
HONEYWELL

I MULTICS
PROGRAMMER'S
REFERENCE
MANUAL

SOFTWARE

MULTICS

PROGRAMMER'S REFERENCE MANUAL
ADDENDUM A

SUBJECT

Changes and Additions to the Manual

SPECIAL INSTRUCTIONS

This is the first Addendum to AG91-04, dated February 1985. Change bars in the
margins indicate technical changes and additions; asterisks denote deletions.

Note:
Insert this cover behind the manual cover to indicate the manual is
updated with Addendum A.

SOFTWARE SUPPORTED

Multics Software Release 12.0

ORDER NUMBER

AG91-04A

47110
5C287
Printed in U.S.A.

January 1987

HoneY"'ell

COLLATING INSTRUCTIONS

To update the manual, remove old pages and insert new pages as follows:

Remove

3-1,3-2

3-5 through 3-8

3-59 through 3-62

4-15,4-16

5-13,5-14

6-19,6-20

7-71, 7-72

B-7 through B-10

B-29 through B-32

G-1 through G-4

G-7 through G-12

G-19, G-20

G-23, G-24

H-17,H-18

Insert

3-1,3-2

3-5 through 3-8
3-8.1, blank

3-59 through 3-62

4-15,4-16

5-13,5-14

6-19,6-20

7-71,7-72
7-72.1, blank

B-7 through B-10

B-29 through B-32

G-1 through G-4
G-4.1, G-4.2

G-7 through G-12
G-12.1, blank

G-19, G-20

G-23, G-24
G-24.1, blank

H-16.1, blank

H-17,H-18
H-18.1, blank

The information and specifications in this document are subject to change without notice. Consult
your Honeywell Marketing Representative for product or service availability.

©Honeywell Information Systems Inc.,1987 File No.: ILI3, 1 U13

11186

AG91-04A

MULTICS

PROGRAMMER'S REFERENCE MANUAL

SUBJECT

Reference Material Describing the Overall Mechanics, Conventions, and Usage
of the Multics System

SPECIAL INSTRUCTIONS

This publication supersedes the previous edition of the manual, Order No.
AG91-03, dated February 1983, and its associated addendum, Addendum A,
dated December 1983.

Section 6 is completely rewritten and does not contain change indicators. Sec-
tion 10 is ne\Il and does not contain change indicators. In all other sections
change bars in the margin indicate new and changed information and asterisks
denote deletions. See the "Significant Changes" section in the Preface for a
description of changed information.

SOFTWARE SUPPORTED

Multics Software Release 11.0

ORDER NUMBER

AG91-04 February 1985

HoneY"'ell

PREFACE

The Multics Programmer's Reference Manual contains general information about the
Multics command and programming environments. It describes such subjects as the command
language, the storage system, and the input/ output system.

The following are the primary reference manuals for user and system programmers of the
Multics system. These manuals contain general information and may be referenced throughout
this document. For convenience, these references are as follows:

Document Referenced In Text As

Multics Programmer's Reference Manual
(Order No. AG91)

Programmer's Reference

Multics Commands and Active Functions
(Order No. AG92)

Commands

Multics Subroutines and I/O Modules
(Order No. AG93)

Subroutines

Each section/appendix of this document is structured according to the heading hierarchy
shown below. Each heading indicates the relative level of the text that follows it.

LEVEL HEADING FORMAT

1 (highest) ALL CAPITAL LEITERS, BOLD TYPE FACE

2 Initial Capital Letters, Bold Type Face

3 ALL CAPITAL LETTERS, ITALICS TYPE FACE

4 I nitial Capital Letters, Ita! ics Type Face

The information and specifications in this document are subject to change without notice. This
document contains information about Honeywell products or services that may not be available
outside the United States. Consult your Honeywell Marketing Representative.

©Honeywell Information-Systems Inc., 1985 File No.: 1L13, 1 U13 AG91-04

Significant Changes in AG93-04

The description of the Multics storage system in Section 2 has been updated to reflect the
support of extended en try types.

Section 3 contains new material on date/time values.

Section 4 now includes informatIon describing the inplementation of extended entry types.

The description of the Multics input/ output system in Section 5 has been updated to reflect
the addition of a new I/O module (mtape-> used for tape input/output. Since the new mtape_
I/O module accepts a file open, close, and detach description, the programming/implementation
instructions have also been updated to reflect this capability.

Section 6 (Multics Security) has been completely rewritten.

New conditions generated by the data management software have been added to Section 7.

Section 10 is a new section describing the new data management software.

There are changes to the description of the Multics standard magnetic tape format in
Appendix F.

iii AG91-04

Section 1

CONTENTS

Multics Concepts and Characteristics
System Concepts . . .
System Characteristics

Segments
Virtual Memory
Paging
Process

Selective Sharing . . .
Access Control List
Access Isolation Mechanism
Ring Structure ...

System Administration
User Interfaces
Environment Shaping.
System Software

PL/I
FORTRAN
BASIC ..
COBOL
APL ..
PASCAL
ALM
Qedx ...
Ted
Emacs .
Communications Software
Sort/Merge
GeOS Environment Simulator
Multics Graphics System
Multics Data Base Manager ..
Multics Report Program Generator
Logical Inquiry and Update System
Word Processing
Extended Mail Facility .
Executive Mail .
Forum
Executive Forum
Transaction Processing Tools
The FAST /DFAST Facility .
Menu Creation Facilities ...
Inter-Multics File Transfer Facility
Report W ri ter
File Transfer To and From Personal Computers
Other Support Facilities and Tools

Access to the System

iv

1-1
1-1
1-2
1-3
1-3
1-4
1-4
1-5
1-6
1-6
1-6
1-7
1-7
1-7
1-8
1-8
1-8
1-8
1-8
1-8
1-9
1-9
1-9
1-9
1-9
1-9
1-9
1-10
1-10
1-10
1-10
1-10
1-10
1-10
1-11
1-11
1-11
1-11
1-11
1-11
1-11
1-11
1-11
1-12
1-12

AG91-04

Section 2

Section 3

Service to Large and Small Users . .
System Design

. Continuous Operation .
System Reliability

Glossary of Multics Terms

M ultics Storage System
Segment References
Logical Volumes

Logical Volume Attachment
Master Directories ...

Storage System Entry Types
Segment
Directory
Link
Multisegment File
Data Management File.
Extended En try Types

Entry Attributes
System Directories

Naming, Command Language, and Terminal Usage
Constructing and Interpreting Names

Entrynames
Pathnames
Archive Component Pathnames
Star Names

Constructing Star Names ..
Interpreting Star Names .

Equal Names
Constructing Equal Names
In terpreting Equal Names

Archive Component Pathnames and Equal Names
Reference Names
Entry Point Names
Command, Subroutine, Condition, and I/O Switch

Names
Request IDs
Date/Time Names :.:.

Date/Time Input Values
Time Strings (DT Values)

Date/Time Output Values ...
Time Format
List of Format Keywords

Command Language
Command Environment ..
Simple Command Line
Compound Command Line
Reserved Characters and Quoted Strings
Iteration ...
Active Strings . .
Concatenation . .

Typing Conventions .
Canonical Form .

v

1-13
1-13
1-13
1-13
1-14

2-1
2-1
2-2
2-4
2-4
2-6
2-6
2-6
2-6
2-6
2-6
2-7
2-7
2-13

3-1
3-1
3-1
3-2
3-4
3-5
3-5
3-5
3-7
3-7
3-8
3-12
3-14
3-15

3-16
3-16
3-17
3-17
3-17
3-23
3-23
3-23
3-31
3-32
3-32
3-33
3-34
3-35
3-36
3-3'9
3-40
3-41

AG91-04

Section 4

Canonicalization
Column Assignment
Overstrike Canonicalization
Overstrike Canonicalization Examples
Replacement Canonicalization
Replacement Canonicalization Examples
Erase and Kill Characters
Examples of Erase and Kill Processing
Escape Sequences

Typing Convention Examples
Column Canonicalization Examples
Erase, Kill, and Escape Ex~mples .

Terminal Output
Carriage Motion
Delays
Output Escape Sequences
Continuation Lines
End-of-Page Processing ..

Escape Conventions on Various Terminals
Selectric Devices
Upper-Case-Qnly Devices
Execuport 300
COl Model 1030 . . .

Flow Control'.
Input Flow Control
Output Flow Control

Block Transfer

Multics Programming Environment
Program Preparation

Programming Languages .
Creating and Editing the Source Segment
Creating an Object Segment
Object-Segment Format ..
Debugging Facilities
Writing a Command
Writing an Active Function

Address Space Management.
Dynamic Linking
Search Rules
Binding
Making a Segment Known
Address Space Management Subroutines

Multics Stack Segments
Stack Header ' .. .
Stack Frames
Combined Linkage Region

Clock Services
Access to System Clocks .
Facilities for Timed Wakeups

Writing a Process Overseer
Process Initialization
Process Overseer Functions ..
Some Notes on Writing a Process Overseer

vi

3-43
3-44
3-44
3-45
3-45
3-47
3-48
3-50
3-51
3-52
3-53
3-53
3-56
3-56
3-57
3-58
3-58
3-58
3-58
3-59
3-60
3-60
3-61
3-61
3-61
3-62
3-62

4-1
4-1
4-1
4-2
4-3
4-4
4-5
4-5
4-7
4-9
4-9
4-10
4-11
4-12
4-13
4-14
4-14
4-14
4-14
4-14
A 1r
~-1..J

4-16
4-16
4-17
4-19
4-21

AG91-04

Section 5

Direct Process Overseers. 4-21
Handling of Quit Signals 4-21

Creating an Extended Entry . 4-22
Interactive Subsystem Programming Environment 4-27

Subsystem Invocations 4-27
Use of sci_ptr and info_ptr in Interactive

Subsystems 4-28
Stand-Alone Invocations ... 4-28
Monitoring Subsystem Usage 4-29

The Subsystem Environment 4-29
Subsystem Request Loop ... 4-30
Subsystem Request Language 4-30

Modifying the Standard Request Processor 4-32
The rp_options Structure .:.. 4-33
Defining a Request Language 4-34
Abbreviation Processing 4-37

Writing Subsystem Requests 4-38
Argument Processing . . . 4-38
Error Handling 4-39
The Apply Request. . . . 4-39
Subsystem Requests and Multics Commands 4-40

Subsystem Areas and Temporary Segments . . 4-43
Using exec_corns in Subsystems 4-43
Tailoring the Subsystem Environment 4-44

Replaceable Procedures for cpescape and
unknown_request 4-45

Request Loop Replaceable Procedures 4-46
Other Replaceable Procedures 4-47

Subsystem Documentation Facilities. 4-47
Subsystem Info Segments and Directories 4-48
Using the Standard Requests Info Segments 4-49

Subsystem Debugging Facilities 4-50
Subsystem Request Tables 4-50

Standard Requests and Standard Request Tables 4-51
Using Standard Requests. 4-51

Defining Request Tables . 4-52
Using the Request Macros .. 4-52

Syntax 4-53
The request Macro 4-53
The set_default_flags Macro 4-55
The unknown_request Macro 4-55
The multics_request Macro . 4-56
The set_default_multics_flags Macro 4-57
The set_default_multics_doc Macro 4-58

Input and Output Facilities
Multics Input/Output System

System Input/ Output Modules
How to Perform Input/Output
Input/Output Switches ..

A ttaching a Switch
Opening a Switch ..
Closing a Switch
Detaching a Switch

vii

5-1
5-1
5-2
5-4
5-7
5-7
5-8
5-9
5-9

AG91-o4

Synonym Attachments
Standard Input/Output Switches
Initialization of External Pointer Variables .

Interrupted Input/Output Operations
Programming Language Input/Output Facilities
File Input/Output ...

Unstructured Files
Sequential Files
Blocked Files
Indexed Files
File Opening
File Closing . .
File Position Designators

Terminal Input/Output
tty _ Support
window_io_ Support (the Video System) .

What is a Window
Window Capabilities

Positioning the Cursor
Selective Erasure ..
Scrolling
Selective Alteration
Miscellaneous

Real-Time Editing
The Erase Character
The Kill Character .
The Line Editor ..0..
Moving the Cursor . . .
Deleting Characters and Words
Retrieving Deleted Text
Other Editor Requests .

Writing Editor Extensions .
Line Editor Routines
Window Editor Utilities

End-of-Window Processing
More Processing
Output Buffering
Structure of the Video System ..

I/O Modules
Subroutines
Command

Using the Video System
Attaching the Video System.
Detaching the Video System
Design Requirements for Windows
Create Window Operation . .
Important Window Requests
Change Window Operation
Destroy Window Operation .
Clear Window Operation ..

Magnetic Tape Input/Output
Magnetic Tape Input/Output in Releases Previous

to MR 11.0
Magnetic Tape Input/Output in MR 11.0

viii

5-10
5-14
5-14
5-14
5-15
5-15
5-16
5-16
5-17
5-18
5-20
5-22
5-22
5-24
5-24
5-24
5-24
5-25
5-25
5-26
5-26
5-26
5-26
5-27
5-27
5-27
5-27
5-28
5-28
5-28
5-30
5-31
5-32
5-35
5-37
5-37
5-38
5-38
5-38
5-39
5-39
5-39
5-39
5-42
5-43
5-44
5-44
5-47
5-47
5-49
5-49

5-49
5-50

AG91-04

Bulk Input and Output
Printed Output

Vertical Format Control
Punched-card Output
Punched-Card Input

Access Required for Card Input ..
Card Input Registration and Password
Card Input Access Control Segment
Station Access Control Segment

Control Card Information
Bulk Data Input

Control Card Format of a Card Deck for
Bulk Data Input

Remote Job Entry
Format of a Card Deck for Remote Job

Entry
Remote Job Entry with Foreign Computer

Systems
Submitting Card Decks to a Remote

System
Receiving Output from a Remote System .
Format of an Output File Transmitted to

. M ultics for Online Perusal
Implementation Of Input/Output Modules

I/O Control Blocks
I/O Control Block Structure
Attach Pointers
Open Pointers . . .
Entry Variables ..
Synonyms

Writing an I/O Module
Design Considerations
Implementation Rules
Attach Operation
Open Operation .. .
Close Operation ...
Detach Operation ..
Modes and Control Operations
Performing Control Operations From Command

Level
Other Operations
Outer Modules

Resource Control Package
Relationship of Rep to Other I/O Facilities
Summary of RCP Actions

Reservation, Assignment, and Attachment
Resource Reservation
Device Assignment.
Device Attachment

Device Limits.
Resource Naming Conventions

Device Names
Volume Names

I/O Workspaces

ix

5-50
5-50
5-51
5-53
5-53
5-54
5-54
5-55
5-56
5-56
5-57

5-57
5-58

5-58

5-59

5-59
5-59

5-60
5-61
5-62
5-63
5-64
5-64
5-65
5-66
5-66
5-67
5-68
5-69
5-71
5-73
5-74
5-75

5-75
5-78
5-78
5-79
5-80
5-82
5-82
5-84
5-84
5-85
5-86
5-86
5-87
5-87
5-87

AG91-04

Section 6

Resource Management Facility 5-88
Summary of Resource Management Facility Actions 5-89

Acquiring Resources 5-89
Naming Rules for Attributes 5-90

Access Control Interface with RCP and Resource
Managemen t 5-91

Access Control Segments 5-91
Access Class Ranges 5-92
RCP Effective Access 5-93
tv1anipulating Rep Effective Access 5-94

Multics Security
User Names and Pa..~words
Access Control Lists

Objects Subject to Access Control
Access Identifier•......
Access Modes

Access Modes on Entries in the Storage System
Access Modes on Resources Protected by RCP
Access Modes on Communications Channels . .
Access Modes on Daemon Source Names

Creating, Modifying, Listing, and Deleting Items in
an Access Control List

Granting Access to Groups of Individuals
Using the Asterisk Character ..
Missing Components

Calculating Access Rights
Initial ACL's

SysDaemon Entries
ACL Entry for the Creating User .
User-Defined Initial ACL's

Access Control Segments
Access Control Segments for RCP Resources
Access Control Segments for Communications

Channels
Access Control Segments for Daemon Source

Names
Access Isolation Mechanism

AIM Classification System
Policy Rules and Objectives
Relationships Between AIM Attributes
Setting AIM Attributes

Enabling AIM . . .
Marking of Data .

Segment
Directory .. .
Message Segment
Mailboxes

Marking of Users ..
Marking of RCP Resources
Marking of Communication Channels

AIM Access Rules
Segments ..
Directories . . .

x

6-1
6-1
6-2
6-2
6-2
6-3
6-3
6-5
6-6
6-6

6-6
6-7
6-7
6-8
6-8
6-9
6-10
6-10
6-11
6-11
6-11

6-12

6-12
6-12
6-12
6-13
6-13
6-14
6-14
6-15
6-15
6-15
6-16
6-16
6-17
6-18
6-19
6-19
6-19
6-20

AG91-04

Section 7

Message Segments
Interprocess Communication

Inter-System AIM
The Ring Mechanism . _ . _ , , , , .

Advantages of the Ring Mechanism
Ring Attributes and Access Control

Ring Brackets
Write Bracket . . .
Read Bracket . . .
Execute Bracket
Gate Bracket . . .

Null Access
Using the Ring Mechanism
Implementing Ring Protection .

Setting Segment Ring Brackets
Modifying Segment Ring Brackets
Directory Ring Bracket Validation Level and

Access Rights.
Validation Level
Directory Ring Bracket Access Rights

Setting Directory Ring Brackets . .
Modifying Directory Ring Brackets
User Ring Brackets

Trusted Path

Handling Unusual Occurrences
Prin ted Messages
Status Codes

Creation of Status Code Tables
List of System Status Codes and Meanings
Conditions

Multics Condition Mechanism
Example of the Condition Mechanism
On Unit Activated by All Conditions
Continuation of Search
Interaction with the Multics Ring Structure
Nonstandard Location of On Unit for Special

Conditions
Action Taken by the Default Handler . .
System Condition Wall
Signalling Conditions in a User Program
Obtaining Additional Information About a

Condition
Machine Condition Data Structure
Information Header Format
PL/I Condition Data Structure .. .

System Conditions and Default Handler
List of System Conditions

Non local Transfers and Cleanup Procedures
Epilogue Handling . . .
Faults

Simulated Faults
Null Pointer
Process Termination Fault

xi

6-20
6-20
6-20
6-22
6-22
6-22
6-23
6-23
6-23
6-23
6-24
6-24
6-24
6-28
6-28
6-29

6-29
6-30
6-30
6-31
6-31
6-31
6-32

7-1
7-1
7-2
7-3
7-4
7-26
7-26
7-28
7-30
7-30
7-32

7-32
7-32
7-33
7-33

7-33
7-34
7-37
- ~n '-:)0

7-40
7-42
7-83
7-84
7-84
7-84
7-85
7-85

AG91-04

Section 8

Section 9

Section 10

Undefined Pointer Fault

Backup
Dumping

Incremental Dumps .
Consolidated Dumps
Complete Dumps

Recovery

Administrative Controls
Administrative Hierarchy

System Administrators
Project Administrators
Users

Administrative Capabilities
Pricing

Interactive And Foreground Absentee Usage
Background Absentee Usage .
I/O Daemon Usage
Other Charges

Apportioning System Capacity.
Load-Control Groups
Wor k Classes .

Access Con trol ..
Gate Access .
Device Access
Volume Access
Absentee and Daemon Queues

Storage Quota ..

Multics Data Management
Introduction

Features and Benefits of Multics Data Management
Data Management Files

Creating Data Management Files
Data Management Files as Protected Entities
Accessing Data Management Files
Manipulating Data Management Files

Using MRDS with Data Management
Building an MRDS Data Management Database
Using MRDS Applications with DM Files

Data Storage and Retrieval Services
Relation Manager

The Relation Manager and MRDS Database
Requests

Relations and Data Management Files
Record Manager .
Index Manager
Collection Iv1anager
File Manager

File Manager and DM File Manipulation
File Manager and Integrity Services .
File Manager as a Direct Interface

Integrity Services

xii

7-85

8-1
8-1
8-2
8-2
8-3
8-3

9-1
9-1
9-2
9-2
9-3
9-4
9-4
9-4
9-4
9-5
9-5
9-5
9-5
9-5
9-6
9-6
9-6
9-6
9-6
9-7

10-1
10-1
10-2
10-3
10-4
10-4
10-4
10-5
10-6
10-7
10-7
10-8
10-9

10-9
10-9
10-10
10-10
10-10
10-11
10-12
10-12
10-13
10-13

AG91-04

Appendix A

Appendix B

Transactions and Database Consistency
Defining Transactions
Building Transactions in Existing MRDS

Applications ..,..", 0 • •

Transaction Definition Table
Concurrent Access Control

Locking Conventions
Deadlock Detection and Resolution

Recovery Procedures .. .
Transaction Failure .. .
Process Failure

Role of the Daemon
Abandoning a Transaction

Crash Recovery
Conventions and Use of Before Journals

Creating and Opening Before Journals ..
Manipulating Before Journals in the File

System
DMSIcifuliutioo
DMS Shutdown

DMS Shutdown as Part of a Multics Shutdown
DMS Shutdown as a Privileged Request
Shutdown Information

User Warning ..
Begin Shutdown
User Shutdown .
User Bump Time
Daemon Logout

Administering Data Management.
Installation Considerations . .
Creating a Data Management System Directory
Shaping the Run-Time Environment
Daemon Registration
AIM Considerations
Monitoring Performance

Command Level Interface to Data Management
User Commands
Administrative Commands

Multics Character Sets
ASCII Character Set

Printing Graphic Characters
Control Characters
Nonstandard Control Character
Unused Characters

1viuliics Extended Characler Set ..

Defining Terminals and Naming Channels Within the
Multics Communications System

Terminals and Channels
Attachments
Data Transformation
Terminal Type Concept

Terminal Type and Line Type

xiii

10-14
10-15

10-16
10-17
10-18
10-18
10-19
10-20
10-21
10-21
10-22
10-22
10-23
10-24
10-25

10-26
10-26
10-28
10-28
10-29
10-29
10-30'
10-30
10-30
10-31
10-31
10-31
10-31
10-31
10-32
10-32
10-33
10-33
10-33
10-33
10-35

A-I
A-I
A-I
A-I
A-4
A-4
A-4

B-1
B-1
B-2
B-2
B-2
B-3

AG91-04

Appendix C

Terminal Type Table and Terminal Type File
Setting Terminal Types
Changing Terminal Type Definitions
Terminal Type Table

Syntax of the TIF
Generalized Character Specifications
Terminal Type Entry
Video Table Definition
Modes Operation
Global Statements
Conversion Table Entry
Translation Table Entry
Function Kev T~hle Entiv _
- ---- ----- ---.I - ---- -----J -
Example
Special Characters Table Entry
Def aul t Types
Answerback Table .
Preaccess Commands
Examples

Names of Communications Channels
T & D Channel
Examples

Punched-card Input Output and Returned Output Control
Records

Bulk Data Input
Control Cards for Bulk Data

++DATA
++PASSWORD
++AIM
++FORMAT .
++CONTROL
++INPUT

User Data Cards .
Remote Job Entry

Example of Remote Job Entry
Control Cards for Remote Job Entry

++RJE ... ~ ..
++PASSWORD
++RJECONTROL
++RJEARGS .
++EPILOGUE ..
++ABSIN
++ FORMAT and ++ INPUT
User A bsen tee Commands .
Card Formats
Card Input Conversion Modes
Deck Size
Errors

Punched Card Output
Card-Output Conversion Modes

Punched-Card Codes
Card-Input Escape Possibilities . .
Returned Output Control Records

xiv,

B-3
B-3
B-4
B-4
B-6
B-6
B-7
B-14
B-18
B-22
B-23
B-24
B-25
B-26
B-26
B-28
B-29
B-30
B-30
B-33
B-34
B-34

C-l
C-l
C-2
C-3
C-3
C-4
C-4
C-5
C-5
C-6
C-6
C-7
C-7
C-7
C-8
C-9
C-9
C-IO
C-I0
C-IO
C-l1
C-l1
C-l1
C-12
C-12
C-12
C-13
C-14
C-23
C~24

AG91-04

Appendix D

Appendix E

Appendix F

Appendix G

++IDENT ..
++CONTROL
++FORMAT
++INPUT

Standard Data Types
Summary of Data Descriptor Types

Symbolic Names for Data Descriptor Types
Other Symbolic Names

Standard Data Type Formats
Arrays

List of Names with Special Meanings .
Reserved I/O Switch Names
Reserved Segment Names
Reserved Segment-Name Suffixes .
Reserved Object-Segment Entry Point .

Multics Standard Magnetic Tape Format . .
Standard Tape Format
Standard Record Format
Physical Record Header, .
Physical Record Trailer .
Administrative Records .

Standard Tape Label Record .
Bootable Tape Label Record
End of Reel Record

Density and Parity
Data Padding
Compatibility Consideration
Standard Checksum

Algorithm

Multics Standard Object Segment with Symbol Table
Organization

Format Of An Object Segment
Structure of the Text Section

Entry Sequence
Gate Segment Entry Point Transfer Vector

Structure of the Definition Section
Definition Section Header .
Expression Word
Type Pair
Trap Word
Initialization Structure for Type 5 System and Type

6 Links
Definition Hash Table

Structure of the Static Section
Structure of the Linkage Section

Linkage Section Header
In ternal Storage Area .. .
Links
First-Refere1;1ce Trap

Structure of the Symbol Section

xv

C-25
C-25
C-26
C=27

D-1
D-1
D-2
D-4
D-5
D-29

E-1
E-1
E-2
E-4
E-8

F-1
F-1
F-1
F-2
F-4
F-4
F-5
F-5
F-9
F-9
F-9
F-9
F-10
F-10

G-1
G-1
G-3
G-3
G=4
G-5
G-7
G-11
G-11
G-13

G-13
G-14
G-17
G-18
G-18
G-20
G-20
G-23
G-24

AG91-04

Appendix H

Symbol Block Header ... G-24
Source Map G-27
Relocation Information G-28

Structure of the Object Map . . G-31
Generated Code Conventions G-33

Text Section G-33
Entry Sequence G-34
Text Relocation Codes G-34

Definition Section G-35
Definition Relocation Codes G-35
Implicit Definitions G-36

Linkage Section G-36
Internal Storage 0-36
Links G-36
Linkage Relocation Codes G-36

Static Section G-37
Symbol Section G-37

Structure of Bound Segments. . G-37
Internal Link Resolution G-39
Definition Section . G-39
Binder Symbol Block . G-39
Bind Map G-41

Symbol Table Organization G-43
The PL/I Symbol Block G-44
The PL/I Runtime Symbol Table G-46

The Runtime_Token Node G-47
The Runtime_Block Node G-48
The Entry Info Block G-51
The Pascal "with" Block . G-51
The Runtime_Symbol Node G-52

Encoded Values. G-57
Controlled Variable Control Block G-60
Picture Information Block G-60

The Pascal Runtime Symbol Node G-61
Additional Information About Pascal

Symbol Nodes. G-68
Special Runtime Symbol Data Type Codes G-71

The Statement Map G-72

Standard Execution Environment
Standard Stack and Link Area Formats

Multics Stack
Stack Header
Multics Stack Frame .
Linkage Offset Table
Internal Static Offset Table

Subroutine Calling Sequences
Call Operator . .
Entry Operator
Push Operator
Return Operator ...
Short Return Operator
Pseudo-op Code Sequences
Register Usage Conventions

xvi

H-l
H-l
H-l
H-l
H-7
H-IO
H-I0
H-ll
H-12
H-12
H-13
H-13
H-14
H-14
H-15

AG91-04

Appendix I

Appendix J

Index

Figure 1-1.
Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 3-1.
Figure 5-1.

Figure 6-1.
Figure 6-2.
Figure 7-1.
Figure 9-1.
Figure D-1.

Figure D-2.

Figure D-3.

Figure D-4.

Figure D-5.
Figure D-6.
Figure D-7.
Figure D-8.
Figure D-9.
Figure D-I0.
Figure D-l1.
Figure D-12.
Figure D-13.
Figure D-14.
Figure D-15.
Figure D-16.
Figure D-17.

Argument List Format
Parameter I>escriptors

Data Base Descriptions
Name
Usage
sys_info
whotab .

Standard Request Tables And Standard Requests
Standard Request Tables
Standard Requests

H-16
H-22

T 1
1-l.

I-I
I-I
1-2
1-4

J-l
J-l
J-2

i-I

Illustrations

Process Characteristics Per Ring
Storage System Hierarchy
Relationship of Directories to Logical Volumes
Directory Hierarchy
Sample Storage Hierarchy
Interrelationship between User Code, iox_, RCP, IOI. and

the I/O Module
Gate Mechanism
Logical Flow in Homework Program
Simplified Handler Algorithm
Multics Administrative Hierarchy
Single-Precision, Unpacked, Floating-Point Binary-Operand

Format
Single-Precision, Packed, Floating-Point Binary-Operand

Format
Double-Precision, Unpacked, Floating-Point Binary-Operand

Format
Double-Precision, Packed, Floating=Point Binary-Operand

Format
Typical Type 9 Decimal Datum .
Typical Type 10 Decimal Datum
ITS Pointer Format
Packed Pointer Datum Format
Offset Datum Format. .
Typical Type 29 DatJ,lm
Typical Type 30 .Datum
Typical Type 35 Datum
Typical Type 36 Datum
Typical Type 38 Datum
Typical Type 39 Datum
Typical Type 41 Datum
Typical Type 42 Datum

xvii

1-5
2-3
2-5
2-14
3-3

5-81
6-26
6-27
7-31
9-1

D-6

D-6

D-7

0-7
D-9
0-9
0-10
D-11
D-11
D-13
0-14
D-15
D-16
D-16
D-17
D-17
D-18

AG91-04

Figure D-18.

Figure D-19.

Figure D-20.

Figure D-21.

Figure 0-22.
Figure D-21
Figure D-24.
Figure G-1.
Figure G-2.
Figure G-3.
Figure G-4.
Figure H-1.
Figure H-2.
Figure H-3.

Table 5-1.
Table 5-2.
Table 5-3.
Table 5-4.
Table 5-5.
Table 5-6.
Table 5-7.
Table 5-8.
Table A-I.
Table C-l.

Table C-2.

Table C-3.

Table D-I.
Table G-l.
Table G-2.

Single-Precision, Unpacked, Floating-Point Hex-Operand
Format

Single-Precision, Packed, Floating-Point Hex-Operand
Format

Double-Precision, Unpacked, Floating-Point Hex-Operand
Format

Double-Precision, Packed, Floating-Point Hex-Operand
Format

Typical Type 81 Datum
Typical Type 83 Datum
Floating-Point Binary Generic Format
Sample Definition List
Definition Hash Table
Structure of a Link
Structure of a Bound Segment
Stack Header Format . . .
Stack Frame Format ...
Standard Argument List

Opening Modes and Allowed Input/Output Operations
Opening Modes Supported by I/O Modules
File Types and Allowed Input/Output Operations
Compatible File Attachments
File Position Designators at Open
Translations of Paper Motion Commands in Output Files
I/O Workspaces
RCP Effective Access
ASCII Character Set on M ul tics
Correspondence Between ASCII Characters and EBCDIC

Characters
Summary of Extensions to EBCDIC to Obtain Multics

Standard Codes
Summary of Differences Between Multics Standard Card

Codes and Proposed ASCII Standard Card Codes
Overpunched Sign Encoding
Contents of Pascal Symbol Nodes
Data Type Codes Used by Variables vs. Types

xviii

0-19

D-20

0-20

0-21
0-27
0-28
0-28
G-6
0-15
0-21
0-38
H-2
H-8
H-17

Tables

5-12
5-13
5-19
5-21
5-23
5-61
5-88
5-94
A-2

C-16

C-22

C-23
D-14
0-69
0-71

AG91-04

SECTION 1

MULTICS CONCEPTS AND CHARACTERISTICS

The first part of this section is a brief introduction to the Multics system.
Many items mentioned here are described in detail in other sections of this manual.
Refer to the contents and index of this document to locate desired information. When
necessary, the user is referred to other manuals.

The second part of this section is a glossary of Multics terms. A reference that
directs the reader either to a section of this manual or to another manual is supplied
with most of the terms defined.

SYSTEM CONCEPTS

Multics is a unique combination of hardware. software. communications capabilities,
and supervisory techniques. The system provides capabilities that have long been sought
by research, government, academic, and network-oriented computer users--those users
who require unique security, system development. and centralized data base features.

Setting Multics apart from other offerings in the general purpose computer
market is its ability to provide total resources on demand. Computer systems
previously have been measured in terms of memory size, speed, and hardware cost, but
Multics is gauged by its ability to provide the most cost-efficient environment for
problem solving. Productivity of the system is high because all Iviultics software-including
the operating system supervisor. user programs, and data files--is free of main
memory constraints and of any particular hardware configuration.

1-1 AG91-04

The ability to share data within the framework. of a general purpose,
time-sharing system, is a vital feature of Multics that can be directly applied to
administrative problems. applications requiring a multiuser accessible data base, and
general application of the computer to very complicated problems. The attention paid
to mechanisms to provide and control privacy is of direct interest for many
applications dealing with proprietary information.

Multics offers a number of additional capabilities that go well beyond those
provided by many other systems. Those which are most significant from a user's point
of view are described in this section. Perhaps the most important aspect of all is that
a single system comprises all of these capabilities simultaneously. The major design
concepts of the Multics system include:

• Virtual memory designed to make addressable memory seem virtually
infinite

• Selective sharing of information through controlled access that is
regulated by both software and hardware

• Security mechanisms enforced by hardware: this includes the Multics
ring structure

• Structural administration. allowing decentralized control and management
of system resources

• Flexible user interfaces, allowing a wide variety of programming
environments

• Remote terminals as the normal mode of system access

• Efficient service to all users whether their use of system resources is
very large or very small

• Continuous operation through the use of dynamic hardware configuration
techniques and online software maintenance and system administration

• Open-ended. modular system design that anticipates the evolution of
technological improvements and the expansion of user requirements

SYSTEM CHARACTERISTICS

The following paragraphs describe the major characteristics of the Multics system.
These characteristics are integral parts of the Multics system and cannot be separated
from the system--yet in many instances. use of these capabilities is optional to the
individual user.

1-2 AG91-04

Segments

The segment is the unit of storage of the Multics storage system analogous to a
file on other systems. A segment can range in size from 0 to 255K (K equals 1024)
36-bit words. On Multics, all information is grouped into nondirectory and directory
segments. A non directory segment is a collection of instructions or data specified by a
user. A directory segment is a catalog of subordinate segments, created and maintained
by users via the supervisor. The directory concept is the key to several M ultics
features including storage structure, administrative control, search rules, and naming
conventions.

A user can create a segment by issuing a command (e.g., create) from command
level or via a call statement from within a program. A user has control over every
segment he creates. The segment attributes mentioned above provide the user with
extensive control over the manipulation and sharing of the segments he creates. (See
"Selective Sharing" below.) A user may specify the individuals who have access to his
segments. Also levels of protection (rings) can be specified as a further control over
the same segments.

Virtual Memory

The Multics virtual memory makes all segments in the storage system directly
addressable. An address in Multics. as used by the hardware. consists of two
components: the first identifies a segment and is called a segment number; the other
specifies a location within that segment.

A segment number is assigned by the supervisor and associated with the specified
segment by user request. provided the user has the necessary access privileges. This
request is often done implicitly as part of some other supervisor function.

Once a segment number has been provided by the supervisor. user software can
reference the segment directly with appropriate machine instructions. The data or code
of the segment so referenced is automatically brought into main memory. if necessary,
so that the processor can use it.

Since the physical movement of information between secondary storage and main
memory is totally automatic, it is of no concern to the programmer when he is
constructing his application. A user does not have to be concerned with where and on
what devices his segments reside. Because of the demand paging technique described
below, users need not be concerned about overlaying or partitioning program modules
to satisfy limited main memory resources. Since conventional input/output is not
required programming on Multics is greatly simplified.

.. 1-3 AG91-Q4

Paging

Since segments can be different sizes, it may be impractical to have an entire
segment in main memory when in use. Therefore Multics segments are automatically
subdivided into fixed-size (1024 words) storage units called pages. When a segment is
referenced, the page referenced is automatically retrieved from secondary storage and
placed in any available "frame" in main memory. When main memory is filled and
more frames are needed, some pages have to be displaced. Pages not used recently are
moved to secondary storage so that new pages may be transferred to main memory.

Address mapping at the hardware level allows the system to determine whether
or not a page of a referenced segment is in main memory. If the page is not in
m~;n mpmnTV ~ m;c;:c;:;na n~ap pv~pnt;nn n~(,l11"C;: (~~l1pn ~ "n~ap f~l1lt") Thp c;:vc;:tpm
................... - _.a.J',., c 1"" ... 0..... 'W'J1_..,y'"'.A."""...... "'--, 'W'&.A~ "'" r .. o..... "',-&'" l.IJ~"''''''&'.I..I.

software intervenes at this point and processes the page fault by locating the desired
page of the storage system in secondary storage and transferring it to main memory.
This procedure is automatic; and the time involved is not noticeable to the user.
During this phase, the process that generated the page fault may relinquish control of
the processor and the system may dispatch the processor to another process. (See
"Process" below.) Once the page does arrive in main memory, the system notifies the
"waiting" process and schedules it for continued execution. Consequently, only those
pages that are currently needed are in main memory at anyone time.

Process

A process may be defined as the way the system is seen by a logged-in user; in
essence. a user's process is the user's (virtual) machine. Multiprogramming multiplexes
real processors between users' processes, making it appear that each user has a
processor at his service. A user's process executes programs sequentially.

The system creates a process for each user at login time. (For information on
logging in and out on the system, see the New Users' Introduction to Multics,
Part I, Order No. CH24.) Within the constraints imposed by the supervisor, users and
project administrators may customize their processes as desired: the commands,
command processor. and environment provided by the system can all be replaced in
users' processes by their own code.

Each user's process executes programs fairly independent of other users' processes.
Inf ormation may be shared between processes, allowing sharing of programs and
communication between processes (if desired).

Each process has its own address space and is made up of three parts. These
parts are described in the process' descriptor segment; basically, they are the process'
characteristics in ring 0, ring 1, and ring 4, the user ring (for a further discussion of
Multics ring structure, see "Selective Sharing" below). For instance, each process has a
separate stack and linkage area for each ring that it executes in. On the other hand,
each process has other attributes that are the same no matter which ring it is
executing in. A good example of that is the descriptor segment. Figure 1-1 indicates
which things are per process and which per ring.

1-4 AG91-o4

descriptor segment
Known Segment Table (KST)

Process Initialization Table
process directory

Process Description Segment (PDS)

ring 0

stack (*)
static (,,:)

supervisor data
bases

ring 1

stack 1
linkage area

(stat i c)
search rules
rna i 1 boxes

ring 4

stack_4
1 inkage area

(static)
search rules
I/O attachment

table
language I/O
temporary

segments
user programs
user data

Figure 1-1. Process Characteristics Per Ring

Ring 0 comprises the segments of the central supervisor. It is in this ring that
each process' segment numbers are assigned. The Known Segment Table, in which
these numbers are kept. then applies, of course, to an entire process, and that process
can directly reference only those segments that have been assigned a segment number
by calls to supervisor programs.

Ring 1 contains system routines such as those that manage mailboxes and queues.
Ring 2 is used, in large part, for system data bases. Ring 3 is reserved mostly for
other administrative routines such as those that are specific to a particular site. Most
user processes start running in ring 4. Rings 5 through 7 are used by programmers
writing their own protective subsystems. The classic example of this is a teacher who
runs student programs in ring 5 and the grading program in ring 4. Rings 6 and 7
lack access to most system software, so the subsystem designer can create severely
limited
programming environments.

SELECfIVE SHARING

Segments are data objects that exist independently of any process. The system
manages the physical location of pages of segments. If the pages are in use, they will
be in main memory. If several users have the same segment known in their process,
they will reference the same physical· locations of main memory when referencing it.
Per-user "copies" or "images" of segments can be created under special circumstances,
but generally segments are shared. Hence, several users referencing a given segment
may use its contents to communicate, given that access has been appropriately granted.
Furthermore, several processes using the same program use the same physical pages,
contributing to effective use of main memory.

1-5 AG91-()4

Access Control List

Each segment has an access control list (ACL) that names the individuals who
have access to the segment and describes the type of access they have. Through the
ACL, a user can grant specific access to individual users or groups of users to permit
easy, controlled sharing of information. Different access rights can be granted to
different users of the same segment. The hardware enforces access control during the
execution of each individual machine instruction.

Access Isolation Mechanism

The access isolation mechanism (AIM) allows administrators of the system to
define several levels of privilege, which the system itself rigidly enforces. Enforcing
the separation of these levels is totally independent of other access controls or user
action. The use of this administrative mechanism ensures privacy by preventing
inadvertent disclosure of information between these privilege levels, even by those who
own the information.

Ring Structure

A further refinement to selective sharing is provided by special hardware that
implements the Multics ring structure. Ring structure is an advanced form of
protection capability that permits the ready construction of protected data bases.
Privileged users may have complete access to the data base and can control (by
program) the information less privileged users can see.

Logically, the ring structure is eight concentric rings, each representing the level
of privilege accorded to procedure segments executed in that ring. The highest level
of privilege is the innermost ring, designated as ring 0; the outermost is ring 7.
Privileged ring segments, such as a supervisor and special user subsystems, are
protected from uncontrolled use by less-privileged rings. These segments can only be
used by procedures in less-privileged rings if called via a special "gate" mechanism.
and the user must have access to the individual segment as well.

The Multics ring implementation makes it possible to:

• Create protected programs and data bases for controlled use by other
users

• Implement a supervisor program in rings with differing degrees of
privilege

• Debug a program in an unprivileged ring and the~ move it to a
privileged ring with no recompilation or modification

1-6 AG91-04

SYSTEM ADMINISTRATION

All information stored online on Multics is organized into a tree-structured
hierarchy. Within this hierarchy. directories catalog segments residing below them in
the tree. (See Section 2. "Storage System. ") The organization of the body of users on
Multics is patterned after the organization of the storage system. Users are grouped
by the system administrator into projects. which are generally under the control of a
project administrator. The project administrator may impose special disciplines on users
within his project. For example. the project administrator defines the initial procedure
in a process for users under his project. The project administrator also allocates
storage quota to individual users based on the quota granted his project by the system
administrator. The distribution of authority between the system administrator and
project administrator results in a decentralized control of the system. *

The facilities required to manage a Multics site are integrated into the system
itself. In the area of financial control. the Multics system accounts for use of
resources on a per-user basis and organizes these accounts based upon project and
system administration. Users can be allocated quotas according to storage space, central
processor utilization. or dollar amounts based on the current billing rates. Users,
project administrators, and the system administrator can interrogate quota amounts and
usage at any time.

USER INTERFACES

Multics has an open-ended design with a uniform interface for both user-written
and system-provided commands. The user can create or manipulate segments residing
in various user directories while at command level or from within a program. Users
can create commands and subsystems of arbitrary complexity. The interfaces available
to system-provided commands and subsystems are available to the user and are
documented elsewhere in this manual (see in particular, Sections 4 and 5, and
Appendixes G, H, and n.

ENVIRONMENT SHAPING

A Multics user is not restricted to the programming environment defined by the
standard system but can alter this environment for private use or use an altered
environment that a project administrator provides or imposes on him. As an example.
the project administrator may offer some of his users only a subset of the full system
(a limited service system), or he may create a completely separate environment (a
closed subsystem) that bears no resemblance to the standard Multics environment and
requires no knowledge of the Multics system itself. These environment changes are
made possible by a large number of Multics mechanisms. Primary contributors are:

• Modular system design that allows easy replacement of a specific
operating system module without affecting other modules

• Implementation of the system in the PL/I language, which permits easy
interfacing with operating system modules

1-7 AG91-04

• Project administration features, which permit the installation and
management of a new environment

• Security and protection features, which keep the environment separate
from the other users in an atmosphere of mutual protection

SYSTEM SOFTW ARE

The Multics system includes a full complement of software facilities. These
software facilities include several language processors, various communications products,
a data base management capability, word processing software, and a host of specialized
facilities for various utility functions. These software facilities are listed below.

PL/I

The PL/I compiler for Multics offers a full selection of language facilities and
access to the advanced features of Multics. PL/I is the recommended programming
language for Multics users. Multics PL/I conforms to the American National Standards
Institute standard (ANSI X3.53-1976) for the language and the ISO International
Standard 6160-1979.

FORTRAN

The Multics FORTRAN compiler conforms to the American National Standards
Institute (ANSI X3.9-1978) FORTRAN. Multics FORTRAN is a superset of the ANSI
standard FORTRAN and is source language compatible with L66/GCOS8 FORTRAN.
Multics FORTRAN complies with the Federal Information Processing Standard (ANSI
X3.9-197S) for the FORTRAN language.

BASIC

The Multics BASIC is compatible with the Dartmouth Version 6 BASIC and
contains all the functional capabilities of the L66/GCOSS BASIC compiler. Except for
minor differences, it conforms to the ANSI Standard for Minimal BASIC (ANSI
X3.60-1978).

COBOL

This compiler is a subset of the ANSI standard COBOL (ANSI X3.23-1974) and
of the Federal Information Processing Standard (FIPS 21-1). It is source language
compatible with L66/GCOS8, COBOL-74.

APL

APL is a powerful interpretive language available to Multics users. The Multics
APL interpreter is compatible with other common APL implementations.

1-8 AG91-04

PASCAL

Multics PASCAL is based on the standard ISO Pascal. Extensions are available to
augment the standard and make PASCAL programming on Multics easier and more
versatile. Pascal is a popular language because of its carefully chosen control structures
and powerful data structuring capabilities.

ALM

ALM is the assembly language on Multics. It is commonly used for privileged
supervisor code, compiler support operations and utility packages. It is not recommended
for general use.

QEDX

The qedx editor is used to create and edit ASCII segments. Through its macro
capabilities. it also qualifies as a minor interpretive language.

TED

The ted editor is used to create and edit ASCII segments. It is an extended
version of qedx. designed to facilitate macro writing.

EMACS

The Emacs editor is an integrated editing, text preparation. and screen
management system designed to take advantage of the features of modern display
terminals.

Communications Software

Multics supports a wide variety of specialized tools for communications support.
Both synchronous and asynchronous protocols are supported. Multics can be configured
as a host system for remote job entry workstations or, conversely, Multics can be used
as a remote workstation to a foreign host. Also supported is a capability to allow
DPS 6 systems to be used as satellite systems via an X.25 protocol interface facility.

Sort/Merge

The Sort/Merge subsystem provides generalized file sorting and merging capabilities,
specialized f or execution by user supplied parameters. The Sort orders an unranked
file according to the values of one or more specified key fields in the user's records.
The Merge collates the contents of up to ten ordered files according to the value of
one or more key fields. Input and output files associated with the Sort/Merge
subsystem can have any file organization and be on any storage medium. Records can
be either fixed or variable length.

1-9 AG91-()4

GCOS Environment Simulator

The GCOS environment simulator, together with several Multics facilities, permits
GCOS batch-processing jobs to be run under the control of Multics and provides
some job-scheduling facilities. Invoked via the Multics gcos command, the simulator
immediately runs one GCOS job in the user's process. The user's terminal is treated
as the GCOS operator's console.

M ultics Graphics System

The Multics Graphics System (MGS) provides a general purpose terminal-independent
interface through which user or application programs can create, edit, store, display,
and animate graphic constructs.

Multics Data Base Manager

The Multics Data Base Manager is written to interface with any programming
language that supports a call statement. It is based on the Multics relational data store
(MRDS). MRDS supports the relational model of data base organization.

M ultics Report Program Generator

The Multics Report Program Generator (MRPG) is a language translator used to
generate a PL/I source program from an MRPG source program with the purpose of
generating formatted reports.

Logical Inquiry and Update System

The Logical Inquiry and Update System (LINUS) is a facility for accessing
centralized MRDS data bases, as well as user-defined private data bases. The complete
data base management capability provided by LINUS includes both retrieval and update
operations. The LINUS language (LILA) is used to specify data; it is a high-level
nonprocedural language that can be understood by individuals who are not necessarily
computer specialists. The LINUS report generator permits both technical and
non-technical users to obtain formatted reports.

Word Processing

The Multics word processing system, WORDPRO, consists of a set of commands
that assist users in the input, update, and maintenance of high quality documents. The
commands provide tools for text formatting, Speed type, dictionaries for hyphenation
and spelling, and list processing.

Extended Mail FaciHty

The Multics Mail Facility consists of the read_mail, send_mail. and print_mail
commands, which enable users to send, receive, and process mail.

1-10 AG91-04

Executive Mail

The Multics Executive Mail Facility uses menus to assist users in sending,
reading, and processing mail.

Forum

Multics Forum is an online meeting system that enables users to attend a
meeting by reading proceedings that have been stored online and entering proceedings
for other participants in the meeting to read.

Executive Forum

The Multics Executive Forum facility is a menu-driven interface to the Forum
subsystem. Users are provided with a list of operations that can be selected by typing
a number or letter.

Transaction Processing Tools

The Multics Transaction Processing subsystem provides a specialized environment
for applications that interact with a data base.

The FAST /DF AST Facility

FAST and DFAST operate as subsystems under Multics to provide a time-sharing
environment supporting BASIC and FORTRAN program development. (The DFAST
command repertoire and language conventions are based on the Dartmouth Time-sharing
System with extensions for compatibility with Multics.)

Menu Creation Facilities

Multics menu creation facilities consist of commands and subroutines that can be
used by application programmers to create and manage menus.

Inter-Multics File Transfer Facility

The Inter-Multics File Transfer Facility permits users to easily transfer files and
subtrees between Multics systems.

Report Writer

The Multics Report Writer (MRW) provides the capabilities to utilize formatted
data extracted from sources other than Multics Relational Data Store data bases. It
consists of an end-user oriented subsystem request interface, and a programmer
subroutine interface. It was designed to serve the needs of the casual and experienced
user.

1-11 AG91-04

File Transfer To and From Personal Computers

Multics supports three protocols that enable users to transfer files between
Multics and microcomputers. These protocols consist of a file transfer protocol,
Kermit, and two data transfer protocols, XMODEM and IBM PC-to-Host (Multics).
Kermit consists of the basic Kermit file transfer protocol and the Kermit server.
XMODEM and IBM PC-to-Host (Multics)are implemented by 10 modules that may be
used to transfer files by way of either the micro_transfer command or through a
user-created file interface system. Users wishing to design their own data transfer
protocols may also use the micro_transfer command to act as an interface between the
Multics file system and the respective user data transfer protocol.

The probe, debug, and trace commands permit a user to analyze and correct a
compiled program at both the original source level and the more specific machine
register level.

The Multics Subsystem Utilities <ssu-> provide a general-purpose interface for
implementing interactive subsystems. such as the Extended Mail Facility and Forum, in
an environment analogous to Multics command level. Detailed information on the use
of this facility is contained in Section 4.

Performance measurement tools permit the user to analyze his program's behavior
so that optimum applications software can readily be developed.

Interuser communication facilities, both immediate and deferred, permit online
messages to be transmitted among users.

Online documentation facilities provide the user with useful information and
document preparation tools.

For easy reference. the standard commands and subroutines provided by the
Multics system are listed according to function in the respective Commands and
Subroutines manuals.

ACCESS TO THE SYSTEM

The primary means of accessing the Multics system is from a remote terminal.
The system accepts input from a terminal, interprets the user's request. and invokes
the software component to perform the desired function. The software component can
be either system or user supplied: there is no distinction at the command or
subroutine level. The command language allows recursive, iterative commands and the
embedding of function calls in the command line.

1-12 AG91-Q4

The command processor is a shared. replaceable module, written in PL/I. The
design of the command processor thus permits an extremely wide range of interfaces
to all system facilities either on a controlled or open-ended basis. The project
administrator can require a user to interface with a special version of the command
processor, thereby limiting the software requests or commands available to him.

The Multics system does not usually differentiate between interactive and batch
users, except that a batch user (called absentee in Multics) is not available to answer
any questions the system may ask and must therefore anticipate such questions and
have prepared answers ready.

SERVICE TO LARGE AND SMALL USERS

The Multics system automatically assigns system resources to a user in proportion
to the size of his task. System functions (such as locating and retrieving inf ormation
from secondary storage) are invoked on a demand basis, as the detailed requirement is
encountered by the program. This not only relieves the programmer of the burden of
predicting in advance his use of system resources, but also prevents an additional
burden on the system caused by programmers calling for more resources than they
need. By default, the system controls the automatic allocation of resources for all
users. In addition, the system and project administrators can set storage quotas on a
user and even impose limits on the amount of system resources that the user can
consume in a given time interval.

SYSTEM DESIGN

The designers of the Multics system were determined from the very beginning to
develop a system that could both evolve as a body of software on a given machine
and sustain a movement across hardware generations. To attain this goal, they
implemented a modular design. Operating system modules may be easily replaced on a
system or individual user basis. In addition. most of the Multics operating system is
written in PL/I, which makes the system even more flexible and easy to modify.

Continuous Operation

Various system features contribute to the Multics characteristic of continuous
operation:

• Central processors and memory units may be added or subtracted
without shutting down the system

• User programs and the system itself need not change structure in any
way whateVer dUe to differences in hardware configuration

• Tasks required to manage the system can be performed without
interrupting service; these tasks include metering system or user
behavior, invoking management subsystems such as accounting and
billing, or even updating the bulk of the system software capabilities
and facilities

1-13 AG91-()4

System Reliability

Information stored online on a Multics system is protected by two distinct types
of backup systems, one which uses the normal hierarchy mechanisms to access data,
referred to as the hierarchy backup system, and another which operates at the physical
storage volume level, referred to as the volume backup system. Both backup systems
dump onto magnetic tape any segment whose contents have been changed during the
backup interva1. The length of the backup interval and the segments to be protected
can be set by the system administrator. A straightforward technique permits the
retrieval of a segment from either type of backup tape and its reinclusion in the
online storage system. There also is a subsystem called the "salvager" that examines the
online storage system after a failure, corrects improper directories, and informs
operations personnel of missing or damaged segments. These may then be retrieved
from the backup tapes. Another subsystem, the "scavenger," performs the same
function as the physical volume salvager without having to remove the affected volume
from service.

GLOSSARY OF MULTICS TERMS

absentee
A facility for running background jobs (noninteractive processes). (See the
enter_abs_request command in the Commands manua1.)

access attributes
See access modes below.

access class
An access isolation mechanism (AIM) attribute that denotes the senSlt1vtty of
information contained in a segment, directory, multisegment file, or message in
a message segment. An access class is associated with an entry for its lifetime.
(See "Nondiscretionary Access Control" in Section 6.)

access control
The mechanism for determining who can reference or modify segments (files)
and directories. (See "Discretionary Access Control" in Section 6.)

access control list (ACL)
A set of access identifiers specifying who can access a segment or directory.
Associated with each access identifier is a set of allowed modes of access to
that segment or directory. There is an ACL for each segment and each
directory. See initial access control list below. (See "Discretionary Access
Con tro 1" in Section 6.)

access isolation mechanism (AIM)
The mechanism used to guarantee that only authorized persons access certain
classes of information. (See "Nondiscretionary Access Control" in Section 6.)

access modes
A way to identify the kinds of access that can be set for a segment or
directory. The access modes for segments are read (r), write (w), execute (e),
and null (n). Those for directories are status (s), modify (m), append (a), and
null (n). See extended access below. (See "Discretionary Access Control" in
Section 6.)

1-14 AG91-04

active function

AIM

ALM

A function specified in a command line whose value (a character string)
becomes part of an expanded reevaluated command line. (See "Active Strings"
in Section 3.)

See access isolation mechanism above.

The assembly language on Multics, used primarily for programs that must
closely interface with the hardware. (See the aIm command in the Commands
manual).

alternate name(s)
A segment, directory, multisegment file, or link can have more than one name
and may be referred to equally well by anyone of its names. One of the
names is the primary name. The others are called secondary names or
addnames. A segment often has more than one name because it is a program
with alternate entry points; commands often have short names as well as long
ones for convenience in typing (Le., cwd instead of change_wdir). (See primary
names below.)

answering service

archive

attach

The subsystem that runs in the Initializer process and logs users in and out.
(See Ini tializer.)

A segment used to conserve space. When storing a group of segments, the
contents of the individual segments can be packed together in an archive to
eliminate breakage in the last page of each segment. (See the archive command
in the Commands manual.)

The act of associating an I/O switch with a file, or other I/O switch. For
example, the normal output switch (user_output) is usually attached to the
terminal. but can be attached to a file via the file output command. (See I/O
module below.) - -

authorization

backup

An access isolation mechanism (AIM) attribute of a process that denotes the
range of information the process can access. An authorization is associated with *
a process for its lifetime. (See Section 6.)

See hierarchy backup and volume backup below.

before journal

bind

A storage unit that is used for storing the images of a data management file
before it is modified. Before journals are implemented as extended entry types.

See bound segment below.

bit count
An index to the last bit of useful information in a segment For example, a

1-15 AG91-04

blocked

segment that contains 43 characters starting at the beginning has a bit count of
387 (9*43). (A segment may, however. contain useful data independent of its
bit count) (See "Entry Attributes" in Section 2.)

The state a process is in when it is not executing and is waiting for some
event to occur (such as the user typing a command line).

bound segment

branch

A group of (usually related) object segments bound into one object segment to
save space and speed up ref erences (calls, etc.) between them. The process of
binding segments is similar to linkage editing on other systems and is done by
use of the bind command. (See the bind command in the Commands manuaL)

An item cataloged in the storage system that is not a link.

canonicalization
The conversion of a terminal input line into a standard (canonical) form. This
is done so that lines that appear the same on the printed page, but that may
have been typed differently (i.e.. characters overstruck in a different order),
appear the same to the system.

carriage return
A carriage return means that the typing mechanism moves to the first column
of the next line. On the Multics system, this action is the result of the ASCII
line feed character. The terminal type determines which keys the user presses
to perform the equivalent action (e.g., RETURN, LINE SPACE, or NL).

character
A hardware-related unit of information that on the Multics system is 9 bits or
6 bits. The Multics system native mode character set is 9-bit ASCII, although
the hardware does support additional character sets.

closed subsystem
A separate environment that bears no resemblance to and has no knowledge of
the Multics system itself. (See "Programming Environment" in Section 1.)

command
A program designed to be called by typing its name at a terminal. Most
commands are system maintained, but any user program that takes only
character string input arguments and no output arguments can be used as a
command. (See "Command Language" in Section 3.)

command level
The process state in which lines input from a user's terminal are interpreted by
the system as a command (i.e., the line is sent to the command processor). A
user is at command level at login when a command completes or encounters an
error, or is stopped by issuing the quit signal. Command level is normally
indicated by a ready message. (See "Command Environment" in Section 3.)

command processor
The program that interprets the lines input at command level and calls the
appropriate programs, after processing parentheses and active functions. (See
"Command Environment" in Section 3.)

1-16 AG91-04

component (of an archive)
One of the segments placed in an archive. (See the archive command in the
Commands manual.)

component (of an entryname)
A logical part of an entryname. Entryname components are separated by a
period. (See suffix below and UEntrynames" in Section 3.)

control argumnent
An argument to a command that specifies the command's execution in some
way. System control arguments begin with a hyphen, such as -all, -long, or
-hold. The meaning of each control argument accepted by a specific command
is given as part of the description of the command. Many control arguments
have standard abbreviations such as -Ig for -long.

crash (FNP)
an unplanned termination of service from the front end network processor
causing a disconnection of the process. The process can- be saved and
reconnected when the -save_on_disconnect control argument has been used with
the login command.

crash (system)
An unplanned termination of system availability caused by problems in
hardware and/or software, often signalled by the message: MULTICS NOT IN
OPERATION. Processes cannot be reconnected after a system crash.

data management file

daemon

detach

a unit of storage within the Multics storage system. Data management (DM)
files can be implemented with concurrency control and recovery support. At
present, the ability to use DM files is available only to programs accessing files
through the Multics Relational Data Store (MRDS) facility.

One of several system service processes that perform such tasks as process
creation. backup, network control. and printing segments on the line printer.

Inverse of attach (see above).

directory
A catalog of entries in the storage system. The directory contains information
about the attributes of these entries and information about the physical device
on which the data is stored. (See Section 2, "Storage System.")

directory (horne)
The directory that is the working directory of a user when he first logs in to
the system (also known as the initial working directory). Usually this directory
has a pathname of the form:

>udd>Project_id>Person_id

See directory (working) below.

1-17 AG91-04

directory (master)
A directory whose segments reside on a different logical volume than those of
its parent directory.

directory (parent)
The immediately superior directory.

directory (upgraded)
Any directory that has an access class greater than that of its parent.

directory (working)
Identifies the user's current location within the storage system with regard to
pathnames. Any pathname the user types that does not begin with a greater
than (» character is considered relative to the working directory. By default.
this directory is used by the search rules. (See "Search Rules" in Section 4.)

directory hierarchy
The tree-structured organization of the logical contents of the Multics storage
system. (See Section 2, "Storage System. ")

discretionary access control
Allows individual users to grant or deny other users access to their segments
and directories at their own discretion.

dprin t, dpunch (f or Daemon print and Daemon punch)

dump

A queued request to the system to output on a line printer (or card punch)
the contents of a segment or multisegment file. (See the enter_output_request.
dprint, and dpunch commands in the Commands manual.)

See hierarchy backup below.

dynamic linking
The resolution of symbolic external references at execution time (that is, the
first time the symbol is actually referenced). (See link pair below and
"Dynamic Linking" in Section 4.)

eff ective access

entry

The actual access mode that the system enforces for each reference or use of a
segment or directory. Nondiscretionary access control can restrict, but not
extend, the access granted by the discretionary controls.

An item cataloged in the Multics Storage System (e.g., segments).

entry bound
For protection purposes, control must not be passed to a gate procedure at
other than its defined entry points. To enforce this restriction, the first n
words of a gate segment with n entry points must be an entry point transfer
vector. To ensure that only these entries can be used, the hardware eniorced
entry bound of the gate segment must be set so that the segment can be
entered only at the first n locations. See the hcs_$set_entry _bound description
in the Subroutines manual.

1-18 AG91-04

entry point
An address in an object segment referred to by a symbolic name; e.g., that
which would be produced by the PL/I or FORTRAN procedure, subroutine, or
entry statements.

entry point name
The name associated with an entry point in an object segment The entry point
name is found by the dynamic linker. (See "Entry Point Names" in Section 3.)

entryname
A name given to an item cataloged in the storage system. It may contain one
or more components, separated by periods. All names given to entries within
one directory are unique, but need not be different from names defined in
other directories. (See "Entrynames" in Section 3.)

equal convention
A method used by many commands to specify one or more characters in a
group of entrynames. (See "Equal Convention" in Section 3.)

error codes
See status codes below.

exclamation point convention
See unique name below.

exec_com (ec)
A facility for executing a list of commands taken from a segment. It includes
argument passing and conditional branching capabilities. (See the exec_com
command in the Mu/tics Commands and Active Functions manual. Order No.
AG92.)

extended access
An additional field of access modes used with certain extended entry types to
further restrict operations on the entry type. (See "Access Modes" in
Section 5.)

extended en tries
Storage system entries that represent an extension beyond the five standard
entry types (segments, directories, links, MSFs, and DM files) are called
extended entry types, These extended entries are used to implement special
functions, usually by using ring brackets to protect the data contained therein.
Most file system commands have been enhanced to operate on all types of
extended entries, performing operations as if the extended entries were
segments. This is done using a standard subroutine interface, fs_util_, for
performing the operations, rather than calling the hcs_ subroutine directly.
Each of the extended entry types is identified by a suffix appended to the
entryname. The system-suppiied extended entry types are listed below, qut a
programmer can create others:

1-19 AG91-D4

fault

file

frame

gate

Name

mai lbox
forum meeting
message segment
before journal
person name table

Suffix

.mbx

.forum

.ms

.bj

.pnt

A hardware signal similar to an interrupt that may cause the signalling of a
condition. (See "Faults" in Section 7.)

A term that stands for segment and/or multisegment file.

See stack below.

The only point at which a procedure in an outer ring can transfer to a
procedure in an inner ring. (See "Intraprocess Access Control" in Section 6.)

hardcore (hardcore supervisor)
The set of routines that perform the supervisory functions of the system. The
hardcore executes in ring O.

help files
See info segments below.

hierarchy backup
The hierarchy backup system dumps (copies) user segments and directories onto
removable storage (magnetic tape). The dumping is conventionally done using
the processes Backup.SysDaemon and Dumper.SysDaemon. The information
dumped can be recovered by the operations staff at the user's request. (See
Section 8, "Backup. ")

home directory
See directory (home) above.

impure procedure
A procedure that modifies itself. Such a procedure is not recommended.

info segments
The segments whose contents are printed by invoking the help command. These
segments. sometimes called help files, give information about the system. The
system info segments are kept in the directory >documentation>info_segment.
(>doc> info). The info segments that are peculiar to an installation are kept
in >doc>iml_info_segments. (See the help command in the Commands
manual.)

initial access control list
A list that specifies what the access control list of a newly created segment or
directory will be. There are separate initial access control lists for segments
and directories for each ring. (See "Initial ACLs" in Section 6.)

1-20 AG91-Q4

initial working directory
See directory (home) above.

Ini tializer

initiate

The system control process that logs users in and out and keeps accounting
statistics. This is the only process that creates and destroys other processes. Its
access identifier is Initializer.SysDaemon.z.

The act of associating a reference name with a given segment in the storage
system. The segment must be part of the user's "address space" (made known),
and the supervisor entries will do this automatically if necessary. A reference
name is said to be initiated for a given segment (See "Reference Names" in
Section 3.)

I/O module
A program that processes input and output requests directed to a given switch.
It may perform operations on other switches, or call the supervisor.

I/O switch
See switch below.

10.SysDaemon
The User_id of the system process that does dprinting and dpunching.

IOSIM
Obsolete term. See I/O module above.

library_dir_dir Odd)
The starting directory of the subtree in which the source and· object modules
of the system are stored. (See Section 2, "Storage System. ")

limited service system

link

A subset of the Multics system imposed on users by the project administrator.
(See "Programming Environment" in Section 1.)

(1) An entry in a directory that specifies the pathname of an entry in
another directory. It allows references to items in other directories as if
they were actually containe.d in the working directory. Links eliminate
the need for multiple copies of segments.

(2) An external symbolic reference. See link pair below.

link pair
An indirect word in a procedure segment's linkage section through which all
references to some external data or procedure are made. Until the link is
snapped, it contains symboHc information about the external object. A link pair
initially contains a code that causes a fault. and invokes the dynamic linker,
when first used in a process. The linking. if successful, puts the actual address
of the procedure or data referenced in the link pair.

linkage section
(1) The portion of a procedure object segment that is a pure template for

impure data needed by the procedure at runtime.
(2) The impure copy made from this template. (See dynamic linking above.)

1-21 AG91-Q4

listener
The program that reads command lines from the terminal and passes them to
the command processor.

logical volume
A set of physical volumes that are always mounted together.

mailbox
See Person_id.mbx.

main memory frame
A 1024 36-bit word block of main memory that holds a page of a segment.
(See "Paging" in Section 1.)

making a segment known
Specifying the pathname of a segment to the supervisor, and receiving a
segment number in return. The segment may then be referenced by that
segment number in the process. (See "Making a Segment Known" in Section 4.)

master directory
See directory (master) above.

memory units
A measure of the usage a user makes of the system memory resources.

message segment
A special type of segment that is managed by Multics supervisor programs and
is not directly accessible to the user. A message segment is simply a permanent
place to hold interprocess messages, e.g., dprint and dpunch requests.

Multics card code (M CC)
A code for punched card input and output It is essentially the IBM standard
EBCDIC card code. This is the default code for the dpunch command. (See
"Punched Card Codes" in Appendix C'>

multiple names
See alternate names above.

multisegment file (MSF)
A file that occupies more than one segment, i.e., a file larger than 261,120
words. May only be manipulated by certain programs. (See "Multisegment
Files" in Section 2.)

nondiscretionary access control
Also referred to as administrative access control, it is used to restrict
discretionary controls in order to enforce the policies of the system administrator
and of the organizations "served by the system. The system administrator
(through AIM) guarantees that only authorized persons may access certain
classes of inf ormation. .

object segment
A procedure or data segment produced as the result of a compilation with a
system-defined format. An executable object segment can be directly executed
by a process. Object segments may also be searched and linked to by the
dynamic linking mechanism. (See "Creating an Object Segment" in Section 4.)

1-22 AG91-04

page
A 1024 36-bit word block of data within a segment.

page control
The routines that manage the transf er of pages between secondary storage and
main memory frames. (See "Paging" in Section 1.)

paren t directory
See directory (parent) above.

password
A character string that enables an individual user to enter the system; it is
known only to that user and the program that controls access to the system.
When supplied with the user's Person_id at log in time, it validates the true
identity of the user. A password can be from one to eight characters long.
The characters may be any characters from the ASCII character set except
space and semicolon. The backspace character is also allowed and is counted as
a character when used. The password used for interactive logins cannot be
"quit," "help," "HELP," or "1" because these have special meaning to the
password processor. If you enter a password of "quit," the login attempt is
terminated. Typing a password of "help," "HELP," or "7" produces an
explanatory message, and the request for your password is repeated. (See
Section 2, in the New Users' Introduction to Multics, Part I, Order No. CH24).

pathname
A character string that specifies a segment by its position in the directory
hierarchy. The pathname can be relative or absolute (see below). (See
"Pathnames" in Section 3.)

pathname (absolute)
A concatenation of a segment's entryname with all superior directories leading
back to the storage system root. (See "Pathnames" in Section 3.)

pathname (relative)
A pathname that names a segment in its relation to the working directory.
(See "Pathnames" in Section 3.)

person name table (PNT)
System table containing all Person_ids (persons and fictitious persons) registered
on ~,.1ultics with t.lteir encoded password, default project, address; and certain
other data.

Person_id
A unique name assigned to each user of the system. It is usually some form
of the user's name and contains both uppercase and lowercase characters. It
may not contain blank characters. Associated with the Person_id is a single
password. The Person_id and the password can be used to identify. a person on
several projects. (See Section 2 in the New Users' Introduction to Multics,
Part I, Order No. CH24).

Person_id.mbx
A message segment used to convey messages between processes. (See the
print_mail and accept_messages commands in the Commands manual.)

1-23 AG91-04

physical volume

pointer

A disk pack. Sometimes the combination of pack and disk drive is referred to
as the physical volume.

An address value. On Multics, an address consists basically of a segment
number and an offset within the segment.

primary name

process

The main name associated with a segment, directory, multisegment file, or link.
(See the list command in the Commands manual.)

A program or group of programs in execution; an address space and an
execution point. Each logged-in user a has process. (See "Process" in
Section 1.)

process directory
A directory contalnlng those segments that are meaningful only during the life
of a process. These segments include the stack(s), free storage, PIT, and various
temporary segments.

process initialization table (PIT)
The segment (in the process directory) that contains information about process
initialization, i.e., Person_id and Project_id, home directory. attributes. and
accounting data. See the user_info_ description in the Subroutines manual.

process overseer

project

A procedure called during process initialization that sets up the environment. It
then calls the listener to start reading commands.

An arbitrary set of users grouped together for accounting and access control
purposes.

project administrator
A person who has the access to specify spending limits and other attributes for
the users on a particular project.

project definition table (PDT)
An administrative data base that defines all people authorized to use an
account.

project master file (PMF)
An ASCII file giving the names, attributes, and account limits of the users on
a particular project. It is compiled into a project definition table.

Project_id
The name assigned to a project.

1-24 AG91-04

pure procedure
A procedure that does not modify itself.

quit request
Several commands that read input from the keyboard use the typed request
"quit" or "q" to indicate to them that the user is done. This is not the same
as issuing the quit signal.

quit signal

quote

A method used to interrupt a running program. The quit condition is raised by
pressing the key on a terminal. such as ATTN, BRK., INTERRUPT. This
condition normally causes the printing of QUIT followed by establishment of a
new command level. (See "System Conditions" in Section 7.)

A character used to delimit strings in commands and source programs. On
Multics this is the double quote, ASCII octal 042, not to be confused with the
single quote or apostrophe, octal 047.

raw access
Also referred to as the raw mode, it is the access mode granted a process to
an object by discretionary access control. Raw access to an object is computed
from the access control list (ACL) , ring brackets, and AIM attributes of the
object. (See discretionary access control.)

ready message
A message that is printed each time a user is at command level. Printing this
message may be inhibited. or the user may define his or her own ready
message. The standard system ready message tells the time of day, the number
of CPU seconds and pages of information brought into main memory since the
last ready message, and the current listener level (if greater than 1).

reconnect.ec

record

An exec_com segment, prepared by the user and stored in the home directory,
that is invoked automatically when the user connects to a disconnected process.
It is often used to execute commands such as set_tty, to ensure that terminal
modes are what the user desires them to be. When a terminal is disconnected,
none of its modes, set by default or by set_tty commands, are remembered.
This is because the old modes may not be appropriate to the terminal that is
used to reconnect to the process. Thus, if the user typically sets various
terminal modes in the start_up.ec, or by explicit command, it may be helpful
to make a reconnect.ec, which also sets these modes. For the same reason that
the system does not retain modes across process disconnection, the user should
not automatically set modes that may conflict with the characteristics of any of
the terminals that might be used. An example of a device-independent terminal
characteristic that the user might choose to alter is line-editing characters.

(1) The smallest unit of disk allocation, containing 1024 36-bit words (4096
characters).

(2) In PL/I and FORTRAN, a block of data transferred during input or
output.

1-25 AG91-D4

recursion
The ability of a procedure to invoke itself.

ref erence name
\Vhen a segment is made known to a process, a symboiic name may be
associated with it for the duration of that process. This is called initiation. By
default this is the file system entryname found by the linker when searching
for a program. Reference names need not be the same as any of the segment's
entrynames. (See "Reference Names" in Section 3.)

relative pathname
See pathname (relative).

retrieval

ring

The process of copying a segment or directory back into the directory
hierarchy from backup tapes. This is normally done by the operations staff
using Retriever.SysDaemon at the request of the user. (See Section 8,
"Backup.")

A particular level of privilege at which programs may execute. Lower
numbered rings are of higher privilege than higher numbered ones. The
supervisor program runs in ring 0, most user programs run in ring 4. (See
Section 6.)

ring brackets

root

A set of integers associated with each segment that define in what rings that
segment may be written, read, called, or executed. (See Section 6.)

The directory that is the base of the directory hierarchy. All other directories
are subordinate to it. It has an absolute pathname of >. (See Section 2.
"Storage System. ")

scheduler
See traffic controller below.

search rules
A list of directories that are searched to find a command, subroutine. or data
item referenced symbolically. Each directory is examined, in order, to find the
given external name. Search rules are not used when a segment is addressed by
its pathname, which explicitly specifies the directory containing the segment.
(See "Search Rules" in Section 2.)

segment
Basic unit of information within the Multics storage system. Each segment has
access attributes, at least one name, and may contain data, programs, or be
empty (null). (See "Segments" in Section 1.)

shriek names
See unique names below.

1-26 AG91-04

snap (to snap a link)
The process of finding that segment (and entry point in the segment) that is
referenced by a link pair and replacing the link pair with a pointer to that
entry point. This is part of the dynamic linking mechanism, by which external
symbolic references (subroutine calls, PLiI external variables, FORTRAN
common blocks) are resolved while the program is running.

standard service system (SSS)

stack

A group of commands and subroutines that are provided as part of the
standard Multics system. They are located in the directories
>system_l ibrary_standard and >system_l ibrary_l. (See Section 2, "Storage
System.")

A pushdown list where active procedures maintain private regions used for
temporary variables and interprocedure communication. (See "Stack Header" and
"Stack Frames" in Section 4.)

standard entry type
A storage system entry type that is created in ring 0 is a standard entry type.
Specifically, segments, links, multisegment files, data mangement files, and
directories are the standard entries in the Multics file system.

star convention
A method used by many commands to specify a group of segments and/or
directories using one name (a star name). (See "Star Convention" in Section 3.)

start_up.ec

status

An exec_com segment, prepared by the user and stored in the home directory,
that is invoked automatically when the user logs in. It is often used to execute
commands such as read_mail, abbrev, and accept_messages. Start_up exec_coms
can also be written for an entire project or site, to serve either as a default
start_up.ec for users who do not have their own or as an additional start_up.ec
that executes for all users when they establish a new process. These are placed
in either the project directory or the directory >scl.

(1) command for printing attributes of a directory entry
(2) one of the access modes on directories
(3) a coded state word returned by peripheral devices
(See status code below.)

status code
A value returned by a subroutine indicating either the success of or the reason
for failure to accomplish the requested action. Associated with standard system
error codes are certain predefined messages that tell what happened. (See
"Status Codes" in Section 8.)

1-27 AG91-04

subsystem

suffix

switch

A collection of programs that provide a special environment for some
particular purpose, such as editing, calculation, or data management. It may
perform its own command processing, file handling. and accounting. A
subsystem is said to be closed if:

1. all necessary operations can be handled within the subsystem

2. no way exists to use the normal Multics environment from within the
subsystem

The last component of an entryname with multiple components (components are
separated by a period (.» that usually specifies the type of segment. for
example. pll. mbx, and list. (See Appendix E. "List of Names with Special
Meanings. n)

A path in the I/O system through which information is sent. (See attach and
detach above and Section 5, "Input and Output Facilities. n)

SysDaemon
The Project_id with which most of the system daemons login to perform their
functions. See daemon above.

system administrator
A person who has the access to register users, create projects, perform
accounting runs, and perform other functions necessary for the administration
of the system.

System Administrator Table (SAT)
a binary table specifying the projects that use the system, the privileges granted
to these projects, and their project administrators.

system_control_dir (scI, system_control_I)
The directory that contains those segments and directories used to control the
operation of the system including the answer table, who table, person name
table, project PDTs, etc.

1-28 AG91-04

terminal ID
A character string that identifies a particular terminal at an installation.

terminal type
A character string that identifies the terminal device, e.g., TN300. for one
similar to the GE TermiNet 300. The terminal type is associated with the
user's terminal and/or the modes associated with terminal input/output.

terminate
The opposite of initiate: to delete reference names for a segment. This is
sometimes done to substitute one version of a command or subroutine for
another that had been known to the process. (See "Reference Names" in
Section 3.)

traffic controller
The module in the system that determines when a process is to run and how
long it will run. It also notifies processes of events that have occurred such as
timers. I/O events. and signals from other processes.

translation (translator)
The process of compiling a source language program or data base into an
object segment. (See "Creating an Object Segment" in Section 4.)

unique name (shriek name, exclamation point convention)
A name, generated from a system clock value, that is guaranteed to be
different from any other name so generated (e.g., !BBBnZNlqLQddRJg).

upgraded directory
See directory (upgraded) above.

user_dir_dir (udd)

User_id

The u...~r directory dire.ctory. which contains all project directories. Its
pathname is >udd, and all user segments and directories are subordinate to it.
(See "Pathnames" in Section 3.)

A character string representing a user or group of users (also referred to as
"access identifier"). It consists of three components: Person_id.Project_id.tag. A
User_id is often used as an argument to a command. Depending on the
specific command, sometimes an the components are not specified (for example,
the tag component is often omitted). The star convention may be used, also
depending on the command being invoked. (Refer to the relevant command
description in the Commands manual to see if the command in question accepts
these conventions.)

volume backup
A backup system which operates at the physical storage volume level. It
provides physical volume rebuilding in the event of a failure, as well as
segment and subtree retrieval.

volume label
A label on each physical volume that identifies that volume to the system.

1-29 AG91-()4

VToe
Volume table of contents. Each physical volume contains a VIOe containing
information about the segments on that volume.

who table (whotab)
A segment that contains a list of users who are currently logged in together
with certain attributes such as log in time, load, and terminal type.

wired segment

word

A portion of the system that (of necessity) remains resident in the main
memory at all times; e.g., page control, teletype buffers, etc.

A hardware-related unit of information that on Multics is 36 bits.

working directory (working....dir)
See directory (working) above.

1-30 AG91-04

SECTION 2

MULTICS STORAGE SYSTEM

The basic unit of storage in the Multics storage system is the segment. Segments
form a tree-structured data base that is organized by a hierarchy of directories. As
shown in Figure 2-1, any segment or directory can be located by its entry in the
directory immediately superior to it. That directory is located in the same manner by
its entry in a superior directory and so on, up to the root of the tree. The
immediately superior directory is also referred to as either the containing or parent
directory.

SEGMENT REFERENCES

All segment references begin at the root of the tree and consist of a string of
entrynames ending with the name of the target segment. Such a string of entrynames
is called an absolute pathname. The greater than character (» is used to separate
entrynames and is also used at the beginning of the pathname (by convention, the root
directory is never explicitly specified). In Figure 2-1 the absolute pathname for the
segment named "chess" is:

>udd>Others>Jones>chess

The syntax of entrynames and pathnames is given in detail in "Entrynames" and
"Pathnameslt in Section 3.

2-1 AG91-()4

LOGICAL VOLUMES

Segments in the storage system hierarchy are stored on disk volumes. These disk
volumes are organized into groups called logical volumes. A logical volume consists of
one or more disk volumes used by the storage system to contain segments. Storage is
allocated on logical volumes according to the following rules so that. generally. related
segments will reside on the same logical volume.

1. All segments immediately inferior to a particular directory reside on the
same logical volume.

2. When a directory is created, the logical volume on which its inferior
segments will reside is set; and this attribute cannot be changed except
by deleting and re-creating the directory. The logical volume is the
same as for the new directory's parent unless a master directory for a
logical volume is being created by a special call (master directories are
described later in this section).

2-2 AG91-()4

root directory

first directory level inferior to the root

second level of inferior directories

third level of inferior directories

segments in the third-level directories

fourth-level directories (user's working directory)

Figure 2-1. Storage System Hierarchy

2-3 AG91-04

When a logical volume is created, a registration record is created for it This
record contains the following information:

• list of the physical disk volumes comprising the logical volume

• owner identification

• public or private switch

• list of master directories

• list of users with quota accounts

Each Multics system has a special logical volume, called the root logical volume,
that contains all directories in the storage hierarchy. The root logical volume is always
mounted (this means that all the disk volumes comprising it are mounted) and the
information contained on it is always available. The segments themselves may not be
mounted all the time, since all but the root logical volume can be be mounted and
demounted by the operator at the user's request. Segments are available to users only
when the logical volume on which they reside is mounted.

Logical Volume Attachment

Segments stored on public logical volumes can simply be referred to when
needed by a process. When a segment is stored on a private logical volume, a process
must attach the volume (via the attach_Iv command) before it can use the segment.
The volume remains attached until the process explicitly detaches it (via the detach_Iv
command). Many processes can use such a segment simultaneously, but each process
individually must attach the logical volume. Access to the volume is checked when the
attach request is made. The user must have rw access to the access control segment
(ACS) associated with the volume. The ACS is maintained by the volume's owner. If
a process attempts to use a segment on a private logical volume that it has not
attached, an error indication will be returned by the system.

Master Directories

When a new directory is created, its segments will, by default. reside on the
same logical volume as the segments of its parent directory. If the segments in the
new directory are to reside on some other logical volume, a master directory must be
created (this is done using the -logical_volume control argument of the create_dir
command). A master directory is simply the point where the hierarchy "branches out"
to another logical volume. Figure 2-2 illustrates the relationship among directories,
master directories, and logical volumes.

All master directories for a given logical volume are listed by name in the
registration record for the volume. A master directory possesses attributes in the same
manner as other directories except that quota for the master directory is not drawn
from the quota account of the containing directory but from a master directory ·quota
account maintained in the logical volume registration record. In order to create a
master directory on a logical volume, the user must have a quota account on the
logical volume with unallocated quota sufficient to satisfy the request.

2-4 AG91-04

>Sm ith >.test

I
master di rectory

for ! logical volume A

I
>Smith

master di rectory
for

logical volume B

>Smith>fprogs

master di rectory
for

logical volume A

> Smith>fprogs> ftest

~~----------------~v~------------------~/ ~~----~\I~----~/
Logical Volume A Logical Volume B

Figure 2-2. Relationship of Directories to Logical Volumes

2-5 AG91-04

STORAGE SYSTEM ENTRY TYPES

The basic elements within the Multics storage system are segments and
directories. Multics supports additional entry types that are maintained for convenience
or to aid programmers who require a storage medium with special qualities or
attibutes. The various entry types are described below.

Segment

The segment is the unit of storage of the Multics System that is analogous to
a file on other systems. A segment is a collection of instructions or data specified by
a user.

Directory

A directory is a catalog of subordinate entries.

Link

A link entry is a reference to an entry in another directory. The reference is
made by giving the pathname of the target entry.

Multisegment File

Very large data bases may exceed the size of a single segment. In such cases,
~1ultics treats this data base as a group of segments in a single multisegment file. The
segments are grouped under a common directory whose multisegment file indicator is
set. The directory and its contents are called a multisegment file (MSF).

Any directory whose multisegment file indicator is not 0 is an MSF. For an
MSF, this indicator is a count of the number of segments it contains. Not all of the
attributes listed above are applicable to MSFs. Some of the attributes are the same
for any entry: however, due to the nature of an MSF when viewed as a file, many
of the attributes are implemented differently. For example, the bit count of an MSF
is the sum of the bit counts of the segments it contains. The access control list for
an MSF directory applies to all of the segments it contains. The safety swtich
attribute can be used; however, if it is set for one of the segments in the MSF, it
should be set for all of them. For more specific information on these and other
attributes of MSFs, refer to the msf_manager_ subroutine in the Multics Subroutines
and I/O Modules manual, Order No. AG93.

Most standard system programs that work on segments also work on MSFs.
However, some commands and subroutines will give unpredictable results when used on
MSFs. The programmers should consult the individual command or subroutine
description before invoking it on an MSF.

2-6 AG91-04

Data Management File

A data management (DM) file is composed of a set of pages known as control
itervals. numbered from 0 through Nand adddressable only through software calls to
the file manager. Data is accessed by specifying a control interval number. byte
offset. and length.

Data management files can be implemented with concurrency control and
recovery support. At present the ability to use data management files is available only
to programs accessing files through the Multics Relational Data Store (MRDS) facility.

Extended Entry Types

The Multics storage system supports special-case entry types. called extended
entry types. The following system-supplied storage system elements have been
implemented as extended entries: mailboxes, forum meetings, message segments. before
journals. and the person name table. These entry types are called extended entry types
because the Multics storage system has been enhanced (extended) to treat these storage
elements as segments (even though they are structured differently than segments). Each
of the extended entry types is identified by a suffix appended to the entry name. as
described below:

Name

ma i lbox
forum meeting
message segment
before journal
person name table

suffix

.mbx

.forum

.ms

.bj

.pnt

Users should note that the extended entry types specified above are those available
with the Honeywell-supplied system. User-created file system objects can also be
implemented as extended types, if desired. See Section 4 for information on the
creation of extended entries.

ENTRY ATIRIBUTES

Entry attributes are listed below. Not all of the attributes listed below are
applicable to all entry types.

A process may perform explicit modification of an attribute by calling a
standard storage system subroutine. Implicit modification is automatic and occurs as a
result of some change to the target entry. For example, when data is written into an
existing segment, the date-time contents modified attribute is cbanged.

access class *
The access class of an entry is established when the entry is created. It is used
to restrict access to users who meet specific security requirements. The access
class attribute cannot be modified. Access class characteristics are described in
detail in Section 6. *

2-7 AG91-04

* access control list

*

* author

The access control list (ACL) maintains a list of access names. specifying classes
of users who are allowed access to the entry and. for each class. the mode of
access permitted. The access specified may be nun, indicating that no access is
permitted. The ACL attribute is used in conjunction with the access class
attribute to determine access rights when a particular process refers to the
entry. An ACL can be explicitly modified. See Section 6 for a complete
discussion of access control.

The author attribute of an entry is the access identifier of the process that
created the entry. This attribute cannot be modified.

* bit count

The bit count attribute gives the length (in bits) of the entry. The bit count
can be modified by any process with write access to the segment and is
maintained by the user rather than the system. Any procedure that modifies
the segment length should also modify the bit count since many system
commands and subroutines depend on its accuracy.

* bit count author

The bit count author attribute contains the access identifier of the process that
last set the bit count. This attribute is automatically updated when the bit
count is set.

* complete volume dump switch

This attribute controls whether an entry is to be dumped during a complete
volume dump of the physical volume on which it resides. The default is to
dump. This attribute should only be disabled if the data can be easily
recreated. This attribute is unavailable for segments on private logical volumes
unless the process has attached the logical volume.

* copy switch

The copy switch is used to determine whether the entry itself or a copy of
the entry is made available when an attempt is made to modify the segment.
If the copy switch is "off," all processes share the original entry and only
those processes with write access can perform write operations. If the copy
switch is "on," the above holds true for the original entry, but processes
without write access are automatically given their own copies of the entry.
These copies (made' in the process directory) can be modified and are retained
f or the Iif e of the process.

2-8 AG91-o4

current length *

The current length attribute gives the length in pages of an entry. This
attribute is modified by the system when data is stored beyond the existing
current length or when the entry is truncated. This attribute is not available
for entries on private logical volumes unless the process has attached the logical
volume.

damaged switch *

This attribute controls a switch that curtails access to entries damaged by a
device error or system crash. When damage occurs, the entry should be
inspected to determine whether its contents can be recreated or the entry
retrieved. The damaged switch is automatically set to "off" when an entry is
truncated to zero words. This attribute is unavailable for entries on private
logical volumes unless the process has attached the logical volume.

date and time dumped

This attribute records the time at which a backup copy of the entry was last
made by the hierarchy dumper. This attribute is unavailable for entries on
private logical volumes unless the process has attached the logical volume.

date and time contents modified

This attribute records the approximate time at which the contents of the entry
were last modified. The date-time-contents-modified (DTeM) attribute of a
non-directory entry (except for f, below) is set whenever the transparent-modify
switch (in the ASTE) is off. and:

(a) the entry is created,
(b) the entry is truncated.
(c) the DTeM is the subject of an inquiry and the entry has been

modified since the last time the DTeM was set,
(d) the entry is deactivitated after having been modified since the last time

the DTeM was set,
(e) the last in-core page of the entry drifts out of memory and the entry

was modified since the last time the DTeM was set.
(f) the segment is a directory and an inferior (active) entry has its DTeM

set for any of the above reasons, or
(g) the hierarchy or volume reloader calls to explicitly set DTeM.

Except for privileged operations, the DTeM is set to the current time. The
DTeM is set in the VTOCE for non-active entries and in the ASTE for active
entries. Whenever the VTOCE is updated from the ASTE, the ASTE DTeM
value is placed in the .VTOCE.

*

*

2-9 AG91-G4

The dumpers and reloaders set the transparency switches for entries in order to
insure that the DTCM values reflect the values that were dumped. The
transparent-modify switch is always set for directories. so that only directory
DTCM is updated when:

(a) an entry DTCM is updated for any entry below the directory. or
(b) an operation occurs that updates the date-time-entry-modified attribute

of any en try below the directory.

* date and time entry modified

This attribute records the last time any attribute of the entry was modified. It
is implicitly updated after any modification.

* date and time used

This attribute records the last time the target entry was referenced. The
date-time-used (DTU) attribute is set whenever the transparent-use switch (in
the ASTE) is off. and:

(a) the entry is created.
(b) the entry is the subject of an inquiry and has pages in memory.
(c) the entry is deactivated with pages in memory,
(d) the hierarchy or volume reloader calls to explicitly set the DTU. or
(e) the last in-core page of the entry drifts out of memory.

Except for privileged operations, the DTU is always set to the current time.
The DTU is set only in the VTOCE for non-active entries and in the ASTE
for active entries. Whenever the VIOCE is updaied from the ASTE. the ASTE
DTU value is placed in the VTOCE.

The dumpers and reloaders set the transparency switches for entries in order to
insure that the DTU values reflect the values that were dumped.

date and time volume dumped
This attribute records the time a volume dumper process dumps the entry
con ten ts to tape.

* dnzp switch

The "don't null zero pages" (dnzp) switch is used to control how pages of a
an entry that contain only words of zeroes are represented on disk. If the
switch is off (i.e., null zero pages), then pages that contain all zeroes are not
actually written on the disk and are not charged against quota; instead, they
have a "null" address placed in their file map. If the switch is on (i.e., don't
null zero pages), then a page of zeroes is treated just like any other page and
is written to disk and charged against quota.

2-10 AG91-04

entry point bound

The entry point bound attribute provides a way of limiting which locations of
a gate entry may be targets of a call. The hardware does not permit an
inward call to the entry if the word number specified in the call is equal to
or greater than the entry point bound word number.

incremental volume dump switch

This attribute controls whether an entry is to be dumped by the volume
dumper during an incremental dump cycle. The default is to dump. The
incremental volume dump should be distinguished from the complete volume
dump; this switch can be turned off with relative safety for things that are
seldom modified. This attribute is unavailable for entries on private logical
volumes unless the process has attached the logical volume.

initial access control lists

*

*

An ACL is created for each new entry in a directory by copying the initial
ACL from the containing directory. The initial ACL contains default values
(see Section 6 for these) and can be explicitly modified by any process that *
has modify access to the directory at validation level. No access to the
containing directory is required.

logical volume identifier

The logical volume identifier for a directory identifies the logical volume to be
used for entries created in a particular directory. Its value is either inherited
from the parent directory or explicitly set by supplying the -logical_volume
control argUllient to the create_dir command. The value of this attribute cannot
be changed after the directory is created.

logical volume identifier

The logical volume identifier for a segment names the logical volume on which
the segment's contents are stored. Its value is set when the entry is created
and cannot be modified.

master directory switch

The master directory switch indicates whether or not a directory is a master,
one whose entries reside on a different logical volume than those of its parent
directory. The switch is turned on when the directory is a master directory
and turned off when it is not.

*.

*

*

2-11 AG91-()4

* maximum length

The maximum length attribute sets a limit on the size an entry can attain.
Maximum length is accurate to units of 1024 words. The maximum value in
words is 255K (K = 1024). This attribute is not available for entries on private
logical volumes unless the process has attached the logical volume.

* multisegment file indicator

* names

* quota

This attribute is used to indicate that the directory is associated with a
multisegment file. The value of the attribute is the number of segments
(components) in the file. The multisegment file indicator is impliCitly modified
by multisegment file primitives when the number of components of the file
changes. The user can also modify it by using the set_bit_count command.

Each entry can have many names. The first name returned by the storage
system is called the primary name. For more information on names, see
"Entrynames" in Section 3.

The quota attribute gives the maximum number of storage records permitted to
en tries in a particular directory.

* records used

The records used attribute gives the amount of secondary storage (in records)
occupied by the entry. This attribute is implicitly modified when there is any
change to the number of nonzero records used. This attribute is not available
for entry on private logical volumes unless the process has attached the logical
volume.

* ring brackets

*
The ring brackets attribute is used in connection with other access control
mechanisms to determine access rights to the target entry. See Section 6 for a
complete discussion of ring brackets.

2-12 AG91-04

safety switch

The safety switch attribute is used to protect an entry from deletion. If the
safety switch is set, the user is asked if the entry should be deleted before a
deletion command or request is executed on the entry.

security out-of-service switch

When this switch is on, the directory in which it occurs and all inferior
entries cannot be referenced. The switch is automatically set when an access
class discrepancy is detected. This attribute can only be modified by a system
sec uri ty administrator.

*

*

type *

The type attribute indicates the entry type. The type attribute cannot be I
modified.

unique identifier *

The unique identifier attribute is a number assigned when an entry is created
to distinguish it from all other entries in the storage system. This attribute
cannot be modified.

use count

This attribute is a count of the number of page faults taken on an entry since
its creation. This attribute is unavailable for segments on private logical
volumes unless the process has attached the logical volume.

SYSTEM DIRECTORIES

A single directory hierarchy is used for both system and user segments. Figure
2-3 shows, at the upper level of the storage hierarchy, the basic structure assumed by
the Multics system. Additional segments and directories can be created at this level of
the structure as well as at lower levels.

As shown in Figure 2-3. several system directories are contained in the root.
These are always present and are described below.

*

*

2-13 AG91-()4

----------~v----------
Plus miscellaneous account-

ing, log, line
usage, and pass­
word segments

Directories and
segments of the
backup and liD
daemon process

~------------------~vr--------------------J
Plus other temporary segments created as needed

system
librarie;;-

.... } ~~:Ctory
per

--y-----' project

}
~~:Ctory
per

~--.......... user'

~
Personal segments
and directories
of this user

Figure 2-3. Directory Hierarchy

1. system_control_1

subroutines

This directory contains information associated with system accounting.
user authorization. and logging-in procedures. Project administration
tables are stored in a directory subtree beginning at this directory. The
following three segments are the only generally accessible ones entered
in system_control_1: the table printed by the who command; the
message of the day; and absentee queue segments.

2. process_dir_dir
This directory contains a process directory for each currently active
process. The name of an individual process directory is derived from
the unique identification of the process. A process directory contains
temporary segments created by a process and retained only for the life
of that process.

2-14 AG91-()4

When a process is created. a process directory is established with the six
initial segments described below:

process data segment (PDS)
A supervisor data base, the PDS keeps a record accessible only
to the supervisor.

known segment table (KST)
A supervisor data base, the KST con tains the correspondence
between segment numbers and segments known to the associated
process. This segment is accessible only to the supervisor.

process initialization table (PIT)
The PIT contains information that is used to initialize the
process.

descriptor segment (DSEG)
A supervisor data base, the DSEG contains the correspondence
between segment numbers and their absolute memory addresses
and access permissions. This segment is accessible only to the
supervisor. It is always segment O.

This segment contains the stack used for PL/I automatic
variables and f or subroutine call and return operations. One
stack segment is created for each active ring, the last character
of the stack name is the ring number. The ring 0 stack, unlike
the others, is not kept in the process directory; it is kept in
system_librarY_1. Actually. there are a number of these stacks in
ring O. and they are multiplexed among running processes.

unique_n~~e.area.linker
This segment, managed by linker, contains interprocedure links
and PL/I internal static storage. If the total requirements for
linkage information and static storage exceed the length of a
segment. additional segments are created as needed under a
similar name. In addition, each active ring has its own linkage
segment. In addition. the linkage area also contains other system
storage (e.g., external static and fortran common).

Other segments that are created by various Multics subsystems and
editors are also commonly found in the process directory.

3. daemon_dir_dir
This directory contains segments that support system daemon processes,
such as automatic file backup ~nd bulk (card and printer) input ~'1d
output The queues of the I/O facilities are the only generally
accessible segments in this subtree.

2-15 AG91-()4

4. user_dir_dir
This directory is the beginning of a tree containing all segments
belonging to individual users. It contains entries for a set of directories.
one for each project. Each project directory generally contains one
personal directory (home directory) for each user associated with that
project. Individual users can create their own directories. inferior to
their own personal directory.

5. system_libraries
The standard Multics commands and subroutines are combined in the
following system libraries:

system_library_standard
sys tem_1 i brary_1
system_library_tools
system_library_unbundled
system_library_obsolete

The procedures in these directories are documented in the Commands
and Subroutines manuals. A library of unbundled software
(system_library_unbundled) may also be present. Unless the user specifies
otherwise, these directories (except for system_library_obsolete) are
included in the list of directories to be searched during dynamic
linking. See "Dynamic Linking" and "Search Rules" in Section 4.

2-16 AG91-o4

01/87

SECTION 3

NAMING, COMMAND LANGUAGE, AND
TERMINAL USAGE

CONSfRUCTING AND INTERPRETING NAMEs

The various types of names used on Multics are constructed and interpreted
according to certain definite, fixed conventions. The names discussed below are
entrynames, pathnames, star names, equal names. reference names, offset names,
command names, subroutine names. condition names, request identifiers (IDs), and I/O
switch names. User names are discussed under "Access Control" in Section 6 since
they are primarily used to specify access control information.

Entrynames

An entryname is the name of an entry (segment. directory, etc.) in t~e file
system. An entryname consists of at least one nonblank and no more than 32 ASCII
characters. Any entry can have more than one entryname. In general, entrynames
consist of uppercase and lowercase alphabetic characters, digits, underscores L), and
periods (.). The underscore is used to simulate a space for readability; e.g.. a segment
might be named delta_new. (Including a space in an entryname is permitted. but is
cumbersome, since the command language uses spaces to delimit command names and
arguments.) The period is used to separate components of an entryname. where a
component is a logical part of the name. Null components (i.e., zero length
components) should not exist A null component results if its name begins or ends
with a period or contains two adjacent periods. Several system conventions (e.g., the
star convention and equal convention both described below) operate on components.
Also, compilers implemented on Multics expect the language name to be the last
component of the name of a source segment to be compiled. e.g., square_rootpll for
the name of a PL/I source segment. See "Program Preparation" in Section 4 for
details on programming conventions.

Only the greater than (» character is prohibited in entrynames, since it is used
to form pathnames as described below. Since standard commands attach special
meanings to them, several other characters are not recommended for entrynames.
including k,e less than «), asterisk (*), question mark (1), percent sign (%); equal sign
(=). dollar sign ($). quotation mark (tt). two consecutive colons (::). vertical bar (I).
and parentheses characters. In addition. all ASCII control characters (e.g.. space, tab.
carriage return, etc.) are not recommended for use in entrynames because some of
these characters have a special meaning in the command language. and the others are
hard to use (they do not print out correctly and are difficult to type). Non-ASCII
characters are not permitted in entrynames.

3-1 AG91-Q4A

01/87

Pathnames

A pathname is a sequence of entrynames. Each entryname except the last in a
pathname is the name oi a directory entry (or link to a directory entry) in the
storage system hierarchy. (See "Directory Contents" in Section 2.) The last entryname
in a pathname is the name of an entry (segment, directory, etc.). The last entryname
in a pathname can be a starname or an equalname, or the pathname may be followed
by an archive component name, an offset, or a symbolic definition. Each entry in the
hierarchy has an entry in a superior directory.

Any entry can be found by following the appropriate entries from a designated
directory through inferior directories. The length of a pathname must not exceed 168
characters. An - absolute pathname traces an entry from-the root directory; a relative
pathname traces an entry from the current working directory.

An absolute pathname is formed from a sequence of entrynames, each preceded
by a greater than character. Each greater than character denotes another level in the
storage hierarchy. The entryname following the initial greater than character designates
an entry in the root directory (see Figure 3-1, below). An e'xample of an absolute
path name is:

>udd>Project_id>Person_id>epsilon

The directory named user_dir_dir (udd) is immediately inferior to the root; Project_id
is an entry in udd; Person_id is an entry in Project_id; and epsilon is an entry in
Person_ide Each intermediate entry in the chain can be either a directory or a link to
a directory. The final entry, epsilon, can be a directory, a segment, a multisegment
file, a link, a data management file, or one of the extended entry types. A maximum
of 16 levels of directories is allowed from the root to the final entryname.

A relative pathname looks like an absolute pathname except that it does not
contain a leading greater than character; and can begin with less than characters as
explained below. It is interpreted by commands as a pathname relative to the user's
working directory. The simplest form of relative pathname is the single name of an
entry in the user's working directory. For example, in Figure 3-1, the relative
pathname beta refers to the entry beta in the user's working directory sub_dir2. On a
slightly more complex level, the relative pathname my_dir>omega refers to the entry
omega in the directory my_dir, which is immediately inferior to the user's working
directory sub_dir2.

A less than character can be used at the beginning of a relative pathname to
indicate that the directory immediately superior to the working directory is where the
following entryname is to be found. The less than character can be used to denote
levels in the storage hierarchy similar to the use of the greater than character. Each
less than character represents one level up the hierarchy (toward the root), starting at
the current working directory. In this way, a directory several levels superior to the
current working directory can be searched for the first entryname in the relative
pathname.

3-2 AG91-04A

\.. omega)

Figure 3-1.

root directory

first directory level inferior to the root

second level of inferior directories

third level of inferior directories

segments in the third-level directories

fourth-level directories (user's working directory
in accompanying examples)

segments (or directories, or links) in directories
inferior to the working directory

fifth level of inferior directories

segments (or directories, or links)

Sample Storage Hierarchy

3-3 AG91-{)4

The following examples (using the sample hierarchy in Figure 3-1) show some
relative pathnames and the absolute pathnames of the segments they identify when the
user's working directory is:

ReI ative Pathname Segment

older>delta_old

<sub_dirl>alpha >udd>Project_id>Person_id>sub_dirl>alpha

«<Others>Jones>chess >udd>Others>Jones>chess

Archive Component Pathnames

If the final component of a path name contains a "::" sequence, it is not
interpreted as the name of an entry, but rather as a specification of an archive name
and the name of a component in the archive. The string preceding the "::" sequence
is interpreted as the archive name; the suffix ".archive" need not be specified. since it
is assumed. The string following the "::" sequence is interpreted as the name of the
component in the archive. Only one "::" sequence may appear in the final component
of a pathname. The component name may be up to 32 characters in length; the name
of the archive may be up to 32 characters including the ".archive" suffix. or 24
omi tting it.

Example:

print >udd>Sample>Smith>source::blank.pl 1

This command prints the component blank.pl1 in archive
>udd>Sample>Smith>source.archive.

NOTE:

Not all commands are prepared to manipulate archive components, and hence do not
interpret this syntax. If an archive component pathname is given to a command that
cannot manipulate archive components, the error message:

Archive component pathname not permitted.

is printed. In particular, commands that create or write into segments generally do not
implement this syntax. To determine whether a particular command implements this
syntax, consult the Commands manual description.

3-4 AG91-04

01/87

Star Names

Many commands accept starnames to identify the entities to be examined or
operated upon. Starnames are names containing wildcard characters used to specify sets
of entities or to facilitate typing. The star Convention defines the wildcard characters
and matching criteria.

Starnames are constrained by the application. Commands that use starnames to
match file or directory names permit the final entryname in a pathname to be a
starname. In this case, the starname is also an entryname and is subject to the
restrictions on entrynames such as the 32 character limit Such a command would
match the starname against the names of all of the entries in the directory (as
determined from the pathname) and select those entries of appropriate type which
have at least one matching name.

A starname matches links if the command utilizing the star convention operates
on the link itself. In general, commands do not work upon the targets of links
matching a starname. Similarly, a starname matches every entryname of an entry if it
operates on name attributes. Otherwise, an entry is generally selected only once even
if it has several names matched by the starname.

RULES FOR CONSTRUCTING STAR NAMES

1. A starn arne is. a character string.

2. A starname is made up of components. Components are delimited by
the beginning and end of its name, and by the period (.) character,
referred to as a dot.

3. Each question mark (7) character appearing in a starname is treated as
a special character.

4. Each asterisk or star (*) character appearing in a starname is treated as
a special character.

5. Each occurrence of two consecutive asterisks (**), called a doublestar,
appearing in a starname is treated specially.

6. Each component consisting only of a doublestar, called a doublestar
component, is treated specially.

7. Three or mere consecutive asterisks (***) are invalid.

INTERPRETING STAR NAMES

A starname is compared to a set of names; names that satisfy the following criteria
are considered to match the starname.

1. If the starname contains no special characters (stars or question marks),
then the rules for PL/I string comparison are used.

3-5 AG91-04A

01/87

2. Trailing ASCII space characters are not significant

3. "Each nonspecial character matches itself literally. The matching constructs
must be in one-to-one correspondence beulI/een the starname 3.J.~d the
matched name, in the same order.

4. Each question mark matches exactly one character within a component,
so it matches any single character except dot

5. Each star matches any number of characters within a component, so it
matches any number (including zero) of any character except dot.

6. Each doublestar matches any number of characters, including zero.

7. Each doublestar component matches any number of entire components,
including zero. Note that the dot or dots delimiting the doublestar
component match component boundaries, and if zero components are
matched, they match the same boundary. The boundary can be a dot or
the beginning or end of the matched name.

The following examples illustrate some common forms for star names.

!??????????????

ad?

*

*_data

.

*.pll

identifies all 15 character one-component entries beginning with !
(called unique names because such names are generated by the
unique_chars_ subroutine, described in the Subroutines manual, and by
the unique active function) in the user's working directory.

identifies all three-character one-component entries in the user's working
directory that begin with ad.

identifies all one-component entries in the user's working directory that
begin with ad and have three or more characters.

identifies all one-component entries in the user's working directory.

identifies all one-component entries whose first component ends with
_data preceded by any number of other characters (including none).

identifies all two-component entries in the user's working directory.

identifies all two-component entries in the user's working directory that
have pll as their second component

prog*.pll
identifies all two-component entries whose first component begins with
the letters prog followed by any number of other characters (including
none), and whose second component is pll.

3-6 AG91-04A

01/87

sub_dir>my_prog.new.*
identifies all three-component entries in the directory sub_dir (which is

, immediately inferior to the user's working directory) that have my_prog.new
,as their first and second components.

interest_ * _data.*.*
identifies all three-component entries whose first component begins with
interest_, ends with _data, and has any number of characters (including
none) in between.

*.**.my_seg

**

**.pll

identifies all entries with two or more components of which the last is
my_seg.

identifies all entries in the user's working directory.

identifies all entries with pll as the last (and possibly only) component

my_prog.**
identifies all entries with my _prog as the first (and possibly only)
component

sub_dir>prog?**.pll
identifies all entries in the directory sub_dir (which is immediately
inferior to the user's working directory) with two or more components,
of which the first component has exactly five characters and begins
with prog, and the last component is pU.

identifies anyone-component entries in the user's working directory that
has the substring "foo" in their name.

identifies any name in the user's working directory which has the
substring "foo" in its last component

*.**.**.**
identifies all entries in the user's working directory. Any name which
contains at most one single star component, at least one doublestar
component, and nothing else will match anything.

3-7 AG91-04A

01/87

Equal Names

Some commands that accept more than one pathname as their arguments allow
the entrynames of pathnames following the first, or source, pathname to be
equalnames. This is generally to be expected if the command allows the source
entryname to be a starname. An equal name is an entryname containing special
characters that represent one or more characters from the entryname (or entrynames,
when a star name is used) that corresponds to it Commands that accept equal names
provide a powerful mechanism for mapping certain character strings from the first
pathhame into the second pathname of a pair. Use of the equal convention reduces
the typing required for the second pathname, and it can be essential for mapping
character strings from entrynames identified by a star name into the equal name,
be.cause these character strings are not known when the command is issued.

CONSTRUCTING EQUAL NAMES

An equal name- is constructed according to the following rules:

1. An equal name is an entryname. Therefore, it is composed of a string
of 32 or fewer ASCII printing graphics or spaces, none of which can
be the greater than (» character. Unlike an entryname, an equal name
cannot contain control characters such as backspace, tab, or newline.

2. An equal name is composed of one or more nonnull components. This
means that an equal name cannot begin or end with a period (.) and
cannot contain two or more consecutive periods.

3. Each percent sign (%) character appearing in an equal name component
is treated as a special character.

4. Each equal sign (=) appearing in an equal name component is treated as
a special character.

5. An equal name component consisting only of a double (==) or triple
equal sign (===) is treated as a special component

6. An equal name containing four or more consecutive equal signs is
illegal.

INTERPRETING EQUAL NAMES

An equal name maps characters from the entrynames that match the star name
(first entryname) into the second entryname of a pair according to the following rules:

1. Each percent sign (%) in an equal name component represents the single
character in the corresponding component and character position of the
corresponding entryname. An error occurs if the corresponding character
does not exist

3-8 AG91-04A

01/87

2. An equal sign (=) in an equal name component represents the
corresponding component of a corresponding entryname. An error occurs

. if the corresponding component does not exist An error also occurs if
an equal sign appears in a component that also contains a percent
character. Only one equal sign can appear in each equal name
component, except for a double or triple equal sign component, as
noted in the next two rules.

3. The double equal sign (==) component of an equal name represents all
components of an entryname that have no other corresponding components
in the equal name. Often.' the double equal sign component represents
more than one component of the corresponding entryname. If so, the
number of components represented by the entire equal name is the same
as the number of components in the entryname. When the equal name
contains the same number of components or more components than the
entryname, a double equal sign is meaningless and, therefore. ignored.
(See the examples below.) Only one double equal sign component can
appear in an equal name.

4. The triple equal sign (===) component of an equal name represents the
entire corresponding entryname. The triple equal sign component is used
to add components to a name (see below). Only one triple equal sign
component . may appear in an eqtial name and no other component of
that equal name may contain percent signs or equal signs.

The rules above impose no restrictions on the form of the entrynames identified
by the equal name. These names can contain null components. However. the rename
and add_name commands cannot be called with arguments that contain null
components, because these commands treat their arguments as either star names or
equal names. The -name control argument of the rename and delete_name commands
can be used to change or delete entrynames that contain null components. control
characters, or other characters reserved by the star, equal, archive, or virtual pointer
conventions. (See the Commands manual for descriptions of the rename and
delete_name commands.) Entrynames present in directories have usually been subjected
to validity tests for entrynames and thus are usually valid.

3-8.1 AG91-04A

This page in ten tionally left blank.

01/87 AG91-o4A

The following examples illustrate how equal names might be used in rename and
add_name commands.

First. the single equal sign. The command:

rename random.data_base ordered.=

is equivalent to:

rename random.data_base ordered.data_base

and the command:

add_name world.data =.statistics =.census

is equivalent to:

add_name world.data world.statistics world.census

The command:

rename random.data.base -.-

is equivalent to:

rename random.data.base random.data

The star convention is used in the command:

rename *.data_base =.data

to rename all two-component entrynames with data base as their second component so
these entrynames have, instead, a second component of data.

The command:

rename program.pIl old_=.=

is equivalent to:

rename program.pll old_program.pll

and the command:

is equivalent to:

3-9 AG91-04

An error would be produced by the command:

rename alpha beta.=.gamma

because the first entryname oi the pair does not contain a component corresponding
to the equal sign in the second name.

Next, the double equal sign. In the two examples that follow, the first entryname has
components that correspond to the double equal sign in the equal name of each pair.
As a result, the number of components represented by the equal name is the same as
the number of components in the first entryname. The command:

rename one.two.three 1.==

is equivalent to:

rename one.two.three l.two.three

and the command:

add_name one.two.three.four.five 1.==.5

is equivalent to:

add_name one.two.three.four.five 1.two.three.four.5

In the example that follows, the equal name contains the same number of components
as the entryname. Therefore, the double equal sign does not correspond to any
components of the entryname and is ignore.d. The commands:

rename alpha.beta ==.x.y
rename alpha.beta x.y.==
rename alpha.beta x.==.y

are all equivalent to:

rename alpha.beta x.y

In the next example, since the equal name contains more components than the
entryname, the double equal sign corresponds to no components of the entryname and
is ignored. The command:

add_name able ==.baker.charlie

is equivalent to:

add_name able baker.charlie

3-10 AG91-04

The command:

add name **.ec ==.absin

uses the star convention to add a name to each entry with an entryname whose last
(or only) component is ec. The last component of this new name is absin instead of
ec, and the first components (if any) are the same as those of the original name
ending in ec (e.g., the name alpha.absin would be added to the entry named alpha.ee).

The command:

rename foo.test.pll ==.old

is equivalent to:

rename foo.test.pll foo.test.old

With the triple equal sign, this command becomes:

rename foo.test.pll ===.old

and is equivalent to:

rename foo.test.pll foo.test.pll.old

because the triple equal sign represents the entire corresponding entryname. For the
same reason, the command:

add_name alpha.** ===.1

adds the name "alpha.I" to "alpha", "alpha.pll.I" to "alpha. pU" , etc.

Note that a triple sign component in an entryname implies that the new name will
have more components than the old name. This is different from a double equal sign
component as can be seen if the command:

add_name alpha.** ==.1

is used instead. The latter command has a different effect For example. it attempts
to add the name "alpha.I" to both "alpha.pU" and "alpha.list", leading to a name
duplication error.

The command:

iename ???*.data %%%.~

renames all two-component entrynames that have a last component of data and a first
component containing three or more characters so that the first component is
truncated to the first three characters and the second component is data (e.g.,
alpha.data would be renamed alp. data). The command:

rename *.data %%%.=

3-11 AG91-04

results in an error if the first component of any name matching *.data has fewer than
three characters.

Archive Component Pathnames and Equai Names

Some commands that accept pairs of pathnames as their arguments (e.g.. the
compare_ascii command described in Commands manual) allow either or both of the
pathnames to be archive component pathnames (e.g .. source::blank.pll as described in
an earlier part of this section). The first pathname may contain star names as part of
the archive name (that portion of the pathname before the double colon (::» and the
component name (that portion appearing after the double colon). The second path name
may also be an archive component pathname. and it may use equal names in the
archive name and the component name. This usage makes it easy for the user to
request an operation on one or more components in an archive and either segments or
components in other archives where the segment/component names are constructed
from the original component name using equal names. Additionally. if the operation is
to be performed on two components. the name of the second archive may also be
derived from the name of the first archive using equal names. The two portions of
an archive component pathname, the archive name and the component name, are
treated separately by the star and equal name conventions. Thus. for instance, a triple
equal sign used in the archive name will append only the corresponding archive name,
not the entire pathname. The command:

compare_asci i source. 11::my_data ===.ud::my_data

is equivalent to:

compare_asci i source. 11::my_data source.ll.ud::my_data

The rules for constructing and interpreting equal names in the two portions of an
archive component pathname are identical to those for ordinary equal names described
ear lier in this section.

The following rules are used to determine whether to apply a given equal name
to the archive or component name specified in the first (source) pathname when
constructing the second (target) pathname:

1. If neither the source nor target pathnames are archive component
pathnames, an equal name in the target pathname is applied to the
source pathname just as described in the previous section on equal
names.

2. If the source pathname is not an archive component pathname. but the
target pathname is an archive component pathname. an equal name in
the target component name is applied to the source entryname; an equal
name is not permitted in the target archive name in this case.

3-12 AG91-04

3. If the source pathname is an archive component pathname, but the
target pathname is not an archive component pathname, an equal name
in the target entryname is applied to the source component name, not
the source archive name.

4. If both the source and target pathnames are archive component
pathnames, an equal name in the target archive name is applied to the
source archive name, and an equal name in the target component name
is applied to the source component name. When applying the equal
name to the source archive name, ".archive" suffix is removed from the
archive name.

The following examples illustrate the use of archive component pathnames and
equal names in the compare_ascii command.

The command:

compare_ascii test.pil source::old.===

is equivalent to:

compare_asci i test.p1l source::01d.test.p11

and compares the segment "test.pll" with the component "old.test.pll" in the archive
"source. archive" .

The command:

compare_asci i source.s::print_data.pll ===.ud::===

is equivalent to:

compare_asci i source.s::print_data.pll source.s.ud::print_data.pll

and compares the component named "print_data.pll" in the two archives, "source.s.archive"
and "source.s.ud.arhive".

The command:

compare_ascii my_prog.pll ===::his_prog.==

is invalid because there is no archive name in the source pathname corresponding to
the "===" in the target pathname.

Finally, the command:

is equivalent to:

compare_ascii tools::my_prog.pl1 his_prog.pl1

3-13 AG91-04

Reference Names

A reference name is a name used to identify a segment that has been made
known by the user. Initiating a reference name for a segment is one way to make a
segment known to the user's process. (See !'Making a Segment Known'; in Section 4
and "Process" in Section 1.) A segment can be made known via the initiate command
(described in the Commands manual) and the hcs_$initiate and hcs_$initiate_count
subroutines (documented in the Subroutines manuaI). When a segment is made known
and a reference name initiated for the segment, its reference name is entered into the
reference name table. If the user uses the initiate command to initiate a reference
name for a segment. the reference name need not have any similarity to the
entryname of the segment. For example:

initiate >udd>Project_id>Person_id>debug newdebug

makes the segment named debug in the user's home directory known with the
ref erence name newdebug.

A segment can be addressed by its reference name either from command level
or from within a program. When a segment is addressed. the hcs_$make_ptr
subroutine (described in the Subroutines manual) uses search rules to locate the desired
segment. By default. the first search rule is "initiated_segments". causing the reference
name table. listing reference names for segments. to be searched first. If the segment
has not been made known and a reference name has not been initiated for the
segment. the search continues until a segment with an entryname that matches the
reference name is found. (Search rules are described in detail under "Search Rules" in
Section 4.)

A reference name is associated only with segments made known in a process.
The same reference name can be used in two different processes to refer to two
different segments. Also. a reference name/segment binding exists only for the
duration of the process in which it is specified. It is possible to break that binding
by making the segment unknown. thus causing all external references (links) from
other segments to the unknown segment to be unsnapped and causing the segment to
no longer be known in the process (by any reference name). Any reference name of
an unknown segment can be used again in the process to refer to a different segment.
(See the descriptions of the terminate and terminate_refname commands in the
Commands manual and the term_, hcs_$terminate_file. and hcs_$terminate_seg subroutines
in the Subroutines manual.) For example. there is a system command named debug. If
the user has made a segment in his home directory known with the reference name
debug. every time he calls debug he gets the version in his home directory rather than
the system provided version of debug. If the user wants to call the system version of
the command. he must first make the segment in his home directory unknown.

A user must keep his search rules in mind when he initiates and terminates
reference names. For example, if a user has initiated the reference name debug for a
segment in his home directory and he also has a segment named debug in his working
directory. every time he calls debug he gets the version in his home directory. If he
wishes to use the version of debug in his working directory, he must first terminate
the reference name debug for the segment in his home directory. Future calls to
debug then find the version in the user's working directory unless home directory

3-14 AG91-D4

appears before working directory in his search rules. If this is the case, the user must
explicitly initiate the reference name debug for the segment in his working directory.

Individual reference name/segment name bindings can be terminated in a process
without making the segment unknown unless the reference name removed is the only
one on the segment. (See the descriptions of the terminate_single_ref name command in
the Commands manual and the term_, hcs_$terminate_name, and hcs_$terminate_noname
subroutines in the Subroutines manual.) If a user has called the system version of the
debug command and later wants to make known the version of debug in his home
directory with the reference name debug, he must first terminate the reference name
to the system version. For example:

terminate_single_refname debug

initiate >udd>Project_id>Person_id>debug debug

causes calls to debug to invoke the routine in >udd>Project_id>Person_id with one
exception: other system routines bound together with debug (via the bind command
described in the Commands manual) continue to invoke the system routine since those
links were presnapped when the routines were bound together. The terminate,
terminate_single_refname. and terminate_ref name commands and the term_ subroutine
unsnap dynamic links, whereas the hcs_ entry points (described in the Subroutines
manual) do not unsnap links.

Entry Point Names

Procedures frequently have more than one entry point, and data segments
frequently have internal locations that are known externally by symbolic names. The
names of entry points and internal locations are generically called entry point names.
Each designates symbolically an offset within a segment. The location specified can be
referred to by the construction ref_name$entry_point_name where the dollar sign
separates the reference name and entry point name.

In many cases the entry point to a procedure has the same name as the segment
itself (or the segment has several entrynames corresponding to the names of its entry
points). A shorthand notation allows the entry point name to be assumed to be the
5a!ile as the reference name. For example:

call square_root (n);

x is interpreted to mean:

call square_root$square_root (n);

and the command line:

rename a b

is equivalent to:

rename$rename a b

3-15 AG91-()4

If the user has renamed a procedure segment (perhaps to preserve an old copy)
or created a storage system link to a segment using a different name, the full
reference name/entry point name construction must thereafter be used when referring
to that segment as a procedure or external data segment. For example, a PL/I
subroutine compiled with subr_name as the label of its procedure statement and then
renamed new_name must be referred to as new_name$subr_name.

Command, Subroutine, Condition, and I/O Switch Names

These types of names all have some conventions in common.

• Each is required to be 32 characters or less in length.

• All ASCII characters are legal in any position except as noted in the
following points and "Entrynamesn above.

• System subroutine names end in an underscore to prevent conflicts with
subroutine names given by users. Users can easily avoid conflicts by not
having an underscore as the last character of any of their subroutine
names.

• Condition and I/O switch names that are part of the system, according
to the new convention, end in an underscore to help prevent conflicts
with names given by users. See the appendix entitled "List of Names
with Special Meaning" for a list of previously established condition and
I/O switch names that do not end in an underscore.

• Command and subroutine names should not contain a period; i.e.. they
should have only one component.

Request IDs

Several system facilities operate by having users enter requests in one or more
queues. These requests are processed by the system at some later time. Examples of
such facilities include the absentee facility and the I/O daemon facility. (See the
descriptions of the enter_abs_request, dprint, and dpunch commands in the Commands
manual.)

There are a number of commands that operate on requests that are already in
the queues, for example to list them. cancel them, or change their priority. These
commands need to identify a particular request. Often the pathname or entryname of
the segment associated with the request is sufficient to uniquely identify it. However.
sometimes several requests are associated with the same segment, and there can be
other reasons why the segment name alone is an unsuitable identifier of the request.

3-16 AG91-04

In these cases the request ID may be used to select one request from a group.
The request ID is based on the date and time at which the request was entered into
the queue. The full request ID is a 19 character decimal number, of the form
YYMMDDhhmmss.ffffff, giving the year, month, day, hour, minute, second, and
6-digit fractional second (in Greenwich Mean Time) at which the request was entered.
In many cases, the six digits to the immediate left of the decimal point (hhmmss) are
unique among all requests currently in the system. Often, fewer than six digits are
unique. When requests are entered in rapid succession by a single command line, they
can have the same seconds digit in their IDs, and the tenths digit is required for
uniqueness. (If a user tries to get a request ID using the clock command or the
date_time_$format subroutine, he must specify -zone GMT to get a valid request ID.)

The 8 character ID, hhmmss.f. is printed by default by the request listing
commands; printing of the longer ID can be requested by a control argument. The
commands that take a request ID argument accept any number of digits, before or
after the decimal point (with a decimal point being assumed after the rightmost digit
if none is typed). The ID is accepted provided that it matches only one request in
the group being selected from. If it matches more than one, the user is told how
many. and instructed to supply more digits of the ID.

Date/Time Names

Multics use of date/time values is described in the following subsections. Multics
accepts dates from the year 0001 through 9999. The Julian calendar is used for dates
from 0001-01-01 through 1582-10-04. The Gregorian calendar is used for dates from
1582-01-15 through 9999-12-31. (The dates from October 5, 1582 through October 14,
1582 do not exist; they were dropped when the Gregorian calendar was adopted.) The
leap day is always February 29. The lower limit on dates of January 1, 0001 A.D., is
used since it begins the era; the upper limit of December 31, 9999, was chosen to
limit year numbers to four digits. The time zones as now defined are used regardless
of the year. The Multics date/time software does not account for "leap seconds", and,
therefore, the difference between any two binary clock values that are precisely an
integral number of days (hours, minutes, seconds, etc.) apart is guaranteed to be
evenly divisible by the number of microseconds in a day (hour, minute, second, etc.).

DATE/TIME INPUT VALUES

Often the user must supply date and time information to a command. Programs
that accept date and time information use the convert_date_to_binary _ subroutine (see
the Subroutines manual) to convert a time string to an internal (binary) value.

Time Strings (DT Values)

The time string can have up to six parts: adverbial offset. date, time, day of
week, signed offset, and time zone. Adverbial offsets, if present, must appear leftmost
in the string. Beyond that, all the parts are optional and can be in any order. The
parts can be made up of alphabetic fields, numeric fields, and special characters.

3-17 AG91-()4

An alphabetic field is made up of letters and must contain a whole word or an
abbreviation (often made up of the first three letters of the word). No distinction is
made between uppercase and lowercase characters. Although this description gives
examples in English, each of the words is available in several languages. Any of these
languages can be used in time strings, but aU words within a given string must be in
the same language. To see the languages defined on a site, the user can type

A numeric field consists of an optionally signed integer of one or more decimal
digits. The special characters that can be used in either alphabetic or numeric fields
are: the slash (/), the period (.), the colon (:), the ·plus (+), the minus (-), and the
comma (,). Blanks are not required between alphabetic and numeric fields in the time
strings: however they are required between two numeric fields unless. the second field
begins with a plus (+) or minus sign. For example,

2days4hours10minutes
1245. 17+7hours
10/17/79Wednesday

Unless otherwise indicated in the command description, the input time string
must be specified as a single argument. This means quotations must enclose time
strings that contain spaces. Alternatively underscores are used instead of blanks in the
time string. For example,

Usually when entering a time string, the time zone is omitted. Although the
time zone is seldom seen, it is very important: it determines the interpretation of
items given in LlJ.e time string: it is also involved in defaults supplied for missing
items. All defaults are taken from the current absolute time, adjusted by a working
time zone. If a zone is specified in the string, that becomes the working zone;
otherwise the process default time zone is used.

This means that whether the user converts a string with an explicit zone, such as
"XXXX_ast", or sets the process default to "ast" and then converts the string "XXXX",
the same absolute time is returned. (Note that setting the process default also
influences output conversion, while giving an explicit time zone does not.) To display
the default zone, the user can type

The six parts of the time string are described below. In these descriptions
whenever an assumed value is mentioned, it refers to the current date/time adjusted to
the working zone.

1. date
is the day of the year; it can be specified only once. The user can supply a
date using normal date format, calendar date format, day of the week, date
keywords, fiscal week. request-ide or can 'omit it entirely. If no date is
present, it is assumed to be the next occurrence of the time specified; for
instance, "lOA" gives the date on which 10:00am next occurs. If no date and
time is given, the current date is used.

3-18 AG91-D4

In normal date format, the user can specify dates as month (or month
abbreviation), day of month, and year; or as day of month, month, and year.
The year is optional and. if omitted, is assumed to be the year in which the
date occurs next; that is, if today is March 16. 1985. then March 20 is
equivalent to March 20. 1985; while ~1arch 12 is the same as March 12, 1986.
There are three forms of normal date:

I
I
I
I
i
I
I 16 March 16 March 1985

March 16 March 16 1985 March 16, 1985
3/16 3/16/85 3/16/1985

is opt i ona 1) (The comma

The calendar date format allows the user to supply dates as a year, month. and
day of month, separated by minus signs. This is the International Standards
Organization (ISO) standard format. The year is required, and the user can
give it as a year of the century. For example,

85-12-31 or 1985-12-31

represents December 31. 1985.

The day of the week is a date specifier if present with no other form of
date. It then selects the first occurrence of the named day after today. The
date keywords are "yesterday", "today". and "tomorrow"; for instance,

6:35A today
yesterday +120days

The . fiscal\y~k is of the fOrm FWYYYY¥iVv' .. FW isth~nsca.l !!1clicatoL (in
Englisfi), - yyyy- -IS llii--year riim1ber. ancf -ww is-the week number. The fiscal
week begins on Monday and ends on Sunday. This form converts to the date
of Monday, but the user can select a day within the week by adding a day
name; for example, "FW198413 mn gives "03/26/84 0000. Mon". while
"FW198413 m Wed" gives "03/28/84 0000. Wed". The user can separate the
fiscal indicator from the number, but the ordering must remain, i.e.,
"FW185425" or "FW 185425". but not "185425 FW".

A request-id is a 19-character string used by several programs in the system,
such as list_output_request. It contains a complete date from year, in century,
down through microseconds in this form

yymmddHHMMSS.SSSSSS

If the user provides no zone, it is interpreted in GMT, not the process
default A request-id specifies a time as well as a date. so the user can give
no other time specification.

2. day of week
is a day of the week (e.g.. Monday) and can be present only once. When the
day of the week is present along with one of the other forms of date
specification, that date must fall on the indicated day of the week.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
t
I
I
I
I
I
I
I
I

3-19 AG91-04

I 3.
I
I
I
i
I
I
I
I
I
I
I
I
!
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
!
I
I
I
I
I
I
I I 4.

I
I
I
I
I
I
I
i
I
I
i

time
is the time of day and can only be present once. If omitted. it is assumed to
be the current time. The user can give time as 24-hour format, 12-hour
format, or the time keyword "now". The 24-hour time format consists of a
fOUi=digit number followed by a period: hhmm., where hh represents hours
and mm minutes. The user can follow this number by an optional decimal
fraction-of -a-minute field (e.g., hhmm.m). Also acceptable are hours and
minutes fields separated by colons (hh:mm). The user can optionally follow this
by either a fraction-of-a-minute field (hh:mm.m) or a seconds field (hh:mm:ss).
The seconds. in turn, can include a fraction-of-second field (e.g., hh:mm:ss.s).
Examples of 24-hour time are:

154. 1 .5
1545.715
15:45
15:45.715
15:45:42
15:45:42.08

The user must end the 12-hour time format with a meridiem designator (i.e ..
A, p, am, pm, noon (n), midnight (m». The user can indicate midnight and
noon by giving just the meridiem designator. The user can precede the
designator by time expressed as hours, hours:minutes, or hours:minutes:seconds
(including an optional fraction of a second or fraction of a minute). Examples
of 12-hour time are:

midnight
5 am
5:45A
3:59:59.00000ipm
11:07:30·5pm
12 n

There is a set of illegal times--24:00-24:59--which are handled anyway. These
are taken to mean 00:00-00:59 of the following day: midnight (00:00) is the
beginning of a day, not the end.

signed offset
is an adjustment to be made to the clock value specified by the other fields.
The user can supply offsets in any the following units:

year years yr
month months mo
week weeks wk
day days da
hour hours hr
minute minutes min
second seconds sec
microsecond microseconds usec

3-20 AG91-04

Each unit can be present one or more times, each preceded by an optionally
signed fixed point number. If offset fields are the only thing present, the
offsets are added to the default values of date and time, as described above.

