system default value for date.

system_time
is the system default value for time.

time
is the process default value for time.

3-24 AGY91-04

A site can change the "system" keywords. For an application that depends upon
the historic formats used in Multics, the three builtin "muiltics" keywords are available.

Processing of a control string proceeds by scanning the control string until a
circumflex is found or the end of the string is reached. Any text (including any
blanks) passed over is copied to the output string. The selector is then interpreted and
executed. This causes a datum from the input clock value to be edited into the output
string. Processing continues in this way until the control string is exhausted.

The user can express dates and times placed in the output string in units of
years, months, weeks, days, hours, minutes, seconds, and microseconds, and the total
calendar value as a single unit; for example the user could express the calendar value
representing 79-09-08 9:42A GMT as 1979 years, as 722702 days, or as 722702.112499
days. This is the set of "total" selectors:

“yc total number of years in the calendar value "“mc total number
of months in the calendar value "~dc total number of days in the
calendar value “Hc total number of hours in the calendar value ™Mc
total number of minutes in the calendar value "~Sc total number of
seconds in the calendar value "Uc total number of microseconds in
the calendar value.

The user can also express dates and times as the number of units remaining after a
larger unit has been removed from the calendar value;, for example, 09/08/79 09:42
includes units for the 9th month of the year, the 8th day of the month, the 9th hour
of the day, and the 42nd minute of the hour. The following are the most common:

“my month in the year

~dm day of the month

~dw day of the week

“Hd hour of the day (24-hour format)
“Hh hour in half day (12-hour format)
~MH minute of the hour

~SM second of the minute

~US microsecond of the second.

3-25 AG91-04

There are several items of date/time data that are nonnumeric, such as day of
week, day of month, and time zone used for conversion.

N,

mn month name

ma month name, abbreviated (char (3))

~“dn day name

~“da day name, abbreviated (char (3))

zn time zone name

za time zone name, abbreviated (char (4))
~zd zone differential (char (5))

“mi meridiem indicator (A or P)

~fi fiscal indicator (FW in English)

”~

~

The selectors of numeric data are, in general, made up of two letiers taken
from this sequence: ¢ y m w d H M S U. This letters stand for calendar, year,
month, week, day, hour, minute, second, and microsecond, respectively. All 81
combinations are not, however, valid. The form can generally be read as "unit of
unit", e.g., "seconds of week". The first unit is always smaller than the second one.
In trying to keep the specifiers reasonably mnemonic (in English) there is a problem:
both month and minute begin with an "m". So all date values are used as lower—case
letters while all time values are in upper case.

It is difficult to try to handle all the forms needed in a general manner. Hd is
hour of the day and is thus 24-hour time; this is not always what is wanted. Hh is
chosen as hour in half day to get the 12-hour form of time. To go along with this
there is "mi" for Meridiem Indicator, which gives A or P to make up AM or PM.
This does not give AM or PM because ANSI and ISO standards specify that time be
given as "3P", not "3PM". If the user wants the M, put the literal in, e.g., ""miM".

Another way of looking at a calendar value is in terms of fiscal week. This is
selected with the "Afw" code. Its value is four digits of year followed by two digits
of week number, i.e., yyyyww. The default picture has been chosen to give a value of
yww. The associated fiscal indicator is selected by "Afi" A complete value is obtained
by specifying "Afirfw."

3-26 AG91-04

The table below shows the complete set of selectors. The row specifies what unit
is wanted, the column specifies within what other unit, e.g., *Sy is seconds of year.

DATE/TIME SELECTORS

| of
second

of
minute

i of
hour

of | of
month

of
year

micro- +------
second | ~Uc

second | “Sc

—_—f—t—+

minute | "“Mc

hour | “Hc

$

e e f— t— +
=
S

day | ~dc

month |

>
Q.
~
d—t—+— +
>
Q
3

year | “yc

<-hour of half day differential | ~2d |
(12-hour form) o +
<-meridiem indicator

<-fiscal week (form: yyyyww)

| ~fi | <-fiscal indicator ("FW" in english)

The user can control the formatting of date and time values by an optional
PL/I1 picture specification included in the selector; for instance, a code of ~Q09%99yc
formats the total years in the calendar value into a two—digit year of the 20th century
and 79999yc provides a full, four—digit year. The following is a brief description of
the most frequently used picture characters. For more details on PL/I pictures, see
the Multics PL// Language Specification manual (AG94) and the Multics PL//
Reference Manual (AMBS83).

3-27 AGI1-04

9 represents a mandatory decimal digit in the displayed value.

z represents a decimal digit in the displayed value. Nonsignificant zeros on the
left are replaced by a space when they occupy a "z" digit position.

produces a period in the displayed value. This has no relation to the location
of the decimal point in the value actually being displayed. If zero suppression
is in effect, this is replaced with a space.

, produces a comma in the displayed value. It has all the characteristics of the
period.

v locates the value’s decimal point in the result. This determines how the value
digits are oriented with respect to the picture specification. If the user supplies
ne "v", it is assumed (c appear after the rightmost picture character.

The picture characters above are sufficient for displaying most numeric values.
For example, the control string "99HAd"99.vOMH represents the time in hours, minutes,
and tenth of minutes; the control string #zz9.999vUS represents the number of
milliseconds of the second, using the decimal point and "v" to scale the microsecond
unit. Scaling can also be performed by a picture scale factor.

f(N) scales the value by multiplying or dividing by a power of 10. thus shifting the
location of the decimal point in the value. For example. f(2) shifts the decimal
two places left, effectively dividing the value by 100; f(-3) shifts three places
right, effectively multiplying by 1000.

Using a picture scale factor, the user can display the milliseconds in excess of a
second 10 the nearest tenth using the control string ~zz9.9f(3)US. You can display a
value of 48634 microseconds as " 48.6" milliseconds.

There are two extensions to numeric picture handling:

Z represents a decimal digit in the displayed value. Nonsignificant zeros to the
left of the decimal point are omitted when they occupy a "Z" digit position;
to the right of the decimal point they are omitted when they occupy a "Z"
digit position.

Z characters must appear as the leftmost or rightmost digit positions in the
picture specification since these are the positions that nonsignificant zeros can
occupy. Z performs a selective Itrim or rtrim (of zero) operation on the
displayed value. For example, the user can specify the millisecond specification
given above as AZZ9.9ZZUS without using a picture scale factor; with this
specification you can display 48630 microseconds as 48.63 milliseconds (without
the leading space or trailing zero).

3-28 AG91-04

0] represents a decimal digit in the displayed value that is not wanted. Specifying
AQ9yc for a year like 1941 results in a size condition since it takes four digits
to handle that number. To get the year in century the user can use A0099yc;
this gives four digits into which the value is placed and then the first two
digits are discarded. A picture like QOz9 with a value of 1502 gives 02
because the zero suppression applies to 1502, and then the first two digits are
dropped.

The user can format character date/time values such as day of the week, month
name, and time zone using a character picture specification with the "x" picture
character.

X represents a position that can contain any character. Since national characters
occur in some of the time names, avoid the "a" character. Values are
left—justified in the picture specification, with truncation of the rightmost
characters if the value is longer than the picture or padding with spaces on the
right if the value is shorter than the picture.

For example, Axxxxxxxxdn displays Wednesday as "Wednesday” and Monday as
"Monday". The user can use a picture repetition factor to shorten the control string
to "AM9xdw". With A(S)xmn January is displayed as “"Janua" and May is displayed as
"May ". (Note that in some languages the abbreviation of a time name is not the
first three letters of it.)

The selector picture specification allows an extension of the "x" picture
specification.

X represents an optional character position in the displayed value. The character
position is omitted if there is no corresponding character in the value being
dispiayed.

X characters must appear as the rightmost character position in the picture
specification since this is the position that nonsignificant spaces can occupy. X
performs a selective rtrim operation on the displayed value.

The code A(9)Xdw displays Wednesday and Monday both without trailing spaces.

3-29 AG91-04

The table below shows the default picture specifications for all selectors. The
row specifies what unit is wanted, the column specifies within what other unit.

DEFAULT PICTURE VALUES

of of of of of of of of
calen-|year month |week day hour minute|second
dar
micro- +------ i - T il +-m——-- +m————- e +
second |(18)29|(M)zs}(13)29|(12)29|(11)29|(1o)29](8)29 |(5)29 |
—— +
second |(12)29|(12)29|(8)29 1(6)29 |(5)29 |(l+)z9 | 99 |
------------------------------------ =
minute [(10)29[(6)29 |(5)29 |(5)29 I(A)Z9 | 99 |
hour |(8) 29 |(h)zs |(3) 29 |(3) 29| 99 | '
------------------------ A —
day |(7)29 | 999 | 99 | 9 | month day zone
———————————— T s et e
month | | 99 | name |(32)X |(32)X |(6h)X [
T e e o
year | 0099 | abbrev | (8) x | (8) x | (8) x |
e R ST S
| 99 | <-hour of half day dlfferentlal |59999 |
o + (12-hour form) 4=-----
| x | <-meridiem indicator
o +
|000999| <-fiscal week (form: yyyyww)
+ ——————
| xx ! <-fiscal indicator
e +

The following table shows how date and times strings are displayed by a variety
of control strings.

Amn AZ9%m, 79999yc
displays September 8§, 1979.

Amn Az9dm, A9999yc
displays September 8. 1979.

Adm “ma 79999yc Azn
displays 08 Sep 1979 Mountain Standard Time.

Amy/Adm/Ayc AHAA99v.9MH 7za Ada
displays 09/08/79 0242.4 mst Sat.

3-30 AG91-04

Hd:AMH:ASM*z
displays 02:42:25-0700. .

9999yc-Amy-Adm__AHd:AMH:A99.(6)9UM_%za_~d
displays "979-09-08__02:42:25.048634_mst_Sat.

-A<multics_time>xyz*<multics_date>-
displays <-02:42xyz09/08/79—>.

COMMAND LANGUAGE

The standard Multics command language and its conventions are described below.
Various subsystems, with their own conventions, are also available (see Section 1 of
this manual). In addition, user—created systems and conventions can provide specially
tailored environments that supersede the following Multics conventions.

A Multics command is a system program, usually written in PL/I, that uses
argument processing facilities provided by the command processor. A command name
is the entryname of the segment containing that sysiem program. Command invocation
consists of a command name alone or a command name followed by character stiring
arguments that are separated by white space (any combination of blank spaces and
tabs). A command line is delimited by the newline, vertical tab, or formfeed
characters, and can contain one or more command invocations separated by semicolons
(;). The syntax rules for command invocations allow for such features as iteration,
nesting, and function evaluation.

The Multics command processor is a mechanism for invoking programs by
command name. It finds the commands by command name in the storage system
hierarchy, and invokes the commands with their arguments. Commands are found via
the search rules, described in Section 4. The command processor is called by the
listener subroutine to process the command invocations typed by the user. The
command processor can also be called from a program by using the cu_S$cp entry
point (see the description of cu_$cp in the Subroutines manual).

After a user logs in to the system, the listener subroutine prints a ready message
on the terminai. The user is then at command level and the system is waiting for
input in the form of a command line. When a user completes a command iine, the
command processor evaluates it. The command line obtained when all the command
elements have been evaluated is called the expanded command line. It is then executed
by the command processor. The listener subroutine is again invoked, and oprints
another ready message.

Command invocations are referred to simply as commands throughout most of
the Multics documentation.

3-31 AG91-04

Command Environment

The command invocation consists of two basic elements: the command name and
the arguments. The command name is a reference name. If followed by a dollar sign
{$) and a character string, this part of the command name is an entry point name.
The command processor uses the search rules of the user’s process (see "Search Rules"”
in Section 4) to find the command in the storage system hierarchy. A pathname can
be used in place of the reference name to override the user’s search rules. In this
case, the segment identified by the pathname is made known and is initiated with the
final entryname of the pathname as its reference name. Then this reference name is
used along with any entry point name that was given. Since the segment is initiated
with a reference name, the user need type only the reference name for subsequent
command invocations.

The arguments are character strings that pass information, such as pathnames,
access modes, and search strings, to the command from the command processor. An
argument may contain white space if the entire string is enclosed by quotation marks
(e.g., "Ann Smith"). The order in which arguments are typed is often significant.
Arguments beginning with a hyphen (e.g., -brief) are control arguments and specify
optional modifications to the operation of the command. Control arguments may also
take arguments; it is usually necessary to enclose a control argument string in quotes
when it contains white space. Command descriptions contained in the various Multics
manuals include descriptions of the specific arguments accepted by the commands.

Multics terminal input allows read-ahead; therefore, the user does not have to
wait for a ready message before iyping another command line. However, unless the
"polite” I/0 modes (described in the tty_ I/0 module write-up in the Subroutines
manual) are specified, the user can be interrupted while (yping a line by the ready
message or by output printed by the previous command. If an interruption occurs, the
line being typed by the user may be hard to read on the terminal. Therefore, the
entire line should be killed and retyped (see "Erase and Kill characters” below). The
printing of ready messages can be turned off and on using the ready_off and
ready_on commands (see the descriptions of these commands in the Commands
manual).

Simple Command Line

The general form of a Multics command invocation is:

command_name argument] argument2 ... argumentN

3-32 AG91-04

where the elements are separated by white space. The rename command, for example,
takes arguments in pairs. The first of each pair is the current pathname of the
segment to be renamed and the second is the desired new entryname. Thus:

rename square_root sart

causes the command processor to search for and invoke a command called rename at
the entry point called rename (rename$rename), with two character string argumenis, as
the following code fragment represents:

X: proc;

declare rename entry options (variable);
call rename ('square_root", 'sqrt');

end x;

Suppose a user knows that an experimental version of the rename command
resides in the directory >Smith_dir. Typing:

>Smith_dir>rename square_root sqrt

invokes the experimental version instead of the version that would normally have been
found by the user’s search rules. Subsequent command lines using only the reference
name rename continue to invoke the one listed in >Smith_dir.

Compound Command Line

When more than one command invocation appears on one line, a semicolon (;)
must be used afier each complete invocation except the last one. For example:

cwd >old_source; delete program.pll

The space between the semicolon and the next command used in this example is not
required.

When the command processor detects an error in the command line, it stops
processing at that point. If, for instance, the change_working_dir command in the
example above is misspelled as "dew," the error message "Segment dcw not found" is
printed, and the command line is not executed. If a misspelling occurred instead in
the delete command (e.g., dlete), the first command would have already been executed,
and processing would stop when the misspelled command name was detected.

If, on the other hand, an error is detected by the command program invoked,
processing of the remaining commands in the line is compieied. For instance, if ihe
pathnname ''>old_source' in the example above is misspelled, the error message
"change_working_dir: Entry not found" is printed, but the rest of the command line
is processed, nevertheless.

3-33 AGI1-04

Reserved Characters and Quoted Strings

The Multics command language rteserves some characters to which special
significance 1is attached. The reserved characters are: space, quotation mark ("),
semicolon (;), the newline character, left and right brackets ([and]), left and right
parentheses, and the vertical bar (]). Occasionally, however, it is necessary to use a
reserved character without its special meaning. The quotation mark character (") is
reserved for this purpose. Reserved characters within a quoted string (i.e., a string of
characters surrounded by quotation marks) are treated as ordinary characters.

Take for example the case in which a semicolon must not be interpreted as the end
of a complete command invocation the first time the line is scanned by the command
Pprocessor:

answer no ''dprint ab.list; rename foo ab2.list; dprint ab2.list"

Because the answer command provides its answer during execution of only one
command line (see the Commands manual), the series of three command lines in this
example must be interpreted as one; otherwise the answer command would no longer
be in effect when it might be needed, during execution of the rename command. If
the rename command then required an answer to execute, it would have to wait for
the user to type an answer rather than taking the answer from the answer command
as was originally iniended. The quotation marks here cause the command processor to
ignore the semicolon’s normal purpose of marking the end of a command invocation
and instead include the semicolons along with the commands they separate as part of
the argument to the answer command.

It may also be necessary at times to suppress the special meaning of the
aguotation mark. For this purpose, doubled Guotation marks within a quoied siring are
interpreted as a single quotation mark.

For example, the command line:

string She said, "Hi."

would print the string without the quotation marks:

She said, Hi.

because the command processor sirips off single quotation marks, on the assumption
that they are present to indicate that the characters within should not be given special
interpretation. In order to preserve the quotation marks around the word Hi, the user
must add double quotation marks to the quoted string:

string She said, ""'Hi."""

Here the command processor will strip off the outer quotation marks and interpret the
remaining double marks as single quotation marks:

She said, "Hi."

3-34 AG9I91-04

Doubled quotation marks that are not enclosed in quotes themselves do not
represent a single quotation mark, but the null string. For example:

string She said, '""Hi.""

does not result in the string "Hi." but simply the string Hi. Typing the command:
string one ""two'"

results in the output one two. To obtain the result one "two" the user must type:
string one """two"""

or, what might be more likely:

str i ng Ilone Illltwollllll

Iteration

The iteration facility of the command language provides economy of typing for
the user who wishes to repeat a command with one or more elements changed. The
iteration set consists of two or more elements enclosed by parentheses. Each element
of the set, in turn, replaces the entire iteration set in the command line. For
example, the command line;

print (a b ¢).pli

equivalent to the three commands:

print a.pll; print b.pli; print c.pll
Iteration can be used with command names as well. The command line:

(print delete) test.pll
expands into:

print test.pll; delete test.pll

More than one iteration set can appear in a command. The corresponding
element from each set is taken. For instance, the compound command:

rename >Smith_dir>(Jones Doe Brown) (Day White Green)
expands inio the commands:

rename >Smith_dir>Jones Day

rename >Smith_dir>Doe White

rename >Smith_dir>Brown Green

3-35 AG91-04

Nested iteration sets are also allowed. Evaluation of parentheses occurs from left
to right. The principal use of nested iteration sets is to reduce typing when subsets of
an element are repeated. For example:

create_dir >Smith_dir>{new>(first second) oid>third)
creates three directories:
>Smith_dir>new>first

>Smi th_dir>new>second

>Smith_dir>old>third

The ability of the Multics command language to concatenate character strings
underlies the iteration feature. See "Concatenation" below.

Active Strings

An active string is a substring of a command line, delimited by brackets ([and]).
Active strings are evaluated by the command processor and replaced by their values
before further processing of the command line occurs. An active function is a
program designed to accept character string arguments from the command processor,
and return a character string value to the command processor during evaluation of an
active string. Standard Multics active functions are described in the Commands manual
To create new active functions, see Section 4 of this manual.

The simplest form of an active string is:

[af argl...argN]

where af is the name of an active function and arg_ are character string arguments to
the active function.

The command line:

send_message [last_message_sender] Thanks for the link.

contains an active string that calls the last_message_sender active function return a
value. The command processor returns the value, here expressed in the form
"Person_id.Project_id,”" to the command line. The complete command line is then
evaluated and executed, with the returned value of the active function as one element
of the command and the message as another.

Active strings can be nested. The following example from a start_up.ec prints a
calendar on the first day of each month:

if [equal [day] 1] -then calendar

3-36 AG91-04

Each time the command processor encounters a right bracket (1) it turns to the
matching left bracket ([) and evaluates the enclosed active string. This means that
nested active strings are evaluated recursively, the innermost string first. To execute
the above line, the command processor evaluates [day] and returns, for example, 17,
and then evaluates [equal 17 1], which returns false, before it evaluates and
executes the complete command line. Expansion of the above example proceeds as
follows:

if [equal [day]l 1] -then calendar

if [equal 17 1] -then calendar
if false -then calendar

and the calendar is not printed.
Iteration can be combined with active strings. For example, if the segment fred

is a single line consisting of the names of three segments david, robert, and suzanne,
then the command line:

underline [contents fred]

prints out the returned value:

david robert suzanne

using the contents active function, which returns the contents of the specified segment.
The command line:
underline ([contents fred])
expands into:
underline (david robert suzanne)
which then expands into:

underline david; underline robert; underline suzanne

3-37 AG91-04

After an active string is evaluated, the return value is rescanned for active
strings before being inserted into the command line. For example, if the segment jed
is one line consisting of the string ([contents fred]) described above, then the
command line:

underline [contents jed]

invokes [contents fred] as an active function, and the underline command prints:
david

robert
suzanne

The user can suppress rescanning of the returned string for command language
special characters by placing a double vertical bar (||) before the active function.
The entire return value is then treated as a single token. Using the active functions
defined above,

underline ||[contents jed]

expands only once, and prints:

([contents fred])

where the argument of the underline command is the literal string ([contents fred]).

An active string invocation preceded by a single vertical bar (|) is rescanned
only for quotes and white space. For example, the command line:

string (|[do "A B]D E"])

When an active function returns two or more elements enclosed by parentheses,
rescanning the return value causes iteration to take place in the same manner as that
described above. If the segment ned is one line consisting of the parenthetical
expression (dave bob sue), then the command line:

underline [contents ned]
prints:

dave

sue

3-38 AG91-04

All of the above examples use active strings consisting of a single active
function. In its most general form, an active string can consist of any number of
valid active functions separated by semicolons:

string [plus 3 L; times 5 6]

The value of the active string is then the concatenation of the returned values
separated by spaces:

7 30

Iteration 1inside an active string has a similar effect; it causes the iterated
returned values to be concatenated with intervening spaces. For example, the command
line:

string [(plus times) 2 3]
prints:

56

A vertical bar before a right bracket (|]) eliminates the intervening space when
return values are concatenated. For example, the command line:

string [plus (1 2) & |]
prints:

56

The following example is a more complicated illustration of the use of iteration
inside active strings. Assume there are two segments, one.bind and two.bind, in the
current working directory. In order to append each segment with the suffix .bind to
an archive whose name has the irailing components bound.archive, iwo active functions
are used with the archive command. The strip_entry active function (short name is
spe) removes the last component of the given entryname, and the segments active
function {short name is segs) returns segment names that match the given siar name.

The command line;
archive a ([spe ([segs *.bind])]) .bound ([segs *.bind])
expands as follows:
archive a ([spe (isegs *.bind])]) .bound ([segs *.bind])
archive a ([spe (one.bind two.bind)]) .bound ([segs *.bind])
archive a (one two) .bound ([segs *.bind])
a
a

archive (one two) .bound (one.bind two.bind)
archive one.bound one.bind; archive a two.bound two.bind

3-39 AGI91-04

Concatenation

In the Multics command language, the value of a delimited element (a character
string bounded by command language reserved characiers) in a command line is
concatenated with the string or delimited element adjacent to it when no space is
placed between the two. The user therefore has the ability to form character strings
by concatenation with elements such as parenthetical expressions, active functions, and
quoted strings. For example, the home_dir active function turns the character string
representation of the pathname of the user’s home directory. The user can type a
command (presumably from some other directory) such as:

rename [home_dir]>square_root sgrt

and have the first argument to rename be the concatenation of the value of the
home_dir active function with the string >square_root.

Concatenation is permissible in either direction with regard to the delimited
string and the nondelimited string. For example, using the active string [contents
fred] as described in "Active Strings" above, the command line:

delete >project_dir>Doe>([contents fred])

deletes the segments david, robert, and suzanne in the directory >project_dir>Doe.

More than one delimited element can be concatenated. For example:

delete [home_dir]>([contents fred])

deletes the segments david, robert, and suzanne in the user’s home directory.

TYPING CONVENTIONS

Three categories of typing conventions are dealt with in this discussion: canonical
form, erase and kill characters, and escape characters.

The Multics standard character set is the revised U.S. ASCII Standard (refer to
USA Standards .Institute, "USA Standard X3.4-1968"). The ASCII set consists of 128
7-bit characters. These are stored internally, right—justified, in four 9-bit fields per
word. The two high-order bits in each field are expressly reserved for expansion of
the character set; no Sysiem program may use them. Any hardware device that is
unable to accept or create the full character set should use established escape
conventions for representing the set (see “"Escape Characters” below). There are no
meaningful subsets of the revised ASCII character set.

3-40 AG91-04

The ASCII character set includes 94 printing graphics, 33 control characters, and
the space. Multics conventions assign precise interpretations to all the graphics, the
space, and 10 of the control characters. The remaining 23 control characters are
presently reserved. The full ASCII character set appears in Appendix A.

Canocnical Form

A character stream is a representation of one or more printed lines. Since the
same printed line can be produced using different sets of keystrokes, there are several
possible character streams that represent the same line. For example, the line:

start lda alpha,k get first result.

could have been typed with either spaces or horizontal tabs separating the fields; one
cannot tell by looking at the printed image.

A program should be able to compare two character sireams easily to see if they
produce the same printed image. It follows that all character input to Multics must
be converted into a standard (canonical) form. Similarly, all programs producing
character output, including editors, must produce canonical form output streams.

Of all possible ASCII character strings, only certain strings are ever found within
Multics. All strings that produce the equivalent printed effect on a terminal are
represented within Multics as one string, the canonical form for the printed image.
The user, however, is free to type a noncanonical character stream. This stream is
automatically converted to the canonical form before it reaches his program. An
exception to this automatic conversion is that tab characters are preserved; a detailed
description of the conversion process is found later in this section. If the user wants
his program to receive raw or partially processed input from his terminal, an escape
mechanism is provided by the modes operation of the tty_ I/0 module. The 1/0
module is accessed via a call to the iox_ subroutine (see the description of the iox_
subroutine in the Subroutines manual). The modes available that apply to canonicalization
are:

can
no canonicalization of overstrikes.
~esc
no canonicalization of escape characters.
~erkl
no erase and Xill processing.
rawi

read the specified data from the terminal without any conversion or
processing. This includes shift characters and undifferentiated uppercase
and lowercase characters.

3-41 AG9I1-04

Similarly, an 1/0 module is free to rework a canonical stream on output into a
different form if, for example, the different form happens to print more rapidly or
reliably on the device.

The current Multics canonical form is designed for the convenient typing of
aligned tabular information, which requires an ambiguous interpretation of the tab
character. The following three statements describe the current Multics canonical form.

1. A text line is a sequence of character positions separated by horizontal
carriage motion and ending in a newline character.

2. Carriage motion consists of newline, tab, and space characters.

3. A character position consists of a single graphic or several overstruck

graphics. A graphic is a printable character. An overstruck character
position consists of two or more graphics separated by backspaces.
Regardless of the order in which the graphics are typed, they are
always stored in ascending ASCII order. Therefore, the symbol "<>_",
whether typed as:

>B<B_

or

B_

or

_B

is always stored internally as:

B_

where B is a backspace.

3-42 AG91-04

There are any number of ways to type two oOr more consecutive overstruck
character positions. The graphics in each position are grouped together, so that "¥¥" is
always stored as:

B_B__

The following paragraphs give a complete set of rules for transforming a typed
line into the form in which it is stored, followed by further examples illustrating the
rules. The transformation process is carried out in three steps. canonicalization,
erase/kill processing, and escape processing. If two or more of the rules listed below
are applicable to a given input string, they are applied in the order in which they are
presented here.

Canonicalization

Canonicalization is the process of converting an input string into canonical form.
Two methods of canonicalization are defined on Multicss a method for printing
terminals and a method for video (CRT) terminals. Both methods of canonicalization
attempt to ensure that what is visible on the terminal is the canonical form of the
input string. The method used is determined by the setting of the "can_type" mode,
as explained in the description of the tty_ I/0 module (see the Subroutines manual).

Canonicalization for printing terminals (overstrike canonicalization) is designed for
terminals which are capable of overstriking multiple characters in a single column.
Any group of overstruck characters is converted to a single representation regardiess of
the order in which the characters were entered into the column.

Canonicalization for video terminals (replacement canonicalization) is designed for
terminals which are not capable of overstriking. When a character is entered into a
column, any characters previously present in that column are no Ilonger Vvisible.
Replacement canonicalization mimics this behavior of the terminal by only placing the
last character typed into any column into the canonical representation of the string.

The canonicalization process consists of two distinct steps: column assignment,

which is identical for both methods of canonicalization, and the actual canonicalization
process.

3-43 AG91-04

Column Assignment

The following rules are used to determine which printing graphics, if any, appear
in each physical column position.

1. The leftmost position of the carriage is considered to be column 1.

2. Each printing graphic or space typed increases the column position by 1.

3 Each backspace typed decreases the column position by 1 uniess the
column position is 1.

4, A carriage return sets the column position to 1.

5. A horizontal tab increases the column position to the next tab stop; tab

stops are defined to be at columns 11, 21, 31, etc.

6. A newline, formfeed, or vertical tab sets the column position to 1 and
advances the carriage vertically; thus no character typed after such a
character can share a column position with a character typed before it.

7. If the terminal is not in ctl_char mode, any ASCII control character
other than backspace, horizontal tab, newline, vertical tab, formfeed,
and carriage return is discarded. If the terminal is in ctl_char mode,
such characters are treated as if they were printing graphics (with the
exception of the NUL character, which is always discarded). The default
is that cti_char mode is off.

Overstrike Canonicalization
The following rules determine the formation of the canonical string.

1. Characters on each line are sorted so that their associated column
positions are monotonically increasing.

2. No carriage return characters may appear in the canonical string.

3. A horizontal tab is preserved as typed unless a printing graphic appears
in one of the columns skipped by the tab, in which case the iab is
replaced by an appropriate number of spaces.

4. Backspaces appear in the canonical string only when two or more
printing graphics share a column position.

3-44 AG91-04

5. When two or more different printing graphics share a column position,
the characters are sorted as follows: graphic with lowest numeric ASCII
code, backspace, graphic with next lowest numeric ASCII code, etc.

o

If the contents of a column position consist of two or more instances
of the same printing graphic, that column is reduced to a single
instance of the graphic.

7. A line-ending character (newline, formfeed, or vertical tab) immediately
follows the last printing graphic in the rightmost column position on
the line.

Overstrike Canonicalization Examples

Several illustrations of canonical form are shown below. Assume that the typist’s
terminal has horizontal tab stops set at 11, 21, 31, etc.

Typist: this is ordinary text.N
Typed line: this is ordinary text.
Canonical form: this is ordinary text.N

where N is the newline character. In most cases, the canonical form is the same as
the original key strokes of the typist, as above.

Typist: here full1BBBB___ means thatN
Typed line: here full means that
Canonical form: here _Bf_Bu_Bl_Bl means thatN

where B is a backspace and N is a newline character. This is the most common type
of canonical conversion, done to ensure that overstruck graphics are stored in a
standard pattern.

Typist: We see no probSBlemC__ N
Typed line: We see no probiem
Canonical form: WB__ Be see no problemN

where B is a backspace, N is a newline character, S is a space, and C is a carriage
return. The space between "prob" and "lem" was not overstruck; it and the following
backspace were simply removed. Note the difference in the storage of the characters
that were overstruck in this and the preceding example; the ASCII code value of the
underscore is between the values for uppercase and lowercase letters.

Replacement Canonicalization

Replacement canonicalization is designed for use on a terminal with the following
characteristics:

. Overstriking a character with any other printing character or a space
causes the first character to be erased.

. Entering a tab character simply moves the cursor position to the next
tab stop (column 11, 21, etc.) without erasing any intervening characters.

3-45 AGI91-04

The following rules determine the formation of the canonical string:

1. Characters on each line are sorted so that their associated column
positions are monotonically increasing.

2. No carriage return characters may appear in the canonical string.

3. A horizontal tab is preserved as typed unhess a printing graphic appears
in one of the columns skipped by the tab, in which case the tab is
replaced by an appropriate number of spaces.

4, When two or more characters (including space and identical printing
graphics) share a column position, the last character entered by the user
in that column is Kept and all other characters in that column

discarded.

5. A line-ending character (newline, formfeed, or vertical tab) immediately
follows the last printing graphic in the rightmost column position on
the line.

6. When in ctl_char mode, a control character (other than the carriage

motion characters HT, BS, CR, NL, VT, and FF) shares the column
position of the immediately following graphic or space. If the control
character is followed by a horizontal tab, it shares the first column
skipped over by the tab. Such a control character is not affected by
backspace (i.e., it is not removed if the graphic sharing its column
position is replaced).

With replacement canonicalization, as seen above, it is not possible to overstrike
two characters, as the last one typed is always the only character in that column.
Thus it is not possible to use the feature of overstriking a character with the erase
character, as described in the "Erase and Kill Characters" section following, to delete a
character typed in the middle of a line. Instead, to delete such a character, you must
teposition to the character in question and retype the remainder of the line being

input.

Therefore, you may want to disable the erase character when using replacement
canonicalization. This may be accomplished by the command line:

set_tty -edit \LOO

where \40O is a character which cannot normally be entered on the terminal.

3-46 AG91-04

Replacement Canonicalization Examples

Several illustrations of canonical form are shown below. Assume that the typist’s
terminal has horizontal tab stops set at 11, 21, 31, etc.

Typist: this is ordinary text.N
Screen contents: this is ordinary text.
Canonical form: this is ordinary text.N

where N is the newline character. In most cases, the canonical form is the same as
the original key strokes of the typist, as above.

Typist: this is a msitake.BBBBBBBisN
Screen contents: this is a mistake.
Canonical form: this is a mistake.N

where B is a backspace and N is a newline character. This example illustrates the
correction of errors in the middle of a typed line. It is the most common use of
replacement canonicalization.

Typist: this si a strange BBBBBBBBBBBBBisHHBBexampie.N
Screen contents: this is a strange example.
Canonical form: this is a strange example.N

where B is a backspace, H is a horizontal tab, and N is a newline character. This
example illustrates that the horizontal tab character does not erase intervening
characters (" a strange” in this example).

Typist: This is some text.BBBBBBBBBBBBsome text. N
Screen contents: This is some text.
Canonical form: This is some text.N

where B is a backspace and N is a newline character. This example illustrates that in
order to erase extra whitespace in a line, the typist must position to the first
extraneous character, retype the remainder of the line, and type sufficient spaces at
the end of the line to overstrike any extra undesired characters.

3-47 AG91-04

If, in the above example, the final spaces are not typed, the following occurs:

Typist: This is some text.BBBBBBBBBBBBsome text.N
Screen contents: This is some text.t.
Canonicai form: This is some text.t.N

Typist: use of cXontrol charactersN

Screen contents: use of control characters
Canonical form: use of cXontrol charactersN

where N is a newline, X is any non-carriage-motion control character, and the
terminal is in ctl_char mode.

Typist: Don't remove the vpXmBBBcontrol character.N

Screen contents: Don't remove the control character.
Canonical form: Don't remove the coXntrol character.N

where B is a backspace, N is a newline, X is any non-carriage-motion control
character, and the terminal is in ctl_char mode. Note that the control character

remains in the column position at which it was entered, even though the graphic in
that position has been replaced.

Erase and Kill Characters

Two capabilities for minimally editing the line being typed are available. They
are:

. The ability to delete the latest character or characters (erase)
. The ability to delete all of the current line (kill)

By applying canonical form to these two editing functions, it is possible to interpret
unambiguously a typed line in which editing was required.

3-48 AG91-04

The first editing convention reserves one graphic as the erase character. On
Multics, the default erase character is the number sign (#). The user can designate a
different character by invoking the set_tty command with the -edit control argument.
Although the erase character is a printed graphic, it does not become part of the line.
When it is the only graphic in a print position, it erases itself and the contents of
the previous print position. Several successive erase characters erase an equal number
of print positions. One erase character typed immediately after "white space" causes
the entire white space to be erased {(any combination of tabs and spaces is called
white space). The number sign can be struck over another graphic. In this case it
erases the print position on which it appears. For example, typing:

theSSne###next
or

theST#next
or

theffnext

where S is a space and T is a horizontal tab, produces:

thenext

Since processing of erase characters takes place after the transformation to canonical
form, there is no ambiguity as to which graphic character has been erased. The
printed image is always the guide.

The second editing convention reserves another graphic as the Kill character. On
Multics, the default kill character is the commercial at sign (@). Again, the user can
redesignate this. When this character is the only graphic in a print position, the
contents of that line up to and including the kill character are discarded. Again, since
kill processing occurs after the conversion to canonical form, there is no ambiguity
about which characters have been discarded.

By convention, an overstruck erase character is processed before a kill character,
and a kill character is processed before a nonoverstruck erase character. Therefore, the
only way to erase a Kill character is to overstrike it with an erase character.

3-49 AGI1-04

Because of their special meanings to Multics, these two graphics should be
avoided in software.

The following rules apply to erase and kill characters.

1. If the terminal is in esc mode, an erase or kill character alone in a
column immediately preceded by an escape character alone in a column
is' not processed as an erase or Kkill character.

2. An erase character alone in a column position and preceded by more
than one blank column results in the deletion of a// immediately
preceding blank columns, as well as of the erase character.

3. An erase character alone in a column position results in the deletion of
itself and of the contents of the preceding column position.

4, An erase character sharing a column position with one or more printing
graphics results in the deletion of the contents of that column position.

5. A kill character results in the deletion of its own column position and
all column positions to its left, unhess it shares a column position with
an erase character, in which case rule 4 applies (the kill character is
erased).

Notice that for rule number 1 to apply, the erase or kill character must actually
have been typed in the column immediately following the escape character. The reason
for this is that it facilitates the erasing of escape sequences, e.g., \OOI####.

Examples of Erase and Kill Processing

Typist: abcx#deSBf zz##gN
Typed line: abcx#defzz##g
Canonical form: abcx#defzz##gN
Final input: abcdefgN

Typist: this@In the of fBBB___ ##nB_ stateN
Typed line: this@In the off##n state
Canonical form: In the _Bo_Bn stateN

Final input: In the on state

3-50 AG91-04

Escape Sequences

Some terminals cannot print all 128 ASCII characters. To maintain generality and
flexibility, standard software escape conventions are used for all terminals. Each class
of terminal has a particular character assigned to be the software escape sequence
character in the terminal type file. When this character occurs in an input (or output)
string to (or from) a terminal, the next character (or characters) are interpreted
according to the conventions described below. The escape sequence character should
not be confused with the ASCII ESC, which is octal 033.

The standard escape sequence character in Multics is the left slant (\); like the
erase and kill characters, it should be avoided in Multics software. The universal
escape conventions are:

1. The string \d1d2d3 represents the octal code dl1 d2 d3 where di is a
digit from 2zero to seven. Any arbitrary character can be represented
this way. The string \d2d3 is equivalent to \d1d2d3 if dl is zero. The
string \d3 is equivalent to \di1d2d3 if dl and d2 are zero.

2. Local (i.e., concealed) use of the newline character that does not go
into the computer-stored string on input, and is not in the computer—stored
string on output, is effected by typing \<newiine character>.

3. The characters \# place an erase character into the input string.
4, The characters \@ place a kill character into the input string.
5. The characters \\ place a left slant character into the input string.

The escape conventions described in items 1 through 5 above apply only if none of
the characters involved are overstruck.

The following rules apply to escape sequences.
1 An escape sequence consists of an escape sequence character alone in its
column position followed by one or more printing graphics each of

which is alone in its column position. An escape sequence is replaced
by a single character in the canonical string.

3-51 AG91-04

2. An escape sequence consisting of two successive escape sequence
characters is replaced by an escape sequence Character.

3. An escape sequence consisting of an escape sequence character followed
by an erase or kill character is replaced by an erase or kill character.

4. An escape sequence consisting of an escape sequence character followed
by one, two, or three octal digits is replaced by the character whose
ASCII value is represented by the sequence of octal digits.

5. An escape sequence character followed by a newline character results in
the deletion of both characters from the canonical string.

6. Other escape sequences may be defined on a per—-terminal-type basis,
where siuich a sequence consists of an escape sequence character and one
character following.

7. If the character following an escape sequence character does not result
in an escape sequence as defined by the six rules above, the escape

sequence character and following characters are stored as they appear on
the line.

TYPING CONVENTION EXAMPLES

In the examples below, the following conventions are used:

N represents a newline

C Tepresenis a carriage return, assuming that the mode
Ifecho is not set

B represents a backspace

T represents a horizontal tab

S represents a space

{nnn} represents a character whose ASCII value is nnn (octal)

\ is the escape sequence character

is the erase character

@ is the kill character

The examples in the first group illustrate how various typed sequences are
canonicalized in terms of column position; these are followed by examples of erase,
kill, and escape canonicalization. In the second group, lines are shown as they appear
physically, with no consideralion given to the precise sequence of keystrokes that might
have produced them.

3-52 AG91-04

Column Canonicalization Examples

Typed: nothing special about this line.N
Appearance: nothing special about this line.

Result: nothing special about this line.N

Typed: extraneous white sSBpace is ignored.CSN
Appearance: extraneous white space is ignored.

Result: extraneous white space is ignored.N

Typed: Here are two ways (2B_) to overstrike.C N
Appearance: Here are two ways (2) to overstrike.

Result: HB__Be_Br_Be are two ways (2B_) to overstrike.N
Typed: tab + backspace isTBreduced to spaces.N
Appearance: tab + backspace is reduced to spaces.
Result: tab + backspace isSSSSreduced to spaces.N

NOTE: See rule 3 under "Formation of the Canonical String”
above.

Erase, Kill, and Escape Examples

The first few examples illustrate erase and kill processing; the remaining examples
illustrate both escape processing and erase and kill processing. These examples assume
the terminal is in esc mode (mentioned in rule 1 under "Erase and Kill Characters”
and described in the tty_ I/0 module) and that overstrike canonicalization is being
used.

Typed: abz#cde
Appearance: abz#cde
Result: abcde
Typed: abSSS#cde
Appearance: ab #cde
Result: abcde

3-53 AG91-04

Typed:
Appearance:
Result:

Typed:
Appearance:
Result:

Typed:
Appearance:
Result:

NOTE:

Typed:
Appearance:
Result:

Typed:
Appearance:
Result:

NOTE:

Typed:
Appearance:
Result:

NOTE:

Typed:
Appearance:
Result:

NOTE:

Typed:
Appearance:
Result:

NOTE:

not@never SobB#nSMonday
not@never ofn Monday.
never on Monday.

nox#wBBBBB___S_Sit'sSright.
nox#w it's right.
now it's right.

noxBBB____ B#wB_Sit'sSright.
noxfiw it's right.
noxw it's right.

Erase character is overstruck; see rule 4 under "Erase and Kill
Characters” above.

dci1SrrsScharS(1)SstaticSinit ("\017#6") ;
dcl rrs char (1) static init(""\017#6");
dcl rrs char (1) static init("{016}");

\023B_
\023
{002}3

Overstruck 3 is not part of escape sequence.

\B_112
\112
\112

Overstruck \ is not an escape character.

a\##b
a\##b
a\b

According to rule 1 under "Erase and Kill Characters,” the first # is
not an erase character; according to rule 3 under "Erase and Kill
Characters,” the second # erases itself and the preceding #.

a\e#b
a\@#b
a\b

Same note as in immediately preceding example.

3-54 AG9I1-04

Typed:
Appearance:
Result:

NOTE:

Typed:
Appearance:
Result:

NOTE:

Typed:
Appearance:
Result:

NOTE:

Typed:
Appearance:
Result:

NOTE:

Typed:
Appearance:
Result:

NOTE:

Typed:
Appearance:
Result:

NOTE:

a\B#@b
a¥@b
b

th

The \ is erased by the overstruck #.

a\\#b
a\\#b
a\#b

According to rule 1 under "Erase and Kill Characters,” erase
canonicalization does not recognize the #; according to rule 2 under
"Escape Sequences,” escape canonicalization recognizes \\ and attaches
no special meaning to the #.

a\\##b
a\\##b
a\b

According to rules 1 and 3 respectively under "Erase and Kill
Characters,” the first # is not an erase character and the second #
erases itself and the preceding #: according to rule 2 under "Escape
Sequences,” \\ reduces to \.

a\\###b
a\\###b
a\b

The first # is not an erase character; the next two are, erasing the
second \ and the first #.

a\\####b
a\\####b
ab

The first # is not an erase character, and must be erased before the
two \ characters. The previous examples illustrate the difficulty of
erasing a double \; the clearest method is probably to oversirike

(a¥¥p) .

a¢<#pb (typed on an IBM Model 2741-1like terminal)
a¢<#b
a\b

Only the < is erased; ¢ is translated to \ (see "Escape Conventions
on Various Terminals" below).

