
Multics

Commands and Active Functions

Honeywell Bull

SUBJECT

MULTICS

COMMANDS AND ACTIVE FUNCTiONS

Description of Standard Multics Commands and Active Functions

SPECIAL INSTRUCTIONS

This publication supersedes the previous edition of the manual, Order No.
AG92-05, dated January 1983, and its addendum AG92-05A, dated December
1983.

Marginal change indicators (change bars and asterisks) indicate technical
changes.

SOFTWARE SUPPORTED

Multics Software Release 11.0

ORDER NUMBER

AG92-06 February 1985

Hone~ell Bull

PREFl\CE

The Multics Commands and Active Functions manual is organized into four sections.
Section 1 contains a basic introduction to manual use and term definition. Section 2 contains the
standard Multics commands and active functions arranged by function. Section 3 contains the
descriptions of those commands and active functions in alphabetical order. Section 4 describes
the requests used to gain access to the system.

Throughout this manual. references are made to the Multics Programmer's Reference Manual
(AG91) and the Multics Subrouti nes and I/O Modules (AG93). For convenience, these are
referred to in the text as the Programmer's Reference Manual and the Subroutines manual.

Significant Changes in AG92-06B

The disconnect command was added to section 3.

The following commands changed to improve functionality:
abbrev
contents
dial
fortran
help
print_motd
switch_on
SWitch_off

The following commands have been extensively revised:
copy _dump_tape
compare_dump_tape
read_tape_and_query

The enter_output_request command was revised to satisfy a customer change request.

Honeywell Bull disclaims the implied warranties oi merchaniabiiity and fitness for a par
ticular purpose and makes no express warranties except as may be stated in its written
... greement with and for its customer. In no event is Honeywell Bull liable to anyone for any
indirect, special or consequential damages.

The information and specifications in this document are subject to change without notice.
Consult your Honeywell Bull Marketing Representative for product or service availability.

Copyright @ Honeywell Bull Inc., 1985 File No.: lLI3 AG92-06

Section 1

Section 2

Section 3

12/87

CONTENTS

Manual Use and Term Definition
Description of Manual Format
General Definition of a Command
General Definition of an Active Function
Examples of Command vs Active Function Use.
Errors
Storage System Entry Types

Segtnent
Directory
Link ,
Multisegtnent File
Data Management File
Extended En try Types .

Date/Time Values
Date/Time Input Values

Time Strings (DT Values)
Date/Time Output Values

Time Format ..

Ref erence to Commands and Active Functions

Commands and Active Functions.
abbrev (ab) .
accept_messages (am)
accepting
acquire_resource (aqr)
add_name (an) .
add_pnotice
add_search_paths (asp)
add_search_rules (asr) , ; ; ;
adjust_hit_count (abc)
after (af)
aIm
alm_abs (aa)
and
answer
..... 1 (",'l .. _1\
"PI ,y """PII •••••.••••••••••••••••••••••••••

archive (ac) .
archive_sort (as)
archive_table (act) .
area_status
assign_resource (ar)
attach_audit (ata)
attach_Iv (aIv)
basic
bef ore (be) .

1-1
1-1
1-5
1-5
1-6
1-6
1-6
1-6
1-6
1-6
1-7
1-7
1-7
1-8
1-8
1-8

1-13
1-13

2-1

3-1
3-2
3-8

3-12
3-12
3-14

3-14.2
3-15
3-17
3-18
3-19
3-20
3-48
3-50
3-50
3-53
3-54
3-64
3-65
3-67
3-68
3-71
3-78
3-79
3-80

iii AG92-06B

12/87

bef ore.Journal_status (bjst)
binarv (bin)
bind ~(bd) .-
bj_rngr _call (bjrnc)
bool
branches
byte
calc
calendar
calendar_clock .
cancel_abs_request (car)
cancel_cobol_program. (ccp)
cancel_daemon_request (cdr)
cancel_output_request (cor)
cancel_resource (cnr)
cancel_retrieval_request (crr)
canonicalize (canon)
canonicalize_mailbox
ceil
change ___ default_wdir (cdwd)
change_error _mode (cern) .
change_ wdir (cwd) .
check_file_system_damage (cfsd) .
check_iacl
check_info_segs (cis)
clock
close_file (cn
cobol
cobol_abs (cba)
collate
collate9
comp_dir_info
compare
compare_ascii (cpa)
compare_confiLdeck
compare_dump_tape .
compare_entry _names (cen) .
compare_object (cob)
compare_pll (cpp) • .
component
connect ...•..............................
contents
convert_characters (evc) .
convert_ee (cvee)
copy (cp)
copy_acl
copy_cards (ccd) = ••••

copy_characters (cpch)
copy_dir (cpd)
copy_dump_tape
copy_file (cpf)
copy _iacI_dir ..
copy _iacl_seg .
copy_names

3-81
3-84
3-85
3-92
3-97
3-98

3-98.1
3-99

3-102
3-107
3-108
3-110
3-111
3-113
3-115
3-116
3-118
3-119
3-121
3-121
3-122
3-123
3-124
3-125
3-126
3-128
3-129
3-130
3-134
3-136
3-136
3-137
3-140
3-142
3-146
3-148
3-150
3-150.1
3-151
3-152
3-152
3-153
3-154
3-155
3-158
3-160
3-161
3-162
3-163
3-165
3-167.1
3-171
3-172
3-172

iv AG92-06B

12/87

create (cr)
create_area .
create_data_segment (cds) .
create_dir (cd) .
create_dm_file .
cross_reference (cref)
cumulative_page_trace (cpt) .
cv_ttf
date
date_compiled (dtc)
date_deleter
date_time
date_time_after (dtaf) .
date_time_before (dthe)
date_time_equal (dteq)
date_time_interval (dti)
date_tirne_ valid (dtv)
day
day_name
debug (db)
decat
decimal (dec) .
decode
decode_access_class (dac) .
default
default_wdir (dwd)
defer_messages (dm)
delete (dl)
delete_acl (da) . = • • •

delete_dir (dd) .
delete_external_variables (dev)
delete_iacl_dir (did)
delete_iacl_seg (dis)
delete_message (dIm)
delete_name (dn)
delete_search_paths (dsp)
delete_search_rules (dsr)
delete_volume_quota (dlvq) .
describe_entry _type (dset)
descrihe_psp
detach_audit (dta) .
detach_Iv (dlv) .
dial_manager_call
dial_out
directories (dirs)
directory (dir)
discard_output (dco) .
disconnect
display _audit_file (daf)
display _cobol_run_unit (dcr) .
display_component_name (dcn)
display_entry _point_dcI (depd) .
display _mailins-address (dsmla)
display _pllio_error (dpe) .

3-173
3-174
3-175
3-176
3-179
3-180.1
3-185
3-188
3-189
3-190
3-192
3-194
3-195
3-195
3-196
3-1%
3-198
3-199
3-200
3-201
3-226
3-227
3-227
3-229
3-229
3-230
3-231
3-232
3-233
3-235
3-236
3-236
3-238
3-239
3-241
3-243
"'" ""AI"'" -,-.l~-'

3-244
3-244.1
3-246
3-247
3-247
3-248
3-250
3-255
3-256
3-256.1
3-256.2
3-257
3-260
3-260
3-261
3-263
3-264

v AG92-()6B

12/87

display _pnotice .
display _subsystem_usage = = • = = = = = = • • • • • • • • • • • •

display_time_info (dsti)
display _ ttt
divide
dm_display _ version
dm_user_shutdown
do
do_subtree
dprint (dp) .
dpunch (dpn) .
dump_segment (Os)
edm
emacs
encode
encode_access_class (eac) .
enter_abs_request (ear)
enter _output_request (oor)
enter_retrieval_request (err)
entries
entry
en try _path
equal
equal_name (enm)
exec_com, ec (version 2) .
exec_com, ec (version 1)
execute_string (exs)
exists
expand_cobol_source (ecs)
explain_doc (edoc)
exponent_control .
fast
file_output (fo)
files
floor
format_document (fdoc)
format_line (fl)
format_line_nnl (flnn})
format_pH (fp)
format_string (fstr)
fortran (ft) .
fortran_abs (fa)
gcos (gc)
general_ready (gr) .
generate_pnotice
get_dir_quota
get_effective_access (gea)
get_ips_mask
get_library _segment (gls)
get_mode
get_pathname (gpn)
get_quota (gq)
get_system_search_rules (gssr)
greater

3-265
3-266
3-268
3-269
3-270
3-270
3-271
3-271
3-276.1
3-278
3-282
3-285
3-289
3-290
3-293
3-294
3-294
3-300
3-314
3-316
3-317
3-317
3-318
3-319
3-320
3-336
3-346
3-350.1
3-350.5
3-352
3-355
3-356
3-356
3-358
3-359
3-360
3-366
3-368
3-370
3-392
3-394
3-399
3-401
3-403
3-410
3-412
3-413
3-414
3-415
3-419
3-419
3-420
3-422
3-422

vi AG92-06B

12/87

hash_table (ht) .
have_mail
have_messages
have_Queue_entries
help
hexadecimal (hex)
high
high9
history_comment (hcom)
home_dir (hd)
hour
how_many_users (hmu)
hunt
hunt_dec
if
immediate_messages Om)
indent Ond)
index 0 • • 0 • • • • • • • • • • • • 0 • • • • • • • • •

index_set
ini tia te (in) .
io_call (io) .
is_component_pathname (icpn)
kermit
16_ftf
last_message (lm)
last_message_destination (lmds) .
last_message_sender (lms) .
last_message_time (lmt)
length Un)
less
library _descriptor (Ids)
library_fetch (If)
line_length (II) .
link (lk)
linkage_editor (le) .
links
list (Is)
list_abs_requests Oar)
list_accessible (lac) .
list_acl Oa) .
list_daemon_requests (Idr)
list_dir_info
list_emacs_ctls
list_entry _types (lset)
list_external_variables (lev)
list_fortran_storage (lfs)
list_heap_ variables (Ihv) .
list_help (lh)
list_iacl_dir (lid) . , . . .
list_iacl_seg (lis)
list_mdir (lmd) .
list_not_accessible (lnac)
list_output_requests (lor)
list_pnotice_names .

3-423
3-425
3-427
3-429
3-430
3-432.8
3-432.9
3-432.9
3-432.9
3-432.23
3-432.23
3-432.24
3-432.26
3-432.27
3-432.29
3-439
3-440
3-442
3-442
3-444
3-445
3-466.1
3-467
3-476
3-477
3-478
3-479
3-480
3-481
3-482
3-483
3-485
3-489
3-490
3-492
3-492.3
3-492.4
3-500
3-503
3-504
3-506
3-509
3-510
3-510
3-511
3-511
3-512
3-512.1
3-513
3-514
3-516
3-518
3-519
3-521

vii AG92-()6B

12/87

list_ref _names (Irn) 3-522
list_resource_types Ort) ;;"" 3-523
list_resources (Ir) 3-524
list_retrieval_requests (Irr) 3-525
list_sub_tree (1s1) 3-527
list_tape_contents (Itc) 3-528
list_temp_segments .. 3-531
Iogin_args. 3-532
logout 3-534
Ions-date .. 3-535
lonuear .. 3-536
low 3-536
lower_case (Iowercase) .. 3-537
ltrim 3-538
Iv_attached .. 3-538
mail (mn .. 3-539
manage_volume_pool (mvp) 3-542
master _directories (mdirs) .. 3-556
max 3-558
mbx_create (mber) .. 3-558
memo. .. 3-559
menu_create 3-563
menu_delete 3-565
menu_describe .. 3-566
menu_display . . . , , . . . , 3-567
menuJet_choice .. 3-567
menu_list .. 3-570
merge_ascii (rna) .. 3-570
message_status (msgst) .. 3-574
micro_transfer (mt) 3-575
min 3-578
minus. .. 3-579
minute 3-579
mod .. 3-580
monitor_quota 3-581
month .. 3-582
month_name 3-583
move (mv) 3-584
move_abs_request (mar) .. 3-585
move_daemon_request (mdr) .. 3-587
move_dir (mvd) 3-590
move_names 3-592
move_output_request (mor) .. 3-592
move_quota (mq) 3-594
mtape_deIete_defaults .. 3-596
mtapeJet_defaults 3-597
mtape_set_defaults .. 3-598
msfs .. 3-596
nequal. .. 3-597
network_request (nr) 3-597
new_proc .. 3-601
ngreater .. 3--605
nless .. 3--605
no_save_on_disconnect 3-6OQ

viii AG92-06B

12/87

non branches
non directories (nondirs) , ,
nonfiles
nonlinks
nonmaster _directories (nmdirs) .
nonmsfs
nonnull_links (nnlinks)
nonobject_files (nobfiles) .
nonobject_msfs (nobmsfs) .
nonobject_segments (nobsegs) .
nonsegments (nonsegs)
nonzero_files (nzfiles)
nonzero_msfs (nzmsfs)
nonzero_segments (nzsegs)
not
nothing (nt)
null_links (nlinks) .
object_files (obfiles) .
object_msfs (obmsfs)
object_segments (osegs)
octal (oct)
on
or
overlay (ov)
page_ trace (pgt)
pascal (pas) .
pascal_area_status
pascal_create_area .
pascal_cross_reference (pascal_cref)
pascal_delete_area . ,
pascal_display
pascal_file_status .
pascal_in den t .
pascal_reset_area .
pascal_set_prompt .
path
pause
peruse_crossref (perer)
picture (pic)
pl1
pl1_abs (pa)
pH_macro (pmac)
plus
........... t 1..-.\
.t"11111. \.t"1 J •

print_attach_table (pat)
print_auth_names (pan)
print_bind_map (pbm)
print_con figuration_deck (pcd) .
print_default_wdir (pdwd)
print_error_message (pem)
print_link_info (pli)
print_linkage_usage (plu)
print_mail (prm)
print_messages (pm)

3-606
3-607
3-608
3-609
3-610
3-611
3-612
3-613
3-614
3-616
3-616.1
3-616.2
3-616.3
3-616.4
3-616.5
3-616.5
3-616.6
3-616.7
3-616.8
3-616.9
3-616.10
3-616.11
3-618
3-619
3-620
3-622
3-626
3-628
3-629
3-630
3-631
3-632.3
3-632.3
3-632.5
3-632.5
3-632.6
3-633
3-634
3-636
3-637
3-644
3-645
3-651
3-652
3-656
3-657
3-658
3-659
3-661
3-662
3-663
3-665
3-665
3-670

ix AG92-06B

12/87

print_motd (pmotd)
print_proc_auth (ppa)
print_relocation_info (pri)
prin t_request_ types (prt)
print_sample_refs
print_search_paths (psp)
print_search_rules (psr)
print_terminal_types (ptt)
print_time_defaults (ptd) .
print_ttt_path
print_wdir (pwd)
probe (pb)
process_dir (pd)
process_switch_off (pswf) .
process_switch_on (pswn)
profile (pr)
program_in terrupt (pi)
progress (pg)
qedx (qx)
query
quotient
rank
read_mail (rdm)
read_tape_and_query (rtq)
ready (rdy) .
ready_off (rdf)
ready_on (rdn)
rebuild_dir .
reconnect_ec_disable .
reconnect_ec_enable
reductions (rdc)
release (r 1)
release_resource (rlr)
rename (rn)
reorder_archive (ra)
repeat_line (rpl)
repeat_query (rq)
reprint_error (re)
reserve_resource (rsr) .
reset_external_ variables (rev) •
reset_ips_mask .
resolve_linkage_error (rIe)
resource_status (rst)
resource_usage (ru)
response
reverse (rv) .
reverse_after (rvan
reverse_before (rvbe)
reverse_decat (rvdecat),. e • • e e e , e , • • • • , •

reverse_index (rvindex)
reverse_search (rvsrh) .
reverse_substr (rvsubstr)
reverse_verify (rvverify),....
revert_output (ro)

3-673
3-673.1
3-674
3-674.1
3-675
3-677
3-678
3-678
3-678
3-680
3-680
3-680
3-707
3-707
3-708
3-708
3-714
3-715
3-717
3-728
3-730
3-731
3-731
3-741
3-749
3-749
3-750
3-750
3-751
3-751
3-752
3-790
3-790
3-791
3-792
3-793
3-794
3-796
3-796
3-798
3-798
3-799
3-800
3-802
3-803
3-806
3-807
3-808
3-809
3-810
3-811
3-812
3-812.1
3-813

x AG92-D6B

12/87

rtrim
run
run_cobol (rc) .
runoff (rf) ..
runoff _abs (rfa)
sample_refs .
save_dir_info
save_history _registers
save_on_disconnect
search (srh)
segments (segs) .
select
send_mail (sdm)
send_message (sm)
set_acl (sa) .
set_bit_count (sbc)
set_cc
set_dir_ring_brackets (sdrb)
set_epilogue_command
set_fortran_common (sfc)
set_iacl_dir (sid)
set_iacl_seg (sis)
set_ips_mask
set_mailin~address (smla)
set_max_Iength (smI)
set_mdir_account (smda)
set_mdir_owner (smdo)
set_mdir_quota (smdq)
set_resource (setr)
set_rin&-brackets (srb)
set_search_paths (ssp) .
set_search_rules (ssr)
set_severity _indicator (ssi)
sel_system_storage .
set_time_default (std)
set_ttt_path
set_tty (stty)
set_user_storage
set_volume_quota (svq)
severity
shortest_path
signal
sort_seg (ss)
sort_strings (sstr)
start (sr)
status (st) .
stop_cobol_run (scT) .
stop_run
string
strip
strip_component (spc) .
strip_entry (spe)
substitute_arguments (sbag)
substr

3-814
3-814
3-819
3-822
3-842
3-844
3-845
3-846
3-847
3-847
3-848
3-849
3-851
3-861
3-864.1
3-867
3-868
3-869
3-870
3-871
3-872
3-873
3-875
3-875
3-876
3-877
3-877
3-878
3-879
3-881
3-882
3-883
3-884
3-884
3-885
3-887
" 00..,. ,,)-001

3-896
3-898
3-899
3-900
3-901
3-903
3-912
3-919
3-919
3-926
3-927
3-928
3-928
3-930
3-931
3-932
3-935

xi AG92-()6B

12/87

suffix
syn_output (so)
system
system_type
tape_archive (ta) .
tape_in
tape_out
teco
teco_error
teco_ssd
terminal_output (to)
4- ___ ! __ +_ 1._\
U;llllllli1LC \ LillI •

terminate_ref name (tmr)
terminate_segno (tms)
terminate_single_refname (tmsr)
test_archive .
time
times
total_output_requests (tor)
trace
trace_meters (tmt)
trace_stack (ts)
transaction (txn)
translate
trunc
truncate (tc)
tutorial
unassign_resource (ur)
underline
unique
unlink (uI)
upper _case (uppercase)
user
validate_info_seg (vis)
validate_pictured_data (vpcl)
value_defined (vdf)
value_delete (vdI)
valueJet (vg)
value_list (vIs)
value_path (vp)
value_set (vs) .
value_set_path (vsp)
verify ,
vfile_adjust (vfa)
vfile_find_bad_nodes
vfile_status (vfs) ...
walk_subtree (ws)
watch
where (wh)
where_doc (wdoc)
where_search_paths (wsp)
who
window_call (wdc)
workin~dir (wd)

3-935
3-940
3-940
3-940.3
3-940.4
3-951
3-965
3-971
3-1006
3-1007
3-1007
3-1008
3-1009
3-1010
3-1011
3-1012
3-1012
3-1012.1
3-1013
3-1014
3-1024
3-1026
3-1027
3-1037
3-1038
3-1039
3-1040
3-1040
3-1041
3-1042
3-1043
3-1044
3-1045
3-1049
3-1051
3-1050
3-1052
3-1054
3-1057
3-1060
3-1060
3-1064
3-1065
3-1065
3-1067
3-1072
3-1074
3-1076
3-1078
3-1080
3-1080.2
3-1082
3-1084
3-1094

xii AG92-06B

Section 4

Index

12/87

year .. 3-1094
zero_segments (zsegs) , , , 3-1095

Access to the System , .
access_class (ace) .
dial (d)
echo
enter (e)

enterp (ep) :
hangup
hello
help (HELP)
login (I)
logout
MAP
modes
noecho
slave
terminal_id (tid)
terminal_ type (ttp)

4-1
4-2
4-2
4-3
4-4
4-4
4-6
4-6
4-7
4-7

4-15
4-16
4-17
4-17
4-18
4-19
4-19

xiii AG92-06B

SECTION 1

MANUAL USE AND TERM DEFINITION

This section deals with the proper use of this manual, a description of the format
used, and a general definition of terms.

You are encouraged to take advantage of the information available in the manual's
detailed index and table of contents. The index alphabetically lists programs by name
and subject Cross-ref erences among command descriptions assist in locating programs
applicable to a given task.

DESCRIPTION OF MA.~UAL FORMAT

Section 2 contains a breakdown by function of the programs described in this manual.
Section 3 contains an alphabetized listing of the standard Multics system commands
and active functions. Section 4 contains descriptions of the preaccess and access
requests that are used to gain access to the Multics system.

Each command description provides, minimally, the long (and short) name, syntax line,
and function of the program. Standard headings, in the order in which they appear,
when present, are as follows:

SYNTAX AS A COMMAND
SYNTAX AS AN ACTIVE FUNCTION
FUNCTION
ARGUMENTS
CONTROL ARGUMENTS
ACCESS REQUIRED
NOTES
EXAMPLES

Syntax lines give the order of required and optional arguments accepted by a
command or active function. Optional portions in the syntax line are enclosed in
braces ({}). The syntax for active functions is always enclosed in brackets ([]), which
are required for active function use. To indicate that a command accepts more than
one of a specific argument, an "s" is added to the argument name (e.g., {paths} ,
-control_args).

Keep in mind the difference between a plural argument name that is enclosed in
braces (optional) anc one that is not {required}: if it is enclosed in braces, you need
not give any argument of that type; if it is not, you must supply at least one
argument of that type. Thus you could write "paths" in a usage line as:

pathl {path2 ••• pathN}

The convention of using "paths" rather than using the above is merely to save space.

1-1 AG92-06

11/86

Different arguments that you must give in pairs are numbered:

xxxl yyyl { ••• xxxN yyyN}

To indicate that you must provide the same generic argument in pairs, the arguments
are given letters and numbers:

argl arg2 { ••• arglN arg2N}

Some of the standard arguments accepted by commands and active functions are:

STR

N

any character string.

any character string that represents a number, either decimal or binary. Examples
are integers (5, 1024, or 101b), real numbers (1.37 or -10.01b), and floating-point
numbers (1.3e+4 or 1010.001e+5b).

DT or time_string
a date-time character string. Examples are "4/25/84 noon est Sun", "November
7", "7:30 pm. 10 June 1985", and "midnight". (See "Date/Time Values" below for
a description of valid time strings.)

star_name
any pathname or User_id conforming to the star convention, described under "Star
Names" in the Programmer's Reference Manual.

virtual_pointer
A virtual pointer is a character string representation of a pointer value. It
consists of a segment identifier (pathname, reference name, or segment number)
and an optional octal offset into the segment In the table that follows, W is an
octal word offset from the beginning of the segment; it can have a value from 0
to 777777 inclusive. B is a decimal bit offset within the word; it can have a
value from 0 to 35 inclusive. The possible forms are:

pathIW(B)
points to the octal word W, decimal bit B, of the segment or multisegment
file (MSF) identified by absolute or relative pathname path. If the path you
give identifies a MSF, the offset given is in component 0 of the MSF.

pathlW
same as path I W(O).

path I
same as path I 0(0).

path
same as path I 0(0).

path I entry_pt
points to the word identified by entry point entry_pt in the object file
(segment or MSF) identified by path.

1-2 AG92-Q6A

11/86

dir>entry$entry _pt
points to the word identified by entry point entry_pt in the object file I
identified by patbname dir>entry.

<dir>entry$entrj _pt
points to the word identified by entry point entry _pt in the object file I
identified by pathname <dir>entry.

<entry$entry _pt
points to the word identified by entry point entry _pt in the object file I
identified by patbname <entry.

ref _name$entry _pt
points to the word identified by entry point entry _pt in the file whose I
reference name is ref_name.

ref_name$W(B)
points to the octal word W, decimal bit B, of the segment or MSF whose
reference name is ref _name. If ref _name is a reference name on an MSF
(i.e., on component 0 of the MSF), the word and bit offsets are applied
within component O.

ref_name$W
same as ref_name$W(O).

ref_nameS
same as ref_name$O(O).

segnoIW(B)
points to the octal word W, decimal bit B, of the segment whose octal
segment number is segno.

segnolW
same as segno I W(O).

segnol
same as segno I 0(0).

segno
same as segno I 0(0).

segno 1 entry--pt
points to the word identified by entry point entry _pt in the segment whose
octal segment number is segno. If segno identifies component 0 of an object
MSF, the pointer returned may not point within the segment identified, since
the target of a definition in component 0 of an object MSF will be in
another component of the object MSF.

A virtual pointer that does not contain $ or 1 is interpreted as a patbname
if it contains > or <, as a reference name otherwise.

A null pointer is represented by the virtual pointer 7777711, -111, or -1.

1-3 AG92-06A

11/86

virtual_en try
is a character string representation of an entry value. It consists of a segment
identifier and an optional offset into the segment. In the table that follows, W is
an octal word offset from the beginning of the segment; it can have a value
from 0 to 777777 inclusive. The possible forms are:

pathlW
entry at octal word W of segment or multisegment file (MSF) identified by
absolute or relative pathname path. If the path you give identifies a MSF.
the offset given is in component 0 of the MSF.

path 1
same as path I O.

path I entry_pt
entry at word identified by entry point entry _pt in the object file (segment
or MSF) identified by path.

dir>entry$entry _pt
entry at word identified by entry point entry _pt in the object file identified
by pathname dir>entry.

< dir>entry$en try _pt
entry at word identified by entry point entry _pt in the object file identified
by pathname <dir>entry.

<entry$entry _pt

path

entry at word identified by entry point entry _pt in object file identified by
pathname <entry.

same as path 1 [entry path].

ref _name$entry _pt
entry at word identified by entry point entry _pt in segment found via search
rules whose reference name is ref_name.

ref_name$W
entry at octal word W of the segment or MSF found via search rules whose
reference name is ref _name. If ref _name is a ref erence name on an MSF
(i.e., on component 0 of the MSF). the word and bit offsets are applied
within component O.

ref_nameS
same as ref _name$O.

ref_name
same as ref_name$ref_name, but like path if it contains > or < characters.

A virtual entry that does not contain $ or I is interpreted as a pathname if it
contains > or <, as a reference name otherwise.

A null pointer is represented by the virtual pointer 7777711. -111, or -1.

1-4 AG92-D6A

11/86

Use of a patbname in a virtual entry initiates the referenced segment with a
reference name equal to its final entryname. Name duplication errors occurring
during the initiation are resolved by terminating the previously known name.

Arguments, when present, are listed with a brief description and the default value, if
any. To indicate one of a group of the same arguments, an "in is added to the
argument name (e.g., pathi, User_idi).

The list of control arguments give the possible values for -control_args in the syntax
line. The long name and the short one (if any) are given. For simplicity, common
control argument values are indicated as follows:

STR
any character string; individual command descriptions indicate any restrictions (e.g.,
must not exceed 136 characters).

1-4.1 AG92-06A

This page intentionally left blank.

11/86 AG92-06A

N

DT

ID

path

any number; individual command descriptions indicate whether N is octal or
decimal and any other restrictions (e.g., cannot be greater than 4).

a date-time character string (see "Date/Time Values" below).

a numerical request identifier as described in the Programmer's Reference Manual.

the pathname of an entry; unless otherwise indicated. it may be either a relative
or an absolute pathname.

The lines below are samples of control arguments that take values:

-access_name STR, -an STR
-ring N, -rg N
-date DT, -dt DT
-pathname path, -pn path

The "Notes" section is used to provide additional information and cross-reference with
other manuals.

Examples, while not extensive, try to provide additional help and insight on the proper
use and formatting of commands and active functions. Examples showing lines that
you type are preceded by an exclamation mark (!). Examples of command use show
the response you can expect to see on the terminal. Examples of active function use
show the return value substituted by the command processor for the active string.

GE~~RAL DEFINITION OF A COl\fl\fAL'U)

A command perf orms some action f or you, such as displaying inf ormation on your
terminal, formatting a report, or compiling a program. Each command has a specific
purpose. The default action performed by a command is generally the most common
use of the command. Many commands have optional arguments that refine the actions
that are performed. You can invoke commands at the beginning of a command line at
command level and can put multiple commands on a single line, with a semicolon (;)
as a delimiter between each one.

GENERAL DEFINITION OF AN ACfIVE FUNCfION

An active function is most frequently used to shorten the amount of typing required
to invoke a c.o!!LT!land. You invoke an active function inside an active string
(surrounded by brackets []). which is replaced by a character string return value
before the command line containing it is executed. Active functions are often used
together with the exec_com. abbrev, and do commands to implement command
language macros.

When you give multiple commands on a line, active functions in each are expanded
before execution. This means that the first command is executed before active
functions in the second command invocation are expanded. Therefore the execution of
a command may affect the values of active functions that appear later in the line.

1-5 AG92-()6

EXAMPLES OF COMMAND VS ACTIVE FUNCTION USE

You can invoke many programs as either a command or active function. The format
of the active function return string is slig..htly different from the command's printed
output. In these examples, and all interactive examples throughout this manual, lines
you type are preceded with an exclamation point (0.

status reportl -nm
names: report_first_quarter.runoff

reportl.runoff
reportl

versus the corresponding status active function:

string [status reportl -nmJ
report_first_quarter.runoff reportl.runoff reportl

ERRORS

Commands report errors by signaling command_error and printing a message. Messages
that do not begin with "Warning:" usually terminate execution of the command, though
later commands on the same line are subsequently executed.

Active functions report errors by signaling active_function_error. The default action is
to print a message and return to command level. Respond by typing:

release

to abort the command line, and then issue. the corrected line.

The command_error and active_function_error conditions are further described in the
Programmer's Reference Manual.

The basic elements within the Multics storage system are segments and directories.
Multics supports additional entry types that are maintained for convenience or to aid
programmers who require a storage medium with special qualities or attributes. The
various entry types are described below.

Segment

The segment is the unit of storage of the Multics System that is analogous to a file
on other systems. A segment is a collection of instructions or data you specify.

Directory

A directory is a catalog of subordinate entries.

1-6 AG92-()6

Link

A link entry is a reference to an entry in another directory. You make the reference
by giving the pathname of the target entry.

Multisegment File

Very large data bases may exceed the size of a single segment In such cases Multics
treats this data base as a group of segments in a single multisegment file. The
segments are grouped under a common directory whose multisegment file indicator is
set The directory and its contents are called a multisegment file (MSF).

Any directory whose multisegment file indicator is not 0 is an MSF. For an MSF this
indicator is a count of the number of segments it contains. Not all of the attributes
listed above are applicable to MSFs. Some of the attributes are the same for any
entry; however. due to the nature of an MSF when viewed as a file. many of the
attributes are implemented differently. For example. the bit count of an MSF is the
sum of the bit counts of the segments it contains. The access control list for an MSF
directory applies to ail of the segments it contains. You can use the safety switch
attribute; however if you set it for one of the segments in the MSF, you should set
it for all of them. For more information on these and other attributes of MSFs. see
the msf_manager_ subroutine.

Most standard system programs that work on segments also work on MSFs; however
. some commands and subroutines give unpredictable results when used on MSFs. You
should consult the individual command or subroutine description before invoking it on
an MSF.

Data Management File

A data management (DM) file is composed of a set of .pages known as. control
intervals, numbered from 0 through N and addressable only through software calls to
the file manager. Data is accessed by specifying a control interval number, byte
offset. and length.

You can implement DM files with concurrency control and recovery support. At
present the ability to use data management files is available only to programs accessing
files through the Multics Relational Data Store (MRDS) facility.

Extended Entry Types

The Multics storage system supports special-case entry types called extended entry
types. They are so called because the Multics storage system has been enhanced
(extended) to treat these storage elements as segments (even though they are structured
differently from segments). The following system-supplied storage system elements have
been implemented as extended entries: mailboxes, forum meetings. message segments,
before journals, and the person name table. Most file system commands (e.g., copy.
set_acl, etc.) will operate on extended entries. Each extended entry is identified by a
suffix appended to the entry name. as described below:

1-7 AG92-06

NAME

rna i 1 box
forum meeting
message segment
before journal
person name table

DATE/TIME VALVES

SUFFIX

.mbx

.forum

.ms

.bj

.pnt

Multics use of date/time values is described in the following subsections. Multics
accepts dates from the year 0001 through 9999. The Julian calendar is used for dates
from 0001-01-01 through 1582-10-04. The Gregorian calendar is used for dates from
1582-01-15 through 9999-12-31. (The dates from October 5, 1582 through October 14,
1582 do not exist; they were dropped when the Gregorian calendar was adopted.) The
leap day is always February 29. The lower limit on dates of January 1, 0001 A.D.,
was picked since it begins the era; the upper limit of December 31, 9999, was chosen
to limit year numbers to four digits. The time zones as now defined are used
regardless of the year. The Multics date/time software does not account for "leap
seconds", and, therefore, the difference between any two binary clock values that are
precisely an integral number of days (hours. minutes. seconds. etc.) apart is guaranteed
to be evenly divisible by the number of microseconds in a day (hour, minute,
second,etc.).

Date/Time Input Values

Often you must supply date and time information to a command. Programs that
accept date and time information use the convert_date_to_binary_ subroutine (see the
Subroutines manual) to convert a time string to an internal (binary) value.

TIME STRINGS (DT VALUES)

The time string can have up to six parts: adverbial offset, date. time, day of week,
signed offset, and time zone. Adverbial offsets, if present, must appear leftmost in
the string. Beyond that, all the parts are optional and can be in any order. The parts
can be made up of alphabetic fields. numeric fields, and special characters.

An alphabetic field is made up of letters and must contain a whole word or an
abbreviation (often made up of the first three letters of the word). No distinction is
made between uppercase and lowercase characters. Although this description gives
examples in English, each of the words is available in several languages. You can use
any of these languages in time strings, but all words' within a given string must be in
the same language. To see the languages defined on your site, type

display _time_info -lang

A numeric field consists of an optionally signed integer of one or more decimal digits.
The special characters that you can use in either alphabetic or numeric fields are: the
slash (/), the period (.), the colon (:), the plus (+), the minus (-), and the comma (,).
Blanks are not required between aiphabetic and numeric fields in the time strings;
however they are required between two numeric fields unless the second field begins

1-8 AG92-Q6

with a plus or minus sign. For example,

2days4hours10minutes
1245.17+7hours
10/17/79Wednesday

Unless otherwise indicated in the command description, supply the input time string as
a single argument. This means that you must enclose within quotations time strings
that contain spaces. Alternatively you can use underscores instead of blanks in the
time string. For example.

Usually when you enter a time string, the time zone is omitted. Although the ,time
zone is seldom seen. it is very important: it determines the interpretation of items
given in the time string; it is also involved in defaults supplied for missing items. All
defaults are taken from the current absolute time, adjusted by a working time zone.
If you give a zone in the string. that becomes the working zone; otherwise the process
default time zone is used.

This means that whether you convert a string with an explicit zone, such as
"XXXX_ast", or set the process default to "ast" and then convert the string "XXXX",
you get the same absolute time. (Note that setting the process default also influences
output conversion, while giving an explicit zone does not.) To display your default
zone, type

The six parts of the time string are described below. In these descriptions whenever
an assumed value is mentioned, it refers to the current date/time adjusted to the
working zone.

1. date
is the day of the year; you can specify only one date. You can supply a date
using normal date format, calendar date format, day of the week. date keywords,
fiscal week. request-id, or you can omit it entirely. If no date is present. it is
assumed to be the next occurrence of the time specified; for instance. "lOA" gives
the date on which 10:00am next occurs. If you give no date and time, the
current date is used.

In normal date format, you can specify dates is month (or month abbreviation).
day of month. and year; or as day of month. month. and year. The year is
optional and, if omitted, is assumed to be the year in which the date occurs next;
that is, if today is March 16. 1985, then March 20 is equivalent to March 20.
1985; while March 12 is the same as March 12. 1986. There are three forms of
normal date:

16 March 16 March 1985
March 16 March 16 1985
3/16 3/16/85

Ma r c h 16 , 1 985
3/16/1985

(The comma is op-t i ona 1)

The calendar date format allows you to supply dates as a year, month, and day
of month, separated by minus signs. This is the International Standards
Organization (ISO) standard format The year is required. and you can give it as
a year of the century. For example.

1-9 AG92-06

85-12-31 or 1985-12-31

represents December 31, 1985.

The day of the week is a date specifier if present with no other form of date.
It then selects the first occurrence of the named day after today.

The date keywords are "yesterday", "today", and "tomorrow"; for instance,

6:35A today
yesterday +120days

The fiscal week is of the form F\Vyyyyww. P\V is . the fiscal indicator (in
English), yyyy is the year number, and ww is the week number. The fiscal week
begins on Monday and ends on Sunday. This form converts to the date of
Monday, but you can select a day within the week by adding a day name; for
example, "FW198413 m" gives "03/26/84 0000. Mon", while "FW198413 m Wed"
gives "03/28/84 0000. Wed". You can separate the fiscal indicator from the
number, but the ordering must remain. i.e., "FW185425" or "FW 185425", but not
"185425 FW".

A request-id is a 19-character string used by several programs in the system, such
as list_output_request. It contains a complete date from year, in century, down
through microseconds in this form

yymmddHHMMSS.SSSSSS

If you provide no zone, it is interpreted in GMT, not the process default. A
request-id specifies a iime as wen as a date, so you can give no other time
specification.

2. day of week
is a day of the week (e.g., Monday) and can be present only once. When the
day of the week is present along with one of the other forms of date
specification, that date must fall on the indicated day of the week. You can
optionally follow it by a comma.

3. time
is the time of day and can only be present once. If omitted, it is assumed to be
the current time. You can give time as 24-hour format, 12-hour format, or the
time keyword "now". The 24-hour time format consists of a four-digit number
followed by a period: hhmm., where hh represents hours and mm is minutes.
You can follow this number by an optional decimal fraction-of-a-minute field
(e.g., hhmm.m). Also acceptable are hours and minutes fields separated by colons
(hh:mm). You can optionally follow this by either a fraction-of-a-minute field
(hh:mm.m) or a seconds field (hh:mm:ss). The seconds, in turn, can include a
fraction-of -second field (e.g., hh:mm:ss.s). Examples of 24-hour time are:

1545
.1545.715
15:45
15:45.715
15:45:42
15:45:42.08

1-10 AG92-Q6

You must end the 12-hour time format with a meridiem designator (i.e .• A. P,
am, pm, noon (n). midnight (m). You can indicate midnight and noon by giving
just the meridiem designator . You can precede the designator by time expressed as
hours. hours: minutes, or hours:minutes:seconds (including an optional fraction of a
second or fraction of a minute). Examples of 12-hour time are:

midnight
5 am
5:45A
3:59:59.000001pm
11:07:30.5pm
12 n

There is a set of illegal times--24:oo-24:59--which are handled anyway. These are
taken to mean 00:00-00:59 of the following day; midnight <00:00) is the beginning
of a day. not the end.

4. signed offset
is an adjustment to be made to the clock value specified by the other fields.
You can supply offsets in any the following units:

year years yr
month months mo
week weeks wk
day days da
hour hours hr
minute minutes min
second seconds sec
microsecond microseconds usec

Each unit can be present one or more times, each preceded by an optionally
signed fixed point number. If offset fields are the only thing present. the offsets
are added to the default values of date and time, as described above.

If the month offset results in a nonexistent date (e.g., "Jan 31 3 months" would
yield April 31), the last date of the resulting month is used (i.e., April 30).
Examples of offset fields are:

3 weeks -60 hours (60 hours before 3 weeks after now)
1.5 hr 5min (an hour and 35 minutes from now)
1 hour 5 minutes (an hour and five minutes from now)

The order in which offset values are applied to the clock value can affect the
resultant clock value. Offset values are applied in the following order:

year, month. week, day, hour. minute, second. microsecond

"Monday 6 am 2 weeks" means "two weeks after the next occurrence of Monday.
at 6:00 am on that day".