If the month offset results in a nonexistent daie (e.g., "Jan 31 3 months"
would yield April 31), the last date of the resulting month is used (i.e., April
30). Examples of offset fields are:

3 weeks -60 hours (60 hours before 3 weeks after now)
1.5 hr 5min (an hour and 35 minutes from now)
1 hour 5 minutes (an hour and five minutes from now)

The order in which offset values are applied to the clock value can affect the
resultant clock value. Offset values are applied in the following order:

year, month, week, day, hour, minute, second, microsecond

"Monday 6 am 2 weeks" means "two weeks after the next occurrence of
Monday, at 6:00 am on that day".

Assuming that today is September 25, 1985. then

10/1 -1 day +1 month

results in a clock value for 10/31/85, rather than for 10/30/85.

Note: There is also a nonoffset use of these words, available in combination
with the word "this". These· combinations are not forms. but can be
used in building date and -time------part&------.fef---ex-ample-;
"this_month_l._this-sear" or "this_hour:23" is valid, while just "this_day"
is not. The exact form of this combination varies according to the
language used. In some languages the word for "this" changes
according to the gender of the umt 11 is applied to; in others there
may be a single word that does the job.

5. adverbial offset
is a before/after kind of adjustment that can be used any number of times.
The user can recognize it by the presence of. "before". "on", or "after" in the
time string. If present, it must appear first. These are the forms available:

DAY-NAME before
DAY-NAME on or before
DAY-NAME before or on
DAY-NAME after
DAY-NAME on or after
DAY-NAME after or on
SIGNED-OFFSETs before
SIGNED-OFFSETs after

3-21 AG91-o4

When adverbial offsets are present, they partition a time string into a series of
adjustments followed by a base time. These sections are processed from right
to left. The example below has 3 sections: first "6:00 am 400sec" is handled,
supplying all necessary defaults and making the ordinary (400sec) offset
adjustment; then "1v1onday after" is applied to give a new value; iinal1y !?2 wk
-5min after" is applied to this new value to give the final value.

2 wk -5min after Monday after 6:00 am 400sec
20 minutes before now
2 days after today
2500 weeks after 1776-7-4
Tue after Mon on or after 11/1

The last item describes election day in the USA: the first Tuesday after the
first Monday in November.

6. zone
is the time zone to be used in making the conversion to Greenwich mean
time. which is the internal form of all clock readings. It can be either a zone
differential or any of the zone abbreviations known at your site. A zone
differential is a five-character string, "sHHMM" (s is a sign. HH is a
two-digit hour. and MM is a two-digit minute) .. The user can use this only
immediately following a time specification: "12:15-0330" says that 12:15 is the
local time. and -0330 specifies that the local time was generated by subtracting
3.5 hours from GMT. To list the zone abbreviations known at a site, type:

If any defaults are needed, the current instant is broken down into years.
months. days. and so forth with respect to a "working zone", This working
zone can make much difference because, for example. at a gjven instant it can
be Tuesday in New York and Wednesday in Bankok. or it can be 22:07 in
London and 3:37 in Singapore. Thus the zone is as important for week days
and years as it is for hours and minutes.

Many of the date/time commands allow you to supply a "-zone X" argument.
In this case. X can be any of the zones known at a site; it can't be a time
dif f eren tial.

3-22 AG91-04

DATE/TIME OUTPUT VALUES

One important way to get a clock value into a readable form is by the
date/time commands (calendar_clock, day, etc). The first argument to the clock
command is a control string describing the format wanted. All other date/time
commands have intrinsic formats. Command use of clock values is really going from a
readable form to a readable form without keeping the internal value.

By convert_date_to_binary_, an input time string is converted to internal form.
This is the usual form for storing dates in data bases. To convert one of these into a
readable form, the user can call upon date_time_ to get a 24-character form like this:

03/14/79 0000.0 cet Fri

But when other formats are needed, date_time_$format is available. It takes a clock
value and a control string describing the format wanted and returns a string ready for
printing.

An effort has been made to make all date/time outputs from the system
software be usable as date/time inputs to system software, but the control string
mechanism is so flexible that the user can easily use it to generate formats that are
not recognizable. Also there are strings that are apparently recognized, but which are
ambiguous~ for instance. "7/1/82"; in the United States this means the 7th month,
first day, but in many European countries this would mean the 7th day of the first
month. Multics follows the American interpretation.

Time Format

The control string to date_time_$format is either a keyword or a character string
consisting of text and/or selectors. The selectors are always identified by a leading
circumflex character (A). There are two types of selectors: A<keyword>, which allows
a keyword to be embedded within a format. and the general form A XX. XX is a
two-letter code that specifies what information is wanted. The user can place an
optional PL/I picture specification between the 1\ and XX if the default form is not
adequate. If the control string does not contain any circumflex characters, it must
then be one of the known set of keywords. Each keyword identifies a control string
f or a predetermined format named by that keyword.

List of Format Keywords

all
A9999ye-Amy-Adm_J\Hd: A MH:A99.(6)9UM J\zd_A za_ Ada Afi J\(6)9fw Ama dyAdy
dC/\dc Del" Dc.

calendar_clock
J\9999yc-Amy-J\dm_AHd: A MH:J\99.(6)9UM_ J\za_ J\da.

clock
A9999yc-J\my-Adm AHd:J\ MH:A99.(6)9UM Aza Ada.

3-23 AG91-{)4

date
is the process default value f or date.

date_time
is the process default value for date and time.

iso_date
"9999yc-"my-"dm.

iso_date_time
"9999yc-"my-"dm "Hd:"MH:"SM "za.

iso_Ion~date
"9999yc-"my-"dm "da.

iso_Iong_date_time
"9999yc-"my-"dm "Hd:" MH:"99.(6)9UM "za.

iso_Ion~time
"Hd:" MH:"99.(6)9UM.

iso_time
"Hd:"MH:"SM.

multics_date
"my / "dm/ "ye.

m ul tics_ date_ time
"my /"dm/ "ye "Hd"99v.9MH "xxxxza"xxxda.

m ui tics_ time
"Hd:"MH.

request_id
"ye"my"dm"Hd"MH"99.(6)9UM.

Note: The output from this keyword is specified in the process default time zone. To
obtain a valid request ID, specify -zone GMT when you supply the request_id
keyword. See "Request IDs" in this section.

system_date_time
is the system default value for date and time.

system_date
is the system default value for date.

system_time
is the system default value for time.

time
is the process default value for time.

3-24 AG91-04

A site can change the "system" keywords. For an application that depends upon
the historic formats t1Se45, in Multics, the three builtin "multics" keywords are available.

Processing of a control string proceeds by scanning the control string until a
circumflex is found or the end of the string is reached. Any text (including any
blanks) passed over is copied to the output string. The selector is then interpreted and
executed. This causes a datum from the input clock value to be edited into the output
string. Processing continues in this way until the control string is exhausted.

The user can express dates and times placed in the output string in units of
years, months, weeks, days, hours, minutes, seconds. and microseconds. and the total
calendar value as a single unit; for example the user could express the calendar value
representing 79-09-08 9:42A GMT as 1979 years, as 722702 days, or as 722702.112499
days. This is the set of "total" selectors:

Ayc total number of years in the calendar value Amc total number
of months in the calendar value Adc total number of days in the
calendar value AHc total number of hours in the calendar value AMc
total number of minutes in the calendar value ASC total number of
seconds in the calendar value AUC total number of microseconds in
the calendar value.

The user can also express dates and times as the number of units remaInIng after a
larger unit has been removed from the calendar value; for example, 09/08/79 09:42
includes units for the 9th month of the year. the 8th day of the month, the 9th hour I

of the day, and the 42nd minute of the hour. The following are the most common:

Amy month in the year
Adm day of the month
Adw day of the week
AHd hour of the day (24-hour format)
AHh hour in half day (12-hour format)
AMH minute of the hour
ASM second of the minute
AUS microsecond of the second.

3-25 AG91-Q4

i

There are several items of date/time data that are nonnumeric, such as day of
week, day of month, and time zone used for conversion.

"'mn month name
Ama month name, abbreviated (char (3»
"'dn day name
"'da day name, abbreviated {char (3»
"'zn time zone name
"'za time zone name, abbreviated (char (4»
"'zd zone different i a 1 (char (5))
"'mi meridiem indicator (A or P)
"'fi fiscal indicator (FW in Engl ish)

I I The selectors of numeric data are, in general. made up of two letters taken
I from this sequence: c y m w d H M S U. This letters stand for calendar, year,
I month, week, day, hour, minute, second, and microsecond, respectively. All 81
I combinations are not, however, valid. The form can generally be read as "unit of
I unit", e.g., "seconds of week". The first unit is always smaller than the second one.
I In trying to keep the specifiers reasonably mnemonic (in English) there is a problem:
I both month and minute begin with an "m". So all date values are used as lower-case
I letters while all time values are in upper case.

I
I
I
I
I
I
I

i
I
I
I
I

I
I
I
I
I

It is d'ifficult to try to handle all the forms needed in a general manner. Hd is
hour of the day and is thus 24-hour time: this is not always what is wanted. Hh is
chosen as hour in half day to get the 12-hour form of time. To go along with this
there is "mi" for Meridiem Indicator, which gives A or P to make up AM or PM.
This does not give A!v1 or Ptv1 because ANSI and ISO standards specify that lime be
given as "3P", not "3PM". If the user wants the M, put the literal in, e.g., ""miM".

Another way of looking at a calendar value is in terms of fiscal week. This is
selected with the ""fw" code. Its value is four digits of year followed by two digits
of week number, i.e., yyyyww. The default picture has been chosen to give a value of
yww. The associated fiscal indicator is selected by ""fi." A complete value is obtained
by specifying ""fi"fw."

3-26 AG91-o4

The table below shows the complete set of selectors. The row specifies what unit
is wanted, the column specifies within what other unit, e.g., "Sy is seconds of year.

DATE/TIME SELECTORS

of
calen­

dar

of
year

I of
month

of
week

of
day ~:ur m~~ute s~:ondl

I
micro- +------+------+------+------+------+------+------+------+
second I AUC I AUy I AUm I AUW I AUd I AUH I AUM I AUS I

+------+------+------+------+------+------+------+------+
second I ASC I ASy I ASm I ASW I ASd I ASH I ASM I

+------+------+------+----~-+-=-==-+------+------+

minute I AMc I AMy I AMm I AMw I AMd I AMH I

+------+------+------+------+------+------+
hour I AHc I AHy I AHm I AHw I AHd I

+------+------+------+------+------+
day I Adc I Ady I Adm I Adw I month day zone

+------+------+------+------+ +------+------+------+
month I I Amy I name I Amn I Adn I Azn I

+------+------+ +------+------+------+
year I Ayc I abbrev I Ama I Ada I Aza I

+------+ +------+------+------+
I AHh I <-hour of half day
+------+ (l2-hour form)

differential I Azd I
+------+

I Ami I <-meridiem indicator
+------+
I Afw I <-fiscal week (form: yyyyww)
+------+
I Afi I <-fiscal indicator ("FW" in engl ish)
+------+

The user can control the formatting of date and time values by an optional
PL/I picture specification included in the selector; for instance, a code of "0099yc
formats the total years in the calendar value into a two-digit year of the 20th century
and 1\9999yc provides a full, four-digit year. The following is a brief description of
the most frequently used picture characters. For more details on PL/I pictures, see
the Multics PL/I Language Specification manual (AG94) and the Multics PLII
Reference Manual (AM83).

3-27 AG91-04

I 9
I

represents a mandatory decimal digit in the displayed value.

represents a decimal digit in the displayed value. Nonsignificant zeros on the
left are replaced by a space when they occupy a "z" digit position.

I z
I
I
I . produces a period in the displayed value. This has no relation to the location

of the decimal point in the value actually being displayed. If zero suppression
is in effect, this is replaced with a space. I

I
I
I '
I

produces a comma in the displayed value. It has all the characteristics of the
period.

I
I v locates the value's decimal point in the result. This determines how the value

digits are oriented with respect to the picture specification. If the user supplies
no "v". it is assumed to appear after the rightmost picture character. I

I

I
I
I
I
I
I
I
I

The picture characters above are sufficient for displaying most numeric values.
For example. the control string 1\ 99Hd 1\ 99. v9MH represents the time in hours, minutes,
and tenth of minutes; the control string I\zz9.999vUS represents the number of
milliseconds of the second, using the decimal point and "v" to scale the microsecond
uni t. Scaling can also be performed by a picture scale factor.

I f(N) scales the value by multiplying or dividing by a power of 10. thus shifting the
location of the decimal point in the value. For example. f(2) shifts the decimal
two places left. effectively dividing the value by 100; f(-3) shifts three places
right, effectively multiplying by 1000.

Using a picture scale factor. the user can display the milliseconds in excess of a
second to the nearest tenth using the control string I\zz9.9f(3)US. You can display a
value of 48634 microseconds as " 48.6" milliseconds.

There are two extensions to numeric picture handling:

Z represents a decimal digit in the displayed value. Nonsignificant zeros to the
left of the decimal point are omitted when they occupy a "Z" digit position;
to the right of the decimal point they are omitted when they occupy a "Z"
digit position.

Z characters must appear as the leftmost or rightmost digit positions in the
picture specification since these are the positions that nonsignificant zeros can
occupy. Z performs a selective ltrim or rtrim (of zero) operation on the
displayed value. For example, the user can specify the millisecond specification
given above as I\ZZ9.9ZZUS without using a picture scale factor; with this
specification you can display 48630 microseconds as 48.63 milliseconds (withoUt
the leading space or trailing zero).

3-28 AG91-D4

o represents a decimal digit in the displayed value that is not wanted. Specifying
A99yc for a year like 1941 results in a size condition since it takes four digits
to handle that number. To get the year in century the user can use A0099yc;
this gives four digits into which the value is placed and then the first two
digits are discarded. A picture like 00z9 with a value of 1502 gives 02
because the zero suppression applies to 1502, and then the first two digits are
dropped.

The user can format character date/time values such as day of the week, month
name, and time zone using a character picture specification with the "x" picture
character.

x represents a position that can contain any character. Since national characters
occur in some of the time names, avoid the "a" character. Values are
left-justified in the picture specification. with truncation of the rightmost
characters if the value is longer than the picture or padding with spaces on the
right if the value is shorter than the picture.

For example, Axxxxxxxxdn displays Wednesday as "Wednesday" and Monday as
"Monday". The user can use a picture repetition factor to shorten the control string
to itA (9)xdw". With A(5)xmn January is displayed as "Janua" and May is displayed as
"May n. (Note that in some languages the abbreviation of a time name is not the
first three letters of it.)

The selector picture specification allows an extension of the "x" picture
specification.

X represents an optional character poSItIon in the displayed value. The character
position is omitted if there is no corresponding character in the value being
displayed.

X characters must appear as the rightmost character poSItIon in the picture
specification since this is the position that nonsignificant spaces can occupy. X
performs a selective rtrim operation on the displayed value.

The code A(9)Xdw displays Wednesday and Monday both without trailing spaces.

3-29 AG91-()4

The table below shows the default picture specifications for all selectors. The
row specifies what unit is wanted. the column specifies within what other unit.

of of
calen- year

dar

DEFAULT PICTURE VALUES

of of
month week

of
day

of
hour

of of
minute second

micro- +------+------+------+------+------+------+------+------+
second ! (18) Z9! (14) Z9! (13) Z91 (12) Z91 (11) Z91 (10) Z9! (8) Z9 I (5) Z9 I

+------+------+------+------+------+------+------+------+
second I (12) Z91 (12) Z9! (8) Z9 I (6) Z9 I (5) Z9 I (4) Z9! 99 I

+------+------+------+------+------+------+------+
minute I (l 0) Z91 (6) Z9 I (5) Z9 I (5) Z9 I (4) Z9 1 99 1

+------+------+------+------+------+------+
hour 1 (8) Z9 I (4) Z9 1 (3) Z9 I (3) Z9 I 99 1

+------+------+------+------+------+
day! (7)Z9 I 999 I 99 I 9 1 month day zone

+------+------+------+------+ +------+------+------+
month I 1 99 I name 1 (32) X 1 (32) X I (64) X I

+------+------+ +------+------+------+
year 1 0099 1 abbrev 1 (8) X 1 (8) X 1 (8) X I

+------+ +------+------+------+
1 99 1 <-hour of ha 1 f day different i all s9999 1
+------+ (12-hour form) +------+
I x I <-meridiem indicator
+------+
10009991 <-fiscal week (form: yyyyww)
+------+
I xx I <-fiscal indicator
+------+

The following table shows how date and times strings are displayed by a variety
of control strings.

Amn AZ9dm, A9999yc
displays September 8. 1979.

A mn A z9dm. A 9999yc
displays September 8. 1979.

"dm Ama A9999yc A zn
displays 08 Sep 1979 Mountain Standard Time.

Amy /Adm/"ye "Hd"99V.9MH Aza Ada
displays 09/08/79 0242.4 mst Sat

3-30 AG91-o4

Hd:" MH: "SM" z
displays 02:42:25-0700.

9999yc-"my-"dm_" Hd:" MH:" 99. (6)9UM_" za_ "d
displays "979-09-0B_02:42:25.048634_mst_Sat.

-"<multics_time>xyz" <multics_date>­
displays <-o2:42xyz09/08/79->.

COMMAND LANGUAGE

The standard Multics command language and its conventions are described below.
Various subsystems, with their own conventions, are also available (see Section 1 of
this manual). In addition, user-created systems and conventions can provide specially
tailored environments that supersede the following Multics conventions.

A Multics command is a system program, usually written in PL/I, that uses
argument processing facilities provided by the command processor. A command name
is the entryname of the segment containing that system program. Command invocation
consists of a command name alone or a command name followed by character string
arguments that are separated by white space (any combination of blank spaces and
tabs). A command line is delimited by the newline, vertical tab, or formfeed
characters, and can contain one or more command invocations separated by semicolons
t). The syntax rules for command invocations allow for such features as iteration,
nesting, and function evaluation.

The Multics command processor is a mechanism for invoking programs by
command name. It finds the commands by command name in the storage system
hierarchy. and invokes L1.e commands with their arguments. Commands are found via
the search rules, described in Section 4. The command processor is called by the
listener subroutine to process the command invocations typed by the user. The
command processor can also be called from a program by using the cu_$cp entry
point (see the description of cu_$cp in the Subroutines manual).

After a user logs in to the system, the listener subroutine prints a ready message
on the terminal. The user is then at command level and the system is waiting for
input in the form of a command line. When a user completes a command line, the
command processor evaluates it. The command line obtained when all the command
elements have been evaluated is called the expanded command line. It is then executed
by the command processor. The listener subroutine is again invoked. and prints
another ready message.

Command invocations are ref erred to simply as commands throughout most of
the Multics documentation.

3-31 AG91-04

Command Environment

The command invocation consists of two basic elements: the command name and
the arguments. The command name is a reference name. If followed by a dollar sign
($) and a character string, this part of the command name is an entry point name.
The command processor uses the search rules of the user's process (see "Search Rules"
in Section 4) to find the command in the storage system hierarchy. A pathname can
be used in place of the reference name to override the user's search rules. In this
case, the segment identified by the pathname is made known and is initiated with the
final entryname of the pathname as its reference name. Then this reference name is
used along with any entry point name that was given. Since the segment is initiated
with a reference name, the user need type only the reference name for subsequent
command invocations.

The arguments are character strings that pass information, such as pathnames,
access modes. and search strings, to the command from the command processor. An
argument may contain white space if the entire string is enclosed by quotation marks
(e.g., "Ann Smith"). The order in which arguments are typed is often significant.
Arguments beginning with a hyphen (e.g., -brief) are control arguments and specify
optional modifications to the operation of the command. Control arguments may also
take arguments; it is usually necessary to enclose a control argument string in quotes
when it contains white space. Command descriptions contained in the various Multics
manuals include descriptions of the specific arguments accepted by the commands.

Multics terminal input allows read-ahead; therefore, the user does not have to
wait for a ready message before typing another command line. However, unless the
"polite" I/O modes (described in the tty _ I/O module write-up in the Subroutines
manual) are specified, the user can be interrupted while typing a line by the ready
message or by output printed by the previous command. If an interruption occurs, the
line being typed by the user may be hard to read on the terminal. Theref ore, the
entire line should be killed and retyped (see "Erase and Kill characters" below). The
printing of ready messages can be turned off and on using the ready_off and
ready_on commands (see the descriptions of these commands in the Commands
manual).

Simple Command Line

The general form of a Multics command invocation is:

command name argumentl argument2 •.• argumentN

3-32 AG91-04

where the elements are separated by white space. The rename command, for example,
takes arguments in pairs. The first of each pair is the current pathname of the
segment to be renamed and the second is the desired new entryname. Thus:

rename square_root sqrt

causes the command processor to search for and invoke a command called rename at
the entry point called rename (rename$rename), with two character string arguments, as
the following code fragment represents:

x: proc;
declare rename entry options (variable);
call rename (lisquare_rootll, IIsqrtll);
end x;

Suppose a user knows that an experimental version of the rename command
resides in the directory >Smith_dir. Typing:

>Smith_dir>rename square_root sqrt

invokes the experimental version instead of the version that would normally have been
found by the user's search rules. Subsequent command lines using only the reference
name rename continue to invoke the one listed in >Smith_dir.

Compound Command Line

When more than one command invocation appears on one line, a semicolon (:)
must be used after each complete invocation except the last one. For example:

cwd >old_source; delete program.pll

The space between the semicolon and the next command used in this example is not
required.

When the command processor detects an error in the command line, it stops
processing at that point. If, for instance, the change_workin~dir command in the
example above is misspelled as "dew," the error message "Segment dew not found" is
printed, and the command line is not executed. If a misspelling occurred instead in
the delete command (e.g., dlete), the first command would have already been executed,
and processing would stop when the misspelled command name was detected.

If, on the other hand, an error is detected by the command program invoked,
processing of the remaming commands in the Hne is completed. For instance, if the
pathnname ">01 d_source" in the example above is misspelled, the error message
"change_working_dir: Entry not found" is printed, but the rest of the command line
is processed, nevertheless.

3-33 AG91-04

Reserved Characters and Quoted Strings

The Multics command language reserves some characters to which special
significance is attached. The reserved characters are: space, quotation mark ("),
semicolon (;), the newiine character, ieft and right brackets ([and]), left and right
parentheses, and the vertical bar (I). Occasionally, however. it is necessary to use a
reserved character without its special meaning. The quotation mark character (n) is
reserved for this purpose. Reserved characters within a quoted string (i.e., a string of
characters surrounded by quotation marks) are treated as ordinary characters.

Take for example the case in which a semicolon must not be interpreted as the end
of a complete command invocation the first time the line is scanned by the command
processor:

answer no IIdprint abo list; rename foo ab2.list; dprint ab2. list"

Because the answer command provides its answer during execution of only one
command line (see the Commands manual), the series of three command lines in this
example must be interpreted as one; otherwise the answer command would no longer
be in effect when it might be needed, during execution of the rename command. If
the rename command then required an answer to execute, it would have to wait for
the user to type an answer rather than taking the answer from the answer command
as was originally intended. The quotation marks here cause the command processor to
ignore the semicolon's normal purpose of marking the end of a command invocation
and instead include the semicolons along with the commands they separate as part of
the argument to the answer command.

I t may also be necessary at times to suppress the special meaning of the
quotation mark. For this purpose, doubled quotation marks within a quoted string are
interpreted as a single quotation mark.

For example, the command line:

string She said, "Hi."

would print the string without the quotation marks:

She sa i d, Hi.

because the command processor stripS off single quotation marks, on the assumption
that they are present to indicate that the characters within should not be given special
interpretation. In order to preserve the quotation marks around the word Hi, the user
must add double quotation marks to the quoted string:

string She said, IIlIlIHi ."1111

Here the command processor will strip off the outer quotation marks and interpret the
remaining double marks as single quotation marks:

She said, IIHi.1I

3-34 AG91-04

Doubled quotation marks that are not enclosed in quotes themselves do not
represent a single quotation mark, but the null string. For example:

string She said, IllIHi .1111

does not result in the string "Hi." but simply the string Hi. Typing the command:

str i ng one IIlItwollli

results in the output one two. To obtain the result one "two" the user must type:

string one IIlIlItwo" 1l1l

or, what might be more likely:

string lIone IIlItwo llllll

Iteration

The iteration facility of the command language provides economy of typing for
the user who wishes to repeat a command with one or more elements changed. The
iteration set consists of two or more elements enclosed by parentheses. Each element
of the set. in turn. replaces the entire iteration set in the command line. For
example, the command line:

pr i nt (a b c). p 11

equivalent to the three commands:

print a.p11; print b.pll; print c.pll

Iteration can be used with command names as well. The command line:

(pr i nt delete) test.pll

expands into:

print test.pll; delete test.p1l

More than one iteration set can appear in a command. The corresponding
element from each set is taken. For instance, the compound command:

rename >Sm i th_d i r> (Jones Doe Brown) (Day Wh i te Green)

expands into the commands:

rename >Smith_dir>Jones Day

rename >Smith_dir>Doe White

rename >Smith_dir>Brown Green

3-35 AG91-()4

Nested iteration sets are also allowed. Evaluation of parentheses occurs from left
to right. The principal use of nested iteration sets is to reduce typing when subsets of
an element are repeated. For example:

create_dir >Smitn_dir>(new>(first second) old>third)

creates three directories:

>Smith_dir>new>first

>Smith_dir>new>second

>Smith_dir>old>third

The ability of the Multics command language to concatenate character strings
underlies the iteration feature. See "Concatenation" below.

Active Strings

An active string is a substring of a command line, delimited by brackets ([and]).
Active strings are evaluated by the command processor and replaced by their values
before further processing of the command line occurs. An active function is a
program designed to accept character string arguments from the command processor,
and return a character string value to the command processor during evaluation of an
active string. Standard Multics active functions are described in the Commands manual.
To create new active functions, see Section 4 of this manual.

The simplest form of an active string is:

[af argl •.• argN]

where af is the name of an active function and arg_ are character string arguments to
the active function.

The command line:

send_message [last_message_senderJ Thanks for the link.

contains an active string that calls the last_message_sender active function return a
value. The command processor returns the value, here expressed in the form
"Person_id.Project_id," to the command line. The complete command line is then
evaluated and executed, with the returned value of the active function as one element
of the command and the message as another.

Active strings can be nested. The following example from a start_up.ec prints a
calendar on the first day of each month:

if [equal [day] 1J -then calendar

3-36 AG91-04

Each time the command processor encounters a right bracket (]) it turns to the
matching left bracket ([) and evaluates the enclosed active string. This means that
nested active strings are evaluated recursively, the innermost string first. To execute
the above line, the command processor evaluates [day] and returns, for example. 17,
and then evaluates [equa 1 17 1 J ~ which returns false, before it evaluates and
executes the complete command line. Expansion of the above example proceeds as
follows:

if [equa 1 [day] 1] -then ca 1 endar
if [equa 1 17 1] -then ca 1 endar
if false -then calendar

and the calendar is not printed.

Iteration can be combined with active strings. For example, if the segment fred
is a single line consisting of the names of three segments david, robert, and suzanne,
then the command line:

underline [contents fred]

prints out the returned value:

david robert suzanne

using the contents active function, which returns the contents of the specified segment.

The command line:

underline ([contents fred])

expands in to:

underline (david robert suzanne)

which then expands into:

underline david; underline robert; underl ine suzanne

The command line is then evaluated, and prints:

david
robert
suzanne

3-37 AG91-Q4

After an active string is evaluated. the return value is rescanned for active
strings before being inserted into the command line. For example. if the segment jed
is one line consisting of the string ([contents fred]) described above. then the
command line:

underl ine [contents jed]

invokes [contents f red] as an active function, and the underline command prints:

david
robert
suzanne

The user can suppress rescanning of the returned string f or command language
special characters by placing a double vertical bar (II) before the active function.
The entire return value is then treated as a single token. Using the active functions
defined above.

underl ine I I [contents jed]

expands only once, and prints:

([contents fred])

where the argument of the underline command is the literal string ([contents fred]).

An active string invocation preceded by a single vertical bar (I) is rescanned
only for quotes and white space. For example; the command line:

prints:

string q [do "A B]D E"])

A
B]D
E

When an active function returns two or more elements enclosed by parentheses.
rescanning the return value causes iteration to take place in the same manner as that
described above. If the segment ned is one line consisting of the parenthetical
expression (dave bob sue), then the command line:

underline [contents ned]

prints:

3-38 AG91-04

All of the above examples use active strings consisting of a single active
function. In its most general form, an active string can consist of any number of
valid active functions separated by semicolons:

string [plus 3 4; times 5 6J

The value of the active string is then the concatenation of the returned values
separated by spaces:

7 30

Iteration inside an active string has a similar effect; it causes the iterated
returned values to be concatenated with intervening spaces. For example, the command
line:

string [(plus times) 2 3J

prints:

5 6

A vertical bar before a right bracket (I]) eliminates the intervening space when
return values are concat~nated. For example, the command line:

string [plus (l 2) 4 IJ

prints:

The following example is a more complicated illustration of the use of iteration
inside active strings. Assume there are two segments, one. bind and two. bind, in the
current working directory. In order to append each segment with the suffix .bind to
an archive whose name has the trailing components bound. archive, two active functions
are used with the archive command. The strip_entry active function (short name is
spe) removes the last component of the given entryname, and the segments active
function (short name is segs) returns segment names that match the given star name.
The command line:

archive a ([spe ([segs "~.bind])]) .bound ([segs "c.bind])

expands as follows:

archive a ([spe (lsegs 1c.bindj)j) .bound ([segs)':.bindJ)
archive a ([spe (one.bind two.bind)]) .bound ([segs *.bind])
archive a (one two) .bound ([segs *.bind])
archive a (one two) .bound (one.bind two.bind)
archive a one.bound one.bind; archive a two.bound two.bind

3-39 AG91-()4

Concatenation

In the Multics command language, the value of a delimited element (a character
string bounded by command language reserved characters) in a command line is
concatenated with the string or delimited element adjacent to it when no space is
placed between the two. The user theref ore has the ability to form character strings
by concatenation with elements such as parenthetical expressions, active functions, and
quoted strings. For example, the home_dir active function turns the character string
representation of the pathname of the user's home directory. The user can type a
command (presumably from some other directory) such as:

rename [home_dir]>square_root sqrt

and have the first argument to rename be the concatenation of the value of the
home_dir active function with the string >square_root.

Concatenation is permissible in either direction with regard to the delimited
string and the nondelimited string. For example, using the active string [contents
fred] as described in "Active Strings" above, the command line:

delete >project_dir>Doe>([contents fred])

deletes the segments david, robert, and suzanne in the directory >project_dir> Doe.

More than one delimited element can be concatenated. For example:

delete [home_dir]>([contents fred])

deletes the segments david. robert, and suzanne in the user's home directory.

TYPING CONVENTIONS

Three categories of typing conventions are dealt with in this discussion: canonical
form, erase and kill characters, and escape characters.

The Multics standard character set is the revised U.S. ASCII Standard (refer to
USA Standards .Institute, "USA Standard X3.4-1968"). The ASCII set consists of 128
7-bit characters. These are stored internally, right-justified, in four 9-bit fields per
word. The two high-order bits in each field are expressly reserved for expansion of
the character set; no system program may use them. Any hardware device that is
unable to accept or create the full character set should use established escape
conventions for representing the set (see "Escape Characters?' beloW). There are no
meaningful subsets of the revised ASCII character set.

3-40 AG91-04

The ASCII character set includes 94 printing graphics, 33 control characters, and
the space. Multics conventions assign precise interpretations to all the graphics, the
space, and 10 of the control characters. The remaining 23 control characters are
presently reserved. The full ASCII character set appears in Appendix A.

Canonical Form

A character stream is a representation of one or more printed lines. Since the
same printed line can be produced using different sets of keystrokes, there are several
possible character streams that represent the same line. For example, the line:

start lda alpha,4 get first result.

could have been typed with either spaces or horizontal tabs separating the fields; one
cannot tell by looking at the printed image.

A program should be able to compare two character streams easily to see if they
produce the same printed image. It follows that all character input to Multics must
be converted into a standard (canonical) form. Similarly, all programs producing
character output, including editors, must produce canonical form output streams.

Of all possible ASCII character strings, only certain strings are ever found within
Multics. All strings that produce the equivalent printed effect on a terminal are
represented within Multics as one string, the canonical form for the printed image.
The user, however, is free to type a non canonical character stream. This stream is
automatically converted to the canonical form before it reaches his program. An
exception to this automatic conversion is that tab characters are preserved; a detailed
description of the conversion process is found later in this section. If the user wants
his program to receive raw or partially processed input from his terminal, an escape
mechanism is provided by the modes operation of the tty_ I/O module. The I/O
module is accessed via a call to the iox_ subroutine (see the description of the iox_
subroutine in the Subroutines manual). The modes available that apply to canonicalization
are:

"'can

Aerkl

rawi

no canonicalization of overstrikes.

no canonicalization of escape characters.

no erase and kill processing.

read the specified data from the terminal without any conversion or
processing. This includes shift characters and undifferentiated uppercase
and lowercase characters.

3-41 AG91-04

Similarly, an I/O module is free to rework a canonical stream on output into a
different form if. for example, the different form happens to print more rapidly or
reliably on the device.

The current Multics canonical form is designed for the convenient typing of
aligned tabular infoimation, which requires an ambiguous interpretation of the tab
character. The following three statements describe the current Multics canonical form.

1. A text line is a sequence of character positions separated by horizontal
carriage motion and ending in a newline character.

2. Carriage motion consists of newline, tab, and space characters.

3. A character position consists of a single graphic or several overstruck
graphics. A graphic is a printable character. An overstruck character
position consists of two or more graphics separated by backspaces.
Regardless of the order in which the graphics are typed, they are
always stored in ascending ASCII order. Therefore, the symbol "<> _",
whether typed as:

or

or

is always stored internally as:

where B is a backspace.

3-42 AG91-04

There are any number of ways to type two or more consecutive overstruck
character positions. The graphics in each position are grouped together, so that ")Of" is
always stored as:

<8>8_<8>8_

The following paragraphs give a complete set of rules for transforming a typed
line into the form in which it is stored, followed by further examples illustrating the
rules. The transf ormation process is carried out in three steps: canonicalization,
erase/kill processing, and escape processing. If two or more of the rules listed below
are applicable to a given input string, they are applied in the order in which they are
presen ted here.

Canonicalization

Canonicalization is the process of converting an input string into canonical form.
Two methods of canonicaiization are defined on Multics: a method for printing
terminals and a method for video (CRT) terminals. Both methods of canonicalization
attempt to ensure that what is visible on the terminal is the canonical form of the
input string. The method used is determined by the setting of the "can_type" mode,
as explained in the description of the tty_ I/O module (see the Subroutines manual).

Canonicalization for printing terminals (overstrike canonicalization) is designed for
terminals which are capable of overstriking multiple characters in a single column.
Any group of overstruck characters is converted to a single representation regardless of
the order in which the characters were entered into the column.

Canonicalization for video terminals (replacement canonicalization) is designed for
terminals which are not capable of overstriking. When a character is entered into a
column, any characters previously present in that column are no ionger visible.
Replacement canonicalization mimics this behavior of the terminal by only placing the
last character typed into any column into the canonical representation of the string.

The canonicalization process consists of two distinct steps: colu..Tnn assignment,
which is identical for both methods of canonicalization, and the actual canonicalization
process.

3-43 AG91-()4

Column Assignment

The following rules are used to determine which printing graphics, if any, appear
in each physical column position.

1. The leftmost position of the carriage is considered to be column 1.

2. Each printing graphic or space typed increases the column position by 1.

3. Each backspace typed decreases the column position by 1 unless the
column position is 1.

4. A carriage return sets the column position to 1.

5. A horizontal tab increases the column position to the next tab stop; tab
stops are defined to be at columns 11, 21, 31, etc.

6. A newline, formfeed. or vertical tab sets the column position to 1 and
advances the carriage vertically; thus no character typed after such a
character can share a column position with a character typed before it.

7. If the terminal is not in ctl_char mode, any ASCII control character
other than backspace, horizontal tab, newline, vertical tab. formfeed,
and carriage return is discarded. If the terminal is in ctl_char mode,
such characters are treated as if they were printing graphics (with the
exception of the NUL character, which is always discarded). The default
is that ctl_char mode is off.

Overstrike Canonkali7..ation

The following rules determine the formation of the canonical string.

1. Characters on each line are sorted so that their associated column
positions are monotonically increasing.

2. No carriage return characters may appear in the canonical string.

3. A horizontal tab is preserved as typed unless a printing graphic appears
in one of the columns skipped by the tab. in which case the tab is
replaced by an appropriate number of spaces.

4. Backspaces appear in the canonical string only when two or more
printing graphics share a column position.

3-44 AG91-04

5. When two or more different printing graphics share a column posItIon.
the characters are sorted as follows: graphic with lowest numeric ASCII
code, backspace. graphic with next lowest numeric ASCII code, etc.

6. If t..~e contents of a column position consist of two or more instances
of the same printing graphic, that column is reduced to a single
instance of the graphic.

7. A line-ending character (newline, formfeed, or vertical tab) immediately
follows the last printing graphic in the rightmost column position on
the line.

Overstrike Canonicalization Examples

Several illustrations of canonical form are shown below. Assume that the typist's
terminal has horizontal tab stops set at 11, 21, 31, etc.

Typist: this is ordinary text.N
Typed line: this is ordinary text.
Canonical form: this is ordinary text.N

where N is the newline character. In most cases, the canonical form is the same as
the original key strokes of the typist, as above.

Typi st: here full BBBB_ means thatN
Typed line: here full means that
Canonical form: here _Bf_Bu_Bl_Bl means thatN

where B is a backspace and N is a newline character. This is the most common type
of canonical conversion, done to ensure that overstruck graphics are stored in a
standard pattern.

Typist: We see no probSBlemC __ N
Typed line: We see no problem
Canonical form: WB __ Be see no problemN

where B is a backspace, N is a newline character, S is a space, and C is a carriage
return. The space between ftprob" and "lem" was not overstruck; it and the following
backspace were simply removed. Note the difference in the storage of the characters
that were overstruck in this and the preceding example; the ASCII code value of the
underscore is between the values for uppercase and lowercase letters.

Replacement Canonicalization

Replacement canonicalization is designed for use on a terminal with the f~llowing
characteristics:

• Overstriking a character with any other printing character or a space
causes the first character to be erased.

• Entering a tab character simply moves the cursor posItton to the next
tab stop (column 11, 21, etc.) without erasing any intervening characters.

3-45 AG91-04

The following rules determine the formation of the canonical string:

1. Characters on each line are sorted so that their associated column
positions are monotonically increasing.

2. No carriage return characters may appear in the canonical string.

3. A horizontal tab is preserved as typed unhess a printing graphic appears
in one of the columns skipped by the tab, in which case the tab is
replaced by an appropriate number of spaces.

4. When two or more characters (including space and identical printing
graphics) share a column position, the last character entered by the user
in that column is kept and all other characters in that column
discarded.

5. A line-ending character (newline, formfeed, or vertical tab) immediately
follows the last printing graphic in the rightmost column position on
the line.

6. When in ctl_char mode, a control character (other than the carriage
motion characters HT, BS. CR, NL, VT, and FF) shares the column
position of the immediately following graphic or space. If the control
character is followed by a horizontal tab. it shares the first column
skipped over by the tab. Such a control character is not affected by
backspace (i.e., it is not removed if the graphic sharing its column
position is replaced).

With replacement c.a.nonicalization, as seen above, it is not possible to overstrike
two characters, as the last one typed is always the only character in that column.
Thus it is not possible to use the feature of overstriking a character with the erase
character, as described in the "Erase and Kill Characters" section following, to delete a
character typed in the middle of a line. Instead, to delete such a character, you must
reposition to the character in question and retype the remainder of the line being
input.

Therefore, you may want to disable the erase character when using replacement
canonicalization. This may be accomplished by the command line:

set_tty -edit \400

where \400 is a character which cannot normally be entered on the terminal.

3-46 AG91-04

Replacement Canonicalization Examples

Several illustrations of canonical form are shown below. Assume that the typist's
terminal has horizontal tab stops set at 11. 21, 31, etc.

Typist: this is ordinary text.N
Screen contents: this is ordinary text.
Canonical form: this is ordinary text.N

where N is the newline character. In most cases, the canonical form is the same as
the original key strokes of the typist, as above.

Typist: this is a msitake.BBBBBBBisN
-Screen contents: this is a mistake.
Canonical form: this is a mistake.N

where B is a backspace and N is a newline character. This example illustrates the
correction . of errors in the middle of a typed line. I t is the most common use of
replacement canonicalization.

Typist: this si a strange BBBBBBBBBBBBBisHHBBexample.N
Screen contents: this is a strange example.
Canonical form: this is a strange example.N

where B is a backspace, H is a horizontal tab, and N is a newline character. This
example illustrates that the horizontal tab character does not erase intervening
characters (It a strange" in this example).

Typist: This is some text.BBBBBBBBBBBBsome text. N
Screen contents: This is some text.
Canonical form: This is some text.N

where B is a backspace and N is a newline character. This example illustrates that in
order to erase extra whitespace in a line, the typist must position to the first
extraneous character, retype the remainder of the line, and type sufficient spaces at
the end of the line to overstrike any extra undesired characters.

3-47 AG91-()4

If, in the above example, the final spaces are not typed, the following occurs:

Typist: This is some text.BBBBBBBBBBBBsome text.N
Screen contents: This is some text.t.
Canonical form: This is some text.t.N

Typist: use of cXontrol charactersN
Screen contents: use of control characters
Canonical form: use of cXontrol charactersN

where N is a newline, X is any non-carriage-motion control character, and the
terminal is in ctl_char mode.

Typist: Donlt remove the vpXmBBBcontrol character.N
Screen contents: Donlt remove the control character.
Canonical form: Donlt remove the coXntrol character.N

where B is a backspace, N is a newline, X is any non-carriage-motion control
character, and the terminal is in ctLchar mode. Note that the control character
remains in the column position at which it was entered. even though the graphic in
that position has been replaced.

Erase and Kill Characters

Two capabilities for minimally editing the line being typed are available. They
are:

• The ability to delete the latest character or characters (erase)

• The ability to delete all of the current line (kill)

By applying canonical form to these two editing functions, it is possible to interpret
unambiguously a typed line in which editing was required.

3-48 AG91-04

The first editing convention reserves one graphic as the erase character. On
Multics, the default erase character is the number sign (#) .. The user can designate a
different character by invoking the set_tty command with the -edit control argument.
Although the erase character is a printed graphic, it does not become part of the line.
When it is the only graphic in a print position, it erases itself and the contents of
the previous print position. Several successive erase characters erase an equal number
of print positions. One erase character typed immediately after "white space" causes
the entire white space to be erased (any combination of tabs and spaces is called
white space). The number sign can be struck over another graphic. In this case it
erases the print position on which it appears. For example, typing:

theSSne###next
or

theST#next
or

theMnext

where S is a space and T is a horizontal tab, produces:

thenext

Since processing of erase characters takes place after the transformation to canonical
form. there is no ambiguity as to which graphic character has been erased. The
printed image is always the guide.

The second editing convention reserves another graphic as the kill character. On
Multics. the default kill character is the commercial at sign (@). Again, the user can
redesignate this. When this character is the only graphic in a print position, the
contents of that line up to and including the kill character are discarded. Again, since
kill processing occurs after the conversion to canonical form, there is no ambiguity
about which characters have been discarded.

By convention, an overstruck erase character is processed before a kill character.
and a kill character is processed before a nonoverstruck erase character. Therefore, the
only way to erase a kill character is to overstrike it with an erase character.

3-49 AG91-04

Because of their special meanings to Multics, these two graphics should be
avoided in software.

The following rules apply to erase and kill characters.

1. If the terminal is in esc mode, an erase or kill character alone in a
column immediately preceded by an escape character alone in a column
is not processed as an erase or kill character.

2. An erase character alone in a column position and preceded by more
than one blank column results in the deletion of all immediately
preceding blank columns, as well as of the erase character.

3. An erase character alone in a column position results in the deletion of
itself and of the contents of the preceding column position.

4. An erase character sharing a column position with one or more pnntlng
graphics results in the deletion of the contents of that column position.

5. A kill character results in the deletion of its own column position and
all column positions to its left, unhess it shares a column position with
an erase character, in which case rule 4 applies (the kill character is
erased).

Notice that for rule number 1 to apply, the erase or kill character must actually
have been typed in the column immediately following the escape character. The reason
for this is that it facilitates the erasing of escape sequences, e.g., \001####.

Examples of Erase and Kill Processing

Typist: abcx#deSBfzz##gN
Typed line: abcx#defzz##g
Canonical form: abcx#defzz##gN
F ina 1 input: abcdefgN

Typist: this@ln the offBBB ##n6 stateN
Typed line: this@ln the off##~-state -
Canonical form: In the _Bo_Bn stateN
Final input: I n the on state

3-50 AG91-04

Escape Sequences

Some terminals cannot print all 128 ASCII characters. To maintain generality and
flexibility, standard software escape conventions are used for all terminals. Each class
of terminal has a particular character assigned to be the software escape sequence
character in the terminal type file. When this character occurs in an input (or output)
string to (or from) a terminal, the next character (or characters) are interpreted
according to the conventions described below. The escape sequence character should
not be confused with the ASCII ESC, which is octal 033.

The standard escape sequence character in Multics is the left slant (\); like the
erase and kill characters, it should be avoided in Multics software. The universal
escape conventions are:

1. The string \d1d2d3 represents the octal code d1 d2 d3 where dl is a
digit from zero to seven. Any arbitrary character can be represented
this way. The string \d2d3 is equivalent to \d1d2d3 if d1 is zero. The
string \d3 is equivalent to \dld2d3 if dl and d2 are zero.

2. Local (i.e., concealed) use of the newline character that does not go
into the computer-stored string on input, and is not in the computer-stored
string on output, is effected by typing \<newl i ne character>.

3. The characters \# place an erase character into the input string.

4. The characters \@ place a kill character into the input string.

5. The characters \ \ place a left slant character into the input string.

The escape conventions described in items 1 through 5 above apply only if none of
the characters involved are overstruck.

The following rules apply to escape sequences.

1. An escape sequence consists of an escape sequence character alone in its
column position followed by one or more printing graphics each of
which is alone in its column position. An escape sequence is replaced
by a single character in the canonical string.

3-51 AG91-04

2. An escape sequence consisting of two successive escape sequence
characters is replaced by an escape sequence character.

3. An escape sequence consisting of an escape sequence character followed
by an erase or kill character is replaced by an erase or kill character.

4. An escape sequence consisting of an escape sequence character followed
by one, two. or three octal digits is replaced by the character whose
ASCII value is represented by the sequence of octal digits.

5. An escape sequence character followed by a newline character results in
the deletion of both characters from the canonical string.

6. Other escape sequences may be defined on a per-terminal-type basis.
where such a sequence consists of an escape sequence character and one
character following.

7. If the character following an escape sequence character does not result
in an escape sequence as defined by the six rules above, the escape
sequence character and following characters are stored as they appear on
the line.

TYPING CONVENTION EXAMPLES

In the examples below. the following conventions are used:

N represents a newline

C represents a carriage return. assuming that the mode
lfecho is not set

B represen ts a backspace

T represents a horizontal tab

S represents a space

{nnn} represen ts a character whose ASCII value is nnn (octal)

\ is the escape sequence character

is the erase character

@ is the kill character

The examples in the first group illustrate how various typed sequences are
canonicalized in terms of column position; these are followed by examples of erase,
kill. and escape canonicalization. In the second group, lines are shown as they appear
physically, with no consideration given to the precise sequence of keystrokes that might
have produced them.

3-52 AG91-o4

Column Canonicalization Examples

Typed: nothing special about this line.N
Appearance: nothing special about this line.
Result: nothing special about this line.N

Typed: extraneous white sSBpace is ignored.CSN
Appearance: extraneous white space is ignored.
Result: extraneous white space is ignored.N

Typed: Here are two ways (2B) to overstrike.C N
Appearance: Here are two ways (2)-to overstrike. ----
Result: HB __ Be_Br_Be are tw~ ways (2B_) to overstrike.N

Typed: tab + backspace isTBreduced to spaces.N
Appearance: tab + backspace is reduced to spaces.
Result: tab + backspace isSSSSreduced to spaces.N

NOTE: See rule 3 under "Formation of the Canonical String"
above.

Erase, Kill, and Escape Examples

The first few examples illustrate erase and kill processing; the remaining examples
illustrate both escape processing and erase and kill processing. These examples assume
the terminal is in esc mode (mentioned in rule 1 under "Erase and Kill Characters"
and described in the tty_ I/O module) and that overstrike canonicalization is being
used.

Typed: ab2#cde
Appearance: ab2#cde
Result~ abcde

Typed: abSSS#cde
Appearance: ab #cde
Result: abcde

3-53 AG91-04

Typed: not@neverSobB#nSMonday
Appearance: not@never ojn Monday.
Result: never on Monday.

Typed: nox#wBBBBB S Sit'sSright.
Appearance: nox#~ it's-;Tght.
Result: now it's right.

Typed: noxBBB __ , B#wB_S it' sSr i ght.
Appearance: nox#w it's right.
Result: ~ it's right.

NOTE: Erase character is overstruck; see rule 4 under "Erase and Kill
Characters" above.

Typed: dc 1 Sr rsScharS (1) Ss tat i cS i nit ("\O 17#6") ;
Appearance: dcl rrs char (1) static init(II\017#6");
Result: dcl rrs char (1) static init(I{016}");

Typed: \023B
Appearance: \021 -
Resu 1 t: {002} 1

NOTE: Overstruck 3 is not part of escape sequence.

Typed: \B 112
Appearance: \112
Resu 1 t: S 1 12

NOTE: Overstruck \ is not an escape character.

Typed: a\##b
Appearance: a\##b
Resul t: a\b

NOTE: According to rule 1 under "Erase and Kill Characters, " the first # is
not an erase character; according to rule 3 under "Erase and Kill
Characters, " the second # erases itself and the preceding #.

Typed: a\@#b
Appearance: a\@#b
Result: a\b

NOTE: Same note as in immediately preceding example.

3-54 AG91-G4

Typed: a\B#@b
Appearance: a~@b
Resul t: b

NOTE: The \ is erased by the overstruck #.

Typed: a\\#b
Appearance: a\\#b
Result: a\#b

NOTE: According to rule 1 under "Erase and Kill Characters," erase
canonicalization does not recognize the #; according to rule 2 under
"Escape Sequences," escape canonicalization recognizes \ \ and attaches
no special meaning to the # .

Typed: a\\##b
Appearance: a\\##b
Result: a\b

NOTE: According to rules 1 and 3 respectively under "Erase and Kill
Characters," the first # is not an erase character and the second #
erases itself and the preceding #; according to rule 2 under "Escape
Sequences," \ \ reduces to \.

Typed: a\\###b
Appearance: a\\###b
Result: a\b

NOTE: The first # is not an erase character; the next two are, erasing the
second \ and the first #.

Typed: a \ \####b
Appearance: a\\####b
Result: ab

NOTE: The first # is not an erase character, and must be erased before the
two \ characters. The previous examples illustrate the difficulty of
erasing a double \; the clearest method is probably to overstrike
(a~~b) .

Typed: a~<#b (typed on an IBM Mode 1 2741-like terminal)
Appearance: a~<#b
Result: a\b

NOTE: Only the < is erased; ~ is translated to \ (see "Escape Conventions
on Various Terminals" below).

3-55 AG91-04

TERMINAL OUTPUT

Certain transformations are performed on output destined for a terminal to
ensure that it is displayed correctly. These transformations can be broken down into
the fonowing categories: carriage motion. delays, escape sequences. continuation lines.
and end-of-page processing.

Carriage Motion

Six entries in the terminal's special characters table specify the character
sequences to be output when any of the various carriage motion (space, formfeed,
vertical tab, horizontal tab, backspace, carriage return, and newline) characters are
encountered (for information on this table, see the description of the set_special order
to the tty_ I/O module in the Subroutines manuaI). The most usual case is that the
sequence for newline consists of carriage return followed by newline (i.e., linefeed),
and each of the other sequences either consists of the source character itself or is null
to indicate that the specified function is not available.

In general, carriage motion is reduced to its simplest and most efficient form.
Any combination of consecutive carriage motion characters is output as net right or
left motion, e.g.,:

SSBSS

is output as:

SSS

where S is a space and B is a backspace. If a newline immediately follows other
carriage motion characters, those carriage motion characters are omitted. In addition, a
combination of spaces and horizontal tabs that moves the carriage to or over a tab
stop is converted to tabs followed by the minimum possible number of spaces. Tab
stops are assumed to be at columns 11, 21, 31. etc. Thus the following sequence
(starting at column 1):

abcdSSSSSSSSSef

is converted to:

abcdTSSSef

where S is a space and T is a horizontal tab. An exception arises if the terminal is
in Atabs mode or if the special characters table specifies a zero-length sequence for
horizontal tabs. In either of these cases, all rightward carriage motion is output as
spaces; as many spaces are output as necessary to reach the appropriate column
position.

3-56 AG91-04

Net left carriage motion is normally output as backspaces unless the final column
position is so near the left margin that it is more efficient to output a carriage return
followed by spaces. Thus:

abcdefgCSSSS_

is output as:

abcdefgBBB_

where as:

abcdefghijkBBBBBBBBB __

is output as:

abcdefghijkCSS __

where C is a carriage return, S is a space, and B is a backspace.

If the terminal lacks the capability to perform a carriage return without a
linefeed, the carriage return sequence in the special characters table should be nUll, in
which case net left carriage motion is always output as backspaces. Conversely, if the
terminal lacks the backspace function, the backspace sequence should be nUll, and all
net left carriage motion is output as a carriage return followed by spaces. If both
sequences are nUll, net left carriage motion is ignored.

Delays

Printing terminals frequently require more than one character time to move the
carriage in any way other than one position to the right. In order to allow the
terminal time to reach the column position in which it is next supposed to print, the
Multics Communication System may output one or more ASCII NUL characters
following a carriage motion character. NUL characters used in this way are called
delays.

The number of delays required in any given situation depends on the terminal
mechanism, the distance the carriage has to travel, and the speed at which characters
are sent to the terminal (baud rate). The delay table (described under the set_delay
order to the tty_I/O module in the Subroutines manual) contains values, appropriate
to the particular terminal and baud rate, that determine the number of delays required
for any carriage motion character causing a number of columns to be traversed. The
terminal type file (TIP), described in Appendix B, contains a specification of delay
tables to be used at various speeds for each terminal type. To construct a new
terminal type entry, it may be necessary to obtain formulas from the terminal
manufacturer from which the necessary delay table values can be derived.

3-57 AG91-o4

Output Escape Sequences

A character that a particular terminal is incapable of prmtmg may be
represented by an escape sequence. The substitution of an escape sequence for a
particular character is dictated by that character's entry in the output conversion table
(described under the set_output_conversion order to the tty_ I/O module). Two kinds
of escape sequences are defined: octal escape sequences, and special escape sequences.
An octal escape sequence, as explained earlier, consists of a left slant character
followed by three octal digits representing the ASCII value of the character being
replaced (e.g., \012). A special escape sequence is one specified in the special characters
table, and consists of zero to three arbitrary characters. Each special escape sequence
has two forms, one used in edited mode and one used in ""edited mode. See the
descriptions in the Subroutines manual of the set_output_conversion order. the
set_special order, and edited mode for the tty_ I/O module for more detailed
information.

Continuation Lines

When the length of an output line (Le., the number of column positions between
two newline characters) exceeds the terminal's physical paper or screen width, a
newline sequence is inserted and the excess characters appear on the following line,
preceded by a continuation sequence consisting of the characters \c. A "line" of
arbitrary length can be output using as many continuation lines as necessary. The
physical line length of the terminal is made available to the software by means of the
line length (11) mode of the tty_ I/O module.

End - of - Page Processing

The page length (pI) mode of the tty_ I/O module may be used to specify the
physical length in lines of a page. This feature is primarily of interest to users of
video display terminals as a means of preventing output from being scrolled off the
screen before it can be read. If page-length checking is enabled, then the last line of
a page contains a warning string consisting of the end-of-page sequence specified in
the output conversion table (described under the set_output_conversion order to the
tty_ I/O module in the Subroutines manual); this sequence is normally the characters
"EOP". The output stops when the page is full, and restarts when the user types a
newline or formfeed character. If the end-of-page sequence is a null string, output
stops at the right margin of the last line of the page, and no warning string is
displayed. See the descriptions of pI and scroll modes for further information.

ESCAPE CONVENTIONS ON VARIOUS TERMINALS

The following paragraphs list escape conventions for some of the terminals that
can be used to access the Multics system. In general, the conventions described here
apply to logging in and out as well as to all other typing. For user convenience,
terminals should support the full (128 characters) ASCII character set on input and
output. For terminals that do not have a full ASCII character set, escape conventions
have been provided. Any of these escape conventions, however, can be respecified by
the user.

3-58 AG91-04

01/87

Upper-Case-Only Devices

Because these models do not have both uppercase and lowercase characters, the
following typing conventions are necessary to enable users to input the full ASCII
character set:

1. The keys f or letters A through Z input lowercase letters a through z,
unless preceded by the escape character \ (left slant). The left slant is
shift-L on the keyboard, although it does not show on all keyboards.
For example, to input "Smith. ABC", type "\SI'\ I TH. \A \B\e ll

•

2. Numbers and punctuation marks map into themselves whenever possible.
The underscore U is represented by the back arrow (~-). The
circumflex (") is represented by the up arrow (t). The acute accent
(I) is represented by the apostrophe (I).

3. The following other correspondences exist:

Character type in octal

backspace \- 010
grave accent () \1 140
left brace (0 \(173
vertical 1 ine (P \! 174
right brace (}) \) 175
til de (-) \= 176

Execuport 300

The following non-ASCII graphics are co~sidered to be stylized versions of
ASCII characters:

back arrow (~-) for underscore (_)

CDI Model 1030

The following non-ASCII graphics are considered to be stylized versions of the
ASCII characters:

back arrow (~-) for underscore (_)

up arrow (t) for circumflex (")

3-59 AG91-Q4A

01/87

FLOW CONTROL

Some asynchronous terminals implement a flow control protocol for input and/or
output The following paragraphs describe briefly the mechanisms supported by t.1!e
Multics system.

Input Flow Control

For terminals that can be used to send high-speed input using a paper tape or
cassette tape reader, it is useful for the system to be able to instruct the terminal to
stop and start transmission so that the input does not arrive faster than it can be
processed. Such terminals (for example the Tektronix 4051) suspend transmission on
receipt of a particuiar character (caned the input_suspend character), and resume it on
receipt of another character (the input_resume character). In addition, such terminals
sometimes suspend input at the end of each tape record or block, possibly transmitting
the input_suspend character bef ore doing so. It is the responsibility of the system in
this case to request the resumption of input by sending the input_resume character.
The input_suspend and input_resume characters may be specified in the description of
the terminal type as described in Appendix B, or by means of the input_flow_control_chars
order to the tty_ I/O module, described in the Subroutines manual. The timeout
option is used to specify that the terminal suspends input without transmitting an
input_suspend character, and that the system must send an input_resume character
when it detects that input has been suspended. Input flow control is enabled and
disabled by means of the iflow mode of the tty_ I/O module.

Output Flow Control

Output flow control is intended to manage terminals that buffer output. since
they print or display at less than channel speed. Two types of output flow control
protocols are supported by the Multics system. The first, called suspend/resume, is
used by various terminals including several made by Digital Equipment Corporation. In
this protocol, the terminal sends a particular character (called the output_suspend
character) when its buffer is nearly full in order to request that the system
temporarily stop sending output. When it is ready to accept more output it sends
another character (the output_resume character). The other protocol, called block
acknowledgement, is used by various terminals. including the Diablo 1620. In this
protocol, the system is expected to subdivide output into blocks no larger than the
terminal's buffer, and end each block with a specific character (the end_of_block
character). When the terminal is ready to accept more output, it transmits an
acknowledgement character. The type of protocol and the specific characters to be
used can be specified in the terminal type description as described in Appendix B, or
by use of the output_flow_control_chars order to the tty_ I/O module, described in
the Subroutines manual. Output flow control is enabled and disabled by means of the
oflow mode of the tty _ I/O module.

3-60 AG91-04A

01/87

Hardware Flow Control Using the crs Dataset Lead

CTS flow control protocol utilizes the capabilities of the FNP's asynchronous
communications adaptor to remove the need for delay calculation to manage output
flow control and also eliminates the need for output flow control information
embedded in the data stream. This flow control is implemented for ha.rdwired
asynchronous communications lines (lines utilizing the FNP module 'control_tables'). It
provides a stop-on-character output flow control.

This protocol utilizes the crs dataset lead (pin 5) to control output from the
FNP to the Data Termination Equipment (DTE). If crs is high, output will be sent;
when crs drops, the current character will be finished and output will cease until
crs is raised again.

This protocol is implemented such that a line must have all three leads (CTS,
CD and DSR) high to be initially on-line. After this point crs will act as a flow
control signal, until the line is hungup again by dropping either CD or DSR.

Many terminals can utilize this protocol or a DTR flow control protocol. The
DTR protocol uses the DTR lead from the terminal (pin 20) in the same manner. For
DTR flow control a connector must be wired which connects the terminal DTR to the
FNP crs."

The use of a hardware protocol removes computational loading from the
mainframe MCS since delays do not need to be calculated. It also lightens buffer
loadings since buffer space for delay characters is not needed.

BLOCK TRANSFER

Some asynchronous terminals are capable of operating in "block mode", i.e., they
can be made to buffer a block of data and then transmit it at channel speed in
response to a single keystroke. The system may not handle such high-speed input
correctly unless it is informed that the terminal is capable of such transmission. The
bIt_xfer mode of the tty_ I/O module is used for this purpose,

A terminal is suitable for use in blk_xfer mode if it delimits the block or
"frame" of data transferred by appending a specified character (the "frame_end"
character) to the block and optionally preceding the block with a "frame_begin"
character (which need not be different from the frame_end character). The particular
characters used will depend on the terminal. The characters used can be specified by
the framin~chars statement in the terminal type definition as described in Appendix
B, or by means of the set_framin~chars order to the tty_ I/O module.

3-61 AG91-04A

01/87

If the terminal is in blk_xfer mode, and frame_begin and frame_end characters
have been specified, all characters starting with a frame_begin character, up to and
including the' next following frame_end character, are treated as a frame. If a
frame_end character has been specified, but no fralue_begin character has been
specified, then all characters between one frame_end character and the next are treated
as a frame. In general, none of the characters in a frame are delivered to the user's
process until the end of the frame has been reached. Calls to iox_$get_line still read
input one line at a time, but the first line in a frame is not available for reading
until the entire frame has been received.

3-62 AG91-04A

SECTION 4

MULTICS PROGRAMMING ENVIRONMENT

The Multics programming environment is supported by an elaborate set of system
procedures and data structures that are generally invisible to the programmer but that
greatly affect the ways in which programs are written. For example, because of the
Multics virtual memory scheme, a procedure can freely reference any segment in the
storage system (to which it has access privileges) without knowing either its size or its
physical location. Because the normal mode of program execution uses a stack, most
procedures are potentially recursive, even when written in a programming language that
does not support recursion. While the supported programming languages provide
standard interfaces to the system environment, the programmer is free to use features
of the environment in his own way.

The information in this section presents the basic· aspects of the programming
environment. Program preparation presents the steps involved in implementing a
program to run on Multics. Then the section presents the major internal interfaces
between a user program and the system that are automatically or explicitly activated
during program execution. The remainder of the section is devoted to subsystem
writing, including closed and interactive subsystems.

PROGRAM PREPARATION

The basic steps involved in preparing a program to run in the Multics
environment and the system features available to perform them are presented below.
Specific conventions associated with a particular programming language are described in
the appropriate language manual. The end product of the steps described is an object
segment constructed to interface with Multics facilities and other object segments.
Some of these facilities, such as dynamic linking and process-related data structures,
are presented later in this section.

Programming Languages

The major programming languages currently available on Multics are:

PL/I superset of the American National Standard programming language
PL/I, ANSI X3.53-1976. It also conforms to International
Standards Organization standard 6160-1979

FORTRAN

COBOL

superset of ANSI FORTRAN, ANSI X3.9-l966, and all features
of ANSI X3.9-1978

subset of the ANSI standard COBOL, ANSI X3.23-1974

4-1 AG91-()4

BASIC

ALM

APL

PASCAL

compatible with the Dartmouth Version 6 BASIC and very
similar to the ANSI Standard for Minimal BASIC (ANSI
X3.60-1978)

Multics assembly language

interactive interpreter (based on IBM APL)

based on the standard ISO Pascal

Each Multics translator can be called as a command and produces executable
object code segments. Such segments can be executed as subroutines or at command
level. For information on designing programs compatible with the Multics command
environment, see "Writing a Command" and "Writing an Active Function" below.

PL/I is the standard language on Multics (the system itself is written largely in
PLIO. Thus, the system is documented in terms of PL/I calling sequences, argument
declarations, and standard data types. Areas of the system requiring the use of special
hardware instructions are written in ALM.

A program written in any of the Multics programming languages can call other
programs written in the same language by merely following that language's calling
conventions. And because programs written in different languages produce compatible
object segments, programs written in any Multics programming language can call
programs written in any other Multics programming language as long as the data types
of any arguments passed are recognized data types in both languages. In some cases it
may be necessary to create a PL/I interface procedure to handle transmission of
arguments between such programs. Individual language descriptions explain restrictions
on calls to programs produced by different translators and suggest possible interface
mechanisms.

Creating and Editing the Source Segment

A source program resides in an online segment of the Multics storage system. It
is initially created and subsequently modified using one of the Multics text editors,
such as Emacs, Edm or Qedx. (See the Commands manual for specific descriptions of
these text editing facilities.)

The name given a source segment must have the form:

where:

1. source_name
is the name of the user program.

2. language_name
is the name of the programming language in which it is written.

4-2 AG91-D4

Some sample source segment names are:

square_root.pll
square_root. fortran
square_root.basic

and the object segments produced from each of these are named square_root.

Creating an Object Segment

To translate a source program into object code, the user issues a command to
the appropriate language translator, supplying the source program name as an argument.
To compile the source segment named square_root. pll , the user issues the command:

pl1 square_root

and an object segment named square_root is produced and placed in the user's
working directory.

The user could as well have typed:

pl1 square_root.pl1

but as the pll compiler is defined to operate only on segments ending in the suffix
".pU", the compiler is allowed to infer the existence of this suffix, provided it
actually exists on the segment's name, even if it is not specified in the command line.

Unless the user selects optional features, the only output produced by the
translator is the object segment itself and messages describing any errors detected
during translation. The user corrects errors by editing the original source segment.
Object segments produced by different translators are compatible, although. as stated
previously, the difference in data types and representations may require the
construction of interfaces to pass arguments among programs written in different
languages.

The optional control arguments used by the language translators are also
standardized. They provide additional output such as program listings and object maps.
When a listing is requested, it is placed in the user's working directory with the name
source_name.list (e.g., square_root.list). Of particular interest to users of high-level
programming languages is the default control argument -table, which causes a symbol
table to be placed in the object segment, thereby enabling the program to be
debugged symbolically. (See "Debugging Facilities" below.) When a program is
thoroughly debugged, it should be recompiled with the -no_table control argument.

4-3 AG91-()4

Object-Segment Format

All Multics translators produce a standard object segment that contains object
code, linkage data, and other information that may be required at execution time. The
over ail format of an object segment is shown below.

where:

1.

2.

3.

4.

5.

text

definitions

1 i nkage

static

symbol

object map

text
contains the object code, a machine~languagc program.

definitions
contains a set of locations within the segment that can be referenced by
name (entry points) and a list of references made by the program to
external segments (in character-string form).

static
is a prototype static section. containing PL/I internal static variables. It
is usually contained within the linkage section rather than being a
separate section. It is copied into the per-process user area when the
object segment is first referenced.

linkage
is a prototype linkage section, containing dynamic linkage information.
It is copied into the per-process user area when the object segment is
first referenced and contains information used by the dynamic linker to
resolve external references.

symbol
contains relocation bits for the text and linkage areas (used for binding)
and additional information that may be generated by translation options,
such as a symbol table.

4-4 AG91-04

6. object map
contains lengths and offsets for each section of the object segment.

For a detailed description of an object segment's format and contents, see
Appendix G.

Debugging Facilities

Multics provides extensive interactive program debugging facilities through the
two commands, probe and debug, which make use of the symbol table placed in the
object segment of compile time. The two commands provide similar services, but the
debug command is oriented more toward the needs of a machine language programmer
while probe is designed with the high-level language programmer in mind. Multics
also provides a trace command that traces the flow of control through program
execution and a trace_stack command that traces the list of programs active on the
program stack. (The debug, probe, trace, and trace_stack commands are described in
the Commands manual.)

A central feature of both debug and probe is the facility fgr setting breakpoints
at specified program locations. The program is then executed. When a preset
breakpoint is reached, execution is interrupted and the current state of variables
preserved. The user can then perform other debugging operations such as examining
the values of data items, inserting test values, executing other programs, and so on.
Execution can then be continued from the point at which it was suspended.

Writing a Command

Any of the standard Multics compilers can be used to create a Multics command
procedure. A command procedure differs from other procedures in the following ways:

1. A command procedure is called by the Multics command processor.
Since the input to the command processor is limited to the characters
that the user types in the command line. the command processor can
only pass nonvarying, unaligned character-string arguments to the
command procedure. This means that the command procedure may have
to convert these character strings to another data type more appropriate
to its needs.

2. A command procedure can receive only input arguments. An error may
occur if the procedure changes the value of any of its arguments. Also,
the command procedure may not set one of the arguments to indicate
the success or failure of its operation.

3. A command procedure must be prepared to handle a variable number
of arguments. Many command procedures accept optional control
arguments, which mayor may not be present. Even command
procedures expecting a fixed number of arguments must be prepared to
diagnose an error when the user mistakenly types too many or too few
arguments.

4-5 AG91-04

The command processor provides an environment that supports the differences
between command procedures and other procedures. A command procedure can call
the command utility subroutine (cu-> to obtain its arguments and to get other
information about the command environment. A command procedure can call the
command error subroutine (com_err-> to report errors to the user. The example below
shows the portion of a command procedure that obtains its argument count and scans
the arguments looking for an "-input" control argument.

sample_command: procedure options (variable)

declare arg_count fixed binary (17);
declare arg_len fixed binary (21);
declare arg_ptr pointer;
declare arg character (arg_1en) based (arg_ptr);
declare code fixed binary~(35);
declare argx fixed binary (17);
declare cu_$arg_count entry (fixed binary (1]), fixed binary (35»;
declare cu_$arg_ptr entry (fixed binary (17), pointer,

fixed binary (21), fixed binary (35»;
declare com_err_ entry options (variable);

call cu_$ar9_count (ar9_count, code);
if code A= 0 then do: /* not invoked as command */

call com_err_ (code, "sample_command");
return;

end;

do argx = 1 to arQ_count;

end;

ca 11 cu_$ar9_ptr (argx, ar9_ptr, ar9_l en, (0»;
if arg = "-input ll then do;

end sample_command;

Detailed information about the command utility and command error subroutines is
provided in the Subroutines manual.

4-6 AG91-D4

Writing an Active Function

Active functions are special command procedures that return a value to the
command processor. The command processor substitutes this value into the command
line in place of the active string that caused the active function to be caned.

Active function procedures differ from other procedures in the following ways:

1. An active function procedure can receive only non varying character-string
arguments.

2. An active function procedure can only receive input arguments. An
error may occur if the procedure changes any of its input arguments.

3. An active function procedure must be prepared to handle a variable
number of input arguments.

4. An active function procedure returns a value in a varying character
string provided by the command processor. The active function may
assign any character string value (including a null character string) to
this return string. When the active function procedure returns, the
command processor substitutes the value of the return string in place of
the active string which caused the active function procedure to be
called.

4-7 AG91-()4

An active function procedure can call the command utility subroutine (cu_) to
obtain its input arguments and return string from the command processor. It can call
the active function error subroutine (active_fnc_err_) to report errors to the user. The
example below shows the portion of an active function procedure that obtains its
return string and a count of its input arguments. The active function reports a
command error if it was not called as an active function. It expects no input
argumen ts and theref ore reports an error if any were given in the active string.

sample_active_function: procedure;
declare arg_count fixed binary(17);
declare return_stringl fixed binary(2l);
declare return_stringp pointer;
declare return string character (return stringl) varying

based (return_stringp); -
deciare code fixed binary(35);
declare error_table_Stoo_many_args fixed binary(35)

external static;
declare cu_Saf_return_arg entry (fixed binary(17), pointer,

fixed binary (21), fixed binary (35)) ;
declare (active_fnc_err_, com_err_) entry options(variable);

call cu_Saf_return_arg (arg_count, return_stringp,
return_stringl, code);

if code A= 0 then do: /* error if called as a command,
not as an active function. */

call com_err_ (code, "sample_active_function");
return;
end;

if arg count A= 0 then do; /* error if any args given. */
call active fnc err (error table Stoo many args,
"sample_active=functionll, IINo arguments expected.");

return;
end;

return_string = 1111; /'Ic initial ize return string. ~'c/

end sample_active_function;

Detailed information about how the command utility and active function error
subroutines can be used from an active function procedure is provided in the
Subroutines manual.

4-8 AG91-o4

The same procedure can be programmed to operate both as an active function
and as a command procedure. Typically when such procedures are called as a
command, they print on the user's terminal the value of the string they would return
as an active function. These command/active function procedures are coded as active
functions and should can ell_$af _return_arg instead oi cu_$af _ar~count. If
cu_$af_return_arg returns the error code error_table_$not_act_fnc, they operate as
commands. If the code returned is zero, they use the returned pointer and length to
base the return value. Any other nonzero error code should be fatal. Note that
cu_$af_return_arg always returns a correct argument count even if the active function
was invoked as a command, so the user can go on to use cu_$ar~ptr with no further
checking.

ADDRESS SPACE MANAGEME1'.1J'

When a user logs in, he or she is assigned a newly created process. Associated
with the process is a collection of segments that can be referenced directly by system
hardware. This collection of segments, called the address space, expands and contracts
during process execution, depending on which segments are used by the running
programs.

Address space management consists of constructing and maintaining a correspondence
between segments and segment numbers, segment numbers being the means by which
the system hardware references segments. Segment numbers are assigned on a
per-process basis (Le., for the life of the process), by supplying the pathname of the
segment to the supervisor. This assignment is referred to as "making a segment
known." Segments are made known automatically by the dynamic linker when a
program makes an external reference; making a segment known can also be
accomplished by explicit calls to address management subroutines. In addition. when a
segment is made known, a correspondence can be established between the segment and
one or more reference name.s (u..~.d by the dynamic linker to resolve external
references); this is referred to as "initiating a reference name." When dynamic linking
is the means used to make a segment known, the initiation of at least one reference
name is performed automatically. (For more information on reference names, see
"Reference Names" in Section 3 and "Making a Segment Known" below.) A general
overview of dynamic linking is given below.

Dynamic Linking

The primary responsibility of the dynamic linker is to transform a symbolic
reference to a procedure or data into an actual address in some procedure or data
segment. In general, this transformation involves the searching of selected directories
in the M ultics storage system and the use of other system resources to make the
appropriate segment known. The search for a referenced segment is undertaken after
program execution has begun and is generally required only the first time a program
ref erences the address.

The dynamic linker is activated by traps originally set by the translator in the
linkage section of the object segment. These traps are used by instructions making
external references. When such an instruction is encountered during execution, a fault
(trap) occurs and the dynamic linker is invoked. .

4-9 AG91-()4

The dynamic linker uses information contained in the object segment's definition
and linkage sections to find the symbolic reference name. (For a detailed description
of these sections. see Appendix G.) Using the search rules currently in effect, the
dynamic linker determines the pathname of the segment being referenced and makes
that segment known; The linkage trap is modified so that the fault does not occur on
subsequent references; this is referred to as snapping the link.

Search Rules

In order to resolve external references, the dynamic linker uses a prescribed
search list specifying a subset of the directory hierarchy. The search for a segment
proceeds as follows. If the reference name is found in the list of initiated segments
(item 1 below), that segment is used. Otherwise, directories are searched in the order
in which they appear in the search rules until the name is found. The standard search
rules are given below. These can be modified using the add_search_rules,
delete_search_rules, and set_search_rules commands (described in the Commands
manual). The installation may also modify the default search rules for all users by
using the set_system_search_rules command, described in the Multics Administration,
Mai ntenance, and Operations Commands manual, Order No. GB64. The
get_system_search_rules command, described in the Commands manual, prints the
curren t system def aul t search rules.

1. ini tiated segments

Reference names for segments that have already been made known to a
specific process are maintained by the system. A reference name is
associated with a segment in one of three ways:

a. use in a dynamically linked external program reference

b. a call to hcs_$initiate. or hcs_$make_seg with a non null
character string supplied as the ref _name argument (these hcs_
entry points are described in the Subroutines manual)

c. a call to hcs_$make_ptr (described in the Subroutines manual)

2. ref erencing directory

The referencing directory contains the procedure segment whose call or
reference initiated the search.

3. working directory

The working directory is the one associated with the user at the time
of the search. This may be any directory established as the working
directory by either the change_ wdir command or the change_ wdir_
subroutine (described in the Commands and Subroutines manuals
respectively). (The initial working directory is the home directory.)

4-10 AG91-G4

4. system libraries

The system libraries are searched in the following order:

>system_library_standard
This library contains standard system service modules. i.e., most
system commands and subroutines.

>system_library_unbundled (if present)
This library contains unbundled software.

>system_l ibrary_l
This library contains a small set of subroutines that are reloaded
each time the system is reini tialized.

>system_library_tools
This library contains software primarily of interest to system
programmers.

With the search rules given above, when a program in the user's working
directory has the same name as a system program. the user program will be invoked
(since it is found first). Unless this is intended. the user should avoid using the names
of system commands for his programs, or should change either his working directory
or the search rules in eff eet. (An exception to this occurs if the reference is by a
program in the same directory as the system program being searched for; see item 2,
above.) If an external reference to a procedure is not resolved by following the
search rules, an error message is printed. The user can recover from the error in a
number of ways (for example, by initiating the procedure directly or by adding a link
to the procedure into one of the directories included in the search rules).

Binding is an alternative to dynamic linking that should be used when a set of
object segments is intended to be executed together repeatedly. Using the bind
command, a user can consolidate these segments into a single bound object segment
Binding can provide a substantial savings in processing time and page fault overhead.

Binding proceeds as follows. The object code portions of the segments to be
bound are concatenated and relocated as necessary. Intersegment references are resolved
with direct text-to-text or text-to-internal-static references within the bound segment
components. A new set of definitions and linkage information is created to reflect the
interface between a bound segment and external references. (For more details on
binding, see the bind command in the Commands manual; f or the structure of a
bound segment, see Appendix G of this manual.)

4-11 AG91-04

Making a Segment Known

A segment is known to a process when it has been uniquely associated with a
segment number in that process. This association is maintained for the life of the
process unless a user explicitly makes the segment unknown.

Once a segment is known by a given segment number. all program references
using that number are interpreted by the system hardware and associated software as
references to that segment. A segment can be made known through dynamic linking
or by explicit calls.

A segment can be made known without a reference name, throu~ the
initiate_file~ subroutine (the terminate_fiIe_ subroutine makes it unknown). - These
subroutines are described in the Subroutines manual. When a segment is made known,
a reference name can be associated with it. Such a name is said to be initiated for
the segment (see the hcs_$initiate_ entry point in the Subroutines manual). The
association between a reference name and a segment lasts as long as the segment is
known unless explicitly discontinued by the user. The ending of this association is
referred to as terminating the reference name. A segment may be initiated by more
than one reference name, but no two segments can have the same reference name.

Reference names that have been initiated are the first items examined by the
dynamic linker (see "Search Rules" above) when attempting to find a referenced
procedure or data segment. If the name is not initiated, the dynamic linker makes the
segment known and initiates that name for the segment when it has successfully
completed its search.

The user can remove reference names by using the term_ subroutine (described
in the Subroutines manual). If only one reference name appears for a segment and it
is terminated, the segment is also made unknown. The user may also explicitly make a
segment unknown and terminate all its reference names (see term_$selLPtr in the
Subroutines manual).

At command level, the initiate and terminate commands may be used to initiate
and terminate reference names. (See the Commands manual for a discussion of these
commands.)

4-12 AG91--()4

Address Space Management Subroutines

The subroutines listed below provide a direct interface between user-written
programs and some of the system mechanisms discussed previously. The selection of
the appropriate routine is based on the form in which the segment of interest is
currently expressed. For example, if an interactive program accepts the pathname of a
segment as an argument, that segment can be made known using initiate_file_.

A brief description of these interface subroutines is given below. For a complete
description, see the Subroutines manual.

hcs_$fsJet_path_name
given a pointer to a segment, returns its pathname

hcs_$fsJet_ref _name
given a pointer to a segment, returns associated reference names

hcs_$fsJet_se~ptr
given a reference name, returns a pointer to the associated segment

initiate_file_
given a pathname, causes the segment to be made known.

hcs_$initiate
given the pathname of a known segment and a reference name, initiates
the reference name.

hcs_$make_entry
given a reference name and the name of an entry point, returns the
value of the specified entry point.

hcs_$make_ptr
given a reference name and the name of an entry point, returns a
pointer to the specified entry point. If the reference name is not yet
initiated, search rules are used to find a segment with the same name,
the segment is made known and the reierence name initiated.

given a pathname, terminates all reference names of a segment and
makes it unknown.

term_$single_ref erence
terminates one reference name from a segment If it is the only
reference name for that segment, the segment is made unknown.

terminate_f ile_
given a pointer to a segment, makes the segment unknown if there are
no reference names associated with the segment

term_$se~ptr
given a pointer to a segment, terminates all reference names and makes
the segment unknown.

4-13 AG91-04

MULTICS STACK SEGMENTS

The Multics stack segment is a central component of the normal execution
environment. It is essentially a pushdown list where active procedures maintain private
regions, caned stack frames, in which their temporary variables reside. A stack frame
is created for a procedure when it is called; the procedure is subsequently referred to
as the owner of the stack frame. Stack frames also contain information used in
interprocedure communication, such as argument lists and procedure return points. The
base of the stack segment, the stack header, contains pointers to various types of
information about the process. Elements of the stack are described briefly below and
in detail in Appendix H.

Stack Header

The stack header contains pointers to code sequences (used to perform the
standard procedure call and return and stack push and pop functions) and to operator
segments (containing brief code sequences referenced by programs compiled by system
translators). Another set of pointers is maintained to keep track of the stack frames
created and released during the process. Two pointers in the stack header are used to
implement external reference resolutions on an interprocedure and intersegment basis.
These point to the linkage offset table (LOT) and the internal static offset table
(ISOT) for the current ring. The LOT points to the dynamic linkage sections allocated
in the ring and the ISOT to the dynamic internal static sections allocated in the ring.

Stack Frames

The stack frame is used to store the current state of the calling procedure and
the information used to restore that state when a return from the can is made. The
stack frame also contains data associated with the procedure to be executed. The stack
frame header contains pointers to information required to activate the called
procedure, such as a pointer to the argument list and to the linkage region of the
calling procedure. Since a new stack frame is generally created at each call,
procedures that have variables in the stack frame are potentially recursive.

Combined Linkage Region

A combined linkage region can consist of one or more segments that contain a
sequence of contiguous linkage sections (pointed to by the LOT), internal static sections
(pointed to by the ISOT), or general storage regions acquired through system routines
for all object segments active in the ring. Additional segments are created as necessary
to contain this information.

CLOCK SERVICES

Two types of clocks are available on Multics: a real-time clock for the entire
system and a process execution timer for each process. The real-time clock, a
hardware calendar clock accessible through a special register on a system controller,
runs whenever the system is in operation; it contains a double-word integer register
that is incremented once per microsecond and represents the number of microseconds
elapsed since January 1, 1901. 0000 hours Greenwich mean time. A simulated interrupt

4-14 AG91-04

mechanism is associated with the calender clock so that a specified process can receive
an interprocess wakeup at any given time.

A process execution timer is maintained as part of the state of each process. It
counts the microseconds used by a process. This timer measures virtual CPU time (in
microseconds) spent by the process. In addition, ·it can be used for setting timed
wakeups.

An interrupt mechanism associated with the virtual timer allows a process to
receive an interprocess wakeup after a given amount of CPU time has been used. The
timer is compared to the specified value at regular intervals; when the value is
exceeded. an interprocess wakeup is generated for the running process.

The clocks are· available for use by programmers. Some ways in which system
commands use' them are given below:

• Resource monitoring and accounting.

• Labeling data (e.g., storage system entries) with dates and times of
interest

• Computing the date and time for output.

• Generating a unique bit string.

• Waking up a specified process at a specified time, perhaps causing a
specified procedure to be called.

• Interrupting a process after a specified amount of CPU time has
elapsed.

Access to System Clocks

Commands and subroutines that permit the user to inspect the real-time clock
and the process execution timer are summarized below. For a detailed description of
each. see the Subroutines manual. The Multics PL/I built-in function clockO reads the
real-time clock and return its current value as a fixed bin(71) quantity. This clock
time can be converted to a more readable form using either date_time_. which returns
a single character string, or decode_clock_ value_. which returns the various components
of the time (month, year, etc.) as distinct variables. The convert_date_to_binary_
subroutine accepts a character string like that produced by date_time_ and returns a
fixed bin(71) equivalent. The set_time_zone command enables the user to set the
def aul t time zone for his or her process.

The value of the process execution timer is returned by both the
cpu_time_and_paginL and the Multics PL/I built-in function vclockO. The resource_usage
command (described in the Commands manual) prints a report of the resources used
by the user from the beginning of the current billing period to the time of creation
of the user's current process.

4-15 AG91-()4

01/87

The status command and the hcs_Sstatus_ subroutine both provide dates and
times associated with storage system entries, such as the date and time the entry was
last modified . and the date and time last used. The hcs_Sstatus_ subroutine returns the
time in iile system iormat; this 36-bit time can be converted by the contruct:

clock_value = cV_fstime_ (fstime);

The unique_bits_ subroutine returns a bit string, generated partly from the
current real-time clock reading, that is guaranteed to be unique among all bit strings
so generated. The unique_chars_ subroutine converts such a value into a character
string that is also guaranteed to be unique among all character strings so generated.

Facilities for Timed Wakeups

The interprocess communication facility (see the ipc_ subroutine in the Subroutines
manual) allows a user to set up channels for sending interrupts (wakeups) to a
specified process. The interrupt can cause that process to return from the blocked
state to whatever it was previously doing, or it can cause some other procedure to be
called in that process. One possible use of this facility is to wake up a process as the
result of some clock activity. The timer_manager_ subroutine (described in the
Subroutines manual) provides the necessary interface. With this subroutine, the user
can specify an event channel for his own or another process, whether the process
should merely be wakened or a specified procedure should be called, and the nature
of the clock activity that should trigger the wakeup (i.e., virtual CPU or calendar
clock time). In specifying the time, the user can further specify absolute or relative
time and can use seconds or microseconds.

WRITING A PR~ OVERSEER

Almost every feature of the standard Multics system interface can be replaced by
providing a specially tailored process overseer procedure in place of the standard
version. The standard Multics process overseer procedure, process_overseer_, is the
initial procedure assigned to a user unless the project administrator specifies otherwise
by an initproc or Initpr oc statement in the project master file (PMF). (See the
Multics Administartors' Project, Order No. AK51.) If a user has the v_process_overseer
attribute, she may specify a different initial procedure when she logs in by using the
-process_overseer (-po) control argument as in the following example:

login Smith -po >udd>AEC>special_overseer_

If Smith does not have the v _process_overseer attribute, the system refuses the login.

If the user has the v _process_overseer attribute, she may leave a program named
"process_overseer_" in her homedir. Note that if the PMF specifies a reference-name
other than ;;process_overseer_u

, the user must put whatever it specifies in her homedir.
If the PMF provides an absolute pathname for the initial procedure, the user can not
replace it in this manner.

4-16 AG91-04A

Process Initialization

A process is created for a user when she logs in, or in response to either a
new _proc command (described in the Commands manual) or process termination signal.
What follows is a brief description of the birth of a process.

Unless otherwise noted. all of the modules described are in PL/I. It is helpful
to follow along this discussion with a listing of the modules; the comments often
provide useful amplification. To do so. use the library_fetch command. For example:

If ini tialize_process_. pll

Several items of information must be passed to all processes by the system
control process. The system places this information in a special per-process segment.
called the process initialization table (PIT), that resides in the process directory. The
user process may read the contents of the PIT, but may not modify it because its
write bracket is zero. The user_info_ subroutine (described in the Subroutines manual)
is used to extract information from the PIT.

A process begins, for all intents and purposes, with a call to the ring zero
routine init_proc. This description will only mention those actions of init_proc which
are of significance to visible features of the user environment.

The first action of init_proc is to initialize the known segment table (KST) by
calling initialize_kst. Then init_proc initializes the PIT, and checks for the
v _process_overseer attribute. If v _process_overseer is on, init_proc sets the working
directory to the user's home directory. Until this point the user has no working
directory, so that users without v_process_overseer do not get their home directory
into the search rules unU1 larer on in rnen process. This prevents users without
v_process_overseer from replacing their initial procedure, signaller, or unwinder.

Now init_proc calls makestack to create the stack in the user's initial ring. First,
makes tack creates a segment named stack_N in the process directory, where N is the
number of the user's initial ring. It fills in the null pointer, begin pointer, and end
pointer of the stack and calls the linker (via link_man$get_initial_linkage), to get the
ini tial linkage for the ring.

The internal procedure initialize_rnt is then called by makestack in order to
make a reference name table (RNT) for the ring in question. initialize_rnt calls
define_area_ to get an area for the RNT, and puts a pointer to the RNT into the
appropriate place in the stack header. Then
the default rules and returns.

4-17

initializes the search rules to

AG91-{)4

At this point makestack adds the name of the stack it is creating to the RNT
and calls the linker to snap links to signal_, unwinder_, the aIm operators, and
pll_operators_. Thus users with v _process_overseer. whose working directories were set
by init_proc before makestack was called. pick up any versions of these programs that
are resident in their home directories. It then sets up the static condition handlers for
no_ write_permission, not_in_ write_bracket, isot_fault, and lot_fault, fills in the thread
pointers for the first stack frame and returns.

Now, init_proc is ready to find the initial procedure. For the purposes of this
discussion, the initial procedure is the first procedure called in the user's initial ring.
The term "process overseer" will refer to the program specified by the initproc
keyword of the PMF or the argument to the -process_overseer control argument of
the login access request. If the string ",direct" is appended to the pathname specified
by either the initproc keyword or the =proces5_overseer control argument. then the
specified pathname is both the process overseer and the initial procedure and init_proc
parses the pathname and initiates it explicitly. This is because link_snap$make_ptr (the
ring 0 entry that snaps links) will not take absolute or relative pathnames. Therefore
init_proc parses the supplied pathname as either an absolute pathname or a relative
pathname relative to the user's home directory. Note that this is independent of the
state of v _process_overseer -- if the project administrator specified a ,direct overseer
with a relative pathname, it will reference off of the home directory. This primarily
provides a typing convenience to users with v_process_overseer specifying a ,direct
overseer at login. If the name does not end with ,direct. the standard initial
procedure, initialize_process_. is used.

At this point init_proc either has a pointer and a reference name for a .direct
overseer, or it has a reference name to the standard initial procedure initialize_process_.

Finally, init_proc calls cal1_outer_rin~ to call out to the user's initial ring. Note
that a user without v_process_overseer is still lacking a working directory. It is the
responsibility of any user-supplied ,direct initial procedure to set the working
directory.

The user's process now begins execution in the initial ring in the program
ini tialize_process_.

The initialize_process_ procedure first initiates the PIT. If the user lacks
v_process_overseer it finds the appropriate process overseer. Then it sets the working
directory, and finds the process overseer if it was not previously found. It sets up
static condition handlers for cput, alrm, trm_, wkp_ and sus_.

4-18 AG91-04

Before calling the process overseer. initialize_process_ attaches the I/O switch
named user_i/o (through an I/O system module named in the PIT) to the target (also
specified in the PIT). It then attaches the I/O switches named user_output,
user_input. and error_output as synonyms of user_i/o by calling iox_$init_standard_iocbs.
The I/O module used for an interactive process is tty_! the Multics terminal device
I/O module. (This module is described in the Subroutines manual). For absentee
processes it is abs_io_. and for daemons it is mr_.

Absentee processes do not use any of the login arguments or attributes of the
process which submitted the absentee request. All absentee process attributes come only
from the absentee request. the system administrator table (SAT), and the project-definition
table (PDT).

The initialize_process_ procedure then calls the process overseer specified in the
PIT. This is either the procedure specified in the "initproc" keyword of the PMF, or
the -po argument to login. It is called with the following arguments:

where:

1.

2.

3,

dec 1 are process overseer entry (ptr, bit (1) ali gned, char ().~)
varying) ;- -

pit_ptr
is a pointer to the PIT. (Input) It should be ignored.

call_listen_
if set to "l"b, initialize_process_ will call listen_ with the value of
initial_cl as the first command line, thus starting the command
environment. (Output) If it is set to "O"b • the process will be
terminated, on the assumption that the process overseer already ran the
en tire process.

initial_cl
is the first command line to be executed, normally an exec_com of the
start_up ec. (Output) It may be up to 256 characters long.

Process Overseer Functions

The system process overseers terminate processing by setting the call_listen flag
in their calling sequence, setting the initial_cl argument to the initial command line,
and returning to initialize_process_.

A user-supplied process overseer procedure may perf orm many other actions
besides those executed by the system version. For example, initialization of special
per-project accounting procedures may be accomplished at this point. or requests issued
for an additional password or any other administrative information required by a
project

4-19 AG91-o4

The initial command line used by the system process overseer is:

where:

1.

2.

3.

start_up_path
is the location of the user's start_up.ec. The system process overseers
search for the start_up.ec in the following directories, in this order:

>udd>Project>person, >udd>Project, and >system_control_l.

start_type
is either login or new_prcc, depending on which of these was invoked
to create the process.

proc_type
is either interactive, absentee, or daemon.

These arguments can be used by the start_up.ec segment as described in
connection with the exec_com command in the Commands manual.

The command line given above assumes that the no_start_up flag is off and that
the segment named start_up.ec can be found. The no_start_up flag is off unless the
project administrator has given the user the no_start_up attribute and the user has
included the proper control argument (-no_start_up or -ns) in his login line.

If the process overseer returns to initialize_process_ with the call_listen flag set,
initialize_process_ establishes an any _other handler of default_error_handler_$wall by
executing the statement:

An entry variable is used because initialize_process_ calls hcs_$make_entry with a
null referencing pointer, so that users with v_process_overseer can put private versions
of default_error_handler_ in their homedirs.

The default_error_handler_$wall procedure is invoked on all signals not intercepted
by any subsequently established condition handler. In general, the
default_error_handler_$wall procedure either performs some default action (such as
inserting a pagemark into the stream when an endpage condition is signalled) and
restarts execution, or else it prints a standard error message and calls the current
listener.

If the process overseer does not use the call_listen_ flag, it must establish its
own any _other handler, and call the listener if cleared.

4-20 AG91-Q4

Some Notes on Writing a Process Overseer

The best source of information on the writing of process overseers is the source
of the standard one: process_overseer_.pll. There are, however, several important
considerations not obvious from the source.

The first is that process_overseer_ makes use of the pointer to the PIT that it
gets as an argument This means that if the PIT format changes, at best
process_overseer_ must be recompiled. At worst, it may have to be recoded. If a user
process overseer uses the PIT instead of calling user_info_, then it will likely stop
working if the format of the PIT changes. For this reason, we strongly recommend
that user-written process overseers do not directly reference the PIT. They should call
user_info_. instead.

Both of the installed process overseers look for start_up exec_corns. The
process_overseer _ and project_start_up_ procedures try to find start_up.ec in the home
directory. the project directory, and >scl before giving up. Privately written process
overseers should do so as well, unless they are putting the user in an environment for
which this is obviously inappropriate.

Direct Process Overseers

The .direct overseers are called as the first procedure in the user ring. In
addition to setting up all I/O attachments for user_i/o. and static condition handlers
for alrm. cput, trm_, wkp_ and sus_, ,direct overseers are responsible for setting the
working directory for users without v_process_overseer. This is done to make
protection somewhat easier, as the direct overseer can find anything it is interested in
before setting the working directory.

Handling of Quit Signals

A quit signal is indicated by pressing the appropriate key. such as ATTN or
BRK, on the terminal in use. When a terminal is first attached for interactive
processing. quit signals from the terminal are disabled. A user quit signal issued at
this time causes the flushing of terminal output buffers, but the quit condition is not
raised in the user ring. The recognition of quit signals is enabled when the following
call is made:

ca 11 i ox_Scontro 1 (i ox_Suser _ i 0, "qu i t_enab 1 e", nu 11 0, status);

If a project administrator wishes to replace the standard user environment with
his own progfat1'ls, he must find an appropriate place for the quit_enable order, after
the mechanism for handling quit signals has been established.

4-21 AG91-()4

I CREATING AN EXTENDED ENTRY

I
I
I
i
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

i
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

An extended entry is a storage system entity which is created and manipulated
by a particular subsystem and for which the operations performed by the standard file
system commands and subroutines are either incorrect or impossible. For example. the
mailbox is created and maintained by the message segment facility. All mailboxes must
be named with the suffix ".mbx" and their accessibility is defined by extended modes
instead of the more familiar "rew" or "sma" modes. In addition, proper access to
these entries is enforced by the fact that they are ring one resident~ they are
inaccessible from the user ring unless message_segment software (ring one resident) is
invoked through a gate.

Extended entry software allows the standard Multics commands and subroutines
to operate upon extended entries without compromising the integrity of the owning
subsystem. This applies not only to system-supplied extended entries such as mailboxes
and message segments, but also to user-written subsystems.

A number of commands and subroutines have been modified to correctly handle
extended entries. These include add_name, copy. copy_acl, copy_dir, copy_names,
delete, delete_act delete_name, list_act move, move_dir, rename, set_act set_max_Iength.
set_rin~brackets, status, switch_on, switch_off. copy_. copy_dir_, copy_acl_. copy_names_.
delete_. dl_handler _, nd_handler_.

There are two new commands for printing information about extended entries.
The list_entry _types Uset) command will print a list of all the entry types that can be
found in the search rules. It provides only the name of the entry type and t.l}e suffix
it uses. For detailed information about an entry type, the describe_entry_type (dset)
command can be used. It prints out the name of the type, various attributes. and the
pathname of an info segment containing more information about the entry type. The
status commands accepts a "-type" control argument which prints the type of a storage
system entry, be it extended (as for mailboxes) or standard (segment, directory, etc.).
All three of these commands also work as active functions.

The extended entry facility is implemented by the fs_util_ subroutine. The entry
points in fs_util_ are used to change and retrieve information about any file system
entry. The fs_util_ subroutine determines whether or not the entry is extended by
examining its suffix. Assuming that the suffix is XXX. fs_util_ attempts to locate and
then invoke a subroutine named "suffix_XXX_$validate". If both of these actions
succeed, the entry in question is considered to be extended and subsequently referenced
through suffix_XXX_~ otherwise it is considered standard and fs_util_ decides how to
reference it based upon its standard entry type Oink, segment, directory, multisegment
file, or data management file).

In order to enable an application program to operate upon extended entries. the
hcs_ calls it makes to perform file system operations should be replaced by the
corresponding fs_util_ calls. Calls to anyone of the standard system subroutines listed
above, which already support extended entries, need not be changed.

4-22 AG91-04

To implement an extended entry type, you must choose a suffix and implement a
suffix support routine for that entry type. Each suffix support routine must support
the suffix_info and validate entrypoints, as well as a few optional ones. These routines
will be called by fs_util_. If any of the optional entry points are not provided,
fs_util_ returns an error code of error_table_$unsupported_operation to its caller and
the particular operation fails.

There are two restrictions in implementing an extended entry type. First, an
extended entry type may use only standard entry types (segment, directory.
multisegment_file, and dm_file). as the underlying storage type. Second, if the acl
modes for the extended entry type do not map directly onto the standard modes, then
they must be stored in the extended modes field of the underlying type. For example:
mailboxes use the extended modes field of segments to store their modes of "adrosw".

The following is a list of supported entrypoints for suffix support routines:

dc 1 suff i x XXX $add ac 1 entr i es entry (char U:), char (fc) , ptr,
fixed bin(35») -

call suffix XXX $add aCl_entries (dir_name, entry_name, acl_ptr,
code)- - -

NOTE: acl_ptr points to general_ac1 in acl_structures.incl. pH.

dcl suffix_XXX_$chname_file entry (char(*), char(*), char(*),
char (f') , fixed bin (35))

call suffix XXX $chname file (dir name, entry_name, old_name,
new_name,-code) - -

dcl suffix_XXX_$copy entry (ptr, fixed bin(35»

NOTE: copy _options_ptr points to the structure copy _options defined in
copy _options.incl. pH. This routine only copies the contents of an
entry, directories excluded. copy_ may be used copy other attributes
as well as the contents.

dcl suffix_XXX_$delentry_file entry (char(*), char(*), fixed
bin (35))

dc 1 suff i x XXX $de 1 ete ac I . entr i es entry (char (fe), char (*), ptr,
fixed bin(35» - -

call suffix XXX $delete acl entries (dir_name, entry_name,
acl ptr, code) - -

NOTE: acl_ptr points to general_delete_acl in acl_structures.incl.pH.

4-23 AG91-()4

dc 1 suff i x XXX $get bit count entry (char (re), char ("c), fixed
bin (24) ,-fixed bin (35))

call suffix XXX $get bit count (dir_name, entry_name, bit_count,
ccde)- - - -

dcl suffix XXX $get max length entry (char(*), char(*), fixed
bin(19) ,-fixed bin(35»

call suffix_XXX_$get_max_length (dir_name, entry_name, max_length,
code)

dc 1 suff i x_XXX_$get_r i ng_brackets entry (char ("c) , char ("c), (,'c)
fixed bin (3), fixed bin (35))

call suffix_XXX_$get_ring_brackets (dir_name, entry_name,
ring_brackets, code)

NOTE: rin!-brackets may be an array of 1, 2 or 3 elements.

dc 1 suff i x_XXX_$get_swi tch entry (char (re), char Uc), char (1c) ,
bit (1) ali gned, fixed bin (35))

call suffix XXX $get switch (dir_name, entry_name, switch_name,
switch_value, code)

dcl suffix XXX $get user access modes entry (char(*), char(*),
char(1:) ,-fixed bin~ bit(36) aligned, bit(36) aligned, fixed
bin (35))

call suffix_XXX_$get_user_access_modes (dir_name, entry_name,
user_name, ring, modes, extendeded~modes, code)

NOTE: ring is the validation level to be used in computing effective access.
I t may be a value between 0 and 7 inclusive, or -1. -1 may be
used to specify the default value of the validation level of the
calling process.)

dc 1 suff i x XXX $1 i st ac 1 entry (char ("c) , char (,'c), char Ue), ptr,
ptr,-fixed bin(35»

call suffix XXX $1 ist acl (dir name, entry_name, version,
area_ptr,-acl_ptr, code)-

NOTE: area_ptr points to the start of the allocated area; if nUll. system_free_area
will be used. acl_ptr points to the general_acl structure in
acl_structures.incl. pI. If acl_ptr is nonnull or input, general_acl. version
and general_acl.access_name (*) are set indicating which ACL entries
to list. If acl_pti is nUll. the entire acl for the branch must be
listed.

4-24 AG91-o4

dcl suffix XXX $list switches entry (char(*), ptr, ptr, fixed
bin (35» - -

call suffix XXX $list switches (version, area_ptr,
switch_liit_ptr~ code)

NOTE: switch_list_ptr points to switch_list structure; version must be
SWITCH_LIST_ VERSION_I. Both are declared in suffix_info.incl.pll.

dc 1 suff i x_XXX_$ rep 1 ace_ac 1 entry (char (~':), char ()'c) , ptr, bit (1) ,
fixed bin (35))

call suffix_XXX_$replace_acl (dir_name, entry_name, acl_ptr,
no_sysdaemon_sw, code)

NOTE: acl_ptr points to general_acl structure in acl_structures.incl. pll.
no_sysdaemon_sw specifies whether or not access for *.SysDaemon
should be added to the entry's acl.

dc 1 suf fix XXX $set bit count entry (char (,.:) , char (,,:) , fixed
bin (24) ,-fixed b i ~ (35))

call suffix XXX $set bit count (dir_name, entry_name, bit_count,
code)- - - -

dcl suffix_XXX_$set_max_length entry (char(*), char(*), fixed
bin (19), fixed bin (35))

call suffix_XXX_$set_max_length (dir_name, entry_name, max_length,
code)

dc 1 suff i x_XXX_$set_r i ng_brackets entry (char (ic) , char (,.c) , (),:)
fixed bin(3) ,-fixed bin(35»

call suffix_XXX_$set_ring_brackets (dir_name, entry_name,
ring_brackets, code)

dc 1 suff i x XXX $set swi tch entry (char (*), char (,.:) , char (,.:) ,
bit(l) aligned, fixed bin(35»

call suffix XXX $set switch (dir_name, entry_name, switch_name,
switch_value, code)

dcl suffix XXX $suffix info entry (char(*), char(*), ptr, fixed
bin(35»- -

caii suffix XXX $suffix info (dir_name, entry_name,
suffix_info_ptr, code)

NOTE: Fill in the appropriate values in suffix_info structure in
suffix_info.incl. pll.

dc 1 suff i x XXX $va 1 i date entry (char ()'c) , char (~,:), fixed bin (35»

call suffix_XXX_$validate (dir_name, entry_name, code)

4-25 AG91-04

NOTE: A 0 error code must be returned if the entry is a valid XXX;
otherwise, error_table_$not_se~type should be returned.

If the get_switch, set_switch and list_switches entrypoints are present, the switch_on
and switch_off commands may be used to change the value of those switches, and the
status command may be used to report them.

All entry points in a suffix_XXX_, which manipulate entries, with the exception of
validate and suffix_info, are responsible for validating that the entry is actually of the
correct type an not merely masquerading as one be having the appropriate suffix. If
the entry is not of the correct type, the error code error_table_$not_se~type should
be returned.

Two fs_util_ entry points may be 01 nelp when writing a suffix support routine
or an application that may use extended entry types.

dcl fs_util_$get_type (char ("'), char (,,,), char(*), fixed bin(35»

where TYPE (an output argument) may be one of the standard or extended entry
types. The standard entry types are as constants in suffix_info.inc1.pll.

dcl fs_util_$make_entry_for_type entry (char(*), char(*), entry,
fixed bin (35))

call fs_util_$make_entry_for_type (TYPE, OPERATION, entry_to_cal1,
code) ;

where TYPE (an input argument) is as above, and OPERATION (also an input
argument) is the name of the operation for which an entry is requested. The
en try _ to _call may the be used to operate on any en try. I twill have a calling
sequence identical to the corresponding fs_util_ entrypoint. A list of designated
constants for the names of operations is available in file_system_operations.incl.pll.

If you wish to implement an extended type named "chessJame" that uses a
segment as its underlying storage type, and wish to use all the switches that segments
do, the entrypoint to set switches would be implemented thusly:

set switches: entry (dir name, entry name, switch name, switch value,
- - - - code) ;

call VAlIDATE_CHESS_GAME 0; /* an internal procedure */

call fs_util_$make_entry_for type (FS_OBJECT_TYPE_SEGMENT,
FS SET SWITCH, set switch entry, code);

call set_switch_entry (dir_name, entry_name, switch_name,
switch_value, code);

return;

4-26 AG91-04

INTERACTIVE SUBSYSTEM PROGRAMMING ENVIRONMENT

The Multics Subsystem Utilities provide a general-purpose interface for implementing
interactive subsystems such as the Extended Mail Facility and Forum. The ssu_
subroutine is the vehicle for implementing interactive subsystems (see the Subroutines
manual); the Subsystem Utilities are referred to collectively as the utilities.

An interactive subsystem presents an interface analogous to Multics command
level. After being invoked, the subsystem enters a request loop, where it prompts for
and reads a request line, executes requests in the line, and optionally prints a ready
message.

A subsystem normally consists of a command procedure and one or more request
procedures. The command procedure is a Multics command or perhaps a process
overseer that establishes the environment necessary for operation of the subsystem
before entering the request loop. Individual requests, defined in request tables, are
implemented as separate procedures invoked by the request processor. Request
procedures process their arguments and report errors in a fashion similar to Multics
commands.

To ensure a consistent interface to the subsystem user, the utilities perform
several functions common to interactive subsystems, including maintenance of subsystem
invocations and the request loop process. For example, most users are probably
familiar with the mechanics of the Extended Mail Facility: how the prompt is issued;
what to do for assistance (the various help facilities available); implications of the
standard requests (list_requests, print, abbrev, help, etc.); how to exit from the
subsystem (by issuing a quit request). In fact. the subsystem writer can design and
implement an interactive subsystem that mirrors exactly a subsystem such as the
Extended Mail Facility. The writer also has the option, however, of overriding many
of the standard mechanisms, if the application warrants such action (see "Tailoring the
Subsystem Environment" below).

The descriptions that follow document the procedures involved in implementing
an interactive subsystem. The entry points cross-referenced in the text are all
documented in the ssu_ subroutine description in the Subroutines manual.

Subsystem Invocations

A subsystem invocation usually corresponds to a single invocation of the
subsystem's command procedure; e.g., read_mail. The objective of an invocation is to
operate on a specific entity; e.g., an invocation of read_mail operates on a mailbox.
Multiple active invocations can coexist; e.g., a subsequent invocation of read_mail can
be invoked within read_mail (for this reason, subsystems should be written so that
they use no static data). The command procedure parses the command line arguments,
retrieves global options, and in general performs whatever initialization necessary to
establish the subsystem invocation.

4-27 AG91-Q4

The invocation is created by a call to ssu_$create_invocation from within the
command procedure. Subsequently, the listener is called, and it in turn calls the
request processor when there are requests to be processed. Eventually. the user
indicates a desire to exit from the subsystem (usually by issuing a quit request), and
the listener returns to the command procedure, from which a call is made to
ssu_$destroy_invocation, and the subsystem invocation ceases to exist.

The call to ssu_$create_invocation names the subsystem and provides a version
identifier (e.g., to distinguish between the installed and experimental versions of a
subsystem). It is also through ssu_$create_invocation that the cornerstones of
communication within the subsystem are established: the info pointer (info_ptr)
supplied as a parameter to the call. and the subsystem control info pointer (sci_ptr)
returned by the calL The....~ two pointers are discussed in greater detail below.

USE OF SCI PTR AND INFO PTR IN INTERACTIVE SUBSYSTEMS - -

When ssu_$create_invocation is called, it creates an internal data structure,
pointed to by sci_ptr, and returns the pointer to the caller to be passed as a
parameter in all other calls to the utilities. Such a data structure is created and
maintained separately by the utilities for each invocation. Each data structure. which is
transparent to the subsystem writer, contains everything needed by the utilities for the
lif e of the invocation.

The info_ptr, on the other hand, must be supplied by the subsystem writer as a
parameter to ssu_$create_invocation; the info_ptr is subsequently passed as a parameter
in all calls to request procedures. The data structure it points to must be defined and
maintained by the writer. It mi&1.t contain, for example, pathnames, option switches,
and pointers to global data bases needed during the invocation.

Although not a requirement, a recommended convention is to include the sci_ptr
in the data structure pointed to by the info_ptr (the obverse is true; i.e., the data
structure pointed to by sci_ptr contains the info_ptr). Then. only info_ptr need be
passed between the procedures comprising the subsystem.

STAND-ALONE INVOCATIONS

A special form of subsystem invocation is available to the subsystem writer who
may want to write a program that functions either as a Multics command or
subsystem request. This is known as a stand-alone invocation and is created through a
call to ssu_$standalone_invocation. Employing this method, the writer can greatly
reduce the coding effort by eliminating parallel coding or numerous conditional
constructs. Additional inf ormation appears below under "Subsystem Requests and
Multics Commands."

4-28 AG91-o4

MONITORING SUBSYSTEM USAGE

Facilities are provided (ssu_$print_blast and ssu_$record_usage) for optionally
tracking subsystem usage on a per-user basis. Usage statistics recorded include:

Person id
Time of most recent use
Version used most recently
Number of times this subsystem used
Number of times this version used
Number of times this version announced

This information is recorded in a segment located by the linker search rules,
using the ref_ptr (see ssu_$print_blast) to specify a referencin!L.dir. The segment,
named <subsys tern_name>. ssusage, must be explicitly created or no monitoring is
perf ormed. All users must be given rw access in order to record their usage statistics.
If statistics cannot be recorded (no access, usage segment has not been created,
segment is full), the version announcement mechanism is disabled (see below), and a
nonzero code is returned. The return code is generally ignored since there is usually
nothing to be done in this case. There are no consequences to being" unable to record
usage statistics (i.e., there are no penalties for unsuccessful calls to ssu_$print_blast and
ssu_$record_usage).

As a subsystem undergoes change, it is assigned a version identifier to distinguish
it from its predecessors (see the ssu_$create_invocation entry point). Since change
often denotes functional improvements or different handiing procedures. users need to
be notified when a new version is installed and told of the nature of the changes.
Notification is delivered in the form of a so-called blast message (see the
ssu_$print_blast entry point), which appears the first N times the user invokes the new
version of the subsystem (N is a threshold value specified through ssu_$print_blasd.
The blast message is disabled when statistics cannot be recorded, so that the user does
not receive the message on every use of the subsystem.

Statistics can be tabulated without printing the blast message by calling
ssu_$record_usage, which otherwise functions the same as ssu_$print_blast Statistics are
totaled for all users of a subsystem and can be viewed using the display_subsystem_usage
comma.f1d (see the Commands manua]).

The Subsystem Environment

The subsystem environment consists of a cycle of events somewhat akin to a
Multics process environment The request loop is entered for the purpose of
processing request Hnes just as the M uitics comman~ iistener loop processes command
lines. Request lines are formulated using a request language that emulates the
command language. There are considerations in regard to the writing of requests, such
as argument processing and error handling. that are also of concern in the writing of
commands. Each of these areas as it pertains to subsystem writing is considered below
in greater detail.

4-29 AG91-{)4

SUBSYSTEM REQUEST LOOP

The subsystem listener is called (ssu_$listen) from within the command procedure
after the invocation has been established. The listener implements the request loop.
which normally fonows a specific pattern:

Print a prompt (the default)
Read a request line
Execute a request line
Print a ready message (default is no ready message)

The loop is eventually broken when a call is issued to ssu_$abort_subsystem (usually
through a quit request), in which case the listener returns to the command procedure
for any necessary housekeeping. before the invocation is destroyed and Multics
command level is reinstated.

The default prompt string is a new line. followed by the subsystem name and
optional invocation level number (e.g.. if read_mail is called within read_mail. the
second invocation appears as read_mail (2):). followed by a colon and two spaces.
The default prompt is printed by a call to ioa_$nnl with the control string
A /<subsys tem_name>'" [(Ad) "'J : "'2x {two additional arguments indicate whether the
level number is greater than one. and what the level number is}. The current prompt
can be changed by calling ssu_$set_prompt; the ssu_$get_prompt entry point can be
used to retrieve the current prompt string.

There also exists a set of prompt modes. which are essentially flags specifying
whether: to prompt at all (default is on); to prompt after a blank line (default is
off); to prompt after typeahead (default is on). Any or all of these modes can be
changed by calling ssll_$set_prompt_mode and resetting the appropriate bits. A call to
ssu_$get_prompt_mode returns the current bit settings.

Ready processing is off by default; it can be changed by a call to
ssu_$set_ready _mode. A call to ssll_$get_ready _mode returns the current state of ready
processing. If enabled. ready processing prints a ready message after executing each
request. The default ready message is the same as that printed at command level. The
ready message can be manipulated within the subsystem through the ready, ready_on.
and ready_off requests (see Appendix J).

The listener itself reads the request line and calls the request processor (through
ssu_$execute_line), which interprets the request line according to subsystem request
language conventions. as described below. The listener also honors the escape to
Multics command level convention (..). This feature is enabled by default (ssu_$cpescape).
but can be disabled (ssu_$cpescape_disabled), if the application warrants such a
restriction.

SUBSYSTEM REQUEST LANGUAGE

The subsystem request language is identical to Multics command language. The
paragraphs below briefly review the language conventions. For a detailed description.
see Section 3.

4-30 AG91-Q4

In the simplest case, a request line consists of a request name followed by
optional arguments; the request name and arguments are separated from each other
using whitespace (space, horizontal tab, etc.). Multiple requests may be invoked on a
single request line by separating each request and its arguments from the others with a
semicolon character. Arguments which contain whitespace or other characters recognized
by the request line processor must be quoted by enclosing the argument within the
quote character (n); if a quote is required as part of an argument, it must be doubled
when placed within the enclosing quotes (e.g., "double" "quotes" is the argument
double"quotes). Request line iteration is specified through the use of parentheses.
Active strings are specified through the use of brackets.

When used in request lines, active strings invoke active requests to obtain the
values to be placed into the expanded request line. Active requests are the subsystem
equivalent of active functions: they are subsystem requests which return a character
string value. See "Defining Request Tables" below for descriptions of command
requests and active requests.

The default request line processor provides facilities to tailor the request
language in two distinct ways. First, the actual request language may be changed by
enabling or disabling features such as iteration or by changing the characters used to
invoke different features of the request language. Secondly, the user may request that
abbreviations within request lines be expanded before actually executing the requests in
the line. Both of these mechanisms are controlled by changing the current request
processor options through use of the entry points ssu_$get_request_processor_options
and ssu_$set_request_processor_options. Additionally, the abbreviation facility may be
controlled by the user by using the standard subsystem request "abbrev" if it is
defined within the subsystem.

If the standard subsystem request language is not suitable for a particular
application even after changing the language definition as described below, the
subsystem writer may implement a tailored request line processor to replace the
standard processor. This mechanism is described below under "Tailoring the Subsystem
Environmen t. "

4-31 AG91-04

Modifying the Standard Request Processor

As mentioned above, the function of the standard request processor may be
changed by modifying the request processor options in effect within the subsystem.
The current request processor options are obtained by calling
ssu_$get_request_processor_options. They are changed by calling
ssu_$set_request_processor_options. The default request processor options for the
subsystem invocation may be obtained by calling ssu_$get_default_rp_options. The
curren t request processor options may be changed to their default settings by calling
ssu_$reset_request_processor_options. For ease of reference in the remainder of this
discussion, these entry points are referred to simply as get, set, get_default, and reset.

The default request processor options for a subsystem specify that the request
language is identical to Multics command language and that abbreviations should not
be expanded in request lines.

In order to change the request processor options, the subsystem should obtain a
copy of the options currently in effect using the get entry point, modify this copy,
and then call the set entry point.

For example, to change the request language to disable iteration, the following
code fragment may be used:

dcl 1 local_rpo aligned like rp_options;

call ssu_$get_request_processor_options (sci_ptr,
RP_OPTIONS_VERSION_l, addr (local_rpo), code);

if code A= 0 then call ssu_$abort_line (•••);

local rpo.non standard language = "l"b;
local=rpo.cha'i='acter_types {rank ("("» = NORMAL_CHARACTER;
local rpo.character types (rank (")11» = NORMAL CHARACTER;
call ssu_$set_request_processor_options (sci_pt'i=', addr

(local_rpo), code);
if code A= 0 then call ssu_$abort_line (•••);

4-32 AG91-04

The rp _options Structure

The request processor options are passed to and from the above mentioned
entry points using the rp_options structure. For the get and get_default entry points,
the contents of the structure are filled in to reflect the current or default request
processor options. For the set entry point, the caller must fill in the contents of the
structure to reflect the new options that are to be put into effect by the request
processor. As the reset entry point always sets the options to their default state, it
does not use this structure. In all cases where the structure is required, the caller has
the responsibility of providing space for the structure.

The rp_options structure is declared in the system include file ssu_rp_options.incl.pU
and has the following format:

dcl rp_options
2 version
2 language_info,

3 non_standard_language
3 character_types (0 : 511)

2 abbrev_info,
3 expand_request_lines
3 default_profile_ptr
3 profile_ptr

STRUCTURE ELEMENTS

version

aligned based (rp_options_ptr),
-character (8),

bit (1) ali gned ,

fixed binary (9) unaligned
unsigned,

bit (1) ali gned,
pointer,
pointer;

identifies the version of the rp_options structure being used. The version of the
structure described here is given by the value of the named constant
RP _OPTIONS_ VERSION_l which is declared in the include file defined above.

language_inf 0

defines the current, default, or new request language depending on which entry
point is called.

ncn_standard_language
for the get entry point, this element is set to "O"b if the standard request
language is being used and to "1"b if a nonstandard request language defined by a
prior call to the set entry point is in use. For the get_default entry point, this
element is always set to "O"b. For the set entry point. a value of "O"b indicates
that the caller wishes to use the standard request language; a value of "1 "b
indicates that the caller wishes to use the nonstandard request language, defined in
the character_types array.

character_types
for the get entry point, this element is set to a description of the current request
language even if it is the standard language. For the get_default entry point, this
element is always set to the description of the standard request language. For the
set entry point. this element is only used if non_standard_language above is "l"b
and. in this case, is the new definition of the request language. See "Defining a
Request Language" below for a description of the contents of this array.

4-33 AG91-()4

abbrev _inf 0

defines the current, default, or new state of abbreviation processing within this
subsystem.

expand_request_hnes
for the get entry point, this element is set to "l"b if abbreviations are being
expanded in this subsystem; otherwise, it is set to "O"b. For the get_default entry
point, this element is always set to "O"b as abbreviation processing is disabled by
default. For the set entry point, a value of "l"b indicates that the caller wishes
to allow request lines to be expanded; a value of "O"b indicates that the caller
wishes to disable abbreviation processing within this subsystem.

default_profile_ptr
for the get entry point this element is set to locate the default profile segment
for abbreviation processing within this subsystem; if the default profile is the
default default profile, this element is set to null. For the get_default entry
point. this element is always set to null to indicate the default default profile.
For the set entry point, the value of this element should be a pointer to the new
default profile segment for the subsystem or null if the default default profile is
to be used. See "Abbreviation Processing" below for more information.

profile_ptr
for the get entry point, this element is set to locate the current profile segment;
if the default profile segment is being used, this element is set to null. For the
get_default entry point, this element is always set to null. For the set entry
point. the value of this element should be a pointer to the new profile segment
to be used within the subsystem or null if the default profile segment is to be
used.

Def i ni ng a Request Language

A subsystem's request language is defined by specifying the action that the
command processor is to take for each possible character appearing on a request line.

The processing type for a character is set in the character_types array defined
above in the rp_options structure. The PL/I rank builtin function may be used to
access the appropriate entry in the array. For example, to change the processing type
of the character "A", a code fragment of the form:

rp_ opt ions. char acter _types (rank (" A ")) = ... ,
would be used.

In the following description of the processing types, the term token is used to
mean either a request name or an argument to a request.

4-34 AG91-04

The possible request language processing types are defined as named constants in
the system include file cp_character_types.incl.pll. The meaning of each of these
processing types follows:

NORMAL_CHAR.ACTER
this character has no special significance to the request processor. It becomes
part of whatever token is currently being constructed.

WHITESPACE
this character separates tokens in the request line but is itself not part of any
token. By default, this processing type is used for all the whitespace characters
except newline (i.e., space, horizontal tab, vertical tab, and form feed).

COMMAND_SEPARATOR
this character separates multiple request invocations in the request line and does
not become part of any token on the line. By default, this processing type is
used for the semicolon (;).

COMMAND_SEPARA TOR_OR_ WHITESPACE
this character also separates multiple request invocations in the request line and
also does not become part of any token on the line. In addition, when the
request processor is rescanning the return value of an active request for tokens
(I [... J), this character is treated as a whitespace character. By default, this
processing type is used for newline.

SINGLE_TOKEN
this character separates tokens in the request line. In addition, the character
itself becomes a separate token in the request line. For example, if slash (/) is
defined as a SINGLE_TOKEN, the request line:

list / only tomorrow /

contains five tokens: namely, "list" (the request name), slash, "only", "tomorrow",
and slash. By default, this processing type is not used for any character.

COMPOUND_TOKEN
this character separates tokens in the request line. In addition any sequence of
characters of this processing type on the request line which appear without
intervening characters is treated as a single token. This processing type is
useful when defining request langll~ges with multiple character operators. For
example, if less-than «) and equal sign (=) are defined as COMPOUND_TOKEN
characters, the request line:

print field<= 23

contains four tokens: namely. "print", "field", "<=" , and "23", while the
request Hne:

print field < = 23

contains five tokens: namely, "print", "field", "<11, "=", and "23" because the
less-than and equal signs are separated by another character (a space). By
default, this processing type is not used for any characters.

4-35 AG91-o4

QUOTE_CHARACTER
is used to begin and end a quoted string. Quoted strings do not always
correspond to single tokens as explained in Section 3. Only the character which
starts the quoted string will terminate it even if several different characters are
defined as quote characters. If the character used to start a quoted string is to
appear within the quoted string, it must be doubled. For example, if quote (")
and apostrophe (,) are both defined as quote characters. "list' results" is the
quoted string list' results; "list""results" is the quoted string list"results; and,
"list"results" is invalid. By default, this processing type is used for the quote
(n) character.

ACTIVE_STRING_MODIFIER
if this character appears immediately before a begin active string character, it
causes the return value to only be scanned for tokens. If two of these
characters appear immediately before a begin active string character. it causes
the return value to be treated as a single quoted string when constructing
tokens on the request line. If this character appears immediately before an end
active string character, it causes the return values of iteration within the active
string to be treated as if there were no intervening whitespace when forming
tokens on the request line. In each of these cases, this character does not
appear in any token constructed by the request line processor. If this character
appears anywhere else on the request line, it is treated as a normal character.
By default, this processing type is used for the vertical-bar (I> character.

BEGIN_ITERATION_I... BEGIN_ITERATION_8
thOis character denotes the beginning of an iteration set. The end of the
iteration set is denoted by a character of processing type END_ITERA TION_l
if the beginning is denoted by BEGIN_ITERATION_I, by END_ITERATION_2
for BEGIN_lTERATION_2. etc. In other words. there are eight different sets
of iteration set delimiters permitted in the request language. Iteration sets
correspond to zero or more tokens on the request line as explained in Section
3. The characters which begin the iteration set,however, do not appear as part
of any token. By default, the processing type BEGIN_ITERA TION_l is used
for left parenthesis and the remaining types are not used.

END_ITERATION_I ... END_ITERATION_8
this character denotes the end of an iteration set. See BEGIN_ITERA TION_l
above for more information. By default. the processing type END_ITERATION_l
is used for right parenthesis and the remaining types are not used.

BEGIN_ACTIVE_STRING_l ... BEGIN_ACTIVE_STRING_8
this character denotes the beginning of an active string. The end of the active
string is denoted by a character of processing type END_ACTIVE_STRING_l if
the beginning is denoted by BEGIN_ACTIVE_STRING_I. by
END_ACTIVE_STRING_2 for BEGIN_ACTIVE_STRING_2, etc. In other words,
there are eight different sets of active string delimiters permitted in the request
language. Active strings correspond to zero or more tokens on the request line
as explained in Section 3. The characters which begin and end the active string
however, do not appear as part of any token. By default, the processing type
BEGIN_ACTlVE_STRING_l is used for left bracket and the remaining types
are not used.

4-36 AG91-04

END_ACTIVE_STRING_l ... END_ACTIVE_STRING_8
this character denotes the end of an active string. See BEGIN_ACTIVE_STRING_l
above for more information. By default, the processing type
END_ACTIVE_STRING_l is used for right bracket and the remaining types are
not used.

Abbrev ; at ; on P rocessi ng

The Subsystem Utilities keep track of two profile segments for each subsystem,
the default profile and the current profile.

The default profile is the profile segment which is used when abbreviation
processing is first enabled within the subsystem and after the user uses the ".u" abbrev
request within the subsystem without specifying a profile pathname. If a default
profile is not specified by use of the ssu_$set_request_processor_options entry point,
the profile segment currently being used at Multics command level is used as the
default for the subsystem. This profile segment is known as the default default profile
segment.

The current profile is the profile actually being used to expand request line
abbreviations and may be changed by the user either by using the ".u" abbrev request
or by using the standard subsystem request "abbrev" if it is available within the
subsystem.

If a subsystem permits the user to request abbreviation processing through the
abbrev request. the command procedure of the subsystem should implement the
following control arguments to allow the user to specify the initial state of
abbreviation processing:

-abbrev, -ab
enables abbreviation processing within the subsystem. If a default profile is not
specified by the -profile control argument, the subsystem will use the same
profile being used to expand abbreviations at Multics command ieve1.

-no_abbrev, -nab
disables abbreviation processing within the subsystem. This is the default.

-profile PATH, -pf PATH
specifies the pathname of the default profile to be used within the subsystem.
The suffix "profile" is added to PATH if necessary. This control argument implies
-abbrev.

As implied above, the profile segment specified on the command line should be
used as the default profile segment within the subsystem and not just as the initial
current profile. Many users use separate profiles for Multics command level and the
various subsystems they use; they then define Multics abbreviations to invoke each
subsystem specifying that subystem's profile segment. By having the command
procedure make this profile the default for the subsystem, the user can easily switch
profiles within the subsystem and then switch back to what they expect to be the
default profile by using ".u" without a profile pathname.

4-37 AG91-04

WRITING SUBSYSTEM REQUESTS

Writing subsystem requests closely parallels the writing of Multics commands,
with the normal concerns for validation, argument processing, and error handling. The
parallel extends to the notion of an active function equivalent: a request can be an
active request invoked to return a value to be substituted into the request line before
normal request line execution.

Whereas valid commands are determined by the user's search rules, the validity
of requests is established by a table lookup operation. Before a request can be
executed, the request processor must verify that request's presence in a request table.
Request tables are defined as described under "Defining Request Tables" below.

The structure of a request is much like that of a Multics command/active
function: determine whether or not the request is active; if active, determine where
the value is to be returned; determine how many arguments the request is called with;
process the arguments and control arguments, making sure they are correct. If
everything is determined to be acceptable, the request then performs its defined task,
returning a value if it is an active request. A flag setting in the request table
indicates how a request should be interpreted (i.e .. command request. active request, or
both). Since the writer of the request is presumably also defining the request table
entry, it is highly unlikely that the request would be called improperly.

Multics commands and subsystem requests can also overlap. A special apply
request can cause an arbitrary Multics command line to process an object being
manipulated by the subsystem. and requests can be written that also function as
tv1ultics commands. All aspects of request writing are examined below.

Argument Processing

A request is always called by the request processor with two parameters, the
sci_ptr and the info_ptr. as follows:

dcl rq procedure entry (ptr, ptr);
call rq_procedure (sc i _ptr, i nfo_ptr) ;

4-38 AG91-04

Argument processing within a request procedure closely resembles command level
argument processing. A request that cannot be used as an active request calls
ssu_$arg_count to determine the number of arguments, just as a command calls
cu_$ar!Lcount. Unlike cu_$ar~count, however, ssu_$ar!Lcount has no error code
argument; if invoked by an active request, it cans ssu_$abort_line with the appropriate
error code. If a request is written as an active request, or as both an active request
and a command request, a call is issued to ssu_$return_arg (equivalent to cu_$af_return_arg)
to determine the number of arguments, whether the request is active, and if so, where
the value is to be returned (pointer and maximum length). To retrieve any particular
argument, a request calls ssu_$ar!Lptr (equivalent to cu_$ar!Lptr) with the appropriate
argument and is returned a pointer and length. Again, unlike cu_$ar!Lptr, ssu_$ar!Lptr
does not return an error code; if asked for a nonexistent argument, ssu_$ar!Lptr
invokes ssu_$abort_line with the appropriate error code (Expected argument missing).