3-55

AG9I1-04

TERMINAL OUTPUT

Certain transformations are performed on output destined for a terminal to
ensure that it is displayed correctly. These transformations can be broken down into
the following categories: carriage motion, delays, escape sequences, comiinuaiion lines,
and end-of-page processing.

Carriage Motion

Six entries in the terminal’s special characters table specify the character
sequences to be output when any of the various carriage motion (space, formfeed,
vertical tab, horizontal tab, backspace, carriage return, and newline) characters are
encountered (for information on this table, see the description of the set_special order
to the tty_ I/0 module in the Subroutines manual). The most usual case is that the
sequence for newline consists of carriage return followed by newline (i.e., linefeed),
and each of the other sequences either consists of the source character itself or is null
to indicate that the specified function is not available.

In general, carriage motion is reduced to its simplest and most efficient form.
Any combination of consecutive carriage motion characters is output as net right or
left motion, e.g..:

SSBSS

is output as:

SSS

where S is a space and B is a backspace. If a newline immediately follows other
carriage motion characters, those carriage motion characters are omitted. In addition, a
combination of spaces and horizontal tabs that moves the carriage to or over a tab
stop is converted to tabs followed by the minimum possible number of spaces. Tab
stops are assumed to be at columns 11, 21, 31, etc. Thus the following sequence
(starting at column 1)

abcdSSSSSSSSSef

is converted to:

abcdTSSSef

where S is a space and T is a horizontal tab. An exception arises if the terminal is
in “tabs mode or if the special characters table specifies a zero-length sequence for
horizontal tabs. In either of these cases, ali rightward carriage motion is output as
spaces, as many Spaces are output as necessary to reach the appropriate column
position.

3-56 AG9I1-04

Net left carriage motion is normally output as backspaces unless the final column
position is so near the left margin that it is more efficient to output a carriage return
followed by spaces. Thus:

abcdefgCSSSS_

is output as:

abcdefgBBB____

where as:

abcdefghi jkBBBBBBBBB_

is output as:

abcdefghi jkCSS__

where C is a carriage return, S is a space, and B is a backspace.

If the terminal lacks the capability to perform a carriage return without a
linefeed, the carriage return sequence in the special characters table should be null, in
which case net left carriage motion is always output as backspaces. Conversely, if the
terminal lacks the backspace function, the backspace sequence should be null, and all
net left carriage motion is output as a carriage return followed by spaces. If both
sequences are null, net left carriage motion is ignored.

Delays

Printing terminals frequently require more than one character time to move the
carriage in any way other than one position to the right. In order to allow the
terminal time to reach the column position in which it is next supposed to print, the
Multics Communication System may output one or more ASCII NUL characters
following a carriage motion character. NUL characters used in this way are called
delays.

The number of delays required in any given situation depends on the terminal
mechanism, the distance the carriage has to travel, and the speed at which characters
are sent to the terminal (baud rate). The delay table (described under the set_delay
order to the tty_ I/O module in the Subroutines manual) contains values, appropriate
to the particular terminal and baud rate, that determine the number of delays required
for any carriage motion character causing a number of columns to be traversed. The
terminal type file (TTF), described in Appendix B, contains a specification of delay
tables to be used at various speeds for each terminal type. To consiruct a new
terminal type entry, it may be necessary fo obtain formulas from the terminal
manufacturer from which the necessary delay table values can be derived.

3-57 AG91-04

Output Escape Sequences

A character that a particular terminal is incapable of printing may be
represented by an escape sequence. The substitution of an escape sequence for a
particular character is dictated by that character’s entry in the output conversion table
(described under the set_output_conversion order to the tty_ I/0 module). Two kinds
of escape sequences are defined: octal escape sequences, and special escape sequences.
An octal escape sequence, as explained earlier, consists of a left slant character
followed by three octal digits representing the ASCII value of the character being
replaced (e.g.,\012). A special escape sequence is one specified in the special characters
table, and consists of zero to three arbitrary characters. Each special escape sequence
has two forms, one used in edited mode and one used in “edited mode. See the
descriptions in the Subroutines manual of the set_output_conversion order, the
set_special order, and edited mode for the ty_ I/C module for more detailed
information.

Continuation Lines

When the length of an output line (i.e., the number of column positions between
two newline characters) exceeds the terminal’s physical paper or screen width, a
newline sequence is inserted and the excess characters appear on the following line,
preceded by a continuation sequence consisting of the characters \c. A "line" of
arbitrary length can be output using as many continuation lines as necessary. The
physical line length of the terminal is made available to the software by means of the
line length (I1) mode of the tty_ 1/0 module.

End-of-Page Processing

The page length (pl) mode of the tty_ I/0 module may be used to specify the
physical length in lines of a page. This feature is primarily of interest to users of
video display terminals as a means of preventing output from being scrolled off the
screen before it can be read. If page—length checking is enabled, then the last line of
a page contains a warning string consisting of the end-of-page sequence specified in
the output conversion table (described under the set_output_conversion order to the
tty_ 1/0 module in the Subroutines manual); this sequence is normally the characters
"EOQP". The output stops when the page is full, and restarts when the user types a
newline or formfeed character. If the end-of-page sequence is a null siring, output
stops at the right margin of the last line of the page, and no warning string is
displayed. See the descriptions of pl and scroll modes for further information.

ESCAPE CONVENTIONS ON VARIOUS TERMINALS

The following paragraphs list escape conventions for some of the terminals that
can be used to access the Multics system. In general, the conventions described here
apply to logging in and out as well as to all other typing. For user convenience,
terminals should support the full (128 characters) ASCII character set on input and
output. For terminals that do not have a full ASCII character set, escape conventions
have been provided. Any of these escape conventions, however, can be respecified by
the user.

3-58 AGI91-04

Upper-Case-Only Devices

Because these models do not have both uppercase and lowercase characters, the

following typing conventions are necessary to enable users to input the full ASCII
character set:

1 The keys for letters A through Z input lowercase letters a through z,
unless preceded by the escape character \ (left slant). The left slant is
shift-L. on the keyboard, although it does not show on all keyboards.
For example, to input "Smith.ABC", type ''"\SMITH.\A\B\C".

2. Numbers and punctuation marks map into themselves whenever possible.
The underscore () is represented by the back arrow (<-). The
circumflex (%) is represented by the up arrow ({). The acute accent
(') is represented by the apostrophe (') .

3. The following other correspondences exist:
Character type in octal
backspace \- 010
grave accent () \' 140
left brace ({) \ (173
vertical line (]) ! 174
right brace (}) \) 175
tilde (~) = 176

Execuport 300

The following non-ASCII graphics are considered to be stylized versions of
ASCII characters:

back arrow (<-) for underscore ()

CDI Model 1030

The following non—ASCII graphics are considered to be stylized versions of the
ASCII characters:

back arrow {<-) for underscore {)

up arrow (1) for circumflex (%)

01/87 3-59 AGI1-04A

FLOW CONTROL

Some asynchronous terminals implement a flow control protocol for input and/or
output. The following paragraphs describe briefly the mechanisms supported by the
Multics system.

Input Flow Control

For terminals that can be used to send high-speed input using a paper tape or
casseite tape reader, it is useful for the system to be able to instruct the terminal to
stop and start transmission so that the input does not arrive faster than it can be
processed. Such terminals (for example the Tektronix 4051) suspend transmission on
receipt of a particular character (called the input_suspend character), and resume it on
receipt of another character (the input_resume character). In addition, such terminals
sometimes suspend input at the end of each tape record or block, possibly transmitting
the input_suspend character before doing so. It is the responsibility of the system in
this case to request the resumption of input by sending the inpui_resume character.
The input_suspend and input_resume characters may be specified in the description of
the terminal type as described in Appendix B, or by means of the input_flow_control_chars
order to the tty_ I/O module, described in the Subroutines manual. The timeout
option is used to specify that the terminal suspends input without transmitting an
input_suspend character, and that the system must send an input_resume character
when it detects that input has been suspended. Input flow control is enabled and
disabled by means of the iflow mode of the tty_ I/0O module.

Output Flow Control

Output flow control is intended to manage terminals that buffer output, since
they print or display at less than channel speed. Two types of output flow control
protocols are supported by the Multics system. The first, called suspend/resume, is
used by various terminals including several made by Digital Equipment Corporation. In
this protocol, the terminal sends a particular character (called the output_suspend
character) when its buffer is nearly full in order to request that the system
temporarily stop sending output. When it is ready to accept more output it sends
another character (the output_resume character). The other protocol, called block
acknowledgement, is used by various terminals, including the Diablo 1620. In this
protocol, the system is expected to subdivide output into blocks no larger than the
terminal’s buffer, and end each block with a specific character (the end_of_block
character). When the terminal is ready to accept more output, it transmits an
acknowledgement character. The type of protocol and the specific characters to be
used can be specified in the terminal type description as described in Appendix B, or
by use of the output_flow_control_chars order to the tty_ I/0O module, described in
the Subroutines manual. Qutput flow control is enabled and disabled by means of the
oflow mode of the tty_ I/0 module.

01/87 3-60 _ AGI91-04A

Hardware Flow Control Using the CTS Dataset Lead

CTS flow control protocol utilizes the capabilities of the FNP’s asynchronous
communications adaptor to remove the need for delay calculation to manage output
flow control and also eliminates the need for output flow control information
embedded in the data stream. This flow control is implemented for hardwired
asynchronous communications lines (lines utilizing the FNP module ’control_tables’). It
provides a stop-on-character output flow control.

This protocol utilizes the CTS dataset lead (pin 5) to control output from the
FNP to the Data Termination Equipment (DTE). If CTS is high, output will be sent;
when CTS drops, the current character will be finished and output will cease until
CTS is raised again. ‘

This protocol is implemented such that a line must have all three leads (CTS,
CD and DSR) high to be initially on-line. After this point CTS will act as a flow
control signal, until the line is hungup again by dropping either CD or DSR.

Many terminals can utilize this protocol or a DTR flow control protocol. The
DTR protocol uses the DTR lead from the terminal (pin 20) in the same manner. For
DTR flow control a connector must be wired which connects the terminal DTR to the
FNP CTS.

The use of a hardware protocol removes computational loading from the
mainframe MCS since delays do not need to be calculated. It also lightens buffer
loadings since buffer space for delay characters is not needed.

BLOCK TRANSFER

Some asynchronous terminals are capable of operating in "block mode”, i.e., they
can be made to buffer a block of data and then transmit it at channel speed in
response to a single keystroke. The system may not handle such high-speed input
correctly unless it is informed that the terminal is capable of such transmission. The
blk_xfer mode of the tty_ I/0 module is used for this purpose.

A terminal is suitable for use in blk_xfer mode if it delimits the block or
"frame" of data transferred by appending a specified character (the "frame_end”
character) to the block and optionally preceding the block with a "frame_begin"
character (which need not be different from the frame_end character). The particular
characters used will depend on the terminai. The characters used can be specified by
the framing_chars statement in the terminal type definition as described in Appendix
B, or by means of the set_framing chars order to the tty_ I/O module.

01/87 3-61 AG91-04A

If the terminal is in blk_xfer mode, and frame_begin and frame_end characters
have been specified, all characters starting with a frame_begin character, up to and
including the next following frame_end character, are treated as a frame. If a
frame_end character has been specified, but no frame_begin character has been
specified, then all characters between one frame_end character and the next are treated
as a frame. In general, none of the characters in a frame are delivered to the user’s
process until the end of the frame has been reached. Calls to iox_$get_line still read
input one line at a time, but the first line in a frame is not available for reading
until the entire frame has been received.

01/87 3-62 AG91-04A

SECTION 4
MULTICS PROGRAMMING ENVIRONMENT

The Multics programming environment is supported by an elaborate set of system
procedures and data structures that are generally invisible to the programmer but that
greatly affect the ways in which programs are written. For example, because of the
Multics virtual memory scheme, a procedure can freely reference any segment in the
storage system (to which it has access privileges) without knowing either its size or its
physical location. Because the normal mode of program execution uses a stack, most
procedures are potentially recursive, even when written in a programming language that
does not support recursion. While the supported programming languages provide
standard interfaces to the system environment, the programmer is free to use features
of the environment in his own way.

The information in this section presents the basic aspects of the programming
environment. Program preparation presents the steps involved in implementing a
program to run on Multics. Then the section presents the major internal interfaces
between a user program and the system that are automatically or explicitly activated
during program execution. The remainder of the section is devoted to subsysiem
writing, including closed and interactive subsystems.

PROGRAM PREPARATION

The basic steps involved in preparing a program to run in the Multics
environment and the system features available to perform them are presenied below.
Specific conventions associated with a particular programming language are described in
the appropriate language manual. The end product of the steps described is an object
segment constructed to interface with Multics facilities and other object segments.
Some of these facilities, such as dynamic linking and process-related data structures,
are presented later in this section.

Programming Languages
The major programming languages currently available on Multics are:

PL/I superset of the American National Standard programming language
PL/I, ANSI X3.53-1976. It also conforms to International

CStandarde Droanizatinn stondard §160-1070
A ULIAMGLL WO WL BQLIILR LIVLL DbilMUL W VAU AL T 7

FORTRAN superset of ANSI FORTRAN, ANSI X3.9-1966, and all features
of ANSI X3.9-1978

COBOL subset of the ANSI standard COBOL, ANSI X3.23-1974

4-1 AG91-04

BASIC compatible with the Dartmouth Version 6 BASIC and very
similar to the ANSI Standard for Minimal BASIC (ANSI

X3.60-1978)
ALM Multics assembly language
APL interactive interpreter (based on IBM APL)
PASCAL based on the standard ISO Pascal

Each Multics translator can be called as a command and produces executable
object code segments. Such segments can be executed as subroutines or at command
level. For information on designing programs compatible with the Multics command
environment, see "Writing a Command” and "Writing an Active Function" below.

PL/I is the standard language on Multics (the system itself is written largely in
PL/I). Thus, the system is documented in terms of PL/I calling sequences, argument
declarations, and standard data types. Areas of the system requiring the use of special
hardware instructions are written in ALM.

A program written in any of the Multics programming languages can call other
programs written in the same language by merely following that language’s calling
conventions. And because programs written in different languages produce compatible
object segments, programs written in any Multics programming language can call
programs written in anv other Multics programming language as long as the data types
of any arguments passed are recognized data types in both languages. In some cases it
may be necessary 10 create a PL/I interface procedure to handle transmission of
arguments between such programs. Individual language descriptions explain restrictions
on calls to programs produced by different translators and suggest possible interface
mechanisms.

Creating and Editing the Source Segment

A source program resides in an online segment of the Multics storage system. It
is initially created and subsequently modified using one of the Multics text editors,
such as Emacs, Edm or Qedx. (See the Commands manual for specific descriptions of
these text editing facilities.)

The name given a source segment must have the form:

source_name. language_name

where:
1 source_name

is the name of the user program.
2. language_name

is the name of the programming language in which it is written.

4-2 AG91-04

Some sample source segment names are:

square_root.pll
square_root.fortran
square_root.basic

and the object segments produced from each of these are named square_root.

Creating an Object Segment

To translate a source program into object code, the user issues a command to
the appropriate language translator, supplying the source program name as an argument.
To compile the source segment named square_root.pll, the user issues the command:

pll square_root

and an object segment named square_root is produced and placed in the user’s
working directory.

The user could as well have typed:

pl1 square_root.pl]

but as the pll compiler is defined to operate only on segments ending in the suffix
".pll", the compiler is allowed to infer the existence of this suffix, provided it
actually exists on the segment’s name, even if it is not specified in the command line.

Unless the user seiects optional features, the only output produced by the
translator is the object segment itself and messages describing any errors detected
during translation. The user corrects errors by editing the original source segment.
Object segmenis produced by different translators are compatibie, aithough, as stated
previously, the difference in data types and representations may require the
construction of interfaces to pass arguments among programs written in different

languages.

The optional control arguments used by the Ilanguage translators are also
standardized. They provide additional output such as program listings and object maps.
When a listing is requested, it is placed in the user’s working directory with the name
source_name.list (e.g., square_root.list). Of particular interest to users of high-level
programming languages is the default control argument -table, which causes a symbol
table to be placed in the object segment, thereby enabling the program to be
debugged symbolically. (See "Debugging Facilities” below.) When a program is
thoroughly debugged, it should be recompiled with the —no_table control argument.

4-3 AG91-04

Object-Segment Format

All Multics translators produce a standard object segment that contains object
code, linkage data, and other information that may be required at execution time. The

overall format of an object segment is shown below.

- - ——— o~ —————

text

contains the object code, a binary machine-language program.

definitions

contains a set of locations within the segment that can be referenced by
name (entry points) and a list of references made by the program to
external segments (in character-string form).

static

is a prototype static section, containing PL/I internal static variables. It
is usually contained within the linkage section rather than being a
separate section. It is copied into the per—process user area when the
object segment is first referenced.

linkage

is a prototype linkage section, containing dynamic linkage information.
It is copied into the per—process user area when the object segment is
first referenced and contains information used by the dynamic linker to
resolve external references.

symbol

contains relocation bits for the text and linkage areas (used for binding)
and additional information that may be generated by translation options,
such as a symbol table.

4-4 AGY91-04

6. object map
contains lengths and offsets for each section of the object segment.

For a detailed description of an object segment’s format and contents, see
Appendix G.

Debugging Facilities

Multics provides extensive interactive program debugging facilities through the
two commands, probe and debug, which make use of the symbol table placed in the
object segment of compile time. The two commands provide similar services, but the
debug command is oriented more toward the needs of a machine language programmer
while probe is designed with the high-level language programmer in mind. Multics
also provides a trace command that traces the flow of control through program
execution and a trace_stack command that traces the list of programs active on the
program stack. (The debug, probe, trace, and trace_stack commands are described in
the Commands manual.)

A central feature of both debug and probe is the facility for setting breakpoints
at specified program locations. The program is then executed. When a preset
breakpoint is reached, execution is interrupted and the current state of variables
preserved. The user can then perform other debugging operations such as examining
the values of data items, inserting test values, executing other programs, and so on.
Execution can then be continued from the point at which it was suspended.

Writing a Command

Any of the standard Multics compilers can be used to create a Multics command
procedure. A command procedure differs from other procedures in the following ways:

1. A command procedure is called by the Multics command processor.
Since the input to the command processor is limited to the characters
that the user types in the command line, the command processor can
only pass nonvarying, unaligned character-string arguments to the
command procedure. This means that the command procedure may have
to convert these character strings to another data type more appropriate
10 its needs.

2. A command procedure can receive only input arguments. An error may
occur if the procedure changes the value of any of its arguments. Also,
the command procedure may not set one of the arguments to indicate
the success or failure of its operation.

3. A command procedure must be prepared to handle a variable number
of arguments. Many command procedures accept optional control
arguments, which may or may not be present. Even command
procedures expecting a fixed number of arguments must be prepared to
diagnose an error when the user mistakenly types too many or too few
arguments.

4-5 AGI91-04

The command processor provides an environment that supports the differences

sample_command: procedure options (variabie)

declare arg_count fixed binary (17);

declare arg_len fixed binary (21);

declare arg_ptr pointer;

declare arg character (arg_len) based (arg_ptr);
declare code fixed binary (35);

declare argx fixed binary (17);

between command procedures and other procedures. A command procedure can call
the command utility subroutine (cu_) to obtain its arguments and to get other
information about the command environment. A command procedure can call the
command error subrouiine (com_err_) to report errors to the user. The example below
shows the portion of a command procedure that obtains its argument count and scans
the arguments looking for an "-input" control argument.

declare cu_Sarg_count entry (fixed binary (17), fixed binary (35));

declare cu_Sarg_ptr entry (fixed binary (17), pointer,
fixed binary (21), fixed binary (35));
declare com_err_ entry options (variable);

call cu_Sarg_count (arg_count, code) ;
if code *= 0 then do; /* not invoked as command */
call com_err_ (code, 'sample_command') ;

return;

end;

do argx = 1 to arg_count;
call cu_Sarg_ptr (argx, arg_ptr, arg_len, (0));
if arg = "-input" then do;

end;

*

end sample_command;

Detailed information about the command utility and command error subroutines
provided in the Subroutines manual.

4-6

is

AGI1-04

Writing an Active Function
Active functions are special command procedures that return a value to the

command processor. The command processor substitutes this value into the command
line in place of the active siring that caused the active function to be calied.

Active function procedures differ from other procedures in the following ways:

L An active function procedure can receive only nonvarying character—string
arguments.
2. An active function procedure can only receive input arguments. An

error may occur if the procedure changes any of its input arguments.

3. An active function procedure must be prepared to handle a variable
number of input arguments.

4. An active function procedure returns a value in a varying character
string provided by the command processor. The active function may
assign any character string value (including a null character string) to
this return string. When the active function procedure rteturns, the
command processor substitutes the value of the return string in place of
the active string which caused the active function procedure to be
called.

4-7 AG9I1-04

An active function procedure can call the command utility subroutine (cu_) to
obtain its input arguments and return string from the command processor. It can call
the active function error subroutine (active_fnc_err_) to report errors to the user. The
example below shows the portion of an active function procedure that obtains its
return string and a count of its input arguments. The active function reports a
command error if it was not called as an active function. It expects no input
arguments and therefore reports an error if any were given in the active string.

sample_active_function: procedure;

declare arg_count fixed binary(17);

declare return_stringl fixed binary(21);

declare return_stringp pointer;

declare return_string character (return_stringl) varying
based (return_stringp);

deciare code fixed binary(35);

declare error_table_Stoo_many_args fixed binary (35)
external static;

declare cu_Saf_return_arg entry (fixed binary(17), pointer,
fixed binary(21), fixed binary(35));

declare (active_fnc_err_, com_err_) entry options(variable);

call cu_Saf_return_arg (arg_count, return_stringp,
return_stringl, code);
if code "= 0 then do: /% error if called as a command,
not as an active function. %/
call com_err_ (code, '"sample_active_function');
return;
end;
if arg_count *= 0 then do; /* error if any args given. ¥%/
call active_fnc_err_ (error_table_S$too_many_args,
"sample_active_function", '"No arguments expected.');
return;
end;
return_string = "'"; /% initialize return string. %/

.

end sample_active_function;

Detailed information about how the command utility and active function error
subroutines can be used from an active function procedure is provided in the
Subroutines manual.

4-8 AG91-04

The same procedure can be programmed to operate both as an active function
and as a command procedure. Typically when such procedures are called as a
command, they print on the user’s terminal the value of the string they would return
as an active function. These command/active function procedures are coded as active
functions and should cali cu_$af_return_arg instead of cu_$af_arg count. If
cu_$af_return_arg returns the error code error_table_$not_act_fnc, they operate as
commands. If the code returned is zero, they use the returned pointer and length to
base the return value. Any other nonzero error code should be fatal. Note that
cu_%af_return_arg always returns a correct argument count even if the active function
was invoked as a command, so the user can go on to use cu_$arg ptr with no further
checking.

ADDRESS SPACE MANAGEMENT

When a user logs in, he or she is assigned a newly created process. Associated
with the process is a collection of segments that can be referenced directly by system
hardware. This collection of segments, called the address space, expands and contracts
during process execution, depending on which segments are used by the running
programs.

Address space management consists of constructing and maintaining a correspondence
between segments and segment numbers, segment numbers being the means by which
the system hardware references segments. Segment numbers are assigned on a
per—process basis (i.e., for the life of the process), by supplying the pathname of the
segment to the supervisor. This assignment is referred to as "making a segment
known." Segments are made known automatically by the dynamic linker when a
program makes an external reference; making & segment known can also be
accomplished by explicit calls to address management subroutines. In addition, when a
segment is made known, a correspondence can be established between the segment and
one or more reference names (used by the dynamic linker to resclve external
references); this is referred to as “initiating a reference name." When dynamic linking
is the means used to make a segment known, the initiation of at least one reference
name is performed automatically. (For more information on reference names, see
"Reference Names" in Section 3 and "Making a Segment Known" below.) A general
overview of dynamic linking is given below.

The primary responsibility of the dynamic linker is to transform a symbolic
reference to a procedure or data into an actual address in some procedure or data
segment. In general, this transformation involves the searching of selected directories
in the Multics storage svstem and the use of other system resources to make the
appropriate segment known. The search for a referenced segment is undertaken after
program execution has begun and is generally required only the first time a program
references the address.

The dynamic linker is activated by traps originally set by the translator in the
linkage section of the object segment. These traps are used by instructions making
external references. When such an instruction is encountered during execution, a fault
(trap) occurs and the dynamic linker is invoked.

4-9 AGI91-04

The dynamic linker uses information contained in the object segment’s definition
and linkage sections to find the symbolic reference name. (For a detailed description
of these sections, see Appendix G.) Using the search rules currently in effect, the
dynamic linker determines the pathname of the segment being referenced and makes
that segment known. The linkage trap is modified so that the fault does not occur on
subsequent references; this is referred to as snapping the link.

Search Rules

In order to resolve external references, the dynamic linker uses a prescribed
search list specifying a subset of the directory hierarchy. The search for a segment
proceeds as follows. If the reference name is found in the list of initiated segments
(item 1 below), that segment is used. Otherwise, directories are searched in the order
in which they appear in the search ruies until the name is found. The standard search
rules are given below. These can be modified using the add_search_rules,
delete_search_rules, and set_search_rules commands (described in the Commands
manual). The installation may also modify the default search rules for all users by
using the set_system_search_rules command, described in the Mu/tics Administration,
Maintenance, and Operations Commands manual, Order No. GB64. The
get_system_search_rules command, described in the Commands manual, prints the
current system default search rules.

1. initiated segments

Reference names for segments that have already been made known to a

specific process are maintained by the system. A reference name is

associated with a segment in one of three ways:

a. use in & dynamically linked exiernal program reference

b. a call to hcs_$initiate, or hes_$make_seg with a nonnull
character string supplied as the ref_name argument (these hcs_
entry points are described in the Subroutines manual)

c. a call to hes_$make_ptr (described in the Subroutines manual)

2. referencing directory

The referencing directory contains the procedure segment whose call or
reference initiated the search.

3 working directory

The working directory is the one associated with the user at the time
of the search. This may be any directory established as the working
directory by either the change wdir command or the change_wdir_
subroutine (described in the Commands and Subroutines manuals
respectively). (The initial working directory is the home directory.)

4-10 AG91-04

4. system libraries

The system libraries are searched in the following order:

>system_library_standard

This library contzins standard system service modules, i.e., most
system commands and subroutines.

>system_library_unbundled (if present)
This library contains unbundled software.

>system_library_1
This library contains a small set of subroutines that are reloaded
each time the system is reinitialized.

>system_library_tools
This library contains software primarily of interest to system
programmers.

With the search rules given above, when a program in the user’s working
directory has the same name as a system program, the user program will be invoked
(since it is found first). Unless this is intended, the user should avoid using the names
of system commands for his programs, or should change either his working directory
or the search rules in effect. (An exception to this occurs if the reference is by a
program in the same directory as the system program being searched for; see item 2,
above.) If an external reference to a procedure is not resolved by following the
search rules, an error message is printed. The user can recover from the error in a
number of ways (for example, by initiating the procedure directly or by adding a link
to the procedure into one of the directories included in the search rules).

Binding

Binding is an alternative to dynamic linking that should be used when a set of
object segments is intended to be executed together repeatedly. Using the bind
command, a user can consolidate these segments into a single bound object segment.
Binding can provide a substantial savings in processing time and page fault overhead.

Binding proceeds as follows. The object code portions of the segments to be
bound are concatenated and relocated as necessary. Intersegment references are resolved
with direct text-to-text or text—to-internal-static references within the bound segment
components. A new set of definitions and linkage information is created to reflect the
interface between a bound segment and external references. (For more details on
binding, see the bind command in the Commands manual; for the structure of a
bound segment, see Appendix G of this manual)

4-11 AG91-04

Making a Segment Known

A segment is known to a process when it has been uniquely associated with a
segment number in that process. This association is maintained for the life of the
process uniess a user explicitly makes the segment unknown.

Once a segment is known by a given segment number, all program references
using that number are interpreted by the system hardware and associated software as
references to that segment. A segment can be made known through dynamic linking
or by explicit calls.

A segment can be made known without a reference name, through the
initiate_file_ subroutine (the terminate_file_ subroutine makes it unknown). These
subroutines are described in the Subroutines manual. When a segment is made known,
a reference name can be associated with it. Such a name is said to be initiated for
the segment (see the hcs_$initiate_ entry point in the Subroutines manual). The
association between a reference name and a segment lasts as long as the segment is
known unless explicitly discontinued by the user. The ending of this association is
referred to as terminating the reference name. A segment may be initiated by more
than one reference name, but no two segments can have the same reference name.

Reference names that have been initiated are the first items examined by the
dynamic linker (see "Search Rules" above) when atiempting to find a referenced
procedure or data segment. If the name is not initiated, the dynamic linker makes the
segment known and initiates that name for the segment when it has successfully
completed its search.

The user can remove reference names by using the term_ subroutine (described
in the Subroutines manual). If only one reference name appears for a segment and it
is terminated, the segment is also made unknown. The user may aiso explicitly make a
segment unknown and terminate all its reference names (see term_$seg pir in the
Subroutines manual).

At command level, the initiate and terminate commands may be used to initiate
and terminate reference names. (See the Commands manual for a discussion of these
commands.)

4-12 AG91-04

Address Space Management Subroutines

The subroutines listed below provide a direct interface between user—written
programs and some of the system mechanisms discussed previously. The selection of
the appropriate routine is based on the form in which the segment of interest is
currently expressed. For example, if an interactive program accepts the pathname of a
segment as an argument, that segment can be made known using initiate_{file_.

A brief description of these interface subroutines is given below. For a complete
description, see the Subroutines manual.

hes_$fs_get_path_name
given a pointer to a segment, returns its pathname

hes_$fs_get_ref_name
given a pointer to a segment, returns associated reference names

hes_$fs_get_seg_ptr
given a reference name, returns a pointer to the associated segment

initiate_file_
given a pathname, causes the segment to be made known.

hes_$initiate
given the pathname of a known segment and a reference name, initiates
the reference name.

hes_$make_entry
given a reference name and the name of an entry point, returns the
value of the specified entry point.

hes_$make_ptr
given a reference name and the name of an entry point, returns a
pointer to the specified entry point. If the reference name is not yet
initiated, search rules are used to find a segment with the same name,
the segment is made known and the reference name initiated.

term__
1van nathn a fnfm;v\af all wafarane amag ~f n povi et mamsd
iven & pataname, ©erminaies ain réierence names Oi a segmenil and

makes it unknown.

term_$single_reference
terminates one reference name from a segment. If it is the only
reference name for that segment, the segment is made unknown.

terminate_file_
given a pointer t0 a segment, makes the segment unknown if there are
no reference names associated with the segment.

term_3%seg_ptr

given a pointer 10 a segment, terminates all reference names and makes
the segment unknown.

4-13 AG91-04

MULTICS STACK SEGMENTS

The Multics stack segment is a central component of the normal eXxecution
environment. It is essentially a pushdown list where active procedures maintain private
regions, calied stack frames, in which their temporary variables reside. A stack frame
is created for a procedure when it is called; the procedure is subsequently referred to
as the owner of the stack frame. Stack frames also contain information used in
interprocedure communication, such as argument lists and procedure return points. The
base of the stack segment, the stack header, contains pointers to various types of
information about the process. Elements of the stack are described briefly below and
in detail in Appendix H.

Stack Header

The stack header contains pointers to code sequences (used to perform the
standard procedure call and return and stack push and pop functions) and to operator
segments (containing brief code sequences referenced by programs compiled by system
translators). Another set of pointers is maintained to keep track of the stack frames
created and released during the process. Two pointers in the stack header are used to
implement external reference resolutions on an interprocedure and intersegment basis.
These point to the linkage offset table (LOT) and the internal static offset table
(ISOT) for the current ring. The LOT points to the dynamic linkage sections allocated
in the ring and the ISOT to the dynamic internal static sections allocated in the ring.

Stack Frames

The stack frame is used to store the current state of the calling procedure and
the information used to restore tha! state when a return from the call is made. The
stack frame also contains data associated with the procedure to be executed. The stack
frame header contains pointers to information required to activate the called
procedure, such as a pointer to the argument list and to the linkage region of the
calling procedure. Since a new stack frame is generally created at each call,
procedures that have variables in the stack frame are potentially recursive.

Combined Linkage Region

A combined linkage region can consist of one or more segments that contain a
sequence of contiguous linkage sections (pointed to by the LOT), internal static sections
(pointed to by the ISOT), or general storage regions acquired through system routines
for all object segments active in the ring. Additional segments are created as necessary
to contain this information.

CLOCK SERVICES

Two types of clocks are available on Multics: a real-time clock for the entire
system and a process execution timer for each process. The real-time clock, a
hardware calendar clock accessible through a special register on a system controller,
runs whenever the system is in operation; it contains a double-word integer register
that is incremented once per microsecond and represents the number of microseconds
elapsed since January 1, 1901, 0000 hours Greenwich mean time. A simulated interrupt

4-14 AG91-04

mechanism is associated with the calender clock so that a specified process can receive
an interprocess wakeup at any given time.

A process execution timer is maintained as part of the state of each process. It
counts the microseconds used by a process. This timer measures virtual CPU time (in
microseconds) spent by the process. In addition, ‘it can be used for setting timed
wakeups.

" An interrupt mechanism associated with the virtual timer allows a process to
receive an interprocess wakeup after a given amount of CPU time has been used. The
timer is compared to the specified value at regular intervals; when the value is
exceeded, an interprocess wakeup is generated for the running process.

The clocks are available for use by programmers. Some ways in which system
commands use them are given below:

. Resource monitoring and accounting.

° !.abeling data (e.g., storage system entries) with dates and times of
interest.

.) Computing the date and time for output.

) Generating a unique bit string.

. Waking up a specified process at a specified time, perhaps causing a
specified procedure to be called.

° Interrupting a process after a specified amount of CPU time has

elapsed.

Access to System Clocks

Commands and subroutines that permit the user to inspect the real-time clock
and the process execution timer are summarized below. For a detailed description of
each, see the Subroutines manual. The Multics PL/I built-in function clock() reads the
real-time clock and return its current value as a fixed bin(71) quantity. This clock
time can be converted to a more readable form using either date_time_, which returns
a single character string, or decode_clock_value_, which returns the various components
of the time (month, year, etc.) as distinct variables. The convert_date_to_binary_
subroutine accepts a character string like that produced by date_time_ and returns a
fixed bin(71) equivalent. The set_time_zone command enables the user to set the
defauii time zone for his or her process.

The value of the process execution timer 1is returned by both the
cpu_time_and_paging_ and the Multics PL/I built~in function vclock(). The resource_usage
command (described in the Commands manual) prints a report of the resources used
by the user from the beginning of the current billing period to the time of creation
of the user’s current process.

4-15 AG91-04

The status command and the hcs_$status_ subroutine both provide dates and
times associated with storage system entries, such as the date and time the entry was
last modified ‘and the date and time last used. The hcs_$status_ subroutine returns the
time in file system format; this 36-bit time can be converied by the contruct:

| clock_value = cv_fstime_ (fstime);

The unique_bits_ subroutine returns a bit string, generated partly from the
current real-time clock reading, that is guaranteed to be unique among all bit strings
so generated. The unique_chars_ subroutine converts such a value into a character
string that is also guaranteed to be unique among all character strings so generated.

Facilities for Timed Wakeups

The interprocess communication facility (see the ipc_ subroutine in the Subroutines
manual) allows a user to set up channels for sending interrupts (wakeups) to a
specified process. The interrupt can cause that process to return from the blocked
state to whatever it was previously doing, or it can cause some other procedure to be
called in that process. One possible use of this facility is to wake up a process as the
result of some clock activity. The timer_manager_ subroutine (described in the
Subroutines manual) provides the necessary interface. With this subroutine, the user
can specify an event channel for his own or another process, whether the process
should merely be wakened or a specified procedure should be called, and the nature
of the clock activity that should trigger the wakeup (i.e.,, virtual CPU or calendar
clock time). In specifying the time, the user can further specxfy absolute or relative
time and can use seconds or microseconds.

WRITING A PROCESS OVERSEER

Almost every feature of the standard Multics system interface can be replaced by
providing a specially tailored process overseer procedure in place of the standard
version. The standard Multics process overseer procedure, process_overseer_, is the
initial procedure assigned to a user unless the project administrator specifies otherwise
by an initproc or Initpr oc statement in the project master file (PMF). (See the
Multics Administartors’ Project, Order No. AK51.) If a user has the v_process_overseer
attribute, she may specify a different initial procedure when she logs in by using the
—process_overseer (-po) control argument as in the following example:

login Smith -po >udd>AEC>special_overseer_

If Smith does not have the v_process_overseer attribute, the system refuses the login.

If the user has the v_process_overseer attribute, she may leave a program named
"process_overseer_" in her homedir. Note that if the PMF specifies a reference-name
other than "process_overseer_", the user must put whatever it specifies in her homedir.
If the PMF provides an absolute pathname for the initial procedure, the user can not
replace it in this manner.

01/87 4-16 AGI91~04A

Process Initialization

A process is created for a user when she logs in, or in response to either a
new_proc command (described in the Commands manual) or process termination signal.
What follows is a brief description of the birth of a process.

Unless otherwise noted, all of the modules described are in PL/IL It is helpful
to follow along this discussion with a listing of the modules; the comments often
provide useful amplification. To do so, use the library_fetch command. For example:

If initialize_process_.pll

Several items of information must be passed to all processes by the system
control process. The system places this information in a special per—process segment,
called the process initialization table (PIT), that resides in the process directory. The
user process may read the contents of the PIT, but may not modify it because its
write bracket is zero. The user_info_ subroutine (described in the Subroutines manual)
is used to extract information from the PIT.

A process begins, for ali intents and purposes, with a call to the ring zero
routine init_proc. This description will only mention those actions of init_proc which
are of significance to visible features of the user environment.

The first action of init_proc is to initialize the known segment table (KST) by
calling initialize_kst. Then init_proc initializes the PIT, and checks for the
v_process_overseer attribute. If v_process_overseer is on, init_proc sets the working
directory to the user’s home directory. Until this point the user has no working
directory, so that users without v_process_overseer do not get their home directory
into the search rules until later on in their process. This prevenis users without
v_process_overseer from replacing their initial procedure, signaller, or unwinder.

Now init_proc calls makestack to create the stack in the user’s initial ring. First,
makestack creates a segment named stack_N in the process directory, where N is the
number of the user’s initial ring. It fills in the null pointer, begin pointer, and end
pointer of the stack and calls the linker (via link_man$get_initial_linkage), to get the
initial linkage for the ring.

The internal procedure initialize_rnt is then called by makestack in order to
make a reference name table (RNT) for the ring in question. initialize rnt calls
define_area_ to get an area for the RNT, and puts a pointer to the RNT into the

! ; . L ipion T
appropriate place in the stack header. Then initialize rnt initializes the search rules to

the default rules and returns.

W plave Ll Ul Wwn 1l Wl . A iiwil

4-17 AGI1-04

At this point makestack adds the name of the stack it is creating to the RNT
and calls the linker to snap links to signal_, unwinder_, the alm operators, and
pll_operators_. Thus users with v_process_overseer., whose working directories were set
by init_proc before makestack was called, pick up any versions of these programs that
are resident in their home directories. It then sets up the static condition handlers for
no_write_permission, not_in_write_bracket, isot_fault, and lot_fault, fills in the thread
pointers for the first stack frame and returns.

Now, init_proc is ready to find the initial procedure. For the purposes of this
discussion, the initial procedure is the first procedure called in the user’s initial ring.
The term "process overseer” will refer to the program specified by the initproc
keyword of the PMF or the argument to the —process_overseer control argument of
the login access request. If the string ",direct” is appended to the pathname specified
by either the initproc keyword or the -—process_overseer conirol argument, then the
specified pathname is both the process overseer and the initial procedure and init_proc
parses the pathname and initiates it explicitly. This is because link_snap$make_ptr (the
ring 0 entry that snaps links) will not take absolute or relative pathnames. Therefore
init_proc parses the supplied pathname as either an absolute pathname or a relative
pathname relative to the user’s home directory. Note that this is independent of the
state of v_process_overseer —— if the project administrator specified a ,direct overseer
with a relative pathname, it will reference off of the home directory. This primarily
provides a typing convenience to users with v_process_overseer specifying a .direct
overseer at login. If the name does not end with ,direct. the standard initial
procedure, initialize_process_, is used.

At this point init_proc either has a pointer and a reference name for a ,direct
overseer, or it has a reference name to the standard initial procedure initialize_process_.

Finally, init_proc calls call_outer_ring_ to call out to the user’s initial ring. Note
that a user without v_process_overseer is still lacking a working directory. It is the
responsibility of any user-supplied .direct initial procedure to set the working
directory.

The user’s process now begins execution in the initial ring in the program
initialize_process_.

The initialize_process_ procedure first initiates the PIT. If the wuser lacks
v_process_overseer it finds the appropriate process overseer. Then it sets the working
directory, and finds the process overseer if it was not previously found. It sets up
static condition handlers for cput, alrm, trm_, wkp_ and sus_.

4-18 AGY91-04

Before calling the process overseer, initialize process_ attaches the I/0 switch
named user_i/o (through an I/0 system module named in the PIT) to the target (also
specified in the PIT). It then attaches the I/0 switches named user_output,
user_input, and error_output as synonyms of user_i/o by calling iox_$init_standard_iocbs.
The [/O module used for an interactive process is tty_, the Multics terminal device
1/0 module. (This module is described in the Subroutines manual). For absentee
processes it is abs_io_, and for daemons it is mr_.

Absentee processes do not use any of the login arguments or attributes of the
process which submitted the absentee request. All absentee process attributes come only
from the absentee request, the system administrator table (SAT), and the project~definition
table (PDT).

The initialize_process_ procedure then calls the process overseer specified in the
PIT. This is either the procedure specified in the "initproc” keyword of the PMF, or
the -po argument to login. It is called with the following arguments:

declare process_overseer_ entry (ptr, bit (1) aligned, char (%)
varying) ;

call process_overseer_ (pit_ptr, call_listen_, initial_cl);

where:

1. pit_ptr
is a pointer to the PIT. (Input) It should be ignored.

2. call_listen_
if set to "1"b, initialize_process_ will call listen_ with the value of
initial_cl as the first command line, thus starting the command
environment. (Output) If it is set to "0"b , the process will be
terminated, on the assumption that the process overseer already ran the
entire process.

3 initial_cl

is the first command line to be executed, normally an exec_com of the
start_up ec. (Output) It may be up to 256 characters long.

Process Overseer Functions

The system process overseers terminate processing by setting the call_listen flag
in their calling sequence, setting the initial_cl argument to the initial command line,
and returning to initialize_process_.

A user-supplied process overseer procedure may perform many other actions
besides those executed by the system version. For example, initialization of special
per—project accounting procedures may be accomplished at this point, or requests issued
for an additional password or any other administrative information required by a
project.

4-19 AGI1-04

The initial command line used by the system process overseer is:

exec_com start_up_path>start_up.ec start_type proc_type

where:

1. start_up_path
is the location of the user’s start_up.ec. The system process overseers
search for the start_up.ec in the following directories, in this order:
>udd>Project>person, >udd>Project, and >system_control_1.

2. start_type
is either login or new_proc, depending on which of these was invoked
to create the process.