Assuming that today is September 25, 1985. then

10/1 -1 day +1 month

1-11 AG92-06

results in a clock value for 10/31/85, rather than for 10/30/85.

Note: There is also a nonoffset use of these words, available in combination
with the word "this". Some of these combinations can be used in
building date and time parts. For example, "this_month_1,_thisJearii or
"this_hour:23" is valid, while just "this_day" is not. The exact form of
this combination varies according to the language used. In some languages
the word for "this" changes according to the gender of the unit it is
applied to; in others there may be a single word that does the job. To
list the word used as "this" for each unit, type

display _time_info -offset -language LANGUAGE_NAME

5. adverbial offset
is a before/after kind of adjustment that you can use any number of times. You
can recognize it by the presence of "before", "on", or "after" in the time string.
If present, it must appear first These are the forms available:

DAY-NAME before
DAY-NAME on or before
DAY-NAME before or on
DAY-NAME after
DAY-NAME on or after
DA Y -NAME after or on
SIGNED-OFFSETs b,efore
SIGNED-OFFSETs after

When adverbial offsets are present, they partition a time string into a series of
adjustments followed by a base time. These sections are processed from right to
left The example below has 3 sections: first· "6:00 am 400sec" is handled,
supplying all necessary defaults and making the ordinary (400sec) offset adjustment;
then "Monday after" is applied to give a new value; finally "2 wk -5min after" is
applied to this new value to give the final value.

2 wk -5min after Monday after 6:00 am 400sec
20 minutes before now
2 days after today
2500 weeks after 1776-7-4
Tue after Mon on or after 11/1

The last item describes election day in the USA: the first Tuesday after the first
Monday in November.

6. zone
is the time zone to be used in making the conversion to Greenwich mean time,
which is the internal form of all clock readings. It can be either a zone
differential or any of the zone abbreviations known at your site. A zone
differential is a five-character string, "sHHMM" (s is a sign, HH is a two-digit
hour. and MM is a two-digit minute). You can use this only immediately
following a time specification: "12:15-0330" says that 12:15 is the local time, and
-0330 specifies that the local time was generated by subtracting 3.5 hours from
GMT. To list the zone abbreviations known at your site, type

1-12 AG92-Q6

If any defaults are needed, the current instant is broken down into years, months,
days, and so forth with respect to a "working zone". This working zone can
make much difference because, for example. at a given instant it can be Tuesday
in New York and Wednesday in Bankok, or it can be 22:07 in London and 3:37
in Singapore. Thus the zone is as important in applying defaults to week days
and years as it ~s to hours and minutes.

Many of the date/time commands allow you to supply a "-zone X" argument. In
this case, X can be any of the zones known at you site; it can't be a time
dif f eren tial.

Date/Time Output Values

One way to get a clock value into a readable form is by using the date/time
commands (calendar_clock, day, etc). The first argument to the clock command is a
control string describing. the format wanted. All other date/time commands have
intrinsic formats. These commands convert a readable tim'e string to an internal value
and then convert this internal clock reading to the specified output time format.

An input time string is converted to internal form by convert_date_to_binary _. This is
the usual form for storing dates in data bases. To convert an internal clock reading
into a readable form, you can call date_time_ to get a 24-character form like this:

03/14/79 0000.0 cet Pri

But when other formats are needed, date_time_$format is available. It takes a clock
value and a control string describing the format wanted and returns a string ready for
printing.

An effort has been made to make all date/time outputs from the system software
usable as date/time inputs to system software, but the time format mechanism is so
flexible that you can easily use it to generate formats that are not recognizable. Also
some strings are apparently recognized, even though they are ambiguous. Por instance,
"7/1/82" means the 7th month, first day in the United States, but in many European
countries would mean the 7th day of the first month. Multics follows the American
interpretation.

TIME FORMAT

The control string for the date_time_Sformat subroutine, clock command, and other
commands that expect a time_format argument is either a keyword or a character
string consisting of text and/or selectors. The selectors are always identified by a
leading circumflex character (A). There are two types of selectors: A <keyword >, which
allows a keyword to be embedded within a forma~ and the general form AX.X. XX is
a two-letter code that specifies what information is wanted. You can place an optional
PL/I picture specification between the A and XX if the default fomr is not adequate.
If the control string does not contain any circumflex characters, it must then be one
of the known set of keywords. Each keyword identifies a control string for a
predetermined format named by that keyword.

1-13 AG92-06

LIST OF FORMAT KEYWORDS

all
A9999yc-Amy-Adm_AHd: AMH:A99.(6)9UMAzd_Aza_ Ada Afi A(6)9fw Ama dyAdy
dcAdc UCA Uc.

calendar_clock
A 9999yc-Amy-Adm_A Hd: A MH:A 99. (6)9UM_ A za_ Ada.

clock
A9999yc-Amy-Adm J\Hd: A MH:A99.(6)9UM Aza Ada.

date
is the process default value for date.

date_time
is the process default value for date and time.

iso_date
A9999yc-Amy-Adm.

iso_date_time
A9999yc-Amy-Adm AHd:AMH:ASM Aza.

iso_IonLdate
A9999yc-Amy-Adm Ada.

iso_IonLdate_time
A9999yc-J\my-Adm AHd: A MH:A99.(6)9UM Aza.

iso_IonLtime
A Hd: A MH: A99.(6)9UM.

iso_time
AHd:AMH:ASM.

multics_date
Amy / Adm/ AyC.

multics_date_time
Amy/Adm/Ayc AHdA99v.9MH A xxxxzaA xxxda.

multics_time
AHd:AMH.

request_id
AycAmyAdmAHdAMHA99.(6)9UM. The output from this keyword is specified in the
process default time zone; therefore if you want a valid request-id. specify -zone
GMT in commands or give GMT as the zone argument when calling date=,-time_$format
with the request_id keyword (see "Request IDs" in Section 3 of the Programmer's
Reference Manual).

system_date_time
is the system default value for date and time.

1-14 AG92-06

system_date
is the system default value for date.

system_time
is the system default value for time.

time
is the process default value for time.

Your site can change the "system" strings. For an application that depends upon the
historic formats the three builtin "multics" strings are available.

Processing of a control string proceeds by scanning the control string until a
circumflex is found or the end of the string is reached. Any text (including any
blanks) passed over is copied to the output string. The selector is then interpreted and
executed. This causes a datum from the input clock value to be edited into the output
string. Processing continues in this way until the control string is exhausted.

You can express dates and times placed in the output string in units of years, months,
weeks, days, hours, minutes, seconds, and microseconds, and the total calendar value as
a single unit; for example, you could express the calendar value representing 79-09-08
9:42A GMT as 1979 years, as 722i02 days. or as 722702.112499 days. This is the set
of "total" selectors:

Ayc total number of years in the calendar value
Amc total number of months in the calendar value
Adc total number of days in the calendar value
AHc total number of hours in the calendar value
AMc total number of minutes in the calendar value
ASC total number of seconds in the calendar value
AUC total number of microseconds in the calendar ·value.

You can also express dates and times as the number of units remaining after a larger
unit has been removed from the calendar value; for example, 09/08/79 09:42 includes
units for the 9th month of the year, the 8th day of the month. the 9th hour of the
day. and the 42nd minute of the hour. The following are the most common:

Amy month in the year
Adm day of the month
Adw day of the Week
AHd hour of the day (24-hour format)
AHh hour in half day (12-hour format)
AMH minute of the hour
ASM second of the minute
AUS microsecond of the second.

There are several items of date/time data that are nonnumeric, such as day of week,
day of month, and time zone used for conversion.

1-15 AG92-06

~n month name
""ma month name, abbreviated (char (3»
Adn day name
Ada day name, abbreviated (char (3»
Azn time zone name
Aza time zone name, abbreviated (char (4»
Azd zone different i a 1 (char (5))
Ami meridiem indicator (A or P)
Afi fiscal indicator (FW in Engl ish)

The selectors of numeric data are, in general, made up of two letters taken from this
sequence: c y m w d H M S U. These letters stand for calendar, year, month, week,
day, hour, minute, second, and microsecond. respectively. All 81 combinations are not,
however. valid. The form can generally be read as "unit of unit", e.g., "seconds of
week". The first unit is always smaller than the second one. In trying to keep the
specifiers reasonably mnemonic (in English) there is a problem: both month and
minute begin with an "m". So all date values are used as lowercase letters while all
time values are in uppercase.

It is difficult to try to handle all the forms needed in a general manner. Hd is hour
of the day and is thus 24-hour time; this is not always what is wanted. Hh is chosen
as hour in half day to get the 12-hour form of time. To go along with this there is
"mi" for Meridiem Indicator. which gives A or P to make up AM or PM. This· does
not give AM or PM because ANSI and ISO standards specify that time be given as
"3P", not "3PM". If you want the M, put the literal in, e.g., ""miM".

Another way of looking at a calendar value is in terms of fiscal week. This is
selected with the ""fw" code. Its value is four digits of year followed by two digits
of week number, i.e., yyyyww. The default picture has been chosen to give a value of
yww. The associated fiscal indicator is selected by ""fi". A complete value is obtained
by specifying ""fi"fw".

The table below shows the complete set of selectors. The row specifies what unit is
wanted. the column specifies within what other unit. e.g., "Sy is seconds of year.

1-16 AG92-06

DATE/TIME SELECTORS

of of of
calen- year month

------- dar

of
week

of
day

of
hour

of of
minute second

I I I I I I I I

micro- +------+------+------+------+------+------+------+------+
second I AUC t AUy I AUm I AUW I AUd I AUH I AUM I AUS I

+------+------+------+------+------+------+------+------+
second I ASC I ASy I ASm I ASW I ASd I ASH I ASM I

+------+------+------+------+------+------+------+
minute I AMc I AMy I AMm I AMw I AMd I AMH I

+------+------+------+------+------+------+
hour I AHc I AHy I AHm I A~~ I AHd I

+------+------+------+------+------+
day I Adc I Ady I Adm I Adw I month day zone

+------+------+------+------+ +------+------+------+
month I I Amy I name I Amn I Adn I Azn I

+------+------+ +------+------+------+
year I Ayc I abbrev I Ama I Ada I Aza I

+------+ +------+------+------+
I AHh I <-hour of half day
+------+ (l2-hour form)

differential I Azd I
+------+

I Ami I <-meridiem indicator ("A" or "pll)
+------+
I Afw I <-fiscal week (form: yyyyww)
+------+
I Afi I <-fiscal indicator ("FW" in Engl ish)
+------+

You can control the formatting of date and time values by an optional PL/I picture
specification included in the selector; for instance. a code of A0099yc formats the
total years in the calendar value into a two-digit year of the 20th century and
A9999yc provides a full. four-digit year. The following is a brief description of the
most frequently used picture characters. For more details on PL/I pictures. see the
Multics PL/I Language Specification manual (AG94) and the Multics PL/I Reference
Manual (AM83).

9 represents a mandatory decimal digit in the displayed value.

z represents a decimal digit in the displayed value. Nonsignificant zeros on the left
are replaced by a space when they occupy a "z" digit position.

produces a period in the displayed value. This has no relation to the· location of
the decimal point in the value actually being displayed. If zero suppression is in
effect, this is replaced with a space.

produces a comma in the displayed value. It has all the characteristics of the
period.

v locates the value's decimal point in the result This determines how the value
digits are oriented with respect to the picture specification. If you supply no "v",
it. is assumed to appear after the rightmost picture character.

1-17 AG92-D6

The picture characters above are sufficient for displaying most numeric values. For
example. the control string "99Hd"99.v9MH represents the time in hours. minutes, and
tenth of minutes: the control string "zz9.999vUS represents the number of milliseconds
of the second. using the decimal point and "v" to scale the microsecond unit. Scaling
can also be performed by a picture scale factor.

f(N) scales the value by multiplying or dividing by a power of 10. thus shifting
the location of the decimal point in the value. For example. f(2) shifts the
decimal two places left. effectively dividing the value by 100; f(-3) shifts
three places right. effectively multiplying by 1000.

Using a picture scale factor. you can display the milliseconds in excess of a second to
the nearest tenth using the control string "zz9.9f(3)US. You can display a value of
48634 microseconds as " 48.6" milliseconds.

There are two extensions to numeric picture handling that you can use in time format
selectors:

Z represents a decimal digit in the displayed value. Nonsignificant zeros to the left
of the decimal point are omitted when they occupy a "Z" digit position; to the
right of the decimal point they are omitted when they occupy a "Z" digit
position.

Z characters must appear as the leftmost or rightmost digit positions in the
picture specification since these are the positions that nonsignificant zeros can
occupy. Z performs a selective ltrim or rtrim (of zero) operation on the
displayed value. For example. you can specify the millisecond specification given
above as "ZZ9.9ZZUS without using a picture scale factor; with this specification
you can display 48630 microseconds as 48.63 milliseconds (without the leading
space or trailing zero).

o represents a decimal digit in the displayed value that should be omitted.
Specifying "99yc for a year like 1941 results in a size condition since it takes
four digits to handle that number. To get the year in century you can use
"0099yc; this gives four digits into which the value is placed and then the first
two digits are discarded. A picture like 00z9 with a value of 1502 gives 02
because the zero suppression applies to 1502. and then the first two digits are
dropped.

You can format character date/time values such as day of the week. month name. and
time zone using a character picture specification with the "x" picture character.

x
represents a position that can contain any character. Since national characters
occur in some of the time names, avoid use of the "a" picture character. Values
are left-justified in the picture specification, with truncation of the rightmost
characters if the value is longer than the picture or padding with spaces on the
right if the value is shorter than the picture.

For example. "xxxxxxxxdn displays Wednesday as "Wednesday" and Monday as
"Monday n. You can use a picture repetition factor to shorten the control string to
""(9)xdw". With "(5)xmn January is displayed as "Janua" and May is displayed as
"May". (Note that in some languages the abbreyjation of a time name is not the
first three letters of it.)

1-18 AG92-Q6

The selector picture specification allows an extension of the "x" picture specification.

X represents an optional character position in the displayed value. The character
position is omitted if there is no corresponding character in the value being
displayed.

X characters must appear as the rightmost character position in the picture
specification since this is the position that nonsignificant spaces can occupy. X
performs a selective rtrirn operation on the displayed value.

The code A(9)Xdw displays Wednesday and Monday both without trailing spaces.

The table below shows the default picture specifications for all selectors. The row
specifies what unit is wanted. the column specifies within what other unit

DEFAULT PICTURE VALUES

of of I of of
calen- year month week

dar I

of
day

of
hour

of of
minute second

micro- +------+------+------+------+------+------+------+------+
second I (18) Z91 (14) Z91 (13) Z91 (12) Z91 (11) Z91 (10) Z91'(8) Z9 I (5) Z9 I

+------+------+------+------+------+------+------+------+
second I (12) Z91 (12) Z91 (8) Z9 I (6) Z9 I (5) Z9 I (4) Z9 I 99 I

+------+------+------+------+------+------+------+
mi nute I (10) Z91 (6) Z9 I (5) Z9 I (5) Z9 I (4) Z9 I 99 I

+------+------+------+------+------+------+
hour I (8) Z9 I (4) Z9 I (3) Z9 I (3) Z9 I 99 I

+------+------+------+------+------+
day I (7)Z9 I 999 I 99 I 9 I month day zone

+------+------+------+------+ +------+------+------+
month I I 99 I name I (32) X I (32) X I (64) X I

+------+------+ +------+------+------+
year I 0099 I abbrev I (8) X I (8) X I (8) X I

+------+ +------+------+------+
1 99 I <-hour of half day differential I s9999 I

+------+ (12-hour form) +------+
I x 1 <-meridiem indicator
+------+
10009991 <~fjscai week (form: yyyyww)
+------+
I xx I <-fiscal indicator
+------+

1-i9 AG92-06

The following table shows how date and times strings are displayed by a variety of
control strings.

Amn AZ9dm, A9999yc
displays September 8. 1979.

Amn Az9dm, A9999yc
displays September 8, 1979.

Adm Ama A9999yc Azn
displays 08 Sep 1979 Mountain Standard Time.

Amy /Adm/Ayc AHdA99v.9MH Aza Ada
displays 09/08/79 0242.4 mst Sat.

AHd:AMH:ASMAzd
displays 02:42:25-0700.

A9999yc-Amy-Adm_AHd: A MH:A99.(6)9UM_ Aza_ Ada
displays "1979-o9-o8_02:42:25.048634_mst_Sat

<_A <multics_time>xyzA<multics_date>->
displays <-o2:42xyz09/08/79->.

1-20 AG92-06

11/86

SECTION 2

REFERENCE TO COMMANDS AND ACTIVE
FUNCTIONS

The Multics commands and active functions are presented in this section by
functional use.

ACCESSING THE MULTICS SYSfEM

access_class
dial
echo
enter
hangup
hello
help. HELP
login

COMMAND LINE PROCESSING

abbrev
answer
convert_ec
default
do
do_subtree
exec_com
execute_string
if
login_args
on
pause
program_interrupt

logout
MAP
modes
noecho
slave
terminal_id
terminal_type

progress
query
release

response
run
select
set_epilogue_command
severity
start
stop_run
subSiiiUie_arguments
walk_subtree

*

2-1 AG92-o6A

11/86

PROCESS ENVIRONMENT

change_err or_mode
exponent_control
general_ready
home_dir
logout
new_proc
no_save_on_disconnect
print_auth_names
print_proc_auth
process_dir
process_switch_off

STORAGE SYSTEM NAMES

add_name
branches
component
compare_entry _names
copy_names
def aul t_ wdir
delete_name
directories
directory
entries
entry
entry_path
equal_name
files
get_pathname
home_dir
is_component_pathname
links
list
list_subtree
list_ref _names
list_temp_segments
master_directories
move_names
msfs
non branches
nondirectories

process_switch_on
ready
ready_off
ready_on
reconnect_ec_disable
reconnect_ec_enable
reprin t_error
save_on_disconnect
set_tty
system
user

nonfiles
nonlinks
nonmaster _directories
nonmsfs
nonnull_links
nonobject_files
nonobject_msfs
nonobject_segmen ts
nonsegments
nonzero_files
nonzero _msf s
nonzero _segmen ts
nun_links
object_files
object_msfs
object_segments
path
process_dir
rename
segments
shortest_path
strip
strip_component
strip_entry
suffix
workinLdir
zero_segments

2-2 AG92-06A

11/86

CREATING AND EDITING SEGMEN1S

adjust_bit_count
canonicalize
convert_characters
convert_ec
copy
create
delete
edm
emacs
expand_cobol_source

SEGMENT A'ITRIBUTES

add_name
adjust_bit_count
check_file_system_damage
copy_acl
copy_names
delete_acl
delete_name
describe_entry _type
get_eff ective_access
list_acl
list_entry _types
list_temp_segments

SEGMENT MANIPULATION

archive
archive_sort
canonicalize
compare
compare_ascii
compare_pll
contents
copy
create
decode
delete
dump_segment
encode
initiate

file_output
format_pll
indent
merge_ascii
qedx
set_bit_count
sort_seg
teco
teco_error
teco_ssd

rename
set_acl
set_bit_count
set_max_Iength
set_rin~brackets
status
switch_off
switch_on
truncate
vfile_adjust
vfile_status

linkage_editor
mbx_create
merge_ascii
move
overlay
print
reorder_archive
sort_seg
tape_archive
terminate
terminate_ref name
terminate_segno
terminate_single_refname
truncate

DATA MANAGEMENT FILE MANIPULATION

bef ore~ournal_status
bj_mgr _call
create_dm_file

dm_display _ version
dm_user _shutdown
transaction

2-3 AG92-06A

DIRECfORY ATTRIBUTES

add_name
check_file_system_damage
copy_acl
copy _iacl_dir
copy _iacl_seg
copy_names
delete_acl
delete_iacl_dir
delete_iacl_seg
delete_name
get_dir_quota
get_eii ective_access
get_quota
list_acl

DIRECfORY MANIPULATION

comp_dir_inf °
copy_dir
create
create_dir
date_deleter
delete
delete_dir
directories
do_subtree
link

EXTENDED ENTRY TYPES

add_name
copy
copy_names
delete
delete_acl
delete_name
describe_entry _type
entries
exists
list_acl
list_entry _types

list_iacl_dir
list_iacl_seg
move_dir_quota
move_quota
rename
set_acl
set_dir_rinLbrackets
set_iacl_dir
set_iacl_seg
set_mdir_account
status
____ !._1.. _~~

:SWl~n_Ull

switch_on

linkage_editor
list
list_dir _inf °
list_sub_tree
move_dir
rebuild_dir
sa ve_dir_inf °
unlink
walk_subtree

move
move_names
rename
set_acl
set_bit_count
set_max_Iength
set_rinLbrackets
status
switch_off
switch_on

2-4 AG92-06

LINKS AND SEARCH FACILITIES

add_search_paths
add_search_rules
change_ wdir
change_default_ wdir
default_ wdir
delete_search_paths
delete_search_rules
get_system_search_rules
hunt
hunt_dec
initiate
list_ref _names

print_default_ wdir
print_search_paths
print_search_fules
print_wdir
resolve_linkage_error
set_search_patbs
set_search_rules
terminate
where
where_search_paths.
workin~dir

ACCESS CONTROL AND RINGS OF PROTECTION

check_iacl
copy_acl
copy _iacl_dir
copy _iacl_seg
delete_acl
delete_iacl_dir
delete_iacl_seg
get_eff ective_access
list_accessible
list_acl

list_not_accessible
list_iacl_dir
list_iacl_seg
print_auth_names
print_proc_autb
set_acl
set_iacl_dir
set_iacl_seg
set_dir_rin~brackets
set_rin~brackets

STORAGE SYSTEM, LOGICAL VOLUMES

attach_Iv
delete_ volume_quota
detach_Iv
list_mdir
lv_attached

set_mdir_account
set_mdir_owner
set_mdir_quota
set_volume_quota

STORAGE SYSTEM BACKUP AND RETRIEV AL

cancel_retrieval_request
compare_dump_tape
copy _dump_tape

ONLINE INFORMATION

check_inf o_segs
explain_doc
help
how_many _users
list_help

en ter_retrieval_request
list_retrieval_requests

print_motd
tutorial
validate_inf o_seg
where_doc
who

2-5

*

*

AG92-06

*

MENU AND VIDEO SYSTEM

menu_create
menu_delete
menu_describe
menu_display

INTERUSER COMMUNICATION

accept_messages
accepting
def er _messages
delete_message
display _mailin~address
have_mail
have_messages
immediate_messages
last_message
last_message_destination
last_message_sender

INPUT/OUTPUT SYSTEM CONTROL

attach_audit
cancel_daemon_request
cancel_output_request
close_file
connect
copy_cards
copy_file
detach_audit
dial_manager _call
dial_out
discard_output
display _audi t_f ile
dprint
dpunch
enter_output_request
file_output
get_mode
have_Queue_entries
io_call
kermit
16_ftf
line_length

menuJet_choice
menu_list
window _call

last_message_ time
mail
message_status
mox_create
print_mail
prin t_messages
read_mail
send_mail
send_message
set_mailin~address
who

list_daemon_requests
list_ emacs_ctls
list_output_requests
micro_ transf er
move_daemon_request
move_output_request
networ k_request
print
print_attach_table
prin t_request_ types
prin t_ terminal_ types
repeat_line
set_tty
tape_archive
tape_in
tape_out
total_output_requests
vfile_adjust
vfile_find_bad_nodes
vfile_status
window_call

2-6 AG92-06

11/86

FORMAITED OUTPUT FACILITIES

cancel_daemon_request
cancel_output_request
dprint
dpunch
en ter _output_request
format_document
format_line
f ormat_line_nnl
format_pll
format_string
have_Queue_entries
indent
list_daemon_requests

TERMINAL ' INTERFACE PROGRAMS

cv_ttf
connect
dial_out
display _ttt
get_mode
kermit
line_length
16_ftf

list_output_requests
move_daemon_request
mOVe_output_request
overlay
picture
print
prin t_request_types
runoff
runoff_abs
set_cc
sort_strings
total_output_requests

micro_ transf er
network_request
prin t_ terminal_types
print_ ttt_path
set_ttt_path
set_tty
window_call

CONTROL OF ABSENTEE COMPUTATIONS

cancel_abs_request
cobol_abs
enter_abs_request
fortran_abs

list_abs_requests
move_abs_request
pll_abs
runoff_abs

PROGRAMMING LANGUAGES (COMPILERS)

aIm
alm_abs
apl
basic
cobol
cobol_abs
create_data_segment
fortran
f ortran_abs
list_f ortran_storage
pascal
pascal_area_status

pascal_cross_reference
pascal_create_area
pascal_delete_area
pascal_display
pascal_file_status
pascal_indent
pascal_reset_area
pascal_set_prompt
pll
pll_abs
pll_macro
reductions

2-7 AG92-06A

11/86

PROGRAMMING/DEBUGGING AIDS

add_pnotice
cancel_cobol_program
close_file
create_data_segment
cumulative_page_trace
debug
delete_external_ variables
display_co bol_run_uni t
display_entry _point_dcl
display _pllio_error
display _pnotice
expand_cobol_source
exponent_con trol
fast
format_pll
history_comment
indent
io_call
list_external_ variables
list_f ortran_storage
list_pnotice_names
nothing
print_bind_map
print_error_message
print_link_inf 0

OBJECf SEGMENT MANIPULATION

archive
archive_table
bind
compare_object
cross_ref erence
date_compiled
display _component_name

AREA MANAGEMENT

area_status
create_area

prin t_linkage_usage
print_sample_refs
probe
process_switch_off
process_switch_on
profile
progress
reset_external_ variables
run
run_cobol
sample_refs
save_history _registers
set_f ortran_common
set_cc
set_severity _indicator
severity
signal
stop_run
stop_cobol_run
trace
trace_meters
trace_stack
valid_pictured_data
watch

bunt_dec
linkage_editor
print_bind_map
print_link_inf 0
prin t_relocation_inf 0

reorder_archive

set_system_storage
set_user_storage

PERFORMANCE MONITORING FACILITIES

cumulative_page_trace
page_trace
prin t_linkage_usage
profile

progress
trace
trace_meters
watch

2-8 AG92-06A

11/86

SYSTEM LIBRARIES

add_pnotice
cross_ref erence
describe_psp
display _pnotice
generate_pnotice

ARCHIVE SEGMENT MANIPULATION

archive
archive_sort
archive_table
bind
compare_ascii
component
get_library _segment
is_component_pathname
library_fetch

get_library _segment
library_descriptor
library _fetch
list_pnotice_names
peruse_crossref

linkage_editor
merge_ascii
path
print
print_link_inf 0
reorder_archive
strip_component
test_archive

SYSTEM MAINTENANCE AND DEBUGGING TOOLS

get_ips_mask
monitor_quota
reset_external_ variables

RESOURCE CONTROL PACKAGE

attach_Iv
acquire_resource
assign_resource
cancel_resource
detach_Iv
list_resources
list_resource_types

TAPE MAINTENANCE UTILITIES

list_tape_contents
manage_ volume_pool
read_tape_and_query
mtape_delete_defaults
mtapeJet_defaults

CONDITION HANDLING

change_error_mode
display _pllio_error
on

reset_ips_mask
set_ips_mask

Iv_attached
release_resource
reserve_resource
resource_status

unassign_resource

mtape_set_defaults
tape_archive
tape_in
tape_out

reprin t_error
signal

2-9 AG92-06A

*

SETI1NG AND srORING VARIABLES

delete_external_variables
list_extemal_ variables
reset_external_variables
value_defined
value_delete

ADMINISTRATIVE UTILITIES

check_file_system_damage
compare_configuration_deck
deiete_ volume_quota
list_mdir
monitor_quota

ARITHMETIC OPERATIONS

calc
ceil
divide
floor
index_set
max
minus

LOGICAL OPERATIONS

and
equal
exists
greater
if
less

CONVERSION OPERATIONS

binary
convert_characters
convert_ec
cv_ttf

valueJet
value_list
value_path
value_set
value_set_path

print_configuration_deck
set_mdir_account

min
mod
plus
quotient
times
trunc

nequal
ngreater
nless
not
or
select

decimal
dump_segment
hexadecimal
octal

2-10 AG92-06

11/86

CHARACI'ER STRING OPERATIONS

after
before
b001
byte
collate
collate9
copy_characters
decat
format_line
f ormat_line_nnl
format_string
high
high9
index
index_set
length
low
lower_case
ltrim
picture

DATE A~l) TIMES

calendar
calendar_clock
clock
date
date_time
date_time_after
date_time_before
date_time_equal
date_time_interval
date_time_ valid
day
daY.Jlame

rank
reverse
reverse_after
reverse_before
reverse_decat
reverse_index
reverse_search
reverse_substr
reverse_verify
rtrim
search
sort_strings
string
substr
translate
underline
unique
upper_case
verify

display_time_info
hour
Ions-date
lonuear
memo
minute
month
month_name
print_time_defaults
set_time_default
time
year

2-11 AG92-06A

SECTION 3

COMMANDS AND ACTIVE FUNCTIONS

This section contains descriptions of the Multics commands and active functions,
presented· in alphabetical order.

3-1 AG92-06

abbrev

11/86

Name: abhreY, ab

SYNTAX AS A COMMAND

ab {-control_args}

SYNTAX AS AN ACTIVE FUNCTION

Cab]

FUNCTION

provides a mechanism for abbreviating parts of or whole command lines in the
Muttics command environmenL As an active functi~ returns "true" if abbreviation
expansion of command lines is currently enabled, "false" otherwise.

CONTROL ARGUMENTS

-esalpe STR, -esc STR

-off

-on

changes the abbrev escape character used to indicate that a command line is
actually a request line. STR must be a single, nonblank character. (See "Notes on
Control Requests" and the .escape control request.) (Default a period [.J)

disables abbreviation expansion in subsequent command lines (see the .quit request).

enables abbreviation expansion within subsequent command lines until you use
either -off or .quit. (Default)

-profile path, -pC path
changes the patbname of the profile segment. The "profile" suffix is assumed if
you don't supply it. If the specified segment is nonexistent, you are asked for
permission to create it. (See the .use request.) (Default
>udd>ProjectJd>Penonjd>Personjd.profi1e) cbf

NOTES

The abbrev command sets up a special command processor that is called for each
command line input to the system until abbrev processing is explicitly reverted. The
abbrev command processor checks each input line to see if it is an abbrev request
line, recopized by a period as the first nonblank character of the line, and, if so,
acts on that request (see "List of Control Requests"). If the input line is not an
abbrev request line and abbreviations are included in the line, they are expanded only
once (i.e.. they cannot be nested) and the expanded string is passed on to the normal
Multies command processor. The abbrev command processor is, therefore, spliced
between the listener and the normal command processor.

abbrev

3-2 A092-()6A

abbrev

NOTES ON CONTROL REQUESTS

An abbrev request line has a period (.) as the first nonblank character of the line.
An abbrev request line. with the exception of .s and . <space> , is neither checked for
embedded abbreviations nor (even in part) passed on to the command processor. If
the command line is not an abbrev request line. abbrev expands it and passes it on to
the current command processor.

LIST OF CONTROL REQUESTS
The character immediately after the period of an abbrev request line is the name
of the request The following requests are recognized:

prints "abbrev" followed by the current version number of the abbrev processor .

• <space> <rest of line>
passes <r es t of line> on to the current command processor without expanding
it. Using this request, you can issue a command line that contains abbreviations
that are not to be expanded .

• a <abbr> <rest of line>
adds the abbreviation <abbr> to the current profile segment. It is an abbreviation
for <res t of 1 i ne>. The <res t of 1 i ne> string can contain any characters. If
the abbreviation already exists, you are asked whether to redefine it You must
respond with "yes" or "no." The abbreviation must be no longer than eight
characters and must not contain break characters .

• ab <abbr> <rest of line>
adds an abbreviation that is expanded only if found at the beginning of a line or
directly following a semicolon (;) in the expanded line. In other words, this is an
abbreviation for a command name .

• abf <abbr> <rest of line>
adds an abbreviation that is expanded only at the beginning of a line and forces
it to replace any previous one with the same name. You are not asked whether
to redefine it

.af <abbr> <rest of line>
adds an abbreviation to the profile segment and forces it to overwrite any
previous one with the same name. You are not asked whether to redefine it.

.d <abbri> ••• <abbrN>

.f
deletes the specified abbreviations from the current profile "segment.

enters a mode (the. default) that forgets each command line after executing it (see
.r and .s) .

• 1 <abbrl> .•• <abbrN>
lists the specified abbreviations and the strings they stand for. If none are given.
all abbreviations in the current profile segment are listed.

abbrev

3-3 AG92-06

abbrev

11/87

.a NAME LINE
adds the abbreviation NAME to the current profile segment. It is an abbreviation for LINE.
The LINE string can contain any characters except break sequences. (See "Notes on Break
Sequences. ") If the abbre·viation already exists, you are asked whether to redefine it; respond
with "yes" or "no."

.ab NAME LINE
adds an abbreviation that is expanded only if found at the beginning of a line or after a
semicolon (;), semicolon vertical bar pair (; I), or left bracket ([) in the expanded line. In
other words, this is an abbreviation for a command name .

. abf NAME LINE
adds an abbreviation that is expanded only at the beginning of a line and forces it to replace
any previous one with the same name. You are not asked whether to redefine it.

.af NAME LINE
adds an abbreviation to the profile segment and forces it to overwrite any previous one with
the same name. You are not asked whether to redefine it .

. debug
invokes debug to debug a process in which it is no longer possible to execute commands
although it is still possible to execute abbrev request lines .

. delete NAMEs •. d1 NAMEs .. 0 NAMEs
deletes the specified abbreviations from the current profile .

. edit NAME
invokes Qedx to edit the definition of the specified abbreviation (see "Notes on Editing
Abbreviations") .

. escape {STR}, .esc {STR}
changes the escape character used to indicate that a command line is actually a request line.
STR must be a single, non blank character. If you give no STR, the escape character presently
in use is displayed. (Default: a period [.J)

. forget, .f
disables .remember; i.e., it forgets each command line after executing it (see .remember and
.show). (Default)

.1 {NAMEs}
displays the names, switches, and definitions of the specified abbreviations in alphabetical
order. If you give no names, all abbreviations in the profile are listed .

. la STRs
displays the names, switches, and definitions of any abbreviations whose names start with
one of the given strings. Supply at least one string.

abbrev

3-4 AG92-06B

abbrev

11/87

.lab, la A b STRs
displays the names, switches. and definitions of abbreviations which are beginning-of-line
abbreviations (lab) or not beginning-of-line abbreviations (laAb), starting with STRs .

.lb. lAb {names}
displays the names, switches, and definitions of the given abbreviations; lb for
beginning-of-line, lAb for not beginning of line abbreviations. If no names are given, lists
all of the abbreviation-type .

. Is STRs
displays the names. switches. and definitions of any abbreviation which contain STRs in its
name .

.Isb, lsA b STRs
displays the names, switches, and definitions of any beginning-of-line abbreviations (lsb) or
not beginning-of -line abbreviations whose name contains STRs .

. lx STRs
displays the names, switches and definitions of abbreviations whose definitions contain
STRs .

.Ixb, lxAb STRs
displays the names, switches and definitions of beginning-of -line abbreviations (lxb) or not
beginning-of-line abbreviations (IxAb) whose definitions contain STRs.

abbrev

3-4.1 AG92-06B

abbrev

paren theses
apostrophe
period
semicolon
less than
greater than
brackets
braces
vertical bar

o ,

<
>
[]
{}

I
The two-character-sequence archive component pathname delimiter (::) is also recognized
as a break sequence.

EXAIVIPLES

Suppose that you wish to abbreviate the pathname of a directory in which you do a
lot of work. Instead of having to type the entire pathname every time you need to
reference it, it can be called up easily with much fewer keystrokes as in the following
examples:

Invoke the abbrev command:

! ab

Define the abbreviation:

! .a myinfo >udd>States>Washington>info

Now that "myinfo" is defined. you can change to that directory.

! cwd my info .

Change to the inferior directory called data_dire

! cwd myinfo>data_dir

Another useful abbreviation is for the enter_output_request command, when you
frequently use a certain printer queue and a special request type. The do command is
used to substitute arguments into the abbrev. For example:

! . ab pr i ntx do "eor & 1 -q 2 -rqt x 1200 -nt -he "By George lill

Now to request a printout of a segment contained in "myinfo," type:

! printx myinfo>dat~.list

With the do command you can also perform a series of functions that are defined by
one simple abbrev; for example:

.ab send_cp do "sms Lincoln.States A copy of &1 that I've prepared
this week is being printed for you.; printx -dl -he Lincoln &1 11

abbrev

AG92-06

abbrev

11/87

NOTES ON BREAK SEQUENCES

When abbrev expands a command line, it treats certain character sequences as special break
sequences. An abbreviation cannot contain break sequences. Any character string up to eight
characters long and bounded by break sequences can be expanded. The string is looked up in the
current profile segment and. if found, the expanded form is placed in a copy of the command }jne
to be passed on to the normal command processor. The following single-character break
sequences are recognized by abbrev:

apostrophe
backquote

{} braces
brackets []
dollar sign $
formfeed FF
greater than >
horizontal tab HT
less than <
newline NL
parentheses 0
period
quote II

semicolon
space

I vertical bar
vertical tab VT

The beginning and end of the line and the two-character-sequence archive component pathname
delimiter (::) are also break sequences.

LIST OF ABBREVIATION DEFINITION SWITCHES

The following switch is part of the definition of each abbreviation:

beginninLof _line, bol
specifies that this abbreviation is only expanded in a command when appearing at the
beginning of a line or immediately after the semicolon (;), semi-colon vertical bar pair (; I)
or left bracket (D. (I.e., when the abbreviation is used as the command name). If this switch
is off, the expansion occurs anywhere on a command line.

NOTES ON EDITING ABBREVIATIONS

When you invoke the edit request to edit an abbreviation, it first displays the definition of the
abbreviation and then invokes Qedx with the definition in buffer O.

Using the Qedx write request without a pathname saves the revised definition in the profile
segment. Using the read or write request with a pathname, in any buffer, makes the pathname be
interpreted as the name of an abbreviation. Presently, you can't read a buffer from, or write it to,
a segment.

abbrev

3-6 AG92-06B

abbrev

When writing a buffer and an abbreviation of the given name does not exist, it is
created with the bol switch set off. If the abbreviation already exists and is not the
default for the buffer as displayed by. the Qedx status request, abbrev asks for
permission to overwrite the definition of the abbreviation. In this' case, the
abbreviation retains its original setting of the bol switch.

EXAMPLES

Suppose that you wish to abbreviate the pathname of a directory in which you do a
lot of work. Instead of having to type the entire pathname every time you need to
reference it, you can use fewer keystrokes, as in the following examples:

Invoke the abbrev command:

abbrev

, I ab

11/86

Define the abbreviation

I .a Opinfo >user_dir_dir>Antarctica>Opus>Opus.profile

Now that "Opinfo" is defined, you can change to that directory.

I cwd Opinfo

Change to the inferior directory called data_dir.

I cwd Opinfo>data_dir

When you frequently use a certain printer queue and a special request type, an
abbreviation for the enter_output_request command is

I .ab printx do lIeor &1 -q 2 -rqt x1200 -nt -he IIBy Jovellll

Now, to request a printout of a segment contained in "Opinfo," type:

I printx myinfo>data~list

With the do command you can also perform a series of functions that are defined by
one simple abbrev; for example,

.ab send_cp do IIsms Opus.Antarctica A copy of &1 that live prepared
this week is being printed for you.; printx -d1 -he Opus &1 11

3-7 AG92-()6A

abbrev

11/86

Then the following send a message and a copy of data.list to Opus.

send_cp data.list

An abbreviation can invoke other abbreviations, as seen above. If you want to ensure,
within the do's command line, that a string not be expanded, enclose it in an extra
layer of quotes; for example,

• ab eor do 1IIIIIeerllll & 1 -rqt x 1200 -q 3"

Name: accept_messages, am

SYNTAX AS A COMMAND

am {mbx_specification} {-control_args}

FUNCTION

initializes or reinitializes your process both for accepting messages that are sent by
send_message and for notifications.