Error Handling

The subsystem writer must anticipate errors in processing arguments and in
performing the actual work of the request. Error handling, like all aspects of writing
requests, is similar to the same activity at command level. There are three entry
points involved in error handling: ssu_$print_message, ssu_$abort_line, and
ssu_$abort_subsystem. Calls to these entry points, much like calls to com_err_ and
active_func_err_ at command level, result in messages of the form:

subsystem_name (request_name): status code message user-defined message

If no request name appears in the message, the call was made when no request was
being executed (i.e., called by the command procedure, listener, or request processor
itself). Status code message is the error message associated with the status code; the
user-defined portion is derived from an ioa_ control string.

A call to ssu_$print_message causes a message to be printed followed by a return
to the caller (the same as com_err->. This call is used only to print informational or
warning messages. The ssu_$abort_line entry point is issued from a request procedure,
when to continue executing the request might render totally unexpected results. In this
case, a message is printed identifying the cause of termination of the request, and the
request line is aborted. In the case of ssu_$abort_subsystem. when the current
invocation of the subsystem is to be terminated, a message (if any) is printed, the
request line is aborted, the request loop is exited, and the caller is returned to the
command procedure.

Whenever calls to ssu_$abort_line and ssu_$abort_subsystem are made, the utilities
automatically invoke all cleanup handlers established by the request and any procedures
that may have been called which are still active.

The Apply Request

The concept of an apply request is supported in some form in most Multics
interactive subsystems (e.g., in send_mail, an apply request can be specified to invoke
the emacs editor to edit the message being sent). The ssu_$apply_request_util entry
point may be used to simplify the construction of the apply request within a
subsystem.

4-39 AG91-04

The apply request is used to cause an arbitrary Multics command line to process
an object being manipulated by the subsystem. The recommended names for this
request are apply and ap: the suggested syntax is:

apply {args} {-controi_args} command_i ine

1. args
are optional and denote the object (e.g., message specifiers in read_mail)

2. -control_args
are optional and either further refine the object (e.g., -header /-no_header in
send_mail) or indicate pre- or post-processing to be done to the object (e.g.,
message filling in send_mail)

3. command_line
consists of whatever remains of the line after the last -control_arg

The ssu_$apply_request_util entry point constructs the command line, appends to
it the pathname of a temporary segment containing the object, and invokes the
Multics command processor. The caller of ssu_$apply_request_util (the subsystem's
apply request) must parse its arguments to determine where the command line starts
on the request line and pass this information to ssu_$apply _request_util. The caller
must then create a temporary segment (the recommended method is to call
ssu_$get_temp_segment) in which it places the object to be manipulated as determined
from its arguments and control arguments. A pointer to this segment and its character
count is passed to ssu_$apply _request_util, which returns the character count as
updated by the Multics command it executes.

Subsystem Requests and Multics Commands

An additional consideration while writing subsystem requests involves a duality of
purpose; i.e., subsystem request as Multics command. The concept takes two forms: a
subsystem request that would be useful to invoke as a Multics command, and an
existing Multics command/active function that would be useful to employ as a request
within the subsystem. The first method (subsystem request as new Multics command)
is implemented through a stand-alone invocation; the second (existing Multics command
as subsystem request), through - the multics_request macro (see "Defining Request
Tables" below). Each method is discussed below.

4-40 AG91-o4

A stand-alone invocation is the mechanism used to writ~ a program that
functions both as a subsystem request and as a Multics command. The program as
written resembles a subsystem request. When the request is invoked as a request,
normal request processing takes place. When the request is invoked as a command,
however. a stand-alone invocation must first be created by a can to
ssu_$standalone_invocation. This call generates a subsystem invocation in which calls to
ssu_ entry points are translated into the respective command-level calls. Calls to
ssu_$execute_line and ssu_$evaluate_active_string become calls to cu_$cp and
cu_$evaluate_active_string. In the event of error handling, calls to ssu_$print_message,
ssu_$abort_line, and ssu_$abort_subsystem become calls to com_err_ or active_fnc_err_
as appropriate. To complete the simulation when ssu_$abort_line or ssu_$abort_subsystem
is called, the error message is printed, and then a call is made to an abort procedure
supplied by the writer (see ssu_$standalone_invocation) to effect a nonlocal goto back
to a point in the program where housekeeping can be performed. Within this
sequence, call translation is completely transparent to the subsystem writer.

Depending on how the subsystem writer structures the program, there are
potentially three places where the command invocation must be distinguished from the
request invocation:

• Upon entry, to create a stand-alone invocation

• Upon normal exit, to destroy the stand-alone invocation

• Upon an abort condition, to destroy the stand-alone invocation

The coding extract below illustrates how the program might be structured.

forum_l ist_meetings command/request

forum~list=meetings: proc () options (variable);

standalone = 1I1"b; /'I:true indicates command;
create a stand-alone invocation*/

call ssu_$standalone_invocation (sci_ptr, "forum_list_meetings",
IIl.6a", cu $arg list ptr 0, abort entry, code);

/*set up internal str~ctur; for standalo~e info ptr*/
go to COMMON;

list meetings request: entry (a sci ptr, a info ptr);
s tanda 1 one-= "O"b; /ief a 1 se i nd i cates req~es t ; -process

norma 11 yi:/
sci_ptr = a_sci_ptr;
info_ptr = a_info_ptr;

4-41 AG91-04

COMMON:
call ssu_$return_arg (sci_ptr, arg_count,

af sw, rv ptr, rv lth);
I*proceed with ~equest processing*1

on cleanup call cleanup_forum_list_meetings ();

I*actual request code*1

RETURN_FROM_LIST_MEETINGS: I*abort entry transfers here*1
call cleanup_list_meetings 0; -
return;

cleanup 1 ist meetings:
p~ocedure 0;
I*do housekeeping depending on whether execution
completed normally; e.g., free any temporary segments*1

if standalone then do;
I*free internal structure set up for standalone info_ptr*1
call ssu_$destroy_invocation (sci_ptr);

end;
return;
end cleanup_l ist_meetings;

abort_entry: I*called by ssu_$abort_line or ssu_$abort_subsystem
after printing error message*1

procedure 0;
goto RETURN FROM LIST MEETINGS;

I*do nonlocal-goto-after abort condition
to destroy standalone invocation*/

end abort_entry;
end forum_l ist_meetings;

The multics_request macro (see "Defining Request Tables" below) is the
mechanism for using an existing Multics command/active function as a subsystem
request. This is a relatively simple method for greatly expanding a subsystem's request
repertoire. In fact, the only commands/active functions that cannot be used in this
fashion are those that call either cu_$cp or cu_$evaluate_active_string, in which case
they must be implemented using the stand-alone invocation mechanism if they are to
be used as both Multics commands and subsystem requests.

Use of the multics_request macro to add existing Multics active functions as
subsystem requests is particularly recommended if these active functions would be used
frequently with subsystem exec_corns or abbrevs. By allowing these active functions to
be invoked directly, many calls to the execute active request may be eliminated. which
greatly simplifies exec_com/abbrev writing.

When the request processor is called to process a request. it validates the request
definition in the request table. If the definition indicates that the request is, in fact,
a Multics command or active function, the request processor calls it as if it were a
command or active function. It also translates any command-level error handling calls
(com_err_ and active_fnc_err_) to their ssu_ equivalent entry points for proper
handling. All of this activity is transparent to the subsystem writer, whose only
responsibility in this sequence is to provide the correct request table definition using
the multics_request macro.

4-42 AG91-04

SUBSYSTEM AREAS AND TEMPORARY SEGMENTS

Each subsystem invocation has associated with it a set of areas and a set of
temporary segments from which to acquire temporary storage during that invocation. A
call to ssu_$get_area is translated to a call to define_area_ and obtains an area in a
temporary segment for subsystem use. A call to ssu_$get_temp_segment is translated to
a call to get_temp_segment_ and obtains a temporary segment for subsystem use.

The subsystem writer has the option of acqulnng temporary storage through the
standard mechanisms (define_area_ and get_temp_segment-> or through the ssu_ entry
points. The difference is that any temporary storage acquired through the standard
mechanisms has to be released explicitly, while that acquired through calls to ssu_ is
released automatically when the invocation is destroyed. If an area acquired through
ssu_$get_area is to be released explicitly, it must be released by calling ssu_$release_area.
A temporary segment acquired through ssu_$get_temp_segment that is to be released
explicitly must be released by calling ssu_$release_temp_segment.

USING EXEC COMS IN SUBSYSTEMS

The exec_com language (see the Commands manual) can be used to create
exec_corns (ecs) for use within individual subsystems through the standard exec_com
request (see Appendix J). It should be noted that subsystem ecs execute request lines
rather than command lines and pass input to request lines rather than to command
lines. Also, the bracket/ampersand constructs evaluate active requests rather than
Multics active functions. There are other differences between subsystem ec use and ec
use at Multics command level, notably, in the formation of the ec suffix and the ec
search list, and in satisfying the referencin~dir rule. These other differences are
discussed below.

Subsystem ecs take the subsystem name (e.g., .read_mail) as the default suffix to
distinguish them from Multics ecs. The default suffix can be altered by calling
ssu_$set_ec_suffix. To retrieve the current value of the ec suffix. call ssu_$get_ec_suffix.

Subsystem ecs do not have a search list by default; rather they are located by
specifying the relative pathname of the ec. A search list can be established for the
subsystem ecs by caning the ssu_$set_ec_search_list entry point. A can to
ssu_$get_ec_search_list retrieves the current ec search list. If a search - list is
established for a subsystem that has a library of ecs. a call to ssu_$set_ec_subsystem_ptr
can be used to set a referencin~dir for the search list.

The subsystem exec_com facility also supports a start_up ec to allow users to
simplify use of a subsystem. The name of this ec is start_up.ec_suffix and it is
invoked by calling ssu_$execute_start_up, which searches for the start_up ec first in
the home directory. then in the project directory, and finally in >site. If no start up
is found, subsystem processing proceeds normally. The call to ssu_$execute_start_up
should be made before calling the listener (ssu_$listen) and after setting the exec_com
suffix, search list. and referencing_dire

4-43 AG91-Q4

If the subsystem is to support start_up ecs, it is recommended that the command
procedure support the following control arguments:

-start_up, -su
invokes the subsystem's start_up ec, if present. The user's home
directory, project directory, and >s i te are searched in that order.
This is the default.

-no_start_up, -nsu, -ns
does not invoke the subsystem's start_up ec.

TAILORING THE SUBSYSTEM ENVIRONMENT

The subsystem utilities provide a fundamental basis on which to develop and
implement interactive subsystems. In some cases, the facilities provided exceed the
requirements of the application, and yet other applications may require, to a greater or
lesser extent, that the basic facilities be expanded to include additional processing. For
this reason, it is possible to tailor parts of the utilities to implement user-coded
procedures. or otherwise to override ssu_ default conditions. The prospect of tailoring
was addressed earlier. in the discussion on the request language, in which elements of
the language could be changed or certain features enabled or disabled (see "Subsystem
Request Language" above). The discussion below centers on what are referred to as
replaceable procedures. specific pieces of the utilities that the subsystem writer wishes
to alter to do something different from the standard interfaces. The following entry
points are used to manipulate replaceable procedures:

• ssu_$get_procedure retrieves the current value of the specified replaceable
procedure.

• ssu_$set_procedure sets the current value of the replaceable procedure.

• ssu_$reset_procedure resets the specified replaceable procedure to its
default value.

• ssu_$get_default_procedure retrieves the default value for the specified
replaceable procedure.

A common use of replaceable procedures is to do something in addition to the
standard procedure; e.g., each request line, before it is executed, is to be recorded in
a segment as a log of subsystem activity. To do this, a call to ssu_$get_procedure
retrieves the current execute_line procedure, which is stored in the subsystem's info
structure. A call to ssu_$set_procedure sets the new procedure which is invoked
whenever a call is made to ssu_$execute_line. This procedure records the request line
and then invokes the previous execute_line procedure (saved in the info structure) to
do the actual request line execution.

There are 21 replaceable procedures. The two most prominent involve the escape
convention and dealing with unknown requests. Four others modify the request loop
without completely replacing the listener. The final fifteen are entry points that
perform standard operations. Each of these groups is discussed below.

4-44 AG91-04

Replaceable Procedures for cpescape and unknown_request

Two replaceable procedures involve processing of the escape convention to
Multics command level and dealing with unknown requests.

When reading request lines, the standard subsystem listener interprets any line
beginning with " .. " as an escape to Multics command level. Such request lines are
handled by invoking the cpescape replaceable procedure.

The cpescape replaceable procedure is used as follows:

dc1 cpescape entry (ptr, ptr, fixed bin(21), fixed bin(35»;

ca 11 cpescape (sc i _ptr, 1 i ne_ptr, 1 i ne_l th, code);

STRUCTURE ELEMENTS

sci_ptr
is a pointer to the subsystem's control structure as returned by ssu_$create_invocation.
(Input)

line_ptr
is a pointer to the request line excluding the leading " .. ". (Input)

line_lth
is the length of the request line excluding the leading " .. ". (Input)

code
is a standard system status code. (Output) The listener assumes that the cpescape
procedure always prints any necessary error message itself.

By default, the value of the cpescape procedure is ssu_$cpescape, which executes
the request line by calling the Multics command processor via cu_$cp. If it is
necessary to disable the command processor escape mechanism, the cpescape procedure
should be set to 'ssu_$cpescape_disabled, which prints an appropriate message.

The standard request processor handles unknown request names by calling the
unknown_request replaceable procedure. The default value of this procedure prints the
standard :

Unknown request <request_name>. Type "?" for a request list.

message and aborts the request line.

The unknown_request replaceable procedure (which may be invoked directly as
ssu_$unknown_request) is used as follows:

dc1 unknown_request entry (ptr, ptr, char(*), ptr, bit(l)
ali gned) ;

4-45 AG91-04

call unknown request (sci ptr, info ptr, request_name,
arg_list_ptr, continue_sw); -

STRUCTURE ELEMENTS

sci_ptr
is a pointer to the subsystem's control structure as returned by a call to
ssu_$create_invocation. (Input)

info_ptr
is a pointer to the subsystem-specific info structure used by this subsystem.
(Input)

request_name
is the name of the request as entered on the request line by the user. (Input)

ar~list_ptr
is a pointer to the argument list containing the arguments to be supplied to the
request. (Input)

continue_sw
if set to "1 "b, indicates that execution of the request line is to continue with the
next request. (Input) If set to "O"b, the request processor prints the standard
unknown request error message and aborts the request line without further
execution.

Request Loop Replaceable Procedures

There are four procedures caned by the listener that, by default, do not perform
any function. The four procedures, pre_request_line, post_request_line. program_interrupt.
and ready, are all called with one argument, the sci_ptr .. and may be replaced by
user-coded procedures that perform some specific service at that juncture in the
request loop.

The pre_request_line procedure is called just before the listener prompts for and
reads a request line. A prompt too complex to specify as an ioa_ control string (see
"Subsystem Request Loop" above), could be used in a subsystem by replacing this
procedure.

The post_request_line procedure is called immediately after successful execution
of a request line and, by default, returns to the listener. This provides an opportunity
to take some action relative to successful request line execution, before resuming the
request loop.

The program_interrupt procedure is called by the listener after it receives a
program_interrupt signal, which normally puts the user back at request level. A
tailored procedure might. for example, return with a question or simply abort the
subsystem.

4-46 AG91-04

The ready procedure is called bef ore the pre_request_line procedure, only if
ready processing is enabled and the previous request line was non blank (see "Subsystem
Request Loop" above).

Other Replaceable Procedures

The 14 replaceable procedures that match specific entry points are listed below
together with the entry point in ssu_ by which each is invoked. The calling sequence
of the replaceable procedure is the same as its respective entry point.

Procedure

abort line
abort_subsystem
print_message
1 i sten
execute_l i ne
evaluate_active_string
arg_count
arg_ptr
return_arg
arg_l i st_ptr
get_default_rp_options
set_request_processor_options
get_request_processor_options
reset_request_processor_options
get_subsystem_and_request_name

Entry Point

ssu Sabort line
ssu-Sabort-subsystem
ssu=Sprint=message
ssu Slisten
ssu-Sexecute 1 ine
ssu-Sevaluat; active string
ssu=Sarg_count -
ssu_Sarg_ptr
ssu Sreturn arg
ssu=Sarg_list_ptr
ssu Sdefault rp options
ssu-Srequest-processor options
ssu=Srequest=processor=options
ssu Sreset request processor options
ssu-Sget subsystem-and request name - - - - -

As with any software tailoring, changes to one procedure may have a ripple
effect on other parts of the software. If, for example, the request processor is
changed so that requests are invoked differently (a new execute_line procedure), but
the standard requests are still to be used, the subsystem writer must ensure that all
the standard interfaces (e.g., ssu_$ar~ptr) are in place. Essentially, that means that all
affected request processor procedures must be altered to perform their defined
functions within the new request processor environment.

Subsystem Documentation Facilities

Several facilities are available with the utilities to make subsystems self -documenting;
i.e., users of a subsystem (like Multics users at command level) can ascertain how it
works, what requests are available, what these requests accomplish, etc., by using
various help facilities.

In particular, four standard requests enable users to seek online information
about the subsystem: help, list_help, summarize_requests (7), and list_requests. A brief
description of each of these requests is given below; all standard requests are described
in detail in Appendix J.

4-47 AG91-04

• The help request prints detailed information on a given topic within the
subsystem. If no topic is specified, the help request explains the other
requests available to obtain information about the subsystem.

• The list_help request displays the names of all available info segments
or those matching a given topic.

• The summarize_requests request (normally invoked as 1) prints a
multicolumnar list of most requests available in the subsystem.

• The list_requests request displays the names and brief descriptions of
most requests available in the subsystem or those matching a given
topic.

The requests listed by the summarize_requests request and those listed by default
by the list_requests request are controlled by the dont_summarize and dont_list flags
specified in the definitions in the request tables used by the subsystem. See "Defining
Request Tables" below for more details.

If standard request tables are not used to define requests in the subsystem, the
summarize_requests and list_requests requests will not work as described. Additionally,
all four requests will work as described only if ssu_$ar~ptr. ssu_$return_arg,
ssu_$ar~count, and ssu_$ar~list_ptr procedures either are not replaced or, if replaced.
still perform their defined function (see "Tailoring the Subsystem Environment" above).

SUBSYSTEM INFO SEGMENTS AND DIRECTORIES

The help and list_help requests process subsystem info segments. Usually, there is
one info segment for each request in the subsystem, the" format of which follows that
of a typical command info segment (i.e., name, syntax, function, arguments. control
arguments. notes). There may also be info segments dedicated to specific topics. For
example, in read_mail there is an info segment dedicated to message specifiers.

Info segments are contained within info directories. which are searched when
help and list_help are invoked for a given subsystem invocation. Normally, the call to
ssu_$create_invocation names the first info directory in a list of directories to be
searched within the subsystem invocation. This list may thereafter be manipulated by
the entry points described below.

• ssu_$add_info_dir adds a new directory at the specified location in the
list of info directories being searched within this subsystem invocation.

• ssu_$delete_info_dir deletes an info directory from the list of directories
being searched.

• ssu_$list_info_dirs obtains the list of info directories currentiy in use by
this subsystem invocation.

• ssu_$set_info_dirs establishes a completely new list of info directories to
be searched within this subsystem invocation.

4-48 AG91-04

The info directories are searched in order. first to last; the search stops when the
named info segment is located. If an invalid directory name is encountered. it is
flagged as invalid and no longer searched.

Usually all info segments for a given subsystem are contained in one info
directory. Sometimes. however. it is desirable to isolate certain info segments in
directories. which are made available only when the requests they pertain to are also
available within the subsystem invocation. Availability of the info directories is
controlled by the entry points described above.

Occasionally. subsystems will share an info directory. In this situation. the help
and list_help requests should ignore info segments from other subsystems in that
directory. This is done by establishing an info segment prefix for the subsystem by a
call to ssu_$set_info_prefix. The help and list_help requests will recognize only those
segment names that begin with the prefix. If an info segment is to be shared among
subsystems. it must be given at least one name with each info prefix in order to be
found.

USING THE STANDARD REQUESTS INFO SEGMENTS

Info segments (ssu.REQUEST.info) in the directory >doc>subsystem document
the standard requests. Subsystems that use the standard requests with recommended
names (strongly advised) should do so by adding the standard requests request table
(see "Using Standard Requests" below). The info segs for all requests in the table can
be included by adding the standard requests info directory. This is accomplished in
the following fashion:

del ssu_info_directories_$standard_requests char (168) external;

call ssu $add info dir
(sci_ptr, ssu_info_directories_$standard_requests, 9999, code);

This adds the standard requests info directory to the end (9999th position) of
the list that is used to search for info segments.

Alternatively. subsystems that add one or more of the standard requests to
their own request tables (as opposed to adding the standard requests request table) can
create links in their subsystem into directories to the appropriate info segments. For
example:

link >doc>subsystem>ssu.l ist_requests.info list_requests.info
add_name list_requests.info lr.info

When nonstandard names are used for requests or when more information is required
(e.g.. the exec_com request does not use the default suffix). the subsystem writer
should use the standard info segment as the basis for the modified segment.

4-49 AG91-Q4

Subsystem Debugging Facilities

A debug mode facility is provided with the Subsystem Utilities to assist in
debugging interactive subsystems. Debug mode is disabled by default. The
ssu_$set_debu~mode entry point sets debug mode on or off within the subsystem. A
call to ssu_$get_debu~mode returns the current state of debug mode within the
subsystem. In addition, the standard debu~mode request may be defined in the
subsystem to allow a user (usually the subsystem writer) to enable or disable debug
mode from the request loop.

When debug mode is enabled, all calls to ssu_$abort_line and ssu_$abort_subsystem
print the specified message, but then, rather than aborting the request line or
subsystem, can cu_$cl to invoke another command level. While at this command level,
all the debugging facilities of the system are available to determine why ssu_$abort_line
or ssu_$abort_subsystem were called. When debugging is completed, the start command
causes the request line or subsystem to be aborted.

Subsystem Request Tables

Requests which are valid for a subsystem are defined by a list of request tables.
A single request table contains the definition of one or more requests. A request's
definition includes the name(s), the procedure that implements the request. the short
description printed by the list_requests request. and a set of flags defining how the
request is used and whether it known to the summarize_requests and list_requests
requests.

When a subsystem invocation is created, the list of request tables is initialized to
contain only the request table specified in the call to ssu_$create_invocation.
Additional tables may later be added to the request table list by using
ssu_$add_request_table. Tables may be removed from the list by calling
ssu_$delete_request_table. A call to ssu_$list_request_tables returns the list currently in
use, and a call to ssu_$set_request_tables completely replaces the current list.

A request table is a data structure in an object segment created by the ALM
assembler (see the Commands manuaI). Multiple request tables may be defined in a
single object segment. Request tables are referenced in calls to the entry points
described above by a pointer to the table, which may be constructed as follows:

del subsystem_tables$default_requests bit (36) aligned external;
.•. addr (subsystem_tables$default_requests) .•.

The above example constructs a pointer to the default_requests request table in the
segment subsystem_tables.

When the request processor looks up the definition of a request, it scans the
request table list linearly until it finds the first table containing a definition for a
request. This enables, for example. the subsystem writer to provide alternate definitions
f or standard requests (see below) by placing the supplied
ssu_request_tables_$standard_requests request table last in the subsystem's list.

4-50 AG91-04

STANDARD REQUESTS AND STANDARD REQUEST TABLES

To promote consistency across subsystems. a set of standard requests is supplied
with the Subsystem Utilities. These standard request definitions are accessed in a
request table by specifying ssu_reques ts_$<reques t_name> as the procedure which
implements a request. where <reques t_name> is the name of one of the standard
requests described in Appendix J. In addition. the utilities provide a set of standard
request tables which may be added to a subsystem's request table list to access specific
groups of standard requests. Such a request table would be referenced as:

dcl ssu_request_tables_$<table_name> bit (36) aligned external;

where <tab 1 e_name> is the name of one of the standard request tables listed in
Appendix J.

Usi ng Standard Requests

Of the standard requests listed in Appendix J, only the summarize_requests and
list_requests requests are dependent on the internal format of the Subsystem Utilities
data structure. The other standard requests perform as expected provided the
ssu_$ar!Lptr. ssu_$return_arg, ssu_$ar!Lcount. ssu_$ar!Llist,-ptr, and ssu_$execute_line
procedures either are not replaced or. if replaced. still perform their defined function
(see "Tailoring the Subsystem Environment" above).

The recommended method of enabling the standard requests within a subsystem is
to include the ssu_requests_tables_$standard_requests request table as the last table in
the subsystem's request table list. This is accomplished in the following fashion:

dcl ssu_request_tables_$standard_requests bit(36) aligned external; I

call ssu $add request table (sci ptr, addr
(s~u_request_tables_$standard_requests), 9999, code);

Those requests that are unsuitable for the subsystem application should be disabled in
a earlier request table· through use of the unknown_request macro (see below). Those
requests with a default behavior that is unsuitable to the subsystem should be replaced
by subsystem-specific requests in an earlier table.

In particular, two standard requests, self_identify and quit, are normally replaced
by subsystem-specific requests. The standard self_identify request simply prints the
subsystem name, version, invocation level, and state of abbreviation processing; it may
be desirable to print other information of interest (e.g., the pathname of the mailbox
in read_mail). The information printed by the standard request is available through
calls to ssu_$get_subsystem_name, ssu_$get_subsystem_ version, ssu_$get_invocation_coun t,
and ssu_$get_request_processor _options.

I
I
I
I
I

4-51 AG91-04

The standard quit request simply exits the subsystem through a call to
ssu_$abort_subsystem. It may be desirable through a subsystem-specific request to
require permission to exit based on the state of the subsystem or to perform any
required housekeeping before exiting (this can also be accomplished by the command
procedure).

DEFINING REQUEST TABLES

As described earlier, a request table is a data structure contained in an object
segment created by the ALM assembler. A table is defined by the begin_table and
end_table macros. Individual requests are defined by the request, unknown_request, and
multics_request macros. All of these macros are defined in the ssu_request_macros.incl.alm
system include file.

The basic format of the source segment defining one or more request tables is:

name object_segment_name
include ssu_request_macros
begin_table table_l

request 1

request n
end table table_l

end_table table_N
end

where object_segment_name is the name of the object segment and table_i are the
names of the request tables. The source segment should be named object_segment_name.alm
so that ALM creates the object segment with the desired name.

USING THE REQUEST MACROS

Individual requests are defined by the request, unknown request, and multics_request
macros.

The request and multics_request macros contain a set of flags (keywords) that
define how the request is to be used. The set_default_flags macro and the
set_default_multics_flags macro are available to set the default values for the flags.

Additionally, the set_default_multics_doc macro can be used to supply a
documentation string for a subsequent use of the multics_request macro for which
there is no explicit documention string.

4-52 AG91-04

Syntax

The following rules of syntax apply in the use of these macros. For a complete
description of ALM syntax, see the aIm command in the Multics Commands and
Active Functions manual. Order No. AG92.

• Braces indicate that a parameter is optional. Where parentheses appear
within braces, the parentheses must be specified as part of the
parameter value.

• Whitespace is allowed only before and after the macro name, at the
beginning of continuation lines. and within documentation strings.

• A statement may be coded on more than one line by splitting the
statement immediately after the comma that separates parameters.

• All parameters are positional, so that commas and parentheses must be
specified for parameters to be· omitted if later parameters are to be
specified.

The request A4acro

The request macro is used to define most requests the subsystem writer may wish
to include in a request table. The syntax is:

request name,procedure,{(other_names)},{(documentation)},
{(system_flags)}

where:

1. name

2. procedure

is the primary name of the request. This name is used in any error
messages caused by the request. This parameter is required.

is the name of an external procedure of two arguments that
implements this request. The name must be specified either as
refname$entryname or as ref name (equivalent to refname$refname).
This parameter is required.

are additional names, separated by commas and enclosed in parentheses.
by which this request may be invoked.

4. documentation
is the brief description of the request printed by the list_requests
request If no documentation string is specified, the request is not
listed by the list_request request. unless the -all control argument is
specified, in which case the request is listed without any description.
The prescribed method for not listing the request is to specify
flags.dont_list (see below).

4-53 AG91-o4

I 5. system_flags

default

indicate how the request may be used and how it is documented.
The valid flags are:

if specified. means the request is defined with the default flags as
set by the last invocation of the set_default_flags macro.

flags. allow ~command
if specified. means the request may be invoked as a command
request. This flag is incompatible with flags. allow _both. This is the
default.

flags. allow _af
if specified, means the request may be invoked as an active request.
This flag is incompatible with flags. allow _both.

flags. allow _both
if specified. means the request may be invoked both as a command
request and an active request. This flag is incompatible with
flags. allow _command and flags. allow _af.

flags. unimplemen ted
if specified. means space is reserved in the table f or this request. but
any attempt to execute it will be rejected. The request is, however.
listed by the list_requests request.

flags.dont_list
if specified, means this request is not to be listed by the
list_requests request (unless the -ali control argument is specified).
The default is to list the request.

flags. don t_summarize
if specified. means this request is not to be shown by the
summarize_requests (7) request. The default is to show the request.

If any flags are specified, the default flags are not assumed and must be explicitly
specified by the "default" flag. To specify multiple flags, use a comma-separated list
(flagA, flagB).

Consider the following examples of request definitions from read_mail.

request print,rdm_msg_requests_$print_request,
(pr, p) , (Pr i nts the se 1 ected messages)

This example defines the print request. which is processed by the external procedure
rdm_ms~requests_$print_request. The request can optionally be invoked by specifying
pr or p. The description "Prints the selected messages" is shown when the print
request is listed by the list_requests request. By default. the request can only be
invoked as a command request, and is shown by both the list_requests and
summarize_requests requests.

4-54 AG91-04

request 1 ist,rdm msg requests $1 ist request, (ls),
(List the specified messages),
(f 1 ags. a 11 ow_both)

This example defines the list request, which is processed by the external procedure
rdm_ms~requests_$list_request. The request can optionally be invoked by specifying Is.
The description "List the specified messages" is shown when the list request is listed
by the list_requests request. The flags. allow _both flag is specified so that the request
can be invoked both as a command request and as an active request.

The set_default_flags macro can be used to define the default flags for the
request macro. The syntax is:

set_default_flags (system_flags)

where:

is a list of one or more of the system_flags as described above for
the request macro. Multiple flags must be separated by commas.

Each use of the begin_table macro sets the default flags to (flags. allow _command).

The unknown_request Macro

The unknown_request macro causes the request processor to treat a request as
nonexistent, even though it may be defined in a table later in the request table list.
This facility is useful for disabling unwanted standard requests specified in the
ssu_request_tables_$standard_requests table. Note that in order to insure the request is
completely unknown, all names (alternate names and short names) must be explicitly
disabled. The syntax is:

where:

1. name

unknown_request name,{(other_names)}

is the primary name of this request. This parameter is required.

are additional names, separated by commas and enclosed in parentheses,
by which this request may be invoked.

4-55 AG91-Q4

I For example, to disable the debu~mode and ready standard requests, the
I subsystem writer would include the following statements in the definition of a request

. I table that appears before ssu_request_tables_$standard_requests in the subsystem's
i request table list.

unknown_request debug_mode
unknown_request ready, (rdy)

The multics_request Macro

The multics_request macro is one of the facilities for defining Multics commands
and active functions as subsystem reauests (as described earlier under "Subsystem
Requests and Multics Commands"). The -syntax is:

multics_request name,{(other_names)},{(documentation)},
{procedure}, {(system_flags)}

where:

1. name
is the primary name of the request. This name is used in any error
messages produced by the command/active function. This parameter
is required.

are additional names, separated by commas and enclosed in parentheses,
by which the request may be invoked.

3. documentation

4. procedure

is the brief description of the request printed by the list_requests
request. If no value is specified for this parameter, it defaults to the
value set by the last set_default_multics_doc macro within the source
segment. If no previous set_default_multics_doc macro was used, the
request is not shown by the list_requests request. unless the -all
control argument is specified, in which case the request is shown
without a description. The set_default_multics_doc macro is described
below.

identifies the Multics command/active function that implements this
request The procedure must be specified as either refname$entryname
or ref name (equivalent to refname$refname). If omitted, the procedure
defaults to the same name as the request (name$name).

4-56 AG91-o4

5. system_flags I
indicates how the request may be used and how it is documented.
Valid flags are described above for the request macro. *

The names by which a command/active function are known in a subsystem do not
have to be the same as those used at Multics command level.

The following code fragment exemplifies use of the multics_request macro:

mUltics_request date_time_equal, (dteq), (Compare date/time strings)"
(default,flags.dont_list,flags.dont_summarize)

This example defines the Multics date_time_equal command/active function as a
subsystem request of the same name, with a short name of dteq. The description
"Compare date/time strings" is printed when the request is listed by the list_requests
request. Note that, since flags are specified, a comma denotes the missing parameter,
procedure, which is unnecessary because the request name is the same as the *
command/ active function.

The set_default_multics_flags macro can be used to define the default flags for
the multics_request macro. The syntax is:

where:

set_default_multics_flags (system_flags)

is a list of one or more of the system_flags as described above for
the request macro. Multiple flags must be separated by commas.

Each use of the begin_table macro sets the default flags to (flags. allow_command,
flags. allow _an.

4-57 AG91-G4

The set default multics doc Macro - - -

The set_default_multics_doc macro may be used to supply a documentation string
for any subsequent use of the multics_request macro for which there is no explicit
documentation string. The syntax is:

set_default_multics_doc (documentation)

where:

1. documentation
is the new default string for use by subsequent multics_request
macros. Within the documentation string. &1 is replaced by the name
of the request being defined. For example:

set_default_multics_doc (Type 1 •• help &1 1 for more information.)

4-58 AG91-04

SECTION 5

INPUT AND OUTPUT FACILITIES

This section contains information on the various input and output facilities
available on the Multics system. A general description of the input/output (I/O)
system is contained in "Multics Input/Output System" below. The section also contains
information on programming language I/O, file I/O. terminal I/O, bulk I/O, and
how to implement user-written I/O modules. In addition, Multics peripheral I/O
facilities including the Resouce Control Package (Rep) and I/O Interface (IOn are
described from the user's viewpoint.

Earlier versions of Multics used a different. but similar, I/O system. Parts of
the system documentation may still use the terminology of the old I/O system. In
particular, the old system used the term "I/O stream" instead of "I/O switch" and the
terms "DIM" and "IOSIM" instead of "I/O module." Also, documentation may
describe attaching to a device even though the attachment may be to something other
than a device, e.g., a file in the storage system. (A file is defined as a segment or
multisegment file.)

MULTICS INPUT/OUTPUT SYSTEM

Since the Multics input/output (I/O) system handles logical I/O rather than
hardware I/O, I/O on the Multics system is essentially device independent. Most I/O
operations refer only to logical properties (e.g.. the next record, the number of
characters in a line) rather than to particular device characteristics or file formats.
The system permits I/O to and from files in the storage system. This involves only
the transfer of data from one memory location to another. It does not deal with the
transf er of pages (paging) between secondary storage and main memory. This paging is
managed invisibly by the Multics virtual memory and is used by user programs and
the I/O system aiike. Hardware I/O is performed by routines that are not normally
called by a user.

To facilitate control of the sources and targets for I/O, the system makes use of
a software construction called an I/O switch. An I/O switch is like a channel in that
it controls the flow of data between program accessible storage and devices, files, etc.
The switch must be attached before it can be used. The attachment specifies the
source/target for I/O operations and the particular I/O module that performs the
operations. For example, a switch may be attached to the user's terminal through the
tty_I/O module or to a file in the storage system through the vfile_ I/O module.
The basic tool for making attachments and performing I/O operations is the iox_
subroutine (described in the Subroutines manual). All functions of the I/O System are
accessible through calls to this subroutine.

5-1 AG91-D4

Attachments and I/O operations can also be done from command level. using the
io_call command. The print_attach_table command prints descriptions of all current
attachments. Both of these commands are described in the Commands manual.

System Input/Output Modules

The Multics system contains the following I/O modules, which, unless otherwise
noted, are described in the Subroutines manual:

provides a mechanism for auditing and editing I/O on a switch.

bisync_
performs stream I/O over a binary synchronous communications channel.

cross_rins-
allows an outer ring to attach a switch to a preexisting switch in an
inner ring to perform I/O operations.

discard_
is a sink for unwanted output.

performs stream I/O from/to a Honeywell Level 6 Gl15 data
transmission terminal.

hasp_host_
simulates record-oriented I/O to a single device of a workstation while
communicating with a host system using the HASP communications
protocol.

hasp_ workstation_
performs record-oriented I/O to a single device of a remote terminal
that supports the HASP communications protocol.

ibm2780_
performs stream I/O from/to a device similar to the IBM 2780 data
transmission terminal.

ibm3270_
performs stream I/O from/to a device similar to the IBM 3270 data
transmission terminal.

ibm3780_

mtape_

performs stream I/O from/to a device similar to the IBM 3780 data
transmission terminal.

supports I/O to/from tapes written in ANSI and IBM tape formats.
This is an extended I/O module which uses opening, closing and
detaching descriptions to tailor its operations. (Users writing new
applications should use mtape_ instead of tape_ansi_ or tape_ibm_ I/O
modules).

5-2 AG91-04

supports I/O from/to removable disk packs.

record_stream_
provides a mechanism for doing record I/O on an unstructured file and
stream I/O on a structured file.

remote_in put_
performs record input from a terminal I/O module that is assumed to
be connected to a remote I/O device.

remote_printer_
formats and controls stream I/O to a remote I/O terminal that has the
characteristics of a line printer.

remote_punch_
formats and controls stream I/O to a remote I/O terminal that has the
characteristics of a card punch.

remote_teleprinter _

report_

formats and controls stream I/O from/to a logical entity that has the
characteristics of a teleprinter.

supports input to the report generation portion of a Multics Report
Program Generator (MRPG) object segment r Multics Report Generator
Reference Manual, Order No. CC69).

signal_io_
signals a condition whenever an iox_ operation is performed.

~vn -01---
establishes one switch as a synonym for another.

tape_ansi_
supports I/O from/to magnetic tape files according to standards
established by the American National Standards Institute (ANSI) (Users
writing new applications should use the mtape_ I/O module).

tape_ibm_
supports I/O from/to magnetic tape files according to standards
established by IBM (Users writing new applications should use the
mtape_ I/O module).

tape_mult_
supports I/O from/to magnetic tape files in Multics standard tape
format

tape_nstd_
supports I/O from/to tapes in nonstandard or unknown formats.

supports I/O from/to terminals.

5-3 AG91-04

supports I/O from / to files in the storage system.

window_io_
implements a virtual VIOeo terminal (a window) on the user's terminal
and provides real-time editing of input.

How to Perform Input/Output

To perform I/O, carry out the steps listed below. In general, a step may be
performed by a call to the iox_ subroutine (described in the Subroutines manual) or
by use of the io_call command (described in the Commands manual). The I/O
facilities of programming languages may also be used to carry out these steps.

In steps 2, 4 and 5 below, the I/O switch is opened, closed and detached. Some
I/O modules accept file open, close and detach description arguments which allow the
user to tailor the operation to his needs. These are called extended I/O modules. Use
the iox_$open_file, iox_$close_file and iox_$detach entrypoints for extended I/O
modules; and use iox_$open; iox_$close and iox_$detach_iocb for nonextended I/O
modules (those which do not accept such descriptions). Currently. the only extended
I/O module provided with the Multics system is the mtape_ I/O module.

The I/O facilities of programming languages (eg, PL/I and Fortran) can perform
these steps without using iox_ or io_call. Currently, programming language facilities
can only interface with nonextended I/O modules.

1. ,A .. ttach an I/O switch. This step sJY"~ifies a source/target for subsequent
I/O operations and names the I/O module that performs the operations.
Example:

This command line attaches the switch named input_sw to a storage
system file whose relative pathname is some_file. The I/O module that
performs this operation is named vfile_ (described in the Subroutines
manual). This attachment could also have been performed by a
subroutine call as follows:

call iox_Sattach_name (llinput_sw", iocb_ptr,
"vfile_ some_file", codeptr (procedure_name), code);

where procedure_name names the external procedure that is calling
iox_$attach_name, and codeptr is a Multics-specific PL/I built-in
function.

5-4 AG91-04

2. Open the I/O switch. This step prepares the switch for a particular
mode of processing (e.g., reading records sequentially) using the already
established attachment. An example of a nonextended I/O module
opening:

I
I

call iox_$open (iocb_ptr, Sequential_input, "O"b, code); I

The iocb_ptr identifies the switch (see "Input/Output Switches" below).
The argument Sequential_input means that the opening is for sequential
reading and is a constant declared in the iox_modes.incl.pll include file.
The "O"b represents an obsolete argument. See the description of the
iox_ subroutine for full details. This openning for a nonextended I/O
module could also have been performed by a command, as follows:

For an extended I/O module, the open subroutine call would look like:

call iox $open fi le (iocb ptr, Sequential input,
II-name ~mploy~e_datall, "Gllb, code); -

The arguments are the same as for iox_$open except for the third
argument, which is the open description. Assuming that the original
attachment was to a tape volume, the open description in the example
above specifies which file on tape to read by giving the file name.
This opening could be performed by a command as follows:

io_call open_file input_sw sequential_input
-name employee_data

3. Perform the required data transfer and control I/O operations working
through the switch. For example. read one record at a time until an
end-of-information code is returned by the read operation. Example:

call iox_$read_record (iocb_ptr, buffer_ptr,
buffer_length, actual_record_length, code);

This read_record step could also have been performed by the io_call
command.

The io_call command prints the record which is read.

4. Close the I/O switch. This step cleans up by writing out buffers,
marking the end of a file, etc. The I/O switch is restored to the state
it was in after step 1. The close could be followed by a repeat of
steps 2-4, perhaps with a different opening mode or different open
description. An example of a nonextended I/O module opening is:

call iox_$close (iocb_ptr, code);

I

5-5 AG91-04

Closing of a nonextended I/O module could also have been performed
by the io_call command. as follows:

For an extended I/O module. the close subroutine call would look like:

call iox_$close_file (iocb_ptr,
"-C 1 ese_pos i t i en eof", code);

The arguments are the same as for iox_$close except for the second
argument, which is the close description. Assuming that the original
attachment was to a tape volume. the close description in the example
above specifies to position the tape to the end of the file being read
after the file is closed. This close operation could be performed by a
command as follows:

5. Detach the I/O switch. After this step, the switch can be attached
again f or some other purpose. An example of detaching a nonextended
I/O module is:

This detachment step could also have been performed by a subroutine
call as follows:

For an extended I/O module. the detach operation would look like:

io_call detach input_sw -unload

The example detach description for a tape volume specifies that the
tape volume is to be unloaded from the tape drive as part of the
detach operation. An equivalent subroutine call is:

ca 11 i ox_$detach (i ocb_ptr, II-un 1 oad", code);

In general, step 1 (attach) specifies a particular type of device or volume. For
nonextended I/O modules, step 1 also identifies file name and file format For
extended I/O modules, file name and format information is given in step 2 (open). It
is often convenient to have these steps and step 5 (detach) performed from command
level. while other steps are performed by a program. This approach may be used to
make a program device independent Another approach is to include the attach and
open calls in the user program. but to have the program prepared to accept the status
code from iox_Sattach or iox_$open indicating the switch is already attached or
opened. The program should detach a switch only if it attached it, and close a switch
only if it opened it

5-6 AG91-Q4

Input/Output Switches

Each I/O switch has an I/O control block (lOeB) associated with it. Storage
for the control block is automatically allocated when the switch is attached. The
contents of the control block are maintained by the I/O system and are not usually
of interest to the general user. It does, however, contain two pointers of interest.

1. iocb.attach_descrip_ptr
is a pointer to a character string describing the attachment of the
switch. If the pointer is null, the switch is not attached.

2. iocb.open_descrip_ptr
is a pointer to a character string describing the opening mode and
optional open description of the switch. If the pointer is nUll, the
switch is not open.

Each I/O switch has a name that is used to refer to the I/O switch at
command level and is also used in other contexts where reference by a character
string name is appropriate. Most calls to the iox_ subroutine reference an I/O switch
by its control block pointer. Given the switch name. the iox_$find_iocb entry point
returns the control block pointer. The switch name is a character string from one to
32 characters long with no blanks.

Each I/O switch belongs to a particular ring, normally the user ring. Within a
ring, switch names are unique, but switches in different rings may have the same
name.

ATTACHING A SWITCH

To attach a switch, the "io_call attach ... " command or the iox_$attach_ptr or
iox_$attach_name entry points should be invoked. In all cases, an attach description
must be given. This string has the following form:

module_name options

where module_name and each option are separated from one another by one or more
blanks. If an option contains blanks it must be enclosed in quotes (n). If an option
already contains a quote, the quote must be doubled.

The module_name determines the I/O module for the attachment as follows: If
it does not contain any instances of greater than or less than characters (> or <), it
is interpreted as a reference name, and the I/O module is found by the search rules.
If module_name contains any greater than or less than characters, it is interpreted as
the pathname (absolute or relative) of the I/O module.

5-7 AG91-()4

The options must conform to the requirements of the particular I/O module.
The I/O modules are described in the manuals mentioned above in "System
Input/Output Modules." In general, the first option listed is the source/target of the
attachment (i.e., the name of the device or file).

When the attachment is made, if the I/O module is not already initiated by the
specified reference name, it is so initiated. When module_name is given as a
pathname, the reference name is the final entryname in the pathname.

The attach description associated with the attached switch (and accessible through
the print_attach_table command, described in the Commands manual) may not be
exactly the same as the attach description given to the io_call command or the
iox_$attach_ptr or iox_$attach_name entry points. In general, the I/O module
transforms the attach description into a standard form. For example, the command:

io_call attach foo >ldd>sdd>vfile_ my_file

might generate the attach description:

vfi le_ >udd>m>JRDoe>my_file

OPENING A SWITCH

The "io_call open ... " command and the iox_$open subroutine are used to open
a switch attached through a nonextended I/O module. The "io_call open_file ... "
command and iox_$open_file subroutine are used to open a switch attached through an
extended I/O module (one which accepts open, close and detach descriptions). In
either case, one of the opening modes listed in Table 5-1 must be specified. As
shown in Table 5-1, the opening mode determines which I/O operations may be
carried out through the open switch. Whether or not opening in a particular mode is
possible depends on the attachment of the switch. The relation between opening modes
and file attachments is discussed in "File Input/Output" below. For other types of
attachments see the description of the particular I/O module. Table 5-2 shows the
type of opening modes supported by each I/O module.

An open description can be used with extended I/O modules to complete the
specification of the file being opened. For the io_call command interface to
open_file, the open description is optional. For the iox_ subroutine interface to
$open_file, the open subroutine argument is required, but it can be a null string
indicating that no option was given. A sample open description is provided below.

-name employee_data -format fb -record 80 -block 800
-display

The control arguments and operands are separated from one another by one or more
blanks. If an operand contains blanks, it must be enclosed in quotes ("). If an
operand contains a quote, this quote must be doubled and the operand must be
enclosed in quotes.

5-8 AG91-04

CLOSING A SWITCH

The "io_call close "command and iox_$close subroutine are used to close a
switch attached through a nonextended I/O module. The "io_call close_file ... "
command and iox_$close_file subroutine are used to close a switch attached through an
extended I/O module.

A close description can be used with extended I/O modules to specify the
disposition of the file being closed. For the io_call command interface to close_file,
the close description is optional. For the iox_ subroutine interface to $close_file. the
close subroutine argument is required, but it can be a null string indicating that no
option was given. A sample close description is provided below.

-close_position bof -display -comment "File read complete."
.

The control arguments and operands are separated from one another by one or more
blanks. If an operand contains blanks, it must be enclosed in quotes ("). If an
operand contains a quote, this quote must be doubled and the operand must be
enclosed in quotes.

DETACH I NG A SWITCH

The "io_call detach_iocb ... " command and iox_$detach_iocb subroutine are used
to detach a switch attached through a nonextended I/O module. The "io_call detach
... " command and iox_$detach subroutine are used to detach a switch attached through
an extended I/O module.

A detach description can be used with extended I/O modules to specify the
disposition of the device or volume being detached. For the io_call command interface
tn npt~rh f;lp thp npt~rh npc:rT";nt;nn 1t;: nnt;nn~l HnT" thp ;nv C:llhT"nllt1np ;ntpT"f~rp tn
.,,, ,..;.1. ... _4 .&.~ ,&,,.,,.&..1.1:' "'.£..1. .&.U,.t'".&....,.&.&.~.L. .I. "'.I.&.l.V'n.._ ""''''''V.l.'"''''''1...&..1.1..1..&"'1..1.,"'" ... "

$detach, the detach subroutine argument is required, but it can be a null string
indicating that no option was given. A sample detach description is provided below.

-unload -display -comment "Operator: put this tape in bin 23"

The control arguments and operands are separated from one another by one or more
blanks. If an operand contains blanks. it must be enclosed in quotes (tt). If an
operand contains a quote, this quote must be doubled and the operand must be
enclosed in quotes.

5-9 AG91-o4

*

SYNONYM ATTACHMENTS

By means of the syn_ I/O module, an I/O switch (e.g., switch_I) may be
attached as a synonym for another I/O switch (e.g., switch_2). In general, performing
an I/O operation throug.lJ switch_l then has the same effect as performing it through
swi tch_2. There are two exceptions:

1. Detaching switch_1 simply breaks the synonymization and has no effect
on switch_2.

2. The attach description for the synonym attachment may specify that
certain operations are to be inhibited. An attempt to perform an
inhibited operation through switch_1 results in a status code that
indicates an error.

Synonym attachments are especially useful when one wishes to switch the
source/target for a set of I/O operations. For example, the I/O switch user_output is
normally attached as a synonym for user_i/o (which is normally attached to the user's
terminal). The following command lines can be used to create an I/O switch named
file_switch and attach it to a file, open file_switch for stream_output, detach the I/O
switch user_output. and make the I/O switch user_output a synonym attachment to the
I/O switch file_switch.

io_call attach file_switch vfile_ file name -extend
io_call open fi Ie_switch stream_output
ready_off
io_call detach user_output
io_call attach user_output syn_ file_switch

The result of these five command lines is that output that would normally be
sent to a terminal is written into a file. The file_output command (described in the
Commands manual) performs this sequence of steps and is the normal way of directing
terminal output to a file. Note the presence of the ready _off command. Without this
command a fatal process error will occur when the ready message following the io_call
detach user_output command attempts to print. This is due to the fact that the switch
on which the output should go is no longer attached.

The following command lines can be used to undo the effects of the previous
four command lines with the result that subsequent output to the I/O switch
user_output is written on the user's terminal. The revert_output command (described
in the Commands manual) performs this sequence of steps and is the normal way of
reverting user_output to its normal attachment (the terminal).

ready_off
io_call detach user_output
io_call attach user_output syn_ user_i/o -inh close

get_line get_chars
io_call close file_switch
io call detach file_switch

5-10 AG91-o4

It is possible to have a chain of synonyms; e.g., switch_l as a synonym for
switch_2 and switch_2 as a synonym for switch_3. The final switch in the' chain is
the actual I/O switch for all the other switches in the chain. More precisely. if an
I/O switch, switch_1, is not attached as a synonym, then its associated actual I/O
switch is itself. If switch_l is attached as a synonym for switch_2, then the actual
I/O switch associated with switch_l is the same as the actual I/O switch associated
with switch_2.

With the notion of the actual I/O switch, the effect of a synonym attachment
of an I/O switch, switch_I, can be precisely described as follows:

1. The open_description of switch_1 is the same as the open_description of
the actual I/O switch associated with switch_I. (Hence switch_1 is open
or closed according to whether the actual switch is open or closed.)

2. If the open I/O operation or one of the I/O operations listed in Table
5-1 is performed through switch_I, then the effect is the same as if it
were performed through the actual I/O switch associated with switch_1,
with one exception. The exception is that if any synonym attachment in
the chain (connecting switch_1 to the actual I/O switch) inhibits the
operation, then the only effect is to return a status code that indicates
an error.

5-11 AG91-04

Table 5-1. Opening Modes and Allowed Input/Output Operations

geLline

I yt:L_C"aiS

puLchars

read_record

rewrite_record

delete_record

read_length

position

seelLkey

I read_key

I close or close_file

Opening Mode

No. Name

1 stream_input

2 stream_output

3 stream_inpuLoutput

4 sequentiaLinput

5 sequential_output

6 sequential_inpuLoutput

7 sequential_update

8 keyed_sequential_input

9 keyed_sequentlal_output

10 keyed_sequential_update

11 direcLinput

12 direcLoutput

13 direcLupdate

1. Depends on the attachment.

x x

x x

2. Allowed if attached to a file in the storage system.
3. Allowed unless file is blocked.

x
X

X

X

X

X

X

X

X

4. Allowed for blocked and sequential files in the storage system.

5-12

X 3

X X

X X

X

X

X

X

X

X

X

2

2

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

write_record

control

X

X

4

X

X

X

X

I mldes

AG91-04

Table 5-2. Opening Modes Supported by I/O Modules

audiL
bisync_

discard_
g115_

ibm 2780_
ibm 3270_

ibm 3780_
rdislL

Opening Mode· record stream_

I remote printer
No. Name f

1 stream_input X X X X X X X X X X X X X X
2 stream_output X X X X X X X X X X X X X X X
3 stream_inpuLoutput X X X X X X X X X X X X X
4 sequentiaLinput X X X X X X X X X
5 sequentiaLoutput X X X X X X X X X X
6 sequential_inpuLoutput X X X X
7 sequential_update X X X X
8 keyed_sequentiaLinput X X X
9 keyed_sequentiaLoutput X X X

10 keyed_sequential_update X X X
11 direct_input X X X X
12 direct_output X X X
13 direct_update X X X X

[I I I
mtap

signal_io_
window_io_

vfile_
tty_

tape_nstd_
tape_multi_

tape_ibm_

I I i tape_ansi_
report_

remote_telepri nter_
remote_punch_

The syn_ I/O module is not included in this table because the allowed modes are a
function of the switch to which the syn_ module is being attached.

1187 5-13 AG91-04A

STANDARD INPUT/OUTPUT SWITCHES

Four I/O 'switches are attached as part of the standard initialization of a Multics
process.

Switch

user_i/o
user_input
user_output
error_output

Normal Attachment

the user's terminal
synonym for user i/o
synonym for user=i/o
synonym for user_i/o

These switches may be attache-d in other ways, but the u...~r must always attach
user_input, user_output. and error_output as synonyms. The attachment of user_io
differs for absentee processes and network connections. However, this difference is
only significant in that the attachment of user_i/o may not be to the user's terminal.

When the "video" system is activated by a call to video_utils_$turn_on_login_channel
or by executing the window_call invoke command, the existing attachments of the
terminal are removed and replaced with video system attachments. The I/O switch
user_i/o is now attached through the I/O module window_io_ to a new I/O.switch,
user_terminal_. The user_terminal I/O switch is attached through the I/O module
tc_io_ to the terminal.

INITIALIZATION OF EXTERNAL POINTER VARIABLES

The following external pointer variables are initialized to point to the control
blocks for the corresponding I/O swi tches:

del iox Suser io external pointer;
del iox-Suser-input external pointer;
del iox-Suser-output external pointer;
del iox=Serror_output external pointer;

These variables must never be modified. By using these variables, one can save time
and avoid calls to the iox_$find_iocb entry point to locate these commonly used
control blocks. Thus, a simple and efficient way to write to

Interrupted Input/Output Operations

It may happen that an I/O operation being performed on a particular I/O
switch, switch_l, is interrupted, e.g., by a quit signal or an access violation signal. In
general. until the interrupted operation is completed. or Until switch_l is closed. it is
an error (with unpredictable consequences) to perform any I/O operation except close
on switch_I. However. some I/O modules (tty _ in particular) allow other operations
on switch_l in this situation. (See the Subroutines manual for details.) If the switch
switch_l is closed while the operation is interrupted, control must not be returned to
the interrupted operation.

1187 5-14 AG91-04A

PROGRAMMING LANGUAGE INPUT/OUTPUT FACILITIES

It is possible to perform I/O through a particular switch using both the facilities
of a programming language and the facilities of the I/O system (invoked directly).
The following statements about this sort of sharing of switches apply in most cases:

1. The I/O system may be used to attach a switch or to attach and open
it. The language I/O routines are prepared for this. and they close
(detach) a switch only if they opened (attached) it.

2. A switch opened for stream_input may be used both directly and
through language I/O if care is exercised. In general. the languages
read a line at a time. Thus the order of input may get confused if a
direct call is made to the I/O system while the language routines are
processing a line. Trouble is most likely to arise after issuing a quit
signal (pressing the appropriate key on the terminal. e.g., ATTN, BRK,
etc.).

3. A switch opened f or stream_output may be used both directly and
through language I/O if formatting by column number. line number.
page number. etc. is not important. Some shuffling of output may be
expected, especially if a direct call to the I/O system (e.g.. by the
issuing of a quit signal) is made while the language I/O routines are
processing an I/O statement.

4. If a switch is opened for record I/O (sequential. keyed_sequential. and
direct modes). using it both directly and through language I/O is not
recommended.

A direct call to the I/O system has no effect on file information and buffers
maintained by the language I/O routines and is likely to cause garbled input or
output. The close_file command (described in the Commands manuali closes PLfI,
Pascal and FORTRAN file information blocks used by the language I/O routines. For
details on the facilities of a particular language and for a discussion of the usage of
related Multics commands, see the reference manual and/or user's guide for that
language.

While most language I/O facilities can pass a complete attach description to the
I/O system, they have no way of passing the open, close and detach descriptions
required by extended I/O modules.

FILE INPUT/OUTPUT

The I/O system distinguishes four types of files: unstructured. sequential,
blocked, and indexed. These types pertain to the logical structure of a file, not to the
file's representation in storage, on magnetic tape, etc. For example, in the storage
system a file may be stored as a single segment or as a multisegment file; but this
does not affect the meaning of I/O operations on the file.

5-15 AG91-04

Unstructured Files

An unstructured file contains a sequence of 9-bit bytes. Normally the bytes are
ASCII characters, but this is not required.

The following I/O operations apply to unstructured files:

get_line
reads a line from the file, i.e., a sequence of bytes ending with an
ASCII newline character

get_chars
reads a specified number of bytes

put_chars
adds bytes at the end of the file

position
positions to the beginning or end of the file, skips forward or
backward over a specified number of records:

Sequentiai FHes

-1 goes to the beginning of the file
+1 goes to the end of the file
o sk i ps newl i ne characters or records (1 i nes)
2 positions to an absolute record (1 ine)
3 skips characters

A sequential file contains a sequence of records. Each record is a string of
9-bit bytes. A record may be zero length.

The following I/O operations apply to sequential files:

read_record
reads the next record

read_length
obtains the length of the next record

write_record
adds a record to the file or replaces a record

rewrite_record
replaces a record

5-16 AG91-04

delete_record
deletes a record

position
positions to the beginning or end of the file, skips forward or
backward over a specified number of records:

Blocked Files

-1 goes to the beginning of the file
+1 goes to the end of the file
o skips records
2 positions to an absolute record

A blocked file contains a sequence of records. Each record is a string of 9-bit
bytes. The length of a record may range from zero to a preset maximum value
associated with the file.

The following I/O operations apply to blocked files:

read_record
reads the next record

read_length
obtains the length of the next record

write_record
adds a record to the file or replaces a record

rewri te_record
replaces a record

position
positions to the beginning or end of the file, skips forward or
backward over a specified number of records:

-1 goes to the beginning of the file
+1 goes to the end of the file
o skips records
2 positions to an absolute record

5-17 AG91-04

Indexed Files

An indexed file contains a sequence of records and an index. Each record is a
string of 9-bit bytes. A record may be zero length.

The index associates each record with a key. A key is a string of from 0 to
256 ASCII characters containing no trailing blanks. Ordinarily, no two records in the
file have the same key. The order of records in the sequence is key order: record x
precedes record y if and only if the key of x is less than the key of y according to
the Multics PL/I rules for string comparison (lexicographic order using the ASCII
collating sequence).

All the I/O operations applicable to sequential files apply to indexed files as
well; however. write_record only adds records. In addition. the following two
operations manipulate keys:

read_key
obtains the key and length of the next record

seek_key

position

positions to the record with a given key or defines the key to be
associated with a record to be added (by a subsequent write operation)

positions to the beginning or end of the file, skips forward or
backward over a specified number of records:

-1 goes to the beginning of the file
+1 goes to the end of the file
o skips records
2 positions to an absolute record

Table 5-3 shows the I/O operations that are permitted with each type of file.

5-18 AG91-04

Table 5....,.3. File Types and Allowed Input/Output Operations

Type of File

unstructured
(sequence of 9-bit bytes,
usually ASCII characters)

sequential
(sequence of records)

blocked
(sequence of records)

indexed
(sequence of records
and an index)

get line
T ,

x X X

Input/Output Operation

read record

rewrite record

delete record

read length ,­,
position , ,

: seek_key

write record

X

X X X X X X

X X X X X

X X X X X X X X

Each record is a string of bytes; a record may· be of zero length. A blocked file has
a characteristic maximum record length that is initially set by the user. For an
indexed file, a key is a string of 0 to 256 ASCII characters, with no trailing blanks.

5-19 AG91-Q4

File Opening

When an I/O switch is attached to a file and is opened for input, the file must
exist and must be compatible with the opening mode. Table 5-4 shows the
compatibility between file types and opening modes.

When the opening is for output, input_output, or update. and the file does not
exist. a file of the appropriate type is created. File creation can be suppressed in
storage system files; see the description of the vfile_ I/O module in the Subroutines
manual for details. The type of file created by a particular mode of opening is shown
in Table 5-4.

When the opening is for output or input_output, and the file already exists, it is
normally replaced by an empty file of the appropriate type. However. if the
attachment specifies extension of the file. the file is not replaced. In this case the
file must be compatible with the opening mode.

For files, opening for input_output means opening with the intent of first
writing the file and then reading it during the same opening. An existing file is
replaced by an empty file unless extension is specified.

5-20 AG91-04

Table 5-4. Compatible File Attachments

Opening Mode File Type
I
I

No. : N arne

stream input

2 stream output -

3 stream input output - -

4 sequential input -

5 sequential output -

6 sequential input output - -
7 sequential update -
8 keyed sequential input - -

9 keyed sequential output - -

10 keyed sequential update - -

11 direct input

12 direct output

13 direct update -

unstructured sequential blocked

x

x3

x3

x x

x3 x3

x3 x3

2,3 x3

indexed

x

x

x

x3

x3

x

x3

x3

1. The structure of the file is ignored and everything in it is treated as data
(including control words).

2. The file must be in the storage system.

3. This type of file is created by an output or update opening for the specified
mode unless this feature is explicitly suppressed. Update openings never replace
an existing file. (See the individual I/O module descriptions in the Subroutines
manual to see which control arguments are applicable.)

5-21 AG91-04

File Closing

When an I/O switch attached to a file has been opened for output,
input_output, or update, a close operation should be performed on the switch before
the process is terminated. If not, the file may be left in an inconsistent state; e.g., an
end of file mark may not be written for a tape file. or the bit count of a segment
may not be set for a storage system file.

When a process terminates due to invocation of the logout or new _proc
command. all I/O switches are closed by the epilogue handler for the process. The
epilogue handler for a run unit, which is called by the stop_run command, or by
normal run unit termination, closes all I/O switches within the run unit.

File Position Designators

The I/O operations on files are defined in terms of four position designators.
In cases where several I/O switches are open and attached to the same file, each
opening has its own set of designators. The designators are:

next byte
the first byte to be read by the next get_line or get_chars operation

next record
the record to be read by the next read_record or inserted by the next
write_record operation

current record
the record to be replaced Of deleted by the next rewrite_record or
delete_record operation

key for insertion
the key to be associated with the record added to an indexed file by
the next write_record operation

The initial values for these designators are shown in Table 5-5.

5-22 AG91-04

Table 5-5. File Position Designators at Open

Designator(1)
r"_ lng Mode v~c:

next current key for
No. Name next byte record record insertion

stream input first byte -
2 stream output end of file -
3 stream input output end of file(2) - -
4 sequential input first record -
5 sequential output -
6 sequential_input_output end of file(2)

7 sequential update first record first record -
8 keyed sequential input first record - -
9 keyed - sequential - output null

10 keyed sequential update first record first record null - -
11 direct input -
12 direct output null -
13 direct update null null -

1. In the opening where no value is indicated for a designator, the designator is
not relevant.

2. The use of certain options causes this to be initially set to beginning of file.
See the description of the vfile_ I/O module in Subroutines manual for details.

5-23 AG91-()4

TERMINAL INPUT/OUTPUT

Interactive terminals are normally connected to the system through the tty_ I/O
module or the window_io_ I/O module. l The tty_ I/O module supports terminals in
a typewriter-compatible manner. The window_io_ I/O module provides extended
support for special video terminal features.

tty _ Support

The user's terminal is automatically "attached" to the tty_ I/O module during
the course of process creation. Operations supported by the tty_ I/O module are
described in the Subroutines manual.

window _io_ Support (the Video System)

The window io I/O module is one of a number of software elements (I/O
modules. commands, and subroutines) that compose the "video system." The two
distinguishing capabilities of the video system are (1) its windowed display and (2) its
real-time editor. The video software can be accessed from command level (via the
window_call command) or via a subroutines interface provided by the subroutines
window_ and video_utils_.

WHAT IS A WINDOW

A window is an area of the screen whose contents can be manipulated without
affecting the rest of the display. For example, the user may scroll the contents of a
segment in one window without moving the contents of the segment displayed on any
other part of the screen.

Each window behaves like an individual video terminal. Many possible operations
may be performed on a window. These include displaying characters, moving the
cursor, erasing lines, inserting lines, and others. Characters are normally sent to a
window via the Multics I/O system and the iox_ subroutine (see the Subroutines
manual). Additional operations specific to the capabilities of video terminals, are
perf ormed by the window_subroutine, which is analogous to iox_.

1 Special_purpose I/O modules are provided for terminals connected to communications
lines in which specialized protocols are in use. Such modules are described in the
Subroutines manual.

5-24 AG91-04

The screen can be divided into several windows that can be viewed simultaneously
but the windows may not overlap. The number of line and columns in each window
can vary. A window can be one column wide or it can extend across the full width
of the screen.

The size of a window is specified at the time the window is created. Character
positions are identified by line and column with the origin (or home) located at the
upper left hand corner of the window. Each window has its own home, line 1.
column 1, and character positions are always with respect to the home of the specific
window.

A screen divided into two windows is illustrated below.

i
n
e
s

<---------------- columns ---------------->
+---+

H

WINDOW 1 WINDOW 2

+---+

WINDOW CAPABILITIES

The capabilities defined for a window are grouped into five categories:
positioning the cursor, selective erasure, scrolling. selective alteration, and miscellaneous.
Window operations may be performed with the window_call command or by a call to
the window_subroutine.

Positioni ng the Cursor

Each window has its own logical cursor. This cursor exists even when the
terminal's cursor is performing operations in another window. The position of this
cursor may be explicitly changed in a variety of ways. The cursor can be positioned
absolutely or relatively. Absolute positioning can be to the home position or to an
arbitrary line and column. Relative positioning can be up, down, left, or right any
number of positions. The cursor also moves as characters are displayed in the window.

*

5-25 AG91-04

Selective Erasure

Selective Erasure (or clearing) means changing some region of the display so that
no visible characters appear in that region, without changing any other area of the
window. ~Y1ost video terminals are capable of at least some selective erase operations.
Where possible, the video system uses any special terminal features present to clear
regions. When the terminal has no useful feature for clearing the specified region.
regions are cleared by overwriting them with spaces. This can be a rather slow
operation.

A region is a rectangle contained within a window. Like a window. it has an
extent (height and width) and a position. All erasure operations pertain to regions.
The definition of the region may be explicit (position and extent supplied in the call)
or implicit (the region begins at the current cursor location. or at the home position).
After the operation. the cursor is left in the upper left corner of the region.

A window may be cleared: entirely. from the home position to the end of the
window; from the current cursor position to the end of the current line in the
window; from the current cursor position to the end of the window. An arbitrary
region may also be cleared.

Scrolling

A window may be scrolled up or down by a given number of lines. Scrolling
up means moving lines up from the bottom of the window - deleting lines at the
top. and adding new, blank lines at the bottom. Scrolling down means moving lines
from the top of the window down. deleting at the bottom and adding at the top.
Scrolling is usually done automatically by the video system when output fills the
window, but it can also be requested explicitly.

Selective Alteration

Selective alteration means adding or deleting characters or lines in the middle of
the window. When characters (or lines) are added, adjoining characters (or lines) move
over to make room for the new ones. When characters (or lines) are deleted,
characters (or lines) move in to fill up the gap. This differs from selective erasure,
which only affects the characters erased.

M i see! I aneous

Among other things, entries are provided in the window_subroutine and the
window_call command to sound an audible alarm, to obtain the current cursor
position, and to output an arbitrary character sequence.

5-26 AG91-04

REAL-TIME EDITING

With real-time editing, all editing requests take effect immediately. The screen
changes to show the effect of the characters or lines deleted. In addition, the set of
editing characters expands to include several control characters.

Control characters are characters entered using the control key. The control key
is a key that acts like the shift key. By itself it generates no characters; it is used to
change the meaning of some other key. When the key "A" is typed while the control
key is held down, the character sent by the terminal is control A, which is written as
1\ A. The control characters are the first 32 ASCII characters. 000 through 037 octal.

Alphabetic characters are given in capitals, but either an upper or lower case
letter (as for N or n) can be used with default escape sequences. If an upper case
letter is used with a user-defined sequence, both the upper and lower case keys must
be bound in order for both keys to work. The letters ESC respresent the escape key.
For ESC F, you would press the escape key, release it, and type an f or F.

Although most Multics users keep the system default erase (#) and kill (@)
sym boIs, the video system recognizes and then assumes the values of any erase and kill
characters that may have been set via the set_tty command.

The Erase Character

The erase character removes the character to the left of the cursor. The cursor
moves to the left, and exactly one character is deleted. This is different from usual
Multics editing where an erase character typed after white space deletes ill. whitespace,
and otherwise deletes all characters from a colu..rnn position. The er~c;.e character is
settable for each window. In addition, the DEL character (\177) and the backspace
character (\010) are always erase characters.

The Kill Character

The kill character deletes the entire line to the left of the cursor. The cursor
then goes back to the beginning of the line. Again, this happens immediately. The
deleted line is saved, and can be recovered. See "Retrieving Deleted Text" below. The
kill character is settable per-window.

The Line Editor

Additional editing is possible using sequences of one and two characters. The
two-character sequences all begin with the ASCII ESC character, (1\], octal 033, \033),
which is not the same as the Multics input escape character ("\").

5-27 AG91-()4

Moving the Cursor

The line editor can move the cursor forward or backward within the current line
while repositioning the cursor either a character at a time or a word at a time. A
word is an unbroken string of uppercase and lowercase alphabetics, numerals,
underscores, backspace characters, and hyphens. (This is the default definition of a
word, which can be changed with the set_token_delimiters order, described in the
window_io_ writeup.) The cursor can also move explicitly to the beginning or the end
of the current line. The requests that perform these actions are listed under "Other
Editor Requests" below.

Deleting Characters and Words

The line editor can delete a single character or an entire word at a time.
Various editing requests described below can delete the character or word immediately
to either the left or the right of the cursor. The deleted text (only words, not
characters) is saved and· can be retrieved. For example, typing ESC DEL (or ESC
followed by the current erase character) deletes the word to the left of the cursor.
The word is saved on the kill ring (see below).

Retrieving Deleted Text

Text deleted by the word and line kill characters is saved, and can be restored.
The text is saved on a kill ring. A kill ring is a set of kill slots. Each slot holds
deleted text. Successive word kills share one kill slot, so if several words are deleted
one after another, all of them wili be retrieved by a single retrieve command.

Deleted text is saved with previously deleted text if two kill requests are typed
in succession. If intervening characters are typed, the kill ring is rotated: a new slot
is selected to hold saved text.

Text is entered when the user types text followed by a carriage return. Each
input line is added to the kill ring. This provides editing of the previous input line.

The following control characters are used to retrieve deleted text:

/\y

ESC y

(or yank) retrieves deleted text from the kill ring. This is the only way
to recover from an erroneous kill character.

can be typed only after either /\ Y or ESC Y. It deletes the text just
retrieved, without saving it on the kill ring, rotates the ring (to the
next most recently killed text) and retrieves the text from the new top
siot.

5-28 AG91-04

The following example is given in triplets. The first line shows what the user
types, the second line shows what one line of the display looks like afterwards, and
the third line (or lines) shows the kill ring. The top item on the kill ring is at the
top of the column.

User Types:
Display is:
Kill Ring:

This is a sentence
This is a sentence
<empty>

NOTE: The kill ring is empty because the user has just invoked the video system.

User Types:
Display is:
Kill Ring:

ESC DEL
This is a
sentence

One word is deleted, and it begins the kill ring.

User Types:
Display is:
Kill Ring:

ESC DEL
This is
a sentence

Another word is deleted; it is merged into the same kill slot.

User Types:
Display is:
Kill Ring:

User Types:
Display is:
Kill Ring:

an example sofa
This is an example sofa
a sentence

ESC DEL
This is an example
sofa
a sentence

This deleted word is not merged, because there has been typing since the last kill
command. There are now two slots on the kill ring.

User Types: of /\Y
Display is: This is an example of sofa
Kill Ring: sofa

a sentence

The top kill slot is yanked back.

User Types:
Display is:
Kill Ring:

ESC Y
This is an example of a sentence
a sentence
sofa

The kill ring is rotated, the previously yanked contents are deleted from the line, and
the new top item from the ring is yanked to replace it.

5-29 AG91-04

If a carriage return were typed at the end of "This is an example of a
sentence", the kill ring would then contain a new slot containing the entire input line.

Other Editor Requests

The following control characters are also recognized by the line editor.
(Alphabetic characters are specified in upper case, but either upper case or lower case
letters (e.g., ESC F or esc F can be used):

"L

"()
"'<

"F

ESCF

ESCB

Clears the window and redisplays the input line.

"quotes" the next character, causing it to have no special meaning. This
is useful for entering control characters. It serves some of the same
purposes as the input escape character (\).

moves the cursor forward one character.

moves the cursor backward one character.

moves the cursor forward one word.

moves the cursor backward one word.

ESC n control character

"A

AE

AD

repeat the specified action n times (e.g., ESC 6 "D specifies that the
next six characters are to be deleted).

moves the cursor to the beginning of the current line.

moves the cursor to the end of the current line.

deletes the current character (deletes forward).

DEL, #
deletes the character to the left of the cursor (deletes backward).

ESC D
deletes the current word (deletes forward).

5-30 AG91-()4

ESC DEL, ESC #

ESC C

ESCU

ESCL

ESCT

ESC?

deletes the word to the left of the cursor (deletes backward).

capitalize initial word.

capitalize word.

lower case word.

twiddle words. Transposes (interchanges) the last two words typed.

twiddle characters. Transposes (interchanges) the last two characters
typed.

multiplies the next request four times (e.g., J.UJ.F moves forward four
characters).

lists available window editor requests.

By default. no other control characters have meaning. If any are typed. the only
action they cause is an audible alarm. You can create additional editor requests by
writing PL/1 programs that conform to a standard calling sequence (see "Writing
Editor Extensions").

The set of characters used to define a word for control characters such as
ESC F can be changed via the set_token_characters control order. See the description
in the window_io_ I/O module in the Multics Subroutines manual.

WRITING EDITOR EXTENSIONS

The video system provides a full input line .editor, including the ability to edit
in the middle of the line. Of course, there are many potential editor functions that
people might like to use (see the Emacs Text Editor User's Guide), and not all of
these are provided. Rather than attempt to anticipate every possible editor request, the
video system allows users who are familiar with PL/1 to write their own editor
requests and associate sequences of keystrokes (key bindings) with these requests.

The key binding mechanism can be used for a wide variety of applications.
Since editor requests are executed immediately by single or multiple key stroke
sequences, highly interactive facilities can be built into the input line editor.

5-31 AG91-()4

Li ne Editor Routines

Editor request routines are PL/I programs that conform to a standard calling
sequence. The request procedure is given complete control of the input buffer and can
add or delete characters or modify the current contents of the buffer. The video
system editor's redisplay facility manages all display updates; the individual editor
routines need no knowledge of the video enviroment or the screen contents.

A library of editor utility routines is provided (see "Editor Utilities"). These can
be called by user-written editor routines to perform such actions as insertion and
deletion of text from the buffer, manipulation of the kill ring, and manipulation of
words within the input buffer.

A line editor routine is declared as follows:

declare twiddle_words entry (pointer, fixed bin(3S»;

STRUCTURE ELEMENTS

line_editor_info_ptr

code

is a pointer to the line_editor_info data structure (described below).

is a standard status code. (Output) If the status code returned by the editor
routine is erroT_table_$action_not_performed, the editor will ring the terminal bell
to indicate that the editor routine was used improperly. Any other code will be
reported in a more drastic manner, via the sub_err me.cha..'1isID.

5-32 AG91-04

The line_editor_info structure (declared in window_line_editor.incl.pll) is declared
as follows:

dc1 1ine_editor_info
2 version
2 iocb_ptr
2 repetition_count
2 flags,

3 return_from_editor
3 merge_next_ki11
301d_merge_next_ki11
31ast_ki11_direction
3 numarg_given
3 suppress_redisplay
3 pad

2 user_data_ptr
2 cursor_index
2 line_length
2 input_buffer
2 key_sequence

aligned based (1 ine_editor_info_ptr),
char (8) •
pointer, /* to current window */
fixed bin,

b't (1) una 1 gned,
b t (1) una 1 gned,
b t (1) una1 gned,
b t (1) una1 gned,
b t (1) unal gned,
b t (1) unal gned,
b t(30) una igned,
pointer, /* for user state info */
fixed bin (21) ,
fixed bin (21) ,
character (1024) unal igned;
character (128) ;

dcl line_editor_input_l ine char(l ine_editor_info.line_length)
based (addr (line_editor_info.input_buffer));

dcl line editor info version 2 char (8) static options (constant)
init (" 1 ei00002j"j) ; -

STRUCTURE ELEMENTS

version
is the version string for this structure. (Input) The current version string.
"leiOOO02", is the value of the variable line_editor~info_version_2. declared in the
same include file.

iocb_ptr
is the pointer to the current window. (Input)

repetition_count
is the value of the numeric argument specified by the user, and is undefined if
no numeric argument was s?-eified (i.e., nu..~ar~ven flag = "O"b). (Input)

return_f rom_edi tor
is a flag which is set by the editor routine if the editor invocation is to be
terminated and the input line returned to the caller. The input buffer is
redisplayed bef ore the buffer is returned to the caller, unless overriden by the
line_editor_info.suppress_redisplay flag. (Output)

5-33 AG91-04

merge_next_kill
is a flag which should be set when text is deleted and added to the kill ring if
subsequent deletions are to be added to the same kill ring element. (Input/Output)
This flag is managed by the editor utility routines. If the editor utility routines
are used for all input buffer modifications, the user-written editor routine need
never set this flag.

old_merge_next_kill (not used)
is an internal editor state flag and should not be modified.

last_kill_ direction
is a flag indicating the direction of last kill. Off is forward; on is backward.
This flag should not be modified.

numar~ven
returns "1 "b (i.e. true if a numeric argument was supplied by the user via
ESC-NNN or "V).

suppress_redisplay
is a flag that stops the redisplay of the input buffer when
line_editor_info.return_from_editor is set.

pad
reserved for future use.

user_data_ptr
points to a user data structure which the video system ignores, other than passing
this pointer to requests that follow.

cursor _index
is the index of the character in the input buffer on which the cursor is currently
located. (Input/Output) This index must be updated if characters are added or
deleted before the cursor, or the cursor is moved by the editor routine. The
cursor index must be no larger than one greater than the input_line_Iength. If
the editor utility routines are used for all input buffer manipulations, the
cursor_index will be updated appropriately.

line_length
is a count of the number of characters in the current input line. (Input/Output)
This variable must be updated if any characters are inserted or deleted from the
input buffer. The value of the line_length variable must always be non-negative.
and must never be larger than the length of the input buffer. If the line editor
utility routines are used for all input buffer manipulations, the line_length variable
will be updated automatically.

5-34 AG91-G4

input_buffer
is a character string containing the current input line. (Input/Output) Any
manipulation may be performed on this string by the editor routine. It is
recommended that the editor utility routines be used for all insertions and
deletions to ensure that the various state variables and flags remain consistent.
The line_editor _input_line variable can be used to address the valid part of the
input buffer as a string.

key_sequence
a character string that contains the sequence of key strokes that invokes this
editor routine.

Window Editor Utilities

As was mentioned above, a library of editor utility routines is provided for the
benefit of user-written editor routines. Some operations can be performed simply by a
user-written editor routine. For example, to position the cursor to the end of the
line, simply set the cursor_index variable to one greater than the value of the
line_length variable. However, most actions are more complex than this and it is
recommended that the editor utility routines be used to perform most operations. The
following is a description of these routines. In all cases, line_editor_info_ptr is the
pointer to the editor data structure that is supplied as an argument to user-written
editor routines.

dc 1 windowed i tor ut i 1 s $ i nser t text entry (ptr, char ("c) , fixed bin (35)) ;
call window editor uti ls $insert text (l ine editor info ptr, Iitext ll

,

code) ;- - - - - --

Inserts the supplied character string into the input buffer at the current cursor
location. If the string is too large to fit in the remaining buffer space, the
code error_table_$action_not_performed is returned. This routine updates the
line_length field of the line_editor_info structure, and the cursor_index if
necessary.

dcl window editor utils $delete text entry (ptr, fixed bin,
fixed-bin (35) ; - -

call window editor utils $delete text (line_editor_info_ptr, count,
code) ;- - - -

Deletes a specified number of characters (supplied by the variable count) from
the input buffer at the current cursor location. If there are not enough
characters remaining between the cursor and the end of the line,
error_table_$action_not_performed is returned and no characters are deleted.
The line_length component of the line_editor_info_structure is updated. and the
cursor _index if necessary.

5-35 AG91-D4

del window_editor_utils_$delete_text_save entry (ptr, fixed bin, bit{l),
fixed bin(35»;

call window editor utils $delete text save (line_editor_info_ptr, count,
ki ll_direction, code); - -

This entrypoint is identical to delete_text, but the deleted text is added to the
kill ring. The kill_direction flag is used during kill merging to decide whether
the killed text will be concatenated onto the beginning or end of the current
kill ring element. "l"b is used to specify a forward kill (e.g.
FORWARD_DELETE_WORD), "0" a backward kill.

del wi ndow_edi tor_uti 1s_$move_forward entry (ptr, fixed bin,
fixed bin (35)) ;

call window editor uti 1s $move forward (line_editor~info=ptr, count,
code) ;- - - -

Advances the cursor forward a specified number of characters (supplied by the
variable "count") in the input line. If there are not enough characters between
the cursor and the end of the line, error_table_$action_not_performed is
returned.

del window editor uti ls $move backward entry (ptr, fixed bin,
fixed-bin (35» ; - -

call window editor uti ls $move backward (line_editor_info_ptr, count,
code) ;- - - -

Moves the cursor backward a specified number of characters (supplied by the
variable "count") in the input line. If there are not enough characters between
the cursor and the end of the line, error_table_$action_not_performed is
returned.

del window editor uti ls $move forward word entry (ptr, fixed bin(35»;
call windo;_edito~_util;_$move_forward_word (1 ine_editor_info_ptr, code);

Updates the cursor_index to a position after the next word (or token) in the
input line. A word is defined via the editor's set of token delimiters, set via
the set_token_delimiters control order.

del window editor utils $move backward word entry (ptr, fixed bin(35»;
call windo; edito~ uti 1; $move backward word (line editor info ptr,

code) ;- - - - - - --

Updates the cursor_index to a position before the preceeding word (or token)
in the input line. A word is defined via the editor's set of token delimiters,
set via the set_token_delimiters control order.

del window editor utils $get top kill ring element entry (ptr, char(*),
fixed-bin(35»; - - - - -

call window_editor_uti ls_$get_top_kill_ring_element (1 ine_editor_info_ptr,
text, code);

Returns the top kill ring element.

5-36 AG9l-04

dcl window editor utils $rotate kill ring entry (ptr, fixed bin(35));
ca 11 wi ndo;_ed i tor _ut i 1 s_Srotate_k i ll_r i ng (1 i ne_ed i tor _ i nfo_ptr, code);

Rotates the kill ring.

END-OF-WINDOW PROCESSING

When output has filled a window, old lines must be removed to make way for
new ones. This is usually done by scrolling old lines off the top of the window. But
for windows that cannot be scrolled (usually because the terminal cannot scroll) it is
possible to move the cursor back to home, and output new lines overwriting the old
ones. This is known as wrapped output. A variation on wrapped output is to clear
the window after moving the cursor home. The action taken when a window is full is
controlled on a per-window basis by anyone or the following more_mode modes:

• clear
the window is cleared, and output starts at the home position.

• fold
output begins at the first line and moves down the screen a line at a
time replacing exisitng text with new text. Prompts for a MORE
response when it is about to overwrite the first line written since the
last read or MORE break.

• scroll
lines are scrolled off the top of the window, and new lines are printed
in the space that is cleared at the bottom of the screen. This is the
default for all terminals capable of scrolling (i.e., those terminals that
have the capability to insert and delete lines).

• wrap
output begins at the first line and moves down the screen a line at a
time replacing existing text with new text. Prompts for a MORE
response at the bottom of every window of output. This is the default
for terminals incapable of scrolling.

MORE PROCESS! NG

As lines are displayed in the window, old lines are scrolled off the top of the
window or otherwise removed. When output would cause a line to be removed that
has been displayed since the most recent input, it is assumed that the user may not
have had a chance to read it, and MORE processing occurs. The question "MORE?
(RETURN for more; DEL to discard output)" appears on the screen, and no further
output occurs until the user indicates that pending output is to be either displayed or
discarded. MORE processing is contFolled by the "moreH mode, which is enabled by
default.

5-37 AG91-04

Output resumes if the user strikes CR, and is discarded if the user strikes DEL.
The characters used can be set by a control order. Type ahead characters are not seen
by MORE processing. The response to MORE must be typed after the prompt
appears. All other characters are buffered to be returned later.

When output is discarded, the video system simply ignores output until a get_line
or get_chars call is made, a "reset_more" control order call is made, or the window is
cleared, or the cursor is moved to home. WARNING: a prompt sent just before a
get_line call will not be printed if output is discarded, unless the prompting program
first issues a "reset_more" control order (or otherwise resets more processing).

OUTPUT BUFFERING

The video system sometimes buffers output internally, sending it to the terminal
when certain internal conditions are satisfied. All buffered output is sent to the
terminal whenever an input call is made (e.g., window _$get_echoed_chars). This ensures
that all output, including prompts, is seen by the user before input is read. An
application program that calls window_ entrypoints directly should take this buffering
into account to perform correctly. If it is necessary to send output to the terminal
when no read request is to be done (e.g., displaying an incremental message during a
long computation), the application should call window_$sync on the I/O switch after
the output has been requested (e.g., via a call to window _$overwrite_text). See the
description of window _$sync in the window_subroutine description in the Subroutines
Manual.

STRUCTURE OF THE VIDEO SYSTEM

The video system is composed of various I/O modules, subroutines, and
commands, as described below.

I/O Modules

The video system is divided into two layers, each implemented by an I/O
module. The top layer, window_io_, makes terminal-independent calls to the lower
level, tc_io_.

The window_io_ I/O module is responsible for translating window-relative calls
(such as position to the beginning of the window) to terminal-relative calls (position
to line 5, column 1, if that is where the window starts). The window_io_ I/O module
is the video analogue of tty_. It supports control orders to change the size of its
window, set the editing characters, read and set modes, etc. It also supports the basic
iox_ operations of get_line, put_line, get_chars_, put_chars, etc.

5-38 AG91-o4

The tc io I/O module is responsible for all terminal-dependent support. It
deals with padding, whitespace optimization, and optimal cursor movement. There is
one instantiation of tc_io_ for every terminal under the control of the video system.
Although implemented as an I/O module, the only operations tc_io_ supports are
attach, detach, and control; it is intended as an internal interface for use by
window _io_ only.

Subroutines

The video utils_ subroutine controls invocation and revocation of the video
system in a process. It revokes the terminal's attachment to tty_ and attaches the
user_I/O switch to a window that covers the entire screen. Upon revoking the video
system, it reattaches the terminal to tty_.

The window_ subroutine is the main user interface to the video system. Its entry
points define operations which a video terminal might reasonably be expected to have,
such as "position cursor" or "delete lines." By calling these entries and letting the
video system take care of determining which sequence of characters will effect the
desired operation, the applications writer can write programs which will function
identically on a wide range of terminals without having to worry about what those
terminals are.

The COBOL and FORTRAN programmer can utilize specialized subroutines
(cb_window_ and ft_window_) to obtain video management capabilities.

Command

The window_call command is the command-level interface to the video system.

USING THE VIDEO SYSTEM

The following subsections described basic video operations as implemented from
the command-level interface (window_call) and the subroutine interface (window->.
(The examples of command usage are embedded in an exec_com).

Attaching the Video System

The video system must be checked to determine if it is turned "on. " It is not
likely that novice users would do this initially but it might be included in a project
start_up. If it is on, it is important that to leave it alone. If it is turned on again
an error message is produced. If the video system is turned on, then the application
should use the space allocated to the user_input/output window instead of the whole
screen. Thus, if the user creates a separate window for interactive messages, an
application should not use that space. Using the space allocated to the user_io window
respects the user's explicit wishes and prevents violation of the restriction against using
two overlapping windows at the same time.

5-39 AG91-()4

When the video system is invoked, the entire screen is covered by a window
associated with the user_i/o I/O switch. The user must determine how much of the
screen he has and divide up that amount for use by the application. Since terminals
vary in the length of the screen, and some users already may have some lines devoted
to their own video dispiay, there are probabiy iess than 20 avaiiabie iines, so design
with that in mind. As long as there are eight or ten lines available for user
input/ output that should be sufficient.

The first step then is f or the user to determine whether or not the video system
is turned on and, if not, turn it on. This should be included at the beginning of all
applications. The following is the exec_com example. The lines are numbered only for
the purpose of explanation and the numbers should not be included in the exec_com.

1 &set already video &[window call video_invoked]
2 &if &[not &(already_video)]-
3 &then window call invoke
4 &set first line &[window call get first line]

&set n_l ines &[window_call get_window_height]

where:

1. determines whether or not the video system is attached to the user's terminal.
2. turns it on if it isn't already on.
3. invokes window_call initiating the window environment.
4. sets the lines· for the window. This is part of the first step because when you

revoke the video system at the end of the exec_com, you must set the screen
to the size it was originally.

5-40 AG91-04

The following is the PL/I example that does the same thing. Again, the lines
are numbered for the purpose of explanation and the numbers should not be included
in the program.

de 1 (addr, nu 11) bu i 1 tin;

de 1 i ox $eontro 1 entry (ptr, char (,,~), ptr, fixed bin (35»;
del com-err entry 0 options (variable);
del iox-$user io ptr ext static;
del video_utils_$turn_on_login_channel entry

(fixed bin (35), char (,.~»;
dcl video_data_$terminal_iocb ext static ptr;

dcl ME char (32) init (litest program") static options (constant);
dcl code fixed bin (35); -
dcl already_video bit (1);
dc 1 reason char (128);

1 %include window_control info;
2 dcl 1 my_window_info like window_position_info;
3 my window info.version = window position info version 1;
4 if-video data $terminal iocb = null 0 then do; -
5 call ~ideo=uti1s_$turn_on_login_channel (code, reason);
6 if code A= 0 then do;

7

8
9

10

call com_err_ (code, ME, IIAall, reason);
return;

end;
a 1 ready _vi deo = "01Ib;

end;
else already video = "1I1b;
ca 11 i ox $contro 1 (i ox $user i 0, IIget_wi ndow_i nfo",

addr (my_window_info), code);
if code A= 0 then do;

ca 11 com_er r _ (code, ME, Ilget_w i ndow_i nfo. ") ;
return;

end;

5-41 AG91-04

where:

1. includes appropriate structure declarations
2. declares an automatic copy of window info
3. sets the version number of window info
4. determines if the video system is not activated then does 4 through 6
5. turns on the video system and
6. if there is an error, reports it to the caller and quits
7. makes a note to the effect that video was invoked by this program
8. goes to here if the video system is already activated (video was not activated by

this program)
9. gets the current size and location (beginning line number) of the user_i/o

window
10. prints error mes.sage

Detaching the Video System

A t the end of the session, the video system can be detached. First, is the
exec_com example for revoking the video system. The lines are numbered only for
the purpose of explanation and these numbers should not be included in the exec_com.

1 &if &(already_video)
2 &then window call change window -line &(first_line)

-height &(~_lines) -
3 &else window_call revoke

where:

1. determines whether or not video was activated by this exec_com.
2. if video was activated by another exec_com, then user_i/o window is returned

to previous size and it is cleared.
3. otherwise, the window interface to the video system is deactivated and the

user_i/o window goes to full screen.

5-42 AG91-04

Next is the PL/l example:

1 if already video then do;
2 call video=utils_$turn_off_login_channel (code);

3

where:

if code A=O then do;

end;
end;
else do; call iox $control (iox $user io, IIset_window_infoll,

addr(my_window_Tnfo) , code);
if code A=O then do;

end;
end;

1. determines whether or not video was activated by this program.
2. if the video system was activated by this program, it is then deactivated and

the user_i/o window goes to full screen.
3. if video was previously attached, then the user_i/o window is returned to its

previous size.

Design Requirements for Windows

As part of the menu design process, the user must decide ahead of time how
the display will look and from that determine the number of windows that will be
advantageous.

5-43 AG91-04

As an example, the screen could be divided into three windows. The top window
could display the status of the user with the user name, a description of what the
user is doing and a clock. The middle window could contain various menus and could
grow or shrink depending on the selection made. The bottom window could be for
unformatted output and for typing in input.

The number of windows technically permitted is quite large and probably more
than one will need. Knowing how many functions are to be performed, the user
should carefully select the number of windows to be used by an application. It is
possible on a 24 line terminal to have 24 windows but rarely, if ever. would that be
useful. Each window would be too small and the screen would be too cluttered.
Practically, there should not be more than five. Windows should not overlap. Each
window has its own extent (height and width) and location (the position of its home
on the screen). Windows can change their extent and location as long as they never
overlap. The initial extent and location of a window is determined in the attach
description of the window.

Create Window Operation

The creation and definition of windows is done with arguments to window_call
or with the entry points of the window_subroutine. The first action discussed is
create_window. Part of the creation process is the naming of windows. Windows are
associated with iox_ I/O switches. The "name of the window" is just the name of the
switch, or as it is sometimes called, the iocb name. Since many Multics commands
and subroutines make use of the standard switches user_io, user_input. error_output,
and user_output. it is usually necessary to have these switches connected to some
window. This is done by window_call invoke or video_utils_$turn_on_login_channel.
By convention, the bottom window of the screen is used for user_i/o,

Important Window Requests

Before a window can be created the user must decide on its starting line number
as discussed above in "Attaching Video" and its length (in number of lines). As
mentioned earlier. it is customary to get space for a new window from the user_i/o
window and to position the new window at the top of the user_i/o window.
Therefore, one of the first things to do is find out where the user_i/o window is.
Once this is known determine just how high, in lines, the new window must be and
shrink the user_i/o window by that amount. It is a good idea to always check to
make sure there is enough space left in the user_i/o window to allow meaningful
communication once it has been shrunk. In our examples we will insist on at least a
five line user_i/o window.

5-44 AG91-04

To do all that has been discussed so far in an exec_com, we would have the
following:

&- stored in the default value segment as the_menu.

&set io start &[window call get first line]
&set io-height &[windo; call get wind;w height]
&set me~u_height &[menu=describe-the_menu -height]

&- Now calculate the new positions of both windows.

&set menu start &(io start)
&set io start &[plus-&{io start) &(menu height)]
&set io=height &[minus &(To_height) &(menu_height)]

&- The label referenced below would, of course, need to be
&- defined and would include an appropriate error message.

&if &[nless &(io height) 5]
&then &goto USER_I/O_TOO_SMALL

&- Now shrink user i/o

window_call change_window -line &(io_start) -height &(io_height)

&- And define the new window, called able

window call create window -io switch able -line & (menu_start) -height
& (menu_height) -

The real work of creating the new window above was done by the window_call
command with the create_window argument. This command created the necessary iox_
I/O switch attachments to make "able" an I/O switch which describes a video system
window that occupies the first "menu_height" lines of what was user_i/o.

To do the same thing in PL/I you would use the following code fragment:

/* Get the variables initial ized. We assume that the menu "has */
/* been created and that the variable called the_menu points */
/"'c to the menu. 'Ie/

%include menu_dcls;
%include window_control info;

dcl menu_needs like menu_requirements;
del menu_window_info like window_position_info;
dcl io_window_info like window_position_info;

5-45 AG91-D4

/* Get information about size of the menu. */

menu_needs.version = menu_requirements_version_l;
call menu_$describe (the_menu, addr(menu_needs) , code);

if code A= 0 then

process the error

end;

~I"\. "" ,

/* Get information about size of the user_i/o window. */

io window info.version = window position info version 1;
call iox_$control (iox_$user _io~ IIget_window_Tnfoll, -

addr(io_window_info), code);
if code A= 0 then do;

process the error

end;
menu_window_info = io_window_info;

/* Now calculate the new positions of both windows. */

menu_window_info.origin. line = io_window_info.origin. line;
menu_window_info.extent.height = menu_needs. lines_needed;
io_window_info.origin. line = io_window_info.origin.line +
menu_needs~lines_needed;

io_window_info.extent.height = io_window_info.extent.height -
menu_needs.lines_needed;

if io_window_info.extent.height < 5 then do;

complain that user i/o window
is too sma 11

end;

/* Now shrink user_i/o window. */

call iox $control (iox $user io, "set_window info",
addr(io_window_info): code);
if code A= 0 then do;

process the error

end;

5-46 AG91-04

/* Create an I/O switch by which the menu window will be */
/* referenced. */

menu io switch name = IImenu_i/o.1I I I unique_chars_ (1I0"b);
call-iox_$find=iocb (menu_io_switch_name. menu_window_iocbp. code);

if code A= 0 then do;

process the error

end;

/* And define the new menu window */

call window $create (video data $terminal iocb,
addr(menu=window_info), menu_window_iocbp, code);
if code A= 0 then do;

process the error

end;

Change Window Operation

In the above examples it was necessary to change or shrink the user_i/o window
in order to create anew window. When we discuss destroying windows below we will
see a need to expand the user_i/o window to recover the space freed by the
destruction of a window.

Command level changes are done with the window_call keyword change_window.
In PL/I the changes are made by the set~window~info control order. In general this
will be preceded by a get_window _inf 0 control order and some calculations.

Destroy Window Operation

Once a window is no longer needed it must be destroyed, i.e., the I/O switch
must be closed and detached thus freeing up the space on the screen that was
occupied by the window. In addition, this space should be returned to some active
window so that it can be used. If the freed space is adjacent to the user_i/o window
it should be consumed by that window, but it can be added to any adjacent window.
In our examples we will add it back to user_i/o.

5-47 AG91-()4

To reverse the effects of the exec_com window creation example above we would
have:

&- destroy the able window

window_call delete_window -io_switch able

&- and let user_i/o have the space back

&set io start &(menu start)
&set io=height &[plus & (menu_height) &(io_height)]
&set menu_start 0 menu_height 0

window_call change_window -1 ine & (io=start) -height &(io_height)

In PL/I we would have:

/* destroy the able window */

call window_$destroy (..•);
if code A= 0 then do;

process the error

end;

/* and let user_i/o have the space back */

io_window_infooorigin.line = menu_window_info.origin. line;
io_window_info.extent.height = menu_window_!nfo.extent.helght

+io_window_info.extent.height;

call iox $control (iox $user io, "set window info",
addr (io_window_info) , code); - -

if code A= 0 then do;

process the error

end;

5-48 AG91-04

Clear Window Operation

Another very useful operation is the clear_window operation. This clears the
entire window to all spaces and leaves the cursor positioned at the upper left hand
corner of the window. There are other clearing operations, but this one is the
simplest and most useful.

From command level we can clear the user _i/o window by:

window _call clear_window

If we had wanted to clear, say the able window, we would have included the
-io_switch control argument specifying able as the window to operate on.

This same effect, clearing the able window of our examples, can be accomplished
from PL/I by:

call window_$clear_window (menu_window_iocbp, code);
if code A= 0 then do;

process the error

end;

The clear_window operation is useful when an application wants to start with a
clean slate in the user_i/o window. For example, before printing out a description of
some menu option it might be desirable to clear the user_i/o window.

MAGNETIC TAPE INPUT/OUTPUT

Magnetic tape input/output operations in Multics Release 11.0 differ from those
of previous releases. The two methods of perf orming tape input/ output are described
below.

Magnetic Tape Input/Output in Releases Previous to MR 11.0

Prior to MR 11.0, tape I/O was performed through iox_ calls to one of four I
I/O modules, as follows:

tape_ansi_
tape_ibm_
tape_mult_
tape_nstd_

The individual I/O modules each supported operations specific to a particular
tape format. The user had to attach the appropriate I/O module depending on the
file format in which the tape was to be read or written.

5-49 AG91-D4

The tape I/O modules as well as the iox_ subroutine are described in the
Subroutines manual.

Magnetic Tape inputiOutput in MR i1.0

In MR 11.0, the mtape_ I/O module provides an alternative method for
processing tapes in ANSI or IBM format. (The tape_ansi_ and tape_ibm_ I/O
modules remain available for use.)

The mtape_ I/O module is called via an attach description made through the
iox_ subroutine. The mtape_ I/O module supports three new iox_ entries: iox_$open_file,
iox_$close~file, and iox_$detach.

The new entrypoints allow control parameters to be passed to the open, close, and
detach entries. The open_file entry in particular allows the tape file name, file
position and file attributes to be given when the file is opened instead of with the
attach description (as is done in the tape_ansi_ and tape_ibm_ I/O modules). This
allows several tape files to be processed during a single attachment. The mtape_ I/O
module as well as the iox_ subroutine is described in the Subroutines manual.

The mtape_ I/O module currently supports two tape formatting standards, IBM
and ANSI. Format-specific processing operations are performed by externally-callable
subroutines known as per-format modules. Current per-format modules are: ansi_tape_io_
and ibm_tape_io_. Selection of the appropriate per-format module is performed by
mtape_ based on information returned by RCP after a successful volume mount, and
on the presence of the -volume_type attach description argument for mtape_. The
per-format modules are described in the Subroutines manual.

All control arguments that are part of the mtape_ attach and detach descriptions
and all control arguments that are specific to each per-format module's open and
close description are supplied with default values. The user can find the system-supplied
default value for any of the above entities by referring to the appropriate description
in the Subroutines manual. The default control arguments, as well as other argument
processing information, are stored in the data space of a standard value segment. A
user can set (as well as display and delete) the default control arguments by means of
user commands. See the descriptions of the mtape_set_defaults, mtapeJet_defaults and
mtape_delete_defaults commands in the Commands manual.

BULK INPUT AND OUTPUT

The MuItics system has provisions for three types of bulk I/O: high-speed
printer output, punched card input, and punched card output.

Printed Output

The enter_output_request command causes the contents of a Multics file (segment
or multisegment file) containing Multics ASCII characters to be printed on a

5-50 AG91-04

high-speed printer. See the description of the enter_output_request command in the
Commands manual. See also the dprint command in Commands manual.

The printed output has the following parts:

1. Header sheet. This sheet identifies: the requesting access_id; the person
and destination of the person to whom the dprint is sent; the pathname
of the file; the date, time, and day of the week the file was printed;
the physical device on which the file was printed; and the installation
identifier. If more than one copy of the file is requested, the number
of the copy (in the form "copy ID of n" where ID and n are numbers
from 1 to 30 for eor or 4 for dprint) is indicated on the header sheet.
Each corner of the header sheet contains the sequence number of the
printed output. If more than one copy of the file is requested. the
header sheet of each duplicate copy has the same sequence number.

2. Announcement page. This page may be used by the installation to send
a message to all users. The dprint is folded so the header sheet is
always an outside page and the announcement page is an inside page.
Except for duplicate copies of the same segment, the header sheet and
announcement page are separated by four lines of overstruck characters
printed on the paper perforation; these separator lines and the sequence
number of the printed output assist in filing output.

3. File contents. The contents of the file are printed in a format
determined by the characteristics of the physical device or by control
arguments to the enter_output_request (or dprint) command, and also by
escape sequences in the text if escape processing is being performed.
See the enter_output_request (or dprint> command in the Commands
manual for explicit details on formatting output.

4. Summary sheet. This sheet indicates: the date, time, and day the output
was requested; the date, time, and day the output was printed; the
request type; the queue; the physical device; the number of lines and
pages in the printed output; and the cost per 1000 lines and 1000 pages;
the total cost of the output and the access_id to which it is charged.
The summary sheet also identifies the pathname of the file. the
entryname of the file. and the destination to which the output is sent.
The sequence number of the printed output is also in each corner of
the summary sheet. The printed output is folded so the summary sheet
is always an outside page.

VERTICAL FORMAT CONTROL

The printer software supports an escape (esc) mode that allows users to control
the vertical format of their data by inserting printer control escapes in the text. The
escape sequence can be used to make the printer slew to a specified line on each
sheet of paper, similar to a slew to VFU pattern. The mechanisms for specifying an
escape sequence, specifying channel stops and causing escape processing to take place
are the same for remote terminal printers as for local site printers.

5-51 AG91-()4

There are 16 logical channels that can be set for each line of the paper.
Physical page lengths up to 127 lines are supported. The administrator uses the request
type info segment to set "esc" mode and to define which of the 16 channels are
associated with each line number. There may be one request type info segment for
each request type oi generic type ;;printer. H The contents of the request type info
segment for a given request type may be printed on the terminal by the command:

where SEG is the entryname of the request type info segment. For more information
on the display_prt_rqti command. see the Multics Bulk I/O Manual, Order No.
CC34. (By convention. the entryname is <request_type> _i nfo. e.g .• printer_info for
request type printer.)

Within the request type info segment the channel definitions might be described
as follows:

Line (1):
Line (11):
Line (21):
Line (30):

1,5,15;
5;
5;

15 ;

This means that a slew to channel 1 moves the paper to line 1 (This is the same as a
new page or form feed character). Similarly. the escape sequence <esc>c5<etx> (slew
to channel 5) moves the paper to line 1. a second slew to channel 5 moves to line
11. then to line 21. In general. if the printer is on line X when it receives a slew to
channel <n>, it searches forward starting at line X+l until it finds a line with channel
<n> set and moves the paper to that line. If a channel stop for channel <n> is not
defined. the printer advances to the next line.

The move to channel <n> escape control sequences are specified in the text of a
print file by:

where:

<esc>c<n><etx>

typ <esc>

c

<n>

is the ASCII ESC character (octal 033).

is the lowercase ASCII character "c" which defines this to be a
channel slew control sequence.

is an integer that defines the target channel of the slew control
sequence.

(1~n~16)

5-52 AG91-04

<etx>
is the ASCII ETX character (octal 003).

If esc mode has been set in the rqt_info_seg, this control causes the printer to
move to the next line associated with channel <n>.

Punched -Card Output

The enter_output_request command described in the Commands manual causes the
contents of Multics files to be punched. See also the dpunch command in the
Commands manual. The files can be punched under mcc, raw, or 7punch conversion
modes. See Appendix C for more information on punched card output. Files punched
by a remote station will be punched under rmcc mode.

Punched -Card Input

Facilities are provided to read punched card decks into Multics files. There are
several conventions for interpreting the punched codes used in a user's card deck. The
central site reader is capable of reading any punch codes, including binary data.
Remote terminal card readers normally cannot read binary code. There are f our types
of card formats that can be input to Multics: Multics card codes (mcc), remote
Multics card code (rmcc), 7punch, and raw.

mcc

rrncc

7punch

The Multics card code is defined in "Punched Card Codes" in Appendix
C of this document. It consists of a superset of the EBCDIC card
punch codes and can be produced by 029 key punches. Each column is
interpreted as one character. The 12-bit card codes are converted to
9-bi t ASCII codes.

Remote Multics card code does not concern itself with punch codes, but
rather with the characters that are transmitted. Selection of punch code
is determined on the basis of hardware configuration. Conversion and
translation is specified by the -terminal_type control argument to the
remote_input_ I/O module. For more information see the description
of the remote_input_ I/O module in the Subroutines manual. Punch
codes are not specified, unlike mcc format, because various remote
terminals use different codes for the same characters, and it is the
character, not the punch code, that is transmitted.

The 7punch decks are binary representations of existing files with
checksums and sequence numbers added, and the data portions of the
cards are read in exactly as they were punched out. The format of a
7punch deck is described in Appendix C.

5-53 AG91-04

raw
Raw decks are simply read into Multics files without any conversion,
and without regard to format; that is, the 960 bits on each card are
read into the file in column order and without padding. Any desired
conversion can then be performed by the user.

The flip cards prepared when a deck is punched (described in Appendix C) and
other sorts of labeling cards from other systems are not read correctly and should be
removed from decks. See Appendix C for more information on punched card input.

There are two modes of Multics punched card input: bulk data input and
remote job entry (PJE). Bulk data input is used to copy data from punched cards
into the Multics storage system. Remote job entry on Multics is a mechanism that
allows a registered user to submit an absentee job from a card deck.

ACCESS REQUIRED FOR CARD INPUT

In order for a user to submit a card deck for input to Multics, the following
conditions must be met:

1. The user must be registered for card input and have an assigned card
input password set up by the system administrator. or have been given
permission to use the null password feature.

2. A special access control segment must exist in the user's mailbox
directory. Proper access must be set for the station in order for it to
read card decks (see "Card Input Access Control Segment" later in this
section.)

3. The user must have permISSIon to use the card input station. This is
granted by the system administrator on the ACL of the station access
control segment.

For RJE jobs, the tag portion of the process group ID of the absentee process
(which is used in access control calculations) is "p". A system administrator or a user
may deny access to RJE jobs with the ACL term:

null *. *. p

or similar ACL terms, assuming that there does not exist a more specific ACL term
that gives access.

Card Input Registration and Password

Each user usually must be given a card input password by the system
administrator in order to use any form of card input on Multics. The card input
password defined should be different from the user's interactive password. The
Person_id and password of the user are provided on control cards at the time the
deck is submitted.

5-54 AG91-04

The user who submits card input must include a password card as the second
card of his deck. It has the form:

++PASSWORD xxxxxxxx

where the xxxxxxxx is the user's registered card input password (1-8 characters). It is
customary to turn the keypunch printer off when punching the password. Users who
have r access to >sc 1 >rcp>card_ input_password. acs do not need to be registered
f or card input In this case, xxxxxxxx should be blanks.

If the Person_id given in the ++ DA T A or ++ RJE card is not registered
appropriately, or if the password given on the password card is incorrect. the input is
not accepted. If the password is not specified and the mode is bulk data input, and
the user has r access to >sc 1 >rcp>card_ input_password. acs, the input is allowed.
In this case the person need not even be registered. The submitter must have access
to the card input and station access control segments defined below.

Card I nput Access Control Segment

The card input access control segment allows a user to control which stations
can be used to read bulk card input using his Person_id and Project_id. The
pathname of this access control segment is:

>udd>Project_id>Person_id>card_input.acs

This segment must exist with an ACL containing read access to each station that is
permitted to submit bulk data input for the user and execute access for each station
that is permitted to submit RJE jobs. For example:

reS ta t i on 'Ie. 'Ie

5-55 AG91-04

The ACL star convention may be used in the normal fashion. If the user job lacks
access to the card input ACS, input is not accepted. If this segment does not exist or
if the access is not as specified, card input will not be permitted. In addition, the
user must have permission to use the station, with the same type of access as defined
above, granted by the system administrator on the ACL of the station access control
segment as discussed below. Remote terminal login is accepted only from remote
terminals that have a registered station ID and password. The name of each registered
station and its password is stored in the person name table.

Station Access Control Segment

Each station has an access control segment in the directory
>system_control_l>rcp>named station.acs. The ACL of this segment lists all
users allowed to submit card input through the station; a user must have read access
for bulk data input and execute access for RJE. For example:

The ACL star convention may be used in the normal fashion. If the user job lacks
access to the station ACS. the input is not accepted.

This check allows a site to specify that a certain station is reserved for the use
of a certain group of users. The ACS can also be used to ensure that certain stations
are not used to submit card input for privileged users, such as *.SysAdmin, who
should never use the facility for reasons of security. If a user is not on the ACS for
a station he wishes to use, he should contact the System Adminstrator to obtain
proper access.

CONTROL CARD INFORMATION

Control cards are used to tell the card input process how to read the user's data
and what to do with it. Each control card consists of a key (e.g., ++FORMAT) and
possibly some data fields. The control card key must start in column 1 and may not
contain any spaces. Data fields are separated from the key and from each other by
one or more spaces.

All letters punched on the control cards are mapped to lowercase except those
immediately following an escape character (backslash or cent sign). For example,
\SM I TH. \SYS\MA I NT is mapped into Smith.SysMaint.

At the central site, users submit card decks to Qperations personnel for
processing. At remote sites that have a card reader terminal, the user may have to
physically place the card deck in the reader. In the latter case, the user must be sure
to include some additional control cards that must be placed before and after the
user's card deck. For more information on these additional control cards (++EOF and
++UID, for example) see the Multics Bulk I nputlOutput, Manual Order No. CC34.

5-56 AG91-04

BULK DATAl NPUT

Bulk data input is the mode of card input used to read a punched card deck
and write its contents into a card image segment in the Multics storage system. The
user is able to read the card image segment from his normal Multics process
(interactive or absentee.) For security reasons, card image segments are created in
system pool storage rather than in the user's directory. Once the data has been read,
the user may copy the card image segment into his directory using the copy_cards
command (see the description of this command in the Commands manual).

Card image segments must be copied from the system pool storage within a
reasonable time, as these segments are periodically deleted from the system pool.

The user identified on the ++DATA card is notified by mail when his card deck
has been successfully read.

A complete card deck for bulk data input is shown below.

Control Card Format of a Card Deck for Sulk Data Input

++DATA DECK_NAME PERSON_ID PROJECT_ID
++PASSWORD PASSWORD
++CONTROL OVERWRITE
++AIM ACCESS CLASS OF DATA CARDS
++FORMAT PUNCH_FORMAT MODES
++INPUT

(user data cards)

The only control cards required are the first which is an identifier card. the second
which is a password card and the last which is the end of control input. For an
explanation of all the control cards refer to Appendix C of this manual.

5-57 AG91-04

The user should submit a complete card deck to operations. The deck must
follow the format specified in the card input section in Appendix C.

Normally, the access_class is system_low and the ++AIM cards can be omitted.
However, if the access_class is greater than system_low, the ++AIM cards are required.

REMOTE JOB ENTRY

Remote job entry is used to copy standard Multics commands punched on cards
into an absentee input segment and have it submitted as an absentee job (as though it
were done from an interactive process). The user's card deck is copied into an
absentee input segment created in the norma] system pool storage used for bulk data
input card image segments. When the user's deck has been successfully read, an
absentee request is submitted on behalf of the user who provided the deck. A special
header is added to the absentee input segment so that a dprint request of the absentee
output segment is automatically generated using the request type associated with the
remote terminal or the request type of the local printer, depending on the input
device.

Format of a Card Deck for Remote Job Entry

++RJE DECK_NAME PERSON_ID PROJECT_ID
++PASSWORD PASSWORD
++AIM ACCESS CLASS OF ABSENTEE PROCESS
++RJECONTROl CONTROL ARGS TO THE EAR COMMAND
++RJEARGS ARGUMENTS FOR THE ABSENTEE PROCESS
++EPILOGUE COMMAND
++FORMAT PUNCH_FORMAT MODES
++INPUT

(user absentee file)

The only cards required are the first which is an identifier card, the second which is
a password card and the last which is the end of control input. For an explanation
of all the control cards refer to Appendix C of this manual.

The user should submit a complete card deck to operations. The deck must
follow the format specified in the card input section in Appendix C.

Normally. the access_class is system_low and the ++AIM cards can be omitted.
However, if the access_class is greater than system_low, the ++ AIM cards are required.

5-58 AG91-04

REMOTE JOB ENTRY WITH FOREIGN COMPUTER SYSTEMS

Multics provides facilities for users to submit card decks to a remote computer
system for execution and to receive output from that execution either for printing/punching
locally or f or online perusal. This section describes the mechanisms available for using
this f acili ty.

Submitting Card Decks to a Remote System

Each card deck to be transmitted to a remote system for execution must be
contained in a separate Multics segment. This segment can be created using an editor,
bulk card input, or any other appropriate mechanism.

The segment must consist of ASCII text only; no binary data (object segments,
and so on) can be included. The exact format of the segment's contents is dependent
on the remote system being accessed and should be determined from the appropriate
documentation for the remote system,

To transmit the segment to the remote system, issue the enter_output_request or
dpunch command, specifying the mcc conversion mode and the request type established
by your system administrator explicitly for this purpose. A separate request type will
be used for each remote system to which card decks can be SUbmitted.

For example, to submit the card deck contained in the segment "sample. cdc" in
the working directory to a remote CDC system, deleting the deck after it is
successfully transmitted, issue the command:

enter_output_request -mcc -rqt cdc~obs -dl sample.cdc

where "cdc~obs" is the request type established by your system administrator to
submit decks to the CDC system.

Receiving Output from a Remote System

By default. printed and punched output returned by a remote system to Multics
is automatically printed or punched locally. However, your system administrator may
decide that the returned output should be made available to users f or online
inspection.

5-59 AG91-04

If output is to be available for online inquiry, each output file must contain
Multics control records that establish the identity of the user who owns the file.
Either the job control language (JeL) submitted to the remote system or the
programs(s) executed on the remote system must be modified to cause the required
control records to appear in the output files. Check with your system administrator to
determine which mechanism must be used for each remote system.

Returned output files that are to be available for online examination are placed
in system pool storage where they may be retrieved using the copy _cards command
described in the Commands manual. Output files must be copied in a reasonable time,
as they are periodically deleted from the system pool.

Format of an Output Fiie iransmitted to Muitics for Oniine Perusal

++IDENT FILE_NAME PERSON_IO PROJECT_IO
++FORMAT MODES
++CONTROL OVERWRITE AUTO_QUEUE
++INPUT

(output data)

<EOF record>

The only user-supplied control records required are ++IDENT and ++INPUT. For
an explanation of these control records. refer to Appendix C of this manual.

Each output file is delimited by an end-of-file (EOF) record supplied
automatically by the remote system. All control records in the output file from
++ IDENT through ++ INPUT inclusive and the EOF record are removed from the file
bef ore it is placed in to pool storage.

For printed output, each paper motion command in the file is translated into the
character sequence that will best simulate the requested motion when (and if) the file
is printed locally via the enter_output_request or dprint command. The exact character
sequences used are given in Table 5-6.

One of the paper motion commands that may be received is a request to skip to
a specific printer channel stop. This command is converted to a logical channel slew
sequence as defined in "Vertical Format Control" earlier in this section. The user
should check the RQTI segment of the request type used for printing the output file
to determine which channel stops may be used in the output file. (The program
executed on the remote system is responsible f or placing this particular paper motion
command in the output file. The exact mechanism used to do this should be
determined from the appropriate documentation for the remote system.)

5-60 AG91-o4

Table 5-6. Translations of Paper Motion Commands in Output Files

Paper motion command

Slew zero lines
Slew one line

Skip to channel N

Character sequence

CR (octal 015) (1)
NL (octal 012)

ESC c <N> ETX (2)

1. Overprint the current line with the previous line.

2. This sequence is octal 033, octal 143, the decimal representation of the
channel number encoded as ASCII characters (e.g., octal 061, octal 065
for channel #15) and octal 003.

IMPLEMENTATION OF INPUT/OUTPUT MODULES

The information provided below is applicable to writing I/O modules. It
describes the format and function of I/O control blocks, and provides a list of
implementation rules. For descriptions of the iox_ entry points, refer to the
Subroutines manual.

Some instances in which a user might wish to create a new I/O module are
given below:

1. Pseudo Device or File. An I/O module could be used to simulate I/O
to/from a device or file. For example, it might provide a sequence of
random numbers in response to an input request. The discard_ system
I/O module (described in the Subroutines manual) is an example of this
sort of module.

2. New File Type. An I/O module could be used to support a new type
of file in the storage system, such as a file in which records are
accessed via a hash table. Another example is an I/O module which
supports Honeywell GCOS standard tape formats.

3. Reinterpreting a File. An I/O module could be designed to overlay a
new structure (relative to the standard file types) on a standard type of
file. For example, an unstructured file might be interpreted as a
sequential file by considering 80 characters as a record. The record_stream_
I/O module does this type of interpretation.

5-61 AG91-04

4. Monitoring a Switch. An I/O module could be designed to pass
operations along to another module while monitoring them in some way
(e.g., by copying input data to a file). The audit_ system I/O module
(described in the Subroutines manual) is an example of this sort of I/O
module.

5. Unusual Devices. Working through the tty_ I/O module (described in
the Subroutines manual) in the raw mode, another I/O module might
transmit data to/from a device that is not a standard Multics device
type (as regards character codes, etc.).

The last three items listed illustrate a common arrangement. The user attaches an
I/O switch, x, using an I/O module, A. To implement the attachment, module A
attaches another switch, y, using another I/O module, B. When the user calls module
A through the switch x, module A in turn calls module B through the switch y. Most
nonsystem I/O modules that perform true I/O work in this way, because a nonsystem
I/O module (or some module that it calls) in turn calls a system I/O module. There
are system I/O routines at a more primitive level than the I/O modules, but
user-written I/O modules ordinarily do not call these routines.

I/O Control Blocks

An I/O switch is embodied by an I/O control block (lOeB) that is created
when iox_$find_iocb is called the first time the I/O switch is referenced by name.
The control block remains in existence for the life of the process unless explicitly
destroyed by a call to iox_$destroy_iocb.

The principal components of an I/O control block are pointer variables and
entry variables whose values describe the attachment and opening of the I/O switch.
There is one entry variable for each I/O operation with the exception of the attach
operation, which does not have an entry variable since there can be only one attach
entry point in an I/O module. To perform an I/O operation through the switch, the
corresponding entry value in the control block is called. For example. if iocb_ptr is a
pointer to an I/O control block, the call:

can be thought of as:

All routines must call the iox_ subroutine, as the internal representation of the control
block may change.

5-62 AG91-04

I/O CONTROL BLOCK STRUCTURE

The declaration given below describes the first part of an I/O control block.
Only those few I/O system programs that use the remainder of the I/O control block
declare the entire block. Thus, all references to I/O control blocks here refer only to
the first part of the control block. For example, the statement "no other changes are
made to the control block" means that no other changes are made to the first part of
the control block, and so on. The I/O system might make changes to the remainder
of the block, but these are of interest only to the I/O system. For full details on
the entry variables, see the descriptions of the corresponding entries in the iox_
subroutine in the Subroutines manual and the iox_$init_standard_iocbs entry point in
this manual. This structure is declared in the iocbjncl.pll include file.

dcl iocb
2 version
2 name
2 actual_iocb_ptr
2 attach_descrip_ptr
2 attach_data_ptr
2 open_descrip_ptr
2 open_data_ptr
2 reserved
2 detach_iocb
2 open

2 close
2 get_l i ne

2 put_chars
2 modes
2 position
2 control
2 read_record

2 write_record
2 rewrite_record
2 delete record
2 seek_key

2 read_length
2 open_file

2 close file
2 detach

aligned based,
character (4) ali gned,
char (32),
ptr,
ptr,
ptr,
ptr,
ptr,
bit (72),
entry (ptr, fixed (35»,
entry (ptr, fixed, bit (1) al igned,

fixed (35»,
entry (ptr, fixed (35»,
entry (ptr, ptr, fixed (21), fixed (21),

fixed (35»
entry (ptr, ptr, fixed (21), fixed (21),

fixed (35»,
entry (ptr, ptr, fixed (21), fixed (35»,
entry (ptr, char Uc), char (1~), fixed (35»,
entry (ptr, fixed, fixed (21), fixed (35»,
entry (ptr, char (~'(), ptr, fixed (35»,
entry (ptr, ptr, fixed (21), fixed (21),

fixed (35»,
entry (ptr, ptr, fixed (21), fixed (35»,
entry (ptr, ptr, fixed (21), fixed (35»,
entry (ptr, fixed (35»,
entry (ptr, char (256) vary i ng, fixed (21),

fixed (35»,
entry (ptr, char (256) vary i ng, fixed (21),

fixed (35»,
entry (ptr, fixed (21), fixed (35»,
entry (ptr, fixed bin, char (,oc),

bit (1) ali gned, fixed bin (35»,
entry (ptr, char (1~), fixed bin (35»,
entry (ptr, char (,,~), fixed bin (35»;

declare iox_$iocb_version_sentinel character (4) aligned external static;

5-63 AG91-G4

ATTACH POINTERS

If the I/O switch is detached, the value of iocb.attach_descrip_ptr is null. If
the I/O switch is attached, the value is a pointer to the following structure:

del 1 attaeh_deserip based
2 length
2 string

ali gned,
fixed bin (17) ,
char (0 refer (attaeh_deser i p. 1 ength» ;

The value of attach_descrip.string is the attach description. See the attach
description earlier in this section.

If the I/O switch is detached, the value of iocb.attach_data_ptr is nUll. If the
I/O switch is attached. the value may be nUll. or it may be a pointer to data used
by the I/O module that attached the switch. To determine whether the I/O switch is
attached or not, the value of iocb.attach_descrip_ptr should be examined; if it is nUll.
the switch is detached.

OPEN POINTERS

If the I/O switch is closed (whether attached or detached), the value of
iocb.open_descrip_ptr is null. If the switch is open. the value is a pointer to the
following structure:

del 1 open_deserip based
2 length
2 string

aligned,
fixed bin (17) ,
char (0 refer (open_descr i p. i eng th)) ;

The value of open_descrip.string is the open description. It has the following
form:

mode {i nfo}

5-64 AG91-o4

where:

1. mode
is one of the opening modes (e.g., stream_input) listed below. The modes and
their corresponding nlL'1lbers are:

1 stream_input
2 stream_output
3 stream_input_output
4 sequential_input
5 sequential_output
6 sequential_input_output
7 sequential_update
8 keyed_sequential_input
9 keyed_sequential_output

10 keyed_sequential_update
11 direct_input
12 direct_output
13 direct_update

The include file iox_modes.incl.pll declares a set of named constants for these
mode values.

2. info
is other information about the opening, such as the open description. If info
occurs in the string, it is preceded by one blank character.

If the I/O switch is closed, the value of iocb.open_data_ptr is null. If the I/O
switch is open, the value may be nUll, or it may be a pointer to data used by the
I/O module that opened the switch. The iox_modes.incl.pll include file gives standard
names and named constants for the opening modes.

ENTRY VARIABLES

The value of each entry variable in an I/O controi biock is an entry point in
an external procedure. When the I/O switch is in a state that supports a particular
operation, the value of the corresponding entry variable is an entry point that
performs the operation. \Vhen the I/O switch is in a state that does not support the
operation, the value of the entry variable is an entry point that returns an appropriate
error code. The iox_ subroutine provides four error entries that set the error code
argument for the I/O module entry to an appropriate error_table_ value. The entries
and the corresponding error codes are:

(error_table_$not_attached)

(error_table_$not_closed)

5-65 AG91-04

SYNONYMS

When an I/O switch named x is attached as a synonym for an I/O switch
named y, the values of all entry variables in the I/O control block for x are identical
to those in the iiO control block for y with the exception of iocb.detach. Thus a
can:

immediately goes to the correct routine.

The values of iocb.open_descrip_ptr and iocb.open_data_ptr for x are also the
same as those for y. Thus. the I/O routine has access to its open data (if any)
through the I/O control block pointed to by x_iocb_ptr.

The value of iocb.actual_iocb_ptr for x is a pointer to the control block for the
last switch in a chain of switches that have been connected to each other by the syn_
I/O module. (When the switch x is not attached as synonym, this pointer points to
the control block for x itself.) I/O modules use this pointer to access the actual I/O
control block whose contents are to be changed, for example. when a switch is
opened. The I/O system then propagates the changes to any other control blocks that
have been attached as synonyms to the actual I/O control block.

Writing an I/O Module

The information presented in the following paragraphs pertains to the design and
progra.~ming of an I/O module. In particular, conventions are given that must be
fonowed if the I/O module is to interface properly with the I/O system. The reader
should be familiar with the material presented under the headings "Multics Input/Output
System" and "File Input/Output," in this section as well as with the iox_ subroutines
description in the Subroutines manual.

5-66 AG91-04

DESIGN CONSIDERATIONS

Before programming begins on an I/O module, the functions it is to perform
should be clearly specified. In particular, the designer should list the opening modes
to be supported and consider the meaning of each I/O operation supported for those
modes. See also Table 5-1, which describes what operations should be supported for
each opening mode.) (See "Open Pointers" above for a list of opening modes.) The
specifications in the description of the iox_ subroutine must be related to the
particular I/O module (e.g., what seek_key means for the discard_ I/O module).

The designer should decide what the attach, open, close and detach descriptions
will be. The attach description defines all the information needed to attach an I/O
switch through the I/O module to a specific device and/or volume. The open
description gives all information relating to a specific file (a set of data on the
volume), its file location and attributes. The close description gives the disposition
information for the file or position information for the volume after the file is
closed. The detach description gives the disposition of the device or volume after the
I/O switch is detached. If open, close and detach descriptions are not needed, then
the designer should implement a nonextended I/O module, because it is easier to
interface nonextended I/O modules with language I/O facilities. If open, close and
detach descriptions are needed, an extended I/O module must be implemented to
accept these descriptions.

An I/O module contains routines to perform attach, open, close, and detach
operations and the operations supported by the opening modes. Typically, though not
necessarily, all routines are in one object segment. If the module is in a bound
segment, only the attach entry need be retained as an external entry. Other routines
are accessed through entry variables in I/O control blocks.

An I/O module may have several routines that perform the same function but
in different situations (e.g., one get_line routine for stream_input openings, another for
stream_input_output openings). Whenever the situation changes (e.g., at opening), the
module stores the appropriate entry values in the I/O control block.

5-67 AG91-04

IMPLEMENTATION RULES

The following rules apply to the implementation of all I/O operations.
Additional rules that are specific to a particular operation are given later. In the
rules, iocb is a based variable declared as described under "I/O Control Blocks" above,
and iocb_ptr is an argument of the operation in question.

1. For most operations, the usage (entry declaration and parameters) of a
routine that implements an I/O operation is the same as the usage of
the corresponding entry in the iox_ subroutine. See the Subroutines
manual for details on the iox_ subroutine. Exceptions are the attach.
open_file, close_file, and detach operations. The I/O module calling
sequences for these operations are described below.

2. Except for attach and detach, the actual I/O control block to which an
operation applies (i.e., the control block attached by the called I/O
module) must be referenced using the value of
iocb_ptr->iocb.actual_iocb_ptr. It is incorrect to use just iocb_ptr,
and it is incorrect to remember the location of the control block from
a previous call (e.g.. by storing it in a data structure pointed to by
iocb.open_data_ptr).

3. On entry to an I/O module, the value of iocb_ptr->iocb.open_data_ptr
always equals the value of:

The value of iocb_ptr->iocb.open_descrip_ptr always equals the value of:

Thus, the data structures related to an opening may be accessed without
going through iocb.actual_iocb_ptr. However, if you need to free or
reallocate the structures pointed to by iocb.open_data_ptr and
iocb.open_descrip_ptr, you must reset these variables using
iocb_ptr->iocb.actual_iocb_ptr as shown above, and you must
follow the procedures in step 4 below to propagate these changes to
synonym switches.

4. If an I/O operation changes any values in an I/O control block. the
changes must be made in the actual I/O control block (Rule 1 above).
I/O modules should mask IPS signals when the iocb is being modified,
to prevent asynchronous event call handlers from using an iocb which is
in an inconsistent state. To mask IPS signals:

a. Get ready to change the iocb by copying all pointers or entry
constants that the new iocb will contain into automatic variables.
This will snap links to lessen the probability of a linkage error
while interrupts are masked.