3. proc_type

is either interactive, absentee, or daemon.

These arguments can be used by the start_up.ec segment as described in
connection with the exec_com command in the Commands manual.

The command line given above assumes that the no_start_up flag is off and that
the segment named start_up.ec can be found. The no_start_up flag is off unless the
project administrator has given the user the no_start_up attribute and the user has
included the proper control argument (-no_start_up or -ns) in his login line.

If the process overseer returns to initialize_process_ with the call_listen flag set,
initialize_process_ establishes an any_other handler of default_error_handler_$wall by
executing the statement:

on any_other call wali_entry_variable;

An entry variable is used because initialize_process_ calls hcs_$make_entry with a
null referencing pointer, so that users with v_process_overseer can pul private versions
of default_error_handler_ in their homedirs.

The default_error_handler_$wall procedure is invoked on all signals not intercepted
by any subsequently established condition handler. In general, the
default_error_handler_$wall procedure either performs some default action (such as
inserting a pagemark into the stream when an endpage condition is signalled) and
restarts execution, or else it prints a standard error message and calls the current
listener.

If the process overseer does not use the call_listen_ flag, it must establish its
own any_other handler, and call the listener if cleared.

4-20 AG91-04

Some Notes on Writing a Process Overseer

The best source of information on the writing of process overseers is the source
of the standard one: process_overseer_.pll. There are, however, several important
considerations not obvious from the source.

The first is that process_overseer_ makes use of the pointer to the PIT that it
gets as an argument. This means that if the PIT format changes, at best
process_overseer_ must be recompiled. At worst, it may have to be recoded. If a user
process overseer uses the PIT instead of calling user_info_, then it will likely stop
working if the format of the PIT changes. For this reason, we strongly recommend
that user-written process overseers do not directly reference the PIT. They should call
user_info_, instead.

Both of the installed process overseers look for start up exec_coms. The
process_overseer_ and project_start_up_ procedures try to find start_up.ec in the home
directory, the project directory, and >scl before giving up. Privately wrilten process
overseers should do so as well, unless they are putting the user in an environment for
which this is obviously inappropriate.

Direct Process Overseers

The ,direct overseers are called as the first procedure in the user ring. In
addition to setting up all I/O attachments for user_i/o, and static condition handlers
for alrm, cput, trm_, wkp_ and sus_, ,direct overseers are responsible for setting the
working directory for users without v_process_overseer. This is done to make
protection somewhat easier, as the direct overseer can find anything it is interested in
before setting the working directory.

Handling of Quit Signals

A quit signal is indicated by pressing the appropriate key, such as ATIN or
BRK, on the terminal in use. When a terminal is first attached for interactive
processing, quit signals from the terminal are disabled. A user quit signal issued at
this time causes the flushing of terminal output buffers, but the quit condition is not
raised in the user ring. The recognition of quit signals is enabled when the followin
call is made:

call iox_Scontrol (iox_Suser_io, "quit_enable", null (), status);

If a project administrator wishes to replace the standard user environment with
his own programs, he must find an appropriaie place for ihe quii_enabie order, after
the mechanism for handling quit signals has been established.

4-21 AGI1-04

CREATING AN EXTENDED ENTRY

An extended entry is a storage system entity which is created and manipulated
by a particular subsystem and for which the operations performed by the standard file
system commands and subroutines are either incorrect or impossible. For example, the
mailbox is created and maintained by the message segment facility. All mailboxes must
be named with the suffix ".mbx" and their accessibility is defined by extended modes
instead of the more familiar "rew” or "sma" modes. In addition, proper access 10
these entries is enforced by the fact that they are ring one resident, they are
inaccessible from the user ring unless message_segment software (ring one resident) is
invoked through a gate.

Extended entry software allows the standard Multics commands and subrouiines
to operate upon extended entries without compromising the integrity of the owning
subsystem. This applies not only to system-supplied extended entries such as mailboxes
and message segments, but also to user—written subsystems.

A number of commands and subroutines have been modified to correctly handle
extended entries. These include add_name, copy, copy_acl, copy_dir, copy_names,
delete, delete_acl, delete_name, list_acl. move, move_dir, rename, set_acl, set_max_length,
set_ring_brackets, status, switch_on, switch_off, copy_, copy_dir_, copy_acl_, copy_names_.
delete_. di_handler_, nd_handler_.

There are two new commands for printing information about extended entries.
The list_entry_types (lset) command will print a list of all the entry types that can be
found in the search rules. It provides only the name of the entry type and the suffix
it uses. For detailed information about an entry type, the describe_entry_type (dset)
command can be used. It prints out the name of the type, various attributes, and the
pathname of an info segment containing more information about the entry type. The
status commands accepts a "-type" control argument which prints the type of a storage
system entry, be it extended (as for mailboxes) or standard (segment, directory, etc.).
All three of these commands aiso work as active functions.

The extended entry facility is implemented by the fs_util_ subroutine. The entry
points in fs_util_ are used to change and retrieve information about any file system
entry. The fs_util_ subroutine determines whether or not the entry is extended by
examining its suffix. Assuming that the suffix is XXX, fs_util_ attempts to locate and
then invoke a subroutine named "suffix_XXX__ $validate”. If both of these actions
succeed, the entry in question is considered to be extended and subsequenily referenced
through suffix_XXX_; otherwise it is conmsidered standard and fs_util_ decides how to
reference it based upon its standard entry type (link, segment, directory, multisegment
file, or data management file).

In order to enable an application program to operate upon extended entries, the
hes_ calls it makes to perform file system operations should be replaced by the
corresponding fs_util_ calls. Calls to any one of the standard system subroutines listed
above, which already support extended entries, need not be changed.

4-22 AG91-04

To implement an extended entry type, you must choose a suffix and implement a
suffix support routine for that entry type. Each suffix support routine must support
the suffix_info and validate entrypoints, as well as a few optional ones. These routines
will be called by fs_util_. If any of the optional entry points are not provided,
fs_util_ returns an error code of error_table_$unsupported_operation to its caller and
the particular operation fails.

There are two restrictions in implementing an extended entry type. First, an
extended entry type may use only standard entry types (segment, directory,
multisegment_file, and dm_file), as the underlying storage type. Second, if the acl
modes for the extended entry type do not map directly onto the standard modes, then
they must be stored in the extended modes field of the underlying type. For example:
mailboxes use the extended modes field of segments to store their modes of "adrosw".

The following is a list of supported entrypoints for suffix support routines:

dcl suffix_XXX_Sadd_acl_entries entry (char (%), char (¥), ptr,
fixed bin(35))

call suffix_XXX_Sadd_acl_entries (dir_name, entry_name, acl_ptr,
code)

NOTE: acl_ptr points to general_acl in acl_structures.incl.pll.

del suffix_XXX_Schname_file entry (char (%), char (%), char (%),
char (%), fixed bin(35))

call suffix_XXX_Schname_file (dir_name, entry_name, old_name,
new_name, code)

dcl suffix_XXX_Scopy entry (ptr, fixed bin(35))
call suffix_XXX_Scopy (copy_options_ptr, code)

NOTE: copy_options_ptr points to the structure copy_options defined in
copy_options.incl.pll. This routine only copies the contents of an
entry, directories excluded. copy_ may be used copy other attributes
as weil as the contents.

dcl suffix_XXX_Sdelentry_file entry {(char (%), char (%), fixed
bin(35))

call suffix_XXX_Sdelentry_file (dir_name, entry_name, code)

dcl suffix_XXX_Sdelete_acl_entries entry (char (%), char (%), ptr,
fixed bin(35))

call suffix_XXX_Sdelete_acl_entries (dir_name, entry_name,
acl_ptr, code)

NOTE: acl_ptr points to general_delete_acl in acl_structures.incl.pll.

4-23 AGI1-04

del suffix_XXX_Sget_bit_count entry ({char (%), char (%), fixed
bin(24), fixed bin(35))

call suffix_XXX_Sget_bit_count (dir_name, entry_name, bit_count,

ecnda
CCaL

dcl suffix_XXX_Sget_max_length entry (char (%), char (%), fixed
bin(19), fixed bin(35))

call suffix_XXX_Sget_max_length (dir_name, entry_name, max_length,
code)

dc1 suffix_XXX_Sget_ring_brackets entry (char (%), char (%), (%)
fixed bin(3), fixed bin(35))

call suffix_XXX_Sget_ring_brackets (dir_name, entry_name,
ring_brackets, code)

NOTE: ring_brackets may be an array of 1, 2 or 3 elements.

dcl suffix_XXX_Sget_switch entry (char (%), char (%), char (%),
bit (1) aligned, fixed bin(35))

call suffix_XXX_Sget_switch (dir_name, entry_name, switch_name,
switch_value, code)

dcl suffix_XXX_Sget_user_access_modes entry (char (%), char (%),
char (%), fixed bin, bit(36) aligned, bit{36) aligned, fixed
bin(35))

call suffix_XXX_Sget_user_access_modes (dir_name, entry_name,
user_name, ring, modes, extendeded modes, code)

NOTE: ring is the validation level to be used in computing effective access.
It may be a value between 0 and 7 inclusive, or -1. -1 may be
used to specify the default value of the validation level of the
calling process.)

dcl suffix_XXX_S$list_acl entry (char (%), char (%), char(¥), ptr,
ptr, fixed bin{35))

call suffix_XXX_Slist_acl (dir_name, entry_name, version,
area_ptr, acl_ptr, code)

NOTE: area_pir points to the start of the allocated area; if null, system_free_area
will be wused. acl_ptr points to the general_acl structure in
acl_structures.incl.pl. If acl_ptr is nonnull or input, general_acl.version
and general_acl.access_name (*) are set indicating which ACL entries
to list. If acl_ptr is null, the entire acl for the branch must be
listed.

4-24 AG91-04

del suffix_XXX_Slist_switches entry (char (%), ptr, ptr, fixed
bin(35))

call suffix_XXX_Slist_switches (version, area_ptr,
switch_list ptr, code)

NOTE: switch_list_ptr points tfo switch_list structure; version must be
SWITCH_LIST_VERSION_1. Both are declared in suffix_info.incl.pll.

dcl suffix_XXX_Sreplace_acl entry (char (%), char (%), ptr, bit(1),
fixed bin(35))

call suffix_XXX_Sreplace_acl (dir_name, entry_name, acl_ptr,
no_sysdaemon_sw, code)

NOTE: acl_ptr points to general_acl structure in acl_structures.incl.pll.
no_sysdaemon_sw specifies whether or not access for #*.SysDaemon
should be added to the entry’s acl.

dcl suffix_XXX_Sset_bit_count entry (char(*), char (%), fixed
bin{(24), fixed bin(35))

call suffix_XXX_Sset_bit_count (dir_name, entry_name, bit_count,
code)

dcl suffix_XXX_Sset_max_length entry (char (%), char (%), fixed
bin(19), fixed bin(35)) '

call suffix_XXX_Sset_max_length (dir_name, entry_name, max_length,
code)

dcl suffix_XXX_S$set_ring_brackets entry (char (¥), char (%), (%)
fixed bin{(3), fixed bin(35))

call suffix_XXX_Sset_ring_brackets (dir_name, entry_name,
ring_brackets, code)

dcl suffix_XXX_Sset_switch entry (char (%), char (%), char (¥),
bit(1) aligned, fixed bin(35))

call suffix_XXX_Sset_switch (dir_name, entry_name, switch_name,
switch_value, code)

dcl suffix_XXX_Ssuffix_info entry (char (%), char (%), ptr, fixed
bin(35))

cali suffix_XXX_dsuffix_info (dir_name, entry_name,
suffix_info_ptr, code)

NOTE: Fill in the appropriate values in suffix_info structure in
suffix_info.incl.pil.

dcl suffix_XXX_Svalidate entry (char (%), char (%), fixed bin (35))

call suffix_XXX_Svalidate (dir_name, entry_name, code)

4-25 AG91-04

NOTE: A 0 error code must be returned if the entry is a valid XXX;
otherwise, error_table_$not_seg_type should be returned.

If the get_switch, set_switch and list_switches entrypoints are present, the switch_on
and switch_off commands may be used to change the value of those switches, and the
status command may be used to report them.

All entry points in a suffix_XXX_, which manipulate entries, with the exception of
validate and suffix_info, are responsible for validating that the entry is actually of the
correct type an not merely masquerading as one be having the appropriate suffix. If
the entry is not of the correct type, the error code error_table_$not_seg_type should
be returned.

Two fs_util_ entry points may be of heip when writing a suffix support routine
or an application that may use extended entry types.

dcl fs_util_Sget_type (char (%), char (%), char (%), fixed bin(35))
call fs_util_Sget_type (dir_name, entry_name, type, code);

where TYPE (an output argument) may be one of the standard or extended entry
types. The standard entry types are as constants in suffix_info.incl.pll.

dcl fs_util_Smake_entry_for_type entry (char (%), char (*), entry,
fixed bin(35))

call fs_util_Smake_entry_for_type (TYPE, OPERATION, entry_to_call,
code) ;

where TYPE (an input argument) is as above, and OPERATION (also an input
argument) is the name of the operation for which an entry is requested. The
entry_to_call may the be used to operate on any entry. It will have a calling
sequence identical to the corresponding fs_util_ entrypoint. A list of designated
constants for the names of operations is available in file_system_operations.incl.pll.

If you wish to implement an extended type named "chess_game" that uses a
segment as its underiying storage type, and wish to use all the switches that segments
do, the entrypoint to set switches would be implemented thusly:

set_switches: entry (dir_name, entry_name, switch_name, switch_value,

code) ;
call VALIDATE_CHESS_GAME (); /* an internal procedure */

call fs_util_Smake_entry_for type (FS_OBJECT_TYPE_SEGMENT,
FS_SET_SWITCH, set_switch_entry, code);

call set_switch_entry (dir_name, entry_name, switch_name,

switch_value, code);

returns;

4-26 AG91-04

INTERACTIVE SUBSYSTEM PROGRAMMING ENVIRONMENT

The Multics Subsystem Utilities provide a general-purpose interface for implementing
interactive subsystems such as the Extended Mail Facility and Forum. The ssu_
subroutine is the vehicle for implemeniing interactive subsysiems (see the Subroutines
manual); the Subsystem Utilities are referred to collectively as the utilities.

An interactive subsystem presents an interface analogous to Multics command
level. After being invoked, the subsystem enters a request loop, where it prompts for
and reads a request line, executes requests in the line, and optionally prints a ready
message.

A subsystem normally consists of a command procedure and one or more request
procedures. The command procedure is a Multics command or perhaps a process
overseer that establishes the environment necessary for operation of the subsystem
before entering the request loop. Individual requests, defined in request tables, are
implemented as separate procedures invoked by the request processor. Request
procedures process their arguments and report errors in a fashion similar to Multics
commands.

To ensure a consistent interface to the subsystem user, the utilities perform
several functions common to interactive subsystems, including maintenance of subsystem
invocations and the request loop process. For example, most users are probably
familiar with the mechanics of the Extended Mail Facility: how the prompt is issued;
what to do for assistance {(the various help facilities available); implications of the
standard requests (list_requests, print, abbrev, help, etc.); how to exit from the
subsystem (by issuing a quit request). In fact, the subsystem writer can design and
implement an interactive subsystem that mirrors exactly a subsystem such as the
Extended Mail Facility. The writer also has the option, however, of overriding many
of the standard mechanisms, if the application warrants such action (see "Tailoring the
Subsystem Environment" below).

The descriptions that follow document the procedures involved in implementing
an interactive subsystem. The entry points cross—referenced in the text are all
documented in the ssu_ subroutine description in the Subroutines manual.

Subsystem Invecations

A subsystem invocation usually corresponds to a single invocation of the
subsystem’s command procedure; e.g., read_mail. The objective of an invocation is to
operate on a specific entity; e.g., an invocation of read_mail operates on a mailbox.
Multiple active invocations can coexist; e.g., a subsequent invocation of read_mail can
be invoked within read_mail (for this reason, subsystems should be written so that
they use no static data). The command procedure parses the command line arguments,
retrieves global options, and in general performs whatever initialization necessary to
establish the subsystem invocation.

4-77 ' AG91-04

The invocation is created by a call to ssu_$create_invocation from within the
command procedure. Subsequently, the listener is called, and it in turn calls the
request processor when there are requests to be processed. Eventually, the user
indicates a desire to exit from the subsystem (usually by issuing a quit request), and
the listener returns to the command procedure, from which a call is made to
ssu_$destroy_invocation, and the subsystem invocation ceases (o exist.

The call to ssu_$create_invocation names the subsystem and provides a version
identifier (e.g., to distinguish between the installed and experimental versions of a
subsystem). It is also through ssu_$create_invocation that the cornerstones of
communication within the subsystem are established: the info pointer (info_ptr)
supplied as a parameter to the call, and the subsystem control info pointer (sci_ptr)
returned by the call. These two pointers are discussed in greater detail below.

USE OF SCI_PTR AND INFO_PTR IN INTERACTIVE SUBSYSTEMS

When ssu_$create_invocation is called, it creates an internal data structure,
pointed to by sci_ptr, and returns the pointer to the caller to be passed as a
parameter in all other calls to the utilities. Such a data structure is created and
maintained separately by the utilities for each invocation. Each data structure, which is
transparent to the subsystem writer, contains everything needed by the utilities for the
life of the invocation.

The info_ptr, on the other hand, must be supplied by the subsystem writer as a
parameter to ssu_$create_invocation; the info_ptr is subsequently passed as a parameter
in all calls to request procedures. The data structure it points to must be defined and
maintained by the writer. It might contain, for cxample, pathnames, option switches,
and pointers to global data bases needed during the invocation.

Although not a requirement, a recommended convention is to include the sci_ptr
in the data structure pointed to by the info_pir (the obverse is true; ie., the data
structure pointed to by sci_ptr contains the info_ptr). Then, only info_ptr need be
passed between the procedures comprising the subsystem.

STAND-ALONE [NVOCAT/ONS

A special form of subsystem invocation is available to the subsystem writer who
may want to write a program that functions either as a Multics command or
subsystem request. This is known as a stand-alone invocation and is created through a
call to ssu_$standalone_invocation. Employing this method, the writer can greatly
reduce the coding effort by eliminating parallel coding or numerous conditional
constructs. Additional information appears below under "Subsysiem Requests and
Multics Commands."

4-28 AGI1~-04

MONITORING SUBSYSTEM USAGE

Facilities are provided (ssu_$print_blast and ssu_$record_usage) for optionally
tracking subsystem usage on a per—user basis. Usage statistics recorded include:

Person_id

Time of most recent use

Version used most recently

Number of times this subsystem used
Number of times this version used
Number of times this version announced

This information is recorded in a segment located by the linker search rules,
using the ref_ptr (see ssu_$print_blast) to specify a referencing_dir. The segment,
named <subsystem_name>.ssusage, must be explicitly created or no monitoring is
performed. All users must be given rw access in order to record their usage statistics.
If statistics cannot be recorded (no access, usage segment has not been created,
segment is full), the version announcement mechanism is disabled (see below), and a
nonzero code is returned. The return code is generally ignored since there is usually
nothing to be done in this case. There are no consequences to being unable to record
usage statistics (i.e., there are no penalties for unsuccessful calls to ssu_S$print_blast and
ssu_$record_usage).

As a subsystem undergoes change, it is assigned a version identifier to distinguish
it from its predecessors (see the ssu_$create_invocation entry point). Since change
often denotes functional improvements or different handiing procedures, users need to
be notified when a new version is installed and told of the nature of the changes.
Notification 1is delivered in the form of a so-called blast message (see the
ssu_$print_blast entry point), which appears the first N times the user invokes the new
version of the subsystem (N is a threshold value specified through ssu_$print_blast).
The blast message is disabled when statistics cannot be recorded, so that the user does
not receive the message on every use of the subsystem.

Statistics can be tabulated without printing the blast message by calling
ssu_%record_usage, which otherwise functions the same as ssu_$print_blast. Statistics are
totaled for all users of a subsystem and can be viewed using the display_subsystem_usage
command (see the Commands manual).

The Subsystem Environment

The subsystem environment consists of a cycle of events somewhat akin to a
Multics process environment. The request loop is entered for the purpose of
processing request lines just as the Muitics command iistener loop processes comimand
lines. Request lines are formulated using a request language that emulates the
command language. There are considerations in regard to the writing of requests, such
as argument processing and error handling, that are also of concern in the writing of
commands. Each of these areas as it pertains to subsystem writing is considered below

in greater detail.

4-29 AG91-04

SUBSYSTEM REQUEST LOOP

The subsystem listener is called (ssu_$listen) from within the command procedure
after the invocation has been established. The listener implements the request loop,
which normally follows a specific pattern:

Print a prompt (the default)

Read a request line

Execute a reguest line

Print a ready message (default is no ready message)

The loop is eventually broken when a call is issued to ssu_$abort_subsystem (usually
through a quit request), in which case the listener returns to the command procedure
for any necessary housekeeping, before the invocation is destroyed and Multics
command level is reinstated.

The default prompt string is a new line, followed by the subsystem name and
optional invocation level number (e.g., if read_mail is called within read_mail, the
second invocation appears as read_mail (2):), followed by a colon and two spaces.
The default prompt is printed by a call to ioa_$nnl with the control string
~/<subsystem_name>"[("d) ~]:"2x (iwo additional arguments indicate whether the
level number is greater than one, and what the level number is). The current prompt
can be changed by calling ssu_$set_prompt; the ssu_$get_prompt entry point can be
used to retrieve the current prompt string.

There also exists a set of prompt modes, which are essentially flags specifying
whether: to prompt at all (default is on); to prompt after a blank line (default is
off); to prompt afier typeahead (defauit is on). Any or all of these modes can be
changed by calling ssu_$set_prompt_mode and resetting the appropriate bits. A call to
ssu_$get_prompt_mode returns the current bit settings.

Ready processing is off by default; it can be changed by a call to
ssu_%set_ready_mode. A call to ssu_$get_ready_mode returns the current state of ready
processing. If enabled, ready processing prints a ready message after executing each
request. The default ready message is the same as that printed at command level. The
ready message can be manipulated within the subsystem through the ready, ready_on,
and ready_off requests (see Appendix J).

The listener itself reads the request line and calls the request processor (through
ssu_$execute_line), which interprets the request line according to subsystem request
language conventions, as described below. The Ilistener also honors the escape to
Multics command level convention (..). This feature is enabled by default (ssu_$cpescape),
but can be disabled (ssu_$cpescape_disabled), if the application warrants such a
restriction.

SUBSYSTEM REQUEST LANGUAGE

The subsystem request language is identical to Multics command language. The
paragraphs below briefly review the language conventions. For a detailed description,
see Section 3.

4-30 AG91-04

In the simplest case, a request line consists of a request name followed by
optional arguments; the request name and arguments are separated from each other
using whitespace (space, horizontal tab, etc.). Multiple requests may be invoked on a
single request line by separating each request and its arguments from the others with a
semicolon character. Arguments which contain whitespace or other characters recognized
by the request line processor must be quoted by enclosing the argument within the
quote character ("); if a quote is required as part of an argument, it must be doubled
when placed within the enclosing quotes (e.g., "double""quotes” is the argument
double"quotes). Request line iteration is specified through the use of parentheses.
Active strings are specified through the use of brackets.

When used in request lines, active strings invoke active requests to obtain the
values to be placed into the expanded request line. Active requests are the subsystem
equivalent of active functions: they are subsystem requests which return a character
string value. See "Defining Request Tables” below for descriptions of command
requests and active requests.

The default request line processor provides facilities to tailor the request
language in two distinct ways. First, the actual request language may be changed by
enabling or disabling features such as iteration or by changing the characters used to
invoke different features of the request language. Secondly, the user may request that
abbreviations within request lines be expanded before actually executing the requests in
the line. Both of these mechanisms are controlled by changing the current request
processor options through use of the entry points ssu_$get_request_processor_options
and ssu_J%set_request_processor_options. Additionally, the abbreviation facility may be
controlled by the user by using the standard subsystem request "abbrev" if it is
defined within the subsystem.

If the standard subsystem request language is not suitable for a particular
application even after changing the language definition as described below, the
subsystem writer may implement a tailored request line processor to replace the
standard processor. This mechanism is described below under "Tailoring the Subsystem
Environment.”

4-31 AG9I1-04

Modifying the Standard Request Processor

As mentioned above, the function of the standard request processor may be
changed by modifying the request processor options in effect within the subsystem.
The current request processor options are obtained by calling
ssu_%$get_request_processor_options. They are changed by calling
ssu_$set_request_processor_options. The default request processor options for the
subsystem invocation may be obtained by calling ssu_$get_default_rp_options. The
current request processor options may be changed to their default settings by calling
ssu_J$reset_request_processor_options. For ease of reference in the remainder of this
discussion, these entry points are referred to simply as get, set, get_default, and reset.

The default request processor options for a subsystem specify that the request

language is identical to Multics command language and that abbreviations should not
be expanded in request lines.

In order to change the request processor options, the subsystem should obtain a
copy of the options currently in effect using the get entry point, modify this copy,
and then call the set entry point.

For example, to change the request language to disable iteration, the following
code fragment may be used:

dcl 1 local_rpo aligned like rp_options;

call ssu_Sget_request_processor_options (sci_ptr,
RP OPTIONS VERSION 1, addr (local rpe), code);
if code “= 0 then call ssu_Sabort_line (...);

local_rpo.non_standard_language = "1"b;
local_rpo.character_types (rank (" (")) NORMAL_CHARACTER;
local_rpo.character_types (rank (')")) NORMAL_CHARACTER;
call ssu_S$set_request_processor_options (sci_ptr, addr
(local_rpo), code);
if code = 0 then call ssu_Sabort_line (...);

4-32 AGI1-04

The rp_options Structure

The request processor options are passed to and from the above mentioned
entry points using the rp_options structure. For the get and get_defauit entry points,
the contents of the structure are filled in to reflect the current or default request
processor options. For the set entry point, the caller must fill in the contents of the
structure to reflect the new options that are to be put into effect by the request
processor. As the reset entry point always sets the options to their default state, it
does not use this structure. In all cases where the structure is required, the caller has
the responsibility of providing space for the structure.

The rp_options structure is declared in the system include file ssu_rp_options.incl.pil
and has the following format:

dcl 1 rp_options aligned based (rp_options_ptr),
2 version -character (8),
2 language_info,
3 non_standard_language bit (1) aligned,

3 character_types (0 : 511)
fixed binary (9) unaligned

unsigned,
2 abbrev_info,
3 expand_request_lines bit (1) aligned,
3 default_profile_ptr pointer,
3 profile_ptr pointer;

STRUCTURE ELEMENTS

version
identifies the version of the rp_options structure being used. The version of the
structure described here is given by the value of the named constant
RP_OPTIONS_VERSION_1 which is declared in the include file defined above.

language_info
defines the current, default, or new request language depending on which entry
point is called.

non_standard_language

for the get entry point, this element is set to "0"b if the standard request
language is being used and to "1"b if a nonstandard request language defined by a
prior call to the set entry point is in use. For the get_default entry point, this
element is always set to "0"b. For the set entry point, a value of "0"b indicates
that the caller wishes to use the standard request language; a value of "1"b
indicates that the caller wishes to use the nonstandard request language, defined in
the character_types array.

character_types
for the get entry point, this element is set to a description of the current request
language even if it is the standard language. For the get_default entry point, this
element is always set to the description of the standard request language. For the
set entry point, this element is only used if non_standard_language above is "1"b
and, in this case, is the new definition of the request language. See "Defining a
Request Language” below for a description of the contents of this array.

4-33 AG91-04

abbrev_info
defines the current, default, or new state of abbreviation processing within this
subsystem.

expand_request_lines
for the get entry point, this element is set to "1"b if abbreviations are being
expanded in this subsystem; otherwise, it is set to "0"b. For the get_default entry
point, this element is always set to "0"b as abbreviation processing is disabled by
default. For the set entry point, a value of "1"b indicates that the caller wishes
to allow request lines to be expanded; a value of "0"b indicates that the caller
wishes to disable abbreviation processing within this subsystem.

default_profile_ptr

for the get entry point, this element is set to locate the default profile nent
for abbreviation processing within this subsystem; if the default profile is the
default default profile, this element is set to null. For the get_default entry
point, this element is always set to null to indicate the default default profile.
For the set entry point, the value of this element should be a pointer to the new
default profile segment for the subsystem or null if the default default profile is
to be used. See "Abbreviation Processing” below for more information.

profile_ptr
for the get entry point, this element is set to locate the current profile segment;
if the default profile segment is being used, this element is set to null. For the
get_default entry point, this element is always set to null. For the set entry
point, the value of this element should be a pointer to the new profile segment
to be used within the subsystem or null if the default profile segment is to be
used.

Defining a Request Language
A subsystem’s rtequest language is defined by specifying the action that the

command processor is to take for each possible character appearing on a request line.

The processing type for a character is set in the character_types array defined
above in the rp_options structure. The PL/I rank builtin function may be used to
access the appropriate entry in the array. For example, to change the processing type
of the character "A", a code fragment of the form:

rp_options.character_types (rank ("A")) = ...;

would be used.

In the following description of the processing types, the term token is used to
mean either a request name or an argument to a Tequest.

4-34 AGI1-04

The possible request language processing types are defined as named constants in
the system include file cp_character_types.incl.pll. The meaning of each of these
processing types follows:

NORMAIL_CHARACTER
this character has no special significance to the request processor. It becomes
part of whatever token is currently being constructed.

WHITESPACE
this character separates tokens in the request line but is itself not part of any
token. By default, this processing type is used for all the whitespace characters
except newline (i.e., space, horizontal tab, vertical tab, and form feed).

COMMAND_SEPARATOR
this character separates multiple request invocations in the request line and does
not become part of any token on the line. By default, this processing type is
used for the semicolon (;).

COMMAND_SEPARATOR_OR_WHITESPACE
this character also separates multiple request invocations in the request line and
also does not become part of any token on the line. In addition, when the
request processor is rescanning the return value of an active request for tokens
(1 [...]1), this character is treated as a whitespace character. By default, this
processing type is used for newline.

SINGLE_TOKEN
this character separates tokens in the request line. In addition, the character

itself becomes a separate token in the request line. For example, if slash (/) is
defined as a SINGLE_TOKEN, the request line:

list /only tomorrow/

contains five tokens: namely, "list” (the request name), slash, "only"”, "tomorrow",
and slash. By default, this processing type is not used for any character.

COMPOUND_TOKEN
this character separates tokens in the request line. In addition any sequence of
characters of this processing type on the request line which appear without
intervening characters is treated as a single token. This processing type is
useful when defining request langnages with multiple character operators. For
example, if less-than (<) and equal sign (=) are defined as COMPOUND_TOKEN
characters, the request line:

print field<= 23

contains four tokens: namely, "print", "field", '<='", and "23", while the
request Iine:

print field < = 23

contains five tokens: namely, "print", "field", "<'", "=", and "23" because the
less-than and equal signs are separated by another character (a space). By
default, this processing type is not used for any characters.

4-35 AG91-04

QUOTE_CHARACTER

is used to begin and end a quoted string. Quoted strings do not always
correspond to single tokens as explained in Section 3. Only the character which
starts the quoted string will terminate it even if several different characters are
defined as quote characters. If the character used to start a quoted string is to
appear within the quoted string, it must be doubled. For example, if quote (")
and apostrophe () are both defined as quote characters, "list'results” is the
quoted string list’results; "list""results” is the quoted string list"results; and,
"list"results” is invalid. By default, this processing type is used for the quote
(") character.

ACTIVE_STRING_MODIFIER

if this character appears immediately before a begin active string character, it
causes the return value to only be scanned for tokens. If two of these
characters appear immediately before a begin active string character, it causes
the return value to be treated as a single quoted string when constructing
tokens on the request line. If this character appears immediately before an end
active string character, it causes the return values of iteration within the active
string to be treated as if there were no intervening whitespace when forming
tokens on the request line. In each of these cases, this character does not
appear in any token constructed by the request line processor. If this character
appears anywhere else on the request line, it is treated as a normal character.
By default, this processing type is used for the vertical-bar (|) character.

BEGIN_ITERATION_1 ... BEGIN_ITERATION_38

this character denotes the beginning of an iteration set. The end of the
iteration set is denoted by a character of processing type END_ITERATION_1
if the beginning is denoted by BEGIN_ITERATION_1, by END_ITERATION_2
for BEGIN_ITERATION_2, etc. In other words, there are eight different sets
of iteration set delimiters permitted in the request language. Iteration sets
correspond to zero or more tokens on the request line as explained in Section
3. The characters which begin the iteration set, however, do not appear as part
of any token. By default, the processing type BEGIN_ITERATION_1 is used
for left parenthesis and the remaining types are not used.

END_ITERATION_1 ... END_ITERATION_8
this character denotes the end of an iteration set. See BEGIN_ITERATION_1
above for more information. By default, the processing type END_ITERATION_1
is used for right parenthesis and the remaining types are not used.

BEGIN_ACTIVE_STRING_1 ... BEGIN_ACTIVE_STRING_8

this character denotes the beginning of an active string. The end of the active
string is denoted by a2 character of processing type END_ACTIVE_STRING_1 if
the beginning is denoted by BEGIN_ACTIVE_STRING_1, by
END_ACTIVE_STRING_2 for BEGIN_ACTIVE_STRING_2, etc. In other words,
there are eight different sets of active string delimiters permitted in the request
language. Active strings correspond to zero or more tokens on the request line
as explained in Section 3. The characters which begin and end the active string
however, do not appear as part of any token. By default, the processing type
BEGIN_ACTIVE_STRING_1 is used for left bracket and the remaining types
are not used.

4-36 AG91-04

END_ACTIVE_STRING_1 ... END_ACTIVE_STRING_8
this character denotes the end of an active siring. See BEGIN_ACTIVE_STRING_1
above for more information. By default, the processing type
END_ACTIVE_STRING_1 is used for right bracket and the remaining types are
not used.

Abbreviation Processing

The Subsystem Utilities keep track of two profile segments for each subsystem,
the default profile and the current profile.

The default profile is the profile segment which is used when abbreviation
processing is first enabled within the subsystem and after the user uses the ".u" abbrev
request within the subsystem without specifying a profile pathname. If a default
profile is not specified by use of the ssu_$set_request_processor_options entry point,
the profile segment currently being used at Multics command level is used as the
default for the subsystem. This profile segment is known as the default default profile
segment.

The current profile is the profile actually being used to expand request line
abbreviations and may be changed by the user either by using the ".u" abbrev request
or by using the standard subsystem request "abbrev" if it is available within the
subsystem.

If a subsystem permits the user to request abbreviation processing through the
abbrev request, the command procedure of the subsystem should implement the
following control arguments to allow the user to specify the initial state of
abbreviation processing:

—abbrev, -ab
enables abbreviation processing within the subsystem. If a default profile is not
specified by the -profile control argument, the subsystem will use the same
profile being used to expand abbreviations at Muitics command ievel.

-no_abbrev, -nab
disables gbbreviation processing within the subsystem. This is the default.

—profile PATH, -pf PATH
specifies the pathname of the default profile to be used within the subsystem.
The suffix "profile"” is added to PATH if necessary. This control argument implies
—abbrev.

As implied above, the profile segment specified on the command line should be
used as the default profile segment within the subsystem and not just as the initial
current profile. Many users use separate profiles for Multics command level and the
various subsystems they use; they then define Multics abbreviations to invoke each
subsystem specifying that subystem’s profile segment. By having the command
procedure make this profile the default for the subsystem, the user can easily switch
profiles within the subsystem and then switch back to what they expect to be the
default profile by using ".u” without a profile pathname.

4-37 AGI1-04

WRITING SUBSYSTEM REQUESTS

Writing subsystem requests closely parallels the writing of Multics commands,
with the normal concerns for validation, argument processing, and error handling. The
parallel extends to the notion of an active function equivalent: a request can be an
active request invoked to return a value to be substituted into the request line before
normal request line execution.

Whereas valid commands are determined by the user’s search rules, the validity
of requests is established by a table lookup operation. Before a request can be
executed, the request processor must verify that request’s presence in a request table.
Request tables are defined as described under "Defining Request Tables" below.

The structure of a request is much like that of a Multics command/active
function: determine whether or not the request is active; if active, determine where
the value is to be returned; determine how many arguments the request is called with;
process the arguments and control arguments, making sure they are correct. If
everything is determined to be acceptable, the request then performs its defined task,
returning a value if it is an active request. A flag setting in the request table
indicates how a request should be interpreted (i.e., command request, active request, or
both). Since the writer of the request is presumably also defining the request tabie
entry, it is highly unlikely that the request would be called improperly.

Multics commands and subsystem requests can also overlap. A special apply
request can cause an arbitrary Multics command line to process an object being
manipulated by the subsystem., and requests can be written that also function as
Multics commands. All aspects of request wriiing are examined below.

Argument Processing

A rtequest is always called by the request processor with two parameters, the
sci_ptr and the info_ptr, as follows:

dcl rq_procedure entry (ptr, ptr);
call rq_procedure (sci_ptr, info_ptr);

4-38 AG91-04

Argument processing within a request procedure closely resembles command level
argument processing. A request that cannot be used as an active request calls
ssu_$arg_count to determine the number of arguments, just as a command calls
cu_%arg_count. Unlike cu_S$arg _count, however, ssu_$arg_count has no error code
argument; if invoked by an active requesi, it calls ssu_S$abori_line with the appropriate
error code. If a request is written as an active request, or as both an active request
and a command request, a call is issued to ssu_$return_arg (equivalent to cu_%$af_return_arg)
to determine the number of arguments, whether the request is active, and if so, where
the value is to be returned (pointer and maximum length). To retrieve any particular
argument, a request calls ssu_$arg ptr (equivalent to cu_S$arg_ptr) with the appropriate
argument and is returned a pointer and length. Again, unlike cu_S$arg_ptr, ssu_$arg_ptr
does not return an error code; if asked for a nonexistent argument, ssu_S$arg ptr
invokes ssu_$abort_line with the appropriate error code (Expected argument missing).

Error Handling

The subsystem writer must anticipate errors in processing arguments and in
performing the actual work of the request. Error handling, like all aspects of writing
requests, is similar to the same activity at command level. There are three entry
points involved in error handling: ssu_$print_message, ssu_$abort_line, and
ssu_S$abort_subsystem. Calls to these entry points, much like calls to com_err_ and
active_func_err_ at command level, result in messages of the form:

subsystem_name (request_name): status code message user—defined message

If no request name appears in the message, the call was made when no request was
being executed (i.e., called by the command procedure, listener, or request processor
itself). Status code message is the error message associated with the status code; the
user—defined portion is derived from an ioa_ control string.

A call to ssu_$print_message causes a message to be printed followed by a return
to the caller (the same as com_err_). This call is used only to print informational or
warning messages. The ssu_$abort_line entry point is issued from a request procedure,
when to continue executing the request might render totally unexpected results. In this
case, a message is printed identifying the cause of termination of the request, and the
request line is aborted. In the case of ssu_$abort_subsystem, when the current
invocation of the subsystem is to be terminated, a message (if any) is printed, the
tequest line is aborted, the request loop is exited, and the caller is returned to the
command procedure.

Whenever calls to ssu_$abort_line and ssu_$abort_subsystem are made, the utilities
automatically invoke all cleanup handlers established by the request and any procedures
that may have been called which are still active.

The Apply Request

The concept of an apply request is supported in some form in most Multics
interactive subsystems (e.g., in send_mail, an apply request can be specified to invoke
the emacs editor to edit the message being sent). The ssu_S$apply_request_util entry
point may be used to simplify the construction of the apply request within a
subsystem.

4-39 AGI91-04

The apply request is used to cause an arbitrary Multics command line to process
an object being manipulated by the subsystem. The recommended names for this
request are apply and ap; the suggested syntax is:

appiy {args} {-controi_args} command_iine

1. args
are optional and denote the object (e.g., message specifiers in read_mail)

2. —control_args
are optional and either further refine the object (e.g., ~header/-no_header in
send_mail) or indicate pre- or post-processing to be done to the object (e.g.,
message filling in send_mail)

3. command_line
consists of whatever remains of the line after the last —control_arg

The ssu_S$apply_request_util entry point constructs the command line, appends to
it the pathname of a temporary segment containing the object, and invokes the
Multics command processor. The caller of ssu_S$apply_request_util (the subsystem’s
apply request) must parse its arguments to determine where the command line starts
on the request line and pass this information to ssu_S$apply_request_util. The caller
must then create a temporary segment (the recommended method is to «call
ssu_%get_temp_segment) in which it places the object to be manipulated as determined
from its arguments and control arguments. A pointer to this segment and its character
count is passed to ssu_S$apply_request_util, which returns the character count as
updated by the Muitics command it executes.

Subsystem Requests and Multics Commands

An additional consideration while writing subsystem requests involves a duality of
purpose; i.e., subsystem request as Multics command. The concept takes two forms: a
subsystem request that would be useful to invoke as a Multics command, and an
existing Multics command/active function that would be useful to employ as a request
within the subsystem. The first method (subsystem request as new Multics command)
is implemented through a stand-alone invocation; the second (existing Multics command
as subsystem request), through. the multics_request macro (see "Defining Request
Tables" below). Each method is discussed below.

4-40 AG91-04

A stand-alone invocation is the mechanism used to write a program that
functions both as a subsystem request and as a Multics command. The program as
written resembles a subsystem rtequest. When the request is invoked as a request,
normal request processing takes place. When the request is invoked as a command,
however, a stand-alone invocation must first be created by a «¢call
ssu_$standalone_invocation. This call generates a subsystem invocation in which calls to
ssu_ entry points are translated into the respective command-level calls. Calls to
ssu_S$execute_line and ssu_$evaluate_active_string become calls to cu_$cp and
cu_S$evaluate_active_string. In the event of error handling, calls to ssu_$print_message,
ssu_S$abort_line, and ssu_$abort_subsystem become calls to com_err_ or active_fnc_err_
as appropriate. To complete the simulation when ssu_$abort_line or ssu_$abort_subsystem
is called, the error message is printed, and then a call is made to an abort procedure
supplied by the writer (see ssu_$standalone_invocation) to effect a nonlocal goto back
to a point in the program where housekeeping can be performed. Within this
sequence, call translation is completely transparent to the subsystem writer.

Depending on how the subsystem writer structures the program, there are
potentially three places where the command invocation must be distinguished from the
Tequest invocation:

° Upon entry, to create a stand-alone invocation
. Upon normal exit, to destroy the stand-alone invocation
. Upon an abort condition, to destroy the stand-alone invocation

The coding extract below illustrates how the program might be structured.

forum_list_meetings command/request
forum_list_meetings: proc () options (variable);

standalone = "1%b; /*true indicates command;
create a stand-alone invocation¥/
call ssu_$standalone_invocation (sci_ptr, "forum_list_meetings",
"1.6a", cu_Sarg_list_ptr {)}, abort_entry, code};
/*set up internal structure for standalone info_ptr#/

goto COMMON;

list_meetings_request: entry (a_sci_ptr, a_info_ptr);

standalone = "0'"b; /*false indicates request; process
normallys/
sci_ptr = a_sci_ptr;

info_ptr = a_info_ptr;

4-41 AG91-04

COMMON:
call ssu_Sreturn_arg (sci_ptr, arg_count,
af_sw, rv_ptr, rv_1th);
/*proceed with request processing#*

- =11

on cleanup call cleanup_forum_listi_meetings ();
/*actual request code%/

RETURN_FROM_LIST_MEETINGS: /*abort_entry transfers here®/
call cleanup_list_meetings ();
return;
cleanup_list_meetings:
procedure ();
/*do housekeeping depending on whether execution
completed normally; e.g., free any temporary segmentss®/
if standalone then do;
/*free internal structure set up for standalone info_ptr¥/
call ssu_Sdestroy_invocation (sci_ptr);
end;
return;
end cleanup_list_meetings;

abort_entry: /*called by ssu_Sabort_line or ssu_Sabort_subsystem
after printing error message®/
procedure ();
goto RETURN_FROM_LIST_MEETINGS;
/*do nonlocal goto after abort condition
tc destroy standalcne invocation®/
end abort_entry;
end forum_list_meetings;

The muitics_request macro (see "Defining Request Tables” below) is the
mechanism for using an existing Multics command/active function as a subsystem
request. This is a relatively simple method for greatly expanding a subsystem’s request
repertoire. In fact, the only commands/active functions that cannot be used in this
fashion are those that call either cu_$cp or cu_S$evaluate_active_string, in which case
they must be implemented using the stand-alone invocation mechanism if they are to
be used as both Multics commands and subsystem requests.