ARGUMENTS

mbx_specification
specifies the mailbox on which messages are to be accepted. If not given, the
user's default mailbox (>udd>Project>Person>Person.mbx) is used.

LIST OF MBX SPECIFICATIONS

-log
specifies the user's logbox and is equivalent to

-mailbox >udd>Project_id>Person_id>Person_id.sv.mbx

-mailbox path, -mbx path
specifies the pathname of a mailbox. The suffix .mbx is added if necessary.

-save path. -sv path
specifies the pathname of a savebox. The suffix .sv.mbx is added if necessary.

-user STR
specifies either a user's default mailbox or an entry in the system mail table.

STR
is any noncontrol argument, and is first interpreted as -mailbox STR; if no
mailbox is found. STR is then interpreted as -save STR; if no savebox is found,
it is interpreted as -user STR.

3-8 AG92-06A

11/86

CONTROL ARGUMEIVTS

-brief, -bf
prevents accept_messages from informing you that it is creating a mailbox, and
prints messages in short format

-call {cmdline}
when the message is received, instead of printing it in the default format,
accept_messages calls the command processor with a string of the form

cmdline number sender time message {path}

where:

cmdline
is any Multics command line; enclose it in quotes if it contains blanks or
other command language characters.

number
is the sequence number of the message, assigned when you use -hold_messages;
otherwise it is O.

sender
is the User_id of the person who sent the message.

time
is the date-time the message was sent

message
is the message sent

path
is the pathname of the mailbox to which the message was sent If the
message was sent to the default mailbox, path is omitted.

To suppress a previous =call, give -call with no cmdline arg-lL.~ent

-flush Dr
discards messages sent before the specified date-time (see Section 1 for a
description of valid Dr values). This control argument should be used by
operators and consultants.

-hold_messages, -hdmsg
holds messages until explicitly deleted by delete_message. Messages printed when
-hold_messages is in effect are preceded by an identifying number.

3-9 AG92-06A

11/86

-holdJlotifications, -hdnt
holds notifications in the mailbox after being printed. This implies -notifications.

-long, -lg
precedes every message printed by the sender's PersoD_id and Project_id and
prints the date-time string. It prints the message number only if you use
.... hold_mesages (Default)

-no_holdJllessages, -nhdmsg
reverts -hold_messases_

-nojold_notifications, -nhdnt
deletes notifications after being printed. (Default)

-noJlotifications, -nnt
deletes notifications as they are received. This implies -nojoldJlotifications.

-no_print, -npr
does not print old messages (Default)

-noJhort_pref~ -nshpfx
does not print the prefix when me ges are printed in short formal

-notifications, -nt
prints notifications. (Default)

-prefix STR, -pCx STR
places STR in front of all messages printed as they are received. STR can be up
to 12 characters long, and can contain the ioa_ control strinp A /, A I, and A_ if
desired.

-print, -pc
prints aU messages that you received since the last time you were accepting
messages The messages are deleted after printing, unls you are holding them.

-short, -sh
precedes eonseeutive messages from the same sender by "-" instead of the
PersoD_id and Project_id, and prints the date-time string only if 15 than five
minutes have passed since the previous message. It omits the date if the current
msage and the previous one are received on the same date.

-short_pref~ -shpfx
prints the prefix when masages are printed in short formal (Default)

3-10 AG92-06A

11/86

-time N, -tIn N
prints undeleted messages every N minutes, preceded by a message of the form

You have X messages

where X is the number of undeleted messages. If N equals 0, the time mode is
reset.

NOTES

A default mailbox is created the first time you issue print_mail read_mail or
accept_messages. The default mailbox is

>udd>Project_id>Person_id>Person_id.mbx

Messages sent when you are not logged in or when you are deferring messages (see
defer_messages) are saved in the mailbox; you can read them later with print_messages.
The send_mail command stores mail in the same mailboL

Don't share the same mailbox with others.

At any time, only one process can be accepting messages from a given mailboL If
you create two processes that accept messages from the same mailbox, the second
process (i.e., the one issuing an accept_messages most recently) automatically take over
the command function. The first process receives no indication that messages are being
routed to the second process. If the second process logs out or is destroyed, the
messages do not revert to an earlier process; thus if you send a message to that
mailbox. you axe informed that the addressee is c1L~ent1y not accepting m~~ges or is
not logged in. So if you are registered on multiple projects using a common mailbox.
be aware that this behavior affects your processes.

Generally don't accept messages in absentee processes; the start_up.ec should distinguish
between interactive and absentee processes, and should issue accept_messages only in an
interactive process.

You can accept messages on more than one mailbox at a time and on a mailbox other
than the default. If you use a nondefault mailbox and it does not exist,
accept_messages queries you whether it should be created. When messages are printed
from a nondefault mailbox, the mailbox is always identified.

3-11 AG92-06A

accepting

11/86

Name: accepting

SYNTAX AS A COMMAND

accepting address

SYNTAX AS AN ACTiVE FUNCTION

[accepting address]

FUNCTION

determines whether messages are being accepted on the mailbox specified by the
address supplied.

ARGUMENTS

address
can be of the form Person_id.Project_id to specify a mailbox belonging to that
person; a string containing at least one > or < to specify the pathname of a
mailbox; one of the arguments -mailbox (-mbx), -log, or -save (-sv), immediately
followed by a string giving the pathname of a mailbox, logbox, or save box,
respectively; -last_message_destination (-lmds) if you have used send_message in
this process; or -last_message_sender (-lms) if a message has been received in the
user's default mailbox.

Name: acquire_resource, aqr

SYNTAX AS A COMMAND

aqr type STRl { ••• STRs} {-control_args}

aqr type -number N {-control_args}

FUNCTION

selects a resource of a given type from a free pool of all such resources and makes
you the accounting owner of the resource. You are given full control over the access
rights for all users of the resource, as well as control over many parameters of the
resource. Ownership of the resource is terminated by release_resource.

ARGUMENTS

type
is a resource type defined in the resource type description table (RTDT).

3-12 AG92-06A

11/86

acquire_resource

STRs
is the unique identifying name of the particular resource being acquired. If STR
looks like a control argument, precede it by -name (-nm). If you give no -name,
a resource is chosen to satisfy any constraints imposed by the control arguments
given.

CONTROL ARGUMENTS

-access_class accr, -acc accr
sets the initial AIM access class parameters, where accr is' an access class range.
Users at any authorization within the access class range inclusive are allowed to
read and write to the resource (provided they also meet other access requirements).
(See "Notes.")

-acs_path path
specifies the pathname of the access control segment (ACS) for this resource. You
must create the ACS and set the desired access control list. If the ACS doesn't
exist or you don't specify it. the default access is rew to the accounting owner
and null to all others. If path is a null string, any eXisting ACS is disassociated
from the resource.

-alloc SIR
sets the allocation state of the resource to allocated or free, where SIR must be
either "on" (allocated) or "off" (free). The allocation state flag exists for your
convenience and is largely ignored by resource management. (Default off)

-attributes SIR, -attr SIR
searches for resources possessing the attributes specified in STR~ If you give -attr
with -nm, then the resource specified by the explicit name is searched for, and,
when found, its attributes are set to those specified with -attr.

-comment STR, -com STR
specifies the desired value of the comment string for this resource, where STR
can be an arbitrary comment string with a maximum length of 168 characters.

-lock STR
locks or unlocks the resource, preventing or allowing use of that resource, where
STR must be either "on" (prevents use of the resource) or "off" (allows use of
the resource). (Default: off)

-number N, -nb N
specifies that the number of such resources to be acquired is N. If you supply
no -nb, 1 is assumed. You can supply -nb only if you supply no name.

3-13 AG92-G6A

11/87

ARGUMENTS

path
is the pathname of a segment~ rnultisegment file, data management file, directory, extended
entry, or link. This argument can consist of "-name STR" to specify a nonstandard
entryname STR which already exists and which begins with a hyphen or contains ASCII
control characters or any of the nonstandard characters ", <, >, $, %. 1, *, =, (,), [,], ::.

names
are additional names to be added. This argument can consist of "-name STR" when the
entryname begins with a hyphen. The other nonstandard characters detailed above are not
recommended for entrynames and this command will not generate entrynames which
contain them.

CONTROL ARGUMENTS

-brief, -bf
suppresses the error message "Name already on entry."

-long, -lg
does not suppress the error message "Name already on entry." (Default)

ACCESS REQUIRED

You need modify permission on the parent directory.

NOTES

Two entries in a directory cannot have the same entryname; therefore add_name takes special
action if the added name already exists. If the added name is an alternate name of another entry,
the name is removed from this entry, added to the entry specified by path, and you are informed
of this action. If the added name is the only name of another entry, you are asked whether to
delete this entry. If you answer "yes." the entry is deleted and the name is added to the entry
spe-eified by path; if you :L.'1swer "no," no action is taken.

See the delete_name and rename commands.

EXAMPLES

The command line

an >my_dir>example.pll sample.pll

adds the name sample.pll to the segment example.pll in the directory >my_dir.

3-14.1 AG92-06B

11/87

The command line

an >udd>**~private ==.personal

adds to every entry having a name with ttprivate'~ as the last component a name with "personal" as
the last component

Name: add_pnotice

SYNTAX AS A COMMAND

add_pnotice path {-control_args}

FUNCTION

protects source code programs by adding, at the beginning of a program, a software protection
notice (copyright public domain, or trade secret notice) in a box delimited as a comment
Multiple protection notices are supported. You can protect archives of source code programs
using this command. The archive pathname convention is supported. If a particular language or
suffix is not supported, an appropriate message is printed.

ARGUMENTS

path
is the name of a source code program or an archive of source programs. You can give an
archive component pathname to name a single archive component You must include the
language suffix or archive suffix.

CONTROL ARGUMENTS

-brief, -bf
suppresses printing of both the source program name and the name of the pnotice that was
added.

-default_copyright, -dc
specifies that the notice to be added to the segment is the default copyright notice.
Normally, this is a Honeywell copyright, but your site can change the default (see "Notes").

-default_trade_secret, -d ts
specifies that the notice to be added to the segment is the default trade secret notice.
Normally, this is a Honeywell trade secret notice, but your site can change the default (see
"Notes").

-long. -lg
specifies that both the name of the source program and the name of the pnotice are printed
when a protection notice is added. (Default)

-name STR. -nm STR
where STR specifies the name of a protection notice template to be added (see "Notes").

3-14.2 AG92-06B

11/87

NOTES

If you give no control arguments and there are no existing pnotices in the program. an error
message is issued and no changes are made to the program. If copyright pnotices are found and
you use -dc or -nm. the 10-year rule is applied to the named pnotice; that is. if the notice is more
than nine years old. a new copy of the notice is added with the r.urrent year. If copyright pnotices
exist and you give neithe;- -dc nor -nm, the 10-year rule is applied to the most recent copyright
pnotice.

You can obtain a list of available copyright and trade secret protection notice template names
with list_pnotice_names; you can use -nm to specify any of these templates.

To list the pnotice segments in a source porgram. use display _pnotice.

A given program may contain several copyright notices or a trade secret notice or a public domain
notice. but cannot contain a mixture of pnotice types.

3-14.3 AG92-06B

11/86

-owner SlR -ow STR
specifies that this is an acquisition for the user specified by STR. If you give
STR as "system," the resource is assigned to the system pool; if as "free," the
resource is acquired to the free pool (effectively the same as no -ow). If STR is
of the form Person_id.Project_id (where neither Person_id nor Project_id can be
a star), the user specified has all the rights of ownership to the resource, as if he
had acquired it personally, except that if you give ff-rll on", the .owner can't
release (give up ownership of) the resource voluntarily. (See "Notes. ")

-priv
specifies that a privileged call is to be made to obtain the status of this resource.

-release_lock STR, -rll STR
specifies whether this resource can be released by the owner or only by a
privileged process, where STR must be either "on" or "off." If you supply no
-rll, the resource can be released by the owner. (See "Notes.")

ACCESS REQUIRED

You need execute access to the rcp_admin_ gate to use -access_class. -owner. -priv,
or -release_lock.

NOTES

This command acquires a resource for either you (requestor) or the user specified by
-ow. If you are registered on more than oneprojeci and need corresponding access.
or other users (on any project) need access to acquire a resource, you must create or
modify the ACS. You must then specify the new/modified ACS by using "aqr
-acs_path." The User_id (Person_id.Project_id) specifies the user to be added to, or
deleted from, the ACS.

You must give -priv with -ace. -ow, and -rHo

Name: add_name, an

SYNTAX AS A COMMAND

an path names {-control_args}

FUNCTION

adds alternate name(s) to a segment. multisegment file (MSF). directory, link. data
management (DM) file, or extended entry.

3-14 AG92-06A

SYNTAX AS A COMMAND

asp search list search pathl {-control_args} ••• search_pathN
{-contro 1 args}-

FUNCTION

adds one or more search paths to the specified search list.

ARGUMENTS

search_list
is the name of the search list to which the new search paths are added.
Synonyms of search_list are described in the individual command descriptions.

search_pathi
specifies a new search path. where search_pathl is a relative or absolute pathname
or a keyword. (For a list of acceptable keywords see "List of Keywords" below.)
Each search_path argument can be followed by either the -after •. -before. -first.
or -last control argument to specify its position within the search list. If no
search path position control argument is specified. -last is assumed.

CONTROL ARGUMENTS
are used only after the search_path argument. Only one is allowed for each
search_pa tho

-after STR. -af STR
specifies that the new search path is positioned after the STR search path. The
current search path is an absolute or relative pathname or a keyword. In
representing STR it is necessary to use the same name that appears when the
print_search_paths (psp) command is invoked.

-bef ore STR, -be STR
specifies that the new search path is positioned before the STR search path.

-first. -ft
specifies that the new search path is positioned as the first search path in the
search liSL

specifies that the new search path is positioned as the last search path in the
search list.

LIST OF KEYWORDS

Listed below are the keywords accepted as search paths in place of absolute or relative
pathnames. There is no restriction as to the position of any of these keywords within
the search list.

3-15 AG92-06

-home_dir, -hd
-process_dir, -pd
-referencins-dir, -rd
-workins-dir, -wd

NOTES

In addition, a pathname can be specified with the Multics active function [user name]
or [user project]. A search path enclosed in quotes is not expanded when placed in
the search iist It is expanded when referenced in a user's process. This feature allows
search paths to be defined that identify the process directory or home directory of
any user.

If a link target does not exist, the search facility continues to search for a matching
entryname.

LIST OF RELATED SEARCH FACILITY COMMANDS

add_search_paths, asp
delete_search_paths, dsp
prin t_search_paths, psp
set_search_paths, ssp
where_search_paths. wsp

EXAMPLES

The command line

asp translator >udd>Project_id>Person_id>include

adds the absolute pathname >udd>Project_id>Person_id>include as a search path. This
new search path is positioned as the last search path in the translator search list.

The command line

asp trans <include_files -first

adds the absolute pathname represented by the relative <include_files as a search path
to the trans search list where trans is a synonym for translator. This new search path
is positioned as the first search path in the search list

The command line

asp info info_files -after >doc>info

adds the absolute pathname represented by the relative pathname info_files as a search
path to the info search list. This new search path is positioned in the info search list
after the >doc>info search path.

3-16 AG92-06

The command line

asp translator >udd>[user project]>incl -be >ldd>include

adds the unexpanded pathname >udd> [user project] >incl to the translator search list.
This new search path is positioned before the >ldd>include search path.

SYNTAX AS A COMMAND

asr pathl {-controi_args} ••• pathN {-control_args}

FUNCTION

adds pathnames and keywords to the search rules for object segments.

ARGUMENTS

pathi I
is the absolute or relative pathname of a directory or one of the keywords listed
below.

CONTROL .ARGUMENTS

-after path. -af path
appends the previous path argument after the existing search rule named by path.

-before path. -be path
inserts the previous path argument before the existing search rule named by path.

-force. -fe
deletes any old occurrence of path in the search rules before adding the new
rule.

-no_force, -nfc
fails and prints an error message if a rule to be added already exists in a
different position. (Default)

LIST OF KEYWORDS

Both pathi and path arguments can be either pathnames or keywords. The defined
keywords are:

initiated_segments
ref erencin~dir
workin~dir

3-17 AG92-06

In addition, path in control args can be:

home_dir
process_dir
any site-defined keywords

NOTES

No warning is printed if a rule to be' added already exists in the same position as
that for which it is intended.

The limit on the number of search rules allowed for a process is 21.

SYNTAX AS A COMMAND

abc paths {-control_args}

FUNCTION

sets the bit count of a segment that for some reason docs not have its bit count set
properly (e.g., the program that was writing the segment got a fault before the bit
count was set or the process terminated without the bit count being set).

ARGUMENTS

paths
are the pathnames of segments and multisegment files. The star convention is
allowed.

CONTROL ARGUMENTS

-character, -ch
set the bit count to the last nonzero character. (Default: the last nonzero word)

-chase
chases links when using the star convention. (Default: to chase links only for
nonstarred pathnames)

-long, -lg
print a message when the bit count of a segment is changed, giving the old and
new values.

-no_chase
does not chase links when using the star convention. (Default)

3-18 AG92-06

ACCESS REQUIRED

You must have write access on the segment or multisegment file.

NOTES

The adjust_hit_count command looks for the last nonzero 36-hit word or (if specified)
the last nonzero character in the segment and sets the hit count to indicate that the
word or character is the last meaningful data in the segment.

If the hit count of a segment can be computed but cannot be set (e.g., the user has
improper access to the segment), the computed value is printed so that the user can
use the set_hit_count command after resetting access or performing other necessary
corrective measures.

The adjust_hit_count command should not he used on segments in structured files.
The vfile_adjust command should be used to adjust inconsistencies in structured files.

Name: after, af

SYNTAX AS A COMMAND

af STRA STRB

SYNTAX AS AN ACTIVE FUNCTION

[af STRA STRB]

FUNCTION

returns the string following the first occurrence of STRB in STRA. If STRB does not
occur in STRA, the null string is returned.

EX.4MPLES

string [after abcdef123def456 def]
123def456
string [after abcdef gh]

string [format_line XyAaZZ [after 1.4596e+17 7]]
XYZZ

after

3-19 AG92-o6

aIm

Name: aIm

SYNTAX AS A COMMAND

alm path {-control_args}

FUNCTION

ALM is the standard Multics assembly language. It is commonly used for privileged
supervisor code, higher level support operators and utility packages, and data bases. It
is occasionally used for efficiency or for hardware features not accessible in higher
level languages; however, its routine use is discouraged.

The aIm command invokes the ALM assembler to translate a segment containing the
text of an assembly language program into a Multics standard object segment. A
listing segment can also be produced. These segments are placed in the user's current
working directory.

The ALM language is described briefly in this command description. The Multics
Processor Manual (AL39) fully describes the instruction set

ARGUMENTS

path
is the pathname of an ALM source segment that is to be translated by the ALM
assembler. If path does not have a suffix of aIm, one is assumed. However, the
suffix must be the last component of the name of the source segment

CONTROL ARGUMENTS

are optional arguments that can only appear after the path argument. The control
argumen ts are:

-arguments STR, -ag STR
indicates that the assembled program may expect arguments. If present, it must be
the last control argument to the aIm command and must be followed by at least
one argument See "Macros in ALM" later in this description.

-brief. -bf
prevents errors from being printed on the terminal. Any errors are flagged in the
listing (if one has been requested).

-list, -Is
produces an assembly listing segment.

-no_symbols
suppresses the listing of a cross-reference table in the listing segment. This
cross-reference table is included by default in the listing segment when the -list
control argument is given.

aIm

3-20 AG92-06

aIm

NOTES

The only result of invoking the aIm command without control arguments is to generate
an object segment

A successful assembly produces an object segment and leaves it in the user's working
directory. If an entry with that name existed previously in the directory, its access
control list (ACL) is saved and given to the new copy. Otherwise. the user is given re
access to the segment with ring brackets v,v,v where v is the validation level of the
process that is active when the object segment is created.

If the user specifies the -list control argument. the aIm command creates a listing
segment in the working directory and gives it a name consisting of the entryname
portion of the source segment with the suffix list rather than aIm (e.g., a source
segment named prt_conv_.alm would have a listing segment named prt_conv_.lisd. The
ACL is as described for the object segment except that the user is given rw access to
the newly created segment. Previous copies of the object segment and the listing
segment are replaced by the new segments created by the compilation.

The assembler is serially reusable and sharable. but cannot be reentered once
translation has begun; that is, it cannot be interrupted during execution. invoked again.
then restarted in its previous invocation.

ERROR CONDITIONS

Errors arising in the command interface, such as inability to locate the source segment.
are reported in the normai Muitics manner. Some conditions can arise within the
assembler that are considered malfunctions in the assembler; these are reported by a
line printed on the terminal and also in the listing. Any of the above cases is
immediately fatal to the translation.

Errors detected in the source program, such as undefined symbols, are reported by
placing one-letter error flags at the left margin of the erroneous line in the listing
segment. Any line so flagged is also printed on the user's terminal, unless the -brief
control argument is in effect. Flag letters and their meanings are given below.

LI ST OF FLAGS

B mnemonic used belongs to obsolete (Honeywell Model 645) processor instruction
set.

D error in macro definition or macro expansion; more detailed diagnostic for
specific error given in listing.

E malformed expression in arithmetic field.

F error in formation of pseudo-operation operand field.

M reference to a multiply defined symbol.

aIm

3-21 AG92-o6

aIm

N unimplemented or obsolete pseudo-operation.

o unrecognized opcode.

p phase error; location counter at this statement has changed between passes,
possibly due to misuse of org pseudo-operation.

R expression produces an .'1'~ "J p"'.

S error in the definition of a symbol.

T undefined modifier (tag field).

U reference to an undefined symbol.

7 digi t 8 or 9 appears in an octal field.

The errors B, E, M, 0, P, and U are considered fatal. If any of them occurs, the
standard Multics "Translation failed" error message is reported after completion of the
translation.

ALM LANGUAGE

An ALM source program is a sequence of statements separated by newline characters
or semicolons. The last statement must be the end pseudo-operation.

Fields must be separated by white space, which is defined to include space, tab, new
page. and percent characters.

A name is a sequence of uppercase and lowercase letters, digits, underscores, and
periods. A name must begin with a letter, period, or underscore and cannot be longer
than 31 characters.

LABELS

Each statement can begin with any number of names, each followed immediately by a
colon. Any such names are defined as labels, with the current value of the location
counter. A label on a pseudo-operation that changes location counters or forces even
alignment (such as org or its) might not refer to the expected location. White space is
optional. It can appear before, after, or between labels, but not before the colon.

OPCODE

The first field after any labels is the opcode. It can be any instruction mnemonic or
anyone of the pseudo-operations listed later in this description under "Pseudo-operations."
The opcode can be omitted, and any labels are still defined. White space can appear
before the opcode, but is not required.

aIm

3-22 AG92-06

aIm

OPERAND

Following the opcode, and separated from it by mandatory white space, is the operand
field. For instructions, the operand defines the address, pointer register, and tag
(modifier) of the instruction. For each pseudo-operation, the operand field is
described under "Pseudo-operations" below. The operand field can be omitted in an
instruction. Those pseudo-operations that use their operands generally do not permit
the operand field to be omitted.

NOTES

Since the assembler ignores any text following the end of the operand field, this space
is commonly used for comments. In those pseudo-operations that do not use the
operand field, all text following the opcode is ignored and can be used for comments.
Also, a quote character (") in any field introduces a comment that extends to the end
of the statement. (The only exceptions are the ace. aci, and bci pseudo-operations, for
which the quote character can be used to delimit literal character strings.) The
semicolon ends a statement and therefore ends a comment as well.

INSTRUCTION OPERANDS

The operand field of an instruction can be of several distinct formats. Most common
is the direct specification of pointer register. address. and tag (modifier). This consists
of three subfields, any of which can be omitted. The first subfield specifies a pointer
register by number, user-defined name, or predefined name (prO, prl, pr2, pr3, pr4,
pr5, pr6. pr7). The subfield ends with a vertical bar. If the pointer register and
vertical bar are omitted, no pointer register is used in the instruction. The second
sub field is any arithmetic expression, relocatable or absolute. This is the address part
of the instruction, and its default is zero. Arithmetic expressions are defined below
under "Arithmetic Expressions." The last subfield is the modifier or tag. It is
separated from the preceding subfields by a comma. If the tag subfield and comma
are omitted, no instruction modification is used. (This is an all zero modifier.) Valid
modifiers are defined below under "Modifiers."

Other formats of instruction operands are used to imply pointer registers. If a
symbolic name defined by temp, tempd, or temp8 is used in the address sub field (it
can be used in an arithmetic expression), then pointer register 6 is used if no pointer
register is specified explicitly. This form can have a tag subfield.

Similarly, if an external expression is used in the address subfield, then pointer register
4 is implied; this causes a reference through a link. The pointer register sub field may
not be specified explicitly. If a modifier subfield is specified, it is taken as part of
the external expression; the instruction has an implicit n* modifier to go through the
link pair. External expressions are defined below under "External Expressions."

aIm

3-23 AG92-06

aIm

A literal operand begins with an equal sign followed by a literal expression. The
literal expression can be enclosed in parentheses. It has no pointer register but can
have a tag subfield. A literal reference normally causes the instruction to refer to a
word in a literal pool that contains the value of the literal expression. However, if
the modifier du or dl is used, the value of the Hteral is placed directly in the
instruction address field. Literal expressions are defined below under "Literal
Expressions. "

SPECIAL INSTRUCTION FORMATS

Certain instructions assembled by the ALM assembler do not follow the standard
opcode-operand format as described above. These instructions fall into three basic
classes: the repeat instructions, special treatment of the index and pointer register
instructions, and EIS instructions. Each of these special cases is described below.

REPEAT INSTRUCTIONS

The repeat instructions are used to repeat either one or a pair of instructions until
specified termination conditions are met There are two basic forms:

rpt tally,delta,terml,term2, •.• ,termN

generates the machine rpt instruction as described in the Multics Processor Manual.
Both tally and delta are absolute arithmetic expressions. The termi specify. the
termination conditions as the names of corresponding conditional transfer instructions.
This same format can be used with the rpt, rpd, rpda, and rpdb pseudo-operations:

rptx ,delta

generates the machine rpt instruction with a bit set to indicate that the tally and
termination conditions are to be taken from index register O. This format can be used
wi th rplx and rpdx.

INDEX REGISTER INSTRUCTIONS

The opcodes for manipulation of the index registers have the general form opxN.
where N specifies the index register to be used in the operation. ALM allows the
more general form:

opx index,operand

which assembles opxN, where index is an absolute arithmetic expression whose value is
N. This format can be used for all index register instructions.

POINTER REGISTER INSTRUCTIONS

As with the index register instructions, the opcodes f or the manipulation of the
pointer registers have the general form oprN, where N specifies the pointer register to
be used. ALM extends this form to allow:

aIm

3-24 AG92-06

aIm

opr pointer,operand

which assembles as oprN, where N is found as follows: If pointer is a built-in
pointer name (prO. prl, etc.), that register is selected; otherwise, pointer must be an
absolute arithmetic expression whose value is N. This format can be used with all
pointer register instructions except spri.

EIS MULT/WORD INSTRUCTIONS

An EIS multiword instruction consists of an operation code word. followed by one or
more descriptor words. The descriptor words can be assem bled by using the desc
pseudo-operations listed under "Pseudo-operations" below. The operation code word has
the following general form:

eisop (MF1), (MF2) ,keywordl (octexpression) ,keyword2

where:

MFl,MF2
are EIS modification fields as described in "EIS Modifiers" below.

keyword 1
can be either fill. bool. or mask.

octexpression
is a logical expression that specifies the bits to be placed in the appropriate parts
of the instruction.

keyword2
can be round. enablefault. or ascii; these cause single option bits in the instruction
to be set.

Keywords can appear in any order. before or after an MF field. This format can be
used for all Multics EIS multi word instructions.

EIS SINGLE-WORD INSTRUCTIONS

The Multics processor contains a set of 10 instructions that may be used to alter the
contents of an address register. These instructions have the following general form:

opcode prloffset,modifier

where:

pr
selects the address register that is to be modified by the instruction.

offset
is a value whose interpretation is dependent upon the opcode used.

aIm

3-25 AG92-06

aIm

modifier
must be one of the register modifiers (au, ql, xO, etc.).

These instructions have two modes of operation depending on the setting of bit 29 in
the instruction. If bit 29 is 1, the current contents of the selected address register are
used in determining its new contents; if bit 29 is 0, the contents of the word and bit
offset portions of the selected address register are assumed to be zero at the start of
the instruction (this results in a load operation into the selected address register).
ALM normally sets bit 29 to 1, unless the opcode ends in x (e.g., awdx is an awd
instruction with bit 29 set to 0). This format can be used with a4bd, a6bd, a9bd, abd,
awd, s4bd, s6bd, s9bd, sbd, and swd.

EXAMPLES OF INSTRUCTION STATEMENTS

Seven examples of instruction statements are shown below. A brief description of each
example follows the sample statements.

xlab: lda pr OI2,": II Example 1 •
eax7 xlab-l

reel <sys_info>l[eloek_],* II Example 2.

segref sys_info,time_delta II Example 3.
adl time delta+l

temp nexti •• Example 4.
lxl0 next i ,,'c

1 ink goto,<unwinder_>I[unwinder_] •• Example 5.
tra pr4Igoto,*

ana =o777777,du •• E x amp 1 e 6.
ada =v36/list_end-l

a9bd pr 3lO,qu • 1 Examp 1 e 7 (a) •

a9bdx pr 31O,qu II Example 7 (b) •

Example 1 shows direct specification of address, pointer register, and tag fields. In the
second instruction, no pointer register is specified, and the symbol xlab is not external,
so no pointer register is used.

Example 2 shows an explicit link reference. Indirection is specified for the link, as
the item at clock_ (in sys_info) is merely a pointer to the final operand.

Example 3 uses an external expression as the operand of the adl instruction. In this
particular case, the operand itself is in sys_info.

Example 4 uses a stack temporary. Since the word is directly addressable using pr6,
the modifier specified is used in the instruction.

aIm

3-26 AG92-o6

aIm

11/86

Example 5 shows a directly specified opera..Tld that refers to an external entity. Unlike
segref. it is necessary in this case to specify the pointer register and modifier fields.

Example 6 uses two literal operands. Only the second instruction causes the literal
value to be stored in the literal pool.

In Example 7(a), the values in pr3 are added to the values calculated using the q
register (see Section 4 of the Multics Processor Manual, AL39).

In Example 7(b), the word and bit offset of pr3 are replaced by those calculated
using the q register.

ARITHMETIC EXPRESSIONS

An arithmetic expression consists of names (other than external names) and decimal
numbers joined by the ordinary operators + - * /. You can use parentheses with
their normal meaning.

An asterisk in an expression, when not used as an operator, has the value of the
current location counter.

All intermediate and final results of the expression must be absolute or relocatable
with respect to a single location counter. A relocatable expression cannot be multiplied
or divided.

LOGICAL EXPRESSIONS

A logical expression is composed of octal constants and absolute symbols combined
with the Boolean operators + (OR), - (XOR) , * (AND), and J\ (NOT). You can use
parentheses with their normal meaning.

EXTERNAL EXPRESSIONS

An external expression refers symbolically to some other segment It consists of an
external name or explicit link reference, an optional arithmetic expression added or
subt!acte.d, and an optional modifier subfield. An external name is one defined by the
segref pseudo-operation. An explicit link reference must begin with a segment name
enclosed in angle brackets «» and followed by a vertical bar (I). You can optionally
follow this by an entryname in square brackets ([]). For example:

<segname> I [entrynameJ
<segname> 0,5":

An alternative form of external expression must begin with a segment name followed
by a dollar sign. You can follow this by an entryname, an arithmetic expression, or a
modifier, all of which are optional. For example:

segname$
segname$entryname-l
segname$+3,5

aIm

3-27 AG92-Q6A

aIm

A segment name of * text, * link, or *static indicates a reference to this procedure's
text, linkage, or static sections.

A segment name of *system indicates a reference to the external variable (or common
block) entryname, which is managed by the linker. A link pair is constructed for each
combination of segment name, entryname, arithmetic expression, and tag that is
ref erenced.

LITERAL EXPRESSIONS

A literal reference causes the instruction to refer to a word in a literal pool that
contains the value specified. However, the du and dl modifiers cause the value to be
stored directly in the address field of the instruction. The literal pool is allocated in
the text section. The various formats of literals are described in the following
paragraphs.

A decimal literal can be signed. If it contains a decimal point or exponent, it is
floating point. If the exponent begins with "d" instead of "e", it is double precision.
A binary scale factor beginning with "b" indicates fixed point and forces conversion
from floating point. The binary point in a literal with a binary scale factor is
positioned to the right of the bit indicated by a decimal integer following the "b".

An octal literal begins with an "0" followed by up to 12 octal digits.

ASCII literals can occur in two forms. One form begins with a decimal number
between 1 and 32 followed by "a" followed by the number of data characters
specified by the integer preceding the "~", which can cross statement delimiters. The
other form begins with "a" followed by up to four data characters, which can be
delimited by the newline character.

A GBCD literal begins with "h" followed by up to six data characters. which can be
delimited by the newline character. Translation is performed to the 6-bit character
code.

An ITS (lTP) literal begins with "its" (nitp") followed by a parenthesized list
containing the same operands accepted by the its Htp) pseudo-operation. The value is
the same as that created by the pseudo-operation.

A variable-field literal begins with nv" followed by any number of decimal, octal, and
ASCII subfields as in the vfd pseudo-operation. You must enclose it in parentheses if
a modifier subfield is to be used.

If you use a variable-field literal, octal literal, or fixed-point literal (decimal literals
with a "b" binary scale factor) with du or dl modification, then the lower 18 bits of
the literal are placed in the address field of the instruction. If you use any other
type of literal with du or dl modification. then the upper 18 bits of the literal are
placed in the address field of the instruction.

aIm

3-28 AG92-06

aIm

MODIFIERS

These specify indirection, index register address modification, immediate operands, and
miscellaneous tally word operations. They can be specified as 2-digit octal numbers
(particularly useful for instructions like stba) or symbolically using the mnemonics
described here.

Simple register modification is specified by using any of the register designators listed
below. It causes the contents of the selected register to be added to the effective
address.

Designators Register
----------- -------
xO 0 ndex reg ster 0
xl 1 ndex reg ster 1
x2 2 ndex reg ster 2
x3 3 ndex reg ster 3
x4 4 ndex reg ster 4
x5 5 ndex reg ster 5
x6 6 ndex reg ster 6
x7 7 ndex register 7
n none (no mod i f i cat ion)
au A bits 0-17
al A bits 18-35 or 0-35
qu Q bits 0-17
",1 n :+ ... l~_:2C or f_:2C
"I' 't ~. "'-=» ."" J:.J '" J:.J

ic instruction counter

In addition to the above, any symbol that is not otherwise a valid modifier (e.g., au,
ql, x7) may be used as a modifier to designate an index register. Thus,

equ regc,3
lda spIO,*regc

is equivalent to:

Register-then-indirect modification is specified by using any of the register designators
followed by an ~~terisk. If the asterisk is usPJ.! alone, it is equivalent to the n*
modifier. The register is added to the effective address. then the address and modifier
fields of the word addressed are used in determining the final effective address.
Indirect cycles continue as long as the indirect words contain an indirect modifier.

Indirect-then-register modification is specified by placing an asterisk before anyone
of the register designators listed above.

aIm

3-29 AG92-Q6

aIm

Direct modifiers are du and dl. They cause an immediate operand word to be
fabricated from the address field of the instruction. For dl, the 18 address bits are
right-justified in the effective operand word; for du they are left-justified. In either
case, the remaining 18 bits of the effective operand are filled with O's.

Segment addressing modifiers are its and itp; they can only occur in an indirect word
pair on a double-word boundary. The addressing modifier its causes the address field
of the even word to replace the segment number of the effective address, then
continues the indirect cycle with the odd word of the pair. Nearly an indirection in
Multics uses ITS pairs. For itp, see the Multics Processor Manual.

Tally modifiers i, ci, SC, ser, ad, sd, id, di, idc, and dic control incrementing and
decrementing of the address and tally fields in the indirect word. They are difficult
to use in Multics because the indirect word and the data must be in the same
segment. Fault tag modifiers fl, f2, and f3 cause distinct hardware faults whenever
they are encountered. The modifier f2 is reserved for use in the Multics dynamic
linking mechanism; the other modifiers result in the signalling of the conditions
fau1t_ta~1 and fault_ta~3.

EIS MODIFIERS

An EIS modifier appears in the first word of an EIS multi word instruction. It affects
the interpretation of operand descriptors in subsequent words of the instruction. No
check is made by ALM to determine whether the modifier specified is consistent with
the operand descriptor specified elsewhere.

An EIS modifier consists of one or more subfields separated by commas. Each
subfield contains either a keyword as listed below, a register designator, or a logical
expression. The values of the subfields are OR'ed together to produce the result.

Keyword Meaning

pr Descriptor contains a pointer register reference.
id Descriptor is an indirect word pointing to the true descriptor.
rl Descriptor length field names a register containing data length.
xN Descriptor address is offset by the value in index register N

(N can be 0 - 7, as above).

SEPARATE STATIC OBJECT SEGMENTS

If a separate static object segment is desired, a joint pseudo-operation specifying static
should exist in the program.

LIST OF PSEUDO-OPERATIONS

The pseudo-operations are listed below in alphabetical order. Additional pseudo-operations
are provided by the macro facility. See "Macros in ALM" (following this list of
pseudo-operations) for a further description of their syntax.

aIm

3-30 AG92-Q6

~m ~m

acc / string/ ,expression
assembles the ASCII string <string> into as many contiguous words as are required
(up to 42). The delimiting character (/ above) can be Clny chCiracter other than
white space. The quoted string can contain newline and semicolon characters. The
length of the string is placed in the first character position in
acc format If present, expression defines the length of the string; otherwise, the
length is the actual length of the quoted string. If the given string is shorter
than the defined length, it is padded on the right with blanks. If it is longer, it
will be truncated to the defined length.

aci / string/ ,expression
is similar to acc, but no length is stored. The first character position contains the
first character in aci format

ac4 /string/ ,expression
is similar to aci, but only the rightmost four bits of each ASCII character are
stored into the corresponding character position of a string of 4-bit characters. If
the given string is shorter than the defined length. it is padded on the right with
zeros.

arg operand
assem bles exactly like an instruction with a zero opcode. Any form of instruction
operand can be used.

bci / string/ ,expression
is similar to aci, but uses GBCD 6-bit character codes and GBCD blanks for
padding.

bfs name, expression
reserves a block of expression words with name defined as the address of the
first word after the block reserved.

bool name, expression
defines the symbol name with the logical value expression. See the definition of
logical expressions above under "Logical Expressions."

bss name, expression
defines the symbol name as the address of a block of expression words at the
current location. The name can be omitted, in which case the storage is still
reserved.

call routine(arglist)
calls out to the procedure routine using the argument list at arglist Both routine
and arglist can be any valid instruction operand, including tags. If arglist and the
parentheses are omitted, an empty argument list is created. All registers are saved
and restored by call.

dec numberl,number2 •... ,numberN
assembles the decimal integers number1, number2, through numberN into consecutive
words.