5-68 AG91-04

b. Establish an any _other handler to abort the operation (by closing
the iocb if you were opening it when a failure occurs, or by
detaching the iocb if you were attaching it) and unmask IPS
signals.

c. Execute the call:

The routine hcs_$set_ips_mask is used to disable one or more
IPS interrupts. (See the description of hcs_$set_ips_mask in the
Subroutines manual.)

d. Change the iocb by setting the iocb pointers and entry variables
appropriate to the operation being performed, as described below.

e. Execute the call:

where iocb_ptr points to the changed control block. The routine
iox_$propagate reflects changes to other control blocks attached
as synonyms. It also makes certain adjustments to the entry
variables in the control block when the I/O switch is attached,
opened, closed, or detached.

f. Execute the call:

This routine is used to enable· one or more IPS interrupts. (See
the description of hcs_$reset_ips_mask in the Subroutines manual.)

g. Revert the any_other handler.

5. The procedure entrypoints supporting all I/O operations must be
external entry points. Only the attach entrypoint must be retained in a
bound segment containing the I/O module.

ATTACH OPERATION

The name of the routine that performs the attach operation is derived by
concatenating the word "attach" to the name of the I/O module (e.g., discard_attach
is the name of the attach routine for the discard_ I/O module). Each attach routine
has the following usage:

declare module nameattach entry (ptr, (*)char(*) varying, bit(l)
aligned,-fixed bin(35»;

call module nameattach (iocb_ptr, option_array, com_err_switch,
code);

5-69 AG91-04

I . I
I
I
I
I
I
I
i

where:

1. iocb_ptr
points to the control block of the I/O switch to be attached. (Input)

2. option_array
contains the options in the attach description. (Input) If there are no
options. its bounds are (1:0). You should check for no options using the
PL/I statement:

if dimension (option_array.1) = 0 then ...

Otherwise. its bounds are (1:N) where N is the number of options. iox_
divides the attach description string into the individual options which
are passed in this option_array.

3. com_err_switch
indicates whether the attach routine should call the com_err _ subroutine
(described in the Subroutines manual) when an error is detected. (Input)

"11lb yes
"Ollb no

4. code
is a standard status code. (Output) The code indicates the success or
failure of attachment, with any nonzero value indicating failure.

The following rules apply to coding an attach routine:

1. If the I/O switch is already attached (i.e., if
i ocb_ptr-> i ocb. attach_descr i p_ptr is not nUll), return the code
error_table_$not_detached; do not make the attachment.

2. If, for any reason, the switch is not and cannot be attached, return an
appropriate nonzero code and do not modify the control block. Call
the com_err_ subroutine if. and only if, com_err_switch is "l"b.
Optionally. sub_err_ may be called if com_err_switch is "O"b, and an
error code is not a sufficient description of the problem. A sub_err_
flag of ACfION_DEFAULT_RESTART should be used. If sub_err_
returns, then the I/O module should return the error code to the
caller. If the attachment can be made, follow the remaining rules and
return with code set to O.

3.

4.

For a nonextended I/O module (which does not support open, close and
detach descriptions), set i ocb_ptr-> i ocb .open and
iocb_ptr->iocb.detach_iocb to the appropriate open and detach_iocb
routines. For an extended I/O module, set iocb_ptr->iocb.open_fi le
and i ocb_ptr-> i ocb. detach to the appropriate open_file and detach
routines. Be sure to follow step 4 of the "Implementation Rules" above
when changing the I/O control block.

Set iocb_ptr->iocb.attach_descrip_ptr to point to a structure as
described in "I/O Control Blocks" above. The attach description in this

5-70 AG9l-04

structure must be fabricated from the options in the argument
option_array. Options may be modified in the attach description (e.g., a
pathname option may be expanded), and default values should be
included in the attach description for omitted options.

5. If desired, set iocb_ptr->iocb.attach_data_ptr,
iocb_ptr->iocb.modes, and iocb_ptr->iocb.control. ~ake no
other modifications to the control block.

6. Call iox_$propagate.

OPEN OPERATION

An open operation is performed only when the actual I/O switch is attached but *
not open. The open routine for a nonextended I/O module has the same calling
sequence as the iox_$open subroutine. The open_file routine for an extended I/O
module has the following calling sequence:

declare open_file_routine entry (ptr, fixed bin, (*) char(*)
va r yin g, bit (1) ali 9 n ed , fix ed bin (35)) ;

call open file routine (iocb_ptr, mode, option_array, unused,
code); -

STRUCTURE ELEMENTS

iocb_ptr
points to the control block of the I/O switch to be opened. (Input)

mode
is the number assigned to the opening mode to be used for this opening.
(Input) See iox_modes.incl. pll f or a list of acceptable values and for named
constants associated with the values.

option_array
contains the options in the open description. (Input) If there are no options,
option_array bounds are (1:0). You should check for no options using the
PL/I statement:

if dimension (option_array,!) = 0 then ...

Otherwise, its bounds are (1:N) where N is the number of options. iox_
divides the open description string into the individual options which are
passed in this option_array.

unused

code

must be "O"b. (Input)

is a standard status code. (Output) The code indicates the success or failure
of opening, with any nonzero value indicating failure.

5-71 AG91-04

The following rules apply to coding both open and open_file routines:

1. If, f or any reason, the opening cannot be perf ormed. return an
appropriate code and do not modify the I/O control block. For
example, ii the switch is not attached (I.e.,
iocb_ptr->iocb.attach_descrip_ptr=null), then return a code of
error_table_$not_attached. If the switch is already open (i.e.,
iocb_ptr->iocb.open_descrip_ptr A =null) , then return a code of
error_table_$not_closed. If an incorrect or unsupported opening mode is
given, return a code of error_table_$bad_mode. If an error occurs in
an open description option, return an error code appropriate to the
error. Optionally, sub_err_ may be called to report the error if a
simple error code isn't sufficient to describe the error. A sub_err_ flag
of ACTION~DEFAULT_RESTART should be used. If suh_err_ returns.
then the I/O module should return the error code to the caller. If the
opening can be performed. follow the remaining rules and return with
code set to O.

2. Set iocb_ptr->iocb.actual_iocb_ptr->iocb.op to an appropriate
routine. This applies for each operation allowed for the specified
opening mode. Be sure to follow step 4 of the "Implementation Rules"
above when changing the I/O control block. The following is a list of
possible I/O operations:

close or close file
get_l i ne
get_chars
put_chars
read record
write_record
rewrite_record
delete_record
seek_key
read_key
read_length
modes
position
control

iocb.close must be set for nonextended I/O modules, while iocb.close_file
must be set for extended I/O modules. Refer to Table 5-1 for a list
of operations which should be allowed for each possible opening mode.

3. If either the modes operation or the control operation is enabled with
the I/O switch attached but not enabled when the switch is open, set
iocb_ptr->iocb.actual_iocb_ptr->iocb.op (where op is modes or
control) to iox_$err_no_operation.

4. Set iocb.open_descrip_ptr to point to a structure as described in "I/O
Control Blocks;; above.

5-72 AG91-04

5. If desired, set
iocb_ptr->iocb.actual_iocb_ptr->iocb.open_data_ptr. Do not
make any other modifications to the control block.

6. Can iox_$propagate.

CLOSE OPERATION

A close operation is performed only when the actual I/O switch is open. The
close routine for a nonextended I/O module has the same calling sequence as the
iox_$close subroutine. The close_file routine for an extended I/O module has the
following calling sequence:

dec 1 are close f i 1 e rout i ne entry (ptr, (1,) char (ic) vary i ng, fixed
bin (3S); -

call close_file_routine (iocb_ptr, option_array, code);

STRUCTURE ELEMENTS

iocb_ptr
points to the control block of the I/O switch to be closed. (Input)

option_array

code

contains the options in the close description. (Input) If there are no options,
option_array bounds are (1:0). You should check for no options using the PL/l
statement:

if dimension (option_array,l) = 0 then ...

Otherwise. its bounds are (l:N) where N is th.e number of options. iox_ divides
the close description string into the individual options which are passed in this
option_array.

is a standard status code. (Output) The code indicates the success or failure of
closing with any nonzero value indicating failure.

The following rules apply to coding both close and close_file routines:

1. The close routine should set the bit counts on modified segments of a
file, free any storage allocated for buffers, etc., and in general, clean
things up. It should then free any per-opening data structures, and set
iocb_ptr->iocb.actual_iocb_ptr->iocb.open_data_ptr to nulL if
this pointer is nonnull. Be sure to follow step 4 of the "Implementation
Rules" above when changing the I/O control block.

2. For a nonextended I/O module, set the following to the appropriate
open and detach_iocb routines:

iocb_ptr->iocb.actual_iocb_ptr->iocb.open
iocb_ptr->iocb.actual_iocb_ptr->iocb.detach_iocb

5-73 AG91-04

For an extended I/O module, set the following to the appropriate
open_file and detach routines:

iocb_ptr->iocb.actual_iocb_ptr->iocb.open_file
iocb_ptr->iocb.actual_iocb_ptr->iocb.detach

Set iocb_ptr->iocb.actual_iocb_ptr->iocb.open_descrip_ptr to nUll.

3. If either the modes operation or the control operation was enabled with
the switch open and should be not enabled with the switch closed, set
iocb_ptr->iocb.actual_iocb_ptr>iocb.op (where op is modes or
control) to iox_$err_no_operation. If the operation ~as not enabled
with the switch open but should be enabled with the switch closed, set
the entry variable to the apppropriate routine.

4. Do not make any other modifications to the control block.

5. Call iox_$propagate.

6. The close routine must not return without closing the switch.

DETACH OPERATION

A detach operation is performed only when the actual I/O switch is attached
but not open. The detach_iocb routine for a nonextended I/O module has the same
calling sequence as the iox_$detach_iocb subroutine. The detach routine for an
extended I/O module has the following calling sequence:

dec 1 are detach_rout i oe entry (ptr, U~) char U~) vary i ng,
fixed bin (3S)) ;

call detach_routine (iocb_ptr, option_array, code);

STRUCTURE ELEMENTS

iocb_ptr
points to the control block of the I/O switch to be detached. (Input)

option_array

cOde

contains the options in the detach description. (Input) If there are no options,
option_array bounds are (1:0). You should check for no options using the PL/I
statement:

if dimension (option_array. 1) = 0 then ...

Otherwise. its bounds are (1:N) where N is the number of options. iox divides
the detach description string into the individual options which are passed in this
option_array.

is a standard status code. (Output) The code indicates the success or failure of
detaching with any nonzero value indicating failure.

5-74 AG91-04

The following rules apply to coding both detach_iocb and detach routines:

1. Set ioeb_ptr->ioeb.attaeh_deserip_ptr to null. Free any
per-attachment data structure. and set i oeb_ptr-> i oeb. attaeh_data_ptr
to null. Be sure to follow step 4 of the "Implementation Rules" above
when changing the I/O control block.

2. Do not make any other modifications to the control block.

3. Call iox_$propagate.

4. The detach routine must not return without detaching the switch.

MODES AND CONTROL OPERATIONS

These operations can be accepted with the I/O switch attached but closed;
however, modes or control operations are usually meaningful only when the switch is
open. When this is the case, modes and control operations should be allowed only
when the switch is open.

If the control operation is supported, it must return the code
error_table_$no_operation when given an invalid order. In this situation, the state of
the I/O switch must not be changed.

If the modes operation is supported, it must return the code error_table_$bad_mode
when given an invalid mode. In this situation. the state of the I/O switch must not
be changed.

PERFORMING CONTROL OPERATIONS FROM COMMAND LEVEL

Most of the operations supported by an I/O module may be used directly from
command level by using the io_call command (see the Commands manual). When a
control operation requires an info structure (see the description of the iox_$control
entry points in the Subroutines manuaD. a special interface, the "io_call" order. is used
to make these control operations from command level possible. All standard I/O
modules that implement control operations requiring info structures should implement
this interface, as described below.

When an io_call command of the form:

ie call centrel switch name {optional_args}

is issued, the io_call command performs an "io_call" control operation to the switch
specified using the following info structure (found in io_call_info.incl.pU):

5-75 AG91-04

dcl 1 io call info
2 version
2 caller name -
2 order name -
2 report
2 error
2 af _returnp
2 af returnl
2 fill (5)
2 nargs
2 max_arglen
2 args

STRUCTURE ELEMENTS

version

al igned based (io_ca11_infop),
fixed bin,
char (32) ,
char (32) ,
entry options (variable).
entry options (variable),
ptr,
fixed bin (21),
bit (36) ,
fixed bin,
fixed bin (21),
(0 refer (io_call_info.nargs))
char (0 refer

(io_call_info.max_arglen))
varying;

is the version number of this structure, currently 1.

caller_name
is the name of the caller (normally io_call) to be used in any error

order_name
is tb.e order specified in the command line.

report
is an entry like ioa_ to be called to report the results of the order.

error
is an entry like com_err_ to be called to report any errors.

af_returnp
is a pointer to the active function return string if the io_call command was
invoked as an active function.

af_returnl
is the maximum length of the active function return string.

nargs
is the number of optional_args specified in the command line.

max_arglen
is the length of the longest argument.

args
is an array of the actual arguments from the command line.

5-76 AG91-04

The I/O module, upon receipt of an io_call order, should do the following:

1. If io_call_info.order_name specifies an order that requires an info
structure with input values, the I/O module should use io_call_info.args
to determine what data should be placed into the info structure. Once
the structure is complete, the I/O module should call iox_$control,
passing it io_call_info.order_name and a pointer to the info structure
just created. Exactly how io_call_info.args is to be interpreted in order
to build the info structure depends on the I/O module and what order
is being performed. This should be documented along with the I/O
module.

2. If io_call_info.order_name specifies an order that requires an info
structure with output values, the I/O module should call iox_$control
passing it io_call_info.order_name and a pointer to a structure of the
appropriate kind. Then, using io_call_info.report, the I/O module
should display the results of the control operation in some meaningful
way. It is possible in this case that io_call_info.args could be used for
control arguments to determine exactly what will be displayed. As in
input type orders, the interpretation of these arguments is completely at
the discretion of the I/O module.

3. If io_call_info.order_name specifies an order that does not require an
info structure, or is an invalid order. then the I/O module should
return error_table_$undefined_order_request. The io_call command, seeing
this code, will call iox_$con trol again, this time passing the original
control order name, and a null info_ptr.

4. If the I/O module detects an error in handling an io_call order, it
must do one of two things. First, it may return an error code, in
which case io_call prints an error message. Secondly, it may call
io_call_info.error (used like the com_err_ subroutine) to report the
error directly. In this case, a zero error code should be returned to the
caller. The latter choice is recommended, especially in cases where the
I/O module can print a more informative error message.

I/O modules that do not support control operations that require info structures
need not implement the io_call order at all. The io_call order can be rejected along
with all other invalid orders in which case the order is performed with a null
info_ptr by the io_call command as described in item 3 above.

5-77 AG91-04

Control operations can also be performed through the active function interface
of the io_call command. In this case, the mechanism is basically the same with the
following differences:

1. The order issued by the io_cali command is io_call_af. not io_call.

2. Instead of printing a result, the I/O module should store its result in
the varying string defined by io_call_info.af_returnp and
io_call_inf o.af _returnl.

The io_call_af order should only be supported for orders that have meaning as
an active function. As in the io_call order, the interpretation of io_call_info.args is
completely up to the I/O module.

OTHER OPERATIONS

Routines for the other operations are called only when the actual I/O switch is
attached and open in a mode for which the operation is allowed, the opening and
attachment having been made by the I/O module containing the routine. The
following modifications to the I/O control block of the actual I/O switch can be
made:

2. Reset an entry variable set by the open routine, e.g., to switch from
one put_chars routine to another.

3. Close the switch in an unrecoverable error situation. In this case, the
rules above for the close operation must be followed.

If any change is made to the iocb, be sure to follow step 4 of the "Implementation
Rules" above.

OUTER MODULES

The iox_ I/O module with which user_i/o is attached at process initialization is
called the outer module. In order to support reconnection of terminals. I/O modules
used as outer modules must respect certain conventions, For an example of the
appropriate techniques, examine the source of tty_,

All outer modules must support the -login_channel attach control argument, to
mean that the switch will be connected to the device specified by user_info_$terminal_data.

5-78 AG91-o4

When the user is disconnected, the special condition sus_ is signalled in the
process. The program sus_signal_handler_ catches the condition, and blocks awaiting
notification from the Answering Service that a new terminal is available. This may
happen at any time, even when the process is compute-bound. When sus_signal_handler_
receives the notification, it searches the attach table for all switches with the control
argument -login_channel in their attach description. Each one is closed, detached,
attached, and opened.

The result of this is that an outer module may be interrupted in the middle of
an operation, have its switch detached and closed, and be left to continue execution.
Outer modules must be designed to avoid failure under these circumstances. An outer
module may mask the sus_ IPS signal for the duration of all operations affecting the
attachment data structures, but there is only a limited amount of CPU time available
after the signal. If sus_signal_handler_ does not make the proper response to the
Answering Service within this time, the process is terminated.

The alternative strategy is to detect asynchronous detachments. This can be done
using a half lock in the attach data. As any operation is started, the half lock has
one added to its value. When an operation is completed, one is subtracted. If the
detach or close entrypoints are called and find a nonzero half lock, they may not free
any storage that may be referenced by interrupted operations. Instead, they set flags
in the attach data indicating that an asynchronous close or detach has taken place.
When any of the other entrypoints detect these bits, they assume that a new
attachment has been made, and call iox_ on the new attachment to complete their
operation. Then they return.

For example, if tty_'s put_chars operation gets an error indicating that the
process no longer has permission to use the terminal, it checks for the asynchronous
bits. If they are not present, it blocks to await the arrival of the sus_ signal. If they
are, it calls iox_$put_chars on its actual_iocb, and returns the results it returns.

RESOURCE CONTROL PACKAGE

The Resource Control Package (RCP) provides a mechanism for device reservation,
assignment, and attachment.

5-79 AG91-()4

Relationship of Rep to Other 110 Facilities

Input/output in the user environment of the Multics system is organized around
the user-ring I/O system subroutine, iox_. The entry points of iox_ provide for a
general, device-independent interface supporting I/O and control functions. They may
be called either via explicit PL/I code or via the facilities of language-provided I/O.
Often, they are called internally from programs that deal with peripheral I/O.

The user-ring I/O system is organized around I/O modules, programs that
support the iox_ interfaces for a specific device, class of devices, or class of
operations upon a given device or class of devices. (The available interfaces of iox_
are described in the Subroutines manual.) I/O modules make appropriate calls upon
the I/O interfaces of the supervisor, the resource control package (Rep), and the I/O
interfacer to arrange for use of peripheral devices and perform operations upon them.
The system provides a repertoire of I/O modules for peripheral devices. These I/O
modules are documented in the Subroutines manual. The user may provide his own
I/O modules as well (see above).

Rep is responsible for allocation and deallocation of peripheral devices to user
processes. By means of Rep, user processes (and I/O modules) can gain access to
peripheral devices. Rep provides for access checking and device selection. Rep is
described in detail below.

The I/O interfacer (IOn is the facility of the supervisor through which user
programs (via I/O modules) can operate peripheral devices. 101 provides for the
operation of the I/O hardware and the multiplexing of channels and other physical
resources between processes. IOI can only be used to manipulate a device once a
process has acquired the right to use that device via Rep.

The user can construct device-specific new lists and call 101 to initiate the
I/O operation. When the operation completes. IOI provides the user with a wakeup
and the status. The hardware protection and relocation features of the 10M are used
by IOI to allow the user complete control over his new lists and data with no
possibility of damaging the system.

5-80 AG91-04

The interrelationship between user code. iox_. RCP, 101, and the I/O modules is
shown in Figure 5-1.

USER ISSUES
COMMAND TO
READ/WRITE
FROMITO DEVICE

COMMAND
CALLS LANGUAGE
1/0

RING4

LANGUAGE I/O
CALLS iox_

,

iox.;..CALLS
APPROPRIATE
I/O MODULES

I/O MODULE
CALLS
RCPAND 101

-- --- - - - -- --
I

RCPCALLS
I 101 . PERFORMS

101 I
~

1/0

I

RING 1 RINGO

Figure 5-1. Interrelationship between User Code. iox_. RCP. 101. and the I/O Module

5-81 AG91-04

Summary of Rep Actions

The resource control functions performed by RCP are:

1. reservation/cancellation
2. assignment/unassignment
3. attachment/detachment

These functions are summarized below.

RESERVATION, ASSIGNMENT, AND ATTACHMENT

The functions reserve, assign, and attach are organized into hierarchical levels.
Defaults are provided at each level so that users not desiring to exercise features
specific to a level do not have to concern themselves with that level.

reserve
2 assign

3 attach
3 detach

2 unassign
cancel

The first level involves the reservation of resources by processes. Tape drives,
disk drives, tape volumes and disk volumes can be reserved. Reservations are
process-specific and remain in effect until the process requests a cancellation.
Reservation implies that a process temporarily has exclusive rights to a resource. This
exclusive right means that no other process can use that resource for the duration of
the reservation. Reservation does not necessarily imply that a resource is actually being
used. Multiple resources can be reserved with one reservation.

Assignment, like reservation, is process-specific and lasts until unassignment or
process termination. Any resource type can be assigned. An assignment also gives a
process temporary exclusive rights to a device. Assignment does not necessarily mean
that a device is currently being used. That is the function of the next level,
attachment. Only one resource can be assigned per assignment.

A resource cannot be used until it is attached. When RCP is ealled to attach a
resource, it initiates communication with the ring 0 subsystem that actually provides
the use of the resource. Before the attachment is completed, RCP performs all
initialization necessary to allow the attaching process to begin using the resource. For
devices, this involves attaching the device via 101 and making sure that the device is
ready and that any volume needed has been determined to be accessible, mounted, and
authen tieated.

5-82 AG91-04

The hierarchical relationship among reservation, assignment, and attachment
implies that a higher-level function (e.g., reservation) can stand alone, while a
lower-level function (e.g., attachment) can only be performed after all higher-level
functions have been performed. Rep can perform the following device reservation,
assignment, and attachment functions:

1. Reserving a resource. This means that no other process can use it
during this period of time.

2. Explicitly assigning a reserved device. The device is assigned to a
process but is not attached.

3. Attaching an explicitly assigned device.

4. Attaching an unassigned device. Since a device cannot be attached until
it is assigned, Rep automatically reserves and assigns the device and
then performs the attachment. The device is said to be implicitly
assigned.

5. Detaching an implicitly assigned device. After the device is detached,
Rep automatically un assigns the device.

6. Detaching an explicitly assigned device. The device is detached but is
not unassigned.

7. Explicitly unassigning a device. If the device is attached, it is first
detached and then unassigned.

8. Cancelling reservation of a resource.

The rules stated above imply that I/O modules do not have to be concerned
with the assignment orunassignment of devices. They need to be concerned with only
the attachment and detachment of a device. Rep, however, does allow the above rules
to be overridden. When detaching a device an I/O module can tell Rep to retain the
device assignment regardless of whether the device was explicitly or implicitly assigned.

When a process terminates, RCP automatICally detaches and unassigns aU devices
currently assigned to that process and cancels any reservations for that process.

The reservation of resources and cancellation of reservations are done from
command level via the reserve_resource and cancel_resource commands or by using the
-resource control argument with the enter_abs_request command. The explicit assignment
and unassignment of devices is done from command level via the assign_resource and
unassign_resource commands. The listing of reservations, assignments, and attachments
is done from command level via the list_resources command. The other commands
named here are described in the Commands manual.

5-83 AG91-()4

Resource Reservation

Users may reserve resources by scheduling with RCP to obtain exclusive rights to
a resource for a period of time. RCP enables users to reserve resources or groups of
resources through the use of the reserve_resource command (see the Commands
manual). A reservation takes effect immediately and it lasts until either the user's
process is terminated or the reservation is specifically cancelled via the cancel_resource
command (see the Commands manual). After invoking reserve_resource, the user has
exclusive rights to the resource(s).

Tape volumes, tape drives, disk volumes, and disk drives can be reserved. Tape
and disk volumes are specified at the time of reservation by name; tape and disk
drives are specified by either name or attributes. In the case of disk drives, the only
acceptable attribute is model. For tape drives, acceptable attributes are model, track,
and density. Suitable values for the above-mentioned attributes may be found by using
the list_resource_types command (see the Commands manual).

To cancel reservations, users invoke the list_resources command to obtain the
reservation identifier, and then invoke the cancel_resource command with the
reservation identifier to effect the cancellation. Administrators can perform privileged
cancellations; that is, if the administrator has proper access, it is possible to cancel
reservations belonging to other users.

Device Assignment

The RCP interface for device assignment allows the caller to request the
assignment of a specific device, or any appropriate device of a specified type. To
request the assignment of a specific device the caller must ask for the device by
name. To request the assignment of an appropriate device of a specified type, the
caller must specify the characteristics that the assigned device must have. RCP selects
a device for assignment based on the following functional algorithm.

1. If the caller has requested a device by name and if this device is
already assigned to the calling process, the assignment is aborted.

2. RCP tests all of the devices of the specified type. RCP counts the
num ber of these devices that are appropriate; appropriate and accessible;
and appropriate, accessible and available. These requirements are discussed
below:

a. appropriate: A device is considered to be appropriate if it has
the device characteristics specified by the caller. In testing each
device, RCP does not try to match any device characteristics that
are not specified by the caller. If a device is asked for by
name, only the device name is considered.

b. accessible: A device is considered to be accessible if the calling
process has rw RCP effective access to the device.

c. available: A device is considered to be available for assignment
if it is not currently assigned to any process or reserved by
another process.

5-84 AG91-04

3. Having tested each of these requirements, RCP then makes additional
tests to see if a device can be assigned. If the assignment cannot be
made, Rep returns an error_table_ code that tells the caller why the
assignment aborted. The tests that Rep makes at this time are described
below:

a. If there are no appropriate devices, the caller is told that the
requested resource (device) is not known to Rep.

b. If there are no appropriate and accessible devices, the caller is
told that he does not have access to the requested resource
(device).

c. If there are no appropriate, accessible and available devices, the
caller is told that the requested resource (device) is not available
at this time.

d. If this assignment causes the device limits (see "Device Limits"
below) to be exceeded, the user is told that he has exceeded the
limit.

4. If all the tests described above are passed successfully, the device
assignment is made. Rep selects the most advantageous device from the
list of devices that were found to be appropriate and accessible and
available. It makes this selection based on the following rules:

a. If this is a type of device that has volumes and if the caller
specified a volume name to use in the device selection and if
any device in the list currently has that volume mounted. Rep
selects that device.

b. If the first case is not true, Rep selects the device that has
been idle for the longest amount of time.

Having assigned the device, Rep returns all of the characteristics of this device
to the caller.

Device Attachment

The Rep interface for device attachment allows the caller to request a device in
the same manner described for device assignment It can ask for a specific device by
name or it can ask for any appropriate device of a specified type. One difference is
that if this device is a type that uses volumes, the caller must specify the name of
the volume to attach. For assignments, the specification of a volume is optional.

5-85 AG91-()4

RCP tests all of the devices of the specified type that are already assigned by
the requesting process. If the specific device or any appropriate device is already
assigned to this process, RCP attaches that device. If no suitable device is already
a...~igne.d to the requesting process, Rep automatically attempts to a...~ign a suitable
device to this process. If no device can be assigned then the attachment is aborted.
If the attachment is for a device type that uses volumes, RCP checks to see if the
specified volume is already attached to this process or any other process. If the
volume is already attached, RCP aborts the attachment.

Once RCP has found a suitable assigned device or has assigned one, it begins the
real work of attaching the device. This involves calling 101 to perform the ring 0
device attachment. If the device is a type that uses volumes, RCP tells the operator
to mount the speciiied volume ii it is not already mounted on the proper device.
Before the attachment is completed, RCP makes sure that the proper volume has been
mounted and that any write protection mechanism provided by the device is set
correctly. When all of this initialization work has been completed, RCP calls 101 to
set the workspace and time-out limits and to promote the validation level of the
device. Until this is done, the 101 validation level for the device is the RCP
validation level (ring 1). Thus no program in a higher ring can successfully call 101
to use this device until RCP tells 101 to promote it. RCP returns all of the device
characteristics of the attached device and all of the information needed to
communicate with 101 about this device.

DEVICE LIMITS

In addition to controlling which processes may have access to a device, RCP will
enforce a limit to the number of devices of a given type that a single process may
have assigned at one time. This limit is enforced according to the following rules:

1. The limit is not enforced for system processes.

2. The limit for each device type is an installation-defined value. It is
curren tly specified in the R TOT.

3. Currently. only tape drive devices actually have such a limit defined.

RESOURCE NAMING CONVENTIONS

While the RCP implementation allows resource names to be any ASCII string of
up to 32 characters, there are restrictions placed on some of these names by other
sources. Details of these resource naming conventions are described below.

5-86 AG91-04

Device Names

Each device has a unique name. Device names are of one of the following
forms:

The first form is used for devices that share multiplexed I/O channels such as
disk and tape devices. The latter is used for all other devices.

In the case of disk and tape device names the name is composed of the
subsystem name, 'ssss' in the text above, and the device number, 'xx' above. The
subsystem name is defined by the site in the configuration via a PRPH card (see
MOH) and the device number is assigned by the Field Engineering Representative
when the hardware is installed.

All other devices are also defined in the configuration deck. In this case the
PRPH card defines the device itself. These device types include: consoles, printers,
card readers, card punches, and special devices.

The four character restrictions listed above are due to the fact that character
fields on configuration cards are limited to four characters (one word).

Volume Names

Volume names are unique within their volume type (i.e., no two tape volumes
may have the same name). They may be up to 32 characters in length. The only
reserve.d volume na..rnes are "scratch" and "T&D_ Volume" which are use.d to designate
scratch volumes for disk and tape. A scratch tape is one of the unmarked tapes in an
unreserved pool that is used for "scratch"--that is, no information is saved on it from
session to session. After every use, it is demounted and returned to the system pool.
"T&D_ Volume" is used for special label processing for online Test and Diagnostics,
and its use for attachments requires special privilege.

i/O V;fORKSPACES

Due to the nature of the Multics virtual memory and its supporting I/O
hardware, I/O operations such as "read tape" or "write disk" require all pages of
memory referenced by the I/O operation to be in main memory during the
operation--that is, no paging is done during execution of the I/O operation. To
accomplish this, all channel programs and physical record buffer areas are located in a
special segment known as an I/O workspace segment . The ring 0 I/O software, 10l,
guarantees that all pages of the workspace are present in main memory before starting
the I/O operation and remain there for the duration of the operation.

5-87 AG91-()4

RCP will control the maximum workspace size associated with each device type.
System processes, privileged processes, and users on the ACL of the ACS named
workspace.acs in the directory >system_control_1>rcp can request up to the
privileged maximum workspace size. All others can request up to the normal maximum
workspace size. Requests for a workspace larger than is allowed result in errors. The
table below lists the workpace maximums that are enforced.

Table 5-7. I/O Workspaces

Privileged Maximum Normal Maximum

device type words bytes words bytes
----------- ------
tape_drive 45056 180224 6144 24576
disk_drive 45056 180224 2048 8192
printer 45056 180224 1024 4096
punch 45056 180224 1024 4096
reader 45056 180224 1024 4096
special 45056 180224 1024 4096
console 45056 180224 1024 4096

The workspace size is affected by using the -block control argument to those
I/O modules that support it. This control argument is used to specify the maximum
physical record/block size to be processed. In all cases some overhead for channel
programs and I/O module control information must be taken into consideration. When
-block is not specified or supported the individual I/O modules choose an appropriate
default. In the case of commands that use 110 modules. either the command, some
argument or input to the command. or the I/O module may specify/imply in some
way the workspace size (for example by supplying -block in an attach description).

RESOURCE MANAGEMENT FACILITY

The Resource Management Facility handles registration and acquisition of
resources, which includes release and deregistration. Resource management is a site
option, which must be enabled by a system administrator.

RCP software reserves, assigns, and mounts resources; it also demounts, unassigns,
and cancels reservations. The RCP is an integral part of Multics.

5-88 AG91-04

The hierarchical level of these functions are:

register
Resource Management

2 acqu ire
**

3 reserve

4 assign

5 attach
Resource Control

5 detach

4 unassign

3 cancel

**
2 release

Resource Management
deregister

Resource management is an optional facility which offers the ability to retain
registration information for all resources that it controls. It does this by providing
administrative interfaces for the registration of resources (see the Administration,
Maintenance, and Operations Commands manual) Registration of a resource provides
information such as: what type of resource this is, what its name is, which attributes
it possesses, or in what access class range the resource can be used. Once a resource
is registered, users may acquire it; system administrators can also acquire it to a user
(or to the system pool) at the time it is registered (described in the Administration,
Mai ntenance, and Operations Commands manuaI). The act of acquisition makes a
user the owner of the resource--liable for all charges to that resource and in control
of discretionary access to the resource.

Summary of Resource Management Facility Actions

Described below are actions that apply when the Resource Management Facility is
enabled. When resource management is not enabled, all volumes and devices are
effectively acquired to the system.

ACQUIRING RESOURCES

When a system administrator registers a resource, he may simultaneously cause it
to be acquired; that is, designate who will become the accounting owner of that
resource.

5-89 AG91-04

Once a resource is registered by the system administrator, it may be acquired by
a user. When a user acquires a resource, he is contracting with the system to become
the accounting owner of the resource. In other words, the person who acquires the
resource usually agrees to pay a fee for the right to control the access to that
resource.

After registering a resource, the system administrator may acquire It In the name
of the system or a user, deciding who is allowed to use that resource. Devices (such
as tape drives and printers) and "scratch" volumes (e.g., tapes in the system pool) are
usually acquired to the system. System-owned resources such as devices and scratch
volumes are for use by all users. For other resources such as tape reels and disk
packs. the system administrator normally chooses to leave most of these in an
unacquired state so that users may acquire these resources on an individual basis.

Once a resource has been acquired it can be used (reserved, assigned, and
attached) by any user with appropriate access. See "Access Control" below. Any
resource that is not resident in the system or free pools is acquired by a user_id
(Person_id.Project_id).

It is important to realize that there is normally no implicit acquisition, and that
only acquired resources can be used. The only exception to these rules occurs when a
site has "automatic registration" turned on during the initial time period after enabling
the full Resource Management Facility. While automatic registration is on, any
unregistered tape volume for which the operator honors a mount request is
automatically registered and acquired to the requesting user.

In order to control the operation of the Resource Management Facility, an
administrative table exists that can be adapted to the specific needs of a particular
Multics site. This table is referred to as the resource type description table (RTDT).
The table is generated from a source language description, called the resource type
master file (RTMF), ordinarily prepared by a system administrator. The contents of
the RTDT can be examined via the display_rtdt command. (The RTDT and the
display_rtdt command are described in detail in the Administration, Maintenance,
and Operations Commands manual, Order. No. GB64.

NAMING RULES FOR ATTRIBUTES

Attributes provide a description of a volume or device that assists the Resource
Management Facility in the proper matching of volumes with compatible devices. To
produce correct combinations, attribute names must comply with the set of rules
described below.

5-90 AG91-o4

Attributes may be grouped or ungrouped. Grouped attributes specify a set of
properties applicable to a device or volume such that only one attribute of that set
can be currently active at any given time. For example, a reel of tape may have
potential attributes that allow it to be recorded . at densities of 556, BOO, or 1600;
however, at any given time, the data on it is in only one of those densities. Grouped
attributes have names of the form:

<identifier>=<value>

For example, the attributes mentioned above are named "den=556", "den=BOO", and
"den=1600". This notation allows RCP to recognize that any request to make one of
these attributes the current attribute of a device or volume also implies that all other
attributes in that grouping must be made inactive.

When adding or changing a string of attributes, all attributes in the string must
be respecified or else exiting attributes are nullified by the change. Also, any attribute
string must contain a value for each grouped attribute. For example, if the attribute
domain includes "track=... and model= ... ," the device you are setting the attributes for
(or registration) must contain values for each grouped attribute.

Ungrouped attributes have simple names. such as "trainok" (to specify that this
device accepts a removable print train) or "buildin~12" (to specify that this device or
volume is located in building 12).

ACCESS CONTROL INTERFACE WITH RCP AND RESOURCE MANAGEMENT

There are three types of access control on Multics: discretionary access control.
which is regulated by access control lists (ACL); nondiscretionary access control, which
is regulated by the access isolation mechanism (AIM); and intraprocess access control,
which is regulated by the ring structure. (For detailed information on types of access,
see Section 6.) Access control works differently with and without resource management.
These differences are noted in the discussions below.

Access Control Segments

An important feature of Rep is its ability to control access to the various
resources that it manages. It does this through the use of access control segments
(ACSs). An ACS is a zero length segment whose ACL and ring brackets are used to
define the discretionary access to a resource. RCP uses an ACS for each resource that
it controls; however, an ACS can be shared by more than one resource. The name of
an ACS consists of a name plus the suffix, acs (e.g., tape_01.acs). There are no
restrictions on ACS names other than the required suffix. The user creates an ACS
and generates/manipulates its ACL with the create, set_acl, and delete_aci commands
and ring brackets with the set_rin~brackets command (see the Commands manuaI).

5-91 AG91-D4

The pathname of the ACS for a resource is usually specified when it is acquired
(see the register_resource command and the acquire_resource command in the
Commands manuaI). The specified ACS can later be changed or unspecified so that
the resource (again) has no ACS via the set_resource command (see the Commands
manuaI). If the ACS has not been specified or does not exist, access is by default
rew for the owner of the resource and null for all other users.

When resource management is not enabled, ACSs exist only for devices, not for
volumes. These ACSs are automatically created with pathnames of the form:

>scl>rcp>resource_name.acs

These pathnames cannot be changed. Access to volumes is determined by site policy.

With resource management enabled. RCP uses the ACS along with other
nondiscretionary controls (AIM) to determine the RCP effective access to a resource.

Access Class Ranges

Access class ranges are used by RCP to specify that a process within a range of
authorizations can use a particular resource. This discussion pertains to sites where
resource management is enabled.

An access class range is simply a pair of AIM access classes separated by a
colon. The first value of the pair is the minimum access class and the second is the
maximum access class. If only a single access class is specified when an access class
range is expected, the minimum and maximum access class values are both the same
(Le., a range of one value). The second access class of the pair (the maximum) must
be greater than or equal to the first (the minimum) according to the aim_check_
subroutine (see the Subroutines manuaI).

There are some interesting results which occur when categories are used in an
access class range. For example, a process with authorization of:

leve12,categoryl

would not be able to use a resource whose access class range was:

levell,categoryl,category2:1eve13,categoryl,category2,category3

5-92 AG91-04

where level3 is greater than leve12. which is greater than levell. This is due to the
fact that the authorization of the process is isolated from the minimum of the access
class range. In order to allow this process access to the resource in question, the
range would have to exclude category2 or the user would have to have category2
authorization. In general, to include categories within an access class range, both the
minimum and maximum must include the categories desired. If combinations of
categories are desired, the minimum should list only required categories and the
maximum should include all categories allowed. For example, the access class range:

levell,categoryl:leve13,categoryl,category2,category3

allows read and write access to any levell, level2, or leve13 process with category 1 and
any combination of category2 and category3.

Rep Effective Access

Viewed separately, each type of access control answers the same question, "What
access does a particular process have for a particular item?" The access mode granted
a process to a resource by discretionary access control (the ACL) is known as the raw
access mode.

The way RCP determines effective access to a resource for a process differs
from the regular Multics method of determining effective access as follows. First, the
effective access to the ACS for the resource is determined as for any segment. If the
ACS does not exist, the user appears to have read, execute, and write access if he is
the owner of the resource, or null access if he is not the owner. Then, two further
checks are made. First. the current authorization of the process is compared to the
maximum access class of the resource. If write access is not allowed (as defined by
the write_allow ed_ subroutine) then write and execute access are denied and only read
is allowed. Next, the current authorization of the process is compared to the minimum
access class of the resource. If read access is not allowed (as defined by the
read_allowed_ subroutine) then all access is denied. The resulting access is termed the
RCP effective access to the resource. One final restriction enforced by RCP is that,
in order to use a device, the RCP effective access must include both read and write
to that device (a restriction not imposed on volumes).

For example, the f ol1owing table i1!ustrates some examples of Rep eff ective
access. In the examples below, Ll, L2, L3 and L4 represent sensitivity levels and cl,
c2, c3, and c4 represent categories. (This discussion mostly concerns devices--volumes
should never be given multiclassed access class range.)

5-93 AG91-()4

Table 5-8. RCP Effective Access

Effective Current Resource RCP
Access Process Access Effective
to ACS Author-i zat i on Class Range Access

rew Ll Ll:L3 rew
re Ll L 1 : L3 re
rew Ll L2:L3 null
rew L3 L2:L3 rew
rw L4 L2:L3 r
re L4 L2:L3 r
rw L2,cl Ll:L4 r
rw L2,c2 L 1 ,cl: L4,cl ,c2 null
rw L2,cl,c3 L 1 ,cl: L4,cl ,c2 r
rw L2,cl L 1 ,cl: L4,cl ,c2 rw

A user must have write RCP effective access to the resource named to perform
any modification on the status of the resource. In addition. the user must have
execute effective access to the resource named to modify protected attributes. Only
the accounting owner may modify the ACS path.

For more information on AIM. access classes. authorizations. and comparisons
involving access classes and authorizations, see Section 6. The access class range
mentioned above is specified by the -access_class control argument, which can be
sJJP-cified in the register_resource command (see the Adrninistration, lll/aintenance, and
Operations Commands manual, Order. No. GB64), and the acquire_resource and
set_resource commands (described in the Commands manual).

Manipulating Rep Effective Access

Since the access control mechanisms described above operate together to
determine the RCP effective access of a process, there are actions that the user, as
well as an administrator. can perform to control this effective access. If resource
management is not enabled, however, only the administrator can control access.

First, the user creates an ACS via the create command. Then, the desired ACL
for that segment is established using the set_acl command to add desired ACL entries,
and the delete_acl command to delete entries. (The above three commands are
described in the Commands manual.) To further affect the ACS, the user may modify
its ring brackets by using the set_rin~brackets command (described in the Commands
manual). The system security administrator sets the AIM access class range of the
resource itself at the time it is registered using the register_resource command and can
change it by using the set_resource command.

5-94 AG91-04

SECTION 6

MUL TICS SECURITY

Multics provides a set of complementary data security mechanisms designed to
restrict unauthorized access to programs and data. Each set of security mechanisms
implements a different level of protection and "defends" the system against different
penetration strategies. The use of anyone or all of the several mechanisms is
optional. When more than one mechanism is used, access is limited to that granted by
all controls.

The security mechanisms available on Multics are listed below:

• User Names and Passwords
• Access Control Lists
• Access Isolation Mechanism
• Ring Mechanism

Additionally, Multics provides a "trusted path" connection to the operating
system. A trusted path is a guaranteed direct connection between a user at a terminal
and the Multics operating system and is designed to protect users against the
possibility of their logging in to a simulated system created by a subverter.

USER NAMES AND PASSWORDS

A user name and password must be supplied each time a user logs in to Multics.
If the user name and/or password is not supplied correctly, the user is denied access
to the system.

A t the time a user is registered, an administrator assigns a unique (to M ultics)
identifying name. Although unique, user names are considered public and thus provide
only limited protection against unauthorized use.

At the time a user is registered. the administrator also assigns a password of up
to eight characters. The first time the user logs in, the administrator-assigned
password should be changed by the user to a new value (known only to the user).
Since !..lle password is stored in an irreversibly encrypted file, the user-selected
password is completely private. The password mechanism thus provides more complete
protection against use of the system by unauthorized individuals.

6-1 AG91-()4

To take full advantage of the password mechanism, users should take care not to
use short passwords and not to use easily decoded values (your first name, your
telephone number, etc.). A good idea is to insert a special character (dollar sign,
question mark, etc.) in the middle of the password. The use of special characters
provides added protection against the possibility of another individual guessing the
password.

ACCESS CONTROL LISTS

The access control list mechanism enables users to control access to objects that
they own. For each object to be protected, the owner identifies which other users are
permitted access and the specific kind of access each is allowed. Individual users can
only perform those operations specifically permitted by the owner of the object

Objects Subject to Access Control

There are four types of objects subject to access control:

1. entries in the storage system (segments. directories, etc.)

2. resources protected by the Resource Control Package (Rep)

3. communications channels

4. daemon source names

The methods used to set access on
in this section.

Access Identifier

of the above objects is described

In order to grant individual users distinct access rights, it is necessary to be able
to identify the different users. For this purpose, each user has an associated name
called an access identifier. The identifier is a three-component character string that
must be less than or equal to 32 characters. The first component is the registered
name of the person (i.e., the user's Person_id); the second component is the name of
a project group of which the person (named in the first component) is a member
(i.e., the user's Project_id): and the third component (called the instance tag) is a
single character used to distinguish different classes of processes. Most processes have
an instance tag of "at' to indicate a standard interactive process (i.e., a process created
for a user who logged in from a terminal). Absentee processes (i.e., noninteractive
processes created by the system in response to queued user requests), have art instance
tag "m". The instance tag "p" identifies a process entered as a proxy by some user
other than the name indicated by the Person_id.Project_id. The instance tag of "z" is
used for daemon processes (e.g., one that runs a line printer). The instance tag "0" is
applied to access identifiers used to control operator access to daemon source names.
The access identifier Jones.Mentor.a would be associated with an interactive process
created for Jones on the Mentor project.

6-2 AG91-04

It is important to note that if a user is not specifically granted access to an
object, then the user cannot access the object in any way.

The access identifier is considered a "user" by the system. However, it is
important to distinguish between a user and a person: the same person can log into
Multics under two different projects and be considered two different users (e.g.,
Jones.Mentor.a and Jones. Demo. a), or one person could log in interactively and be
running an absentee process at the same time and be considered two different users
(e.g., Jones.Mentor.a and Jones. Mentor. m). If a person on a particular project is
granted the ability to log in more than once so that he has several processes under
his control at the same time, each process has the same access identifier (e.g .•
Jones. Mentor.a and Jones. Mentor. a). TheSe processes, by having the same access
identifier, have the same access rights to segments and directories in the storage
system.

Access Modes

User's access rights are described by access modes. Access modes define the kind
of operations a user can perform on a specified object. For example, a user who
must be able to read data from a segment can be assigned "read access" mode to the
segment. A user who must be able to delete entries in a directory can be assigned
"modify access" mode to the directory.

There are a variety of access modes corresponding to the different operations
that can be performed on the several objects. The various access modes are
meaningful only when considered with the associated object. A complete description of
the individual access modes that can be applied to each object is provided below.

ACCESS MODES ON ENTRIES IN THE STORAGE SYSTEM

The access modes to be applied to the various entries in the storage system are
listed below. Note that, in addition to the access modes specified below, an access
mode of n (null) can be set on any storage system entity. Null access mode specifies
that the user cannot access the entity in any way.

The access modes for segments are:

r (read)

e (execute)

w (write)

The user can read data from the segment.

The user can transfer control to this segment and
instructions in the segment can be executed on behalf of
the user.

The user can write data in the segment.

6-3 AG91--Q4

The access modes for directories are:

s (status)

m (modify)

a (append)

The attributes of entries cataloged in the directory and
certain attributes of the directory itself can be obtained
by the user (for a definition of attributes. see Section 2).

The attributes of existing entries cataloged in the directory
and certain attributes of the directory itself can be
modified; and existing entries contained in the directory
can be deleted.

New entries can be created in the directory.

If n (null) mode is set on a directory. the contents of the directory cannot be read
or modified. However, the user can access any entity in the directory to which (s)he
has non-null access.

The access modes for multisegment files are:

r (read) The user can read data from the multisegment file.

w (write) The user can write data from the multisegment file.

The access modes for data management files are:

r (read) The user can read data from the data management file.

w (write) The user can write data from the data management file.

Access modes are not applied to link entries.

The access modes for mailboxes and message segments are listed below. In the
discussion below, note that mailboxes contain messages, while message segments contain
queued requests (as from the enter_output_request, dprint. and dpunch commands).

a (add)

d (delete)

r (read)

o (own)

The user can add a message/request.

The user can delete any message/request.

The user can read any message/request.

The user can read or delete only his own messages/requests;
that is, those sent with the same Person_ide

6-4 AG91-04

s (status)

n (null)

w (wakeup)

The user can obtain message/request counts.

The user cannot access the mailbox/message segment in
any way.

The user can send an interactive message to the mailbox.
This access type is used by the send_message command
and related commands (described in the Commands manual).
This access type is not available for message segments.

Access on a newly created mailbox is automatically set to adrosw for the user
who created it, aow for *.SysDaemon.*, and aow for *.*.*. Access on I/O message
segments is controlled by the site, but is usually set to adros for the user who created
it, adros for *.SysDaemon.* and aros for *.*.* as a default.

The access modes for forum meetings are:

r (read) The user can read transactions in the forum meeting.

w (write) The user can write transactions in the forum meeting.

c (chairman) The user is the chairman of the meeting and has access
to chairman's commands.

The access modes for before journal files are:

r (read) The user can read data in the before journal.

w (write) The user can write data in the before journal.

The access modes for the person name table are:

r (read) The user can read data in the person name table.

w (write) The user can write data in the person name table.

ACCESS MODES ON RESOURCES PROTECTED BY RCP

An RCP resource is a device or volume that is under management and control
of the resource control package (RCP) facility.

The access modes for RCP volumes are:

r (read)

e (executive)

w (write)

The user can read data on the volume.

The user can act as an executive for a storage system
logical volume.

The user can write data on the device or volume.

6-5 AG91-04

n (null) The user cannot access the volume in any way.

The access modes for Rep devices are:

rw (read/write) The user can use this device (reserve, assign, or attach)

ACCESS MODES ON COMMUNICATIONS CHANNELS

The access modes for communications channels are:

rw (read/write) The user can attach this channel (subject to restrictions in
the eMF)

ACCESS MODES ON DAEMON SOURCE NAMES

The access modes for daemon source names are:

r (reply) The user is permitted to execute the ini tializer reply
command.

q (quit) The user is permitted to execute the ini tializer quit
command.

c (control) The user is permitted to login/logout the specified
daemon.

d (daemon) The user is permitted to login using the specified source
name.

Creating, Modifying, Listing, and Deleting Items in an Access Control List

A user can create an entry in an access control list by means of the set_acl
command. 1 The set_acl command requires the user to identify:

1.

2.

..,
;:,.

1

the object (segment. directory, etc.) to be protected.

the individual to be granted access rights, and

the kind of access each individual is allowed .

The access control list for RCP resources, communications channels, and daemon
source names is set on a particular entity called an access control segment. The
access control segment must first be created by the user before the set_acl
command can be used to create entries in an access control list. See "Access
Control Segments" later in this section.

6-6 AG91-04

For example, if user Smith on the Sales project were to be granted read access
to the Accounts segment (located at >udd>Records>Accounts), the set_acl command
would be specified as follows:

sa >udd>Records>Accounts r Smith.Sales

The list_acl command displays the access control list for a specified object. To
obtain the access control list associated with the segment named Employees (located at
>udd > Personnel > Employees) , the list_acl command is specified as follows:

la >udd>Personnel>Employees

The delete_acl command removes items from the access control list of a
specified object. To remove user Smith on the Sales project from the access control
list associated with the segment Accounts (located at >udd>Records>Accounts), the
delete_ac1 command is specified as follows:

delete_acl >udd>Records>Accounts Smith.Sales

Granting Access to Groups of Individuals

used:
When granting access to groups of individuals, the following conventions are

1. as asterisk (*) is used to replace one (or more) of the components of
an access identifier

2. one of the access identifier components is not specified.

USING THE ASTERISK CHARACTER

An asterisk character (*) can replace one, two, or all of the three components
of an access identifier. The asterisk character is a "wild card" entry and specifies that
any value in that position is a valid value.

The asterisk character is useful in granting access to groups of users. For
example, to grant all individuals in the Sales project read access to the Accounting
segment (located at >udd>Records>Accounting), the set_acl command is specified as
follows:

sa >udd>Records>Accounts r *.Sales

6-7 AG91-04

This method eliminates necessity for specifying an acl entry for each individual on the
Sales project. as in:

sa >udd>Records>Accounts r Able.Sales r Baker.Sales r Charles.Sales .•.

Similarly, if a user were registered on several projects, the asterisk value could be
used in place of the project component to grant access to the user regardless of
project value. For example, use of the identifier Jones.* would give user Jones the
specified access regardless of whether Jones were logged in on the project Maintenance
(Jones. Maintenance) or the project Development (Jones. Development).

The ultimate use of the asterisk convention is to use it in place of all three
component values of the access identifier (*.*.*), thus granting access to everyone on
the system.

NOTE: Because all other access identifiers take precedence over *.*.*, it is more
accurate to say that the *.*.* convention grants access to everyone who is
not also the subject of another, more specific acl entry. See "Calculating
Access Rights" below for additional information.

MISSING COMPONENTS

A missing component is treated as if an asterisk were used. For example
Smith.Sales is the same as Smith.Sales.* and Smith is the same as Smith.*.*. Missing
components on the right need not be delimited by periods. Missing components on
the left must be delimited by periods. If an access identifier is specified as . Sales.
then Sales is interpreted by the system as the project_id component (the second
component). If an access identifier is specified as .. a, then a is interpreted by the
system as the instance tag (the third component).

Calculating Access Rights

The system places each access identifier in a particular position in the access
control list according to the following rules:

Position Component

1. access identifiers with no asterisks

2. access identifiers with an asterisk in the third component only

3. access identifiers with an asterisk in the second component only

4. access identifiers with asterisks in the second and third components only

5. access identifiers with an asterisk in the first component only

6. access identifiers with asterisks in the first and third components only

6-8 AG91-04

7. access identifiers with asterisks in the first and second components only

8. access identifiers with all asterisks (*. *. *)

Thus, the following is an example of an ordered access control list:

Smith.Multics.a r
Jones.Multics.a null
Smith.*.* rw
.Multics. re
..2 rw
..* r

When the system searches the list to calculate access, the first matching identifier
encountered determines the access rights.

Thus, in the acl list specified above, user Smith logged in to project Multics as
an interactive user (a) is given only read access to the segment. However, if user
Smith is logged in on any other project but Multics, then user Smith is able to obtain
read/write access. Everyone on the Multics project is granted read/execute access but
Smith and Jones. All daemons (z) get read/write access.

Note that the last item gives everyone read access to the segment. However,
because of the way the list is ordered and searched, exceptions must be made. For
example, user Jones gets no access at all. Conversely, other users obtain more general
access. User Smith (on all projects but Multics) gets read/write access; individuals on
the Multics project get read/execute access.

It is important to remember, then, that an identifier granting access to groups of
individuals (say, *.*.*) does not necessarily grant access to all members of the group.
Individuals in the group may be identified in other entries in the same access control
list. The system grants access as specified by the first identifier that matches the
name of the searching individual.

Initial ACL's

Each time a storage system entry is created, the system automatically enters
certain "initial acl's" into the acl list. The system default is to enter an entry for the
SysDaemon project and an entry for the user creating the segment or directory .
.. A ... dditicnal1y, users can specify their own "initial acl " list by means of the
set_iacl_dir and set_iacl_seg commands.

6-9 AG91-()4

SYSDAEMON ENTRIES

Multics provides service routines (daemons) that perform functions such as
making backup copies of segments in the storage system and printing and punching
segments at users' requests. in order to perform such functions, the service routines
must have access to the segments to be serviced. The service routines (and only the
service routines) are members of a single project called SysDaemon.

In order to ensure that daemons have access to the segments. the system
automatically places the ACL entry:

rw *.SysDaemon.*

on the ACL of every segment. and the ACL entry:

sma * .SysDaemon. *

on the ACL of every directory when the segment or directory is created or its ACL
is entirely replaced. In this way, members of the SysDaemon project are automatically
granted the necessary access so that they can perform their functions; individual users
need not remember to put the proper entries on all of their segment and directory
ACLs to make use of the daemon processes.

Under special circumstances, some user might not wish to use the facilities of a
daemon on some segments. In this case, the user simply denies that daemons access to
the segments by modifying the ACL entry (i.e.. giving that daemon null access). It is
crucial that a user who elects not to use a daemon be fully aware of the nature of
the service and the consequences of the choice. For example, if the hierarchy backup
daemons are not permitted access to a segment. backup copies of the segment cannot
be made and the segment will not survive certain types of system failure.

ACL ENTRY FOR THE CREATING USER

In addition to automatically adding a daemon entry to the ACLs of all newly
created storage system entries, many system commands and subroutines (e.g.. create.
create_dir, and hcs_$append_branch), add an entry for the creating user to the ACL
of a newly created segment or directory. For a data segment. that ACL entry is:

For an object segment, the ACL entry is:

Note that for both the daemon entry and the creating user entry. the instance tag is
designated by an asterisk. meaning that otherwise matching process identifiers have
access to these segments regardiess of which of the four instance tags they have.

6-10 AG91-04

USER-DEFINED INITIAL ACL'S

For convenience, the system allows a user to specify a list of entries to be
added to all newly created storage system entries--in addition to entries for the
daemons and for the creating user. This ability eliminates the need to explicitly
modify an ACL each time a new entry is created.

The set_iacl_dir command permits the user to specify the ACL entries to be
automatically placed on all newly-created directories within the specified directory. For
example, to specify that all individuals in the Multics project are to be given status
access to the directories within the Records directory. the set_iacl_dir command is
specified as follows:

sid >udd>Records s *.Multics.*

The set_iacl_seg command permits the user to specify the ACL entries to be
automatically placed on all newly-created segments within a specified directory. For
example. to specify that everyone is to be given read/write/execute access to segments
within the working directory the set_iac1_seg command is specified as follows:

sis -wd rew

Access Control Segments

An access control segment is a zero length segment that is associated with the
object to be protected. A user's access to the access control segment determines the
user's ability to perform operations on an RCP resource, communications channel, or
daemon.

ACCESS CONTROL SEGMENTS FOR Rep RESOURCES

The access control segments for RCP resources are handled differently depending
on whether or not the resource management option (RCRPM) is enabled.

When the resource management facility of RCP is not enabled. an access control
segment can exist for devices only (not for volumes). The access control segment must
have the form < resource_name>. acs (e.g., tape_01.acs). These access control segments
are automatically created and stored in the directory >scl>rcp.

When the resource management facility of RCP is enabled, an access control
segment can exist for devices and volumes. The access control segment must be
created using the create command. The segment name must end with the suffix .acs;
the segment can exist any place in the hierarchy.

6-11 AG91-04

ACCESS CONTROL SEGMENTS FOR COMMUNICATIONS CHANNELS

The access control segment for communications channels can be created by an
administrator using the create command. The access control segment must be in the
directory >scl>rcp. The 5e5lUent name must be in the form < channel_name>. acs.

ACCESS CONTROL SEGMENTS FOR DAEMON SOURCE NAMES

An access control segment can be associated with daemon source names (the
source_id used to login the daemon). By setting appropriate access rights on the ACS,
an administrator can control operator access to the daemon. The ACS must be located
in the directory >scl>mc_acs and must be of the form >scl>mc_acs>SOURCE_NAME.mcas,
where SOURCE_NAME is the source identifier of the daemon. Complete information
on the setting of access controls for daemon source names is contained in the Multics
System Administration Procedures Manual. Order No.: AKSO.

ACCESS ISOLATION MECHANISM

The Access Isolation Mechanism (AIM) is a security mechanism that allows the
separation of data into different levels of privilege and controls the flow of
information across the different levels. AIM is an administrative tool and is
implemented on a site-wide basis (in contrast to access control lists which are
implemented by individuals to protect individual data files).

Use of AIM involves (1) marking each object with an "access class" and (2)
marking each user with an "authorization." AIM determines information access on the
basis of the access class of the object and the authorization of the user,

AIM Classification System

Multics AIM uses a classification system known in the literature as a "lattice
model." In this model, users and objects are marked with two items:

1. category (kind. or type of data) and/or

2. sensitivity level.

For example. a company may wish to divide its data into the following
categories: Personnel, Marketing, and Engineering. Second. the company could
recognize that data is subject to different levels of sensitivity; for example. the
information could be classed as public. proprietary, or confidential.

6-12 AG91-o4

Authorization information composed of the same category/level attributes is
maintained for each user in the system. When a user references a piece of data, the
system determines what access will be granted based on the category/sensitivity level
of the data and the category/sensitivity level of the user.

Policy Rules and Objectives

data.

There are two basic rules that make up the Multics security policy.

1. No information can flow from a higher (more sensitive) level to a
lower (less sensitive) level.

2. No information can flow between category boundaries.

There are two reasons to isolate users and their data from other users and their

1. To prevent owners of information from granting access to it inappropriately
or unintentionally.

2. To deal effectively with the "trojan horse" problem

Trojan Horses are programs that exploit the access privileges of the program to
make data available to other users. Say, for an example, that a programmer is given
the task of writing a program that will be used to analyze some proprietary
information. The programmer can exploit this fact by adding code to the analysis
program to copy the protected information into one of his segments. Or, the
programmer can act to change the ACL on the data, though that leaves more obvious
evidenCe.

In another example, a subverter could obtain a game program and insert new
code to copy all of the game user's segments. The game user would only "see" the
game interface while the trojan horse code secretly copied the user's data segments.

Relationships Between AIM Aiiributes

The AIM access rules (described in "AIM Access Rules" below) are based on the
following relationships between authorizations and access classes:

equal to
greater than
less than
isolated from

6-13 AG91-o4

if:
An authorization or access class A is equal to an authorization or access class B

1. The sensitivity levels of A and B are equal; and

2. The category sets of A and B are identical (neither contains a category
not found in the other).

An authorization or access class A is greater than an authorization or access class
B if:

1. The sensitivity level of A is greater than or equal to the sensitivity
l#'>v#'>l nf 'Q. 'lnn, ''''... ".I. .&.I, u.

2. The category set of B is a subset of the category set of A or is
identical to the category set of A; and

3. A is not equal to B (according to the above definition of equal to).

An authorization or access class A is less than an authorization or access class B
if B is greater than A.

An authorization or access class A is said to be isolated from authorization or
access class B if A is not equal to, greater than, or less than B. Two authorizations
with the same level can be isolated from one another only if neither's category set is
equal to or a subset of the other. (An empty category set is considered a subset of
all nonempty category sets.)

Setting AIM Attributes

The information below describes the system tools for setting AIM attributes.
Administrators should have available a precisely-defined set of rules for information
transfer before enabling the AIM security mechanisms.

ENABLING AIM

The system administrator enables the AIM mechanism by specifying values for
one or more of the following keywords in the ed_installation_parms statement:

access_ceiling
category_names
level_names

The category_names key word defines the number and identity of the different access
categories. The level_names keyword defines the number and identity of the different
sensitivity levels (level_names). The access_ceiling keyword defines the maximum
sensitivity level that can be used and the total number of categories that can be used.

6-14 AG91-04

The sensitivity levels and access categories used in a particular Multics installation
are assigned character-string names for convenience.. There may be as many as eight
different sensitivity levels and 18 access categories in use at one Multics installation.
If an installation has chosen not to use the AIM access controls, that system is using
only the lowest sensitivity level and no categories. The access classes and authorization
names at such an installation are null strings by default. making access classes and
authorizations "invisible."

MARKING OF DATA

Data can be "marked" with only one sensitivity level. The sensitivity level is a
site-defined value (e.g., Ll or L2 or L3) conveying a relative sensitivity judgement. If
the contents of segment A are judged to be more sensitive than the contents of
segment B, segment A should have a higher sensitivity level than segment B.

Data can be "marked" as belonging to one or more categories. The category is a
site-defined value (e.g. Cl, C2, C3) representing a grouping of information. The list
of categories assigned forms a "category set." The administrator should note that, if
data is marked as belonging to several categories, only users authorized for all
categories will be allowed to access the data.

The assignment of level/category information to elements in the file system is
described below. The term "access class" is used to refer to the combined
level/category information.

Segment

.LA... segment receives its access class, equal to t..i.e access class of the containing
directory, at the time it is created. No special commands or control arguments are
needed to assign access classes to segments.

Directory

Like a segment, a directory receives its access class at the time of creation. If
no access class is explicitly requested. the directory is assigned an access class equal to
the access class of its containing directory. If an access class is explicitly requested. it
must be greater than or equal to the access class of the containing directory and less
than or equal to the process maximum authorization. A directory with an access class
higher than that of its containing directory is an upgraded directory. No directory
may have an access class less than that of its containing directory. so the access class
of directories always remains the same or increases as one descends the hierarchy"
This is known as the "compatibility" rule.

An upgraded directory must be explicitly assigned storage system quota of one or
more storage records. Quota may be moved to an upgraded directory from its
containing directory by a process whose authorization is equal to the access class of
the containing directory. Quota may not be moved from an upgraded directory back
to its containing directory except by deleting the upgraded directory. An upgraded
directory may be deleted only if it is empty (contains neither segments nor links).

6-15 AG91-o4

To explicitly assign access attributes to a directory, use the -access_class control
argument to the create_dir command, as in the following example.

cd DirA -access class Ll.Cl,C2 -quota 5

The example above creates the directory DirA with an access class of L1,C1.C2
(where Ll is a sensitivity level value as specified for the site and Cl and C2 are
categories, as specified for the site). A -quota control arguments is required; the
example sets the quota value at 5 pages.

Message Segment

A single message segment can contain messages of different access classes. The
access class of each message in the segment is equal to the authorization of the user
that added the message to the message segment

The access class of the message segment itself controls the maximum access class
of the messages in it. Every message must have an access class less than or equal to
the access class of the message segment.

The access class of a message segment is equal to the maximum authorization of
the user that created it.

Mailboxes

The read_mail and send_mail commands (described in the Commands manual) use
message segments to hold mail, each piece of mail being a single message with an
access class equal to the authorization of the sending user. AIM access controls impose
several restrictions on the use of mail. Since a user can read only messages with
access classes less than or equal to his authorization, a user cannot read mail sent by
users of higher authorizations. Since a user can only delete messages with access
classes equal to his authorization, he cannot delete mail with an access class not equal
to his authorization.

The access class of a mailbox is equal to the maximum authorization of the user
that created it. Since all messages in a mailbox must have an access class less than or
equal to the access class of the mailbox, a user can read all his mail when his
authorization is equal to his maximum authorization. However, he may not be able to
delete all his mail at this authorization. In general, mail is easiest to manage if it is
only sent and read by users at one authorization. In this case, a user can read and
delete all of his mail. Users wishing to send and read mail of multiple authorizations
may experience the inconveniences of having messages in their mailbox that they
cannot read or delete at certain authorizations.

6-16 AG91-04

MARKING OF USERS

Individual users are "marked" by sensitivity level and category.

The sensitivity level is a site-defined value (e.g., L1 or L2 or L3) conveying a
relative sensitivity judgement. If user A is more trusted than user B, then user A
should have a higher sensitivity level than user B.

The category is a site-defined value (e.g., C1, C2, C3) representing a grouping of
information. The list of categories assigned to a user forms a category set. A user
with several categories is authorized to access several information groups. (The
administrator should note that, if data is marked as belonging to several categories,
only users that are authorized for all the categories will be allowed access to the
data.)

The marking carried by any individual user depends on the authorization values
(sensitivity level and category) placed in the following three system tables: the System
Administrator Table (SAT), the Person Name Table (PNT), and the Project Definition
Table (PDT).

A new user is registered on the system by means of the new_user command.
The new_user command permits the administrator to specify minimum and maximum
authorization values. The minimum and maximum values represent the range of
authorizations permitted for the specified individual. The authorization range is entered
in the PNT.

A new project is registered on the system by means of the new _proj command.
Ine new_proj command permits the administrator to specify minimum and maximum
authorization values. The minimum and maximum values represent the range of
authorizations permitted for individuals on the specified project. The authorization
range is entered in the SAT and the PDT.

A project administrator can subsequently change the authorization values (for an
individual or for the project) in the PDT. The values in the PDT, however, cannot be
outside of the maximum and minimum values specified in the SAT.

At the time that a user logs on, the user's authorization is set to that maintained
in the PNT. (If, however, the authorization range maintained in the SAT or PDT is
more restricted, then the user's authorization is set to the more restricted range.) At
login time, the user can elect to use the -auth arg'.lment to' override the values
maintained in the PNT. (However, the value specified for the -auth argument cannot
be outside the most restricted of the values maintained in the PNT, the SAT, or the
PDT.) It should also be noted that an authorization range can be specified for the
communications channel used to login. If the user's authorization range is not within
the range specified for the communications channel, the user will not be permitted to
login over the channel.

6-17 AG91-o4

MARKING OF RCP RESOURCES

The system administrator can enable the resource control package (Rep) resource
management facility to manage the use of peripheral I/O devices (such as tape drives,
and disk drives) and physical volumes that can be mounted on these devices (such as
tape reels and disk packs). The resource control package permits the administrator to
assign access class ranges to the device/volumes.

Access class ranges are used by Rep to specify that a user within a range of
authorizations can use a particular resource.

An access class range is simply a pair of AIM access classes separated by a
colon. The first value of the pair is the minimum access class and the second is the
maximum access class. If only a single access class is specified when an access class
range is expected, the minimum and maximum access class values are both the same
(i.e., a range of one value). The second access class of the pair (the maximum) must
be greater than or equal to the first (the minimum).

The user should be aware of results which occur when categories are used in an
access class range. For example, a process with authorization of:

leve12,categoryl

would not be able to use a resource whose access class range was:

level1,categoryl,category2:1eve13,categoryl,category2,category3

where leve13 is greater than level2, which is greater than levell. This is due to the
fact that the authorization of the process is isolated from the minimum of the access
class range. In order to allow this process access to the resource in question, the
range would have to exclude category2 or the user would have to have category2
authorization. In general, to include categories within an access class range, both the
minimum and maximum must include the categories desired. If combinations of
categories are desired, the minimum should list only required categories and the
maximum should include all categories allowed. For example, the access class range:

level1,categoryl:leve13,categoryl,category2,category3

allows read and write access to any levell, level2, or leve13 process with category 1 and
any combination of category2 and category 3.

The administrator uses the access_range parameter in the Resource Type Master
File (RTMF) to specify an access class range for a given resource. (See the System
Administration Procedures manual for additional information on Rep.)

6-18 AG91-o4

01/87

MARKING OF COMMUNICATION CHANNELS

The system administrator can assign an authorization range to a specified
communications cha!1..nel. The administrator uses the access_class statement in the
channel master file to specify the authorization range.

The authorization can be specified as a single value, in which case the channel is
usable only by users with the specified authorization. The authorization can be
specified by a minimum and maximum value, in which case the channel is usable only
by users with an authorization equal to or greater than the minimum value and equal
to or less than the maximum value.

If the access class statement is not specified, the value is assumed to be that
specified (or defaulted to) by the Access_class giobal statement

The administrator must be aware that the system cannot establish the authorization
of a user for any channel except channels identified as multiplexer_type sty. For this
reason, it is recommended that all channels except those identified as multiplexer_type
sty should be specified with a single access_class value. The only exception to this
recommendation is f or login service type channels. These channels should be assigned
an authorization range sufficient to cover the users who are to be permitted to log in
over the channel. (See the System Administration Procedures manual for additional
information on the marking of communication channels.)

AIM Access Rules

The access rules used by AIM on segments, directories, interprocess communication,
and message segments are described below.

SEGMENTS

The rules for accessing segments are:

1. A user may have read (r) and execute (e) modes to a segment only if
the user's authorization is greater than or equal to the segment access
class.

2. A user may have write (w) mode to a segment only if the user's
authorization is equal to or less than the segment access class.

NOTE: Wrtte mode perm1SSIon al10ws the user only to append
information (it does not allow the user to read, modify, or delete
existing data).

3. A user has null access to a segment if its authorization is neither
greater than nor equal to the segment access class.

4. A user may have read/write access to a segment only if its
authorization is equal to the segment access class.

6-19 AG91-()4A

DIRECTORIES

The rules for accessing directories are:

1. A user may· have status (s) mode to a directory only if the user's
authorization is greater than or equal to· the directory access class.

2. A user may have modify (m) and append (a) modes to a directory only
if the user's authorization is equal to the directory access class.

3. A user has null access to a directory if its authorization is neither
greater than nor equal to the directory access class.

A newly created segment has the same access class as its containing directory. A
newly created directory may have an access class that is greater than or equal to ·the
access class of its containing directory. A directory with an access class greater than
its containing directory is known as an upgraded directory.

MESSAGE SEGMENTS

A message segment is a special type of segment that is managed by Multics
supervisor programs and is not directly accessible to the user. A message segment is
simply a convenient repository for interprocess messages. Each message in a message
segment is a separate protection unit itself, and has associated with it an access class .
identical in form to segment and directory access classes. The existence of the
individual messages remains invisible to a process unless the process authorization is
greater than or equal to the message access class. A process may read a message only
if the process authorization is greater than or equal to the access class of the message.
A process may delete messages only if the process authorization is equal to the
message access class. A process may get the count of messages in a message segment,
but this count only reflects those messages to which read access is permitted by AIM.

INTERPROCESS COMMUNICATION

The interprocess communication Ope) facility allows one process to pass
information to another process by sending it a wakeup and an associated event
message. Administrative access controls limit the use of this information path. Process
A may send a wakeup (and event message) to process B only if process B's
authorization is greater than or equal to process A's authorization.

Inter-System AIM

Facilities like the Inter-Multics File Transfer (IMFT) Facility translate AIM
attributes between two systems. For these facilities, the concept of a common access
class ceiling is used to control the data which may be transferred between the systems.

6-20 AG91-04

The common class ceiling between two systems is defined as:

• all sensitivitY" levels from level 0 (usually unnamed) up to but not
including the first level which does not have the same long and short
name on both systems. and

• all access categories that have the same long and short names on both
systems

If the long and short names of sensitivity level 0 are not the same on both
systems, then the two systems have no common access ceiling and are isolated from
each other.

For example, if system A defines the following AIM attributes.

level 0 (unnamed)
level 1 unclassified
level 2 secret
level 3 top secret

category 1 Personnel
category 2 Planning
category 3 Finance
category 4 Marketing

and system B defines the following attributes:

level 0 (unnamed)
level 1 unclassified
level 2 restricted

category 1 Engineering
category 2 Planning
category 3 Finance
category 4 Personnel

then the common access ceiling is:

unclassified, Planning, Personnel

6-21

u
s
ts

pers
plng
(none)
(none)

u
(none)

(none)
plng
fin
pers

AG91-o4

THE RING MECHANISM

All data and executable code on Multics resides within a logical entity called a
"ring." A ring is a conceptual structure that confers a particular level of privilege on
the information that is within the ring.

There are eight rings (0 through 7) on Multics. Ring 0 is the ring of most
privilege. Ring 7 is the ring of least privilege.

The prime rule of access between rings is that code executing in lower-numbered
rings has unlimited access to data in higher-numbered rings (subject, of course, to
ACL and AIM restrictions). Code executing is hig..l1er-numbered rings has no direct
access to data in lower-numbered rings. (Access refers to the ability to execute code
as well as the ability to read and write data.)

Advantages of the Ring Mechanism

To ensure proper operation. the operating system software must be protected
from accidental or intentional user modification. However. although the operating
system software must be protected. it cannot simply be made inaccessible. Users must
frequently call on the code in the operating system to perform some function on their
behalf. The ACL and AIM mechanisms are not adequate security mechanisms in this
circumstance. With ACL's and AIM. it is not possible to restrict what the user does
with the data beyond the basic restrictions of reading, writing, and executing. The ring
mechanism. however. makes it possible to grant access to a user. but only to perform
some specified, approved procedure.

Ring Attributes and Access Control

All segments (and directories) in the storage system possess ring attributes. The
ring attributes are a series of three numbers (in the range of 0 through 7). For
example. the ring attributes assigned to a particular segment might be expressed as
[6,6,6], [2.5,6], or [0,0.4].

Each user is assigned a particular ring to which he is initially assigned at login
and in which he can begin to execute code. If the user's initial ring value is 6. then
the user is logged in within ring 6. If a user's initial ring value is 4. then the user is
logged in wi thin ring 4,

6-22 AG91-04

RING BRACKETS

The three ring values assigned to each segment determine the segment's "ring
brackets." Ring brackets are access brackets that specify the read, write, execute, and
ga te access.

Write Bracket

The rings less than or equal to the first of the ring bracket numbers are termed
the write bracket. A user must be executing in a ring within the write bracket of a
segment and have write access mode on that segment in order to modify data on that
segment. If a user is running in a ring higher than the write bracket, the user cannot
modify (write into) the segment even though the user has write access.

Read Bracket

The rings less than or equal to the second ring bracket num ber are called the
read bracket. Users must be running in the read bracket of a segment and have read
access in order to read it.

Execute Bracket

The first and second ring numbers are used to determine the execute bracket.
Users must be running in the execute bracket of a segment in order to execute code
in the segment.

There are two subsets of the execute bracket.

1. If a user is executing in a ring whose number is less than the first ring
number, then the segment can be executed (if the user has execute
access). However, the user's ring of execution will be changed to the
lowest ring in the segment's execute bracket.

NOTE: An attempt to execute code residing in a higher ring
number is termed an "outward call". A outward call will
succeed only if (1) no arguments are passed, and (2) the
code to be executed resides within the highest ring number
in which the calling process is permitted to run. If the call
violates either of these two conditions, an "outward call
condition" is generated.

2. If a user is executing in a ring whose nlLrnber is the same as or is
between the first and second ring bracket numbers, then the segment
can be executed (if the user has execute access) without having to
change the ring of execution of the user.

6-23 AG91-Q4

For example, the ring bracket number assigned to a segment are [3,5,6], execute
access is determined as follows:

1. If the user is executing in ring 0, t or 2, then the user has execute
access. However, upon transfer to the segment, the user's ring of
execution will be (temporarily) changed to 3.

2. If the user is executing in ring 3, 4, or 5, then the user has execute
access. The user's ring of execution remains at 3, 4, or 5.

Gate Bracket

The third number in the segment attribute series determines a gate bracket.
Rings greater than the second ring bracket number and less than or equal to the third
ring bracket number are within the gate bracket.

The gate bracket (or gate) is a means of making segments in the inner rings
accessible to the segments in the outer rings, but in a controlled manner. The inner
ring procedure segment that is specified as a "gate" usually contains executable code
that performs a special function and then returns control to the user at a point
outside the gate ring. Upon transfer to the gate, the user's ring of execution changes
to that of the gate segment. The third ring number must be specified at least one
greater than the second ring number in order for the segment to qualify as a gate.
Upon transfer to the gate, the users ring of execution changes it that of the gate
segment

NULL ACCESS

If the user's ring of execution is greater than the third ring bracket number
(whether specified or defaulted to), the user has no access to the segment.

Using the Ring Mechanism

The power of the ring structure lies in the use of the execute and gate brackets.
These rings allow users to define arbitrary procedures and then encapsulate these
procedures in a closed, controlled environment that can be entered only at specified
gate entry points. Some operating system segments, for example, would have small
read, write, and execute brackets, but large gate brackets. This would make the
procedure accessible to a wide variety of users, but accessible only under carefully
controlled circumstances.

The following example illustrates use of the gate mechanism.

6-24 AG91-04

Suppose a user executing a program in ring 6 references in turn segments A, B,
C and D. which have, respectively, ring numbers [6,6,6], [4,4,6], [2.5,6] and [0,0,4]
and that the AIM and ACL mechanisms allow the user execute access to all these
segments.

In the course of executing segment A, the process calls segment B. Since
segment A is in a ring outside the execute bracket for B, but within its gate bracket,
it is granted access to B and its current ring number becomes 4. In the course of
executing segment B, it calls segment C. Since it is within the execute bracket for
segment C, it is granted access and its ring number remains the same. In the course
of executing segment C, it calls segment D. Since it is within the gate bracket of
segment D, it is granted access, and its current ring number becomes. O. When it
finishes executing D, it is automatically returned first to segment C in ring 4, then to
segment B in ring 4, and then to segment A in the ring in which it began, ring 6.
This process is illustrated in Figure 6-1. Note that the process cannot call segment D
from segment A and that it cannot skip the intermediate gate, B, and still reach the
ring 0 segment D by calling C from A and D from C. Note also that the process is
admitted to ring 0 only through the gate segment D. The only functions that can be
performed in ring 0 are those included in segment D. Segment D should be coded to
perform an arbitrary (limited) procedure and then return the process to a point
outside ring O. This example may suggest how the ring mechanism gives administrators
the ability to determine the circumstances under which a sequence of segments can be
called.

In addition to· protecting the operating system, the ring mechanism is used to
protect user subsystems. For example, a teacher could restrict students to ring 5 by
asking a system administrator to allow users on the teacher's project to log in only in
ring 5. The teacher might then write a gate segment with ring numbers [4,4,5] and
an ACL granting execute access to all users on the project, and a grade-book segment
with ring numbers [4,4,4] and an ACL granting write access to all users on the
project \Vhen the students finished homework problems in a se!5lIlent in ring 5, they
could call the teacher's gate into ring 4. The gate segment would examine the
student's work, store a grade in behalf of the student in the grade-book segment, and
return to the student in ring 5. Because the students would have access to the
grade-book segment only through the gate, they would not be able to examine or
modify the grades. The teacher, who could log in on ring 4, however, would.

This process is illustrated in Figure 6-2.

6-25 AG91-04

I ~_k"

I
I
I

I
I
I
I

I

I
I
i

7

A--~·B---C--------------- D--------------C---B-----A

Figure 6-1. Gate Mechanism

6-26 AG91-04

Ring Structure.

RingS
Ring4

test scores
4,4,4

DataFlow

test results
5,5,5

grade program
4,4,4

Figure 6-2. Logical Flow in Homework Program

6-27 AG91-04

Implementing Ring Protection

The ring mechanism is an integral part of the Multics system. All operating
system code runs in protected rings, as determined by system programmers. All
registered users are placed within a particular ring, as determined by the site
administrator. Administrators and users can make use of the ring mechanism as
desired.

In a typical system, for example, rings 0 through 3 would be reserved for
operating system use. Most user processes would start running in ring 4. Rings 5
through 7 would be used by programmers to write their own protected subsystems (as
previously described in the "homework" problem).

SETTING SEGMENT RING BRACKETS

All segments within the storage system possess ring attributes (a three-number
ring bracket value).

The -rin~brackets control argument to the create (segment) command allows the
user to set the ring brackets for the segment. The user need not explicitly specify any
ring brackets. In that event. the system assumes a default value for the brackets (as
explained below).

The user can specify one. two, or three ring bracket num bers. (If the user
specifies only one number, the system assumes it is the first ring bracket number; if
the LL~r specifies two ring bracket numbers. the system assumes that they are the first
and second ring bracket numbers.) In the event the user specifies only one ring
bracket number. the system assumes assumes a default value for the other two. The
default value for the other two is the value of the first ring number. In the event
the user specifies two ring bracket numbers, the system assumes a default value for
the third. The default value for the third is the same as the second. In the event the
user does not use the -rin~bracket control argument (specifies no ring bracket
numbers). the value of the the ring brackets becomes [x.x.x]. where x is the user's
ring number as established at login.

The ring bracket numbers must also be specified according to the following rules

1. The second ring bracket number must be equal to or greater than the
first

2. The third ring bracket number must be equal to or greater than the
second

3. To be considered a gate. the third ring bracket number must be at least
one greater than the second.

6-28 AG91-04

For example, to create a segment with ring brackets 2, 5, and 6, the user would
type:

create test.progl -ring_brackets 2 5 6

To create a segment with ring brackets of 6, 6, and 6, the user need type:

create test.prog2 -ring_brackets 6

If the user logged in to ring 5 and wanted to create a segment with the ring
brackets 5, 5, 5, the user need only type:

create testprog3

Note that in the first example above, the segment test.progl is a gate since the
third number is greater than the second.

The system prevents gate access from being established across system projects.
Unless the operation is performed from the ring-l administrative ring or by a system
daemon, no user can create a gate that is accessible by anybody who does not belong
to that user's own project. This restriction ensures that a user on one project cannot
construct a gate that allows, f or example. ring-5 users on another project to access
restricted ring-4 data in a way not allowed by the gate provided them by their
project administrator.

MODIFYING SEGMENT RING BRACKETS

The user can modify the ring brackets of a previously created segment by means
of the set_rin~brackets command.

For example, to modify the ring brackets of an existing segment (testprog2) to
[2.4,6], type:

srb test.prog2 2 4 5

The rules for specifying the ring bracket numbers in the set_rin~brackets
command are the same as those specified f or the create command. See "Setting
Segment Ring Brackets" for detailed information.

DIRECTORY RING BRACKET VALIDATION LEVEL AND ACCESS RIGHTS

Directory ring brackets control modifications to attributes and directory contents.
Directory ring brackets do not use the ring of execution; they use the "validation
level. !1

6-29 AG91-04

Val idation Level

Inner ring procedures are very often called by outer ring procedures in order to
perform some service on behalf of the outer ring. It is, therefore, necessary that the
inner ring proce-dure knew the number of the outer ring on whose benali it is
perf orming the service in order to validate the right of the outer ring to request the
service. This requesting ring information is kept by each process and is known as the
val idation level. If an outer ring procedure wishes to request a service from an
inner ring procedure, it sets the validation level to its current ring of execution (the
validation level cannot be set lower than the ring of execution) and calls the inner
ring procedure. If a procedure is calling an inner ring procedure to do work on
behalf of an outer ring procedure, it should not change the validation level, but
instead leave it at the level of the outer ring procedure. Users who write programs
that are executed only in a single ring, usually the outermost ring in which the
process runs, need not be concerned about the validation level since it will be set to
that ring by def aul t.

Directory Ring Bracket Access Rights

Directory ring bracket access rights differ from those of segments due to the
following factors:

1. There are only two directory ring brackets, not three.

2. Since directories are accessed by calling supervisor primitives rather than
by direct reference, the directory ring brackets are evaluated with
respect to the validation level instead of the ring of execution.

The first ring bracket number defines the modify/append bracket. All rings less
than or equal to the first directory ring bracket number are within the modify/append
bracket. In order for a user to modify or add entries to a directory, the validation
level must be within the modify/append bracket and the user must have modify or
append access modes (respectively) on the directory. The rings less than or equal to
the second directory ring bracket number form the status bracket. In order to get
the attributes of segments in a directory or of inferior directories, the validation level
must be within the status bracket. The first ring bracket number must be less than or
equal to the second ring bracket number. For example, if the ring brackets of a
directory are 4,6 and the validation level is 3, the user can get status of, modify, or
append to the directory (assuming, of course, that he has the status. modify, and
append access modes). If the validation level is 6, the user can only get status of the
directory. If the validation level is 7, the user cannot access the attributes of the
en tries in the directory at all.

6-30 AG91-04

SETTING DIRECTORY RING BRACKETS

When a directory is created. ring bracket numbers need not be explicitly
specified, in which case the ring brackets are set to the current validation level.

When a directory is created, ring bracket numbers can be explicitly specified
using the -rintLbrackets control argument to the create directory command.

For example, to set ring brackets of [4,6] on the directory >udd > Engin >ProjA,
the user need type:

cd >udd>Engin>ProjA -ring_brackets 4 6

MODIFYING DIRECTORY RING BRACKETS

The user can modify the ring brackets of a previously-created directory by
means of the set_dir_rintLbrackets command.

For example, to modify the ring brackets of the previously-created directory
>udd>Engin>ProjA to [5,7], type:

sdrb >udd>Engin>ProjA 5 7

USER RING BRACKETS

At the time a project is registered, the administrator sets (either explicitly or by
default) the per-project ring attributes for all users registered on the project.
Individual users can be assigned per-user values; however the per-user values cannot
provide more access (to either higher or lower numbered segments) than that specified
by the per-project values.

The per-project and per-user ring attributes include (l) the lowest ring in which
a user can create a process, (2) the highest ring in which a user can create a process,
and (3) the ring in which the user is placed at login (this value must lie in the range
defined by the lowest/highest ring attribute values).

The per-user values need not be specified. If not specified, the system uses the
per-project values. The per-project values need not be specified. If not specified, the
system uses a default value of 4 for the lowest ring value and a default value of 5
for the maximum ring value.

6-31 AG91-04

The table below describes a user's access rights to a segment from the
perspective of that users current ring of execution (ring in which the user is executing
a program).

Ring _J Execution VI

Ring of execution less than first
ring bracket number

Ring of execution equal to first
ring bracket number

Ring of execution greater than
first ring bracket number and
less than or equal to second ring
bracket number

Ring of execution greater than
second ring bracket number and less
than or equal to third ring bracket
number

Ring of execution greater than third
ring bracket number

TRUSTED PATH

Potentiai Access Rights

read, write, execute
(w i th ring change)

read, write, execute

read, execute

execute (if a gate only,
with ring change)

no access

A "trusted path" is a guaranteed direct connection between a user at a terminal
and the Multics operating system. The trusted path mechanism is designed to protect
users against the possibility of their logging in to a simulated system created by a
subverter. A trusted path should be available for all requests signalling a change in
the process environment (new password. new authorization, new process. etc.).

To obtain a trusted path connection between your terminal and the Multics
operating system, you must cause a terminal "hangup" condition. This will, in turn,
cause the answering service (a Multics system process) to monitor the line. When you
reconnect (login), you can be assured you are communicating with Multics operating
system software.

6-32 AG91-04

In order to cause a "terminal hangup condition" you must cause your
communications line to drop the Data Terminal Ready (DTR) signal. This can be
accomplished in one of several ways:

1. Physically turning off your terminal.

2. Breaking the connection between your terminal or modem and the
communications line.

3. Causing your terminal to drop the DTR signal automatically. Some
terminals have this capability. (On Honeywell VIP 7800 series terminals,
you place the terminal in "local" mode, and, while holding down the
CTL key, typing P, D. RESET).

Once the DTR signal is dropped, you should ensure that the Multics Front-End
Processor (FNP) has detected the loss of the DTR signal. It indicates this by dropping
the Data Set Ready (DSR) signal. Some terminals, modems, or multiplexers allow you
to monitor this signal. You should verify that the DSR signal has been dropped. (On
Honeywell VIP 7800 series terminals, the Data Set Ready light will be go out).

Once you have verified that DSR has been inhibited, perform whatever action is
necessary to reinstate the DTR signal. Several possibilities include:

1. Turning the terminal back on, if it was turned off.

2. Reconnecting the terminal or modem to the communications line,
possibly re-dialing the phone number for Multics.

3. Causing your terminal to signal DTR again. (On Honeywell terminals,
this is accomplished simply by taking the terminal out of "local" mode.

The Multics FNP will signal its receipt of DTR by reapplying DSR. This may
cause the DSR indicator on your terminal or modem to light up again. The Multics
answering service (a Multics system process) will then monitor the line, and shortly
thereafter, the Multics banner will appear. When you login again, you can be assured
you are communicating with the Multics operating system.

Note that this procedure assumes your communications hardware allows you to drop
the DTR signal and that this loss of DTR is reflected all the way to the Multics
FNP. (Some networks will prevent Multics from seeing the loss of DTR). In addition,
some way of sensing the loss of DSR is required as well.

6-33 AG91-Q4

SECTION 7

HANDLING UNUSUAL OCCURRENCES

A program may encounter a set of circumstances that prevent it from continuing
normally. Examples of circumstances that prevent a program from continuing execution
are an attempt to divide by zero or the inability to find a necessary segment in the
storage system. Clearly, whether or not a particular set of circumstances, such as those
given above, prohibit a program from continuing in a normal manner is dependent
upon the program in question. Circumstances that are abnormal for one program can
be quite normal when encountered in a different program. If a program is unable to
continue. it notifies its caller or other of its antecedents. The handling of such
occurrences and the notification mechanisms are described in this section.

The discussion is limited to methods of handling unusual occurrences reported by
system programs. However, it should help users select appropriate means for handling
and reporting unusual occurrences that arise during the execution of their own
programs. Printed messages. status codes, conditions. and faults are discussed.

PRINTED MESSAGES

The type of unusual occurrence reporting that most Multics users first encounter
is a message printed on the user's terminal. Since, in some sense, the caller of a
command is the user himself. printing a message on the user's terminal is the means
by which a command can report an unusual occurrence to its caller. There are two
general types of printed messages used to report unusual occurrences: statements and
questions. A statement describes the occurrence to the user. The user may then rectify
the circumstances by issuing commands. A question describes the occurrence and
requests an immediate response from the user in the form of a character string
entered at the terminal. In this way, the user must immediately specify one of several
courses of action that the command takes with respect to the occurrence.

Most MuItics system commands generate printed messages in a standard format.
This format consists of the name of the command printing the statement or asking the
question and a description of the unusual occurrence and the question. Two
procedures, the com_err_ and command_query_ subroutines, are provided to help
report unusual occurrences through printed statements and questions. They provide
many facilities besides simple formatting. (See the Subroutines manual for descriptions
of these subroutines.)

7-1 AG91-04

STATUS CODES

Because the character string is too cumbersome for passing descriptions of
unusual occurrences between procedures, a coded description of the unusual occurrence,
called the status code, is used. The status code is an arithmetic number that takes on
a different value for each possible unusual occurrence. The status code argument is
passed from a calling procedure to the called procedure. The called procedure assigns
the appropriate value to the argument at some point during its execution. When the
called procedure returns to the calling procedure, the calling procedure examines the
status code to determine what unusual occurrence has been encountered, if any, and
then takes special action, if desired. The status code is a means by which a called
procedure can report an unusual occurrence only to its immediate caller. However, the
first caller may, in turn, pass the status code to its immediate caller, and so on.

The standard status codes used in the Multics system are coded integers. They
are referenced by symbolic name (resolved by the linker) and thereby provide a simple
means of allowing programs to retain their initial meaning even though the actual
representation of a status code may change.

The internal structure of a status code has information allowing subroutines such
as com_err_ and convert_status_code_ to acquire a character string description of the
status to be printed or returned. Due to the details of the internal representation of
the status codes, they are valid only for the process using them and should not be
passed from one process to another. However, the system standard table of status
codes, error_table_, is valid in all processes.

In order to have a status code generated, a Multics standard status code segment
must exist. This segment contains an externally defined symbol corresponding to each
status code to be generated in the segment, as well as space for the code itself and
the character string interpretation of the code. When the status code segment is first
referenced in a process, the system generates a value for each status code defined in
the segment and stores it in the segment. From then on, all references to that
external symbol refer to the generated status code. The com_err_ subroutine, when
given such a status code. is able to locate and return the associated character string
in terpretation.

A program must refer to a status code symbolically. If. for example, a program
wished to return a status code that appears in the status code segment named mistake
and has the external symbol bad_argument, then the following PL/I statements would
be needed:

declare mistake$bad_argument fixed bin(35) external;

return (mistake$bad_argument);

7-2 AG91-04

If a program wanted to examine a status code for a particular value to determine if
it should take some distinct action, it would contain statements such as:

declare mistake$bad_argument fixed bin(35) external;

if status_code = mistake$bad_argument then do;

All references to the status code are symbolic. The mechanism for generating the
status code is automatic and not visible to the program or programmer.

Most Multics system procedures use standard status codes. A list containing the
symbolic names, character string interpretations, and meanings of the status codes
returned by system procedures is given in "List of System Status Codes and Meanings"
below.

Creation of Status Code Tables

Status code tables are constructed using ALM macros which are defined in the
include file et_macros.incl.alm. See the description of the aIm command in the
Commands manual.

Each status code is defined by the ec macro that has as arguments the name,
short message, and long message associated with the code. Any number of names may
be given to a status code; each name must be 31 characters or less. Multiple names
must be separated by commas and the list enclosed in parentheses.

The short message is 8 characters or less in length. If it is omitted, it is set to
the code name. The terminating comma must not be omitted.

The long message is 100 characters or less in length and is enclosed in
parentheses.

The macro's argument list may contain no blanks except within the long message.

The syntax for the ec macro is:

ec code_name,short_message, (long message)

The ei macro tntUallzes the code tatHe and must appear first and only once in
the source. The syntax for the et macro is:

7-3 AG91-Q4

The following is a sample status code table:

include
et
ec
ec

ec

end

et_macros
user errors
'tno f,::o\.o., ::IrnJlm,::on't~ 1-nl"\f,::olA' (There lA/lOre 1-1"\1"\ ~o .. , ~"""I""O""+S '
.... - _I ,,_ ::t ~I.,... .. -*' ... """ """,.., \. , """, \J....., I~" ~I ~'""III'-'Il '- _,

could not access data,noprivig,
(User-is not sufficiently privileged to access data.)
(fatal ,disaster) ,disaster,
(There was a disastrous error in the data base.)

Each status code in the table produced by these macros should be referenced as
a fixed binary(35) quantity, known externally:

declare user errors$disaster fixed bin(35} external,
code fixed bin(35);

call data base manager (info, code);
if code =-user=errors$disaster /* this is bad */
then call kill_subsystem;

LIST OF SYSTEM STATUS CODES AND MEANINGS

Status codes report unusual occurrences encountered by procedures during
execution. The codes are returned by Multics system commands and subroutines.
Printed messages that correspond to these status codes appear on printed output with
the name of the command printing the statement, a description of the unusual
occurrence causing the message to be printed. and more detailed information when
appropriate. The following status codes are all defined in the error_table_ segment
and should be referenced as a fixed binary(35) quantity, known externally:

declare error_table_ $xxx fixed bin(35) external;

abs_reenter:
absentee: Attempt to reenter user environment via a call to cu_$cl. Job
terminated.

abs_timer_runout:
absentee: CPU time limit exceeded. Job terminated.

action_not_perf ormed:
The requested action was not performed.

active_function:
This command cannot be invoked as an active function.

ai_above_allowed_max:
Specified access class/authorization is greater than allowed maximum.

ai_in valid_binary:
Unable to convert binary access class/authorization to string.

ai_in valid_range:
The specified access classes/authorizations are not a valid range.

7-4 AG91-04

ai_in valid_string:
Unable to convert access class/authorization to binary.

ai_no_common_max:
There are no access classes/authorizations in common between the two systems.

ai_out_range:
The specified access class/authorization is not within the permitted range.

ai_outside_common_range:
The access class/authorization is not within the range in common between the
two systems.

ai_restricted:
Improper access class/authorization to perform operation.

already_assigned:
Indicated device assigned to another process.

already _initialized:
Initialization has already been completed and will not be re-done.

apt_full:
Active process table is full. Could not create process.

archive_component_modification:
This procedure may not modify archive components.

archive_fmt_err:
Format error encountered in archive segment.

archive_pathname:
Archive component pathname not permitted.

area_too_small:
Supplied area too small for this request.

ar~ignored:
Argumen t ignored.

argerr:
There is an inconsistency in arguments to the storage system.

asynch_change:
A previously referenced item has been changed by another opening.

asynch_ deletion:
Record iocated by seek_key has been deleted by another opening.

asynch_insertion:
Record with key for insertion has been added by another opening.

att_loop:
A ttachmen t loop.

bad_ac1_mode:
Bad mode specification for ACL.

bad_arg:
Invalid argument.

bad_ar~acc:
Improper access to given argument.

bad_bar _sp:
The signaller could not use the saved sp in the stack base for bar mode.

bad_channel:
Incorrect 10 channel specification.

bad_class_def:
Bad class code in definition.

bad_command_name:
Improper syntax in command name.

7-5 AG91-04

bad_conversion:
Error in conversion.

bad_date:
The date is incorrect.

bad_day _of _week:
The day-of -the-week is incorrect.

bad_density:
Incorrect recording media density.

bad_dir:
There is an inconsistency in this directory.

bad_entry _point_name:
Illegal entry point name in make_ptr call.

bad_equal_name:
Illegal syntax in equal name.

bad_file:
File is not a structured file or is inconsistent.

bad_first_ref _trap:
Illegal structure provided for trap at first reference.

bad_handler_access:
Improper access on handler for this signal.

bad_index:
Internal index out of bounds.

bad_label:
Incorrect detachable medium label.

bad_link_ target_ini t_inf 0:

Illegal initialization info passed with create-if-not-found link.
bad_link_type:

Illegal type code in type pair block.
bad_linkage_access:

Improper access on user's linkage segment.
bad_mode:

Improper mode specification for this device.
bad_mode_syntax:

Invalid syntax in mode string.
bad_mode_ value:

Invalid value for specified mode.
bad_mount_request:

Mount request could not be honored.
bad_mpx_load_data:

Inconsistent multiplexer bootload data supplied.
bad_ms_file:

Directory or link found in multisegment file.
bad_name:

The access name specified has an illegal syntax.
bad_new_key:

Bad argument to specify the new key of a record.
bad_process_type:

Invalid process type.
bad_processid:

Current processid does not match stored value.
bad_ptr:

Argument is not an ITS pointer.

7-6 AG91-04

bad_resource_spec:
Resource specification is invalid.

bad_rin~brackets
Validation level not in ring bracket.

bad_segment:
There is an internal inconsistency in the segment.

bad_self _ref:
Illegal self reference type.

bad_stack_access:
Improper access on user's stack.

bad_string:
Unable to process a search rule string.

bad_subr _arg:
Invalid argument to subroutine.

bad_tapeid:
Invalid volume name.

bad_time:
The time is incorrect.

bad_trap_bef ore_link:
Trap-before-link procedure was unable to snap link.

bad_uidpath:"
UID path cannot be converted to a pathname.

bad_volid:
Invalid volume identifier.

bad_ wor k_class:
Specified work class is not currently defined.

bad-year:
The year is not part of the 20th Century (1901 through 1999).

badcal1:
Procedure called improperly.

badequal:
Illegal use of equals convention.

badopt:
Specified control argument is not accepted.

badpath:
Bad syntax in pathname.

badringno:
Input ring number invalid.

badstar:
Illegal entry name.

badsyntax:
Syntax error in ascii segment

bdprtdmp:
Bad part dump card in con fig deck.

begin_block:
Entry is for a begin block.

bi6.-ws_req:
Insufficient access to use specified block size.

bigarg:
Argument too long.

7-7 AG91-04

bigger _ext_variable:
External variable or common block is not the same size as other uses of the
same name.

bisync_bid_fail:
Bisync line did not respond to line bid sequence.

bisync_block_bad:
Attempt to write improperly formated bisync block.

bisync_reverse_in terrupt:
Reverse interrupt detected on bisync line.

blank_ tape:
The rest of the tape is blank.

boundviol:
Attempt to access beyond end of segment.

buffer_big:
Specified buffer size too large.

cannot_trace:
This entry cannot be traced.

change_first:
Attempt to change first pointer.

chars_after _ delim:
Segment contains characters after final delimiter.

clnzero:
There was an attempt to move segment to non-zero length entry.

command_line_overflow:
Expanded command line is too large.

copy _sw _on:
There was an attempt to delete a segment whose copy switch was set.

cyclic_syn:
Cyclic synonyms.

dataJain:
Data has been gained.

data_improperly_terminated:
Relevant data terminated improperly.

data_loss:
Data has been lost.

da ta_seq_error:
Data sequence error.

date_con version_error:
Unable to convert character date/time to binary.

defs_Ioop:
Looping searching definitions.

dey _nt_assnd:
10 device not currently assigned.

dev _offset_out_of _bounds:
Specified offset out of bounds for this device.

device_active:
I/O in progress on device.

device_attention:
Condition requiring manual intervention with handler.

device_attention_durin~tm:
Device attention condition during eof record write.

7-8 AG91-()4

device_busy:
The requested device is not available.

device_end:
Physical end of device encountered.

The process's limit for this device type is exceeded.
device_not_usable:

Device is not currently usable.
device_parity:

Unrecoverable data-transmission error on physical device.
device_type_unknown:

Device type unknown to the system.
dial_active:

The process is already serving a dial qualifier.
dial_id_ busy:

The dial identifier is already in use.
dir _damage:

Directory irreparably damaged.
dirlong:

Directory pathname too long.
dirseg:

This operation is not allowed for a directory.
discrepant_block_count:

Number of blocks read does not agree with recorded block count.
dmpinvld:

Attempt to re-copy an invalid dump.
dmpvalid:

Attempt to modify a valid dump.
dmpr _in_use:

The resource is presently in use by a system dumper.
dt_ambiguous_time:

There is no language common to all words in the time string.
dt_bad_day _of _week:

The date given is not on the indicated day of the week.
dt_bad_dm:

The day of the month is invalid.
dt_bad_dy:

The day of the year is invalid.
d t_ bad_f orma t_selector:

The format string contains a selctor which is not defined.
dt_bad_fw:

The fiscal week number is invalid.
dt_bad_my:

The month number is invalid.
d t_ conflict:

There is a conflicting combination of day-in-calendar, day-in-year; month-in-year,
day-in-month or fiscal-week.

dt_date_not_exist:
The time period 1582-10-05 through 1582-10-14 does not exist.

dt_date_too_big:
The date is after 9999-12-31 GMT.

7-9 AG91-Q4

d t_date_too_small:
The date is before 0001-01-01 GMT.

dt_hour Jt_twelve:
The hour value exceeds 12.

d t_multiple_date_spec:
A date has been given more than once.

dt_multiple_diw _spec:
A day of the week values has been given more than once ..

dt_multiple_meaning:
The time string does not have the same meaning in all potential languages.
these being the intersection of all the languages possible for all words present.

dt_multiple_time_spec:
.4.. time value has been given more than once.

dt_multiple_zone_spec:
A time zone has been given more than once ..

dt_no_format_selector:
The format string contains no selectors and is not a known keyword ..

dt_no_interval_units:
No units given in which to express the interval.

dt_offset_too_bi~negative:
Applying an offset gives a date before 0001-01-01 GMT.

dt_offset_too_bi~positive:
Applying an offset gives a date after 9999-12-31 GMT.'

dt_time_conversion_error:
An error has been found while converting a time string. For any of the
following reasons:

a. General syntax error
b. Month without a day number.
c. 1-Hdnigl'1 t or noon preceded by an hour other than 12.
d. Improper use of comma or period.
e. Improper use of offset.

d t_unknown_time_language:
The language given is not known to the system.

d t_unknown_ word:
An unknown word was found in the time string.

dtJear_too_big:
In the specified time zone the clock value is after the year 9999.

dtJear _too_small:
In the specified time zone the clock value is before the year 0001.

dup_ent_name:
Duplicate entry name in bound segment.

duplicate_file_id:
File identifier already appears in file set.

duplicate_request:
A duplicate request was encountered.

echnego_awaitin~stop_sync:
Echo negotiation race occurred. Report this as a bug.

7-10 AG91-04

ect_already _ini tialized:
The event channel table has already been initialized.

ect_full:
The event channel table was full.

eight_unaligned:
A pointer that must be eight word aligned was not so aligned.

empty_acl:
ACL is empty.

empty _archive:
Archive is empty.

empty_file:
File is empty.

empty _search_list:
Search list is empty.

end_of_info:
End of information reached.

entlong:
Entry name too long.

eof _record:
End-of-file record encountered.

eov _on_write:
Encountered end-of -volume on write.

event_calls_not_masked:
Event calls are not in masked state.

event_channel_cutoff:
Event channels in cutoff state.

event_channel_not_cutoff:
Event channels not in cutoff state.

fatal_error:
A fatal error has occurred.

file_aborted:
Defective file section deleted from file set.

file_already_opened:
File is already opened.

file_busy:
File already busy for other I/O activity.

file_is_full:
There is no more room in the file.

file_not_opened:
No file is open under this reference name.

fim_fault:
Illegal procedure fault in FIM by user's process.

first_ref erence_ trap:
A first reference trap was found on the link target segment.

fnp_down:
The FNP is not running.

f orce_unassign:
The Operator refused to honor the mount request.

frame_scope_err:
Attempt to reference temporary storage outside the scope of this frame.

full_hashtbl:
The directory hash table is full.

fulldir:
There was an attempt to delete a non-empty directory.

7-11 AG91-04

hardcore_sdw:
Attempt to perform an illegal action on a hardcore segment.

higher _inconsistency:
The lock was set on behalf of an operation which must be adjusted.

io_already _exists:
Supplied identifier already exists in data base.

id_not_f ound:
Supplied identifier not found in data base.

illegal_activation:
There was an illegal attempt to activate a segment.

illegal_deactivation:
There was an illegal attempt to delete an AST entry.

illegal_ft2:
Attempt to indirect through word pair containing a fault tag 2 in the odd
word.

illegal_record_size:
Record size must be positive and smaller than a segment

imp_bad_format:
Format of IMP message was incorrect.

imp_bad_status:
Bad status received from IMP.

imp_down:
M ultics IMP is down.

imp_rfnm_pending:
A RFNM is pending on this IMP link.

improper_data_f ormat:
Data not in expected format.

inlproper _ termination:
An improper attempt was made to terminate the process.

incompatible_attach:
Attach and open are incompatible.

incompatible_encodins-mode:
Incompatible character encoding mode.

incompatible_file_attribute:
Specified attribute incompatible with file structure.

incompatible_term_type:
The specified terminal type is incompatible with the line type.

inconsisten t:
Inconsistent combination of control arguments.

inconsisten t_ect:
The event channel table was in an inconsistent state.

inconsisten t_msf:
M ultisegmen t file is inconsistent.

inconsisten t_rn t:
The reference name table is in an inconsistent state.

inconsisten t_sst:
Active Segment Table threads in the SST are inconsistent.

incorrect_access:
Incorrect access to directory containing entry.

incorrect_ device_ type:
Device type is inappropriate f or this request.

incorrect_ volume_type:
Volume type is inappropriate for this request.

inf cnt_non_zero:
There was an attempt to make a directory unknown that has inferior segments.

7-12 AG91-04

insuff icien t_ open:
Insufficient information to open file.

invalid_array _size:
The size of an array passed as an argument is invalid.

invalid_ascii:
The name specified contains non-ascii characters.

invalid_ backspace_read:
Invalid backspace_read order call.

invalid_ block_length:
Invalid physical block length.

invalid_channel:
The event channel specified is not a valid channel.

invalid_copy:
There was an attempt to create a copy without correct access.

invalid_cseg:
Internal inconsistency in control segment.

invalid_delay _value:
Invalid delay value specified.

invalid_device:
Attempt to attach to an invalid device.

invalid_elsize:
Invalid element size.

invalid_expiration:
File expiration date exceeds that of previous file.

invalid_file_set_format:
File set structure is invalid.

invalid_label_f ormat:
File set contains invalid labels.

invalid_line_ type:
Line type number exceeds maximum permitted value.

invalid_lock_reset:
The lock was locked by a process that no longer exists. Theref ore the lock
was reset.

invalid_max_length:
Attempt to set max length of a segment less than its current length.

invalid_mode:
Invalid mode specified for ACL.

invalid_move_qmax:
Attempt to move more than maximum amount of quota.

invalid_move_quota:
Invalid move of quota would change terminal quota to non terminal.

invalid_mpx_type:
Invalid multiplexer type specified.

invalid_preaccess_command:
Undefined preaccess command.

invalid_project_for~ate:
Invalid project for gate access control list.

invalid_pvtx:
Invalid Physical Volume Table Entry index specified.

invalid_read:
Attempt to read or move read pointer on device which was not attached as
readable.

invalid_record_desc:
Invalid variable-length record descriptor.

7-13 AG91-04

in valid_record_length:
Invalid logical record length.

invalid_resource_state:
The request is inconsistent with the current state of the resource(s).

inva1id_rin~brackets:
The ring brackets specified are invalid.

invalid_seek_Iast_ bound:
Attempt to manipulate last or bound pointers for device that was not attached
as writeable.

invalid_setdelim:
Attempt to set delimiters for device while element size is too large to support
search.

invalid_stack_ crea tion:
Attempt to create a stack which exists or which is known to process.

invalid_state:
Request is inconsistent with current state of device.

in valid_subsystem:
The specified subsystem either does not exist or is inconsistent.

invalid_system_type:
The specified system type does not exist.

invalid_tp_ value:
The supplied value is not acceptable for this tuning parameter.

invalid_ volume_sequence:
Specified volumes do not comprise a valid volume set.

invalid_ vtoce:
There was an attempt to use a VIOCE with invalid fields.

invalid_ vtocx:
The VTOCE index specified is not within the range of valid indices for the
device.

invalid_write:
Attempt to write or move write pointer on device which was not attached as
writeable.

invalidsegno:
There was an attempt to use an invalid segment number.

io_no_permission:
Process lacks permission to alter device status.

io _still_assnd:
10 device failed to become unassigned.

ioat_err:
Error in internal ioat information.

ioname_not_active:
Ioname not active.

ioname_not_f ound:
Ioname not found.

ionmat:
Ioname already attached and active.

ips_has_occurred:
An in terprocess signal has occurred.

item_too_big:
The item specified is over the legal size.

i tt_ overflow:
Not enough room in ITT for wakeup.

key_duplication:
There is already a record with the same key.

7-14 AG91-04

key_order:
Key out of order.

known_in_other _rings:
There was an attempt to terminate a segment which was known in other rings.

last_ref erence:
This operation would cause a reference count to vanish.

lesserr:
Too many "<" 's in pathname.

line_status_pending:
Operation not performed because of outstanding line_status information.

link:
This operation is not allowed for a link entry.

linkmoderr:
The execute access is needed to directory containing the link.

lock_is_invalid:
The lock does not belong to an existing process.

lock_not_locked:
Attempt to unlock a lock that was not locked.

lock_ wait_time_exceeded:
The lock could not be set in the given time.

locked_by _other _process:
Attempt to unlock a lock which was locked by another process.

locked_by _this_process:
The lock was already locked by this process.

IOL vol_full:
The logical volume is full.

logical_ volume_is_connected:
The logical volume is already attached.

logical_ volume_is_defined:
The logical volume is already mounted.

logical_ volume_not_connected:
The logical volume is not attached.

logical_ volume_not_defined:
The logical volume is not mounted.

logical_ volume_table_full:
The logical volume table is full.

Ions-record:
Record is too long.

longeql:
Equals convention makes entry name too long.

master_dir:
This operation is not allowed for a master directory.

max_depth_exceeded:
The maximum depth in the storage system hierarchy has been exceeded.

mdc_bad_quota:
Master directory quota must be greater than O.

mdc_exec_access:
Executive access to logical volume required to perform operation.

mdc_illegal_account:
Illegal format of quota account name.

mdc_mdir _registered:
Quota account has master directories charged against it

mdc_mdirs_registered:
Volume cannot be deleted because it contains master directories.

7-15 AG91-()4

mdc_no_access:
Process lacks sufficient access to perform this operation.

mdc_no_account:
Specified quota account not found.

mdc_fio_quota:
Insufficient quota on logical volume.

mdc_no_quota_account:
No quota account for the logical volume.

mdc_not_mdir:
This operation allowed only on master directories.

mdc_path_dup:
Pathname already listed.

mdc_path_dup_args:
Pathname appears more than once in the list.

mdc_path_not_f ound:
Pathname not found.

mdc_path_restrict:
Path violates volume or account pathname restriction.

mdc_some_error:
One or more of the paths given are in error.

mdc_unregistered_mdir:
Master directory missing from MDCS.

media_not_removable:
The specified volume cannot be unloaded from its device.

messages_def erred:
User has deferred messages.

messages_off:
User not accepting messages or not logged in.

mismatched_iter:
Mismatche.d iteration sets.

missent:
Missing entry in outer module.

mode_strin~ truncated:
Mode string has been truncated.

moderr:
Incorrect access on entry.

mount_not_ready:
Requested volume not yet mounted.

mount_pending:
Mount request pending.

msf:
This operation is not allowed for a multisegment file.

multiple_io_attachment:
The stream is attached to more than one device.

my lock:
There was an attempt to lock a directory already locked to this process.

name_not_f ound:
The name was not found.

namedup:
Name duplication.

ncp_error:
Network Control Program encountered a software error.

nega ti ve_nelem:
Negative number of elements supplied to data transmission entry.

7-16 AG91-04

negative_offset:
Negative offset supplied to data transmission entry.

net_already _icp:
An initial connection is already in progress from this socket.

net_bad~ender:
Bad socket gender involved in this request.

net_fhost_down:
Foreign host is down.

net_fhost_inacti ve:
Communications with this foreign host not enabled.

net_fimp_down:
Foreign IMP is down.

net_icp _ bad_state:
Initial connection socket is in an improper state.

net_icp _error:
A logical error has occurred in initial connection.

net_icp_not_concluded:
The initial connection has not yet been completed.

net_in valid_state:
Request is inconsistent with state of socket.

net_no_connect_permission:
Process lacks permission to initiate Network connections.

net_no_icp:
There is no initial connection in progress from this socket.

net_not_up:
Network Control Program not in operation.

net_rf c_refused:
Request for connection refused by foreign host.

net_socket_closed:
Network connection closed by foreign host.

net_socket_not_f ound:
Specified socket not found in network data base.

net_ table_space:
The NCP could not find a free table entry for this request.

net_timeout:
Connection not completed within specified time interval.

new _offset_negative:
New offset for pointer computed by seek entry is negative.

new _search_list:
A new sP.-arch list was created.

newnamerr:
User name to be added to acl not acceptable to storage system.

nine_mode_parity:
Attempt to write invalid data in 9 mode.

no_a_permission:
Append permission missing on directory.

no_append:
Append permISSIon missing.

no_archive_f or_equal:
No archive name in original pathname corresponding to equal name.

no_backspace:
Requested tape backspace unsuccessful.

no_channel_meters:
No meters available for the specified channel.

7-17 AG91-04

no_component:
Component not found in archive.

no_connection:
Unable to complete connection to external device.

no_cpus_online:
The requested group of CPUs contains none which are online.

no_create_copy:
Unable to create a copy.

no_current_record:
There is no current record.

no_defs:
Bad definitions pointer in linkage.

no_delimiter:
No delimiters found in segment to be sorted.

no_device:
No device currently available for attachment.

no_dialok:
The process does not have permission to make dial requests.

noaccess:
Some directory in path specified does not exist.

no_e_permission:
No execute permission on entry.

no_ext_sym:
External symbol not found.

no_file:
File does not exist.

no_fim_flag:
The FIM flag was not set in the preceding stack frame.

no_fnps_configured:
There are no FNPs configured.

no_handler:
No unclaimed signal handler specified for this process.

no_info:
Insufficient access to return any information.

no_ini tial_string:
No initial string defined f or terminal type.

no_io_interrupt:
No interrupt was received on the designated 10 channel.

no_iocb:
No I/O switch.

no_key:
No key defined for this operation.

no_label:
Specified detachable volume has no label.

no _line_status:
No line_status information available.

no_linkage:
Linkage section not found.

no_m_permission:
Modify permission missing on entry.

no_makeknown:
Unable to make original segment known.

no_memory _f or_scavenge:
Insufficient memory for volume scavenge.

7-18 AG91-04

no_message:
Message not found.

no_move:
Unable to move segment because of type, access or quota.

no_next_ volume:
Unable to continue processing on next volume.

no_null_refnames:
The segment was not initiated with any null reference names.

no_operation:
Invalid I/O operation.

no_r _permission:
No read permission on entry.

no_record:
Record not located.

no_restart:
Supplied machine conditions are not restartable.

no_room_f or_dsb:
No room available for device status block.

no_room_for_lock:
The record block is too small to contain a lock.

no_s_permission:
Status permission missing on directory containing entry.

no _search_list:
Search list is not in search segment.

no _search_list_ def aul t:
Search list has no default

no_set_btent:
Unable to set the bit count on the copy.

no_stmt_delim:
A statement delimiter is missing.

no_table:
The specified table does not exist.

no_term_type:
Unknown terminal type.

no_terminal_quota:
An upgraded directory must have terminal quota.

no_trap_proc:
Cannot find procedure to call link trap procedure.

no_ w _permission:
No write permission on en try.

no_wdir:
No working directory set for this process.

no_ wired_structure:
No wired structure could be allocated f or this device request.

noalloc:
There is no room to make requested allocations.

noarg:
Expected argument missing.

nodescr:
Expected argument descriptor missing.

noentry:
Entry not found.

nolinkag:
No/bad linkage info in the lot for this segment.

7-19 AG91-04

nolot:
No linkage offset table in this ring.

nomatch:
Use of star convention resulted in no match.

non_matchintLuid:
Unique id of segment does not match unique id argument.

nonamerr:
The operation would leave no names on entry.

nondirseg:
This operation is not allowed for a segment.

nopart:
The partition was not found.

noprtdmp:
No part dump card in config deck.

nostars:
Star convention is not allowed.

not_a_branch:
Entry is not a branch.

not_a_ wait_channel:
Event channel is not a wait channel.

not_a_ valid_iocb:
The supplied pointer does not point to a valid IOCB.

not_abs_path:
Pathname supplied is not an absolute pathname.

not_act_fnc:
This active function cannot be invoked as a command.

not_archive:
Segment is not an archive.

not_attached:
I/O switch (or device) is not attached.

not_bound:
Segment is not bound.

not_closed:
I/O switch is not closed.

not_detached:
I/O switch is not detached.

not_done:
Not processed.

not_in_trace_table:
Entry not found in trace table.

not_link:
This operation may only be performed on a link entry.

not_open:
I/O switch is not open.

not_privileged:
This operation requires privileged access not given to this process.

not_rin&-O:
Signaller called while not in ring O.

not_se&-type:
Segment not of type specified.

notadir:
Entry is not a directory.

notalloc:
Allocation could not be performed.

7-20 AG91-04

nrmkst
There is no more room in the KST.

null_brackets:
Null bracket set encountered.

null_dir:
The directory specified has no branches.

null_inf o_ptr:
Pointer to required information is null.

obsolete_function:
Attempt to perform an operation which is obsolete.

odd_no_of_args:
Odd number of arguments.

old_dim:
Old DIM cannot accept new I/O call.

oldnamerr:
Name not found.

oldobj:
Obsolete object segment format

oob_stack:
User stack space exhausted.

oob_stack_ref:
Attempt to reference beyond end of stack.

oosw:
There was an attempt to reference a directory which is out of service.

order_error:
An error occured while processing the order request

out_of _bounds:
Reference is outside allowable bounds.

out_of _main_memory:
There is insufficient memory to wire the requested I/O buffer.

out_of _sequence:
A call that must be in a sequence of calls was out of sequence.

out_of_window:
The point or region specified lies outside the window.

outward_call_f ailed:
Error making outward call after stack history destroyed.

overlappin~more_responses:
The yes and no response characters are not distinct

pathlong:
Pathname too long.

picture_bad:
The picture contains a syntax error.

picture_scale:
The picture scale factor not in the range -128:+127.

picture_too_big
The normalized picture exceeds 64 characters.

positioned_on_bot
Tape positioned on leader.

private_volume:
The logical volume is private.

proj_not_found:
Specified project not found.

process_stopped:
Target process in stopped state.

7-21 AG91-()4

process_unknown:
Target process unknown or in deactivated state.

pv _is_in_Iv:
The physical volume is already in the logical volume.

pv _no_scavenge:
The physical volume cannot be scavenged.

pvid_not_f ound:
The physical volume is not mounted.

quit_term_abort:
Aborted by quit or term.

rO_refname:
A ttempt to use reference names in ring O.

rcp_attr _not_permitted:
Some attribute specified is not permitted for this resource.

rcp_attr_protected:
Some attribute specified is protected.

rcp_bad_attributes:
Resource attribute specification is invalid.

rcp_no_auto_reg:
The resource cannot be automatically registered.

rcp _no_registry:
The registry was not found.

record_busy:
Record locked by another process.

recoverable_error:
Requested operation completed but non"':'fatal errors or inconsistencies were
encountered.

recursion_error:
Inf ini te recursion.

refname_coun t_too_big:
The reference name count is greater than the number of reference names.

request_id_ambiguous:
The specified request id matches multiple requests.

request_no t_recognized:
Request not recognized.

request_pending:
Processing of request has not been completed.

reservation_f ailed:
The resource reservation request has failed.

resource_assigned:
Resource already assigned to requesting process.

resource_attached:
Resource already attached to the requesting process.

resource_bad_access:
Resource not accessible to the requesting process.

resource_f ree:
This operation not allowed for a free resource.

resource_locked:
The resource is locked.

resource_not_free:
The resource is not free.

resource_not_modified:
Specified resource property may not be modified in this manner.

7-22 AG91-04

resource_reserved:
The resource is otherwise reserved.

resource_spec_ambiguous:
Resource specification supplied is incomplete.

resource_type_inappropriate:
Resource type is inappropriate for this request.

resource_type_ll..l1known:
Resource type unknown to the system.

resource_unassigned:
Resource not assigned to requesting process.

resource_unavailable:
No appropriate resource available.

resource_unknown:
Resource not known to the system.

retrieval_ trap_on:
Retrieval trap on for file special user is trying to access.

root:
The directory is the ROOT.

rqover:
Record quota overflow.

run_unit_not_recursive:
There can be only one run unit at a time.

safety_sw_on:
Attempt to delete segment whose safety switch is on.

salv _pclir_procterm:
Fatal salvaging of process directory.

sameseg:
Attempt to specify the same segment as both old and new.

scavenge_aborted:
The volume scavenge has been terminated abnormally.

scavenge_in_progress:
The volume is being scavenged.

scavenge_process_limit:
Maximum number of simultaneous scavenges exceeded.

seLbusted:
Entry has been damaged. Please type "help damaged_segments.gi".

5eLdeleted:
The segment has been deleted.

seLnot_f ound:
Segment not found.

seLunknown:
Segment not known to process.

segfault:
Segment fault occurred accessing segment.

segknown:
Segment already known to process.

seglock:
The segment is already locked.

segnamedup:
Name already on entry.

segno_in_use:
The segment number is in use.

short_record:
Record is too short.

7-23 AG91-04

signaller _f aul 1:
Fault in signaller by user's process.

size_error:
The size condition has occured.

smallarg:
Argument size too small.

soos_set:
Security-out-of -service has been set on some branches due to AIM inconsistency.

special_channel:
The event channel specified is a special channel.

special_channels_full:
All available special channels have been allocated.

stack_not_active:
The requested ring-O stack is not active.

stack_overflow:
Not enough room in stack to complete processing.

strings_not_equal:
Strings are not equal.

tape_error:
Tape error.

termination_requested:
Process terminated because of system defined error condition.

time_too_Iong:
Specified time limit is too long.

timeout:
The operation was not completed within the required time.

too_many _acl_en tries:
Access control list exceeds maximum size.

too_many _args:
Maximum number of arguments for this command exceeded.

too_many _buffers:
Too many buffers specified.

too_many _names:
Name list exceeds maximum size.

too_many _read_delimiters:
Too many read delimiters specified.

too_many _refs:
Unable to increment the reference count because of upper bound limit

too_many _sr:
Too many search rules.

too_many _links:
There are too many links to get to a branch.

too_many_tokens
The date/time string contains more tokens than the routine is prepared to
handle.

trace_table_empty:
Trace table is empty.

trace_table_full:
Trace table is full.

transla tion_a borted:
Fatal error. Translation aborted.

translation_failed:
Translation failed.

7-24 AG91-04

typename_not_f ound:
Typename not found.

unable_to_check_access:
It was not possible to complete access checking - access denied.

unable_to_do_io:
Unable to perform critical I/O.

unbalanced_brackets:
Brackets do not balance.

unbalanced_parentheses:
Parentheses do not balance.

unbalanced_quotes:
Quotes do not balance.

undefined_mode:
Mode not defined.

undef ined_ order_request:
Undefined order request.

undefined_ptrname:
Unrecognizable ptrname on seek or tell call.

unexpected_ condi tion:
An unexpected condition was signalled during the operation.

unexpected_ft2:
Attempt to execute instruction containing a fault tag 2.

unexpired_f ile:
Unable to overwrite an unexpired file.

unexpired_ volume:
Unable to continue processing on unexpired volume.

unimplemented_ptrname:
Pointer name passed to seek or tell not currently implemented by it.

unimplemented_version:
This procedure does not implement the requested version.

unini tialized_ volume:
Unable to continue processing on uninitialized volume.

unknown_tp:
The specified tuning parameter does not exist.

unknown_zone:
The time zone is not acceptable.

unrecognized_char _code:
Volume recorded in unrecognized character code.

unregistered_volume:
The specified detachable volume has not been registered.

user_not_found:
User-name not on access control list for branch.

vol_in_use:
The volume is in use by another process.

volume_busy:
The requested volume is not available.

volume_not_loaded:
The requested volume is not loaded.

volume_type_unknown:
Volume type unknown to the system.

vtoc_io_err:
Unrecoverable data-transmission error on VTOC.

vtoce_connection_fail:
Some directory or segment in the pathname is not listed in the VTOC.

7-25 AG91-G4

vtoce_free:
The VTOCE is already free.

wakeup_denied:
Insufficient access to send wakeup.

wron~channel_ring:
An event channel is being used in an incorrect ring.

wron~no_of_args:
Wrong number of arguments supplied.

zero_length_seg:
Zero length segment.

CONDITIONS

Status codes enable a calling procedure to take action on an unusual occurrence
only after the procedure encountering the occurrence has returned. It is sometimes
necessary for a calling procedure to gain control immediately upon encountering an
unusual occurrence, so that it can decide what action to take. If the calling procedure
decides to take corrective action, it can then continue execution from the point of the
occurrence. Unusual occurrences can also be detected at times when no error is
expected, so that execution of the program must be interrupted immediately. This is
the purpose of the Multics condition mechanism (described in "Multics Condition
Mechanism" below). Not all conditions can be corrected to the point where execution
of the program can be continued. See description of system conditions below for
information about specific conditions.

The condition mechanism is also used for error reponing in cases where the
errors a procedure can detect occur too infrequently and speed is too important to
have a status code argument

The Multics system invokes the condition mechanism upon encountering certain
unusual occurrences during the execution of a program. The Multics standard user
environment acts upon these system-generated occurrences, as well as occurrences
generated by user programs if the user programs do not do so themselves. A list of
occurrences that cause the system to invoke the condition mechanism, and the action
taken by the Multics standard user environment if it is invoked to act upon these
occurrences, is given in "List of System Conditions and Default Handler" below.
Methods of signalling conditions from user programs are discussed in "Signalling
Conditions in a User Program" below.

Multics Condition Mechanism

The condition mechanism is a facility of the Multics system that notifies a
program of an exceptional condition detected during its execution. A condition is a
state of the executing process. Each condition that is detected is identified by a
condition name. For example. division by zero is a condition identified by the
condition name, zerodivide.

7-26 AG91-04

A condition can be detected by the system or by a user program. When a
condition is detected, it is signalled. A signal causes a block activation of the most
recently established on unit for the condition. Thus, by establishing an on unit, a
program arranges with the system to receive control when conditions of interest to it
are detected and signalled.

An on unit can be a begin block or independent statement, or it can be a
procedure entry. A program (an activation of a procedure block or begin block) can
establish a begin block or an independent statement as an on unit for a particular
condition by executing a PL/I on statement that names that condition.

When an on unit is activated, it can take any action to handle a condition.
Typically, the on unit might try to rectify the circumstances that caused the condition
and then restart execution of the interrupted program at the point where the condition
was detected; or it might abort execution of the program by performing a nonlocal
transfer to a location within the interrupted program or to one of its callers.

All of the on units established by a block activation are reverted when that
block activation terminates by returning to its caller or when it is aborted by a
nonlocal transfer. An on unit for a particular condition can be explicitly reverted by
executing a PL/I revert statement or by executing another on statement that names the
condition. Therefore, each block activation can have no more than one on unit
established for each condition at any given time; however, there can be as many on
units established for a particular condition as there are block activations. Signalling a
condition causes a block activation of the most recently established on unit for that
condition. Normally, this is the only on unit that is activated, even though other on
units for the condition were established by preceding block activations.

The effect of this scheme is that, once a block activation has established an on
unit for a condition, any occurrence of the condition activates that on unit. This
remains true only until the block activation is terminated or until the on unit is
reverted and as long as no descendant block activation establishes an on unit for the
condition.

Generally. procedures that can take action when a condition is detected should
establish an on unit for that condition. Of those block activations that have
established an on unit for the condition, the most recently established on unit is
activated.

7-27 AG91-()4

Example of the Condition Mechanism

The example below is presented to illustrate the mechanism discussed above. It is
not meant to illustrate typical or recommended use of the condition mechanism.