Use of the multics_request macro to add existing Multics active functions as
subsystem requests is particularly recommended if these active functions would be used
frequently with subsystem exec_coms or abbrevs. By allowing these active functions to
be invoked directly, many calls to the execute active request may be eliminated, which
greatly simplifies exec_com/abbrev writing.

When the request processor is called to process a request, it validates the request
definition in the request table. If the definition indicates that the request is, in fact,
a Muitics command or active function, the request processor calis it as if it were a
command or active function. It also translates any command-level error handling calls
(com_err_ and active_fnc_err_) to their ssu_ equivalent entry points for proper
handling. All of this activity is transparent to the subsystem writer, whose only
responsibility in this sequence is to provide the correct request table definition using
the multics_request macro.

4-42 AG91-04

SUBSYSTEM AREAS AND TEMPORARY SEGMENTS

Each subsystem invocation has associated with it a set of areas and a set of
temporary segments from which to acquire temporary storage during that invocation. A
call to ssu_%get_area is translated to a call to define_area_ and obtains an area in a
temporary segment for subsystem use. A call to ssu_$get_temp_segment is translated to
a call to get_temp_segment_ and obtains a temporary segment for subsysiem use.

The subsystem writer has the option of acquiring temporary storage through the
standard mechanisms (define_area_ and get_temp_segment_) or through the ssu_ entry
points. The difference is that any temporary storage acquired through the standard
mechanisms has to be released explicitly, while that acquired through calls to ssu_ is
released automatically when the invocation is destroyed. If an area acquired through
ssu_%get_area is to be released explicitly, it must be released by calling ssu_$release_area.
A temporary segment acquired through ssu_$get_temp_segment that is to be released
explicitly must be released by calling ssu_$release_temp_segment.

USING EXEC COMS [N SUBSYSTEMS

The exec_com language (see the Commands manual) can be used to create
exec_coms (ecs) for use within individual subsystems through the standard exec_com
request (see Appendix J). It should be noted that subsystem ecs execute request lines
rather than command lines and pass input to request lines rather than to command
lines. Also, the bracket/ampersand constructs evaluate active rtequests rather than
Multics active functions. There are other differences between subsystem ec use and ec
use at Multics command level, notably, in the formation of the ec suffix and the ec
search list, and in satisfying the referencing dir rule. These other differences are
discussed below.

Subsystem ecs take the subsystem name (e.g., .read_mail) as the default suffix to
distinguish them from Multics ecs. The default suffix can be altered by calling
ssu_S%set_ec_suffix. To retrieve the current value of the ec suffix, call ssu_$get_ec_suffix.

Subsystem ecs do not have a search list by default; rather they are located by
specifying the relative pathname of the ec. A search list can be established for the
subsystem ecs by calling the ssu_$sei_ec_search_list entry point. A «call to
ssu_%get_ec_search_list retrieves the current ec search list. If a search. list is
established for a subsystem that has a library of ecs, a call to ssu_$set_ec_subsystem_ptr

can be used to set a referencing_dir for the search list.

The subsystem exec_com facility also supporis a start_up ec to allow users to
simplify use of a subsystem. The name of this ec is start_up.ec_suffix and it is
invoked by calling ssu_3execute_start _up, which searches for the start_up ec first in
the home directory, then in the project directory, and finally in >site. If no start up
is found, subsystem processing proceeds normally. The call to ssu_S$execute_start_up
should be made before calling the listener (ssu_$listen) and after setting the exec_com
suffix, search list, and referencing_dir.

4-43 AG91-04

If the subsystem is to support start_up ecs, it is recommended that the command
procedure support the following control arguments:

-start_up, -su
invokes the subsystem’s start_up ec, if present. The user’s home
directory, project directory, and >site are searched in that order.
This is the default.

~no_start_up, -nsu, -ns
does not invoke the subsystem’s start_up ec.

TAILORING THE SUBSYSTEM ENV/IRONMENT

The subsystem utilities provide a fundamental basis on which to develop and
implement interactive subsystems. In some cases, the facilities provided exceed the
requirements of the application, and yet other applications may require, to a greater or
lesser extent, that the basic facilities be expanded to include additional processing. For
this reason, it is possible to tailor parts of the utilities to implement user—coded
procedures, or otherwise to override ssu_ default conditions. The prospect of tailoring
was addressed earlier, in the discussion on the request language, in which elements of
the language could be changed or certain features enabled or disabled (see "Subsystem
Request Language" above). The discussion below centers on what are referred to as
replaceable procedures, specific pieces of the utilities that the subsystem writer wishes
to alter to do something different from the standard interfaces. The following entry
points are used to manipulate replaceable procedures:

. ssu_$get_procedure retrieves the current value of the specified replaceable
procedure.

° ssu_§set_procedure sets the current value of the replaceable procedure.

° ssu_9%reset_procedure rtesets the specified replaceable procedure to its

default value.

. ssu_S$get_default_procedure retrieves the default value for the specified
teplaceable procedure.

A common use of replaceable procedures is to do something in addition to the
standard procedure; e.g., each request line, before it is executed, is to be recorded in
a segment as a log of subsystem activity. To do this, a call to ssu_$get_procedure
retrieves the current execute_line procedure, which is stored in the subsystem’s info
structure. A call to ssu_$set_procedure sets the new procedure which is invoked
whenever a call is made to ssu_S$execute_line. This procedure records the request line
and then invokes the previous execute_line procedure (saved in the info structure) to
do the actual request line execution.

There are 21 replaceable procedures. The two most prominent involve the escape
convention and dealing with unknown requests. Four others modify the request loop
without completely replacing the Ilistener. The final fifteen are entry poinis that
perform standard operations. Each of these groups is discussed below.

4-44 AG91-04

Replaceable Procedures for cpescape and unknown_request

Two replaceable procedures involve processing of the escape convention to
Multics command level and dealing with unknown requests.

When reading request lines, the standard subsystem listener interprets any line
beginning with ".." as an escape to Multics command level. Such request lines are
handled by invoking the cpescape replaceable procedure.

The cpescape replaceable procedure is used as follows:
dcl cpescape entry (ptr, ptr, fixed bin(21}), fixed bin(35));
call cpescape (sci_ptr, line_ptr, line_lth, code);
STRUCTURE ELEMENTS
sci_ptr

is a pointer to the subsystem’s control structure as returned by ssu_$create_invocation.
(Input)

line_ptr

is a pointer to the request line excluding the leading "..". (Input)
line_lth

is the length of the request line excluding the leading "..". (Input)
code

is a standard system status code. (Qutput) The listener assumes that the cpescape
procedure always prints any necessary error message itself.

By default, the value of the cpescape procedure is ssu_$cpescape, which executes
the request line by calling the Multics command processor via cu_$cp. If it is
necessary to disable the command processor escape mechanism, the cpescape procedure
should be set to -ssu_$cpescape_disabled, which prints an appropriate message.

The standard request processor handles unknown request names by calling the
unknown_request replaceable procedure. The default value of this procedure prints the
standard :

Unknown request <request_name>. Type "?" for a request list.

message and aborfs the request line.

The unknown_request replaceable procedure (which may be invoked directly as
ssu_$unknown_request) is used as follows:

dcl unknown_request entry (ptr, ptr, char (%), ptr, bit(1)
aligned) ;

4-45 AG91-04

call unknown_request (sci_ptr, info_ptr, request_name,
arg_list_ptr, continue_sw);

STRUCTURE ELEMENTS

sci_ptr
is a pointer to the subsystem’s control structure as returned by a call to
ssu_$create_invocation. (Input)

info_ptr
is a pointer to the subsystem-specific info structure used by this subsystem.
(Input)

request_name
is the name of the request as entered on the request line by the user. (Input)

arg_list_ptr
is a pointer to the argument list containing the arguments to be supplied to the
request. (Input)

continue_sw
if set to "1"b, indicates that execution of the request line is to continue with the
next request. (Input) If set to "0"b, the request processor prints the standard
unknown request error message and aborts the request line without further
execution.

Request Loop Replaceable Procedures

There are four procedures called by the listener that, by default, do not perform
any function. The four procedures, pre_request_line, post_request_line, program_interrupt,
and ready, are all called with one argument, the sci_ptr, and may be replaced by
user—coded procedures that perform some specific service at that juncture in the
request loop.

The pre_request_line procedure is called just before the listener prompts for and
reads a request line. A prompt too complex to specify as an ioa_ control string (see
"Subsystem Request Loop" above), could be used in a subsystem by replacing this
procedure.

The post_request_line procedure is called immediately after successful execution
of a request line and, by default, returns to the listener. This provides an opportunity
to take some action relative to successful request line execution, before resuming the
request loop.

The program_interrupt procedure is called by the listener after it receives a
program_interrupt signal, which normally puts the user back at request level. A
tailored procedure might, for example, return with a question or simply abort the
subsystem.

4-46 AG91-04

The ready procedure is called before the pre_request_line procedure, only if
ready processing is enabled and the previous request line was nonblank (see "Subsystem
Request Loop" above).

Other Replaceable Procedures
The 14 replaceable procedures that match specific entry points are listed below

together with the entry point in ssu_ by which each is invoked. The calling sequence
of the replaceable procedure is the same as its respective entry point.

Procedure Entry Point

abort_line ssu_Sabort_line

abort_subsystem ssu_Sabort_subsystem

print_message ssu_Sprint_message

listen ssu_Slisten

execute_line ssu_Sexecute_line
evaluate_active_string ssu_Sevaluate_active_string
arg_count ssu_Sarg_count

arg_ptr ssu_Sarg_ptr

return_arg ssu_Sreturn_arg

arg_list_ptr ssu_Sarg_list_ptr
get_default_rp_options ssu_Sdefault_rp_options
set_request_processor_options ssu_Srequest_processor_options
get_request_processor_options ssu_Srequest_processor_options
reset_request_processor_options ssu_Sreset_request_processor_options
get_subsystem_and_request_name ssu_Sget_subsystem_and_request_name |

As with any software tailoring, changes to one procedure may have a ripple
effect on other parts of the software. If, for example, the request processor is
changed so that requests are invoked differently (a new execute_line procedure), but
the standard requests are still to be used, the subsystem writer must ensure that all
the standard interfaces (e.g., ssu_$arg_ptr) are in place. Essentially, that means that all
affected request processor procedures must be altered to perform their defined
functions within the new request processor environment.

Subsystem Documentation Facilities

Several facilities are available with the utilities to make subsystems self—documenting;
ie., users of a subsystem (like Multics users at command level) can ascertain how it
works, what requests are available, what these requests accomplish, etc., by using
various help facilities.

In particular, four standard requests enable users to seek online information
about the subsystem: help, list_help, summarize_requests (?), and list_requests. A brief
description of each of these requests is given below; all standard requests are described
in detail in Appendix J.

4-47 AG91-04

. The help request prints detailed information on a given topic within the
subsystem. If no topic is specified, the help request explains the other
requests available to obtain information about the subsystem.

° The list_help request dispiays the names of all available info segments
or those matching a given topic.

. The summarize_requests request (normally invoked as ?) oprints a
multicolumnar list of most requests available in the subsystem.

° The list_requests request displays the names and brief descriptions of
most requests available in the subsystem or those matching a given
topic.

The requests listed by the summarize_requests request and those listed by default
by the list_requests request are controlled by the dont_summarize and dont_list flags
specified in the definitions in the request tables used by the subsystem. See “"Defining
Request Tables"” below for more details.

If standard request tables are not used to define requests in the subsystem, the
summarize_requests and list_requests requests will not work as described. Additionally,
all four requests will work as described only if ssu_$arg_ptr, ssu_$return_arg,
ssu_$arg_count, and ssu_$arg_list_ptr procedures either are not replaced or, if replaced,
still perform their defined function (see "Tailoring the Subsystem Environment" above).

SUBSYSTEM INFO SEGMENTS AND DIRECTORIES

The help and list_help requests process subsystem info segments. Usually, there is
one info segment for each request in the subsystem, the format of which follows that
of a typical command info segment (i.e., name, syntax, function, arguments, control
arguments, notes). There may also be info segments dedicated to specific topics. For
example, in read_mail there is an info segment dedicated to message specifiers.

Info segments are contained within info directories, which are searched when
help and list_help are invoked for a given subsystem invocation. Normally, the call to
ssu_J%create_invocation names the first info directory in a list of directories to be
searched within the subsystem invocation. This list may thereafter be manipulated by
the entry points described below.

° ssu_%add_info_dir adds a new directory at the specified location in the
list of info directories being searched within this subsystem invocation.

. ssu_%$delete_info_dir deletes an info directory from the list of directories
being searched.

. ssu_$list_info_dirs obtains the list of info directories currently in use by

this subsystem invocation.

. ssu_$set_info_dirs establishes a completely new list of info directories to
be searched within this subsystem invocation.

4-48 AG91-04

The info directories are searched in order, first to last; the search stops when the
named info segment is located. If an invalid directory name is encountered, it is
flagged as invalid and no longer searched.

Usually all info segments for a given subsystem are contained in one info
directory. Sometimes, however, it is desirable to isolate certain info segments in
directories, which are made available only when the requests they pertain to are also
available within the subsystem invocation. Availability of the info directories is
controlled by the entry points described above.

Occasionally, subsystems will share an info directory. In this situation, the help
and list_help requests should ignore info segments from other subsystems in that
directory. This is done by establishing an info segment prefix for the subsystem by a
call to ssu_$set_info_prefix. The help and list_help requests will recognize only those
segment names that begin with the prefix. If an info segment is to be shared among
subsystems, it must be given at least one name with each info prefix in order to be
found.

USING THE STANDARD REQUESTS INFO SEGMENTS

Info segments (ssu.REQUEST.info) in the directory >doc>subsystem document
the standard requests. Subsystems that use the standard requests with recommended
names (strongly advised) should do so by adding the standard requests request table
(see "Using Standard Requests” below). The info segs for all requests in the table can
be included by adding the standard requests info directory. This is accomplished in
the following fashion:

dcl ssu_info_directories_S$standard_requests char (168) external;

call ssu_Sadd_info_dir
(sci_ptr, ssu_info_directories_Sstandard_requests, 9993, code);

This adds the standard requests info directory to the end (9999th position) of

the list that is used to search for info segments.

Alternatively, subsystems that add one or more of the standard requests to
their own request tables (as opposed to adding the standard requests request table) can
create links in their subsystem into directories to the appropriate info segments. For
example:

link >doc>subsystem>ssu.list_requests.info list_requests.info
add_name list_requests.info Ir.info

When nonstandard names are used for requests or when more information is required
(e.g.. the exec_com request does not use the default suffix), the subsystem writer
should use the standard info segment as the basis for the modified segment.

4-49 AG91-04

Subsystem Debugging Facilities

A debug mode facility is provided with the Subsystem Utilities to assist in
debugging interactive subsystems. Debug mode 1is disabled by default. The
ssu_$set_debug_mode entry point sets debug mode on or off within the subsystem. A
call to ssu_$get_debug _mode returns the current state of debug mode within the
subsystem. In addition, the standard debug_mode request may be defined in the
subsystem to allow a user (usually the subsystem writer) to enable or disable debug
mode from the request loop.

When debug mode is enabled, all calls to ssu_$abort_line and ssu_S$abort_subsystem
print the specified message, but then, rather than aborting the request line or
subsystem, call cu_$cl to invoke another command level. While at this command level,
all the debugging facilities of the system are available to determine why ssu_S$abort_line
or ssu_%$abort_subsystem were called. When debugging is completed, the start command
causes the request line or subsystem to be aborted.

Subsystem Request Tables

Requests which are valid for a subsystem are defined by a list of request tables.
A single request table contains the definition of one or more requests. A Tequest’s
definition includes the name(s), the procedure that implements the request, the short
description printed by the list_requests request. and a set of flags defining how the
tequest is used and whether it known to the summarize_requests and list_requests
Tequests.

When a subsystem invocation is created, the list of request tables is initialized to
contain only the request table specified in the «call to ssu_$create_invocation.
Additional tables may later be added to the request table list by using
ssu_%$add_request_table. Tables may be removed from the list by calling
ssu_%delete_request_table. A call to ssu_$list_request_tables returns the list currently in
use, and a call to ssu_$set_request_tables compietely replaces the current list.

A rtequest table is a data structure in an object segment created by the ALM
assembler (see the Commands manual). Multiple request tables may be defined in a
single object segmeni. Request tables are referenced in calls to the entry points
described above by a pointer to the table, which may be constructed as follows:

dcl subsystem_tablesSdefault_requests bit (36) aligned external;
. addr (subsystem_tablesSdefault_requests)

The above example constructs a pointer to the default_requests request table in the
segment subsystem_ tables.

When the request processor looks up the definition of a request, it scans the
request table list linearly until it finds the first table containing a definition for a
request. This enables, for example, the subsystem writer to provide alternate definitions
for standard requests (see below) by placing the supplied
ssu_request_tables_$standard_requests request table last in the subsystem’s list.

4-50 AGI1-04

STANDARD REQUESTS AND STANDARD REQUEST TABLES

To promote consistency across subsystems, a set of standard requests is supplied
with the Subsystem Utilities. These standard request definitions are accessed in a
request table by specifying ssu_requests_$<request_name> as the procedure which
implements a request, where <request_name> js the name of one of the standard
requests described in Appendix J. In addition, the utilities provide a set of standard
request tables which may be added to a subsystem’s request table list to access specific
groups of standard requests. Such a request table would be referenced as:

dcl ssu_request_tables_S<table_name> bit (36) aligned external;

where <table_name> is the name of one of the standard request tables listed in
Appendix J.

Using Standard Requests

Of the standard requests listed in Appendix J, only the summarize_requests and
list_requests requests are dependent on the internal format of the Subsystem Ultilities
data structure. The other standard requests perform as expected provided the
ssu_%arg_ptr. ssu_S$return_arg, ssu_%arg_count, ssu_%$arg list_ptr, and ssu_S$execute_line
procedures either are not replaced or, if replaced, still perform their defined function
(see "Tailoring the Subsystem Environment” above).

The recommended method of enabling the standard requests within a subsystem is
to include the ssu_requests_tables_$standard_requests request table as the last table in
the subsystem’s request table list. This is accomplished in the following fashion: |

dcl ssu_request_tables_S$standard_requests bit(36) aligned external;

call ssu_Sadd_request_table (sci_ptr, addr
(ssu_request_tables_Sstandard_requests), 9999, code) ;

Those requests that are unsuitable for the subsystem application should be disabled in
a earlier request table through use of the unknown_request macro (see below). Those
requests with a default behavior that is unsuitable to the subsysiem should be replaced
by subsystem-specific requests in an earlier table.

In particular, two standard requests, self_identify and quit, are normally replaced
by subsystem-specific requests. The standard self_identify request simply prints the
subsystem name, version, invocation level, and state of abbreviation processing; it may
be desirable to print other information of interest (e.g., the pathname of the mailbox
in read_mail). The information printed by the standard request is available through
calls to ssu_$get_subsystem_name, ssu_$get_subsystem_version, ssu_$getl_invocation_count,
and ssu_$get_request_processor_options.

4-51 AG91-04

The standard quit request simply exits the subsystem through a call to
ssu_$abort_subsystem. It may be desirable through a subsystem-specific request to
require permission to exit based on the state of the subsystem or to perform any
required housekeeping before exiting (this can also be accomplished by the command
procedure).

DEFINING REQUEST TABLES

As described earlier, a request table is a data structure contained in an object
segment created by the ALM assembler. A table is defined by the begin_table and
end_table macros. Individual requests are defined by the request, unknown_request, and
multics_request macros. All of these macros are defined in the ssu_request_macros.incl.alm
system include file.

The basic format of the source segment defining one or more request tables is:

name object_segment_name
inctude ssu_request_macros
begin_table table_1
request 1
request n
end_table table_1
begin_table table_N

end_table table_N
end

where object_segment_name is the name of the object’ segment and table_i are the
names of the request tables. The source segment should be named object_segment_name.alm
so that ALM creates the object segment with the desired name.

| USING THE REQUEST MACROS

Individual requests are defined by the request, unknown request, and multics_request
macros.

The request and multics_request macros contain a set of flags (keywords) that
define how the request is to be used. The set_default_flags macro and the
set_default_multics_flags macro are available to set the default values for the flags.

Additionally, the set_default_multics_doc macro can be used to supply a
documentation string for a subsequent use of the multics_request macro for which
there is no explicit documention string.

4-52 AG91-04

Syntax l

The following rules of syntax apply in the use of these macros. For a complete
description of ALM syntax, see the alm command in the Mu/tics Commands and |
Active Functions manual, Order No. AG92. |

. Braces indicate that a parameter is optional. Where parentheses appear
within braces, the parentheses must be specified as part of the
parameter value.

° Whitespace is allowed only before and after the macro name, at the
beginning of continuation lines, and within documentation strings.

° A statement may be coded on more than one line by splitting the
statement immediately after the comma that separates parameters.

'y All parameters are positional, so that commas and parentheses must be
specified for parameters to be omitted if later parameters are to be
specified.

The request Macro

The request macro is used to define most requests the subsystem writer may wish
to include in a request table. The syntax is:

request name,procedure, { (other_names)}, { (documentation)}, |
{(system_flags)} |

where:

1. name
is the primary name of the request. This name is used in any error
messages caused by the request. This parameter is required.

2. procedure

is the name of an external procedure of two arguments that
implements this request. The name must be specified either as
refname$entryname or as refname (equivalent to refname$refname).
This parameter is required.

3. other_names
are additional names, separated by commas and enclosed in parentheses,
by which this request may be invoked.

$a
€u
&
3
=
;C;;

is the brief description of the request printed by the list_requests
request. If no documentation string is specified, the request is not
listed by the list_request request, unless the —all control argument is
specified, in which case the request is listed without any description.
The prescribed method for not listing the request is to specify
flags.dont_list (see below).

4-53 AG91-04

| 5. system_flags

indicate how the request may be used and how it is documented.
The valid flags are:

default
if specified, means the request is defined with the default flags as
set by the last invocation of the set_default_flags macro.

flags.allow_command
if specified, means the request may be invoked as a command
request. This flag is incompatible with flags.allow_both. This is the
default.

flags.allow_af
if specified, means the request may be invoked as an active request.
This flag is incompatible with flags.allow_both.

flags.allow_both
if specified, means the request may be invoked both as a command
request and an active request. This flag is incompatible with
flags.allow_command and flags.allow_af.

flags.unimplemented
if specified, means space is reserved in the table for this request, but
any attempt to execute it will be rejected. The request is, however,
listed by the list_requests request.

flags.dont_list
if specified, means this request is not to be listed by the
list_requests request (uniess the =-ail control argument is specified).
The default is to list the request.

flags.dont_summarize
if specified, means this request is not to be shown by the
summarize_requests (?) request. The default is to show the request.

If any flags are specified, the default flags are not assumed and must be explicitly
specified by the "default" flag. To specify multiple flags, use a comma-separated list
(flagA, flagB....).

Consider the following examples of request definitions from read_mail.

request print,rdm_msg_requests_Sprint_request,
(pr,p), (Prints the selected messages)

This example defines the print request, which is processed by the external procedure
rdm_msg_requests_$print_request. The request can optionally be invoked by specifying
pr or p. The description "Prints the selected messages” is shown when the print
request is listed by the list_requests request. By default, the request can only be
invoked as a command rtequest, and is shown by both the list_requests and
summarize_requests requests.

4-54 AG91-04

request list,rdm_msg_requests_S$1ist_request, (1s),
{List the specified messages),
(flags.allow_both)

This example defines the list request, which is processed by the external procedure
rdm_msg_requests_S$list_request. The request can optionally be invoked by specifying Is.
The description "List the specified messages" is shown when the list request is listed
by the list_requests request. The flags.allow_both flag is specified so that the request
can be invoked both as a command request and as an active request.

The set_default_flags Macro

The set_default_flags macro can be used to define the default flags for the
request macro. The syntax is:

set_default_flags (system_flags)
where:
1. system_flags

is a list of one or more of the system_flags as described above for
the request macro. Multiple flags must be separated by commas.

Each use of the begin_table macro sets the default flags to (flags.allow_command).

The unknown_request Macro

The unknown_request macro causes the request processor {0 treat a request as
nonexistent, even though it may be defined in a table later in the request table list.
This facility is useful for disabling unwanted standard requests specified in the
ssu_requesi_tables_3$standard_requesis table. Note that in order to insure the request is |
completely unknown, a// names (alternate names and short names) must be explicitly |
disabled. The syntax is: _ |

unknown_request name, { (other_names)} |
where: l

1. name
is the primary name of this request. This parameter is required. }

2. other_names

are additional names, separated by commas and enclosed in parentheses, |
by which this request may be invoked. |

4-55 AG91-04

For example, to disable the debug_mode and ready standard requests, the
subsystem writer would include the following statements in the definition of a request
table that appears before ssu_request_tables_$standard_requests in the subsystem’s
Tequest table list.

unknown_request debug_mode
unknown_request ready, (rdy)

The multics_request Macro

The multics_request macro is one of the facilities for defining Multics commands
and active functions as subsystem requests (as described earlier under "Subsystem
Requests and Multics Commands"). The syntax is:

multics_request name, { (other_names)}, { (documentation)},
{procedure}, { (system_flags)}

where:

1. name
is the primary name of the request. This name is used in any error
messages produced by the command/active function. This parameter
is required.

2. other_names
are additional names, separated by commas and enclosed in parentheses,
by which the request may be invoked.

3. documentation

is the brief description of the request printed by the list_requests
request. If no value is specified for this parameter, it defaults to the
value set by the last set_default_multics_doc macro within the source
segment. If no previous set_default_multics_doc macro was used, the
request is not shown by the list_requests request, unless the -all
control argument is specified, in which case the request is shown
without a description. The set_default_multics_doc macro is described
below.

4. procedure
identifies the Multics command/active function that implements this
request. The procedure must be specified as either refname$entryname
or refname (equivalent to refname$refname). If omitted, the procedure
defaults to the same name as the request (name$name).

4-56 AG91-04

5. system_flags
indicates how the request may be used and how it is documented.
Valid flags are described above for the request macro. "

The names by which a command/active function are known in a subsystem do not
have to be the same as those used at Multics command level.

The following code fragment exemplifies use of the multics_request macro:

multics_request date_time_equal, (dteq) , (Compare date/time strings),,
(default,flags.dont_list,flags.dont_summarize) l

This example defines the Multics date_time_equal command/active function as a
subsystem request of the same name, with a short name of dteq. The description
"Compare date/time strings” is printed when the request is listed by the list_requests
request. Note that, since flags are specified, a comma denotes the missing parameter,
procedure, which 1is unnecessary because the request name is the same as the,
command/active function.

The set_default_multics_flags Macro |

The set_default_multics_flags macro can be used to define the default flags for |
the multics_request macro. The syntax is: |

set_default_multics_flags (system_flags) |

where: |
1. system_flags
is a list of one or more of the system_flags as described above for
the request macro. Multiple flags must be separated by commas. |

Each use of the begin_table macro sets the default flags to (flags.allow_command,]
flags.allow_af). |

4-57 AGI91-04

The set_default_multics_doc Macro

The set_default_muitics_doc macro may be used to supply a documentation string
for any subsequent use of the multics_request macro for which there is no explicit
documentation string. The syntax is:

set_default_multics_doc (documentation)
where:

1. documentation
is the new default string for use by subsequent multics_request
macros. Within the documentation string, &1 is replaced by the name

£ th haoi 1 .
of the request being defined. For example:

set_default_multics_doc (Type '..help &1' for more information.)

4-58 AGY91-04

SECTION 5
INPUT AND OUTPUT FACILITIES

This section contains information on the various input and output facilities
available on the Multics system. A general description of the input/output (I/0)
system is contained in "Multics Input/Output System” below. The section also contains
information on programming language 1/0, file 1/0, terminal 1/0, bulk I/C, and
how to implement user—-written [/O moduies. In addition, Multics peripheral 1/0
facilities including the Resouce Control Package (RCP) and I/0 Interface (IOI) are
described from the user’s viewpoint.

Earlier versions of Multics used a different, but similar, 1/O system. Parts of
the system documentation may still use the terminology of the old I1/0 system. In
particular, the old system used the term "I/O stream” instead of "I/O switch"” and the
terms "DIM" and "IOSIM" instead of "I/O module." Also, documentation may
describe attaching to a device even though the attachment may be to something other
than a device, e.g., a file in the storage system. (A file is defined as a segment or
multisegment file.)

MULTICS INPUT/OUTPUT SYSTEM

Since the Multics input/output (I/0O) system handles logical 1/0 rather than
hardware 1/0, 1/0 on the Multics system is essentially device independent. Most 1/0
operations refer only to logical properties {e.g., the next record, the number of
characters in a line) rather than to particular device characteristics or file formats.
The system permits I/0 to and from files in the storage system. This involves only
the transfer of data from one memory location to another. It does not deal with the
transfer of pages (paging)} between secondary storage and main memory. This paging is
managed invisibly by the Multics virtual memory and is used by user programs and
the I/0 system alike. Hardware 1/0 is performed by routines that are not normally
called by a user.

To facilitate control of the sources and targets for 1/0, the system makes use of
a software construction called an I/0 switch. An I/0 switch is like a channel in that
it controls the flow of data between program accessible storage and devices, files, etc.
The switch must be attached before it can be used. The attachment specifies the
source/target for I/0 operations and the particular I/0 module that performs the
operations. For example, a switch may be attached to the user’s terminal through the
tty_ I/0 module or to a file in the storage system through the vfile_ I/O module.
The basic tool for making attachments and performing I/0 operations is the iox_
subroutine (described in the Subroutines manual). All functions of the I1/O System are
accessible through calls to this subroutine.

5-1 AGI1-04

Attachments and 1/0 operations can also be done from command level, using the
io_call command. The print_attach_table command prints descriptions of all current
attachments. Both of these commands are described in the Commands manual.

System Input/Output Modules

The Multics system contains the following 1/0O modules, which, unless otherwise
noted, are described in the Subroutines manual:

audit_
provides a mechanism for auditing and editing I/0O on a switch.

bisync_
performs stream I/0 over a binary synchronous communications channel

Cross_ting_
allows an outer ring to attach a switch to a preexisting switch in an
inner ring to perform I/0 operations.

discard_
is a sink for unwanted output.

glls_
performs stream 1/0 from/to a Honeywell Level 6 G115 data
transmission terminal.

hasp_host_
simulates record—-oriented 1/0 to a single device of a workstation while
communicating with a host system using the HASP communications
protocol.

hasp_workstation_
performs record-oriented 1/0O to a single device of a remote terminal
that supports the HASP communications protocol.

ibm2780_
performs stream 1/0 from/to a device similar to the IBM 2780 data
transmission terminal.

ibm3270_
performs stream 1/0 from/to a device similar to the IBM 3270 data
transmission terminal.

ibm3780_
performs siream 1/0 from/to a device similar to the IBM 3780 data
transmission terminal.

mtape_
supports I/0 to/from tapes written in ANSI and IBM tape formats.
This is an extended I/0 module which uses opening, closing and
detaching descriptions to tailor its operations. (Users writing new
applications should use mtape_ instead of tape_ansi_ or tape_ibm_ I/0
modules).

5-2 AG91-04

rdisk_
supports I1/0 from/to removable disk packs.

record_stream_
provides a mechanism for doing record i/0 on an unstructured file and
stream 1/0 on a structured file.

remote_input_
performs record input from a terminal I/0 module that is assumed to
be connected to a remote 1/0 device.

remote_printer_
formats and controls stream I1/0 to a remote I/0 terminal that has the
characteristics of a line printer.

remote_punch_
formats and controls stream I/0 to a remote /O terminal that has the
characteristics of a card punch.

remote_teleprinter_
formats and controls stream I1/0O from/to a logical entity that has the
characteristics of a teleprinter.

report_
supports input to the report generation portion of a Multics Report
Program Generator (MRPG) object segment (Multics Report Generator
Reference Manual, Order No. CC69).
signal_io_ |
signals a condition whenever an iox_ operation is performed. |
syn_
establishes one switch as a synonym for another.
tape_ansi_
supports I/0 from/to magnetic tape files according to standards
established by the American National Standards Institute (ANSI) (Users |
writing new applications should use the mtape_ 1/0 module). |
tape_ibm_
supports I/0 from/to magnetic tape files according to standards
established by IBM (Users writing new applications should use the |
mtape_ I/0 module). |
tape_mult_
supports I/0 from/to magnetic tape files in Multics standard tape
format.
tape_nstd_

supports 1/0 from/to tapes in nonstandard or unknown formats.

twy_
supports 1/0O from/to terminals.

5-3 AG91-04

viile_
supports 1/0 from/to files in the storage system.

window_io_
implements a virtual video terminai (a window) on the user’s terminal
and provides real-time editing of input.

How to Perform Input/Output

To perform 1/0, carry out the steps listed below. In general, a step may be
performed by a call to the iox_ subroutine (described in the Subroutines manual) or
by use of the io_call command (described in the Commands manual). The I/0
facilities of programming languages may also be used to carry out these steps.

In steps 2, 4 and 5 below, the 1/0 switch is opened, closed and detached. Some
1/0 modules accept file open, close and detach description arguments which allow the
user to tailor the operation to his needs. These are called extended 1/0 modules. Use
the iox_$open_file, iox_$close_file and iox_$detach entrypoints for extended 1/0
modules; and use iox_$open, i1ox_$close and iox_$detach_iocb for nonextended 1/0
modules (those which do not accept such descriptions). Currently, the only extended
1/0 module provided with the Multics system is the mtape_ I1/0 module.

The 1/0 facilities of programming languages (eg, PL/I and Fortran) can perform
these steps without using i0Xx_ or io_call. Currently, programming language facilities
can only interface with nonextended 1/0 modules.

1 Attach an 1/0 switch. This step specifies a2 source/target for subsequent
1/0O operations and names the 1/0 module that performs the operations.
Example:

io_call attach input_sw vfile_ some_file

This command line attaches the switch named input_sw to a storage
system file whose relative pathname is some_file. The I/0 module that
performs this operation is named vfile_ (described in the Subroutines
manual). This attachment could also have been performed by a
subroutine call as follows:

call iox_Sattach_name ("input_sw", iocb_ptr,
"vfile_ some_file'", codeptr (procedure_name), code);

where procedure_name names the external procedure that is calling

iox_$attach_name, and codeptr is a Muiltics—specific PL/I built-in
function.

5-4 AGY1-04

Open the 1/0 switch. This step prepares the switch for a particular
mode of processing (e.g., reading records sequentially} using the already
established attachment. An example of a nonextended I/0 module
opening:

|
|
call iox_Sopen (iocb_ptr, Sequential_input, "0'"b, code);i
The iocb_ptr identifies the switch (see "Input/Output Switches” below). |
The argument Sequential_input means that the opening is for sequential
reading and is a constant declared in the iox_modes.incl.pll include file.
The "0"b represents an obsolete argument. See the description of the
iox_ subroutine for full details. This openning for a nonextended 1/0 |

module could also have been performed by a command, as follows:
io_call open input_sw sequential_input
For an extended 1/0 module, the open subroutine call would look like:

call iox_Sopen_file (iocb_ptr, Sequential_input,
"-name employee_data', "0'"b, code);

The arguments are the same as for iox_$open except for the third
argument, which is the open description. Assuming that the original
attachment was to a tape volume, the open description in the example
above specifies which file on tape to rtead by giving the file name.
This opening could be performed by a command as follows:

io_call open_file input_sw sequential_input
-name employee_data

Perform the required data transfer and control I/0 operations working
through the swiich. For example, read one record at a time until an
end-of ~information code is returned by the read operation. Example:

call iox_Sread_record (iocb_ptr, buffer_ptr,
buffer_length, actual_record_length, code);

This read_record step could also have been performed by the io_call
command.

io_call read input_sw

The io_call command prints the record which is read.

Close the 1/0 switch. This step cleans up by writing out buffers,
marking the end of a file, etc. The I/0 switch is restored to the state
it was in after step 1. The close could be followed by a repeat of
steps 2-4, perhaps with a different opening mode or different open
description. An example of a nonextended I1/0 module opening is: |

call iox_Sclose (iocb_ptr, code);

5-5 AG91-04

Closing of a nonextended 1/0 module could also have been performed
by the io_call command, as follows:

io_call close input_sw

For an extended 1/0 module, the close subroutine call would look like:

call ijox_Sclose_file (iocb_ptr,
""-close_position eof", code);

The arguments are the same as for iox_J$close except for the second
argument, which is the close description. Assuming that the original
attachment was to a tape volume, the close description in the example
above specifies to position the tape to the end of the file being read
after the file is closed. This close operation could be performed by a
command as follows:

io_call close_file input_sw -close_position eof

5. Detach the I/0O switch. After this step, the switch can be attached
again for some other purpose. An example of detaching a nonextended
170 module is:

io_call detach input_sw

This detachment step could also have been performed by a subroutine
call as follows:

call iox_Sdetach_iocb (iocb_ptr, code);

For an extended 1/0 module, the detach operation would look like:

io_call detach input_sw -unload

The example detach description for a tape volume specifies that the
tape volume is to be unloaded from the tape drive as part of the
detach operation. An equivalent subroutine call is:

call iox_Sdetach (iocb_ptr, '"-unload", code);

In general, step 1 (attach) specifies a particular type of device or volume. For
nonextended 1/0 modules, step 1 also identifies file name and file format. For
extended I/0 modules, file name and format information is given in step 2 (open). It
is often convenient to have these steps and step 5 (detach) performed from command
level, while other steps are performed by a program. This approach may be used to
make a program device independent. Another approach is to include the attach and
open calls in the user program, but to have the program prepared to accept the status
code from iox_S$attach or iox_$open indicating the switch is already attached or
opened. The program should detach a switch only if it attached it, and close a switch
only if it opened it.

5-6 AGI1-04

Input/Output Switches

Each I/0 switch has an I/0 control block (IOCB) associated with it. Storage
for the control block is automatically allocated when the switch is attached. The
contents of the control block are maintained by the I/0O system and are not usually
of interest to the general user. It does, however, contain two poiniers of interest.

1 iocb.attach_descrip_ptr
is a pointer to a character string describing the attachment of the
switch. If the pointer is null, the switch is not attached.

2. iocb.open_descrip_ptr
is a pointer to a character string describing the opening mode and |
optional open description of the switch. If the pointer is null, the |
switch is not open.

Each 1/0 switch has a name that is used to refer to the I/O switch at
command level and is also used in other contexts where reference by a character
string name is appropriate. Most calls to the iox_ subroutine reference an I/0 switch
by its contro! block pointer. Given the switch name, the iox_$find_iocb entry point
returns the control block pointer. The switch name is a character string from one 1o
32 characters long with no blanks.

Each 1/0 switch belongs to a particular ring, normally the user ring. Within a
ring, switch names are unique, but switches in different rings may have the same
name.

ATTACHING A SWI/TCH

To attach a switch, the "io_call attach..” command or the iox_$attach_ptr or
iox_S$attach_name entry points should be invoked. In all cases, an attach description
must be given. This string has the following form:

module_name options

where module_name and each option are separated from one another by one or more |
blanks. If an option contains blanks it must be enclosed in quotes ("). If an option |
already contains a quote, the quote must be doubled.

The module_name determines the I/0 module for the attachment as follows: If
it does not contain any instances of greater than or less than characters (> or <), it
is interpreted as a reference name, and the I/O module is found by the search rules.

if module_name contains any greater than of less than characters, it is interpreied as

the pathname (absolute or relative) of the 1/0 module.

5-7 AG9I1-04

The options must conform to the requirements of the particular 1/0 module.
The I/0 modules are described in the manuals mentioned above in "System
Input/Output Modules.” In general, the first option listed is the source/target of the
attachment (i.e., the name of the device or file).

When the attachment is made, if the 1/0 module is not already initiated by the
specified reference name, it is so initiated. When module_name is given as a
pathname, the reference name is the final entryname in the pathname.

The attach description associated with the attached switch (and accessible through
the print_attach_table command, described in the Commands manual) may not be
exactly the same as the attach description given to the io_call command or the
iox_$attach_ptr or iox_S$attach_name entry points. In general, the 1/0 module
transforms the attach description into a standard form. For example, the command:

io_call attach foo >ldd>sdd>vfile_ my_file

might generate the attach description:

vfile_ >udd>m>JRDoe>my_file

OPENING A SWITCH
The "io_call open ..” command and the iox_$open subroutine are used to open
a switch attached through a nonextended 1/0 module. The "io_call open_file .."
command and iox_$open_file subroutine are used to open a switch attached through an
extended 1/0 module (one which accepts open, close and detach descriptions). In
either case, one of the opening modes listed in Table 5-1 must be specified. As
shown in Table 5-1, the opening mode determines which I/0 operations may be
carried out through the open switch. Whether or not opening in a particular mode is
possible depends on the attachment of the switch. The relation between opening modes
and file attachments is discussed in "File Input/QOutput” below. For other types of
attachments see the description of the particular 1/0 module. Table 5-2 shows the
type of opening modes supported by each I/0 module.

An open description can be used with extended I/0O modules to complete the
specification of the file being opened. For the io_call command interface to
open_file, the open description is optional. For the iox_ subroutine interface to
$open_file, the open subroutine argument is required, but it can be a null string
indicating that no option was given. A sample open description is provided below.

-name employee_data -format fb -record 80 -block 800
-display

The control arguments and operands are separated from one another by one or more
blanks. If an operand contains blanks, it must be enclosed in quotes (). If an
operand contains a quote, this quote must be doubled and the operand must be
enclosed in quotes.

5-8 AG91-04

CLOSING A SWITCH

The "io_call close ..." command and iox_S$close subroutine are used to close a
switch attached through a nonextended I/0 module. The "jo_call close_file ..."
command and iox_$close_file subroutine are used to close a switch attached through an
extended 1/0 moduie.

A close description can be used with extended 1/0 modules to specify the
disposition of the file being closed. For the io_call command interface to close_file,
the close description is optional. For the iox_ subroutine interface to $close_file, the
close subroutine argument is required, but it can be a null string indicating that no
option was given. A sample close description is provided below.

-close_position bof -display -comment "File read complete."

The control arguments and operands are separated from one another by one or more
blanks. If an operand contains blanks, it must be enclosed in quotes (). If an
operand contains a quote, this quote must be doubled and the operand must be
enclosed in quotes.

DETACHING A SWITCH

The "io_call detach_iocb .." command and iox_S$detach_iocb subroutine are used
to detach a switch attached through a nonexiended I/0 module. The "io_call detach
..." command and iox_$detach subroutine are used to detach a switch attached through
an extended 1/0 module.

A detach description can be used with extended I/0 modules to specify the
disposition of the device or volume being detached. For the io_call command interface
to detach_file, the detach description is optional. For the iox_ subroutine interface to

$detach, the detach subroutine argument is required, but it can be a null string
indicating that no option was given. A sample detach description is provided below.