3-31 AG92-06

aIm

desc4a address(offset),length
desc6a address(offset),length
desc9a address(offset),length

generates one of the operand descriptors of an EIS multiword instruction. The
address is any arithmetic expression. possibly preceded by a pointer register
subfield as in an instruction operand. The offset is an absolute arithmetic
expression giving the offset (in characters) to the first bit of data. It can be
omitted if the parentheses are also omitted. The length is either a built-in index
register name (aI, au, ql, xO, etc.) or an absolute arithmetic expression for the
data length field of the descriptor. The character size (in bits) is specified as
part of the pseudo-operation name.

desc4fl address(offset),length,scale
desc4ls address(offset),length,scale
desc4ns address(offset),length.scale
desc4ts address(off set) ,length, scale

generates an operand descriptor for a decimal string. The scale is an absolute
arithmetic expression for a decimal scaling factor to be applied to the operand. It
can be omitted, and is ignored in a floating-point operand. Data format is
specified in the pseudo-operation name: desc4fl indicates floating point, desc4ls
indicates leading sign fixed point. desc4ns indicates unsigned fixed point, and
desc4ts indicates trailing sign fixed point Nine-bit digits can be specified by
using desc9fl. desc9ls, desc9ns, and desc9ts.

descb address(offset),length
generates an operand descriptor for a bit string. Both offset and length are in
bits.

dup expression
duplicates all source statements following the statement containing the dUPe The
number of times that the statements are duplicated is equal to the value of the
expression. This value must be positive and nonzero. Also, dup statements may
not be nested.

dupend
terminates the range of a dup pseudo-operation.

eight
(see the even pseudo-operation)

end
terminates the source segment

aIm

3-32 AG92-06

aIm

11/86

entry namel,name2, ... ,n~~eN
generates entry sequences for labels name1, name2, through nameN and makes the
externally defined symbols namel, name2, through nameN refer to the entry
sequence code rather than directly to the labels. The entry sequence performs
such functions as initializing base register pr4 to point to the linkage section,
which is necessary to make external symbolic references (link, segref, explicit
links). The entry sequence can use (alter) base register pr2, index registers 0 and
7. and the A and Q registers. It requires pr6 and pr7 to be properly set (as they
normally are).

entrybound
places the current value of the location counter in the object_map entrybound
field. If more than one such operation is encountered, the last one is effective.
(See gate_macros.incl.alm). Setting the entry bound of the object segment's
directory entry is still necessary (see hcs_$set_entry_bound).

equ name, expression
defines the symbol name with the arithmetic value expression.

even
inserts padding (nop) to a specified word boundary.

ext_entry label {/code_labeI} {,size} {,name}
makes a probe-able entry sequence for label with a stack frame size of size and
with descriptors at label name. If you specify code_label, it is assigned the value
of the address of the code associated with the entry sequence.

firstref extexpression1 (extexpression2)
calls the procedure extexpression1 with the argument pointer extexpression2 the
first time (in a process) that this object segment is linked to by an external
symbol. If you omit extexpression2 and the parentheses, an empty argument list is
supplied. The expressions are any external expressions, including tags.

If extexpression2 exists. the actual argument of the trap procedure (ex texpression 1)
is a pointer to the link to extexpression2. For example. suppose that the trap
procedure is an external pl1 procedure and that the argument is a number in the
text section of the program containing the firstref statement, then the firstref
statement looks like

firstref trap_proc$trap_proc«*text>lfirstref_argument)

where firstref_argument is a label on the number and the trap procedure looks
iike

aIm

3-33 AG92-06A

alm

11/86

trap_proe: proe(arg_ptr);
del arg_ptr ptr;

getlp

del based_ptr ptr based;
del arg fixed fin (35) based;
del number fixed bin (35);

sets the pointer register pr4 to point to the linkage section. You can use
this with segdef to simulate the effect of entry. Ihis operator can use
pointer register pr2, index registers 0 and 7, and the A and Q registers. and
requires pr6 and pr7 to be set properly.

include segmentname
inserts the text of the segment segmentname.incl.alrn immediately after this
statement The "translator" (trans) search list is used to locate the segment
(see the search commands).

inhibit off
instructs assembler to tum off the interrupt inhibit bit (bit 28) in
subsequent instructions. This mode continues until you use the inhibit on
pseudo-operation.

inhibit on
instructs assembler to turn on bit 28 in subsequent instructions. This mode
continues until you use the inhibit off pseudo-operation.

itp prno.offset. tag
generates an lIP pointer referencing the prno pointer register.

its segno.offset,tag
generates an ITS pointer to the segno segment, word offset <offset>, with
optional modifier tag. If the current location is not even, a word of padding
(nop) is inserted, which causes any labels on the statement to be incorrectly
defined.

join /text/ name1,name2, ... /link/ name3,name4 •... / static / name5,name6,
appends the location counters name1, name2, etc., to the text section; appends
the location counters name3, name4, etc., to the linkage section; and appends
the location counters name5, name6, etc., to the static section. Any number
of names can appear. Each name must have been previously referred to in a use
statement Any location counters not joined are appended to the text section.
If you give both link and static in join pseudo-operations, a warning is
prin ted on the terminal.

aIm

3-34 AG92-06A

aIm

11/86

link name,extexpression
defines the symbol name with the value equal to the offset from lp to the link
pair generated for the external expression extexpression. An external
expression can include a tag subfield. The name is not an external symbol, so
an instruction should refer to this link by ttpr41 name,.".

maclist keyword {save}
indicates how listing of statements generated by macro expansion is to be
done. The following keywords are accepted:

off
suppresses the listing of macro-generated statements and object code.

3-34.1

aIm

AG92-06A

aIm

on
lists such statements and their associated object code.

object
lists only the object code .

restore
reverts the macro listing mode to a previously saved setting.

The save argument. if present, saves the current macro listing in a pushdown
stack. The default macro listing mode is on.

macro name
indicates the start of a macro definition. When a macro name is defined. it may
then be used as a pseudo-operation to trigger the expansion of the macro. See
"Macros in ALM" below for a complete description of the definition and
expansion of macros in ALM.

mod <expression>
inserts padding (nop) to an <express i on> word boundary.

name objectname

null

specifies again the object segment name as it appears in the object segment. By
default. the storage system name is used.

is ignored. This pseudo-operation is used for comments.

oct numberl,number2 •...• numberN
is like dec, with octal integer constants.

odd
(see the even pseudo-operation)

org expression
sets the location counter to the value of the absolute arithmetic expression
<express ion>. The expression can only use symbols previously defined.

perprocess_static
turns on the object segment's per process static switch. See the description of the
run command for an explanation of perprocess static.

push expression

rem

creates a new stack frame for this procedure. containing expression words. If
expression is omitted (the usual case). the frame is just large enough to contain
all cells reserved by temp. tempd. and temp8.

(see the null pseudo-operation)

aIm

3-35 AG92-06

aIm

11/87

return
is used to return from a procedure that has performed a push.

segdef name1,name2, ... ,nameN
makes the labels namet name2, through nameN available to the linker for referencing from
outside programs, USing the symbolic names name1, name2, through nameN. Such incoming
ref erences go directly to the labels name1, name2 through nameN so the segdcf
pseudo-operation is usually used for defining external static data. For program entry points,
the entry pseudo-operation is usually used.

segref segname,name1,name2, ... ,nameN
defines the symbols namet name2, through nameN as external symbols referencing the
entry points namet name2, through nameN in segment segname. This defines a symbol with
an implicit base regi:~~er reference.

set name,expression
assigns the arithmetic value expression to the symbol name. Its value can be reset in other set
statements.

short_call routine
calls out to routine usi .ig the argument list pointed to by prO. Only pr4 and pr6 are preserved
by short_call. short.,return is used to return from a procedure that has not performed a
push.

sixtyfour
(see the even pseudo-operation)

source_line numtnum2,num3.num4 {,num5}
generates a statement map entry for statement num5 (default 1) of line num2 in file numl
that starts after character num3 and has a length of num4.

source_seg num1,path {,num2 {,num3} }
generates a source map entry for file flum1 with pathname path, a unique id of num2, and a
date time contents modified clock value of num3. The unique id and dtcm will be looked up
if not specified.

temp namel(nl).name2(n2), ... ,nameN(nN)
defines the symbols name1, name2, through nameN to reference unique stack temporaries of
nt n2. through nN words each. Each n: is an absolute arithmetic expression and can be
omitted (the parentheses should also be omitted). The default is one word per namei.

aim

3-36 AG92-06B

aIm

11/87

temp8 namel(nl),name2(n2) nameN(nN)
is similar to temp. except that 8-word units are allocated. each on an 8-word boundary.

tempd namel(nl),name2(n2) •... ,nameN(nN)
is similar to temp, except that n1 (n2 through nN) double words are allocated, each on a
double-word boundary.

use name
assembles subsequent code into the location counter name. The default location counter is
".text.".

aIm

3-36.1 AG92-06B

aIm

vfd TILl / expressionl, T2L2/ expression2, ...• TNLN / expressionN
is variable format data. Each expressioni is of type Ti and is stored in the next
Li bits of storage. As many words are used as required. Individual items can
cross word boundaries and exceed 36 bits in length. Type is indicated by the
letters "a" (ASCII constant) or "0" (logical expression) or none (arithmetic
expression). Regardless of type, the low-order Li bits of data are used, padded if
needed on the left The Ti can appear either before or after Li.

Restrictions: The total length of the variable format data cannot exceed 128
words. A relocatable expression cannot be stored in a field less than 18 bits long,
and it must end on either bit 17 or bit 35 of a word.

zero expressionl.expression2
assembles expression 1 into the left 18 bits of a word and expression2 into the
right 18 bits. Both subfields default to zero.

MACROS IN ALM

The ALM macro facility provides a means for defining and using sequences of text to
be inserted at various points in an ALM program. Each such sequence of text, called
a macro, is defined by the use of the macro pseudo-operation in ALM. A macro
definition consists of all text following the line containing the macro pseudo-operation
until the character string. &end. The sequence of text is named by the symbol
appearing as the operand to the macro pseudo-operation.

At any point in a program subsequent to the definition of a macro. the macro name
can be used as a pseudo-operation in ALM. Whenever it is so used, AL~1 inserts the
text sequence defined as that macro.

The macro facility is purely text manipulative. It deals with macro definitions as a
continuous stream of text characters interspersed with control sequences. Each control
sequence begins with the & character. The control sequence &end terminates the
macro definition. When a macro is invoked by using its name as a pseudo-operation,
the macro definition is scanned from left to right All text between control sequences
is copied, and variable inf ormation is inserted in plaCe of the control sequences. The
resulting macro expansion is presented to ALM for assembly.

Macros may be given arguments by placing operands in fields corresponding to the
operands of a pseudo-operation. These arguments can be substituted into the expanded
copy of the macro as specified by various control sequences within the macro
definition. Control sequences are also provided to facilitate iteration, conditional text
selection. unique symbol generation, and other operations.

The macro facility also provides a set of special pseudo-operations that are distinct
from the regular ALM pseudo-operations. These special pseudo-operations allow for
the conditional assembly of source lines and the printing of messages to the user's
terminal during assembly. The argument syntax of these pseudo-operations is the same
as that of macros. not the expressions and symbols of the ALM assembler.

aIm

3-37 AG92-06

aIm

CONTENTS OF A Iv1ACRO

The body of a macro (i.e., the text starting on the line following the macro
pseudo-operation and ending just before the character string &end) can include any
text and control sequences which, when expanded, yield valid ALM source code. The
body of a macro can include invocations of other macros and even the definition of
other macros.

ivlacfo definitions are snown in the assemDlY llsung with their internal line numbers to
the left of the ALM source line number. (These internal numbers are used in
diagnostics produced by the macro expander.) Macros may be redefined, the later
definition replacing the earlier. Macros may also redefine all existing ALM operations
and pseudo-operations.

An example macro is given below:

macro move_a_to_b
lda a
sta b
&end

INVOKING A MACRO

A macro is invoked by specifying its name as a pseudo-operation. Arguments to the
macro can appear in the variable field separated by commas. A comment may follow
the argument list. separated from it by white space or a double quote. Arguments to
macros that include spaces, tabs. newline characters, commas, or semicolons must be
enclosed in matching parentheses. The parentheses are stripped from the argument
during macro expansion. The use of parentheses allows macro invocations to extend
over several lines. Argument lists may also be continued on successive source lines by
following the last macro argument of a line with a comma. Leading white space
preceding the continuation of the argument list on the next line is ignored.

Code and statements produced by the macro facility are placed in the assembly listing
without source line numbers. Symbols used by a macro expansion appear in the
cross-ref erence listing as though they were ref erenced on the line of the macro
invocation. The listing of statements produced by macro expansion may be controlled
through the use of the maclist pseudo-operation. See the description under
"Pseudo-operations" above.

RESTRICTIONS

Any macro definition that begins in an include file must end in that include file.

A macro must be defined before it is expanded. 11 can appear before its definition
within another macro definition. but that other macro may not be expanded until the
macro it invokes is defined.

aIm

3-38 AG92-06

aIm

Macros may be invoked in code produced by macro expansions. The depth of such
recursion, however, must not exceed the current limit of 100.

LIST OF CONTROL SEQUENCES

Character substitutions and conditional expansions at the time of macro expansion are
effected by the control sequences detailed below. The use of any ampersand followed
by any sequence not defined below is noted by ALM as an assembly error.

&0, &1, &2

&u

&p

&n

&U

&(N

&i

&x

the character & followed immediately' by any positive decimal integer « 100) is
replaced, upon expansion. with the corresponding argument passed to the macro
(see "Notes" and "Examples" below).

The special sequence &0 causes a reference to a unique label at the start of the
macro expansion. The label is generated only if the &0 sequence is generated
within a macro.

is expanded to be a unique character string of the form ... 00000, ... 00001, etc.,
that is different from any other such strings expanded with &u control.

is expanded to be the same string as the previous' &u expansion.

is expanded to be the same as the next &u

is expanded to be a unique character string of the form .. _00000 •.. _00001;
however, multiple occurrences of &U within the same macro yield the same
string.

inOlcates the beginning oi an iteraiion sequence. The text fonowing the &(N and
up to but not including the next &) is expanded repeatedly (see "Iteration"
below).

is expanded to the particular element of the iteration set for which the current
iteration is being performed (see "Iteration" below).

is expanded into the decimal integer corresponding to the relative posltlon of the
particular element of the iteration set over which the current iteration is being
performed.

&AN
is expanded to be the Nth argument following the -ag or -arguments control
argument to the aIm command.

aIm

3-39 AG92-06

aIm

&K

&k

~.1'hl ""'.1..1

&&

is expanded as a decimal number equal to the number of arguments in the
curren t macro invocation.

is expanded as a decimal number equal to the number of elements in the current
iteration set

is expanded as a decimal number equal to the length in characters of the Nth
argument in the current macro invocation.

is expanded to a single & character. This facilitates macro definitions within
macro expansions.

&FN
expands to a string constructed by concatenating all arguments to the macro
invocation, from the Nth onward, separated by commas. If N is not given, 1 is
assumed.

&FqN or &FQN

&fN

is similar to &FN, except that each argument is enclosed in parentheses as it is
concatenated to the expanded string. This control sequence should be used when
sublists of macro arguments are to· be passed to other macros and there is a
possibility that some of these arguments may contain white space, newline
characters, etc.

is similar to &FN, except that the elements of the current iteration set are
concatenated.

&fqN or &fQN
is similar to &FqN and &FQN, except that the elements of the current iteration
set are enclosed in parentheses.

&RM,N
is used to cause iteration over the arguments in a macro invocation, as opposed to
the iteration elements of a single macro argument The use of &R affects the
operation of the next &(control sequence. The M is a decimal number equal to
the number of the first argument to be selected; N is a decimal number equal to
the number of the last argument to be selected. If N is missing or zero, it is
assumed to be equal to the number of arguments in the macro invocation. If M
is missing or zero, it is assumed to be 1 (see "Notes" below).

aIm

3-40 AG92-06

aIm

&[

&sN

marks the start of a selection group. The text following the & [and up to but
not including the matching &J is expanded conditionally. The elements of a
selection group are separated by the control sequence & . Each element can
contain other selection groups to a nesting depth of 10. When a macro is
expanded, only one element of a selection group is used. This element is chosen
by a control sequence preceding the & [control sequence.

selects the Nth element of the following selection group. All expanded text
between the &s and & [control sequences is interpreted as the decimal number N.
If N is zero or greater than the number of elements in the selection group, no
element is selected.

&=c1.c2
all expanded text between the &= and the next & [control sequence is broken
in to two character strings. If no comma is found in the expanded text, c2 is
taken to be a null string. If the two strings are equal, by character string
comparison, the first element of the following selection group is used. Otherwise,
the second element, if present, is used.

&A=c1,c2
the &A= control sequence is identical to the &= control sequence, except that the
first element is selected if the strings are unequal, and the second, if present, is
selected if they are equal.

&>nl,n2
&<nl,n2
&>=nl,n2
&<=n1,n2

these control sequences are similar to the &= and &A= control sequences, except
that the expanded text between this control sequence and the next & [control
sequence is interpreted as two decimal integers. If no comma is found, n2 is
taken to be zero. An arithmetic comparison of the numbers is performed, as
specified by the particular control sequence used. A result of true causes the first
element of the following selection group to be used. A result of false causes the
second element, if present, to be used.

&end
signifies the end of the macro definition. The statement contaInmg the &end
control sequence is not part of the macro body, and hence, is not included as
part of the macro definition.

NOTES

Decimal numbers produced by &K, &k, and &x are generated with no leading blanks
or zeros. The number zero is generated as the single digit O.

aIm

3-41 AG92-06

aIm

,

Numeric arguments to &N, &(N, &FN. &fN, &FqN, &fqN, and &AN can be
comprised of from zero to three digits. These numbers must appear as such in the
unexpanded macro definition. If numeric text is to follow one of the above control
sequences, all three digits of N must be supplied.

The numbers used by &RM.N. as well as the strings and numbers used by the
relational and selection control sequences can be of any length. They appear in the
expanded text and need not necessarily be in the macro definition. These expanded
strings and numbers are, of course, not placed in the final macro expansion being
generated.

If a given macro argument is not specified in a particular invocation of that macro, a
null character string is used for that argument during macro expansion.

ITERATION

The macro facility provides the ability to map the expansion of a subset of a macro
definition over a set of elements, expanding that part of the definition repeatedly,
selectively substituting each element of the iteration set in turn. By means of this
technique, lists may be processed.

An iteration set consists of elements separated by commas. It has the same syntax as
the argument list of a macro invocation, including conventions on the use of
parentheses for quoting and continuation via the trailing comma. Two types of
iteration sets may be referenced in a macro expansion:

The argument list to a macro invocation itself may be used as an iteration set, in
which case the arguments of the macro invocation are the elements. This type of
iteration set is specified by means of the &R control sequence.

Any argument to a macro invocation may be used as an iteration set. if it, internally.
has the same syntax as an argument list to a macro invocation. This type of iteration
set is specified when &R is not used.

The text between the sequences &(and &) is expanded once for each element in the
iteration set, in left to right order. If the second form of iteration set is used, the
number of the argument to the macro invocation may appear (one to three digits, no
digits are mapped into 1) immediately after the &(sequence. Any occurrence of the
sequence &i between the sequences &(and &) is replaced by the current element of
the iteration set. The sequence &x is replaced by the decimal number of the relative
position of that element in the iteration set (not the argument number, in the first
type of iteration set). Iterations may not be nested. Any iteration that starts in an
element of a selection group must end in that element of a selection group. No
iteration may end in any element of a selection group unless it started in that element
of that selection group.

aIm

3-42 AG92-Q6

aIm

MACRO FACILITY PSEUDO-OPERATIONS

The macro facility provides a set of pseudo-operations in addition to the macro
pseudo-operation already described. These pseudo-operations are different from the
other pseudo-operations provided by the assembler insofar as the syntax of their
arguments. which is the syntax of macro invocation arguments. with all quoting and
continuation conventions of them, and not the syntax of other pseudo-operation
arguments to the assembler.

The use of these pseudo-operations. like all other ALM pseudo-operations. is not
limited to code produced by macro expansion. They can be placed anywhere in source
segments and include files. as well as in macro code. but the conditional
pseudo-operations can not be nested.

warn

ife

ine

ifint

prints out its first argument on the user's terminal, preceded by the string "ALM
assembly:" and followed by a newline character. This argument, without the
prefix. is also placed in the program listing.

the character strings that are the first and second arguments to ife are compared.
If they are the same character string, all assembler statements between the one
containing the end of the argument list to ife, and the next one containing the
string ifend in any context at all are assembled. No part of the line containing
the string ifend is assembled. If the first and second arguments are not equal,
none of these lines are assembled.

the same as ife, but assembly of the text up to ifend proceeds only if the first
two arguments are not equal by character string comparison.

the first argument to the ifint pseudo-operation is inspected to see if it is a valid
decimal integer. If so, all assembler statements between the one containing the
end of the arglL'llent list to ifint and the next one containing the string ifend in
any context at all are "If the first argument to ifint is not a valid integer, none
of these lines are assembled.

inint
the same as ifint. but assembly of the text up to ifend proceeds only if the first
argument is not a valid decimal integer.

aIm

3-43 AG92-06

aIm

ifarg
all of the arguments to the aIm command following the -ag or -arguments
control argument are inspected, and compared with the first argument to ifarg. If
any of these command arguments compare equal, by character string comparison,
to the first argument to ifarg, all assembler statements between the one containing
the end of the argument list to ifarg and the first one containing the string ifend
in any context at all are assembled. No part of the line containing the ifend is
assembled. If the first argument to ifarg does not appear among the arguments
following -ag or -arguments; none of these line.s are a.~sembled.

inarg
the same as ifarg, but assembly of the text up to ifend proceeds only if the first
argument to inarg is not found among the arguments to the aIm command
following -ag or -arguments.

In all of the conditional constructs above, the key string, ifend, must appear in
the same source segment or macro expansion as the statement containing the
conditional pseudo-operation. If the ifend key string appears in the ifend_exit
string, and the entire construct appears in a macro expansion, and the predicate
of the conditional construct is met (Le.. the statements are being assembled, not
skipped), the assembler ceases to take input from that macro expansion, as though
the last statement in that macro expansion had been assembled.

EXAMPLES

The following macro definitions show typical expansions:

macro load
ld&l &2
Send

might be used as follows:

load xO,temp
or:

load a, (spI3,)':)

The use of parentheses in the second example
parameter delimiter. The macro definition:

&U

macro test
lda &1
tpl &U
sta
sta
&end

iast minus
&2

might be used as follows:

causes the

ldxO temp

lda spI3,)':

comma to be ignored as a

aIm

3-44 AG92-06

aIm

test a,b lda
tpl
sta

.• _00000: sta

a
_00000

last_minus
b

The following example shows how iteration is used. The macro definition:

&R& (
&)

macro
vfd

& end

might be used as follows:

e 1 : table 4,6,8, 10

table
18/&i,18/&0

vfd
vfd
vfd
vfd

18/4,18/e1
18/6,18/el
18/8,18/e1
18/10,18/el

The following example shows how conditional expansion can be used. The macro
def ini tion:

macro
lda
ife
aos
ifend
Send

might be used as follows:

meter foo,on

meter
&1
&2,on
meterword,al

lda foo
aos meterword,al

The following macro shows how &x mi~it be used. The macro definition:

macro cal1m
& (3 eppbp &i

spribp &2+&x1:2
&)

eaq 2~"&x-2

11 s 36
staq &2
call & 1 (&2)
Send

might be used as follows:

ca 11m sys,arg, (=1, (=14aError from Ad.»

aIm

3-45 AG92-{)6

aIm

yielding:

eppbp =1
spribp arg+ 1)'(2
eppbp =14aError from "'d.
spribp arg+2,'c2

eaq 2":4- 2
1 1 _ ?!..
I I;) ,JU

staq arg
ca 11 sys (arg)

The following macro definition shows how conditional expansion might be used:

macro
&R& (&=&x, 1&[

&end

tab9
vfd &;,&]o9/&i&)

This macro might be invoked as follows:

tab9 16,42,13,36,67

expanding to:

vfa o9/16,o9/42,o9/i3,o9/36,o9/67

The following example shows how macros may be defined by macros. and used to
powerful effect These macros allow a call like a PL/I call to be generated, with
descriptors.

The following macro is invoked to declare variables by specifying their address, data
type, and precision:

&end

macro
macro
eppO
epp1
&&end

declare
dc 1 & 1
&2
=v1/1,6/&3, 17/0, 12/&4

This macro may be invoked as follows:

declare count,buffer+2,fixed,17
or:

declare progname, (1 p I xli nk, :':) , char, 32

These macro invocations cause the following macro definitions to be produced:

aIm

3-46 AG92-o6

aIm

macro
eppO
eppl
&end

macro
eppO
eppl
&end

dcl_count
buffer+2
=vl/l,6/fixed, 17/0, 12/17

dcl progname
1 P I xli nk, ~':
=v1/1,6/char, 17/0, 12/32

Assume that at some point in the assembly the statements:

equ char,21
equ fixed,l

defining the PL/I descriptor types for these data types appear.

The following macro definition, when invoked, generates a full PL/I call with
descriptors. Assume that the statement:

tempd arg 1 (16)

appears at some point in the program.

&R2& (

&)

macro
dcl_&i
spriO
spri1

gca 11

arg 1 +21:&x
arg 1 +2":&K - 2+2":&x

1daq =v18/2*&K-2, 18/0, 18/2*&K-2, 18/4
staq argl
ca 11 & 1 (arg i)
&end

\Vhen the following macro invocation is issued:

gcal1 program,count,progname

the following expansion is immediately produced:

dcl count
spriO argl+2*1
spr i 1 argl+2"c3-2+2"c1
dcl_progname
spriO argl+2*3-2
spril argl+2*3-2+2*2

Idaq =v18/2*3-2, 18/0,18/2*3-2, 18/4
staq argl
call program (argl)

aIm

3-47 AG92-D6

aIm

This is further expanded when the dcl_count and dcl_progname macros are expanded
to:

eppO
epp1
spriO
spr i 1
eppO

epp1
spriO
spr i 1
1daq
staq

ca 11

buffer+2
=vl/1,6/fixed, 17/0, 12/17
arg 1+21(1
arg 1 +2'':3-2+2* 1
1 p I xli nk , ,,:

=v1/1,6/char, 17/0, 12/32
arg1+2*2
arg 1+2'''3-2+2*2
=v18/2*3-2,18/0, 18/2*3-2, 18/4
arg1

program (arg 1)

which is precisely the code required for a full PL/I call.

Name: alm_abs, aa

SYNTAX AS A COMMAND

aa paths {-a1m_arg} {-dp_args} {-contro1_args}

FUNCTION

submits an absentee request to perform ALM assemblies. The absentee process for
which alm_abs submits a request assembles the segments named and sends to the
printer and deletes each listing segment if it exists. If you don't give -output_file, an
output segment (path.absout) is created in your working directory. If you supply more
than one path, the first is used. If the segment to be assembled cannot be found, no
absentee request is submitted.

ARGUMENTS

paths
are pathnames of segments to be assembled.

alm_arg
can be the -list control argument to the aIm command.

dp_args
can be one or more control arguments (except -delete) accepted by the dprint
command.

3-48 AG92--()6

CONTROL ARGUMENTS

-hold
specifies that alm_abs should not dprint or delete the listing segment.

-limit N, -li N
places a limit on the CPU time used by the absentee process. The parameter N
must be a positive decimal integer giving the limit in seconds. The default limit
is defined by your site for each queue. An upper limit is defined by your site
for each queue on each shift Jobs exceeding the upper limit for the current shift
are deferred to a shift with a higher limit

-output_file path, -of path
specifies that absentee output is to go to a segment with a pathname of path.

-queue N, -q N
is the priority queue of the request The default queue is defined by your system
administrator. (See "Notes.")

NOTES

Control arguments and segment pathnames can be mixed freely and can appear
anywhere on the command line after the command. All control arguments apply to all
segment pathnames. If an unrecognizable control argument is given, the absentee
request is not submitted.

Unpredictable results can occur if two absentee requests are submitted that could
simultaneously attempt to assemble the same segment or write into the same absout
segment.

When performing several assemblies, it is more efficient to give several segment
pathnames in one command rather than several commands. With one command. only
one process is set up. The links that need to be snapped when setting up a process
and when invoking the assembler need be snapped only once.

If the -queue control argument is not specified, the request is submitted into the
default absentee priority queue defined by the site and. if requested (via -list), the
listing files are dprinted in the default queue of the request type specified on the
command line (via dp_args). (If no request type is specified, the "printer" request
type is used.)

If requested (via -l1St} when the -queue conrrol argument is specified, the iisting files
are dprinted in the same queue as is used for the absentee request. If the request
type specified for dprinting (via dp_args) does not have that queue, the highest-numbered
(i.e .. the lowest priority) queue available for the request type is used and a warning is
iSSUed.

3-49 AG92-06

and

Name: and

SYNTAX AS A COMMAND

SYNTAX AS AN ACTIVE FUNCTION

FUNCTION

returns true if all the tf_args are equal to true, otherwise it returns false. If there
are no tf_args, it returns the and-identity "true". If any of the tf_args has a value
other than true or false, an error message is printed.

EXAMPLES

The command line

and Cst -ssw ([segs **])]

returns true if all segments in the current working directory have their safety switches
on, or if there are no segments in the working directory.

The active function

[and [equal &rl a] [equal &r2 b]]

inside an exec_com returns true only if the first. argument to ec is "a" and the second
is "b".

Name: answer

SYNTAX AS A COMMAND

answer STR {-control_args} command_l ine

FUNCTION

provides preset answers to questions asked by another command.

answer

3-50 AG92-o6

answer

ARGUMENTS

STR
is the desired answer to any question. If the answer is more. than one word, it
must be enclosed in quotes. If STR is -query, the question is passed on to the
user. The -query control argument is the only one that can be used in place of
STR.

command_line
is any Multics command line. It can contain any number of separate arguments
(Le.. have spaces within it) and need not be enclosed in quotes.

CONTROL ARGUMENTS

-brief, -bf
suppresses printing (on the user's terminal) of both the question and the answer.

-call STR
evaluates the active function string STR to obtain the next answer in a sequence.
STR must be quoted if it contains command language characters. The surrounding
brackets must be omitted, as in "segs *.pll". The return value "true" is translated
to "yes". and "false" to "no". All other return values are passed as is.

-match STR
answers only questions whose text matches STR. If STR is surrounded by slashes
(/). it is interpreted as a qedx regular expression. Otherwise, answer tests whether
STR is literally contained in the text of the question. Multiple occurrences of
-match and -exclude are allowed (see Notes below). They apply to the entire
command line.

-exclude STR, -ex STR
passes on, to the user or other handler, questions whose text matches STR. If
STR is surrounded by slashes (/). it is interpreted as a qedx regular expression.
Otherwise, answer tests whether STR is literally contained in the text of the
question, Multiple occurrences of -match and -exclude are allowed (see Notes
below). They apply to the entire command line.

-query
skips the next answer in a sequence, passing on the question to the user. The
answer is read from the user_io I/O switch.

-then SIR
supplies the next answer in a sequence.

-times N
gives the previous answer (STR, -then STR. or -query) N times only, where N is
an integer).

answer

3-51 AG92-o6

answer

NOTES

Answer provides preset responses to questions by establishing an on unit for the
condition command_question, and then executing the designated command. If the
designated command calls the command_query _ subroutine to ask a question, the on
unit is invoked to supply the answer. The on unit is reverted when the answer
command returns to command level. See the Programmer's Reference Manual for a
discussion of the command_question condition.

If a question is asked that requires a yes or no answer, and the preset answer is
neither "yes" nor "no", the on unit is not invoked.

The last answer specified is issued as many times as necessary, unless followed by the
-times N control argument

The -match and -exclude control arguments are applied in the order specified. Each
-match causes a given question to be answered if it matches STR, each -exclude
causes it to be passed on if it matches STR. A question that has been excluded by
-exclude is reconsidered if it matches a -match later in the command line. For
example, the command line

answer yes -match /fortran/ -exclude /fortran_io/
-match /Afortran_iol

answers questions containing the string Ufortran". except that it does not answer
questions containing "fortran_io", except that it DOES answer questions BEGINNING
with "fortran_io".

EXAMPLES

To delete the tesC_dir directory without being interrogated by the delete_dir command,
type:

answer yes -bf delete_dir test_dir

To automatically see the first three blocks of an info segment named fred.info and
then be interrogated about seeing any more blocks, type:

answer yes -times 2 help fred

The help command prints the first block, then prints another block every time the
user answers yes. In this example, the first three blocks are printed before the user is
interrogated. Sequences of answers are especially useful in exec_corns and absentee
jobs. To supply the sequence of answers "yes, no, no, yes", type:

answer yes -then no -times 2 -then yes command_l ine

To supply the sequence of answers "no, ask the user twice, yes, no", type:

answer no -query -times 2 -then yes -then no command_line

answer

3-52 AG92-Q6

answer

To supply the answer "start_seg" once and call the temp_seg active function successiv~
times, type:

answer start_seg -call "temp_seg args" command_line

To substitute the query "More?" for the one printed by help, type:

answer -call "query More?" -bf help fo

Name: apI, v2apI

SYNTAX AS A COMMAND

FUNCTION

invokes the APL interpreter. optionally loading a saved workspace.

ARGUMENTS

workspace...:.id
is the path name of a saved workspace to be loade-d. The default is to
user's continue workspace, if any, otherwise to provide a clear wQrkspa.ce.

CONTROL ARGUMENTS

-briei_errors, -bfe
prints short error messages. (Default)

-check, -ck
causes a compatibility error to occur if a monadic transpose of rank greater than
2 or a residue or encode with a negative left argument is encountered, (The
definition of these cases in Version 2 APL is different from Version 1.)

-debug, -db
calls the listener (cu_$cI) upon system errors. This puts you at a new command
level. The default is to remain in APL. This control argument is intended for
debugging apl itself.

-lonK-errors, -lge
prints long error messages. The short form of the message is printed, followed by
a more detailed explanation of the error.

-no_quit_handler, -nqh
ignores the quit condition. (Default: to trap all quits within APL)

apl

3-53 AG92-Q6

apl

-temp_dir path. -td path
changes the directory that is used to hold the temporary segments that contain the
active workspace to path. (Default: to use the process directory)

-terminal_type STR, -ttp STR
specifies the kind of terminal being used. Possible values of STR are:

1050
1030
ASCII
C0RR2741
TEK4013

TELERAYll
TYPEPAIRED
2741
ARDS

BITPAIRED
LA36
TEK4015
TN300

This control argument specifies which one of several character translation tables is
to be used by APL when reading or writing to the terminal. Since there are
several different kinds of APL terminals, each incompatible with the rest, it is
important that the correct table be used. Specifying a terminal type to APL
changes the terminal type only as long as APL is active. The default depends on
the user's existing terminal type (see the set_tty command). These terminal types
default to the same APL terminal type: 1050. 2741. C0RR2741. ARDS, TN3oo,
TEK4013, TEK4015, ASCII, LA36. TELERA Yl1. All other terminal types default
to ASCII. The APL terminal types BITPAIRED and TYPEPAIRED are generic
terminal types that can be used with any APL/ ASCII terminal of the appropriate
type.

-user_number N
sets the APL user number (returned by some APL functions) to N. (Default: 100)

NOTES

This command invokes the Version 2 APL interpreter, which replaces the obsolete
Version 1 APL interpreter.

For a complete description of the APL language, terminal conventions, and directions
for converting Version 1 APL workspaces, refer to Multics APL (AK95).

Name: archive, ac

SYNTAX AS A COMMAND

ac operation archive_path paths

FUNCTION

combines an arbitrary number of separate segments into one single segment. The
constituent segments that comprise the archive are called components of the archive
segment. For more information on how archives can be sorted and reordered, see the
archive_sort and reorder_archive commands.

archive

3-54 AG92-o6

archive

ARGUMENTS

operation
is one of the functions listed below under "List of Operations."

archive_path
is the pathname of the archive segment to be created or used. The archive suffix
is added if you do not supply it. If the archive segment does not exist for
replace and append operations, it is created. The star convention can be used
with extraction and table of contents operations.

paths
are the components to be operated on by table of contents and delete operations.
The star and equal conventions cannot be used. For append, replace, update and
extract operations, each path specifies the pathname of a segment corresponding to
a component whose name cannot be used. (Some operations may not require any
path arguments; refer to the specific operation for details.)

LIST OF OPERATIONS

The archive command performs a variety of operations that you can employ to create
new archive segments and to maintain existing ones. The operations are:

Table of Contents Operation

t

t1

tb

tlb

print the entire table of contents if no components are named by the path
arguments; otherwise print information about the named components only. Title
and column headings are printed at the top.

print the table of contents in long form; operates like t, printing more
information for each component.

print the table of contents, briefly; operates like t, except that the title and
column headings are suppressed.

print the table of contents in long form, briefly; operates like tl, except that the
title and column headings are suppressed.

Append Operation

a
append named components to the archive segment If a named component is
already in the archive, a diagnostic is issued and the component is not replaced.
At least one component must be named by the path arguments.

archive

3-55 AG92-06

archive

ad

adf

ca

cad

cadf

append and delete; operates like a and then deletes all segments that have been
appended to the archive.

append and force deletion; operates like a and then forces deletion of all
segments that have been appended to the archive.

copy and append; operates like a, appending components to a copy of the new
archive segment created in your working directory.

copy, append, and delete; operates like ad, appending components to a copy of
the archive segment and deleting the appended segments.

copy, append, and foree deletion; operates like adf, appending components to a
copy of the archive segment and forcibly deleting the segments requested for
appending.

archive

Replace Operation

r

rd

rdf

cr

crd

crdf

replace components In, or add components to, the archive segment. When no
components are named in the command line, all components of the archive for
which segments by the same name are found in your working directory are
replaced. When a component is named, it is either replaced or added.

replace and delete; operates like r, replacing or adding components, then deletes
all segments that have been replaced or added.

replace and f oree deletion; operates like rand f orees deletion of all replaced or
added segments.

copy and replace; operates like r, placing an updated copy of the archive segment
in your working directory instead of changing the original archive segment.

copy, replace and delete; operates like rd, placing an updated copy of the archive
segment in your working directory.

copy. replace. and force deletion; operates like rdf, placing an updated copy of
the archive segment in your working directory.

3-56 AG92-06

archive

Update Operation

u

ud

udf

eu

cud

cudf

update; operates like r except that it replaces only those components for which
the corresponding segment has a date-time modified later than that associated with
the component in the archive.

update and delete; operates like u and deletes all updated segments after the
archive has been updated.

update and force deletion; operates like u and forces deletion of all updated
segments.

copy and update; operates like u, placing an updated copy of the archive segment
in your working directory.

copy, update. and delete; operates like ud, placing an updated copy of the archive
segment in your working directory.

copy, update, and delete force; operates like udf, placing an updated copy of the
archive segment in your working directory.

Deiete Operation

d

cd

delete from the archive those components named by the path arguments.

copy and delete; operates like d, placing an updated copy of the archive segment
in the working directory.

Extract Operation

x

xd

extract from the archive those components named by the path arguments, placing
them in segments in the storage system. The directory where a segment is placed
is the dir€Ctory portion of the path argument. The access mode stored with the
archive component is placed on the segment for the user performing extraction.
If no component names are given, all components are extracted and placed in
segments in the working directory. The archive segment is not modified.

extract and delete; operates like x but deletes the component from the archive if
it is extracted successfully.

archive

3-57 AG92-06

archive

xdf

xf

extract, delete force and delete component; operates like xd, forcing deletion of
any duplicate names or segments found where the new segment is to be created.

extract and delete force; operates like x, forcing deletion of any duplicate names
or segments found where the new segment is to be created.

NOTES

The process of placing segments in an archive is particularly useful as a means of
eliminating wasted space that occurs when individual segments do not occupy complete
pages of storage. Archiving is also convenient as a means of packaging sets of related
segments; it is used this way when interfacing with the Multics binder (see the bind
command description in this document).

The table of contents operation and the extract operation use the existing contents of
an archive segment; the other operations change the contents of an archive segment A
new archive segment can be created with either the append or replace operation. In
each of the operations that add to or replace components of the archive, the original
segment is copied and the copy is written into the archive, leaving the original
segment untouched unless deletion is specified as part of the operation. Use of the
various operations is illustrated in the "Examples" at the end of this description.

The table of contents operation is used to list the contents of an archive segment. It
can be made to print information in long or brief form with or without column
headings.

The append operation is used to add components to the archive segment and to create
new archive segments. When adding to an existing archive, if a component of the
same name as the segment requested for appending is already present in the archive
segment, a diagnostic message is printed on your terminal and the segment is not
appended. When several segments are requested for appending, only those segments
whose names do not match existing components are added to the archive segment.

The replace operation is similar to the append operation in that it can add
components to the archive segment, and therefore it is also used to create new archive
segments. However. unlike the append operation. if a component of the same name as
the segment requested for replacing is already present in the archive segment, that
component is overwritten with the contents of the segment When several segments are
requested for replacing. those segments whose names do not match existing components
are added to the archive segment. as in the append operation.