Example: proc;

Sub 1 :

declare Subl external entry;
declare Sub2 external entry;
declare c fixed bin;
declare wrong_way condition;

on wrong_way begin;

end;

ca 11 Sub 1 ;

c = 2;

call Sub2;

end Example;

proc;

declare a fixed bin;
deciare wrong_way condition;

a = 0;

on wrong_way begin;

end;

a = 1;

end Sub 1 ;

7-28

(2)

(3)

(4)

{S1)

(52)

(53)

AG91-()4

5ub2: proc;

declare b fixed bin;
declare wrong_way condition;

b = 1;

on wrong_way begin;

end;

b = 2;

revert wrong_way;

b = 3;

end 5ub2;

(54)

(55)

(56)

(57)

(58)

In the above example, if procedure Example is called, the executable statements
are executed in the order (1), (2). (S1), (S2), (S3), (3), (4), (S4), (S5), (S6), (S7), (S8)
under normal circumstances. However, if the wron~way condition is detected and
signalled during the execution of (S1), then the on unit established for the wron~way
condition by Example is activated because Sub! has not established an on unit for the
wron~ way condition at this time. If the on unit simply corrects the circumstances
that caused the wron~way condition and returns, then execution resumes in (S1) from
the point of interruption. If the wron~way condition is detected and signalled during
the execution of statement (S3), then the on unit established in Sub! is activated
because Sub! has established the most recent on unit for this condition. If the
wrong_way condition is signalled during (3), the on unit established by Example is
activated because the block activation for Sub! has been terminated and its on unit is
no longer established. If the wron~ way condition is signalled during (S8), the on unit
established in Example is activated because Sub2 explicitly reverted the on unit it had
previously established, making Example's on unit the most recently established on unit
f or the wron~ way condition.

7-29 AG91-o4

On Unit Activated by All Conditions

The above description indicates how on units can be established for specific
conditions. It is sometimes desirable to handle any and all conditions that occur. To
do this, a block activation can establish an on unit for the any_other condition. When
a particular condition is signalled, the any_other on unit established by the block
activation is activated if no specific on unit for the condition was established by the
block activation, and if no on unit for that condition or the any_other condition was
established by a more recent block activation. In other words, when a condition is
signalled. each block activation, starting with the most recent, is inspected for an on
unit established for that specific condition and. if none is found. each block is
inspected for an established any_other on unit. The first such specific or any_other
on unit found is the one that is activated. As is the case with on units for specific
conditions, only one any _other on unit can be established by a given block activation.
Establishing a second any _other on unit simply overwrites the first.

Continuation of Search

If an on unit cannot adequately handle the condition. it causes the condition
mechanism to continue to search for another on unit by calling the continue_to_signal_
subroutine (described in the Subroutines manual) and then returning.

As a summary. the flow diagram of Figure 7-1 illustrates the algorithm used by
the condition mechanism to determine which on unit to activate when a condition is
signalled. The action taken when no on unit can be found for a condition is
described in "Interaction with the Multics Ring Structuren below.

7-30 AG91-04

EXAMINE NEXT
PREVIOUS
ACTIVATION

I

NO

CONDITION X RAISED

EXAMINE MOST
RECENT
ACTIVATION

IS THERE A HANDLER
ESTABLISHED IN THIS
ACTIVATION FOR
CONDITION X?

NO !YES

INVOKE THE
HANDLER

t YES

IS THERE A DEFAULT
HANDLER ESTAB-
LISHED IN THIS
ACTIVATION FOR
ANY OTHER?

I NO
'f

IS THIS THE
OLDEST
ACTIVATION?

YES

NO HANDLER
FOR THIS
CONDITION

I

HANDLER
RETURNS

HANDLER
NON LOCAL GO TO

\
ESTABLISH A
NEW COMMAND
LEVEL

RELEASE

\ROGRAM-INTERRUPT

REENTER
YES

DOES HANDLER
WANT SEARCH
CONTINUED? THE PROGRAM

RETURN

7-31 AG91-D4

Interaction with the Multics Ring Structure

The condition mechanism interacts with the Multics ring structure. The above
description of how an on unit is selected for activation applies only to block
activations within a single ring. When a condition is signalled in a particular ring, the
algorithm of Figure 7-1 is followed for the block activations in that ring. If no on
unit for the condition is found in that ring, then the ring is abandoned and the same
condition is signalled in the higher ring that called the abandoned ring. This process
is repeated until all existing rings have been abandoned, indicating that this process has
not established an on unit for the condition being signalled, in which case the process
is terminated. For more information, see "Action Taken by the Default Handler"
below.

Nonstandard Location of On Unit for Special Conditions

The standard searching mechanism is bypassed for certain conditions. Before
looking in the stack for on units, a special table is examined to determine if a "static
handler" has been established for the condition. If so, the static handler is invoked
and has the option of passing the condition on to the normal mechanism. Static
handlers are used by the system to handle certain system events that users should not
attempt to handle. Consult static_handlers.inc1.pll for the conditions that may have
static handlers.

Action Taken by the Default Handler

Some conditions are routinely handled by the system's default on unit (in the
absence of a user-supplied on unit) by printing a message on the user's terminal to
alert him t.l:lat the condition has occurred and his process has returned to command
level. These conditions are denoted in "List of System Conditions and Default
Handler" below by the following: "Default action: prints a message and returns to
command level."

In many cases, the subroutine that is executing when a condition is detected is a
system or PL/I support subroutine that is of little interest to the user. In such cases,
the user needs to know the location at which the most recent nonsupport subroutine
was executing before the condition was detected. To accomplish this, the default on
unit hunts through the block activations that precede the support subroutine until it
finds the first nonsupport subroutine; it then indicates that the condition was detected
while executing at a location within that nonsupport subroutine.

7-32 AG91-04

System Condition Wall

The system sets up a handler for the any_other condition when the user ring
environment is established; this handler serves to establish the system's default handler
(see "Action taken by Default Handler" above). The system similarly sets up a handler
for the any_other condition each time the system's default handler returns to
command level. This handler serves to establish the system default handler as the
handler for all conditions raised by programs invoked at the new command level,
effectively replacing the handlers of the program which caused the default handler to
be invoked. Thus, a "condition wall" is set up between programs raising conditions
which have no handlers for them and programs run at a new command level
thereafter. Invocations of command level from programs (via calls to Cll_$cI) or
explicit invocation of the default_error_handler_ subroutine do not cause this wall to
be set up. Any program that wishes to set up an explicit condition wall can set up a
handler for the any_other condition. The statement:

on any_other system;

will cause a condition wall which invokes the standard system default handler in all
cases.

The condition wall is transparent to the program_interrupt and finish conditions;
this allows the program_interrupt condition to be used to reenter suspended
environments.

Signalling Conditions in a User Program

A user program can signal a condition by executing a PL/I signal statement that
names that condition. If descriptive arguments are to be passed to the on unit, the
signal_ subroutine (described in the Subroutines manual) should be called with the
condition name as an argument. If the on unit activated by the signal returns, the
user program should retry the operation that was interrupted by the condition.

Obtaining Additional Information About a Condition

An on unit usually needs information about the circumstances under which it was
activated. The find_condition_info_ subroutine (described in the Subroutines manual)
makes such information available to an on unit. The information might include
machine conditions (i.e.. the processor state) or other information describing the
condition in question. The information that is available when system-detected
conditions are signalled is listed in "Machine Condition Data Structure" and
"Information Header Format" below.

7-33 AG91--G4

Machine Condition Data Structure

As discussed above, information is available that describes the state of the
processor at the time a hardware condition (fault) was raised. This data structure is
declared in the include file mc.incl.pll In the following form:

del 1 me based (me ptr)
2 prs (0:7) -

(2 regs,
3 x (0:7)
3 a
3 q
3 e
3 reserved

2 seu (0: 7)

2 erreode
2 reserved2
2 fault time
2 reser~ed3 (0:7)

ali gned,
ptr,

b t (18) ,
b t (36) ,
b t (36) ,
b t (8) ,
b t (64) ,
b t (36) ,

fixed bin (35) ,
bit(72),
fix ed bin (] 1) ,
bit (36» una 1 i gned;

STRUCTURE ELEMENTS

prs
is the contents of the eight pointer registers at the time the condition occurred.

regs
is the contents of the other registers at the time the condition occurred.

x
is the contents of the eight index registers.

a
is the a register con ten ts.

q
is the q register con ten ts.

e
is the exponent register contents.

scu
is the stored control unit, expanded below.

errcode
is the fault error code. Refer to "List of System Status Codes and Meanings"
earlier in this section.

fault_time
is the time the condition occurred.

NOTE: In the above declaration and in the declarations that follow, "reserved" is
reserved for use by the system.

7-34 AG91-04

The stored control unit is declared as follows:

de 1 1 scu ali gned,
(2 ppr,

3 prr
3 psr

2 reserved4
2 reserved5
2 fi_hUI11
2 fi_flag
2 tpr,

3 trr
3 tsr

2 reserved6
2 reserved7
2 tpr _tbr
2 i lc
2 i r,

3 zero
3 neg
3 carry
3 ovfl
3 eovf
3 eufl
3 of 1m
3 tro
3 par
3 parm
3 bm
3 tru
3 mif
3 abs
3 reserved

2 ca
2 reserved8
2 even inst
2 odd inst

bit (3) ,
bit (15) ,
bit (18) ,
bit (30) ,
bit (5) ,
bit(l) ,

b t (3) ,
b t (15) ,
b t (l8) ,
b t (30) ,
b t (6) ,
b t (l8) ,

b t (1) ,
b t (l) ,
b t (l) ,
b t (l) ,
b t (l) ,
b t (l) ,
b t (l) ,
b t (1) ,
b t (1) ,
b t(1),
b t (1) ,
b t (l) ,
b t (l) ,
b t (1) ,
b t (4) ,
bIt (18) ,
bit (18) ,
bit (36) ,
bit (36») ali gned;

STRUCTURE ELEMENTS

ppr
is the procedure pointer register contents.

prr
is the ring number portion of ppr.

psr
is the segment number portion of ppr.

fi_num
is the fault/interrupt number.

7-35 AG91-()4

fi_flag

tpr

is the fault/interrupt flag.
"O"b interrupt
"l"b fault

is the temporary pointer register contents.

trr
is the ring number portion of tpr.

tsr
is the segment number portion of tpr.

tpr_tbr
is the bit offset portion of tpr.

ilc
is the instruction counter contents.

ir
is the contents of indicator registers.

zero
zero indicator.

neg
negative indicator.

carry
carry indicator.

ovfl
overflow indicator.

eovf
exponent overflow.

eufl
exponent underflow.

oflm
overflow mask.

tro
tally runout.

par
pari ty error.

parm
pari ty mask.

7-36 AG91-o4

bm
not bar mode.

tru
truncation mode.

mif
mid instruction fetch.

abs
absolute mode.

ca
is the computed address.

even_inst
the instruction causing the fault is stored here.

odd_inst
the next sequential instruction is stored here if ilc (see above) is even.

Information Header Format

A standard header is required at the beginning of each information structure
provided to an on unit. Except for the header, this info is particular to the condition
in question and varies among conditions. The condition info structure should be
constructed using condition_info_header.incl.pll and the PL/l "like" feature--see the
PL/l condition structure below for an example. The format of the header is:

dcl 1 condition_info_header
2 length
2 version
2 action_flags

3 cant_restart
3 default_restart
3 quiet_restart
3 support_signal
3 pad

2 info_string
2 status_code

STRUCTURE ELEMENTS

length

al igned based (condition_info_header_ptr),
fixed bin,
fixed bin,
aligned,
bit(]) unaligned,
bit(]) unaligned,
bit(l) unal igned,
bit(]) unaligned,
bit(32) unaligned,
char (256) var,
fixed bin (35) ;

is the length of the structure in words.

version
is the version number of the structure of the particular condition that was raised.
It is documented along with the rest of the info_structure for each condition in
the pages that follow.

7-37 AG91-04

action_flags
indicate appropriate behavior for a handler.

can t_restart
indicates that a handler should never attempt to return to the signalling
procedure.

def aul t_restart
resumes computation with no further action on the handler's part except
printing the message in info_string and returning.

quiet_restart
resumes computation with no further action except a return.

support_signal
indicates that the error is being signaled on behalf of another procedure.
Any error messages produced by the signal will refer to the caller of the
procedure that signaled the condition, rather than to the procedure that
signalled the condition.

pad
is reserved for future expansion and must be "O"b.

info_string
is a printable message about the condition.

status_code
if nonzero, is a code interpretable by the com_err_ subroutine that further
defines the condition.

If no action flag is set, restarting is possible, but its success depends on the
action taken by the handler.

PL/I Condition Data Structure

Most of the PL/I conditions have the data structure described below. Only the
items associated with a particular instance of a condition are filled in. The relevant
information should be obtained from the PL/I defined ondata structure (beyond the
header) since it is primarily an implementation vehicle for the PL/I condition built-in
functions.

For brevity, the data structure item of PL/I conditions that use this data
structure is listed as "the standard PL/I data structure." See pll_info.incl.pU.

7-38 AG91-04

dcl 1 pll_info
2 header
2 id
2 content flags

(3 vl_sw:-
3 oncode_sw,
3onfile_sw,
3 f i 1 e_ptr _sw,
3 onsource_sw,
30nchar_sw,
3 onkey sw,
3 onfield_sw)

2 oncode
2 onf i 1 e
2 f i 1 e_ptr
2 onsource
2 oncharindex
2 onkey_onfield

STRUCTURE ELEMENTS

header

al igned based (pll_info_ptr),
aligned like condition info header,
char (8) in i t (lip 1 i ocond"), -
aligned,

bit(l) unal igned,
fixed bin (35) ,
char (32) aligned,
ptr,
char (256) var,
fixed bin,
char (256) var;

is the same as the information in the header format above. (The version field of
the header is condition one.)

id
identifies this structure as belonging to a PL/I condition.

vl_sw
indicates that the condition was raised by a version 1 PL/I procedure.
"1 "b condition was raised by version 1
"O"b condition was not raised by version 1

oncode_sw
indicates that the structure contains a valid oncode.
"l"b oncode valid
"O"b no valid oncode present

onfile_sw
indicates that a file name has been copied into the structure.
"1 "b name copied
"O"b name is not copied

file_ptr_sw
indicates that there is a file associated with this condition.
;;1':b fHe associated
"O"b file is not associated

onsource_sw
indicates that there is a valid onsource string for this condition.
"1 "b valid onsource string
"O"b no valid onsource string present

7-39 AG91-()4

onchar_sw
indicates that there is a valid onchar index in this structure.
"1 "b valid onchar index
"O"b no valid onchar index present

onkey_sw
indicates that there is a valid onkey string in this structure.
"1 "b valid onkey string
"O"b no valid onkey string present

onfield_sw
indicates that there is a valid onfield string in this structure.
"1 "b valid onfield string
"O"b ne valid enfield string present

oncode
is the condition's oncode if oncode_sw is equal to "l"b.

onfile
is the onfile string if onfile_sw is equal to "l"b.

file_ptr
is a pointer to a file value if file_ptr_sw is equal to "l"b.

onsource
is the onsource string if onsource_sw is equal to "1 "b.

oncharindex
is the character offset in onsource of the erroneous character if onchar_sw is
equal io "l"b.

onkey _on field
is the onkey string if onkey _sw is equal to "1 "b and is the onfield string if
onfield_sw is equal to "l"b.

SYSTEM CONDITIONS AND DEFAULT HANDLER

System. conditions are signalled to report certain unusual occurrences. The
signalling and handling of conditions in general is described in "Multics Condition
Mechanism" above. The following discussion lists the conditions signalled by system
procedures and the default actions taken for each. The default on unit is invoked if
no other user or system on unit has been established for the condition. The conditions
are listed in alphabetical order by name.

When present, the parenthetical type designator at the right margin on the same
line with the name indicates that the condition is either:

1. defined by the PL/I language; or

2. due to a hardware fault or an error encountered while processing a
hardware fault (indicating that a processor state description is available).

7-40 AG91-o4

Otherwise, the condition is neither of these.

Five items follow each condition name:

Cause:

Default action:

Restrictions:

Restartabili ty:

Data Structure:

is the reason the condition is signalled;

is a brief description of the action taken by the
default on unit;

indicates when the user should not attempt to
handle the condition and when the system handles
the condition before any search for user on units;

indicates what actions, if any, are necessary to
restart after an occurrence of the condition. Restarting
is accomplished either by returning from an on unit
or by issuing the start command from command
level. Restartability has four classifications:

1. immediately restartable: execution continues
(default action) if an on unit returns without
doing anything; this default action is usually
documen ted.

2. conditionally restartable: restarting is
meaningful only if some obvious corrective
action (such as resetting access) is taken.

3. conditionally restartable by modifying machine
conditions: restarting is meaningful only if
certain items in the saved machine state are
modified. This is a sophisticated process that
is discussed in the Multics Processor Manual,
Order No. AL39.

4. not restartable: restarting produces undefined
and usually erroneous results.

No condition that originally occurred in a lower
ring is restartable since the stack history at the
time of occurrence is discarded when a higher ring
is entered in the search f or a handler.

The decision to restart need not be limited to the
on unit itself. In many cases, the on unit returns
to command level with the stack history preserved
so the user can decide whether to take corrective
action and whether restarting is appropriate.

is the PL/I declaration of the data that can be
pointed to by info_ptr, the fourth argument available
to a condition handler. Unless otherwise specified,
it is not generally useful for the handler to change
the values of variables in the data structure.

7-41 AG91-()4

List of System Conditions

In the list of system conditions that follow, one default action description occurs
frequently. For brevity, it is listed as:

"prints a message and returns to command level"

to mean:

"an error message is printed on the error_output switch, and the user is placed
at command level with a higher level stack frame than before the condition
was signalled."

When a user receives this message, his stack is intact and the history of the error is
preserved. The user can retain the stack for further debugging activities or he can
release it. (See the description of the release and start commands in the Commands
manual.)

active function error - -

Cause:

Def ault action:

Restrictions:

Restartability:

Data structure:

the user incorrectly used an active function in a
command line. The active_fnc_err _ subroutine signals
this condition if a command is invoked as an active
function; the com_err_ subroutine also may signal
this condition if a command is iilVoked as an active
function (see the Subroutines manual).

prints a message and returns to command level.x)

none.

restartable.

dell com_af_error_info
2 header

al igned based,
al igned like condition_info_header,
ptr, 2 name_ptr

2 name_lth
2 errmsg_ptr
2 errmsg_lth
2 max_errmsg_lth
2 print_sw

Structure elements:

header

fixed bin,
ptr,
fixed bin,
fixed bin,
bit(l) ;

is the same as in the information format header above, except that
the version number is 3. See com_af_error_info.incl.pll.

name_ptr
is a pointer to a character string containing the name of the
procedure that called the active_fnc_err_ subroutine.

7-42 AG91-04

name_lth
is the length of the name of the procedure that called the
active_fnc_err_ subroutine.

errmsLPtr
is a pointer to a character string containing the error message
prepared by the active_fnc_err_ subroutine. A handler might wish to
alter that message.

errmsLlth
is the significant length of the error message prepared by the
active_fnc_err_ subroutine. This datum can be changed by the handler.

max_errmsLlth
is the size of the character string containing the error message
prepared by the active_fnc_err _ subroutine.

print_sw
indicates whether the error message is printed by the active_fnc_err_
subroutine if and when the handler returns control to it. This datum
can be changed by the handler.
"l"b message is printed
"O"b message is not printed

a/ rm (hardware)

Cause:

Default action:

Restrictions:

Restartability:

Data structure:

Note:

a real-time alarm occurred a specified length of
time after a call by the use to the
timer_manager_$alarm_call entry point (to set the
alarm). See the description of the timer_manager_
subroutine in the Subroutines manual.

the handler looks up the alarm that is expected at
the time this one occurred, and calls the appropriate
user-specified procedure. When (if) this procedure
returns. the user's process is returned to the point
at which it was interrupted.

the user should not attempt to handle this condition.

immediately restartable.

none.

this condition is normally handled by a static
handler and, theref ore, the stack is never searched.

7-43 AG91-D4

area (PL//)

Cause:

Default action:

Restrictions:

Restartabili ty:

Data structure:

bad area format - -

Cause:

Default action:

Restriction:

Restartability:

Da ta structure:

bad dir

Cause:

Def aul taction:

Restrictions:

Restarta bility:

the user attempted either to allocate storage in an
area that had insufficient space remaining to generate
the storage needed, or to assign one area to
another, and the second had insufficient space to
hold the storage allocated in the first.

prints a message on the error_output switch and
signals the error condition. Upon a normal return,
the attempted allocation is retried in case the user
has freed some storage from an area in the interim.

none.

conditionally restartable.

none.

a block of words could not be allocated in an area
because the area was damaged. The damage was
either to certain words in the area header that
def ine the type of area or to the threads connecting
blocks of free storage.

prints a message and returns to command level.

none.

sometimes conditionally restartable by fixing the
area.

none.

the supervisor has detected damage to a directory
which cannot be repaired by the automatic recovery
procedures.

prin ts a message and returns to command level.

none.

not restartable.

7-44 AG91-Q4

bad _ outward _call (hardware)

Cause:

Default action:

Restrictions:

Restartability:

Data structure:

cleanup

Cause:

Default action:

Restrictions:

Restartability:

Data structure:

command abort - -

Cause:

Default action:

the user attempted to make an invalid call to an
outer ring.

prints a message and returns to command level.

none.

conditionally restartable.

none.

a program activation is being aborted as a result of
a nonlocal transfer to a location in an earlier
procedure activation. Because it is not going to
return normally, the program activation may want
to regain control briefly to reset static variables,
etc. This is not an ordinary condition because every
cleanup on unit established between the frame of
the program activation performing the transfer and
the frame of the target program activation is
invoked.

none.

an on unit for cleanup or any of its dynamic
decendants must not do a nonlocal goto since this
would interfere with the one already in progress.
The user should not signal this condition directly.

immediately restartable. The on unit must return.

none.

a FORTRAN or PL/I program executed a stop
statement, or the user invoked the stop_run command;
this is signalled only when the user is not in a run
unit.

transfers to the activation of the command processor
that invoked the program, unwinding the stack; the
next command, if any, on the command line is
then processed. If a subsystem command processor
does not have a handler for this condition, the
default action is to print a message and return to
command level.

7-45 AG91-o4

Restrictions:

Restartability:

Data structure:

command error

Cause:

Default action:

Restrictions:

Restartability:

Data structure:

del 1

user programs other than command processors must
not attemqpt to handle this condition.

immediately restartable; however, if the condition
was signalled from a stop statement, execution
continues with the statement following the stop
statement A release is necessary to achieve the
desired effect

none.

the user incorrectly used a command (such as giving
it bad arguments), or a command encountered a
situation that prevented it from completing its
operation normally. The com_err_ subroutine
(described in the Subroutines manual) signals this
condition.

returns to the com_err_ subroutine, which then
prints a formatted message on the error output
switch. Other more sophisticated handlers could
reformat the error message to the individual user's
taste, or take some special action depending on the
particular condition in question.

none.

immediately restartable.

info com_af_error - aligned based,
2 header
2 name_ptr
2 name Ith -2 er rmess_ptr
2 errmess 1 th -
2 max_errmess
2 print_sw

Ith -

aligned like condition info_header,
ptr,
fixed bin,
ptr,
fixed bin,
fixed bin in i t (256) ,
bit(l) init("l"b);

Structure elements:

header
is the same as in the information header format above, except that
the version number is 3. See com_af_error_info.inc1.pll.

name_ptr
is a pointer to a character string containing the name of the
procedure that called the com_err_ subroutine.

7-46 AG91-04

name_Ith
is the length of the name of the procedure that called the com_err_
subroutine.

errmess_ptr
is a pointer to a character string containing the error message
prepared by the com_err_ subroutine. A handler might wish to alter
that message.

errmess_Ith
is the significant length of the error message prepared by the
com_err_ subroutine. This datum can be changed by the handler.

max_errmess_Ith
is the size of the character string contaInIng the error message
prepared by the the com_err_ subroutine.

print_sw
indicates whether the error message is printed by the com_err_
subroutine. This datum can be set by the handler.
"l"b message is printed
"O"b message is not printed

command _query _ error

Cause:

Default action:

Restrictions:

Restartabili ty:

Data structure:

command _question

Cause:

Default action:

Restrictions:

the user specified a handler for the command_question
condition that did not return a yes or no answer
when the data structure element indicated that a yes
or no answer was required. The command_query_
subroutine (described in the Subroutines manual)
~ignals this condition.

prints a message and returns to command level.

none.

not restartable.

none.

a command is asking a question of the user. The
command_query_ subroutine signals this condition.

returns to the command_query _ subroutine, which
then prints the question on the user_output switch.
Other more sophisticated handlers could supply a
preset answer, modify the question. or suppress its
printing. See the data structure below for details.

none.

7-47 AG91-()4

Restartabili ty: immediately restartable.

Data structure:

dcl 1 command_question_info
2 header
2 query_code
2 question sw
2 yes_or_no sw
2 preset sw
2 answer sw
2 name_ptr
2 name_lth
2 question_ptr
2 question_lth
2 max_question_lth
2 answer_ptr
2 answer lth
2 max_answer_lth
2 question_iocbp
2 answer_iocbp
2 repeat_time

Structure elements:

header

aligned based,
aligned like condition info header
fixed bin(35), -
bit(1) init (II 1 lib) unaligned,
bit (1) una 1 i gned,
bit (1) in i t ("Cllb) una 1 i gned,
bit(l) init("l"b) unal igned,
ptr,
fixed bin,
ptr~

fixed bin,
fixed bin,
ptr,
fixed bin,
fixed bin,
ptr,
ptr,
fixed bin (] 1) ;

is the same as in the information header format above, except that
the version number is 6. See command_question_info.incl.pll.

query_code
is additional qualifying information passed by the caller of
command_query _.

question_sw
indicates whether the command_query_ subroutine should print the
question. This datum can be set by the handler.
"1 "b question is printed
"O"b question is not printed

7-48 AG91-04

yes_or_no_sw
indicates whether the command_query _ subroutine expects the preset
answer (if any) returned by the handler to be either yes or no. In
this case~ if the handler returns any other string~ the command_query_
subroutine signals the the command_query _error condition.
"1 "b answer either yes or no
"O"b any answer accepted

preset_sw
indicates whether the handler is returning in the character string
pointed to by answer_ptr a preset answer to the command_query_
subroutine. In that case, the command_query _ subroutine returns the
preset answer to its caller. That is, it does not attempt to obtain an
interactive response by reading from the user_input switch. Leading
and trailing blanks and the terminal newline character (if present) are
removed. This datum can be changed by the handler.
"lU b preset answer returned
"oub no answer returned

answer_sw
indicates whether the command_query _ subroutine should print the
preset answer (if any). This datum can be changed by the handler.
"l"b print answer
"O"b no answer printed

name_ptr
is a pointer to a character string containing the name of the
procedure that called the command_query _ subroutine.

name_Ith
is the length of the name of the procedure that called the
command_query _ subroutine.

question_ptr
is a pointer to a character string containing the question prepared by
the command_query _ subroutine. A handler might wish to alter that
question.

question_lth
is the significant length of the question pointed to by question_pti.
This datum can be changed by the handler.

7-49 AG91-o4

max_question_l th
is the size of the character string pointed to by question_ptr.

answer_ptr
is a pointer to a character string that can be used by the handier to
return a preset answer.

answer_Ith
is the significant length of the preset answer pointed to by
answer_ptr. This datum can be changed by the handler.

max_answer_Ith
is the size of the character string pointed to by answer_ptr.

question_ioe bp
is the I/O control block pointer that the command_query _ subroutine
uses to write the question if a preset answer is not returned by the
handler. The handler may redefine this ioebp.

answer _ioe bp
is the I/O control block pointer that the command_query _ subroutine
uses to read the answer to the question if a preset answer is not
returned by the hand1er. The handler may redefine this iocbp.

repeat_time
is the number of seconds that the command_query _ subroutine waits,
after asking the question. before repeating the question if no answer
was given. A value less than 30 indicates that the question is not to
be repeated. This datum may be changed by the handler.

7-50 AG91-04

conversion (PLI /)

Cause:

Default action:

Restrictions:

Restartability:

Data structure:

Note:

cput {hardware}

Cause:

Default action:

Restrictions:

Restartabili ty:

Data structure:

Note:

a PL/I conversion or runtime I/O routine attempted
an invalid conversion from character string
representation to some other representation, Possible
invalid conversions are a character other than 0 or
1 being converted to bit string, and nonnumeric
characters where only numeric characters are permitted
in a conversion to arithmetic data.

prints a message on the error_output switch and
signals the error condition. Upon a normal return,
the conversion is attempted again, using the value
of the PL/I onsource pseudovariable as the input
character string.

none.

condi tionally restartable.

the standard PL/I data structure.

the user can establish a handler that uses the
onchar and onsource builtin functions to alter the
invalid character string.

a CPU time interrupt occurred after a user-specified
amount of CPU time had passed following a call to
the timer_manager_$cpu_call entry point. (See the
description of the timer_manager_ subroutine in the
Subroutines manual.

the handler looks up the CPU time interrupt that is
expected at this time and calls the appropriate
user-specified procedure. When (if) this procedure
returns, the process is returned to the point at
which it was interrupted.

the user should not attempt to handle this condition.

immediately restartable.

none.

this condition is normally handled by a static
handler and, therefore, the stack is never searched.

7-51 AG91-04

Cause:

Def aul taction:

Restrictions:

Restartability:

Data structure:

cross_ring_transfer (hardware)

Cause:

Default action:

Restrictions:

Restartability:

Data structure:

derai I (hardware)

Cause:

Default action:

Restrictions:

Restartabili ty:

Data structure:

the create_ips_mask_ subroutine (described in the
Subroutines manual) was called with a name that
was not a valid ips signal name.

prints a message and returns to command level.

none.

not restartable.

none.

the user attempted to cross ring boundaries using a
transf er instruction. A CALL or RICD instruction
must be used to cross ring boundaries.

prints a message and returns to command level.

none.

conditionally restartable.

none.

the user attempted to execute a DRL instruction on
the processor.

prin ts a message and returns to command level.

usually none. However. some subsystems use it for
special purposes. When operating within such
subsystems, the user should not attempt to handle
the condition.

conditionally restartable by modifying machine
conditions.

none.

7-52 AG91-04

dm not available - - -

Cause:

Default action:

Restrictions:

Restartability:

Data structure:

Note:

dm shutdown scheduled - - -

Cause:

Def ault action:

Restrictions:

Restattability:

Data structure:

the process has tried to use the Data Management
System (DMS) , but no active DMS exists.

the DM first reference trap is reset and a message
is sent to the error_output I/O switch indicating
the DMS is not available for use. The process is
left at a new command level.

the user process should not handle this condition
unless it will warn the user that DM usage will
fail. For example. DM specific commands like
transaction and before.Journal_status report the
unavailability via com_err_.

not restartable. The user may try to use Data
Management later in the process. however.

the standard PL/I data structure.

this can occur if the DM Daemon has not begun
or finished booting the DMS. the DMS bootload
has been shutdown, or there is no room in the
DMS per-system tables to record the necessary
inf ormation about the process trying to use DMS.
The condition is signalled by the first reference
trap for the inner ring DM software which does
DM per-process initialization.

the process is being notified that the scheduled
shutdown time for the data management system that
the process is using has been set or changed.

the handler sets two timers. The first one will be
set to cause a dm_shutdown_ warnin~ condition to
be signalled prior to the beginning of data management
shutdown. The second timer will be set to caUse a
dm_user_shutdown_ condition to be signalled within
the user's process.

none.

immediately restartable.

none.

7-53 AG91-04

Cause: the process has signalled the dm_shutdown_ warnins­
condition. This is normally caused if the process
has handled the dm_shutdown_scheduled_ IPS interrupt
from a data management daemon or if the DM
system (DMS) being used had a shutdown time
scheduled when the process started using the DMS.
In the normal case, the process will still be able to
use the DMS for a short time before DMS user
shutdown will occur (see the dm_user_shutdown_
condition).

Default action: if the process is interactive, a message is printed on
the user_i/o I/O switch indicating the date and
time the DMS will shut down. No default action is
taken for absentee processes; however, any process
type may handle the condition. After the default
action is taken, the process will continue executing
at the point it was interrupted.

Restrictions: the user process should not handle this condition
unless it will print some warning to the user if the
process is interactive.

Restartability: immediately restartable.

Data structure:

del 1 dm_shutdown_warning~info
2 header
2 begin_shutdown_time
2 user_shutdown_time
2 flags,

3 dont_print_warning
3 mbz

2 reason

Structure elements:

header

al igned based,
like condition info header,
fixed bin (71):-
fixed bin (71),

bit (1) unal igned,
bit (35) una 1 i gned t

cha r (64);

is the same as in the information header format above. The version
number is 1, and info_string is set to the default warning message.

begin_shutdown_time
is a standard system clock value when the DMS will not longer allow
transactions to begin.

7-54 AG91-04

user _shutdown_time
is a standard system clock value when user processes are to start OMS
shutdown.

flags. don t_prin t_ warning
is a flag that a user handler may turn on to prevent the standard
warning message from being output.

flags.mbz
must be set to "O"b.

reason
is the reason the DMS is being shut down.

dm user shutdown - - -
Cause:

Default action:

Restrictions:

Restartabili ty:

the process has signalled the dm_user_shutdown_
condition. This is normally caused if the process
has handled the dm_shutdown_scheduled_ IPS interrupt
from a data management daemon or "if the DM
system (OMS) being used had a shutdown time
scheduled when the process started using the OMS.
The process has a small amount of time to adjust
any non-OMS values associated with OMS use (e.g.
a MRDS control.db segment).

the handler signals this condition to the user
process and will call
transaction_manager_$user_shutdown after return from
any user handlers for the condition. After return
from the user_shutdown call; a message will be
output on the user_i/o I/O switch that the user's
ref erences to DMS have been invalidated and the
transaction in progress (if one exists) has been
aborted. After the default action is taken, the
process will continue executing at the point it was
in terrupted.

any user hruidler for the condition signalled should
call continue_to_signal_ and then return after doing
any work it wishes. If the default action of the
static handler is bypassed, the user's condition
handler for dm_user_shutdown_ should call
transaction_manager _$user _shutdown. Failure to do
so will cause the DMS daemon to bump the user at
a later time.

immediately restartable.

7-55 AG91-()4

Oa ta structure:

dell dm_user_shutdown_info
2 header

aligned based,
like condition_info_header,

2 flags,
3 dont_print_warning
3 dont_do_user_shutdown
3 mbz

2 reason

bit (1) una 1 i gned,
bit (1) unal igned,
bit (34) unaligned,
char (64);

Structure elements:

header
is the same as in the information header format above. The version
number is 1. and info_string is set to the default warning message.

flags.dont_do_user_shutdown
is a flag a user handler may turn on to prevent the normal call to
transaction_manager _$ user _shutdown if the process returns to the
signalling procedure.

flags. don t_prin t_ warning
is a flag a user handler may turn on to prevent the standard warning
message that his process has done OMS shutdown. This flag is ignored
if flags.dont_do_user_shutdown has been turned on.

flags.mbz
must be set to ~~O"b.

reason
is the reason the OMS is being shut down.

endf i Ie If} {PL! /}

Cause:

Default action:

Restrictions:

Restartability:

Data structure:

a PL/I get or read statement attempted to read
past the end of data on the file f.

prints a message on the error_output switch and
signals the error condi tion. Upon return f rom any
handler, control passes to the PL/I statement following
the statement in which the condition was raised.

none.

immediately restartable.

the standard PL/I data structure.

7-56 AG91-04

endpage (f) (PLlIJ

Cause:

Default action:

Restrictions:

Restartabili ty:

Data structure:

error (PLI/)

Cause:

Default action:

Restrictions:

Restarta bili ty:

Data structure:

Cause:

Default action:

Restrictions:

Restartability:

PL/I inserted the last newline character of the
current page into the output stream of file f.

begins the next page on the file f and returns.

none.

immediately restartable. The handler can begin a
new page via a PL/I statement of the form:

put file (f) page ••. (... "title" •••)
. . . ,
or can simply return, permitting the number of
lines on the current page to exceed the number
normally occurring.

the standard PL/I data structure.

some other (more specific) PL/I condition occurred,
and its handler signalled the error condition.
Alternatively, some PL/I runtime subroutine (e.g.,
one in the mathematical library) encountered one of
a variety .of errors.

prints a message and returns to command level.

none.

if the error condition is not merely an echo of
another PL/I condition, then restarting is often
undefined. Restarting from other PL/I conditions is
discussed under the individual conditions.

the standard PL/I data structure (when not an
echo).

the user attempted an indirect ref erence through a
word pair containing either a f aul t tag 1 or a f aul t
tag 3 modifier.

prints a message and returns to command level.

none.

conditionally restartable by modifying machine
conditions.

7-57 AG91-04

Data structure:

finish (PL/I)

Cause:

Default action:

Restrictions:

Restartabili ty:

Data structure:

dcl 1 finish_info
2 header
2 type

Structure elements:

header

none.

either a run unit is being terminated because of a
stop statement or the stop_run command, or the
user's process is being terminated by a logout
(either voluntary or involuntary) or by anew _proc
command (described in the Commands manuaI).

returns to the point where the condition was
signalled.

if the process is terminating because of a bump or
resource limit stop, there is only a small grace
period bef ore the process is actually killed. If a
user-supplied handler does not return, the process
continues to run, but in some cases a subsequent
process termination is fatal.

immediately restartable.

aligned based,
aligned like condition_info_header
char (8) ;

is the same as in the information header format above.

type
indicates which situation is in effect The values may be: run. logout.
new _proc. or termsgnl.

Note: all condition handlers, whether they handle finish or not, should pass
this condition on (by calling continue_to_signal_) so that all programs
will be notified of the impending process. or run unit, destruction.

fixedoverflow (hardware or PL/I)

Cause:

Default action:

Restrictions:

Restartabili ty:

the result of a binary fixed point operation exceeded
the range of the precision.

prints a message on the error~output switch and
signals the error condition.

none.

not restartable.

7-58 AG91-04

Data structure:

Cause:

Default action:

Restrictions:

Restartability:

Data structure:

dcl 1 pause_info
2 header

Structure elements:

header

none.

the user's FORTRAN program executed a PAUSE
statement.

prints a message on the error_output switch. If the
process is interactive, it returns to command level.
If the process is absentee, the program is automatically
restarted.

none.

immediately restartable.

al igned based,
al igned 1 ike condition info_header;

is the same as in the information header format above.

fortran _storage_error

Cause:

Default action:

Restrictions:

Restartability:

Data structure:

dcl 1 fse_info
2 header

Structure elements:

header

an error occurred during the initialization of
FORTRAN extended storage or during the creation
of a COMMON biock.

prints a message and returns to command level.

none.

condi tionally restartable.

aligned based,
aligned like condition_info_header;

is the same as in the information header format above.

7-59 AG91-04

fortran_storage _manager _error

Cause:

Default action:

Restrictions:

Restartability:

Data structure:

dc 1 1 fsme info
2 header

Structure elements:

header

an error occurred during the assignment or creation
of segments for FORTRAN extended storage (e.g.
large arrays).

prints a message and returns to command level.

none.

conditionally restartable.

aligned based,
aligned like condition_info_header;

is the same as in the information header format above.

gate_err

Cause:

Default action:

Restrictions:

Restartability:

Data structure:

illegal_modifier (hardware)

Cause:

Def aul taction:

Restrictions:

Restartabili ty:

Data structure:

the user attempted an inward wall crossing through
a gate segment with the wrong number of arguments.

prints a message and returns to command level.

none.

not restartable.

none.

an invalid modifier appeared in an indirect word.

prints a message and returns to command level.

none.

conditionally restartable by modifying machine
condi tions.

none.

7-60 AG91-04

i /I egal_ opcode (hardware)

Cause:

Default action:

Restrictions:

Restartabili ty:

Data structure:

illegal_procedure (hardware)

Cause:

Default action:

Restrictions:

Restartabili ty:

Data structure:

illegal_return

Cause:

Default action:

Restrictions:

Restartability:

Data structure:

the user attempted to execute an illegal operation
code.

prints a message and returns to command level.

none.

conditionally restartable by modifying machine
condi tions.

none.

the user attempted to execute a privileged instruction,
or tried to execute an instruction in an invalid way.

prints a message and returns to command level.

none.

conditionally restartable by modifying machine
conditions.

none.

an attempt was made to restart machine conditions
with invalid information.

prints a message and returns to command level.

none.

conditionally restartable by modifying machine
conditions.

none.

7-61 AG91~

io error

Cause:

Default action:

Restrictions:

Restartability:

Data structure:

dell io_error_info
2 header
2 switch
2 status

Structure elements:

header

an I/O procedure that does not return an I/O
system status code received such a code from an
inferior I/O procedure. The first procedure (e.g.,
the ioa_ subroutine) reflects the error by signalling
this condition. (The ioa_ subroutine is described in
the Subroutines manual.)

prints a message and returns to command level.

none.

conditionally restartable.

al igned based,
aligned like condition_info_header
char (32) ,
fixed bin(35);

. is the same as in the information header format above.

switch
is the name of the switch on which the I/O operation was performed.

status
is the unexpected status code received by an I/O procedure.

iDa error

Cause:

Default action:

Restrictions:

Restartability:

the user called an ioa_ subroutine entry point with
invalid arguments. The possible incorrect calls are:

1. failed to provide a switch name for:
ioa_$ioa_stream
ioa_$ioa_stream_nnl

2. f ailed to provide a correct character string
descriptor for:

ioa_$rs
ioa_$rsnnl
ioa_$rsnpnnl

prints a message and returns to command level.

none.

not restartable.

7-62 AG91-04

Data structure:

isot fault (hardware)

Cause:

Default action:

Restrictions:

Restartability:

Data structure:

key (f) (PLJ I)

Cause:

Default action:

Restrictions:

Restartabili ty:

Data structure:

none.

an attempt was made to use an ISOT entry that
had a packed pointer isot fault set An ISOT entry
con tains a f aul t if the corresponding segment was
prelinked by the prelink command bef ore the
process began, and if the segment's separate static
section has not yet been referenced.

combines the static section and restarts. Prints a
message and returns to command level if the static
section cannot be copied.

In prelinked processes, a static handler is signalled
for segments that do not have the copy_on_write
bit set.

conditionally restartable.

none.

the user attempted to specify an invalid key in a
PL/I record I/O statement on the file f. Two
examples of invalid key specifications are:

1. a keyed search failed to find the designated
key

2. on output, the designated key duplicates a
pre-existing key

prints a message on the error_output switch and
signals the error condition. Upon return from any
handler, control passes to the PL/I statement following
the statement in which the condition was raised.

none.

immediately restartable.

the standard PL/I data structure.

7-63 AG91-()4

Note:

linkage_error (hardware)

Cause:

Default action:

Restrictions:

Restartabili ty:

Data structure:

lockup (hardware)

Cause:

Def ault action:

Restrictions:

Restartabili ty:

Data structure:

lot fault (hardware)

Cause:

Def ault action:

Restrictions:

the handler can obtain the value of the invalid key
by use of the onkey builtin function. The invalid
key cannot, however, be corrected in the handler.

the user's process encountered a fault tag 2 in a
word pair. It then attempted to reference the
external entry specified by the word pair and failed
because either the segment was not found, the entry
point did not exist in that segment. or the fault tag
2 was caused by an invalid link pair.

prints a message and returns to command level.

none.

conditionally res tar table.

none.

a pending interrupt has not been allowed within a
set interval. This can be caused by a looping
instruction pair. an infinite indirection chain. or an
interrupt inhibit bit that is on for too long.

prints a message and returns to command level.

none.

conditionally restartable by modifying machine
conditions.

none.

an attempt was made to use a LOT entry that had
a packed pointer lot fault set. A LOT entry
contains a fault if the corresponding segment has
been made known but has not had its linkage, if
any. combined.

if the segment is an object segment. combines the
linkage section and restarts; otherwise. prints a
message and returns to command level.

In prelinked processes, a static handler is signalled
for segments that do not have the copy_on_write
bit set.

7-64 AG91-G4

Restartability:

Data structure:

Cause:

Default action:

Restrictions:

Restartability:

Data Structure:

dcl 01 condition info
02 header
02 version
02 variable_p

conditionally restartable.

none.

a compiler has generated an incorrect list initialization
template f or an array or an external variable.

prints a message and return to command level.

none.

if restarted, the initialization that caused the fault
is skipped from the point of error.

ali gned,
1 ike condition info header
fixed bin (35)~ -
ptr,

02 variable_end_p
02 template_p

ptr,
ptr,

02 template_error_p ptr;

Structure elements:

header
ia the same information as in the information header format shown
above.

version
a version number.

variable_p
a pointer to the beginning of the variable being initialized.

variable_end_p
a pointer to the last bit that was successfully initialized.

template_p
a pointer to the beginning of the list template initialization structure
that contained the error.

template_error _p
a pointer to the list template entry that contained the error.

*

7-65 AG91-04

mme1, mme2, mme3, mme4 (hardware)

Cause:

Def ault action:

Restrictions:

Restartability:

Data structure:

Note:

name (f) (PLlt)

Cause:

Default action:

Restrictions:

Restartability:

Data structure:

the user attempted to execute the processor instruction
mmeN, where N is 1. 2, 3, or 4.

prints a message and returns to command level.

none.

conditionally restartable by modifying machine
condi tions.

none.

the mme2 condition is handled by a static handler
that calls the debug command.

an invalid identifier occurred in a PL/I get data
statement on the file f.

prints a message on the error_output switch and
signals the error condition. Upon return from any
handler, the invalid identifier and its associated
value field are skipped.

none.

immediately restartable.

the standard PL/I data structure.

no_executeyermission {hardware}

Cause:

Def aul taction:

Restrictions:

Restartabili ty:

Data structure:

no_read_permission (hardware)

Cause:

Def au! taction:

the user attempted to execute a segment for which
he did not have execute permission.

prints a message and returns to command level.

none.

condi tionally restartable.

none.

the user attempted to read from a segment for
which he did not have read permission.

prin ts a message and returns to command level.

7-66 AG91-04

Restrictions:

Restartability:

Data structure:

no_write _permission (hardware)

Cause:

Default action:

Restrictions:

Restartabili ty:

Data structure:

Cause:

Default action:

Restrictions:

Restartabili ty:

Data structure:

not _i n _ cal 1_ bracket (hardware)

Cause:

Default action:

Restrictions:

Restartability:

none.

conditionally restartable.

none.

the user attempted to write into a segment for
which he did not have write permission.

prints a message and returns to command level
except when the condition is handled by a static
handler or the segment has the copy_on_write bit
ON, in which cases a copy is made, given write
access, and given the segment number of the
original segment. In the latter case, the program is
restarted automatically.

In prelinked processes, a static handler is signalled
for segments that do not have the copy_on_write
bit set.

conditionally restartable.

none.

the user attempted to call into a gate segment
beyond its call limiter; i.e., beyond the upper bound
of the transfer vector in a gate.

prints a message and returns to command level.

none.

conditionally restartable.

none.

the user attempted to call a segment from a ring
not within the segment's call bracket.

prints a message and returns to command level.

none.

conditionally restartable.

7-67 AG91-()4

Data structure:

Cause:

Def ault action:

Restrictions:

Restartability:

Data structure:

Cause:

Default action:

Restrictions:

Restartability:

Data structure:

not in write bracket (hardware) - - -

Cause:

Default action:

Restrictions:

Restartabili ty:

Data structure:

nu II _poi nter

Cause:

none.

the user attempted to execute a segment from a
ring not within the segment's execute bracket.

prints a message and returns to command level.

none.

conditionally restartable.

none.

the user attempted to read a segment from a ring
not within the segment's read bracket.

prints a message and returns to command level.

none.

condi tionally restarta ble.

none.

the user attempted to write into a segment from a
ring not within the segment's write bracket.

prints a message and returns to command level
except when the segment has the copy _on_write bit
ON, in which case a copy is made, given write
access. and given the segment number of the
original segment. In the latter case, the program is
restarted automatically.

none.

conditionally restartable.

none.

the user attempted to use a null pointer; i.e., a
pointer with a segment number of -1 (2's complement).

7-68 AG91-04

Default action:

Restrictions:

Restartability:

Data structure:

op _ not_campI ete (hardware)

Cause:

Default action:

Restrictions:

Restarta bili ty:

Data structure:

out_of _bounds (hardware)

Cause:

Default action:

Restrictions:

Restarta bili ty:

Data structure:

overfiow (hardware or PLi ij

Cause:

Default action:

Restrictions:

prints a message and returns to command level.

none.

conditionally restartable by modifying machine
conditions.

none.

the processor has detected an inconsistency in its
internal state.

prints a message and returns to command level.

none.

conditionally restartable by modifying machine
conditions. Upon return to the signalling procedure.
the processor attempts to continue execution at the
point where the op_not_complete condition was
detected. The processor usually continues execution
correctly but the machine state might be such that
continued execution is at the user's risk. This
condition is often signalled as a result of attempting
to restart machine conditions that are unrestartable.

none.

the user attempted to refer to a location beyond
the end of the segment specified.

prints a message and returns to command level.

none.

conditionally restartable.

none.

the result of a floating-point computation had an
exponent exceeding 127.

prints a message on the error_output switch and
signals the error condition.

none.

7-69 AG91-04

Restartability:

Data structure:

packed_poi nter _fault (hardware)

Cause:

Default action:

Restrictions:

Restartability:

Data structure:

page _fault_error (hardware)

Cause:

Def aul taction:

Restrictions:

Restartability:

Data structure:

parity (hardware)

Cause:

Def ault action:

conditionally restartable by modifying machine
conditions.

none.

an attempt was made to load a packed pointer
value containing an invalid bit offset (that is, a bit
offset in the range from 60 to 77 octaD. The
lot_fault and isot_fault are special cases of
packed_pointer_fault; the packed_pointer_fault
condition is signaled only for those
packed_pointer_fault faults that are neither lot_fault
nor isot_fault. The system uses particular invalid
packed pointer bit offsets as a mechanism for
implementing lot_fault and isot_fault.

prints a message and returns to command level.

none

conditionally restartable

none

the normal paging mechanism of the Multics supervisor
could not bring a referenced page into memory
because the storage system device containing the
page could not be read due to a hardware error
that could not be corrected by the error correction
mechanism.

prints a message and returns to command level.

none.

immediately restartable. (Sometimes retrying succeeds.
However, the system already retried several times
before signalling this condition.)

none.

the process attempted to refer to a location in
memory that has incorrect parity. This condition is
a hard ware error.

prints a message and returns to command level.

7-70 AG91-04

Restrictions:

Restartability:

Data structure:

pascal_error _

Cause:

Default action:

Restrictions:

Restartabili ty:

Data structure:

program_interrupt

Cause:

Default action~

Restrictions:

Restartability:

01/87

none.

not restartable.

none.

pascal_error_ condition is signaled when any error
is detected by pascal 0 runtime environment.

prints a message on error_output and returns to
command level.

none.

never restartable.

pascal_error_info,
2 length
2 version
2 action_flags,

3 cant_restart
3 default_restart
3 reserved

2 string
2 status_code

Of i xed bin,
fixed bin,

bit (1) una 1 ,
b j t (1) una 1 ,
bit (34) una 1 ,
char(256) var,
fixed bin (35) ;

the user issued the program_interrupt (pi) command
(described in the Commands manual) for the express
purpose of signalling this condition. The condition
is used by several commands to return to their
internal request level (waiting for the next request)
after the previous request is aborted either by an
unexpected fault or by the user issuing a quit signal
(pressing the appropriate key on the terminal, e.g.,
A TIN, BRK, etc.).

prints a message and returns to coinmand level.

none.

immediately restartable.

7-71 AG91-()4A

quit

01/87

Data structure:

dcl 1 program_interrupt_info aligned based
(program_interrupt_info_ptr) ,

2 header aligned like condition info header,
2 default_handler_restarted_this·signal bit(l) aligned;

Structure elements:

header
is the same as the information header format above.

def aul t_handler _restarted_this signal
is set on by the system default handler, default_error_handler_, if it
catches a program_interrupt signal. If a handler sets this bit and
restarts the condition signal, the program_interrupt command prints the
message:

program_interrupt: There is no suspended
invocation of a subsystem that supports this command.

and returns to command level. If a handler restarts the condition
without setting the flag. it restarts execution by calling the start
command.

Note: the any_otlier condition handlers should pass this on.

Cause:

Default action:

Restrictions:

Restartabili ty:

an interactive user has requested a quit. e.g., by
issuing the quit signal.

prints "QUIT" on the terminal, aborts any pending
terminal I/O activity, reverts the standard I/O
attachments to their default settings. and establishes
a new command level saving the current stack
history.

none. But, in general, the user's programs should
not handle the quit condition since this condition is
normally in tended to bring the process back to
command level. Certain subsystems can, for various
reasons, still choose to make use of the quit
condition; but most programs should, instead, use
the program_interrupt condition as described above.

immediately restartable.

7-72 AG91-o4A

01/87

Data structure:

dc 1 1 qu i t info
2 header
2 switches

3 reset_write
3 ips_quit
3 reconnection_quit
3 pad

Structure elements:

header

aligned based,
aligned like condition_info_header,
aligned,
bit (1) una 1 i gned,
bite]) unal igned,
bite]) unaligned,
bit(33) unaligned;

is the same inf ormation as in the inf ormation header format shown
above. The version number is one.

reset_ wri te
indicates whether or not a resetwrite control order is performed. If it
is "l"b, the order is performed; otherwise it is not performed.

ips_quit
is "1"b if this condition results from a quit IPS signal (i.e., the user
pressed the QUIT or BREAK key on the terminaI).

reconnection_quit
is "1"b if this quit was signaled because the user's primary login
channel terminal was reconnected to the process (i.e., the user issued
the "connect" login request).

7-72.1 AG91-{)4A

This page intentionally left blank.

01/87 AG91-04A

Note: The data structure is supported by the default handler. However. it
is not generated by the issuance of a quit· signal. A program that
wishes to simulate the effect of the quit signal may signal quit and
optionally include this data struchuhe. If the data structure is not
present. the default action described above wi!! occur. If t.lte data
structure exists. reset_write being "l"b provokes the above described
action. The signalling program may choose to inhibit the abortion of
pending terminal write activity by setting reset_write to "O"b.

record (f) (PL! /)

Cause:

Default action:

Restrictions:

Restartabili ty:

Data structure:

record _ quota _ over! I ow

Cause:

Default action:

Restrictions:

Restartability:

Data structure:

a PL/I read statement on the file f read a record
of a size different from the variable provided to
receive it.

prints a message on the error_output switch and
signals the error condition. Upon return from any
handler. data is copied from the record to the
variable by a simple bit string copy as though both
were the length of the shorter.

none.

immediately restartable.

the standard PL/I data structure.

the user attempted to increase the number of
records taken up by the segments inferior to a
directory to a number greater than the secondary
storage quota for that directory.

prints a message and returns to command level.

none.

conditionally restartable. (More records must be
made available. either by deleting segments or
moving more quota into the directory.)

none.

7-73 AG91-04

return conversion error

Cause:

Default action:

Restrictions:

Restartabili ty:

Data structure:

Cause:

Default action:

Restrictions:

Restartabili ty:

Data structure:

size (PLlIJ

Cause:

Default action:

Restrictions:

Restartabili ty:

Data structure:

either a return statement returned a value' when the
procedure was invoked as a subroutine, or a return
statement or end statement did not return a value
when the procedure was invoked as a function, or
a return statement returned a value whose data type
was unsuitable for the entry by which the procedure
was invoked.

prints a message on error_output and returns to
command level.

none.

not restartable.

none.

the user attempted to use a pointer with an invalid
segment number. This situation arises when a
segment is deleted or terminated after the pointer
is initialized, the pointer is not initialized in the
current process, or the user has no access to the
segment

prints a message and returns to command ievel.

none.

conditionally restartable.

none.

some value was converted to fixed-point with a loss
of one or more high-order bits or digits.

prints a message on the error_output switch and
signals the error condition.

none.

not restartable.

the standard PL/I data structure.

7-74 AG91-04

storage (hardware or PLII)

Cause:

Default action:

Restrictions:

Restartability:

Data structure:

store (hardware)

Cause:

Default action:

Restrictions:

Restartabili ty:

Data structure:

str; ngrange (PL! /)

Cause:

Default action:

Restrictions:

Restartabili ty:

Data structure:

either a reference was made beyond the maximum
length of the stack or the PL/I system storage has
insufficient space for an attempted allocation.

prints a message on the error_output switch and
signals the error condition. Upon a normal return
the ref erence or allocation is retried. In the stack
case, the system automatically extends the maximum
length of the stack before the condition is signalled.
(If the maximum length cannot be extended, the
process is terminated.)

none.

immediately restartable in stack case; conditionally
restartable in PL/I case.

none.

an out_of _bounds error occurred while operating in
BAR mode, or the user referred to a nonexistent
memory (e.g.. by attempting to read a clock on the
memory).

prints a message and returns to command level.

none.

not restartable.

none.

the substr pseudovariable or builtin function specified
a substring that is not in fact contained in the
string specified.

prints a message on the error_output switch and
signals the error condition.

none.

not restartable.

the standard PL/I data structure.

7-75 AG91-D4

stringsize (PL//)

Cause:

Default action:

Restrictions:

Restartabili ty:

Data structure:

sub error - -

Cause:

Default action:

Restrictions:

Restartabili ty:

Data Structure:

dcl 1 sub_error_info
2 header
2 retval
2 name
2 info_ptr

Structure elements:

header

a string value was assigned to a string variable
shorter than the value.

returns to the point where the condition was
signalled. causing a truncated copy of the string
value to be assigned to the string variable.

none.

immediately restartable.

the standard PL/! data structure.

a subroutine has detected an error situation for
which it wants to signal a condition, often with the
possibility of continuing. rather than returning
immediately with a status code. The sub_err_
subroutine (described in the Subroutines manual)
signals this condition.

prints a message and returns to command level;
however, the condition name printed is not sub_error_
but the module name from the data structure.

none.

immediately restartable, conditionally restartable, or
not restartable depending on the particular situation
and how the action flags in the data structure are
set.

ali gned,
al igned 1 ike condition_info_header,
fixed bin (35) ,
char (32) ,
ptr;

is the same as in the information header format above. See
sub_error_info.incl.pll.

7-76 AG91-04

retval
indicates what action to take upon return from the handler. This
datum may be changed by the handler. The meaning of particular
values depends on the module signalling the condition.

name
is the name of the module signalling the condition. Within a
subsystem, all calls to sub_err_ should use the generic name of the
subsystem.

info_ptr
points to more information about the condition. The content and
format of this information depend on which module signalled the
condition.

subscri ptrange (PLI /)

Cause:

Default action:

Restrictions:

Restartabili ty:

Data structure:

sus

Cause:

Default action:

Restrictions:

Restartability:

Data structure:

the value of a subscript lies outside the range of
values declared f or the bounds of the dimension to
which it applies.

prints a message on the error_output switch and
signals the error condition.

none.

not restartable.

the standard PL/I data structure.

the process is being suspended by the answering
service. as a result of either an operator command,
an FNP crash, or a phone line hangup.

the handler goes blocked (i.e. causes the process to
stop executing) and waits for a signal from the
answering service indicating that the process has
been released and can resume execution. If the
process is interactive, quit is signaled in the process
when the default is released.

there is a site-settable cpu time limit imposed on a
suspended process. If the process does anything
other than going blocked, it will probably use up
this time, and will then be destroyed.

immediately restartable.

none.

7-77 AG91-04

Note:

Cause:

Default action:

Restrictions:

Restartability:

Data structure:

Cause:

Default action:

Restrictions:

Restartabili ty:

Data structure:

transaction _ bj _full_

Cause:

Default action:

Restrictions:

Restartabili ty:

this condition is normally handled by a static
handler and, theref ore, the stack is never searched.

the process is being notified that the scheduled
system shutdown time has been set or changed.

the handler accepts the message without taking the
action and returns to the point at which the
process was interrupted.

none.

immediately restartable.

none.

the timer_manager_ subroutine is malfunctioning due
to damaged static storage or incorrect operation of
interprocess communication in the user's process; or
the user is attempting to call entries other than
timer_manager_$sleep and timer _manager_$sleep_lss
while in a ring other than the initial ring.

prints a message and returns to command level.

the user should only attempt to handle this in a
handler for the any_other condition.

not restartable.

none.

the user's transaction attempted to write into a
bef ore journal but there is no room in the journal.
The transaction must be aborted.

prints a message and returns to command level.

none.

not restartable.

7-78 AG91-04

Data structure:

dcl 1 transaction~bj_full_info aligned based
(transaction_bj_full_info_ptr) ,

2 header aligned like condition_info_header;

Structure elements:

header
is the same as in the information header format above; header. version
must be equal to TXN_DEADLOCK_INFO_ VERSION_I, declared in
dm_txn_deadlock_inf o.incl. pl1.

transaction deadlock

Cause:

Default action:

Restrictions:

Restartabili ty:

Data structure:

the user's transaction is involved in a deadlock
situation. meaning that two or more transactions are
waiting on each other to release a lock in a fashion
that will have them all waiting forever. This
transaction has been selected to resolve the deadlock
by aborting or rolling back itself.

prints a message and returns to command level.

none.

not restartable. I
I
I

del 1

2 header

I
I

a~~~~~=a~~~~~_deadl0Ck_info_Ptr). I
aligned like condition_info_header,

2 transaction_id
2 f i 1 e

bit (36) ali gned, I
bit (36) ali gned, I

2 control_interval fixed bin (27) aligned; I

Structure elements:

header
is the same as in the information header format above; header. version
must be equal to TXN_DEADLOCK_INFO_ VERSION_I. declared in
dm_ txn_deadlock_inf o.incl. pll.

transactioD_id

file

is the identifier of the transaction involved in a deadlock situation.

is the unique identifier of the file for which the transaction was
attempting to acquire a lock.

con trol_interval
is the number of the control interval for which the transaction was
attempting to acquire a lock.

I
I
I
I
I
I
I

7-79 AG91-()4

transaction lock timeout - -

Cause:

Default action:

Restrictions:

Restartability:

Data structure:

del 1 txn_timeout_info
2 header
2 tiansaction_id
2 fi le_uid

the user's transaction timed out waiting for a lock.

prints a roes.sage and returns to command level.

none.

not restartable.

aligned based (txn_timeout_info_ptr),
aligned like condition_info_header,
bit (36) al igned,
bit (36) ali gned,

2 control_interva1
2 give_up_time

fixed bin (27) aligned;
fixed bin (] 1) ;

Structure elements:
header

is the same as in the information header format above; header. version
must be equal to TXN_TIMEOUT_INFO_VERSION_l. declared in
dm_txn_timeout_info.incl.pU.

transaction_id
is the identifier of the transaction involved in a timeout situation.

file_uid
is the unique identifier of the file for which the transaction was
attempting to acquire a lock.

control_interval
is the number of the control interval for which the transaction was
attempting to acquire a lock.

give_up_time
is the clock reading when the lock timeout occurred.

transmit (f) (PL/I)

Cause:

Default action:

a value was incorrectly transmitted between storage
and the data set corresponding to the file f. In the
case of list-directed input, the condition is signalled
after each assignment by the get statement of a
value that might have been in error due to the bad
input line.

prints a message on the error_output switch and
signals the error condition. Upon return from any
handler, the program continues from the point of
detection as though the transmission had been
correct.

7-80 AG91-04

Restrictions:

Restartability:

Data structure:

trm

Cause:

Default action:

Restrictions:

Restartability:

Data structure:

Note:

truncation (hardware)

Cause:

Default action:

Restrictions:

Restartabili ty:

Data structure:

undeiinediile (i) (PL//)

Cause:

Default action:

Restrictions:

none.

immediately res tar table.

the standard PL/I data structure.

the process is being destroyed by the answering
service, as a result of an operator command or a
bump caused by load control or accounting limits.

the handler executes epilogue handlers and signals
the finish condition, just as the logout and new_proc
commands do.

there are site-settable cpu and real time limits
imposed on a process that has been sent the trm_
signal. If an epilogue handler or finish condition
handler attempts to perform any large computation.
these limits will probably be exceeded. and the
process will be destroyed.

immediately restartable.

none.

this condition is normally handled by a static
handler and, therefore, the stack is never searched.

the user executed an extended instruction set (EIS)
instruction to move string data and the target string
was not large enough to contain the source string.

prints a message and returns to command level.

none.

immediately restar tab Ie.

none.

an attempt to open the PL/I file f failed.

prints a message on the error_output switch and
signals the error condition.

none.

7-81 AG91-Q4

Restartabili ty:

Data structure:

undef; ned yo; nter

Cause:

Default action:

Restrictions:

Restartability:

Data structure:

underflow (hardware or PL/ I)

Cause:

Default action:

Restrictions:

Restartabili ty:

Data structure:

Note:

unw; nder error

Cause:

Def aul taction:

Restrictions:

Restartabili ty:

not restartable.

the standard PL/ I data structure.

The user attempted to use a pointer with a segment
number of -3 (2's complement). This may represent
a value that is not defined by the program.

prints a message and returns to command level.

none

conditionally restartable by modifying machine
conditions.

none.

the result of a floating-point computation had an
exponen t less than -128.

prints a message on the error_output switch and
returns.

none.

immediately restartable.

none.

before the underflow condition is signalled the
hardware register containing the floating-point value
in question is set to zero.

the user attempted to perform a nonlocal transf er
to an invalid location.

prints a message and returns to command level.

none.

not restartable.

7-82 AG91-04

Data structure:

dcl 1 unwinder_error_info aligned,
2 header aligned like condition_info_header
2 invalid_label label;

Structure elements:
header

is the same as in the information header format above.

invalid_label
is the invalid label to which the transfer was attempted.

zerodivide {hardware or PLIO

Cause: the user attempted to divide by zero.

Default action: prints a message on the error_output switch and
signals the error condition.

Restrictions:

Restartabili ty:

Data structure:

none.

not restartable.

the standard PL/I data structure, if not detected by
hardware the.

NONLOCAL TRANSFERS AND CLEANUP PROCEDURES

Many languages provide the ability to perform nonlocal transfers. In Multics,
LllIS is a facility by which the currently executing procedure activation can transfer to
a location in an earlier existing procedure activation and, as a consequence, abort all
activations descendant from the earlier activation. Programmers of certain types of
procedures might wish to have these procedures establish a set of code to be executed
if an activation of one or more of these procedures is aborted in this manner. An
example of such a procedure is a program that references static data that must be
reset so that the procedure can be reentered. This function of executing predefined
code when an activation is aborted by a nonlocal transfer is termed cleaning up. The
code for cleaning up is contained in an on unit for the cleanup condition.

Some other commonly executed actions of this type are freeing storage allocated
within the program and not needed afterwards, temiinating segments initiated while
running the program, and releasing temporary segments.

An on unit for cleanup is established and reverted in the same way as any other
condition. Unlike other conditions, however, there is no condition information
associated with the cleanup condition. The cleanup condition is signalled if the
establishing block activation is aborted by a nonlocal transfer. In this case, the
cleanup on unit is automatically reverted when it returns to its caller; any_other
handlers are not invoked for the cleanup condition.

7-83 AG91-04

EPILOGUE HANDLING

At the end of a run unit or process, after the finish condition is signalled, a
system program is called to close files. This period in a process is called the epilogue
and the program an epilogue handler. At the end of a run unit, only files opened by
language I/O statements are closed by the system. At the end of a process, all files
and I/O switches are closed, including those for terminal I/O.

If a user subsystem, language runtime, etc. would like to gain control of the
process during the epilogue, the subroutine add_epilogue_handler_ may be called at any
time during the process with the entry point of a procedure to be invoked (see the
writeup in the Subroutines manual). The epilogue handlers are called before any
remaining I/O switches are close-d.

FAULTS

There is a class of unusual occurrences that are detected by the Multics
hardware processor. These occurrences are called faults and are a subset of the set of
occurrences that cause the system to invoke the condition mechanism. They are,
therefore, also included under "List of System Conditions and Default Handler" above.
(See also "Simulated Faults" below.)

Simulated Faults

By convention, three segment numbers are reserved for software-simulated faults.
The segment numbers are dummies~ in other words, no Multics segment ever has them.
Any attempt to reference these segment numbers results in the out-of -bounds
subcondition of the access violation fault. When this fault occurs, the supervisor fault
interceptor signals (in the ring where the fault occurred) the appropriate fault. To
compare a pointer to one of these special pointers, it is inadvisable to use a PL/I
language test because that compares the offset as well as the segment number. One
way to compare the segment number is to use the nonstandard Multics pointer built-in
function to set the offset to O. For example:

if po inter (ptr _ to_ tes t, 0) = baseptr (-2) then .•. ,

7-84 AG91-o4

NULL POINTER

The segment number -1 (in 2's complement form, with the octal equivalent
"77777"b3) is reserved for the null pointer. This is accessible as the null built-in in
PL/l. Any reference to this segment number signals the null_pointer condition.

PROCESS TERMINATION FAULT

The segment number -2 (in 2's complement form, with the octal equivalent
"77776"b3) is reserved for the process termination fault. Any reference to that segment
number causes the referencing process to be terminated. This is accessible in PL/I by
using baseptr (-2).

UNDEFINED POINTER FAULT

The segment number -3 (in 2's complement form. with the octal equivalent
"77775"b3) is reserved for the undefined pointer fault. Any reference to that segment
number causes the undefined_pointer condition to be signalled.

7-85 AG91-04

SECTION 8

BACKUP

The Multics backup systems augment the reliability of the online storage system.
They ensure that user segments and directories can be recovered if they are destroyed
due to system failure or user error.

The backup system performs the following two functions:

1. dumping

The backup mechanism searches out, selects, and copies (dumps) onto
tape segments and directories from the ~1ultics storage hierarchy. The
frequency of dumping and the length of time for which tapes are kept
are determined at individual locations.

2. recovery

Reloading is a global recovery of segments and directories that have
been dumped. Retrieving is the recovery of individual segments and
directories that can occur during normal Multics operation. The entire
contents of the online storage system can be reloaded after a system
crash so that operation of the system can resume.

There are two major Multics backup systems, hierarchy and volume. The
hierarchy system tree-walks the hierarchy to locate the data it must dump, while the
volume system scans the physical volumes used by the storage system. The goals of
both systems are the same, but the mechanism, cost, and benefits differ. For more
detailed information see the lillultics System Maintenance Procedures manual, Order
No. AM81.

DUMPING

The dumping mechanism operates in three different modes: incremental. consolidated,
and complete. These modes are distinguished by three different criteria used to select
segments and directories for dumping. What is dumped is site-controllable. Usually,
only two subdirectories of the root directory are not searched. One of these,
>system_l ibrarY_I, is always recreated by a Muitics bootload and therefore does
not require the services of backup. Parts of the hardcore system, plus that part of
the command system needed during reloading, are contained in > s y stem _ 1 i bra r y _ 1.
The other subdirectory, >process_d i r _d i r, . contains only per-process information that
is temporary in nature and hence also does not require the services of backup.
Libraries that never change need not be included in the search route for incremental
dumps (defined below). All other sections of the hierarchy should be included in the
search route of the backup system.

8-1 AG91-04

Multiple dumper processes registered as SysDaemon, Daemon, or both, are
allowed.

Incremental Dumps

Incremental dumping is the principal technique used to keep the backup systems
abreast of changes to online storage. It is the purpose of an incremental dump to
discover modifications to online information not reflected in backup tape storage. The
incremental dump, starting from a specified search node, locates and dumps all
segments and directories modified more recently than they have been dumped. The net
effect of the incremental dumping scheme is to limit the amount of information that
can be lost to those modifications that have occurred since the last incremental dump.

Incremental dumping is triggered periodically by the alarm clock timing
mechanism. In order to minimize the time span during which modifications to online
storage can go unnoticed by the backup system, incremental dumps should be produced
frequently. On the other hand, because the backup daemon competes with ordinary
users and exerts a considerable drain on system resources, it becomes economically
desirable to lower the frequency of incremental dumps. Therefore, the interval
between the incremental dumps at an installation is chosen as a compromise between
these two considerations. This does not imply that an incremental dump will
necessarily finish its search within a single time interval. In fact, if the incremental
dumper is given no scheduling advantage, several intervals might be required to
complete an incremental dump during hours of heavy system load. If an incremental
dump is not completed before the next incremental dump is scheduled to begin, the
"next" dump is deferred until the prior incremental dump is completed.

The backup system does not guarantee that segments are dumped in a consistent
state. For example, it is possible that while the incremental dumper is dumping a
segment, another process might be writing into that same segment. Thus, an
inconsistent copy of a segment might be produced. However, the modifications that
cause a segment to be inconsistent also cause another dump of the segment to be
produced on the next pass of the incremental dumper. Therefore, unless the system
crashes before the next incremental dump, a consistent copy is eventually produced.

Consolidated Dumps

A consolidated dump, starting from a specified search node, locates and dumps
segments and directories that have been modified after some specified time in the
past. For example, an installation might choose to run a consolidated dump every
midnight to dump all segments and directories modified since the preceding midnight;
i.e., since the preceding consolidated dump. Since a consolidated dump catches
modifications accrued over a period of time encompassing many incremental dumps, it
effectively consolidates the most recent information from a group of incremental tapes
and thereby facilitates the reloading of this information by decreasing the number of
tapes that must be processed. Also, since tape is susceptible to operational, hardware,
and software errors, a consolidated dump provides the installation with a second tape
copy of the segments and directories dumped during an incremental dump.

8-2 AG91-04

Complete Dumps

A complete dump, starting from a specified search node, dumps every segment
and directory in the storage system without regard for modification time. Unlike
incremental and consolidated dumps that attempt to keep the backup tapes up-to-date
with the contents of the storage system,' complete dumps are somewhat different in
purpose and follow a more leisurely schedule.

A complete dump establishes a checkpoint in time, essentially a snapshot of the
entire Multics storage hierarchy. If it should ever become necessary to recover the
entire contents of online storage, then the tape with the most recent complete dump
marks a cutoff point beyond which no older backup tapes need be inspected.

The high production rate of incremental and consolidated tapes makes the
retention of these tapes for long periods of time impractical. Therefore, incremental
and consolidated tapes are kept for some short time, perhaps 3 weeks. Complete
backup copy tapes are retained for a longer time, perhaps 6 months, with the
exception of one complete dump tape per month that might be held for a period of
1 year.

RECOVERY

When a user notices that a segment or directory has been lost or damaged. he
can submit a request to the Multics operations staff for that segment or directory to
be retrieved from a backup tape. The problem he faces is determining which backup
dump operation produced the tape copy of the segment or directory he wishes to
retrieve. Usually the most recently produced copy is wanted. In the case of a
damaged segment, however, the damaged version is likely to have been dumped as
well, and hence the most recent tape copy may not be \llanted. Hopefully, a user
knows approximately when his segment was lost or damaged. Also, he should
remember if the segment has been recently modified. Using these two pieces of
information, he can make a reasonable guess as to when the last usable copy of the
segmen t was online.

Once an estimate has been made as to the time frame, this estimate can be
verified by examining the corresponding hierarchy dump map. This operation is
automatic for volume recovery, although the user can still specify the time frame if
desired. The map indicates the tape reel on which the dump was written. A feature
of the dump map that is sometimes helpful is the printing of the date-time-dumped
attribute for the segment, which effectively points to the next most recent tape copy
of the segment.

8-3 AG91-04

The user can specify that a single segment. a directory without its subtree. or a
directory including its subtree be recovered.

In special cases, a user can specify that a segment or, for hierarchy recovery
only, a directory be reloaded with a different pathname. A single segment or a
directory without a subtree can be relocated at any point in the storage system
hierarchy. For hierarchy recovery only. a directory subtree can be relocated at any
point in the hierarchy.

For more information on volume retrieval, the reader is referred to the
description of enter_retrieval_request in the Commands manual.

8-4 AG91-04

SECTION 9

ADMINISTRATIVE CONTROLS

Multics administrative control facilities decentralize the tasks involved in
managing system resources. These facilities are available only to a group of privileged
users who have been given system or project administration responsibility. They
provide a resource management interface to the user that matches the policy of the
installation.

ADMINISTRATIVE HIERARCHY

Administration of Multics resources is organized into a hierarchy of responsibility;
this hierarchy maps onto the storage system hierarchy. Figure 9-1 shows a typical
administrative hierarchy. At the top are the system administrators. who allocate
resources among the projects within the system. Project administrators allocate these
resources among users assigned to the project. Each user. in turn, can control the use
of his resources through storage management and access control facilities.

PROJECT
ADMINISTRATOR

SYSTEM
ADMINISTRATOR

PROJECT
ADMINISTRATOR

PROJECT
ADMINISTRATOR

Figure 9-1. Multics Administrative Hierarchy

9-1 AG91-04

System Administrators

System administrators are responsible for establishing the system configuration.
for allocating resources among projects. for maintaining system security, and for
keeping up-to-date accounting records. System administrators can delegate some of
these functions to project administrators and can also assume project administration
responsibility. The functions generally performed by system administrators are summarized
below.

1. Resource Management

a. establish resource-allocation groups among users (load control
groups and work classes)

b. establish priorities for allocation of peripheral devices

c. establish the quantity of resources available to users at a
particular time (system configuration scheduling)

2. Accounting Procedures

a. up-to-date records of system usage so that users are billed for
resources used

b. set prices for system resource usage

c. generate usage reports and bills (these can be issued at any time
without interrupting Multics service)

3. Security Control

a. register projects, users, and initial user passwords

b. define rings of access in which a project can operate

In addition, system administrators select the operating schedule and system tuning
parameters that best serve the needs of the service.

Project Administrators

Project administrators control the allocation of resources among users assigned to
particular projects. A project can have from one to four administrators, or the system
administrator can serve as project administrator.

9-2 AG91-04

Project administrators establish the operating environment in which the user's
process can run. They can choose the initial procedure, the user's home directory, the
terminal outer module, and several internal table sizes. They can also specify that the
user will be logged in as part of a special subsystem with limited or no access to the
standard Multics environment. Project administrators can restrict the user's ability to
modify per-process parameters at login time. Furthermore, project administrators can,
within limits set by the system administrator, specify the user process's access
authorization and ring of execution.

Project administrators can limit user expenditures by establishing a total dollar
limit, a monthly limit, a daily limit, a per-shift limit. or any combination of these.
Resource management programs are provided by the system, but project administrators
can also write their own programs to manage these tasks.

Users

On Multics, the term user applies both to people and logical entities, such as
daemons, who have the ability to log in. This ability requires that the user be
registered by a system administrator. Each registered user is identified by two items
of information: a Person_id, which uniquely identifies the person or entity; and a
Project_id, which identifies the user as part of a particular resource-control group. A
person or entity can be associated with more than one project. Each combination of
Person_id and Project_id identifies a separate user, who is allocated resources according
to the identification used at a particular login.

Several attributes are recorded for each registered Person_id in system tables.
These include a personal password. default initial ring, default authorization, and
default Project_ide Other attributes are maintained on a per-user basis. These include
home directory pathname, initial procedure, preemption grace time, initial and
maximum ring, process table sizes, terminal outer module pathname, resource
consumption limits, and attribute flags that indicate special properties of the user such
as his load control group status and permission to change his initial procedure.

A user can perf orm a variety of administrative functions that help him to
manage his own resources. Some of these are listed below.

• check his own use of resources such as total dollar usage, processor
time used, I/O and absentee usage

• specify who can have access to his segments and directories and the
type of access for each; access is granted or revoked by command and
the user's specification takes effect immediately

• create directories under his home directory at his own convenience

• change his password

9-3 AG91-04

• change his default project

• specify how control will be transferred to his process

ADMINISTRATIVE CAPABILITIES

The following paragraphs describe some of the major administrative capabilities
provided on Multics; these comprise a sizeable subsystem. For a complete description
of Multics administrative capabilities. see the Multics System Administration
Procedures manual. Order No. AK50. and the Multics Administrators' Manual -­
Project Administrator, Order No. AK51.

Pricing

System administrators set prices for each type of system resource that a user
may consume. The user can check on his current consumption of resources by issuing
the resource_usage command.

INTERACTIVE AND FOREGROUND ABSENTEE USAGE

Three kinds of usage are measured for user processes logged in from a terminal
or logged in as foreground absentee. These are:

• CPU time
• memory units
• connect time

Usage of these resources is recorded and charged for separately on each shift. The
shift schedule is established by the system administrator. Up to eight shifts can be
defined; the administrator specifies the shift for each half-hour period of the week.

BACKGROUND ABSENTEE USAGE

User processes created as a result of a user's enter_abs_request command can
perform background. batch. deferred, or periodic processing. Two kinds of usage are
measured:

• CPU time
• memory units

Usage of these resources is recorded and charged for separately in each queue.
Usually, four queues are provided. System administrators can also specify which queues
run on which shift.

9-4 AG91-04

I/O DAEMON USAGE

The Multics I/O daemon manages the use of remote I/O devices and the local
line printer and card punch. User requests for I/O operations are placed in queues by
the enter_output_request, dprint, or dpunch commands. Each request has a priority
number and request type that are used to determine the queue in which it will be
placed. Most installations provide four priority queues for I/O daemon processing for
each request type~ and set different prices for each. Usage of the printer is measured
in lines and pages; usage of the punch is measured in cards.

OTHER CHARGES

System administrators also set prices for several other resources. Some examples
are:

• storage (in page-seconds)
• special channels (in microseconds)
• registration fee (by month)

Apportioning System Capacity

System administrators define two major groupings of users for purposes of
controlling the sharing of system resources. These are load control groups and work
classes. A load control group is a set of projects that share a guaranteed access to the
system. A work class is a set of users to whom a certain percentage of CPU time has
been allocated.

LOAD-CONTROL GROUPS

Each load control group has a quota of primary load units representing a
number of users within the group who will always be able to log in. Users in excess
of the primary quota are assigned secondary status and will be allowed to log in if
the system is not full; these users can be preempted if a primary user wants to log in
when the system is full. If the group's primary quota is full and the system is full, a
user from the group cannot log in unless he has been given the right, by the project
administrator, to preempt another user. Every user is assigned a minimum time, at
login, during which he is protected from preemption. The status of each user within
the load control group and the minimum time that each user will be protected from
preemption are established by the project administrators responsible for projects in a
particular load control group. .

WORK CLASSES

System administrators can divide the system's CPU resources into pools called
work classes. A work class can be an entire load control group, a single user, or a
class of users such as all I/O daemons or all absentee jobs in a given queue. The
membership in a particular class and the percentage of CPU time assigned to a
particular class can be changed at any time by a system administrator.

9-5 AG91-o4

Access Control

System administrators are responsible for system security 2.nd maintain it by
controlling user access to a variety of system resources. The same kind of access
control lists are used for system access control as are used for controlling access to
segmen ts and directories in the storage system.

GATE ACCESS

System administrators control access for many privileged or semiprivileged gate
segments that allow the user to request some specific supervisor action. Each of these
gates has an access control list that defines the set of users who can call it. For
example, one gate allows m~ers to read and write tapes using the I/O system. If the
system administrator denies a particular project access to this gate, no user on the
project can read or write a tape.

Project administrators can arrange for all users on their project to log in into a
higher ring than usual, and then provide gates from this higher ring to selected
services in the standard user ring. Thus, project administrators can exercise complete
control over which parts of the Multics environment a user process can access.

DEVICE ACCESS

Each external I/O device attached to the system through the I/O system has an
access control segment (ACS) associated with it. Thus, system administrators can
specify which devices are available to all users (e.g., tape drives) and which devices
are reserved for system processes only (e.g., printers).

VOLUME ACCESS

Each private logical volume registered by the storage system has an access control
segment (ACS) associated with it. Unless a user has rw access to the ACS associated
with a logical volume, he will be unable to attach the volume and thus unable to use
any segments on the volume. If the user has e access to the logical volume, he is
permitted to manipulate the quota specifications for subtrees on the logical volume.

ABSENTEE AND DAEMON QUEUES

System administrators can modify the access control lists that permit users to
place requests in the absentee or I/O daemon queues in order to deny certain classes
of users access to these facilities entirely.

9-6 AG91-04

Storage Quota

The Multics quota facility allows the creator of a directory to specify the
maximum number of records that can be occupied by segments and directories inferior
to the quota directory. Quotas can be moved (delegated) from a superior directory to
an inferior directory.

System administrators are responsible for the distribution of quota on the public
logical volumes. They delegate the responsibility for quota management to the project
administrators and other managers by moving quota down to directories (such as
project directories) to which the quota managers have modify access.

Other logical volumes are managed in a similar fashion, but instead of the
system administrators controlling the total amount of quota and its initial distribution,
these privileges are given to any user who has e access to the logical volume.

9-7 AG91-o4

SECTION 10

MULTICS DATA MANAGEMENT

This section presents an overview of Multics Data Management comprising seven
major subsections, as follows:

• Introduction
• Data Management Files
• Using MRDS with Data Management
• Data Storage and Retrieval Services
• Integrity Services
• Administering Data Management
• Command Level Interface to Data Management

INTRODUCfION

Multics Data Management provides services for storing, accessing, and protecting
information in data management files. Data storage and retrieval services provide for
space allocation, data organization, and file access. Integrity services offer protection
in a transaction-based environment by maintaining database consistency, controlling
concurrent access to the database, and providing the means to recover from various
failures.

The Data Management System (OMS) is based on a layered architecture, in
which requests are made through the top-most layer and passed down from level to
level to the Multics supervisor. Software modules have specific responsibilities on a
given level, with no knowledge of, or responsibility for, what takes place above or
below them. The layers of the architecture are as follows:

• The external access layer provides logical access to data. The Multics
Relational Data Store (MRDS) can be viewed as an interface to this
layer. The relation, record, and index managers are the software
modules that support this layer.

• The collection access layer provides logical storage management. Its
services include allocating and freeing the individual logical units of data
that make up a file. The collection manager supports this layer.

• The file access layer is the interface between the higher layers in the
architecture and the low-level Multics functions that manage the
physical representation of data. This layer handles all requests for
storing and retrieving data and is responsible for converting logical
addresses to physical addresses. The file manager supports this layer.

10-1 AG91-04

The architectural framework of DMS provides several advantages over other
storage methods. The layered structure ensures compatibility with future software and
product enhancements because users (programmers and other system modules) always
"see" a consistent interface. The origin of database requests is masked so that whether
from ~1RDS, another access method, or another machine (given the· networking
capability to do so). each request "looks" the same to the layered software.
Expandability has been built in to the system so that when a facility such as
distributed systems architecture (DSA) becomes available, it can be used by existing
database applications with virtually no redesign or reimplementation effort

The modular design enables the system to make use of the same software in all
situations, so that a service is always performed in the same manner by the same
module no matter who the caller is. Recovery. f or example, can be instigated by
different modules at different points of processing, but the rollback procedure invoked
is always the sam~. Calls to begin and end transactions can be specified by user
programs, by users interactively. or by the system itself, but the calls are always to
the same entry points. This specialization reduces the complexity of the software,
making it much easier to maintain and upgrade.

Currently, Multics Data Management is intended for use with MRDS applications
to allow them to benefit from transaction processing and the attendant protection
features. including a guaranteed consistent database, concurrency control. and the ability
to roll back database modifications.

Features and Benefits of Multics Data Management

DMS offers the following advantages:

• The contents of data management databases are protected against loss or
damage due to failure, including system crash without emergency
shutdown (ESD) procedures.

• Protection can be turned off at file creation to save on overhead, when
data integrity is not a concern.

• The working unit of OMS is a transaction, a user-defined entity; thus.
you tailor the system to your applications, not vice versa.

• Deadlocks are detected and resolved automatically so that waiting
transactions can continue to run.

• Strict protocols are imposed to support concurrent access to the database
without threatening data integrity.

10-2 AG91-04

• The same software modules and the same interfaces are always called to
perform the same functions, to ensure a consistent processing environment

• You can adjust the level of locking granularity for the same data to
suit different processing conditions.

• Transactions can be started by applications programs, interactively from
command level, or automatically by MRDS.

• A system default before journal can serve all DMS users, or you can
create and use your own journals in your hierarchy.

In addition to the above, MRDS applications that convert from vfile_ to data
management databases realize the following improvements and extensions:

• A MRDS vfile_ database converted to MRDS data management format
may use significantly less disk space to store the same data.

• Tuples and their associated indices are kept consistent across failures.

• Locking occurs at a finer level of granularity to allow increased
concurrency.

DATA MANAGEMENT FILES

The functional capabilities and services that Multics Data Management provides
are available to applications that access specific file entities known as data management
or DM files.

A DM file is an object in a Multics hierarchy, referenced by a pathname and
protected by the security features inherent to the Multics file system. In the current
implementation of Multics Data Management, a DM file exists as a ring 2
multisegment file. all the components of which have identical ACLs. Ring 2 is used to
ensure that DM files are properly formatted and to protect against inadvertent or
malicious damage.

A DM file consists of logically contiguous. fixed-size blocks called control
intervals, numbered consecutively from zero. The size of a control interval, which is
the unit of data transfer in Data Management, is currently fixed at 4096 bytes. The
size of the file itself is limited only by the number of entries permitted in a
directory.

10-3 AG91-G4

Creating Data Management Files

There are several ways to create a OM file:

• Creat.e a :tvIRDS relation in D:tvl file format n~RDS automatically calls
the relation manager, as described under "Relation Manager")

• Call file_manager_$create (see "File Manager as a Direct Interface")

• Use the create_dm_file command (see "Command Level Interface to
Data Management")

In creating a DM file, the caller supplies a pathname and a pointer to a
file_create_info structure describing the file's attributes. Attributes include version,
size, blocking factor, and whether the file is protected, i.e., whether it is entitled to
integrity services. If no info structure is supplied, one is created with default values.

Data Management Files as Protected Entities

A protected DM file is entitled to integrity services, which means that its
contents cannot be compromised by concurrent access and cannot be left inconsistent
because of processing failures. A protected DM file can be accessed only in
transaction mode, that is, a transaction must be started in the user process to access
the file (this is not the case for unprotected DM files).

A D1.1 file is protected by default at file-create time, which implies that the
file protect attribute is on, 'and the no_concurrency and no_rollback options are off.
The settings can be altered explicitly when the file is created. Turning the
no_concurrency and no_rollback bits on prevents locking and recovery respectively. If

,the file protect bit is off, neither locking nor recovery is available. regardless of the
no_concurrency and no_rollbac,k settings.

Since file protection is optionaL the overhead involved is incurred only on an
as-needed basis. Those files for which protection is turned off cannot be recovered.
See the description of "Integrity Services" for detailed information on file protection
and the concept of transactions within Multics Data Management.

Accessing Data Management Files

Though like a segment in most respects, a DM file cannot be directly accessed
by hardware address (segment number, word number) from a user program. Rather.
software calls are used to open and close DM files, and to store and retrieve data.
These calls are made in the form of MRDS dsl_ operations or direct calls to the file
manager, depending on how the application is implemented. See the description of
"Data Storage and Retrieval Services" and in particular "File Manager."

10-4 AG91-04

Manipulating Data Management Files

As file objects. OM files are considered to be in the same class as segments,
directories, links, and multisegment files. Like these other standard entry types, OM
Hies can be moved, copied, deleted, etc., as part of normal Multics storage system
manipulation. The Multics file system utility supports use of existing file system
commands to manipulate DM files by providing for uniform handling of file system
entries.

Listed below are the file system commands that recognize stanc;iard entry types.
Each command is described in the context of its treatment of DM files. Although an
of these commands recognize standard entry types, some of them are inappropriate for
use with OM files, and are so noted. For complete descriptions of these commands,
see the Multics Commands and Active Functions manual, Order No. AG92.

delete
results in the specified DM file being deleted, but because the delete is
a protected operation, the file is not actually deleted unless the
transaction commits (Le., the effect of the delete would be rolled back
if the transaction is aborted).

delete_dir

list

status

copy

deletes the named directory and subtree. Any DM files resident in the
directory would be subject to the same conditions that apply under the
delete command.

lists selected information pertaining to all DM files in a single
directory.

prints selected detailed information on the specified DM files.

creates a new version of the specified DM file by retrieving each
control interval and storing it in the new file. The two versions differ
in their unique ids and in the time-last-modified stamp in each control
interval.

copy_dir

move

copies the specified directory and subtree to another point in the
hierarchy.

copies the specified DM file as with the copy command. Subsequent
deletion of the original DM file is subject to the same conditions that
apply under the delete command.

move_dir
moves the specified directory and subtree to another point in the
hierarchy. Subsequent deletion of DM files in the original directory is
subject to the same conditions that apply under the delete_dir command.

10-5 AG91-04

add_name
adds an alternate name for the specified DM file entry.

delete_name
you cannot delete a DM file name.

copy_names
copies all alternate names from one DM file to another, leaving all
names in the original en try.

move_names

rename

set_acl

you cannot move DM file names.

you cannot rename a DM file. Further, you are cautioned not to
rename a directory containing DM files because to do so may make it
impossible to recover those files in the event of failure.

prints the access control lists (ACLs) of specified DM files.

modifies the ACLs of specified DM files.

delete_acl
removes entries from the ACLs of specified DM files.

copy_acl
copies the access control list from one DM file to another, replacing
the current ACL. if necessary.

set_rin~ brackets
modifies the first and second ring brackets for the specified DM file.
This does not alter the file's implementation as a ring 2 multisegment
file, which is enforced by hardware.

USING MRDS WITH DATA MANAGEMENT

The protection features of Multics Data Management integrity services are
available to MRDS applications that access and modify protected DM files. This
implies that the MRDS database is formatted as one or more DM files, which in
turn, implies that either a new MRDS database was created as such, or an existing
vfile_ database was converted to DM file format. Note that a database cannot contain
both vfile_ and DM file relations.

Users of Data Management are assumed to be knowledgeable MRDS users,
conversant with the Multics Relational Data Store Reference Manual, Order No .
• .6 .. \XI53. Also see Appendix G, "Data Management Facility Interface,n in this same
manual for a comparison of DM file and vfile_ usage from the perspective of a
MRDS user.

10-6 AG91-04

Building an MRDS Data Management Database

To create an unpopulated MRDS database in DM file format, supply the
appropriate data model source segment to the create_mrds_db command with the
-data_management_file control argument All specified relations will be created as
protected DM files by default. You can then load the database in the usual fashion
by storing tuples in the relations and creating indices as necessary. The Data
Management System, specifically the relation manager, assumes responsibility for
performing these functions on behalf of MRDS (see "The Relation Manager and
MRDS Database Requests").

If you wish to convert an eXlsttng vfile_ database to DM file format. use the
data model source for the vfile_ database (Version 4 or later) as input to the
create_mrds_db command with the -data_management_file control argument. Then use
the copy _mrds_data command to copy data from the vfile_ database to the DM file
database. If the original data model source is not available, you can re-create it using
the display _mrds_dm command with -cmdb control argument. The create_mrds_db,
copy_mrds_data, and display_mrds_dm commands are described in the Multics
Relational Data Store Reference Manual, Order No. AW53.

Using MRDS Applications with DM Files

Any retrieval or update action against a protected DM file must be performed
as part of an atomic operation that has an explicitly defined beginning and end. This
operation is known as a transaction and is the working unit of Multics Data
Management. The concept of a transaction as perceived by Data Management is
described fully under "Integrity Services" and in particular "Transactions and Database
Consistency. "

Unlike other systems that dictate what constitutes a transaction, Multics Data
Management allows users to build their own transactions according to the requirements
of the application. You decide what set of database requests comprises a working unit
and "wrap" them with beginning and end points to form a transaction. The transaction
manager, one of the integrity services modules, is the user interface to writing atomic
operations within applications programs (see "Defining Transactions").

If you do not wish to modify your programs, a default strategy exists whereby
MRDS will wrap each database operation automatically to form individual transactions
and ensure integrity services for the DM files involved (see "Building Transactions in
Existing MRDS Applications").

10-7 AG91-04

DATA STORAGE AND RETRIEVAL SERVICES

Data storage and retrieval services under Data Management include:

• Maintaining consistency between relations and their indices

• Record formatting and indexing

• Space allocation and storage management

• data management file organization and data access

The service managers that support data storage and retrieval are listed below,
together with brief descriptions of the respective roles they play in administering these
services. Each manager is also described in greater detail under separate heading. All
managers share in translating MRDS commands and dsl_ calls into data management
functional capabilities, in keeping with the design aspects of layered architecture.

• Relation manager
serves as an interface between the database manager and other data
storage and retrieval managers, in fulfilling database requests from
applications programs.

• Record manager
manages the tuples of a relation as a collection of records, chained
together for efficient access.

• Index manager
manages the indices oi relations as collections of keys, maintained in
sorted order.

• Collection manager
allocates and frees control intervals within collections and manages
element storage within these control intervals.

• File manager
serves as interface between data storage and retrieval services and
Multics file access and control mechanisms in handling an application's
database requests.

Multics Data Management currently supports MRDS applications (including
LINUS requests) that access and update MRDS databases consisting of one or more
DM files. Under certain conditions, the file manager can be called directly by user
applications (see "File Manager as a Direct Interface." below).

10-8 AG91-04

Relation Manager

In its role as an interface between the database manager (MRDS) and the data
storage and retrieval services of Multics Data Management, the relation manager
assumes the task of managing individual relations and their indices. t.JRDS is left with
the responsibility of managing the global properties of all relations comprising the
database and of providing the interface to user applications.

THE RELATION MANAGER AND MRDS DATABASE REQUESTS

An application program or LINUS user makes a request to MRDS to access a
database. MRDS identifies the target database as a vfile_ or OM file structure and
channels the request accordingly. Requests to access OM files are translated into calls
to the relation manager. These calls in turn generate calls to other managers of OMS,
depending on the request. In fact, a single database request usually triggers a sequence
of calls between managers on each level within the DMS architecture to complete the
requested activity (see the discussion of layered architecture in the Introduction). This
dispersal of responsibilities simplifies the system software.

For example, a MRDS request to create a relation sets off a chain of events
culminating in the creation of a relation in the form of a DM file (see below).
constructed of control intervals and organized into collections into which will be
stored the tuples of the relation. The relation. file, and collection managers all
collaborate automatically to effect this outcome.

Similarly, a MRDS request to open a relation is translated by the relation
manager into a call to the file manager to open the equivalent DM file and return a
file opening id by which all subsequent calls to the file will be made until the file
(relation) is closed. The relation manager's function is to interpret the MRDS reauest.
channel it to the appropriate manager(s), and pass the result baCk through MR.IiS t~
the application.

Other managers of the data storage and retrieval services are described below as
they interact with the relation manager and each other.

RELATIONS AND DATA MANAGEMENT FILES

A relation currently has a one-to-one correspondence with a DM file. Since
there is one relation per file, the name of the relation is the same as its DM file
equivalent.

All tuples of a relation are stored in control intervals and organized as a single
collection of records, indexed by one or more collections of keys. These collections
are organized by the collection manager and managed by the record and index
managers respectively. The relation manager ensures that tuples and their indices are
kept consistent across failures for protected DM files.

10-9 AG91-04

Record Manager

The record manager manages collections of records stored as tuples by the
relation manager. These logical records may have multiple fields of varying length and
mixed data types, but all records in a collection must have the same set of fields.
The record manager supports operations to create and delete record collections, to
create, delete. and position cursors. and to put. get. modify. and delete records.

Record search criteria, as specified through MRDS dsl_ selection expressions
(-range, -select, -where). are interpreted by the relation manager and passed to the
record manager to locate records by numeric positioning or a search on values. Search
specifications can be absolute (from the beginning of the record collection) or relative
(from a specific position within the collection maintained by a cursor).

Currently. the relation manager is the primary user of the record manager's
services. The record manager itself uses the services of the collection manager to store
and retrieve records in collections.

Index Manager

The index manager is used by the relation manager to store keys in an index
and manage them in sorted order. It implements indices of keys as collections. which
complement collections of tuples in the same relation. These keys may have multiple
fields of varying length and mixed data types, but all keys in a collection must have
the same set of fields. The index manager supports operations to create and destroy
indices, to create, destroy, position. and copy cursors, and to put, get. and delete keys.

Key search criteria, as specified through MRDS dsl_ selection expressions (-range.
-select, -where), are interpreted by the relation manager and passed to the index
manager to locate keys by numeric positioning or a search on values. Search
specifications can be absolute (from the beginning of the index) or relative (from a
specific position within the index maintained by a cursor).

Currently, the relation manager is the primary user of the index manager's
services. The index manager itself uses the services of the collection manager to store
and retrieve keys in collections.

Collection Manager

The collection manager reserves control intervals for collections. allocates and
frees control intervals within collections. and manages the storage of elements in these
control intervals. A collection is logically a set of elements of data and physically the
set of page-sized control intervals used to store the elements in a DM file, Although
elements are in fact records or keys. they are viewed as simple bit strings by the
collection manager.

10-10 AG91-04

Elements can be stored in control intervals using either of two methods: basic
element storage seeks free space anywhere in the collection for the element; ordered
element storage seeks free space in a specific control interval. Thus the collection

. manager determines physical placement of records being stored as tuples in a relation.

To perform its storage management function, the collection manager maps control
interval layout within DM files. As information is manipulated in a DM file
(retrieved, modified. rewritten, deleted), the collection manager adjusts element offsets,
restores free space, and acquires and releases control intervals, as needed.

The record and index managers are the primary users of the collection manager's
services. They know which records or keys to retrieve based on the search
specifications interpreted by the relation manager. The collection manager knows where
to locate the data based on the record or key identifiers supplied by the respective
manager.

The collection manager itself uses the services of the file manager to do actual
data storage and retrieval. The file manager is the only module that can read from or
write to DM files, but only does so when the collection manager indicates which
control intervals to access and where within the control intervals to get or put data.

File Manager

The file manager is the only Data Management manager that actually manipulates
DM files. It is the interface between MRDS application requests (as processed by the
upper layers of the DMS architecture) and the Multics file access and control
mechanisms constituting virtual memory management. In this capacity, the file manager
supports the following operations:

• Creates DM files

• Opens and closes DM files

• Releases logical address space

• Retrieves and stores data in DM files

Additionally, the file manager is the link to integrity services as provided by
Multics Data Management.

10-11 AG91-D4

FILE MANAGER AND DM FILE MANIPULATION

DM file creation results from a request to create a MRDS database in DM file
format (see "Using MRDS with Data Management"). The request is passed to the
relation manager, which generates a call to the file manager to create a DM file.
Included in the call are the file's pathname and a pointer to a file_create_info
structure containing the file's attributes. If the pointer is nUll, the file is created with
default attributes (see the description of the file_manager_ subroutine). A DM file is
protected by default, which means it is entitled to the protection features of integrity
services. The file is created with rw access for both the caller and the data
management daemon (Data_Management. Daemon).

Other operations are handled in similar. fashion, with requests originating from
MRDS applications being interpreted by the relation manager and then channeled
through the appropriate data storage and retrieval module to the file manager. Files
accessed through the file manager are subject to the same security and access control
constraints applied to other file objects in the Multics storage system.

Requests to open and close relations result in calls to the file manager to open
and close DM files. When it opens a DM file, the file manager returns a
file-opening-id by which all future access to the file will be made, until the file is
closed. Multiple openings of a file are permitted within a process, but the file must
be closed the same number of times it is opened. A single close operation merely
decreases the number of openings by one.

Requests from MRDS applications to read and write data in MRDS DM file
databases result in calls to the file manager to get and put data in Drv1 files. The file
manager uses the file-opening-id, control interval number, byte offset, and length of
the piece of data to perform these operations. This combined address is derived
through the collaborative efforts of the data storage and retrieval managers, with no
additional input from the MRDS application.

FILE MANAGER AND INTEGRITY SERVICES

The file manager also ensures concurrency protection and rollback capability by
generating calls to the lock or before journal managers, as appropriate, when protected
DM files are accessed or modified by processes executing transactions.

To protect against concurrent access, the file manager, when requested to get or
put data in control intervals of protected DM files, first calls the lock manager to set
the appropriate locks on the target control intervals. No data access occurs until the
proper locks are set. For a complete description of locking and protection from
concurrent access, see "Integrity Services."

10-12 AG91-04

To make locking more efficient, the file manager considers "lock advice" when
opening a DM file. Lock advice is a consideration of the MRDS scope setting as
declared on a relation. For a given operation, a more global lock setting might be
appropriate. For example, when every control interval in the DM file is to be
accessed, it would be more efficient to lock the entire file rather than each control
interval individually. Lock advice serves as a guideline; the lock manager ultimately
sets the requisite locks to guarantee file protection.

The file manager supports journalization to provide the rollback capability. When
requested to modify control intervals of DM files (put operations), the file manager
first calls the before journal manager to log before images of the affected control
intervals. These images are physically written to a before journal before a DM file is
modified so that the file can be rolled back in case of failure. On a rollback, the
before journal manager calls the file manager to undo the modifications by writing the
before images back into the DM file control intervals. For a complete description of
rollback and recovery procedures, see "Integrity Services."

FILE MANAGER AS A DIRECT INTERFACE

The file manager can be used as a direct interface to make the protection and
recovery capabilities of integrity services available to users who write applications using
their own data storage and retrieval software.

INTEGRITY SERVICES

People and society have become almost totany dependent on the information
capture and retrieval capabilities of computers. Such a dependency underscores the
necessity for ensuring the reliability of information in the event of computer failures.
Thus. a keystone of computer operations is to keep the information repository, the
database, consistent across these failures.

Consistency is rooted in a concept of discrete processing aCtIVItIes known as
transactions. Data that is changed as a result of the activity remains changed if the
activity is successfully completed, or is restored to its original state if the activity
cannot be completed. The database is never left in an inconsistent state, i.e., partially
done or undone as a result of the transaction activity.

Database availability is vital in ensuring a useful database production environment,
and concurrent transaction activity optimizes availability. If unchecked, however, such
concurrent activity may threaten database consistency. To guard against this threat,
access to data is controlled so that no transaction can interfere with another
transaction's previously established claim to that data. Control over concurrent access is
enforced by "locking" the data on behalf of the requesting transaction.

10-13 AG91-04

A failed transaction imperils database consistency and keeps locked data
inaccessible to other transactions. To offset these consequences, it must be possible to
recover from the failure by reversing the effects of database modifications caused by
the transaction and releasing ·the locks held by it Reversing the effects of
modifications is known as rolling back the transaction. and is possible because of
journalization, a method in which images of the data in its original state are preserved
in a log called a before journal.

The concepts of database consistency, concurrent access control. and recovery
constitute integrity services under Multics Data Management. The transaction manager
orchestrates .support of these services through the before journal, lock, and file
managers. Together, these modules interact with user applications and the data storage
and retrieval modules to guarantee integrity services in a transaction-driven environment
that uses data management (DM) files. Support of these services is described below in
greater detail.

Transactions and Database Consistency

A consistent database is tied to the notion of a transaction as an atomic
operation. that is, an operation consisting of some defined processing activity bounded
by an explicit beginning and an explicit end. The end itself is either an
acknowledgement that the activity was successfully completed (commit) or an indication
that it was not (abort), in which case th~ effects of the activity are undone by
restoring the data to its original state (rollback).

While a transaction is in progress, the data that it modifies, though normally
public, becomes private. Data that is modified by the transaction is considered volatHe.
meaning that it exists solely within the transaction. Only after the transaction is
committed does the data become public again and the modifications made permanent.
If the transaction is aborted, the effect on the data is as if no modifications had
been made.

The processing activity depends on the application and potentially involves a
series of events culminating in an update to the database. The transaction provides a
useful means of combining physically separated actions into a single logical unit. In an
airline reservation system, for example, booking a flight presupposes a prior
determination that there is a flight to the destination with a seat available on a given
date. Whatever the application. it is the user, not the system, who defines an atomic
operation by bracketing a task with an explicit beginning and an explicit end.

Under Multics Data Management, consistency, concurrent access, locking.
journalization, rollback, and similar integrity issues all have their basis in the context
of a transaction as an atomic unit.

10-14 AG91-04

DEFINING TRANSACTIONS

A transaction is defined by the process that starts it, and so the process is said
to be the owner of the transaction. A transaction can have only one owner process,
and a process can have only one currently active transaction. A process must be in
transaction mode (meaning it owns a currently active transaction) to access a protected
DM file.

An application program executing in a user's process starts a transaction by
calling transaction_manager_$begin_txn (see the description of the transaction_manager_
subroutine). Alternatively, a transaction can be started interactively through the
transaction begin command (see the description of the "Command Level Interface to
Data Management") which ultimately calls the same entry point.

The begin operation generates an entry in the transaction definition table (see
below), in which the transaction is assigned a unique identifier and associated with its
owner process. All database operations (i.e., MRDS dsl_ calls or LINUS requests) that
comprise the task portion of the transaction are then executed in the user application
program.

At the end of the processing actIVIty, the owner process calls
transaction_manager_$commit_txn (or the transaction commit command) to complete the
atomic operation. Implicit in the commit operation is the release of the locks held by
the transaction. If the processing activity cannot be successfully completed, the process
calls transaction_manager _$abort_txn (or the transaction abort command) to roll back
any database modifications and release the locks held by the transaction.

Other operations of interest to the caller of transaction_manager_ include:

suspend

resume

places the transaction in a suspended state during an interruption such
as a quit signal or interactive message.

allows a suspended transaction to resume executing following an
in terruption.

rollback
changes all modifications made by the transaction back to their original
state and allows the transaction to be restarted from its beginning.

abandon

kill

relinquishes ownership and control of a transaction to a privilegea
daemon process {Data_ManagemenL Daemon) , which aborts it (see beiow).

bypasses the recovery mechanism when database consistency is inconsequential
(e.g., if the database is to be deleted) to avoid the expense of recovery;
this call requires privileged access to dm_daemon~ate_.

10-15 AG91-04

Note that both users and system modules call the transaction manager to invoke
these operations. For a complete description of these and other calls to
transaction_manager_. see the Multics Subroutines and I/O Modules manual, Order
No. AG93.

BUILDING TRANSACTIONS IN EXISTING MRDS APPLICATIONS

Existing MRDS applications can be used with Data Management to obtain the
benefits of integrity services. To do so, the database must be in DM file format (see
"Using MRDS with Data Management"). The objective then is to take the applications
programs that manipulate these databases and define them in terms of discrete tasks.
consisting of one or a series of database calls. These tasks are considered atomic
operations; they are defined as transactions by bracketing the database calls with calls
to transaction_manager_$begin_txn and transaction_manager_$commit_txn or
transaction_manager_$abort_txn as appropriate.

The following scenario is provided as a guideline for creating transactions within
MRDS applications. One thing to remember with transactions is that rollback and
abort operations affect only protected DM files. Other pieces of storage (e.g., static
variables) may be relevant to the application and should be refreshed upon a rollback
or abort to ensure restoration of the applications environment

1. Identify whatever unprotected storage will need to be refreshed.

2. Define the dsl_ calls that comprise the atomic operation.

3. Check f or an eXIstmg transaction in the process by calling
transaction_manager_$get_current_txn_id. If the code
dm_error_$no_current_transaction is returned, you can proceed.

4. Set up a cleanup handler to call transaction_manager_$abort_txn. As a
safeguard in case the abort fails (i.e., a nonzero code is returned), it
should call transaction_manager _$abandon_ txn.

5. Set up an any_other handler to ascertain conditions signaled in the
process (find_condition_info->. If transaction_deadlock_ or
transaction_lock_timeout_ is signaled, the transaction has been rolled
back automatically. Restart, refreshing unprotected storage as required.
If transaction_bj_full_ is signaled, the transaction has been aborted
automatically. If some other condition is signaled, call
transac tion_manager _$handle_condi tions.

6. Call transaction_manager_$begin_txn and execute the dsl_ calls.

7. Examine the code returned by MRDS following the dsl_ calls. If the
code is 0 or something other than an error, call
transaction_manager_$commit_txn. Otherwise. you should decide whether
to roll back and restart, or abort, remembering to refresh unprotected
storage as required.

8. Revert the cleanup and any_other handlers.

10-16 AG91-04

The conditions identified in step 5 are described elsewhere in this section in the
context in which they occur; also see Section 7. If a commit or rollback operation
fails (i.e., a call to the respective entry point returns a nonzero code), you should call
transaction_manager_$abort_txn. If the abort operation fails, you should call
transaction_manager_$abandon_txn. It is also advisable to keep a count of the number
of times a transaction is rolled back to avoid an infinite loop (if MRDS wrapped the
transaction, it retries once before aborting on a deadlock condition).

Existing programs do not have to be modified to ensure the integrity of
converted MRDS databases. In this case, virtually every MRDS operation is
transformed into an atomic unit: i.e., each MRDS dsl_ call is automatical1y preceded
by a call to transaction_manager_$begin_txn and followed by a call to
transaction_manager_$commit_txn or transaction_manager$abort_txn. as appropriate. Thus,
the ·user process can spawn a series of transactions by doing nothing more than
executing an existing MRDS applications program that accesses a protected DM file.
The tradeoff in not modifying programs is to create a transaction-intensive environment.

Transaction Definition Table

Initializing the data management system (see "DMS Initialization") creates an
invocation of DMS. Information about transactions started during a DMS invocation is
maintained in a table called the transaction definition table or TDT. The TDT
contains an entry for each transaction; the entry includes the unique transaction id, the
process id and Person_id.Project_id of the owner, date-time of the begin operation,
current state of the transaction (e.g .. in progress), and any available error information.
The transaction manager is the overseer of the table, but the lock, before journal, and
file managers all maintain a portion of each TDT entry.

Information available in the TDT can be retrieved by calling
transaction_manager_$get_txn_info. In addition, the transaction status command can lISl

selected information on any or all entries in the table. given the proper access (see
"Command Level Interface to Data Management").

The TDT is created and initialized during DMS initialization. The first time any
part of DMS is invoked by a user process, an entry is reserved in the TDT for the
calling process. This entry is now available to the process when it wants to start a
transaction. A call to the begin operation registers a transaction by generating a
unique transaction id, binding the transaction to its owner process, and otherwise
setting up the entry to track the transaction.

Most DM operations (e.g., $txn_begin) require a successfully initialized invocation
of DMS to be available. If there is no successfully initialized invocation. or if no
entry is available in the TDT for the current invocation of DMS. the dm_not_available_
condition is signaled in the process (see Section 7). The default action is to print a
message and return to command level.

10-17 AG91-04

Transaction registration information is retained until the OM daemon
(Data_Management Daemon) determines that it is no longer needed and frees the entry
for subsequent use. The TOT. as it pertains to recovery, is described below under
"Process Failure" and "Crash Recovery."

Concurrent Access Control

To provide an optimal level of concurrency and still ensure database consistency.
Multics Data Management synchronizes concurrent transaction activity by satisfying the
serialization property. which requires that the result of concurrent transactions be
equivalent to some serial execution of the transactions. This global property can be
satisfied because all transactions observe the rules of concurrent access protocol as
follows:

1. A transaction will never modify data modified by another transaction in
progress.

2. A transaction will never read data modified by another transaction in
progress.

3. A transaction will never modify data read by another transaction in
progress.

The concept of locking (securing an object for the purpose of controlling access
to that object) makes the concurrent access protocol enforceable. Locking is described
in greater detail below.

LOCKING CONVENTIONS

A lock is associated with a piece of data and granted to a transaction for the
purpose of controlling concurrent access to that data. The piece of data is said to be
a lockable object. which defines the level of granularity within a system. Under
Multics Data Management the control interval, as the unit of data transfer, is the
lockable object by default.

The user has the flexibility to impose a coarser granularity (i.e., to lock the
entire OM file) to improve performance. For example, when an activity requires that
each tuple in a relation be examined for a particular value, it is more efficient to
lock the entire relation at the outset than to lock the affected control interval as each
tuple is retrieved. This is known as lock advice, to be set as a file attribute when the
file is first opened (see the description of file_manager_). Lock advice is just that. an
advisory, so that a file would never be placed in jeopardy because of it. DMS is
always the final arbiter in deciding what constitutes sufficient locking to guarantee file
consistency.

A transaction that modifies a piece of data (resulting in a put call to the file
manager) acquires a write lock on the containing control interval(s). A write lock is
granted only to one transaction and is said to be exclusive. The file manager. upon
receiving the put call, verifies that the process is in transaction mode, then calls the
lock manager to set the proper locks on behalf of the transaction.

10-18 AG91-04

A transaction that retrieves a piece of data (resulting in a get call to the file
manager) acquires a read lock on the containing control interval(s). A read lock is
granted to one or more transactions and is said to be shared. The file manager. upon
receiving the get call, verifies that the process is in transaction mode, then calls the
lock manager to set the proper locks on behalf of the transaction.

The rules of locking are imposed automatically and can be stated as follows:

• Every transaction must acquire a read lock to read an object and a
write lock to modify an object.

• All locks acquired by a transaction are held by that transaction until it
is committed or aborted.

To avoid conflicts in locking (and having to investigate for potential conflicts
each time a lock is requested), the share and exclusive lock modes on a control
interval are supplemented by additional lock modes on the entire file known as
intention locks. For example, a transaction that acquires a share lock on a control
interval implicitly acquires an intended share lock on the containing file. so that
another transaction cannot lock the file in exclusive mode.

Calls to the lock manager are timed so that transactions will not wait
indefinitely to acquire locks. If the wait-time elapses before a lock can be set. DMS
automatically rolls back the transaction and signals the transaction_lock_timeout_
condition in the process (see Section 7). The default action is to print a message and
return to command level.

Locking can be turned eff at file creation for a given file by turning the
no_concurrency bit on in the dm_file_create info structure (the bit setting is off by
default). If protection from concurrent access is irrelevant, this option can be selected
to avoid the overhead of locking.

DEADLOCK DETECTIQN AND RESOLUTION

Whenever there is concurrent access, there is potential for the so-called deadly
embrace, whereby two or more transactions are stalled, waiting on each other to
release the locks on data each seeks to access. None of the transactions involved can
resume processing until one of them frees its data, resolving the deadlock.

The lock manager is charged with deadlock detection. If a re.quest for a lock, if
granted, would result in a deadlock, the lock manager selects the "youngest" transaction
involved to be rolled back, freeing the data so that the other transactions can resume
processing. The transaction_deadlock_ condition is then signaled in the process owning
the youngest transaction (see Section 7); it can either abort or retry the transaction.

10-19 AG91-()4

If your transaction was wrapped automatically by MRDS, a retry is attempted
after the automatic rollback, and if unsuccessful, the transaction is aborted and the
dm_error _$lock_deadlock code is returned. Transactions started by the transaction
execute command have built-in condition handlers.

The lock manager provides further deadlock detection by eXamInIng all requests
for locks, tracking those transactions forced to wait because a lock cannot be granted.
When the wait is caused by another transaction holding a lock on the data, and the
wait exceeds a predefined threshold, the suspicion is that the owner process of the
holding transaction no longer exists. If its owner process is "dead," the transaction
cannot finish, and there is a deadlock condition.

The lock manager calls upon the DM daemon to investigate the status of the
owner process and the daemon. finding that the process no longer exists, resolves the
condition by aborting the unfinished transaction and releasing the loc.ks it held so the
waiting transaction can resume. The daemon's actions in this regard are described
below in greater detail under "Process Failure" and "Role of the Daemon."

Recovery Procedures

Recovery refers to the restoration of the database, in this case protected DM
files, following some type of failure which may have threatened database consistency.
The recovery procedures consist of rolling back database modifications made by
transactions that were not properly terminated, and releasing the locks held by these
transactions. Recovery is possible because images of the data before it is modified are
preserved in a before journal, available to restore the database to its original state in
the event of failure. Before journals are described in detail below under "Conventions
and Use of Before Journals."

The type of failure dictates the environment in which recovery takes place. If
the transaction itself fails, recovery is accomplished within the owner process in the
form of a call to transaction_manager_. If the owner process fails (becoming a dead
process), the DM daemon assumes responsiblity for recovery. In the event of system
crash, the DM daemon activates recovery procedures following reinitialization of the
system. Each type of failure is discussed below in terms of how recovery is
implemented. A note of caution on recovery: if the directory contalnmg the DM file
to be rolled back is renamed, the daemon will be unable to locate the file on
rollback (see "Manipulating Data Management Files").

There is also the possibility of media failure, involving physical damage to the
disk. Systematic volume dumping affords the best method of protection against this
type of failure. It is important that dumping be performed at a time when no
updating of DM files is taking place.

10-20 AG91-04

TRANSACTION FAILURE

Transaction failure can be triggered by any call that returns a nonzero error
code in the process, or by releasing on a sub_error_ condition, or, more often, on
some subjective evaluation by the user. Vlhen a transaction is deemed a failure, the
owner process (user application program) must abort the transaction by calling
transaction_manager_$abort_txn. The effect of the abort operation is to "undo" any
modifications caused by the failed transaction and to release all locks held by it. All
references to the transaction are removed from the appropriate OMS system tables so
it appears as if the transaction had never existed.

Alternatively, the owner process can call the rollback operation
(transaction_manager_$rollback) to effect a rollback to the beginning of the transaction,
which may then be restarted. In this case, the transaction retains its id and entry in
the TOT.

The recovery mechanism set in motion by a call to transaction_manager_$abort_txn
involves several internal calls to other integrity services modules. Just as with data
storage and retrieval. there is a modular breakdown of responsibilities, ensuring that
the same software performs the same function in the same way all the time. The
transaction manager calls the before journal manager to -perform the rollback. The
bef ore journal manager locates the before images for the given transaction, but the
file manager actually adjusts the OM file. When the database has been restored, the
transaction manager calls the lock manager to release the locks held on behalf of the
aborted transaction. At the completion of these activities, the database is again
consistent; the data made private by the transaction becomes public; and, the process is
free to start another transaction.

PROCESS FAILURE

A process that fails, on a stack overflow or hangup condition for example. may
leave a transaction unfinished. The event in itself does not threaten database
consistency because the data remains locked, but the transaction must be aborted to
roll back any modifications and free the data for other transactions. Since the process
is dead, the OM daemon must assume responsibility for terminating the unfinished
transaction.

In the TDT, the process id is associated with the transaction id assigned when
the transaction entry was created. The DM daemon scans the list of process ids and
checks with the ring zero supervisor to verify the state of each process. If a process
no longer exists. the daemon then checks the state of the associated transaction. If the
check reveals that the transaction has been committed or aborted, the daemon simply
removes the transaction'S registration information from the table. For a transaction
listed as in progress. however, the daemon calls transaction_manager_$abort_txn, setting
in motion the chain of events described for transaction failures. The daemon then
arranges for removal of the TDT en try, as above.

10-21 AG91-D4

Role of the Daemon

The OM daemon has specific responsibilities with regard to OMS initialization,
shutdown, and crash recovery scenarios. These responsibilities are described under the
appropriate headings below. Within an active OMS invocation~ the daemon's sole
function is to abort unfinished transactions owned by dead processes and to remove
transaction registration information from OMS tables. It performs this "caretaker"
function by scanning the TOT at regular intervals (an idle timeout alarm), or upon
direct notification from the answering service that a dead process exists.

It is possible for other processes to discover dead processes. So it might appear
that they should also be able to abort the unfinished transactions of these processes in
the interest of keeping the database consistent and releasing the locks held by these
unfinished transactions.

Aborting a transaction involves writing in DM files, however, which implies
access to these files, and to force access constitutes a violation of access principles.
To uphold these principles, only the DM daemon can abort a transaction left
unfinished by a process that no longer exists (or has relinquished control through an
abandon operation; see below). Thus, a process that discovers a dead process sends a
wakeup message to the daemon, which verifies then proceeds with its caretaker
function. .

When the lock manager encounters a deadlock situation, it sends its own wakeup
message to the daemon to investigate. The message includes the process id of the
owner of the transaction that forced the deadlock. The daemon verifies that the
process no longer exists and aborts the unfinished transaction (Le., calls
transaction_manageT_$aboTt_txn), permitting the deadlocked transaction to proceed.

Abandoning a Transaction

The abandon operation (transaction_manager_$abandon_txn) provides an escape
mechanism by which a user process can disown a transaction without properly
terminating it. Having relinquished control of the one transaction to the DM daemon,
the user process is free to start another. The daemon "adopts" the abandoned
transaction to roll back any modifications and release whatever locks it held
(effectively aborting it).

A process that abandons a transaction cannot regain control 01 It. If the process
starts another transaction and attempts to access the same data. it may have to wait
un til the daemon releases the locks held by the original transaction.

10-22 AG91-04

A user process can also kill a transaction (transaction_manager_$kill_txn). an
operation which bypasses the recovery mechanism altogether. This call requires access
to dm_daemonJate_, and should be used only when database consistency is
inconsequential, for there is no avenue of recovery once the kill operation is executed.

CRASH RECOVERY

Protected DM files are guaranteed recoverable in the event of a system crash of
DMS or of Multics itself. Recovery is possible because certain tables in the DMS
bootload directory (as described under "DMS Initialization" below) are guaranteed
reliable in the aftermath of the crash. These tables contain information relevant to all
DM files and all before journals that were open at the time of the crash. Each time
during a DMS invocation a DM file or a before journal is opened and registered in
the respective table, the table is written out to disk. ensuring its reliability.

Reliability is assured whether or not emergency shutdown (ESD) is successful,
because of the write ahead log (WAL) protocol. which guarantees that no physical
modification of the database occurs until its before image is preserved on disk. The
W AL protocol is enforced through the cooperation of page control, as the manager of
Multics virtual memory. and the file and before journal managers as overseers of
protected DM files. Pages containing modified control intervals are said to be
"sync-held" until the corresponding before images are verifiably flushed to disk. If a
loss of main memory occurs (i.e .. there is ESD failure), the sequence of migration to
disk ensures that no vital recovery data is part of that loss.

If the system fails, because of a power failure for example. recovery occurs
following system reinitialization, when the daemon process is logged in (see "DMS
Initialization"). The charter of the daemon at startup is to determine if recovery is
necessary, and if so, to identify those transactions that were active at the time of the
crash and abort them. Then the daemon enables the current DMS invocation so that
new transactions can be started.

If a normal shutdown is indicated (see "DMS Shutdown"),
unnecessary. The daemon enables the current DMS invocation and
caretaker function.

recovery is
assumes its

When the daemon discovers at startup that recovery is necessary, it must in
effect re-create the environment of the previous invocation in order to abort the
unfinished transactions and make the database consistent. It does this by calling the
various integrity services modules to perform the following functions:

• Open all before journals open at the lime of the crash (this
information is available in the table of open journals preserved across a
system crash)

• Build a temporary TDT of all unfinished transactions from the previous
invocation (accomplished by reading each before journal in' reverse
chronological order; see "Conventions and Use of Before Journals"
below)

10-23 AG91-04

• Open all protected OM files that may have been modified during the
previous invocation (this information is available in the table of unique
file ids and pathnames. i.e., all open OM files, preserved across a
system crash)

The daemon then aborts each unfinished transaction listed in the temporary TOT. just
as it would after discovering a dead process or adopting an abandoned transaction.
OM files are thus restored to the state they were in prior to any update activity
caused by the unfinished transactions during the previous OMS invocation.

When recovery procedures are completed. the daemon arranges f or the before
journals and OM files to be closed, disposes of the old tables used for recovery, and
enables the current DMS invocation so that new transactions can be started.

CONVENTIONS AND USE OF BEFORE JOURNALS

A before journal is a type of DM file. written as a sequential disk file of
variable-length logical records, physically grouped as control intervals. These records
are written in the order in which they are produced by transactions using the journal.
While there may be multiple journals open within a DMS invocation or even within a
process," the before images generated by a given transaction must all be recorded in
the same before journal.

The caller of transaction_manager_$begin_txn can specify which before journal to
use; otherwise. a default journal is assigned (see "Creating and Opening Journals,"
below). The begin operation generates a call from the transaction mana"ger to the
before journal manager to write a begin mark in the designated journal. It is this
mark that delineates the rollback operation for an aborted transaction.

When a transaction modifies a control interval in a protected DM file, the file
manager calls the before journal manager to record the before image in the proper
journal. All before images recorded for a given transaction are chained together to
facilitate rollback, if necessary.

If the transaction is terminated, the before journal manager writes the
appropriate mark (either commit or abort) at the direction of the transaction manager
to denote the transaction as finished. Before images for committed and ~borted
transactions are no longer of any use and can be overwritten.

Even though space in a journal is reuseable, the journal may appear to be full
if the daemon has not yet adjusted terminated transactions. When a transaction
attempts to write a before image to a full journal, the transaction is aborted
automatically and the transaction_bj_full_ condition is signaled in the process (see
Section 7). The default action is to print a message and return to command level.
The same sequence of events occurs if the transaction exceeds its storage limits on the
journal when attempting to write a before image (see "Creating and Opening Before
Journals" below).

10-24 AG91-04

In cases where MRDS has wrapped the transaction automatically or if you have
used the transact jon execute command, cleanup handlers are set up to handle a full
condition. If you release, you unwind past the cleanup handler and the transaction is
aborted as above.

Journalization can be turned off at file creation for a given DM file by turning
the no rollback bit on in the dm_file_create info structure (the bit setting is off by
default). If file integrity is irrelevant, this option can be selected to avoid the
overhead of journalization.

During crash recovery,each journal open in the previous invocation is positioned
to the last control interval and read in reverse chronological order to identify all
transactions in progress at the time of the crash. A time stamp convention is used to
locate the end of the file. Since the file is a closed loop and control intervals are
written sequentially within a DMS invocation, the beginning of the file is reached
when the time recorded in the control interval header stops increasing. Page control
also uses the time stamp to verify whether a before image has been written to disk
before flushing the page containing the DM file modification to disk (see the
discussion of the W AL protocol under "Crash Recovery").

The opened journals are processed serially. If no unfinished transactions are
found in a journal, it is closed and the next one read until all journals have been
processed, or until the expected number of unfinished transactions has been identified.
The daemon knows how many transactions have to be recovered because each before
image is recorded with a count of the number of active transactions using that
journal. The last before image logged before the crash contains the number of
transactions then in progress and. hence, the number of transactions that have to be
accounted for in a given journal.

Creating and Opening Before Journals

Before journals are created by calling before~ournal_manager_$create_bj (see the
before~ournal_manager_ subroutine description) or through the bj_mgr_call create
command (see the description of "Command Level Interface to Data Management"). In
either case, the size of a journal is defined as a number of control intervals and
would be based on evaluation and analysis of metering information concerning the
number of transactions to be using the journal, their average time, and rate of
modification. Currently, the default journal size is set at 64 (4096-byte) control
intervals.

Part of before journal creation is to limit the amount of space anyone
uansaction can demand in recording its before images. The objective in setting limits
on individual transactions is to enhance overall performance. If no limit is set, a
transaction can theoretically commandeer the en tire before journal, forcing other
transactions attempting to write to the same journal to abort.

10-25 AG91-04

Journals must be opened in the process in which they are to be used. Multiple
journal openings are permitted within a process, but a journal must be closed the same
number of times it is opened. A single close operation merely decreases the number
of openings by one. Journals are opened and closed in a process by calling the
respective entry point in the before-Journal_manager_ subroutine or by using the
bj_mgr_call command.

Transactions started in a process without specifically naming a before journal are
assigned one according to a default scheme. A default journal for the process can be
explicitly set by calling before.Journal_manager_$set_default_bj. The journal so designated
must be open in the process. If no such journal is designated, the journal most
recently opened in the process is used. If no journal is currently open in the process,
the system default before journal is automatically opened in the process and assigned
to the transaction being started ..

Manipulating Before Journals in the File System

Bef ore journals are considered extended en try types and as such they can be
manipulated in the Multics storage system through many of the standard commands by
including the .bj suffix as part of the entry name. The file system utility provides a
suffix handler for the .bj suffix, so no user-written routine is required (see the
description of fs_util_ in the Subroutines manual). The following file system
commands recognize before journals as extended entry types:

add name
copy_names
delete
delete_acl
entries
exists
list ac I
set acl
status

DMS Initialization

Data Management System initialization is part of the Multics bootload operation
and results in an invocation of DMS. The run-time DMS comprises a set of
per-system tables, created and initialized as segments in a DMS boatload directory at
the time of the Multics bootload. Since tables from the previous invocation are
integral to crash recovery (see the description of "Crash Recovery"), the per-bootload
DMS directory is saved from one bootload to the next, unless a successful shutdown is
indicated (see the description of "DMS Shutdown"). Multiple per-bootload directories
can exist (usually for debugging purposes); they are distinguished from one another by
the time of the MuItics bootload.

10-26 AG91-04

When Multics is booted, Data_ManagemenL Daemon , like other daemon processes,
is logged in either by the system_start_up.ec or by explicit operator command. The
daemon's initial responsibility is to bootload DMS by calling the data management
initializer program, a set of ordered calls to specialized initialization and recovery
routines. The daemon's subsequent responsibilities with regard to initialization can be
summarized as follows:

• Locate the DMS systern tables from the previous invocation to see if
recovery is necessary. These tables rnay not exist if the previous
invocation was successfully shutdown or if there was no previous
invocation.

• Build new systern tables for the current invocation, but prevent their
use temporarily. DMS is not available until recovery is completed.

• Perform recovery if necessary (see the description of "Crash Recovery").