-unload -display -comment '"Operator: put this tape in bin 23"

The control arguments and operands are separated from one another by one or more
blanks. If an operand contains blanks, it must be enclosed in quotes (7). If an
operand contains a quoie, this quote must be doubled and the operand must be
enclosed in quotes.

5-9 AG91-04

SYNONYM ATTACHMENTS

By means of the syn_ I/0 module, an I/O switch (e.g., switch_1) may be
attached as a synonym for another 1/0 switch (e.g., switch_2). In general, performing

an 1/0 operation through switch_1 then has the same effect performing it through

switch_2. There are two exceptions:

1 Detaching switch_1 simply breaks the synonymization and has no effect
on switch_2.

2. The attach description for the synonym attachment may specify that
certain operations are to be inhibited. An attempt to perform an
inhibited operation through switch_1 results in a status code that
indicates an error.

Synonym attachments are especially useful when one wishes to switch the
source/target for a set of I/0 operations. For example, the 1/0 switch user_output is
normally attached as a synonym for user_i/o (which is normally attached to the user’s
terminal). The following command lines can be used to create an 1/0 switch named
file_switch and attach it to a file, open file_switch for stream_output, detach the I/0
switch user_output, and make the 1/0 switch user_output a synonym attachment to the
1/0 switch file_switch.

io_call attach file_switch vfile_ file_name -extend
io_call open file_switch stream_output

ready_off

io_call detach user_output

io_call attach user_output syn_ file_switch

The result of these five command lines is that output that would normally be
sent to a terminal is written into a file. The file_output command (described in the
Commands manual) performs this sequence of steps and is the normal way of directing
terminal output to a file. Note the presence of the ready_off command. Without this
command a fatal process error will occur when the ready message following the io_call
detach user_output command attempts to print. This is due to the fact that the switch
on which the output should go is no longer attached.

The following command lines can be used to undo the effects of the previous
four command lines with the result that subsequent output to the I/0 switch
user_output is written on the user’s terminal. The revert_output command (described
in the Commands manual) performs this sequence of steps and is the normal way of
reverting user_output to its normal attachment (the terminal).

ready_off

io_call detach user_output

io_call attach user_output syn_ user_i/o -inh close
get_line get_chars

io_call close file_switch

io_call detach file_switch

5-10 AG9I1-04

It is possible to have a chain of synonyms. e.g., switch_1 as a synonym for
switch_2 and switch_2 as a synonym for switch_3. The final switch in the chain is
the actual 1/0 switch for all the other switches in the chain. More precisely, if an
170 switch, switch_1, is not attached as a synonym, then its associated actual I/0
switch is itseif. If swiich_1 is atiached as a synonym for swiich_2, then the actual
I/0 switch associated with switch_1 is the same as the actual 1/0 switch associated
with switch_2.

With the notion of the actual I/0 switch, the effect of a synonym attachment
of an I/0 switch, switch_1, can be precisely described as follows:

1. The open_description of switch_1 is the same as the open_description of
the actual 1/0 switch associated with switch_1. (Hence switch_1 is open
or closed according to whether the actual switch is open or closed.)

2. If the open I/0O operation or one of the I/0O operations listed in Table
5-1 is performed through switch_1, then the effect is the same as if it
were performed through the actual 1/0 switch associated with switch_l1,
with one exception. The exception is that if any synonym attachment in
the chain {(connecting switch_1 to the actual 1/0 switch) inhibits the
operation, then the only effect is to return a status code that indicates
an error.

5-11 AGI1-04

Table 5-1.

Opening Modes and Allowed Input/Output Operations

get_line
get_chars
put_chars
read__record
rewrite_record
delete_record
read__length
position
seek_key
read__key
I close or close_file
write__record

Opening Mode control
No. Name moldes
1 stream__input X X 2 X 1 1
2 stream_output X X 1 1
3 stream_.input_output X X X 2 X 1 1
4 sequential_input X X X X 1 1
5 sequential_output X 1 1
6 sequential_input_output X X X X 1 1
7 sequential__update X X 3 X X X 1 1
8 keyed_sequential_input X X X X X 1 1
9 keyed_sequential_output X X 1 1
10 keyed_sequential__update X X X X X X X 1 1
11 direct_input X X X X 1 1
12 direct_output X X 1 1
13 direct_update X X X X X X 1 1

1. Depends on the attachment.

2. Allowed if attached to a file in the storage system.

3. Allowed unless file is blocked.

4. Allowed for blocked and sequential files in the storage system.

5-12

AGI1-04

Table 5-2. Opening Modes Supported by I/0 Modules

abs_io ‘
audit__
bisync__
discard_
g1156_
ibm 2780_
ibm 3270_
ibm 3780_
rdisk_
Opening Mode- record stream__ .
remote printer_
No. Name | -
1 stream_input X X X X X X X X X X X X X X
2 stream_output X X X X X X X X X X XX X X X
3 stream_.input_output X X X X X X X X X X X X X
4 sequential_input X X X X X X X X X
5 sequential_output X XX X X X X X X X
6 sequential_input_output X X X X
7 sequential_update X X X X
8 keyed_sequential_input X X X
9 keyed_sequential_output X X X
10 keyed_sequential__update X X X
11 direct_input X X X X
12 direct_output X X X
13 direct_update X X X X
LT] e
signal__io__
window_io__
vfile__
tty_
tape_nstd_
tape_multi__
tape_ibm_
tape_ansi_
report_
remote__teleprinter__
remote__punch_

remote_input__

The syn_ I/0 module is not included in this table because the allowed modes are a
function of the switch to which the syn_ module is being attached.

1/87 5-13 AGI1-04A

STANDARD INPUTIOUTPUT SWITCHES

Four 1/0 switches are attached as part of the standard initialization of a Multics
process.

Switch Normal Attachment
user_i/o the user's terminal
user_input synonym for user_i/o
user_output synonym for user_i/o
error_output synonym for user_i/o

These switches may be attached in other ways, but the user must always attach
user_input, user_output, and error_output as synonyms. The attachment of user_io
differs for absentee processes and network connections. However, this difference is

only significant in that the attachment of user_i/o may not be to the user’s terminal.

When the "video” system is activated by a call to video_utils_$turn_on_login_channel
or by executing the window_call invoke command, the existing attachments of the
terminal are removed and replaced with video system attachments. The 1/0 switch
user_i/o is now attached through the 1/0 module window_io_ to a new I/0O switch,
user_terminal_. The user_terminal 1/0 switch is attached through the I/0O module
tc_io_ to the terminal.

INITIALIZATION OF EXTERNAL POINTER VARIABLES

The following external pointer variables are initialized to point to the controi
blocks for the corresponding 1/0 switches:

dcl iox_Suser_io external pointer;

dcl iox_Suser_input external pointer;
dcl iox_Suser_output external pointer;
dcl iox_Serror_output external pointer;

These variables must never be modified. By using these variables, one can save time
and avoid calls to the iox_$find_iocb entry point to locate these commonly used
control blocks. Thus, a simple and efficient way to write to

call iox_Sput_chars (iox_Suser_output, buffer_ptr, buffer_length, code);

Interrupted Input/OQOutput Operations

It may happen that an I/O operation being performed on a particular I/0
switch, switch_1, is interrupted, e.g., by a quit signal or an access violation signal. In
general, until the interrupted operation is completed, or until switch_1 is closed, it is
an error (with unpredictable consequences) to perform any 1/0 operation except close
on switch_1. However, some I/0 modules (tty_ in particular) allow other operations
on switch_1 in this situation. (See the Subroutines manual for details.) If the switch
switch_1 is closed while the operation is interrupted, control must not be returned to
the interrupted operation.

1/87 5-14

AG91-04A

PROGRAMMING LANGUAGE INPUT/OUTPUT FACILITIES

It is possible to perform I/0O through a particular switch using both the facilities
of a programming language and the facilities of the I/O system (invoked directly).
The following statements about this sort of sharing of switches apply in most cases:

1. The I/0 system may be used to attach a switch or to attach and open
it. The Ilanguage 1/0 routines are prepared for this, and they close
(detach) a switch only if they opened (attached) it.

2. A switch opened for stream_input may be used both directly and
through language 1/0 if care is exercised. In general, the languages
read a line at a time. Thus the order of input may get confused if a
direct call is made to the 1/0 system while the language routines are
processing a line. Trouble is most likely to arise after issuing a quit
signal (pressing the appropriate key on the terminal, e.g., ATTN, BRK,
etc.).

3. A switch opened for stream_output may be used both directly and
through language 1/0 if formatting by column number, line number,
page number, etc. is not important. Some shuffling of output may be
expected, especially if a direct call to the I1/0 system (e.g., by the
issuing of a quit signal) is made while the language 1/0 routines are
processing an 1/0 statement.

4, If a switch is opened for record I1/0 (sequential, keyed_sequential, and
direct modes), using it both directly and through language I1/0 is not
recommended.

A direct call to the I/O system has no effect on file information and buffers |
maintained by the language 1/0 routines and is likely to cause garbled input or
outpui. The close_file command {described in the Commands manual} closes PL/I, [
Pascal and FORTRAN file information blocks used by the language I/0 routines. For |
details on the facilities of a particular language and for a discussion of the usage of
related Multics commands, see the reference manual and/or user’s guide for that

language.

While most language 1/0 facilities can pass a complete attach description to the |
I/0O system, they have no way of passing the open, close and detach descriptions |
required by extended 1/0 modules. |

FILE INPUT/OUTPUT

The 1/0 system distinguishes four types of files: unstructured, sequential,

blocked, and indexed. These types pertain to the logical structure of a file, not to the
file’s representation in storage, on magnetic tape, etc. For example, in the storage
system a file may be stored as a single segment or as a multisegment file; but this
does not affect the meaning of 1/0O operations on the file.

515 AG91-04

Unstructured Files

An unstructured file contains a sequence of 9-bit bytes. Normally the bytes are
ASCII characters, but this is not required.

The following 1/0 operations apply to unstructured files:

get_line
reads a line from the file, i.e., a sequence of bytes ending with an
ASCII newline character

get_chars
reads a specified number of bytes

put_chars
adds bytes at the end of the file

position

positions 1o the beginning or end of the file, skips forward or
backward over a specified number of records:

-1 goes to the beginning of the file

+1 goes to the end of the file

0 skips newline characters or records (lines)
2 positions to an absolute record (line)

3 skips characters

Sequential Files

A sequential file contains a sequence of records. Each record is a string of
9-bit bytes. A record may be zero length.

The following 1/0 operations apply to sequential files:

read_record
reads the next record

read_length
obtains the length of the next record

write_record
adds a record to the file or replaces a2 record

rewrite_record
replaces a record

5-16 AG9I1-04

delete_record
deletes a record

position
positions to the beginning or end of the file, skips forward or
backward over a specified number of records:

-1 goes to the beginning of the file
+1 goes to the end of the file

0 skips records

2 positions to an absolute record

Blocked Files

A blocked file contains a sequence of records. Each record is a string of 9-bit

bytes. The length of a record may range from zero to a presel maximum value
associated with the file.

The following 1/0 operations apply to blocked files:

read_record
reads the next record

read_length
obtains the length of the next record

write_record
adds a record to the file or replaces a record

rewrite_record
replaces a record

position
positions to the beginning or end of the file, skips forward or
backward over a specified number of records:

-1 goes to the beginning of the file
+]1 goes to the end of the file

0 skips records

2 positions to an absolute record

5-17 AG91-04

Indexed Files

An indexed file contains a sequence of records and an index. Each record is a
string of 9-bit bytes. A record may be zero length.

The index associates each record with a key. A key is a string of from 0 to
256 ASCII characters containing no trailing blanks. Ordinarily, no two records in the
file have the same key. The order of records in the sequence is key order: record x
precedes record y if and only if the key of x is less than the key of y according to
the Multics PL/I rules for string comparison (lexicographic order using the ASCII
collating sequence).

All the 1/0 operations applicable to sequential files apply to indexed files as
well; however, write_record only adds records. In addition, the following two
operations manipulate keys:

read_key
obtains the key and length of the next record

seek_key
positions to the record with a given key or defines the key to be
associated with a record to be added (by a subsequent write operation)

position
positions to the beginning or end of the file, skips forward or
backward over a specified number of records:

-1 goes to the beginning of the file
+1 goes to the end of the file

0 skips records

2 positions to an absolute record

Table 5-3 shows the 1/0 operations that are permitted with each type of file.

5-18 AG91-04

Table 5-3. File Types and Allowed Input/Output Operations

Input/Output Operation

get line
get_chars
put_chars

read record
-

rewrite record
\ —

delete_record

read_length

T ettt |

d
i i
]]
] : i
i i ! position
i i i i
] : : | seek_key
1 1 1 1 1
1]]]]
H : : H i read key
¥]] i i 1 -
1]]]) 1
i i i i i | write_record
i 1 i 1]] i
Type of File i ! | : ;] i
unstructured X X X X
(sequence of 9-bit bytes,
usually ASCII characters)
sequential X X X X X X
(sequence of records)
blocked X X X X X

(sequence of records)

indexed
(sequence of records
and an index)

Each record is a string of bytes; a record may be of zero length. A blocked file has
a characteristic maximum record length that is initially set by the user. For an
indexed file, a key is a string of 0 to 256 ASCII characters, with no trailing blanks.

5-19 AGI91-04

File Opening

When an 1/0 switch is attached to a file and is opened for input, the file must
exist and must be compatible with the opening mode. Table 5-4 shows the
compatibility between file types and opening modes.

When the opening is for output, input_output, or update, and the file does not
exist, a file of the appropriate type is created. File creation can be suppressed in
storage system files; see the description of the vfile_ I1/0O module in the Subroutines
manual for details. The type of file created by a particular mode of opening is shown
in Table 5-4.

When the opening is for output or input_output, and the file already exists, it is
normally replaced by an empty file of the appropriate type. However, if the
attachment specifies extension of the file, the file is not replaced. In this case the
file must be compatible with the opening mode.

For files, opening for input_output means opening with the intent of first
writing the file and then reading it during the same opening. An existing file is
replaced by an empty file unless extension is specified.

5-20 AGI1-04

No.

Table 5-4. Compatible File Attachments

Opening Mode File Type
]

1
{Name unstructured | sequential | blocked | indexed

1

stream_input X 1 1 1

i
a
2 stream_output E X3
3 stream_input_output i x3
sequential input E X X X
5 sequential output é x3 X3
6 sequential input_output % X3 X3
7 sequential update E 2,3 X3 X
8 keyed sequential_input E X
9 keyed_ sequential output E x3
10 keyed_sequential_update E x3
11 direct_input E X
12 direct_output E X3
13 direct_update E X3
1. The structure of the file is ignored and everything in it is treated as data
(including control words).
2. The file must be in the storage system.
3. This type of file is created by an output or update opening for the specified

mode unless this feature is explicitly suppressed. Update openings never replace
an existing file. (See the individual 1/0 module descriptions in the Subroutines
manual to see which control arguments are applicable.)

5-21 AG91-04

File Closing

When an 1I/0 switch attached to a file has been opened for output,
input_output, or update, a close operation should be performed on the switch before
the process is terminated. If not, the file may be left in an inconsistent state; e.g., an
end of file mark may not be written for a tape file, or the bit count of a segment
may not be set for a storage system file.

When a process terminates due to invocation of the logout or new_proc
command, all I/0O switches are closed by the epilogue handler for the process. The
epilogue handler for a run unit, which is called by the stop_run command, or by
normal run unit termination, closes all I/O switches within the run unit.

File Position Designators

The I/0 operations on files are defined in terms of four position designators.
In cases where several 1/0 switches are open and attached to the same file, each
opening has its own set of designators. The designators are:

next byte
the first byte to be read by the next get_line or get_chars operation

next record
the record to be read by the next read_record or inserted by the next
write_record operation

current record
the record o be replaced or deleted by ihe nexti rewrite_record or
delete_record operation

key for insertion

the key to be associated with the record added to an indexed file by
the next write_record operation

The initial values for these designators are shown in Table 5-§.

5-22 AG91-04

Table 5-5. File Position Designators at Open

Designator(1)

Cpening Mode
i H next ! current i key for
No. |Name 1next byte | record 1 record | insertion
1 stream_input Efirst byte
2 stream_output Eend of file
3 stream_input_output iend of file(2)
4 sequential input E first record
5 sequential output E
6 sequential input_output E end of file(2)
7 sequential update E first record first record
keyed sequential input é first record
9 keyed sequential output E null
10 keyed_sequential update E first record first record null
11 direct_input §
12 direct_output g null
13 direct_update E null null
L In the opening where no value is indicated for a designator, the designator is
not relevant.
2. The use of certain options causes this to be initially set to beginning of file.

See the description of the vfile_ I/0O module in Subroutines manual for details.

5-23

AGI1-04

TERMINAL INPUT/OUTPUT

Interactive terminals are normally connected to the sysiem through the tty_ I/0

a typewriter—compatible manner. The window_io_ 1/0 moduie provides extended
support for special video terminal features.

tty__ Support

The user’s terminal is automatically "attached"” to the tty_ I/0 module during

the course of process creation. Operations supported by the tty_ I/0O module are
described in the Subroutines manual.

window__io__ Support (the Video System)

The window_io_ I/O module is one of a number of software elements (I/0
modules. commands, and subroutines) that compose the "video system.” The two
distinguishing capabilities of the video sysiem are (1) its windowed display and (2) its
real-time editor. The video software can be accessed from command level (via the
window_call command) or via a subroutines interface provided by the subroutines
window_ and video_utils_.

WHAT IS A WINDOW

A window is an area of the screen whose contents can be manipulated without
affecting the rest of the display. For example, the user may scroll the contents of a
segment in one window without moving the contents of the segment displaved on any
other part of the screen.

Each window behaves like an individual video terminal. Many possible operations
may be performed on a window. These include displaying characters, moving the
cursor, erasing lines, inserting lines, and others. Characters are normally sent to a
window via the Multics 1/0 system and the iox_ subroutine (see the Subroutines
manual). Additional operations specific to the capabilities of video terminals, are
performed by the window_ subroutine, which is analogous to iox_.

Special_purpose 1/0 modules are provided for terminals connected to communications
lines in which specialized protocols are in use. Such modules are described in the
Subroutines manual.

5-24 AGI1-04

The screen can be divided into several windows that can be viewed simultaneously
but the windows may not overlap. The number of line and columns in each window
can vary. A window can be one column wide or it can extend across the full width
of the screen.

The size of a window is specified at the time the window is created. Character
positions are identified by line and column with the origin (or home) located ai the
upper left hand corner of the window. Each window has its own home, line 1,
column 1, and character positions are always with respect to the home of the specific
window.

A screen divided into two windows 1is illustrated below.

<mmmmmmmmmmmmm—e— columns --==—----------- >
e +
H
] ____________________
i WINDOW 1 H WINDOW 2
n
e | e
s
et +

W/INDOW CAPAB/LITIES

The capabilities defined for a window are grouped into five categories:
positioning the cursor, selective erasure, scrolling, selective alteration, and miscellaneous.
Window operations may be performed with the window_call command or by a call to
the window_ subroutine.

Positioning the Cursor

Each window has its own logical cursor. This cursor exists even when the
terminal’s cursor is performing operations in another window. The position of this
cursor may be explicitly changed in a variety of ways. The cursor can be positioned
absolutely or relatively. Absolute positioning can be to the home position or to an
arbitrary line and column. Relative positioning can be up, down, left, or right any
number of positions. The cursor also moves as characters are displayed in the window.

5-25 AGI91-04

Selective Erasure

Selective Erasure (or clearing) means changing some region of the display so that
no visible characters appear in that region, without changing any other area of the
window. Most video terminals are capable of at least some selective erase operations.
Where possible, the video system uses any special terminal features present to clear
regions. When the terminal has no useful feature for clearing the specified region,
regions are cleared by overwriting them with spaces. This can be a rather slow
operation.

A region is a rectangle contained within a window. Like a window, it has an
extent (height and width) and a position. All erasure operations pertain to regions.
The definition of the region may be explicit (position and extent supplied in the call)
or implicit (the region begins at the current cursor location, or at the home position).
After the operation, the cursor is left in the upper left corner of the region.

A window may be cleared: entirely, from the home position to the end of the
window; from the current cursor position to the end of the current line in the
window; from the current cursor position to the end of the window. An arbitrary
region may also be cleared.

Scrol/ing

A window may be scrolled up or down by a given number of lines. Scrolling
up means moving lines up from the bottom of the window - deleting lines at the
top, and adding new, blank lines at the bottom. Scrolling down means moving lines
from the top of the window down, delieting at the bottom and adding at the top.
Scrolling is usually done automatically by the video system when output fills the
window, but it can also be requested explicitly.

Selective Alteration

Selective alteration means adding or deleting characters or lines in the middle of
the window. When characters (or lines) are added, adjoining characters (or lines) move
over to make room for the new ones. When characters (or lines) are deleted,
characters (or lines) move in to fill up the gap. This differs from selective erasure,
which only affects the characters erased.

Miscel aneous

Among other things, entries are provided in the window_ subroutine and the
window_call command to sound an audible alarm, to obtain the current cursor
position, and to output an arbitrary character sequence.

5-26 AG91-04

REAL-TIME EDITING

With real-time editing, all editing requests take effect immediately. The screen |
changes to show the effect of the characters or lines deleted. In addition, the set of
editing characiers expands to include several control characters.

Control characters are characters entered using the control key. The control key
is a key that acts like the shift key. By itself it generates no characters; it is used to
change the meaning of some other key. When the key "A" is typed while the control
key is held down, the character sent by the terminal is control A, which is written as
AA. The control characters are the first 32 ASCII characters, 000 through 037 octal

Alphabetic characters are given in capitals, but either an upper or lower case
letter (as for N or n) can be used with default escape sequences. If an upper case
letter is used with a user-defined sequence, both the upper and lower case keys must
be bound in order for both keys to work. The letters ESC respresent the escape Key.
For ESC F, you would press the escape key, release it, and type an f or F.

Although most Multics users keep the system default erase (#) and kill (@)
symbols, the video system recognizes and then assumes the values of any erase and Kkill
characters that mav have been set via the set_tty command.

The Erase Character

The erase character removes the character to the left of the cursor. The cursor
moves to the left, and exactly one character is deleted. This is different from usual
Multics editing where an erase character typed after white space deletes all whitespace,
and otherwise deletes all characters from a column position. The erase character is
settable for each window. In addition, the DEL character (\177) and the backspace
character (\010) are always erase characters.

The Kill Character

The kill character deletes the entire line to the left of the cursor. The cursor
then goes back to the beginning of the line. Again, this happens immediately. The
deleted line is saved, and can be recovered. See "Retrieving Deleted Text” below. The
kill character is settable per—window.

The Line Editor

Additional editing is possible using sequences of one and two characters. The
two-character sequences all begin with the ASCII ESC character, (*], octal 033, \033),
which is not the same as the Multics input escape character ("\").

5-27 AG91-04

Moving the Cursor

The line editor can move the cursor forward or backward within the current line
while repositioning the cursor either a character at a time or a word at a time. A
word is an unbroken string of uppercase and lowercase alphabetics, numerals,
underscores, backspace characters, and hyphens. (This is the default definition of a
word, which can be changed with the set_token_delimiters order, described in the
window_io_ writeup.) The cursor can also move explicitly to the beginning or the end
of the current line. The requests that perform these actions are listed under "Other
Editor Requests” below.

Deleting Characters and Words

The line editor can delete a single character or an entire word at a time.
Various editing requests described below can delete the character or word immediately
to either the left or the right of the cursor. The deleted text (only words, not
characters) is saved and can be retrieved. For example, typing ESC DEL (or ESC
followed by the current erase character) deletes the word to the left of the cursor.
The word is saved on the kill ring (see below).

Retrieving Deleted Text

Text deleted by the word and line Kkill characters is saved, and can be restored.
The text is saved on a kill ring. A kill ring is a set of kill slots. Each slot holds
deleted text. Successive word Kkills share one kill slot, so if several words are deleted
one afier another, all of them will be retrieved by a single retrieve command.

Deleted text is saved with previously deleted text if two kill requests are typed
in succession. If intervening characters are typed, the Kkill ring is rotated: a new slot
is selected to hold saved text.

Text is entered when the user types text followed by a carriage return. Each
input line is added to the kill ring. This provides editing of the previous input line.

The following control characters are used to retrieve deleted text:

AY
(or yank) retrieves deleted text from the kill ring. This is the only way
to recover from an erroneous Kkill character.

ESC Y
can be typed only after either AY or ESC Y. It deletes the text just
retrieved, without saving it on the kill ring, rotates the ring (to the
next most recently killed text) and retrieves the text from the new top
slot.

5-28 AGI1-04

The following example is given in triplets. The first line shows what the user
types, the second line shows what one line of the display looks like afterwards, and
the third line (or lines) shows the kill ring. The top item on the kill ring is at the
top of the column.

User Types: This is a sentence
Display is: This is a sentence
Kill Ring: <empty>

NOTE: The kill ring is empty because the user has just invoked the video system.

User Types: ESC DEL
Display is: This is a
Kill Ring: sentence

One word is deleted, and it begins the kill ring.

User Types: ESC DEL
Display is: This is
Kill Ring: a sentence

Another word is deleted; it is merged into the same Kkill slot.

User Types: an example sofa
Display is: This is an example sofa
Kill Ring: a sentence
User Types: ESC DEL
Display is: This is an example
Kill Ring: sofa

a sentence

This deleted word is not merged., because there has been typing since the last kill
command. There are now two slots on the kill ring.

User Types: of AY
Display is: This is an example of sofa
Kill Ring: sofa

a sentence

The top kill slot is yanked back.

User Types: ESC Y
Display is: This is an example of a sentence
Kill Ring: a sentence

sofa

The kill ring is rotated, the previously yanked contents are deleted from the line, and
the new top item from the ring is yanked to replace it.

5-29 AG91-04

If a carriage return were typed at the end of "This is an example of a
sentence"”, the kill ring would then contain a new slot containing the entire input line.

Other Editor Requests

The following control characters are also recognized by the line editor.
(Alphabetic characters are specified in upper case, but either upper case or lower case
[letters (e.g., ESC F or esc F can be used):

AL
Clears the window and redisplays the input line.
Q
"quotes" the next character, causing it to have no special meaning. This
is useful for entering control characters. It serves some of the same
purposes as the input escape character (\).
AF
moves the cursor forward one character.
AB
moves the cursor backward one character.
ESC F
moves the cursor forward one word.
ESC B

moves the cursor backward one word.

ESC n control character
repeat the specified action n times (e.g., ESC 6 AD specifies that the
next six characters are to be deleted).

rA
moves the cursor to the beginning of the current line.

AE
moves the cursor to the end of the current line.

AD
deletes the current character (deletes forward).

DEL, #
deletes the character to the left of the cursor (deletes backward).

ESC D .
deletes the current word (deletes forward).

5-30 AG91-04

ESC DEL, ESC #
deletes the word to the left of the cursor (deletes backward).

ESC C
capitalize initial word.

ESC U
capitalize word.

ESC L
lower case word.

ESCT
twiddle words. Transposes (interchanges) the last two words typed.

AT
twiddle characters. Transposes (interchanges) the last two characters

typed.

AU
multiplies the next request four times (e.g., "UAF moves forward four
characters).

ESC ?
lists available window editor requests.

By default, no other control characters have meaning. If any are typed, the only
action they cause is an audible alarm. You can create additional editor requests by
writing PL/1 programs that conform to a standard calling sequence (see "Writing
Editor Extensions").

The set of characters used to define a word for control characters such as
ESC F can be changed via the set_token_characters control order. See the description
in the window_io_ 1/0 module in the Mu/tics Subroutines manual.

WRITING EDITOR EXTENS/IONS

The video system provides a full input line editor, including the ability to edit
in the middle of the line. Of course, there are many potential editor functions that
people might like to use (see the £macs Text Editor User’'s Guide), and not all of
these are provided. Rather than attempt to anticipate every possible editor request, the
video system allows users who are familiar with PL/1 to write their own editor
requests and associate sequences of keystrokes (key bindings) with these requests.

The key binding mechanism can be used for a wide variety of applications.
Since editor requests are executed immediately by single or multiple key stroke
sequences, highly interactive facilities can be built into the input line editor.

5-31 AG91-04

Line Editor Routines

Editor request routines are PL/I programs that conform to a standard calling
sequence. The request procedure is given complete control of the input buffer and can
add or delete characters or modify the current contenis of the buffer. The video
system editor’s redisplay facility manages all display updates; the individual editor
routines need no knowledge of the video enviroment or the screen contents.

A library of editor utility routines is provided (see "Editor Ultilities”). These can
be called by user—written editor routines to perform such actions as insertion and
deletion of text from the buffer, manipulation of the kill ring, and manipulation of
words within the input buffer.

A line editor routine is declared as follows:
declare twiddle_words entry (pointer, fixed bin(35));
call twiddle_words (line_editor_info_ptr, code);
STRUCTURE ELEMENTS

line_editor_info_ptr
is a pointer to the line_editor_info data structure (described below).

code
is a standard status code. (Qutput) If the status code returned by the editor
routine is error_table_$action_not_performed, the editor will ring the terminal bell

to indicate that the editor routine was used improperly. Any other code will be
reported in a more drastic manner, via the sub_err_ mechanism.

doatlit alllle? j8 it N80)l

5-32 AG91-04

The line_editor_info structure (declared in window_line_editor.incl.pll) is declared

as follows:

dcl 1 line_editor_info
2 version

2
2
2

NN N

iocb_ptr
repetition_count
flags,
return_from_editor
merge_next_kill
old_merge_next_kill
last_kill_direction
numarg_given
suppress_redisplay
pad

user_data_ptr
cursor_index
line_length
input_buffer
key_sequence

Wilwwwwww

aligned based (line_editor_info_ptr},
char (8) ,
pointer, /% to current window %/
fixed bin,

bit (1)
bit(1)
bit (1)
bit (1)
bit (1)
bit (1)

unaligned,
unaligned,
unaligned,
unaligned,
unaligned,
unaligned,
bit (30) unaligned,

pointer, /% for user state info %/
fixed bin(21),
fixed bin(21),
character (1024) unaligned;
character (128) ;

dcl line_editor_input_line char (iine_editor_info.line_length)

based (addr (line_editor_info.input_buffer));

dc! line_editor_info_version_2 char (8) static options (constant)
init ("1ei00002");

STRUCTURE ELEMENTS

version

is the version string for this structure.
"1ei00002", is the value of the variable line_editor_info_version_2, declared in the
same include file.

iocb_ptr

(Input) The current version string,

is the pointer to the current window. (Input)

repetition_count
is the value of the numeric argument specified by the user, and is undefined if

no numeric argument was specified (e,

return_from_editor
is a flag which is set by the editor routine if the editor invocation is to
terminated and the input line returned to the caller. The input buffer

redisplayed before the buffer is returned to the caller, unless overriden by the

nm
iluszix

arg_given

line_editor_info.suppress_redisplay flag. (Output)

5-33

lag = "0"b). {(Input)

be
is

AG91-04

merge_next_Xkill
is a flag which should be set when text is deleted and added to the Kkill ring if
subsequent deletions are to be added to the same kill ring element. (Input/Output)
This flag is managed by the editor utility routines. If the editor utility routines
are used for ail input buffer modifications, the user—wriiten editor routine need
never set this flag.

old_merge_next_kill (not used)
is an internal editor state flag and should not be modified.

last_kill_direction
is a flag indicating the direction of last kill. Off is forward; on is backward.
This flag should not be modified.

numarg_given

returns "1"b (i.e. true if a numeric argument was supplied by the user via
ESC-NNN or AV).

suppress_redisplay
is a flag that stops the redisplay of the input ©buffer when
line_editor_info.return_from_editor is set.

pad
reserved for future use.

user_data_ptr
points to a user data structure which the video system ignores, other than passing
this pointer to requests that foliow.

cursor_index
is the index of the character in the input buffer on which the cursor is currently
located. (Input/Output) This index must be updated if characters are added or
deleted before the cursor, or the cursor is moved by the editor routine. The
cursor index must be no larger than one greater than the input_line length. If
the editor utility routines are used for all input buffer manipulations, the
cursor_index will be updated appropriately.

line_length
is a count of the number of characters in the current input line. (Input/Output)
This variable must be updated if any characters are inserted or deleted from the
input buffer. The value of the line_length variable must always be non-negative,
and must never be larger than the length of the input buffer. If the line editor
utility routines are used for all input buffer manipulations, the line_length variable
will be updated automatically.

5-34 AG91-04

input_buffer
is a character string containing the current input line. (Input/Output) Any
manipulation may be performed on this string by the editor routine. It is
recommended that the editor utility routines be used for all insertions and
deletions to ensure that the various state variables and flags remain consistent.
The line_editor_input_line variable can be used to address the valid part of the
input buffer as a string.

key_sequence
a character string that contains the sequence of key strokes that invokes this
editor routine.

Window Editor Utilities

As was mentioned above, a library of editor utility routines is provided for the
benefit of user—written editor routines. Some operations can be performed simply by a
user-written editor routine. For example, to position the cursor to the end of the
line, simply set the cursor_index variable to one greater than the value of the
line_length variable. However, most actions are more complex than this and it is
recommended that the editor utility routines be used to perform most operations. The
following is a description of these routines. In all cases, line_editor_info_ptr is the
pointer to the editor data structure that is supplied as an argument to user—writien
editor routines.

dcl window_editor_utils_Sinsert_text entry (ptr, char (%), fixed bin(35));
call window_editor_utils_Sinsert_text (line_editor_info_ptr, 'text",
code) ;

Inserts the supplied character string into the input buffer at the current cursor
location. If the string is too large to fit in the remaining buffer space, the
code error_table_S$action_not_performed is returned. This routine updates the
line_length field of the line_editor_info structure, and the cursor_index if
necessary.

dcl window_editor_utils_Sdelete_text entry (ptr, fixed bin,
fixed bin{35));

call window_editor_utils_Sdelete_text (line_editor_info_ptr, count,
code) ;

Deletes a specified number of characters (supplied by the variable count) from
the input buffer at the current cursor location. If there are not enough
characters remaining between the cursor and the end of the line,
error_table_$action_not_performed is returned and no characters are deleted.
The line_length component of the line_editor_info_structure is updated, and the
cursor_index if necessary.

5-35 AG91-04

dcl window_editor_utils_Sdeiete_text_save entry (ptr, fixed bin, bit(1),
fixed bin(35));

call window_editor_utils_Sdelete_text_save (line_editor_info_ptr, count,
kill_direction, code);

This entrypoint is identical to delete_text, but the deleted text is added to the
kill ring. The kill_direction flag is used during kill merging to decide whether
the killed text will be concatenated onto the beginning or end of the current
kill ring element. "1"b is wused to specify a forward kill (eg.
FORWARD_DELETE_WORD), "0" a backward kill.

dc] window_editor_utils_Smove_forward entry (ptr, fixed bin,
fixed bin(35));

call window_editor_utils_Smove_forward (line_editor_info_ptr, count,
code) ;

Advances the cursor forward a specified number of characters (supplied by the
variable "count”) in the input line. If there are not enough characters between
the cursor and the end of the line, error_table_$action_not_performed is
returned.

dc] window_editor_utils_Smove_backward entry (ptr, fixed bin,
fixed bin(35));

call window_editor_utils_Smove_backward (line_editor_info_ptr, count,
code) ;

Moves the cursor backward a specified number of characters (supplied by the
variable "count") in the input line. If there are noi enough characters between
the cursor and the end of the line, error_table_S$action_not_performed is
returned.

dcl window_editor_utils_Smove_forward_word entry (ptr, fixed bin(35));
call window_editor_utils_Smove_forward_word (line_editor_info_ptr, code);

Updates the cursor_index to a position after the next word (or token) in the
input line. A word is defined via the editor’s set of token delimiters, set via
the set_token_delimiters control order.

dcl window_editor_utils_Smove_backward_word entry (ptr, fixed bin(35));
call window_editor_utils_Smove_backward_word (line_editor_info_ptr,
code) ;

Updates the cursor_index to a position before the preceeding word (or token)
in the input line. A word is defined via the editor’s set of token delimiters,
set via the set_token_delimiters control order.

dcl window_editor_utils_Sget_top_kili_ring_element entry (ptr, char (%),
fixed bin(35));

call window_editor_utils_Sget_top_kill_ring_element (line_editor_info_ptr,
text, code);

Returns the top kill ring element.

5-36 AG91-04

dcl window_editor_utils_Srotate_kill_ring entry (ptr, fixed bin(35));
call window_editor_utils_Srotate_kill_ring (line_editor_info_ptr, code);

Rotates the kill ring.

END-OF-WINDOW PROCESSING

When output has filled a window, old lines must be removed to make way for
new ones. This is usually done by scrolling old lines off the top of the window. But
for windows that cannot be scrolled (usually because the terminal cannot scroll) it is
possible to move the cursor back to home, and output new lines overwriting the old
ones. This is known as wrapped output. A variation on wrapped output is to clear
the window after moving the cursor home. The action taken when a window is full is
controlled on a per-window basis by any one or the following more_mode modes:

. clear
the window is cleared, and output starts at the home position.

. fold
output begins at the first line and moves down the screen a line at a
time replacing exisitng text with new text. Prompts for a MORE
response when it is about to overwrite the first line written since the
last read or MORE break.

L scroll
lines are scrolled off the top of the window, and new lines are printed
in the space that is cleared at the bottom of the screen. This is the
default for all terminals capable of scrolling (i.e., those terminals that
have the capability to inseri and delete lines).

° wrap
output begins at the first line and moves down the screen a line at a
time replacing existing text with new text. Prompts for a MORE
response at the bottom of every window of output. This is the default
for terminals incapable of scrolling.

MORE PROCESSING

As lines are displayed in the window, old lines are scrolled off the top of the
window or otherwise removed. When output would cause a line to be removed that
has been displayed since the most recent input, it is assumed that the user may not
have had a chance to read it, and MORE processing occurs. The question "MORE?
(RETURN for more; DEL to discard output)” appears on the screen, and no further
output occurs until the user indicates that pending output is to be either displayed or
discarded. MORE processing is controlled by the "more” mode, which is enabled by
default.

5-37 AG9I1-04

Output resumes if the user strikes CR, and is discarded if the user strikes DEL.
The characters used can be set by a control order. Type ahead characters are not seen
by MORE processing. The response to MORE must be typed after the prompt
appears. All other characters are buffered to be returned later.

When output is discarded, the video system simply ignores output until a get_line
or get_chars call is made, a "reset_more" control order call is made, or the window is
cleared, or the cursor is moved to home. WARNING: a prompt sent just before a
get_line call will not be printed if output is discarded, unless the prompting program
first issues a "reset_more" control order (or otherwise resets more processing).

OUTPUT BUFFERING

The video system sometimes buffers output internally, sending it to the terminal
when certain internal conditions are satisfied. All buffered output is sent to the
terminal whenever an input call is made (e.g., window_$get_echoed_chars). This ensures
that all output, including prompts, is seen by the user before input is read. An
application program that calls window_ entrypoints directly should take this buffering
into account to perform correctly. If it is necessary to send output to the terminal
when no read request is to be done (e.g., displaying an incremental message during a
long computation), the application should call window_$sync on the I/0 switch after
the output has been requested (e.g., via a call to window_$overwrite_text). See the
description of window_$sync in the window_ subroutine description in the Subroutines
Manual.

STRUCTURE OF THE VIDEQO SYSTEM

The video system is composed of various I/0 modules, subroutines, and
commands, as described below.

/10 Modules

The video system is divided into two layers, each implemented by an I/0
module. The top layer, window_io_, makes terminal-independent calls to the lower
level, tc_io_.

The window_io_ I/0O module is responsible for translating window-relative calls
(such as position to the beginning of the window) to terminal-relative calls (position
to line 5, column 1, if that is where the window starts). The window_io_ I1/0 module
is the video analogue of tty_. It supports control orders to change the size of its
window, set the editing characters, read and set modes, etc. It also supports the basic
iox_ operations of get_line, put_line, get_chars_, put_chars, etc.

5-38 AG91-04

The tc_io_ I/0O module is responsible for all terminal-dependent support. It
deals with padding, whitespace optimization, and optimal cursor movement. There is
one instantiation of tc_io_ for every terminal under the control of the video system.
Although implemented as an I/0 module, the only operations tc_io_ supports are
attach, detach, and control; it is intended as an internal interface for use by
window_ic_ only.

Subroutines

The video_utils_ subroutine controls invocation and revocation of the video
system in a process. It revokes the terminal’s attachment to tty_ and attaches the
user_I/0O switch to a window that covers the entire screen. Upon revoking the video
system, it reattaches the terminal to tty_.

The window_ subroutine is the main user interface to the video system. Its entry
points define operations which a video terminal might reasonably be expected to have,
such as "position cursor” or "delete lines.” By calling these entries and letting the
video system take care of determining which sequence of characters will effect the
desired operation, the applications writer can write programs which will function
identically on a wide range of terminals without having to worry about what those
terminals are.

The COBOL and FORTRAN programmer can utilize specialized subroutines
{cb_window_ and ft_window_) to obtain video management capabilities.

Command

The window_call command is the command-level interface to the video system.

USING THE VIDEOC SYSTEM

The following subsections described basic video operations as implemented from
the command-level interface (window_call) and the subroutine interface (window_).
(The examples of command usage are embedded in an exec_com).

Attaching the Video System

The video system must be checked to determine if it is turned "on." It is not
likely that novice users would do this initially but it might be included in a project
start_up. If it is on, it is important that to leave it alone. If it is turned on again
an error message is produced. If the video system is turned on, then the application
should use the space allocated to the user_input/output window instead of the whole
screen. Thus, if the user creates a separate window for interactive messages, an
application should not use that space. Using the space allocated to the user_io window
respects the user’s explicit wishes and prevents violation of the restriction against using
two overlapping windows at the same time.

5-39 AG91-04

When the video system is invoked, the entire screen is covered by a window
associated with the user_i/o I/0O switch. The user must determine how much of the
screen he has and divide up that amount for use by the application. Since terminals
vary in the length of the screen, and some users already may have some lines devoted
to their own video dispiay, there are probabiy less than 20 availabie lines, so design
with that in mind. As long as there are eight or ten lines available for user
input/output that should be sufficient.

The first step then is for the user to determine whether or not the video system
is turned on and, if not, turn it on. This should be included at the beginning of all
applications. The following is the exec_com example. The lines are numbered only for
the purpose of explanation and the numbers should not be included in the exec_com.

&set already_video &[window_call video_invoked]

1
2 &if &[not &(already_video)]
3 &then window_call invoke
L &set first_line &[window_call get_first_line]
&set n_lines &[window_call get_window_height]
where:
1. determines whether or not the video system is attached to the user’s terminal.
2. turns it on if it isn’t already on.
3. invokes window_call initiating the window environment.
4 sets the lines for the window. This is part of the first step because when you

revoke the video system at the end of the exec_com, you must set the screen
to the size it was originally.