The update operation replaces existing components only if the date-time modified of a
segment requested for updating is later than that of the corresponding component
currently in the archive segment. When a segment whose name does not match an
existing component of the archive segment is requested for updating. it is not added
to the archive segment.

archive

3-58 AG92-06

archive

The delete operation is used only to delete components from archive segments. It
cannot delete segments from the storage system and is not analogous to the deletion
feature described below.

The extract operation is used to create copies of archive components elsewhere in the
storage system. The extract operation performs a function opposite to the append
operation.

In addition to the operations described above. there are two features. copying and
deletion. that can be combined with certain operations to modify what they do. Since
copying and deletion are features and not operations. they cannot stand alone. but
must always be combined with those operations that permit their use. The deletion
feature is distinct from the delete operation.

The copying feature can be combined with the append. replace. update. and delete
operations. Since an archive segment can be located anywhere in the storage system. it
is occasionally convenient to move the segment during the maintenance process or to
modify the original segment while temporarily retaining an unmodified version. When
the copying feature is used, the original archive segment is copied from its location in
the storage system. updated. and placed in your working directory.

The deletion feature can be combined with the append. replace. and update operations
to delete segments from the storage system after they have been added to or replaced
in an archive segment. The deletion can be forced to bypass the system's safety
function. i.e.. you are not asked whether to delete a protected segment before the
deletion is performed. (This is analogous to the operation of the delete -force
command.) Nothing is deleted until after the archive segment has been successfully
updated.

Deletion of segments (deletion feature) is not to be confused with deletion of
components from archive segments. The delete operation is a stand-alone function of
the archive command that operates only on components of archive segments, deleting
them from the archive. The deletion feature, on the other hand, performs deletions
only when combined with an operation of the archive command, and then deletes only
segments from the storage system after copies of ihose segments have been added to,
or used to update. archive segments.

The archive command can operate in two ways: if no components are named on the
command line, the requested operation is performed on all existing components of the
archive segment; if components are named on the command line, the operation is
performed only on the named components.

The star convention can be used in the archive segment pathname during extract and
table of contents operations; it cannot be used during append, replace. update. and
delete operations.

No commands other than archive. archive_table. archive_sort, and reorder_archive
should be used to manipulate the contents of an archive segment; using a text editor
or other command might result in unspecified behavior during subsequent manipulations
of that archive segment

archive

3-59 AG92-()6

archive

Each component of an archive segment retains certain attributes of the segment from
which it was copied. These consist of one name, the effective mode of the user who
placed the component in the archive, the date-time last modified, the bit count, and
the date-time placed in the archive. When a component is extracted from an archive
segment and placed in the storage system, the new segment is given the name of the
component, the bit count of the component, and the mode associated with the
component for the user performing the extraction.

The date-time-modified value of a component has a precIsIon of one tenth of a
minute. This means that a copy of a component modified less than a tenth of a
minute after the archived copy is not updated. Users who use exec_coms to update
archives should be aware of this limitation.

Date-time values are stored in ASCII without a time zone. The time is expressed
relative to the time zone set for the process that placed the component in the archive.
If the time zone set during the archive update operation differs from the zone set
when the component was first archived, the update will not be performed correctly.
This can cause a component to be updated needlessly, or prevent a component from
being updated even though changes were made to its corresponding segment The time
zone of a process can be changed via the set_time_zone command.

The archive command maintains the order of components within an archive segment
When new components are added. they are placed at the end. The archive_sort or
reorder_archive commands can be used to change the order of components in an
archive segment

The archive command cannot be used recursively. You are asked a question if the
command detects an attempt to use the archive command prior to the completion of
its last operation.

Because the replacement and deletion operations are not indivisible. it is possible for
them to be stopped before completion and after the original segment has been
truncated. This can happen. for example. if one gets a record quota overflow. When
this situation occurs, a message is printed informing you what has happened. In this
case, the only good copy of the updated archive segment is contained in the process
directory.

Archive segments can be placed as components inside other archive segments,
preserving their identity as archives, and can later be extracted intact

When the archive command detects an internal inconsistency, it prints a message and
stops the requested operation. For table of contents and extraction operations, it will
have already completed requests for those components appearing before the place
where the format error is detected.

For segment deletions after replacement requests, if the specified component name is a
link to a segment, the segment linked to is deleted. The link is not unlinked.

archive

3-60 AG92-Q6

archive

The archive command observes segment protection by interrogating you when
(unforced) deletion is requested of a segment to which you do not have write
permission. If you can obtain write permission (i.e.. has modify permission on the
superior directory) and replies that the segment should be deleted. the segment is
deleted.

The archive command refers to the archive segment by full pathname (rather than
only the entryname portion) in all printed messages.

EXAMPLES

Assume that you have several short segments and wants to consolidate them to save
space. The working directory, >udd>Proj ect_i d>d i r _one, might initially look like
the following:

1 i st

Segments = 5, Lengths = 5·

rw eps i lon
rw delta
rw gamma
rw beta
rw alpha

You create an archive segment (using the append operation) containing four of the
five segments.

archive a greek alpha beta gamma delta
archive: Creating >udd>Project_id>dir_one>greek.archive

The working directory then has one more segment (the archive segment), and a table
of contents of the new archive segment shows the four components.

1 i
: :I .., ~

Segments = 6, Lengths = 6.

rw greek.archive
rw eps i lon
rw delta
rw gamma
rw beta
rw alpha

archive

3-61 AG92-06

archive

archive tl greek

>udd>Project_id>dir_one>greek.archive

name updated mode modified length

alpha 09/12/82 1435.0 rw 09/12/82 1434.2 441
beta 09/12/82 1435.0 rw 09/12/82 1434.2 257
gamma 09/12/82 1435.0 rw 09/12/82 1434.2 694
del ta 09/12/82 1435.0 rw 09/12/82 1434.2 109

After changing the segment delta, you replace it in the archive segment and appends
(using the replace operation) the segment epsilon to the archive segment You also
delete the component gamma.

archive r greek delta epsilon
archive: epsilon appended to >udd>Project_id>dir_one>greek.archive

archive d greek gamma

A table of contents new shows a different set of components:

archive t greek

>udd>Project_id>dir~one>greek.archive

updated name

09/12/82 1435.0 alpha
09/12/82 1435.0 beta
09/12/82 1437.5 delta
09/12/82 1437.5 eps i lon

You later replace the component alpha with an updated copy and deletes the storage
system segment alpha, causing the updated column of a table of contents to change
and a list of the working directory to show one less segment.

archive rd greek alpha

archive t greek

>udd>Project_id>dir_one>greek.archive

updated

09/12/82 1641.5
09/12/82 1435.0
09/12/82 1437.5
09/12/82 1437.5

name

alpha
beta
delta
eps i lon

archive

3-62 AG92-06

archive

1 is t

Segments = 5, Lengths = 5·

rw greek.archive
rw eps i 10n
rw delta
rw gamma
rw beta

In another directory, >udd>Project_id>dir_two, which contains a more recent
version of the segment alpha, you copy and update the archive segment, causing the
component alpha to be replaced and the updated archive segment to be placed in the
working directory.

archive cu <dir_one>greek
archive: Copying >udd>Project id>dir one>greek.archive
archive: alpha updated in >udd>Proje~t_id>dir_two>greek.archive

1 is t

Segments = 2, Lengths = 2.

rw greek.archive
rw alpha

archive t greek

>udd>Project_id>dir_two>greek.archive

updated name

09/12/82 1648.3 alpha
09/12/82 1435.0 beta
09/12/82 1437.5 delta
09/12/82 i437.5 eps i 10n

ac t <dir_one>greek

>udd>Project_id>dir_one>greek.archive

updated name

09/12/82 1641 .5 alpha
09/12/82 1435.0 beta
09/12/82 1437.5 delta
09/12/82 1437.5 eps i lon

archive

3-63 AG92-()6

archive

Notice that the entry in the updated column for the component alpha differs in the
two tables of contents. Finally, you extract two components into the new working
directory, presumably to work on them.

archive x greek beta delta

1 i st

Segments"" 4, Lengths

rw delta
rw beta

I.
- At.

rw greek.archive
rw alpha

Name: archive_sort, as

SYNTAX AS A COMMAND

as paths

FUNCTION

sorts the components of an archive segment. The components are sorted into ascending
order by name using the standard ASCII collating sequence. The original archive
segment is replaced by the sorted archive. For more information on archives and
reordering them, see the archive and the reorder_archive commands.

ARGUMENTS

paths
are the pathnames of the archive segments to be sorted. You need not supply the
archive suffix.

NOTES

There can be no more than 1000 components in an archive segment that is to be
sorted.

Storage system errors encountered while attempting to move the temporary sorted copy
of the archive segment back into your original segment result in diagnostic messages
and preservation of the sorted copy in your process directory. If the original archive
segment is protected, you are interrogated to determine whether it should be
overwri tten.

3-64 AG92-06

Name: archive_table, act

SYNTAX AS A COMMAND

act archive_path {starnames} {-control_args}

SYNTAX AS AN ACTIVE FUNCTION

[act archive_path {starnames} {-control_args}]

FUNCTION

returns the names of specified archive components in a specified archive segment. As
a command, archive_table prints one component name per line. M an active function,
it returns names individually requoted and separated by single spaces.

ARGUMENTS

archive_path
is the pathname of an archive segment, with or without the archive suffix. The
star convention is not allowed.

starnames
are optional component names to be matched against names of archive components ..
The star convention is allowed.

CONTROL. ARGUMENTS

-absolute_pathname, -absp
causes component names to be returned as absolute pathnames, of the form
ARCH I VE_D I R>ARCH I VE_NAME: : COMPONENT_NAME, rather than just the component
names.

-bit_count, -bc
returns the bit count of the selected components.

-component_name, -cnm
returns only the component name portion of the selected components. It has no
effect if -no_name is selected. (Default)

returns the date-time-contents-modified of when the component was
last updated in the archive.

-date_time_updated, -dtud
returns the date-time when the selected components were last updated in the
archive.

-header, -he
prints a header. Not accepted by the active function.

3-65 AG92-G6

-mode, -md
returns the access mode of the selected components.

-name, -nm
returns the name of the selected components. (Default)

-no_bit_count, -nbc
suppresses bit count information. (Default)

-no_date_time_contents_modified, -ndtcm
suppresses date-time-contents-modified information. (Default)

-no_date_time_updated, -ndtud
suppresses component update time information. (Default)

-no_header, -nhe
prints no header. (Default)

-no_name, -nnm
suppresses component name information.

-no_requote
does not requote component attribute groups.

-requote
causes the attributes of each component to be requoted as a single entity. This
control argument is ignored by the command. (Default)

NOTES ON ACTIVE FUNCTION

If -name is given, archive_table always requotes the component name (if -component_name
is selected) or archive pathname (if -absolute_pathname is selected).

If more than one of -bit_count, -date_time_contents_modified, -date_time_updated,
-mode, and -name is supplied, the selected attributes are returned, separated by a
space. The order of items is always: name, date-time-contents-modified, mode,
date-time-updated, bit count; which is the same order found when using the archive
command's "tl" key.

If -no_requote is used, the selected attributes for each component are returned
separated by spaces. If more than one component is specified, successive component
attributes are separated by a space.

If -requote is given; the selected attributes for each component are requoted separated
by spaces. If more than one component is supplied, then each component's requoted
attribute group is separated from the others by a space.

3-66 AG92-06

EXAMPLES

The following examples assume an archive ("sample") with three components: "one".
"two", and "three (3t. Note that the practice of including characters such as " " in
segment names typically requires more complicated command line constructs and should
be avoided; it is included here only to clarify the requoting of names.

act sample -he -nm -dtcrn -dtud -mode -bc

>udd>A_Project>A_person>sample.archive

NAME

one
two
three 0)

UPDATED

12/01/82 1513.4
12/01/82-1513.4
12/01/82=15 13.4

MODE

r
r
r

MODIFIED

12/01/82 1512.9
12/01/82-1513.0
12/01/82=1513.2

LENGTH

36
63
90

do lido IIl1format line 1I111111 name = "a, length = "'a.1I111I1I &&rf1 1111 &fl ll
! ... ([act sample =m -bc])
name = one, length = 36.
name = two, length = 63.
name = three (3), length = 90.

do lido IIlIformat line 1IIIIIIIitem = "a." 1I1I1 &&rfllill &rfl"
([act sample =nm -bc -no_requote])

tem = one.
tern 36.
tern = two.
tern = 63.
tern = three 0) .
tern = 90.

! format line IIbit count of component IIlIone lili is "'a."
I ... [act-sample -nnrn -bc one]
bit count of component "one" is 36~

Name: area_status

SYNTAX AS A COMMAND

area_status virtual_pointer {-control_args}

FUNCTION

displays some information about an area.

3-67 AG92-06

ARGUMENTS

virtual_pointer
is a virtual pointer specifier to the area to be looked at (see Section 1 for a
description of virtual pointers).

CONTROL ARGUMENTS

-lnn~ -1~
'&"'&'&'b' .&.b

dumps the contents of each block in both octal and ASCII format

-trace
displays a trace of all free and used blocks in the area.

NOTES

If the area has internal format errors, they are reported. The command does not
report anything about (old) buddy system areas except that the area is in an obsolete
formal

Name: assign_resource, ar

SYNTAX AS A COMMAND

ar resource_type {-control_args}

SYNTAX AS AN ACTIVE FUNCTION

Car resource_type {-control_args}]

FUNCTION

calls the Resource Control Package (RCP) to assign a resource to the user's process.

ARGUMENTS

resource_type
specifies the type of resource to be assigned. Currently, only device types can be
designated. The -device control argument is used to name a specific device to
assign. Other control arguments are used to indicate characteristics of the device
to be assigned. The following device type keywords are supported:

tape_drive
disk_drive
console

3-68 AG92-06

printer
punch
reader
special

CONTROL ARGUMENTS

-comment STR, -com STR
is a comment string that is displayed to the operator when the resource is
assigned. If more than one string is required, the entire string must be in quotes.
Only printable ASCII characters are allowed. Any unprintable characters (like tabs
or new lines) found in this string are converted to blanks.

-density N, -den N
supplies the density capability characteristic of a tape drive. There can be more
than one instance of this argument. A tape drive is assigned that is capable of
being set to all of the indicated densities. The acceptable values for this argument
are: 200, 556, 800, 1600, and 6250.

Note that the values permitted depend on the particular hardware on the system.

-device STR, -dv STR
specifies the name of the device to be assigned. If used, other control arguments
that indicate device characteristics are ignored (see "Examples~' below). If used
with -long, a message containing the name of the assigned device is printed on
the user's terminal; otherwise, no message is printed. If found several times on
the command line, the last one supplied overrides any previous ones.

-line_length N, -11 N
supplies the line length of a printer. Its value must be one that is found in the
"line length" field of a printer PRPH configuration card. If this field is not
given on a printer PRPH configuration card, this device characteristic is ignored
f or this printer.

-long, -lg
prints all of the device characteristics of the assigned device. If not supplied,
only the name of the assigned device is printed.

-model N
specifies the device model number characteristic. Only a device that has this
model number is assigned. To find the acceptable model numbers. use
prin t_conf iguration_ deck.

3-69 AG92-()6

-number N. -nb N
suppplies the number of resources to assign. All of the resources assigned have
the device characteristics indicated by any other arguments passed to this
command. If -number is not given. one resource is assigned.

-speed N
gives the speed of a tape drive. The acceptable values depend on the particular
hardware on the system and can be: 75. 125. or 200.

-system, -sys
indicates that the user wants to be treated as a system process during this
assignment If not used or if the user does not have the appropriate access. then
the Rep assumes that this assignment is for a nonsystem process.

-track N. -tk N
specifies the track characteristic of a tape drive. The value can be either 9 or 7.
If both -track and -volume are not given. a track value of 9 is used when
assigning a tape device.

-train N, -tn N
specifies the print train characteristic of a printer.

-volume STR. -vol STR
specifies the name of a volume. If possible. the device assigned is one on which
this volume has already been placed. If this is not possible (e.g., the volume is
on a device assigned to a process) any available, appropriate, and accessible device
is assigned.

-wait {N}, -wt {N}
indicates that the user wants to wait if the assignment cannot be made at this
time because the resources are assigned to some other process. The value N
designates the maximum number of minutes to wait If N minutes elapse and a
resource is not yet assigned, an error message is printed. If N is not given. it is
assumed that the user wants to wait indefinitely.

NOTES

An assigned device still must be attached by a call to some I/O module. If a device
is successfully assigned, the name of the device is printed. If the user requests a
specific device that is successfully assigned, the name of the device is not printed
unless the user asks for it

NOTES ON ACTIVE FUNCTION

The active function returns "true" if an assignment was successful or "false" if the
resource is unavailable. Other errors are reported by active_fnc_error_. The -long
control argument is not allowed. Use list_resources to obtain the name of the assigned
device(s).

3-70 AG92-()6

EXAMPLES

In the first example, the user issues assign_resource with the tape_drive keyword and
-model. The system responds with the name of the assigned device.

ar tape_drive -model 500

Device tape_04 assigned

In the next example, the user issues assign_resource with tape_drive and -device and
-long. The system responds with the name of the assigned device and the model
number, track, density, and speed characteristics.

ar tape_drive -device tape_OS -long

Device tape_OS assigned
Model = 500
Tracks = 9
Densities = 200 556 800 1600
Speed = 125

In the last example, the user issues assign_resource as an active function with
tape_drive and -model. The system returns "true" if a model 610 tape drive was
assigned, "false" if not.

format_line Ear tape drive -model 610]

true

Name: attach_audit, ata

SYNTAX AS A COMMAND

ata {old_switch {new_switch}} {-control_args}

FUNCTION

sets up a specified I/O switch, with a stream_input_output opening, to be audited by
the audit_ I/O module.

ARGUMENTS

old_switch
is the name of an I/O switch to be audited. The default is user_i/o. If only
one switch is specified, it is the old_switch.

3-71 AG92-06

new_switch
is the name of an I/O switch to be used by the audit_ I/O module. If only
one switch argument is given. it is the old_switch. The default value for
new_switch is audit_i/o.<t ime>, where <t ime> has the value MM/DD/YY.hhmm.m.

CONTROL ARGUMENTS

-modes STR
set the modes on the switch being audited using STR as the mode string.

-pathname path. -pn path
specifies that path is the pathname of the audit file to use. If pathname is not
given. the audit file is in your home directory and named date. audit

-truncate. -tc
truncates the audit file if it already exists. If this control argument is not given.
the audit file is extended by default

NOTES

If used with no arguments. attach_audit sets up auditing for the user_i/o I/O switch
with input and output audited and editing on. Auditing of old_switch is done by
moving the attachment of old_switch to new_switch and then attaching old_switch to
new_switch via audit_. See the audit_ I/O module and the detach_audit command for
more information.

LIST OF AUDITING REQUESTS

A three-character sequence is used to make an auditing request: the audit trigger
character ("!" by default), followed by the specific request character, followed by a
newline. An auditing request can either be alone on a line or have text preceding it
on the same line. When an unrecognized request is given. the entire line is treated as
a regular input line (with no special processing).

!?

!e

!E

prints the combination of input and/or output being audited.

prints a brief description of available auditing requests.

enters the audit editor. The entry preceding this sequence becomes the current
line to be edited.

enters the audit editor, and processes any text preceding the sequence on the same
line as editing requests. If no text precedes the sequence, the eff eet is the same
as for !e.

3-72 AG92-06

!a

!r

!t

!d

!n

expands abbreviations in the input line (see the abbrev command).

redisplays the input line and strips off the newline. Further input can then be
appended to the redisplayed line until another newline is typed, but no further
erase or kill processing is perf ormed on the redisplayed portion. The redisplayed
line plus the appended input (if any) becomes the input line that is returned to
the I/O module being audited.

instructs the audit_ I/O module not to log the input line; this makes the input
line transparent

specifies that the input line to which this is appended is deleted. This is used to
kill a line that has been redisplayed with the !r request

specifies no operation; this is useful when the !n follows another auditing request
sequence that you do not want interpreted.

NOTES ON AUDIT FILE

The audit file, by default, has the pathname:

>udd>Project_id>Person_id>date.audit

where date is the first eight characters (the date portion) returned by the date_time_
subroutine at the time of attaching, and is of the form MM/DD/YY. This pathname
can also be specified using active functions:

[home_dir]>[date].audit

The default audit file size is unlimited. and the audit file can become a multisegment
file.

Audit files contain binary information. Use the display_audit_file command to print
the contents of audit files.

The audit editor operates on entries, rather than lines, and the entry type identifiers
are:

EL edit line

I C input characters

IL input line

DC output characters

3-73 AG92-06

TC trace of control operations

TM trace of modes operations

NOTES ON AUDIT EDITOR

The audit editor is invoked by typing the e or E auditing request sequence described
above. It edits and executes lines that have been logged by the audit_ I/O module.
The syntax of editing requests is similar to that of qedx requests (see the qedx
command in this manuaI). Any number of requests can be on the same line and
spaces are ignored.

Addressing is done the same way as in the qedx editor, with two exceptions. The n."
is a request for self-identification rather than an indicator for the current entry, and
addresses are expressed in terms of entries in the audit file rather than lines in a
buffer. The edit buffer contains only one entry at a time. If the default search tag
is in use, as is the case unless specifically overridden, the absolute entry number refers
to the number of entries, with the default search tag, from the beginning of the file.
Similarly. a relative entry address refers to the number of entries, with the default
search tag. bef ore or after the current address.

LIST OF EDITING REQUESTS

The audit editor requests are presented below in two categories: familiar (qedx-like)
requests, and special requests.

FAMILIAR REQUESTS

s/REGEXP/STR/

ADR

substitutes the string STR for occurrences of the regular expression REGEXP in
the edit buffer.

locates the entry with address ADR. If ADR is not followed by a request, the
audit file entry is printed. An ADR can contain an absolute entry reference at its
beginning, relative addresses in any portion. and regular expressions in any portion.
If a regular expression in the address is preceded by the less than character «), a
backward search is done to find a match for the regular expression. An absolute
address is either a number, or the dollar sign ($) to indicate the last entry in the
audit file.

{ADR 1 , ADR2J P

=

prints the current entry if no ADR is specified; prints the addressed audit file
entry if a single address is specified; prints entries from address 1 through address
2 if two addresses are specified.

prints the current entry number. This value is dependent on the current default
search tag. If the default search tag changes, the current entry may also change.

3-74 AG92-06

• .STR

q

passes the string STR to the command processor and then returns to the audit
editor.

quits the editor and returns the current line to the I/O module being audited,
with the !e or !E sequence included.

SPECIAL REQUESTS

expand, .expand
expands abbreviations in the edit buffer (see the abbrev command).

off, .off
disables auditing of input and output in the editor.

on, .on
enables auditing of input and output in the editor.

1, • 1
addresses the last audit file entry returned by the audit editor.

r [STR] , • r [STR]
quits the editor and returns the string STR to the I/O module being audited. If
STR is not specified, the r request quits the editor and returns the edit buffer.

n, • n
returns a newline character.

type, . type
prints the audit file entry type of the current position.

exec, .exec
passes the edit buffer to the command processor and returns to the audit editor.

d/STR/, .d/STR/
sets the default search tag to the string STR. If STR is only one character, only
the first character of the tag is used to determine if an entry is seen (in
counting entries and doing searches). If STR is two characters, the match is made
on both characters of the tag.

1, .1

''''

prints a brief description of available audit editor requests.

overrides the default search tag for those requests following on the same line (i.e.,
any tag is matched). A newline reestablishes the default search tag.

3-75 AG92-()6

NOTES

The REGEXP field of a substitute request is interpreted as a qedx-style regular
expression. The STR field of a substitute request is also interpreted as in qedx, and
the & convention is supported. If REGEXP is null in a substitute request. the last
REGEXP specified LTl a previous substitute request is used.

No lines in the audit file are changed by the editor; only copies are modified.

If execution of a request should fail for any reason, the processing of that request
line is aborted. you are informed of the failure and a new request is prompted for.
Note that this means you are left in the editor when a problem is encountered
executing a request line associated with an E audit request.

The audit editor may be entered recursively, and each level of the editor has its own
memory for the last returned line from its level.

If the audit editor is being aUdited, the audit editor can be invoked from within the
editor. For every level of the editor. a distinct last returned line is remembered.

EXAMPLES

To set up with a default audit file in· your home_dir:

ata

To set up with an audit file in the process_dir:

ata -pn [pd]>my_audit_file

To set the audit file to be a circular file of 5 records:

To re-execute the last use of the pll command:

</Apll/r!E

To execute the above command line again:

1 r ! E

In the example given below, there has been such extensive use of the erase character
that you may want to see it displayed. In order to verify the input line given. it can
be replayed by using the !r request The ! at the beginning of the line indicates lines
typed by you.

str#ty =#-print_mod########modes red!r
stty -pmodes red

3-76 AG92-Q6

This line does not end with a newline character, so the next character typed would
appear immediately following the "red" and on the same line. In this example,
-pmodes was entered instead of -modes. Typing the following on that same line:

##########modes red!r

does not correct the error, but returns:

stty -pmodes redmodes red

The erase character cannot be used to correct portions of a line that has already been
replayed. The current situation can be corrected as follows:

stty -pmodes redmodes red!e
p
stty -pmodes redmodes red
s/redmodes red/red/ s/pmodes/modes/p
stty -modes red
.r

The above procedure enters the audit editor with the !e request. The p request prints
the contents of the edit buffer. If no argument is given for p, the most recent input
line is printed. Corrections are made to the line and the modified line is printed.
The request .f exits the audit editor and returns the line to the I/O module being
audited.

An alternative procedure is the following:

stty -pmodes redmodes red!n
stty -modes red

The request !n suppresses the entire input line and it is then reentered correctly.

In the first example given. there are two ways to set the red shift mode. It can be
turned off and then on again, as follows:

stty -modes Ared
.1.r!E

The .l.r enters the audit editor. This puts the last entry returned by the audit editor
in the edit buffer, then returns the contents of the buffer. To request the s t ty
-modes Ared command, type:

</Astty/p.r!E
stty -modes Ared

This does a backward search in the audit file for an input entry beginning with stty,
puts this entry in the edit buffer, prints the contents of the edit buffer. and returns
the contents of the edit buffer.

3-77 AG92-()6

To see the last five input entries in the audit file at this point, type:

-4,p!E
s/redmodes red/red/ s/pmodes/modes/p
• r
stty -modes Ared
.1.r!E
</""stty/p. r! E

To see the last five output entries prior to this invocation of the audit editor, type:

.d/O/
-4,p
stty -pmodes red
stty -pmodes redmodes red
stty -pmodes redmodes red
stty -modes red
S tty ~mode-s--Ar-ed--

Note that the entries that are the result of a replay (!r) do not end in a newline
character, so they run together on the same line when being printed.

Name: attach_Iv, alv

SYNTAX AS A COMMAND

alv volume_name

FUNCTION

calls the resource control package (Rep) to attach a logical volume.

ARGUMENTS

volume_name
specifies the name of the volume to be attached.

ACCESS REQUIRED

A user must have rw access to the logical volume to be attached, as defined by the
access control segment (ACS) associated with the logical volume.

3-78 AG92-()6

NOTES

Attaching a logical volume involyes .. j~fQn:ning _ th~. storage system that a particular
volume is attached for a particular process. A logical volume (unless it is a public
logical volume) must be attached for each process that wishes to use it To be
attached, the logical volume must first be physically mounted. This mounting involves
mounting all of the physical volumes that compose the logical volume.

If the specified volume is not already mounted, the system operators are requested to
mount the volume, if appropriate resources are available. The attach_Iv command does
not return until the volume is mounted or the operator has denied the request

The status command issued with the -device control argument prints the name of the
logical volume on which a segment resides.

Name: basic

SYNTAX AS A COMMAND

basic path {-control_arg}

FUNCTION

invokes the BASIC compiler to translate a segment contaIn1ng BASIC sourc-e code.
Either the compiled code is executed, or a standard object segment is created to be
executed at a later time.

ARGUMENTS

path
is the pathname of the segment to be translated. The basic suffix need not
apr...ar as part of the pathname. It must, however, be the last component of the
name of the source segment

CONTROL ARGUMENTS

-compile
requests BASIC to compile the program and generate a bindable Multics standard
object segment The resulting object segment is placed in the user's working
directory.

-time N
where N is a decimal number that requests a limit of N seconds on the execution
of the BASIC program. If the limit is exceeded, the user is asked whether to
continue.

basic

3-79 AG92-D6

basic

NOTES

The -compile and -time control arguments are incompatible.

If the -compile control argument is not specified, the compiled code is then executed
and not saved for future execution. If the -compile control argument is specified, a
standard object segment is created for subsequent execution.

For a description of the BASIC ianguage on ihe Muliics system, consuit the
BASIC manual (AM82).

JlA •• I.&.: __

IVIUI (1(;0)

For information on using the FAST subsystem to compile BASIC source code, refer to
the Multics FAST Subsystem Users' Guide (AU25).

Name: before, be

SYNTAX AS A COMMAND

be STRA STRB

SYNTAX AS AN ACTIVE FUNCTION

[be STRA STRB]

FUNCTION

returns the string preceding the first occurrence of SIRB in STRA. If STRB does not
occur in STRA, the entire string STRA is returned.

EXAMPLES

string [before abcdef123defabc def]
abc
string [before abcdef g]
abcdef
string [before abcdef123 abc]

string [format_line XyAaZZ [before 1.4596e+17 7]]
XY1.4596e+1ZZ

before

3-80 AG92-o6

before~ournal_status before~ournal_status

Name: before-.iournal_status, bjst

SYNTAX AS A COMMAND

bjst {PATHS} {-control_args}

FUNCTION

displays status information for before journals that you have access to open. This
command is part of the command level interface to Multics data management (DM)
(see the Programmer's Reference Manual).

ARGUMENTS

PATHS
are the relative pathnames of before journals for which status is desired. If you
supply no pathnames, status information for all journals in use in the process is
displayed. If you don't give the . bj suffix, it is assumed.

CONTROL ARGUMENTS

-all
displays the status of all journals active in the current invocation of the data
management system (DMS) that you have access to open.

-brief, -bf
displays the pathname, unique identifier, usage state or activity, control interval
size, and control intervals in the beiore journal for each journal specified that is
either in use or not in use (see "Examples").

-long, -lg
for each journal specified that is in use, displays, besides the above information,
the dispoSition of control intervals in use, i.e., if they are buffered, put, flushed,
or on disk; the last time a control interval was queued or written; the time the
header was updated; the last record id; the status of images not yet written on
disk or not being flushed; and the number of users and transactions using the
journal. For each journal specified that is not in use, displays, besides the
information given by -brief, the time the header was updated. (See "Examples.")

NOTES

If you give neither -brief ncr -long, the command yields the information supplied by
-brief plus the disposition of control intervals in use at the time of the request if the
journal(s) specified is in use.

3-81 AG92-()6

bef ore.Journal_status bef ore.Journal_status

EXAMPLES

The example below requests the status, in long form, of the system_low system default
bef ore journal, which is in use.

bjst >site>dm>system_low>system_default -lg

pathname:
journal uid:
activity:

>sit~>Data_Management>system_low>system_default.bj

132233107561

control interval size:
contro 1 i nterva 1 s:
control intervals used:
last control interval

buffered:
put:
flushed:

-On dt-s-k:
time last control interval

queued:
written:

time header updated:
last record id:
images not on disk:
images being flushed:
users:
transactions:

where:

pathname

in use
4096 bytes
4000
86

86
86
86
86

01/14/85 1104.9 est
01/14/85 1104.9 est
01/14/85 1104.9 est
000001260013
o
o
2
1

is the path name of the before journal.

journal uid
is the octal unique identifier of the before journal.

activity
is "in use" if a process currently has Lhe before journal open. "not in use"
otherwise.

control interval size
is the size of each control interval in the before journal, in bytes. Currently 4096
bytes is the only supported size.

control intervals
is the number of control intervals in the before journal.

3-82 AG92-D6

bef ore~ournal_status bef ore~ournal_status

control intervals used
is the number of control intervals in the before journal containing before images
still needed to roll back modifications made by a transaction. Images that are not
needed include those that have- -already - been- used in a complete- rollback and
those for a transaction that has ended.

last control interval buffered
indicates the last control interval put in a special buffer used for before journals.

last control interval put
indicates the last control interval put into the before journal.

last control interval flushed
indicates the last control interval flushed to disk.

last control interval on disk
indicates the last control interval safely on disk.

time last control interval queued
is the last time a before image was put in the before journal.

time last control interval written
is the last time a control interval was written to disk.

time header updated
is the last time the header of the before journal was written.

last re.cord id
is the address of the last before image in the journal.

images not on disk
is the number of images not written to disk yet

images being flushed
is the number of before images for which a flush from memory to disk has been
requested.

users
is the number of users with openings.

transactions
is the number of active transactions in the before journal.

3-83 AG92-()6

bef ore.Journal_status

The example below requests the status, in long form, of the system_low system
default before journal, which is not in use.

bjst >site>dm>system_10w>system_defau1t -lg

pathname:
journal uid:
activity:
control interval size:
control intervals:
time header updated:

Name: binary, bin

SYNTAX AS A COMMAND

bin values

SYNTAX AS AN ACTIVE FUNCTION

[b i n va 1 ues]

FUNCTION

returns one or more values in binary.

ARGUMENTS

value

>site>dm>system_default.bj
127120202215
not in use
4096 bytes
4000
08/26/84 1228.6 edt

is a value to be processed. The last character of value indicates its type.
Acceptable types are binary (b), quartenary (q), octal (0), hexadecimal (x), and
unspec (u). Any valid PL/I real value is allowed. The absence of any specifier
means decimal. The unspec value is limited to eight characters.

EXAMPLES

string [binary 657.40]
11 0 1 00 1 1 1 . 1

string [bin abcu]
1100001001100010001100011

binary

3-84 AG92-06

bind

Name: bind, bd

SYNTAX AS A COMMAND

bd path_specs {-control_args}

FUNCTION

produces a single bound object segment from one or more unbound object segments,
which are called the components of the bound segment You can use archive segments
or unarchived segments to specify pathnames of object components.

ARGUMENTS

path_specs
can be one or more of the following logically concatenated in a left-to-right
order to produce a single sequence of input component object segments.

-archive PATHs, -ac PATHs
indicates that each PATH is the pathname of an archive segment containing
one or more object segments. If the .archive suffix does not exist. it is
assumed. (All arguments following -archive but preceding the next control
argument arc considered to be pathnamesJ

-segment PATHs, -sm PATHs
indicates that each PATH is the pathname of a stand-alone segment The
pathname is trie.d as given, i.e., no suffixes are assumed. (All arguments
following -segment but preceding the next control argument are considered to
be pathnames.)

PATHs
functions exactly as -archive PATHs.

CONTROL ARGUMENTS

-bindfile path, -bdf path
specifies the name (not pathname) of the bind file to be used to control the
binding process. The suffix .bind is assumed. (See "Notes on Bindfile" below.)

-brief. -bf
suppresses printing of warning messages.

-force_order, -fco
is equivalent to including a Force_Order statement in the bind file. Since the need
to use Force_Order is often temporary and caused by update archives that have
had components deleted. this is preferable to using the Force_Order statement
because you need only use it while the temporary condition exists.

bind

3-85 AG92-06

bind

-force_update path_specs, -fud path_specs
is similar in function to -update except that the path_specs (see the path_specs
argument above) specified following -force_update need not exist. Any path that
exists is treated the same way as for -update and any that doesn't is simply
ignored. This is useful for constructing abbreviations used for binding objects that
mayor may not have update paths in various locations.

-list, -Is
produces a ltsttng segment whose name is aenvea nom the name or tne bound
object segment plus a suffix of list The listing segment is generated to dprint; it
contains the bound segment's bind control segment (see "Notes on Bindfile"), its
bind map, and that information from the bound object segment printed by the
print_link_info command. You can't invoke -list with -map. In the absence of
-list or -map, no listing segment is generated.

-map
produces a listing segment (with the suffixes list and map) that contains onlytbe
bind map information. It is incompatible with -list In the absence of -list or
-map, no listing segment is generated.

-update path_specs, -ud path_specs
indicates that the following list of path_specs (see the path_specs argument above)
specifies update rather than input object segments. The update object segments are
matched against the input object segments by object segment name. Matching
update object segments replace the corresponding input object segments; unmatched
ones are appended to the sequence of input object segments. If several update
object segments have the same name, only the last one encountered is boa'1d into
the bound segment

NOTES

Compilers and the assembler produce unbound object segments. Binding has three
benefits: the reduction of storage fragmentation, the prelinking of external references
between the components, and the reduction of size of address space necessary to
execute the components.

Each of these benefits saves CPU time and storage usage if the set of components
bound is used with regularity. This reduction in usage translates directly into lower
charges for the users of the bound segment. System efficiency is also increased by
binding together common sets of programs. A reference in one component to an entry
point defined in another component is resolved during the binding. This prelinking
avoids the cost of dynamic linkin& and it also ensures that the reference is linked to
the component regardless of the state of a process at the moment that dynamic
linking takes place. References to an entrypoint are prelinked unless the contrary is
specified by an instruction in the bindfile. The bindfile is a segment containing
instructions that control various aspects of the binding operation (see "Notes on
Bindfile" below). (See the print_link_info command.)

bind

3-86 AG92-06

bind

NOTES ON OUTPUT

The binder produces as its output two segments: an executable bound objectsegm-ent
and an optional. printable ASCII listing segment The name of the bound segment is.
by default. derived from the entryname of the first input archive segment encountered
by stripping the archive suffix from it. The name of the listing segment is derived
from the name of the bound segment by adding the list suffix to it. Use of the
Objectname master statement in the bind file (see "List of Master Keywords" below)
allows the name of the bound segment to be stated explicitly. In addition. use of the
Addname master statement in the binding instructions adds additional segment names to
the bound segment. The primary name of the bound segment must not be the same
as the name of any component.

NOTES ON BINDFILE SELECTION

As the binder is examining the archive components and loose segments, it is also
looking for a bind file. Any segment whose name ends with the suffix "bind" is
considered a bind file. If you specify -bind file, only bindfiles by that name are
considered and the last one by that name is selected; otherwise the first bindfile
found among the input segments and all bindfiles among the update segments are
considered and the last one is selected. If more than one bind file is found among the
input segments, the second through last are ignored and generate a warning.

NOTES ON BINDFILE

The bindfile is a segment containing symbolic instructions that control the operation of
the binder. The syntax of the bind file statements consist oj a keyword foliowed by
zero or more parameters and then delimited by a statement delimiter. Master
statements pertain to the entire bound object segment; normal statements pertain to a
single component object within the bound segment Master statements are identified by
master keywords that begin with a capital letter; normal keywords begin with a
lowercase letter. A keyword designates a certain action to be undertaken by the binder
pertaining to parameters following the keyword.

LIST OF MASTER KEYWORDS

Objectname
the parameter is the segment name of the new bound object

Order
the parameters are a list of objectnames in the desired binding order. In the
absence of an order statement, binding is done in the order of the input
sequence. If an Order statement is present in the bind file, every object segment
being bound must be mentioned in its parameter list

Force_Order
same as Order except that the list of parameters can be a subset of the input
sequence, allowing the archive segments to contain additional segments that are not
to be bound (e.g., source programs). However, the parameter list must include all
segments mentioned in objectname statements.

bind

3-87 AG92-06

bind

Partial_Order
same as Order except that the list of parameters can be a subset of the input
sequence; the named objectnames are placed in the bound output segment in the
order specified and the remaining objects are placed after those named, in the
order of the input sequence.

Ignore
the parameters can be a subset of the input sequence, indicating objects not to be
;nl'lnnM ;n tnp hnnnn nntnnt ~O'Tnpnt Tnp ;O'nnTPn nh;pl't~ !::ITP d111 1Ttpnt;nnM ;n
A.A.&,... -., ..,,,a........ "' ,.......,.1:)&...................., ... C>-"' ... "............ ",J, wr........... ..&..&W' "''''''.&..........

the bound segment's source map.

Global
the single parameter can be retain, delete, or no_link. The parameter selected
pertains to all component object segments within the bound segment. A global or
explicit statement concerning a single component object or a single external symbol
of a component object overrides the Global statement for that component object
or symbol.