• Enable the new system tables for activity under this DMS invocation.

• Delete (or save for debugging purposes) the system tables from the
previous invocation.

If the daernon cannot locate the previous DMS bootload directory, no recovery is
necessary. This is an indication that the previous invocation was shut down normally,
and that the daemon deleted the old DMS directory prior to logging out. Initialization
of the current system invocation then proceeds with the building of per-system and
tables.

If recovery is necessary, that part of DMS initialization proceeds as described
under "Crash Recovery." When recovery is completed, the new system tables are
enabled for activity under this invocation, and the old directory is disposed of or
saved, as appropriate.

Occasionally the daemon may discover that DMS is currently running. The
implication is that the old daemon process died, leaving the system unattended. In this
case, the new daemon merely has to take over the running system, cleaning up
unfinished transactions as it normally would performing the caretaker function.

If your site runs with the Access Isolation Mechanisrn (AIM), a directory rnust
be created for each AIM classification that is to use Data Management. This directory
is referred to as the per-AIM directory and is created under the per-systern directory,
>site>Data_Management. Everything described for a DMS invocation at Multics
bootload occurs for each AIM classification using Data Management.

10-27 AG91-04

DMS Shutdown

DMS has its own shutdown procedures. both as added assurance that protected
DM files are left in a consistent state and to reduce recovery time at the next
bootload. Crash recovery is an integral part of DMS initialization, during which no
users are allowed into the DMS environment. If, at the start of initialization, crash
recovery can be ruled out, the system becomes available almost immediately.

If you attempt to access any part of OMS during those periods of initialization
or shutdown when the system is inaccessible, the dm_not_available_ condition is
signaled in your process (see Section 7). The default is to print a message and return
to command level. The same condition is signaled if no invocation of OMS exists.

DMS shutdown is designed to leave no transactions in progress and all protected
OM files and before journals closed (and therefore consistent) when the OM daemon
is logged out. Shutdown occurs either as part of a Multics shutdown or by privileged
intervention of the data management administrator or operator (see the dm_system_shutdown
command described in the Administration, Maintenance, and Operations Commands
manual. Order No. GB64).

DMS SHUTDOWN AS PART OF A MULTICS SHUTDOWN

When a Multics shutdown is scheduled, the system_shutdown_scheduled_ interprocess
signal (IPS) triggers the OM daemon to schedule a OMS shutdown. The daemon
records the pertinent shutdown information in dm_system_data_ (a per-system table in
the DMS directory) and sends the dm_shutdown_scheduled_ IPS to notify all OMS
users of the scheduled DM shutdown. If a Multics shutdown is already scheduled
when DMS is enabled following per-system initialization, the daemon proceeds with
the scheduling of the OMS shutdown as described above, without the system shutdown
notification.

Subsequent steps to OMS shutdown are as follows:

1. By default, two alarm call channels are set up for each affected user
process, one for "user warning" and one for "user shutdown." These
alarm calls are set up when the dm_shutdown_scheduled_ IPS is
received or as part of per-process initialization, if the process had not
yet invoked DMS when the IPS was sent.

2. When the user warning alarm goes off, a dm_shutdown_warning_
condition is signaled in the user process, and a message announces that
shutdown is pending.

3. When the user shutdown alarm goes off, a dm_user_shutdown_ condition
is signaled in the user process, and a message announces that user
shutdown is underway.

10-28 AG91-04

4. The OM daemon then requests the answering service to bump any
still-active OMS users (in the same manner that users can be bumped
from Multics).

5. The daemon logs itself out when normal shutdown occurs, or when the
scheduled DM daemon logout time is reached.

Each of these events is described below.

DMS SHUTDOWN AS A PRIVILEGED REQUEST

The data management administrator or the system operator can shut down OMS,
irrespective of a Multics shutdown. by invoking the dm_system_shutdown command as
described in the Administration, Maintenance, and Operations Commands manual.
In this case, the command triggers the daemon to send the dm_shutdown_scheduled_
IPS to all OMS users; the remaining shutdown steps are as described above. Any
differences in the implementation of a given step are noted below in the description
of that step.

The requestor must have re access to dm_admin~ate_ to execute this command.

SHUTDOWN INFORMATION

Information regarding DM shutdown is recorded in dm_system_data_, a segment
in the OMS bootload directory, either as part of per-system initialization or as a
result of the dm_system_shutdown command, and includes the following:

• Reason for shutdown (either because of a scheduled Multics shutdown
or as stated by the administrator or operator)

• User warning time

• Begin shutdown time

• User shutdown time

User

• Daemon logout time

This information. excluding user bump and daemon logout times, is available for user
inspection.

Unless otherwise specified, user bump time coincides with the scheduled Multics
shutdown time. All other times are calculated backward or forward according to
specified or default time delays contained in the DMS configuration file (see
"Administering Data Management"). The command can explicitly specify all times and
all delays, or any combination. The system default delay time between events is five
minutes.

10-29 AG91-04

Also tracked in dm_system_data_ is the state of OMS; this value progresses from
"running" to "begin shutdown," "user bump," and "normal shutdown" as the OMS
shutdown itself proceeds. In cases where the OM daemon dies, this status indicator
informs the new daemon where to resume the shutdown operation.

User Warn; ng

User warning time provides a grace period in which to conclude transaction
activity and close all protected files and before journals open in the process.

When the user warning alarm goes off, the dm_shutdown_warnin~ condition is
signaled in the process (see Section 7). Unless the condition is handled, a message
denotes when no new transactions will be accepted (Hbegin shutdown" time), when a
forced shutdown will occur ("user shutdown" time), and the reason for the shutdown.
The process then resumes executing at the point of interruption. All transactions
should be finished, and all files closed. in this time frame.

For absentee processes, no message is printed on output at user warning time,
regardless of whether the default handler is overridden, so as not to disrupt any
special formatting of output.

If a user process starts using OMS after the warning time has passed, but before
new transactions are prevented ("begin shutdown" time), the dm_shutdown_warnin~
condition is signaled as part of per-process initialization.

Beg; n Shutdown

After the grace period has elapsed, the DM daemon changes the state of DMS
to "begin shutdown." No new transactions are permitted to be started under this
invocation of OMS, but currently active transactions are allowed to continue.

User Shutdown

At user shutdown time. any transactions still active (but not attempting to finish)
are aborted or forcibly abandoned so that the OM daemon can abort them, using
normal rollback procedures. Additionally, all user process references to per-process and
per-system data are invalidated, to enable reentry to DMS on a subsequent DMS
bootload.

When the user shutdown alarm goes off, the dm_user_shutdown_ condition is
signaled in the process (see Section 7). The default action is an automatic call to
transaction_manager_$user_shutdown to terminate DMS in the process by adjusting any
TDT entry belonging to that process. A message announces that user shutdown is
underway, and the process resumes executing at the point of interruption.

10-30 AG91-04

User Bump Time

Bump time occurs after user shutdown, following a specified delay. When bump
time is reached, the daemon scans the TDT, searching for any remaining DMS users,
and asks the answering service to bump those that are found. For a DMS shutdown
that is part of a Multics shutdown, this event coincides with the system shutting
down, when all users remaining on the system are bumped.

Daemon Logout

The daemon logs out when shutdown is complete or when the scheduled logout
time is reached. Shutdown can actually be complete any time after the "begin
shutdown!' step. Such is the case when all TDT entries have been adjusted, and the
daemon is the only user remaining. If this is so, the daemon sets the state to "normal
shutdown" and arranges for disposition of the DMS directory (as would be done
following crash recovery, if performed as part of initialization). The daemon then logs
itself out without waiting for any of the other scheduled events to occur.

ADMINISTERING DATA MANAGEMENT

As with all aspects of Multics, the system administrator has specific responsibilities
with regard to preparing and controlling the environment in whIch Data Management
operates. These responsibilities are outlined below. Details are provided in the section
entitled "Data Management Administration" in the Sys!'em Administration Procedures
manual, Order No. AK50.

Installation Considerations

As part of Multics installation, you must include a dbmj card in the config deck
to configure before journal management. Additionally, you must provide for directory
flushing by switching on the dirlock_ writebehind tuning parameter either by including
the parm dirw card in the config deck or by using the change_tuning_parameters
command (see the Mu/tics System Maintenance Procedures manual, Order No.
AM81, for a complete description of the config deck).

Creating a Data Management System Directory

You must. create a data management system directory (the default location is
>site>Data_Management). This directory will contain all the per-AIM directories (see
"AIM Considerations" below). If you are not running with AIM, you must create the
directory system_low as the per-AIM directory for level zero and no categories. The
contents of the per-AIM directory include the· data management configuration table
(see "Shaping the Run-Time EnvironmenC),. the system defauit before journal, the logs
directory, and the DMS per-bootload directory created automatically at DMS
ini tialization.

10-31 AG91-04

Shaping the Run -Time Environment

You must create a configuration source file and convert it into a data
management configuration table using the cv_dmcf command (see the Administration,
Maintenance, and Operations Commands manual, Order No. GB64). You must then
install the table in the per-AIM directory, where it is used to establish the· run-time
parameters of DMS, as follows:

• Size and location of the system default before journal

• Maximum number of processes that can use DMS

• Maximum number of transactions active at any time

• Idle timeout, i.e., automatic daemon wakeup to adjust dead processes

• Begin Shutdown delay (delay between user warning and begin shutdown)

• User shutdown delay (delay between begin shutdown and user shutdown)

• User bump delay (delay between user shutdown and user bump)

• Daemon logout delay (delay between user bump and daemon logout)

• Previous bootload disposition (delete or retain for debugging purposes)

• Log process terminations (an instruction for the daemon)

• Enable the current bootload despite inability to recover from previous
bootload (turned on only on instruction from Niultics Development
Center)

Daemon Registration

The DM daemon (Data_Management.Daemon) is required to run Data Management
on Multics. It serves as caretaker during DMS operations by recovering abandoned
transactions and transactions belonging to dead processes. It starts DMS initialization
after a Multics bootload and performs crash recovery. It is also the daemon that
schedules and controls data management shutdown.

Data_Management.Daemon, as part of the Daemon project, is a special user
identity, automatically registered and installed when Multics is initialized at a new site.
It has its own process overseer (dmsd_overseer_). established by the initproc attribute
in its PMF, which handles all conditions and signals to the daemon, sets up an event
channel for requests to the daemon, and registers itself with the answering service to
be notified of process terminations.

A DM daemon is required for each AIM classification using Data Management
(see below).

10-32 AG91-04

AIM Considerations

You must create a per-AIM directory under the DMS system directory for each
AIM classification using Data Management. You must also provide a data management
configuration table and DM daemon for each AIM classification.

Monitoring Performance

Various privileged commands (see "Command Level Interface to Data Management")
are available that meter system activity. providing a barometer with which to evaluate
DMS performance. Evaluation and analysis will enable you to fine-tune different areas
of the system to improve performance.

Additionally, separate data management logs are maintained as part of the system
logging facility. Information regarding initialization. shutdown, recovery. daemon
adjustments to the TDT, and various error exceptions are logged for each per-AIM
directory using Data Management. This information can be viewed by using the
print_sys_log and monitor_sys_log commands with -dm_system control argument (see
the Administration, Maintenance, and Operations Commands manual, Order No.
GB64).

COMMAND LEVEL INTERFACE TO DATA MANAGEMENT

Multics Data Management supports a command level interface consisting of two
sets of commands. one set for users to invoke integrity services interactively, and the
other for administrators to set up, control, and monitor the DMS environment. Both
sets of commands are described below.

User Commands

Listed below are the DMS commands available to all users. Each command is
summarized following the list: for complete descriptions. see the Multics Commands
and Active Functions manual, Order No. AG92.

transaction
bj_mgr _ca 11
before~ournal_status

create dm file
dm_user_shutdown
dm_display_version

The transaction command provides users with the ability to define and run
transactions interactively during a terminal session. The following operations are
possible: begin, commit, abort, execute, rollback, abandon, and kill. There is also a
status operation with which to select varied information about your current transaction,
or all transactions, if you have the proper access.

10-33 AG91-04

Operating from command level. you can start a transaction in your process.
perform the desired database operations, and consider the results before committing the
transaction. You are actually writing your application program in real time. You can
also react to error conditions as they occur. This method is best suited for testing.

The transaction execute command is intended for running production applications
from command level. The execute operation allows you to wrap an application in a
transaction within a single command line. This operation has built-in condition
handlers, setup to catch the conditions signaled by Data Management.

The bj_mgr_call command provides users with the ability to create and
manipulate bef ore journals in the user process. You can create. open. and close hef ore
journals, set and get the default journal for the process, and ascertain· whether
specified journals are already opened or closed.

The before..Journal_status command provides information on specified journals
within the user process, or all journals active within DMS, given the proper access.
The information displayed includes journal identifier, size, whether in use, and the
times at which before images are buffered and written.

The create_dm_file command enables you to create unpopulated D~1 files, with
or without protection, from command level. You must have sm access on the
containing directory if you are creating a protected DM file. You would normally use
this command in cases where you are using file_manager_ as a direct interface.

The dm_user_shutdown command enables you to remove your process from active
status in the current invocation of DMS. All user process references to per-process
and per-system data are invalidated to allow subsequent reentry to DMS. If there is a
transaction in progress, it is aborted, unless it is committing, in which case it is
allowed to finish. If the transaction cannot be aborted for any reason, it is
abandoned.

The dm_display _ version command enables you to ascertain which version of DMS
you are curren tly using.

10-34 AG91-04

Administrative Commands

Listed below are the administrative commands available to users with access to
dm_admin~ate_ or which, by the nature of their function, are considered privileged.
Each con)mand is summarized following the list; complete descriptions of these
commands appear in the Administration, Maintenance, and Operations Commands
manual, Order No. GB64.

cv_dmcf
dm_system_shutdown
dm_lock_status
dm_lock_meters
before~ournal_meters

dm_set~ournal_stamps

dm_set_system_dir
dm_send_request

Administrators use the cv _dmcf command to convert the configuratipn source file
into a data management configuration table to be used in initializing DMS. The
configuration table contains the system-default parameters for the running DMS. It
must be installed in the per-AIM directory.

Administrators and operators use the dm_system_shutdown command to shut
down DMS while Multics is still running. The shutdown consists of specific stages in
which users are warned of the impending shutdown, new transactions are prevented
from starting, user processes are shut down (active transactions are allowed to finish if
committing; otherwise they are aborted or forcibly abandoned), remaining users are
bumped from DMS, and the daemon logs out.

Administrators use the dm_lock_status command to view all locks currently held
or awaited by all transactions.

Administrators use the dm_lock_meters command to examine metering information
kept on all locking activity during a given period.

Administrators use the before~ournal_meters command to examine metering
information on journal use during a given period on a system and per-journal basis.
Non-privileged use of this command provides metering information on the use of
those journals to which the requestor has access.

Administrators use the dm_set-.Journal_stamps command to release all sync-held
pages by setting the time stamp in all journals currently in use to the time that the
command is invoked. This in turn will cause all sync-held pages to be flushed to
disk, which may endanger recovery in case of a crash without ESD.

10-35 AG91-Q4

It may be necessary to invoke this command if before journals become damaged.
preventing transactions from being committed, or if there is an unusually large number
of sync-held pages, stalling system performance. This command provides a means of
keeping the system running instead of shutting it down. It should be used judiciously.

Administrators use the dm_set_system_dir command to set up a data management
per-system directory in their own process, for test purposes. For normal processing.
the DMS per-system directory at >site>Data_Management is used.

Administrators use the dm_send_request commapd under unusual circumstances to
request certain actions of the daemon. Actions that can be requested include: kill a
transaction, adjust a TDT entry. recalculate shutdown times, or do a new_proc.

10-36 AG91-04

APPENDIX A

MULTICS CHARACTER SETS

The Multics system uses the full ASCII character set for most languages. The
Multics Extended Character Set, discussed below, is also available on a limited scale.

ASCII CHARACTER SET

Multics uses the revised ASCII Standard (refer to American National Standards
Institute, "ANSI Standard X3.4-1968"). The set consists of 128 7-bit characters,
including 94 printing graphics, 33 control characters, and the space.

Printing Graphic Characters

The ASCII printing graphic characters are the uppercase alphabet, the lowercase
alphabet. digits. and a set of special characters (see Table A -1). The special characters
are listed below.

exclamation point
II double quote
number sign
S dollar sign
% percent
& ampersand

acute accent
(left parenthesis
) right parenthesis
~'c as ter i sk
+ plus
, comma
- minus
• period
/ right slant

colon

Control Characters

semicolon
< less than
= equals
> greater than
? question mark
@ commercial at
[left bracket
\ left slant
] right bracket
A circumflex

underline
grave accent

{ left brace

J
1 vert i ca 1 1 i ne

right brace
'" tilde

The fonowing conventions define the standard meaning of the ASCII control
characters that are given precise interpretations in Multics. These conventions are
followed by all standard I/O modules and by all system software inside the I/O
system interface. Since some devices have different interpretations for some characters,
it is the responsibility of the appropriate I/O module to perform the necessary
translations.

A-I AG91-04

Table A-I. ASCII Character Set on Multics

. 0 2 3 4 5 6 7

000 (NUL) BEL

" 010 5S HT NL VT NP CR RRS BRS

020

030

040 Space II # $ % &

050 ,'c + /

060 0 2 3 4 5' 6 7

070 8 9 < > ?

100 @ A B C D E F G
.t

110 H J K L M N 0

120 P Q R S T U V W
}'.

130 X y Z [\]

140 a b c d e f 9

150 h j k m n 0

160 p q r s t u v w

170 x y z { } PAD

A-2 AG91-04

The Multics standard control characters are:

BEL
Sound an audible alarm.

BS (Backspace)
Move the carriage back one space. The backspace character implies
overstrike rather than erase.

HT (Horizontal tab)
Move the carriage to the next horizontal tab stop. Multics standard tab
stops are at 11, 21, 31... when the first column is numbered 1.

NL (Newline)
Move the carriage to the left end of the next line. This implies a
carriage return plus a line feed. ASCII LF (octal 012) is used for this
character.

VT (Vertical tab)
Move the carriage to the next vertical tab stop and to the left of the
page. Standard tab stops are at lines 11, 21, 31... when the first line is
numbered 1.

NP (new page)
·Move the carriage to the top of the next page and to the left of the
line. ASCII FF (octal 014) is used for this character.

CR (Carriage return)
Move the carriage to the left of the current line. This character cannot
appear in a canonical string.

RRS (Red ribbon shift)
ASCII SO (octal 016) is used for this character.

BRD (Black ribbon shift)
ASCII SI (octal 017) is used for this character.

PAD (Padding character)
This is used to fill out words that contain fewer than four characters
and that are not accompanied by character counts. This character is
discarded when encountered in an output line. It may appear in a
canonical character string if the input/output conversion of a user's
terminal is set properly. ASCII DEL (octal 177) is used for this
character.

A-3 AG91-Q4

The characters designated as unused are specifically reserved and can be assigned
definitions at any time. Until defined, unused control characters are written using the
octal escape convention in normal output and are not printed in edited mode. Users
wishing to assign interpretations for an unused character must use a nonstandard I/O
module.

If a device does not perform a function implied by a control character. its
standard I/O module provides a reasonable interpretation for the character on output.
This might be substituting one or more characters for the character in question.
printing an octal escape, or ignoring it.

Nonstandard Control Character

One control character. NUL, is recognized under certain conditions by all I/O
modules because of its wide use outside Multics. This character is handled specially
only when the I/O module is printing in edited mode, and is. therefore, ignoring
unavailable control functions. The null character is ASCII character NUL (octal 000).
In normal mode. this character is printed with an octal escape sequence; in edited
mode, it is treated like PAD. This character may appear in a canonical character
string if the input/output conversion of a user's terminal is set properly. Programmers
are warned against using NUL as a routine padding character and using edited mode
on output because all strings of zeros, including mistakenly uninitialized strings. are
discarded.

Unused Characters

These characters are reserved for future use:

SOH 001 ACK 006 DC4 024 EM 031
STX 002 OLE 020 NAK 025 SUB 032
ETX 003 DCl 021 SYN 026 FS 034
EOT 004 DC2 022 ETB 027 GS 035
ENQ 005 DC3 023 CAN 030 RS 036

us 037

MULTICS EXTENDED CHARACfER SET

The Multics Extended Character Set consists of 512 9-bit characters stored one
per byte. It contains the ASCII character set as its first 128 characters.

Most Multics commands and subroutines use only the 128 ASCII characters.
Multics APL, however, uses many non-ASCII characters to represent the extra graphics
in its character set. The APL use of the Multics Extended Character Set is not a
Multics standard; there is no standard for mapping non-ASCII character codes to
graphic characters.

A-4 AG91-04

APPENDIX B

DEFINING TERMINALS AND NAMING
CHANNELS WITHIN THE MUL TICS

COMMUNICATIONS SYSTEM

The Multics Communication System (MCS) effects the transfer of data between
the Multics virtual memory and various remote devices (primarily terminals) over
communications channels.

The bulk of MCS resides in the Multics supervisor and in a separate machine.
the Front-End Network Processor (FNP). The user-ring and supervisor portions of
MCS are principally concerned with terminal management, while the FNP's primary
responsibility is channel management. In general. the user need not be concerned with
channel management. Most user and system programs interface to MCS through the
input/ output system by means of the iox_ subroutine. described in the Subroutines
manual. For general information on the use of the I/O system, see Section 5.

TERMINALS AND CHANNELS

The term "channel" (or "communications channel"). as used here. refers to a
physical connection between an FNP and a remote input/output device. Such a
connection may go through a telephone system or a private communications network.
or it may consist of one or more hardwired cables. For information on the
specification and management of all communications channels known to the system. see
the MAM Communications. The naming of channels is described later in this
appendix.

The word "terminal" is used to refer to the device itself; it may be an
ordinary interactive terminal on which a user types commands. or it may be a
computer controlling one or more peripheral devices. The setting and changing of
terminal types are described later in this appendix.

*

B-1 AG91-()4

AITACHMENTS

An interactive terminal is normally connected to the system (attached) through
the tty_ I/O module (see the Subroutines manual). For the user's login terminal, this
attachment is performed automatically in the course of process creation. Users who
desire extended support for special video terminal features must attach their terminal
to the "video system" via the window_io_ I/O module.

Other types of devices that use special communications protocols may have to
be attached through special-purpose I/O modules. Several such modules are supplied
with the system; they are described in the Subroutines manual. Users and sites may
also supply their own I/O modules that interface to one of the existing modules (see
Section 5).

Additional terminals can be connected to the user's process using the dial
facility. For more information on the dial facility, see the dial command in the
Commands Manual or the dial_manager_ subroutine in the Subroutines Manual.

DATA TRANSFORMATION

One of the most visible functions of MCS is the transformation of data read
from or written to the terminal. This may include rearrangement of white space,
replacement of one character by a sequence of characters, and, in some cases,
wholesale translation from one character code to another. The types of conversion for
input and output are described in Section 3. The specific details of any particular
conversion are determined by terminal type and, to a lesser extent, by the modes
associated with the attachment. Terminal types are explained below. and the effects of
the various modes are given in the description of the tty_ I/O module (see the
Subroutines manual). The set_tty command, described in the Commands manual, can
be used to change the terminal type or to modify many of the parameters used in
converting input or output.

The special-purpose I/O modules (those other than tty-> usually perform their
own data conversions independent of terminal type. They generally put the terminal in
rawi and rawo modes (i.e.. "raw" input and output) to prevent the rest of MCS from
performing any transformations on data to or from the terminal.

TERMINAL TYPE CONCEPT

A terminal type is a named set of parameters identifying the characteristics and
behavior of a terminal. The following attributes are components of a terminal type:

• character set (e.g., EBCDIC, ASCII, etc.)
• in response to carriage movement characters
• in response to other control sequences
• required for carriage movement functions (delays)
• control of horizontal tabs
• line length and page length

B-2 AG91-o4

These parameters are used by the Multics Communication System to determine
how to format output to, and interpret input from, the terminal. The specification of
these individual parameters can be changed independently; the terminal type provides a
mechanism for specifying them all at once without having to know the details of their
implementation.

Terminal Type and Line Type

It is important to distinguish between terminal type and line type, both of
which terms are used in describing a terminal connection to Multics. A line type
defines the communications protocol used on a particular channel; it is a characteristic
of a channel rather than of a terminal. The terminal type may be changed by the
user in order to modify the system's treatment of the terminal; the line type is
determined by the system, and cannot be changed while the channel is in use.

TERMINAL TYPE TABLE AND TERMINAL TYPE FILE

Terminal types are defined in a data base called the terminal type table (TTT).
There is a system-wide TTT that is used by default; each process, however, can use its
own TIT instead. The TTT being used by a process can be changed by means of the
set_ttt_path command. The various entries of the ttt_info_ subroutine, described in
the Subroutines manual, can be used to extract information from the TTT. The
print_terminal_types command lists the names of all terminal types defined in the
TTT; the display_ttt command displays the contents of the TTT in readable format.
These commands are all described in the Commands manual.

The TIT is derived from an ASCII segment, suitable for creation and
modification using a text editor, called the terminal type file (TIP). A TIT is
generated from a TIF by means of the cv _ttf command, also described in the
Commands manual. The syntax of a TIP is described later in this appendix.

Setting Terminal Types

Every terminal connected to the Multics system has a terminal type associated
with it at all times. The terminal type associated with a particular terminal may be
set in any of the f oHowing ways:

1. When the terminal dials up (Le.. a connection is established). its
terminal type is set in accordance with its line type and baud rate as
specified in the default type table in the TTT (see "Syntax of the TIF"
below).

B-3 AG91-()4

2. If the channel on which the terminal dialed up has an initial terminal
type associated with it in the channel definition table (CDT). that
terminal type is assigned to the terminal. See the MAM Communications
for more information on the CDT.

3. If the terminal provides an answerback sequence that matches one of
the answerback specifications in the TIT (see "Syntax of the TTF"). its
terminal type is set according to the answerback.

4. If the user specifies the -terminal_type control argument to the login
command or uses the terminal_type preaccess request. the terminal type
is set accordingly. See the description of the login and terminal_type
pre-access requests in the Commands manual.

5. The user may. at any time, change nlS terminal type by invoking the
set_tty command with the -terminal_type control argument.

Changing Terminal Type Definitions

A user wishing to invent a new terminal type, or change the characteristics of
an existing terminal type, may edit a copy of the system-supplied TTF and create a
new ITT by using the cv_ttf command. Whenever he wishes to use the new or
redefined terminal type(s). he switches to the new TTT by means of the set_ttt_path
command, and then uses the set_tty command to change his own terminal type to the
desired one. This change affects only his current process; other users of the same
non-standard ITT are not affected until they use the set_tty command to set or
change terminal type.

Note: Various sequences of characters beginning with the ASCII "escape"
character (octal 033) are treated by some terminals. when sent as
output. as commands to the terminal. These commands may have
unexpected or undesirable effects on the behavior of the terminal if.
for example, they are embedded in a piece of online mail. For this
reason. the standard TIT distributed by Honeywell is designed to
prevent the escape character from being included in normal output
for most terminal types. Users or sites providing their own TITs
should be aware of the hazards of allowing escape sequences to be
sent to terminals as a matter of course.

Terminal T!pe Table

The terminal type table (TIT), a data base that resides by default in the
segment:

describes all the terminal types used by MCS.

B-4 AG91-04

The TTT is a binary table containing numbers and pointers as well as character
strings; therefore, it cannot be examined or modified using the editors. The display_ttt
command is used to print out all or part of the TTT; when the system administrator
wishes to add or delete terminal types, or change the information about one or more
terminal types, he compiles a TIF into a TIT using the cv_ttf command. and then
uses the install command to replace the copy of the TTT in the system.

A TTT is supplied by Honeywell that includes, but is not limited to, the
following terminal types:

Terminal Type

ASC I I CAPS

ASCII_CRT_CAPS
ADM3A
AJ630
AMBASSADOR
CONCEPTIOO
DIABL01640
HAZELTINE1510
HEATH19
IBM3271
INFOTON100
IRISCOPE200
L6FTF
LA120
LED120
NEC5520
NEC5525
SARA
SYSTEM75
TEK4023
TEK4025
TELERAYI061
TRANSLEX
TVI920
VIP7700_CLUSTER

VIP7705

VIP7714
VIP7760
VIP7705R

VIP7760 CONTROLLER
VI P7804-
VIP7804_CLUSTER

VISTAR
VT100

Description

Typical ASCI I teleprinter terminal
(uppercase on 1 y)

Typical ASCII crt terminal (uppercase only)
Lear Siegler Model ADM-3A
Anderson-Jacobson Model 630
Ann Arbor Ambassador CRT
Human Designed Systems Concept 100
Diablo Systems Series 1640
Hazeltine Model 1510
Heath Model H19
Control unit for IBM3270 terminal cluster
Infoton 100 Display Terminal
Iriscope 200
Honeywell L6 File Tranmission Facility
Digital Equipment LA120 DECwriter I I I
Triformation Systems braille terminal
Nippon Electric Model 5520 (Spinwriter)
Nippon Electric Model 5525 (Spinwriter)
Honeywell SARA 20
Selecterm System 75
Tektronix 4023
Tektronix 4025
Teleray 1061
ECD Translex Intell igent Terminal
TeleVideo Model TVI-912 and 920
Honeywell Multiple Interface Unit for Series

ViP7700 Polled ViP Terminal
Honeywell VIP7700 Polled VIP Display Terminal

(upper and lower case)
Honeywell VIP7714 read only printer
Honeywell VIP7760 Display Station
Honeywell VIP7700R Polled VIP Display Terminal

(upper and lower case)
Honey~ell VIP7760 Controller
Honeywell VIP7804 Polled VIP Display Terminal
Honeywell Multiple Interface Unit for Series

VIP7804 Polled VIP Terminals
Infoton Vistar Satellite terminal
Digital Equipment Model VT-l00

B-5 AG91-()4

These terminal types can change at any time. so the user should invoke the
print_terminal_types command to verify the current types.

SYNTAX OF THE IT .. "

The TIF defines all terminal types known to the system. It is an ASCII file
which, when compiled into a binary table (the TIT), is installed at the system
administrator's request.

The TIF consists of a series of entries describing terminal types, tables, and
answerback interpretations. Each entry consists of a series of statements that begin
with a keyword and end with a semicolon. White space and comments written in the
same style as PL/I comments enclosed by /* and * / may appear between any tokens
in the TIF. The last entry in the TIF must be the end statement. Global statements
specifying defaults may appear anywhere before the end statement; the defaults they
specify are in effect for all subsequent terminal type entries, until they are overridden
by subsequent global statements. Except for the end statement, all statements consist
of the statement keyword, a colon, the variable field of the statement, and a
semicolon.

Generalized Character Specifications

Many statements in the TIF take as arguments single characters, or lists of
single characters. Statements that accept .such operands are shown with the
<tty_char>notation. A <tty_char> operand may be any of the following:

1. A single unquoted character, such as X, A, p, $ or "'. This notation is
only allowed for "simpleu characters. This notation may not be used for
control characters, white space, ASCII digit characters, "('\ ")", "<",
">11, II II, ":", ".", ";", or the double quote character.

2. A single quoted character, such as "X", n;", "B", or "0". Any ASCII
code can be entered this way. Note that digits should be specified as
"0", not O.

3. A 1 to 3 digit octal number, such as 177, 14 or 007. This enters the
character whose octal representation is as specified. Note that 0 is
interpreted as octal 000. If the ASCII digit "0" is desired, it must be
specified as "0" or 060.

4. The name of a control character, such as DEL. These may be either
upper or lower case. All standard control characters are accepted,
including:

NUL SOH STX ETX EDT ENQ ACK BEL (000 - 007)
BS TAB LF VT FF CR SO SI (010 - 017)
ULt. DCi DC2 DC3 DC4 NAK SYN ETB (020 027)
CAN EM SUB ESC FS GS RS US (030 - 037)

In addition, SP (040), DEL (177). NL (012), and HT (011) are also
accepted.

B-6 AG91-04

5. Control characters ""'may also be entered in the form 1\ A, which is read
as control-A, and is the character sent when the control-A function is
used on an ASCII keyboard. 1\ A is equivalent to SOH, or 001. The
letters A-Z (upper or lower case equivalent) preceded by a IIAII may be
used for 001 through 032. Also accepted are A@ (000), A [(033),
A\ (034), A] (035), AA (036), and 1\ (037).

Terminal Type Entry

The entry for each terminal type consists of a terminal_type statement naming
the terminal type, followed by various statements describing the attributes of that
terminal type. Attributes not specified for a terminal type are set from the defaults
established by global statements or supplied by the cv _ttf command.

A description of each statement found in a terminal type entry is given below.

terminal_type: <type name> {like <type name>};
The terminal_type statement is required. It specifies the name of the terminal
type described by the statements following it. The type name has a maximum
length of 32 characters. All lowercase letters in the type name are translated
to uppercase bef ore being stored in the TIT. If the optional like keyword is
supplied, it indicates that the attributes of the current terminal type are to be
copied from the entry for the type whose name follows the like keyword,
except for those that are overridden by subsequent statements in the current
entry. The like keyword must refer to a previously defined terminal type.

modes: <model>, <mode2>, ••• <modeN>;
The modes statement is required. It specifies the modes to be set when the
type of the terminal is assigned. A mode name may be preceded by a 1\

character to indicate that the specified mode is off for the terminal type. The
line-length specification (W must be included in the modes statement See
"Modes Operation" below for a list of the valid modes.

function_keys: <table name>;
The function_keys statement is optional. It specifies the name of a function_key
table (defined by a function_key_table entry) to be used for this terminal. If
it is omitted, or the table name is a null string, the terminal is assumed to
have no function keys.

initial_string: <string>;
The initial_string statement is optional. If present, it specifies a character
string to be sent to the terminal in rawo mode in order to initialize certain
physical characteristics of the terminal (e.g., to set its horizontal tabs). This
string is sent either at dialup time, in response to a "send_initial_string" order,
or when set_tty is invoked with the -initial_string control argument The string
is specified as one or more substrings. Each substring may be one of the
following:

1. A quoted string e.g., "sR". If a quoted string is to contain a quote
character, that quote must be doubled. (e.g., "s""R" is s"R).

B-7 AG91-Q4

•

01/87

2. <tty-char>

1 «decimal-integer» «substring> ••• <substring»

where <dec i ma 1- integer> is a repetition factor enclosed in parentheses
and followed by one or more substrings enclosed in angle brackets
«and». For example:

(lo) <040 ETX>

represents 10 repetitions of the two character sequence consisting of a
space and an ETX character (octal 003).

additional_info: <string>;
The additional_info statement is optional. If provided, it specifies additional
information which may be needed to run the terminal. This information is not
interpreted by the standard terminal software. and is not passed to the
supervisor; it may be used by a special I/O module used to run terminals of
the current type. The format and contents of the string depend on the
particular application; it may even be the pathname of a segment containing
additional information. The string is specified in the same way as for the
initial_string statement (above).

bauds: <baudl> <baud2> •.• <baudN>;

can also be written as:

bps: <baud1> <baud2> ••• <baudN>;
The bauds statement is required if any delay statements (see below) are
provided, and it must precede all delay statements. It specifies the baud rates
to which the values supplied in the delay statements apply. A specification of
"other" in the bauds statement means that the corresponding values in the delay
statements apply to all baud rates not specified. If "other" is not specified,
then delay values of 0 are assumed for all baud rates not specified in the
bauds statement The following is a list of the baud rates that may be
specified:

110
150
300

600
1200
1800

B-8

2400
4800
7200

9600
19200

AG91-04A

01/87

cps: <cps1> <cps2> ••• <cpsN>;
The cps statement may be used in place of the bauds statement (above) to
express . terminal speeds in characters per second. The value stored in the TIT
is the corresponding baud rate. The cps values that may be specified, and their
corresponding baud rates, are listed below:

cps value baud rate

10 110
15 150
30 300
60 600

120 1200
180 1800
240 2400
480 4800
720 7200
960 9600

1920 19200

<delay keyword>: <valuel> <value2> ••• <valueN>;
In each delay statement, the same number of values must be supplied as baud
rates in the bauds, bps, or cps statement Each value specifies the number of
delays to be used f or the character described by the delay keyword at the
baud rate specified in the corresponding position in the bauds statement (see
example below). The possible delay keywords are: .

vert_nl_delays
the number of delays to be sent with a newline operation
(-127 ~ vert_n l_de 1 ays ~ 127). If it is negative. its absolute

value is the minimum number of characters that must be transmitted
between two linef eeds.

horz_nl_delays
the variable number of delays to be sent for each column position
traversed by a carriage return or a newline operation. This is a
floating point number (0 ~ horz_n l_de 1 ays ~ 1).

const_tab_delays
the minimum number of delays to be sent with a horizontal tab
(0 ~ const_tab_delays ~ 127).

var_tab_delays
the number of additional delays to be sent for each column position
traversed by a horizontal tab. This is a floating point number
(0 ~ var_tab_delays ~ 1).

backspace_delays
the number of delays to be sent with a backspace
(-127 ~ backspace_delays ~ 127). If it is negative, its absolute

value is the number of delays to be output with the first backspace
of a series only (or a single backspace).

*

B-9 AG91-04A

vt_ff _delays
the number of delays to be sent with a vertical tab or formfeed
(0 ~ vt_ff_delays ~ 511).

Values of zero are assumed at all baud rates for any delay type not specified.

Example:

bauds: 110 150 300 1200 other;

vert_nl _delays: 2 3 6 24 30;

horz_nl _delays: . 1 • 12 .2 .8 1 ;

const_tab_delays: 0 2 7 10;

var_tab_delays: . 1 • 12 .2 .8 1 ;

backspace_delays: 0 0 3 6;

vt_ff_delays: 0 0 0 0 0;

The first column gives the complete set of delay yalues to be used at
110 baud; the second column gives the values to be used at 150 baud,
etc.

line_types: <line_type name1>, <line_type name2>, ... <line_type nameN>;
The line_types statement is optional. It specifies the names of the line types
on which a terminal of the current type can be run. If it is omitted. the
current terminal type can run on any line type.

erase: <tty_char>;
The erase statement is optional. It specifies the erase character for the terminal
type. If it is omitted, the # character is used.

kill: <tty_char>;
The kill statement is optional. It specifies the kill character for the terminal
type. If it is omitted, the @ character is used.

line_delimiter: <character>;
Specifies the terminal'S normal line delimiter character. The character must be
specified as one to three octal digits in the terminal's input code (untranslated).
This character defaults to 012 unless the line type is 2741 or 1050, in which
case it defaults to 055.

keyboard_addressing: yes/no;
The keyboard_addressing statement is optional. It indicates whether or not to
do keyboard locking and unlocking for a terminal on a communications channel
whose line type is ASCII. If it is not provided, a value of no is assumed.
This attribute is ignored for channels of any other line type.

B-10 AG91-04

print_preaccess_message: yes/no;
The print_preaccess_message statement is optional. It indicates whether or not
the answering service should print a message advising the user to enter a
preaccess request if the user entered an unrecognized login word. It is useful
in cases where the character code of the terminal may be different from what
was expected. At present, only one possible preaccess message is defined,
suitable for use with EBeD and Correspondence-code IBM 2741 terminals. If
the print_preaccess_message statement is omitted. a value of no is assumed.

conditional_printer_off: yes/no;
The conditional_printer_off statement is optional. It indicates whether or not
the answerback identification of the terminal should be used to determine
whether the terminal is equipped with the printer-off feature. If yes is
specified. a terminal of this type is assumed not to have printer-off unless it
has an answerback ID beginning with a digit (0 to 9); otherwise. the existence
of the printer-off feature is deduced from the presence or absence of a
printer-off sequence in the special characters table (see below). This attribute
is primarily useful for IBM 2741 terminals. If the conditional_printer_off
statement is omitted. a value of no is assumed.

input~conversion: <table name>;
The input_conversion statement is optional. It specifies the name of a
conversion table (defined by a conversion table entry) to be used in converting
input from the terminal. If it is omitted. or the table name is a null string,
no input conversion table is used.

output_conversion: <table name>;
The output_conversion statement is optional. It specifies the name of a
conversion table (defined by a conversion table entry) to be used in converting
output sent to the terminal. If it is omitted. or the table name is a null
string. no output conversion table is used. If the terminal is connected to the
system through the tty_ I/O module. the output_conversion table cannot
contain more than 128 characters. If the terminal is connected to the
window_io_ I/O module. the output_conversion table can contain 256 characters.

special: <table name>;
The special statement is optional. It specifies the name of a table (defined by
a special table entry) to be used as a special characters table when converting
input and output (see "Special Characters Table Entry" below). If it is omitted.
or the table name is a null string. no special characters table is \!SPA. If an
output conversion table whose entries are not all 0 is specified. a special
characters table must also be specified in order for the terminal to function
correctly.

input_translation: <table name>;
The input_translation statement is optional. It specifies the name of a table
(defined by a translation table entry) used to translate input from the code of
the terminal to ASCII. If it is omitted. or the table name is a null string.
input is not translated.

B-11 AG91-()4

output_translation: <table name>;
The output_translation statement is optional. It specifies the name of a table
(defined by a translation table entry) used to translate output from ASCII to
the code of the terminal. If it is omitted, or the table name is a null string.
output is not translated.

old_type: <number>;
The old_type statement is optional. It may be used for compatibility purposes
to specify the numeric value of the terminal type formerly predefined by the
Multics Communication System that most closely corresponds to the terminal
type described by this terminal type entry.

framing_chars: <frame_begin> <frame_e~d>;
The framinLchars statement is optional. If present, it specifies the framing
characters generated by the terminal when sending frame input at channel
speed. The <frame_beg in> and <frame_end> are <tty_chars>'s as defined
above. In the terminal's character code they represent the frame_begin and
frame_end characters respectively (i.e., without translation). <frame_beg i n> can
be NUL or 000 to indicate that there is no frame_begin character; in this case,
all input in blk_xfer mode is treated as part of a frame.

The following statements define parameters for flow control to and from
asynchronous terminals. For more information, see the discussion of flow control in
Section 3.

input_suspend: <tty_char>;
The input_suspend statement is optional. If present, it specifies a character to
be transmitted to the terminal in iflow mode in order to temporarily suspend
input or, alternatively, a character that the terminal sends to inform the system
that it is suspending input. In either case, input is restarted when the
input_resume character (see below) is sent to the terminal. This feature is
appropriate for use on certain terminals which do input at line speed. If the
input_suspend statement is present, the input_resume statement must also be
present.

input_resume: <tty_char> {, timeout};
The input_resume statement is optional, unless the input_suspend statement
(above) is present It specifies a character that, when sent to the terminal by
the system while in iflow mode, causes it to resume temporarily suspended
input Depending on the terminal, the input_suspend character (above) may not
be required. The timeout keyword, if supplied, indicates that the terminal may
suspend input (as at the end of a tape record) without transmitting an
input_suspend character, in which case it is the responsibility of the system to
detect this situation and send the input_resume character after input has been
suspended. If the input_resume statement is specified but the input_suspend
statement is not, the input_resume statement must include the timeout keyword.

B-12 AG91-Q4

output_suspend: <tty_char>;
The output_suspend statement is optional. It may be used with terminals that
implement a suspend_resume protocol for output flow control. If present, it
specifies a character that the terminal transmits to cause the system to suspend
output so that the terminal can empty its internal buffer. The character is
only interpreted by the system in oflow mode. Output is restarted when the
terminal sends the output_resume character (see below). If the output_suspend
statement is specified. the output_resume statement must also be specified, and
none of the output_end_of_block. output_acknowledge. and buffer_size statements
may be specified.

output_resume: <tty_char>;
The output_resume statement is optional. unless the output_suspend statement is
present. It specifies a character transmitted by the terminal to inform the
system that output that was suspended in response to an output_suspend
character (see above) can be "resumed. If the output_resume statement is
present, the output_suspend statement must also be specified. and none of the
output_end_of_block. outpuc.acknowledge. and buffer_size statements may be
specified.

buffer_size: <number>;
The buffer_size statement is optional. It may be used with terminals that
implement a block acknowledgement protocol for output flow control. If
present, it specifies the size in characters of the terminal's output buffer. and
is used to determine the maximum number of characters to be sent to the
terminal at one time (in one transmission) in oflow mode. Each block of up
to that number of characters is terminated by an output_end_of_block
character (see below). The next block is not transmitted until the terminal
sends an output_acknowledge character. If the buffer_size statement is
specified. the output_end_of_block and output_acknowledge statements must also
be specified, and neither the output_suspend nor the output_resume statement
may be specified.

output_end_of_block: <tty_char>;
The output_end_of_block statement is optional. If it is present. it specifies a
character to be appended to every output block. as described under the
buffer_size statement above. If the output_end_of_block statement is specified,
the output_acknowledge and buffer_size statements must also be specified. and
neither the output_suspend nor the output_resume statement can be specified.

output_acknowledge: <tty_char>;
The output_acknowledge statement is optional. If present. it specifies a
character that is transmitted by the terminal when it is ready to receive the
next block of output. as described under the buffer_size statement (above). If
the output_acknowledge statement is specified. the buffer_size and
output_end_of _block statements must be specified. and neither the output_suspend
nor the output_resume statement may be specified.

B-13 AG91-()4

Video Table Definition

Each terminal type may have an optional video table defined. This table contains
control sequences for performing standard operations on video terminals. The table
starts with the keyword:

A global video table. which will be used for all terminal types that do not have a
video table specified, is started with the keyword:

The absence of a video table may be specified

This may be used to negate the effects of a global Video_info statement or a video
table inherited from a similar terminal type.

The video_info keyword is followed by 1 or more video info statements,
described below. The video table is terminated by the first statement not in this list.

screen_height: <decima1-integer>;

specifies the usable number of .lines on the screen.

screen_1ine_1ength: <decimal-integer>;

specifies the usable number of columns on the screen.

The following statements describe various video control sequences. Each
<video_sequence> is a character string built by the concatenation of all the operands
given. The sequence may also be followed by an optional delay or padding
specification. Video sequences may be built out of any combination of the following:

<tty_char>
quoted string, such as IIsRIl

<addressinglrepeat specification>

The addressing or repeat specification is entered as follows:

binary
(dec i rna 1 {n}
octa 1 {n}

LINE
COLUMN

N

+
- <ttychar})

This specification takes the value to be sent to the terminal (LINE. COLUMN. N).
encodes it in some way (binary. decimal. octal). and adds or subtracts a fixed offset
(+ 1- <t ty-char» .

B-14 AG91-04

LINE represents the vertical or row poslt10n on the screen (1 origin).
COLUMN represents the horizontal or column position on the screen (also 1 origin).
The upper left hand corner of the screen. usually called home, is location LINE= 1.
COLUMN=!. The LINE and COLUMN notations are usually used in the absolute
cursor addressing sequence. although they may be wherever required, depending on the
terminal. N refers to a repeat count. which some terminals support for some
operations.

These values may be encoded in either binary, decimal, or octal. Binary means
byte (X), as in the PL/1 builtin. Decimal or octal causes the value to be converted to
a ~ character string representation. If {n} is given, it must be 1, 2, or 3, and refers to
the length of the character string to be sent, padded with leading zeroes if required.
If {n} is 0, or not specified, no leading zeroes will be sent. For example. if
COLUMN is 35,

(decimal 3 COLUMN) -> "035"
(decimal COLUMN) -> "35"
(octa 1 3 COLUMN) -> 11043 11

(b i nary COLUMN) -> "#!!
(COLUMN) -> "U"

If an offset is required, it may be specified as + 1- <tty-char>. The value
rank (tty-char) will be added to or subtracted from the number to be sent before it
is encoded. A common example is (LINE + 037). In this case, a LINE of 1 will yield
a space (octal 40), a LINE of 2 will yield " " (octal 41), etc.

Any video sequence may have an optional <padding> value, expressed as
follows:

, pad n {us Ims}

If us (micro seconds), or ms (milliseconds) is specified, n is interpreted as a
time value. Otherwise, it is an absolute number of pad characters required, regardless
of the baud rate. If a time is specified, the minimum that can be specified is 100
microseconds. All values are rounded up to the next multiple of 100 microseconds.
The maximum value is 26.2 seconds. Time values are converted to a pad count at
execution time, depending on the baud rate of the terminal.

The following statements all use the syntaxes just described. Each statement
also has a definition of exactly what eff ect the sequence has on the terminal. If the
terminal does not have the capability to perform the function described, the statement
should be omitted.

abs_pos: <video-sequence> {<padding>}

defines the absolute cursor positioning sequence. This sequence moves the cursor to a
given (LINE, COLUMN). Other than the cursor, no characters on the screen are
affected.

B-15 AG91-04

clear screen: <video-sequence> {<padding>}

defines the screen clearing sequence. This sequence clears the entire screen to spaces
regardless of where the cursor is, and leaves the cursor at home. This sequence does
not clear tabs.

clear_to_eos: <video-sequence> {<padding>} ;

defines the clear to end of screen sequence. This clears the screen from the current
cursor position to the end of the screen. It does not move the cursor or clear tabs.

home: <video-sequence> {<padding>}

deiines the mOVe cursor home sequence. The cursor moves to location LINE= 1,
COLUMN = 1.

clear_to_eol: <video-sequence> {<padding>} ;

defines the clear to end of line sequence. Starting at the current cursor position, the
rest of the current line clears to spaces. The cursor does not move.

cursor_up: <video-sequence> {<padding>} ;

defines a sequence to move the cursor up one row. It does not have any effect on
the column. The effect of the sequence when the cursor is on the top line of the
screen is undefined.

cursor_right: <video-sequence> {<padding>} ;

defines a sequence to move the cursor one column to the right. It does not have "any
effect on the row. The effect of the sequence when the cursor is in the last column
of the screen is undefined.

cursor_down: <video-sequence> {<padding>} ;

defines a sequence to move the cursor down one row. It does not have any effect on
the column. The effect of the sequence when the cursor is on the bottom line of the
screen is undefined.

cursor_left: <video-sequence> {<padding>} ;

defines a sequence to move the cursor one column to the left. It does not have any
effect on the row. The effect of the sequence when the cursor is in the leftmost
column of the screen is undefined.

insert_chars: <video-sequence> {<padding>} ;

defines a sequence for inserting characters on the current line. If end_insert_chars
(see next statement) is defined. insert_chars should put the terminal in a mode in
which each character sent to the terminal is placed on the screen at the cursor
location; each character to the right of the cursor is pushed one position to the right;
and the cursor is moved one position to the right. The effect of pushing characters
off the righthand edge of the screen is undefined. If end_insert_chars is not defined,
insert_chars is defined as opening up N (or 1) spaces on the line. pushing characters
to the right of the cursor toward the right. The cursor does not move in this case.

B-16 AG91-04

end_insert_chars: <video-sequence> {<padding>} ;

defines a sequence for taking the terminal out of insert_chars mode. See above.

delete_chars: <video_sequence> {<padding>}

defines a sequence for deleting characters from the current line. The character at the
cursor is deleted, and all characters to the right are moved one column to the left. A
space is inserted in the last column of the screen.

insert lines: <video_sequence> {<padding>}

defines a sequence for inserting lines on the screen at the current cursor position. All
lines starting at the current line are moved down one line. The current line is filled
with spaces. The effect of pushing lines off the bottom of the screen is not defined.
This sequence is only defined to work when the cursor is at the leftmost margin. The
position of the cursor is not changed.

delete lines: <video_sequence> {<padding>} ;

defines a sequence for deleting lines from the screen. The current line is deleted by
moving all lines below it up one line. The bottom line of the screen is filled with
spaces. This sequence is only defined to work when the cursor is at the leftmost
margin. The position of the cursor is not changed.

Many terminals do not support all the functions described above, but often
they can be simulated by combinations of other functions. For example, the Honeywell
VIP7801 does not support clear_screen, as defined, because the clear sequence to that
terminal also clears the tabs. The effect of this can be simulated, however, by the
combination home (or abs_pos to 1,1) and clear_to_eos, which will clear the screen
without affecting the tabs. Thus a clear_screen sequence could be defined which is a
concatenation of the other two sequences. Similarly, if a terminal did not have a
cursor up sequence, but did support abs_pos, it would be possible to specify a
cursor_up sequence as a variant of the abs_pos sequence (by changing the offset by
1). In general, it is not recommended that this sort of optimization be done in the
TIF. Instead, the TIF should be viewed as describing the physical characteristics of
the terminal, and it is the job of software to choose from among the capabilities of
the terminal in order to provide the desired effect.

For most applications, a certain minimal set of functions is required to
perf orm video functions. . These are:

1. Some way of clearing the screen. Clear screen is best, but home and
clear_to_eos will work, as well as erase_to_eol on each line.

2. Some way of absolute cursor addressing. Abs_pos is best, but the combination
of home and the four cursor motion functions (up, down, left, and right) will
work also.

B-17 AG91-04

The video_info entry for the Honeywell VIP 7801 is:

video_info:

screen_line_length:
screen_height:
home:
c1ear_to_eos:
cursor_up:
cursor_right:
cursor_down:
cursor_left:
c1ear_to_eo1:
insert chars:
end insert chars: - -delete_chars:
i nser t_1 i nes:
de1ete_1 ines:
abs_pos:

Modes Operation

80;
24;
ESC H;
ESC J, pad 1;
ESC A;
ESC C;
LF;
BS;
ESC K;
ESC "[1";
ESC II [J";
ESC II [Pll;
ESC II [L";
ESC II [Mil;
ESC f (L I NE + 037) (COLUMN + 037)

The modes operation is supported when the I/O switch is open. The recognized
modes are listed below. Some modes have a complement indicated by the circumflex
character (A) that turns the mode off (e.g., Aerk 1). For these modes the complement
is displayed with the mode. Normal defaults are indicated for those modes that are
generally independent of terminal type. The modes string is processed from left to
ri~'1t. Thus, if two or more contradictory modes appear within the same modes string,
the rightmost mode prevails.

8bit, A8bit
causes input characters to be received without removing the 8th
(high-order) bit, which is normally interpreted as a parity bit. This
mode is valid for HSLA channels only_ (Default is off.)

b1k_xfer, Ab1k_xfer
specifies that the user's terminal is capable of transmitting a block or
"frame" of input all at once in response to a single keystroke. The
system may not handle such input correctly unless blk_xf er mode is on
and the set_framin~chars order has seen issued. (Default is off.)

breaka1l, Abreaka1l
enables a mode in which all characters are assumed to be break
characters, making each character available to the user process as soon
as it is typed. This mode only affects get_chars operations. (Default is
off.)

can, '~'can

performs standard canonicalization on input. (Default is on.)

B-18 AG91-04

can_type=overstrike, can_type=replace
specifies the method to be used to convert an input string to canonical
form. Canonicalization is only performed when the I/O switch is in
"can" mode. (Default is can_type=overstrike.)

capo, "'capo
outputs all lowercase letters in uppercase. If edited mode is on,
uppercase letters are printed normally; if edited mode is off and capo
mode is on, uppercase letters are preceded by an escape (\) character.
(Default is off.)

crecho, "'crecho
echoes a carriage return when a line feed is typed. This mode can only
be used with terminals and line types capable of receiving and
transmitting simultaneously.

ctl_char, "'ctl_char
specifies that ASCII control characters that do not cause carriage or
paper motion are to be accepted as input, except for the NUL
character. If the mode is off, all such characters are discarded.
(Default is off.)

default
is a shorthand way of specifying erkl, can, "'rawi, "rawo,
"wakes tbl, and esc. The settings for other modes are not affected.

echoplex, "echoplex
echoes all characters typed on the terminal. The same restriction applies
as for crecho; it must also be possible to disable the terminal's local
copy function.

edited, "edited
suppresses prmtmg of characters for which there is no defined Multics
equivalent on the device referenced. If edited mode is ofi, the 9-bit
octal representation of the character is printed. (Default is off.)

erkl, "erkl
performs "erase" and "kill" processing on input. (Default is on.)

esc, Aesc

force

enables escape processing (see "Typing Conventions" in Section 2) on all
input read from the device. (Default is on.)

specifies that if the modes string contains unrecognized or invalid
modes, they are to be ignored and any valid modes are to be set. If
force is not speciiied, invalid modes cause an error code to be
returned, and no modes are set.

B-19 AG91-()4

fu11dpx, "fulldpx
allows the terminal to receive and transmit simultaneously. This mode
should be explicitly enabled before enabling echoplex mode.

hndlquit, "hndlquit
echoes a newline character and performs a resetread of the associated
stream when a quit signal is detected. (Default is on.)

iflow, "if1ow

init

specifies that input flow control characters are to be recognized and/or
sent to the terminal. The characters must be set before iflow mode can
be turned on.

sets all switch type modes off. sets line length to 50. and sets page
length to zero.

lfecho, "lfecho
'echoes and inserts a line feed in the user's input stream when a
carriage return is typed. The same restriction applies as for crecho.

11n, All
specifies the length in character poSItIOnS of a terminal line. If an
attempt is made to output a line longer than this length. the excess
characters are placed on the next line. If" 11 is spec if i ed, 1 i ne
1 ength check i ng is d i sab 1 ed. In this case. if a line of more
than 255 column positions is output by a single call to iox_$put_chars.
some extra white space may appear on the terminal.

no=outp, "no_outp
causes output characters to be sent to the terminal without the addition
of parity bits. If this mode and rawo mode are on, any 8-bit pattern
can be sent to the terminal. This mode is valid for HSLA channels
only. (Default is off.)

oddp, "oddp
causes any parity generation that is done to the channel to assume odd
parity. Otherwise. even parity is assumed for line types other than 2741
and 1050. This mode is valid for HSLA channels only. (Default is off.)

of low, "oflow
specifies that output flow control characters are to be recognized when
sent by the terminal. The characters and the protocol to be used must
be set before oflow mode can be turned on.

B-20 AG91-04

P 1 n, "'p 1
specifies the length in lines of a page. When an attempt is made to
exceed this length, a warning message is printed. When the user types a
formfeed or newline character (any break character), the output
continues with the next page. The warning message is normally the
string "EOP" , but can be changed by means of the set_special control
order. The string is displayed on a new line after .n consecutive output
lines are sent to the screen (including long lines which are folded as
more than one output line). To have the end-of-page string displayed
on the screen without scrolling lines off the top, .n should be set to
one less than the page length capability of the screen. unless the
end-of-page string is a null string. In this case, output stops at the
end of the last line of the page or screen. I f "'p 1 is specified,
end-of -page checking is disabled. (See description of scroll mode
below.)

polite, "'polite
does not print output sent to the terminal while the user is typing
input until the carriage is at the left margin, unless the user allows 30
seconds to pass without typing a newline. (Default is off.)

prefixnl, "'prefixnl
controls what happens when terminal output interrupts a partially
complete input line. In prefixnl mode, a newline character is inserted in
order to start the output at the left margin; in "'pref i xn 1 mode, the
output starts in the current column position. (Default is on.) Polite
mode controls when input may be interrupted by output; prefixnl
controls what happens when such an interruption occurs.

rawi, "'rawi
reads the data specified from the device directly without any conversion
or processing. (Default is off.)

rawo, "'rawo
writes data to the device directly without any conversion or processing.
(Default is off.)

red, "'red
sends red and black shifts to the terminal.

replay, "'replay
prints any partial input line that is interrupted by output at the
conclusion of the output, and leaves the carriage in the same position as
when the interruption occurred. (Default is off.)

B-21 AG91-()4

sere 11, "'sere 11
specifies that end-of-page checking is performed in a manner suited to
scrolling video terminals. If the mode is on, the end-of-page condition
occurs only when a full page of output is displayed without intervening
input lines. The mode is ignored whenever end-of -page checking is
disabled. (Default is off.)

tabeehe, "'tabeehe
echoes the appropriate number of spaces when a horizontal tab is typed.
The same restriction applies as for crecho.

tabs, "'tabs
inserts tabs in output in place of spaces when appropriate.· If tabs
mode is off, an tab characters are mapped into the appropriate number
of spaces.

vertsp, "'vertsp
performs the vertical tab and formfeed functions. and sends appropriate
characters to the device. Otherwise, such characters are escaped.
(Default is off.)

wake_tb1, "'wake_tb1
causes input wakeups to occur only when specified wakeup characters
are received. Wakeup characters are defined by the set_wakeup_table
order. This mode cannot be set unless a wakeup table has been
previously defined.

Global Statements

A global statement specifies a default value for a terminal type attribute. It has
the same form as the statement describing the attribute in a terminal type entry,
except that the statement keyword begins with a capital letter. Global statements may
not appear within terminal type entries. Global statements may be used for any of
the statements listed above for a terminal type entry. except for terminal_type,
initial_string, additional_info, and the delay statements. (A global Bauds, Bps, or Cps
statement is allowed, although a global delay statement is not.) A global video table
definition may be given by using the statement

Video_inf 0:

followed by one or more video table entries. The statement

may be used to specify that no default video table exists.

B-22 AG91-04

Conversion Table Entry

A conversion table entry consists of two statements: one specifying the name of
the table and one specifying its contents. The following is a description of a
conversion table entry.

conversion table: <table name>;
<valueD> <valuel> <value255>;

The table name is a string of up to 32 characters. The values are octal
numbers of one to three digits; each value is the indicator corresponding to the
character whose ASCII value is the index of the indicator in the table. The
set_input_conversion and set_output_conversion orders to the tty_ I/O module
(see the Subroutines manual) are presented below as a description of conversion
tables and the indicators they contain. If fewer than 256 values are supplied,
the unspecified values are assumed to be zero.

set_input_conversion
provides a table to be used in converting input to identify escape
sequences and certain special characters. The info_ptr points to a
structure of the following form: (defined in tty_convert.incl.pll)

dcl 1 cv trans struc - -2 version
2 default
2 cv_trans

3 value

aligned,
fixed bin,
fixed bin,
al i gned,
(0 : 255) fixed bin (8) una 1 i gned;

where version. default, and value are as described in the cv trans_struc
structure used with the set_input_translation order above. The table is
indexed by the ASCII value of each input character (after translation, if
any). and the corresponding entry contains one of the following values:
(~1nemonic na...TIles for these values are defined in tty_convertincLpl1)

o ordinary character
1 break character
2 escape character
3 character to be thrown away
4 formfeed character (to be thrown away if page 1 ength

is nonzero)
5 this character and immediately following character to

be thrown away

set_output_conversion
provides a table to be used in formatting output to identify certain
kinds of special characters. The info_ptr points to a structure like that
described for set~input_conversion (above). The table is indexed by each
ASCII output character (before translation, if any), and the corresponding
entry contains one of the following values: (Mnemonic names for these
values are defined in tty _convert incl. pll)

B-23 AG91-04

o
1
2
3
4
5
6
7
8
9
10
11 --

12
17

ordinary character
newl i ne
carriage return
horizontal tab
backspace
vertical tab
formfeed
character requiring octal escape
red ribbon shift
black ribbon shift
character does not change the column position
this character together with the following one do not
change the co 1 umn pos it i on (used for hardware escape
sequences)
character is not to be sent to the terminal
or greater a character requIrIng a special escape
sequence. The indicator value is the index into the
escape table of the sequence to be used, plus 16. The
escape table is part of the special characters table;
see the set_special order below.

Translation Table Entry

A translation table entry consists of a statement specifying the name of the table
and a statement specifying its contents, as described below.

translation_table: <table name>;
<valueO> <valuel> ••• <value255>;

The table name is a string of up to 32 characters. The values are octal
numbers of one to three digits. Each value is the result of translation of the
character whose bit representation is the index into the table of that value (i.e.,
<valueO> is the result of translating a character represented as 000, <value8>
corresponds to a character represented as 010, etc.). The set_input_translation
and set_output_translation orders to the tty_ I/O module (see the Subroutines
manual) are presented below as a description of the translation tables and the
indicators they contain. If fewer than 256 values are supplied, the unspecified
values are assumed to be zero.

set_input_translation
provides a table to be used for translation of terminal input to ASCII.
The info_ptr points to a structure of the following form: (defined in
tty _converlincl. pll)

dcl 1 cv trans_struc
2 version
2 default
2 cv_trans

3 value

where:

version

ali gned,
fixed bin,
fixed bin,
aligned,
(0 : 255) char (1) una 1 i gned;

is the version number of the structure. It must be 1.

B-24 AG91-D4

default

values

indicates, if nonzero, that the default table for the current
terminal type is to be used, and the remainder of the structure
is ignored.

are the elements of the table. This table is indexed by the value
of a typed input character, and the corresponding entry contains
the ASCII character resulting from the. translation. If the
info_ptr is null, no translation is to be done.

NOTE: In the case of a terminal that inputs 6-bit characters
and case-shift characters, th~ first 64 characters of the
table correspond to characters in lower shift, and the
next 64 correspond to characters in upper shift.

set_output_translation
provides a table to be used for translating ASCII characters to the code
to be sent to the terminal. The info_ptr points to a structure like that
described for set_input_translation (above). The table is indexed by the
value of each ASCII character, and the corresponding entry contains the
character to be output. If the info_ptr is null, no translation is to be
done.

NOTE: For a· terminal that expects 6-bit characters and
case-shift characters, the 400(8) bit must be turned on
in each entry in the table for a character that requires
upper shift and the 200(8) bit must be on in each
entry for a character that requires lower shift.

Function Key Table Entry

A function key table is begun and named by a function_key_table statement,
which is the only required statement. All the remaining statements define function key
sequences, and are optional. A function key is defined by giving the name of the
key, and the characters transmitted when the key is struck. The following names are
recognized: home, up, down, left, right, and key(il, where i must be 0 or greater, and
is the number of the function key. If the terminal has no function key labelled 0,
then the first key may be 1. No gaps are permitted, but the keys may be defined in
any order.

Up to four sequences may be defined for each key, gIVIng the sequences
transmitted for the function key, the function key when shifted, the function key
when the control key is held down, and the function key with both shift and control.
in that order, separated by commas, and terminated by a semi-colon. If less than
four sequences are given, or a sequence is missing, the terminal is assumed to not
have a function key for that combination of key-strokes.

B-25 AG91-()4

If the terminal always takes some local action (e.g. clearing the screen, moving
the cursor) (possibly in addition to transmitting the sequence) when a key is struck, it
is better to omit the sequence entirely, since most applications will not want the
side-effect to occur, and would most likely not even use the key.

Example

function_key_table: vip780l_function_keys;
home: ESC H;
left: ESC 0;
right: ESC C;
up: ESC A;
down: ESC B;
key (0) : ESC e, ESC , , ESC c;
key (1) : ESC 0, ESC 1 ;
key (2) : ESC 2, ESC 5;
key (3) : ESC 6 t ESC 7;
key (4) : ESC 8, ESC 9;
key (5) : ESC ESC 11.11. . , , ,
key (6) : ESC <, ESC =;
key (7) : ESC >, ESC ? • . ,
key (8) : ESC P, ESC Q;
key (9) : ESC R, ESC S;
key (10) : ESC T, ESC V;
key (11) : ESC \, ESC] ;
key (12) : ESC A ESC ,

Special Characters Table Entry

A special characters table entry consists of a special_table statement and a set of
statements specifying the contents of a special characters table. These statements are
described below. Wherever the expression <sequence> appears, it means from zero to
three <tty_char>s, separated by white space, representing a sequence of characters to
be output to fulfill the specified function. If any statement specifying a sequence is
omitted, a null sequence is assumed, unless otherwise specified in the description of
the statement. All sequences are in ASCII code except for the printer_on and
printer_off sequences. For those sequences that are used when specific indicators are
encountered in the output conversion table, the relevant indicator is given in the
description of the statement See the description in the Subroutines manual of the
various tables in the discussion of orders to the tty_ I/O module for more detailed
inf ormation.

special_table: <table name>;
The special_table statement specifies the name of the table. It is a string of
up to 32 characters.

B-26 AG91-04

new 1 ine: <sequence>;
The new_line statement specifies the sequence to be output for a newline
character (output conversion indicator 1).

carriage_return: <sequence>;
The carriage_return statement specifies the sequence to be output for a carriage
return character (output conversion indicator 2). If the sequence is null,
backspaces are used to move the carriage to the left margin.

backspace: <sequence>;
The backspace statement specifies the sequence to be output for a backspace
character (output conversion indicator 4). If the sequence is null, a carriage
return and spaces are used to reach the correct column. The carriage return
and backspace sequences should not both be null.

tab: <sequence>;
The tab statement specifies the sequence to be output for a horizontal tab
character. If the sequence is nUll, an appropriate number of spaces is used to
reach the next tab stop.

vertical_tab: <sequence>;
The vertical_tab statement specifies the sequence to be output for a vertical tab
character (output conversion indicator 5) if the terminal is in vertsp mode.

form_feed: <sequence>;
The form_feed statement specifies the sequence to be output for a formfeed
character (output conversion indicator 6) if the terminal is in vertsp mode.

printer_on: <sequence>;
The printer_on statement specifies the sequence to be output to fulfill a
"printer_onn order. The sequence is specified in the character code of the
terminal. If the sequence is nUll, the printer_on feature is not supported.

printer_off: <sequence>;
The printer_off statement specifies the sequence to be output to fulfill a
"printer_off" order. The sequence is specified in the character code of the
terminal. If the sequence is nUll, the printer_off feature is not supported.

red_shift: <sequence>;
The red_shift statement specifies the sequence to be output for a red-ribbon-shift
character (output conversIon indicator 10 (octaD). -

black_shift: <sequence>;
The black_shift statement specifies the sequence to be output for a
black-ribbon-shift character (output conversion indicator 11 (octaD).

B-27 AG91-04

end_of_page: <sequence>;
The end_of_page statement specifies the sequence to be output when output is
suspended because the page length of the terminal has been reached. If it is
omitted, the character sequence "EOP" is assumed. A null string indicates that
output is to stop at the right margin of the last line of a page.

output_escapes: <indicator1> <sequence1>t
<indicator2> <sequence2>t ... <indicatorN> <sequenceN>;

The output,-escapes statement specifies the escape sequences to be output for
characters whose output conversion indicators are 21 (octal) or greater when the
terminal is in "edited mode. The indicators specified in the statement are the
same as the corresponding indicators in the output conversion table.

edited_output_escapes: <indicator1> <sequence 1>,
<indicator2> <sequence2>, ..• <indicatorN> <sequenceN>;

The edited_output_escapes statement specifies sequences like those specified by
the output_escapes statement. but they are used when the terminal is in edited
mode.

input_escapes: <va1ue1> <resu1t1>t
<va1ue2> <resu1t2>, ... <valueN> <resultN>;

The input_escapes statement specifies those input characters that are to be
interpreted as escape sequences when preceded by an escape character, and the
resulting characters that replace those sequences. (An escape character in this
context is a character defined by software to initiate an escape sequence, i.e.,
one with an indicator of 2 in the input conversion table.) Each "value" is an
octal number representing the ASCII value of a character that is used in an
escape sequence; the corresponding "result" is an octal number representing the
single character that replaces the escape sequence in the input stream.

Default Types

Exactly one default_types statement must appear in the TIF. It specifies default
terminal types on the basis of baud rate and line type. When a terminal dials up, this
information is used by the answering service to assign its type if no default terminal
type is specified in the cor entry for the channel. The default_types statement is
descri bed below.

default_types: <baudl> <line_type1> <termina1_typel>,
<baud2> <line type2> <terminal type2>,
<baudN> <line-typeN> <termina1-typeN>; - -

Each baudl is a number representing a baud rate, or the word "any"; each
1 i ne_typel is the name of a valid line type, or the word "any"; each
term ina 1_ typel is the default terminal type for the specified combination of
baud rate and line type. The table thus constructed is searched in the order in
which the baud rate, line_type, terminal_type triplets are specified, and the
first entry that matches the particular channel is used to determine the initial
terminal type. The last entry in the table should specify "any" for both baud
rate and line type.

B-28 AG91-o4

Answerback Table

The answerback table consists of entries specifying how to determine a terminal
type and identification on the basis of its answerback. The answerback sent by the
terminal is scanned under control of each answerback table entry, starting with the
first one specified in the answerback table. If the scan succeeds (as described below),
and the line type of the terminal is one that is valid for the terminal type specified
in the answerback table entry, the terminal type and ID are derived from that entry;
otherwise. the answerback is rescanned using the next entry, and so on. An
answerback table entry consists of two statements: an answerback statement and a type
statement

answerback: <keywordl> <valuel>, <keyword2~ <value2>, ••• <keywordN>
<valueN>;

The answerback statement describes how the scan of the answerback is to be
performed. The "scan pointer," indicating the current character position in the
answerback of the scan, starts at the beginning of the answerback string and is
adjusted according to the controls specified by the answerback statement The
possible keyword-value pairs are described below.

match <expression>
<express i on> is either the word "digit," the word "letter," or a
string enclosed in quotes. If it is digit or letter, the scan fails unless
the character addressed by the scan pointer is a digit (0 to 9) or a
letter (A to Z or a to z), respectively. If it is a quoted string, the
scan fails unless the scan pointer points to the beginning of a
matching string. If the match succeeds, the scan pointer is advanced
over the matching string or character, and the scan is continued
using the next keyword-value pair.

search <expression>

skip N

id N

id rest

works iike match, except that the scan succeeds if the matching
character or string is found anywhere to the right of the scan
pointer.

causes the scan pointer to be moved N characters to the right. The
value N may be negative, in which case the pointer is actually
moved to the left The scan fails if there are fewer than N
characters between the scan pointer and the end (or beginning if N
is negative) of the answerback string.

the N characters starting at the right of the scan pointer form the
ID of the terminal. The value N must be in the range 1 <= N <=
4. If there are fewer than N characters to the rig..ht of the scan
pointer, the scan fails.

as many characters (up to 4) as remain to the right 'of the scan
pointer constitute the ID of the terminal (not including control and
carriage-motion characters).

B-29 AG91-()4

*

01/87

type: <type name>;
The type statement specifies the name of the terminal type to be assigned to a
terminal whose answerback satisfies the specification in the answerback
statement. The specified terminal type must be defined by a previous terminal
type entry. If the type statement is omitted, the answerback is to be used to
set the ID only, and the terminal type is not changed.

Preaccess Commands

The preaccess command entries are used to deiine the terminal types to be set
in response to preaccess commands at dialup time. Each preaccess command entry
consists of a preaccess_command statement and a type statement. See the Commands
manual for more information about preaccess commands.

preaccess_command: <command>;
The preaccess_command statement specifies the name of a preaccess command.
Preaccess commands include help (HELP), MAP, hello, 963, 063, 029, modes,
echo, and terminal_type (ttp). If a preaccess command statement is not present
for anyone of these command statements, the command statement has no
effect when entered from the terminal.

type: <type name>;
The type statement specifies the terminal type to be assigned when the
corresponding command is entered. The specified type must be defined by a
previous terminal type en try.

Examples

/* Sample terminal type entries */

Input_conversion: standard_input_conv;

terminal_type: TN300;
modes: default,hnd1quit,tabs,11118;
initial_string: ESC "2" CR ESC "l" (11) < (10) (SP) ESC "l";
bauds: 110 150 300 1200;
vert nl delays: 0 2 6 -38;
backspace_delays: -2 -3 -6 -27;
vt_ff_delays: 19 29 59 230;
output_conversion: ascii_output_conv;
spec i a 1 : tn300_spec i a 1 ;
line_types: ASCI I, 202ETX;
old_type: 4;

B-30 AG91-04A

01/87

/* sample default_types statement and answerback entries */

110
any
any
any

ASCII
ASCI i

VIP
any

TTY33,
ASC ii,
ASC I ~ ,

G 115;

answerback: search II Ell, id 3;
type: TN300;

answerback: search II rll.
I. ,

type: TN300;

/* sample conversion, translation, and special tables */

conversion_table: standard_input_conv;
03 00 00 00 00 00 00 00

end;

00 00 01 00 04 00 00 00
00 00 00 00 00 00 00 00
00 00 00 05 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 02 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 03;

NAMES OF COMMUNICATIONS CHANNELS

The name of a communications channel is an encoding of the information
describing the physical connection. Every such name is a string of 1 to 32 characters.
The name is divided into components separated by "" characters; each component
represents a level of mUltiplexing.

The first two components have a standard form and describe a physical (PNP)
channel on an FNP. Multiplexed channels (i.e., subchannels of a concentrator whereby
multiple terminals are supported on a single FNP channel) have additional components
identifying the individual subchannels. The form of each component depends on the
type of multiplexer involved.

The general form of the name of a physical channel is:

*

*

*

B-31 AG91-04A

01/87

F.ANSS

where:

F

A

N

SS

is a top-level multiplexer name. If this is an FNP. the name must be
a. b, c. d, e, f, g, or h. Other system or user defined top-level
multiplexers may have different naming conventions.

is 1 for a channel of a low-speed line adapter (LSLA) or h for a
channel of a high-speed line adapter (HSLA).

is the number of the LSLA or HSLA on the specified FNP. It is in
the range 0 to 5 for LSLAs or 0 to 2 for HSLAs.

is a 2-digit decimal number identifying a subchannel of the specified
LSLA or HSLA.

T & D Channel

A channel called F.cOOO, where F is an FNP identifier, is a special virtual
channel used by COLTS (Communications Online Test and Diagnostics System). It does
not correspond to an actual physical channel on the FNP.

Examples

a. 1003
a.h219
c.1411

FNP a, LSLA 0, subchannel 03
FNP a, HSLA 2, subchannel 19
FNP c, LSLA 4, subchanne 1 11

B-32 AG91-04A

printer_on: 15;
printer_off: 16;

red s h i f t : 033 1 4 1 ;
black_shift: 033 142;
end_of_page: 105 117 120;

output_escapes:
21 134 074,
22 134 076,
23 134 047,
24 134 050,
25 134 051,
26 134 164;

edited_output_escapes:
21 050 010 075,
22 051 010 075,
23 047,
24 050 010 055,
25 051 010 055,
26 047 010 136;

Input_escapes:
074 133,
076 135,
047 140,
050 173,
051 175,
164 176,
124 176;

I'I(
I';'c
j'j'c

1'1:
1"* ..
I)':

1"* ..
I)':
1"* ..
1"* ..
1'1:
I"':

I'':
I"~ ..
I~'(

/,,:
I)':
1"# ..
I"~ I>

esc
esc
esc
esc
esc
esc

(=
)=

(-
) -
-

esc
esc
esc
esc
esc
esc
esc

NAMES OF COMMUNICATIONS CHANNELS

< (D ~':I

> (]) ~':I

. ('") ~;/

(0 '1:1
\ (}) ~':I J

t ('") ~':I

(0 ~':I

(}))':1
(-) '1:1
(0 '1:1
(}) ":1
(-) ,'el

< -> ["el
> ->] "'el . -> '" '1:1
(-> { "el
) -> } "':1
t -> - '1:1
T -> '" ~(I

The name of a communications channel is an encoding of the information
describing the physical connection. Every such name is a string of 1 to 32 characters.
The name is divided into components separated by "" characters; each component
represents a ievel of multiplexing.

The first two components have a standard form and describe a physical (FNP)
channel on an FNP. Multiplexed channels (i.e .. subchannels of a concentrator whereby
mUltiple terminals are supported on a single FNP channel) have additional components
identifying the individual subchannels. The form of each component depends on the
type of multiplexer involved.

B-33 AG91-o4

The general form of the name of a physical channel is:

F.ANSS

where:

F

A

N

SS

is a top-level multiplexer name. If this is an FNP, the name must be
a, b, c, d, e, f, g, or h. Other system or user defined top-level
multiplexers may have different naming conventions.

is I f or a channel of a low-speed line adapter (LSLA) or h f or a
channel of a high-speed line adapter (HSLA).

is the number of the LSLA or HSLA on the specified FNP. It is in
the range 0 to 5 for LSLAs or 0 to 2 for HSLAs.

is a 2-digit decimal number identifying a subchannel of the specified
LSLA or HSLA.

T & D Channel

A channel called F.cOOO, where F is an FNP identifier, is a special virtual
channel used by COLTS (Communications Online Test and Diagnostics System). It does
not correspond to an actual physical channel on the FNP.

Examples

a. 1003
a.h219
c.1411

FNP a, LSLA 0, subchannel 03
FNP a, HSLA 2, subchannel 19
FNP c, LSLA 4, subchannel 11

B-34 AG91-04

APPENDIX C

PUNCHED-CARD INPUT OUTPUT AND
RETURNED OUTPUT CONTROL RECORDS

BULK DATA INPUT

Each deck must begin with three (or more) keypunched control cards described
below. These cards are used to identify the submitter to the Multics system and
specify the type of card input. The decks are then submitted to operations personnel,
and, in general. are read in by the next day. For protection. segments are created in
system pool storage rather than in the user's directory. Once the data has been read,
the user may copy the card image segment into his directory with the copy_cards
command (see the description of this command in the Commands manua1.)

Card image segments must be copied from' the system pool storage within a
reasonable time, as these segments are periodically deleted.

Because different card readers have different punch card decoding conventions, the
user is warned that the same character may require different punch codes on different
readers. Thus, for example, a + character may be represented by a 12-8-2 punch on
one reader and a 12-0 on another. Obviously, cards prepared for the first reader do
not transmit the same data on the second rp~der and may in fact be unreadable. The
user should consult the manufacturer's documentation before preparing any cards for
input

EXAMPLE

Suppose user Jones working on project Graybar, wishes to read a FORTRAN
source deck into a segment called alpha. fortran, with an access class of "Proprietary,
Accounting." The deck was created on a standard keypunch. The control cards might
be as follows:

++DATA ALPHA.FORTRAN \JONES \GRAYBAR
++PASSWORD XXX
++FORMAT RMCC TRIM LOWERCASE ADDNL
++AIM \PROPRIETARY,
++AIM \ACCOUNTING
++1 NPUT

(Text of alpha.fortran)

C-1 AG91-()4

The text of alpha. fortran above, is the user deck that contains the data.

The control cards followed by the user's data cards are usually submitted to
operations personnel for reading. When the cards have been read into Multics by
operations personnel, the user is notified by mail that his deck has been read in. He
should then log in as Jones.Graybar (either interactively or by using the remote job
entry facility) with an access class of "Proprietary, Accounting" and issue the
command:

copy_cards alpha.fortran

to copy the card image segment into the working directory. If the command does not
succeed, then an error message is issued to explain the problem. The user may need
to check with operations to correct the problem.

CONTROL CARDS FOR BULK DATA

In the following discussions of control cards, parameters to be entered by the
user are shown as all uppercase characters. The user may keypunch either upper or
lowercase characters when preparing card decks: internal conversion of uppercase to
lowercase characters is forced by the system for all control cards. The escape
convention is honored if the user wishes to input characters that are to remain
uppercase. All letters punched on the control cards are mapped to lowercase except
those immediately following an escape character (backslash or cent sign). For example.
\SMITH. \SYS\MAINT is mapped into SmHh.SysMaint.

The control card· format is as follows:

1. it begins with ++ in columns 1 and 2

2. a keyword begins in column 3

3. balance of the card after the keyword is free form

4. continuation cards are not permitted; each control card must be
contained within 80 columns

5. cards are read with lowercase. nocontin, noaddnl modes (see "Card
Conversion Modes" later in this section).

C-2 AG91-04

Name: ++DATA

This control card tells the card input process that the deck is to be read as
bulk data input. It must be the first control card of the deck. All three fields of
this control card must be specified in the order shown.

Usage

where:

1.

2.

3.

NOTES

DECK_NAME
is the name used to separate each deck and to identify the card
image segment in system pool storage. It should be unique among
the user's decks recently submitted. In the event of name duplications,
the system card reading process appends a numeric component to the
end of the supplied name and creates a duplicate card image segment
for DECK_NAME unhess the OVERWRITE control option is specified
on the ++CONTROL card.

PERSON_ID
is the registered person name of the submitter as used during login.
Only this person is able to read the card image segment from the
pool.

PROJECT_ID
is the registered project name of the submitter.

Multics person and project names normally begin with uppercase letters. Such
names must have an escape character punched before each uppercase letter, since all
letters punched on the control cards are mapped to lowercase except those immediately
following an escape character (backslash or cent sign).

Angle brackets in the "Usage" line indicate information that is supplied by the
user.

Name: ++PASSWORD

This control carel is used to specify the user's carel input password. It must be
specified and must immediately follow the ++DATA card.

c-3 AG91-04

Usage

++PASSWORD <xxxxxxxx> {-control_arg}

where:

1.

2.

Name: ++AIM

xxxxxxxx
is the card input password registered for this user. This password is
normally different from the user's login password. It is maintained
by the system administrator. It is customary to turn off the printing
mechanism on the keypunch when creating this card. Users who have
r access to >sc 1 >rcp>card_ input_password. acs do not need to
be registered for card input or type a card input p3.S&word in order
to have input accepte4. In this case, XXXXXXXX should be blanks.

-control_arg
may be -cpw STR to change the password, where STR is a new
password of up to 8 characters.

This control card is used to specify the AIM access class of the data on the
cards in the user's deck. It is an optional control card and if not specified, an access
class of system_low is assumed.

Usage

++ AIM <ACCESS CLASS>

where ACCESS CLASS is the access class of the data. The access class field may
contain embedded spaces and commas. If the complete access class does not fit onto a
single card, additional ++AIM cards can be used. The access class fields of all the
++AIM cards must define a valid access class when concatenated in deck order.
Trailing blanks are stripped off before concatenation is done. Concatenation to form a
valid access class is performed on successive access class strings, separated by a blank.

The access authorization of the process that runs the remote device must be the
same as the access class given in the ++AIM control card for the deck to be accepted
by the system.

Name: ++FORMAT

This control card is used to define the punch code conversion used to interpret
the data in the user's card deck (not control cards). It is an optional control card
and, if omitted, the MCC punch code conversion is assumed for local card readers
and RMCC mode for remote card readers.

C-4 AG91-04

Usage

where:

1.

2.

++FORMAT <PUNCH_FORMAT> <MODES>

PUNCH_FORMAT
is the punch code conversion to use in reading the card deck. It
must be either MCC, RMCC, VIIPUNCH, or RAW, all of which are
described in Section 5. (Not all card readers support each of these
conversion modes.) This field is required.

NOTE: Most remote card readers are able to read in the RMCC
conversion mode only.

MODES
this field is optional and may be any of the following. It is
meaningful only for MCC and RMCC formats. (Refer to the
discussion of "Card Conversion Modes" f or a description of these
modes.)

TRIM
NOTRIM
LOWERCASE
NOCONVERT
ADDNL
NOADDNL
CONTIN
NOCONTIN

(defau 1 t)

(defau 1 t)
(defau 1 t)

(defau 1 t)

Name: + + CONTROL

This control card is used to control the way the card reading software operates.
If the control string OVERWRITE is specified, then if the DECK_NAME specified on
the ++DATA card already exists in the system card pool, the segment is truncated
before input is started. This feature is useful should communication line error or
operator error require multiple inputs of the same card deck. Also see ++CONTROL
card for remote job entry. The feature is disabled if a blank password is used.

Usage

++CONTROL OVERWRITE

Name: + + INPUT

This control card marks the end of the control cards. The next card is the first
card of the user's data to be placed in the card image segment. This card is required
for all decks.

C-5 AG91-04

Usage

++INPUT

There are no fields following the key on this control card.

USER DATA CARDS

All user data cards following the ++INPUT card are copied into the card image
segment. The data may consist of any card punch combinations acceptable for the
specified punch code conversion mode, except for an end-of-file marker which is
defined as a card with "++EOF" in columns 1 through S, and blanks in columns 6
through 80. This end-of-file marker defines the end of the user's data. The ++EOF
card is supplied by the operator. If the user supplies it, the card deck is not read in
successfully and the card deck aborts.

REMOTE JOB ENTRY

Remote job entry (RJE) on Mu1tics is a mechanism that allows a registered user
to submit an absentee job via a card deck. The card deck must contain standard
Mu1tics commands exactly like an interactive user would put into an absentee input
(absin) segment. The user's card deck is copied into an absentee input segment that is
created in the normal system pool storage used for bulk data input. When the user's
deck has been successfully read, an absentee request is submitted on behalf of the user
specified in the deck.

A special header is added to the absentee input segment so that a dprint request
of the absentee output segment is automatically given using the request type associated
with the remote terminal used to read in the RJE card deck. The header consists of
the following lines:

where:

&command 1 ine off
rje_args$set prt_rqt X
rje_args$set pun_rqt Y
rje_args$set station Z
set_epilogue_command "eor -dl -rqt [rje_args prt_rqt] [user absout]1I

X is the printer request type of the submitting station.

Y is the punch request type of the submitting station.

Z is the station ID of the submitting station.

If the remote terminal does not have a printer request type, the dprint of the
absentee output segment is issued for the central site printer.

C-6 AG91-D4

The absentee process is created as Person_id.Project_id.p at the AIM authorization
specified on any ++AIM control cards. The absout file is put in the user's home
directory, unless otherwise specified on the ++RJECONTROL card described below.

A complete card deck for Multics RJE (as the user would submit it to
operations) is shown below.

The user identified on the ++RJE card is notified by mail when his absentee
input card deck has been read and his RJE job has been successfully queued.

Example of Remote Job Entry

Suppose user Jones of project Graybar wishes to list the contents of all
directories in his master_files subtree. These files have an access class of Proprietary,
Accounting. He wishes the absentee job to be restarted in case of a crash and he
wants it to be run in absentee queue 2. Since his process will be running at an
authorization greater than system_low, he has specified that the output file be placed
in his subdirectory pro_acc. The RJE input deck he would use might look like this:

++RJE LIST_SUBTREE.ABSIN \JONES \GRAYBAR
++PASSWORD III
++AIM \PROPRIETARY, \ACCOUNTING
++RJECONTROL -RT -Q 2
++RJECONTROL -OF >UDD>\GRAYBAR>\JONES>PRO ACC>LIST.ABSOUT
++RJEARGS >UDD>\GRAYBAR>\JONES>MASTER_f!LES
++INPUT
&PRINT A/\DIRECTORY \LISTING OF \SUBTREE: &lA2/
WS &1 "LIST -A -DTCM -SORT"
&PRINT DONE.
LOGOUT

As the last step in executing the logout command, the special commands placed
in the header of his absin file cause the absentee output segment to be dprinted using
the printer request type used for the submitting station. Note that the job has been
constructed to list any subtree (to which the user has access) by simply replacing the
++RJEARGS control card using another pathname.

CONTROL CARDS FOR REMOTE JOB ENTRY

The following is a list of RJE control cards. The format is the same as for
bulk data cards discussed in the "Control Cards for Bulk Data" section above.

Name: ++RJE

This control card tells the card input process that the deck is to be read as a
set of RJE absentee commands and submitted as an absentee job for Person_id.Project_id.
It must be the first card of the deck. All three fields of the control card must be
specif ied in the order shown.

C-7 AG91-()4

Usage

where:

1.

2.

3.

NOTES

DECK_NAME
is the name of the user's absentee input segment. If it does not end
in ". absin " , this suffix is supplied. The name should be unique
among all RJE decks recently submitted by the user. In the event of
name duplications, the card reading process adds a numeric component
just preceding the .absin suffix and creates a duplicate absentee input
segment for DECK_NAME.

PERSON_ID
is the registered name of the submitter as used during login. This is
the person name under which the absentee job is run.

PROJECT_ID
is the registered project of the submitter. This is the project name
under which the absentee job is run.

Multics person and project names normally begin with upper case letters. Such
names must have an escape character punched before each uppercase letter, since all
letters punched on the control cardS are mapped to lowercase except those immediately
following an escape character (backslash or cent sign).

Name: ++PASSWORD

This control card is used to specify the user's card input password. It must be
specified and must immediately follow the ++DATA card.

Usage

where:

1.

2.

++PASSWORD <xxxxxxxx> {-control_arg}

xxxxxxxx
is the card input password registered for this user. This password is
normally different from the user's login password. It is maintained
by the system administrator. It is customary to turn off the printing
mechanism on the keypunch when creating this card. A blank
password is not allowed. For more information refer to the ++RJE
or ++DATA control cards.

-control_arg
may be -cpw STR to change the password. where STR is a new
password of up to 8 characters.

C-8 AG91-04

Name: + + RJECONTROL

This control card is used to specify control arguments that can be given to the
enter_abs_request command. It is an optional control card. Multiple ++RJECONTROL
cards may be used if an the control arguments do not fit on a single card.

Usage

++RJECONTROL <ARG1> <ARG2> .•• <ARGn>

where ARGl is any control argument acceptable to the enter_abs_request command,
except for -ag or -argument (see the ++RJEARGS control card). If multiple
++RJECONTROL cards are used, the order of the control arguments is the
concatenation of each ARGl string (separated by a space) in deck order. A control
argument must not be split across cards and must have leading hyphens where
appropriate. Any pathnames specified in the control arguments must be absolute
pathnames.

Name: + + RJEARGS

This control card is used to pass arguments to the absentee process, as would
normally be done by using the -ag or -argument control argument to the
enter_abs_request command. It is an optional control card. If there are ,more
arguments than can fit on a single card, additional ++RJEARGS cards may be used.
Arguments must not be split across cards.

Usage

++RJEARGS <ARG1> <ARG2> ••. <ARGn>

where ARGi is the .iJ:h argument to be passed to the absentee process (used in
substitutions of the form &i). If multiple ++RJEARGS control cards are used, the
order of the arguments is the concatenation of each ARGi string (separated by a
space) in deck order.

C-9 AG91-()4

Name: + + EPILOGUE

The ++EPILOGUE control card overrides the default command string:

dp -dl -rqt [rje_args prt_rqt] [user absoutJ

(which is executed at logout time) with the one supplied. This allows the user to
control what action is taken just prior to logout of his absentee process.

Usage

++EPILOGUE <COMMAND_LINE>

where COMMAND_LINE is any command acceptable in an absentee process. If
multiple ++EPILOGUE cards are used a single command line is generating by
concatenating the values contained on the ++EPILOGUE cards separated by spaces.

Name: + + ABSIN

This control card allows the RJE submitter to use an already online absentee
input segment instead of including one as an input deck. If any user-supplied cards
follow the ++INPUT card the input is aborted.

Usage

++ABSIN <PATHNAME> {SYSTEM}

where PATHNAME is the absolute pathname of the absentee input segment. If the
optional argument SYSTEM is specified, then pathname is assumed to be the
entryname of the absentee input segment in >system_l ibrary_tools.

Name: ++FORMAT and ++INPUT

The ++FORMAT and ++INPUT cards are the same as for punched card input
described above. The ++INPUT card is required at all times.

C-10 AG91-04

User Absentee Commands

All cards following the ++INPUT card for remote job entry are copied into the
absentee input segment as commands. The command lines are translated according to
the modes specified on the ++ FORMAT card if present, or by the def aul t modes
which are TRIM, NOCONVERT, NOCONTIN, and ADDNL. (For more information
see "Card Input Conversion Modes" below.) Any command lines may be given except
for an end-of-file marker which is defined as a card with "++EOF" in columns 1
through 5, and spaces in columns 6 through 80. The end-of-file marker defines the
end of the user's data and is supplied by the operator, not the user. If an
end_of_file marker is supplied by the user, his card input will be aborted.

Card Formats

There are several ways to interpret the punched codes on cards. The user should
generate his card deck according to the format that best meets his needs. The
following formats are supported by Multics.

MCC
VII PUNCH
RAW
RMCC

Punch codes are not specified, unlike MCC format, because various remote
terminals use different codes for the same characters, and it is the character, not the
punch codes that are transmitted.

Card Input Conversion Modes

Card input is reformatted according to the conversion modes specified on the
++FORMAT control card. In all of the discussions, it is assumed that prior to
translation a card consists of 80 characters with trailing blanks as required. The action
of each translation mode is as follows:

TRIM

LOWERCASE

ADDNL

strips off trailing blanks (default).

converts ali uppercase characters to their lowercase equivalent
unless preceded by the escape character "V'.

appends a newline character after the last character of a
card. This operation takes place after trimming, if
trimming was requested (default).

C-ll AG91-G4

CONTIN if the last character. on the card is the escape character
"\" then if ADDNL mode is specified, a newline
character is not added. This operation takes place after
trimming. if trimming was requested.

The opposite of the above modes cause the actions described above not to occur.
Thus:

NOTRIM

NOCONVERT

NOADDNL

NOCONTIN

the trailing blanks of the card image are not removed.

no uppercase to lowercase conversion is performed (default).

a newline character is not appended
character.

the last

no action is taken if the last character on the card is the
escape character "\" (default).

If the user is reading a deck, using edit-directed I/O. into a PL/I program that
expects card images to be fixed-length records. the following card input modes should
be used:

NOCONTIN
NOCONVERT
NOTRIM
ADDNL

Deck Size

Decks being read in mcc or rmcc format may exceed the maximum length of a
Multics segment. If they do the input is automatically stored in a multisegment file.

Errors

The operator returns a note with the deck if any errors take place during the
read. In general. the error should be corrected and the deck resubmitted.

PUNCHED CARD OUTPUT

The card decks produced as a result of the enter_output_request and dpunch
commands have some additional punched cards before and after the requested data.
These cards are used to separate each deck and to identify the deck and its owner.
The identification cards, punched only from the local card punch. are punched with a
pattern of holes that can be easily read when the card is flipped over (flip card
format).

C-12 AG91-04

The complete deck looks like the following:

SEPARATOR CARD
Info Cards - punched in flip card format (local card punch only)
SEPARATOR CARD
User's Data - punched in the requested format
END OF DECK - punched in fl ip card format (local card punch only)
SEPARATOR CARD

All cards punched in flip card format and the separator cards must be removed
before the deck can be read using the Multics Card Input Facility.

Card -Output Conversion Modes

The Multics Card Code (mcc) conversion mode is best suited to files COnSlStlng
of ASCII character data. Each character is punched in one card column. When a
newline character is encountered in the file, the remainder of the current card is left
blank and the following line begins on the next card. Lines longer than 80 characters
are punched on several cards. If decks containing such lines are read back into
Multics, additional newline characters appear in the file.

The raw conversion mode is suited only for segments that contain complete
binary card images. Any checksums, sequence numbers or bit counts to be punched
must already be contained in the binary card images. The segment punched must be a
multiple of 960 bits long if the deck is to be read back into Multics.

The 7punch conversion mode essentially furnishes a binary representation of any
file. suitable for subsequent reloading. The 7punch format also provides sequencing and
checksum computation. The format is primarily useful when a file is being punched in
order to serve as additional backup and not for use on any system other than Muitics.
The Multics 7punch format is as follows:

Columns

Rows 1 2 3 4 5 6 1 12

1-3 17 w s c c c d d I
4-6 w w s c c c d d

7-9 w t s c c c d d

10-12 5 s s c c c d d

C-13 AG91-04

where:

1.

2.

3.

4.

5.

6.

7 and 5 (octal)
are 7punch format identifying codes.

wwww _
is the number of data words on the card. if less than 27(8); if
greater, it is a replication count and indicates how many times the
single data word on the card is to be replicated on reading back in.

t
is a last card code. It is 0 on each card of the deck except on the
last card, where it is 3. The bit count of the file is punched as the
hlC!t "!l'f"n f,,'f" 1t.All1t';~r A.,.~lT ..
.&-...u,," ,.,I0I01..... .I VJ. .&...,.,£, ,,"'.1'-',.;) """,,-,.1\,..,.

sssss
is the sequence number of the card in the deck, starting from O.

cccccccccccc
is the full word logical checksum of all bits on the card except the
checksum itself.

dddd ... dddd
are the data words. On the last card, columns 7-9 contain the bit
count (fixed binary(35» and columns 10-72 are O. Notice that the
word count is 0 on the last/bit count card.

PUNCHED-CARD CODES

The card punch codes used with Multics to represent ASCII characters are based
on the card punch codes defined for the IBM EBCDIC standard. The correspondence
between the EBCDIC and ASCII character sets is defined automatically. The Multics
standard card punch code described here is based on the widely available card
handling equipment used with IBM System/360 computers. The six characters for
which the Multics standard card code differs from the ASCII card code are noted in
Table C-3.

The character set used for symbolic source programs and input/output on
Multics is the American Standard Code for Information Interchange, X3.4-1968, known
as ASCII. See the description of this set in Appendix A, "ASCII Character Set." The
character set used for input/output with some devices from a System/360 computer is
the International Business Machines (IBM) standard, known as EBCDIC. This set is
described in IBM Systems Reference Library Manual IBM Systeml360 PrinCiples
of Operation, A22-6821-7.

C-14 AG91-<>4

Although there are 85 graphics in common between EBCDIC and ASCII, there is
no practical algorithm by which one can deduce an EBCDIC code value from the
ASCII code value or vice versa. There are, however, enough common graphics to
define a correspondence between the graphic parts of the two codes, and thereby
establish conventions for communication between computers using the codes. A card
punch code for ASCII is defined simultaneously. Tabie C-l shows this correspondence
as used on Multics. The correspondence between ASCII Code Value in column one
and ASCII Meaning in column two is firmly defined by the ASCII standard.
Similarly, correspondence among Corresponding EBCDIC Meaning in column three,
EBCDIC Code Value in column four, and EBCDIC/Multics Punch Code in column
five is firmly defined by the IBM standard. This table provides a correspondence
between the first two columns on the one hand, and the last three on the other.

The graphic correspondence in Table C-l is derived as follows: 85 ASCII
graphic characters correspond directly with identical EBCDIC graphics. Three ASCII
graphics are made to correspond with the three remaining EBCDIC graphics as follows:

ASCII

acute accent
left slant
circumflex

EBCDIC

apostrophe
cent sign
negation

Thus all 88 EBCDIC graphics have an equivalent ASCII graphic. The remaining six
ASCII graphics, namely:

left and right square brackets
left and right braces
grave accent
over 1 i ne (t i 1 de)

have no EBCDIC graphic equivalent. In Table C-l they are made to correspond to
unassigned EBCDIC codes that, nevertheless, have well-defined card punch code
equivalents. Where possible, the unassigned EBCDIC codes chosen result in the same
punch card representation as in the proposed ASCII standard card code. Thus a
majority of the Multics standard card codes do, in fact, agree with the proposed
standard.

C-15 AG91-o4

Table C-l. Correspondence Between ASCII Characters and EBCDIC Characters

ASC II • (",. I I
1'\.;)\..11 Corre- EBCDiC EBCDiC/ Comments

Code Meaning sponding Code Multics
Value EBCDIC Value Punch

Meaning Code

000 (NUL) NUL 00 9-12-0-8-1

001 (SOH) SOH 01 9-12-1

002 (STX) STX 02 9-12-2

003 (ETX) ETX 03 9-12-3

004 (EOT) EOT 37 9-7

005 (ENQ) ENQ 20 9-0-8-5

006 (ACK) ACK 2E 9-0-8-6

007 BEL BEL 2F 9-0-8-7

010 BS BS 16 9-11-6

011 HT HT 05 9-12-5

012 NL(LF) NL 15 9-11-5 (Note n
I I

013 VT VT OB 9-12-8-3

014 NP (F F) FF OC 9-12-8-4

015 (CR) CR 00 9-12-8-5

016 RRS (SO) SO OE 9-12-8-6

017 BRS (S I) SI OF 9-12-8-7

020 (OLE) OLE 10 12-11-9-8-1

021 (DC 1) DC1 11 9-11-1

022 HLF (DC2) DC2 12 9-11- 2

023 (DC3) TM 13 9-11-3 (Note 3)

024 HLR (OC4) 0" J l,'f 3C 9-8-4

025 (NAK) NAK 3D 9-8~5

ASCII code values are in octal; EBCDIC code values are in hexadecimal

C-16 AG91-04

ASC II ASC I I Corre- EBCDIC EBCDIC/ Comments
Code Meaning sponding Code Multics
Value EBCDIC Value Punch

Meaning Code

026 (SYN) SYN 32 9-2

027 (ETB) ETB 26 9-0-6

030 (CAN) CAN 18 9-11-8

031 (EM) None 19 9-11-8-1

032 (SUB) SUB 3F 9-8-7

033 (ESC) ESC 27 9-0-7

034 (FS) I FS 1C 9-11-8-4

035 (GS) IGS 10 9-11-8-5

036 (RS) IRS 1 E 9-11-8-6

037 (US) IUS 1 F 9-11-8-7

040 Space Space 40 (No punches)

041 5A 11-8-2 (Note 1)

042 II II 7F 8-7

nL.':t # # 7R R-~ _--..." 1- - ."

044 $ $ 5B 11-8-3

045 % % 6c 0-8-4

046 & & 50 12

047 7D 8-5 naps ASC i i
acute accent
into EBCDIC
apostrophe

050 40 12-8-5

051 50 11-8-5

052)'c * 5C 11-8-4

053 + + 4E 12-8-6

ASCII code values are in octal; EBCDIC code values are in hexadecimal

C-17 AG91-Q4

ASC II ASC II Corre- EBCDIC EBCDIC/ Comments
Code Meaning sponding Code Multics
Value EBCDIC Value Punch

Meaning Code

054 6B 0-8-3

055 60 11

056 4B 12-8-3

057 / / 61 0-1

060 0 0 FO 0

061 F 1

062 2 2 F2 2

063 3 3 F3 3

064 4 4 F4 4

065 5 5 F5 5

066 6 6 F6 6

067 7 7 F7 7

070 8 8 F8 8

071 9 9 F9 9

072 7A 8-2

073 5E 11-8-6

074 < < 4C 12-8-4

075 = = 7E 8-6

076 > > 6E 0-8-6

077 ? ? 6F 0-8-7

100 @ @ 7C 8-4

101 A A Cl 12-1

102 B B C2 12-2

ASCII code values are in octal; EBCDIC code values are in hexadecimal

C-18 AG91-()4
/

ASC II ASC I I Corre- EBCDIC EBCDIC/ Comments
Code Meaning sponding Code Mu1tics
Value EBCDIC Value Punch

Meaning Code
103 C C C3 12-3

104 0 0 C4 12-4

105 E E C5 12-5

106 F F c6 12-6

107 G G C7 12-7

110 H H c8 12-8

111 C9 12-9

112 J J D1 11-1

113 K K D2 11-2

114 L L D3 11-3

115 M M D4 11-4

116 N N D5 11-5

117 0 0 D6 11-6

120 P P D7 11-7

121 Q Q D8 11-8

122 R R D9 11-9

123 s S E2 0-2

124 T T E3 0-3

125 u u E4 0-4

126 V V E5 0-5

127 w w E6 0-6

130 X X E7 0-7

131 Y Y E8 0-8

ASCII code values are in octal; EBCDIC code values are in hexadecimal

C-19 AG91-()4

ASCII ASC II Corre- EBCDIC EBCDIC/ Comments
Code Meaning sponding Code Multics
Value EBCDIC Value Punch

Meaning Code

132 Z Z E9 0-9

133 [None 80 12-0-8-5 (Notes 1,2)

134 \ ~ 4A 12-8-2 (Note 1)

135] None 90 12-11-8-5 (Notes 1,2)

136 5F 11-8-7 Maps ASC II
circumflex
into EBCDIC
negation.

137 60 0-8-5

140 None 79 8-1 (Note 2)

141 a a 81 12-0-1

142 b b 82 12-0-2

143 c c 83 12-0-3

144 d d 84 12-0-4

145 e e 85 12-0-5

146 f f 86 12-0-6

147 g g 87 12-0-7

150 h h 88 12-0-8

151 89 12-0-9

152 j j 91 12-11-1

153 k k 92 12-11-2

154 93 12-11-3

155 m m 94 12-11-4

ASCII code values are in octal; EBCDIC code values are in hexadecimal

C-20 AG91-04

ASC I I ASCII Corre- EBCDIC EBCDIC/ Comments
Code Meaning sponding Code Multics
Value EBCDIC Value Punch

Meaning Code
156 n n 95 12-11-5

157 0 0 96 12-11-6

160 p p 97 12-11-7

161 q q 98 12-11-8

162 r r 99 12-11-9

163 s s A2 11-0-2

164 t t A3 11-0-3

165 u u A4 11-0-4

166 v v A5 11-0-5

167 w w A6 11-0-6

170 x x A7 11-0-7

171 y y A8 11-0-8

172 z z A9 11-0-9

173 { None CO 12-0 (Note 2)

174 4F 12-8-7 (Note 1)

175 1 None DO 11-0 (Note 2)

176 None Al 11-0-1 (Note 2)

177 PAD (DEL) DEL 07 12-7-9

ASCII code values are in octal; EBCDIC code values are in hexadecimal

C-21 AG91-()4

NOTES

1. In the punched card code proposed f or ASCII in the latest proposed
ANSI standard card code, a different card code is used for this
character.

2. This graphic does not appear in (or map into any graphic that appears
in) the EBCDIC set; it is assigned to an otherwise invalid EBCDIC code
value/card code combination.

3. In some applications, the ASCII meaning of this control character might
not correspond to the EBCDIC meaning of the corresponding control
character.

4. Where the Multics meaning of a control character differs from the
ASCII meaning. the ASCII meaning is given in parentheses.

Table C-2. Summary of Extensions to EBCDIC
to Obtain Multics Standard Codes

ASCII
Character

open bracket
left slant
close bracket
grave accent
open brace
close brace
overl ine/ti lde
acute accent
circumflex
,': Same as the ASCII choice

Unassigned
EBCDIC Card
Code Chosen

12-0-8-5
12-8-2
12-11-8-5
8-1
12-0
11-0
11-0-1
8-5
11-8-7

*)'c

1e

*
*
* for this graphic.

C-22 AG91-04

Table C-3. Summary of Differences Between Multics Standard
Card Codes and Proposed ASCII Standard Card Codes

ASCII
Character

newl i ne
exclamation point
open bracket
left slant
close bracket
vert i ca 1 1 i ne

CARD- INPUT ESCAPE POSSIBILITIES

Multics
Standard
Card Code

11-9-5
11-8- 2
12-0-8-5
12-8-2
12-11-8-5
12-8-7

ASC II
Standard
Card Code

0-9-5
12-8-7
12-8-2
0-8-2
11-8-2
12 -11

The programmer faced with the problem of representing ASCII data in the
EBCDIC environment must make some arbitrary decisions if he needs to obtain
graphic representation of these six characters. One appropriate technique is that the
suggested invalid code be used wherever EBCDIC code representation is required (e.g.,
in cards or in core memory), but, when printing readable output, the invalid codes be
printed as escapes or overstrikes.

For example. choosing the left slant as an escape character, the following graphic
representation may be borrowed from the teletype escape conventions.

ASCII Graphic

left brace
right brace
ti lde
grave accent
left bracket
right bracket
left slant

EBCDIC Escape Representation

\(
\)
\t
\1
\<
\>
\134

lne last escape is required in order to ensure unambiguous meaning of the left slant
as an escape character.

C-23 AG91-o4

Alternatively, a series of overstrike graphics that are more suggestive of the
ASCII graphics being represented may also be used. For example;

ASC II Graphic

left brace
right brace
left bracket
right bracket
grave accent
tilde

EBCDIC Overstrike Representation

i (left parenthesis over minus sign)
t (right parenthesis over minus sign)
~ (left parenthesis over equals sign)
~ (right parenthesis over equals sign)
~ (apostrophe over minus sign)
n (double quote over negation sign)

The 34 ~AlLSCII control characters and 51 EBCDIC control characters match in 33
cases. The remainder have no correspondence that can be expected to work in most
cases. As a result, the programmer transforming character data from one environment
to another must study the precise meaning of the control codes in the new
environment. For example, some EBCDIC control codes might logically transform into
ASCII hardware escape sequences for some hardware devices. Other controls might not
be imitable in the new environment and might instead be printed with graphic escape
sequences, or possibly ignored.

There is currently no provision in Multics for accepting escape sequences in card
input other than on control cards as described above under "Punched Card Codes,"
except in the case of RM CC mode.

RETURNED OUTPUT CONTROL RECORDS

Described below are the control records that are permitted in output files
returned by a remote system to Multics for on-line perusal by Multics users.

All characters on a control record are converted to lower case except those
immediately following the escape character (backs 1 ash, \). For example,
\SM I TH. \SYS\MA I NT is mapped into Smith.SysMaint.

Control record format is:

• Columns one and two contain ++
• A keyword appears starting in column three
• Remainder of the record is free form
• Continuation of control records is not permitted; the entire record must

be contained within one punch or printer record.

C-24 AG91-04

Name: + + IDENT

This control record identifies the Multics user who is to receive the output file.
All records in the output file before the ++IDENT control record are discarded. All
three fields of this control record must be sppwCified in the order shown.

Usage

where:

1.

2.

3.

++]IDENT <FILE_NAME> <PERSON_I 0> <PROJECT_I 0>

FILE_NAME
is the name used to identify the output file in system pool storage.
It should be unique among the user's output file recently received.
In the event of name duplications, the system output receiving
process appends a numeric component to the end of the supplied
name and creates a duplicate segment for FILE_NAME unhess the
OVERWRITE control option is specified on the ++CONTROL record.

PERSON_ID
is the registered person name of the owner of this output file. Only
this person is able to copy the file from the pool.

PROJECT_ID
is the registered project name of the owner.

NOTES

Multics person and project names normally begin with uppercase. letters. Such
names must have the escape character before each uppercase letter, since all letters in
a control record are mapped to lowercase except those immediately following the
escape character (backslash).

Angle brackets «» in the "Usage" line indicate information supplied by the
user.

Name: + + CONTROL

This control record is used to modify the operation of the output file receiving
software. This record is optional.

Usage

++CONTROL <CTL_KEYS>

C-25 AG91-()4

where:

1. CTL_KEYS
specifies the operating modes of the software and may be one of the
f',,11 "U71 n n-.
J.VJ.J.V"'.l.l.16·

OVERWRITE
specifies that if an output file already exists with the name
given on the ++ IDENT control record, the old file is to be
deleted before the new file is received. The default action is
described under the FILE_NAME argument of the ++IDENT
control record.

AUTO_QUEUE
specifies that the output file is to be automatically queued for
printing or punching locally, whichever is appropriate. The
default action is to not queue the file.

REQUEST_TYPE <RQT_NAME>
RQT <RQT_NAME>

specifies use of the RQT_NAME print/punch queue if this
output file is automatically printed or punched. RQT_NAME
must identify a request type whose generic type is "printer"
for print files and "punch" for punch files. (See the
description of print_request_types in the Commands manual.)
If this ctl_key is not given and automatic queuing is
requested, the request type established by the system administrator
f or output from this remote system will be used. This etl_key
is ignored unless the AUTO_QUEUE ctl_key is also given.

Name: ++FORMAT

This control record is used to specify the conversion modes used to format the
data in the output file. This record is optional.

Usage

++FORMAT <MODES>

C-26 AG91-04

where:

1. MODES
may be any of the following modes. The meaning of these modes
are discussed earlier in this appendix.

TRIM
NOTRIM
LOWERCASE
NOCONVERT
ADDNL
NOADDNL
CONTIN
NOCONTIN

(defau 1 t)

(defau 1 t)

(defau 1 t)

(defau 1 t)

Name: + + INPUT

This control record marks the end of the control records and is required for all
output files. The next record is the first record of the user's output file to be placed
into system pool storage.

Usage

++INPUT

There are no fields following the key on this control record.

NOTES

The system treats all records received after the ++ INPUT record as data and
places them into the output file even if they have control record syntax as described
above.

C-27 AG91-()4

APPENDIX D

ST ANDARD DAT A TYPES

This appendix describes the representation of Multics standard data types. See
"Subroutine Calling Sequences" in Appendix H for a discussion of data descriptors.
Symbolic names for these types, in the second list below. are also given by
std_descriptor_types.incl.pll.

SUMMARY OF DATA DESCRIPTOR TYPES

1
2
3
4
5
6
7
8
9

10
1 i
12
13
14
15
16
17
18
19
20
21
22
23
24",
25",
261:
271:

28
29
30
31-32
33
34
35
36
37
38
39

real fixed-point binary short
real fixed-point binary long
real floating-point binary short
real floating-point binary long
complex fixed-point binary short
complex fixed-point binary long
complex floating-point binary short
complex floating-point binary long
real fixed-point decimal 9-bit
real floating-point decimal 9-bit
compiex fixed-point decimal 9-bit
complex floating-point decimal 9-bit
pointer
offset
label
entry
structure
area
bit string
varying bit string
character string
varying character string
file
label constant (used in symbol tables only)
internal entry constant (used in symbol tables only)
external entry constant (used in symbol tables only)
external procedure (used in symbol tables only)
reserved for future use
real fixed-point decimal leading overpunched sign 9-bit
reai fixed-point decimai trailing over punched sign 9-bit
reserved for future use
real fixed-point binary short unsigned
real fixed-point binary long unsigned
real fixed-point decimal unsigned 9-bit
real fixed-point decimal trailing sign 9-bit
reserved for future use
real fixed-point decimal unsigned 4-bit
real fixed-point decimal trai ling sign 4-bit byte-aligned

D-1 AG91-o4

40
41
42
h~
'J

44
45
46
47
48
49
50
51-57
58
59
60
61
62
63''(
64
65
66
67
68
69
70*
71''(
72
73''(
74
75
76
77''(
78')'(
79''(
801'
81
82
83
84
85
86

real fixed-point decimal unsigned 4-bit byte-al igned
real fixed-point decimal leading sign 4-bit
real floating-point decimal 4-bit
real fixed-point decimal leading sign ~-hit byte-aligned
real floating-point decimal 4-bit byte-al igned
complex fixed-point decimal leading sign 4-bit byte-aligned
complex floating-point decimal 4-bit byte-aligned
real floating-point hexadecimal short
real floating-point hexadecimal long
complex floating-point hexadecimal short
complex floating-point hexadecimal long
reserved for future use
escape
algo168 straight
algo168 format
algo168 array descriptor
algo168 union
picture (used in symbol tables only)
pascal typed pointer type
pascal char
pascal boolean
pascal record file type
pascal record type
pascal set type
pascal enumerated type
pascal enumerated type element
pascal enumerated type instance
pascal user defined type
pascal user defined type instance
pascal text file
pascal procedure type
pascal variable formal parameter
pascal value formal parameter
pascal entry formal parameter
pascal parameter procedure
real floating-point decimal 9-bit extended 9-bit exponent
complex floating-point decimal 9-bit extended 9-bit exponent
real floating-point decimal 9-bit generic 36-bit exponent
complex floating-point decimal 9-bit generic 36-bit exponent
real floating-point binary generic 36-bit exponent
complex floating-point binary generic 36-bit exponent

Starred types are used in runtime-symbol nodes only and not in argument
descriptors.

Symbolic Names for Data Descriptor Types

1 rea1_fix_b n_1_dtype
2 real_fix_b n_2_dtype
3 real_flt_b n_l_dtype
4 real flt_b n_2_dtype
5 cplx_fix_b n_l_dtype
6 cplx_fix_b n_2_dtype

0-2 AG91-04

7 cplx_flt_bin_l_dtype
8 cplx_flt_bin_2_dtype
9 real_fix_dec_9bit_ls_dtype

10 real_flt_dec_9bit_dtype
11 cplx_fix_dec_9bit_ls_dtype
12 cplx_flt_dec_9bit_dtype
13 pointer_dtype
14 offset_dtype
15 label_dtype
16 entry_dtype
17 structure_dtype
18 area_dtype
19 bit_dtype
20 varying_bit_dtype
21 char_dtype
22 varyin9_char_dtype
23 file_dtype
24* label_constant_runtime_dtype
25* int_entry_runtime_dtype
26* ext_entry_runtime_dtype
27* ext_procedure_runtime_dtype
29 real_f x_dec_9bit_ls_overp_dtype
30 real_f x_dec_9bit_ts_overp_dtype
33 real_f x_bin_l_uns_dtype
34 real_f x_bin_2_uns_dtype
35 real_f x_dec_9b t_uns_dtype
36 real_f x_dec_9b t_ts_dtype
38 real_f x_dec_4b t_uns_dtype
39 real f x_dec_4b t_ts_dtype
40 real f x_dec_4b t_bytealigned_uns_dtype
41 real f x dec 4b t Is dtype
42 real=flt=dec=4bit=dtype
43 reai_fix_dec_4bit_byteaiigned_is_dtype
44 real_flt_dec_4bit_bytealigned_dtype
45 cplx_fix_dec_4bit_byteal igned_ls_dtype
46 cplx_flt_dic_4bit_bytealigned_dtype
47 real_flt_hex_l_dtype
48 real_flt_hex_2_dtype
49 cplx_flt_hex_l_dtype
50 cplx fIt hex 2 dtype
59 algo168_straTght_dtype
60 algoI68_format_dtype
61 algo168 array descriptor dtype
62 algo168=union=dtype -
63* picture_runtime_dtype
64 pascal_typed_pointer_type_dtype
65 pascal_chai_dtype
66 pascal_boolean_dtype
67 pascal_record_file_type_dtype
68 pascal_record_type_dtype
69 pascal_set_type_dtype
70* pascal_enumerated_type_dtype
71* pascal_enumerated_type_element_dtype
72 pascal_enumerated_type_instance_dtype
73* pascal_user_defined_type_dtype

D-3 AG91-()4

74 pasca1_user_defined_type_instance_dtype
75 pasca1_text_fi1e_dtype
76 pasca1_procedure_type_dtype
77* pascal_variab1e_formal_parameter_dtype
78* pascal_value_formal_parametei_dtype
79* pasca1_entry_forma1_parameter_dtype
80* pascal_parameter_procedure_dtype
81 real_f1t_dec_extended_dtype
82 cp1x_f1t_dec_extended_dtype
83 rea1_f1t_dec_generic_dtype
84 cp1x_f1t_dec_generic_dtype
85 rea1_f1t_bin_generic_dtype
86 cp1x_f1t_bin_generic_dtype

OTHER SYMBOLIC NAMES

1
1
9

17
21
29
30
35
36
38
39
40
41

1
3
4
7

16
19
21
47
48
49
50

1
1
2
3
4
7
8

19
19

cobo1_comp_6_dtype
cobo1_comp_7_dtype
cobo1_disp1ay_1s_dtype
cobol structure dtype
cobol-char string dtype - - -cobol_disp1ay_ls_overp_dtype
cobo1_display_ts_overp_dtype
cobol_display_uns_dtype
cobol_display_ts_dtype
cobol_comp_8_~ns_dtype
cobol_comp_5_ts_type
cObol_comp_5_uns_dtype
cobol_comp_8_1s_dtype

ft_integer_dtype
ft_real_dtype
ft_doub1e_dtype
ft_complex_dtype
ft_external_dtype
ft_1ogical_dtype
ft_char_dtype
ft_hex_rea1_dtype
ft_hex_double_dtype
ft_hex_comp1ex_dtype
ft_hex_complex_double_dtype

algo168_short_int_dtype
a1go168_int_dtype
a1go168_1ong_int_dtype
a1go168_rea1_dtype
a1go168_1ong_rea1_dtype
a1go168_compl_dtype
aigo168_1ong_compl_dtype
a1go168_bits_dtype
algo168_bool_dtype

D-4 AG91-04

21 a1go168_char_dtype
21 a1go168_byte_dtype
22 a1go168_struct_struct_char_dtype
20 a1go168_struct_struct_bool_dtype

1 pascai_integer_dtype
4 pasca1_rea1_dtype

24 pascal_label_dtype
25 pasca1_internal_procedure_dtype
26 pascal_exportable_procedure_dtype
27 pasca1_imported_procedure_dtype

SfANDARD DATA TYPE FORMATS

In the following discussion let p be the declared precIsIon of an arithmetic
datum. Let n be the declared length of a string datum, and let k be the declared size
of an area datum. Figures depicting typical decimal constructions reflect the fact that
decimal numbers can consist of up to 59 digits.

Any scaling factor declared for a fixed-point datum is not stored with the
datum. The scaling factor is applied to the value of the datum when the value
participates in a computation or conversion.

Real Fixed-Point Binary Short (descriptor type 1)

A real, fixed-point, binary, unpacked datum of precISIon O<p<36 is represented
as a 2's complement, binary integer stored in a 36-bit word.

A real, fixed-point. binary, packed datum of precision O<p<36 is represented as
a 2's complement, binary integer stored in a string of p+ 1 bits.

In Pascal, there are only three sizes of real, fixed point. binary, packed data.
All are represented as 2's complement, binary integers:

An integer datum of precision O<p<9 is stored in one 9-bit byte and aligned
on a byte boundary.

An integer datum of precision 8<p<18 is stored in two 9-bit bytes and aligned
on a half word boundary.

An integer datum of precision 17<p<36 is stored in one word and aligned on a
word boundary.

Real Fixed-Point Binary Long (descriptor type 2)

A real, fixed-point, binary, unpacked datum of precISIon 35<p<72 is represented
as a 2's complement, binary integer stored in a pair of 36-bit words, the first
of which has an even address.

A real, fixed-point, binary, packed datum of precISIon 35<p<72 is represented
as a 2's complement, binary integer stored in a string of p+ 1 bits.

D-5 AG91-()4

Real Floating-Point Binary Short (descriptor type 3)

A real, floating-point, binary, unpacked datum of precIsIon 0<p<28 is
represented as a 2's complement, binary fraction m and a 2's complement,
binary integer exponent e stored in a 36-bit word.

The value 0 is represented by m =0 and e=-128. For all other values, m
satisfies -o.5<m~..1 or O.5~m<1.

0 0 000 3
0 1 789 5

Is I E Is I M I
I I I I

I
1 7 1 27

Figure D-1. Single-Precision. Unpacked, Floating-Point Binary-Operand Format

A real, floating-point, binary, packed datum of precision o<p<28 is represented
as a 2's complement, binary fraction m and a 2's complement, binary integer
exponent e stored in a string of p+9 bits.

The value 0 is represented by m=O and e=-128. For all other values, m
satisfies -0. 5<m~-1 or o. 5~m< 1

o 0
o 1

s E

000
789

s

7 1

p+8

p

Figure D-2. Single-Precision, Packed, Floating-Point Binary-Operand Format

Real Floating-Point Binary Long (descriptor type 4)

A real, floating-point, binary, unpacked datum of precision 27<p<64 is
represented as a 2's complement, binary fraction m and a 2's complement,
binary in.teger exponent e stored in a pair of 36-bit words, the first of which
has an even address.

D-6 AG91-Q4

The value 0 is represented by m=O and e=-128. For all other values, m
satisfies -0. 5<m~-1 or o. 5~m< 1

o 0
o 1

s E

7

000
789

s

6

7
1

Figure D-3. Double-Precision. Unpacked. Floating-Point Binary-operand Format

A real, floating-point. binary, packed datum of precision 27<p<64 is represented
as a 2's complement, binary fraction m and a 2's complement, binary integer
exponen t e stored in a string of p+9 bits.

The value 0 is represented as m=O and e=-128. For all other values, m
satisfies -0. 5<m~-1 or o. 5~m< 1

o 0
o 1

s E

000
789

i
I

s

p+8

M

D
I

Figure D-4. Double-Precision, Packed, Floating-Point Binary-operand Format

Complex Fixed-Point Binary Short (descriptor type 5)

A complex, fixed-point, binary, unpacked datum of prec1Slon 0<p<36 is
represented as a pair of 2's complement. binary integers stored in a pair of
36-bit words, the first of which has an even address. The first integer is the
real part of the complex value and the second integer is the imaginary part of
the complex value.

A complex, fixed-point, binary, packed datum of precision O<p<36 is
represented as a pair of 2's complement, binary integers stored in a string of
2(p+ 1) bits. The first p+ 1 bits contain the integer representation of the real
part of· the complex value and the second p+ 1 bits contain the integer
representation of the imaginary part

D-7 AG91-()4

Complex Fixed-Point Binary Long (descriptor type 6)

A complex, fixed-point, binary, unpacked datum of precision 35<p<72 is
represented as a pair of 2's complement, binary integers stored in 4 consecutive
36-bit words, the first of which has an even address. The first two words
contain the integer representation of the real part of the complex value and
the last two words contain the integer representation of the imaginary part.

A complex, fixed-point, binary, packed datum of precision 35<p<72 is
represented as a pair of 2's complement. binary integers stored in a string of
2(p+1) bits. The first p+l bits contain the integer representation of the real
part of the complex value and the last p+l bits contain the integer
representation of the imaginary part.

Complex Floating-Point Binary Short (descriptor type 7)

A complex, floating-point, binary, unpacked datum of precISIOn o<p<28 is
represented as a pair of real, floating-point, binary, unpacked data stored in
two 36-bit words, the first of which has an even address. The first word
contains the real part of the complex value and the second word contains the
imaginary part of the complex value.

A complex. floating-point, binary. packed datum of precision o<p<28 is
represented as a pair of real, floating-point. binary, packed data stored in a
string of 2(p+9) bits. The first p+9 bits contain the real part of the complex
value and the last p+9 bits contain the imaginary part of the complex value.

Complex Floating-Point Binary Long (descriptor type 8)

A complex. floating-point, binary, unpacked datum of preclslon 27<p<64 is
represented as a pair of real, floating-point, binary. unpacked data stored in 4
consecutive 36-bit words. the first of which has an even address. The first two
words contain the real part of the complex value and the last two words
contain the imaginary part of the complex value.

A complex. floating-point. binary, packed datum of precision 27<p<64 is
represented as a pair of real. floating-point, binary, packed data stored in
2(p+9) bits. The first p+9 bits contain the real part of the complex value and
the last p+9 bits contain the imaginary part of the complex value.

0-8 AG91-o4

Real Fixed-Point Decimal Leading Sign 9-bit (descriptor type 9)

A real, fixed-point, decimal, leading sign, 9-bit datum (packed or unpacked) of
precision p (where O<p~59) is represented as a signed, decimal integer stored
as a string of p+ 1 characters. The leftmost character is either a plus (+) or a
minus(-), and all other characters are from the set 0123456789.

An unpacked datum is aligned on a word boundary and occupies an integral
number of words, the last of which can contain unused bytes.

o
o

s

o 0
8 9

9

01

9

1 1
7 8

02

2 2
6 7

9

Figure 0-5. Typical Type 9 Decimal Datum

Real Floating-Point Decimal 9-bit (descriptor type 10)

03

9

3
5

A real, floating-point, decimal, 9-bit datum (packed or unpacked) of precIsIon
p (where O<p~59) is represented as a signed, decimal integer m and a 2's
complement, binary integer exponent e stored as a string of p+2 characters.

The exponent e is rig..h justified within the last 9-bit character and the unu...~
bit is zero. The value OeO is represented by m=O and e=+127.

An unpacked datum is aligned on a word boundary and occupies an integral
number of words, the last of which can contain unused bytes.

000
089

S 01

9 9

1 1 2 222
7 8 6 789

02 0 S

9 1 1

Figure 0-6. Typical Type 10 Decimal Datum

D-9

E

7

3
5

AG91-Q4

Complex Fixed-Point Decimal 9-bit (descriptor type 11)

A complex. fixed-point. decimal datum (packed or unpacked) of precision p is
represented as a pair of real. fixed-point. packed. decimal data of precision p.
The first datum represents the real part of the complex value, and the second
datum represents the imaginary part of the complex value.

An unpacked datum is aligned on a word boundary and occupies an integral
number of words, the last of which can contain unused bytes.

Complex Floating-Point Decimal 9-bit (descriptor type 12)

A complex, floating-point, decimal datum (packed or unpacked) of precISIon p
is represented by a pair of real, floating-point, packed, decimal data of
precision p. The first datum represents the real part of the complex value and
the last represents the imaginary part of the complex value.

An unpacked datum is aligned on a word boundary and occupies an integral
number of words, the last of which can contain unused bytes.

Pointer (descriptor type 13)

An unpacked pointer datum is represented by a ring number r, a segment
number s, a word offset w, and a bit offset b, and is stored in a pair of
36-bit words, the first of which has an even address.

Even word of ITS pointer pair:

0 o 0 1 1 2 2 2 3 3
0 2 3 7 8 01 9 0 5

000 S R o 0 000 0 0 0 0 (43)
8

3 15 3 9 6

Odd word of ITS pointer pair:

3 5 5 5 5 6 6 6 6 7
6 3 4 6 7 2 3 5 6 1

W 000 B 01 0 10 (TAG)

18 3 6 3 6

Figure D-7. ITS Pointer Format

D-10 AG91-o4

A packed pointer datum is represented by a segment number s, a word offset w,
and a bit offset b. stored as a string of 36-bits.

o
o

B

o 0
5 6

6

s

1 1
7 8

12

w

Figure D-8. Packed Pointer Datum Format

Offset (descriptor type 14)

3
5

18

An offset datum (always unpacked) is represented by a word offset w. and a
bit offset b. and is stored in a single 36-bit word.

o
o

Label (descriptor type 15)

w

1 1 2 2
780 1

000

18 3

B

6

2 2
6 7

Figure D-9. Offset Datum Format

o

3

3
5

6

A label datum (always unpacked) is represented by a pair of unpacked pointers.
The first pointer identifies a statement within a procedure and the second
pointer identifies a stack frame of an activation of the innermost block
containing the statement identified by the first pointer.