5-40 AG91-04

The following is the PL/I example that does the same thing. Again, the lines
are numbered for the purpose of explanation and the numbers shouid not be included
in the program.

dcl {addr, null)} builtin;

dcl iox_Scontrol entry (ptr, char (%), ptr, fixed bin (35));
dcl com_err_ entry () options (variable);
dcl iox_Suser_io ptr ext static;
dcl video utils_Sturn_on_login_channel entry
(fixed bin (35), char (¥));
dcl video_data_Sterminal_iocb ext static ptr;

dcl ME char (32) init ("test_program') static options {constant);
dcl code fixed bin (35);

dcl already_video bit (1);

dcl reason char (128);

1 %inciude window_control_info;
2 dcl 1 my_window_info Tike window_position_info;
3 my_window_info.version = window_position_info_version_1;
L if video_data_Sterminal_iocb = null () then do;
5 call video_utils_Sturn_on_login_channel (code, reason);
6 if code ™= 0 then do;
call com_err_ (code, ME, ""a", reason) ;
return;
end;
7 already_video = "0"b;
end;
8 else already_video = "1'b;
9 call iox_Scontrol (iox_Suser_io, ''get_window_info",
addr (my_window_info), code):
10 if code ™= 0 then do;
call com_err_ (code, ME, "get_window_info.");
return;
end;

5-41 AG91-04

where:

includes appropriate structure declarations

declares an automatic copy of window info

sets the version number of window info

determines if the video system is not activated then does 4 through 6

turns on the video system and

if there is an error, reports it to the caller and quits

makes a note to the effect that video was invoked by this program

goes to here if the video system is already activated (video was not activated by
this program)

gets the current size and location (beginning line number) of the user_i/o
window

10. prints error message

PR AWN

o

Detaching the Video System

At the end of the session, the video system can be detached. First, is the
exec_com example for revoking the video system. The lines are numbered only for
the purpose of explanation and these numbers should not be included in the exec_com.

] &if &(already_video)

2 &then window_call change_window -line &(first_line)
-height &(n_lines)
3 telse window_call revoke
where:
i determines whether or not video was activated by this exec_com.
2. if video was activated by another exec_com, then user_i/o window is returned

to previous size and it is cleared.
3. otherwise, the window interface to the video system is deactivated and the
user_i/o window goes to full screen.

5~42 AG91-04

Next is the PL/1 example:

1 if already_video then do;
call video_utils_Sturn_off_login_channel (code) ;
if code *=0 then do:

end;
end;
3 else do; call iox_Scontrol (iox_Suser_io, "set_window_info",
addr (my_window_info), code) ;
if code "=0 then do;

end;
end;
where:
1. determines whether or not video was activated by this program.
2. if the video system was activated by this program, it is then deactivated and
the user_i/o window goes to full screen.
3. if video was previously attached, then the user_i/o window is returned to its

previous size.

Design Requirements for Windows

As part of the menu design process, the user must decide ahead of time how
the display will look and from that determine the number of windows that will be
advantageous.

5-43 AG91-04

As an example, the screen could be divided into three windows. The top window
could display the status of the user with the user name, a description of what the
user is doing and a clock. The middle window could contain various menus and could
grow or shrink depending on the selection made. The bottom window could be for

unformatted output and for typing in input.

The number of windows technically permitted is quite large and probably more
than one will need. Knowing how many functions are to be performed, the user
should carefully select the number of windows to be used by an application. It is
possible on a 24 line terminal to have 24 windows but rarely, if ever, would that be
useful. Each window would be too small and the screen would be too cluttered.
Practically, there should not be more than five. Windows should not overlap. Each
window has its own extent (height and width) and location (the position of its home
on the screen). Windows can change their extent and location as long as they never
overlap. The initial extent and location of a window is determined in the attach
description of the window.

Create Window Operation

The creation and definition of windows is done with arguments to window_call
or with the entry points of the window_ subroutine. The first action discussed is
create_window. Part of the creation process is the naming of windows. Windows are
associated with iox_ I/QO switches. The "name of the window" is just the name of the
switch, or as it is sometimes called, the iocb name. Since many Multics commands
and subroutines make use of the standard switches user_io, user_input, error_output,
and user_output, it is usually necessary to have these switches connected (o some
window. This is done by window_call invoke or video_utils_$turn_on_login_channel.
By convention, the bottom window of the screen is used for user_i/o.

/mportant Window Requests

Before a window can be created the user must decide on its starting line number
as discussed above in "Afttaching Video" and its length (in number of lines). As
mentioned earlier, it is customary to get space for a new window from the user_i/o
window and to position the new window at the top of the user_i/o window.
Therefore, one of the first things to do is find out where the user_i/o window is.
Once this is known determine just how high, in lines, the new window must be and
shrink the user_i/o window by that amount. It is a good idea to always check to
make sure there is enough space left in the user_i/o window to allow meaningful
communication once it has been shrunk. In our examples we will insist on at least a
five line user_i/o window.

5-44 AGY91-04

To do all that has been discussed so far in an exec_com, we would have the

following:
&~ stored in the default value segment as the_menu.
gset io_start &[window_call get_first_line]
tset io_height &[window_call get_window_height]
&set menu_height &[menu_describe the_menu -height]
&- Now calculate the new positions of both windows.
&set menu_start & (io_start)
g¢set io_start &[plus &(io_start) &(menu_height)]
&set io_height &[minus &(io_height) & (menu_height)]

&- The label referenced below would, of course, need to be
&~ defined and would include an appropriate error message.

&if &lnless &(io_height) 5]
&then &goto USER_I/0_TOO_SMALL

&- Now shrink user_i/o

window_call change_window -line &(io_start) -height &(io_height)

&- And define the new window, called able

window_call create_window -io_switch able -line & (menu_start) -height

& (menu_height)

The real work of creating the new window above was done by the window_call
command with the create_window argument. This command created the necessary iox_
1/0 switch attachments to make "able"” an [/0O switch which describes a video system

window that occupies the first "menu_height” lines of what was user_i/o.

To do the same thing in PL/I you would use the following code fragment:

/% Get the variables initialized. We assume that the menu -has =%/
/% been created and that the variable called the_menu points */
/% to the menu. %/

%Zinclude menu_dcls;

%include window_control_info;
dcl 1 menu_needs like menu_requirements;
deci 1 n

del 1

N T Py . 15t i . HE H
menu window info like window pcsition mfc;
.

o
! H

e
o_window_info like window_position_info

5-45

AG91-04

/% Get information about size of the menu. %/

menu_needs.version = menu_requirements_version_1;

call menu_Sdescribe (the_menu, addr (menu_needs), code);
if code *= 0 then deo;
process the error

end;
/* Get information about size of the user_i/o window. %/

io_window_info.version = window_position_info_version_1i;
call iox_Scontrol (iox_Suser_io, '"get_window_info",

addr (io_window_info), code) ;

if code ™= 0 then do;

process the error

end;
menu_window_info = io_window_info;

/% Now calculate the new positions of both windows. %/

menu_window_info.origin.line = io_window_info.origin.line;

menu_window_info.extent.height = menu_needs.lines_needed;
io_window_info.origin.line = io_window_info.origin.line +
menu_needs.1ines_needed;

io_window_info.extent.height = io_window_info.extent.height -

menu_needs.|ines_needed;

if io_window_info.extent.height < 5 then do;
complain that user_i/o window
is too small

end;
/* Now shrink user_i/o window. */

call iox_Scontrol (iox_Suser_io, '"set_window_info',
addr (io_window_info), code) ;
if code *= 0 then do;
process the error

end;

AG91-04

t Create an |/0 switch by which the menu window will be %/

% referenced. %/
menu_io_switch_name = "menu_i/o." || unique_chars_ ("0"b);
call iox_S$find ioch (menu_io_switch_name, menu_window_iocbp; code);

if code ™= 0 then do;
procéss the error
end;
/% And define the new menu window */

call window_Screate (video_data_$terminal_iocb,
addr (menu_window_info) , menu_window_iocbp, code) ;
if code ™= 0 then do;
process the error

-

end;

Change Window Operation

In the above examples it was necessary to change or shrink the user_i/o window
in order to create a new window. When we discuss destroying windows below we will
sece 32 need to expand the user_i/o window to rtecover the space freed by the
destruction of a window.

Command level changes are done with the window_call keyword change window.
In PL/I the changes are made by the set_window_info control order. In general this
will be preceded by a get_window_info control order and some calculations.

Destroy Window Operation

Once a window is no longer needed it must be destroyed, ie., the I/O switch
must be closed and detached thus freeing up the space on the screen that was
occupied by the window. In addition, this space should be returned to some active
window so that it can be used. If the freed space is adjacent to the user_i/o window
it should be consumed by that window, but it can be added to any adjacent window.

In our examples we will add it back to user_i/o.

5-417 AG91-04

To reverse the effects of the exec_com window creation example above we would
have:

&- destroy the able window

window_call delete_window -io_switch able

&- and let user_i/o have the space back

&set io_start &(menu_start)

&set io_height &[plus &(menu_height) & (io_height)]

&set menu_start O menu_height O

window_call change_window -line & (io_start) -height &(io_height)
In PL/1 we would have:

/% destroy the able window */

call window_Sdestroy (...);
if code ™= 0 then do;

process the error

end;
/* and let user_i/o have the space back */

io_window_info.origin.line = menu_window_info.origin.line;
io_window_info.extent.height = menu_window_info.extent height
+io_window_info.extent.height;

call iox_Scontrol (iox_Suser_io, '"set_window_info'",
addr (io_window_info), code);
if code ™= 0 then do;

process the error

end;

5-48 AGY91-04

Clear Window Operation

Another very useful operation is the clear_window operation. This clears the
entire window to all spaces and leaves the cursor positioned at the upper left hand
corner of the window. There are other clearing operations, but this one is the
simplest and most useful.

From command level we can clear the user_i/o window by:

window_call clear_window

If we had wanted to clear, say the able window, we would have included the
—-io_switch control argument specifying able as the window to operate on.

This same effect, clearing the able window of our examples, can be accomplished
from PL/I by:

call window_Scliear_window (menu_window_iocbp, code);
if code 7= 0 then do;

process the error

end;

The clear_window operation is useful when an application wants to start with a
clean slate in the user_i/o window. For example, before printing out a description of
some menu option it might be desirable to clear the user_i/o window.

MAGNETIC TAPE INPUT/OUTPUT

Magnetic tape input/output operations in Multics Release 11.0 differ from those
of previous releases. The two methods of performing tape input/output are described
below.

Magnetic Tape Input/Output in Releases Previous to MR 11.0

Prior to MR 11.0, tape I/0 was performed through iox_ calls to one of four
170 modules, as follows:

tape_ansi_
tape_ibm_

tape_mult_
tape_nstd_

The individual I/0O modules each supported operations specific to a particular
tape format. The user had to attach the appropriate 1/0 module depending on the
file format in which the tape was to be read or written.

5-49 AG91-04

The tape I/0 modules as well as the iox_ subroutine are described in the
Subroutines manual.

Magnetic Tape input/Output in MR 11.0

In MR 11.0, the mtape_ I/0 module provides an alternative method for
processing tapes in ANSI or IBM format. (The tape_ansi_ and tape_ibm_ 1/0
modules remain available for use.)

The mtape_ I/0O module is called via an attach description made through the
iox_ subroutine. The mtape_ 1/0 module supports three new iox_ entries: iox_S$open_file,
iox_3%close_file, and iox_$detach.

The new entrypoints allow control parameters to be passed to the open, close, and
detach entries. The open_file entry in particular allows the tape file name, file
position and file attributes to be given when the file is opened instead of with the
attach description (as is done in the tape_ansi_ and tape_ibm_ I1/0 modules). This
allows several tape files to be processed during a single attachment. The mtape 1/0
module as well as the iox_ subroutine is described in the Subroutines manual.

The mtape_ I/0 module currently supports two tape formatting standards, IBM
and ANSI. Format-specific processing operations are performed by externally—callable
subroutines known as per—-format modules. Current per-format modules are: ansi_tape_io_
and ibm_tape_io_. Selection of the appropriate per-format module is performed by
mtape_ based on information returned by RCP after a successful volume mount, and
on the presence of the -volume type attach description argument for mtape_. The
per—format modules are described in the Subroutines manual.

All control arguments that are part of the mtape_ attach and detach descriptions
and all control arguments that are specific to each per—-format module’s open and
close description are supplied with default values. The user can find the system-supplied
default value for any of the above entities by referring to the appropriate description
in the Subroutines manual. The default control arguments, as well as other argument
processing information, are stored in the data space of a standard value segment. A
user can set (as well as display and delete) the default control arguments by means of
user commands. See the descriptions of the mtape_set_defaults, mtape_get_defaults and
mtape_delete_defaults commands in the Commands manual.

BULK INPUT AND OUTPUT

The Multics system has provisions for three types of bulk I/0: high—speed
printer output, punched card input, and punched card output.

Printed Output

The enter_output_request command causes the contents of a Multics file (segment
or multisegment file) containing Multics ASCII characters to be printed on a

5-50 AG91-04

high-speed printer. See the description of the enter_output_request command in the
Commands manual. See also the dprint command in Commands manual.

The printed ouiput has the following parts:

1. Header sheet. This sheet identifies: the requesting access_id; the person
and destination of the person to whom the dprint is sent; the pathname
of the file; the date, time, and day of the week the file was printed;
the physical device on which the file was printed; and the installation
identifier. If more than one copy of the file is requested, the number
of the copy (in the form "copy m of n" where m and n are numbers
from 1 to 30 for eor or 4 for dprint) is indicated on the header sheet.
Each corner of the header sheet contains the sequence number of the
_printed output. If more than one copy of the file is requested, the
header sheet of each duplicate copy has the same sequence number.

2. Announcement page. This page may be used by the installation to send
a message to all users. The dprint is folded so the header sheet is
always an outside page and the announcement page is an inside page.
Except for duplicate copies of the same segment, the header sheet and
announcement page are secparated by four lines of overstruck characters
printed on the paper perforation; these separator lines and the sequence
number of the printed output assist in filing output.

3. File contents. The contents of the file are printed in a format
determined by the characteristics of the physical device or by control
arguments to the enter_output_request {or dprint) command, and also by
escape sequences in the text if escape processing is being performed.
See the enter_output_request (or dprint) command in the Commands
manual for explicit details on formatting output.

4. Summary sheet. This sheet indicates: the date, time, and day the output
was requested; the date, time, and day the output was printed; the
request type; the queue; the physical device; the number of lines and
pages in the printed output; and the cost per 1000 lines and 1000 pages;
the total cost of the output and the access_id to which it is charged.
The summary sheet also identifies the pathname of the file, the
entryname of the file, and the destination to which the output is sent.
The sequence number of the printed output is also in each corner of
the summary sheet. The printed output is folded so the summary sheet
is always an outside page.

VERTICAL FORMAT CONTROL

The printer software supports an escape (esc) mode that allows users to control
the vertical format of their data by inserting printer control escapes in the text. The
escape sequence can be used to make the printer slew to a specified line on each
sheet of paper, similar to a slew to VFU pattern. The mechanisms for specifying an
escape sequence, specifying channel stops and causing escape processing to take place
are the same for remote terminal printers as for local site printers.

5-51 AG91-04

There are 16 logical channels that can be set for each line of the paper.
Physical page lengths up to 127 lines are supported. The administrator uses the request
type info segment to set "esc" mode and to define which of the 16 channels are
associated with each line number. There may be one request type info segment for
each request type of generic type “printer.” The contents of the request type info
segment for a given request type may be printed on the terminal by the command:

display_prt_rqti >ddd>idd>rqt_info_segs>SEG

where SEG is the entryname of the request type info segment. For more information
on the display_prt_rqti command, see the Mu/tics Bulk [/0 Manual, QOrder No.
CC34. (By convention, the entryname is <request_type>_info, e.g., printer_info for
request type printer.)

Within the request type info segment the channel definitions might be described
as follows:

Line (1): 1, 5, 15;
Line (11): 5;
Line (21): 53

Line (30): 15;

This means that a slew to channel 1 moves the paper to line 1 (This is the same as a
new page or form feed character). Similarly, the escape sequence <esc>ch<etx> (slew
to channel 5) moves the paper to line 1, a second slew to channel 5 moves to line
11, then to line 21, In general, if the printer is on line X when it receives a slew o
channel <n>, it searches forward starting at line X+1 until it finds a line with channel
<n> set and moves the paper to that line. If a channel stop for channel <n> is not
defined, the printer advances to the next line.

The move to channel <n> escape control sequences are specified in the text of a
print file by:
<esc>c<n><etx>
where:

typ <esc>
is the ASCII ESC character (octal 033).

Cc
is the lowercase ASCII character "c¢" which defines this to be a
channel slew control sequence.
<n>
is an integer that defines the target channel of the slew control
sequence.
(1<n<16)

5-52 AG91-04

<etx>
is the ASCII ETX character (octal 003).

If esc mode has been set in the rqi_info_seg, this control causes the printer to
move to the next line associated with channel <n>,

Punched-Card Output

The enter_output_request command described in the Commands manual causes the
contents of Multics files to be punched. See also the dpunch command in the
Commands manual. The files can be punched under mcc, raw, or 7punch conversion
modes. See Appendix C for more information on punched card output. Files punched
by a remote station will be punched under rmcc mode.

Punched-Card Input

Facilities are provided to read punched card decks into Muitics files. There are
several conventions for interpreting the punched codes used in a user’s card deck. The
central site reader is capable of reading any punch codes, including binary data.
Remote terminal card readers normally cannot read binary code. There are four types
of card formats that can be input to Multics: Multics card codes (mcc), remote
Multics card code (rmcc), 7punch, and raw.

mecc
The Multics card code is defined in "Punched Card Codes” in Appendix
C of this document. It consists of a superset of the EBCDIC card
punch codes and can be produced by 029 key punches. Each column is
interpreted as one character. The 12-bit card codes are converted to
9-bit ASCII codes.

rmcee

Remote Multics card code does not concern itself with punch codes, but
rather with the characters that are transmitted. Selection of punch code
is determined on the basis of hardware configuration. Conversion and
translation is specified by the -terminal_type control argument to the
remote_input_ 1/0 module. For more information see the description
of the remote_input_ I/0 module in the Subroutines manual. Punch
codes are not specified, unlike mcc format, because various remote
terminals use different codes for the same characters, and it is the
character, not the punch code, that is transmitted.

7Tpunch
The 7punch decks are binary representations of existing files with
checksums and sequence numbers added, and the data portions of the
cards are read in exactly as they were punched out. The format of a
Tpunch deck is described in Appendix C.

5-53 AG91-04

Taw
Raw decks are simply read into Multics files without any conversion,
and without regard to format; that is, the 960 bits on each card are
read into the file in column order and without padding. Any desired
conversion can then be performed by the user.

The flip cards prepared when a deck is punched (described in Appendix C) and
other sorts of labeling cards from other systems are not read correctly and should be
removed from decks. See Appendix C for more information on punched card input.

There are two modes of Multics punched card input: bulk data input and
remote job entry (RJE). Bulk data input is used to copy data from punched cards
into the Multics storage system. Remote job entry on Multics is a mechanism that
allows a registered user to submit an absentee job from a card deck.

ACCESS REQUIRED FOR CARD INPUT

In order for a user to submit a card deck for input to Multics, the following
conditions must be met:

1. The user must be registered for card input and have an assigned card
input password set up by the system administrator, or have been given
permission to use the null password feature.

2. A special access control segment must exist in the user’s mailbox
directory. Proper access must be set for the station in order for it to
read card decks {(see "Card Inpui Access Conirol Segmeni” later in this
section.)

3. The user must have permission to use the card input station. This is
granted by the system administrator on the ACL of the station access
control segment.

For RJE jobs, the tag portion of the process group ID of the abseniee process
(which is used in access control calculations) is "p". A system administrator or a user
may deny access to RJE jobs with the ACL term:

null *.%.p

or similar ACL terms, assuming that there does not exist a more specific ACL term
that gives access.

Card Input Registration and Password

Each wuser wusually must be given a card input password by the system
administrator in order to use any form of card input on Multics. The card input
password defined should be different from the user’s interactive password. The
Person_id and password of the user are provided on control cards at the time the
deck is submitted.

5-54 AGI1-04

The user who submits card input must include a password card as the second
card of his deck. It has the form:

++PASSWORD XXXXXXXX

where the xxXxxxxx is the user’s registered card input password (1-8 characters). It is
customary to turn the keypunch printer off when punching the password. Users who
have r access to >scl>rcp>card_input_password.acs do not need to be registered
for card input. In this case, xxxxxxxx should be blanks.

If the Person_id given in the ++DATA or ++RJE card is not registered
appropriately, or if the password given on the password card is incorrect, the input is
not accepted. If the password is not specified and the mode is bulk data input, and
the user has r access to >scl>rcp>card_input_password.acs, the input is allowed.
In this case the person need not even be registered. The submitter must have access
to the card input and station access control segments defined below.

Card Input Access Control Segment

The card input access control segment allows a user to control which stations
can be used to read bulk card input using his Person_id and Project_id. The
pathname of this access control segment is:

>udd>Project_id>Person_id>card_input.acs
This segment must exist with an ACL containing read access to each station that is

permitted to submit bulk data input for the user and execute access for each station
that is permitted to submit RJE jobs. For example:

re Station %.%

5-55 AG91-04

The ACL star convention may be used in the normal fashion. If the user job lacks
access to the card input ACS, input is not accepted. If this segment does not exist or
if the access is not as specified, card input will not be permitted. In addition, the
user must have permission to use the station, with the same type of access as defined
above, granted by the system administrator on the ACL of the station access control
segment as discussed below. Remote terminal login is accepted only from remote
terminals that have a registered station ID and password. The name of each registered
station and its password is stored in the person name table.

Station Access Contro/ Segment

Each station has an access control segment in the directory
>system_control_l>rcp>named station.acs, The ACL of this segment lists all

users allowed to submit card input through the station; a user must have read access
for bulk data input and execute access for RJE. For example:

re Person_id.Project_id.*

The ACL star convention may be used in the normal fashion. If the user job lacks
access to the station ACS. the input is not accepted.

This check allows a site to specify that a certain station is reserved for the use
of a certain group of users. The ACS can also be used to ensure that certain stations
are not used to submit card input for privileged users, such as #*.SysAdmin, who
should never use the facility for reasons of security. If a user is not on the ACS for
a station he wishes to use, he should contact the System Adminstrator to obtain
proper access.

CONTROL CARD [INFORMATION

Control cards are used to tell the card input process how to read the user’s data
and what to do with it. Each control card consists of a key (e.g., ++FORMAT) and
possibly some data fields. The control card key must start in column 1 and may not
contain any spaces. Data fields are separated from the key and from each other by
one Of more Spaces.

All letters punched on the control cards are mapped to lowercase except those
immediately following an escape character (backslash or cent sign). For example,
\SMITH.\SYS\MAINT is mapped into Smith.SysMaint.

At the central site, users submit card decks to operations personnel for
processing. At remote sites that have a card reader terminal, the user may have to
physically place the card deck in the reader. In the latter case, the user must be sure
to include some additional control cards that must be placed before and after the
user’s card deck. For more information on these additional control cards (++EOF and
++UID, for example) see the Multics Bulk input/Output, Manual Order No. CC34.

5-56 AG91-04

BULK DATA INPUT

Bulk data input is the mode of card input used to read a punched card deck
and write its contents into a card image segment in the Multics storage system. The
user is abie to read the card image segmeni from his normai Muitics process
(interactive or absentee.) For security reasons, card image segments are created in
system pool storage rather than in the user’s directory. Once the data has been read,
the user may copy the card image segment into his directory using the copy_cards
command (see the description of this command in the Commands manual).

Card image segments must be copied from the system pool storage within a
reasonable time, as these segments are periodically deleted from the system pool.

The user identified on the ++DATA card is notified by mail when his card deck
has been successfully read.

A complete card deck for bulk data input is shown below.

Contro/ Card Format of a Card Deck for Bulk Data /nput

++DATA DECK_NAME PERSON_ID PROJECT_ID
++PASSWORD PASSWORD

++CONTROL OVERWRITE

++AIM ACCESS CLASS OF DATA CARDS
++FORMAT PUNCH_FORMAT MODES

++INPUT

(user data cards)

The only control cards required are the first which is an identifier card, the second
which is a password card and the last which is the end of control input. For an
explanation of all the control cards refer to Appendix C of this manual.

5-57 AG91-04

The user should submit a complete card deck to operations. The deck must
follow the format specified in the card input section in Appendix C.

Normally, the access_class is system_low and the ++AIM cards can be omitted.
However, if the access_class is greater than system_low, the ++AIM cards are required.

REMOTE JOB ENTRY

Remote job entry is used to copy standard Multics commands punched on cards
into an absentee input segment and have it submitted as an absentee job (as though it
were done from an interactive process). The user’s card deck is copied into an
absentee input segment created in the normal system pool storage used for bulk data
input card image segments. When the user’s deck has been successfully read, an
absentee request is submitted on behalf of the user who provided the deck. A special
header is added to the absentee input segment so that a dprint request of the absentee
output segment is automatically generated using the request type associated with the
remole terminal or the request type of the local printer, depending on the input
device.

Format of a Card Deck for Remote Job Entry

++RJE DECK_NAME PERSON_ID PROJECT_ID
++PASSWORD ~ PASSWORD

++AIM ACCESS CLASS OF ABSENTEE PROCESS
++RJECONTROL CONTROL ARGS TO THE EAR COMMAND
++RJEARGS ARGUMENTS FOR THE ABSENTEE PROCESS
+EPILOGUE COMMAND

++FORMAT PUNCH_FORMAT MODES

++INPUT

(user absentee file)

The only cards required are the first which is an identifier card, the second which is
a password card and the last which is the end of control input. For an explanation
of all the control cards refer to Appendix C of this manual ‘

The user should submit a complete card deck to operations. The deck must
follow the format specified in the card input section in Appendix C.

Normally, the access_class is system_low and the ++AIM cards can be omitted.
However, if the access_class is greater than system_low, the ++AIM cards are required.

5-58 AG91-04

REMOTE JOB ENTRY WITH FOREIGN COMPUTER SYSTEMS

Multics provides facilities for users to submit card decks to a remote computer
system for execution and to receive output from that execution either for printing/punching
locally or for online perusal. This section describes the mechanisms available for using
this facility.

Submitting Card Decks to a Remote System

Each card deck to be transmitted to a remote system for execution must be
contained in a separate Multics segment. This segment can be created using an editor,
bulk card input, or any other appropriate mechanism.

The segment must consist of ASCII text only; no binary data (object segments,
and so on) can be included. The exact format of the segment’s contents is dependent
on the remote system being accessed and should be determined from the appropriate
documentation for the remote system.

To transmit the segment to the remote system, issue the enter_output_request or
dpunch command, specifying the mcc conversion mode and the request type established
by your system administrator explicitly for this purpose. A separate request type will
be used for each remote system to which card decks can be submitted.

For example, to submit the card deck contained in the segment "sample.cdc" in
the working directory to a remote CDC system, deleting the deck after it is
successfully transmitted, issue the command:

enter_output_request -mcc -rqt cdc_jobs -dl sample.cdc

where "cdc_jobs" is the request type established by your system administrator to
submit decks to the CDC system.

Receiving Output from a Remote System

By default, printed and punched output returned by a remote system to Multics
is automatically printed or punched locally. However, your system administrator may
decide that the returned output should be made available to users for online
inspection.

5-59 AGI1-04

If output is to be available for online inquiry, each output file must contain
Multics control records that establish the identity of the user who owns the file.
Either the job control language (JCL) submitted to the remote system or the
programs(s) executed on the remote system must be modified to cause the required
control records to appear in the output files. Check with your system administrator to
determine which mechanism must be used for each remote system.

Returned output files that are to be available for online examination are placed
in system pool storage where they may be retrieved using the copy_cards command
described in the Commands manual. QOutput files must be copied in a reasonable time,
as they are periodically deleted from the system pool.

Format of an Ouiput Fiie Transmitted to Muitics for Oniine Perusal

++|DENT FILE_NAME PERSON_ID PROJECT_ID
++FORMAT MODES

++CONTROL OVERWR!TE AUTO_QUEUE
++INPUT

(output data)

<EOF record>

The only user—supplied control records required are ++IDENT and ++INPUT. For
an explanation of these control records, refer to Appendix C of this manual.

Each output file is delimited by an end-of-file (EOF) record supplied
automatically by the remote system. All control records in the output file from
++IDENT through ++INPUT inclusive and the EOF record are removed from the file
before it is placed into pool storage.

For printed output, each paper motion command in the file is translated into the
character sequence that will best simulate the requested motion when (and if) the file
is printed locally via the enter_output_request or dprint command. The exact character
sequences used are given in Table 5-6.

One of the paper motion commands that may be received is a request to skip to
a specific printer channel stop. This command is converted to a logical channel slew
sequence as defined in "Vertical Format Control” earlier in this section. The user
should check the RQTI segment of the request type used for printing the output file
to determine which channel stops may be used in the output file. (The program
executed on the remote system is responsible for placing this particular paper motion
command in the output file. The exact mechanism used to do this should be
determined from the appropriate documentation for the remote system.)

5-60 AG91-04

Table 5-6. Translations of Paper Motion Commands in Qutput Files

Paper motion command Character sequence
Slew zero lines CR (octal 015) (1)
Slew one line NL (octal 012)
Skip to channel N ESC ¢ <N> ETX (2)
1 Overprint the current line with the previous line.
2. This sequence is octal 033, octal 143, the decimal representation of the

channel number encoded as ASCII characters (e.g., octal 061, octal 065
for channel #15) and octal 003.

IMPLEMENTATION OF INPUT/OUTPUT MODULES

The information provided below is applicable to writing I/0 modules. It
describes the format and function of 1/0 control blocks, and provides a list of
implementation rules. For descriptions of the iox_ entry points, refer to the
Subroutines manual.

Some instances in which a user might wish to create a new I/0O module are
given below:

1. Pseudo Device or File. An I/0 module could be used to simulate 1/0
to/from a device or file. For example, it might provide a sequence of
random numbers in response to an input request. The discard_ system
1/0 module {(described in the Subroutines manual) is an example of this
sort of module.

W

New File Type. An 1/0 module could be used to support a new type

of file in the storage system, such as a file in which records are |
accessed via a hash table. Another example is an I/0 module which |
supports Honeywell GCOS standard tape formats. |

3. Reinterpreting a File. An I/O module could be designed to overlay a
new structure (relative to the standard file types) on a standard type of
filee. For example, an unstructured file might be interpreted as a
sequential file by considering 80 characters as a record. The record_stream_ |
170 module does this type of interpretation. |

5-61 AG91-04

4, Monitoring a Switch. An I/0 module could be designed to pass
operations along to another module while monitoring them in some way
(e.g., by copying input data to a file). The audit_ system I/0 module
(described in the Subroutines manual) is an example of this sort of 1/0
module.

5. Unusual Devices. Working through the tty_ I/0 module (described in
the Subroutines manual) in the raw mode, another I/0 module might
transmit data to/from a device that is not a standard Multics device
type (as regards character codes, etc.).

The last three items listed illustrate a common arrangement. The user attaches an
170 switch, x, using an 1/0 module, A. To implement the attachment, module A
attaches another switch, y, using another I/0O module, B. When the user calls module
A through the switch X, module A in turn calls module B through the switch y. Most
nonsystem 1/0 modules that perform true I/0 work in this way, because a nonsystem
1/0 module (or some module that it calls) in turn calls a system I/O module. There
are system [/0 routines at a more primitive level than the I/0 modules, but
user—written 1/0 modules ordinarily do not call these routines.

1/0 Control Blocks

An 1/0 switch is embodied by an I/0 control block (IOCB) that is created
when iox_$find_iocb is called the first time the I/0 switch is referenced by name.
The control block remains in existence for the life of the process unless explicitly
destroyed by a call to iox_$destroy_ioch.

The principal components of an I/O control block are pointer variables and
entry variables whose values describe the attachment and opening of the I/0O switch.
There is one entry variable for each 1/0 operation with the exception of the attach
operation, which does not have an entry variable since there can be only one attach
entry point in an 1/0 module. To perform an 1/0 operation through the switch, the
corresponding entry value in the control block is called. For example, if iocb_ptr is a
pointer to an I/0 control block, the call:

call iox_Sput_chars (iocb_ptr, buff_ptr, buff_len, code);

can be thought of as:

call iocb_ptr->iocb.put_chars (iocb_ptr, buff_ptr, buff_len, code);

All routines must call the iox_ subroutine, as the internal representation of the control
block may change.

5-62 AG91-04

/10 CONTROL BLOCK STRUCTURE

The declaration given below describes the first part of an I/0 control block.
Only those few 1/0 system programs that use the remainder of the I/0O control block
deciare the entire block. Thus, aii references to 1/0 controi biocks here refer only io
the first part of the control block. For example, the statement "no other changes are
made to the control block” means that no other changes are made to the first part of
the control block, and so on. The I/O system might make changes to the remainder
of the block, but these are of interest only to the I/O system. For full details on
the entry variables, see the descriptions of the corresponding entries in the iox_
subroutine in the Subroutines manual and the iox_$init_standard_iocbs entry point in
this manual. This structure is declared in the iocb.incl.pll include file.

dcl 1

DR NNDNDNONNNDND -

NN

N

NN

NN NN

2

2
2

[o]
0
o

version
name
actual_iocb_ptr

attach_descrip_ptr

attach_data_ptr

open_descrip_ptr

open_data_ptr
reserved
detach_iocb
open

close
get_line

get_chars

put_chars
modes
position
control
read_record

write_record
rewrite_record
delete_record
seek_key

read_key

read_length
open_file

close_file
detach

aligned based,

character (4) aligned,

(ptr, fixed, bit (1) aligned,

(%) ,

(21-/\

56) varying, fTixed {

(ptr, fixed (21), fixed (35)),
(ptr, fixed bin, char (%),

(ptr, ptr, fixed (21), fixed (21),

(ptr, ptr, fixed (21), fixed (21),

-
<

bit (1) aligned, fixed bin (35)),

(*), fixed bin (35)),

char (32),
ptr,
ptr,
ptr,
ptr,
ptr,
bit (72),
entry (ptr, fixed (35)),
entry
fixed (35)),
entry (ptr, fixed (35)),
entry
fixed (35))
entry
fixed (35)),
entry (ptr,
entry (ptr, char
entry (ptr,
entry (ptr,
entry (ptr,
fixed (35)),
entry
entry
entry (ptr, fixed (35)),
entry {(ptr, char
fixed (35)),
entry
fixed (35)),
entry
entry
entry (ptr, char
entry

(ptr, char (%), fixed bin (35));

ptr, fixed (21), fixed (35)),
fixed (35)),
fixed, fixed (21), fixed (35)),
char (%), ptr, fixed (35)),
ptr, fixed (21), fixed (21),

(ptr, ptr, fixed (21), fixed (35)),
(ptr, ptr, fixed (21), fixed (35)),

1)
ijs

(ptr, char (256) varying, fixed (21),

declare iox_Siocb_version_sentinel character (4) aligned external static;

5-63

AG91-04

ATTACH POINTERS

If the I/0 switch is detached, the value of iocb.attach_descrip_ptr is null. If
the I/0 switch is attached, the value is a pointer to the following structure:

dcl 1 attach_descrip based aligned,
2 length fixed bin(17),
2 string char (0 refer (attach_descrip.length));

The value of attach_descrip.siring is the attach description. See the attach
description earlier in this section.

If the I/O switch is detached, the value of iocb.attach_data_ptr is null. If the
I/0 switch is attached, the value may be null, or it may be a pointer to data used
by the I/0O module that attached the switch. To determine whether the 1/0 switch is
attached or not, the value of iocb.attach_descrip_ptr should be examined; if it is null,
the switch is detached.

OPEN POINTERS

If the I/0 switch is closed (whether attached or detached), the value of
iocb.open_descrip_ptr is null. If the switch is open. the value is a pointer to the
following structure:

dcl 1 open_descrip based aligned,
2 length fixed bin(17),
2 string char (0 refer {open_descrip.iength));

The value of open_descrip.string is the open description. It has the following
form:

mode {info}

5-64 AGI1-04

where:

1. mode
is one of the opening modes (e.g., stream_input) listed below. The modes and
their corresponding numbers are:

stream_input
stream_output
stream_input_output
sequential_input
sequential_output
sequential_input_output
sequential_update
keyed_sequential_input
keyed_sequential_output
10 keyed_sequential_update
11 direct_input

12 direct_output

13 direct_update

O oo~ OV W N

The include file iox_modes.incl.pll declares a set of named constants for these |
mode values. '

2. info
is other information about the opening, such as the open description. If info |
occurs in the string, it is preceded by one blank character.

If the 1/0 switch is closed, the value of iocb.open_data_ptr is null. If the I/0
switch is open, the value may be null, or it may be a pointer to data used by the
I/0 module that opened the switch. The iox_modes.incl.pll include file gives standard
names and named constants for the opening modes.

ENTRY VARIABLES

The value of each entry variable in an I/O control block is an entry point in
an external procedure. When the I/0 switch is in a state that supports a particular
operation, the value of the corresponding entry variable is an entry point that
performs the operation. When the 1/0 switch is in a state that does not support the
operation, the value of the entry variable is an entry point that returns an appropriate
error code. The iox_ subroutine provides four error entries that set the error code
argument for the 1/0 module entry to an appropriate error_table_ value. The entries
and the corresponding error codes are:

iox_Serr_not_attached (error_table_Snot_attached)
iox_Serr_not_closed (error_table_Snot_closed)
iox_Serr_no_operation (error_table_Sno_operation)
iox_Serr_not_open (errér_tab]e_Snot_open)

5-65 AG91-04

SYNONYMS

When an I/0 switch named x is attached as a synonym for an I/0 switch
named y, the values of all entry variables in the I1/0 control block for x are identical
to those in the 1/0 control block for y with the exception of iocb.detach. Thus a
call:

call iox_S<operation> (x_iocb_ptr,...);

immediately goes to the correct routine.

The values of iocb.open_descrip_ptr and iocb.open_data_ptr for x are also the
same as those for y. Thus, the I/O routine has access to its open data (if any)
through the 1/0 control block pointed to by x_iocb_ptr.

The value of iocb.actual_iocb_ptr for x is a pointer to the control block for the
last switch in a chain of switches that have been connected to each other by the syn_
1/0 module. (When the switch x is not attached as synonym, this pointer points to
the control block for x itself.) I/0 modules use this pointer to access the actual 1/0
control block whose contents are to be changed, for example, when a switch is
opened. The 1/0 system then propagates the changes to any other control blocks that
have been attached as synonyms to the actual 1/QO control block.

Writing an 1/0 Module

The information presented in the following paragraphs pertains to the design and
programming of an I/0 medule. In particular, conventions are given that must be
followed if the I1/0 module is to interface properly with the 1/0 system. The reader
should be familiar with the material presented under the headings "Multics Input/Output
System" and "File Input/Output,” in this section as well as with the iox_ subroutines
description in the Subroutines manual.

5-66 AG91-04

DESIGN CONSIDERATIONS

Before programming begins on an I/0O module, the functions it is to perform
should be clearly specified. In particular, the designer should list the opening modes
to be supported and consider the meaning of each 1/0 operation supported for those
modes. See also Table 5-1, which describes what operations should be supported for
each opening mode.) (See "Open Pointers” above for a list of opening modes.) The
specifications in the description of the iox_ subroutine must be related to the
particular I/0 module (e.g., what seek_key means for the discard_ I/0O module).

The designer should decide what the attach, open, close and detach descriptions
will be. The attach description defines all the information needed to attach an 1/0
switch through the I/O module to a specific device and/or volume. The open
description gives all information relating to a specific file (a set of data on the
volume), its file location and attributes. The close description gives the disposition
information for the file or position information for the volume after the file is
closed. The detach description gives the disposition of the device or volume after the
1/0 switch is detached. If open, close and detach descriptions are not needed, then
the designer should implement a nonextended I/0 module, because it is easier to
interface nonextended 1/0 modules with language 1/0 facilities. If open, close and
detach descriptions are needed, an extended I/0 module must be implemented to
accept these descriptions.

An 1/0 module contains routines to perform attach, open, close, and detach
operations and the operations supported by the opening modes. Typically, though not
necessarily, all routines are in one object segment. If the module is in a bound
segment, only the attach entry need be retained as an external entry. Other routines
are accessed through entry variables in I1/0 control blocks.

An I/0 module may have several routines that perform the same function but
in different situations {e.g., one get_line routine for stream_input openings, another for
stream_input_output openings). Whenever the situation changes (e.g., at opening), the
module stores the appropriate entry values in the I/O control biock.

5-67 AGI1-04

IMPLEMENTATION RULES

The following rules apply to the implementation of all I/0 operations.
Additional rules that are specific to a particular operation are given later. In the
rules, iochb is a based variable declared as described under "I/0 Conirol Blocks” above,
and jocb_ptr is an argument of the operation in question.

1 For most operations, the usage (entry declaration and parameters) of a
routine that implements an I/0 operation is the same as the usage of
the corresponding entry in the iox_ subroutine. See the Subroutines
manual for details on the iox_ subroutine. Exceptions are the attach,
open_file, close_file, and detach operations. The I/0 module calling
sequences for these operations are described below.

2. Except for attach and detach, the actual 1/0 control block to which an
operation applies (i.e., the control block attached by the called 1/0
module) must be referenced using the value of

iocb_ptr->iocb.actual_iocb_ptr, It is incorrect to use just iocb_ptr,
and it is incorrect to remember the location of the control block from
a previous call (e.g.. by storing it in a data structure pointed to by
iocb.open_data_ptr).

3. On entry to an I/0 module, the value of iocb_ptr->iocb.open_data_ptr
always equals the value of:

iocb_ptr->iocb.actual_iocb_ptr->iocb.open_data_ptr

The value of iocb_ptr—>iocb.open_descrip_ptr always equals the value of:
iocb_ptr->iocb.actual_iocb_ptr->iocb.open_descrip_ptr

Thus, the data structures related to an opening may be accessed without
going through iocb.actual_iocb_ptr. However, if you need to free or
reallocate the structures pointed to by iocb.open_data_ptr and
iocb.open_descrip_ptr, you must reset these variables using
iocb_ptr->iocb.actual_iocb_ptr as shown above, and you must
follow the procedures in step 4 below to propagate these changes to
synonym switches.

4. If an I/0 operation changes any values in an I/0 control block, the
changes must be made in the actual 1/0 control block (Rule 1 above).
1/0 modules should mask IPS signals when the iocb is being modified,
to prevent asynchronous event call handlers from using an iocb which is
in an inconsistent state. To mask IPS signals:

a. Get ready to change the iocb by copying all pointers or entry
constants that the new iocb will contain into automatic variables.
This will snap links to lessen the probability of a linkage error
while interrupts are masked.

5-68 AG91-04

b. Establish an any_other handler to abort the operation (by closing
the iocb if you were opening it when a failure occurs, or by
detaching the iocb if you were attaching it) and unmask IPS
signals.

C. Execute the call:

call hcs_Sset_ips_mask (0, mask);

The routine hcs_$set_ips_mask is used to disable one or more
IPS interrupts. (See the description of hcs_$set_ips_mask in the
Subroutines manual.)

d. Change the iocb by setting the iocb pointers and entry variables |
appropriate to the operation being performed, as described below. |

€. Execute the call:
call iox_Spropagate (iocb_ptr); I

where iocb_ptr points to the changed control block. The routine |
iox_$propagate reflects changes to other control blocks attached
as synonyms. It also makes certain adjustments to the entry
variables in the control block when the I/0 switch is attached,
opened, closed, or detached.

f. Execute the call:

hcs_Sreset_ips_mask (mask, mask) ;

This routine is used to enable one or more IPS interrupts. (See
the description of hcs_$reset_ips_mask in the Subroutines manual.)

g Revert the any_other handler.
5. The procedure entrypoints supporting all I/0 operations must be

external entry points. Only the attach entrypoint must be retained in a
bound segment containing the I/0 module.