Addname
the parameters are the symbolic names to be added to the bound segment. If
Addname has no parameters, it adds to the bound segment the segment names and
synonyms of those component objects for which at least a single entrypoint was
retained.

No_Table
does not require parameters. It omits from the bound segment the symbol tables
from all the component symbol sections containing symbol tables. If you don't
give this keyword, all symbol tables are kept.

Perprocess_Static
does not require parameters. It turns on the perprocess_static flag of the bound
segment. which prevents the internal static storage from being reset during a run
unit.

The Order. Force_Order. and Partial_Order statements are mutually contradictory; only
one of these can be present in any bindfile.

If you supply no bindfile, the binder assumes default parameters corresponding to the
following:

Objectname: segment name of the first input archive file.
Global: retain; /*regenerate all definitions*/

bind

3-88 AG92-06

bind

11/86

LIST OF NORMAL KEYWORDS

objectname
the-single parameter is the name of a component object as it appea-rs in the
archive segment. The objectname statement indicates that all following normal
statements (up to but not including the next objectname statement) pertain to
the component object whose name is the parameter of the objectname statement

synonym
the parameters are symbolic segment names declared to be synonymous to the
component object's objectname. When b is declared to be a synonym for a,
references (in the bound components) of the form b or b$x (any x) are resolved
during binding by searching for a definition of b or x in component a. Give
the synonym instruction if such references are to be prelinked. The synonym
instruction also affects dynamic linking so that if b is a reference name for
the bound segment, then references of the form b or b$x are resolved by
searching component a. In this case the synonym instruction may reduce the
cost of dynamic linking, and it avoids possible ambiguities when two
components contain definitions for the symbol b. State explicitly in a
synonym statement all the normally used segment names of a component object.

For example. the create and create_dir commands are implemented in one
procedure. and both have abbreviations; thus a bindfHe for the bound segment
in which this procedure resides contains

objectname: create;
synonym: create, cr, create_dirt cd;

Failure to state segment names results in inefficient linker performance.

retain
the parameters are the names of entrypoints defined within the component object
segment that you wish to retain as entrypoints of the bound object segment.

delete
the parameters are the names of entrypoints defined within the component object
segment that you don't wish to be retained as entrypoints of the new bound
segment

no_link
the parameters are the names of entrypoints that are not to be prelinked during
binding. This statement impHes th.at the spp....cified na..rnes be retained.

The retain, delete, and no_link statements are considered exclusive. An error message
is displayed if the binder recognizes that two or more such statements were made
regarding any single entrypoint

bind

3-89 AG92-()6A

bind

global
the single parameter can be retain, delete, or no_link. The parameter selected
becomes effective for all entrypoints of the component object An explicit retain,
delete, or no_link statement concerning a given entrypoint of the component
object overrides the global statement for that specific entrypoint A global
no_link causes all external references to the component object to be regenerated
as iinks to entrypoints; this aiiows execution time substitution of such a
component by a free-standing version of it for debugging purposes, for example.

"_"-1_
LiiUIC;

does not require parameters. It retains the symbol table for the component and is
needed to override the No_Table master keyword.

LIST OF BINDFILE DELIMITERS

keyword delimiter used to identify a keyword followed by one or more
parameters. A keyword that is followed by no parameters is delimited by a
statement delimiter ..
statement delimiter

, parameter delimiter. The last parameter is delimited by a statement delimiter.
/* begin comment
* / end comment

NOTES ON ERROR MESSAGES

The binder produces three types of error messages. Messages beginning with the word
"Warning" do not necessarily represent errors, but warn you of possible inconsistencies
in the input components or bind file. Messages beginning with the word "bind"
normally represent errors in the input components. Errors detected during the parsing
of the bindfile have the format

ERROR J SEVERITY 3 IN LINE N

or
WARNING J IN LINE N

where J is the error number and N is the line number of the erroneous statement If
an error is detected during parsing, the binder aborts because it cannot bind according
to your specifications.

The message

IIbind: Fatal error has occurred; binding unsuccessful. 1I

indicates that it was impossible for the binder to produce an executable object segment
* because of errors detected during binding.

bind

11/86 3-90 AG92-D6A

bind

EXAMPLES

The bindfile for the debug command, which is named bound_debug. bind, is as follows:

Objectname:
G I oba I :
Addname;

bound_debug;
delete; I*delete all old definitions*1

I*add names debug, db, list_arg_ and gr_print
to bound segment bound_debug*1

objectname: debug;
synonym: db; I*indicate db is synonymous to debug*1
retain: debug,

objectname:
retain:

objectname:
retain:

db; I*retain entrynames debug$debug and debug$db*1

list_arg_;
list_arg_; I*retain entryname list_arg_$list_ar9_*/

gr_print;
gr_print;

The following illustrates other uses of the bind file:

Objectname:
G 1 aba 1 :
Order:

Addname:

objectname:
retain:

objectname:
synonym:
no_link:

table;

bound test;
delete; I*delete all old definitions*1
test, I*list all components in the order they are

test_utility,
test_init,
reset;

test,
test_utility,

reset;

to be bound*1

I*add so that link can be snapped
to version in bound segment*1

I*omit all symbol tables*1

reset;
reset;

test_utility;
rest_of_test;
test_utility;

I*another entrypoint*1
I*do not prelink to this entrypoint;

generate external link*1
I*keep this component's symbol tabJe*1

3-91

bind

AG92-06

Name: bLmgr_call, bjmc

SYNTAX AS A COMMAND

bjmc key {path} {-contro1_args}

SYNTAX AS AN ACTIVE FUNCTION

rbimc key fDathl f-control arosll
_-- ~ .. - - - - - , _.- - - - -,. .. - - - - - - - - - - - .., - I ..

FUNCTION

enables you to manipulate bef ore journals in your process by calling
before.Journal_manager_ entry points from command level. This command is part of
the command level interface to Multics data management (DM) (see the Programmer's
Reference Manual).

ARGuMENtS

key

path

designates the before journal manager operation to be performed. See "List of
Operations" below for a description of each operation, its command and active
function syntax lines, and specific application.

specifies the absolute or relative pathname of the before journals being
manipulated (required for all key operations except get_default_path). Give
-pathname (-pn) PATH with patbnames constructed with leading minus signs to
distinguish them from control arguments. If you supply no . bj suffix, it is
assumed.

CONTROL ARGUMENTS

can be one or more control arguments, depending on the particular operation.

LIST OF OPERATIONS

Each operation is described in the general format of a command/active function.
Where appropriate, notes and examples are included for clarity.

Operation: close, cl

SYNTAX AS A COMMAND

bjmc cl path

3-92 AG92-()6

SYNTAX AS AN ACTIVE FUNCTION

[bjmc c 1 path]

FUNCTION

closes the before journal specified by path. Separate pathnames" by spaces if multiple
journals are to be closed. Specifically close by name each journal opened in the
process. The active function returns true if the journals were closed successfully, false
otherwise.

ARGUMENTS

path
is the absolute or relative pathname of before journals to be closed. if you
supply no . bj suffix, it is assumed.

NOTES

If a before journal being closed by this operation is the default journal, the last
journal opened in the process becomes the default

Operation: closed

SYNTAX AS A COMMAND

bjmc closed path

SYNTAX AS AN ACTIVE FUNCTION

[bjmc closed path]

FUNCTION

returns true if the before journal specified by path is not open in your process, false
otherwise.

ARGUMENTS

path
is the absolute or relative pathname of a before journal. If you don't give the
.bj suffix, it is assumed.

3-93 AG92-06

Operation: create, cr

SYNTAX AS A COMMAND

bjrnc cr path {-control_args}

SYNTAX AS AN ACTIVE FUNCTION
r~: ______ +k ! ____ + __ 1 ____ 1'
LUJIII\.. \,,1 t-'QLII t"\"VIILIVI_QI~;:)JJ

FUNCTION

creates the before journal specified by path. The active function returns true if the
before journal is created successfully, false otherwise.

ARGUMENTS

path
is the absolute or relative pathname of the before journals to be created. If you
supply no .bj suffix, it is assumed.

CONTROL ARGUMENTS

-length N, -In N
specifies the size of the before journal. where N is the number of 4096-byte
control intervals. Once established, you can't alter a journal's size. (Default if
you specify no value at the time of creation, the size is 64 control intervals)

-transaction_storage_limit N, -tsl N
specifies the maximum number of bytes a single transaction can use in the before
journal (Def aul t the en tire journal)

NOTES

Before journals are extended entry types; you can delete them using the delete
command. You can only delete before journals if they are not required for recovery.

Operation: get_default_path, gdp

SYNTAX AS A COMMAND

bjrnc gdp

SYNTAX AS AN ACTIVE FUNCTION

[bjrnc gdp]

3-94 AG92-06

FUNCTION

returns the pathname of the process's default before journal.

Operation: open, 0

SYNTAX AS A COMMAND

bjmc 0 path

SYNTAX AS AN ACTIVE FUNCTION

[bjmc 0 path]

FUNCTION

opens the bef ore journal specified by path. The active function returns true if the
journal is opened successfully, false otherwise.

ARGUMENTS

path
is the absolute or relative pathname of before journals to be opened in your
process. If you supply no . bj suffix, it is assumed.

NOTES

If no journal has been specifically designated as the default (see the set_default_path
operation) for your process, the last before journal opened in the process becomes the
default If no journal is opened in your process when a transaction is started, the
system before journal is opened and used as the default

Operation: opened

SYNTAX AS A COMMAND

bjmc opened path

SYNTAX AS AN ACTIVE FUNCTION

[bjmc opened path]

FUNCTION

returns true if the before journal specified by path is opened in your process, false
otherwise.

3-95 AG92-06

ARGUMENTS

path
is the absolute or relative pathname of a before journal. If you supply no . bj
suffix, it is assumed.

SYNTAX AS A COMMAND

bjmc sdp path

SYNTAX AS AN ACTIVE FUNCTION

[bjmc sdp path]

FUNCTION

sets the default before journal for the process to the specified pathname. The active
function returns true if the pathname is successfully set, false otherwise.

ARGUMENTS

path
is the absolute or relative pathname of the bef ore journal to be used as the
default by your process. If you supply no . bj suffix, it is assumed.

NOTES

If no default before journal is set for your process, the last journal opened in the
process is used as the default (see the open operation). If no before journal is open
in the process when a transaction is started, the system before journal is opened and
used as the default

Name: bool

SYNTAX AS A COMMAND

bool 81 B2 83

SYNTAX AS AN ACTIVE FUNCTION

[bool Bl 82 83]

b001

3-96 AG92-G6

bool

FUNCilON

performs bit string operations on character string representations of bit strings.

ARGUMENTS

B1, B2, and B3
are bit strings entered as 0 and 1 characters.

NOTES

The shorter of the two strings is extended at the right with zeroes to equal the length
of the longer string.

B3 must be four bits long.
on Bl and B2.

B3 Name

0000 clear
0001 and
0010
0011 move B1
0100
0101 move B2
0110 xor
0111 or
1000 "'or
1001 "'xor
1010 invert B2
1011
1100 invert B1
ilOl
1110 "'and
1111 "'clear

EXAMPLES

It causes the following logical operations to be performed

Result

all zeroes
B1 & B2
B1 &"'B2
B1
AB1 & B2
B2
(B 1 & "'B2) I ("'B 1 &B2)
B 1 1 B2
'" (B 1 I B2) = ("'B 1 &"'82)
"'«B1&"'B2) I (AB1&B2» = ("'B1IB2) & (B1 1"'B2)
AB2
A ("'B 1 &B2) = (B 1 I "'B2)
AB1
"'(B1&"'B2) = ("'B1IB2)
A (B 1 &B2) = ("'B 1 I "'B2)
all ones

s tr i ng [boo 1 1010 0101 0111]
1111
string [bool 1001001 1101001010 0110]
0100000010

bool

3-97 AG92-06

branches branches

11/86

Name: branches

SYNTAX AS A COflllMAND

branches star_names {-control_args}

SY/,ITAX AS AN ACTIVE FUlvCTION

[branches star_names {-control_args}]

FUNCTION

returns the entrynames or absolute pathnames of segments, directories, and multisegment
files (MSFs) that match one or more star names.

ARGUMENTS

star_name
. is a·star name to be used in selecting the names to be returned.

CONTROL ARGUMENTS

-absolute_pathname, -absp
returns absolute pathnames rather than entrynames. (Default to return entrynames)

-chase
processes the targets of links when you specify a starname.

-inhibit_error, -ihe
returns false if star_name is an invalid name or if access to tell of an entry's
existence is lacking.

-no_chase
does not process the targets of links when you specify a star name. (Default)

-no_inhibit_error, -nihe
signals an error if star_name is an invalid name or if access to tell of an entry's
existence is lacking. (Default)

NOTES

Only one name per branch is returned; i.e., if a branch has more than one name that
matches star_name, only the first match found is returned.

Since each entryname (or pathname) returned by branches is enclosed in quotes, the
command processor treats each name as a single argument regardless of the presence
of special characters in the name.

3-98 AG92-06A

byte

11/86

Name: byte

SYNTAX AS A COMMAND

byte N

SYNTAX AS AN ACTIVE FUNCTION

[byte N]

byte

3-98.1 AG92-06A

This page intentionally left blank.

11/86 AG92-06A

byte

FUNCTION

Prints or returns the character in a specified position in the Multics ASCII collating
sequence.

ARGUMENTS

N
is the zero-ongtn position of the desired character in the collating sequence. If
the number ends with the character "0", it is interpreted as an octal number;
otherwise it is decimal.

Name: calc

SYNTAX AS A COMMAND

calc {expression}

SYNTAX AS AN ACTIVE FUNCTION

[calc expression]

FUNCTION

provides you with a calculator capable of evaluating arithmetic expressions with
operator precedence, a set of often-used functions, and a memory that is symbolically
addressable (i.e., by identifier).

ARGUMENTS

expression
is an aritfu"'I1etic expression (see below) to be evaluated. If this argument is
specified, the calc command prints its value and returns to command level. The
expression must be quoted if it contains spaces or other command language
characters. Variables are not allowed.

LIST OF REQUESTS

print "calc" .

• • STR
execute the Multics command line STR.

<expression>
type value of expression.

calc

3-99 AG92-G6

calc

<variable>=<expression>
assign value of expression to variable.

1 i st
list variables.

return to command level.

NOTES

Invocation of calc with a newline enters calculator mode. You can then type in
expressions, assignment statements, or list requests, separated from each other by one
or more newline characters. All of these operations are described below.

You must use the quit request with a newline character to return to command level.

NOTES ON EXPRESSIONS

Arithmetic expressions involving real values and the operands +, -, *, I. and **
(addition, subtraction. multiplication. division, and exponentiation) can be typed in. A
prefix of either plus or minus is allowed. Parentheses can be used, and blanks
between operators and values are ignored. Calc evaluates each expression according to
rules of precedence and prints out the result. The quit request (followed by a newline
character) returns you to command level. The order of evaluation is as follows:

expressions within parentheses

function references

prefix +, prefix -

**

*, I

+ -,

For example, if you type:

calc responds

= 14

Operations of the same level are processed from lei! to right except for the prefix
plus and minus, which are processed from right to left. This means 2**3.*4 is
evaluated as (2**3}**4.

calc

3-100 AG92-Q6

calc

Numbers can be integers (123), fixed point (1.23) and floating point (1.23e+2, 1. 23e2,
1.23E2, or 1230E-l). All are stored as float bin(27). An accuracy of about. seven
figures is maintained. Variables (see below) can be used in place of constants, e.g.,
pi * r ** 2.

Seven functions are provided: sin, cos, tan, atan, abs, In, and log (In is base e, log is
base 10). They can be nested to any level, e.g .• sin(In{var).S*pi/180).

NOTES ON ASSIGNMENT STATEMENTS

The value of an expression can be assigned to a variable. The name of the variable
must be from one to eight characters in length and must be made up of letters
(uppercase and/or lowercase) and the underscore character U. The form is

<variable>=<expression>

For example, the following are legal assignment statements:

x = 35

Rho = sin(2*theta)

The calc command does not print any response to assignment statements. The variables
"pi" and "e" have preassigned values of 3.14159265 and 2.7182818, respectively.

NOTES ON THE LIST REQUEST

If "list" is typed, calc prints out the names and values of all the variables that have
been declared so far. The value of any individual variable can be displayed by typing
the name of the variable followed by a newline character.

OTHER REQUESTS

Typing n." on a line by itself causes calc to identify itself by printing "calc".

Typing a line beginning with two periods " .. " causes the remainder of the line to be
passed to Multics as a command line, and executed.

Typing "q" causes calc to return to the calling program, i.e., to command level.

calc

3-101 AG92-Q6

calendar calendar

Name: calendar

SYNTAX AS A COMMAND

ca1endar {paths} {-control_args}

FUNCTION

ARGUMENTS

paths
are the pathnames of segments that contain a list of events in the form of text
to be inserted into the calendar (see "Notes" below).

CONTROL ARGUMENTS

-box_height N, -bht N
sets the number of lines available for notes in each box to N, an integer number.
The default for N is 7 if you don't use -box_height If N is less than 7, the
marginal calendars for the previous and following months cannot be printed.

-date DT, -dt DT
identifies which month is printed. If you supply no -date, the current month is
printed. (See Section 1 for a description of valid DT valUes.)

-fiscal_week, -fw
labels boxes with fiscal week numbers. This command assumes that each fiscal
week begins on Monday and ends on Sunday and fiscal week 1 is the first full
week of the calendar year; therefore fiscal week 1 of 1984 begins on Monday,
January 2.

-force, -fc
prints a calendar regardless of errors in the input files.

-julian, -jul
places in the lower left corner of each day box the number of days of the year
that have passed, including the current day, and in the lower right the number of
days remaining in the year after the current day. This control argument
effectively reduces the number of lines in each box that are available for notes.

-stop, -sp
waits until you type a single newline character before printing the calendar and
after printing it

-wait, -wt
waits for a single newline character from you before printing the calendar.
Characters typed before the newline are ignored. This allows you to position the
paper and to add simple top-of -f orm notes.

3-102 AG92-06

calendar calendar

NOTES ON OUTPUT

Each box for a calendar day is 16 characters wide. Its height is determined by the
-boX_height control argument; but if that control argument is not used. each box is 7
lines high. Each box in the calendar contains the number of the day of the month;
other information can also appear in the box, at your option. The month preceding
the specified' month and the month following it are also printed.

NOiES ON INPUT

Each segment contains lines that set up a string to be inserted into the appropriate
box of the calendar. The fields in these lines are separated by commas and have the
form:

opcode,dtfield, ••• ,dtfield,text

The first field is the operation code (either date. reI. repeat, easter or rename). The
second and succeeding fields depend on which operation code is used. Lines that
produce a date not in the current month are ignored. Lines beginning with an asterisk
(*) are comment lines. Leading space is NOT allowed.

NOTES

If the command finds errors in its arguments it reports the errors and does not print
a calendar. If it finds errors in an input file. it stops after all errors have been
reported, unless you give -force to indicate that the calendar should be printed in
spite of errors.

Users can insert several lines of text for any date. This is accomplished by supplying
multiple date or reI entries for the desired date (see Washington's birthday under
"Examples" below). The number of lines available is controlled by the -box_height
control argument

THE DATE OPERATION CODE

The date operation code has the following syntax:

date,DT,TEXT

The first field is the date operation code itself, date.

The second field. DT, is any date acceptable to the convert_date_to_binary_
subroutine. This date is converted relative to the day before the beginning of the
month. so that "Mon" is the first Monday in the month. etc.

The third field. TEXT. is arbitrary text Up to 16 characters are inserted into the
calendar in the appropriate place, if the date specified by DT falls in the month for
which the calendar is being printed.

3-103 AG92-06

calendar calendar

An example of the date operation code:

date,07/04,lndependence Day

THE REL OPERATION CODE

The reI operation code allows a note to be inserted for a day that is calculated
relative to the beginning of a month. It is useful for events that are defined to
occur, for example, on the first Tuesday after the first Monday of a month. Its
syntax is as follows:

rel,MONTHNO,RELDT1,RELDT2,TEXT

The first field is the reI operation code itself, reI.

The second field, MONTHNO, is a one or two digit number, or 0, -1, or +1. If it is
-asimpie-number---(l through -ll-areaccepted),- it-indicates--the -month-from-which the-
event is to be calculated. If it is 0 it indicates that the target date is to be calculated
relative to the month for which the calendar is being printed. A MONTHNO of -1
indicates that the date is calculated relative to the month before the printed month;
+1 indicates the month after the printed month.

The third field, RELDTl, is a date (acceptable to the convert_date_to_binary_
subroutine) that is converted relative to the month specified by the MONTHNQ of
the second field. More precisely, it is converted relative to the day before the
beginning of the specified month.

The fourth field, RELDT2, is a date (acceptable to the convert_date_to_binary_
subroutine) that is converted relative to the date indicated by the RELDT1 of the
third field. It specifies the date selected for the insertion of the TEXT.

The fifth field, TEXT, is arbitrary text to be inserted in the calendar if the date
ultimately calculated from MONTHNO, RELDTl, and RELDT2 falls in the month for
which the calendar is being printed.

An example of the reI operation code

rel,11,Mon,Tue,Election Day

defines the first Tuesday after the first Monday in November, and places the text,
"Election Day", in the proper calendar day box.

THE REPEAT OPERATION CODE

The repeat operation code inserts a note into the boxes for several days that are
separated by a constant interval of time. Its purpose is to enter notations for a series
of repeating events, such as regular meetings. The syntax is as follows:

3-104 AG92-06

calendar calendar

repeat,STARTDT,END_OR_COUNT,INTERVAL,TEXT

The first field is the repeat operation code itself, repeat

The second field, STARTDT, is the date on which the series of events starts. It is a
date acceptable to the convert_date_to_binary _ subroutine, or O. The date is converted
relative to the day before the beginning of the month to be printed. A STARTDT of
o indicates that the series starts on the first day of the printed month.

The third field, END_OR_COUNT, is the end date (last day on which the event may
potentially occur), or 0, or a count of the number of events in the series. A date
(acceptable to the convert_date_to_binaTY_ subroutine) is converted relative to the day
before the beginning of the month to be printed. An END_OR_COUNT of 0
indicates that the series continues throughout the entire month being printed. An
integer number, rather than a date or 0, gives the number of events in the series.

The fourth field, INTERVAL, is any offset acceptable to the convert_date_to_binaTY_
subroutine, or O. If the INTERVAL is an offset, it is truncated to an integral number
of days; but if it is less than one day, it is treated as if it were 1 day. Thus, 75
hours gives an interval of 3 days, 5 hours gives an interval of 1day. If the
INTERVAL is given as 0, it indicates an interval of 1 day.

The fifth field, TEXT, is arbritrary text to be placed in the box of each day in the
series.

Examples of the repeat operation code:

repeat,04/01/80,lO,lweek,Karate Lesson

places the text "Karate Lesson" in the calendar boxes for April 1, 8, 15, etc., through
June 3, 1980.

repeat,08/04/80,o8/o8/80,lday,Hang Glider Meet

places the text "Hang Glider Meet" in every calendar box from August 47 1980 to
August 8, 1980.

THE EASTER OPERATION CODE

The easter operation code calculates the date for Easter and inserts its text in that
date if it falls in the printed month. The syntax is:

easter,TEXT

There are only two fields, the operation code, easter, and the text to be placed in the
box. An example:

easter,Family reunion

3-105 AG92-06

calendar calendar

11/86

THE RENAME OPERATION CODE

The rename operation code allows you to change the names of days or m.onths. Its
syntax is

iename,OLDNAME,NEWNAME

The OLDNAME field gives the name of a day or month to be changed. If the name
nf tl"l~t n~'U nl" ft'\n ... tl"l u'~r ~"''I7';ftnrl.., ,.l..,. A .;... +l.."" "'''4040'''''''+ ; "' t;__ _~ tl..
Vol W,l...... - J Vol ol,uV,u .. ,u nUooll ,t'.l"''' .lVw.:I.lJ "'.l.lQ..l.l6~ .l.l.l 1.J..l'" "'&..i.L.L"'.L.L" .L.L.l YV\.ICI.&..LV.L.l VI I.J.l"

command, OLDNAME must be the current name. The NEWNAME field gives the
name to replace the OLDNAME. For example, rename, Monday,Lundi.

EXAMPLES

The following illustrates the kind of segment you might create to put fixed holidays
into a calendar.

*-hofidays
'Ie

date,Ol/Ol,New Year's Day
date,02/02,Ground Hog Day
rel,2,Mon,2 weeks,Washington's
rel,2,Mon,2 weeks, birthday
easter,Easter
rel,4,Mon,2 weeks,Patriot's Day
rel,5,Sun,1 week,Kother's Day
rel,5,05/24,Kon,Kemorial Day
date,07/04,lndependence Day
rel,9,O,Kon,Labor Day
rel,lO,Kon,l week,Columbus Day
date,11/11,Veterans Day
rel,ll,Kon,Tue,Election Day
rel,11,Thu,3 weeks,Thanksgiving
date,12/25,Christmas Day

3-106 AG92-06A

calendar calendar

11/86

Additionally you might create a segment to include personal information in a calendar.

* personal calendar info

* date,05/21,Kirsten l s Birthday
date,11/16,Mom l s Birthday
repeat,Saturday,O,lweek,Racquetbal1 Fred

Assume you want a calendar for the coming December, including fiscal week numbers,
holidays, and personal information. If the above segments are named "holidays" and
"personal" (and are in your working directory). you type the following to print the
calendar on the terminal:

calendar -dt 12/01 -fw holidays personal

3-106.1 AG92-06A

This page intentionally left blank.

11/86 AG92-06A

calendar_clock calendar_clock

Name: calendar_clock

SYNTAX AS A COMMAND

calendar_clock {time_string} {-control_args}

SYNTAX AS AN ACTIVE FUNCTION

[calendar_clock {time_string} {-control_args}]

FUNCTION

returns the complete clock value from the four-digit year down through the
microsecond in a sequence that allows
"1982-12-23_18:06:30.421857JIllt_Thu". The format
"/\ 9999yc-/\my-l\dm_/\ Hd: /\ MH: /\ 99. (6)9UM_ 1\ za_ /\da".

ARGUMENTS

time_string

direct
string

comparison, e.g .•
to produce this is

indicates the date about which information is desired. If you supply no
time_string. the current date is used. The time string is concatenated to form a
single argument even if it contains spaces; you need not quote it (See Section 1
for a description of valid time_string values.)

CONTROL ARGUMENTS

-language STR. -lang STR
STR specifies the language in which month names. day names, and zone names
are to be expressed. (Default English)

-zone STR
STR specifies the zone to be used to express the result (Default Greenwich
Mean Time, GMT)

NOTES

Use the print_time_defaults command to display the default language and zone. Use
the display_time_info command to display a list of all acceptable language and zone
values.

3-107 AG92-06

SYNTAX AS A COMMAND

car request_identifiers {-control_args}

FUNCTION

allows you to delete a request for an absentee computation that is no ionger needed.

ARGUMENTS
you can chose request_identifiers from the following:

path
is the full or relativepathname for the absentee input segment of requests to be
canceled. You can use the star convention.

-entry S1R -et STR
identifies requests to be canceled by STR, the entryname portion of the absentee
input segment pathname. You can use the star convention.

-id ID
identifies one or more requests to be canceled by request identifier. You can give
this identifier to further define any path or -entry identifier (see "Notes").

CONTROL ARGUMENTS

-all, -a
searches all priority queues for the specified request type starting with the highest
priority queue and ending with the 10wesL It is incompatible with -queue.

-brief, -bf
suppresses messages telling that a particular request identifier was not found or
that requests were canceled when using star names or -all.

-foreground, -fg
specifies that the foreground absentee queue contains the request(s) to be canceled.

-queue N, -q N
specifies that queue N of the request type contains the requests to be canceled,
where N is a decimal integer specifying the number of the queue. If you omit it,
all the queues are searched.

-sender STR
specifies that only requests from sender SIR should be canceled. You must also
give one or more request identifiers. In most cases the sender is an RJE station
identifier.

3-108 AG92-06

-user User_id
specifies the name of the submitter of the request to be canceled if it is not the
same as the group identifier of the process. You can give the User_id as
Person_id.Project_id, Person_id, or . Project_id. Both r and d extended access to
the queue are required. This control argument is primarily for operators and
administrators.

ACCESS REQUIRED

You need 0 extended access to the queue to cancel your own request and r and d
extended access to cancel somebody else's request

NOTES

If you supply -id. only one path or -entry is allowed. If you give -id in addition to
a path or -entry, they must match the same request If you provide any path or
-entry STR request identifiers, only one -id ID request identifier is accepted and it
must match any requests selected by path or entryname.

You can supply multiple -id ID identifiers in a single command invocation only if
you give no path or entry request identifiers. The -queue, -foreground, and -all
control arguments are mutually incompatible.

Normally, deletion can be made only by the user who originated the request

When star names are not used and a single request identifier matches more than one
request in the queue(s) searched, none of the requests are canceled. However, a
message is printed telling how many matching requests there are.

If the absentee process has already logged in, the user is given the choice of bumping
the job and cancelling the request from the queue, or allowing the job to continue
running and remain in the queue. This allows the user to cancel a running absentee
process. When a running absentee process is canceled by a user or an operator. the
message "Process terminated by the system. The reason will be sent by Multics mail."
will appear in the absentee output segment.

EXAMPLES

The command line

car >udd>Demo>CPEBach>dump>translate

deletes the absentee request that the user had made in the default queue that was
associated with the control segment >udd>Demo>CPEBach>dump>translate.absin.

3-109 AG92--()6

The command line

car >udd>Demo>LNTolstoy>doc>**.draft

deletes the absentee requests that the user made in the default queue that were
associated with all control segments ending with the ~~.draitabsin;; component
combination found in the >udd>Demo>LNTolstoy>doc directory.

SYNTAX AS A COMMAND

ccp names {-control_arg}

FUNCTION

causes one or more programs in the current COBOL run unit to be canceled.

ARGUMENTS

names
are the reference names of COBOL programs that are active in the current run
unit. If the name specified in the PROG-ID statement of the program is
different from its associated name argument~ name must be in the form
refname$PROG-ID.

CONTROL ARGUMENTS

-retain_data, -retd
leaves the data segment associated with the program intact for debugging purposes.
(See "Notes" below.)

NOTES

The results of the cancel_cobol_program command and the execution of the CAl'lCEL
statement from within a COBOL program are similar. The only difference is that if a
name argument is not actually a component of the current run unit, an error message
is issued and no action is taken; for the CANCEL statement, no warning is given in
such a case.

To preserve program data for debugging purposes, the -retain_data control argument
should be used. The data associated with the canceled program is in its last used
state; it is not restored to its initial state until the next time the program is invoked
in the run unit

3-110 AG92-06

Canceling ensures that the next time the program is invoked within the run unit, its
data is in its initial state. Any files that have been opened by the program and are
still open are closed and the COBOL _ data segment is truncated.

Refer to the run_cobol command for information concerning the run unit and the
COBOL runtime environment Also refer to the related commands display_cobol_run_unit
(dcr) and stop_cobol_run (seT).

Name: canceLdaemon_request, cdr

SYNTAX AS A COMMAND

cdr request_identifiers {-control_args}

FUNCTION

deletes an I/O daemon request that is no longer needed.

ARGUMENTS
request_identifiers can be chosen from the following:

path
identifies a request to be canceled by the full or relative patbname of the input
data segment The star c-onvention is allowed.

-entry STR, -et STR
identifies a request to be canceled by STR, the entryname portion of the input
data segment pathname. The star convention is allowed.

-id ID
identifies one or more requests to be canceled by request identifier. You can use
this identifier 10 further define any path or -entry identifier (see ;'Notes").

CONTROL ARGUMENTS

-all, -a
searches all priority queues for the specified request type starting with the highest
priority queue and ending with the lowest It is incompatible with -queue.

-brief, -bf
suppresses messages telling that a particular request identifier was not found or
that requests were canceled when using star names or -all.

-queue N, -q N
specifies that queue N of the request type contains the requests to be canceled,
where N is a decimal integer specifying the number of the queue. ~f you omit it,
all the queues are searched.

3-111 AG92-06

-request_type STR., -rqt STR
indicates that the request to be canceled is to be found in the queue for the
request type identified by STR. If you don't supply -request_type, the default is
"printer." The print_request_types command lists the request types.

-user User_id
specifies the name of the submitter of the request to be canceled if it is not the
same as the group identifier of the process. The User_id can be equal to
Person_id.Project_id, Person_id, or . Project_id. Both rand d extended access to
the queue are required. This control argument is primarily for operators and
administrators.

ACCESS REQUIRED

You need 0 extended access to the queue to cancel your own request and rand d
extended access to cancel somebody else's request

NOTES

If you supply -id, only one path or -entry is allowed. If you give -id in addition to
a path or -entry, they must match the same request If you provide any path or
-entry STR request identifiers, only one -id ID request identifier is accepted and it
must match any requests selected by path or entryname.

You can specify multiple -id ID identifiers in a single command invocation only if
you give no path or -entry request identifiers.

\V-nen you don't use star names and a single request identifier matches more than one
request in the queue(s) searched, none of the requests are canceled; however a message
is printed telling how many matching requests there are.

Normally, deletion can be made only by the user who originated the request.

If the request is already running, the entry is still removed from the queue but the
running request is not stopped. You are given a message stating that the request is
running.

When a request has been removed from the queue after it has started running and
before it has finished, any user requested deletion of the segment (done with the
-delete control argument to the dprint and enter_output_request commands) are
ignored by the system.

See the dprint, dpunch, and enter_output_request commands.

3-112 AG92-06

EXAMPLES

The command line

cdr >udd>Alpha>Doyle>dump>translate.list

deletes the request that the user made in queue 3 of the default request type printer
to print the segment >udd>Alpha>Doyle>dump>translate.list

The command line

cdr >udd>Alpha>Lamb>dump>probe.pl1 -request_type punch

deletes the request that the user made in queue 3 of request type "punch" to punch
the segment >udd>Alpha>Lamb>dump>probe.pll.

The command line

cdr joe sam *.*

cancels the requests to print segments joe, sam, and any requested segments with
two-component entrynames in the current working directory in queue 3 of the printer
request type.

Name: cancel_output_request, cor

SYNTAX AS A COMMAND

cor request_identifiers {-control_args}

FUNCTION

deletes an I/O daemon request that is no longer needed.

ARGUMENTS

request_identifiers
can be chosen from the following:

path
identifies a request to be canceled by the full or relative pathname of the
input data segment The star convention is allowed.

-entry STR, -et STR
identifies a request to be canceled by STR, the entryname portion of the
input data segment pathname. The star convention is allowed.

3-113 AG92-06

cancel_output_request

-id ID
identifies one or more requests to be canceled by the request identifier. You
can use this identifier to further define any path or -entry identifier (see
"Notes").

CONTROL ARGUMENTS

-all, -a
searches all priority queues for the specified request type starting with the highest
priority queue and ending with the lowest It is incompatible with -queue.

-brief, -bf
suppresses messages telling that a particular request identifier was not found or
that requests were canceled when using star names or -all.

-plot
specifies that the requests to be canceled are found in the queue(s) associated with

"" "" tne defautrplottet "t'equest "type---(see- "Notes" ""below)."

-print, -pr
specifies that the requests to be canceled are found in the queue(s) associated with
the default printer request type (see "Notes").

-punch. -pch
specifies that the requests to be canceled are found in the queue(s) associated with
the default punch request type (see "Notes").

-queue N, -q N
specifies that queue N of the request type contains the requests to be canceled,
where N is a decimal integer specifying the number of the queue. If you omit it,
all the queues are searched.

-request_type STR -rqt STR
indicates that the requests to be to be canceled is to be found in the queue for
the request type identified by STR (see "Notes").

-user User_id
specifies the name of the submitter of the request to be canceled if it is not the
same as the group identifier of the process. The User_id can be equal to
Person_id.Project_id, Person_id, or . Project_id. Both r and d extended access to
the queue are required. This control argument is primarily for operators and
administrators.

ACCESS REQUIRED

You need 0 extended access to the queue to cancel your own request and rand d
extended access to cancel somebody else's request

3-114 AG92-o6

NOTES

You can specify multiple -id ID identifiers in a single command invocation only if
you give rio path or -entry request identifiers.

If you give any path or -entry STR request identifiers. only one -id ID request
identifier is accepted and it must match any requests selected by path or entryname.

When you don't use star names and a single request identifier matches more than one
request in the queue(s) searched, none of the requests are canceled; however a message
is printed telling how many matching requests there are.

Normally, deletion can be made only by the user who originated the request

If the request is already running, the entry is still removed from the queue but the
running request is not stopped. You are given a message stating that the request is
running.

When a request has been removed from the queue after it has started running and
before it has finished. any user requested deletion of the segment (done with the
-delete control argument to the dprint and enter_output_request commands) are
ignored by the system.

The -print, -punch, -plot, and -request_type control arguments are mutually exclusive.
If you supply none. then cor searches the default request type used by eor -print (as
displayed by the print_request_types command).

See the dprint, dpunch. and enter_output_request commands.

Name: cancel_resource, cnr

SYNTAX AS A COMMAND

cnr -id reservation_id {-control_arg}

FUNCTION

cancels reservations made with reserve_resource using the reservation identifier
obtainabie from iist_resources.

ARGUMENTS

reservation_id
must be present and is the reservation identifier of the reservation to be canceled.

3-115 AG92-{)6

CONTROL ARGUMENTS

-priv
allows a privileged cancellation to be done, such as the cancellation of a
reservation belonging to another user. Use of -priv requires access to rcp_sys_.

Name: cancel_retrieval_request, crr

SYNTAX AS A COMMAND

err request_identifiers {-eontrol_args}

FUNCTION

allows you---to-delete a--request for a volume retrieval -that-is no- longer-- needed.

ARGUMENTS
request_identifiers can be chosen from the following:

path
identifies a retrieval request to be canceled by the full or relative pathname of
the segment or subtree. The star convention is allowed.

-entry STR, -et STR
identifies requests to be canceled by STR, the entryname portion of the segment
or subtree pathname. The star convention is allowed.

-id ID
identifies one or more requests to be canceled specified by request ID number.
This identifier can be used to further define any path or -entry identifier (see
"Notes").

CONTROL ARGUMENTS

-all. -a
indicates that all retrieval queues are to be searched starting with the highest
priority queue and ending with the lowest priority queue. This control argument is
incompatible with the -queue control argument.

-brief, -bf
suppresses messages telling you that a particular request identifier was not found
or that requests were canceled when using star names or the -all control
argument.

3-116 AG92-06

-queue N, -q N
specifies that retrieval queue N contains the request to be canceled, where N is a
decimal integer specifying the number of the queue. If this control argument is
omitted, only the default priority queue is searched. This. control argument is
incompatible with the -all control argument

-user User_id
specifies the name of the submitter of the requests to be canceled, if not equal
to the group identifier of the process. The User_id can be Person_id.Project_id,
Person_id, or . Project_id. Both r and d extended access to the queue are
required. This control argument is primarily for operators and administrators.

ACCESS REQUIRED

You must have 0 extended access to the queue to cancel your own requests. You must
have r and d extended access to cancel a request entered by another user.

NOTES

If any path or -entry STR request identifiers are given, only one -id ID request
identifier will be accepted and it must match any requests selected by path or
entryname.

Multiple -id ID identifiers can be specified in a single command invocation only if
no path or entry request identifiers are given.

Normally! deletion can be made only by the user who originated the request

When star names are not used and a single request identifier matches more than one
request in the queue{s) searched, none of the requests are canceled. However, a
message is printed telling how many matching requests there are.

EXAMPLES

The command line:

err >udd>Demo>BSpoek>dump>translate

deletes the retrieval request for the specified segment or subtree that you had made in
queue 3.

3-117 AG92-06

canonicalize canonicalize

11/86

Name: canonicalize, canon

SYNTAX AS A COMMAND

canon pathl {path2} {-control_args}

FUNCTION

ensures that the contents of a segment are in canonical form.

ARGUMENTS

path 1
is the pathname of the input segment

path2
is the pathname of the output segment. If you omit path2, path1 is overwritten

·with·the--canonica:lized--contents of the -jnput segment.