Entry (descriptor type 16)

An entry datum (always unpacked) is represented by a pair of unpacked
pointers. The first pointer identifies an entry to a proce~ure and the second
identifies a stack frame of an activation of the innermost block containing the
procedure whose entry is identified by the first pointer. If the first pointer
identifies an entry to an external procedure. the second pointer is null.

D-11 AG91-04

Structure (descriptor type 17)

A structure is an ordered sequence of scalar data. A packed structure contains
only packed data, whereas an unpacked structure contains either packed or
unpacked data or both.

A structure is aligned on a storage boundary that is the most stringent
boundary required by any of its components.

An unpacked member of a structure is aligned on a word or double word
boundary depending on its data type. and occupies an integral number of
words.

A packed member of a structure is aligned on the first unused bit following
the previous member, except that up to 8 bits can be unused in order to
ensure that a decimal arithmetic or nonvarying string datum is aligned on a
9-bit byte boundary.

An unpacked structure occupies an integral number of words.

Area (descriptor type 18)

An area datum (always unpacked) whose declared size is k occupies k words of
storage. the first of which has an even address. The maximum space available
for allocations within the area occupies k minus 24 words.

Bit String (descriptor type 19)

A bit string (packed or unpacked) whose length is n occupies n consecutive
bits. The leftmost is bit 1 and the rightmost is bit n. An unpacked bit string
is aligned on a word boundary and occupies an integral number of words.
Some bits of the last word can be unused.

Varying Bit String (descriptor type 20)

A varying bit string (always unpacked) whose maximum length is n is
represented by a real, fixed-point, binary, short, unpacked integer m, followed
by a non varying bit string of length n.

The current length of the varying bit string is the value of m (O~m~n). A
varying bit string is aligned on a word boundary and occupies an integral
number of words, the last of which can contain unused bits.

Character String (descriptor type 21)

A character string (packed or unpacked) whose length is n occupies n
consecutive 9-bit bytes. When storing 7-bit ASCII characters, each character is
right justified within the byte, leaving the two high-order bits to be zero.
Characters from the Multics Extended Character Set may also be stored within
the byte; in this case at least one high-order bit is nonzero.

D-12 AG91-04

An unpacked character string is aligned on a word boundary and occupies an
integral number of words, the last of which can contain unused bytes.

Varying Character String (descriptor type 22)

A varying character string (always unpacked) whose maximum length is n is
represented by a real, fixed-point, binary, short, unpacked integer m followe.d
by a nonvarying character string of length n.

The current length of the varying character string is the value of m (O~m~n).

A varying character string is aligned on a word boundary and occupies an
integral number of words, the last of which can contain unused bytes.

File (descriptor type 23)

A file datum (packed or unpacked) is represented by a pair of unpacked
pointers. the second of which points to a file state block and the first of
which points to a bit string. Neither the form of the file state block nor the
form of the bit string are defined as Multics standards.

Real Fixed-Point Decimal Leading Overpunched Sign 9-bit (descriptor type 29)

A real, fixed-point, decimal, leading overpunched sign, 9-bit datum (packed or
unpacked) of precision O<p~59 is represented as a signed decimal integer stored
as a string of p characters. The leftmost character represents both the sign and
the most significant digit. as shown in Table D-1, and all other characters are
chosen from the set 0123456789.

An unpacked datum occupies an integral number of words, the last of which
can contain unused bytes.

o
o

5 01

o 0
8 9

9

02

9

1 1
7 8

03

2 2
6 7

9

04

Figure D-10. Typical Type 29 Datum

9

3
5

D-13 AG91-D4

Table D-l. Overpunched Sign Encoding

~igit Sign Octal ASC II

0 + 173 {
1 + 101 A
2 + 102 B
3 + 103 C
4 + 104 0
5 + 105 E
6 + 106 F
7 + 107 G
8 + 110 H
" + 111 j

0 175 }
1 112 J
2 113 K
3 114 L
4 115 M
5 116 N
6 117 0
7 120 P
8 121 Q
9 122 R

Real Fixed-Point Decimal Trailing Overpunched Sign 9-bit (descriptor type 30)

A real, fixed-point, decimal. leading overpunched sign. 9-bit "datum (packed or
unpacked) of precision O<p~59 is represented as a signed decimal integer stored
as a string of p characters. The rightmost character represents both the sign
and the most significant digit, as shown in Table D-1. and all other characters
are chosen from the set 0123456789.

An unpacked datum occupies an integral number of words, the last of which
can contain unused bytes.

0 o 0 1 1 2 2 3
0 8 9 7 8 6 7 5

01 02 03 04

9 9 9 9

Figure D-11. Typical Type 30 Datum

0-14 AG91-Q4

Real Fixed-Point Binary Short Unsigned (descriptor type 33)

A real, fixed-point. binary. unsigned. unpacked datum of precision O<p<36 is
represented as a binary integer stored in a 36-bit word.

A real. fixed-point. binary, unsigned. packed datum of precIsIon O<p< 36 is
represented as a binary integer stored in a string of p bits.

Real Fixed-Point Binary Long Unsigned (descriptor type 34)

A real. fixed-point, binary, unsigned. unpacked datum of precIsIon 35<p<72 is
represented as a binary integer stored in a pair of 36-bit words. the first of
which has an even address.

A real, fixed-point, binary, unsigned, packed datum of precIsIon 35<p<72 is
represented as a binary integer stored in a string of p bits.

Real Fixed-Point Decimal Unsigned 9-bit (descriptor type 35)

A real, fixed-point. decimal, unsigned, 9-bit datum (packed or unpacked) of
precision O<p~59 is represented as a decimal integer stored as a sequence of p
9-bit bytes.

An unpacked datum is aligned on a word boundary and occupies an integral
number of words, the last of which can contain llnused bytes.

o
o

01

o 0
8 9

9

02

9

1 1
7 8

03

2 2
6 7

9

Figure D-12. Typical Type 35 Datum

Real Fixed-Point Decimal Trailing Sign 9-bit (descriptor type 36)

04

9

3
5

A real, fixed-point, decimal, trailing sign, 9-bit datum (packed or unpacked) of
precision O<p~59 is represented as a signed decimal integer stored as a
sequence of p+ 1 9-bit bytes. The rightmost byte is either a plus sign ("+n) or
a minus sign ("_n) and all other digits are chosen from the set 0123456789.

D-15 AG91-04

An unpacked datum is aligned on a word boundary and occupies an integral
number of words, the last of which can contain unused bytes.

o
o

01

o 0
8 9

02

1 1
7 8

03

2 2
6 7

Figure D-13. Typical Type 36 Datum

Real Fixed-Point Decimal Unsigned 4-bit (descriptor type 38)

s

3
5

A real. fixed-point, decimal, unsigned, 4-bit datum (packed or unpacked) of
precision O<p~59 is represented as a decimal integer stored as a sequence of p
4-bit digits.

An unpacked datum is aligned on a word boundary and occupies an integral
number of words, the last of which can contain unused digits.

o 0
o 1

101 01
I I

o 0
4 5

4

02

001
890

4 1

1 1
3 4

4

04

1 1 1
789

101 D5
I I

4 1

2 2
2 3

4

06

222
678

4 1

Figure D-14. Typical Type 38· Datum

07

3 3
1 2

4

Real Fixed-Point Decimal Trailing Sign 4-bit Byte Aligned (descriptor type 39)

D8

3
5

4

A real, fixed-point, decimal, trailing sign, 4-bit byte-aligned datum (packed or
unpacked) of precision O<p~59 is represented as a signed decimal integer stored
as a sequence of p+1 digits, left justified in a sequence of (p+2)/2 bytes. The
rightmost digit is either a plus sign ("1100"b) or minus sign ("1101"b), and all
other digits are chosen from the set "OOOO"b to "1001 "b. An unpacked datum
is aligned on a word boundary and occupies an integral number of words, the
last of which can contain unused digits. The last byte can contain an unused
digit.

D-16 AG91-04

o 0
o 1

101
I I

01

o 0
4 5

4

02

001
890

101
I I

4 1

03

1 1
3 4

4

04

1 1 1
789

101
I I

4 1

05

2 2
2 3

4

06

Figure D-15. Typical Type 39 Datum

222
678

10\
I I

4 1

07

Real Fixed-Point Decimal Unsigned 4-bit Byte Aligned (descriptor type 40)

3 3
1 2

4

s

3
5

4

A real, fixed-point, decimal, unsigned, 4-bit, byte-aligned datum (packed or unpacked)
of precision O<p~59 is represented as a decimal integer stored as a sequence of p
4-bit digits, left-justified in a sequence of (p+ 1) /2 bytes. the last byte can contain an
unused digit.

An unpacked datum is aligned on a word boundary and occupies an integral number
of words, the last of which can contain unused digits.

Real Fixed-Point Decimal Leading Sign 4-bit (descriptor type 41)

A real, fixed-point, decimal. leading _sign. 4-bit datum (packed or unpacked) of
precision O<p~59 is represented as a signed decimal integer stored as a
sequence of p+ 1 digits. The leftmost digit is either a plus sign ("1100"b) or a
minus sign ("1101"b). and all other digits are chosen from the set "OOOO"b to
"1001"b.

An unpacked datum is aligned on a word boundary and occupies an integral
number of words, the last of which can contain unused digits.

o 0 o 0 001 1 1 1 1 1 2 2 222 3 3 3
o 1 4 5 890 3 4 789 2 3 678 1 2 5

10 I S 01 101 D2 D3 H D4 D5 101 D6 D7
I I I I I I

Figure D-16. Typical Type 41 Datum

D-17 AG91-o4

Real Floating-Point Decimal 4-bit (descriptor type 42)

A real, floating-point, decimal, 4-bit datum (packed or unpacked) of precision
O<p~59 is represented as a signed decimal integer m and a 2's complement,
binary integer exponent e stored as a sequence of p+3 digits. The exponent e
is stored in two consecutive digits.

The value OeO is represented by m=O and e=+127. An unpacked datum is
aligned on a word boundary and occupies an integral number of words, the last
of which can contain unused digits.

o 0 o 0 001 1 1 1 1 1 2 2 222 3
o 1 4 5 890 3 4 789 2 3 678 5

1 01 S 01 101 02 03 101 04 05 101 E

4 4 1 4 4 1 4 4 1 8

Figure D-17. Typical Type 42 Datum

Real Fixed-Point Decimal Leading Sign 4-bit Byte-Aligned (descriptor type 43)

A real, fixed-point, decimal, leading sign. 4-bit, byte-aligned datum (packed or
unpacked) of precision p is represented as a signed decimal integer stored as a
sequence of p+ 1 digits, left-justified in a sequence of (p+2) /2 bytes. The
leftmost digit is either a plus sign ("1100bn), or a minus sign ("llOlnb), and all
other digits are chosen from the set "OOOO"b to "1001 "b. The last byte can
con tain an unused digit

An unpacked datum is aligned on a word boundary and occupies an integral
number of words, the last of which can contain unused digits.

Real Floating-Point Decimal 4-bit Byte-Aligned (descriptor type 44)

A real, floating-point, decimal, 4-bit, byte-aligned datum (packed or unpacked)
of precision O<p~59 is represented as a signed decimal integer m and a 2's
complement, binary integer exponent e stored as a sequence of p+ 3 digits, left
justified in a sequence of (p+4)/2 bytes. The exponent e is stored in two
consecutive digits. The last byte can contain an unused digit.

The value Oeo is represented by m=O and e=+127.

0-18 AG91-D4

An unpacked datum is aligned on a word boundary and occupies an integral
number of words, the last of which can contain unused digits.

Complex Fixed-Point D=>-eimal Leading Sign 4-bit Byte-~AJigned (descriptor type 45)

A complex, fixed-point, decimal, leading sign. 4-bit, byte-aligned datum
(packed or unpacked) of precision O<p~59 is represented as a pair of real,
fixed-point, packed, decimal, leading sign, 4-bit, byte-aligned data of precision
p. The first datum represents the real part of the complex value, and the
second datum represents the imaginary part of the complex value.

An unpacked datum is aligned on a word boundary and occupies an integral
number of words, the last of which can contain unused bytes.

Complex Floating-Point Decimal 4-bit Byte-Aligned (descriptor type 46)

A complex, floating-point, decimal, 4-bit. byte-aligned datum (packed or
unpacked) of precision O<p~59 is represented as a pair of real, floating-point,
packed. decimal. 4-bit, byte-aligned data of precision p. The first datum
represents the real part of the complex value, and the second datum represents
the imaginary part of the complex value.

An unpacked datum is aligned on a word boundary and occupies an integral
number of words, the last of which can contain unused bytes.

Real Floating-Point Hexadecimal Short (descriptor type 47)

A real. floating-point hexadecimal. unpacked datum of precIsIon O<p<28 is
represented as a 2's complement. hexadecimal normalized fraction m and a 2's
complement, binary integer exponent e stored in a 36-bit word. The integer
exponent indicates quad bit shifts of the mantissa.

The value 0 is represented by m=O and e=-128. For all other values, m
satisfies -O.062S<m<=1 or O.062S<=m<1.

o 0
o

5 E

000
789

5 M

3
5

7 1 27

Figur~ 0-18. Single-Precision. Unpacked. Floating-Point
Hex-operand Format

0-19 AG91-04

A real, floating-point hexadecimal, packed datum of precision 0<p<28 is
represented as a 2's complement, hexadecimal normalized fraction m and a 2's
complement, binary integer exponent e stored in a string of p+9 bits. The
integer exponent indicates quad bit shifts of the mantissa.

The value 0 is represented by m=O and e=-128. For all other values, m
satisfies -0.0625<m<=1 or 0.0625<=m<1.

o 0
o 1

s E

000
789

s

p+8

M

I I I I

7 p

Figure D-19. Single-Precision. Packed, Floating-Point
Hex-operand Format

Real Floating-Point Hexadecimal Long (descriptor type 48)

A real, floating-point hexadecimal, unpacked datum of precISIon 27<p<64 is
represented as a 2's complement, hexadecimal normalized fraction m and a 2's
complement. binary integer exponent e stored in a pair of 36-oit words, the
first of which has an even address. The integer exponent indicates quad bit
shifts of the mantissa.

The value 0 is represented by m=O and e=-128. For all other values, m
satisfies -o.0625<m<=1 or O.0625<=m<1.

o 0
o 1

s E

000
789

s M

7
1

7 1 63

Figure D-20. Double-Precision, Unpacked, Floating-Point
Hex-Operand Format

A real, floating-point hexadecimal, packed datum of precISIon 27<p<64 is
represented as a 2's complement, hexadecimal normalized fraction m and a 2's
complement, binary integer exponent e stored in a string of p+9 bits. The
integer exponent indicates quad bit shifts of the mantissa.

D-20 AG91-04

The value 0 is represented by m=O and e=-128. For all other values. m
satisfies -0.0625<m<=1 or 0.0625<=m<1.

o 0
o

s E

000
789

s

7 1

p+8

M

p

Figure D-21. Double-Precision, Packed, Floating-Point
Hex-operand Format

Complex Floating-Point Hexadecimal Short (descriptor type 49)

I
A complex, floating-point hexadecimal, unpacked datum of precIsIon 0<p<28 is I
represented as a pair of real, floating-point, hexadecimal unpacked data stored I
in two 36-bit words, the first of which has an even address. The first word I
contains the real part of the complex value and the second word contains the I
imaginary part of the complex value. I

A complex, floating-point hexadecimal, packed datum of precIsIon 0<p<28 is
represented as a pair of real, floating-point, hexadecimal unpacked data stored
in a string of 2(p+9) bits. The first p+9 bits contain the real part of the
complex value and the last p+9 bits contain the imaginary part of the complex
value.

Complex Floating-Point Hexadecimal Long (descriptor type 50)

A complex. floating-point hexadecimal, unpacked datum of precISIon 27<p<64 is
represented as a pair of real, floating-point, hexadecimal unpacked data stored
in 4 consecutive 36-bit words, the first of which has an even address. The
first two words contain the real part of the complex value and the last two
words contain the imaginary part of the complex value.

A complex, floating-point hexadecimal, packed datum of precISIon 27<p<64 is
represented as a pair of real, floating-point, hexadecimal unpacked data stored
in 2(p+9) bits. The first p+9 bits contain the real part of the complex value
and the last p+9 bits contain the imaginary part of the complex value.

Algol68 straight (descriptor type 59)

An Algol68 straight datum (always unpacked) is repreSented by three pieces of
data of different types. The first datum is an entry datum. The second datum
is an unpacked pointer. The third datum is a real, fixed-point, binary, short,
unpacked integer. An Algol68 straight datum begins on an even address.

I
I
I
!
I
I
I
I
I
I
I
I
I
I
I
I
-' I
I
I

0-21 AG91-04

The first datum identifies a procedure that returns an element of the straight.
The interface of the entry is not defined as a Multics standard. The second
datum points to the composite object to be straightened. The third datum is
the number of elements in the straight.

Algol68 format (descriptor type 60)

An Algol68 format datum (always unpacked) is represented by three pieces of
data of different types. The first datum is an entry datum. The second datum
is an unpacked pointer. The third datum is a real, fixed-point, binary, short,
unpacked integer. An Algol68 format datum begins on an even address.

The first datum identifies a procedure that interprets the format. The interface
of this entry is not defined as a Multics standard. The second datum points to
a packed character string. Neither the format of the character string nor the
third datum are defined as Multics standards.

Algol68 array descriptor (descriptor type 61)

An Algo168 array descriptor datum is represented by two pieces of data. The
first datum is an unpacked pointer. It points to the elements of the array or
string. I t starts on an even address. The second datum consists of one or
more 36-bit words that represent the argument descriptor for the data type of
the array. See Appendix H for the representation of an argument descriptor.
The number_dims field of the second datum is zero for a VECTOR.

This representation is used when an array occurs as an element of a union,
structure, row, or as a REF FLEX (] or REF FLEX VECTOR [] par~'l1eter.

Algol68 union (descriptor type 62)

An Algol68 union datum (always unpacked) is represented by three pieces of
data. The first datum is an unpacked bit string of length 36. It is unused and
reserved for future expansion. The second datum is a real, fixed-point, binary,
short, unpacked integer. It represents the ordinal position of the data type of
the third datum in the set of constituent data types of the union. The size of
the third datum is the largest size of datum in any constituent data type. The
format of the third datum is dependent upon its data type. An Algol68 union
datum must start on an even address if any constituent data type of the union
must start on an even address.

Pascal Typed Pointer Type (descriptor type 64)

A Pascal typed pointer type describes a packed or unpacked pointer which can
only be used with data described by the type associated with the pointer. This
is enforced by software. A Pascai typed pointer datum actuaHy has the type
user-def ined type instance.

0-22 AG91-04

Pascal Char (descriptor type 65)

A Pascal char datum is a single character with a real, fixed-point, binary,
unsigned integer value between 0 and 127 inclusive.

A packed Pascal char datum occupies one 9-bit byte and is aligned on a byte
boundary.

An unpacked Pascal char datum occupies the rightmost 9-bit byte of a word
that is aligned on a word boundary. The leftmost three bytes of the word are
filled with zeroes.

Pascal Boolean (descriptor type 66)

A Pascal boolean datum has an integer value of 0 for FALSE and 1 for
TRUE.

A packed Pascal boolean datum occupies one byte and is aligned on a byte
boundary.

An unpacked Pascal boolean datum occupies one word and is aligned on a
word boundary.

Pascal Record File Type (descriptor type 67)

The Pascal record file type describes a type of file which is an array of
records. This type code is used only in runtime symbol tables.

A Pascal record file datum actually has the type Pascal user-defined type
instance. It is represented by an unpacked pointer to the Pascal record file
status block. The format of a record file status block is not defined as a
Multics standard.

Pascal Record Type (descriptor type 68)

The Pascal record type describes a datum which is similar to a structure
(descriptor type 17).

An unpacked record is aligned on a double word boundary if it contains fields
with double word alignment, such as real, set or pointer. Otherwise it is
aligned on a word boundary.

A record that is in a packed record or array has the maximum alignment of
any of its fields.

0-23 AG91-()4

A field of a packed record is usually aligned on the first 9-bit byte boundary
that is consistent with the data type's alignment rules. However, if the
alignment rules for a field and its successor allow room to unpack the field.
the field is unpacked. For example:

packed record
a integer
b : char ;
c : integer

end;

Fields a and c each occupy one word and are aligned on word boundaries.
According to the general rule for packed fields, b should occupy the first byte
after a. But since the word it occupies would be unused, b is in
fact unpacked.

Another packing modification is that a field is moved to the rightmost part of
the word, if possible. For example:

packed record
a : integer ;
b,c,d : char
e : integer

end;

The integers a and e each occupy one word. Straightforward packing would
place b, c and d in the first three bytes after a. However. rather than leaving
the rightmost byte of the word unused, the compiler allocates d in the
rightmost byte, leaving the third byte unused.

A Pascal record datum actually has the type Pascal user-defined type instance.

Pascal Set Type (descriptor type 69)

The Pascal set type describes a datum which is a non varying bit string whose
length is equal to the number of elements in the set The maximum length is
288 bits (8 words). In the following descriptions. L refers to the length in
bits.

If 72 < L < 289, the datum is aligned on a double (even) word boundary and
occupies 8 words.

If the set is unpacked and 0 < L < 73. the datum is aligned on a double
(even) word boundary and occupies 2 words.

The alignment rules for packed sets where L < 73 are given below:

If 36 < L < 73. the datum is aligned on a double (even) word boundary and
occupies 2 words.

D-24 AG91-04

If 18 < L < 37, the datum is aligned on a word boundary and occupies 1
word.

If 9 < L < 19, the datum is aligned on a half -word boundary and occupies 2
9-bit bytes.

If 0 < L < 10. the datum is aligned on a 9-bit byte boundary and occupies
one byte.

A Pascal set datum actually has the type Pascal user-defined type instance.

Pascal Enumerated Type (descriptor type 70)

The Pascal enumerated type describes a datum which contains one element of a
set of symbolic values. The symbolic values are represented by real,
fixed-point, binary, unsigned integers with values from 0 through n-1, where n
is the number of elements in the type.

An unpacked datum is aligned on a word boundary and occupies 1 word.

A packed datum is aligned on a half-word boundary, occupying 2 9-bit bytes,
when n > 511. A packed datum is aligned on a 9-bit byte boundary,
occupying 1 byte, when n <= 511.

This type code is used primarily in runtime symbol tables. It is used in
symbol nodes representing the type itself, as in

TYPE
enumerated_type = (valuel, value2, value3);

Data of Pascal enumerated types declared by the program actually have the
type Pascal enumerated type instance.

Pascal Enumerated Type Element (descriptor type 71)

A Pascal enumerated type element is one of the symbolic values for a Pascal
enumerated type. It is represented by a real, fixed-point, binary, short,
unsigned integer.

This type code is used only in runtime symbol tables.

Pascal Enumerated Type Instance (descriptor type 72)

A Pascal enumerated type instance is a datum of a Pascal enumerated type. It
is represented by a real, fixed-point, binary, unsigned integer. The alignment
and size of the datum depend on the description of the Pascal enumerated type
and on the environment where it is declared (a field in a packed record or
element of a packed array is packed).

D-25 AG91-04

Pascal User Defined Type (descriptor type 73)

A Pascal user-defined type is a type defined by the user either implicitly or
explicitly as an array or subrange.

The description of such a type is contained in a runtime symbol table node.

Pascal User Defined Type Instance (descriptor type 74)

A Pascal user-defined type instance is a datum of a Pascal user-defined type.

Pa....~al Text File (descriptor type 75)

A Pascal text file is represented by an unpacked pointer to a Pascal text file
status block. The format of the text file status block is not defined as a
M ul tics standard.

Pascal Procedure Type (descriptor type 76)

The Pascal procedure type type code us used in the runtime symbol table in
conjunction with symbol nodes for internal, exported and imported procedures
(types 25, 26, 27). Symbol nodes of this generic type are used to anchor
descriptions of the parameter lists. They are separated from their associated
procedure symbol nodes in order to facilitate comparison of parameter lists.

Pascal Variable Formal Paramater (descriptor type 77)

The Pascal formal variable parameter type code is used in the runtime symbol
table to describe a procedure parameter that is passed by reference.

Pascal Value Formal Parameter (descriptor type 78)

The Pascal formal value parameter type code is used in the run time symbol
table to describe a procedure parameter that is passed by value.

Pascal Procedure Formal Parameter (descriptor type 79)

The Pascal formal parameter procedure parameter type code is used in the
runtime symbol table to describe a procedure parameter that is itself a
procedure or function.

D-26 AG91-{)4

Pascal Procedure Parameter (descriptor type 80)

A Pascal procedure parameter datum (always unpacked is represented by a pair
of unpacked pointers followed by a real, fixed-point, binary, short, unpacked
integer. The pointers have the same meaning as for an entry datum (type 16).
The integer IS the offset in the pascal_opera tors_ transfer vector of the
transfer to the call operator to be used for the procedure parameter.

Real Floating-Point Decimal 9-bit Extended 9-bit Exponent (descriptor type 81)

A real, floating-point, decimal. 9-bit datum (packed or unpacked) of precision
p (where 0<p<=59) is represented as a signed, decimal integer m and a 2's
complement, binary integer exponent e stored as a string of p+ 2 characters.

The exponent e is a signed 9-bit exponent within the last 9-bit character. The
value oeO is represented by m=O and e=+127.

An unpacked datum is aligned on a word boundary and occupies an integral
number of words, the last of which can contain unused bytes.

000
089

SOl

9 9

1 1 222
7 8 678

02 S

9 1 8

E

3
5

Figure D-22. Typical Type 81 Datum

Complex Floating-Point Decimal 9-bit Extended 9-bit Exponent (descriptor type 82)

A complex, floating-point, extended decimal datum (packed or unpacked of
precision p is represented by a pair of real, floating-point, packed, extended
decimal data of precision p. The first datum represents the real part of the
complex value and the last represents the imaginary part of the complex value.

An unpacked datum is aligned on a word boundary and occupies an integral
number of words, the last of which can contain unused bytes.

Real Floating-Point Decimal 9-bit Generic 36-bit Exponent (descriptor type 83)

A real, floating-point, decimal, 9-bit unpacked datum of precision p (where
0<p<=59) is represented as a 2's complement 36-bit integer exponent e aligned
on a word boundary and a signed. decimal integer m stored as a string of p+5
characters.

D-27 AG91-D4

The exponent e is a signed 36-bit exponent in the first word. The value Oeo is
represented by m=O and e=+127.

o
o

s E

3
5

35

3
6

s

4 4
7 8

9

01

1 1
7 8

9

Figure D-23. Typical Type 83 Datum

02

2
6

9

Complex Floating-Point Decimal 9-bit generic 36-bit Exponent (descriptor type 84)

A complex, floating-point, generic decimal unpacked datum of precision p is
represented by a pair of real, floating-point, packed. generic decimal data of
precision p. The first datum represents the real part of the complex value and
the last represents the imaginary part of the complex value. Any area between
the end of the first datum and the exponent word of the second datum is
unused.

Real Floating-Point Binary Generic (descriptor type 85)

A real, floating-point, binary, unpacked datum of precIsIon O<p<64 is
represented as a double-precision floating point datum, stored in 3 consecutive
words, the first of which has an even address. The exponent part of the
double precision floating point datum is a pad field (typically 0) and a 2's
complement 36-bit integer exponent e is in the third word of the Generic
datum.

o 000
o 789

pad S M

8 1

7
1

63

7 7
2 3

S

Figure D-24. Floating-Point Binary Generic Format

D-28

E

1
o
7

35

AG91-04

Complex Floating-Point Binary Generic (descriptor type 86)

Arrays

A complex. floating-point. binary unpacked generic datum of precIsIon O<p<64
is represented as a pair of real, floating-point, binary. unpacked generic data
stored in 7-consecutive 36-bit words. the first of which has an even address.
The first three words contain the real part of the complex value and the last
three words contain the imaginary part of the complex value. The fourth word
is a pad field.

. An array is an n-dimensional. ordered collection of scalars or structures, all of
which have identical attributes. The elements of an array are stored in row major
order (when accessed sequentially the rightmost subscript varies most rapidly) by
BASIC. COBOL, and PL/I, and are stored in column major order (when accessed
sequentially the leftmost subscript varies most rapidly) by FORTRAN. The user must
be aware of such differences when accessing an array with procedures written in two
or more languages.

D-29 AG91-o4

APPENDIX E

LIST OF NAMES WITH SPECIAL MEANINGS

The following names are reserved for special purposes within Multics. The user
should not use them with a different meaning.

RESERVED I/O SWITCH NAMES

By convention, the following I/O switch names are reserved. Those switches
maintained by the standard environment are: .

user_i/o
is the switch attached to the user's terminal or absentee input and
output segments.

user_input
is the switch attached to user_i/o and devoted expressly to read calls.

user_output
is the switch attached to user_i/o and devoted expressly to write calls.

error_output
is the switch attached to user_i/o and devoted expressly to write calls
under error conditions.

Those maintained by system commands or subroutines are:

audit_if o.HHMM. T
is the switch used by the audit facility, where HHMM.T is a string
representing the time the switch was attached.

debu~input
is the switch attached by the debug command (using the si request).

debu~output
is the switch attached by the debug command (using the so request).

ec_switch_nn
is the switch attached by the exec_com command where nn is a unique
sequence number assigned by the exec_com command. When the attach
control line is used, the switch user_input is attached to this switch
through the syn_ I/O module.

E-1 AG91-()4

fo_uniquename
is the switch attached by the file_output command. The specified switch
is attached to this switch through the syn_ I/O module.

f o_save_uniquename
is the switch used by the file_output command to save the previous
attachment of the specified switch.

filenn
is the switch attached by the FORTRAN I/O system where nn is the
file reference number.

graphic_input
is the switch used for graphics input.

graphic_output
is the switch used for graphics output.

uniquename.lila
uniquename.rel
uniquename.res

are switches used by the LINUS subsystem.

RESERVED SEGMENT NAMES

By convention, the following segment names are reserved. The commands listed
that use these sgements are described in the Commands manual. Those segments
maintained in the home directory are:

start_up.ec
is the exec_com invoked at the beginning of a process in the standard
environment

Person_ide breaks
is the break segment used by the debug command.

Person_id.mbx
is the mailbox segment used by the print_mail, read_mail, send_mail,
and send_message commands.

Person_id.memo
is the segment used by the memo command.

Person_ide probe
is the break segment used by the probe command.

Person_ide prof ile
is the segment used by the abbrev command.

E-2 AG91-04

Person_id.sym boIs
is the segment used by the Speedtype commands. add_symbols, use_symbols,
and print_symbols_path (described in the Multics WORDPRO Reference
Guide. Order No. AZ98).

Person_id. value
is the default segment maintained by the value facility. The
enter_output_request, check_info_segs, and print_motd commands use this
segment through the value facility. Users can manipulate values in this
segment with the valueJet, value_set. value_list, and value_delete
commands.

Those maintained in the process directory are:

dseg

kst

pds

pit

(descriptor segment) is a hardcore ring data segment.

(known segment table) is a hardcore ring data segment.

(process data segment) is a hardcore ring data segment.

is the user's process initialization table. It should only be referenced
through the user_info_ subroutine (described in the Subroutines manual).

process_search_segmen t_.N
is a segment used to contain search lists for subsystems and commands
in ring.N (1 <=N<=7) •

stack_N
is the user's automatic storage area for ring number N (1 <=N<=7) e

unique_name. area. linker
is a combined linkage segment There is at least one for each ring in
use.

unique_name. temp.N
are segments maintained by the get_temp_segments_ subroutine, where N
is the segment number of the segment.

In general, users should not create segments whose names end in a trailing
underscore L). These names are reserved for system subroutines and may cause errors
if they are in the user's search path. (See "Search Rules" in Section 4.)

E-3 AG91-o4

RESERVED SEGMENT-NAME SUFFIXES

Suffixes are used as in the following example: when creating a PL/I source
program to be named xyz, the user would create a source-language segment named
xyz.pll. The PL/I compiler, by convention, translates this segment. producing the
segment xyz.list. containing a printable listing, and the segment xyz. containing the
object program.

By convention, the following segment-name suffixes are reserved. The
language-translator source-segment suffixes are:

Language
Translator

PL/I compiler

FORTRAN compiler

ALM assembler

BASIC compiler

COBOL compiler

ALGOL68 compiler

PASCAL compiler

The listing segment suffix is:

list

Source
Segment

pll

fortran

alm

basic

cobol

algo168

pascal

Include
Files

inc 1 • P 11

incl.fortran

inc 1 • a 1m

incl.cobol

incl.algo168

inc1.pascal

is the suffix for printed output listing segments produced by compilers.
the assembler, and the binder. . This suffix is also used on segments
created by the -output_file control argument of process_list command
when a pathname has not been given explicitly with the control
argument

Other special suffixes include:

absin
is the input segment suffix for an absentee process.

absout
is the default output segment suffix for an absentee process.

archive
1S the suffix on the segment created by the archive command.

E-4 AG91-04

bind

cds

cdt

chars

cmdb

cmdsm

cmf

code

compin

is the suffix on the input control segment for the binder.

is the suffix on a cds source segment.

is the suffix on the segment created by cv_cmf.

is the suffix of the special-purpose segment used by the compose
command for comments, indices. etc.

is the suffix on the source segment used by the create_mrds_db
command.

is the suffix on the source segment used by the create_mrds_dsm
command.

is the suffix on the source segment converted by cv _cmf.

is the suffix on the enciphered segment created by the encode
command.

is' the suffix on the segment to be formatted by the compose command.

compaut
is the suffix on the output file formatted by the compose command.

db
is the suffix on a data-base directory.

dict
is the suffix on any dictionary segment the user creates.

dir_info

dsm

ec

fdocin

is the suffix on a segment created by the save_dir_info command.

is the suffix on a data submodel.

is the suffix on the input segment to the exec_com command.

is the suffix on the input segment used by the format_document
command.

E-5 AG91-()4

fdocout

gcos

gct

gdt

is the suffix on the output segment created by the format_document
command.

is the suffix on a segment that is in GCOS standard system format.

is the suffix on a segment reserved for a graphic character table.

is the suffix on a segment reserved for a graphic device table.

graphics

info

linus

lister

is the suffix on an output file that contains graphic code.

is the suffix on a segment formatted for use with the help command.

is the suffix used for LINUS macros.

is the suffix on the segment created by the create_list command from a
listin segment.

listform

listin

mail

map355

mbx

memo

ms

pdt

pfd

is the suffix on the segment that defines the format of a document
produced from a list.

is the suffix on any segment used to input and update a list used by
the create_list command.

is the suffix on segments generated by the read_mail and send_mail
"write" request.

is the suffix on an FNP source program to be assembled.

is the suffix on any mailbox segment the user creates.

is the suffix on any memo segment the user creates.

is the suffix on an administrative ring message segment.

is the sufix on the segment ·created by cv_pmf.

is the suffix on profile data files output by the profile command.

E-6 AG91-04

pfl

pmf

probe

profile

qedx

rd

rdmec

rtdt

rtmf

runoff

runout

sat

sdmec

smf

sv.apl

is the suffix on profile listing files output by the profile command.

is the suffix on the source segment converted by cv _pmf.

is the suffix on the segment used by the probe command.

is the suffix on any profile segment the user creates. A profile segment
contains abbreviations used with the abbrev command.

is the suffix of a segment containing qedx instructions.

is the suffix on a translator source segment that is input to the
reduction_compiler command.

is the suffix on the input segment to the send_mail "exec_com" request.

is the suffix on the segment converted by cv_rtmf.

is the suffix on the source segment converted by cv _rtmf.

is the input segment suffix to the runoff command.

is the output segment suffix from the runoff command.

is the suffix on the segment created by cv_smf.

is the suffix on the input segment to the send_mail "exec_com" request.

is the suffix on the source segment converted by cv_smf.

is the suffix on the segment containing a saved workspace from the apl
command.

symbols

table

is the suffix of the symbol dictionary used by Speedtype commands.

is the suffix on a segment created from a data model or submodel by
the create_mrds_dm_table command.

E-7 AG91-D4

ttf

ttt

value

is the suffix on source segment converted by cv _ttf.

is the suffix on the segment created by cv_ttf.

is the suffix on data bases maintained by value_set and related
commands.

volumes
is the suffix of a segment processed by the manage_volume_pool
command.

wI
is the suffix on any wordlist segment the user creates.

RESERVED OBJECT-SEGMENT ENTRY POINT

By convention, the following entry-point definition in object segments is
reserved.

symbol_table
is the entry-point definition that provides the address of the symbol
table produced by the compilers.

Since this is a reserved entry point. no user-created program can use this name.
A statement of the form:

symbol_table: procedure .•.

is illegal if it is the external procedure block.

E-8 AG91-04

APPENDIX F

MULTICS STANDARD MAGNETIC TAPE FORMAT

This appendix describes the standard physical format used on 7-track and 9-track
magnetic tapes on Multics. Tapes of this form may be written and read by the
tape_mult_ I/O module (described in the Subroutines manual). Any magnetic tape not
written in the standard format described here is not a Multics standard tape.

STANDARD TAPE FORMAT

The first recorded block on the tape following the beginning of tape (BOT)
mark is the tape label record. Following the tape label record is an end of file
(EOF) mark. Subsequent reels of a multireel sequence also have a tape label followed
by an EOF mark. (An EOF mark is the standard sequence of bits on a tape that is
recognized as an EOF by the hardware.)

Following the tape label and its associated EOF are the data records. An EOF is
written after every 128 data records with the objective of increasing the reliability and
efficiency of reading and positioning within a logical tape. Records that are repeated
because of transmission. parity. or other data alerts are not included in the count of
128 records. The first record following the EOF has a physical record count of 0
mod 128 .

. A.n end of reel (EOR) sequence is written at the end of recorded data. An EOR
sequence is:

EOF mark
EOR record
EOF mark
EOF mark

STANDARD RECORD FORMAT

Each physical tape block consists of a modulo 4096 character (1024 word) data
space enclosed by an 8-word (32 character) header and an 8-word trailer. The total
block length is then the total data space (expressed in characters) plus 64 characters of
overhead. For a block with a data space of 4096 characters plus overhead (4160
characters total). the following table illustrates the physical space requirements for each
data block and its associated inter-record gap.

F-1 AG91-()4

tracks I density I block distance I gap distance

7 800 7.800 inches .75 inches
9 800 5.850 inches .60 inches
9 1600 2.925 inches .50 inches
9 6250 0.688 inches .30 inches

For 6250 bpi 9-track tape, use the attach description control argument
"-density 6250" or "-den 6250."

PHYSICAL RECORD HEADER

The following is the format of the physical record header:

Word 0
Constant with octal representation 670314355245.

Words 1 and 2

Word 3

Word 4

Word 5

Multics standard unique identifier (70 bits, left justified). Each record
has a different unique identifier.

Bits 0-17: the number of this physical record in this physical record,
beginning with record O.
Bits 18-35: the number of this physical file on this physical reel,
beginning with file O.

Bits 0-17: the number of data bits in the data space, not including
padding.
Bits 18-35: the total number of bits in the data space.
If word 5 bit position 23 is a one bit, then these two integers are
interpreted as being the number of data characters used in the data
space and the total number of characters contained in the data space
respectively.

Flags indicating the type of record. Bits are assigned considering the
leftmost bit to be bit 0 and the rightmost bit to be bit 35. Word 5
also contains a count of the rewrite attempt, if any.

F-2 AG91-D4

Word 6

Word 7

Bit Meaning if Bit is 1

° This is an administrative record
(one of bits 1 through 13 is 1).

This is a label record.

2 Th is is an end of ree 1 (EOR) record.

3-13 Reserved.

14 One or more of bits 15-26 are set.

15 This record is a rewritten record.

16 This record contains padding.

17 This record was written following a
hardware end of tape (EOT) condition.

18 This record was written synchronously;
that is, control did not return to the
caller until the record was written
out.

19 The logical tape continues on another
ree 1 (def i ned, on 1 y for an end of ree 1
record) .

20-22 Reserved.

23 The data bits used and data bit length
integers in header word 4 are
interpreted as characters used and
character length respectively.

24-26 Header version number, currently 2.

27-35 If bits 14 and 15 are 1, this quantity
indicates the number of the attempt to
rewrite this record. If bit 15 is 0,
this quantity must be O.

Contains the checksum of the header and trailer excluding word 6; i.e .•
excluding the checksum word. (See beiow for a description of standard
checksum computation.)

Constant with octal representation 512556146073.

F-3 AG91-()4

PHYSICAL RECORD TRAILER

The following is the format of the trailer:

V/Oid 0
Constant with octal representation 107463422532.

Words 1 and 2
Standard Multics unique identifier (duplicate of header).

Word 3
Total cumulative number of data bits for this logical tape (not including
padding and administrative records).

Word 4

Word 5

Padding bit pattern (described below).

Bits 0-11: reel sequence number (multireel number), beginning with reel
o.
Bits 12-35: physical file number, beginning with physical file 0 of reel
O.

Word 6

Word 7

The number of the physical record for this logical tape, beginning with
record O.

Constant with octal representation 265221631704.

NOTE: The octal constants listed above were chosen to form elements of a
single error-correcting code whether read as 8-bit tape characters
(9-track tape) or as 6-bit tape characters (7-track tape).

ADMINISTRATIVE RECORDS

The standard tape format includes three types of administrative records: a
standard tape label record, a boo table tape label record, and an end of reel (EOR)
record.

F-4 AG91-04

Standard Tape Label Record

The standard tape label record is written in standard record format and can best
be defined by the PLI structure declaration that follows:

where:

1.

2.

3.

4.

5.

6.

dcl 1 stand_label_record
2 head
2 installation_id
2 tape_reel_id
2 volume set id
2 pad (1000)
2 tra i 1

head

based (mstrp) al igned,
1 ike mstr header,
char (32):-
char (32),
char (32),
bit (36),
like mstr_trailer;

is the standard 8-word record header described above.

installation_id
is the ASCII installation code. This identifies the installation that
labeled the tape.

tape_reel_id
is the ASCII reel identification. This is the reel identification by
which the operator stores and retrieves the tape.

volume_set_id
is the name of the volume set if the "-volume set name" tape_mult_
attach description argument was used when the tape reel was created.
If the n-volume_set_name" attach description argument was not used,
this field is padded with ASCII blanks.

pad
is an array of words containing the standard padding pattern
(described below), used to fill the label record data space out to the
standard size.

trail
is the standard 8-word record trailer described above.

Bootable Tape Label Record

The bootable tape label record is an administrative record, written in nonstandard
format The first eight words of the physical record contain four pairs of executable
instructions collectively known as a transf er vector. The function of this transf er
vector is to allow a Multics standard tape to be bootloaded from any of four possible
I/O controllers.

F-5 AG91-()4

When a tape that contains a bootable tape label record is bootloaded, a
hardwired program within the I/O controller writes the data within the first record
starting at location 30 (octal, absolute) in memory. When the data transfer is
completed, the I/O controller sets an interrupt "cell" in the system controller. which
causes the bootload processor to execute a hardwired "XED" instruction to the address
indicated by the system controller. This interrupt address generated by the system
controller is a function of the interrupt "cell" set by the I/O controller and by the
configuration panel number of the I/O controller itself. For example. if the bootload
sequence was initiated on I/O controller #0, then the interrupt address would be 30
(8); addresses 32, 34, and 36, respectively, would be generated by I/O controllers
number 1, 2 and 3. The executable instructions contained in each pair of the transfer
vector are:

lda 4
tra 330

Location 4 contains the DeW address stored by the I/O controller'S hardwired boot
program. An executable program is located at 330 (octal, absolute). This program is
known as the tape label boot program.

The boo table tape label record is created through the use of the tape_mult_
control order "boot_program". This control order is normally executed by the
generate_mst command to write a bootable label on BOS system tapes. Although a
user may write his own boot program and have generate_mst write it out to the BOS
tape label, a standard boot label exists in the system libraries with the name of
mst_boot_label.

The function of the mst_boot_label boot program is to initialize the bootst.rap
environment and set up an I/O channel program to read and skip the EOF record,
and to read in the first data record on the tape under control of a DeW. The DeW
address used is 7750 (8) absolute with a word count of 4096. (The generate_mst
command places the standard 8-word tape record header plus a 16-word segment
header before the first data in the record; the first executable data in the record
starts at location 10000 (8).) After the first data record is read in, the status ieturned
from the tape controller is checked for errors. If an error occurs, the status word is
copied in the A register and the processor falls into a DIS. Assuming no status error
is detected, control is transferred to absolute location 10000 (8).

F-6 AG91-04

There are many other fields in the standard tape label record. The following is a PLI
structure definition of the contents of the tape label record followed by an
explanation of each field:

del ,
I

where:

1.

2.

'1
.J.

4.

5.

mst label based (mstrp) ali gned,
2

2
2
2
2
2

2
2
2
2
2
2
2
2
2

2

-
xfer vector (4) ,
3 lda instr bit (36) ,
3 tra_instr bit (36) ,
head 1 ike mstr header,
installation id - char (32) unal igned,
tape_reel_ id char (32) unaligned,
volume set - id char (32)
fv_overlay char (32) anal igned,
3 scu_instr bit (36) ,
3 dis_instr bit (36) ,
fault data (8) bit (36) ,
boot_pgm_path char (168) unal igned,
userid char (32) unaligned
label version fixed bin, -
output_mode fixed bin,
boot_pgm_len fixed bin,
copyright char (56) unal igned,
pad (13) bit (36) ,
boot_pgm (0 refer (mst _label.boot_pgm_ 1 en))

bit (36) ,
tra i 1 1 j ke mstr trai ler; -

xfer_ vector
is the bootload transfer vector. There is one transfer vector for each
of four possible I/O controllers. The transfer vector functions to
gain control as the result of an interrupt after a bootload sequence.

lda_instr
is an "LDA" instruction from absolute location 4. which for an 10M
is the payload channel DCW as stored by the hardwired bootload
program in the 10M.

tra_instr
is an unconditional transfer to the beginning. of the bootload
program.

head
is the standard 8-word record header described above.

installation_id
is the ASCII installation code. This identifies the installation that
labeled the tape.

F-7 AG91-04

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

ta pe_reel_id
is the ASCII reel identification. This is the reel identification by
which the operator stores and retrieves the tape.

volume_set_id
is the name of the volume set if the "-volume_set_name" tape_mult_
attach description argument is used when the tape reel is created. If
the "-volume_set_name" attach description argument is not used. this
field is padded with ASCII blanks.

fv_overlay
This 32-element array overlays the hardware fault vector area at
absolute location 100 (octal) if this tape is bootloaded. If an
unexpected fault occurs when this tape is bootloaded.
fault pair is executed by the processor fault logic.

seu_instr

+1.-..,.., ""':ft+,..,.
LJ.1~ a.pPlVPlla.L~

is a Store Control Unit (SCU) instruction. which safe-stores the state
of the processor control unit when executed.

dis_instr
is an interrupt inhibited Delay until Interrupt Signal (DIS) instruction,
which halts the processor when executed.

fault_data
is an area where SCU data is stored if an unexpected fault occurs
while bootloading this tape.

boot_pgm_path
if nonbiank. it can be me absolute pathname of the boot program
written on this label record. It can also be the user-designated name
for the boot program when the "boot_program" tape_mult_ control
order is executed.

userid
is the User_id (Person.ProjecLlnstance) of the user who created this
tape.

label_ version
is the version number of this label record structure, currently 2.

output_mode
is the number of the iox_ mode in effect when this tape was
created. (See iox_modes.incl.pll.)

F-8 AG91-o4

16.

17.

18.

boot_pgm_len
is the length of the boot program in words. The boot program must
be less than or equal to 840 (1510 octal) words in length. If it is
less than 840 words, the record is padded out with the standard
padding pattern.

boot_pgm
is the executable text of the boot program. The boot program must
be coded in absolute self -relocating ALM assembly language.

trail
is the standard 8-word record trailer described above.

End of Reel Record

The end of reel record contains only padding bits in its data space. The
standard record header of the EOR record contains the information that identifies it
as an EOR record (word 5, bits 0 and 2 are one).

DENSITY AND PARITY

Both 9-track and 7-track standard tapes are recorded in binary mode with odd
ones having lateral parity. Standard densities are 800 frames per inch (bpi) (recorded
in NRZI mode), 1600 bpi (recorded in PE mode), and 6250 bpi (recorded in OCR
mode).

DATA PADDING

The padding bit pattern is used to fill administrative records and the last data
record of a reel sequence.

COMPATIBILITY CONSIDERATION

Software shall be capable of reading Multics Standard tapes that are written with
records with less than 1024 words in their data space. In particular, a previous
Multics standard tape format specified a 256-word (9216-bit) data space in a tape
record.

In addition to recogmzmg and reading standard and boo table tape label records,
software shall also be capable of recognizing and reading Multics standard tapes that
were generated with a version 1 label record, that is, standard label records that do
not contain the volw-ne_set_id field.

F-9 AG91-D4

STANDARD CHECKSUM

The checksum described below is the standard Multics technique for computing a
full word checksum on the Honeywell DPS 8/1\1 computer.

Algorithm

Checksums are computed using the "awca" instruction followed by an "aIr 1"
instruction. Upon completion of checksum computation, two "awca O,d}" instructions
are executed to include all carries in the checksum.

A typical checksum computation scheme follows:

st i indices save indicators
lda O,dl initial ize "a" to zero
eaxl ° count locations in xl

loop: ldi indics restore indicators
awca word,l add wi th carry to checksum
st i indies save indicators (they get

clobbered by cmpx 1)
alr rotate II a" left
eaxl 1 , 1 count 1 location and
cmpxl size,du check for completion
tnc loop loop

ldi indics restore indicators
awca a,dl add in carry. if any
awca O,dl in case carry generated by

last instruction
sta cksum save the checksum

F-IO AG91-04

01/87

APPENDIX G

MULTICS STANDARD OBJECT FILE WITH
SYMBOL TABLE ORGANIZATION

A multics object file is either an object segment or an object multisegment-file
(MSF). Object MSFs are created by the linkage editor (le) and consist of a number
of standard object segments.

FORMAT OF AN OBJECT MULTISEGMENT FILE

An object multisegment file consists of a number of object segments in bound object
segment format. All executable code is stored in components 1 through n, where n is
the largest components number in the MSF. Component 0 is generated by the linkage
editor and contains no text section. The definition section of component 0 contains an
indirect definition for each of the visible definitions from each of the other
components. The linkage section of component 0 contains a partially snapped link to
the target of each indirect definition. a normal link to the procedure msf _prelink_, a
*link link to the base of the linkage section, and a first-reference trap which calls
the msf_prelink_ procedure to reaolve all of the partially snapped links in the MSF.

FORMAT OF AN OBJECT SEGMENT

~A.. !v1ultics object segment contains object code generated by a translator and
linkage information that is used by the dynamic linking mechanism to resolve
in tersegment references. (See "Dynamic Linking" in Section 4.) The most common
examples of object" segments are procedure segments and data segments.

Format requirements for an object segment are primarily associated with external
interfaces; thus, translator designers are permitted a great amount of freedom in the
area of code and data generation. The format contains certain redundancies and
unusual data structures; these are a byproduct of maintaining upward compatibility with
earlier object segment formats. The dynamic linking mechanism and the standard
object segment manipulation tools assume that all object segments are standard object
segments.

An object segment is divided into six sections that usually appear in the
following order:

text
definition
1 i nkage
static (if present)
symbol
break map (if present)

G-1 AG91-04A

01/87

The type of information contained in each of the six sections is summarized below:

1. text
text contains only pure parts of the object segment (instructions and
read-only data). It can also contain' relative pointers to the definition,
linkage and symbol sections.

2. definition
contains only nonexecutable, read-only symbolic information used for
dynamic linking and symbolic debugging. Since it is assumed that the
definition section is infrequently referenced (as opposed to the constantly
referenced text section), it should not be used as a repository for
read-only constants referenced during the execution of the text section.
The definition section can sometimes (as in the case of an object
segment generated by the binder) be structured into definition blocks
that are threaded together.

3. linkage
contains the impure (i.e.. modified during the program's execution)
nonexecutable parts of the object segment and may consist of two types
of data:

a. links modified at run time by the Multics linker to contain the
machine address of external references, and possibly

b. data items to be allocated on a per-process basis such as the
internal static storage of PL/I procedures.

4. static
contains the data items to be allocated on a per-process basis. The
static storage may be included in the linkage section in which case there
is no explicit separate static section.

5. symbol
contains all generated items of information that do not belong in the
first five sections such as the language processor's symbol tree and
historical and relocation information. The symbol section may be
further structured into variable length symbol blocks threaded to form a
list The symbol section contains only pure information.

6. break, map
contains information used by the debuggers to locate breakpoints in the
object segment This section is generated by the debuggers rather than
the translator and only when the segment currently contains breakpoints.
Its internal format is of interest only to the debuggers.

0-2 A091-04A

01/87

The text, definition, and symbol sections are shared by all processes that
reference an object segment. Usually, a copy of the linkage section is made when an
object segment is first ref erenced in a process. That is, the linkage section is a
per-process data base. The original linkage section serves only as a copying template.
An exception is made for some system programs whose link addresses are filled in at
system initialization time. Their linkage sections are shared by everyone who wants to
use the supplied addresses. When these programs have data items in internal storage,
they have a separate static section template that is copied once per process. See
Section 4 and "Standard Stack and Linkage Area Formats" in Appendix H of this
document. Normally, a segment containing break map information is in the state of
being debugged and is not used by more than one process.

The object segment also contains an object map that contains the offsets and
lengths of each of the sections. The object map can be located immediately before or
immediately after any of the six sections. Translators normally place it immediately
after the symbol section. The last word of every object segment must contain a
left-justified 18-bit relative pointer to the object map.

STRUCTURE OF THE TEXT SECTION

The text section is basically unstructured, contalnlng the machine-language
representation of a symbolic algorithm and/or pure data. Its length is usually an even
number of words.

Two of the items that can appear within the text section have standard formats:
the entry sequence and the gate segment entry point transfer vector.

Entry Sequence

A standard entry sequence is usually provided for every externally accessible
procedure entry point in an object segment. A standard entry sequence has the
following format, defined by the system include files entry_sequence_info.incl.pll and
entry_desc_info.inc1.pll:

G-3 AG91-04A

01/87

dcl 1 parm_desc_ptrs
2 n_args

dcl

,2 descr i ptor _re 1 p

entry_sequence
2 word 1 ,

3 descr_relp_offset
3 reserved

2 word2,
'2 "'",,4= .. ""1",,
J W""_'~'t'

3 flags
2 code_sequence

dcl 1 entry_desc_info
2 version
2 flags,

(3 basic_indicator,
3 rev is i on_1 ,
3 has_descriptors,
3 variable,
3 funct ion)
3 pad

2 obj ect_ptr
2 bit_count

STRUCTURE ELEMENTS

n_args

aligned based,
fixed bin(18) unsigned unaligned,
(num descs refer

(parm_desc_ptrs.n_args»
bit(18) unaligned;

fixed bin (18) ;

aligned based,

bit(18) unaligned,
bit(18) unaligned,

bit (18) una 1 i gned.
unaligned like entry_desc_info.flags,
bit (36) ali gned;

aligned based (entry_desc_info_ptr) ,
fixed bin,

bit(l) unaligned,
bit (13) una 1 i gned,
ptr,
fixed bin (24) ;

fixed bin int static options
(cons tant) in it (2) ,

ptr;

is the number of arguments expected by this external entry point This item is
optional and is valid only if the flag has_descriptors equals "l"b.

descriptor _relp
is an array of pointers (relative to the base of the text section) to the descriptors
of the corresponding entry point parameters. This item is optional and is valid
only if the flag has_descriptors equals "1 "b. See "Parameter Descriptors" in
Appendix H.

descr_relp_offset
is the offset (relative to the base of the text section) of the n_args item. This
item is optional and is valid only if the flag has_descriptors equals "1 "b.

reserved
is reserved for future use and must be "O"b.

G-4 AG91-04A

01/87

def_relp
is an offset (relative to the base of the definition section) to the definition of
this entry point Thus, given a pointer to an entry point, it is possible to
reconstruct its symbolic name for purposes such as diagnostics or debugging.

flags
contains binary indicators that provide information about this entry point.

basic_indicator
"l"b this is the entry point of a BASIC program
"O"b this is not the entry point of a BASIC program

revision_1
"1"b all of the entry's parameter descriptor information is with the' entry

sequence, i.e., none is in the definition
"O"b parameter descriptor information, if any, is with the definition

has_descriptors
"1 "b the entry has parameter descriptors; i.e., items n_args, descriptor_relp and

descr_relp_offset contain valid information
"O"b the entry does not have parameter descriptors

variable
"l"b the entry expects arguments whose number and types are variable
"O"b the number and type of arguments, if any, are not variable

function
"l"b the last parameter is to be returned by this entry
"O"b the last parameter is not to be returned by this entry

pad is reserved for future use and must be "O"b

code_sequence
is any sequence of machine instructions satisfying Multics standard calling
conventions. See "Subroutine Calling Sequences" in Appendix H.

function
is on if the procedure entry point is a function which returns a value. The final
parameter argument descriptor describes this return value.

object_ptr
if the entry descriptor is being taken from an archive, this is the pointer to the
base of the archive component (Output) Otherwise, this is null.

bit_count
if the entry descriptor is being taken from an archive, this is the bit count of
the archive component (Output) Otherwise, this is zero.

entry _desc_inf 0_ version_2
is a named constant which the caller should use to set the version number in the
structure above.

0-4.1 AG91-Q4A

01/87

The value (i.e., offset within the text section) of the entry point corresponds to
the address of the code_sequence item. (The value is stored in the formal definition
of the entry point See "Structure of the Definition" below.) Thus, if entry_offset is
the value of the entry point entl. then the def_relp item pointing to the definition
for ent! is located at word (entry_offset minus 1). .

Gate Segment Entry Point Transfer Vector

For protection purposes, control must not be passed to a gate procedure at other
than its defined entry points. To enforce this restriction, the first !l words of a gate
segment with !l entry points must be an entry point transfer vector. That is, the kth
word (O~k<n-l) must be a transfer instruction to the kth entry point (i.e., a transfer
to the code_sequence item of a standard entry sequence as described above). In this
case, the value of the kth entry point is the offset of the kth transfer instruction

0-4.2 AG91-04A

(i.e., word k of the segment) rather than the offset of the code_sequence item of the
kth entry point.

To ensure that only these entries can be used, the hardware enforced entry
bound of the gate segment must be set so that the segment can be entered only at
the first .n locations.

STRUCTURE OF THE DEFINITION SECTION

The definition section pf an object segment contains pure information that is
used by the dynamic linking mechanism.

The definition section consists of a header poInttng to a linked list of items
describing the externally accessible named items of the object segment, followed by an
unstructured area containing information describing the externally accessible named
items of other object segments referenced by this object segment. The linked list is
known as the definition list. The items on the list are known as definitions. The
unstructured area contains expression words, type pairs, trap words, trap procedure
information, and the symbolic names associated with external references.

All structures for dealing with the definition section are contained in the system
include file in definition_dcls.incl.pll.

A definition specifies the name of an externally accessible named item and its
location in the object segment. The definition list consists of one or more definition
blocks each of which consists of one or more class-3 definitions followed by zero or
more definitions that are not class-3 (see "Definition Section Header" below for
format). Normally, unbound object segments contain one definition block, while bound
segments contain one definition block for every component object segment.

Optionally, the definition section can contain a definition hash table. If present,
the hash table is used by the linker to expedite the search for a definition.

The information in the unstructured area of the definition section is used at
runtime in conjunction with information in the linkage section to resolve the external
references made by the object segment. This information is conceptually part of the
linkage section, but is stored in the definition section so it can be shared among all
the users of the segment.

Figure G-l shows the structure of the definition section. For more information
concerning the interpretation of the information in the definition section see "Dynamic
Linking" in Section 4.