ATTACH OPERATION

The name of the routine that performs the attach operation is derived by
concatenating the word "attach" to the name of the I/0 module (e.g., discard_attach
is the name of the attach routine for the discard_ I/0 module). Each attach routine
has the following usage:

declare module_nameattach entry (ptr, (%*)char (%) varying, bit(1)
aligned, fixed bin(35));

call module_nameattach (iocb_ptr, option_array, com_err_switch,
code) ;

5-69 AG91-04

where:

1. iocb_ptr
points to the control block of the I/0 switch to be attached. (Input)

2. option_array
contains the options in the attach description. (Input) If there are no
options, its bounds are (1:0). You should check for no options using the
PL/1 statement:

if dimension (option_array,1) = 0 then ...
Otherwise, its bounds are (1:N) where N is the number of options. iox_

divides the attach description string into the individual options which
are passed in this option_array.

3. com_err_switch
indicates whether the attach routine should call the com_err_ subroutine
(described in the Subroutines manual) when an error is detected. (Input)

nynp yes
"0'p no

4. code
| is a standard status code. (Output) The code indicates the success or
| failure of attachment, with any nonzero value indicating failure.

The following rules apply to coding an attach routine:

1 If the 170 switch is already attached (i.e., if
iocb_ptr->iocb.attach_descrip_ptr is not null), return the code
error_table_$not_detached; do not make the attachment.

2. If, for any reason, the switch is not and cannot be attached, return an
appropriate nonzero code and do not modify the control block. Call
the com_err_ subroutine if, and only if, com_err_switch is "1"b.
Optionally, sub_err_ may be called if com_err_switch is "0"b, and an
| error code is not a sufficient description of the problem. A sub_err_
| flag of ACTION_DEFAULT_RESTART should be used. If sub_err_
| returns, then the I/0 module should return the error code to the
caller. If the attachment can be made, follow the remaining rules and

return with code set to 0.

3 For a nonextended I/0 module (which does not support open, close and
detach descriptions), set iocb_ptr->iocb.open and
iocb_ptr->iocb.detach_iocb to the appropriate open and detach_iocb
routines. For an extended 1/0 module, set iocb_ptr->iocb.open_file
and iocb_ptr->iocb.detach to the appropriate open_file and detach
routines. Be sure to follow step 4 of the "Implementation Rules” above
when changing the 1/0 control block.

4. Set iocb_ptr->iocb.attach_descrip_ptr to point to a structure as
described in "I/O Control Blocks" above. The attach description in this

5-70 AG91-04

structure must be fabricated from the options in the argument
option_array. Options may be modified in the attach description (e.g., a
pathname option may be expanded), and default values should be |
included in the attach description for omitted options. |

5. If desired, set iocb_ptr->iocb.attach_data_ptr,
iocb_ptr->iocb.modes, and iocb_ptr->iocb.control., Make no
other modifications to the control block.

6. Call iox_$propagate.

OPEN OPERATION

An open operation is performed only when the actual 1/0 switch is attached but,
not open. The open routine for a nonextended I/O module has the same calling
sequence as the iox_$open subroutine. The open_file routine for an extended I1/0
module has the following calling sequence:

declare open_file_routine entry (ptr, fixed bin, (%) char (%)
varying, bit(1) aligned, fixed bin(35));

call open_file_routine (iocb_ptr, mode, option_array, unused,
code) ;

STRUCTURE ELEMENTS

iocb_ptr
points to the control block of the I/0 switch to be opened. (Input)

mode
is the number assigned to the opening mode to be used for this opening.
(Input) See iox_modes.incl.pll for a list of acceptable values and for named
constants associated with the values.

option_array
contains the options in the open description. {(Input) If there are no options,
option_array bounds are (1:0). You should check for no options using the
PL/I statement:

if dimension (option_array,1) = 0 then ..

Otherwise, its bounds are (1:N) where N is the number of options. iox_
divides the open description string into the individual options which are
passed in this option_array.

unused
must be "0"b. (Input)

code
is a standard status code. (Output) The code indicates the success or failure
of opening, with any nonzero value indicating failure.

5-71 AG91-04

The following rules apply to coding both open and open_file routines:

1. If, for any reason, the opening cannot be performed, return an
appropriate code and do not modify the I/O control block. For
exampie, if the swiich is not attached (ie.,

iocb_ptr->iocb.attach_descrip_ptr=null), then return a code of
error_table_$not_attached. If the switch 1is already open (ie,
iocb_ptr->iocb.open_descrip_ptr®=null), then return a code of
error_table_$not_closed. If an incorrect or unsupported opening mode is
given, return a code of error_table $bad_mode. If an error occurs in
an open .description option, return an error code appropriate to the
error. Optionally, sub_err_ may be called to report the error if a
simple error code isn’t sufficient to describe the error. A sub_err_ flag
of ACTION_DEFAULT_RESTART should be used. If sub_err_ returns,
then the 1/0 module should return the error code to the caller. If the
opening can be performed, follow the remaining rules and return with
code set to 0.

2. Set iocb_ptr->iocb.actual_iocb_ptr->iocb.op to an appropriate
routine. This applies for each operation allowed for the specified
opening mode. Be sure to follow step 4 of the "Implementation Rules"
above when changing the 1/0 control block. The following is a list of
possible 1/O operations:

close or close_file
get_line
get_chars
put_chars
read_record
write_record
rewrite_record
delete_record
seek_key
read_key
read_length
modes

position
control

iocb.close must be set for nonextended I/0 modules, while iocb.close_file
must be set for extended I/0 modules. Refer to Table 5-1 for a list
of operations which should be allowed for each possible opening mode.

3. If either the modes operation or the control operation is enabled with
the 1/0 switch attached but not enabled when the switch is open, set
iocb_ptr->iocb.actual_iocb_ptr->iocb.op (where op is modes or
control) to iox_$err_no_operation.

4, Set iocb.open_descrip_ptr to point to a structure as described in "I/O
Control Biocks™ above.

5-72 AG91-04

5. If desired, set
iocb_ptr->iocb.actual_iocb_ptr->iocb.open_data_ptr, Do not

make any other modifications to the conitro] block.

6. Call iox_$propagate.

CLOSE OPERATION

A close operation is performed only when the actual I/0 switch is open. The
close routine for a nonextended I/0 module has the same calling sequence as the
iox_$close subroutine. The close_file routine for an extended I/C module has the
following calling sequence:

declare close_file_routine entry (ptr, (%) char (%) varying, fixed

bin(35));

call close_file_routine (iocb_ptr, option_array, code);
STRUCTURE ELEMENTS

iocb_ptr
points to the control block of the I/O switch to be closed. (Input)

option_array
contains the options in the close description. (Input) If there are no options,
option_array bounds are (1:0). You should check for no options using the PL/I
statement:

if dimension {option_array,1} = 0 then ...

Otherwise, its bounds are (1:N) where N is the number of options. iox_ divides
the close description string into the individual options which are passed in this
option_array.

code
is a standard status code. (Output) The code indicates the success or failure of
closing with any nonzero value indicating failure.

The following rules apply to coding both close and close_file routines:

1. The close routine should set the bit counts on modified segments of a
file, free any storage allocated for buffers, etc., and in general, clean
things up. It should then free any per—opening data structures, and set
iocb_ptr->iocb.actual_iocb_ptr->iocb.open_data_ptr to null, if
this pointer is nonnull. Be sure to follow step 4 of the "Implementation
Rules" above when changing the 1/0 control block.

2. For a nonextended I/0O module, set the following to the appropriate
open and detach_iocb routines:

iocb_ptr->iocb.actual_iocb_ptr->iocb.open
iocb_ptr->iocb.actual_iocb_ptr->iocb.detach_iocb

5-73 AG91-04

For an extended I/0 module, set the following to the appropriate
open_file and detach routines:

iocb_ptr->iocb.actual_iocb_ptr->iocb.open_file
iocb_ptr->iocb.actual_iocb_ptr->iocb.detach

Set iocb_ptr~>iocb.actual_iocb_ptr—>iocb.open_descrip_ptr to null.

3. If either the modes operation or the control operation was enabled with
the switch open and should be not enabled with the switch closed, set
iocb_ptr->iocb.actual_iocb_ptr>iocb.op (where op is modes or
control) to iox_%$err_no_operation. If the operation was not enabled
with the switch open but should be enabled with the switch closed, set

+la + intl t tl] 3
the entry variable to the apppropriate routine.

4. Do not make any other modifications to the control block.
5. Call iox_§$propagate.
6. The close routine must not return without closing the switch.

DETACH OPERATION

A detach operation is performed only when the actual 1/0O switch is attached
but not open. The detach_iocb routine for a nonextended 1/0 module has the same
calling sequence as the iox_S$detach_iocb subroutine. The detach routine for an
extended I/0 module has the following calling sequence:

deciare detach_routine entry (ptr, (¥} char{*} wvarying,
fixed bin(35));

call detach_routine (iocb_ptr, option_array, code);
STRUCTURE ELEMENTS

iocb_ptr
points to the control block of the I/0 switch to be detached. (Input)

optlion_array
contains the options in the detach description. (Input) If there are no options,
option_array bounds are (1:0). You should check for no options using the PL/I
statement:

if dimension (option_array,1) = 0 then ...
Otherwise, its bounds are (1:N) where N is the number of options. iox_ divides
the detach description string into the individual options which are passed in this
option_array.
code
is a standard status code. (Output) The code indicates the success or failure of
detaching with any nonzero value indicating failure.

5-74 AG91-04

The following rules apply to coding both detach_iocb and detach routines:

1. Set iocb_ptr->iocb.attach_descrip_ptr t0 null Free any
per—attachment data structure, and set iocb_ptr->iocb.attach_data_ptr
to null. Be sure to follow step 4 of the "Implementation Rules" above
when changing the I/0 control block.

2. Do not make any other modifications to the control block.
3 Call iox_$propagate. |

4. The detach routine must not return without detaching the switch. |

MODES AND CONTRQOL OPERATIONS

These operations can be accepted with the I/0 switch attached but closed;
however, modes or control operations are usually meaningful only when the switch is |
open. When this is the case, modes and control operations should be allowed only |
when the switch is open. |

If the control operation is supported, it must return the code
error_table_$no_operation when given an invalid order. In this situation, the state of
the 1/0 switch must not be changed.

If the modes operation is supported, it must return the code error_table_$bad_mode
when given an invalid mode. In this situation, the state of the I/0O switch must not
be changed.

PERFORMING CONTROL OPERATIONS FROM COMMAND LEVEL

Most of the operations supported by an 1/0 module may be used directly from
command level by using the io_call command (see the Commands manual). When a
control operation requires an info structure (see the description of the iox_$contro}
entry points in the Subroutines manual), a special interface, the "io_call" order, is used
to make these control operations from command level possible. All standard 1/0
modules that implement control operations requiring info structures should implement
this interface, as described below.

When an io_call command of the form:

@

R IR e Wi LLi

io_cal! contro! switch_name {optional_args}

is issued, the io_call command performs an "io_call" control operation to the switch
specified using the following info structure (found in io_call_info.incl.pll):

575 AGI91-04

dcl 1 io_call_info

aligned based (io_call_infop),

2 version fixed bin,

2 caller_name char (32),

2 order_name char (32),

2 report entry options (variable),
2 error entry options (variable),
2 af_returnp ptr,

2 af_returnl fixed bin (21),

2 fill (5) bit(36),

2 nargs fixed bin,

2 max_arglen fixed bin (21),

2 args (0 refer (io_call_info.nargs))

char (0 refer
(io_call_info.max_arglen))
varying;

STRUCTURE ELEMENTS

version
is the version number of this structure, currently 1.

caller_name
is the name of the caller {normally io_call) to be used in any error

order_name
1s the order specified in the command line.

report
is an entry like ioa_ to be called to report the results of the order.

error
is an entry like com_err_ to be called to report any errors.

af_returnp
is a pointer to the active function return string if the io_call command
invoked as an active function.

af_returnl
is the maximum length of the active function return string.

nargs
is the number of optional_args specified in the command line.

max_arglen
is the length of the longest argument.

args
is an array of the actual arguments from the command line.

5-76

was

AG91-04

The I/0 module, upon receipt of an io_call order, should do the following:

1. If io_call_info.order_name specifies an order that requires an info
structure with input values, the I/0 module should use io_call_info.args
to determine what data should be placed into the info structure. Once
the structure is complete, the I/0 module should call iox_$control,
passing it io_call_info.order_name and a pointer to the info structure
just created. Exactly how io_call_info.args is to be interpreted in order
to build the info structure depends on the I/0 module and what order
is being performed. This should be documented along with the I/0
module.

2. If io_call_info.order_name specifies an order that requires an info
structure with output values, the I/0O module should call iox_S$control
passing it io_call_info.order_name and a pointer to a structure of the
appropriate kind. Then, using io_call_info.report, the I/0 module
should display the results of the control operation in some meaningful
way. It is possible in this case that io_call_info.args could be used for
control arguments to determine exactly what will be displayed. As in
input type orders, the interpretation of these arguments is completely at
the discretion of the 1/0 module.

3. If io_call_info.order_name specifies an order that does not require an
info structure, or is an invalid order, then the I/O module should
return error_table_S$undefined_order_request. The io_call command, seeing
this code, will call iox_$control again, this time passing the original
control order name, and a null info_ptr.

4, If the I/0 module detects an error in handling an io_call order, it
must do one of two things. First, it may return an error code, in
which case io_call prints an error message. Secondly, it may call
io_call_info.error (used like the com_err_ subroutine) to report the

error direcily. In this case, a zero error code should be returned to the
caller. The latter choice is recommended, especially in cases where the
170 module can print a2 more informative error message.

I/0 modules that do not support control operations that require info structures
need not implement the io_call order at all. The io_call order can be rejected along
with all other invalid orders in which case the order is performed with a null
info_ptr by the io_call command as described in item 3 above.

5-71 AG91-04

Control operations can also be performed through the active function interface
of the io_call command. In this case, the mechanism is basically the same with the
following differences:

1. The order issued by the io_cali command is io_caii_af, not io_cali.

2. Instead of printing a result, the I/0 module should store its result in
the varying string defined by io_call_info.af_returnp and
io_call_info.af_returnl.

The io_call_af order should only be supported for orders that have meaning as
an active function. As in the io_call order, the interpretation of io_call_info.args is
completely up to the I/0 module.

OTHER OPERAT/ONS

Routines for the other operations are called only when the actual I/0 switch is
attached and open in a mode for which the operation is allowed, the opening and
attachment having been made by the I/0 module containing the routine. The
following modifications to the I/0 control block of the actual I/0O switch can be
made:

1. Reset iocb_ptr->iocb.actual_iocb_ptr->iocb.open_data_ptr.

2. Reset an entry variable set by the open routine, e.g., to switch from
one put_chars routine to another.

w

Close the switch in an unrecoverable error situation. In this case the
tules above for the close operation must be followed.

If any change is made to the iocb, be sure to follow step 4 of the "Implementation
Rules” above.
OUTER MODULES

The iox_ I/0 module with which user_i/o is attached at process initialization is
called the outer module. In order to support reconnection of terminals, I/O modules

used as outer modules must respect certain conventions. For an example of the
appropriate techniques, examine the source of tty_.

All outer modules must support the -login_channel attach control argument, to
mean that the switch will be connected to the device specified by user_info_$terminal_data.

5-78 AG91-04

When the user is disconnected, the special condition sus_ is signalled in the
process. The program sus_signal _handler_ catches the condition, and blocks awaiting
notification from the Answering Service that a new terminal is available. This may
happen at any time, even when the process is compute~bound. When sus_signal_handler_
receives the notification, it searches the attach table for all switches with the control
argument -login_channel in their attach description. Each one is closed, detached,
attached, and opened.

The result of this is that an outer module may be interrupted in the middle of
an operation, have its switch detached and closed, and be left to continue execution.
QOuter modules must be designed to avoid failure under these circumstances. An outer
module may mask the sus_ IPS signal for the duration of all operations affecting the
attachment data structures, but there is only a limited amount of CPU time available
after the signal. If sus_signal_handler_ does not make the proper response o the
Answering Service within this time, the process is terminated.

The alternative strategy is to detect asynchronous detachments. This can be done
using a half lock in the attach data. As any operation is started, the half lock has
one added to its value. When an operation is completed, one is subtracted. If the
detach or close entrypoints are called and find a nonzero half lock, they may not free
any storage that may be referenced by interrupted operations. Instead, they set flags
in the attach data indicating that an asynchronous close or detach has taken place.
When any of the other entrypoints detect these bits, they assume that a new
attachment has been made, and call iox_ on the new attachment to complete their
operation. Then they return.

For example, if tty_’s put_chars operation gets an error indicating that the
process no longer has permission to use the terminal, it checks for the asynchronous
bits. If they are not present, it blocks to await the arrival of the sus_ signal. If they
are, it calls iox_$put_chars on its actual iocb, and returns the results it returns.

RESOURCE CONTROL PACKAGE

The Resource Control Package (RCP) provides a mechanism for device reservation,
assignment, and attachment.

5-79 AG91-04

Relationship of RCP to Other 1/0 Facilities

Input/output in the user environment of the Multics system is organized around
the user-ring I/O system subroutine, iox_. The entry points of iox_ provide for a
general, device-independent interface supporting 1/0 and control functions. They may
be called either via explicit PL/I code or via the facilities of language-provided 1/0.
Often, they are called internally from programs that deal with peripheral I/0.

The user-ring 1/0 system is organized around I/0 modules, programs that
support the iox_ interfaces for a specific device, class of devices, or class of
operations upon a given device or class of devices. (The available interfaces of iox_
are described in the Subroutines manual.) 1/0 modules make appropriate calls upon
the I/0 interfaces of the supervisor, the resource control package (RCP), and the I/0
interfacer to arrange for use of peripheral devices and perform operations upon them.
The system provides a repertoire of I/0O modules for peripheral devices. These 1/0
modules are documented in the Subroutines manual. The user may provide his own
1/0 modules as well (see above). ’

RCP is responsible for allocation and deallocation of peripheral devices to user
processes. By means of RCP, user processes (and 1/0 modules) can gain access to
peripheral devices. RCP provides for access checking and device selection. RCP is
described in detail below.

The I/0 interfacer (IOI) is the facility of the supervisor through which user
programs (via I/0 modules) can operate peripheral devices. IOI provides for the
operation of the 1/0 hardware and the multiplexing of channels and other physical
resources between processes. IOl can only be used to manipulate a device once a
process has acquired the right to use that device via RCP.

The user can construct device-specific DCW lists and call IOI to initiate the
1/0 operation. When the operation completes, IOI provides the user with a wakeup
and the status. The hardware protection and relocation features of the IOM are used
by IOI to allow the user complete control over his DCW lists and data with no
possibility of damaging the system.

5-80 AG91-04

The interrelationship
shown in Figure 5-1.

between user code, iox_, RCP, IOIl, and the I/0O modules is

USER ISSUES
COMMAND TO
READ/WRITE
FROM/TO DEVICE

COMMAND
|CALLS LANGUAGE
/o

LANGUAGE I/0
CALLS iox_

iox.CALLS
APPROPRIATE
1/0 MODULES

_— e e e e —

Y

1/0 MODULE
CALLS
RCF AND 101

RCP CALLS

RING 4

101

RING 1

5-81

Figure 5-1. Interrelationship between User Code, iox_, RCP, IOl and the 1/0 Module

101
PERFORMS
170

RING 0

AGI1-04

Summary of RCP Actions

The resource control functions performed by RCP are:

1. reservation/cancellation
2. assignment/unassignment
3. attachment/detachment

These functions are summarized below.

RESERVATION, ASSIGNMENT, AND ATTACHMENT

The functions reserve, assign, and attach are organized into hierarchical levels.
Lacelen Py g |

Defaults are provided at each level so that users not desiring o exercise features
specific to a level do not have to concern themselves with that level

1 reserve

2 assign
3 attach
3 detach
2 unassign
1 cancel

The first level involves the reservation of resources by processes. Tape drives,
disk drives, tape volumes and disk volumes can be reserved. Reservations are
process—specific and remain in effect until the process requests a cancellation.
Reservation implies that a process temporarily has exclusive rights to a resource. This
exclusive right means that no other process can use that resource for the duration of
the reservation. Reservation does not necessarily imply that a resource is actually being
used. Multiple resources can be reserved with one reservation.

Assignment, like reservation, is process—specific and lasts until unassignment or
process termination. Any resource type can be assigned. An assignment also gives a
process temporary exclusive rights to a device. Assignment does not necessarily mean
that a device is currently being used. That is the function of the next level,
attachment. Only one resource can be assigned per assignment.

A resource cannot be used until it is attached. When RCP is called to attach a
resource, it initiates communication with the ring 0 subsystem that actually provides
the use of the resource. Before the attachment is completed, RCP performs all
initialization necessary to allow the attaching process to begin using the resource. For
devices, this involves attaching the device via IOl and making sure that the device is
ready and that any volume needed has been determined to be accessible, mounted, and
authenticated.

5-82 AG91-04

The hierarchical relationship among reservation, assignment, and attachment
implies that a higher-level function (e.g., reservation) can stand alone, while a
lower-level function (e.g., attachment) can only be performed after all higher—level
functions have been performed. RCP can perform the following device reservation,
assignment, and attachment functions:

1 Reserving a resource. This means that no other process can use it
during this period of time.

2. Explicitly assigning a reserved device. The device is assigned to a
process but is not attached.

3. Attaching an explicitly assigned device.

4 Attaching an unassigned device. Since a device cannot be attached until

it is assigned, RCP automatically reserves and assigns the device and
then performs the attachment. The device is said to be implicitly
assigned.

5. Detaching an implicitly assigned device. After the device is detached,
RCP automatically unassigns the device.

6. Detaching an explicitly assigned device. The device is detached but is
not unassigned.

7. Explicitly unassigning a device. If the device is attached, it is first
detached and then unassigned.

8. Cancelling reservation of a resource.

The rules stated above imply that I1/0 modules do not have to be concerned
with the assignment or unassignment of devices. They need to be concerned with only
the attachment and detachment of a device. RCP, however, does allow the above rules
to be overridden. When detaching a device an I/0 module can tell RCP to retain the
device assignment regardless of whether the device was explicitly or implicitly assigned.

When a process terminates, RCP automaticaily detaches and unassigns ail devices
currently assigned to that process and cancels any reservations for that process.

The reservation of resources and cancellation of reservations are done from
command level via the reserve_resource and cancel_resource commands or by using the
—-resource contro] argument with the enter_abs_request command. The explicit assignment
and unassignment of devices is done from command level via the assign_resource and
unassign_resource commands. The listing of reservations, assignments, and attachments
is done from command level via the list_resources command. The other commands
named here are described in the Commands manual.

5-83 AGI1-04

Resource Reservation

Users may reserve resources by scheduling with RCP to obtain exclusive rights to
a resource for a period of time. RCP enables users to reserve resources or groups of
resources through the use of the reserve_resource command (see the Commands
manual). A reservation takes effect immediately and it lasts until either the user’s
process is terminated or the reservation is specifically cancelled via the cancel_resource
command (see the Commands manual). After invoking reserve_resource, the user has
exclusive rights to the resource(s).

Tape volumes, tape drives, disk volumes, and disk drives can be reserved. Tape
and disk volumes are specified at the time of reservation by name; tape and disk
drives are specified by either name or attributes. In the case of disk drives, the only
acceptable attribute is model. For tape drives, acceptable attributes are model, track,
and density. Suitable values for the above-mentioned attributes may be found by using
the list_resource_types command (see the Commands manual).

To cancel reservations, users invoke the list_resources command to obtain the
reservation identifier, and then invoke the cancel_resource command with the
reservation identifier to effect the cancellation. Administrators can perform privileged
cancellations; that is, if the administrator has proper access, it is possible to cancel
reservations belonging to other users.

Device Assignment

The RCP interface for device assignment allows the caller to rtequest the
assignment of a specific device, or any appropriate device of a specified type. To
request the assignment of a specific device the caller must ask for the device by
name. To request the assignment of an appropriate device of a specified type, the
caller must specify the characteristics that the assigned device must have. RCP selects
a device for assignment based on the following functional algorithm.

1. If the caller has requested a device by name and if this device is
already assigned to the calling process, the assignment is aborted.

2. RCP tests all of the devices of the specified type. RCP counts the
number of these devices that are appropriate; appropriate and accessible;
and appropriate, accessible and available. These requirements are discussed
below:

a. appropriate: A device is considered to be appropriate if it has
the device characteristics specified by the caller. In testing each
device, RCP does not try to match any device characteristics that
are not specified by the caller. If a device is asked for by
name, only the device name is considered.

D. accessibie: A device is considered to be accessible if the calling
process has rw RCP effective access to the device.

c. available: A device is considered to be available for assignment

if it is not currently assigned to any process or Tteserved by
another process.

5-84 AG91-04

3. Having tested each of these requirements, RCP then makes additional
tests to see if a device can be assigned. If the assignment cannot be
made, RCP returns an error_table_ code that tells the caller why the
assignment aborted. The tests that RCP makes at this time are described
below:

a. If there are no appropriate devices, the caller is told that the
requested resource (device) is not known to RCP.

b. If there are no appropriate and accessible devices, the caller is
told that he does not have access to the requested resource
(device).

c. If there are no appropriate, accessible and available devices, the

caller is told that the requested resource (device) is not available
at this time.

d. If this assignment causes the device limits (see "Device Limits”
below) 1o be exceeded, the user is told that he has exceeded the
limit.

4. If all the tests described above are passed successfully, the device

assignment is made. RCP selects the most advantageous device from the
list of devices that were found to be appropriate and accessible and
available. It makes this selection based on the following rules:

a. If this is a type of device that has volumes and if the caller
specified a volume name to use in the device selection and if
any device in the list currently has that volume mounted, RCP
selects that device.

b. If the first case is not true, RCP selects the device that has
been idle for the longest amount of time.

Having assigned the device, RCP returns all of the characteristics of this device
to the calier.

Device Attachment

The RCP interface for device attachment allows the caller to request a device in
the same manner described for device assignment. It can ask for a specific device by
name or it can ask for any appropriate device of a specified type. One difference is
that if this device is a type that uses volumes, the caller must specify the name of
the volume to attach. For assignments, the specification of a volume is optional.

5-85 AG91-04

RCP tests all of the devices of the specified type that are already assigned by
the requesting process. If the specific device or any appropriate device is already
assigned to this process, RCP attaches that device. If no suitable device is already
assigned to the requesting process, RCP automatically attempts to assign a suitable
device to this process. If no device can be assigned then the attachment is aborted.
If the attachment is for a device type that uses volumes, RCP checks to see if the
specified volume is already attached to this process or any other process. If the
volume is already attached, RCP aborts the attachment.

Once RCP has found a suitable assigned device or has assigned one, it begins the
real work of attaching the device. This involves calling IOl to perform the ring 0
device attachment. If the device is a type that uses volumes, RCP tells the operator
to mount the specified volume if it is not already mounted on the proper device.
Before the attachment is completed, RCP makes sure that the proper volume has been
mounted and that any write protection mechanism provided by the device is set
correctly. When all of this initialization work has been completed, RCP calls I0I to
set the workspace and time-out limits and to promote the validation level of the
device. Until this is done, the IOI validation level for the device is the RCP
validation level (ring 1). Thus no program in a higher ring can successfully call I0OI
1o use this device until RCP tells I0I to promote it. RCP returns all of the device
characteristics of the attached device and all of the information needed to
communicate with IOl about this device.

DEVICE LIMITS
In addition to controlling which processes may have access to a device, RCP will
enforce a limit io the number of devices of a given type that a single process may
have assigned at one time. This limit is enforced according to the following rules:
1. The limit is not enforced for system processes.

2. The limit for each device type is an installation—defined value. It is
currently specified in the RTDT.

3. Currently, only tape drive devices actually have such a limit defined.

RESOURCE NAMING CONVENT/IONS

While the RCP implementation allows resource names to be any ASCII string of
up to 32 characters, there are restrictions placed on some of these names by other
sources. Details of these resource naming conventions are described below.

5-86 AG9I1-04

Device Names

Each device has a unique name. Device names are of one of the following
forms:

SSSS_XX
dddd

The first form is used for devices that share multiplexed 1/0 channels such as
disk and tape devices. The latter is used for all other devices.

In the case of disk and tape device names the name is composed of the
subsystem name, ’ssss’ in the text above, and the device number, ’xx’ above. The
subsystem name is defined by the site in the configuration via a PRPH card (see
MOH) and the device number is assigned by the Field Engineering Representative
when the hardware is installed.

All other devices are also defined in the configuration deck. In this case the
PRPH card defines the device itself. These device types include: consoles, printers,
card readers, card punches, and special devices.

The four character restrictions listed above are due to the fact that character
fields on configuration cards are limited to four characters (one word).

Volume Names

Volume names are unique within their volume type (i.e., no two tape volumes
may have the same name). They may be up to 32 characters in length. The only
reserved volume names are "scratch” and "T&D_Volume" which are used to designate
scratch volumes for disk and tape. A scraich tape is one of the unmarked tapes in an
unreserved pool that is used for “scratch™—-that is, no information is saved on it from
session to session. After every use, it is demounted and returned to the system pool.
"T&D_Volume" is used for special label processing for online Test and Diagnostics,
and its use for attachments requires special privilege.

/110 WORKSPACES

Due to the nature of the Multics virtual memory and its supporting I1/0
hardware, 1/0 operations such as "read tape” or "write disk" require all pages of
memory rteferenced by the I/0 operation to be in main memory during the
operation——that is, no paging is done during execution of the I/O operation. To
accomplish this, all channel programs and physical record buffer areas are located in a
special segment known as an I/0O workspace segment. . The ring 0 I/0O software, IOI,
guarantees that all pages of the workspace are present in main memory before starting
the 1/0 operation and remain there for the duration of the operation.

5-87 AG91-04

RCP will control the maximum workspace size associated with each device type.
System processes, privileged processes, and users on the ACL of the ACS named
workspace.acs in the directory >system_control_1>rcp can request up to the
privileged maximum workspace size. All others can request up to the normal maximum
workspace size. Requests for a workspace larger than is allowed tesult in errors. The
table below lists the workpace maximums that are enforced.

Table 5-7. 1/0 Workspaces

Privileged Maximum Normal Maximum
device type words bytes words bytes
tape_drive 45056 180224 6144 24576
disk_drive 45056 180224 2048 8192
printer L5056 180224 1024 4096
punch L5056 180224 1024 4096
reader 45056 180224 1024 4096
special 45056 180224 1024 4096
console 45056 180224 1024 4096

The workspace size is affected by using the -block control argument to those
1/0 modules that support it. This control argument is used to specify the maximum
physical record/block size to be processed. In all cases some overhead for channel
programs and 1/0 module control information must be taken into consideration. When
-block is not specified or supported the individual I/0O modules choose an appropriate
default. In the case of commands that use I1/0 modules, either the command, some
argument or input to the command, or the I/0O module may specify/imply in some
way the workspace size (for example by supplying -block in an attach description).

RESOURCE MANAGEMENT FACILITY

The Resource Management Facility handles registration and acquisition of
resources, which includes release and deregistration. Resource management is a site
option, which must be enabled by a system administrator.

RCP software reserves, assigns, and mounts resources; it also demounts, unassigns,
and cancels reservations. The RCP is an integral part of Multics.

5-88 AG91-04

The hierarchical level of these functions are:

1 register
Resource Management
2 acquire
Fedefefedh el n RN dd Nt d iRkl dfkh Rk d i dfed Rk
3 reserve

L assign

5 attach
Resource Control
5 detach

L4 unassign

3 cancel

Tl dedefedede N hhfefdde N R dd NNttt Rk fed R dede R R defedede et etk
2 release
Resource Management
1 deregister

Resource management is an optional facility which offers the ability to retain
registration information for all resources that it controls. It does this by providing
administrative interfaces for the registration of resources {(see the Administration, !
Maintenance, and Operations Commands manual) Registration of a resource provides |
information such as: what type of resource this is, what its name is, which attributes
it possesses, or in what access class range the resource can be used. Once a resource
is registered, users may acquire it; system administrators can also acquire it to a user
(or to the system pool) at the time it is registered (described in the Administration,
Maintenance, and Operations Commands manual). The act of acquisition makes a
user the owner of the resource——liable for all charges to that resource and in control
of discretionary access 10 the resource.

Summary of Resource Management Facility Actions
Described below are actions that apply when the Resource Management Facility is

enabled. When resource management is not enabled, all volumes and devices are
effectively acquired to the system.

ACQUIRING RESOURCES

When a system administrator registers a resource, he may simultaneously cause it
to be acquired; that is, designate who will become the accounting owner of that
resource.

5-89 AG91-04

Once a resource is registered by the system administrator, it may be acquired by
a user. When a user acquires a resource, he is contracting with the system to become
the accounting owner of the resource. In other words, the person who acquires the
resource usually agrees to pay a fee for the right to control the access to that
resource.

After registering a resource, the system administrator may acquire it in the name
of the system or a user, deciding who is allowed to use that resource. Devices (such
as tape drives and printers) and "scratch" volumes (e.g., tapes in the system pool) are
usually acquired to the system. System—owned resources such as devices and scratch
volumes are for use by all users. For other resources such as tape reels and disk
packs, the system administrator normally chooses to leave most of these in an
unacquired state so that users may acquire these resources on an individual basis.

Once a resource has been acquired it can be used (reserved, assigned, and
attached) by any wuser with appropriate access. See "Access Control” below. Any
resource that is not resident in the system or free pools is acquired by a user_id
(Person_id.Project_id).

It is important to realize that there is normally no implicit acquisition, and that
only acquired resources can be used. The only exception to these rules occurs when a
site has "automatic registration” turned on during the initial time period after enabling
the full Resource Management Facility. While automatic registration is on, any
unregistered tape volume for which the operator honors a mount request is
automatically registered and acquired to the requesting user.

In order to control the operation of the Resource Management Facility, an
administrative table exists that can be adapted to the specific needs of a particular
Multics site. This table is referred to as the resource type description table (RTDT).
The table is generated from a source language description, called the resource type
master file (RTMF), ordinarily prepared by a system administrator. The contents of
the RTDT can be examined via the display_rtdt command. (The RTDT and the
display_rtdt command are described in detail in the Administration, Maintenance,
and Operations Commands manual, Order. No. GB64.

NAMING RULES FOR ATTRIBUTES

Attributes provide a description of a volume or device that assists the Resource
Management Facility in the proper matching of volumes with compatible devices. To
produce correct combinations, attribute names must comply with the set of rules
described below.

5-90 AG91-04

Attributes may be grouped or ungrouped. Grouped attributes specify a set of
properties applicable to a device or volume such that only one attribute of that set
can be currently active at any given time. For example, a reel of tape may have
potential attributes that allow it to be recorded at densities of 556, 800, or 1600;
however, at any given time, the data on it is in only one of those densities. Grouped
attributes have names of the form:

<identifier>=<value>

For example, the attributes mentioned above are named "den=556", "den=800", and
"den=1600". This notation allows RCP to recognize that any request to make one of
these attributes the current attribute of a device or volume also implies that all other
attributes in that grouping must be made inactive.

When adding or changing a string of attributes, all attributes in the string must
be respecified or else exiting attributes are nullified by the change. Also, any attribute
string must contain a value for each grouped attribute. For example, if the attribute
domain includes "track=... and model=...," the device you are setting the attributes for
(or registration) must contain values for each grouped attribute.

Ungrouped attributes have simple names, such as "trainok" (to specify that this
device accepts a removable print train) or "building_12" (to specify that this device or
volume is located in building 12).

ACCESS CONTROL INTERFACE WITH RCP AND RESOURCE MANAGEMENT

There are three types of access control on Multics: discretionary access control,
which is regulated by access control lists (ACL); nondiscretionary access control, which
is regulated by the access isolation mechanism (AIM); and intraprocess access contirol,
which is regulated by the ring structure. (For detailed information on types of access,
see Section 6.) Access control works differently with and without resource management.
These differences are noted in the discussions below.

Access Control Segments

An important feature of RCP is its ability to control access to the various
resources that it manages. It does this through the use of access control segments
(ACSs). An ACS is a zero length segment whose ACL and ring brackets are used to
define the discretionary access to a resource. RCP uses an ACS for each resource that
it controls; however, an ACS can be shared by more than one resource. The name of
an ACS consists of a name plus the suffix, acs (e.g., tape_0l.acs). There are no
restrictions on ACS names other than the required suffix. The user creates an ACS
and generates/manipulates its ACL with the create, set_acl, and delete_acl commands
and ring brackets with the set_ring brackets command (see the Commands manual).

5-91 AG91-04

The pathname of the ACS for a resource is usually specified when it is acquired
(see the register_resource command and the acquire_resource command in the
Commands manual). The specified ACS can later be changed or unspecified so that
the resource (again) has no ACS via the set_resource command (see the Commands
manual). If the ACS has not been specified or does not exist, access is by default
rew for the owner of the resource and null for all other users.

When resource management is not enabled, ACSs exist only for devices, not for
volumes. These ACSs are automatically created with pathnames of the form:

>scl>rcp>resource_name .acs

These pathnames cannot be changed. Access to volumes is determined by site policy.

With resource management enabled, RCP uses the ACS along with other
nondiscretionary controls (AIM) to determine the RCP effective access to a resource.

Access Class Ranges

Access class ranges are used by RCP to specify that a process within a range of
authorizations can use a particular resource. This discussion pertains to sites where
resource management is enabled.

An access class range is simply a pair of AIM access classes separated by a
colon. The first value of the pair is the minimum access class and the second is the
maximum access class. If onlv a single access class is specified when an access class
range is expected, the minimum and maximum access class values are both the same
(i.e., a range of one value). The second access class of the pair (the maximum) must
be greater than or equal to the first (the minimum) according to the aim_check_
subroutine (see the Subroutines manual).

There are some interesting results which occur when categories are used in an
access class range. For example, a process with authorization of:

level2,category]l

would not be able to use a resource whose access class range was:

levell,categoryl,category2:level3,categoryl,category2,category3

5-92 AG91-04

where level3 is greater than level2, which is greater than levell. This is due to the
fact that the authorization of the process is isolated from the minimum of the access
class range. In order to allow this process access to the resource in question, the
range would have to exclude category2 or the user would have to have category2
authorization. In general, to include categories within an access class range, both the
minimum and maximum must include the categories desired. If combinations of
categories are desired, the minimum should list only required categories and the
maximum should include all categories allowed. For example, the access class range:

levell,categoryl:level3,categoryl,category2,category3

allows read and write access to any levell, level2, or level3 process with categoryl and
any combination of category2 and category3.

RCP Effective Access

Viewed separately, each type of access control answers the same question, "What
access does a particular process have for a particular item?” The access mode granted
a process to a resource by discretionary access control (the ACL) is known as the raw
access mode.

The way RCP determines effective access to a resource for a process differs
from the regular Multics method of determining effective access as follows. First, the
effective access to the ACS for the resource is determined as for any segment. If the
ACS does not exist, the user appears to have read, execute, and write access if he is
the owner of the resource, or null access if he is not the owner. Then, two further
checks are made. First, the current authorization of the process is compared to the
maximum access class of the resource. If write access is not allowed (as defined by
the write_allowed_ subroutine) then write and execute access are denied and only read
is allowed. Next, the current authorization of the process is compared to the minimum
access class of the resource. If read access is not allowed (as defined by the
read_allowed_ subroutine} then all access is denied. The resulting access is termed the
RCP effective access to the resource. One final restriction enforced by RCP is that,
in order to use a device, the RCP effective access must include both read and write
to that device (a restriction not imposed on volumes).

For example, the following table illustrates some examples of RCP effective
access. In the examples below, L1, L2, L3 and L4 represent sensitivity levels and cl,
c2, c3, and c4 represent categories. (This discussion mostly concerns devices——volumes

should never be given multiclassed access class range.)

5-93 AGI91-04

Table 5-8. RCP Effective Access

Effective Current Resource RCP
Access Process Access Effective
to ACS Authorization Cilass Range Access
rew L1 Li:L3 rew

re L1 L1:L3 re

rew L1 L2:L3 null
rew L3 L2:L3 rew

rw Lb L2:L3 r

re Lh L2:L3 r

rw L2,cl Li:zLL r

rw L2,c2 Ll,cl:Llh,c1,c2 null
rw L2,c1,c3 Li,cl:Lh,cl,c2 r

rw L2,cl Ll,ct:Lbl,cl,c2 rw

A user must have write RCP effective access to the resource named to perform
any modification on the status of the resource. In addition, the user must have
execute effective access to the resource named to modify protected attributes. Only
the accounting owner may modify the ACS path.

For more information on AIM. access classes, authorizations, and comparisons
involving access classes and authorizations, see Section 6. The access class range
mentioned above is specified by the -access_class control argument, which can be
specified in the register_resource command (see the Administration, Maintenance, and
Operations Commands manual, Order. No. GB64), and the acquire_resource and
set_resource commands (described in the Commands manual).

Manipulating RCP Effective Access

Since the access control mechanisms described above operate together to
determine the RCP effective access of a process, there are actions that the user, as
well as an administrator, can perform to control this effective access. If resource
management is not enabled, however, only the administrator can control access.

First, the user creates an ACS via the create command. Then, the desired ACL
for that segment is established using the set_acl command to add desired ACL entries,
and the delete_acl command to delete entries. (The above three commands are
described in the Commands manual.) To further affect the ACS, the user may modify
its ring brackets by using the set_ring_brackets command (described in the Commands
manual). The system security administrator sets the AIM access class range of the
resource itself at the time it is registered using the register_resource command and can
change it by using the set_resource command.

5-94 AG91-04

SECTION 6
MULTICS SECURITY

Multics provides a set of complementary data security mechanisms designed to
restrict unauthorized access to programs and data. Each set of security mechanisms
implements a different level of protection and "defends” the system against different
penetration strategies. The use of any one or all of the several mechanisms is
optional. When more than one mechanism is used, access is limited to that granted by
all controls.

The security mechanisms available on Multics are listed below:

User Names and Passwords
Access Control Lists
Access Isolation Mechanism
Ring Mechanism

® & & o

Additionally, Multics provides a "trusted path" connection to the operating
system. A trusted path is a guaranteed direct connection between a user at a terminal
and the Multics operating system and is designed to protect users against the
possibility of their logging in to a simulated system created by a subverter.

USER NAMES AND PASSWORDS

A user name and password must be supplied each time a user logs in to Multics.
If the user name and/or password is not supplied correctly, the user is denied access
to the system.

At the time a user is registered, an administrator assigns a unique (to Multics)
identifying name. Although unique, user names are considered public and thus provide
only limited protection against unauthorized use.

At the time a user is registered, the administrator also assigns a password of up
1o eight characters. The first time the user logs in, the administrator—assigned
password should be changed by the user to a new value (known only to the user).

Since the password is stored in an irreversibly encrypted file, the user—selected

password is completely private. The password mechanism thus provides more complete
protection against use of the system by unauthorized individuals.

6-1 AG91-04

To take full advantage of the password mechanism, users should take care not to
use short passwords and not to use easily decoded values (your first name, your
telephone number, etc.). A good idea is to insert a special character (dollar sign,
question mark, etc.) in the middle of the password. The use of special characters
provides added protection against the possibility of another individual guessing the
password.

ACCESS CONTROL LISTS

The access control list mechanism enables users to control access to objects that
they own. For each object to be protected, the owner identifies which other users are
permitted access and the specific kind of access each is allowed. Individual users can
only perform those operations specifically permitied by the owner of the object.

Objects Subject to Access Control

There are four types of objects subject to access control:

1. entries in the storage system (segments, directories, etc.)

2. resources protected by the Resource Control Package (RCP)
3. communications channels

4. daemon source names

The mcthods used 1o set access on cach of the above objects is described later

in this section.