CONTROL ARGUMENTS

-force, -fc
overwrites the output file without querying.

-input_tabs -every X, -itabs -ev X
replaces tabs with the appropriate number of spaces, assuming that tabs are at
1+n*X (where n = 1, 2, 3, ...). (Default: every 10)

-input_tabs n1,n2, ... ,n20, -itabs n1,n2, ... ,n20
replaces tabs with the appropriate number of spaces, assuming that tab stops are
as specified. If tabs are found in the input segment beyond the stops specified,
every 10 is assumed.

-no_force, -nfc
queries before overwriting an existing segment (Default)

-no_output_tabs, -notabs
does not place tabs in the output (Default)

-output_tabs -every X, -otabs -ev X
inserts tabs at 1+n*X.

-output_tabs nl,n2, ... ,n20, -otabs nl,n2, ... ,n20
inserts tabs at the tab stops specified. You can give up to 20 tab stops. No
spaces are ailowed in the iisl

3-118 AG92-Q6A

canonicalize canonicalize

11/86

NOTES

The command ensures that all characters in a print position are sorted in the proper
order and removes all ASCII carriage-return (015) characters. If you use -otabs,
canonicalize replaces blank spaces with the appropriate tab stops. If you use -no tabs,
canonicalize replaces horizontal tab stops with the correct number of blank spaces.

EXAMPLES

To canonicalize the segment named "my_prog" and establish tab stops at three
specified positions, type:

canon my_prog -otabs 7,21,35

To canonicalize the same segment, rename it to "new_prog", and set up tab stops at
15-space intervals, type:

To canonicalize the segment "new_prog", which already contains tab stops that are now
to be replaced with blank spaces, type:

canon new_prog -itabs -ev 15

3-118.1 AG92-o6A

This page intentionally left blank.

. 11/86 AG92-06A

canonicalize canonicalize_mailbox

To canonicalize the segment "old_prog", which already contains tab stops that are now
to be replaced with blank spaces, you can accomplish both operations in one pass by
typing:

Name: canonicalize_mailbox

SYNTAX AS A COMMAND

canonicalize_maiibox path {-control_args}

FUNCTION

converts the messages in a mailbox into their canonical form as defined by the
MR10.2 mail system.

ARGUMENTS

path
is the pathname of the mailbox whose messages are to be converted. The suffix
"mbx" is supplied if needed. The star convention is accepted.

CONTROL ARGUMENTS

-force, -fc
temporarily alters your access to the mailbox when necessary to convert the
messages in the mailbox (see "Access Required" below).

-no_force, -nfc
never alters your access to the mailbox. (Default)

-privilege, -priv
uses privileges to bypass the restrictions on the canonicalization process introduced
by the Access Isolation Mechanism (see "Notes on AIM" below).

-no_privilege, -npriv
does not use privileges. (Default)

ACCESS REQUIRED

You must have status (s), modify (m), and append (a) access to the directory
containing the mailbox. In addition, if -force is not specified, you must have read (r),
add (a), and delete (d) extended access to the mailbox itself.

3-119 AG92-06

canonicalize_mailbox canonicalize_mailbox

If -privilege is specified, you must have execute (e) access to the system_privilege_
gate. In addition, your maximum process authorization must be system_high.

NOTES

The canonical form of a message is similar to the text 01 me printed representation
of that message when formatted using the default formatting modes.

iviessages stored in mailboxes prior to :iviRl0.2 were not stored in their canonical form.
Unless these messages are converted to their canonical form, subsystems, such as
read_mail, that provide the option to select messages by content are required to
format the messages during the search. This formatting while searching severely affects
the performance of the selection process.

Messages stored in a mailbox after the installation of MR10.2 are stored in canonical
form and will not affect the performance of context searches.

This command needs to be used only once on any given mailbox. Preferably, use this
command on any large mailbox (e.g., logboxes or saveboxes containing more than fifty
messages).

This command first creates a new mailbox in the same directory as the mailbox whose
messages are to be converted. The messages are then read from the original message,
canonicalized, and stored in the new mailbox. Next. the names, access control list,
maximum length, and safety switch setting of the original mailbox are moved to the
new mailbox. Finally, the original mailbox is deleted.

If the directory containing the original mailbox has insufficient quota for the new
mailbox, the original mailbox is left intact and an error message is printed.

The record of any process accepting messages on the original mailbox is lost during
the canonicalization process. You must reissue the accept_messages command, if
needed, for each mailbox that is processed by canonicalize_mailbox. Because of the
nature of accept_messages, the explicit pathname of your default mailbox
(>udd>Project_id>Person_id>Person_id.mbx) must be supplied if that mailbox is
canonicalized in order to reaccept messages.

After a mailbox has been canonicalized, all messages in the mailbox are owned by the
user who issued canonicalize_mailbox. If you originally placed a message in the
mailbox, you cannot delete it if you have own (0) extended access on the mailbox.
Normally this canonicalization's side effect is invisible for logboxes and saveboxes as
only the creator of the logbox or savebox has access on that mailbox.

NOTES ON AIM

If the Access Isolation Mechanism (AIM) is in force at a site, several restrictions are
placed on the use of canonicalize_mailbox. These restrictions are eliminated through
the use of -privilege provided that you have sufficient access to it (see "Access
D ... ",.~,.A" ""'''''11.0\
~'''''1u.u""" Q,vv,,,,,,.

3-120 AG92-Q6

canonicalize_mailbox

To use canonicalize_mailbox, your process authorization must be equal to the access
class of the directory containing the mailbox whose messages are to be converted.

Unlike ordinary segments, the access class of a mailbox may be greater than that of
its containing directory. Each message in a mailbox has its own access class; the access
class of the mailbox specifies the maximum access class for any message that may be
added to the mailbox.

If the access class of a mailbox is greater than your process authorization, it may
contain messages that you cannot read. If you were to canonicalize that mailbox, any
such messages would be lost Theref ore, canonicalize_mailbox queries f or permission to
continue if asked to process a mailbox whose access class is greater than the process
authorization. Unless you are quite certain that there are no upgraded messages in the
mailbox, answer "no" to this query and ask a system administrator to canonicalize the
mailbox using -privilege. The canonicalized mailbox created by t.his command has an
access class equal to your maximum process authorization. If this access class is less
than the previous one, a warning is issued. If the new access class is insufficient (e.g.,
a mailbox shared by several users with different maximum authorizations), ask a system
administrator to reclassify the mailbox via the reclassify _sys_seg command.

Name: ceil

SYNTAX AS A COMMAND

ce i 1 num

SYNTAX AS AN ACTIVE FUNCTION

[ce i 1 nurn]

FUNCTION

returns the smallest decimal integer greater than or equal to its argument.

EXAMPLES

string [ceil 4.7]
5
~Tr;~n rr~il -~~1 _ II:' ~ __ I' .,-j.J

-3

ceil

3-121 AG92-06

Name: change_default_wdir, cdwd

SYNTAX AS A COMMAND

cdwd {path}

FUNCTION

records a s~~ified directory as your default working directory for the duration of the
current process or until you issue the next change_default_ wdir command.

ARGUMENTS

path
is the pathname of a directory. If path is not specified, the current working
directory becomes the default working directory.

NotES·

The change_default_wdir command is used in conjunction with the change_wdir
command. When the change_ wdir command is issued with no argument, the default
working directory becomes the current working directory.

The original default working directory is your horne directory upon logging in.

See also the descriptions of the change_wdir and print_default_wdir commands.

SYNTAX AS A COMMAND

cern {-control_args}

FUNCTION

controls the amount of information printed by the default handler for system
conditions.

CONTROL ARGUMENTS

-brief. -bf
prints only the condition name.

-long, -lg
prints more complete messages. In particular, if the condition was detected in a

3-122 AG92-o6

support procedure, the name of that procedure is printed besides the name of the
most recent user procedure. If a segment that signaled a condition (or caused it
to be signaled) is bound, both the offset relative to the base of the procedure
and the offset relative to the base of the segment are printed.

NOTES

If you don't issue cern or issue it with no control arguments, you receive default
length error messages. These messages are intermediate in length between the brief and
long messages.

For a complete discussion of conditions and their handling see the Programmer's
Reference Manual. See the reprint_error command for a similar, but more selective,
capability .

Name: change_ wdir, cwd

SYNTAX AS A COMMAND

cwd {path}

FUNCTION

changes your working directory to the directory specified as an argument

ARGUivi E tvTS

path
is the patbname of a directory. If you supply no path, the default working
directory is assumed.

ACCESS REQUIRED

You must have s permission on the directory containing path.

NOTES

A working directory is a directory in which your activity is centered. Its pathname is
remembered by the system so that you need not type the absolute pathname of
segments inferior to that directory"

If path specifies a nonexistent directory, an error message is printed on your terminal
and the current working directory is not changed.

3-123 AG92-06

11/86

You don't need access to path to use change_wdir. However, once the working
directory has been changed, you can proceed only according to your access to path.
That is, to effectively use path as a working directory, you must have sma access
permission for path. However, restricted uses are possible in accordance with the
access mode attributes on the directory. For example, you must have at least status
permission to list the directory.

See also the change_default_wdir and print_default_wdir commands.

SYNTAX AS A COMMAND

cfsd {path} {-control_args}

FUNCTION

finds damaged segments and connection failures.

ARGUMENTS

path
is a pathname specifying what is to be checked. It can be a star name, an
absolute or relative pathname, or -workin~dir (-wd). If you provide -subtree,
path cannot be a star name (i.e., it must be a directory). If you give no path,
you must supply -pathname.

CONTROL ARGUMENTS

-brief, -bf
suppresses error messages about incorrect access to directories and no star name
matches. (Default: to print these messages)

-call STR
executes "STR path damaged" for each damaged segment and "STR path
connection_failure" for each connection failure. STR is a command to be executed
for each damaged segment. (Default: if you don't give -call, to print an error
message for each damaged segment and each connection failure)

-depth N, -dh N
looks only N directories down; if you supply it, -subtree is implied. (Default: to
search downwards in all directories that are eligible for searching)

3-124 AG92-Q6A

11/86

-multisegment_file, -msf
checks components of MSFs. (Default)

-no_multisegment_file. -no_msf
does not check components of MSFs.

-pathname path, -pn path
specifies that the next argument is to be used as a pathname rather than as a
controi argument.

3-124.1 AG92-06A

This page intentionally left blank.

11/86 AG92-06A

-subtree. -subt
checks all segments in, and all directories below, the specified directory.

EXAMPLES

The command line

cfsd >udd>Proj>CLDCarrol

checks the directory >udd>Proj>CLDCarrol to see if the directory is damaged.

The command line

cfsd >udd>Proj>GJCasanova -subt -msf

starts at >udd> Proj>GJCasanova looking for damaged segments, directories, or MSF
components, continuing down the directory hierarchy until the bottom is reached.

The command line

cfsd >udd>Proj -dh 2

checks, only for damaged segments. the project directory >udd>Proj and the directories
directly underneath it

Name: check_iacl

SYNTAX AS A COMMAND

check_iacl {path} {-control_args}

FU,VCTION

lists segments whose access control lists (ACLs) disagree with the initial ACL for
segments (for a description of ACLs, see the Programmer's Reference ManuaI).

ARGUMENTS

path
is the pathname of the directory whose segment ACLs are to be checked against
the segment initial ACL. If you omit path, the working directory is assumed.

3-125 AG92-()6

CONTROL ARGUMENTS

-all. -a
lists User_ids in a segment ACL excluded from the initial ACL and User_ids
included in the initial ACL but omitted from a segment ACL. If you give no
-all, only User_ids in addition to those in the initial ACL are listed.

-exclude User_id. -ex User_id
exciudes the specified User_io irom the comparison. You can supply up to 10
-exclude control arguments. You can use the star convention.

EXAMPLES

check_iacl

oldMap.com.runoff
ACt added_: _ rew __ James. Demo. *
ACL added: rew Stevenson.Work.*

add_search.com.runoff
ACL added: rew James.Demo.*

SYNTAX AS A COMMAND

cis {-control_args}

SYNTAX AS AN ACTIVE FUNCTION

[cis {-control_args}]

FUNCTION

prints a list of info segments modified since a given time.

CONTROL ARGUMENTS

-absolute_pathname, -absp
prints or returns absolute pathnames of segments rather than entrynames.

-brief, -bf
does not print either the ~~No change" message or, if used with -call, the names
of changed info segs. Don't use -brief with the active function.

3-126 AG92-o6

-call cmdline
calls the command processor with "cmdline path" for each changed segment; path
is ___ the __ absolute pathname of.a changed- segment- If-cmdline-contains- bl-anks.it-
must be enclosed in quotes. Don't use -call with the active function.

-date DT, -dt DT
uses the date Dr instead of the date in your default value segment The date in
the value segment is not updated. See Section 1 for a description of valid DT
values.

-long, -lg
prints the date-time-entry-modified as well as the segment name. Don't use -long
with the active function.

-no_update, -nud
does not update the date in your value segment

-pathname star_path, -pn star_path
checks all segments that match star_path, which is a pathname with a star name
in the entryname portion. You can supply more than one -pathname. If you give
none, the directories in the "info_segments" ("info_segs", "info") search list are
used; **.info is used as the entryname=

-time_checked, -tmck
prints the date-time that is stored in your default value segment indicating from
when checking of modified info segments occurs if -date is not given. This
c.ontrol argt.L.1llent is i..'1compatible \-'/ith all others when used with the active
function. It does not update the time in your value segment when it is the only
control argument

NOTES

The first time you invoke cis, it sets the date in your default value segment. The
value segment is created if one does not exist and is normally

>udd>Project_id>Person_id>Person_id.value

but can be changed by the value_set_path command.

For links that match the star names, the date-time-entry-modified of the link's target
is checked rather than that of the link itself.

Zero-length info segments are not reported as being modified.

The cis active function returns entrynames of selected info segments separated by
spaces. If you give -absolute_pathname, it returns full pathnames of info segments
separated by spaces.

3-127 AG92-()(j

WARNING

Since the cis active function also sets the date in your default value segment, a
command line using [cis] sets this date before processing any of the returned info seg
names; As a result, segments can be unintentionally skipped and not seen a second
time if a command line containing [cis] is interrupted.

Name: clock

SYNTAX AS A COMMAND

clock time_format {time_string} {control_args}

SYNTAX AS AN ACTIVE FUNCTION

[clock time_format {time_string} {control_args}]

FUNCTION

returns a string whose content is entirely controlled by specifications in the
time_format string.

ARGUMENTS

time_format
an ioo_-like control string describing the desired result in terms of literal
characters and/or date/time selectors. (See Section 1 for a description of
time_format>

time_string
indicates the date about which information is desired. If you supply no
time_string, the current date is used. The time string is concatenated to form a
single argument even if it contains spaces; you need not quote it (See Section 1
for a description of valid time_string values.)

CONTROL ARGUMENTS

-language STR, -lang STR
STR specifies the language in which month names, day names, and zone names
are to be expressed. (Default: the process default)

-zone STR
STR specifies the zone to be used to express the result. (Default: the process
default)

clock

3-128 AG92-06

clock

11/86

NOTES

Use the print_time_defaults command to display the default language and zone. Use
the display_time_info command to display a list of all acceptable language and zone
values.

SYNTAX AS A COMMAND

cf {filenames} {-control_args}

FUNCTION

closes the specified files belonging to the specified language(s).

ARGUMENTS

filenames
are the names of files opened by the specified language(s).

CONTROL ARGUMENTS

-all, -a
cioses all open files that belong to the speciiied language(s). in this case no
filename appears.

-language SlR -lang STR
specifies that files belonging to language STR are to be closed. STR is the
unabbreviated name of the language's compiler (e.g.. pascal) and can be any
language that supports the file-closing subroutine interfaces. If you give no -lang,
it closes all open FORTRAN, Pascal, and PL/I files.

NOTES

The format of a FORTRAN file name is fileNN. where NN is a two-digit number
other than 00; e.g., fHe05. PL/I and Pascal file names are selected by you and can
have any format.

If a specified file cannot be found. an error message is printed indicating the name
of the file. The rest of the specified files are closed.

For each filename. all files of that name belonging to the specified language(s) are
closed.

The command "close_file -an does not affect I/O switches that are not associated with
FORTRAN. Pascal, or PL/I files.

3-129 AG92-06A

cobol

Name: cobol

SYNTAX AS A COMMAND

cobol path {-control_args}

FUNCTION

invokes the COBOL compiler to translate a segment containing the text of a COBOL
source program into a Multics object segment A listing segment can also be produced.
These segments are placed in your working directory. You can't call this command
recursively.

ARGUMENTS

path
is the pathname of a COBOL source segment to be translated by the COBOL
compiler. If path does not-have the .cobol suffix,oneis assumed;- however that
suffix must be the last component of the name of the source segment

CONTROL ARGUMENTS

-brief, -bf
causes error messages written to the user_output I/O switch to contain only an
error number and statement identification, once the full message has been given
on the first occurrence. In the normal, nonbrief mode, an explanatory m.essage is
prin ted for each occurrence.

-card
meaningless trailing blanks are removed from a standard fixed format COBOL
source program in card image format Characters in the identification field
(columns 73-80) are ignored.

-check, -ck
is used for syntactic and semantic checking of a COBOL program. No code is
generated.

-expand. -exp
a standard fixed format COBOL source program that possibly contains COpy and
REPLACE statements is translated into an equivalent source program that does not
contain these statements.

-format, -fmt
pseudo-free form COBOL source program is translated into a standard fixed
format COBOL source program. For details concerning pseudo-free format see the
expand_cobol_source command.

cobol

3-130 AG92-06

cobol

-levelNM, -levNM
causes L-type diagnostics at severity M to be written to the user_output switch
whenever a COBOL source line contains a language construct outside the subset
specified -byN . ---The-value -- M -can- --be- ---one---tlitougB. -- tliree- ailif --specifies -"tlie seveTi ty
of the diagnostic. If M is omitted, severity 3 is assumed. The value N can be
one through five, corresponding to the four levels specified by the Federal
Information Processing Standards Publication, December 1. 1975 (FIPS PUB 21-1)
and to the extended version of COBOL supported by Multics. These values are

1 low level
2 low intermediate level
3 high intermediate level
4 high level
5 Multics COBOL extensions

If a program compiles without any L-type diagnostics, it means the program is an
acceptable subset of Multics COBOL at the level requested. The default is level 5.

-list, -ls
produces a source program listing with symbols, followed by an assembly-like
listing of the compiled object program. Use of the -list control argument
significantly increases compilation time and should be avoided whenever possible
by using the -map control argument

-map
produces a source program listing with symbols, followed by a map of the object
code generated by this compilation. The -map control argument produces
sufficient information to allow you to debug most problems online.

-no_table, -ntb
suppresses the generation of a full symbol table for use by symbolic debuggers.

-profile, -pf
generates additional code to meter the execution of individual statements. Each
statement in the object program contains an additional instruction to increment an
internal counter associated with that statement After a program has been
executed, the profile command can be used to print the execution counts.

-runtime_check, -rck
produces an object program in which parameters are validated according to
number and type, performs bounds checking on all subscripted referenced,
performs string range checking on all variable length string references, and verifies
the validity of every index name modification.

-severityN, -svN
causes error messages whose severity is less than N (where N is 1. 2, 3, or 4) to
not be written to the user_output I/O switch. All errors are written into the
listing. If this control argument is not given, a severity level of 2 is assumed.
See the description of severity levels under "Notes on Error Diagnostics" below.

cobol

3-131 AG92-D6

cobol

-table, -tb
generates a full symbol table for use by symbolic debuggers. The symbol table is
part of the symbol section of the object program and consists of two parts -- a
statement table that gives the correspondence between source line numbers and
object locations and an identifier table that contains information about every
identifier actually referenced by the source program. The table appears in the
symbol section of the object segment produced by the compilation. This control
argument usually causes the object segment to become significantly longer. If the
-format. -expand or -card control argument is given with the -table control
argument, the symbolic debuggers are not able to display the source statements.
(Default)

-temp_dir path, -td path
creates the compiler's internal work files in the specified directory rather than in
the process directory. This control argument may be necessary for very large
source files (over approximately 3000 lines) that incur record quota overflow in
the process directory during compilation.

-debug, -db
leaves the work files generated by the compiler intact after a compilation. This
control argument is used for debugging the compiler. The command cobol$clean_up
can be used to discard these files. Also, this causes severity 4 errors to not
unwind and abort the compilation, but rather to invoke a new level of the
command processor at the point of the error.

-time, -tm
prints the time (in seconds) and the number of page faults taken by each phase
of the compiler; prints the totai time at the end of the compilation. This
information is directed to the user_output I/O switch.

NOTES

The only result of invoking the cobol command without control arguments is to
generate an object segment containing a full symbol table.

A normal compilation produces an object segment and leaves it in your working
directory. If an entry with that name already exists in the directory, its access control
list (ACL) is saved and given to the new copy of the object segment; otherwise you
are given re access to the segment with ring brackets v,v,v where v is the validation
level of the process that is active when the object segment is created.

If you specify the -map or -list control arguments, the cobol command creates a
listing segment in the working directory and gives it a name consisting of the
entryname portion of the source segment with a suffix of list rather than cobol (e.g.,
a source segment named business. cobol would have a listing segment named business.list).
The ACL is set as described for the object segment except that you are given rw
access to it when newly created. Previous copies of the object segment and the listing
segment are replaced by the new segments created by the compilation.

cobol

3-132 AG92-06

cobol

The control arguments -format, -card and -expand cause the source program to be
pre-translated before compilation. The transformations available are a subset of the
transformations available by using the expand~cobol~so-urce· command~ - -The translated
source program is placed in your process directory with the suffix ex. cobol. Thus
compiling name. cobol produces the segment [pd] >name.ex.cobol. If the segment being
compiled has the suffix ex.cobol then these control arguments are ignored.

The control arguments -format and -card are inconsistent but either can be used in
combination with the control argument -expand. The control argument -expand must
be used if the source program contains COpy and REPLACE statements.

For information on COBOL, see the Multics COBOL User's Guide (AS43) and the
Multics COBOL Reference Manual (AS44). See also the description of the profile
command.

NOTES ON ERROR DIAGNOSTICS

The COBOL compiler can diagnose and issue messages for about 800 different errors.
These messages are graded in severity as follows:

1 Warning only. Compilation continues without ill effect

2 Correctable error. The compiler attempts to remedy the situation and
continues, possibly without ill effect The assumptions the compiler makes in
remedying the situation. however, do not necessarily guarantee the right
results.

3 Uncorrectable but recoverable error. That is. the program is definitely in
error and no meaningful object code can be produced, but the compiler can
continue executing and diagnosing further errors.

4 Unrecoverable error. The compiler cannot continue beyond this error. A
message is printed and control is returned to the cobol command. The
command writes an abort message on the error_output I/O switch and returns
to its caller.

As indicated above, you can set the severity level so as not to be bothered by minor
error messages. You can also specify the -brief control argument so that the message
is shorter. Since the default severity level is 2, you must explicitly specify the
-severity 1 (or -svl) control argument when invoking the cobol command to have
warning messages printed. Neither the -severityN nor -brief centrol argument has any
effect on the contents of the listing segment if one is produced.

cobol

3-133 AG92-06

cobol

An example of an error message in its long form is

22 use after error procedure on extend.
1

** 5-250 A use procedure has already been associated with this
processing mode.

If the -brief control argument is specified and message 5-250 has previously been
given in its long form, you instead see

22 use after error procedure on extend.
1

If you have set the severity level to 3, no message is printed at all. Notice that the
number of asterisks immediately preceding the error indicator corresponds to the
severi ty--Ievel of ---the error.-

If a listing is produced, the error messages appear interspersed with the lines of the
source program. No more than 300 messages are printed in the listing.

NOTES ON LISTING

The listing created by the cobol command is a line-numbered image of the source
segment with diagnostics interspersed. This is followed by a cross-reference table of
all the names defined within the program. Following the cross-reference table is the
object code map. which gives the starting location in the text segment of the
instructions for each statement in the program. The map is sorted by ascending
storage locations. Finally, the listing contains an assembly-like list of the object code
produced. The executable instructions are grouped under an identifying header, which
contains the source statement that produced the instruction. Opcode, pointer-register,
and modifier mnemonics are printed alongside the octal instruction. If the address
field of the instruction uses the Ie (self-relative) modifier. the absolute text location
corresponding to the relative address is printed on the remarks field of the line.

Name: cobol_abs, cba

SYNTAX AS A COMMAND

cba paths {-cobol_args} {-dp_args} {-control_args}

FUNCTION

submits an absentee request to perform COBOL compilations. The absentee process for
which cobol_abs submits a request compiles the segments named and prints and deletes
the listing segment

3-134 AG92-06

ARGUMENTS

paths
are the pathnames of segments to be compiled.

cobol_args
can be one or more control arguments accepted by the cobol command.

dp_args
can be one or more control arguments (except -delete, -dI) accepted by the
dprint command.

CONTROL ARGUMENTS

-queue N, -q N
is the priority queue of the request. The default queue is defined by your site.
(See "Notes" for a description of the interaction with the dprinting of output
files.)

-hold, -hd
specifies that cobol_abs should not print or delete the listing segment.

-limit N, -li N
places a limit on the CPU time used by the absentee process. The parameter N
must be a positive decimal integer specifying the limit in seconds. The default
limit is defined by the site for each queue. An upper limit is defined by the site
for each queue on each shift. Jobs with limits exceeding the upper limit for the
current shift are deferred to a shift with a higher limit.

-output_file path, -of path
specifies that absentee output is to go to the segment whose pathname is path.

NOTES

Control arguments and segment pathnames can be mixed freely and can appear
anywhere on the command line after the command. All control arguments apply to all
segment pathnames. If an unrecognizable control argument is given. the absentee
request is not submitted.

Unpredictable results can occur if two absentee requests are submitted that could
simultaneously attempt to compile the same segment or write into the same absout
segment.

When doing several compilations, it is more efficient to give several segment
pathnames in one command rather than several commands. With one command, only
one process is set up. Thus the dynamic intersegment links that need to be snapped
when setting up a process and when invoking the compiler need be snapped only once.

3-135 AG92--D6

If the -output_file control argument is not specified, an output segment, path.absout,
is created in your worktng directory (if more than one path is specified, only the first
is used).

If none of the segments to be compiled can be found, no absentee request is
submitted.

If the -queue control argument is not specified, the request is submitted into the
deiauli absenree priority queue deiined by the site and, if requested, the output files
will be dprinted in the default queue of the request type specified on the command
line. (If no request type is specified, the "printer" request type is used.)

If the -queue control argument is specified, and, if requested, the output files will be
dprinted in the same queue as is for the absentee request If the request type
specified for dprinting does not have that queue, the highest numbered queue available
f or the request type is used and a warning is issUed.

Name: collate

SYNTAX AS A COMMAND

co 11 ate

SYNTAX AS AN ACTIVE FUNCTION

[co 11 ate]

FUNCTION

returns the 128 characters of the ASCII character set in collating sequence.

Name: collate9

SYNTAX AS A COMMAND

co 11 ate9

SYNTAX AS AN ACTIVE FUNCTION

[co 11 ate9]

collate9

3-136 AG92-06

collate9

FUNCTION

returns a character string containing all possible nine-bit bit patterns rather than just
the 128 ASCII characters, theref ore making the returned string 512 characters long.

SYNTAX AS A COMMAND

comp_dir_info pathl path2 {-control_args}

FUNCTION

compares two directory information segments created by save_dir_info and reports on
the differences.

ARGUMENTS

path 1
is the pathname of the old directory information segment If the dir_info suffix
is not supplied, it is assumed.

path2
is the pathname of the new directory information segment If the dir_info suffix
is not supplied, it is assumed.

CONTROL ARGUMENTS

-brief, -bf
compares and prints minimum information.

-long, -lg
compares and prints all information.

-verbose, -vb
compares and prints almost all information. (Default)

NOTES

Output from the comp_dir_info command is written on the user_output I/O switch.

Unless the -brief control argument is specified, a form feed character is transmitted
and then a heading is printed that identifies the directories being compared and the
times the information was saved.

Output is in three sections:

3-137 AG92-06

modif ied en tries
deleted entries
added en tries

and is identified by entry type (dir. seg, or link) and the entryname. For deletions
and additions, a heading of the form:

deleted: entry entryname

is printed, followed by a listing of the attributes of the deleted or added entry, in
the format:

item_name: value

For' segments that have been modified, a heading of the form:

modified: entry entryname

is printed, followed by a line of the following formats:

item_name changed from value1 to value2
item_name added: value

(The second format is used to report the addition or deletion of names, ACL entries,
etc.)

The list below shows the output items according to the control argument and entry
type. The control arguments are listed in order of their verbosity; i.e., the
-brief (-bf) control argument prints out the least information, the -verbose (-vb)
control argument prints out more information (including the "-bf" items), and the
-long (-lg) control argument prints out all of the items listed.

segments:

-bf names
ring brackets
damaged switch
property list
deletion of ACL
truncation

-vb safety switch -lg date modified
copy switch volume
tpd switch bit count
no_complete_dump_switch entry point bound
no_incremental_dump switch
security OOS switch
author
bit count author
ACL
audit flag
mUILlclass switch
access class
date branch modified
records used
max length

3-138 AG92-06

directories:

-bf names

links:

ring brackets
damaged switch
property list
deletion of ACL
sons volume
master dir
quota
MSF indicator

-bf names
type
1 ink target

-vb safety switch -lg date branch modified
copy switch date modified
tpd switch
no_complete_dump_switch
no=incremental_dump switch
security DOS switch
author
bit count author
ACL
audit flag
multiclass switch
access class
initial seg ACL
initial dir ACL

-vb date link modified -lg link dumped

When looking for a match between the old and new dir_info segments, the
comp_dir_info command looks first for a match on the unique ID item. If no match
is found, it looks for any entry with a name matching the primary name of the old
entry.

If a match is found, the comp_dir_info command checks a set of items (depending on
the specified control argument) to determine whether to report the entry as modified.

The names item is always checked. The date dumped and date used items are never
compared. Other checking is dependent upon the control argument

If comp_dir_info completes a pass wit...1J.ou.t finding any modifications, deletions, Of

additions, it prints "Identical". Invoking the command with a more verbose control
argument can detect some changes.

3-139 AG92-G6

compare compare

Name: compare

SYNTAX AS A COMMAND

compare pathl{loffsetl} path2{loffset2} {-control_args}

SYNTAX AS AN ACTIVE FUNCTION

[compare pathl{!offsetl} path2{!offset2} {-control=args}]

FUNCTION

compares two files (segments, multisegment files, or archive components) and lists their
differences. The comparison is a word-by-word check and can be made with a mask
so that only specified parts of each word are compared. The active function returns
true if the compared portions are identical, false otherwise.

ARGUMENTS

. path!, path2
are the pathnames of the files to be compared. The equal convention is allowed
for path2. Either can be an archive component pathname.

offsetl. offset2
are octal offsets within Ule files if Lltey are segments or archive components. If
you omit them~ the entire contents are compared. The comparison begins at the
word specified or at the first word of the segment if you specify no offset

CONTROL ARGUMENTS

-brief; -bf
prints only the first and last words of each block of discrepancies that is four or
more words in length (see "Notes").

-inhibit_error, -ihe
causes the active function to return "false" rather than produce an error if one
of the files to be compared does not exist An error still occurs if neither file
exists.

-length N, -In N
makes the comparison continue for no more than N (octal) words.

-long, -lg
prints all discrepancy words (see "Notes"). (Default)

-mask N
uses the octal mask N in the comparison. If N is less than 12 octal digits, it is
padded on the left with zeros.

3-140 AG92-06

compare compare

-no_inhibit_error, -nihe
suppresses the effect of -inhibit_error.

-short, -sh
prints a single line for each block of discrepancies:

120 words at: 1631
1100 words at: 33404

(See "Notes. tt)

-totals, - tt
prints a single line for the entire comparison:

17 differences, 3140 words total.

NOTES

The maximum number of words to be compared is the word count of the first
segment minus its offset or the word count of the second segment minus its offse~
whichever is greater. If you supply -length. comparison stops after the specified
number of words. If the segments are of unequal length, the remaining words of the
longer segment are printed as discrepancies. The word count of a segment is computed
by dividing the bit count plus 35 by 36. If the word count minus the offset is less
than zero~ an error message is printed and the command is aborted. Any discrepancies
found by the command are listed in the following fonnat:

offset
4
6

contents
404000000002
404000000023

offset
4
6

contents
000777000023
677774300100

To compare segments containing only ASCII character string data, use the compare_ascii
command.

Multisegment files (MSFs) are compared component by component, with headers of the
form "Component <n>:". Excess components of the longer MSF are listed, the same
as for excess words in a longer segment When a segment is compared to an MSF. a
header of the form "Segment/component 0:" or "Component O/segment" is printed at
the beginning.

You can't use -brief, -long, and -short in the active function.

3-141 AG92-06

Name: compare_ascii, cpa

SYNTAX AS A COMMAND

cpa paths {-control_args}

FUNCTION

An exec_com tool called compare_pll compares PL/I source segments of dissimilar
formats via the format_pll command (see compare_pll).

ARGUMENTS

paths
are the pathnames of the segments to be compared. The equals and archive
component pathname conventions are allowed. Up to six segments can be
compared. in addition to the original if one is supplied. The equal convention can
be used in any pathname except the first one on the command line, which is
assumed to be the original unless otherwise specified.

CONTROL ARGUMENTS

-extend
when -output_file is given. the output is appended to the output file if it already
exists. (Def ault)

-header, -he
prints a heading. giVlng the full path name and identifying letter of each segment
This heading is not printed by default

-min chars NN
specifies the minimum number of characters that must be identical for
compare_ascii to assume that it has found the end of a difference (see "Notes").
(Default: 20)

-minlines NN
specifies the mlnlmum number of lines that must be identical for compare_ascii
to assume that it has found the end of a difference (see "Notes"). (Default: 2)

-no_header. -nhe
does not print the header information. (Default)

-no_numbers. -nnb
does not print identifying letter and line numbers preceding the lines from the
segments being compared. (Default: to print them)

3-142 AG92-06

-no_original, -no_orig
indicates that no original segment is supplied. If neither -no_original nor
-original is given, the first pathname on the command line is assumed to be the
original.

-no_output_file, -nof
specifies Ll}at output is to be printed on the terminal. (Default)

-no_totals, -ntt
does not print the totals line.

-original pathA, -orig pathA
specifies the pathname pathA of the original segment of which the others are
modif ied versions.

-output_file path, -of path
directs the output of the comparison to the file specified by path. The equal
convention is allOWed, and is applied to the original path.

-print_new _lines, -pnl
prints only new lines. New lines are lines found in one or more of the modified
versions but not in the original. An original must be supplied if this argument is
used.

-totals, -tt
prints only the totals line, giving the number of differences and the number of
changed lines. (Default: to print discrepancies and the totals line)

-truncate, -tc
specifies that the output file be truncated before the comparison is written into
it.

NOTES

The output is organized with the assumption that the pathA segment was edited to
produce pathB. This command prints lines that were added, replaced, or deleted; it
identifies each line by line number within the respective segment and also by the
letter A or B to indicate which segment the line is from (A for pathA and B for
pathB).

Values for minchars and minlines can be specified without being preceded by control
arguments. The order is: minchars minlines.

The values of minchars and minlines control the size of displayed differences. Large
values for these parameters cause small, closely-spaced differences to be displayed as
one large difference, while very small values (such as -minlines 1 -minchars 2) will
cause small changes to be displayed individually but might also cause large differences
to be broken down into small parts, thereby giving a misleading picture of what was
actually done to produce the modified versions. The user should adjust these
parameters to produce the most useful results.

3-143 AG92-()6

EXAMPLES

The examples of compare_ascii usage below are based on the segments yesterday. menu
and today. menu displayed here side by side.

yesterday.menu

Breakfast Menu:
I •. ! __
,",UI~t:

Toast
Eggs

Luncheon Menu:
Hot dogs
Mi 1 k
French fries

Supper Menu:
Stea.k ..
Baked potato
Coffee

today.menu

Breakfast Menu:
I •• : __

'"'U 1 \.ott::

Toast
Eggs

Luncheon Menu:
Hamburger
Mil k
Salad
French fries

Svpper.M~n~:
Chicken
Rice
Coffee

The default operation of compare_ascii is illustrated by the command line:

cpa yesterday.menu today.menu

A6
A7
Changed
B6
B7
88

Hot dogs
Mi 1 k

by B to:
Hamburger
Mil k
Salad

A10 Steak
A 11 Baked potato
Changed by B to:
B11 Chicken
B12 Rice

Comparison finished: 2 differences, 9 lines.

3-144 AG92-06

The following command line shows the use of the -original, -header. -minlines, and
-minchars control arguments. Notice that the lower values of minlines and minchars
isolate the two changes within the Luncheon menu.

cpa today.menu -orig yesterday.menu -he -minchars 5
-minlines 1

A >udd>m>Jones>yesterday.menu (original)
B >udd>m>Jones>today.menu (new)

A6 Hot dogs
Changed by B to:
B6 Hamburger

Inserted in B:
B8 Salad
Preceding:
A8

A10
All
Changed by
B 11
B12

French fries

Steak
Baked potato

B to:
Chicken
Rice

Comparison finished: 3 differences, 7 lines.

In the following example the printing of line numbers, old lines. and the totals line
have been suppressed. giving better visibility to what is new in today. menu.

cpa yesterday.menu today.menu -pnl -nnb -ntt -minchars 5
-minlines 1

Hamburger
Salad
Chicken
Rice

3-145 AG92-D6

compare_configuration_deck compare_con figuration_deck

Name: compare_configuration_deck

SYNTAX AS A COMMAND

compare_configuration_deck pathl {path2} {-control_args}

SYNTAX AS AN ACTIVE FUNCTION

[compare_configuration_deck pathl {path2}]

FUNCTION

compares either a saved copy of the configuration deck or the configuration deck for
the running system to a saved copy.

As an active function, returns either "true" or "false" to indicate whether the two
configuration decks are equivalent.

ARGUMENTS

pathl
is the pathname of a saved copy of the configuration deck.

path2
is the pathname of a copy of the configuration deck to be compared against
pathl. If not supplied, >sl1>confi!Ldeck (the configuration deck for the running
system) is used.

CONTROL ARGUMENTS

-brief, -bf
suppresses informational messages and printing of the identifying headers.

-label, -lbl
displays cards with mnemonic labels for each field.

-long, -lg
prints all output. (Default)

-no_label, -nlbl
does not display field labels. (Default)

OUTPUT FORMAT (-LONG MODE)

The long output format consists of up to four sections, each of which is printed WHn

an identifying header if it is not empty. The four sections are added cards, deleted
cards, changed cards, and mem cards. The section for mem cards is printed only if
the order or number of mem cards in the two decks differs; otherwise only changed
mem cards are printed. The changed cards are listed in pairs, such as:

3-146 AG92-06

compare_con figuration_deck

Was: mem a 123. on
mem a 123. off

The first line (prefaced by Was:) is the card from the saved deck and the second is
the current card. If the two decks are different in order or number. this is
announced and both decks are printed entirely.

OUTPUT FORMAT (-BRIEF MODE)

The brief output format omits the section headings and the message "The two decks
are identical." Cards are identified by preface--added cards are prefaced by "New:"
and deleted cards by "Old:". Changed cards are listed in pairs, in the same format as
in the long output mode. If the mem cards section is printed, it is the last section.
The mem cards are listed in two groups, with the first card in each group prefaced
by Was: for the first group or Now: for the second group, and all the other cards
in the group are listed with no preface.

NOTES

This command is fairly accurate when identifying "changed" cards--it knows about the
cards (such as mem, cpu, etc.) that may appear several times and may specify multiple
items and identifies them by their operands as well as by name. It decides that the
two decks are completely different if there appear to be more than 32 differences
between them.

EXAMPLES OF LONG MODE OUTPUT

Note that because the mem cards have been reordered the changed card for mem A is
not listed in the changed cards section.