G-5 AG91-04

Header
hash_table relp

1--

forward relp backward relp Block 1

next segname relp class = 3 I ... +
name relp first relp i 1

- ~~~ - -- -- ----- -- - ~ ~- --- ---- -- -t------
~r. ~~~~ar!g~:~e relp ~~~~:a;d relp ~ ! Block \2

name_relp first relp

...----;~.... forward relp backward relp

name relp first_relp
.--f.4 next segname relp class = 3 ~ ~

~~-----' ,
~

forward relp backward relpl

--1-+----- ----- -------------- --/------
~=!~~~f~o~rw~ar~d~r~e~IP~=======r======~b~a~c~kw~ar~d~r~e~IP~~:J;:::~r_lBIOCk3

I
thing relp class = 3 I
name relp segname_relp

-

..

,~

next segname relp
name relp

forward relp
thing relp
name relp

forward relp
thing relp
name relp

all zero word

class f= 3 ./ first relp otr

backward relp I
class f= 3

.. gname relp ./

backward relp

class F 3
segname relp

Figure G-1. Sample Definition List

G-6 AG91.;..04

01/87

Character strings in the definition section are stored in ALM "acc" format This
format is described by the following PL/I declaration, defined by the system include
file acc.incl. pl1:

dc 1 1 acc
2 num_chars
2 string

based aligned,
fixed bin(9) unsigned unaligned,
char (0 refer (acc.num chars» unaligned;

. -
The first nine bits of the string contain the length of the string. Unused bits of the
last word of the string must be zero. Such a structure is ref erred to as an acc string.
Another structure declaration (acc_string) exists in definition_dcls.incl.pll for easier
allocation of the string and zeroing of the unused bits at the end of the string.

The following paragraphs describe the formats of the various items in the
definition section.

Definition Section Header

The definition section header resides at the base of the definition section and
contains an offset (relative to the base of the definition section) to the beginning of
the definition list (in definition_dcls.incl.pll).

dcl 1 definition_header
2 def _1 is t_re 1 p
2 msf_map_relp
2 hash_table_relp
2 flags

3 new
3 ignore
3 unused

aligned based,
fixed bin(18) unsigned unaligned,
bit(18) unsigned unaligned,
fixed bin(18) unsigned unaligned,
unaligned,
bit (1) una 1 i gned in it i a 1 (" 1 lib) ,
bit (1) una 1 i gned in i t i a 1 (" 1 lib) ,
bit{16) unaligned;

STRUCTURE ELEMENTS

def _list_relp
is a relative pointer to the first definition in the definition list

msf_map_relp
is a relative pointer to the msf_map. If no msf_map is present (i.e., the object
segment is not a component of an object msf) this pointer must be O.

hash_table_relp

flags

is a relative pointer to the beginning of the definition hash table. If no
definition hash table is present, this pointer must be "O"b.

contains binary indicators that provide information about this definition section:

new
"l"b definition section has new format
"O"b definition section has old format

G-7 AG91-04A

01/87

del

ignore
"l"b
"O"b

if new equals "l"b, the Multics linker ignores this definition.
is an old format definition

unused is reserved for future use and must be "O"b

A definition that is not class-3 has the following format (in definition_dcls.incl.pll):

. 1 definition aligned based,
2 forward_relp fixed bin (18) unaligned unsigned,
2 backward_relp fixed bin (18) unaligned unsigned,
2 thing_relp fixed bin (18) unaligned unsigned,
"\ flags unaligned, .t.

3 new b t (1) unal gned,
3 ignore b t (1) una1 gned,
3 entry b t (1) unal gned,
3 retain b t (1) unal gned,
3 argcount b t (1) una1 gned,
3 descriptors b t (1) una1 gned,
3 unused b t (8) unal gned,

2 class f xed bin (3) unaligned unsigned,
2 name_relp f xed bin (18) unaligned unsigned,
2 segname_relp f xed bin (18) una 1 i gned unsigned,
2 n_args b t (18) una 1 i gned,
2 descriptor_relp(O refer (n_args» bit (18) una 1 i gned;

STRUCTURE ELEMENTS

forward_relp
is a thread (relative to the base of the definition section) to the next definition.
The thread terminates when it points to a word that is O. This thread provides a
single sequential list of all the definitions within the definition section.

backward_relp
is a thread (relative to the base of the definition section) to the preceding
definition.

thinLrelp

flags

is the offset, within the section designated by the class variable (described below),
of this symbolic definitioD.

contains binary indicators that provide additional information about this definition:

new
"1 "b
"O"b

ignore
"l"b

"O"b

definition section has new format
definition section has old format

definition does not represent an external symbol and is! therefore, ignored
by the Multics linker
definition represents an external symbol

G-8 AG91-()4A

01/87

entry
"l"b definition of an entry pOint (a variable reference through a transfer of

control instruction)
"O"b definition of an external symbol that does not represent a standard entry

point

retain
"l"b definition must be retained in the object segment (by the binder)
"O"b definition can be deleted from the object segment (by the binder)

argcount (obsolete)

class

"rib definition includes a count of the argument descriptors (i.e., item n_args
below contains valid information)

"O"b no argument descriptor information is associated with the definition

descriptors (obsolete)
"l"b definition includes an array of argument descriptor (i.e., items n_args and

descriptor_relp below contain valid information)
"O"b no valid descriptors exist in the definition

indirect
"l"b definition refers to a partial link to the actual target of the symbolic

definition which resides in another MSF component
"O"b definition refers directly to the target of this symbolic definition

unused is reserved f or future use and must be "O"b

this field contains a code indicating the section of the object segment to which
value is relative. Codes are:

o text section
1 linkage section
2 symbol section
3 this symbol is a segment name
4 static section

name_relp
is an offset (relative to the base of the definition section) to an aligned acc
string representing the definition's symbolic name.

segname_relp
is an offset (relative to the base of the definition section) to the first class-3
definition of this definition block.

n_args (obsolete)
is the number of arguments expected by this external entry point This item is
present only if argcount or has_descriptors equals "l"b. This item is not defined
in the system include file.

descriptor _relp .(obsolete)
is an array of pointers (relative to the base of the text section) that point to the
descriptors of the corresponding entry point arguments. This item is present only
if has_descriptors equals "1 "b. This item is not defined in the system include file.

G-9 AG91-Q4A

The obsolete items are described here to illustrate earlier versions; translators
should put these items in the entry sequence of the text section. See "Entry Sequence"
above.

A class-3 defintition has the following format (in definition_dcls.incl.pll):

dc 1 1 segname_definition
2 forward_relp
2 backward_relp
2 next_segname_relp
2 flags
2 class
2 name_relp
2 first_relp

aligned based,
f xed bin(l8) unaligned unsigned,
f xed bin(l8) unaligned unsigned,
f xed bin(l8) unaligned unsigned,
b t(l5) unaligned,
f xed bin(3) unaligned unsigned,
f xed bin(l8) unaligned unsigned,
f xed bin(l8) unaligned unsigned,

STRUCTURE ELEMENTS

forward_relp
is the same as above.

backward_relp
is the same as above.

next_segname_relp

flags

class

is a thread (relative to the base of the definition section) to the next class"":3
definition. The thread terminates when it points to a word that contains all O's.
This thread provides a single sequential list of all class-3 definitions in the object
segment

is the same as above.

is the same as above (and has a value of 3).

name_relp
is the same as above.

first_relp
is an offset (relative to the base of the definition section) to the first nonclass-3
definition of the definition block. If the block contains no nonclass-3 definitions,
it points to the first class-3 definition of the next block. If there is no next
block. it points to a word that is all 0'5.

The end of a definition block is determined by one of the following conditions
(whichever comes first):

• forward_relp points to an all zero word;

• the current entry's class is not 3, and forward_relp points to a class-3
def ini tion;

G-10 AG91-04

01/87

• the current definition is class 3, and both forward_relp and first_relp
point to the same class-3 definition.

The threading of definition entries is shown in Figure G-1 above. The following
paragraphs describe items in the unstructured portion of the definition section.

MSF MAP

The MSF map is pointed to by the msf_map_relp pointer in the definition header. It
identifies an object segment as a component of an object multisegment file, and
indicates the extents of the file. The msf map has the following format (in
definition_dcls.incl.pll):

dc 1 1 msf _map
2 version
2 component_count
2 my_component

STRUCTURE ELEMENTS

version
is the version of the structure.

componen t_count

aligned based,
char (8),
fixed bin,
fixed bin;

is the number of components in the object multisegment file.

my_component is the number (in the range 0 to component_count-l) of this
component

Ex:pression Word

The expression word is the item pointed to by the expression pointer of an
unsnapped link (see "Structure of the Linkage Section" below) and has the following
format (in definition_dcls.incl.pll):

dcl 1 exp_word
2 type_relp
2 expression

STRUCTURE ELEMENTS

tjpe_relp

aligned based,
fixed bin(18) unaligned unsigned,
fixed bin(17) unaligned;

is an offset (relative to the base of the definition section) to the link's type pair.

expression
is a signed value to be added to the offset (i.e., offset within a segment) of the
resolved link.

G-l1 AG91-G4A

01/87

Type Pair

The type pair defines the external symbol pointed to by a link and has the
following format (in definition_dcls-incl.pll):

del 1 type_pair
2 type
2 trap_relp
2 segname_relp
2 offset_name_relp

aligned based,
fixed bin(18) unaligned unsigned,
fixed bin (18) una 1 i gned uns i gned,
fixed bin(18) unaligned unsigned,
fixed bin(18) unaligned unsigned;

STRUCTURE ELEMENTS

type
assumes a value from 1 to 6:
1 is a self-referencing link (i.e., the segment in which the external symbol is

located is the object segment containing this link or a dynamic related section
of the link) of the form:

myselfIO+expression,modifier

2 unused; it was earlier used to define a now obsolete ITP-type link.

3 is a link referencing a specified reference name but no symbolic offset name,
of the form:

refnameIO+expression,modifier
I

4 is a link referencing both a symbolic reference name and a symbolic offset
name, of the form:

refnameloffsetname+expression,modifier

5 is a self-referencing link having a symbolic offset name, of the form:

my se1f loffsetname+expression,modifier

6 (obsolete)
same as type 4 except that the external item is created if it is not found.

trap_relp
is an offset (relative to the base of the definition section) to either an
initialization structure (if type equals 5 and se~ptr equals 5, or if type equals 6)
or to a trap word.

G-12 AG91-04A

01/87

segname_relp
is a code or a offset depending on the value of type. For types 1 and 5, this
item is a' code that can assume one of the following values, designating the
sections of the self-referencing object segment:

o is a self-reference to the object's text section; such a reference is represented
symbolically as "*text".

1 is a self-reference to the object's linkage section; such a reference is
represented symbolically as "*link".

2 is a self-reference to the object's symbol section; such a reference is
represented symbolically as n*symbol".

4 is a self-reference to the object's static section; such a reference is
represented symbolically as n*static".

5 is a reference to an external variable managed by the linker; such a reference
is represented symbolically as n*system".

For types 3, 4, and 6, this item is an offset (relative to the base of the
definition section) to an aligned acc string containing the reference name
portion of an external reference.

offset_name_relp
has a meaning depending on the value of type. For types 1 and 3, this value
ignored and must be zero. For types 4, 5, and 6, this item is an offset (relative
to the base of the definition section) to an aligned acc string containing the entry
point name of an external reference. If type equals 5 and 5eLptr equals 5. the
acc string contains the name of the external variable. (See Section 3 for a
discussion of entry point names.)

0-12.1 AG91-()4A

This page intentionaHy ieft biank.

01/87 AG91-04A

Trap Word

The trap word is a structure that specifies a trap procedure to be called before
the link associated with the trap word is resolved by the dynamic linking mechanism.
It consists of relative pointers to two links. (Links are defined under "Structure of
the Linkage Section" below.) The first link defines the entry point in the trap
procedure to be called. The second link defines a block of information that is passed
as one of the arguments of the trap procedure. The trap word has the following
format (in defini tion_dcls.incl. pll):

dcl 1 link_trap_pair
2call_relp
2 info_relp

aligned based,
fixed bin (18) una 1 i gned uns i gned,
fixed bin(18) unaligned unsigned;

STRUCTURE ELEMENTS

call_relp
is an offset (relative to the base of the linkage section) to a link defining the
entry point of the trap procedure.

info_relp
is an offset (relative to the base of the linkage section) to a link defining
information of interest to the trap procedure.

Initialization Structure for Type 5 System 'and Type 6 Links

This structure specifies how a link target first referenced because of a type 5
*system or a type 6 link should be initialized. It has the following format (in
definition_dcls.incl.pl1; other versions exist in system_link_init_info.incl.pll):

dcl 1 1 ink=init=copy_info
2 n words
2 type
2 initial data

ali gned based,
fixed bin,
fixed bin,
(0 refer (link init copy info.n words»

bit(36) alig~ed; - - -

STRUCTURE ELEMENTS

type

is the number of words required by the new variable.

indicates what type of initialization is to be performed. It can have one of the
following values:

o no initialization is to be performed

3 copy the info array into the newly defined variable

G-13 AG91-04

4 initialize the variable as an area

initial_data
is the image to be copied into the new variable. It exists only if code is 3.

Definition Hash Table

A definition hash table may be present in the definition section of an object
segment. In its basic form, the definition hash table contains an array of pointers to
definitions. The definition hashing algorithm selects a particular pointer. If the
selected pointer does not point to the desired definition, a linear search is then
performed until the appropriate definition is found or a zero pointer is encountered.
The initial hash code is generated by taking the remainder of the first word of the
definition name (the count and first three characters of the "acc" format string)
divided by the size of the hash table. The hash table size is such that it is never
more than 80% full.

In bound segments, different components may contain definitions with identical
names. In this case, a second hash table is required in order to resolve ambiguities.
In addition to this second hash table, a duplicate name table must be provided for
each duplicated definition name.

The format of the tables described above is shown in Figure G-2 and is
described below:

G-14 AG91-04

def_relp
... def relp

0
def relp

0

.... def_relp

~ def relp

def_relp

,
I
I def relp

0
J def relp

def relp ""
I

I :

I

n entries

0
0
0
0
0
0

0
0

n entries
block hdr
0

block hdr
block hdr

I

relp ..
r

relp ,.

relp

I

,

~

I

J

defin ition name

hash table

component name

hash table

.......--+-_I __ ·-iI--de-f....:O:....r-e-IP--~--~..:;IO:;;..~-:-m_~-~-r -re-IP~I .1 duplicate name table

def reip i block hdr relp i ...
r def relp T block hdr relp ... ,

n names - def relp I block hdr relp ...
- - - r duplicate name table

- def relp I block hdr relp

Figure G-2. Definition Hash Table

G-15 AG91-04

The definition name hash table is pointed to by a relative pointer in the
definition section header (in definition_dcls.incl.pll). It must contain one nonzero
entry for each nonclass-3 definition name.

dell definition_ht
2 n_entries
2 table

(3 def _re 1 p
3 unused

STRUCTURE ELEMENTS

n_entries

ali gned based,
fixed bin,
(0 refer (definition ht.n entries»,
fixed bin(18) unsigned, -
bit (18» una 1 ; .

is the number of elements in the hash table.

def_relp
is an array of pointers to nonclass-3 definitions. In the case of a duplicated
definition name, a particular def_relp does not point directly to a definition, but
rather to a duplicate name table (see below).

A component name hash table is present only if duplicated definition names are
present in a bound segment (in definition_dcls.incl.pll). It must immediately follow the
definition hash table. There is one entry in this hash table for each bound segment
component name and synonym (i.e., for each class-3 definition).

dcl 1 component_ht
2 n_entries
2 table

(3 def _re 1 p
3 block_hdr_relp

STRUCTURE ELEMENTS

n_entries

al igned based,
fixed bin,
(0 refer (component ht. n entr i es)) ,
fixed bin(18) unsigned, -
bit(l8» unal igned;

is the number of elements in the component name hash table.

table
con tains one nonzero element for each c1ass-3 definition.

def_relp
is a relative pointer to a c1ass-3 definition.

block_hdr _relp
is a relative pointer to the first c1ass-3 definition of the definition block
containing the definition pointed to by defp.

G-16 AG91-04

A· duplicate name table must be supplied for each duplicated definition name (in
definition_dcls.incl.pll). Each table has one entry for each instance of the duplicated
name. The definition searching algorithm can determine whether the relative pointer
retrieved from the definition hash table points to a definition or to a duplicate name
table by examining the left half of the first word pointed to. A definition never
contains a zero forward_relp, while a duplicate name table is never nonzero in the
left half of the first word.

dell duplicate_table
2 mbz

aligned based,
bit(18) unaligned,
fixed bin unal igned, 2 n_dupl icate_table_names

2 table (0 refer (dupl icate table.n names»,
fixed bin(18), - -(3 def _re 1 p

3 block_hdr_help fixed bin (18» una 1 i gned;

STRUCTURE ELEMENTS

mbz
must be zero to distinguish from a definition.

n_duplicate_table_names
is the number of instances of a given duplicated name.

table
contains one element for each instance of the duplicated name.

def_relp
is a pointer to a nonclass-3 definition.

block_hdr _relp
is a pointer to the first class-3 definition of the definition block containing the
nonclass-3 def ini tion.

Definition searching with a definition hash table is done by first searching for
the definition name. If no duplicate name table is encountered, no ambiguity exists
and the correct definition is quickly found. If a duplicate name table is encountered,
the component name hash table must be searched. Then, a linear search is done on
the duplicate name table to match a block_hdr_relp with the block_hdT_relp in the
component name hash table.

STRUCTURE OF THE STATIC SECfION

The static section is unstructured.

G-17 AG91-04

STRUCTURE OF THE LINKAGE SECTION

The linkage section is subdivided into four distinct components:

1. A fixed=length header that always resides at the base of the linkage
section

2. A variable length area used for internal (static) storage (optional)

3. A variable length structure of links (optional)

4. First-reference trap (optional)

These four components are located within the linkage section in the following
sequence:

header
internal storage (if present)
1 inks (i f present)
trap (i f present)

The length of the linkage section must be an even number of words and must
start on an even-word boundary: in addition. the link substructure must also begin at
an even location (offset) within the linkage section.

When an object segment is first referenced in a process, its linkage section is
copied into a per-process data base. At this time certain items in the copy of the
header are initialized. Items not explicitly described as being initialized by the linker
are set by the program that generates the object segment. In addition, the first two
words of the header are filled in by the linker (when the header is copied) with a
pointer to the beginning of the object segment's definition section. For more
information see Section 4 and "Standard Stack and Linkage Area Formats" in Appendix
H.

Linkage Section Header

The header of the linkage section (in an object segment) has the following
format, defined in the system include file object_link_dcls.incl.pU:

del 1 virgin_linkage_header ali gned based,
2 pad b tOO) unal,
2 defs in link b t (6) una 1 , -
2 def offset f xed bin (18) uns una 1,
2 first_ref_relp f xed bin (18) uns una 1,
2 fill ed in later b t (144) , -
2 1 ink_beg in f xed bin (18) uns una 1,
2 1 i nkage_ section 1"",.. f xed bin (18) uns,1

_"'~ \ollie;! I,

2 segno_pad f xed bi n (18) uns una 1,
2 static _length f xed bi n (18) uns una 1 ;

G-18 AG91-04

STRUCTURE ELEMENTS

pad
is reserved f or future use and must be O.

defs_in_link
indicates whether or not there are definitions in the linkage section. If there are
definitions in the linkage section, the value contained here is "OlOOOO"b.

def_offset
is an offset (relative to the base of the object segment) to the base of the
definition section.

first_ref _relp
is an offset (relative to the base of the linkage section) to the first-reference
trap. This trap is activated by the linker when the first reference to this object
segment is made within a given process. If the value of this item is 0, there is
no first-reference trap.

filled_in_later
is initialized by the linker when the header is copied. As a result of initialization
by the linker, the first word becomes a pointer to the object segment's symbol
section. It is used by the linker to snap links relative to the symbol section. The
second word becomes a pointer to the original linkage section within the object
segment It is used by the link unsnapping mechanism. The last two words
remain unused.

link_begin
is an offset (relative to the base of the linkage section) to the first link (the base
of the link array).

iinkage_sectioD_ing
is the entire length in words of the entire linkage section.

segno_pad
is the segment number of the object segment It is initialized by the linker when
the header is copied.

static_length
is the length in words of the static section and is valid even when static is part
of the linkage section. It is initialized by the linker if not filled in by the
translator.

0-19 AG91-04

01/87

Internal Storage Area

The internal storage area is an array of words used by translators to allocate
internal static variables and has no predetermined structure.

Links

A linkage section may contain an array of link pairs each of which defines an
external nameJ referenced by this object segment, whose effective address is unknown
at compile time. References to external entities are made by indirect references
through a link, which has bee copied from the pure linkage section to the combined
linkage section in the process directory.

Two types of links exist representing different levels of information about the
target of a linK.

Partially snapped links represent external references that have been resolved
within an object MSF, but the target is not located in the same component segment as
the reference. These links make use of information available to the binder about the
target of the .link so that they can be resolved by a first-reference trap procedure.
Partially snapped links are distinguished from normal links in that they have a fault
tag 3 modification initially. Once the first reference trap has run, the link has been
replaced by an ITS pointer to the target of the link.

Normal links initially contain a fault tag 2 modification instead of an ITS
modification. When the indirect reference is attempted. the fault occurs and is
intercepted by the dynamic linking mechanism. Additional information in the link is
used to locate the item referenced and. if successful, the link is replaced by an ITS
pointer to the item. Figure G-3 illustrates the structure of a link.

G-20 AG91-04A

r---------I~ to info link

to call link

Link

~ ______ --I~ ____ +-(_4_6)_8--f Linkage
Section

expression relp

Expression Word
Defintion

L--_t_y_p_e-_p_ai_r-_re_l_p_---L __ ~_e_x_pr_e_ss_i_on __J Section

Type Pair Type=5Code=5 and Type=6

type trap~elp
J...---------I------------I Typet6 or typer5,Coder5

segname_relp offsetname_relp

segname acc string

Init Structure
Trap Pair

cal L....relp nwords

action code

image

~

Figure G-3. Structure of a Link

G-21 AG91-04

A link must reside on an even location in memory, and must therefore be
located at an even offset from the base of the linkage section. A link has the
following format, defined in the system include file object_link_dcls.incl.pl1:

del 1 obj eet_l ink aligned based,
2 header_relp f xed bin (17) una 1 ,
2 ringno f xed bin (3) uns una 1 ,
2 mbz b t (3) una 1 ,
2 run_depth f xed bin (5) una 1,
2 tag b t (6) una 1,
2 expression_relp f xed bi n (18) uns una 1 ,
2 mbz2 b t (12) una 1,
2 modifier b t (6) una 1 ;

STRUCTURE ELEMENTS

header _relp
is an offset (relative to the link itself) to the head of the linkage section. It is,
in other words, the negative value of the link pair's offset within the linkage
section.

ringno
is the ring number of the ITS pointer.

mbz
is reserved for future use and must be "O"b.

run_depth

tag

must be 0 in a generated (unsnapped) link. When the link is snapped. this field
is filled in with the number of the current run unit level.

is a constant (46)8 that represents the hardware fault tag 2 and distinctly identifies
an unsnapped link. The snapped link (ITS pair) has a distinct (43)8 tag.

expression_relp
is an offset (relative to the base of the definition section) to the expression word
f or this link.

mbz2
is reserved for future use and must be "O"b.

modifier
is a hardware address modifier. When the link is snapped, this becomes the
modifier of the ITS pair.

G-22 AG91-04

01/87

Partially Snapped Links

Partially snapped links are generated only within an object MSF to resolve a
reference between components of the MSF. Partially snapped links are not snapped as
a result of references to the link, but are all snapped at first rei erence to the MSF
by a first reference trap placed in component O. A ·partially snapped link must reside
on an even location in memorY,and must therefore be located at an even offset from
the base of the linkage section. A partially snapped link has the following format,
defined in the system include file object_link_dcls.incl.pl1:

dcl 1 partial_l ink
2 type

aligned based,
f xed bin (3) unsigned unaligned,
f xed bin (15) unsigned unaligned,
b t (12) una 1 i gned,

2 component
2 mbzl
2 tag
2 offset
2 mbz2
2 bit offset
2 mbz3
2 modifier

b t (6) una 1 i gned,
f xed bin (18) unsigned unaligned,
b t (3) unaligned,
f xed bin (6) unsigned unaligned,
b t (3) unaligned,
b t (6) unal igned;

STRUCTURE ELEMENTS

type
This field is used to encode the target section of the link. The values used are
the same as those used in a definition to indicate the target section.

- Text section = 0
- Linkage section = 1
- Symbol section = 2
- Static section = 4

component
is used to store the number of the target segment in the range 0 to
component_count-l. At execution time, this value will be replaced depending on
the target section as encoded in type.

Text section - the component field will be replaced by
the segment number of the target segment.

Linkage section - the component field will be replaced by
the segment number of the segment containing
the copied linkage section.

Symbol section - the component field will be replaced by the
segment number of the target segment.

Static section - the component field will be replaced by the
segment number of the segment containing the
copied static section.

mbz1
Is unused and must be ""b.

G-23 AG91-04A

01/87

tag
Is set to fault_ta&-3 initially ("47"b3) to distinguish it from a normal unsnapped
link or a' snapped link with an ITS modifier ("43"b3). This is to insure that if
the link does not get snapped somehow, a reference through it will fault When
the link is snapped, this field will be replaced by an ITS modifier.

offset
This field is the offset within the section identified by type to the target of the
partial link. It is analogous to the thin&-relp value in the corresponding definition
in the target segment

mbz2
Is unused and must be ''''b.

bit_offset
Is the bit offset of the target of the link. Since a link target may not be on
other than a word boundary, this field must be O.

mbz3
Is unused and must be ''''b.

modifier
Is the modifier of the link.

First - Reference Trap

It is sometimes necessary to perform certain types of initialization of an object
segment when it is first referenced for execution (Le., linked to) in a given
process--for example, to store some per-process information in the segment before it
is used. The first-reference trap mechanism provides this facility for use by various
mechanisms, the status code assignment mechanism being an example.

A first-reference trap consists of two relative pointers. The first points to a
link defining the first reference procedure entry point to be invoked. The second
points to a link defining a block of information to be passed as an argument to the
first-reference procedure. For more details on first-reference traps, see Section 4. The
first reference trap has the following format, defined in the system include file
object_link_dcls. incl. pU:

dell fr_traps
2 deel_vers
2 n_traps
2 trap_array

3 eall_relp
3 info_relp

STRUCTURE ELEMENTS

decl_vers

aligned based,
fixed bin,
fixed bin,
(0 refer (fr traps.n traps» al i gned,
fixed bin(18) uns una),
fixed bin (18) uns una 1 ;

is the version number of the structure.

G-24 AG91-Q4A

01/87

n_traps
specifies the number of traps.

trap_array
is an array of information about each iirst-reference procedure.

call_relp
is an offset (relative to the base of the linkage section) to a link defining a
procedure to be invoked by the linker upon first reference to this object within a
given process.

info_relp
is an offset (relative to the base of the linkage section) to a link specifying a
block of information to be passed as an argument to the first reference
procedure; if info_relp is O. there is no ~uch block.

SfRUCTURE OF THE SYMBOL SECTION

The symbol section consists of one or more symbol headers threaded together to
form a single list A symbol header has two main functions: to document the
circumstances under which the object segment was created, and to serve as a repository
for information (relocation information. compiler's symbol tree, etc.) that does not
belong in any of the other sections.

The symbol section must contain at least one symbol header, describing the
circumstances under which the object segment was created. A symbol. section can
contain more than one symbol header. An example of multiple symbol headers is the
case of a bound segment where in addition to the symbol header describing the
segment's creation by the binder, there is also a symbol header for each of the
component object segments.

Each symbol header can point to a free-format area. The free-format area can
contain any information whatsoever, and the object segment will execute properly.
However, the Multics debugging utilities (e.g.. probe) place stringent requirements on
the format of the free area, and these are followed by the translators for PL/I,
FORTRAN, COBOL, and Pascal. See "Symbol Table Organization" below for additional
information on the contents of the free-format area used by those three languages.

Symbol Block Header

All symbol blocks have a standard fixed-format block, although not all items in
the block have meaning for all symbol blocks. The description of a particular symbol
block lists items that have meaning for that symbol block. The block has the
following format, defined by the system include file std_symbol_header.incl.pl1:

0-24.1 AG91-04A

This page intentionally lefi blank.

01/87 AG91-04A

dcl 1 std_symbol_header
2 decl_version
2 identifier
2 gen_number
2 gen_created
2 object_created
2 generator
2 gen_version

3 offset
3 size

2 userid
3 offset
3 size

2 comment
3 offset
3 size

2 text_boundary
2 stat_boundary
2 source_map
2 area_pointer
2 backpointer
2 block_size
2 next_block
2 rel_text
2 rel_def
2 re 1 1 ink
2 rel_symbol
2 mini_truncate
2 maxi_truncate

STRUCTURE ELEMENTS

decl_ version
is the version number of the structure.

identifier

based al igned,
fixed bin in i t i a 1 (1) ,
char (8) ali gned,
fixed bin,
fixed bin (71) ,
fixed bin (] 1) ,
char (8) ,
unaligned,
bit (18) ,
bit (18) ,
unaligned,
bit (18) ,
bit (18) ,
unaligned,
b t (18) ,
b t (18) ,
b t (18) unal gned,
b t (18) una 1 gned,
b t(18) unal gned,
b t (18) una 1 gned,
b t (18) unal gned,
b t (18) una 1 gned,
b t (18) una 1 gned,
b t (18) una 1 gned,
b t (18) una 1 gned,
b t (18) una 1 gned,
b t(18) una1 gned,
b t (18) una i gned,
b t (18) una 1 gned;

is a symbolic name identifying the type of symbol block.

gen_number
is a code designating the version of the generator that created this object segment
A generator's version number is normally changed when the generator or its
output is significantly modified.

gen_created
is a calendar clock reading specifying the date and time when this generator was
created.

object_created
is a calendar clock reading specifying the date and time when this symbol block
was generated.

G-25 AG91-04

generator
is the name of the program that generated this symbol block.

offset

size

is an offset (relative to the base of the symbol block) to an aligned string
describing the version of the generator. For example:

IIPL/I Compiler Version 7.3
of Wednesday, July 28, 197111

The integer part of the version number embedded in the string must be identical
to the number stored in gen_number.

is the length of the aligned string describing the version of the generator.

userid
is the name of the user for whom this symbol block was created.

offset

size

is an offset (relative to the base of the symbol block) to an aligned string
containing the access identification (i.e.. the value returned by the get~oup_id_
subroutine described in the Subroutines manual) of the user for ~hom this symbol
block was created.

is the length of the aligned string contaInIng the access identification of the user
for whom the symbol block was created.

comment
an aligned string contaInIng generator-dependent symbolic information. For
example. a compiler might store diagnostic messages concerning nonfatal errors
encountered while generating the object segment.

offset

size

is an offset (relative to the base of the symbol block) to the comment. A value
of "O"b indicates no comment.

is the length of the aligned string containing generator-dependent symbolic
inf ormation.

text_boundary
is a number indicating the boundary on which the text section must begin. For
example. a value of 32 would indicate that the text section must begin on a 0
mod 32 word boundary. This value must be a' multiple of 2. It is used by the
binder to determine where to locate the text section of this object segment.

stat_boundary
is the same as text_boundary except that it applies to the internal static area of
the linkage section of this object segment.

source_map
is an offset (relative to the base of the symbol block) to the source map (see
"Source Map" below).

G-26 AG91-04

area_poin ter
is an offset (relative to the base of the symbol block) to the free-format area of
the symbol block. The contents of this area: depend upon the symbol block. If
the symbol block was created by a translator, this area may contain a runtime
symbol table and/or a statement map. If the symbol block was created by the
binder, this area contains the bind map.

backpointer
is an offset (relative to base of the symbol block) to the base of the symbol
section; that is, the negative of the offset of the symbol block in the symbol
section.

block_size
is the size of the symbol block (including the block) in words.

next_block
is a thread (relative to the base of the symbol section) to the next symbol block.
This item is "O"b for the last block.

reI_text
is an offset (relative to the base of the symbol block) to text section relocation
information (see "Relocation Information" below).

rel_def
is an offset (relative to the base of the sym bol block) to definition section
relocation information.

reI_link
is an offset (relative to the base of the symbol block) to linkage section
relocation information.

reI_symbol
is an offset (relative to the base of the symbol block) to symbol section
relocation information.

mini_truncate
is an offset (relative to the base of the symbol block) starting from which the
binder systematically truncates control information (such as relocation bits) from
the symbol section, while still maintaining such information as the symbol tree.

maxi_ truncate
is an offset (relative to this base of the symbol block) starting from which the
binder can optionally truncate nonessential parts of the symbol tree in order to
achieve maximum reduction in the size of a bound object segment.

Source Map

The source map is a structure that uniquely identifies the source segments used
to generate the object segment. It has the following format, defined in the system
include file source_map.inc1. pH:

G-27 AG91-04

dcl 1 source_map
2 version
2 number
2 map (0 refer (source_map.number»

3 pathname
4 offset
4 size

3 uid
3 dtm

aligned based,
fixed bin in i t i a 1 (1) ,
fixed bin,
ali gned,
unai igned,
bit (18) ,
bit (18) ,
bit (36) ali gned,
fixed bin (71) ;

STRUCTURE ELEMENTS

version
is the version number of the structure.

number
is the number of entries in the map array; that is, the number of source
segments used to generate this object segment.

pathname
an aligned string containing the absolute pathname of this source segment.

offset

size

uid

dtm

is an offset (relative to the base of the symbol block) to· the pathname.

is the length of the pathname.

is the unique identifier of this source segment at the time the object segment was
generated.

is the date-time-modified value of this source segment at the time the object
segment was created.

Relocation Information

Relocation information, designating all instances of relative addressing within a
given section of the object segment, enables the relocation of the section (as in the
case of binding). A variable-length prefix coding scheme is used, where there is a
logical relocation item for each half word of a given section. If the half word is an
absolute value (nonrelocatable), that item is a single bit whose value is O. Otherwise,
the item is a string of either 5 or 15 bits whose first bit is set to "1 "b. The
relocation information is concatenated to form a single string that can only be
accessed sequentially. If the next bit is a zero, it is a single-bit absolute relocation
item; otherwise, it is either a 5- or a I5-bit item depending upon the relocation codes
defined below.

There are four distinct blocks of relocation information, one for each of the
four object segment sections: text, definition, linkage, and symbol; these relocation
blocks are known as reI_text. reI_deL reI_link and reI_symbol, respectively.

G-28 AG91-04

The relocation blocks reside within the symbol block of the generator that
produced the object segment. The correspondence between the packed relocation items
and the half words in a given section is determined by matching the sequence of items
with a sequence of half words, from left-to-right and from word-to-word by
increasing value of address.

The relocation block pointed to from the symbol block block (e.g.,
text_relocation_relp) is structured as follows:

del 1 relinfo ali gned,
2 deel _vers fixed bin in i t i a 1 (2) ,
2 n bits fixed bin,
2 relbits bi t (0 refer(relinfo.n_bits)) ali gned;

STRUCTURE ELEMENTS

decl_vers
is the version number of the structure.

n_bits
is the length (in bits) of the string of relocation bits.

relbits
is the string of relocation bits.

Following is a tabulation of the possible codes and their corresponding relocation
types, followed by a description of each relocation type. Translators indicate the
relocation code in the assembly-like listing of an object segment by a character. The
second column below indicates the character used by standard translators. The third
column indicates the character used by the ALM assembler. These codes may be
found in relocation_bits.incl.pll.

"O"b a a absolute
10000"b t 0 text
10001"b 1 1 negative text
10010"b 2 2 1 ink 18
10011"b 3 3 negative 1 ink 18
lO100"b 4 1 ink l~

./

10101 1l b d 5 definition
10110"b s 6 symbol
10111 ll b 7 7 negative symbol
1 1000"b 8 8 internal storage 18
11001"b i 9 internal storage 15
11010 ll b r L self relative
11011"b unused
11100"b unused
11101"b unused
11110"b expanded absolute
lllllilb e *"i" escape

G-29 AG91-04

STRUCTURE ELEMENTS

absolute
does not relocate.

text
uses text section relocation counter.

negative text
uses text section relocation counter. The reason for having distinct relocation
codes for negative quantities is that special coding might be necessary to convert
the 18-bit field in question into its correct fixed binary form.

link 18
uses linkage section relocation counter on the entire 18-bit half word. This, as well
as the negative link 18 and the link 15 relocation codes apply only to the array
of links in the linkage section (i.e., by definition, usage of these relocation codes
implies external reference through a link).

negative link 18
is the same as link 18 above.

link 15
uses linkage section relocation counter on the low-order 15 bits of the halfword.
This relocation code can only be used in conjunction with an instruction featuring
a basel offset address field.

definition
indicates that the half word contains an address that is relative to the base of the
definition sect.ion.

symbol
uses symbol section relocation counter.

negative symbol
is the same as symbol above.

internal storage 18
uses internal storage relocation counter on the entire 18-bit half word.

in ternal storage 15
uses internal storage relocation counter on the low-order 15 bits of the halfword.

self relative
indicates that the half word contains a relocatable address that is referenced using
a location counter modifier; the instruction is self -relocating.

expanded absolute
allows the definition of a block of absolute relocated halfwords, for efficiency
reasons. It has been established that a major part of an object program has the
absolute relocation code. The five bits of relocation code are immediately
followed by a fixed length 10-bit field that is a count of the number of
contiguous half words all having an absolute relocation. Use of the expanded
absolute code can be economically justified only if the number of contiguous
absolute halfwords exceeds 15.

G-30 AG91-04

escape
reserved for possible future use.

STRUCTURE OF THE OBJECT MAP

The object map contains information used to locate the various sections of an
object segment. The map itself can be located immediately before or immediately after
anyone of the five sections. Translators normally place it immediately after the
symbol section. The last word of the object segment (as defined by the bit count of
the object segment) must contain a left-justified I8-bit offset (relative to the base of
the object segment) to the object map. The object map has the following format,
defined in the system include file, object_map.incl.pl1:

dcl 1 object_map
2 decl_vers
2 identifier
2 text_offset
2 text_length
2 definition offset
2 definition_length
2 1 inkage_offset
2 linkage_length
2 static offset
2 static_length
2 symbol_offset
2 symbol_length
2 break_map_offset
2 break_map_length
2 entry_bound
2 text_l ink offset
2 format

3 bound
3 relocatable
3 procedure
3 standard
3 separate_static
3 links_in text
3 perprocess_static
3 unused

STRUCTURE ELEMENTS

decl_vers

al igned based,
fixed bin in i t (2) ,
char (8) ali gned,
b t (18) unal gned,
b t (18) una 1 gned,
b t (18) unal gned,
b t (18) una 1 gned,
b t(l8) unal gned,
b t (18) unal gned,
b t (18) una 1 gned,
b t (18) una 1 gned,
b t (18) una 1 gned,
b t (18) unal gned,
b t (18) una 1 i gned,
b t (18) una 1 i 9 n ed ,
b t (18) una 1 i gned,
b t (18) unal igned,
ali gned,
b t (1) una 1 gned,
b t(l) una1 gned,
b t (1) unal gned,
b t(l) unal gned,
b t(l) unal gned,
b t (1) una 1 gned,
b t (1) una 1 gned,
b t (29) una i gned;

is the version number of the structure.

identifier
is the constant "obj_map".

text_offset
is an offset (relative to the base of the object segment) to the base of the text
section.

G-3I AG9I-04

text_length
is the length (in words) of the text section.

definition_offset
is an offset (relative to the base of the object segment) to the base of the
definition section.

def ini tion_length
is the length (in words) of the definition section.

linkage_offset
is an offset (relative to the base of the object segment) to the base of the
linkage section.

linkage_length
is the length (in words) of the linkage section.

static_offset
is an offset (relative to the base of the object segment) to the base of the static
section.

static_length
is the length (in words) of the static section.

syrn bol_offset
is an offset (relative to the base of the object segment) to the base of the
symbol section.

sym~ol_length
is the length (in words) of the symbol section.

break_map_offset
is an offset (relative to the base of the object segment) to the base of the break
_map section.

break_map_Iength
is the length (in words) of the break map section.

entry _bound
is the offset of the end of the entry transfer vector if the object segment is to
be a gate.

text_link_rel p
is the offset of the first text-embedded link if links_in_text equals "l"b.

bound
indicates if the object segment is a bound segment.

"1"b the object segment is a bound segment
;;Onb the object segment is not a bound segment

G-32 AG91-04

relocatable
indicates if the object segment is relocatable; that is, if it contains relocation
information. This information (if present) must be stored in the segment's first
symbol block. See "Structure of the Symbol Section" above.

"l"b the object segment is relocatable
"O"b the object segment is not relocatable

procedure
indicates whether this is an executable object segment

standard

"1"b this is an executable object segment
"Ollb this is not an executable object segment

indicates whether the object segment is in standard format.

"l lib the object segment is in standard format
"Q"b the object segment is not in standard format

separate_static
indicates whether the static section is separate from the linkage section.

III lib the stat i c sect i on is separate from the 1 i nkage sect i on
"O"b the static section is not separate from the 1 inkage section

links_in_ text
indicates whether the object segment contains text-embedded links.

II 1 lib the object segment contains text-embedded links
"Q"b the object segment does not contain text-embedded links

perprocess_sta tic
indicates whether the static section should be reinitialized for a run unit

unused

"l"b static section is used as is
"Q"b static section is per run unit

is reserved for future use and must be "O"b.

GENERATED CODE CONVENTIONS

The following discussion specifies those portions of generated code that must
conform to a system-wide standard. For a description of the various relocation codes
see "Structure of the Symbol Section" above.

Text Section

Those parts of the text section that must conform to a system-wide standard are:

entry sequence
text relocation codes.

G-33 AG91-04

ENTRY SEQUENCE

The entry sequence must fulfill two requirements:

1. The location preceding the entry point (i.e., entry point minus 1) must
contain a left adjusted I8-bit relative pointer to the definition of that
entry point within the definition section.

2. The entry sequence executed within that entry point must store an ITS
pointer to that entry point in the entry_ptr field in the stack frame
block (as described in the stack frame include file). The procedure's
current stack frame can then be used to determine the address of the
entry point at which it was invoked. That entry's symbolic name can be
reconstructed throui!h uc;e of its definition pointer. (See "Entrv Seauence"
earlier in this --~~ti~-~.)-- - -- - . . .

TEXT RELOCATION CODES

The following list defines those relocation codes that can be generated in
conjunction with the text section. These can be generated only within the scope of the
restrictions specified.

absolute

text

negative text

link 18

link 15

definition

symbol

internal storage 18

no restriction

no restriction

no restriction

can only be a direct (i.e., unindexed)
ref erence to a link.

can only appear within the address field of
a pointer-register / offset type instruction
(bit 29 = "l"b). The first two bits of the
modifier field of the instruction cannot be
"IO"b. If the instruction uses indexing, the
first two bits of the modifier must be
"11 "b. Also the following instruction codes
cannot have this relocation code:

STBA (551) 8
STBQ (552)8
STCA (751)8
STCQ (752) 8

the offset to be relocated must be that of
the beginning of a definition (relative to
the beginning of the definition section).

no restriction

no restriction

G-34 AG91-Q4

in ternal storage 15

self relative

expanded absolute

can only apply to the left half of a word.
If the word is an instruction, the first two
bits of the modifier must not be "10"b.

no restriction

no restriction

The restrictions imposed upon the link 15 and internal storage 15 relocation
codes stem from the fact that these relocation codes apply to pointer-register/offset
type address fields encountered in the address portion of machine instructions. Since
the effective value of such an address is computed by the hardware at execution time,
certain hardware restrictions are imposed on instructions containing them. When the
Multics binder processes these instructions, it often resolves them into simple-address
format and has to further modify information in the opcode (right-hand) portion of
the instruction word. Theref ore. these relocation codes must only be specified in a
context that is comprehensible to the Multics processor.

Definition Section

Those parts of the definition section that must conform to a system-wide
standard are:

general structure
definition relocation codes
implicit definitions

DEFINITION RELOCATION CODES

absolute no res tr i ct i on .

text no restriction

1 ink 18 no restriction

definition no restriction

symbol no restriction

internal storage 18 no restriction

seif relative no restriction

expanded absolute no restriction

G-35 AG91-04

IMPLICIT DEFINITIONS

All generated object segments must feature the following implicit definition:

defines the base of the symbol block generated by the
current language processor, relative to the base of the
symbol section.

Linkage Section

Those parts of the linkage section that must conform to a system-wide standard
are:

internal storage
1 inks
1 inkage relocation codes

INTERNAL STORAGE

The internal storage is a repository for items of the internal static storage class.
It may contain data items only; it cannot contain any executable code.

LINKS

The link area can only contain a set of links. The -links must be considered as
distinct unrelated items, and no structure (e.g.. array) of links can be assumed. They
must be accessed explicitly and individually through an un indexed internal reference
featuring the link 18 or the link 15 relocation codes. The order of links will not
necessarily be preserved by the binder.

LINKAGE RELOCATION CODES

Only the linkage section block and the links can have relocation codes associated
with them (the internal storage area has associated with it a single expanded absolute
relocation item). They are:

absolute no restriction; mandatory for the
internal storage area

text no restrict on
1 ink 18 no restrict on
negative 1 ink 18 no restrict on
definition no restrict on
internal storage 18 no restrict on
expanded absolute no restrict on

G-36 AG91-04

Static Section

The static section does not have relocation codes associated with it Absolute
relocation is assumed. See "Internal Storage Area" above.

Symbol Section

The symbol section can contain information related to some other section (such
as a symbol tree defining addresses of symbolic items), and therefore can have
relocation codes associated with it They are:

absolute no restr ct on
text no restr ct on
1 ink 18 no restr ct on
definition no restr ct on
symbol no restr ct on
negative symbol no restr ct on
internal storage 18 no restr ct on
self relative no restr ct on
expanded absolute no restr ct on

STRUCTURE OF BOUND SEGMENTS

A bound segment consists of several object segments that have been combined so
that all internal intersegment references are automatically prelinked and to reduce the
combined size by minimizing page breakage. The component segments are not ·simply
concatenated; the binder breaks them apart and creates an object segment with single
text, definition, static, linkage, and symbol sections as illustrated in Figure G-4 below.
(When the static se.ction is separate, it is located before the linkage block rather than
between the linkage block and the links.) As explained below, the definition s~tion
and link array are completely reconstructed while the text, internal static, and symbol
sections are the corresponding concatenations of the component segments' text, internal
static, and symbol sections with relocation adjustments. (See "Structure of the Symbol
Section" above.) If all of the components' static sections are separate (i.e., not in
linkage), the bound segment has a separate static section; otherwise, all component
static sections are placed in the bound segment's linkage section.

G-37 AG91-04

text section

definition section

linkage section

symbol section

obj ect map

text for component 1
text for component 2

text for component n

~
linkage block
init. static for component 1
init. static for component 2

init. static for component n

1 inks

first reference trap

symbol block for binder
symbol block for component

symbol block for component n

Figure G-4. Structure of a Bound Segment

G-38 AG91-04

Internal Link Resolution

The primary distinction between bound and unbound groups of segments occurs
in the manner in which they reference external items and are themselves referenced.
Most references by one component to another component in the same bound segment
are prelinked; i.e., the link references are converted to direct text-to-text references
and the associated links are not regenerated. The remaining external links are
combined so that for the whole bound segment there is only one link for each
different target. Prelinking enables some component segments to lose their- identity in
cases where the bound segment itself is the main logical entity, having been coded as
separate segments for ease of coding and debugging. Definitions for external entries
that are no longer necessary, i.e., have become completely internal. can be omitted
from the bound segment (see the bind command described in the Commands manual).

Definition Section

The definition section of a bound segment is generally more elaborate than that
of an unbound object segment because it reflects both the combination and deletion of
definitions. There is a definition block for each component It contains the retained
definitions and the segment names associated with the component. This organization
allows definitions for multiple entries with the same name to be distinguished. The
first definition block is for the binder and contains a definition for bind_map,
discussed below.

Binder Symbol Block

The symbol block of the binder has a standard block if all of the components
are standard object segments. The symbol block can be located using the bind_map
definition. Most of the items in the block are adequately explained under "Structure
of the Symbol Section" above; however, some have special meaning for bound
segments. The format of a standard symbol block block is repeated below for
reference, followed by the explanations specific to the binder's symbol block.

G-39 AG91-o4

del 1 std_symbol_block based al igned,
2 decl version fixed bin initial (1),
2 identifier char (8) al igned,
2 gen_number fixed bin,
... geil_created fixed b i il (71) , £

2 object_created fixed bin (] 1) ,
2 generator char (8) ,
2 gen_version unaligned,

3 offset bit (18) ,
3 size bit(18) ,

2 userid unaligned,
3 offset bit (18) ,
3 size bit (18) ,

2 comment unaligned,
3 offset bit (18) ,
3 size bit (18) ,

2 text_boundary bit (18) unal gned,
2 stat_boundary bit (18) unal gned,
2 source_map b· t (18) unal gned,
2 area_pointer b t (18) unal gned,
2 backpointer b t (18) unal gned,
2 block_size b t (18) unal gned,
2 next_block b t (18) unal gned,
2 rel - text b t (18) unal gned,
2 rel - def b t (18) unal gned,
2 rel 1 ink b t (18) unal gned,
2 rel_symbol b t (18) unal gned,
2 mini truncate - b t (18) unal gned,
2 maxi truncate - b t (18) unal gned;

STRUCTURE ELEMENTS

identifier
is the string "bind_map".

generator
is the string "binder".

comment
is always "O"b.

area_poin ter
is an offset (relative to the base of the symbol block) to the beginning of the
bind map. (See "Bind Map" below.)

Bound segments currently are not relocatable. so none of the relocation relative
pointers or truncation offsets have any meaning.

G-40 AG91-04

Bind Map

The bind map is part of the symbol block produced by the binder and describes
the relocation values assigned to the various sections of the bound component object
segments. It consists of a variable length structure followed by an area in which
variable length symbolic information is stored. The bind map structure has the
following format. defined in the system include file bind_map.incl.pl1:

dcl 1 bindmap based aligned,
2 dcl version fixed bin,
2 n_components fixed bin,
2 component (0 refer (bindrnap.n_components» ali gned,

3 name
4 name_ptr bit (18) unaligned,
4 name _1 ng bit (18) unaligned,

3 comp_name char (8) ali gned,
3 text start b t (18) unal gned,
3 text_lng b t (18) una1 gned,
3 stat start b t (18) unal gned,
3 stat_lng b t (18) unal gned,
3 symb_start b t (18) unal gned,
3 symb_lng b t (18) unal gned,
3 defblock_ptr una 1 i gned,
3 n_blocks bit (18) unal igned,

2 bf_name aligned,
3 bf_name_ptr bit(18) unal igned,
3 bf_name_lng bi t (18) una 1 i gned,"

2 bf_date_up char (24) ,
2 bf_date_mod char (24) ;

G-41 AG91-04

STRUCTURE ELEMENTS

dc1_ version
is a constant designating the format of this structure; this constant is modified
whenever the structure is, allowing system tools to easily differentiate bind map
formats. This structure is version one (1).

n_components
is the number of component object segments bound within this bound segment.

component
is a variable-length array featuring one entry per bound component object
segment.

name
is the symbolic name of the bound component. This is the name under which the
component object was identified within the archive file used as the binder's input
(i.e., the name corresponding to the object's objectname entry in the bindfile).

name_ptr
is the offset (relative to the base of the binder's symbol block).

name_lng
is the length (in characters) of the component's name.

comp_name
is the name of the translator that created this component object segment.

text_start
is the offset (relative to the base of the bound segment) of the component's text
section.

text_Ing
is the length (in words) of the component's text section.

stat_start
is the offset (relative to the base of the static section) of the component's
internal static.

stat_Ing
is the length of the component's internal static.

symb_start
is an offset (relative to the base of the symbol section) to the component's
symbol section.

symb_lng
is the length of the component's symbol section.

G-42 AG91-04

defblock_ptr
if nonzero, this is a pointer (relative to the base of the definition section) to the
component's definition block (first c1ass-3 segname definition of that component's
definition block).

n_blocks
is the number of symbol blocks in the component's symbol section.

bf _name_ptr
is the offset (relative to the base of the binder's symbol block) of the symbolic
name of the bind file.

bf _name_Ing
is the length (in characters) of the bind file name.

bf_date_up
is the date, in symbolic form, that the bind file was updated in the archive (of
object segments) used as input by the binder.

bf_date_mod
is the date, in symbolic form, that the bind file was last modified before being
put into the binder's object archive.

SYMBOL TABLE ORGANIZATION

The information below is subject to change. Future Multics releases may use a
different .format of runtime symbol information.

The free-format area can contain any information whatsoever, and the object
segment will execute properly. However, the Multics debugging utilities (e.g., probe)
piace stringent requirements on the format of the free area, and these are foHowed by
the translators for PL/l, FORTRAN, COBOL and Pascal.

The free-format area begins with a fixed-format header, called the pll_symbol_block.
Despite the name, this block is present even in FORTRAN, Pascal and COBOL-produced
object segments. The pll_symbol_block gives the options used in compiling the
segment, and the offsets of the statement map, the root block node, and the profile
inf ormation.

The remainder of the free-format area consists of the statement map, the symbol
tree, and the profile information, which are discussed below.

G-43 AG91-04

The PL/I Symbol Block

The PL/I symbol block has the following format (declared in
pIl_sym bol_ block.incl. pIll:

del 1 pll_symbol_bloek
2 version
2 identifier
2 flags,

3 prof i 1 e
3 table
3 map
3 flow
3 io
3 table_removed
3 long_profile
3 pad

2 greatest_severity
2 root
2 profile
2 map,

3 first
3 last

2 segname,
3 offset
3 length

STRUCTURE ELEMENTS

version

aligned,
fixed binary,
ehar (8) ,

b t (1) una 1 gned,
b t (1) una 1 9 ned,
b t (1) una 1 gned,
b t(1) unal gned,
b t(1) unal gned,
b t (1)
b t(l) unal gned,
b t(29) una igned,
f xed binary,
b t(18) unaligned,
b t(18) unaligned,

bit(18) unaligned,
bit(18) unaligned,

bit (18) una 1 i gned,
bit (18) una 1 i gned;

is the version number of the structure. For this version the version number is 1.

identifier
is the constant "pIlinfo".

profile
is "l"b if the object program contains an execution profile table. This table is
generated if the -profile control argument is specified when the source program is
compiled.

table
is "l"b if the object program contains a runtime symbol table. A runtime symbol
table is generated if the -table control argument is specified when the source
program is compiled or if the runtime table is required by PL/I put data or get
data or FORTRAN namelist input/output statements in the source program (see
"The PL/I Runtime Symbol Table" below).

G-44 AG91-04

map

flow

io

is "l"b if the object segment contains a statement map that gives the
correspondence between source line numbers and locations in the object segment
(see "The Statement Map" below). The statement map is present if the
-brief_table, -profile. or -table control arguments are specified when t.he source
program is compiled.

is "l"b if the object program contains additional instructions for monitoring
program flow. This facility is not yet available.

is "lYib if the object program contains a runtime symbol table that is required by
PL/I put data or get data or FORTRAN namelist input/output statements in the
source program. In this case the runtime symbol table cannot be removed.

table_removed
is "1 "b if the object segment originally contained a runtime symbol table that has
subsequently been removed.

lon~profile
is "1 "b if the object segment contains a long profile table.

greatest_severity

root

contains the greatest severity level of all error messages issued during the
compilation of the source program. A value of 0 means that no errors were
found during compilation.

is nonzero only if the object segment contains a runtime symbol table; in this
case, root is a pointer (relative to the base of the symbol header block) to the
root block of the runtime symbol table.

profile

first

last

is nonzero if the object segment contains a profile table. If it is nonzero, it is
the offset in the linkage section of the table.

is nonzero only if the object segment contains a statement map; in this case, first
is a pointer (relative to the base of the symbol header block) to the first entry
in the statement map.

is nonzero only if the object segment contains a statement map; in this case, last
is a pointer (relative to the base of the symbol header block) to the last entry in
the statement map.

offset

size

is a pointer (relative to the base of the symbol header block) to an aligned
character string that gives the name of the segment; this is the same as the name
used for the class 3 definition of the object segment.

is the length of the segment name string.

0-45 A091-04

The PL/I Runtime Symbol Table

The PL/I runtime symbol table contains information needed to support source
language debugging and PL/I data-directed or FORTRAN namelist input/output
statements. Nlost of the information that the compiler has in its compile-time symbol
table is placed, in a different format, in the runtime symbol table; this permits
attributes of a variable such as data type, storage class, or location to be determined
during execution of the program. If the runtime symbol table is present, it follows
the PL/I symbol block.

There are two types of runtime symbol tables: partial tables and full tables.

A partial table is generated when the source program contains data-directed
input/output statements; it contains information only about variables that are
transmitted via PL/I data-directed or FORTRAN namelist input/output statements. A
partial runtime symbol table cannot be removed.

A full symbol table is generated if the table control argument is specified when
the source program is compiled; it contains information about all variables, labels, and
entries referenced by the source program. A full symbol table can be removed from
the object progTam (when binding) if the source program does not contain
data-directed input/output statements that would require a partial table to be
generated.

The existence of a runtime symbol table does not affect the executable code
normally generated by the compiler. There are no instructions that must routinely be
executed by the object program in order to support the runtime symbol table. In
some cases (described later), the compiler generates additional code sequences solely
because a runtime symbol table is being created, but these extra instructions are not
executed unless particular fields of the runtime symbol table are actually referenced.

An internal static variable that has an initial value and is never set is normally
treated just as if it were a constant. If all references to the value of the internal
static variable can be made using DU or DL modifiers in the instructions making the
reference. the variable is not assigned a location. If all references cannot be made via
DU or DL modifiers, the variable is assigned one or more locations in the text
section. When a runtime symbol table is being generated, internal static variables that
are initialized and never set are always assigned locations in the text section. This
does not affect references to these variables since DU or DL modifiers continue to be
used wherever possible.

G-46 AG91-04

The runtime symbol table is a list structure that consists of interconnected
runtime_token, runtime_block, and runtime_symbol nodes. Normally, when node A in
the runtime symbol table contains a pointer to node B, the pointer is relative to the
start of the node in which it occurs; such a pointer is called a self-relative pointer.
The format of the nodes in the runtime symbol table are described in the sections
that follow.

THE RUNTIME TOKEN NODE

The runtime_token node holds the name of an identifier used elsewhere in the
runtime symbol table. The runtime_token nodes for all identifiers in the runtime
symbol table are threaded together on a list that is ordered alphabetically by size (all
1 character names before all 2 character names, etc.); there are no duplicate names on
this list This ordering is used to increase the speed with which the runtime symbol
table can be searched. Each runtime_token node contains a pointer to the
runtime_symbol node for the first variable having the name stored in the runtime_token
node. The runtime_token node has the following format (and appears in
run time_sym bol. incl. pH):

del 1 runtime_token
2 next
2 del
2 name,

3 si2e
3 string

based aligned,
bit(l8) unaligned,
bit (18) una 1 i gned ,

fixed bin(9) unsigned unal igned,
ehar (0 refer (runtime_token.size»

una 1 i gned;

STRUCTURE ELEMENTS

next

dcl

is a self -relative pointer to the next token on the alphabetic by size list of
tokens. This field is zero in the last runtime_token node on the list

is a self -relative pointer to the runtime_symbol node for the first identifier
having the name stored in this runtime_token node. This field is zero if there
are no identifiers declared with this name.

name
is an ACC string that gives the name of the identifier represented by this node
(see "The Structure of the Definition Section" above for a description of ACC
strings).

G-47 AG91-04

THE RUNTIME BLOCK NODE

Each procedure or begin block in the source program has a corresponding
runtime_block node in the runtime symbol table. The manner in which these nodes
are connected reflects the block structure of the source program. Each runtime_block
node contains a pointer to a list of runtime_symbol nodes that represent declarations
defined immediately internal to the block (i.e. internal to the block but not internal
to any other block contained in the block). These declarations correspond to the
variables and label or entry constants used in the block. The runtime_block node has
the following format (which appears in runtime_symbol. incl. pll):

dcl 1 runtime_block ali gned,
2 flag bit(l) unaligned,
2 quick b't(1) unaligned,
2 fortran b t (1) unal igned,
2 standard b t (1) unaligned,
2 owner_flag b t (1) unal igned,
2 skip b t (l) unaligned,
2 type b t (6) unal igned,
2 number b t (6) unaligned,
2 start b t (18) unal igned,
2 name b t (18) unaligned,
2 brother b t (18) unaligned,
2 father b t (18) una 1 i gned,
2 son b t (18) una 1 i gned,
2 map,

3 first b t (18) unal igned,
3 last b t (18) unaligned,

2 entry_ info b t (18) unaligned,
2 header b t (18) una 1 i gned,
2 cha in (4) b t (18) una 1 i gned,
2 token (0: 5) b t (18) unal igned,
2 owner b t (18) una 1 i gned;

STRUCTURE ELEMENTS

flag
is always "l"b and is used to tell this version of the structure from an earlier
one.

quick
is "l"b if the procedure or begin block that corresponds to this runtime_block
node is a quick block that does not have a stack frame of its own. By
definition. when a quick block is called. pr6 (the stack pointer) points at the
stack frame shared by the quick block in which the quick block allocates its
storage. This bit is always "O"b in the runtime_block that corresponds to an
external procedure.

G-48 AG91-04

fortran
is "l"b if this program was compiled by the FORTRAN compiler. This bit is
used to tell the programs that access the runtime symbol table that array elements
are stored in column-major order instead of row-major order. The object
program contains other places that indicate the compiler that processed the
program; this bit was added to increase the speed with which this inf ormation
could be obtained.

standard
is "l"b if this object segment is in standard Multics format Here, too,
information that is available elsewhere is repeated for the sake of convenience.

owner_flag

skip

type

is "1 "b if this block has a valid owner field.

is reserved f or future expansion.

indicates what kind of block the biock node corresponds to. The following values
are defined:
"01 "b3 external entry
"02"b3 nonquick internal procedure
"03"b3 quick internal procedure
"04"b3 begin block
"05"b3 Pascal with block

(Currently this field is not always filled in as defined above.)

number

start

is used to number begin blocks. All begin blocks in the source program are
assigned a sequence number in the order in which they are encountered by the
program that generates the runtime symbol table.

is a self-relative pointer to the runtime_symbol node for the first declaration in
the block represented by the runtime_block node. This declaration list gives all
level 0 (nonstructure) and level 1 (top level structure) symbols defined immediately
internal to the block: the runtime_symbol nodes on this list are ordered
alphabetically by size. The start field is zero if there are no declarations in the
block.

name
is a self -relative pointer to the ACC string that gives the name of the block; this
field is zero for a begin block. The block compiled for an on-unit is a
procedure block whose name is derived from the name of the condition, e.g.
"overflow. I". For historical reasons, the name component points at run time_token. name
instead of the beginning of runtime_token.

G-49 AG91-04

brother
is a self-relative pointer to the next runtime_block node at the same nesting
level. This field is zero if there is no other block at the same nesting level.

father

son

first

last

is a self-relative pointer to the immediately containing runtime_block node of
which this block is a son. If the current block is the root of the symbol tree,
this pointer points to the symbol header block.

is a self-relative pointer to the first runtime_block node contained within the
current block. This field is zero if the current block does not contain any other
blocks.

is nonzero if the object program contains a statement map; in this case first is a
self-relative pointer to the entry in the statement map that corresponds to the
first executable statement in this block. If block B is contained in block A, the
entries in the statement map for block B are also contained in the statement map
entries for block A.

is a self-relative pointer to the word after the entry that corresponds to the last
executable statement Note that zero is a meaningful value.

entry_info
is nonzero only for a runtime_block that corresponds to a procedure without its
own stack frame (quick = "1 "b). It gives the location in the stack frame shared
by the quick block of the entry information block used by the quick block. The
format of an entry information block is described below.

header
is a self -relative pointer to the start of the symbol header block.

chain
is a vector of self -relative pointers that point at runtime_symbol nodes on the
declaration list for this block. The chain(D points at the runtime_symbol node for
the first declaration whose name is longer than 2**i; chain(D is zero if the
longest name in the declaration list is shorter than 2**i.

token
is a vector of self-relative pointers that point at runtime_token nodes. The
token(i) points at the runtime_token node for the first name longer than 2**i;
token (i) is zero if the longest name in the token list is shorter than 2**1.

owner
is a self-relative pointer to the runtime_block node whose stack frame will be
shared by this block. This field is valid only if owner_flag is set.

G-50 AG91-04

THE ENTRY INFO BLOCK

An entry info block consists of one, two, or three pointers, depending on the
procedure. It has the foHowing format (declared in quick_entry.incl.pll):

dcl quick_entry
2 return
2 argptr
2 d-escptr

STRUCTURE ELEMENTS

return

aligned,
ptr,
ptr,
ptr;

points at the return location of the quick block.

argptr
if present, points at the argument list of the quick block.

descptr
if present. points at the descriptor list of the quick procedure.

THE PASCAL "with" BLOCK

When the block node corresponds to a Pascal "with" block (runtime_block =
"05"b3), it has two more fields appended to it. The node then has the following
format (which appears in runtime_symbol_block.incl.pll. where symbol_block is equivalent
to the runtime_block structure described above):

dcl 1 with_symbol_block aligned,
2 common_block_info

aligned like symbol_block,
2 with_string fixed bin (18) unsigned unaligned,
2 real_1evel_l fixed bin (18) unsigned unaligned;

STRUCTURE ELEMENTS

wi th_string
is a self -relative pointer to the ACC string that duplicates the string in the
source program's "with" statement.

real_level_1
is a self-relative pointer to the level 1 node for the corresponding record type.

G-51 AG91-o4

THE RUNTIME SYMBOL NODE

Each runtime_symbol node in the runtime symbol table corresponds to an
identifier in the source program. The manner in which these nodes are connected
reflects the structural relationship of variables in the source program. Level 0
(nonstructure) and level 1 (top level structure) variables have the runtime_symbol nodes
that correspond to them threaded on a list of runtime_symbol nodes ordered
alphabetically by size.

The format of the runtime_symbol node is (declared in run time_symbOl. inc1.pll):

dcl 1 runtime_symbol al igned,
2 flag bit(l) unal gned,
2 use_digit bit(l) unal gned,
2 array_ul)its bit (2) unal gned,
2 units bit (2) una1 gned,
2 type bit (6) unal gned,
2 level bit (6) unal gned,
2 ndims bit (6) unal gned,
2 bits una 1 i gned,

3 al igned b t (1) ,
3 packed b t (1) ,
3 simple b t (l) ,
3 decimal b t (l) ,

2 scale b t (8) unaligned,
2 name b t (l8) una 1 i gned,
2 brother b t (18) una 1 i gned,
2 father b t ("18) una 1 i gned,
2 son b t (18) una 1 i gned,
2 address unaligned,

3 location b t (18) ,
3 class b t (4) ,
3 next b t(l4),

2 size f xed binary (35) ,
2 offset f xed binary (35) ,
2 virtual _org f xed binary (35) ,
2 bounds (1) ,

3 lower fixed binary (35) ,
3 upper fixed binary (35) ,
3 multipl ier fixed binary(35) ;

In the discussion that follows. the term "current identifier" means the indentifier
represented by the runtime_symbol node under consideration, and the term "current
block" means the block in which the current identifier is declared:

G-52 AG91-04

STRUCTURE ELEMENTS

flag
is always "1 "b and distinguishes this version of the structure from other versions.

use_digit
contains the most significant bit of the three bit binary integers that identify the
addressing units for arrays and offsets.

array_units
contains the low order two bits of a three bit poSItIve binary integer that gives
the addressing units to be used when computing the address of a subscripted array
element; this field is meaningful only when ndims is not zero. The high order bit
is supplied by the use_digit bit The possible values for this three bit number,
and the corresponding factor by which an offset should be multiplied to convert
to a bit offset are: .

units factor

0 word 36
1 bit 1
2 byte 9
3 half word 18
4 word 36
5 bit 1
6 byte 9
7 digit 4.5

units

type

level

contains the low order two bits of a positive binary integer that gives the
addressing units of the offset field in the runtime_symbol node. The high order
bit is supplied by use_digit. The possible values and associated conversion factors
are the same as for array_units.

contains a poSItIve binary integer that gives the data type of the current
identifier. The numeric values used to encode the data type are the same as the
values used in the Multics descriptor, supplemented with additional values (see
Appendix D).

When the identifier is a pictured variable, the real data type is given by the
picture information block, which can be found by using information in the size
field of the runtime_symbol node.

contains a poSItIVe binary integer that gives the structure nesting level of the
current identifier as determined by the compiler; nonstructure variables have level
= o.

G-53 AG91-04

ndims
contains a positive binary integer that gives the number of array dimensions of
the current identifier; a value of zero means the current identifier is not an
array. The ndims gives the total number of subscripts that must be provided to
access an element of the array and is the sum of the number of dimensions with
which the identifier was explicitly declared and the number of dimensions
inherited from a containing structure.

aligned
is "l"b if the current identifier is aligned and is "O"b if the identifier is
unaligned.

packed
is "l"b if the current identifier is anyone of the following: an unaligned
aggregate of packed data, unaligned arithmetic data, unaligned nonvarying string
data. or unaligned pointer data.

simple
is "l"b if an abbreviated form of the runtime_symbol node is being used for the
current identifier; in this case fields after size in the runtime_symbol node are
not present and the current identifier is a scalar with zero offset. If simple is
"O"b, all fields in the runtime_symbol node are present.

decimal

scale

is reserved for future expansion.

is the arithmetic scale factor of the current identifier. Although stored in a bit
(8), it is logically a fixed bin (7). Be warned that COBOL and PL/I both· define
negative scale factors. and that PL/I bit to fixed conversion assumes unsigned, not
signed.

name
is a self-relative pointer to the ACC string that gives the name of the current
identifier. For historical reasons, the name component points at run time_token. name
instead of the beginning of runtime_token.

brother
is a self-relative pointer to the runtime_symbol node for the next identifier at
the same structure level; levels 0 and 1 are considered to be the same level.
Within a structure (level > 1), brother points to the runtime_symbol node for the
identifier that immediately follows the current identifier in the structure; brother
is zero if the current identifier is the last element in the structure that
immediately contains it. Outside of a structure (level <= 1), brother points to the
next element on the list of runtirpe_symbol nodes ordered alphabetically by size.

father
is a self-relative pointer to either a runtime_block node or a runtime_symbol
node. If level <= 1, father points to the runtime_block node that represents the
block in which the current identifier is declared. If level > 1. father points to
the runtime_symbol node for the structure that immediately contains the current
identifier as a son.

G-54 AG91-04

son
is a self-relative pointer to the first son of a structure (the runtime_symbol node
for the first identifier in the structure with a level number one greater than the
level of the current identifier). This field is zero if the current identifier is not
a structure.

location

class

usually contains a posItIve integer L that is used in combination with class to
determine the address of the current identifier. L is normally an offset with
respect to the start of a given class of storage; its interpretation depends on the
value of the class field in the runtime_symbol node.

contains a positive binary integer that gives the storage class of the current
identifier; the possible classes are:

class storage class

1 automatic; L is the offset at which the current identifier is defined
in the stack frame associated with the current block.

2 automatic adjustable; the address of the current identifier is not
known at the time the runtime symbol table is created. Location L
in the stack frame associated with the current block contains a
pointer to the storage for the current identifier.

3 based; location is a self-relative pointer to the runtime_symbol for
the pointer used in the declaration of the current identifier or is
zero if a pointer was not specified. The user must provide a
pointer. either explicitly at run time or implicitly through the
default pointer. in order to reference the current identifier.

4 internal static; L is the offset at which the current identifier is
assigned storage in the linkage section associated with the current
block.

5 external static; L is the offset in the linkage section of a link that
points to the current identifier.

6

7

8

internal controlled; L is the offset of the control block of the
current identifier in the linkage section of the current block.

external controlled; L is the offset in the linkage section of a link
that points to the control block for the current identifier.

parameter; at L in the stack frame corresponding to the current
block there is a pointer to the storage for the current identifier.
This storage class is used when the current identifier appears in
more than one position in procedure and/or entry statements in the
block.

G-55 AG91-04

next

size

9

10

11

12

13

14

15

parameter; L gives the posItIon of the current identifier in the
argument list provided to the current block. This class is used
when the current identifier appears in the same position in every
procedure or entry statement in the current block.

very large array; L is a self -relative pointer to the runtime_symbol
for the pointer to the beginning of the array. Address arithmetic
must be used to calculate offsets from this base.

symbol table constant; location is a self-relative pointer to the
value.

text reference; the current identifier is defined at L in the text
section of the object segment

link reference; the current identifier is defined at L in the linkage
section corresponding to the current block.

not used

not used

is a self-relative pointer to the runtime_symbol node of the next identifier having
the same name as the current identifier.

is . the ari thmetic . precISIon, string size, or area size of the iden tif ier. If the
identifier is a string or area, it may be an encoded value. If the current
identifier is a picture variable, size contains the offset at which the picture
information block can be found in the text section of the object segment If the
current identifier is an offset variable. size is a self -relative pointer to the
runtime_symbol node for the area, if any, associated with the current identifier.

offset
is the encoded value of the offset of the start of the current identifier with
respect to the address specified by location and class. The units of the offset
value are given by the units field in the runtime_symbol node. This field is not
present. and its value is assumed to be zero, if the simple bit is "l"b.

virtual_ org
is the encoded value of the virtual ongm of an array, in units given by
array_units. Its value should be subtracted from the base address specified by
location and class. This field is not present, and the current identifier is a scalar,
if the simple bit is "1 "b.

bounds
is an array that gives information about each dimension of an array identifier,
from left to right. The upper bound for the bounds array that appears in the
deciaration is actuaily a dummy; the true upper bound for the bounds array is
given by the ndims field. All the fields in the bounds array are not present, and
the current identifier is a scalar, if the simple bit is "l"b. A bound structure is
declared in runtime_bound in runtime_symbol. incl. pll.

G-56 AG91-04

lower
is the encoded value of the lower bound of this dimension of the current
iden tifier.

upper
in the encoded value of the upper bound of this dimension of the current
iden tif ier.

multiplier
is the encoded value of the multiplier of this dimension of the current identifier.

The address of an identifier is calculated in the following manner. The base
address is determined by the class and location fields. If the identifier is "simple",
this is all. Otherwise, the offset field (which may be encoded) is multiplied by the
conversion factor given by use_digit and units to give a bit offset, which is added to
the base address. If the identifier is not an array element, that is all; otherwise, the
virtual origin is computed (an encoded value converted to bits by the factor given by
use_digit and array_units) and subtracted from the address. The array offset is
computed by taking the dot product of the subscripts supplied and the multipliers for
the identifier. The array offset is converted to a bit offset using the array _units
conversion factor, and added to the address previously computed. This gives the final
address of the data.

Encoded Values

The runtime_symbol node contains information about the attributes of an
identifier. In many cases, the value of attributes such as string length, array bounds,
or address cannot be determined at the time the runtime symbol table is created. For
example, given the declaration:

dc 1 x char (n+m) ;

the length of the variable x can be different each time the block in which it is
declared is entered; the location of x is not known because a variable with
nonconstant size is allocated when the block is entered. If x were declared instead:

dcl x char (n+m) based;

the length of x could be different at each reference.

The problem of representing nonconstant attributes values is handled by encoding
the values that can be nonconstant. A field in the runtime_symbol node that can have
a nonconstant value is called an encoded value; it is declared fixed binary(35) in the
node declaration, but actuaUy has the following format (declared in runtime_symbol.inc1.pll):

dcl 1 encoded value
2 flag
2 code
2 (n 1 , n2)
2 n3

aligned,
bit (2) una 1 i gned,
bit (4) una 1 i gned,
bit (6) una 1 i gned,
bit (18) una 1 i gned;

G-57 AG91-04

If flag = "lO"b, the encoded value is the constant given in the entire word. If flag
"lO"b, the positive binary integer contained in the code field determines the value.

In Pascal symbol nodes, it has the following format (declared in
pascal_sym bol_node. incl. pll):

dcl 1 pascal_encoded_value aligned,
2 code bit(6) unaligned,
2 (n 1 , n2) bit (6) una 1 i gned,
2 n3 fixed bin (18) unsigned unaligned;

In the Pascal symbol node declaration, values that may be encoded are also declared
as fixed binary (35). However in this case, the flags that indicate encoding are outside
the encoded value.

The code values are defined as follows:

Code Value

o Value is the contents of the word at location n3 in the stack
frame of the block nl static levels before the block in which
the declaration occurs.

1 Value is the contents of the word at location n3 in the linkage
section of the block in which the declaration occurs.

2 Value is ~he contents of the word with positive offset nl from
the word pointed at by the link at location n3 in the linkage
section of the block in which the declaration occurs.

3 Value is n3 plus the contents of the bit offset field of the
pointer used to access the variable, which must be based. This
encoding was only used by the compiler before version 2 EIS.

4 Value is the contents of the word with positive offset n2 based
on the pointer at location n3 in the stack frame nl static levels
before the block in which the declaration occurs.

5 Value is the contents of the word with positive offset n2 based
on the pointer at location n3 in the linkage section of the block
in which the declaration occurs.

6 Value is the contents of the word with positive offset n2 based
on the pointer with positive offset nl from the word pointed at
by the link at location n3 in the linkage section of the block in
which the declaration occurs.

7 Value is the contents of the word with poSItIve offset n2 based
on the pointer used to access the variable, which must be based.
This encoding is used for refer extents.

G-58 AG91-04

8

9

10

11

12

13

14

15

Value is the value returned by the internal procedure at location
n3 in the text section of the block in which the declaration
occurs. This procedure is compiled as if it were declared in the
block in which the declaration occurs. This encoding is used
whenever one of the other more specific encodings cannot be
used. The calling sequence of this procedure is:

del f entry(ptr) returns (fixed binary(24»;
va lue = f (refp) ;

where refp is the pointer that could be used to access a based
variable. Note that this procedure is never called by the
executable code in the object program, it is used only by the
programs that reference the runtime symbol table.

Value is the contents of the word with positive offset n3 from
the start of argument n2 of the procedure nl static levels before
the block in which the declaration occurs.

Value is the contents of the word with positive offset n3 from
the word pointed at by the pointer that is argument n2 of the
procedure nl static levels above the block in which the
declara tion occurs.

Value is the contents of the size field of descriptor n2 of the
procedure nl static levels before the block in which the
declaration occurs.

Value is the contents of the word with poSitIve offset n3 from
the start of descriptor n2 of the procedure nl static levels
before the block in which the declaration occurs.

Vaiue is the size field at positive offset n2 from the start of
the descriptor for a controlled variable. For all encodings having
to do with controlled variables, if n1 = 0 the variable is
internal, if n1 = 1 it is external. For an internal controlled
variable a pointer to the descriptor (control_block. descriptor) is
located at n3 in the static secion. For an external variable, a ptr
to the descriptor ptr is at n3 in the linkage section.

Value is the contents of the word with positive offset n2 from
the start of the descriptor for a controlled variable. The
descriptor is located in the same manner used for type 13
encoding.

Value is the contents of the word with positive offset n2 from
the start of a controlled variable. If n1 = 0 the controlled
variable is internal and its control block is located at n3 in the
linkage section of the block in which the declaration occurs. If
n1 = 1 the controlled variable is external and location n3 in the
linkage section of the block in which the declaration occurs
contains a pointer to the control block. The data itself is found
using the data pointer of the controlled variable control block.

G-59 AG91-04

16 Value is the contents of the location described by the symbol
node pointed to by self-relative pointer n3. n1 = "Ol"b3 if the
value is signed; nl = ""OO"b3 if the value is unsigned. n2 is the
precision in bits of the value.

Controlled Variable Control Block

The format of the control block for a controlled variable is given in
ctl_ block. incl. pl1:

del control block ali gned, -2 data ptr,
2 descriptor ptr,
2 previous ptr;

Structure Elements

data
points at the current generation of the controlled variable. It is null if the
controlled variable does not have a current generation.

descriptor
points at the descriptor for the current generation of the controlled variable.

previous
points at the control block of the previous generation of the controlled variable.
It is null or points to a null ptr if there is no previous generation.

Picture Information Block

A picture variable of any type is stored in edited form as a character string.
Each picture variable has an "associated value" that gives the value of the picture
variable in internal form. either as a character string or as a decimal number. When
the current identifier is a picture variable, the size field in the runtime_symbol node
specifies the location of the picture information block, whose format is (declared in
picture_image. inc!. pH):

del 1 picture_ info based ali gned,
2 type f xed binary (8) unal gned,
2 prec f xed b nary (8) unal gned,
2 scale f xed b nary(8) unal gned,
2 piclength f xed b nary (8) unal gned,
2 varlength f xed b nary(8) unal gned,
2 scalefactor f xed b nary (8) unal gned,
2 explength f xed b nary (8) unal gned,
2 drift char (1) unal igned,
2 chars char (0 refer (picture_info.piclength» al igned;

G-60 AG91-04

Structure Elements

type
is the true data type of the current identifier according to the following encoding:

named constants
type data type in picture_image.incl.pI1

prec

scale

24
25
26
27
28

character string
real fixed decimal
complex fixed decimal
real float decimal
complex float decimal

picture_char_type
picture_realfix_type
picture_complexfit_type
picture_realflo_type
picture_complexflo_type

is the arithmetic precision or string length of the associated value. Note that
the length of a character picture variable must be constant.

for arithmetic picture variables is the number of digits, if any, after the "v" in
the picture constant minus scale factor (see below).

piclength
is the length of the normalized picture constant string.

varlength
is the length of the edited form of the picture variable in characters. Note
that the length of a picture variable must be constant.

scalefactor
is the picture scale factor.

explength
is the length in characters of the exponent field of a floating point picture
variable.

drift
is the picture drifting character. It is blank if the picture constant does not
Sy~ify a drifting field.

chars
is the normalized picture constant.

The Pascal Runtime Symbol Node

Pascal runtime symbol, nodes are similar in function to PL/I runtime symbol
nodes. However, some of these nodes correspond to types rather than variables or
constants. The format of the Pascal runtime symbol node is shown below as a series
of separate structure declarations. No single node will contain all the items. The
header is always present. Bit flags in the header indicate which of the additional
items are present. The additional items always follow contiguously in the order shown.
(The declarations below appear in pascal_symbol_node.incl.pll.)

G-61 AG91-04

dcl 1 pascal_symbol_node_header aligned based,
2 flags unal,

3 version_flag b t (1) unal,
3 ali gned b t (1) una 1 ,
3 packed b t (1) unal,
3 in_with_block b t (1) unal,
3 name_next b t (1) una1,
3 base_type_info b t (1) unal,
3 address . b t (1) una 1 ,
3 father_brother b t (1) unal,
3 son 1 eve 1 b t (1) una 1 ,
3 father type successor bit (1) unal,
3 size - - b t (1) unal,
3 offset b t (1) una 1,
3 subrange_limits b t (1) unal,
3 array_info b t (1) unal,
3 variant_info b t (1) unal,
3 pad b t (3) unal,

2 version f xed bin (17) unal,
2 type f xed bin (17) unal,
2 type_offset f xed bin (18) unsigned unal;

dcl 1 pascal_name_next
2 name
2 next_token

dcl 1 pascal_base_type_info
2 base_type
2 base_type_offset

dcl 1 pascal_address
2 location
2 class
2 use_digit
2 units
2 offset_is_encoded
2 pad

dcl 1 pascal_father_brother
2 father
2 brother

dcl 1 pascal_son_level
2 son
2 level
2 pad

ali gned based,
fixed bin (18) unsigned unal,
fixed bin (18) unsigned unal;

aligned based,
fixed bin (17) una 1 ,
fixed bin (18) unsigned unal;

aligned based,
fixed bin (18) unsigned unal,
fixed bin (6) uns i gned una 1 ,
bit (1) una 1 ,
bit (2) una 1 ,
bit (1) una 1 ,
bit (8) una 1 ;

aligned based,
fixed bin (18) uns i gned una 1 ,
fixed bin (18) unsigned unal;

al igned based,
fixed bin (18) uns i gned una 1 ,
fixed bin (6) unsigned unal,
bit (12) una 1 ;

dcl 1 pascal_father_type_successor al igned based,
2 father_type fixed bin (18) unsigned unal,
2 succeSSOi fixed bin (18) unsigned unal;

del pascal_size fixed bin (35) based;

dcl pascal_offset fixed bin (35) based;

G-62 AG91-04

dcl 1 pascal_subrange_limits aligned based,
2 flags aligned,

3 lower bound is encoded bit (1) unal,
3 upper=bound=is=encoded bit (1) una1,
3 pad bit (34) unal,

2 subrange_lower_bound fixed bin (35),
2 subrange_upper_bound fixed bin (35);

dcl 1 pascal_array_info aligned based,
2 access_info aligned,

3 ndims fixed bin (6) unsigned unal,
3 use_digit fixed bin (1) unsigned unal,
3 array_units fixed bin (2) unsigned unal,
3 virtual origin is encoded bit (1) unal,
3 pad - - - bit (26) unal,

2 virtual_origin fixed bin (35),
2 bounds (nd refer (pascal array info.access info.ndims»

aligned,- -
3 lower fixed bin (35),
3 upper fixed bin (35),
3 multiplier fixed bin (35),
3 subscript_type fixed bin (17) unal,
3 subscript_type_offset fixed bin (18) unsigned unal,
3 flags aligned,

4 lower is encoded bit (1) unal,
4 upper=is=encoded bit (1) unal,
4 multipler_is_encoded bit (1) unal,
4 pad bit (33) unal;

dcl 1 pascal_variant_info aligned based,
2 number_of_variants fixed bin (17) unal,
2 pad bit (18) una 1 ,
2 first value in set fixed bin (35) unal,
2 ease 1nvariinti refer

(pascal variant info.number of variants»,
3 set_offset - fixed bin (18) u~signed unal,
3 brother fixed bin (18) unsigned una];

In the discussion that follows, the term "current identifier" means the identifier
represented by the symbol node under consideration, and the term "current block"
means the block in which the current identifier is declared.

STRUCTURE ELEMENTS

version_flag
is "O"b to distinguish this format from the PL/I node format and to imply that
the version field is valid.

G-63 AG91-04

aligned
is "l"b if the current identifier is aligned and is "O"b if the identifier is
unaligned.

packed
is "l"b if the current identifier or type is declared packed.

in_ with_block
is "l ltb if the current identifier is referenced in a Pascal "with" block and is
therefore not fully qualified.

name_next
is "l"b if this node contains the pascal_name_next structure.

base_ type_inf 0

is "l"b if this node contains the pascal_base_type_info structure.

address
is "l"b if this node contains the pascal_address structure.

father_brother
is "l"b if this node contains the pascal_father_brother structure.

son_level
is "l"b if this node contains the pascal_son_l~vel structure.

father_type_successor
is Y!lnb if this node contains the pascal_father_type_successor structure.

size
is "rob if this node contains the pascal_size item.

offset
is "1 fIb if this node contains the pascal_offset item.

su brange_limi 15
is "l"b if this node contains the pascal_subrange_limi15 structure.

array_info
is "l"b if this node contains the pascal_array_info structure.

varian t_inf 0

is "l"b if this node contains the pascal_variant_info structure.

pad
is reserved for future use and must be "O"b.

version
is 1 f or this node format.

type
is the data type of the current identifier or type. The values are defined in
Appendix D. Some of the values are also used in argument descriptors.

G-64 AG91-04

type_offset
is a self-relative pointer to a symbol node for the type that the current identifier
belongs to. This component is used for Pascal user-defined and enumerated type
variables. constants, record files. procedures and subscripts.

name
is a self_relative pointer to the ACC string that gives the name of the current
identifier. For historical reasons, the name component points to runtime_token. name
instead of to the beginning of runtime_token.

next_token
is a self-relative pointer to the symbol node of the next identifier having the
same name as the current identifier.

base_type
is a Multics data type code and .is used in the following cases: For subranges, it
is either integer, Pascal char or Pascal enumerated type instance. For arrays, sets
and record files, it is the type of the elements. For Pascal typed pointers, it is
the type of the referenced variable. For function procedure types, it is the type
of the return value; for other procedure types, it is not used. For non-procedure
formal parameters, it is the type of the parameter.

base_type_offset
is a self -relative pointer to a symbol node describing base_type, when base_type
itself is neither 0 nor a simple type.

location
usually contains a poslttve integer L that is used in combination with class to
determine the address of the current identifier.· L is normally an offset with
respect to the start of a given class of storage; its interpretation depends on the
value of the pascal_address. class field.

use_digit

units

use_digit contains the most significant bit of the three-bit binary integer that
identifies the addressing units for offsets.

contains the low order two bits of a poSltlve binary integer that gives the
addressing units of the offset field in the symbol node. The high order bit is
supplied by use_digit. The possible values and associated conversion factors are
the same as for array_units in the PL/I symbol node.

offset_is_encoded
is "1 "b if pascal_offset is an encoded value.

father
is a self-relative pointer to either a block node or a symbol node. If level <= 1
and the in_with_block flag is off, father points to the block node that represents
the block in which the current identifier is declared. If the in_ with_block flag is
on, father points to the block node that represents the "block" which is the scope
of the "with" statement. If level = 2, father points to the symbol node for the
containing record type. If type is one of the formal parameter data types, father
points to the symbol node for the procedure type that the parameter is associated
with.

G-65 AG91-04

brother

son

level

is a self-relative pointer to the symbol node for the next identifier at the same
aggregate level. If either the in_ with_block flag is on or level = 2 and the
variant_info flag is off, brother points to the symbol node for the next field in
the record. If the variant_info flag is on, brother is 0 (undefined) since the
brother fields in pascal_ variant_info are used instead. If type is one of the
formal parameter data types, brother points to the symbol node for the
procedure's next parameter. Otherwise. if level <= 1 and the name_next flag is
on, brother points to the next element on the list of symbol nodes ordered
alphabetically by the size of the name.

is a self-relative pointer. If type = Pascal record type, son points to the symbol
node for the first field in the record. If type = Pascal enumerated type. son
points to the symbol node for the first constant of the type. If type = Pascal
procedure type, son points to the symbol node for the first formal parameter.

is 1 if type = Pascal record type. level is 2 in symbol nodes representing record
fields, except if the in_with_block flag is on. Otherwise, level is 0 or nonexistent

father_type
is a self-relative pointer to the symbol node for the containing enumerated type
if type = Pascal enumerated type element

successor
is a self-relative pointer to the symbol node for the next element in the set of
enumerated values for the containing enumerated type if type = Pascal enumerated
type element

pascal_size
is the arithmetic precISIon for numeric types (integer, real, integer subrange). It is
the length in bits for everything else. For char, enumerated type instance and
enumerated type element, it can be considered as the arithmetic precision of the
unsigned internal code.

pascal_offset
is the offset of a record field with respect to the beginning of the record if the
in_with_block flag is off and level = 2. If the in_with_block flag is on,
pascal_offset is the offset of the record field with respect to the address specified
by location and class. It is encoded if offset_is_encoded = "1 "b.

lower_bound_is_encoded
is "l"b if subrange_Iower_bound is an encoded value.

upper_bound_is_encoded
is "1 fIb if subrange_upper_bound is an encoded value.

G-66 AG91-04

subrange_lower_bound
is the lower bound of the subrange. If it is not encoded, it contains an integer
or Pascal char value.

subrange_upper_bound
is the upper bound of the subrange. If it is not encoded, it contains an integer
or Pascal char value.

ndims
is the number of array dimensions.

use_digit
contains the most significant bit of the three bit binary integer that identifies the
addressing units for the array.

array_units
contains the low order two bits of a three bit positive binary integer that gives
the addressing units to be used when computing the address of an array element
The high order bit is supplied by use_digit The possible values and associated
conversion factors are the same as for array_units in the PL/I symbol node.

virtual_origin_is_encoded
is "l"b if virtual_origin is an encoded value.

virtual_origin
is the value of the virtual ongln of the array, in units given by array_units. It
should be subtracted from the base address specified by the location and class of
an array variable. This field is not used when the array is conformant, i.e. when
bounds(1). flags.1ower _is_encoded = "1 "b. In this case, the virtual origin is
computed as the sum of array_info.bounds{i).1ower * array_info.bounds(i).multiplier
for i = 1 to ndims.

lower
is the lower bound of this dimension of the array.

upper
is the upper bound of this dimension of the array.

multiplier
is the multiplier of this dimension of the array.

subscript_type
is the data type of this dimension's subscript. It is zero if the subscript is
numeric and not previously declared, i.e. if a numeric subrange is given explicitly
in the array declaration. subscript_type_offset
is a relative pointer to a symbol node describing subscript_type.

lower _is_encoded
is "1 "b if bounds{i).1ower is an encoded value.

0-67 A091-04

upper _is_encoded
is "l"b if bounds(i).upper is an encoded value.

multiplier_is_encoded
is "1 "b if bounds(i).multiplier is an encoded value.

number_of _variants
is the number of variants in the containing record.

first_ value_in_set
is the lowest value used to select a variant.

set_offset
is a self-relative pointer to a bit string that specifies the cases of the variant.
The bit string represents a set (one bit per set element) whose base type is the
type of the current symbol node. The first bit corresponds to first_ value_in_set.

brother
is a self_relative pointer to the first field of the variant part.

Add itional Information About Pascal Symbol Nodes

The following table summarizes which structure items are present in the Pascal
symbol node for each type of data element. Columns correspond to distinct Pascal
data types. Rows correspond to the. fields in the symbol node format declared above.
The table shows an X where the corresponding field is simply present. Other symbols
give more detailed information as listed in the accompanying key.

G-68 AG91-04

Table G-1. Contents of Pascal Symbol Nodes

Type

Item 2

type 73 73
type_ offset 0 0
name X_o. .- X"~
next token X", .. X_o. .. -base _type 1 ,65 A
base _type_ offset 0 X
address info -father x ... · n

X_o. ..
brother X_o.

n
X_o. ..

son
level
father _type
successor
size X
offset
subrange 1 imi ts X
array info X
variant info

1
2
3
4

integer or char subrange
array

5
6
7
8
9

enumerated type subrange
Pascal enumerated type
Pascal typed pointer type
Pascal set type
Pascal record type
Pascal record file type
Pascal procedure type

Nodes

3 4

-- --
73 70
0 0
X_o* .~ X,',
X_o. ... X'" .-
72
X

X_o. .. X-" ..
X"-.. X_o. ..

B
0

X

type code for elements of the _array

5 6

64 69
0 0
X_o. .. X-" ..
X-" .. X-" ..
C X
X X

X_o. .. X-" ..
X_o. .. X-" ..

X

7 8 9

68 67 76
0 0 0
X_o. .. X~':
X_o. X_o. . .

X 0
X G

X',: X-f
-..

X_o. .. X-" ..
X E
1 0

F

A
B
C
o
E
F

offset of symbol node for the first constant of the type
type code for the referenced variable (any variable type)
type of the returned value (only if procedure is a function)
offset of the symbol node for the first formal parameter
size corresponding to the type of the returned value

G

X,,,
n

(if procedure is a function)
only for function procedure types

field exists if type has a name

G-69 AG91-o4

Table G-1. Contents of Pascal Symbol Nodes (Continued)

• I ,,, I ,,1 ,.... I , '" I , I I , r- " ,., ,01 , I "' ,

::_:_: _______________ ~_u __ ~_I __ ~_L _ __ ~_5 __ ~_q __ ~_: ~: ~: ~o ~~ ;:1
type_offset X X X 0 0 0 Q 0 S 0 0
name X X x* X X X X X X X X
next_token X X x* X X X X X X 0 0
base_type X
base_type_offset X
location
class
units
father
brother
son
level
father_type
successor
size
offset
subrange lim its
array info
variant info

10 variables

X
X
X
X
X

X

o
o
X
H
I
o
2

X
X

o
o
X
H
o
o
2

X ~" ..

x

11 simple fields in records

X
X
X
J
K

X
X

12 se 1 ector (tag) fie 1 ds in records

X
X

X
X

L

X
X

X
X

x
X
P

X
X

X
X

R

X
X

X
X

X
X

X
X

T

S
V

X

S
V

X

13 record fields accessed in "with" blocks; in_with_block flag on
14 integer, real and char constants
15 enumerated type elements (constants)
16 string constants
17 labels
18 procedures
19 nonprocedure formal parameters
20 procedure formal parameters

H offset of symbol node for containing record type
I offset of symbol node for next field (0 if last)
J offset of "with" block node
K offset of brother field node in "with" block
Lsi ze in bits (for char); prec i s i on of generated constant

(for integer and real)
P size in bits of internal code
Q offset of symbol node for type

"packed array [1. .number of chars] of charI!
R length in bits (9 ~'~ number=of=chars)
S offset of a procedure type symbol node
T only for pascal procedure parameter; =number of words in datum
V offset of symbol node for the next formal parameter; 0 if last
W types 1, 4, 65
Y types 25, 26, 27, 80
Z types 77, 78

G-70 AG91-04

One of the major differences between Pascal and PL/I symbol tables, aside from
the node format itself, is that in Pascal it is necessary to describe types themselves in
symbol nodes. The following table shows the relationship between the data type codes
used by variables and those used by types.

Table G-2. Data Type Codes Used by Variables vs. Types

type codes used for variables,
record fields, constants,
subscri pt types and base types

(1) integer
(4) real
(65) pasca 1 char
(66) pascal boolean
(75) pascal text file
(72) pascal enumerated type

instance

(74) pascal user defined type
instance

correspond i ng type offset and
type codes used for types

predefined (no type_offset)
II

II

II

II

type_offset is the relative
offset of a symbol node with
type code enumerated type (70)

type_offset is the relative
offset of a symbol node with
one of the following type codes:
(73) pascal user_defined type

(used for arrays and subranges)
(67) pascal record file type
(64) pascal typed pointer type
(68) pascal record type
(69) pascal set type

SPECIAL RUNTIME SYMBOL DATA TYPE CODES

type data type

24 label constant (used in symbol tables only)
25 internal entry constant (used in symbol tables only)
26 external entry constant (used in symbol tables only)
27 external procedure (used in symbol tables only)
63 picture (used in symbol tables only)
70 Pascal enumerated type
71 Pascal enumerated type element
73 Pascal user defined type
77 Pascal variable formal parameter
78 Pascal value formal parameter
79 Pascal entry formal parameter
80 Pascal parameter procedure

G-71 AG91-04

These types are used in runtime_symbol values only, and not in argument
descriptors. The user is referred to std_descriptor_types.incl.pIl, which gives named
constants for these codes. See Appendix D for more information.

The Statement Map

The statement map contains information about each statement in the source
program for which instructions were generated. The statement map is normally placed
after the runtime symbol table, if the table is present All the entries are contiguous.
Each entry in the statement map has the following format (declared in
statemen t_map.incl. pIll:

dcl 1 statement=map
2 location
2 source id

3 f i 1 e
3 1 i ne
3 statement

2 source_info
3 start
3 length

aliqned based,
bit(18) unaligned,
una 1 i gned,
bit (8) ,
bit(14),
bit (5) ,
una 1 i gned,
bit(18),
bit (9) ;

STRUCTURE ELEMENTS

location
is location in the object segment of the first instruction generated for the
statement that corresponds to this entry in the statement

source_id

file

line

describes the line on which the statement begins. The last entry in the statement
map is a dummy that has string(source_id) = (27)"1 "b.

contains a poSItIVe binary integer that specifies the number of the source segment
in which the current statement is contained (see "The Source Map").

contains a poSltlVe binary integer that specifies the number of the line on which
the current statement begins. The first line in a file is number 1.

statement
contains a positive binary integer that specifies the position of the current
statement on the line in which it begins. The first statement on a line is number
1.

G-72 AG91-04

source_info

start

specifies the starting position and length of the string of characters that are the
source for the current statement

contains a posItIve binary integer S that specifies the number of characters that
precede the first character of the source of the current statement (see below).

length
contains a poSItIve binary integer L that gives the number of characters occupied
by the current statement in the source file; a statement is assumed to be entirely
contained in a single segment If string is the contents of the source file that
contains the current statement considered as a single string, the source string for
the current statement is substr(string,S+ I,L).

G-73 AG91-04

APPENDIX H

STANDARD EXECUTION ENVIRONMENT

STANDARD STACK AND LINK AREA FORMATS

Because of the linkage mechanism, stack manipulations, and the complexity of the
Multics hardware, a series of Multics execution environment standards have been
adopted. All standard translators (including assemblers) adhere to these standards as do
all supervisor and standard storage system procedures. Furthermore. they assume that
other procedures do so as well.

Multics Stack

The normal mode of. execution in a standard Multics process uses a stack
segment. There is one stack segment for each ring. The stack for a given ring has
the entryname stack_R. where R is the ring number, and is located in the process
directory. Each stack contains a "header" followed by as many "stack frames" as are
required by the executing procedures. A stack header contains pointers to special code
and data that are initialized when the stack is created. Some of these pointers are
variable and change during process execution. They are included in the stack header so
that they can always be retrieved without supervisor intervention (for efficiency). The
actual format of the stack header is described under "Stack Header" below.

Stack frames begin at a location specified in the stack header, are variable in
length, and contain both control information and data for dynamically active
procedures. In general, a stack frame is allocated by the procedure to which it
belongs when that procedure is invoked. The stack frames are threaded to each other
with forward and backward pointers, making it an easy task to trace the stack in
either direction. The stack usage described below is critical to normal Multics
operation; any deviations from the stated discipline can result in unexpected behavior.

Stack Header

The stack header contains pointers (on a per-ring basis) to information about the
process, to operator segments, and to code sequences that can be used to invoke the
standard call, pu.sh~ pop, and return functions (described belo¥l). Figure H-l gives the
format of the stack header. The following descriptions are based on that figure and
on the following PL/I declaration.

H-l AG91-04

Reserved \Odd Lot
Pointer

+8 Combined
Linkage
Pointer

+16

+24

+32

+40

+48

+56

+64

Null
Pointer

Signal
Pointer

'Push Operator
Pointer

Translator
Operator
Pointer

*system Link
Info Pointer

Max
Lot
Size

Run
Unit
Depth

Stack Begin
Pointer

BAR Mode
Stack Pointer

Return Operator
Pointer

Internal Static
Offset Table
Pointer

Reference
Name Table
Pointer

System Storage
Pointer

Stack End
Pointer

PL/I Operators
Pointer

Short Return
Operator Ptr

System Condition
Table Pointer

Event Channel
Table
Pointer

Reserved

Figure H-l. Stack Header Format

H-2

I
combined
Static
Pointer

User Storage
Pointer

Lot
Pointer

Call Operator
Pointer

Entry Opef'=acor
Pointer

Unwinding
Procedure
Pointer

Assign
Linkage
Pointer

AG91-04

dcl 1 stack header
2 padl (4)
2 old_lot_ptr
2 combined_stat_ptr
2 clr_ptr
2 max_lot_size
2 main_proc_invoked
2 have static vlas
2 pad4- -
2 run_unit_depth
2 cur_lot_size
2 pad2
2 system_storage_ptr
2 user_storage_ptr
2 null_ptr
2 stack_begin_ptr
2 stack_end_ptr
2 lot_ptr
2 signal_ptr
2 bar_mode_sp_ptr
2 pll_operators_ptr
2 ca ll_op_ptr
2 push_op_ptr
2 return_op_ptr
2 short_return_op_ptr
2 entry_op_ptr
2 trans_op_tv_ptr
2 isot_ptr
2 sct_ptr
2 unwinder_ptr
2 sys_link_info_ptr
2 rnt_ptr
2 ect_ptr
2 assign_l inkage_ptr
2 reserved (5)
2 pad3

STRUCTURE ELEMENTS

pad 1
is unused.

old_Iot_ptr

based aligned,
fixed bin,
ptr,
ptr,
ptr 9

fixed bin(l7) unaligned,
fixed bin (11) una 1 i gned,
bit (1) una 1 i gned ,
bit (2) una 1 i gned ,
fixed bin (2) una 1 i gned,
fixed bin(l7) unaligned,
bit (18) una 1 i gned,
ptr,
ptr,
ptr,
ptr,
ptr,
ptr,
ptr,
ptr,
ptr, .
ptr,
ptr,
ptr,
ptr,
ptr,
ptr,
ptr,
ptr,
ptr,
ptr,
ptr,
ptr,
ptr,
bit (36) ali gned,
bit (36) ali gned ;

is a pointer to the linkage offset table (LOT) for the current ring. This field is
obsolete.

H-3 AG91-04

com bined_stat_ptr
is a pointer to the area in which separate static sections are allocated.

clr_ptr
is a pointer to the area in which linkage sections are allocated.

max_lot_size
is the maximum number of words (entries) that the LOT and internal static offset
table (ISOT) can have.

main_proc_invoked
is nonzero if a main procedure was invoked in a currently active run unit.

have_static_ vIas
is "1 "b if internal static large or very large arrays are being used.

pad4
is unused and must be "O"b.

run_uni t_depth
is the current run unit level.

cur_lot_size
is the current number of words (entries) in the LOT and ISOT.

pad2
is unused.

system_storage_ptr
is a pointer to the area used for system storage, which includes command storage
and the *system link name table.

user _storage_ptr
is a pointer to the area used for user storage, which includes FORTRAN common
and PL/I external static variables whose names do not include "$".

null_ptr
contains a null pointer value. In some circumstances, the stack header can be
treated as a stack frame. When this is done, the null pointer field occupies the
same location as the previous stack frame pointer of the stack frame. (See
"Multics Stack Frame" below.) A null pointer indicates that there is no stack
frame prior to the current one.

stack_ begin_ptr
is a pointer to the first stack frame on the stack. The first stack frame does not
necessarily begin at the end of the stack header. Other information, such as the
linkage offset table, can be located between the stack header and the first stack
frame.

H-4 AG91-04

stack_end_ptr
is a pointer to the first unused word after the last stack frame. It points to the
location where the next stack frame is placed on this stack (if one is needed). A
stack frame must be a multiple of 16 words; thus. both of the above pointers
point to 0 (mod 16) word boundaries.

lot_ptr
is a pointer to the linkage offset table (LOT) for the current ring. The LOT
contains packed pointers to the dynamic linkage sections known in the ring in
which the LOT exists. The linkage offset table is described below under "Linkage
Offset Table."

signal_ptr
is a pointer to the signalling procedure to be invoked when a condition is raised
in the current ring.

bar _mode_sp_ptr
is a pointer to the stack frame in effect when BAR mode was entered. (This is
needed because typical BAR mode programs can change the word offset of the
stack frame pointer register.)

pll_ operators_ptr
is a pointer to the standard operator segment used by PL/l. It is used by PL/I
and FORTRAN object code to locate the appropriate operator segment.

call_op_ptr
is a pointer to the Multics standard call operator used by ALM procedures. It is
used to invoke another procedure in the standard way.

push_op_ptr
is a pointer to the Multics standard push operator that is used by ALM programs
when allocating a new stack frame. All push operations performed on a Multics
stack should use either this or an equivalent operator; otherwise results are
unpredictable. (The push operation was formerly called save.)

return_op_ptr
is a pointer to the Multics standard return operator used by ALM procedures. It
assumes that a push has been performed by the invoking ALM procedure and
pops the stack prior to returning control to the caller of the ALM procedure.

short_return_ op _ptr
is a pointer to the Multics standard short return operator used by ALM
procedures. It is invoked by a procedure that has not performed a push to return
control to its caller.

H-5 AG91-04

entry _op_ptr
is a pointer to the Multics standard entry operator. The entry operator does little
more than find a pointer to the invoker~s linkage section.

isot_ptr
points to a vector of pointers to special language operators; this table can be
expanded to accommodate new languages without causing a change in the stack
header.

isot_ptr
is a pointer to the internal static offset table (ISOT). The ISOr contains packed
pointers to the dynamic internal static sections known in the ring in which the
ISOT exists.

sct_ptr
is a pointer to the system condition table (SCT) used by system code in handling
certain events.

unwinder _ptr
is a pointer to the unwinding procedure to be invoked when a nonlocal goto is
executed in the current ring.

sys_link_info_ptr
is a pointer to the *system link name table.

rnt_ptr
points to the reference name table (RNT).

ect_ptr
points to the event channel table (ECT).

assign_linkage_ptr
points to the area used by certain critical system programs whose operations must
not be modified by run unit. This pointer initially points to the same area as
stack_header.clr_ptr but is not changed by the run unit mechanism.

reserved
is reserved.

pad3
is unused.

The call, push, return, short_return, and entry operators are invoked by the
object code generated by the ALM assembler. Other translators that intend to use the
standard call/push/return strategy should either use these operators or an operator
segment with a set of operators consistent with these. For a detailed description of
what the operators do and how to invoke them, see "Subroutine Calling Sequences"
la ter in this section.

H-6 AG91-04

The PL/I and FORTRAN compilers use slightly different operators that perform
equivalent and compatible functions. All supported translators, however. depend on the
eff ects generated by these operators.

Multics Stack Frame

The format given below for a standard Multics stack frame must be strictly
followed because several critical procedures of the Multics system depend on it A
bad stack segment or stack frame can easily lead to process termination, looping, and
other undesirable effects.

In the discussion that follows, the "owner" of a stack frame is the procedure
that created it (with a push operation). Some programs (generally ALM programs)
never perform a push and hence do not own a stack frame. If a procedure that does
not own a stack frame is executing, it can neither call another procedure nor use
stack temporaries; all stack information refers to the program that called such a
program.

Figure H-2 illustrates the detailed structure of a stack frame (the standard use in
ALM). The following descriptions are based on that diagram and on the following
PL/I declaration.

H-7 AG91-o4

stack_frame +0

+16

+24

+32

Pointer Register Storage

Previous Stack INext Stack I Return I Entry
Frame Poinetr Frame Pointer Pointer Pointer

Operator
Linkage
Pointer

Argument
Pointer

Internal
Static
Pointer

Register Storage

Temporaries

** Ion unit Operator
Relative Return

,Pointer Offset

.. 'n': Reserved

dci

Figure H-2. Stack Frame Format

stack frame
2 prs(16)
2 prev_stack_frame_ptr
2 next_stack_frame_ptr
2 return_ptr
2 entry_ptr
2operator_link_ptr
2 argument_ptr
2 static_ptr
2 reserved
2on_unit_rel_ptrs(2)
2 translator_id
2 operator return offset
2 regs (8) -

H-8

based (sp) ali gned,
fixed bin,
ptr,
ptr,
ptr,
ptr,
ptr,
ptr,
ptr unal igned,
fixed bin,
bit (18) una 1 i gned,
bit (18) una 1 i gned,
bit (18) una 1 i gned,
fixed bin;

AG91-04

translator _id
is a coded number indicating the translator used to generate the object code of
the owner of the stack frame.

operator_return_offset

regs

operator_return_offset contains a return location for certain pll_operators_
functions. If it is nonzero, it is a relative pointer to the return location in the
compiled program (return from pll_operators->. If it is zero, a dedicated register
(known by pll_operators-> contains the return location.

is used to save arithmetic registers of the calling program when the ALM call
operator is invoked.

Two major areas of a stack frame not explicitly defined above are the first 16
words and words 32 through 39. The contents of these areas is not always defined or
meaningful, although they have a well-defined purpose for ALM programs and are
used internally by the PL/I and ·FORTRAN programs. The procedure owning the stack
frame can use these areas as it sees fit

Linkage Offset Table

As described above. each stack header contains a pointer to the linkage offset
table (LOT) for the current ring. The LOT is an array, indexed by text segment
number, of packed pointers to the linkage sections for the procedure segments known
in the current ring.

The structure of the LOT is defined by the following PL/I declaration:

dell lot based (lot ptr) al igned,
2 1 inkage_ptr (0: stack_header.cur_lot_size-l) ptr unal igned;

where linkage_ptT is the array of linkage section pointers.

If one of the slots in the linkage_ptr array contains all O·s, the segment number
associated with the slot does not correspond to a known segment.

If one of the slots in the linkage_ptT array contains all O's except for "111"b in
the high-order three bits (a lot fault). the segment number associated with the slot
corresponds to a known se~ent that either does not have a linkage section or whose
linkage section has not been combined (i.e., the segment has not been executed).

Internal Static Offset Table

The stack header in each ring contains a pointer to the internal static offset
table (ISOT) for the current ring. The ISOT is an array, indexed by text segment
number, of packed pointers to the internal static sections for the corresponding
procedure segments known in the current ring. Since the ISOT always immediateiy
follows the LOT. the isot_ptr is redundant but is retained for efficiency.

H-10 AG91-04

The internal static pointers are identical to the linkage section pointers unless the
corresponding object segment was generated with separate static. If the static is
separate, i.e., not allocated in the linkage section, the internal static pointer either
points to the allocated static or contains a value that causes an "isot fault" if
ref erenced.

The structure of the ISOT is defined by the following PL/I declaration:

dc 1 1 i sot based (i sot ptr) ali gned,
2 static_ptr (O:-stack_header.cur_lot_size-l) ptr unal igned;

where static_ptr is the array of static/linkage section pointers.

SUBROUTINE CALLING SEQUENCES

The Multics standard call and return conventions are described in the following
paragraphs. For information about the format of stack segments and stack frames, see
"Standard Stack and Linkage Area Formats" above.

The call and return from one procedure to another can be broken down into
seven separate steps. Operators to perform these steps have been provided in the
standard operator segment named pll_operators_ (for PL/I, FORTRAN, and ALM
procedures). . These operators are invoked when appropriate by the object code
generated by these translators.

The steps involved in a call and return and the associated operators are listed
below.

1. A procedure call, i.e., a transfer of control and passing of an argument
list pointer to the called procedure (call).

2. Generation of a linkage (and internal static) pointer for the called
proced ure (en try).

3. Creation of a stack frame for the called procedure (push).

4. Storage of standard items to be saved in the stack frame of the called
procedure (entry and push).

5. Release of the stack frame of the called procedure just prior to
returning (return).

6. Reestablishment of the execution environment of the calling procedure
(return and short_return).

7. Return of control to the calling procedure (return and short_return).

Preparation of the argument list, although necessary, was not listed above because
the operators need know nothing about the format of an argument list. See
"Argument List Format" later in this section.

H-ll AG91-04

The following description is based on the operators used by ALM procedures.
The operators used by PL/I and FORTRAN procedures are basically the same but
differ at a detailed level due to: (1) slight changes in the execution environment when
PL/I and FORTRAN programs are running; and (2) simplification and combination of
operators made possibie by the execution environment of PL/l. The PL/I and
FORTRAN operators are not described here other than to define a minimum execution
environment that must be established when returning to a PL/I or FORTRAN
program.

(The following description is given in terms of Honeywell hardware.)

Call Operator

The call operator transfers control to the called procedure. This operator is
invoked in two ways from ALM procedures. The first is a result of the call
pseudo-op, which invokes the call operator after saving the machine registers in the
calling program's stack frame and loading pointer register 0 with a pointer to the
argument list to be passed to the called procedure. Upon return to the calling
program, these saved values are restored into the hardware registers by the calling
procedure. The second way that ALM procedures can invoke the call operator is
through the short_call pseudo-op. This is used when the calling procedure does not
need all of the machine registers saved and restored across the call. The ALM
procedure can selectively save whatever registers are needed.

Neither the call nor the short_call pseudo-ops (nor the PL/I and FORTRAN
equivalents) require or expect the machine registers to be restored by the called
procedure. In fact, only the pointer registers 0 (operator segment pointer) and 6 (stack
frame pointer) are ever guaranteed to be restored across a call. It is up to the calling
procedure to save and restore any other machine registers that' are needed.

Entry Operator

The entry operator used by ALM programs performs two functions. It generates
a pointer to the linkage section of the called procedure (which it leaves in pointer
register 4) and it stores a pointer to the entry in what will be the stack frame of the
called procedure (if the procedure ever creates a stack frame for itself). At the time
the entry operator is invoked, a new stack frame has not yet been established. Indeed,
the called procedure may never create one. However. it is certainly possible to know
where the stack frame will go if and when it is created and this knowledge is used to
store the entry pointer.

The entry operator is invoked by an ALM procedure that transfers to a label in
another procedure that has been declared as an entry through the entry pseudo-op.
The transfer is made to a standard entry structure the first executable word of which
is (PR7 is assumed to point to the base of the current stack segment):

tsp2 7Ientry_op,*

The operator returns to the instruction after the tsp2 instruction, which mayor
may not be another transfer instruction. (A link to the entry, when snapped, points to
the tsp2 instruction.) See "Structure of the Text Section" in Appendix G.

H-12 AG91-04

Some ALM programs may not require a linkage pointer. Such programs can
declare the label to which control should be transferred with a segdef pseudo-op. This
causes the appropriate definition and linkage information to be generated so that other
procedures can find the entry point When called, the transfer is straight to the code
at the label and the normal entry structure is not generated or used. No linkage
pointer is found and no entry pointer is saved. This technique is recommended only
where speed of execution is of utmost importance since it avoids calculation of useful
diagnostic information.

Push Operator

The push operator used by ALM procedures is invoked as a result of the push
pseudo-op that is used to create a stack frame for the called procedure. In addition
to creating a stack frame, several pointers are saved in the new stack frame. They
are:

e Argument pointer

e Linkage pointer (and internal static pointer)

e_ Previous stack frame pointer

e Next stack frame pointer

If the called procedure is defined as an entry (rather than segden, the entry pointer
has already been saved in the new stack frame.

The push pseudo-op must be invoked if the called procedure makes further calls
itself or uses temporary storage. Due to their manner of execution, PL/I and
FORTRAN procedures combine the entry and push operators into a single operator.

The push operator and the return operators are managers of the stack frames
and the stack segment in general. The push operator establishes the forward and
backward stack frame threads and updates the stack end pointer in the stack header
appropriately. The return operators use these threads and also update the stack end
pointer as needed. Any program that wishes to duplicate these functions must do so
in a way that is compatible with the procedures outlined in this discussion and those
described above under the beading "Standard Stack and Linkage Area Formats."

Return Operator

The return operator is invoked by ALM procedures that have specified the
return pseudo-ope The return operator pops the stack, reestablishes the minimum
execution environment, and returns control to the calling procedure. The only registers
restored are pointer registers 0 and 6, as mentioned above.

H-13 AG91-04

Short Return Operator

The short_return operator is invoked by ALM procedures that have specified the
short_return pseudo-op. The short_return operator differs from the return operator in
that the stack frame is not popped. This return is used by ALivi procedures that did
not perform a push.

Pseudo-op Code Sequences

The following code sequences are generated by the assembler for the specified
pseudo-op.

ca 11 :

OBJECT CODE

OPERATORS

OBJECT CODE

OBJECT CODE

OPERATORS

OBJECT CODE

return:

OBJECT CODE

OPERATORS

spri
sreg
eppO
epp2
tsp4

spri4
st i
epp4
ca116

1pri
lreg

epp2
tsp4

pr61°
pr6 32
arg1ist
entrypoint
pr7Istack_header.ca11_op,*

pr6 stack_frame.return_ptr
pr6 stack_frame.return_ptr+l
pr6 stack_frame.1p_ptr,*
pr2 °

pr61°
pr6 32

entrypoint
pr7Istack_header.cal1_op,*

(as above)

epp4

tra

spri6
epp6
epbp7
eppO
1d i
rtcd

pr7 stack_header.stack_end_ptr
pr6 stack_frame.prev_sp,*
pr6 °
pr6 stack_frame.operator_ptr,*
pr6 stack_frame.return_ptr+l
pr6 stack_frame.return_ptr

H-14 AG91-04

short return:

OBJECT CODE

OPERATORS

entry:

OBJECT CODE

OPERATORS

OBJECT CODE

push:

OBJECT CODE

OPERATORS

tra

epbp7
eppO
ldi
rtcd

tsp2

epp2
epp4
spri2
epaq
lprp5
sprp5
lprp4
tra
tra

eax7
tsp2

spri2
epp2
spri6
spriO
spri4
epp6
epp2
spri2
spri2
eax7
stx7
tra

Register Usage Conventions

pr6 °
pr6 stack_frame.operator_ptr,*
pr6 stack_frame.return_ptr+l
pr6 stack_frame.return_ptr

pr2 -1
pr7 stack_header.stack_end_ptr,*
pr4 stack_frame.entry_ptr
pr2 °
pr7 stack_header.isot_ptr,*au
pr4

1

stack frame. static ptr
pr7 stack_header.lot_ptr,*au
pr2 1
executable_code

stack_frame_size
pr 7\stack_header.push_op,*

pr7 stack_header.stack_end_ptr,*
pr7 stack_header.stack_end_ptr,*
pr2 stack_frame.prev~sp
pr2 stack_frame.ar9_ptr
pr2 stack_frame.lp_ptr
pr2 °
pr60,7
prJ stack_header.stack_end_ptr
pr6 stack_frame.next_sp
1
pr61Istack_frameotranslator_ld
pr6 0, ~':

. The following conventions, used in the standard environment, should be followed
bi any user-written translator.

H-15 AG91-04

• The only registers that are restored across a call are the pointer
registers:

o (ap) operator segment pointer
6 (sp) stack frame pointer

The operator segment pointer is restored correctly only if it is saved at
some time prior to the call (e.g., at entry time).

• The code generated by the ALM assembler assumes that pointer register
4 (Ip) always points to the linkage section for the executing procedure
and that pointer register 7(sb} always points to the stack header.

• Pointer register 7 is assumed to be pointing to the base of the stack
when control is passed to a called procedure.

Argument List Format

When a standard call is performed, the argument pointer (pointer register O) is
set to point at the argument list to be used by the called procedure. The argument
list must begin on an even word boundary. Its format is given by the following PL/I
declaration (arg.Jistincl. pll):

del 1 arg_ 1 i st aligned based,
2 arg_count fixed bin (17) unsigned una 1,
2 padl bit(l) unal,
2 call _type fixed bin (18) unsigned una 1,
2 desc_count fix ed bin (1 7) unsigned unal,
2 pad2 bit 09} una 1,
2 arg_ptrs (arg_l i st_arg_count) ptr,
2 desc_ptrs (arg_l ist_arg_count) ptr;

del 1 arg_list_with_envptr aligned based,
2 arg_count fixed bin (17) unsigned una 1,
2 padl bit(l) unal,
2 call _type fixed bin (18) unsigned una 1,
2 desc count fixed bin (1 n unsigned una 1, -
2 pad2 bi t (19) una 1,
2 arg_ptrs (arg_l ist_arg_count) ptr,
2 envptr ptr,
2 desc _ptrs (arg_l i st_arg_count) ptr;

H-16 AG91-04

01/87

dcl 1 command_name_arglist
2 header,

3 arg_count
3 padl
3 call_type
3 desc_count
3 mbz
3 has_command_name
3 pad2

2 arg_ptrs

2 name,
3 command_name_ptr
3 command_name_length

aligned based,

fixed bin(17) unsigned unaligned,
bit(1) unaligned,
fixed bin(18) unsigned unaligned,
fixed bin(17) unsigned unaligned,
bit(1) unaligned,
bit{1-) unaligned,
bit (17) una 1 i gned,
(arg_list_arg_count refer

(command_name_arglist_arg_count»
ptr,

(arg_list_arg_count refer
(command_name_arglist_arg_count»
ptr,

pointer,
fixed bin (21) ;

H-16.1 AG91-04A

This page intentionally left blank.

01/87 AG91-04A

o 16 17 18 35

o arg_count 101 call_type

desc_count I 0

2 Pointer to argument 1 I ---

4 Pointer to argument 2 I

pointer to argument n I ---

environment pointer (optional) I ---

Pointer to descriptor 1 I
------------------~--------------------------

Pointer to descriptor 2 I

Pointer to descriptor n

Figure H-1. Standard Argument List

H-17 AG91-()4

01/87

STRUCTURE ELEMENTS

arK-count
is the number of arguments passed.

padl
is reserved and must be "O"b.

call_type
is a code that describes the type of call being made. It can have one of the
following values:

o for quick internal calls.
4 for inter-segment calls.
8 for calls where an environment pointer is passed.

The include file declares constants with these values:

dcl
Qu i ck_ca ll_type
Interseg_call_type
Envptr_supplied_call_type
)

desc_count

in i t (0) ,
init(4),
in it (8) ,
fixed bin(18) unsigned unal

int static options
(cons tant) ;

is the number of argument descriptors being passed. If non-zero, it must be the
same as arK-count.

pad2
is reserved and must be "O"b.

arK-ptrs
is an array of pointers to the arguments.

envptr
is the environment pointer for the procedure being called. It is present only if
call_type is 8.

desc_ptrs
is an array of pointers to the argument descriptors, if present.

H-l8 AG9l-04A

01/87

has_command_name
if "l"b this specifies that the command name has been stored in name_ptr and its
length has been stored in name_length.

command_name_ptr
is a pointer to the expanded command name given on the command line.

command_name_length
is the length of the expanded command name pointed to by name_ptr.

NOTES: The pointers in the argument list need not be ITS pointers; however
they must be pointers through which the hardware can perform
indirect addressing. "Packed (unaligned) pointers cannot be used.

H-18.1 AG91-04A

This page intentionally left blank.

01/87 AG91-04A

The pointer envptr is present when a call is made to a non-quick
internal procedure or when a call is made through an entry variable,
regardless of whether the procedure being called is an external or
internal procedure. When the called procedure is an internal
procedure, envptr points to a stack frame of the activation of the
block that contains the called procedure, and is used to set up the
display pointer for the stack frame that the non-quick procedure will
create. If the call is made through an entry variable, envptr is
copied - from - the environmeriT - ptr of the entry variable. (See
elsewhere in this manual for the format of an entry variable.) If the
call is to an internal entry constant, envptr is calculated by the PL/I
operators. If a call is made through an entry variable to an external
procedure, the environment pointer of the entry variable will be nUll,
thus envptr is also null.

The include file also contains symbolic names for the values that
call_type takes on. They are: QuiCk_call_type, Interse~call_type, and
Envptr_supplied_call_type.

In the include file, the extent of the arrays, ar~ptrs, and desc_ptrs
is determined by the variable ar~list_ar~count (which is not
declared in the include file). In references to an already allocated
argument list, the programmer should first set ar~list_ar~count to
the value of ar~count in the appropriate structure (ar~list or
ar~list_ wi th_ envptr).

An argument pointer points directly to an argument. A descriptor pointer points
to the descriptor associated with the argument

H-19 AG91-Q4

The format of an argument descriptor is described by one of the following PL/I
declarations, given in ar~descriptor.incl.pl1.

dcl 1 arg_descriptor based aligned, ., ~1 L~ f,\ una 1, , I I Ql:I U I L t I J

2 type fix ed bin (6) unsigned una 1,
2 packed bit(1) una 1,
2 number dims fix ed bin (4) unsigned unal,
2 size fixed bin(24) unsigned una 1 ;

dcl 1 fixed_ar9_descriptor based aligned,
2 flag b t (1) una 1,
2 type f xed bin (6) unsigned una 1,
2 packed b t (1) una 1 ,
2 number_dims f xed bin (4) unsigned una 1,
2 scale f xed bin(11) una 1,
2 precision f xed bin(12) unsigned una 1 ;

dcl 1 extended_arg_descriptor based aligned,
2 flag bit(1) una 1,
2 type fix ed bin (6) unsigned una 1,
2 packed bite]) unal,
2 number dims fixed (4) unsigned una 1,
2 size bi t (24) una 1,
2 dims (0 refer

(extended_arg_descriptor.number_dims» ,
3 low fixed bin (35) ,
3 high fixed bin (35) ,
3 mu 1 tip 1 i er fixed bin (35) ,

2 real _type fixed bin(l8) unsigned una 1 t
2 type_offset fixed bin (18) unsigned una 1 ;

The first four elements have the same meaning for all data where:

STRUCTURE ELEMENTS

flag

type

always has the value "l"b and is used to tell this descriptor format from an
earlier format. (Shown as 1 in the descriptor below.)

is the data type according to the standard descriptor types (see Appendix D).
Named constants for the descriptor types are declared in the
std_descriptor_types.incl.pll include file. For extended descriptors (currently defined
only for Pascal), type always has the value "58".

packed
has the value "1 "b if the data item is packed. (Shown as "p" in the typical
descriptor below.)

number_dims
is the number of dimensions in an array. (Shown as "rn" in the descriptor below,)
The array bounds and multipliers follow the basic descriptors in the following
manner:

H-20 AG91-04

I 1 I type I p I m I size I basic descriptor

lower bound I descriptive information

upper bound I for the first

mu 1 tip 1 i er I (l ef tmos t) d i mens i on

lower bound descriptive information

I upp~r bound for the mth

I mu 1 tip 1 i er (r i ghtmos t) d i mens i on

If the data is packed. the multipliers give the element separation in bits;
otherwise, they give the element separation in words.

If the data is fixed-point, then:

scale
is a 2's complement, signed value.

precision
is the number of bits used to represent the data (if binary) or the number of
digits (if decimal).

For all other data:

size
is the size (in bits. characters, or words) of string or area data, or the number of
structure elements for structure data. In an argument descriptor for Algol68 array
descriptor data, the size field is the number of dimensions of the array
represented by the array decriptor datum. It is equal to the number_dims field of
the second datum of the Algo168 array descriptor datum. In an argument
descriptor for Algo168 union data, the size field is the number of words in the
Algol68 union datum.

For extended descriptors:

low
is the lower bound of the dimension.

H-21 AG91-Q4

high
is the upper bound of the dimension.

multiplier
is the multiplier of the dimension.

real_type
is the data type f or extended descriptors according to the standard descriptor
types (see Appendix D).

type_offset
is the offset from the base of the symbol tree of the symbol node for the type,
if any.

The descriptor of a structure is immediately followed by descriptors of each of
its members. The example below shows a declaration (assuming that each element of C
or D occupies one word) and its related descriptor.

I
I 1

5
2

1

5
2

1

5
2

dc 1 1 S,
2 A,
2 B (5),

3 c,
3 D;

basic descriptor
basic descriptor
basic descriptor
lower bound of B
upper bound of B

of S
of A
of B

element separation of
basic descriptor of C
lower bound of C

B

upper bound of C
element separation of C
basic descriptor of D
lower bound of D
upper bound of D
element separation of D

Members of dimensioned structures are arrays, and their descriptor contains copies of
the bounds of the containing structure.

Parameter Descriptors

The parameter descriptors associated with an entry point have the same format as
argument descriptors. The value 16777215 (77777777 octal) in the size field of an area,
bit, or character parameter indicates an asterisk size. The value -34359738368
(400000000000 octal) in the lower bound, upper bound, or multiplier fields indicates
asterisk array bounds.

H-22 AG91-04

APPENDIX I

DATA BASE DESCRIPTIONS

Listed below are descriptions of some Multics data bases presented in alphabetical
order. Each description contains the name of the data base, discusses its purpose, and
shows the correct usage.

Name

The "Name" heading shows the acceptable name by which the data base is
ref erenced. The name is usually followed by a discussion of the purpose and function
of the data base and the results that may be expected from referencing it.

Usage

This part of the data base description contains a declaration of the data base
and its structure.

1-1 AG91-()4

Name: sys_info

The sys_info data base is a per-system data base. It is accessible in all rings but can
be modified only in ring O. It contains many system parameters and constants. All
references to it are made through externally defined variables.

STRUCTURE

dcl sys info$clock bit(3) al igned external static;
del 1 sys_info$ips=mask_data al igned external static,

2 count fixed binary,
2 masks (sys_info$ips_mask_data.count),

3 name char (32) ali gned,
3 mask bit(35)al igned;

dcl sys_ nfo$page_size fixed binary(l9) external static;
dcl sys_ nfo$max_seg_size fixed binary(l9) external static;
dcl sys_ nfo$default stack length fixed binary(19) external static;
dcl sys_ nfo$default-max length fixed binary(19) external static;
dcl sys_ nfo$access ~lass ceil ing bit(72) aligned external static;
dcl sys nfo$time correction constant fixed binary(7l) external static;
dcl sys=info$time=delta - fixed binary(35) external static;
dcl sys_info$maxl inks fixed binary external static;
dcl sys info$time of bootload fixed binary(71) external static;
dcl sys=info$time=zone char (3) aligned external static;

STRUCTURE ELEMENTS

clock_
is the port number of the system controller containing the clock.

ips_mask_data
is the array that specifies the number and mapping of interprocess signal (IPS)
masks.

count
is the current number of valid IPS names.

name
is the name used to signal the IPS condition.

mask
is the IPS mask for the corresponding name. The mask has one bit on, and the
rest of the bits are off.

page_size
is the page size in words.

1-2 AG91-04

max_se~size
is the maximum segment size in words.

def aul t_stack_Iength
is the default stack maximum size in words.

def aul t_max_Iength
is the default maximum length of segments in words.

access_ c1ass_ ceiling
is the maximum access class.

time_correction_constant
is the correction from Greenwich mean time (GMT) in microseconds.

time_delta
is the same as time_correction_constant, only in single precision.

max links
is the maximum depth to which the system chases a link without finding a
branch.

time_of _bootload
is the clock reading at the time of bootload.

time_zone
is the name of the time zone (e.g., EST).

NOTES

Variable factors in the user process can affect time as determined by time_correction_
constant, time_delta, and time_zone. The user is advised to avoid use of these values
and see instead encode/decode_clock_value_, date_time_ and other similar subroutines
in the Subroutines manual.

1-3 AG91-()4

whotab

Name: whotab

The >sc 1 >whotab segment is the public information data base for the system. All
logged-in users, except those with the nolist attribute, have an entry in this table.
These entries are listed by the who command. In addition, various system parameters
of interest to all users are recorded in whotab. Many of these parameters are
returned by the system_info_ subroutine and the system active function. Only the
initializer process can modify the segment.

The structure of the whotab data base is as follows:

dcl who tab
2 mxusers
2 n users
2 mxunits
2 n units
2 ·t imeup
2 obsolete_sysid
2 nextsd
2 unti 1
2 1 astsd
2 erfno
2 obsolete_why
2 installation id
2 obsolete_message
2 abs_event
2 abs_procid
2 max_abs_users
2 abs_users
2 n daemons
2 request_channel
2 request_process_id
2 shift
2 next_shift_change_time
2 last_shift_change_time
2 fg_abs_users
2 n_rate_structures
2 padl
2 pad (3)
2 version
2 header_size
2 entry_size
2 laste_adjust
2 1 aste
2 freep
2 header extension mbzl
2 nabs (4)
2 abs qres (4)

based aligned
fixed bin,
fixed bin,
fixed bin,
fixed bin,
fixed bin (] 1) ,
char (8)
fixed bin (71),
fixed bin (71),
fix ed bin (] 1) ,
char (8),
char (32),
char (32),
char (32),
fix ed bin (] 1) ,
bit (36),
f'xed bin,
f xed bin,
f xed bin
f xed bin (] 1) ,
b t (36),
f xed bin,
f xed bin (71),
f xed bin (] 1) ,
f xed bin (17) una 1 ,
f xed bin (9) unsigned, unal igned,
b t (9) unaligned,
f xed bin,
f xed bin,
f xed bin,
f xed b'n,
f xed b n,
f xed b n,
f xed b n,
f xed b n,
f xed f n,
f xed fin,

who tab

1-4 AG91-04

whotab

2 abs_cpu_l imit (4)
2 abs_control,

fixed bin (35),

3 mnbz bit (1) unaligned,
3 abs_maxu_auto bit (1) unaligned,
3 abs_maxq_auto bit (1) unaligned,
3 abs_qres_auto bit (1) unaligned,
3 abs_cpu_limit_auto bit (1) unaligned,
3 queue_dropped (-1:4) bit (1) unal igned,
3 abs_up bit (1) unaligned,
3 abs_stopped bit (1) unaligned,
3 control pad bit (24) unaligned,

2 installation request channel fixed bin (71),
2 installation=request=pid bit (36),
2 sys i d char (32),
2 header _ex tens ion_pad 1 (7) fixed bin,
2 header extension mbz2 fixed bin,
2 messag~ - char (124),
2 header_extension_mbz3 fixed bin,
2 why char (124),
2 e (1000),

3 active
3 person
3 proj ect
3 anon
3 padding
3 t imeon
3 units
3 stby
3 idcode
3 chain
3 proc_type
3 group
3 f9_abs
3 disconnected
3 suspended
3 pad2
3 cant_bump_until
3 process_authorization

fixed bin,
char (28),
char (28),
fixed bin,
fixed bin (71)
fixed bin (71),
fixed bin,
fixed bin,
char (4),
fixed bin,
fixed bin,
char (8),
b t (1) unal igned,
b t (1) una 1 i gned,
b t (1) una 1 i gned,
b t (33) unaligned,
f xed bin (71),
b t (72);

STRUCTURE ELEMENTS

mxusers
is the maximum number of users allowed on the system.

n_users
is the current number of users.

1-5

whotab

AG91-{)4

whotab who tab

mxunits
is the maximum number of load units allowed.

n_units
is the current load.

timeup
is the time the system was started.

obsolete_sysid
is obsolete; use the field sysid instead.

nextsd
is the time the system will be shutdown. if nonzero.

until
is the projected time of the next system start-up.

lastsd
is the time of last crash or shutdown.

erfno
is the error number of the last crash, if known.

obsolete_why
is obsolete: use why instead.

installa tion_id
is the name of the installation.

obsolete_message
is obsolete; use message instead.

abs_event
is the event channel for signalling absentee requests.

abs_procid
is the process identifier of the absentee user manager.

max_abs_users
is the current maximum number of absentee users.

abs_users
is the current number of absentee users.

n_daemons
is the number of daemons logged in via the message coordinator.

1-6 AG91-04

whotab

request_channel
is the event channel over which requests to the answering service should be sent.

request_processid
is the identifier of the process to which answering service requests should be sent.

shift
is the number of the current shift.

next_shift_change_time
is the time the current shift is scheduled to end.

last_shift_ change_ time
is the time the current shift started.

f~abs_users
is the current number of foreground absentee users.

n_rate_structures
is the number of rate structures defined at the site.

pad 1
is unused.

pad
is unused.

version
is the structure version (currently version 1).

header _size
is the length of the header (in words).

entry_size
is the length of an entry (in words).

laste_adjust

laste

is used only by answering service programs. It gives the count of 32-word blocks
in the header from header_extension_mbzl.

is the index of the last entry in use.

freep
is the index of the first free entry chained through "chain."

whotab

1-7 AG91-o4

whotab

header _extension_m bzl
is unused and is at offset 100 octal.

n_abs (4)
gives the number of processes from each background queue.

abs_qres (4)
gives the number of absentee positions reserved for each queue.

abs_cpu_limit (4)
gives the current absentee cpu limits.

abs_control
absentee control flags

mnbz
must not be zero.

abs_maxu_auto
is "l"b if automatic; "O"b if set manually.

abs_maxq_auto
is "1 "b if automatic; "O"b if set manually.

abs_qres_auto
is "l"b if automatic; "O"b if set manually.

abs_cpu_limit_auto
is "l"b if automatic; "O"b if set manually.

abs_cpu_Iimit_auto
is "l"b if automatic; "O"b if set manually.

queue_dropped (-1:4)
is one if queue is dropped. Queue -1 is the foreground; 0-4 are respective
background queue numbers.

abs_up
is "1 "b if the absentee facility is running.

abs_stopped
is "l"b if the absentee facility is stopped. o.brp .. argx control_pad is unused.

installa tion_request_channel
is the IPC channel f or the install command.

installation_request_pid
is the installation process identifier.

whotab

1-8 AG91-04

whotab

sysid
is the current system name.

header _extension_pad 1
is not used at present.

header _extension_mbz2
is unused and is at offset 140 octal.

message
is the message for all users.

header _extension_m bz3
is unused and is at offset 200 octal.

why
is the reason for the next shutdown.

User entry variables, with whotab.e{i):

active
is nonzero if this entry describes a logged-in user.

person
is the person name {Person_id}.

project
is the project identifier (Project_id)~

anon
indicates whether the user is an anonymous user:
1 yes
o no

padding
is unused.

1-9

who tab

AG91-04

whotab

timeon
is the time of login.

units
is the number of load units for the user.

stby
indicates whether the user has secondary status:
1 yes
(\ nn
v .1.1."'"

idcode
is the terminal iden tif ier.

chain
is a chain for the free list.

proc_type
indicates the process type:
o ini tializer
1 interactive
2 absentee
3 daemon

group
is the user's load-control group identifier.

f~abs
is "1"b if this entry describes a foreground absentee user.

disconnected
is "1"b if the process is disconnected.

suspended
is "1"b if the process is suspended.

pad2
is unused.

cant_bump_until
is the time at which the user will (or did) become subject to preemption.

process_authorization
is the AIM authorization of the user's process.

1-10

whotab

AG91-04

APPENDIX J

STANDARD REQUEST TABLES AND STANDARD
REQUESTS

This appendix contains descriptions of the standard request tables (of which there
is currently one) and the standard requests provided as part of the subsystem utilities
software.

STANDARD REQUEST TABLES

The following standard request tables are available for use in interactive
subsystems using the subsystem utilities described in Section 4.

This request table contains definitions of all standard requests available with the
subsystem utilities.

USAGE

del ssu_request_tables_$standard_requests bit(36) al igned external;

NOTES

The following standard requests are not listed by the summarize_requests request
(i.e., their don t_summarize flag is set): summarize_requests, subsystem_name,
subsystem_ version, ready , ready_on, ready_off, and debu~mode.

The following standard requests are not listed by the list_requests request (i.e.,
their dont_list flag is set): subsystem_name, subsystem_version, ready, ready_on,
ready_off. and debug_mode.

See "Subsystem Request Tables" in Section 4 for more information on the use of I
this table.

J-1 AG91-04

STANDARD REQUESTS

The remainder of this appendix· contains command-like descriptions of the
standard requests provided with the subsystem utilities, a list of which appears below
by en try point and re..c-emmended request name.

Entry Point

ssu requests Sabbrev
ssu-requests-Sanswer
ssu=requests=Sdebug_mode
ssu requests $do
ssu-requests-Sexec com
ssu-requests-$exec~te - . - ,
ssu_requests_~nelp

ssu requests $if
ssu=requests=$list_help
ssu_requests_$list_requests
ssu_requests_$quit
ssu requests $ready off
ssu-requests-$ready-on
ssu=requests=Sready­
ssu_requests_Sself_identify
ssu requests $subsystem name
ssu-requests-$subsystem-version
ssu=requests=Ssummarize=requests

Recommended Names

abbrev, ab
answer
debug_mode
do
exec_com, ec
execute, e
heip
if
1 ist_help, lh
1 is t_reques ts, 1 r
quit, q
ready_off, rdf
ready_on, rdn
ready, rdy

subsystem_name
subsystem_version
?

See "Using Standard Requests" in Section 4 for more information on the use of
these requests.

Recommended Names: abbrev, ab

SYNTAX AS A REQUEST

ab {-control_args}

SYNTAX AS AN ACTIVE FUNCTION

Cab]

FUNCTION

controls abbreviation processing within the subsystem. As an active request. returns
"truett if abbreviation expansion of request lines is currently enabled within the
subsystem and "false" otherwise.

J-2 AG91-04

CONTROL ARGUMENTS

Control arguments may not be used with the active request

-off
specifies that abbreviations are not to be expanded.

-on
specifies that abbreviations should be expanded (default).

-profile PATH
specifies that the segment named by PATH is to be used as the profiie segment;
the suffix ".profile" is added to PATH if not present The segment named by
PATH must exist

NOTES

Most subsystems which support abbreviation processing provide command line
control arguments (-abbrev, -no_abbrev, -profile) to specify the initial state of
abbreviation processing within the subsystem. For example. a Multics abbreviation
could be defined to invoke the read_mail subsystem with a default profile as follows:

.ab rdm do "read_mai 1 -abbrev [hd]>mai l_system &rfl"

If invoked with no arguments, this request will enable abbreviation processing
within the subsystem using the profile that was last used in this subsystem invocation.
If abbreviation processing was not previously enabled, the profile in use at Multics
command level is used; this profile is normally [home_d i rJ >Per son_ i d. prof i 1 e.

See Multics Commands and Active Functions, Order No. AG92, for a description of
abbreviation processing.

Recommended Names: answer

SYNTAX AS A REQUEST

answer STR {-control_args} request_l ine

FUNCTION

provides preset answers to questions asked by another request.

J-3 AG91-04

ARGUMENTS

STR
is the desired answer to any question. If the answer is more than one word, it
must be enclosed in quotes. If STR is ~query, the question is passed on to the
user. The -query control argument is the only one that can be used in place of
STR.

request_line
is any subsystem request line. It can contain any number of separate arguments
(i.e., have spaces within it) and need not be enclosed in quotes.

CONTROL ARGUMENTS

-brief, -bf
suppresses printing (on the user's terminal) of both the question and the answer.

-call STR
evaluates the active string STR to obtain the next answer in a sequence. The
active string is constructed from subsystem active requests and Multics active
strings (using the subsystem's execute active request). The outermost level of
brackets must be omitted (i.e., "list_meetings -changes"), and the entire string
must be enclosed in quotes if it contains request processor special characters. The
return value "true'" is translated to "yes", and "false" to "no". All other return
values are passed as is.

-match STR
answers only questions whose text matches STR. If STR is surrounded by slashes
(/). it is interpreted as a qed x regular expression. Otherwise, answers tests
whether STR is literally contained in the text of the question. Multiple
occurrences of -match and -exclude are allowed (See Notes below). They apply to
the entire request line.

-exclude STR, -ex STR
passes on, to the user or other handler, questions whose text matches STR. If
STR is surrounded by slashes (/), it is interpreted as a qedx regular expression.
Otherwise, answer tests whether STR is literally contained in the text of the
question. Multiple occurrences of -match and -exclude are allowed (see Notes
below). They apply to the entire request line.

-query
skips the next answer in sequence, passing the question on to the user. The
answer is read from the user_i/o I/O switch.

-then STR
supplies the next answer in a sequence.

-times N
gives the previous answer (STR, -then STR or -query) N times only (where N is
an in teger).

J-4 AG91-04

NOTES

Answer provides preset repsonses to questions by establishing an on unit for the
condition command_question., and then executing the designated request line. If any
reauest in the reauest line calls the command Querv subroutines (described in Multics
Subroutines and ~ 110 Modules, Order -No. AG93:-to ask a question, the on unit is
invoked to supply the answer. The on unit is reverted when the answer request
returns to subsystem request level.

If a question is asked that requires a yes or no answer, and the preset answer is
neither "yes" nor "no", the on unit is ignored and the user will be queried.

The last answer specified is issued as many times as necesary, unless followed by
the -times N control argument

The -match and -exclude control arguments are applied in the order specified.
Each -match causes a given question to be answered if it matches STR. each -exclude
causes it to be passed on if it matches STR. A question that has been excluded by
-exclude is reconsidered if it matches a -match later in the request line. For example,
the request line:

answer yes -match /fortran/ -exclude /fortran_io/
-match /Afortran_io/

answers questions containing the string "fortran" except that it does not answer
questions containing "fortran_io", except that it does answer questions beginning with
"fortran_io".

Recommended Names: debULmode

SYNTAX AS A REQUEST

FUNCTION

enables or disables debugging mode for the current subsystem.

CONTROL ARGUMENTS

-on
enables debugging mode for this subsystem.

-off
disables debugging mode for this subsystem.

J-5 AG91-04

NOTES

This request is intended for use only by subsystem implementors.

See "Subsystem Debugging Facilities" in Section 4 for further information.

Recommended Names: do

SYNTAX AS A REQUEST

do request_string {args}
or
do -control_args

SYNTAX AS AN ACTIVE FUNCTION

[do "request_string" args]

FUNCTION

expands a request line by substituting the supplied arguments into the line before
execution. As an active request, returns the expanded request_string rather than execute
it.

ARGUMENTS

request_string
is a request line in quotes.

args
are character string arguments that replace parameters in request_string.

CONTROL ARGUMENTS

These control arguments set the mode of operation of the do request:

-long. -lg
the expanded request line is printed before execution.

-brief. -bf
the expanded request line is not printed before execution (default).

-nogo
the expanded request line is not passed on for execution.

J-6 AG91-04

-go
the expanded request line is passed on for execution (default).

-absentee
an any_other handler is established which catches all conditions and aborts
execution of the request without aborting the process.

-interactive
the any _other handler is not established (default).

PARAMETERS

Any sequence beginning with & in the request line is expanded by the do
request using the arguments given on the request line.

&1

&(I)

&qI

is replaced by argl; I must be a digit from 1 to 9.

is also replaced by argI; can be any value, however.

is replaced 'by argl with any quotes in argI doubled; 1 must be a digit from 1 to
9.

&q{I)

&rI

is also replaced by argl with any quotes doubled; 1 can be any value.

is replaced by argl surrounded by a level quotes with any contained quotes
doubled. I must be a digit from 1 to 9.

&r{I}

&fI

is also replaced by a requoted argl; I can be any value.

is replaced by all the arguments starting with argt I must be a digit from 1 to
9.

&f<I)
is also replaced by all the arguments starting with argI; 1 can be any value.

J-7 AG91-04

&qfI
is replaced by all the arguments starting with argI with any quotes doubled; I
must be a digit from 1 to 9.

&qf(I)

&rl

is also replaced by all the arguments starting with argI with quotes doubled~ I can
be any value.

is replaced by all the arguments starting with argI. Each argument is placed in a
level of quotes with contained quotes doubled; I must be a digit from 1 to 9.

&rf(I)
is also replaced by an the arguments starting with argI. requoted: I can be any
value.

&&
is replaced by an ampersand.

&!
is replaced by a I5-character unique string. The string used is the same
everywhere &! appears in a request line.

&n
is replaced by the actual number of arguments supplied.

&f&n
is replaced by the last argument supplied.

Recommended Names: exec_com, ec

SYNTAX AS A REOUEST

SYNTAX AS AN ACTIVE FUNCTION

FUNCTION

executes a program written in the exec_com language which is used to pass request
lines to the subsystem and to pass input lines to requests which read input. As an
active function, the exec_com program specifies a return value of the exec_com
request by use of the &return statement.

j-8 AG9I-04

ARGUMENTS

ec_paths
is the pathname of an exec_com program. The suffix, which is normally the
name of the subsystem. is assumed if not specified.

ec_args
are optional arguments to the exec_com program and are substituted for parameter
references in the· ·program such as &1.

NOTES

Subsystems may define a search list to be used to find the exec_com program.
If this is the case, the search list is used if ec_path does not contain a "<" or ">"
character; if the ec_path does contain .either a "<" or ">", it is assumed to be a
relative pathname.

For a description of the exec_com language (both version 1 and version 2), type:

•. help vlec v2ec

When evaluating a subsystem exec_com program, subsystem active requests are used
rather than Multics active functions when evaluating the & [... J construct and the
active string in an &if statement. The subsystem's execute active request may be used
to evaluate Multics active strings within the exec_com.

Recommended Names: execute, e

SYNTAX AS A REQUEST

e LINE

SYNTAX AS AN ACTIVE FUNCTION

[e LINE]

FUNCTION

executes the supplied line as a Multics command line. An as active request, evaluates
a Multics active string and returns the result to the subsystem request processor.

ARGUMENTS

LINE
is the Multics command line to be executed or the Multics active string to be
evaluated. It need not be enclosed in quotes.

J-9 AG91-04

NOTES

The recommended method to execute a Multics command line from within a
subsystem is the " .. " escape sequence. The execute request is intended as a means of
passing information from the subsystem to the Multics command processor.

All 0, [], and "'s in the given line are processed by the subsystem request
processor and not the Multics command processor. This fact permits the passing of
the values of subsystem active requests to Multics commands when using the execute
request or, when using the execute active request, to Multics active functions for
further manipulation before returning the values to the subsystem request processor for
use wi thin a request line.

EXAMPLES

The read_mail request line:

e mbla [mailbox]

can be used to list the ACL of the mailbox being read by the current invocation of
read_mail.

The read_mail request line:

write all [e strip_entry [mailbox]]

may be used to write the ASCII representation of all messages in the mailbox into a
segment in the working directory whose entry 'name is the same as that of the
mailbox with "mbx" suffix changed to "mail".

Recommended Names: help

SYNTAX AS A REQUEST

he.lp {topics} {-control_argsl

FUNCTION

prints information about various subsystem topics including detailed descriptions of
most subsystem requests.

ARGUMENTS

topics
are the topics on which information is to be printed. The topics available within
a subsystem can be determined by using the list_help request if available.

J-10 AG91-04

CONTROL ARGUMENTS

The most useful control arguments are:

-title
prints section titles and section line counts, then asks if the user wants to see the
first paragraph of information.

-brief, -bf
prints only a summary of a request or active request. including the Syntax section,
list of arguments, control arguments, etc.

-section STRs, -sen STRs
begins printing at the section whose title contains all the strings STRs. By default,
printing begins at the top of the information.

-search, STRs, -srh STRs
begins printing with the paragraph contaInIng all the strings STRs. By default,
printing begins at the top of the information.

RESPONSES

The most useful responses which can be given to questions asked by the help request
are:

yes, y
prints the next paragraph of information on this topic.

no, n
stops printing information for this topic and proceeds to the next topic if any.

quit, q
stops printing information for this topic and returns to the subsystem's request
level.

rest {-sen}, r {-sen}
prints remaining information of this topic without intervening questions. If
-section or -sen is given, help prints only the rest of the current section without
questions and then asks if the user wants to see the next section.

title {-top}
lists titles and line counts of the sections which follow; if -top or -t is given,
help lists all section titles. help then repeats the previous question after titles are
printed.

seet i on {STRs} {-top}, sen {STRs} {-top}
skips to the next section whose title contains all rhe strings SIRs. If -lOP or -1

is given, title searching starts at the top of the information. If STRs are omitted,
help uses the STRs from the previous section response or the -section control
argument.

J-11 AG91-04

sea reh {STRs} {- top}, s r h {STR} {- top}
skips to the next Paragraph containing all the strings SIRs. If -top or -t is
given, searching starts at top of the information. If SIRs are omitted, help uses
the STRs from the previous search response or the -search control argument.

sk i p {-sen} {-seen}, s { -sen} {-seen}
skips to the next paragraph. If -section or -sen is given, skips all paragraphs of
the current section. If -seen is given, skips to the next paragraph which the user
has not seen. Only one control argument is allowed in each skip response.

?
prints the list of responses allowed to help queries.

prints "help" to identify the current interactive environment.

.. command_line
treats the remainder of the response as a Multics command line.

NOTES

If given no topic names, the help request will explain w.hat requests are available
in the subsystem to obtain information on the subsystem.

For a complete description of the control arguments and responses accepted by
this request, type:

.. help help

Recommended Names: if

SYNTAX AS A REQUEST

if EXPR -then LINEl {-else LINE2}

SYNTAX AS AN ACTIVE FUNCTION

if EXPR -then STRl {-else STR2}

FUNCTION

conditionally executes one of two request lines depending on the value of an active
string. As an active request, returns one of two character strings to the subsystem
request processor depending on the value of an active string.

J-12 AG91-04

ARGUMENTS

EXPR
is the active string which must evaluate to either "true" or "false". The active
string is constructed from subsystem active requests and Multics active strings
(using the subsystem's execute active request).

LINE1
is the subsystem request line to execute if EXPR evaluates to "true". If the
request line contains any request processor characters, it must be enclosed in
quotes.

STRl
is returned as the value of the if active request if the EXPR evaluates to "true".

LINE2
is the subsystem request line to execute if EXPR evaluates to "false". If omitted
and EXPR is "false", no additional request line is executed. If the request line
contains any request processor characters, it must be enclosed in quotes.

STR2
is returned as the value of the if active request if the EXPR evaluates to "false".
If omitted and the EXPR is "false", a null string is returned.

Recommended Names: list_help, lh

SYNTAX AS A REQUEST

lh {topics}

FUNCTION

displays the names of all subsystem info segments pertaining to a given set of topics.

ARGUMENTS

topics
specifies the topics of interest. Any subsystem info segment which contains one of
these topics as a substring is listed.

NOTES

If no topics are given. all info segments available for the subsystem are listed.

When matching topics with info segment names. an info segment name is
considered to match a topic only if that topic is at the beginning or end of a word
within the segment name. Words in info segment names are bounded by the beginning
and end of the segment name and by the characters period (.), hyphen (-), underscore
U, and dollar sign ($). The ".info" suffix is not considered when matching topics.

J-13 AG91-04

EXAMPLES

The request line:

will match info segments named list, list_users, and forum_list but will not match an
info segment named prelisting.

Recommended Names: list_requests, Ir

SYNTAX AS A REQUEST

1 r {STRsl {-contro l_argsl
.

FUNCTION

prints a brief description of selected subsystem requests.

ARGUMENTS

STRs
specifies the requests to be listed. Any request with a name containing one of
these strings is listed unless -exact is used in which case the request name must
exactly match one of these strings.

CONTROL ARGUMENTS

-alL -a
includes undocumented and unimplemented requests in the list of requests eligible
f or matching the STR arguments.

-exact
lists only those requests one of whose names exactly match one of the STR
argumen ts.

NOTES

If no STRs are given. all requests are listed.

When matching STRs with request names, a request name is considered to match
a STR only if that STR is at the beginning or end of a word within the request
name. Words in request names are bounded by the beginning and end of the request
name and by the characters period (.), hyphen (-), underscore L). and dollar sign ($).

J-14 AG91-04

EXAMPLES

The request line:

will match requests named list, list_users, and forum_list but will not match a request
named prelisting.

Recommended Names: quit, q

SYNTAX AS A REQUEST

q

FUNCTION

exits the subsystem and returns to Multics command level.

Recommended Names: ready_off, rdf

SYNTAX AS A REQUEST

rdf

FUNCTION

turns off printing of ready messages after execution of each subsystem request line.

Recommended Names: ready _on, rdn

SYNTAX AS A REQUEST

rdn

FUNCTION

turns on printing of ready messages after execution of each subsystem request line.

J-15 AG91-o4

Recommended Names: ready, rdy

SYNTAX ASA REQUEST

rdy

FUNCTION

prints a ready message.

NOTES

The Multics general_ready command may be used to change the format of the
ready message printed by this request and also after execution of request lines if the
ready_on request is used. Type:

.. help general_ready

for more information on the available formats.

The default ready message gives the time of day and the amount of CPU time
and page faults used since the last ready message was typed.

Recommended Names: self_identify

SYNTAX AS A REQUEST

FUNCTION

prints the name and version of the subsystem, whether abbreviation processing is
enabled in the subsystem, and the level of invocation of this instance of the subsystem
if more than one invocation of the subsystem is active.

EXAMPLES

debu~tpsa 6.1a (abbrev) (level 3)

J-16 AG91-04

Recommended Names: subsystem_name

SYNTAX AS A REQUEST

subsystem_name

SYNTAX AS AN ACTIVE FUNCTION

[subsystem_name]

FUNCTION

prints the name of the subsystem; as an active request, returns the name of the
subsystem.

Recommended Names: subsystem_version

SYNTAX AS A REQUEST

subsystem_version

SYNTAX AS AN ACTIVE FUNCTION

[subsystem_version]

FUNCTION

prints the version number of the subsystem: as an active request, returns the version
number of the subsystem.

Recommended Names: ?

SYNTAX AS A REQUEST

?

FUNCTION

prints a list of requests available in this subsystem.

NOTES

There may be other requests available in this subsystem which are not listed by
this request. Such requests may be listed using the request:

J-17 AG91-04

MISCELLANEOUS

3-49, 5-30

@ 3-49

\ 3-51

AA 5-30

AS 5-30

AD 5-30

AE 5-30

AF 5-30

AL 5-30

AQ 5-30

AT 5-31

AU 5-31

Ay 5-28

absentee 1-14

A

INDEX

i-I

access
granting 6-7

missing components 6-8

access control 1-14
access control 1 i st (ACL)

1-6, 1-14
access isolation mechanism

(A I M) 1-6, 1-14
access class 1-14
authorization 1-15

access modes 1-14
device 9-6
discretionary 1-18
initial ACL 1-20, 2-11
modes

extended access 1-19
resources 5-89, 5-91
volume 9-6

access contro 1 1 is t (ACL) 6-2,
6-8

access identifier 6-2
calculating access rights

6-8
creating items 6-6
deleting items 6-6
initial access 6-9

creating user 6-10
SysDaemon entries 6-10
user-defined 6-11

listing items 6-6
modifying items 6-6

AG91-04

access contro 1 1 is t (ACL)
(cont)

object segments 6-2

access control segment (ACS)

accounting (cont)
obtaining ieSOUiCeS 1=7,

1-13
storage quota 1-7, 1-13

5-91, 6-11 ACL
access class ranges 5-92
communications channels

6-12
daemon source names 6-12
manipulating Rep effective

access 5-94
RCP effective access 5-93
RCP resources 6-11

access identifier 6-2

access isolation mechanism
(AI M) 6-12

access rules 6-19
directories 6-20
interprocess communication

6-20
message segments 6-20
segments 6-19

attributes 6-13, 6-14
classification system 6-12
objectives 6-13
po 1 icy 6-13
rules 6-13
with IMFT 6-20

access modes 6-3
before journal files 6-5
communications channels 6-6
daemon source names
data management files
directories 6-4
forum meetings 6-5
rna i 1 boxes 6-4

6-6
6-4

message segments
multisegment files
person name table
RCP devices 6-6

6-4
6-4

6-5

Rep volumes
segments 6-3

accounting 4-15, 9-2

see access control

acquisition 5-89

active function
writing 4-7

active string 3-36
iteration 3-37
nesting 3-36
rescanning 3-37

active_function_error
condition 7-42

address space 4-9, 4-13

administrator
project 1-7, 1-24, 9-1, 9-2
system 1-7,1-28,9-1,9-2

i-2

AIM 6-12, 10-33
see access control

ALM 1-9, 1-15, 4-2

ALM procedures
transfer of control H-12

alrm condition 7-43

answerback B-4

answerback entry
example of B-31

answerback table B-29

answerback table entry
answerback statement
type statement 8-30

B-29

AG91-04

answering service 1-15, 7-77,
7-81

APL 1-8, 4-2

archive 1-15

archive component pathname
3-4, 3-12

equal names 3-12

area condition 7-44

argument list H-16
data type codes G-71
format H-16
header H-16

arguments
command 3-32

arguments for window_call
change_window 5-47
clear_window 5-49
create window 5-44
delete window 5-47
invoke 5-44

array 0-29

attaching video system 5-40

attachment B-2

automatic storage 1-3, 1-13

B

backspace key 5-27

backup 1-13, 8-1
dumping 8-1

complete 8-1, 8-3
consolidated 8-1, 8-2
incremental 8-1, 8-2

hierarchy 1-13, 1-20, 8-3
recovery 8-1, 8-3

reloading 8-1
retrieval 8-1

volume 1-13, 1-29, 8-4

backward character
AB 5-30

backward word
ESC B 5-30

bad area format condition
ASC I I 7-44

character set 3-41, A-I
control characters 3-41,

A-I

aSSemb 1 y 1 anguage 1 ~9, 1-15,
4-2

assigning devices 5-84

asterisk 3-5, 6-7
array bounds H-22
extent H-22
in granting access 6-7

attach operation
see I/O operations

attaching devices 5-85

i-3

bad dir condition 7-44

bad_outward_call condition
7-45

BASIC 1-8, 4-2

baud rate 3-57, B-3

before journals 10-24
creating 10-25
opening 10-25

before~ournal_status command
10-33

AG91-04

befoure~ournal_meters command
1(''1- ':u:::
.. ""'" JJ

beginning line
"A 5-30

bind map G-41

C

ca 11
generating H-l1
short H-12

ca 11 (i nterprocedure)
binder pll_operators H-ll

see also object segment,
bound

binding 1-16, 4-11

bit count 1-15, 2-8

bit count author
see segment, attributes

block transfer 3-62

blocked 1-16, 7-77

bound segments 1-16, 4-11
see also object segment,

bound
structure of G-37

brackets 3-36

branch 1-16

breakpoint 4-5

brief mode
login 4-20

bulk I/O
see I/O

byte
see character

call operator H-12

calling sequence H-ll

canonical form 3-41
canonical ization 3-43, 3-53

column assignment 3-43
overstrikes 3-42, 3-44,

3-53
replacement 3-45

canonical ization 1-16

capitalize initial word
ESC C 5-31

cap ita 1 i z e wo r d
ESC U 5-31

carriage motion 3-42, 3-56

carriage return 1-16

changing terminal type
definitions B-4

channel B-1, B-3

channel definition table B-4

character 1-16

character conversion B-2

character set
ASCII A-I
EBCDIC C-16
Multics extended A-4
reserved 3-34

checksum F-I0

cleanup 7-83

cleanup condition 7-45

clear window example 5-49

clock 4-15
process CPU usage 4-14
real time 4-14

closed subsystem 1-16

COBOL 1-8, 4-1

collection manager 10-8,
10-10

combined linkage region 4-14

command 1-16, 3-31
arguments 3-32
command environment
command invocation

3-32

3-32
3-31,

command language 3-31
command level 1-16,3-31
command line 3-31, 3-33
command name 3-32
command processor 1-13,

1-16,3-31,4-6
compound command line 3-33
concatenation 3-39
control argument 1-17, 3-32
iteration 3-35
listener 3-31
ready message 1-25, 3-31
writing 4-5

command_abort_ condition 7-45

command error condition 7-46

command_query_error condition
7-47

command_question condition
7-47

i-5

communications channels
naming 8-33

complete dump
see backup

complete volume dump switch
see segment, attributes

component 1-17
of archive 1-17
of entryname 1-17, 3-1

concatenation 3-39

condition 7-26
alrm 4-18, 4-20
any_other 4-20
cput 4-18, 4-20
default handler 7-32
handling 7-30
information header format

7-37
list of 7-42

format of list 7-41
machine 7-34
mechanism 7-26
PL/I 7-38
signalling 7-30, 7-33
trm 4-18 -
wkp_ 4-18

condition wall 7-33

conso 1 ida ted dump
see backup

continuation lines 3-58

control argument 1-17

control characters
backward character

AB 5-30
backward word

ESC B 5-30
beginning line

AA 5-30

.. .
1\-1

AG91-04

control characters (cont)
capitaiize initiai word

ESC C 5-31
capitalize word

ESC U 5-31
delete character

AD 5-30
delete word

ESC D 5-30
end of 1 ine

AE 5-30
erase 5-27

backspace key 5-27
DEL, # 5-30

erase word
ESC DEL, ESC # 5-31

forward character
AF 5-30

forward word
ESC F 5-30

kill 5-27
lower case word

ESC L 5-31
mul tip 1 i er

AU 5-31
quoting character

AQ 5-30
real-time editor 5-27
redisplay

AL 5-30
repeat action n times

ESC n 5-30
retrieving deleted text

ESC y 5-28
Ay 5-28

twiddle characters
AT 5-31

twiddle words
ESC T 5-31

two characters 5-27
deleting words 5-28
retrieving deleted text

5-28
window editor request list

ESC? 5-31

convention
eq u alI - 19 , 3-7
exclamation point 1-19

convention (cont)
naming 3-i, 3-i6, 4-2, 5-7
star 1-27, 3-5

conversion condition 7-51

conversion table B-23
example of 8-32
input B-l1
output 8-11

copy switch
see segment, attributes

cput condition 7-51

crash
FNP 1-17
system 1-17

create_ips_mask_err condition
7-52

i-6

create_window example 5-45

cross_ring_transfer condition
7-52

current length
see segment, attributes

cv_dmcf command 10-35

cv ttf command B-3, B-5

D

daemon 1-17
offline I/O 1-18

damaged switch
see segment, attributes

AG91-04

data base
system parameters

sys_info 1-2
whotab 1-4

data management files 1-17,
10-3

accessing 10-4
as protected entities 10-4
creation of 10-4
manipulation of 10-5
see Multics Data Management

data types
descriptors 0-1
formats 0-5

date 4-15

date and time contents
modified

see segment, attributes

date and time dumped
see segment, attributes

date and time entry modified
see segment, attributes

date and time used
see segment, attributes

date_time_ subroutine 4-15

debugging 4-5, G-2
bound segment

binder symbol block G-38
object map G-31

decode_clock_value subroutine
4-15

default handler 7-32

default_types statement
example of B-31

defining a request language
4-34

i-7

definition relocation codes
G-35

definition section 4-4, 4-10,
G-l, G-28, G-37, G-38,
G-39

definition hash table G-14
dynamic linking G-5
header G-7
implicit G-36
relocation G-34
see also relocation
unstructured area G-5

DEL 5-30

deiay tabie 3-57

delays 3-57

delete character
AD 5-30

delete word
ESC 0 5-30

delete_window example 5-48

deieting words 5-28

derail condition 7-52

descriptor
argument

G-3
H-19

detach operation
see I/O operations

detaching video system 5-42

device
1 imi ts

workspace size 5-86
names 5-87

device access 9-6

dial facility B-2

AG91-04

directory 1-17
access control

access class 2-7
ACL 2-8
initial ACL
ring brackets

attributes 2-7
author 2-8

2-11
2-12

current length 2-9
date-time contents

modified 2-9
date-time dumped 2-9
date-time entry modified

2-10
date-time used 2-10
initial ACL 2-11
master directory switch

2-11
MSF indicator 2-12
names 2-12
quota 2-12
records used 2-12
safety switch 2-13
security out-of-service

switch 2-13
type 2-13
unique identifier 2-13

default working 1-17
hierarchy 1-18
home 1-17
initial working 1-17
master 1-17, 2-4
parent 1-18
process 1-24, 2-14
referencing 4-10
system 2-13
system daemon 2-15
system library 2-16
upgraded 1-18
users 2-16
working 1-18, 4-10

display_ttt command B-3, 8-5

OM files
see data management files

dm_display_version command
10-33

dm_lock_status command 10-35

dm_not_available_ condition
7-53

dm_set~ournal_stamps command
10-35

dm set system_dir command
10-35

dm shutdown_scheduled_
condition 7-53

dm_shutdown_warning_ condition
7-54

dm_system_shutdown command
10-35

dm user shutdown command - -
10-33

dm_usei_shutdown_ condition
7-55

dnzp swi tch
see segment, attributes

dynamic 1 inking 1-18, 4-9,
4-12, G-5, G-18

i-8

E

EBCDIC C-16

effective access 1-18

Emacs 1-9

end of line
"'E 5-30

end of window processing 5-37

AG91-04

end-of-page processing 3-58

endfile condition 7-56

endpage condition 7-57

entry 1-18

entry attributes
see segment, attributes

entry operator H-12

entry point 1-18
external G-3
name 1-18, 3-15
transfer vector G-4

entry point bound
see segment, attributes

entry sequence G-3, G-34

entryname
component

1-19J 3-1
3-1, 3-5, 3-7

environment subsystem
request language 4-30
request loop 4-30

epilogue handl ing 7-84

equal convention 1-19

equal names 3-7

equal sign 3-7

erase character 5-27
5-30
backspace key 5-27
DEL 5-30
designation 3-49

erase processing 3-43, 3-49,
3-54

escape sequences 3-50, 3-55
overstrikes 3-49, 3-54

i-9

erase word
ESC DEL, ESC # 5-31

error codes
see status codes

error condition 7-57

er ror hand 1 i ng
see condition, handling

error messages
see status codes

error_output I/O switch 5-14

ESC # 5-31

ESC? 5-31

ESC B 5-30

ESC C 5-31

ESC D 5-30

ESC DEL 5-31

ESC F 5-30

ESC L 5-31

ESC n 5-30

ESC T 5-31

ESC U 5-31

ESC y 5-28

escape conventions 3-51, 3-58

escape processing 3-43

escape sequence 3-52, 3-58

escape sequence character
3-51

AG91-04

examples
exec cern

attaching video 5-40
clear window 5-49
create window 5-45
delete window 5-48
detaching video 5-42

p 11
detaching video 5-43
window $clear window 5-49
window=Screat; 5-47
window_$destroy 5-48

Executive Forum 1-11

Executive Mai 1 1-11

exec com 1-19, 4-20
start_up.ec 1-27

Extended Mail Facility 1-10

external reference 3-14, 4-9

external symbol 7-2

F

fault 1-20, 7-42, 7-84
hardware condition 7-34
process termination fault

7-85

fault_tag_l, fault_tag_3
condition 7-57

f i 1 e 1-20
blocked
indexed

5-17
5-18

see multisegment file
sequential 5-16
unstructured 5-16

f i 1 e manager 10-8, 10-11

file system times
conversion 4-16

finish condition 7-58

fixedoverflow condition 7-58

flow control 3-61
input 3-61
output 3-62

FNP
see Front-End Network

Processor

FORTRAN 1-8, 4-1

fortran_pause condition 7-59

fortran_storage_error
condition 7-59

fortran_storage_manager_error
condition 7-60

Forum 1-11

forward character
"'F 5-30

forward word
ESC F 5-30

frame (paging) 1-4,1-22

Front-End Network Processor
8-1

function key table 8-25
example of 8-25

gate 1-6, 1-20
access 9-6

gate segment

G

entry point transfer vector
G-3, G-4

i-l0 AG91-04

gate_err condition 7-60

GCOS environment simulator
1-10

generated code conventions
G-33

greater than character
3-2, 3-5, 3-7, 5-7

H

hardcore 1-20

hash table G-14

help files
see info segments

I/O 5-1

2-1 ~

attach description 5-64,
5-69

attachment 4-19
bulk 5-50, C-l

bulk data input 5-57
card input 5-53, C-l

access requirements
5-54

ACL :>-:>:J
control cards 5-56
control cards list C-2
conversion modes C-l1
escapes C-23
format C-ll
station access control

5-56
user data cards C-6

card output 5-53, C-12
conversion modes C-13

printer output 5-50
format control 5-51

punched-card codes C-14

I/O (cont)
bulk

i-II

remote job entry 5-58,
C-6

control cards list C-7
control block (IOCB) 5-7
control functions

iox_ subroutine
detach description
fi le 5-15

5-80
5-74

closing 5-22
opening 5-20
position designators 5-22
types 5-15

I/O control block (IOCB)
5-61, 5-63, 5-66

structure 5-63
I/O module 5-61

implementation rules 5-67,
5-69, 5-71, 5-74,
5-76

I/O modules 5-80
interface

device specific
I/O modules 5-80

iox_ subroutine 5-80
interrupted operations 5-14
iox_ subroutine 5-80
magnetic tape 5-49
module 1-21, 5-1

1 i st of 5-2
offl ine 1-18
open data 5-64
open description 5-64
opening modes 5-8
operations ~-~, 5-64, 5-66,

5-69, 5-71, 5-74
attach 1-15, 5-4
close 5-6
detach 1-17, 5-6
open 5-5

programming language
facilities 5-15

switch 1-28, 5-1, 5-4, 5-7
attaching 5-7
closing 5-9
detaching 5-9
names 3-16, E-l
opening 5-8

AG91-04

I/O (cont)
swi tch

standard 5-14
synonym attachment 5-66,

5-69
synonym attachments 5-10,

5-14
terminal 5-24

I/O control block 5-62

I/O i nterfacer (10 I) 5-80

I/O modules 5-80

I/O open description 5-71

illegal_modifier condition
7-60

illegal_opcode condition 7-61

illegal_procedure condition
7-61

illegal_return condition 7-61

impure procedure 1-20

incremental dump
see backup

incremental volume dump switch

initial command line 4-20

in i t i ali zer 1-21

initiate 1-21,3-14,3-32,
4-9, 4-12

input conversion table B-ll

interactive subsystems 4-27

internal static offset table
(ISOT) 4-14, H-I0

internal static section 4-14

internal storage
see storage classes

interprocess communication
4-16

interrupt 5-14
program_interrupt condition

7-71
quit condition 7-72
quit signal 1-25
wakeup 4-16

intersegment reference 1-18

ioa_error condition 7-62

see segment, attributes IOCB

index manager 10-8, 10-10

info segments 1-20

information
data bases

sys_info 1-2
whotab 1-4

initial access 6-9
creating user 6-10
SysDaemon entries 6-10
user-defined 6-11

see I/O

iox subroutine 5-80

io error condition 7-62

ISOT
internal static offset table
see internal static offset

table (ISOT)

isot fault condition 7-63

iteration 3-35

i-12 AG91-04

K

key condition 7-63

kill character 5-27
designation 3-49

kill processing 3-43, 3-49,
3-54

overstrikes 3-49

kill ring 5-28, 5-29

L

languages
programming languages 1-8,

4-1

less than character 3-2, 5-7

1 imited service system 1-21

1 imits, devices
workspace size 5-86

line type B-3

1 inkage offset table (LOT)
4-14, H-10

1 inkage relocation codes G-36

1 ink ing
dynamic 1-18, 4-9, 4-12

links G-20
addresses G-2
area G-36
array G-37
attributes 2-7

author 2-8
date-time dumped 2-9
date-time entry modified

2-10
date-time used 2-10
names 2-12
type 2-13
unique identifier 2-13

el imination by binder G-36,
G-39

interprocedure 1-18,1-21,
4-9, 4-13

snapping 4-10
pa i r 1-21
resnapping
resolution

1-27
G-39

self-referencing G-ll
storage system 1-21
system G-13
type 6 G-13
unsnapping 3-14

LINUS 1-10, 10-8

listener 1-22, 3-31

load control group 9-5

1 inkage section 4-4, 4-9, G-2, locking 10-18, 10-19
G-18, G-28, G-37, G-38

dirst reference G-2 lockup condition 7-64
first reference G-23
header G-18 logical volume
internal static G-18
relocation information G-36

1 inkage system 1-21

1 inkage_error condition 7-64

see volume, logical

logical volume identifier
see segment, attributes,

2-11

login 4-16

i-13 AG91-04

login command
-terminai_type 8-4

LOT
1 inkage offset table
see linkage offset table

(LOT)

lot fault condition 7-64

lower case word
ESC L 5-31

magnetic tape
see tape

M

magnetic tape I/O

rna i 1 box 1-2 3

5-49

making segment known 1-22,
3-14. 3-32. 4-9. 4-12

making segment unknown 3-14,
4-12

malformed_list_template_entry_
condition 7-65

master directory switch
see directory, attributes

maximum length
see segment, attributes

mec (MCe, Multies card code)
1-22

memory units 1-22

message segment 1-22

messages
ready 1-25, 3-31

miscellaneous eapabil ities
in windows 5-26

mme1, mme2, mme3, mme4
conditions 7-66

monitoring subsystem usage
4-29

MORE processing 5-37

MRDS 10-6, 10-8, 10-16

MRPG 1-10

MSF
see multisegment file

Multics Data Base Manager
1-10

Multics Data Management 10-1
abandoning a transaction

10-22

i-14

administering 10-31
administrative commands

10-35
AIM considerations 10-33
before journals 10-24
benefits 10-2
collection manager 10-8
command level interface

10-33
commands
before~ournal_meters

10-35
before~ournal_status

10-33
bj_mgr_call 10-33
create_dm_file 10-33
cv dmcf 10-35
dm_display_version 10-33
dm_lock_meters 10-35
dm_lock_status 10-35
dm_set~ournal_stamps

10-35
dm_set_system_dir 10-35
dm_system_shutdown 10-35
dm_user_shutdown 10-33

AG91-04

Multics Data Management (cont)
commands

transaction 10-33
crash recovery 10-23
creating a system directory

10-31
daemon registration 10-32
data storage 10-8
OMS initial ization 10-26
OMS shutdown 10-28, 10-29
features 10-2
file manager 10-8
index manager 10-8
installation considerations

10-31
integrity services 10-13
locking 10-18
performance 10-33
record manager 10-8
recovery procedures 10-20
relation manager 10-8
retrieval services 10-8
role of the daemon 10-22
run-time parameters 10-32
transaction definition table

(TOT) 10-17
transaction failure 10-21
transaction_manager_ 10-15
usage with MROS 10-6, 10-16

Multics Graphics System 1-10

Multics Report Program
Generator 1-10

Multics security 6-1
mechanisms 6-1

access control lists 6-2
access isolation mechanism

6-12
passwords 6-1
ring mechanism 6-22
user names 6-1

trusted path 6-1, 6-32
DSR signal 6-33
DTR signal 6-33

multiplier
AU 5-31

mu 1 t i segment f i 1 e (MSF) 1-22

N

name (f) (PL/I) condition
7-66

names
alternate 1-15
entry point 3-15
equal 1-19, 3-7
naming conventions 3-1,

3-16, 4-2, 5-7
primary 1-24
reference 1-26, 3-14, 3-32,

4-10, 4-12
reserved 3-16, E-l
shriek 1-26
star 1-27, 3-5
unique

request 10 3-16
shriek 1-29

nondiscretionary access
control 1-22

nonlocal transfer 7-83

not in call bracket condition - - -
7-67

not in_execute_bracket
condition 7-68

not in read bracket condition - -
7-68

not in_write_bracket condition
7-68

no_execute_permission
condition 7-66

i-15 AG91-04

no_read_permission condition
7-66

no_write_permission condition
7-67

NUL character A-4

null_pointer condition 7-68

o

object map 4-5, G-2, G-31
structure of G-31

object segment 1-22, 4-3, G-2,
G-18

bind map G-41
binding 4-11
bound G-l, G-5, G-14, G-37,

G-39
binder symbol block G-39
defined G-37
definition section G-39
internal references G-39
link resolution G-39
links G-36
nonre1ocatab1e G-40

creating 4-3
definition section G-l, G-7,

G-28, G-34, G-37, G-38
defined G-5

entry bound of gate G-4
entry sequence G-3, G-34
first reference G-2, G-18
format 4-4
gate G-3, G-4
1 inkage section 4-4, G-2,

G-18, G-28, G-36, G-37,
G-38

relocation information G-28,
G-36, G-37

reserved entry point E-8
searching for 4-10
self-referencing G-12

object segment (cont)
standard G-l
static section 4-4, G-2,

G-12, G-37
structure G-37
symbol block G-41
symbol section G-2, G-12,

G-28, G-37, G-38
symbol table 4-4
test section G-l, G-33
text section G-12, G-28,

G-37, G-38

object segment, standard
break map G-2
definition section G-l, G-5,

G-7
hash table G-14

format of G-l
gate segment G-4
linkage section G-2, G-18
static section G-2, G-17
symbol section G-2, G-24
text section G-l, G-3

on unit 7-27
any_other condition 7-30

operations
on windows

change_window
clear window
create window

5-47
5-49
5-44

set_window_info 5-47

operator
call H-12
entry H-12
push H-13
return H-13
short call H-12
short_return H-14

op_not_comp1ete condition
7-69

output buffering 5-38

i-16

output conversion table 3-58,
8-11

overflow condition 7-69

overlap rule for windows 5-44

p

packed_pointer_fault condition
7-70

page 1-23
control 1-23

page_fault_error condition
7-70

paging
fault

1-4
1-4

parameter descriptors H-22

parentheses 3-35

parity condition 7-70

PASCAL 1-9, 4-2

passwords 1-23, 6-1

pathname 1-23. 3-2
absolute 1-23, 2-1, 3-2
length of 3-2
relative 1-23, 3-2

PDT
see project definition table

per-process data G-3
1 inkage section 1-21, 4-4,

4-9, G-18
stack H-l
static section 4-4

per-ring data H-l
internal storage offset

table (ISOT) H-I0
linkage offset table (LOT)

H-I0
stack segment H-l

percent sign 3-7

per process data
1 inkage section G-2
see also linkage section,

object segment, and
stack

person name table (PNT) 1-23

Person id 1-23, 9-3

PIT
process initialization table

(P IT)
see process initialization

table

PL/I 1-8, 4-1

pll_operators H-l1

PMF
see project master file

PNT
see person name table

pointer 1~24

positioning the cursor
in windows 5-25

preaccess command entry
preaccess_command statement

8-30
type statement 8-30

prelinking G-2, G-36, G-39

pricing 9-4

i-17 AG91-04

print_terminal_types (ptt)
command B=3

process 1-24
creation 1-4, 4-17
directory 1-24
initial ization of 4-17
overseer 4-16, 4-18, 4-19,

4-21

process initial ization table
(P IT) 1-2 4, 4 - 1 7

Q

Qedx 1-9

question mark 3-5

quit
enab 1 i ng 4-21
handl ing 4-21

quit condition 7-72

process overseer 1-24, 4-16, quit request 1-25
4-18, 4-19, 4-21

closed subsystem 1-8, 1-16 quit signal 1-25, 5-14
limited service system 1-8
standard service system 1-7, quota

1-27 storage 1-7, 1-13, 9-7

process termination fault
7-85

process, initialization of
4-17

program compiling 4-1

program preparation 4-1

program_interrupt condition
7-71

project 1-24
administrator 1-24, 9-1,

9-2
project definition table

(PDT) 1-24
proj ect master f i 1 e (PMF)

1-24

Project_id 1-24, 9-3

pure procedure 1-25

push operator H-13
creation of stack frame

H-13

quoted strings 3-34

quoting character
"Q 5-30

R

raw access 1-25

raw mode
input B-2
output B-2

Rep effective access 5-93

ready message 1-25, 3-31

real-time editor
control characters 5-27
deleting words 5-28
erase and kill values 5-27
erase character 5-27
kill character 5-27
retrieving deleted text

5-28

reconnect.ec 1-25

i-18 AG91-04

record 1-25
physical

header F-2
standard format
trai ler F-4

F-1

record (f) (PLj I) cond it i on
7-73

record manager 10-8, 10-10

relocation (cont)
codes G-34
1 inkage section
relocation blocks

G-29

G-36
G-28,

symbol section G-37
text section G-33

remote access 1-12

repeat action n times
records used ESC n 5-30

see segment, attributes

record_quota_overflow
condition 7-73

recovery
see backup

recursion

redisplay
AL 5-30

1-26, 4-1, 4-14

reference name 1-26, 3-14,
3-32, 4-10, 4-12

register
pointer register 0

operator segment pointer
H-16

pointer register 0 (PRO)
operator segment pointer

H-12
pointer register 4 (PR4)

1 inkage pointer H-12
pointer register 6

stack frame pointer H-16
po inter reg is ter 7 (PR7)

stack base pointer H-16
saving registers H-12. H-13

relation manager 10-8, 10-9

reloading
see backup

relocation G-2, G-28

request ID 3-16

requirements for windows 5-43

reserved characters A-4

reserving resources 5-84

resource control package (RCP)
5-80, 5-89

functions
access control

resources 5-82, 5-89,
5-91

assigning devices 5-82,
5-84

attaching devices 5-82,
5-85

cancelling resources 5-82
detaching devices 5-82
device control functions

5-82
reserving resources

5-84
resource information

5-89
unassigning devices

RCP effective access

5-82,

5-82,

5-82
5-93

resource information 5-89

resource management 5-88, 9-1

i-19 AG91-04

resource type master fi le
syntax of the RiMF

naming rules for
attributes 5-90

retr i eva 1 1-26
see backup

retrieving deleted text 5-28
ESC Y 5-28

return operator H-13

return_conversion_error
condition 7-74

ring brackets
see segment, attributes

ring mechanism 6-22
advantages 6-22
directory access rights

6-29
directory validation levels

6-29
implementation 6-28
modifying directory ring

brackets 6-31
modifying segment ring

brackets 6-29
null access 6-24
ring attributes 6-22
ring brackets 6-23

execute 6-23
gate 6-24
read 6-23
write 6-23

setting directory ring
brackets 6-31

setting segment ring
brackets 6-28

usage of 6-24
user ring brackets 6-31

rings 1-3, 1-6, 1-26, 9-6
access contro 1 (r i ng

brackets) 1-26
condition mechanism 7-32

rings (cont)
gate 1-6

root 1-26, 2-1, 3-2

S

safety switch
see segment,

scheduler
see traffic controller

scratch 5-87

scrolling
in windows 5-26

search rules 1-26, 3-14, 3-32,
4-10

initialization of 4-17
working directory 4-17

security 9-2

securi~y out of service switch
see directory, attributes

segment 1-3, 1-26, 2-1

j-20

access control
access class 2-7
ACL 2-8
ring brackets 2-12

attributes 2-7
access class 2-7
access control list 2-8
author 2-8
bit count 2-8
bit count author 2-8
complete volume dump

switch 2-8
copy switch 2-8
current length 2-9
damaged switch 2-9
date-time contents

modified 2-9
date-time dumped 2-9

AG91-04

segment (cont)
attributes

date-time entry modified
2-10

date-time used 2-10
dnzp switch 2-10
entry point bound 2-11
incremental volume dump

switch 2-11
logical volume identifier

2-11
maximum length 2-12
names 2-12
records used 2-12
safety switch 2-13
type 2-13
unique identifier 2-13
use count 2-13

creating 1-3
number 1-3
reserved names E-2
see also object segment,

stack
shar i n9 1-5
wired 1-30

seg_fault_error condition
7-74

selective alteration
in windows 5-26

selective erasure
in windows 5-26

semicoion 3-33

setting terminal types B-3

set_tty (stty) command B-4

short_return operator H-14

shot_call operator H-12

size condition 7-74

snapped link 4-10

Sort/Merge 1-9

source map G-27

source program
source segment

source segment 4-2
debugging 4-5
editing 4-2

special characters table 3-56,
B-ll, B- 26

example of B-32
special_table statement

8-26

special characters table entry
backspace statement 8-27
black_shift statement B-27
carriage_return statement

B-27
edited_output_escapes

statement B-28
end_of_page statement B-28
form_feed statement B-27
input_escapes statement

8-28
new_line statement 8-27
output_escapes statement

8-28
printer off statement
printer_on statement
red_shift statement

B-27
8-27

8-27
tab statement 8-27
vertical_tab statement B-27

special directoiies
default working directory

home directory 4-20

ssu subroutine 4-27

stack 1-27, 4-1, 4-5, 4-14,
H-l

i-21 AG91-04

stack (cont)
frame 4-i4, H-l, H-;, H-7

creation of H-11, H-16
header 4-14, H-1

stack and link area H-1
internal static offset table

H-IO
1 inkage offset table H-10
Multics stack H-1
Multics stack

,c ___ _

I I alllt::

stack header H-1

stand-alone invocations 4-28

standard checksum F-10

standard requests 4-51

standard requests table 4-51,
J-1

star convention 1-27, 3-5

start_up.ec 1-27, 4-20

statement map G-72

static section 1-4, 4-4, G-2,
G-17

static storage
see also relocation

status codes 7-2
creating tables 7-3
definition 1-27

storage
automatic 1-3, 1-13
quota 1-7, 1-13, 9-7

storage classes
automatic H-l
internal G=2
internal static G-36
static G-18, G-37, H-I0

storage condition 7-75

storage system 1-3, 2-1, 2-13,
4-1

backup 8-1

store condition 7-75

stringrange condition 7-75

stringsize condition 7-76
_ •• J.... __ ••• : __ _
::'ULJI VU L , "t::::.

calling sequences H-11

subscriptrange condition 7-77

subsystem 1-28

subsystem debugging facil ities
4-50

subsystem environment 4-29
rp_options structure 4-33
tailoring 4-44

modifying standard request
processor 4-32

replaceable procedures
4-45

subsystem invocations 4-27
info_ptr 4-28
sci_ptr 4-28

subsystem macros
multics_request 4-56
request 4-53
set_default_flags 4-55
set_default_multics_doc

4-58
set_default_multics_flags

4-57
unknown_request 4-55

subsystem request tables 4-50
defining request tables

4-50
standard request tables

4-51

i-22 AG91-04

subsystem self-documentation
4-47

sub error condition 7-76

suffix 1-28
reserved 1 isting segment

suffix E-4
reserved segment name

suffixes E-4
spec i a 1 E-4

sus_ condition 7-77

switch
see I/O

symbol block G-39

symbol blocks G-44

symbol offset 3-15

symboi section 4-4, G-2, G-24,

system libraries 4-11

system parameters
data base

sys_info 1-2
whotab 1-4

system_shutdown_scheduled_
condition 7-78

sys_info data base 1-2

T

tab 3-44

tape F-1
administrative records F-4
density F-9
parity F-9
standard format F-1

G-28, G-37, G-38 Ted 1-9
symbol block G-25, G-26
symbol header G-24 terminal 8-1

symbol table 4-3
data type codes
entry info block
free-format G-43

G-71
G-51

Pascal runtime symbol node
G-61, G-68

PL/l runtime symbol table
G-46

runtime_block node
runtime_symbol node
runtime_token node
statement map G-72
symbol block G-44

G-48
G-52

G-47

system access control 9-6

system administrator 1-28,
9-1, 9-2

System Administrator Table
(SAT) 1-28

terminal type 1-29, 8-2
changing 8-4
preaccess commands 8-30
setting B-3

terminal type entry 8-7
additional info statement

i-23

B-8
bauds statement B-8
bps statement B-8
buffer size statement
cps statement B-9
delay statement B-9
erase statement B-I0
examples of 8-30
framing_chars statement

8-12

8-13

function_keys statement 8-7
global statement 8-22
initial_string statement

B-7

AG91-04

terminal type entry (cont)
input_conversion statement

8-11
input_resume statement 8-12
input_suspend statement

8-12
input_translation statement

8-11
keyboard_addressing

statement 8-11
kill statement B-I0
line del imiter statement

8-10
line_types statement 8-10
modes statement 8-7
output_acknowledge statement

8-13
output_end_of_block

statement 8-13
output_resume statement

8-13
output_suspend statement

8-13
set_input_conversion order

8-24
set_output_conversion order

8-24
special statement 8-11
terminal_type statement 8-7
video table 8-14

terminal type file 3-57, B-3,
8-6

character specifications
8-6

default_types statement
8-28

global statements 8-22

terminal type table 8-3
default TTT 8-4

term ina 1 s 1-12
characteristics 1-29
!/O 5-24

terminate 1-29, 3-15, 4-12

text relocation codes G-34

text section 4-4, G-l, G-28,
G=37, G=38

entry sequence G-3, G-34
gate entry point transfer

vector G-3
structure of G-3

time 4-15

time zones 4-15

timer_manager_err condition
7-78

traffic controller 1-29

trailer lines 5-44

transaction command 10-33

transaction definition table
(TOT) 10-17

transaction_bj_fu1 1_ condition
7-78

transaction deadlock
condition 7-79

transaction_lock_timeout_
condition 7-80

transaction_manager_ 10-15

translation table 8-3, 8-11,
8-12, 8-24

example of 8-32

translators 1-8, 1-29, 4-2

transm it (f) (PL/I) cond it ion
7-80

trap 4-9

trap word G-13

trm condition 7-81

i-24 AG91-04

trojan horse 6-13

truncation condition 7-81

trusted path
OSR signal
OTR signal

tty_

6-1, 6-32
6-33
6-33

modes operation B-18
set_input_conversion order

B-23
set_input_translation order

B-24
set_output_conversion order

B-23

tty_ modes B-18
can 3-41
ctl_char 3-44
edited 3-58, B-28
erki 3-41
esc 3-41, 3-50
raw i 3-41, B- 2
rawo B-2
wake tbl B-22

twiddle characters
AT 5-31

twiddle words
ESC T 5-31

type
see segment, attributes

type pair G-11

u

undefinedfile condition 7-81

undefined_pointer condition
7-82

underflow condition 7-82

unique identifier
see segment, attributes

unique name
see names

unique_bits_ subroutine 4-16

unique_chars_ subroutine 4-16

unsnapped 1 ink 3-14

unwinder_error condition 7-82

usage
background absentee 9-4
foreground absentee 9-4
I/O daemon 9-5
interactive 9-4

use count
see segment, attributes

user 9-3

user names 6-1

user_dir_dir, (udd) 1-29

user_i/o I/O switch 5-14

user_i/o window 5-49

User i d 1-29

user_input I/O switch 5-14

user io window 5-40, 5-44,
5-47

size of 5-40

user_output I/O switch 5-14

i-25 AG91-04

v

video subroutines
video_utils_$turn_on_

login_channel 5-44
wi ndow_$clear_wi ndow example

5-49
window_$create example 5-47
window_$destroy example

5-48

video system
attaching 5-40
detaching 5-42
features

end of window processing
5-37

MORE processing 5-37
windows 5-24

video table 8-14
control sequences 8-14
function simulation B-17
global statement 8-22
required functions
statements 8-15

8-17

virtual memory 1-3, 4-1

volume
label 1-29
logical 1-22, 2-2

attachment 2-4
physical 1-24

volume access control 9-6

volume names 5-87
reserved

scratch 5-87
TO_Volume 5-87

VTOC 1-30

W

wakeup 4-15, 4-16

white space 3-49

who table 1-30

whotab data base 1-4

window editor request 1 ist
ESC? 5-31

windows
definition 5-24
height of 5-44
miscellaneous capabilities

5-26
naming of 5-44
number permitted
operations 5-24

change_window
clear_window
create_window

5-44

5-47
5-49
5-44

t.-I. i
./ *'t I

overlap rule 5-44
positioning cursor 5-25
requirements 5-43
scrolling 5-26
selective alteration 5-26
selective erasure 5-26
trai ler lines 5-44
width of 5-44

window
window_$clear_window

example 5-49
window_$create

example 5-47
window_$destroy

example 5-48

word 1-30

WORDPRO 1-10

work class 9-5

i-26 AG91-04

workspace size 5-86

writing subsystem requests
4-38

apply request 4-39
areas and temporary segments

4-43
argument process i,ng 4-38
as Multics commands 4-40
error handl ing 4-39
exec_corns 4-43

z

zerodivide condition 7-83

i-27 AG91-04

I

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

TITLE

MULTICS
PROGRAMMER'S REFERENCE MANUAL
ADDENDUM A

: - ERRORS IN PUBLICATION
I
i
I
I

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

I
I

Your comments will be investigated by appropriate technical personnel
and action will be taken as required. Receipt of all forms will be
acknowledged; however, if you require a detailed reply, check here. 0

PLEASE FILL IN COMPLETE
ADDRESS BELOW.

FROM: NAME __________ ~ ________________________________ __

TITLE ___ _

COMPANY _______________________________________ _

ADDRESS __ __

ORDER NO. I AG91-04A

DATED FEBRUARY 1987

DATE __________ _

PLEASE FOLD AND TAPE-
NOTE: U.S. Postal Service will not deliver stapled forms

IIIIII
BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 39531 WALTHAM, MA 02154

POSTAGE Will BE PAiD BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA02154

ATTN: PUBLICATIONS, MS486

Honeywell

NO POSTAGE
NECESSARY
IF MA!LED

INTHE
UNITED STATES

w
z
:::i
Ci z
o
..J
«
~
:l
()

I
I
I
I
I
I
I

,..

I

I

+

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

MULTICS
TITLE PROGRAMMER'S REFERENCE MANUAL

ERRORS iNPifsLlCATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Your comments will be investigated by appropriate technical personnel
and action will be taken as required. Receipt of all forms will be
acknowledged; however, if you require a detailed reply, check here. 0

FROM: NAME --
TITLE __________________________ . ____________ _

COMPANY --------
ADDRESS __ __

ORDER No·1 AG91-04

DATED I FEBRUARY 1985

OATE

PLEASE FOLD AND TAPE-
NOTE: U. S. Postal Service will not deliver stapled forms

I II II I

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 39531 WALTHAM, MA02154

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02'54

ATTN: PUBLICATIONS, MS486

Honeywell

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

"

I
I
I
I
I
I

"-4!

-
<
t

Together, we can find the answers.

Honeywell
Honeywell Information Systems

U.S.A.: 200 Smith St.. MS 486, Waltham, MA 02154
Canada: 155 Gordon Baker Rd., Willowdale, ON M2H 3N7

U.K.: Great West Rd., Brentford, Middlesex TW8 9DH Italy: 32 Via Pirelli, 20124 Milano
Mexico: Avenida Nuevo Leon 250, Mexico 11, D.F. Japan: 2-2 Kanda Jimbo-cho, Chiyoda-ku, Tokyo

Australia: 124 Walker St., North Sydney, N.S.W. 2060 S.E. Asia: Mandarin Plaza, Tsimshatsui East, H.K.

42843, 9C585, Printed in U.SA AG91-04

	00000
	00001
	00002
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	01-15
	01-16
	01-17
	01-18
	01-19
	01-20
	01-21
	01-22
	01-23
	01-24
	01-25
	01-26
	01-27
	01-28
	01-29
	01-30
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08.0
	03-08.1
	03-08.2
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	03-30
	03-31
	03-32
	03-33
	03-34
	03-35
	03-36
	03-37
	03-38
	03-39
	03-40
	03-41
	03-42
	03-43
	03-44
	03-45
	03-46
	03-47
	03-48
	03-49
	03-50
	03-51
	03-52
	03-53
	03-54
	03-55
	03-56
	03-57
	03-58
	03-59
	03-60
	03-61
	03-62
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32
	04-33
	04-34
	04-35
	04-36
	04-37
	04-38
	04-39
	04-40
	04-41
	04-42
	04-43
	04-44
	04-45
	04-46
	04-47
	04-48
	04-49
	04-50
	04-51
	04-52
	04-53
	04-54
	04-55
	04-56
	04-57
	04-58
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	05-29
	05-30
	05-31
	05-32
	05-33
	05-34
	05-35
	05-36
	05-37
	05-38
	05-39
	05-40
	05-41
	05-42
	05-43
	05-44
	05-45
	05-46
	05-47
	05-48
	05-49
	05-50
	05-51
	05-52
	05-53
	05-54
	05-55
	05-56
	05-57
	05-58
	05-59
	05-60
	05-61
	05-62
	05-63
	05-64
	05-65
	05-66
	05-67
	05-68
	05-69
	05-70
	05-71
	05-72
	05-73
	05-74
	05-75
	05-76
	05-77
	05-78
	05-79
	05-80
	05-81
	05-82
	05-83
	05-84
	05-85
	05-86
	05-87
	05-88
	05-89
	05-90
	05-91
	05-92
	05-93
	05-94
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	06-26
	06-27
	06-28
	06-29
	06-30
	06-31
	06-32
	06-33
	06-34
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	07-25
	07-26
	07-27
	07-28
	07-29
	07-30
	07-31
	07-32
	07-33
	07-34
	07-35
	07-36
	07-37
	07-38
	07-39
	07-40
	07-41
	07-42
	07-43
	07-44
	07-45
	07-46
	07-47
	07-48
	07-49
	07-50
	07-51
	07-52
	07-53
	07-54
	07-55
	07-56
	07-57
	07-58
	07-59
	07-60
	07-61
	07-62
	07-63
	07-64
	07-65
	07-66
	07-67
	07-68
	07-69
	07-70
	07-71
	07-72.0
	07-72.1
	07-72.2
	07-73
	07-74
	07-75
	07-76
	07-77
	07-78
	07-79
	07-80
	07-81
	07-82
	07-83
	07-84
	07-85
	07-86
	08-01
	08-02
	08-03
	08-04
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	10-24
	10-25
	10-26
	10-27
	10-28
	10-29
	10-30
	10-31
	10-32
	10-33
	10-34
	10-35
	10-36
	A-01
	A-02
	A-03
	A-04
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	B-23
	B-24
	B-25
	B-26
	B-27
	B-28
	B-29
	B-30
	B-31
	B-32
	B-33
	B-34
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15
	C-16
	C-17
	C-18
	C-19
	C-20
	C-21
	C-22
	C-23
	C-24
	C-25
	C-26
	C-27
	C-28
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	D-13
	D-14
	D-15
	D-16
	D-17
	D-18
	D-19
	D-20
	D-21
	D-22
	D-23
	D-24
	D-25
	D-26
	D-27
	D-28
	D-29
	D-30
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	F-07
	F-08
	F-09
	F-10
	G-01
	G-02
	G-03
	G-04.0
	G-04.1
	G-04.2
	G-05
	G-06
	G-07
	G-08
	G-09
	G-10
	G-11
	G-12.0
	G-12.1
	G-12.2
	G-13
	G-14
	G-15
	G-16
	G-17
	G-18
	G-19
	G-20
	G-21
	G-22
	G-23
	G-24.0
	G-24.1
	G-24.2
	G-25
	G-26
	G-27
	G-28
	G-29
	G-30
	G-31
	G-32
	G-33
	G-34
	G-35
	G-36
	G-37
	G-38
	G-39
	G-40
	G-41
	G-42
	G-43
	G-44
	G-45
	G-46
	G-47
	G-48
	G-49
	G-50
	G-51
	G-52
	G-53
	G-54
	G-55
	G-56
	G-57
	G-58
	G-59
	G-60
	G-61
	G-62
	G-63
	G-64
	G-65
	G-66
	G-67
	G-68
	G-69
	G-70
	G-71
	G-72
	G-73
	G-74
	H-01
	H-02
	H-03
	H-04
	H-05
	H-06
	H-07
	H-08
	H-09
	H-10
	H-11
	H-12
	H-13
	H-14
	H-15
	H-16.0
	H-16.1
	H-16.2
	H-17
	H-18.0
	H-18.1
	H-18.2
	H-19
	H-20
	H-21
	H-22
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	I-09
	I-10
	J-01
	J-02
	J-03
	J-04
	J-05
	J-06
	J-07
	J-08
	J-09
	J-10
	J-11
	J-12
	J-13
	J-14
	J-15
	J-16
	J-17
	J-18
	index-01
	index-02
	index-03
	index-04
	index-05
	index-06
	index-07
	index-08
	index-09
	index-10
	index-11
	index-12
	index-13
	index-14
	index-15
	index-16
	index-17
	index-18
	index-19
	index-20
	index-21
	index-22
	index-23
	index-24
	index-25
	index-26
	index-27
	index-28
	replyA
	replyB
	replyC
	replyD
	xBack