Access Identifier

In order to grant individual users distinct access rights, it is necessary to be able
to identify the different users. For this purpose, each user has an associated name
called an access identifier. The identifier is a three-component character string that
must be less than or equal to 32 characters. The first component is the registered
name of the person (i.e., the user’s Person_id); the second component is the name of
a project group of which the person (named in the first component) is a member
(i.e., the user’s Project_id): and the third component (called the instance tag) is a
single character used to distinguish different classes of processes. Most processes have
an instance tag of "a" to indicate a standard interactive process (i.e., a process created
for a user who logged in from a terminal). Absentee processes (i.e., noninteractive
processes created by the system in response to queued user requests), have an instance
tag "m". The instance tag "p" identifies a process entered as a proxy by some user
other than the name indicated by the Person_id.Project_id. The instance tag of "z" is
used for daemon processes (e.g., one that runs a line printer). The instance tag "o" is
applied to access identifiers used to control operator access to daemon source names.
The access identifier Jones.Mentor.a would be associated with an interactive process
created for Jones on the Mentor project.

6-2 AG91-04

It is important to note that if a user is not specifically granted access to an
object, then the user cannot access the object in any way.

The access identifier is considered a "user" by the system. However, it is
important to distinguish between a user and a person: the same person can log into
Multics under two different projects and be considered two different users (e.g.,
Jones.Mentor.a and Jones.Demo.a), or one person could log in interactively and be
running an absentee process at the same time and be considered two different users
(e.g., Jones.Mentor.a and Jones.Mentor.m). If a person on a particular project is
granted the ability to log in more than once so that he has several processes under
his control at the same time, each process has the same access identifier (e.g.,
Jones.Mentor.a and Jones.Mentor.a). These processes, by having the same access
identifier, have the same access rights to segments and directories in the storage
system.

Access Modes

User’s access rights are described by access modes. Access modes define the kind
of operations a user can perform on a specified object. For example, a user who
must be able to read data from a segment can be assigned "read access” mode to the
segment. A user who must be able to delete entries in a directory can be assigned
"modify access” mode to the directory.

There are a variety of access modes corresponding to the different operations
that can be performed on the several objects. The various access modes are
meaningful only when considered with the associated object. A complete description of
the individual access modes that can be applied to each object is provided below.

ACCESS MODES ON ENTRIES IN THE STORAGE SYSTEM

The access modes to be applied to the various entries in the storage system are
listed below. Note that, in addition to the access modes specified below, an access
mode of n (null) can be set on any storage system entity. Nuil access mode specifies
that the user cannot access the entity in any way.

The access modes for segments are:

r (read) The user can read data from the segment.

e (execute) The wuser can transfer control to this segment and
instructions in the segment can be executed on behalf of
the user.

w (write) The user can write data in the segment.

6-3 AGI1-04

The access modes for directories are:
s (status) The attributes of entries cataloged in the directory and
certain attributes of the directory itself can be obtained
by the user (for a definition of attributes, see Section 2).
m (modify) The attributes of existing entries cataloged in the directory
and certain attributes of the directory itself can be
modified; and existing entries contained in the directory
can be deleted.
a (append) New entries can be created in the directory.
If n (null) mode is set on a directory, the contents of the directory cannot be read

or modified. However, the user can access any entity in the directory to which (s)he
has non-null access.

The access modes for multisegment files are:

r (read) The user can read data from the multisegment file.

w (write) The user can write data from the multisegment fiie.

The access modes for data management files are:
T (read) The user can read data from the data management file.

w (write) The user can write data from the data management file.

Access modes are not applied to link entries.

The access modes for mailboxes and message segments are listed below. In the
discussion below, note that mailboxes contain messages, while message segments contain
queued requests (as from the enter_output_request, dprint, and dpunch commands).

a (add) The user can add a message/request.

d (delete) The user can delete any message/request.

1 (read) The user can read any message/request.

o (own) The user can read or delete only his own messages/requests;

that is, those sent with the same Person_id.

6-4 AG91-04

s (status) The user can obtain message/request counts.

n (null) The user cannot access the mailbox/message segment in
any way.
w (wakeup) The user can send an interactive message to the mailbox.

This access type is used by the send_message command
and related commands (described in the Commands manual).
This access type is not available for message segments.

Access on a newly created mailbox is automatically set to adrosw for the user
who created it, aow for =.SysDaemon.*, and aow for *.x.*. Access on I/0O message
segments is controlled by the site, but is usually set to adros for the user who created
it, adros for *.SysDaemon.* and aros for *.*.* as a default.

The access modes for forum meetings are:

1 (read) The user can read ftransactions in the forum meeting.
w (write) The user can write transactions in the forum meeting.
¢ (chairman) The user is the chairman of the meeting and has access

to chairman’s commands.

The access modes for before journal files are:
r (read) The user can read data in the before journal.

w (write) The user can write data in the before journal.

The access modes for the person name table are:
r (read) The user can read data in the person name table.

w (write) The user can write data in the person name table.

ACCESS MODES ON RESOURCES PROTECTED BY RCP
An RCP resource is a device or volume that is under management and control
of the resource control package (RCP) facility.
The access modes for RCP volumes are:
r (read) The user can read data on the volume.

¢ (executive) The user can act as an executive for a storage system
logical volume.

w (write) The user can write data on the device or volume.

6-5 AG91-04

n (null) The user cannot access the volume in any way.

The access modes for RCP devices are:

rw (read/write) The user can use this device (reserve, assign, or attach)

ACCESS MODES ON COMMUNICATIONS CHANNELS
The access modes for communications channels are:

rw (read/write) The user can attach this channel (subject to restrictions in
the CMF)

ACCESS MODES ON DAEMON SOURCE NAMES

The access modes for daemon source names are:

1 (reply) The user is permitted to execute the initializer reply
command.

q {(quit) The wuser is permitted to execute the initializer quit
command.

¢ (control) The user is permitted to login/logout the specified
daemon.

d {daemon) The user is permitied to login using the specified source
name.

Creating, Modifying, Listing, and Deleting Items in an Access Control List

A user can create an entry in an access control list by means of the set_acl
command.* The set_acl command requires the user to identify:

1 the object (segment, directory, etc.) to be protected,
2. the individual to be granted access rights, and
3. the kind of access each individual is allowed.

The access control list for RCP resources, communications channels, and daemon
source names is set on a particular entity called an access control segment. The
access control segment must first be created by the user before the set_acl
command can be used to create entries in an access control list. See "Access
Control Segments” later in this section.

6—6 AG91-04

For example, if user Smith on the Sales project were to be granted read access
to the Accounts segment (located at >udd>Records>Accounts), the set_acl command
would be specified as follows:

sa >udd>Records>Accounts r Smith.Sales

The list_acl command displays the access control list for a specified object. To
obtain the access control list associated with the segment named Employees (located at
>udd>Personnel>Employees), the list_acl command is specified as follows:

la >udd>Personnel>Employees

The delete_acl command removes items from the access control list of a
specified object. To remove user Smith on the Sales project from the access control
list associated with the segment Accounts (located at >udd>Records>Accounts), the
delete_ac! command is specified as follows:

delete_acl >udd>Records>Accounts Smith.Sales

Granting Access to Groups of Individuals

When granting access to groups of individuals, the following conventions are
used:

1. as asterisk (*) is used to replace one (or more) of the components of
an access identifier

2. one of the access identifier components is not specified.

USING THE ASTERISK CHARACTER

An asterisk character (*) can replace one, two, or all of the three components
of an access identifier. The asterisk character is a "wild card" entry and specifies that
any value in that position is a valid value

S3iLeH

The asterisk character is useful in granting access to groups of users. For
example, to grant all individuals in the Sales project read access to the Accounting
segment (located at >udd>Records>Accounting), the set_acl command is specified as
follows:

sa >udd>Records>Accounts r *.Sales

6-7 AG91-04

This method eliminates necessity for specifying an acl entry for each individual on the
Sales project, as in:

sa >udd>Records>Accounts r Able.Sales r Baker.Sales r Charles.Sales...

Similarly, if a user were registered on several projects, the asterisk value could be
used in place of the project component to grant access to the user regardless of
project value. For example, use of the identifier Jones.* would give user Jones the
specified access regardiess of whether Jones were logged in on the project Maintenance
(Jones.Maintenance) or the project Development (Jones.Development).

The ultimate use of the asterisk convention is to use it in place of all three
component values of the access identifier (*.*.x), thus granting access to everyone on
e mvrat e
ui€ Sysicimi.

NOTE: Because all other access identifiers take precedence over *.x.*, it is more
accurate to say that the *.*.* convention grants access to everyone who is
not also the subject of another, more specific acl entry. See "Calculating
Access Rights" below for additional information.

MISSING COMPONENTS

A missing component is treated as if an asterisk were used. For example
Smith.Sales is the same as Smith.Sales.* and Smith is the same as Smith.*.*. Missing
components on the right need not be delimited by periods. Missing components on
the left must be delimited by periods. If an access identifier is specified as .Sales,
then Sales is interpreted by the system as the project_id component (the second
component). If an access identifier is specified as ..a, then a is interpreted by the
system as the instance tag (the third component).

Calculating Access Rights

The system places each access identifier in a particular position in the access
control Iist according to the following rules:

Position Component

1. access identifiers with no asterisks

2. access identifiers with an asterisk in the third component only

3. access identifiers with an asterisk in the second component only

4. access identifiers with asterisks in the second and third components only
5. access identifiers with an asterisk in the first component only

6. access identifiers with asterisks in the first and third components only

6-8 AG91-04

7. access identifiers with asterisks in the first and second components only

8. access identifiers with all asterisks (*. *. #)

Thus, the following is an example of an ordered access control list:

Smith.Multics.a r
Jones.Multics.a null
Smith.%.% rw
. Multics.*% re
R.%,2Z rw

\) V W
K.x, % r

When the system searches the list to calculate access, the first matching identifier
encountered determines the access rights.

Thus, in the acl list specified above, user Smith logged in to project Multics as
an interactive user (a) is given only read access to the segment. However, if user
Smith is logged in on any other project but Multics, then user Smith is able to obtain
read/write access. Everyone on the Multics project is granted read/execute access but
Smith and Jones. All daemons (z) get read/write access.

Note that the last item gives everyone read access 10 the segment. However,
because of the way the list is ordered and searched, exceptions must be made. For
example, user Jones gets no access at all. Conversely, other users obtain more general
access. User Smith (on all projects but Multics) gets read/write access; individuals on
the Multics project get read/execute access.

It is important to remember, then, that an identifier granting access to groups of
individuals (say, *.*x.*) does not necessarily grant access to a// members of the group.
Individuals in the group may be identified in other entries in the same access control
list. The system grants access as specified by the f/rst identifier that matches the
name of the searching individual.

Initial ACL’s

Each time a storage system entry is created, the system automatically enters
certain "initial acl’s" into the acl list. The system default is to enter an entry for the
SysDaemon project and an entry for the user creating the segment or directory.

o : X R . 1
Additionally, users can specify their own 'initial acl list by means of the

set_iacl_dir and set_iacl_seg commands.

6-9 AG91-04

SYSDAEMON ENTRIES

Multics provides service routines (daemons) that perform functions such as
making backup copies of segments in the storage system and printing and punching
segmenis at users’ requesis. in order to perform such functions, the service routines
must have access to the segments to be serviced. The service routines (and only the
service routines) are members of a single project called SysDaemon.

In order to ensure that daemons have access to the segments, the system
automatically places the ACL entry:

™™w *.SysDaemon.*
on the ACL of every segment, and the ACL entry:
sma *.SysDaemon.*

on the ACL of every directory when the segment or directory is created or its ACL
is entirely replaced. In this way, members of the SysDaemon project are automatically
granted the necessary access so that they can perform their functions; individual users
need not remember to put the proper entries on all of their segment and directory
ACLs to make use of the daemon processes.

Under special circumstances, some user might not wish to use the facilities of a
daemon on some segments. In this case, the user simply denies that daemons access to
the segments by modifying the ACL entry (i.e., giving that daemon nuii access). It is
crucial that a user who elects not to use a daemon be fully aware of the nature of
the service and the consequences of the choice. For example, if the hierarchy backup
daemons are not permitted access to a segment, backup copies of the segment cannot
be made and the segment will not survive certain types of system failure.

ACL ENTRY FOR THE CREATING USER

In addition to automatically adding a daemon entry to the ACLs of all newly
created storage system entries, many system commands and subroutines (e.g., create,
create_dir, and hcs_$append_branch), add an entry for the creating user to the ACL
of a newly created segment or directory. For a data segment, that ACL entry is:

rw Person_id.Project_id.*
For an object segment, the ACL entry is:

re Person_id.Project_id.*

Note that for both the daemon entry and the creating user entry, the instance tag is
designated by an asterisk, meaning that otherwise matching process identifiers have
access to these segments regardiess of which of the four instance tags they have.

6-10 AG91-04

USER-DEFINED INITIAL ACL'S

For convenience, the system allows a user to specify a list of entries to be
added to all newly created storage system entries—~in addition to entries for the
daemons and for the creating user. This ability eliminates the need to explicitly
modify an ACL each time a new entry is created.

The set_iacl_dir command permits the user to specify the ACL entries to be
automatically placed on all newly-created directories within the specified directory. For
example, to specify that all individuals in the Multics project are to be given status
access to the directories within the Records directory, the set_iacl_dir command is
specified as follows:

sid >udd>Records s ®.Multics.x

The set_iacl_seg command permits the user to specify the ACL entries to be
automatically placed on all newly—created segments within a specified directory. For
example, to specify that everyone is to be given read/write/execute access 1o segments
within the working directory the sel_iacl_seg command is specified as follows:

sis -wd rew %, %%

Access Control Segments

An access control segment is a zero length segment that is associated with the
object to be protected. A user’s access to the access control segment determines the
user’s ability to perform operations on an RCP resource, communications channel, or
daemon.

ACCESS CONTROL SEGMENTS FOR RCP RESOURCES

The access control segments for RCP resources are handled differently depending
on whether or not the resource management option (RCRPM) is enabled.

When the resource management facility of RCP /s not enabled, an access control
segment can exist for devices only (not for volumes). The access control segment must
have the form <resource_name>.acs (e.g., tape_0l.acs). These access control segments
are automatically created and stored in the directory >scl>rcp.

When the resource management facility of RCP /s enabled, an access control
segment can exist for devices and volumes. The access control segment must be
created using the create command. The segment name must end with the suffix .acs;
the segment can exist any place in the hierarchy.

6-11 AG91-04

ACCESS CONTROL SEGMENTS FOR COMMUNICATIONS CHANNELS

The access control segment for communications channels can be created by an
administrator using the create command. The access control segment must be in the

Azeantawey e ot Lo

directory >scl>rcp. The segment name must be in the form <channel_name>.acs.

ACCESS CONTROL SEGMENTS FOR DAEMON SOURCE NAMES

An access control segment can be associated with daemon source names (the
source_id used to login the daemon). By setting appropriate access rights on the ACS,
an administrator can control operator access to the daemon. The ACS must be located
in the directory >scl>mc_acs and must be of the form >scl>mc_acs>SOURCE_NAME.mcas,
where SOURCE_NAME is the source identifier of the daemon. Complete information
on the setting of access controls for daemon source names is contained in the Mu/tics
System Administration Procedures Manual/, Order No.. AKS50.

ACCESS ISOLATION MECHANISM

The Access Isolation Mechanism (AIM) is a security mechanism that allows the
separation of data into different levels of privilege and controls the flow of
information across the different levels. AIM is an administrative tool and is
implemented on a site-wide basis (in contrast to access control lists which are
implemented by individuals to protect individual data files).

Use of AIM involves (1) marking each object with an "access class" and (2)
marking each user with an "authorization.” AIM determines information access on the
basis of the access class of the object and the authorization of the user.

AIM C(lassification System

Multics AIM uses a classification system known in the literature as a "lattice
model." In this model, users and objects are marked with two items:

1. category (kind, or type of data) and/or
2. sensitivity level.
For example, a company may wish to divide its data into the following
categories: Personnel, Marketing, and Engineering. Second, the company could

recognize that data is subject to different levels of sensitivity; for example, the
information could be classed as public, proprietary, or confidential.

6-12 AG91-04

Authorization information composed of the same category/level attributes is
maintained for each user in the system. When a user references a piece of data, the
system determines what access will be granted based on the category/sensitivity level
of the data and the category/sensitivity level of the user.

Policy Rules and Objectives
There are two basic rules that make up the Multics security policy.

1. No information can flow from a higher (more sensitive) level to a
lower (less sensitive) level.

2. No information can flow between category boundaries.

There are two reasons to isolate users and their data from other users and their
data.

1. To prevent owners of information from granting access to it inappropriately
or unintentionally.

2. To deal effectively with the "trojan horse" problem

Trojan Horses are programs that exploit the access privileges of the program to
make data available to other users. Say, for an example, that a programmer is given
the task of writing a program that will be used to analyze some proprietary
information. The programmer can exploit this fact by adding code to the analysis
program to copy the protected information into one of his segments. Or, the
programmer can act to change the ACL on the data, though that leaves more obvious
evidence.

In another example, a subverter could obtain a game program and insert new
code to copy all of the game user’s segments. The game user would only "see" the
game interface while the trojan horse code secretly copied the user’s data segments.

Relationships Between AIM Attributes

The AIM access rules (described in "AIM Access Rules" below) are based on the
following relationships between authorizations and access classes:

equal to
greater than
less than
isolated from

6-13 AG91-04

An authorization or access class A is equal to an authorization or access class B
if:

1. The sensitivity levels of A and B are equal; and

2. The category sets of A and B are identical (neither contains a category
not found in the other).

An authorization or access class A is greater than an authorization or access class
B if:

1. The sensitivity level of A is greater than or equal to the sensitivity
level of B; and

[-3 8184

2. The category set of B is a subset of the category set of A or is
identical to the category set of A; and

3 A is not equal to B (according to the above definition of equal to).

An authorization or access class A is less than an authorization or access class B
if B is greater than A.

An authorization or access class A is said to be isolated from authorization or
access class B if A is not equal to, greater than, or less than B. Two authorizations
with the same level can be isolated from one another only if neither’s category set is
equal to or a subset of the other. (An empty category set is considered a subset of
all nonempty caiegory sets.)

Setting AIM Attributes

The information below describes the system tools for setting AIM attributes.
Administrators should have available a precisely-defined set of rules for information
transfer before enabling the AIM security mechanisms.

ENABLING AIM

The system administrator enables the AIM mechanism by specifying values for
one or more of the following keywords in the ed_installation_parms statement:

access_ceiling
category_names
level_names

The category_names key word defines the number and identity of the different access
categories. The level_names keyword defines the number and identityv of the different
sensitivity levels (level_names). The access_ceiling keyword defines the maximum
sensitivity level that can be used and the total number of categories ihat can be used.

6-14 AG91-04

The sensitivity levels and access categories used in a particular Multics installation
are assigned character-string names for convenience.. There may be as many as eight
different sensitivity levels and 18 access categories in use at one Multics installation.
If an installation has chosen not to use the AIM access controls, that system is using
oniy the lowest sensiiivity level and no categories. The access classes and authorization
names at such an installation are null strings by default, making access classes and
authorizations "invisible.”

MARKING OF DATA

Data can be "marked" with only one sensitivity level. The sensitivity level is a
site-defined value (e.g., L1 or L2 or L3) conveying a relative sensitivity judgement. If
the contents of segment A are judged to be more sensitive than the contents of
segment B, segment A should have a higher sensitivity level than segment B.

Data can be "marked” as belonging to one or more categories. The category is a
site—defined value {(e.g. Cl1, C2, C3) representing a grouping of information. The list
of categories assigned forms a "category set.” The administrator should note that, if
data is marked as belonging to several categories, only users authorized for a//
categories will be allowed to access the data.

The assignment of level/category information to elements in the file system is
described below. The term "access class” is used to refer to the combined
level /category information.

Segment

A segment receives its access class, equal tc the access class of the containing
directory, at the time it is created. No special commands or control arguments are
needed to assign access classes to segments.

Directory

Like a segment, a directory receives its access class at the time of creation. If
no access class is explicitly requesied, the directory is assigned an access ciass equal to
the access class of its containing directory. If an access class is explicitly requested, it
must be greater than or equal to the access class of the containing directory and less
than or equal to the process maximum authorization. A directory with an access class
higher than that of its containing directory is an upgraded directory. No directory
may have an access class less than that of its containing directory, so the access class
of directories always remains the same or increases as one descends the hierarchy.
This is known as the "compatibility" rule.

An upgraded directory must be explicitly assigned storage system quota of one or
more storage records. Quota may be moved to an upgraded directory from its
containing directory by a process whose authorization is equal to the access class of
the containing directory. Quota may not be moved from an upgraded directory back
to its containing directory except by deleting the upgraded directory. An upgraded
directory may be deleted only if it is empty (contains neither segments nor links).

6-15 AG91-04

To explicitly assign access attributes to a directory, use the —-access_class control
argument to the create_dir command, as in the following example.

cd DirA -access_class L1,C1,C2 -quota 5

The example above creates the directory DirA with an access class of L1,C1,C2
(where L1 is a sensitivity level value as specified for the site and Cl and C2 are
categories, as specified for the site). A -quota control arguments is required; the
example sets the quota value at 5 pages.

Message Segment

A single message segment can contain messages of different access classes. The
access class of each message in the segment is equal to the authorization of the user
that added the message to the message segment.

The access class of the message segment itself controls the maximum access class
of the messages in it. Every message must have an access class less than or equal to
the access class of the message segment.

The access class of a message segment is equal to the maximum authorization of
the user that created it.

Mailboxes

The read_mail and send_mail commands (described in the Commands manual) use
message segments to hold mail, each piece of mail being a single message with an
access class equal to the authorization of the sending user. AIM access controls impose
several restrictions on the use of mail. Since a user can read only messages with
access classes less than or equal to his authorization, a user cannot read mail sent by
users of higher authorizations. Since a user can only delete messages with access
classes equal to his authorization, he cannot delete mail with an access class not equal
to his authorization.

The access class of a mailbox is equal to the maximum authorization of the user
that created it. Since all messages in a mailbox must have an access class less than or
equal to the access class of the mailbox, a user can read all his mail when his
authorization is equal to his maximum authorization. However, he may not be able to
delete all his mail at this authorization. In general, mail is easiest to manage if it is
only sent and read by users at one authorization. In this case, a user can read and
delete all of his mail. Users wishing to send and read mail of multiple authorizations
may experience the inconveniences of having messages in their mailbox that they
cannot read or delete at certain authorizations.

6-16 AG91-04

MARKING OF USERS

Individual users are "marked" by sensitivity level and category.

The sensitivity level is a site-defined value (e.g., L1 or L2 or L3) conveying a
relative sensitivity judgement. If user A is more trusted than user B, then user A
should have a higher sensitivity level than user B.

The category is a site~defined value (e.g., Cl, C2, C3) representing a grouping of
information. The list of categories assigned to a user forms a category set. A user
with several categories is authorized to access several information groups. (The
administrator should note that, if data is marked as belonging to several categories,
only users that are authorized for all the categories will be allowed access to the
data.)

The marking carried by any individual user depends on the authorization values
(sensitivity level and category) placed in the following three system tables: the System
Administrator Table (SAT), the Person Name Table (PNT), and the Project Definition
Table (PDT).

A new user is registered on the system by means of the new_user command.
The new_user command permits the administrator to specify minimum and maximum
authorization values. The minimum and maximum values represent the range of
authorizations permitted for the specified individual. The authorization range is entered
in the PNT.

A new pmJect is reglstered on the system by means of the new_prOJ command.
The new pl'OJ command permus the adminisiraior to specny minimum and maximum
authorization values. The minimum and maximum values represent the range of
authorizations permitted for individuals on the specified project. The authorization
range is entered in the SAT and the PDT.

A project administrator can subsequently change the authorization values (for an
individual or for the project) in the PDT. The values in the PDT, however, cannot be
outside of the maximum and minimum values specified in the SAT.

At the time that a user logs on, the user’s authorization is set to that maintained
in the PNT. (If, however, the authorization range maintained in the SAT or PDT is
more Testricted, then the user’s authorization is set to the more restricted range.) At

login time, the user can elect to use the -auth argument io' override the values

Sweuiz &ipyweriieriv Y Wi ieew

maintained in the PNT. (However, the value specified for the —auth argument cannot
be outside the most restricted of the values maintained in the PNT, the SAT, or the
PDT.) It should also be noted that an authorization range can be specified for the
communications channel used to login. If the user’s authorization range is not within
the range specified for the communications channel, the user will not be permitted to
login over the channel.

6-17 AGI91-04

MARKING OF RCP RESOURCES

The system administrator can enable the resource control package (RCP) resource
management facility to manage the use of peripheral 1/0 devices (such as tape drives,
and disk drives) and physical volumes that can be mounied on these devices (such as
tape reels and disk packs). The resource control package permits the administrator to
assign access class ranges to the device/volumes.

Access class ranges are used by RCP to specify that a user within a range of
authorizations can use a particular resource.

An access class range is simply a pair of AIM access classes separated by a
coion. The first value of the pair is the minimum access class and the second is the
maximum access class. If only a single access class is specified when an access class
range is expected, the minimum and maximum access class values are both the same
(i.e., a range of one value). The second access class of the pair (the maximum) must
be greater than or equal to the first (the minimum).

The user should be aware of results which occur when categories are used in an
access class range. For example, a process with authorization of:

level2,categoryl

would not be able to use a resource whose access class range was:

levell,categoryl,category2:level3,categoryl,category2,category3

where level3 is greater than level2, which is greater than levell. This is due to the
fact that the authorization of the process is isolated from the minimum of the access
class range. In order to allow this process access to the resource in question, the
range would have to exclude category2 or the user would have to have category2
authorization. In general, to include categories within an access class range, both the
minimum and maximum must include the categories desired. If combinations of
categories are desired, the minimum should list only required categories and the
maximum should include all categories allowed. For example, the access class range:

levell,categoryl:level3,categoryl,category2,category3
allows read and write access to any levell, level2, or leveld process with categoryl and

any combination of category2 and category3.

The administrator uses the access_range parameter in the Resource Type Master
File (RTMF) to specify an access class range for a given resource. (See the System
Administration Procedures manual for additional information on RCP.)

6-18 AG91-04

MARKING OF COMMUNICATION CHANNELS

The system administrator can assign an authorization range to a specified
communications channel. The administrator uses the access_class statement in the
channel master file to specify the authorization range.

The authorization can be specified as a single value, in which case the channel is
usable only by users with the specified authorization. The authorization can be
specified by a minimum and maximum value, in which case the channel is usable only
by users with an authorization equal to or greater than the minimum value and equal
to or less than the maximum value.

If the access class statement is not specified, the value is assumed to be that
specified (or defaulted to) by the Access_class giobal statement.

The administrator must be aware that the system cannot establish the authorization
of a user for any channel except channels identified as multiplexer_type sty. For this
reason, it is recommended that all channels except those identified as multiplexer_type
sty should be specified with a single access_class value. The only exception to this
recommendation is for login service type channels. These channels should be assigned
an authorization range sufficient to cover the users who are to be permitted to log in
over the channel. (See the System Administration Procedures manual for additional -
information on the marking of communication channels.)

AIM Access Rules

The access rules used by AIM on segments, directories, interprocess communication,
and message segments are described below.

SEGMENTS

The rules for accessing segments are:

1 A user may have read (r) and execute {e) modes to a segment only if
the user’s authorization is greater than or equal to the segment access
class,

2. A user may have write (w) mode to a segment only if the user’s

authorization is equal to or less than the segment access class. [
NOTE: Write mode permission ailows the user only to append

information (it does not allow the user to read, modify, or delete |
existing data). |

3. A user has null access to a segment if its authorization is neither
greater than nor equal to the segment access class.

4, A user may have read/write access to a segment only if its |
authorization is equal to the segment access class. |

01/87 6-19 AG91-04A

D/RECTORI/ES
The rules for accessing directories are:

1. A user may have status (s) mode to a directory only if the user’s
authorization is greater than or equal to the directory access class.

2. A user may have modify (m) and append (a) modes to a directory only
if the user’s authorization is equal to the directory access class.

3. A user has null access to a directory if its authorization is neither
greater than nor equal to the directory access class.

A newly created segment has the same access class as its containing directory. A
newly created directory may have an access class that is greater than or equal to the
access class of its containing directory. A directory with an access class greater than
its containing directory is known as an upgraded directory.

MESSAGE SEGMENTS

A message segment is a special type of segment that is managed by Multics
supervisor programs and is not directly accessible to the user. A message segment is
simply a convenient repository for interprocess messages. Each message in a message
segment is a separate protection unit itself, and has associated with it an access class
identical in form to segment and directory access classes. The existence of the
individual messages remains invisible to a process unless the process authorization is
greater than or equal to the message access class. A process may read a message only
if the process authorization is greater than or equal to the access class of the message.
A process may delete messages only if the process authorization is equal to the
message access class. A process may get the count of messages in a message segment,
but this count only reflects those messages to which read access is permitted by AIM.

INTERPROCESS COMMUNI/ICAT/ON

The interprocess communication (IPC) facility allows one process to pass
information to another process by sending it a wakeup and an associated event
message. Administrative access controls limit the use of this information path. Process
A may send a wakeup (and event message) to process B only if process B’s
authorization is greater than or equal to process A’s authorization.

Inter-System AIM
Facilities like the Inter-Multics File Transfer (IMFT) Facility translate AIM

attributes between two systems. For these facilities, the concept of a common access
class ceiling is used to control the data which may be transferred between the systems.

6-20 AG91-04

The common class ceiling between two systems is defined as:

¢ all sensitivity levels from level 0 (usually unnamed) up to but not
including the first level which does not have the same long and short
name on both systems, and

o all access categories that have the same long and short names on both

systems

If the long and short names of sensitivity level 0 are not the same on both
systems, then the two systems have no common access ceiling and are isolated from

each other.

For example, if system A defines the following AIM attributes.

level 0
level 1
fevel 2
level 3

category 1
category 2
category 3
category k4

(unnamed)
unclassified
secret
top secret

Personnel
Planning
Finance
Marketing

and system B defines the following attributes:

level 0O
level 1
level 2

category 1
category 2
category 3
category &

(unnamed)
unclassified
restricted

Engineering
Planning
Finance
Personnel

then the common access ceiling is:

unclassified, Planning, Personnel

6-21

pers
ping

{none)
{none)

(none)

(none)
pling
fin
pers

AG91-04

THE RING MECHANISM

All data and executable code on Multics resides within a logical entity called a
"ring." A ring is a conceptual structure that confers a particular level of privilege on
the information that is within the ring.

There are eight rings (0 through 7) on Multics. Ring 0 is the ring of most
privilege. Ring 7 is the ring of least privilege.

The prime rule of access between rings is that code executing in lower-numbered
rings has unlimited access to data in higher-numbered rings (subject, of course, to
ACL and AIM restrictions). Code executing is higher-numbered rings has no direct
access to data in lower—-numbered rings. (Access refers to the ability to execute code
as well as the ability to read and write data.)

Advantages of the Ring Mechanism

To ensure proper operation, the operating system software must be protected
from accidental or intentional user modification. However, although the operating
system software must be protected, it cannot simply be made inaccessible. Users must
frequently call on the code in the operating system to perform some function on their
behalf. The ACL and AIM mechanisms are not adequate security mechanisms in this
circumstance. With ACL’s and AIM, it is not possible to restrict what the user does
with the data beyond the basic restrictions of reading, writing, and executing. The ring
mechanism, however, makes it possible to grant access to a user, but only to perform
some specified, approved procedure.

Ring Attributes and Access Control

All segments (and directories) in the storage system possess ring attributes. The
ring attributes are a series of three numbers (in the range of 0 through 7). For
example, the ring attributes assigned to a particular segment might be expressed as
[6,6,6], [2,5.6], or [0,0,4].

Each user is assigned a particular ring to which he is initially assigned at login
and in which he can begin to execute code. If the user’s initial ring value is 6, then
the user is logged in within ring 6. If a user’s initial ring value is 4, then the user is
logged in within ring 4

6-22 AGI1-04

RING BRACKETS

The three ring values assigned to each segment determine the segment’s "ring
brackets." Ring brackets are access brackets that specify the read, write, execute, and
gale access.

Write Bracket

The rings less than or equal to the first of the ring bracket numbers are termed
the write bracket. A user must be executing in a ring within the write bracket of a
segment and have write access mode on that segment in order to modify data on that
segment. If a user is running in a ring higher than the write bracket, the user cannot
modify (write into) the segment even though the user has write access.

Read Bracket

The rings less than or equal to the second ring bracket number are called the
read bracket. Users must be running in the read bracket of a segment and have read
access in order to read it

Execute Bracket

The first and second ring numbers are used to determine the execute brackel.
Users must be running in the execute bracket of a segment in order to execute code
in the segment.

There are two subsets of the execute bracket.

1. If a user is executing in a ring whose number is less than the first ring
number, then the segment can be executed (if the user has execute
access). However, the user’s ring of execution will be changed to the
lowest ring in the segment’s execute bracket.

NOTE: An attempt to execute code residing in a higher ring
number is termed an "outward call". A outward call will
succeed only if (1) no arguments are passed, and (2) the
code to be executed resides within the highest ring number
in which the calling process is permitted to run. If the call
violates either of these two conditions, an "outward call
condition” is generated.

2. If a user is executing in a ring whose number is the same as or is
between the first and second ring bracket numbers, then the segment
can be executed (if the user has execute access) without having to
change the ring of execution of the user.

6-23 AG91-04

For example, the ring bracket number assigned to a segment are [3,5,6], execute
access is determined as follows:

1. If the user is executing in ring 0, 1, or 2. then the user has execute
access. However, upon transfer to the segment, the user’s ring of
execution will be (temporarily) changed to 3.

2. If the user is executing in ring 3, 4, or 5, then the user has execute
access. The user’s ring of execution remains at 3, 4, or 5.

Gate Bracket

The third number in the segmenti aiiribuie series determines a gate brackel.
Rings greater than the second ring bracket number and less than or equal to the third
ring bracket number are within the gate bracket.

The gate bracket (or gate) is a means of making segments in the inner rings
accessible to the segments in the outer rings, but in a controlled manner. The inner
ring procedure segment that is specified as a "gate" usually contains executable code
that performs a special function and then returns control to the user at a point
outside the gate ring. Upon transfer to the gate, the user’s ring of execution changes
to that of the gate segment. The third ring number must be specified at least one
greater than the second ring number in order for the segment to qualify as a gate.
Upon transfer to the gate, the users ring of execution changes it that of the gate
segment.

NULL ACCESS

If the user’s ring of execution is greater than the third ring bracket number
(whether specified or defaulted to), the user has no access to the segment.

Using the Ring Mechanism

The power of the ring structure lies in the use of the execute and gate brackets.
These rings allow users to define arbitrary procedures and then encapsulate these
procedures in a closed, controlled environment that can be entered only at specified
gate entry points. Some operating system segments, for example, would have small
read, write, and execute brackets, but large gate brackets. This would make the
procedure accessible to a wide variety of users, but accessible only under carefully
controlled circumstances.

The following example illustrates use of the gate mechanism.

6-24 AG91-04

Suppose a user executing a program in ring 6 references in turn segments A, B,
C and D, which have, respectively, ring numbers [6,6,6], [4,4,6], [2.5,6] and [0,0,4]
and that the AIM and ACL mechanisms allow the user execute access to all these
segments.

In the course of executing segment A, the process calls segment B. Since
segment A is in a ring outside the execute bracket for B, but within its gate bracket,
it is granted access to B and its current ring number becomes 4. In the course of
executing segment B, it calls segment C. Since it is within the execute bracket for
segment C, it is granted access and its ring number remains the same. In the course
of executing segment C, it calls segment D. Since it is within the gate bracket of
segment D, it is granted access, and iis current ring number becomes 0. When it
finishes executing D, it is automatically returned first to segment C in ring 4, then to
segment B in ring 4, and then to segment A in the ring in which it began, ring 6.
This process is illustrated in Figure 6-1. Note that the process cannot call segment D
from segment A and that it cannot skip the intermediate gate, B, and still reach the
ring 0 segment D by calling C from A and D from C. Note also that the process is
admitted to ring 0 only through the gate segment D. The only functions that can be
performed in ring 0 are those included in segment D. Segment D should be coded to
perform an arbitrary (limited) procedure and then return the process to a point
outside ring 0. This example may suggest how the ring mechanism gives administrators
the ability to determine the circumstances under which a sequence of segments can be
called.

In addition to -protecting the operating system, the ring mechanism is used to
protect user subsystems. For example, a teacher could restrict students to ring 5 by
asking a system administrator to allow users on the teacher’s project to log in only in
ring 5. The teacher might then write a gate segment with ring numbers [4,4,5] and
an ACL granting execute access to all users on the project, and a grade-book segment
with ring numbers [4,44] and an ACL granting write access to all users on the
project. When the students finished homework problems in a segment in ring 5, they
could call the teacher’s gate into ring 4. The gate segment would examine the
student’s work, store a grade in behalf of the student in the grade-book segment, and
return to the student in ring 5. Because the students would have access to the
grade-book segment only through the gate, they would not be able to examine or
modify the grades. The teacher, who could log in on ring 4, however, would.

This process is illustrated in Figure 6-2.

6-25 AG91-04

Call Bracket.

Figure 6-1.

Gate Mechanism

6-26

AG9I1-04

Ring Structure.

student system

9,9,5
Ring 5
Ring 4 gate

4,45
Control Flow
test scores grade program
4,44 4,44
Data Flow

Figure 6-2. Logical Flow in Homework Program

6-27

AG91-04

Implementing Ring Protection

The ring mechanism is an integral part of the Multics system. All operating
system code runs in protected rings, as determined by system programmers. All
regisiered users are placed within a particuiar ring, as determined by the siie
administrator. Administrators and users can make use of the ring mechanism as
desired.

In a typical system, for example, rings 0 through 3 would be reserved for
operating system use. Most user processes would start running in ring 4. Rings §
through 7 would be used by programmers to write their own protected subsystems (as
previously described in the "homework" problem).

SETTING SEGMENT RING BRACKETS

All segments within the storage system possess ring attributes (a three-number
ring bracket value).

The -ring_brackets control argument to the create (segment) command allows the
user to set the ring brackets for the segment. The user need not explicitly specify any
ring brackets. In that event, the system assumes a default value for the brackets (as
explained beiow).

The user can specify one. two, or three ring bracket numbers. {(If the user
specifies only one number, the system assumes it is the first ring bracket number; if
the user specifies two ring bracket numbers, the system assumes that they are the first
and second ring bracket numbers.) In the event the user specifies only one ring
bracket number, the system assumes assumes a default value for the other two. The
default value for the other two is the value of the first ring number. In the event
the user specifies two ring bracket numbers, the system assumes a default value for
the third. The default value for the third is the same as the second. In the event the
user does not use the -ring bracket control argument (specifies no ring bracket
numbers), the value of the the ring brackets becomes [x,x,x], where x is the user’s
ring number as established at login.

The ring bracket numbers must also be specified according to the following rules

1. The second ring bracket number must be equal to or greater than the
first

2. The third ring bracket number must be equal to or greater than the
second

3. To be considered a gate, the third ring bracket number must be at least

one greater than the second.

6-28 AG91-04

For example, to create a segment with ring brackets 2, 5, and 6, the user would
type:

create test.progl -ring_brackets 2 5 6

To create a segment with ring brackets of 6, 6, and 6, the user need type:

create test.prog2 -ring_brackets 6

If the user logged in to ring 5 and wanted to create a segment with the ring
brackets 5, 5, §, the user need only type:

create testprog3

Note that in the first example above, the segment test.progl is a gate since the
third number is greater than the second.

The system prevents gate access from being established across system projects.
Unless the operation is performed from the ring-1 administrative ring or by a system
daemon, no user can create a gate that is accessible by anybody who does not belong
to that user’s own project. This restriction ensures that a user on one project cannot
construct a gate that allows, for example, ring-5 users on another project to access
restricted ring-4 data in a way not allowed by the gate provided them by their
project administrator.

MODIFYING SEGMENT RING BRACKETS

The user can modify the ring brackets of a previously created segment by means
of the sei_ring brackets command.

For example, to modify the ring brackets of an existing segment {(lestprog2) io
[2,4,6], type:

srb test.prog2 2 4 5

The rules for specifying the ring bracket numbers in the set_ring brackets
command are the same as those specified for the create command. See "Setting
Segment Ring Brackets" for detailed information.

DIRECTORY RING BRACKET VALIDATION LEVEL AND ACCESS RIGHTS

Directory ring brackets control modifications to attributes and directory contents.
Directory ring brackets do not use the ring of execution; they use the "validation
level."

6-29 AG9I1-04

Validation Level

Inner ring procedures are very often called by outer ring procedures in order to
perform some service on behalf of the outer ring. It is, therefore, necessary that the
inner ring procedure know the number of the outer ring on whose behalf it is
performing the service in order to validate the right of the outer ring to request the
service. This requesting ring information is kept by each process and is known as the
validation level/. 1If an outer ring procedure wishes to request a service from an
inner ring procedure, it sets the validation level to its current ring of execution (the
validation level cannot be set lower than the ring of execution) and calls the inner
ring procedure. If a procedure is calling an inner ring procedure to do work on
behalf of an outer ring procedure, it should not change the validation level, but
instead leave it at the level of the outer ring procedure. Users who write programs
that are executed only in a single ring, usually the outermost ring in which the
process runs, need not be concerned about the validation level since it will be set to
that ring by default.

Directory Ring Bracket Access Rights

Directory ring bracket access rights differ from those of segments due to the
following factors:

1. There are only two directory ring brackets, not three.

2. Since directories are accessed by calling supervisor primitives rather than
by direct reference, the directory rting brackets are evaluated with
respect 1o the validation level instead of the ring of execution.

The first ring bracket number defines the modifylappend bracket. All rings less
than or equal to the first directory ring bracket number are within the modify/append
bracket. In order for a user to modify or add entries to a directory, the validation
level must be within the modify/append bracket and the user must have modify or
append access modes (respectively) on the directory. The rings less than or equal to
the second directory ring bracket number form the status bracket. In order to get
the attributes of segments in a directory or of inferior directories, the validation level
must be within the status bracket. The first ring bracket number must be less than or
equal to the second ring bracket number. For example, if the ring brackets of a
directory are 4,6 and the validation level is 3, the user can get status of, modify, or
append to the directory (assuming, of course, that he has the status, modify, and
append access modes). If the validation level is 6, the user can only get status of the
directory. If the validation level is 7, the user cannot access the attributes of the
entries in the directory at all.

6-30 AGI1-04

SETTING D/RECTORY RING BRACKETS

When a directory is created, ring bracket numbers need not be explicitly
specified, in which case the ring brackets are set to the current validation level.

When a directory is created, ring bracket numbers can be explicitly specified
using the -ring_brackets control argument to the create directory command.

For example, to set ring brackets of [4,6] on the directory >udd>Engin>ProjA,
the user need type:

cd >udd>Engin>ProjA -ring_brackets 4 6

MODIFYING DIRECTORY RING BRACKETS

The user can modify the ring brackets of a previousiy—created directory by
means of the set_dir_ring_brackets command.

For example, to modify the ring brackets of the previously-created directory
>udd>Engin>ProjA to [5,7], type:

sdrb >udd>Engin>ProjA 5 7

USER RING BRACKETS

At the time a project is registered, the administrator sets (either explicitly or by
default) the per—project ring attributes for all users registered on the project
Individual users can be assigned per—user values; however the per-user values cannot
provide more access (to either higher or lower numbered segments) than that specified
by the per-project values.

The per-project and per—user ring attributes include {1} the lowest ring in which
a user can create a process, (2) the highest ring in which a user can create a process,
and (3) the ring in which the user is placed at login (this value must lie in the range
defined by the lowest/highest ring attribute values).

T