Cards added in current deck:
parm chwm dirw ttyb 7000.
salv pdlv 1

Cards deleted from old deck:
intk warm 3 star

Changed cards:
Was: cpu b 6 off

cpu b 6 on

mem cards are reordered:
Was: mem a 258. on

mem c 258. on
mem b 258. on

Now: mem c 258. on
mem a 258. off
mem b 123. on

3-147 AG92-D6

x

11/87

EXAMPLES OF BRIEF MODE OUTPUT

This output is equivalent to the sample output for the long mode shown above.

Old: salv pdlv 1
New: intk warm 3 star
Was: cpu b 6 off
Now: cpu b 6 on
Was: mem a 258. on

mem c 258. on
mem b 258. on

Now: mem c 258. on
mem a 258. off
mem b 123· on

SYNTAX AS A COMMAND

FUNCTION

This command compares MuItics storage system hierarchy dump data on two sets of input tape; a
master set and a copy set Options allow selective comparing based upon pathname specifications
in a selection file, and comparing using a storage system file containing an image of a set of dump
tapes, rather than tapes.

CONTROL ARGUMENTS

-abort
indicates that comparing of the master with the copy should stop when the first discrepancy
is found.

-copy_file OUT_PATH, -cf OUT_PATH
gives the pathname of a copy file to be compared with the master data.

-copy_volume VOLNAMES, -evol VOLNAMES
gives a list of tape volume names. The master data is compared with this copy tape volume
set. The names are separated from one another by a blank. Up to 20 voiume names can be
given. This control argument may be followed by the control arguments described below in
.tControl arguments for volume attribUtes".

3-148 AG92-06B

11/87

-master_file IN_PATH. -mf IN_PATH
gives the pathname of a file containing an image of the backup dump tape. This file must
have been created by a prior invocation of copy_dump_tape. It contains the master data to
be copied.

-master_volume VOLNAMES. -mvol VOLNAMES
gives a list of tape volume names containing the master data to be copied. The names are
separated from one another by a blank. Up to 20 volume names can be given. This control
argument may be followed by the control arguments described below in "Control arguments
for volume attributes".

-maximize_devices. -maxdv
indicates that all tape drives reserved by the process or assigned to the process are to be used
equally (round-robin) when mounting tapes.

-no_abort, -nabort
indicates that comparing master and copy should continue when errors are encountered,
un til 20 discrepancies are found. This is the def aul t

-no_maximize_devices. -nmaxdv
allows RCP to select which tape drives to use when reading tapes. This is the default.

-no_select. -nslct
indicates that all master data is to be compared with copy data. This is the default

-no_trace. -ntrace
prevents tracing information from being printed. This is the default

-select SELECT_PATH, -slct SELECT_PATH
gives the pathname of a fHe similar to a standard backup_dump control file. This file gives
paths of master files to be selected for comparison. See "Notes on control file."

=trace {TYPE}
controls printing of trace information while comparing. This information is primarily used
for debugging compare_dump_tape. See "List of trace types".

CONTROL ARGUMENTS FOR VOLUME ATTRIBUTES

The following control arguments define attributes of tape volumes given in preceding
-master_volume or -copy_volume control argument

3-149 AG92-{)6B

11/87

compare_dump_tape

-density DEN, -den DEN
gives a tape density. DEN may be 800, 1600 or 6250. The input tapes are mounted on a tape
drive capable of reading density DEN. However, the actual density at which the input tapes
are written determines the density used for reading. The default density is 1600 BPI (bits per
inch).

-track TK, -tk TK
mounts tapes on a tape drive capable of handling tapes containing TK tracks. TK may be 7 or
9. The default track size is 9.

LIST OF TRACE TYPES

One of the following trace types may be given as an operand with the -trace control argument.
These arguments control the type of trace information printed. If any tracing is enabled, then
attach descriptions are printed in addition to the segment information described below.

compare, cmp

off

during the compare operation, trace master segments selected by paths in the -select file.
This is the default if -trace is specified without a TYPE operand.

turn off tracing. This is equivalent to -no_trace.

rejects, reject, rej
print master segments unmatched or rejected by paths in the -select file.

LIST OF SEVERITY VALUES

compare_dump_tape sets an external variable to indicate the success or failure of copy and
compare operations. This variable may be examined using the severity command/active
function. For example:

&goto RESULT _& [severity compare_dump_tape]

The following severity values can be returned.

o

2

3

The compare operation completed successfully.

The compare operation completed successfully, but one or more paths given in the -select
file were not matched by master segments. These pathnames are listed in a message printed
by compare=dump_tape.

The compare operation found discrepancies between master and copy segments.

3-149.1 AG92-06B

compare_dump_tape

11/87

4
The compare operation failed, due to fatal errors. These errors are listed in error messages
printed by compare_dump_tape.

NOTES

Either -master_file or -master_volume must be given to specify the source of master input data.
Either -copy_file or -copy_volume must be given to specify the source of copy input data.

NOTES ON CONTROL FILE

The control file specified by -select is an ASCII segment containing pathnames of entries
(segments, MSFs, and directory subtrees). Each pathname must be given on a separate line.
Absolute pathnames must be given, with each entryname of the path being a primary name (the
first name of the entry). Master entries matching one of the paths are compared. Master entries
which are superior to one of the paths are also compared. If a path identifies a directory, master
entries inferior to that directory are compared. A pathname preceded by a circumflex (A)
character identifies entries which are NOT to be compared, unless later entries in the control file
override the rejection.

For example--

> library _dir _dir> hardcore
1\ > library _dir _air> hardcore>inf 0

> library _dir _dir> hardcore>inf 0> hardcore.header

selects all entries in the subtree below > lihrary_dir_dir>hardcore, except those in the info
directory. However, the hardcore.header entry in the info directory is selected.

3-149.2 AG92-06B

compare_en try_names

11/87

Name: compare_entry_names, cen

SYNTAX AS A COMMAND

cen pathl path2

FUNCTION

compares the names on two entries in the storage system and prints information about the
diff erences.

ARGUMENTS

path 1
is the pathname of the first entry. You can't use the star convention.

path2
is the pathname of the second entry. You can use the equal convention.

3-150 AG92-06B

11/86

compare_object

Name: compare_object, cob

SYNTAX AS A COMMAND

cob oldpath newpath {-control_args}

FUNCTION

compares two object segments and optionally prints out the changes made to the
segment specified by oldpath to yield the segment specified by newpath. The
assumption is that the first segment is older than the second and that they were both
produced from the same source segment but, potentially, by different versions of a
language processor.

ARGUMENTS

oldpath
is the pathname of the first segment.

newpath
is the pathname of the second segment. You can use the equal convention.

CONTROL ARGUMENTS

-all, -a
compares the text, definition, and linkage section of the two segments. If the
segments have separate static sections, these are compared also. (Default)

-brief, -bf
prints out by section a summary of discrepancies in the object segments,
suppressing detailed listing of the discrepancies.

3-150.1 AG92;,.06A

This page intentionally left blank.

11/86 AG92-06A

-defs
compares the definition sections of the two segments.

-link, -lk
compares the linkage sections of the two segments.

-static
compares the static section of two segments with separate static; otherwise
compares the linkage sections.

-text
compares the text sections of the two segments.

NOTES

If no control arguments are specified, the text, definition, and linkage sections of the
two segments are compared.

In comparing the lengths of the symbol sections of the two segments, the command
uses a heuristic to determine whether a discrepancy is serious or trivial (e.g., caused
by differences in pathnames of include files). This heuristic errs in the direction of
caution and tends to be inaccurate for large object segments.

Name: compare_pll, cpp

SYNTAX

ec >t>cpp pathl path2

FUNCTION

The compare_pll exec_com compares two PL/I programs of dissimilar formats.

ARGUMENTS

path!, path2
are the relative or absolute pathnames of the source programs to be compared.
The .pll suffix is assumed. The star convention is not allowed; the equal
convention is allowed for path2. Archive component pathnames are allowed.

NOTES

All format_pll control comments are removed from both programs. Then, format_pll
is used to put both programs into a canonical style. The compare_ascii command is
used to see how the source programs differ. Vertical white space inserted or deleted
between statements is not ignored. The line numbers in the compare_ascii output is
not accurate due to possible white space or statements broken over lines.

3-151 AG92-06

component

Name: component

SYNTAX AS A COMMAND

component path

SYNTAX AS AN ACTIVE FUNCTION

[component path]

FUNCTION

returns the archive component name portion of path after it has been expanded into
an absolute pathname. If you don't supply an archive component pathname, then this
command / active function is equivalent to entry.

ARGUMENTS

path
is the pathname whose archive component name portion is to be returned.

NOTES

Since the pathname is returned in quotes. the command processor treats it as a single
argument regardless of special characters in the name.

EXAMPLES

connect

component >udd>Multics>Library>Source>bound_command_demos_os::program.pll
program.pll

component >udd>Proj>Myname>start_up.ec
start_up.ec

Name: connect

SYNTAX AS A COMMAND

connect channel {destination} {-control_args}

FUNCTION

permits you to access a remote system through a dial-out channel (see the dial_out
command).

3-152 AG92-06

contents contents

11/87

Name: contents

SYNTAX AS A COMMAND

contents path {-control_args}

SYNTAX AS AN ACTIVE FUNCTION

[contents path {-control_args}]

FUNCTION

prints or returns the contents of a segment or archive component as a character string. Newline
characters in the segment are changed to blanks in the string.

ARGUMENTS

path
is an absolute or relative pathname to the segment or archive component to be processed

CONTROL ARGUMENTS

-exclude /REGEXP /, -ex /REGEXP /
does not print lines containing a string matching the regular expression REGEXP (see the
qedx command).

-exclude STR. -ex STR
does not print lines containing STR. Exclusion is done after matching; thus, t'-match A -ex
B" prints all lines with an A except those with a B.

-from /REGEXP/, -fm /REGEXP/
begins with the first line matching REGEXP.

-from No -fm N
begins printing from the Nth line. (Default: 1)

-match /REGEXP /
prints only lines containing a string matching REGEXP.

-match STR
prints only lines containing STR.

-newline. -nl
leaves newline characters in the segment unchanged.

-no_neWline, -nn1
changes newline characters in the segment to blanks in the string. (default)

3-153 AG92-()6B

contents contents

11/87

-requote_line, -rql
requotes each line in the segment and changes newline characters in the segment to blanks.

-to /REGEXP /
stops printing with the first line matching REGEXP. The search for REGEXP begins after
the first line printed.

-to N
stops printing with line number N. (Default: to print all lines)

3-153.1 AG92-06B

con vert_characters convert_characters

maintains a from_string and a to_string that define the conversion to be made. The
converted segment is the same as the original except that every instance of the i'th
character of from_string present in the original segment is replaced by the i'th
character of to_string.

The conversion for the key "sp" uses a from_string and to_string that must have been
previously set by use of the "from" and "to" keys.

ARGUMENTS

key!
any of the keys listed below in "List of keywords".

oldpath
the pathname of a segment to be converted. If this argument is omitted, the
from_string and to_string related to key! are printed.

newpath

key2

the pathname of the output segment. If this argument is omitted, newpath is
assumed to be the same as oldpath, and the converted copy replaces the original.

either "to" or "from" to set to_string or from_string for the "sp" key.

char _string
is the string to be set as to_string or from_string. If it contains blanks, it must
be enclosed in quotes.

LIST OF KEYWORDS

Ic
converts alphabetic characters to lowercase.

uc
converts alphabetic characters to uppercase.

mp
converts from Multics PL/I format to IBM 360 PL/I.

bcd
converts BCD special characters to ASCII/EBCDIC equivalents.

3-154 AG92-06

convert_characters convert_characters

11/86

char_string
is the string to be set as from_string or to_string. If it contains blanks, enclose
it in quotes.

LIST OF KEYWORDS

bcd
converts BCD special characters to ASCII/EBCDIC equivalents.

lc
converts alphabetic characters to lowercase.

mp
converts from Multics PL/I format to IBM 360 PL/I.

uc
converts alphabetic characters to uppercase.

3-154.1 AG92-06A

This page intentionally left blank.

11/86 AG92-06A

convert_characters convert_ec

dart
converts Multics special characters to corresponding Dartmouth special characters
as follows:

sp

>
+

"
?

"
<
>

+
1

uses conversion strings set earlier by the from and to keys: cvc from
char_stringl;cvc to char_string2

NOTES

The most recent setting of from_string and to_string in your process is used for
conversion with the "sp" key. No conversion is attempted for the "sp" key unless both
the from_string and the to_string are of the same non-zero length. Any character not
present in the from_string is not changed.

Name: eonvert_ee, evee

SYNTAX AS A COMMAND

cvec path {-control_args}

FUNCTION

Converts an exec_com from one version to another. By default, it converts a Version
1 (old version) exec_com to Version 2, inserting the line "&version 2" at the
beginning.

ARGUMENTS

path
is the pathname of an exec_com or absin segment. The ec suffix is added if
neither suffix is present. The star convention is allowed.

3-155 AG92-D6

CONTROL ARGUMENTS

-chase
finds and chases links matching path if path is a starname. (Default: -chase if
path is not a starname, -no_chase if path is a starname)

-check, -ck
prints warning and error messages but does not change the segment or produce an
.......... + + ~.:1
UULPUL lU!I;;.

-force, -fc
in the absence of -output_file and -check, forces the original segment to be
overwritten even if errors occur. (Default: to create a copy in the process
directory if errors occur)

-no_chase
__ 4~ __ l1.()J __ ()~r~~e._QrLJill~~._ (~J::lult: ~~h_~ if path is not a~~r.n_~!!l:~. _-::~o_chase

if path is a starname)

-no_check, -nck
converts the segment in addition to printing warning and error messages. (Default)

-no _force, -nf c
does not replace the original segment or create an output file with -output_file if
errors (as opposed to warnings) occur. (Default)

-output_file path. -of path
places the converted segment in path instead of the original segment specified by
path. The equal convention is allowed in path. If the output segment already
exists. it is overwritten. If errors occur, the converted segment is placed instead
in the process directory.

-severity N, -sv N
where N is a number from 0 to 3, suppresses warnings/errors with severities
lower than N. The default is -sv 2. Severities are as follows:

o warnings requiring no conversion.
1 warnings (nonstandard but valid syntax), such as unrecognized &strings

converted to &&string.
2 errors that can be converted. such as unrecognized &string at the beginning

of a line converted to a comment
3 errors that cannot be converted.

ACCESS REQUIRED

Read access on pathl, write access on the output file or append on the parent of the
output file if the output file does not exist.

3-156 AG92-06

NOTES

Use of -output_file is recommended rather than overwriting the original segment, so
that original and converted copies can be compared. The simple conversion rules can,
in complicated cases, change the intent of expressions. Therefore, a copy of the
original should be kept until the converted exec_com has been shown to operate
correctly.

LIST OF CONVERSIONS (V1 -> V2)

leading and trailing whitespace -> literals such as &SP
this conversion is performed because Version 2 strips leading and trailing
whitespace from lines.

&<whitespace> -> &-
new comment sequence.

& ... & -> && ... &&
strings of two or more ampersands are doubled.

&(. . .) -> &&<. ..)
unrecognized by Version 1, the construct on the left is used in Version 1 ec's to
pass &(.. .) parameters to other programs.

&NN -> &(NN)
Version 2 requires parameters wiih iwo or more digits to have the digits enclosed
in parentheses.

&0, &qO -> &ec_path
&rO -> "&ec_patb"

new construct to get the expanded, suffixed pathname of the ec.

&if [...] -> &if [...]
the & [... J construct is uniformly required to expand active functions in control
lines.

&command_line ... -> &trace &command ...
&comment_line ... -> &trace &comment ..
&control_line ... -> &trace &control. ..
&input_line ... -> &trace &input. ..

new tracing statement & trace.

&unrecognized (beginning of line) -> &-&unrecognized
comments entire line if begins with unrecognized keyword.

&unrecognized -> &&unrecognized
all other unrecognized Version 1 &keywords are converted to literals.

3-157 AG92-Q6

11/87

EXAMPLES

The command line

cvec >udd>m>Vivaldi>collect -of collect.v2

converts the exec_com >udd>m> Vivald1>collect.ec into Version 2 and places the Version 2 copy
in collect v2.ec in the working directory.

Name: copy, cp

SYNTAX AS A COMMAND

cp pathl {path2 ••. pathlN path2N} {-control_args}

FUNCTION

copies specified segments. multisegment files (MSFs). data management (DM) files. and extended
entries in the specified directories with the speciiied names. Optionally it copies access control
lists (ACLs) , ring brackets, and multiple names.

ARGUMENTS

path!
is the pathname of a segment, MSF, DM file, and extended entry to be copied. If it is the
name of a link, the command copies the target of the hnk. The star convention is allowed.
(See "Notes" below.)

path2
is the pathname of a copy to be created from pathl. If you don't give path2. the copy is
placed in your working directory with the entryname of pathl." The equal convention is
allowed.

CONTROL ARGUMENTS

-acl
copies the ACL.

-all, -a
copies mUltiple names, ACLs, and ring brackets.

-brieL -bf
suppresses warning messages (see "Notes").

-chase
copies the targets of links that match pathl (see "Notes" for the default).

copy

3-158 .A .. G92-06B

copy

-extend
appends the contents of pathl to the contents' end of path2. An error occurs if
path2 does not already exist.

-force. -fc
with -extend or -update, forces writing of the file contents regardless of whether
you have write access to path2; in all other cases (replacing the entire file), forces
deletion of an existing path2.

-long. -lg
prin ts warning messages. (Def aul t)

-name. -nm
copies multiple names.

-no_ac1
does not copy the ACL. (Default)

-no_chase
does not copy the targets of links that match pathl (see "Notes").

-no_force, -nfc
does not force write without write access or force deletion of an existing path2.
(Default)

-no_name, -nnm
does not copy multiple names. (Default)

-no_rin~brackets. -no_rb, -nrb
does not copy ring brackets. (Default)

-replace, -rp
replaces the entire file path2, rather than modifying its contents as is done by
-extend and -update. (Default)

-rin~brackets, -rb
copies the ring brackets of pathl to path2. It is incompatible with -extend and
-update.

-update, -ud
replaces the contents of path2 with those of pathl without deleting path2 or
changing any of its attributes. An error occurs if path2 does not already exist.

ACCESS REQUIRED

You need read access for pathl; write access for path2, unless you use -force with
-extend or -update; status permission for the directory containing pathl if you supply
-acl, -all, or -name; modify permission for the directory containing path2 if you give
-acl, -all, or -name; append permission for the directory containing path2 if you
select neither -extend nor -update.

copy

3-159 AG92-Q6

copy

NOTES

The control arguments can appear once anywhere after the command name and apply
to the entire command line.

The default for chasing links depends on pathl: if it is not a starname. links are
chased by default; if it is a starname, links are not chased.

The initial ACL of the target directory doesn't affect the ACL of the segment or
multisegment file being copied. The AIM access class of a segment is not copied by
-acl.

Since two entries in a directory cannot have the same entryname, copy takes special
action if the name of path1 already exists in the directory specified by path2: if
path1 has an alternate name, the entryname that would have resulted in a duplicate
name is removed, you are informed of this action, and the copying operation takes
place; if path1 has only one en try name, the entry that already exists in the directory
must be deleted to rem-ove the name, you are asked if the--detetion should be done,
and the copying operation does not take place if you answer "no."

This command prints a warning message if the bit count of path1 is less than its
current length ("Bit count inconsistent with current length .. .'t) or if the current length
is greater than the number of records used ("Current length is not the same as
records used ... n).

EXAMPLES

The command iine

copy >old_dir>fred.list george.=

copies segment or multisegment file named fred.list in the directory >old_dir into the
working directory as george.1ist

Name: copy _acl

SYNTAX AS A COMMAND

copy_acl pathl path2 ••. pathlN {path2N}

FUNCTION

copies the access control list (ACL) from one segment, directory, multisegment file,
data management file, or extended entry to another. replacing the current ACL if
necessary. (For a description of ACLs, see the Programmer's Reference ManuaL)

3-160 AG92-06

copy_acl

ARGUMENTS

path 1
is the pathname of a file or directory whose ACL is to be copied. You can
specify your working directory with -work ins-directory (-wd). The star convention
is allowed.

path2
is the pathname of a file or directory into which the initial ACL is to be copied.
You can specify your working directory with -workins-directory (-wd). The equal
convention is allowed.

ACCESS REQUIRED

You require status permission for the containing directory of path 1 and modify
permission for the containing directory of path2.

Name: copy _cards, ccd

SYNTAX AS A COMMAND

FUNCTION

copies specified card image segments from system pool storage into your directory.
The segments to be copied must have been created using the Multics card input
facility.

ARGUMENTS

deck_name
is the name that was entered on the deck_id card when the card deck was
submitted for reading. The star convention is allowed.

new _deck_name
is the pathname of the segment in which the matching card image segment is to
be placed. If omitted, your working directory and deck_name are assumed. The
equal convention is allowed.

NOTES

See the description of the card input facility in the Programmer's Reference Manual
for the format of the control cards needed when submitting a card deck to be ready
by system operations. The user process executing this command must have the proper
access to the card image segment in order to perform the copy. When there are
multiple copies of the same deck in pool storage, all are copied.

3-161 AG92-o6

copy_cards copy_characters

When deck_name is a starname and there are several matching card image segments in
pool storage to which you have access, all are copied.

When an attempt is made to read a card deck having the same name as some
previously read deck still in pool storage, a numeric suffix is added to the name of
the new deck, e.g., "deck_name. 1". Repp..ated name duplications cause successively larger
numeric suffixes to be used. (Name duplications can only occur f or decks of the same
access class submitted by the same user.) This command informs you of such
duplications (if any) and retrieves all copies of the specified deck.

Only those card decks having an access class equal to your current authorization can
be copied. Other decks are not found.

EXAMPLES

The command line

ccdmy~deck-

copies your card image segment named my_deck from the card pool storage into your
current working directory.

Name: copy_characters, cpch

SYNTAX AS A COMMAND

cpch STR N

SYNTAX AS AN ACTIVE FUNCTION

[cpch STR N]

FUNCTION

returns a quoted string containing N copies of a specified string.

EXAMPLES

string [cpch 111 2 3 II 3]
123 1 231 2 3

3-162 AG92-o6

copy_dir

Name: copy _dir, cpd

SYNTAX AS A COMMAND

FUNCTION

copies a directory and its subtree to another point in the hierarchy. You can also
specify which portions of the subtree be copied and can control the processing of
links.

ARGUMENTS

source_dir
is the pathname of a directory to be copied. The star convention is allowed to
match directory names. Matching names associated with other storage types are
ignored. The source_dir can not be contained in target_dire

target_dir
is the pathname of the copy of the source_dire The equal convention is allowed.
If target_dir is not specified. the copy is placed in the working directory with
the entryname of source_dire If the target_dir does not exist, it is created.

CONTROL ARGUMENTS

-acl
gives the ACL on the source_dir entry to its copy in target_dire Although initial
ACLs are still copied, they are not used in setting the ACL of the new entries
when this control argument is specified. (See "Notes on Access Provision" below.)

-brief. -bf
suppresses the printing of warning messages such as "Bit count is inconsistent with
current length" and "Current length is not the same as records used."

-chase
copies the target of a link. Chasing the links eliminates link translation. (Default:
not to chase links)

-force
executes the command. when target_dir already exists, without asking you. If
-f orce is not selected, you are queried.

-no_link_translation. -nIt
copies links with no change. If there are references to the source directory in the
link pathname of a link being copied, the link pathname is changed to refer to
the target directory. (Default to translate links being copied)

3-163 AG92-D6

copy _dir copy _dir

-primary, -pri
copies only primary names. If -primary is not given, all the names of the
selected entries are copied.

-replace! -rp
deletes the existing contents of target_dir before the copying begins. If target_dir
is nonexistent or empty, this control argument has no effect (Default: to append
the contents of source_dir to the existing contents of target_did

LIST OF ENTRY TYPE KEYS

Entry type keys control what type of storage system entries in the subtree are copied.
If no entry_type_key is specified, all entries are copied. The keys are

-branch, -br
-directory, -dr
-file~--f
-link, -lk
-multisegment_file, -msf
-non_null_link, -nnlk
-segment, -sm

If one or more entry_type_keys are specified, but not the -directory key, the subtree
of source_dir is not walked.

ACCESS REQUIRED

Status permission is required for source_dir and all the directories in its tree. Status
permission is required for the directory containing source_dir. Read access is required
on all files under source_dire Append and modify permission are required for the
directory containing target_dir if target_dir does not exist prior to the invocation of
copy _dire Modify and append permission are required on target_dir if it already
exists. This command does not force access.

If -acI is not specified, the system default ACLs are added, then the initial ACL for
the containing directory is applied (which may change the system-supplied ACL).
Initial ACLs are always copied for the current ring of execution.

NOTES

If target_dir already exists and -force is not specified, you are so informed and asked
if processing should continue. If target_dir is contained in source_dir, an appropriate
error message is printed and control is returned to command level. If name
duplication occurs while appending the source_dir to the target_dir and the name
duplication is between directories, you are queried whether processing should continue.
If you answer yes, the contents of the directory are copied (appended) but none of
the attributes of that directory are copied; if you answer no, the directory and its
subtree is skipped. If name duplication occurs between segments, you are asked
whether to delete the existing one in target_oir

3-164 AG92-06

11/87

If you give -replace or target_dir does not exist, name duplication does not occur.

If part of the tree is not copied (by specifying a storage system entry key). problems with link
translation may occur. If the link target in the source_dir tree was in the part of the tree not
copied, there may be no corresponding entry in the target_dir tree. Hence translation of the link
causes the link to become nUll.

See also the copy. move, and move_dir commands.

EXAMPLES

The command line

cpd old_source new_source -segment -acl

copies all the segments with their ACLs in the directory old_source to the directory new_source.

The command line

cpd old_user new_user -branch

copies all the segments. directories, and multisegment files from the directory old_user to the
directory new_user (no links are copied).

SYNTAX AS A COMMAND

FUNCTION

This command copies Multics storage system hierarchy dump data from a set of input (master)
tapes to a set of output (copy) tapes. Options allow comparing master and copy tapes after the
copy operation; selective copying based upon pathname specifications in a selection file; and
copying/comparing from or to a storage system file containing an image of a set of dump tapes.
rather than tapes.

x

3-165 AG92-06B

11/87

CONTROL ARGUMENTS

-abort
indicates that comparing of the master with the copy should stop when the first discrepancy
is found.

-compare, -cmp
indicates that master and copy should be compared after the copy is generated. Any
discrepancies are reported to the user.

-input_file IN_PATH, -if IN_PATH
gives the pathname of a file containing an image of the backup dump tape. This file must
have been created by a prior invocation of copy_dump_tape. It contains the master data to
be copied.

-input_volume VOLNAMES, -ivol VOLNAMES
gives a list of input tape volume names containing the master data to be copied. The names
are separated from one another by a blank. Up to 20 volume names can be given. This
control argument may be followed by the control arguments described below in "Control
arguments for volume attributes".

-map {MAP_PATH}
controls the generation and naming of a dump map, If -map is given with a MAP_PATH,
then a dump map listing the copied files is generated in that file. A suffix of map is assumed
if not supplied. If no MAP_PATH is given, the map is generated in a file in the working
directory. The file name is derived from other control arguments, as follows. If -select
SELECT_PATH is given. then the map file name is the final entryname from
SELECT_PATH. If -select is omitted but -ovol VOLNAME is given. the map file is called
VOLNAME.map. If -of OUT_PATH is given, the map file is the final entryname from
OUT_PATH. Otherwise, the map file name is a unique character string (returned by the
unique_chars_ subroutine).

-maximize_devices, -maxdv
indicates that all tape drives reserved by the process or assigned to the process are to be used
equally (round-robin) when copying from or to tape, and that during comparison, tape
volumes are to be mounted on a different tape drive than was used during copying. This
helps detect tape failures caused by reading or writing on a poorly calibrated tape drive.

-no_abort, -nabort
indicates that comparing master and copy should continue when errors are encountered,
until 20 discrepancies are found. This is the default

3-166 AG92-G6B

11/87

-no_compare, -ncmp
indicates that master and copy are not to be compared after the CO?y operation. This is the
default.

-no_map, -nmap
indicates that no backup map of the copied data is to be produced. This is the default.

-no_maximize_devices. -nmaxdv
allows Rep to select which tape drives to use when reading or writing tapes. This is the
default.

-no_select, -nslct
indicates that all master data is to be copied and compared. This is the default.

-no_trace, -n trace
prevents tracing information from being printed. This is the default.

-output_discard, -od
indicates that no output copy is to be generated. This is useful in conjunction with -map to
produce a map of the master data, or in conjunction with -trace for debugging purposes.

-output_file OUT_PATH, -of OUT_PATH
gives the pathname of a copy file into which the master data is copied.

-output_volume VOLNAMES, -ovol VOLNAMES
gives a list of output tape volume names. The mac;ter data is copied onto this copy tape
volume set The names are separated from one another by a blank. Up to 20 volume names
can be given. This control argument may be followed by the control arguments described
below in "Control arguments for volume attributes".

-select SELECT_PATH, -sIct SELECT_PATH
gives the pathname of a file similar to a standard backup_dump control file. This file gives
paths of master files to be selected for copying. See "Notes on control file."

-trace {TYPE}
controls printing of trace information while copying and comparing. This information is
primarily used for debugging copy_dump_tape. See "List of trace types".

CONTROL ARGUMENTS FOR VOLUME ATTRIBUTES

The following control arguments define attributes of tape volumes given in preceding
-input_volume or -output_volume control argument.

-density DEN, -den DEN
gives a tape density. DEN may be 800, 1600 or 6250. If given for input tapes, the tapes are
mounted on a tape drive capable of reading density DEN. However. the actual density at
which the input tapes are written determines the density used for reading. If given for
output tapes, the tapes are written at density DEN. The default density is 1600 BPI (bits per
inch).

3-166.1 AG92-06B

11/87

-track TK, -tk TK
mounts tapes on a tape drive capable of handling tapes containing TK tracks. TK may be 7 or
9. The default track size is 9.

LIST OF TRACE TYPES

One of the following trace types may be given as operand with the -trace control argument.
These arguments control the type of trace information printed. If any tracing is enabled, then
attach descriptions are printed in addition to the segment information described below.

all, a
during both copy and compare operations, trace master segments selected by paths in the
-select file.

compare, crop
during the compare operation, trace master segments selected by paths in the -select file. No
segments are traced during the copy operation.

copy, cp

off

during the copy operation, trace master segments selected by paths in the -select file. No
segments are traced during the compare operation. This is the default if -trace is specified
without a TYPE operand.

turn off tracing. This is equivalent to -no_trace.

rejects, reject, rej
print master segments unmatched or rejected by paths in the -select file.

LIST OF SEVERITY VALUES

copy _dump_tape sets an external variable to indicate the success or failure of copy and compare
operations. This variable may be examined using the severity command/active function. For
example:

3-166.2 AG92-06B

11/87

The following severity values can be returned.

o

2

3

4

Both copy and compare operations completed successfully.

The copy and compare operations completed successfully, but one or more paths given in the
-select file were not matched by master segments. These pathnames are listed in a message
printed by copy_dump_tape.

The copy operation completed successfully. but the compare operation found discrepancies
between master and copy segments.

Either copy or compare operations failed, due to fatal errors. These errors are diagnosed in
error messages.

NOTES

Either -input_file or -input_volume must be given to specify the source of master input data.
-output_discard. -output_file. or -output_volume must be given to specify the target for copied
data.

NOTES 0,"-/ COIVT ROL FILE

The control file specified by -select is an ASCII segment containing pathnames of entries
(segments, MSFs, and directory subtrees). Each pathname must be given on a separate line.
Absolute pathnames must be given. with each entryname of the path being a primary name (the
first name of the entry). Master entries matching one of the paths are copied and compared.
Master entries which are superior to one of the paths are also copied/compared. If a path
identifies a directory, then master entries inferior to that directory are copied/compared. A
pathname preceded by a circumflex (A) character identifies entries which are NOT to be copied
or compared. unless later entries in the control file override the rejection.

For example--

> library _dir_dir> hardcore
A>library_dir_dir>hardcore>info

>library_dir_dir>hardcore>info>hardcore.header

selects all entries in the subtree below >library_dir_dir>hardcore. except those in the info
directory. However. the hardcore.header entry in the info directory is selected.

3-167 AG92-06B

copy_file copy_file

11/87

Name: copy_file, cpf

SYNTAX AS A COMMAND

FUNCTION

copies records from an input file to an output file that has been restructured for maximum
compactness. The input and output file records must be structured (see "Notes on Unstructured
Files" below). The input file can be copied either partially or in its entirety.

3-167.1 AG92-06B

copy_file copy_file

ARGUMENTS

ifi_control_arg
the input file from which records are read can be specified by either of the
following:

-input_switch STR. -isw STR
specifies the input file by means of an already-attached I/O switch name.
where STR is the switch name.

-input_description STR, -ids STR
specifies the input file by means of an attach description STR. STR must be
enclosed in quotes if it contains spaces or other command language characters.

out_control_arg
the output file to which the records are written can be specified by either of the
following:

-output_switch STR. -osw STR
specifies the output file by means of an already-attached I/O switch name.
where STR is the switch name.

-output_description STR. -ods STR
specifies the output file by means of an attach description STR. STR must
be enclosed in quotes if it contains spaces or other command language
characters.

CONTROL ARGUMENTS

-all. -a
copies until the input file is exhausted. (Default)

-brief. -bf
suppresses a message indicating the number of records or lines actually copied.

-count N. -ct N
copies until N records have been copied or the input file is exhausted, whichever
occurs first, where N is a positive integer. (Default: to copy until the input file
is exhausted)

-from N, -fm N
copies records beginning with the Nth record of the input file. where N is a
positive integer. (See "Notes.") (Default: to begin copying with the "next record")

-keyed
conies both records and kevs from a keyed seauential innut file to a keyed
seQuential output file. (See ~'Notes· ·on Keyed Fil~. n) (Defa~1t: to copy records
from an input file, keyed or not, to a sequential output file)

3-168 AG92-o6

copy_file

-long, -lg
prints a message indicating the number of records or lines actually copied: "345
records copied". (Default)

-start STR. -sr STR
copies records beginning with the record whose key is STR. where STR is 256 or
fewer ASCII characters. (Default to begin copying with the "next record")

-stop STR, -sp STR
copies until the record whose key is STR has been copied or the input file is
exhausted. whichever occurs first, where STR is 256 or fewer ASCII characters.
This control argument can be given without specifying -start However, if -start
is supplied. the STR used with -stop must be greater than or equal to (according
to the ASCII collating sequence) the STR given with -start.

-to N
copies until the Nth record has been copied or the input file is exhausted,
whichever occurs first, where N is a positive integer greater than or equal to the
N given with -from. If you use -to, you must give -from.

NOTES

If either the input or output specification is an attach description, it is used to attach
a uniquely named I/O switch to the file. The switch is opened, the copy performed,
and then the switch is closed and detached. Alternately the input or output file can
be specified by an I/O switch name. Use either io_call or iox_ to attach the file
~';n~ tn tl-te- ;~"n"!lt.jn" nf ,.nn" f';le
,t-'J..IU'. """1..1."" .L.I.ly"',..,u,.I."'.&..& "'.I. "'''.t'J-...... .&'-''.

If the input file is specified by an I/O switch name and the switch is not open,
copy_file opens it for (keyed->sequential_input, performs the copy, and closes it. If
the switch is already open when copy_file is invoked, the opening mode must be
sequential_input, sequential_input_output, keyed_sequential_input, or
keyed_SeQuential_update. The switch is not closed after the copy has been performed.

The "next record" must be defined if neither -start nor -from is speciiied as the
absolute starting position within the input file. If the I/O switch is opened by
copy_file, the next record is the first record of the file; otherwise the next record is
the one at which the file is positioned when copy_file is invoked.

If the output file is specified by an I/O switch name and the switch is not open,
copy_file opens it for (keyed->sequential_output, performs the copy, and closes it. If
the switch is already open when copy _file is invoked, the opening mode must be
sequential_output, sequential_in put_output, keyed_sequential_output,
keyed_SeQuential_update, direct_output, or direct_update. (In update mode, output file
records with keys that duplicate input file records are rewritten.) The switch is not
closed after the copy has been performed.

The following control arguments are mutually exclusive: -from and -start; -to, -stop.
-count, and -all; -brief and -long.

3-169 AG92-()6

copy_file copy_file

NOTES ON UNSTRUCTURED FILES

This command operates by performing record I/O on structured files. If you want to
copy from/to an unstructured file, you can use the record_stream_ I/O module:

cpf -ids "record_stream_ -target vfile_ pathname" -osw OUT

which takes lines from the file specified. by pathname via the vfile_ I/O module,
transforms them into records via the record_stream_ I/O module, and copies them to
the I/O switch named OUT.

NOTES ON KEYED FILES

The command can copy a keyed sequential file to produce an output file that has
been restructured for maximum compactness as a keyed file or as though it were
sequential. By default it copies only records and does not place keys in the output
file. To copy the keys, use -keyed. When you select -keyed the input file must be a
keyed sequential file: Whether keys ate copIed ()root,cnOosecontrolargilnients-to
delimit the range of records to be copied (e.g.. -start, -stop). Copying is always
performed in key order.

If the keyed file has keys but no records (e.g., a dictionary file), the file, its keys,
and its associated record descriptors are copied.

EXAMPLES

To copy an entire file from an already-attached file to the segment in_copy, type

cpf -isw in -ods "vfi le_ in_copy"

To print the first 13 records of a tape file:

cpf -ct 13 -ids "tape_ansi_ 887677 -name TEST21 -ret all"
-ods "record_stream_ user_output"

To copy 13 records from an already-attached file to another already-attached file,
starting with the 56th record of the input file:

cpf -isw in -osw out -from 56 -ct 13

To copy records 43 through 78 from an already-attached file to an already-attached
file:

cpf -isw in -osw out -from 43 -to 78

To copy all but the first seven records from segment testdata.11 to an already-attached
file:

cpf -ids "vfi le testdata.ll" -osw out -fm 8

3-170 AG92-06

To copy an entire keyed sequential file with keys:

cpt -isw in -osw out -all -keyed

To copy 13 records of a keyed sequential file starting with the record whose key is
ASD66 to a sequential output file, the following line is typed. (No keys are copied.)

cpt -isw in -osw out -sr Aso66 -ct 13

To copy the records and keys from a keyed sequential file up to and including the
record whose key is bb"bb, type

cpt -keyed -isw in -osw out -sp "bb llllbb"

SYNTAX AS 'A COMMAND

copy_iac1_dir pathl path2 {. •• pathlN path2N}

FUNCTION

copies the initial access control list for directories (directory initial ACL) of one
directory to L~other, replacing Li.e current directory initial ACL if necessary. (See the
Programmer's Reference Manual for a description of initial ACLs.)

ARGUMENTS

path1 I
is the pathname of a directory. You can specify your working directory with
-workinLdirectory (-wd). The star convention is allowed.

paOO I
is the pathname of the target directory. You can specify your working directory
with -workinLdirectory (-wd). The equal convention is allowed.

ACCESS REOUIRED

You need status permission on path1 and modify permission on paOO.

3-171 AG92-06

11/86

SYNTAX AS A COMMAND

copy_iacl_seg pathl path2 { ••• pathlN path2N}

FUNCTION

copies a segment initial access control list (initial ACL) irom one directory to another,
replacing the current initial ACL if necessary. (See the Programmer's Reference
Manual for a description of initial ACLs.)

-ARGUMENTS

path 1
is the directory from which the initial ACL is to be copied. You can specify
youf--working -directer-yas -wor-kinL-directory (~wd). -You-can-- use-the star
convention.

path2
is the directory into which the initial ACL is to be copied. You can specify your
working directory as -wd. You can use the equal convention.

ACCESS REQUIRED

You need status permission on path1 and modify permission on path2.

Name: copy_names

SYNTAX AS A COMMAND

copy_names pathl {path2 .•• pathlN path2N}

FUNCTION

copies all the names of one entry--directory, segment, multisegment file (MSF), data
management (DM) file, extended entry, or link--to another.

ARGUMENTS

path 1
is the pathname of the entry whose names are to be copied. You can use the _
star convention.

3-172 AG92-06A

11/86

path2
is the pathname of the entry to which all names are copied. If you omit path2N,
names are copied into an entry in you working directory with the same entryname
as path1N. You can use the equal convention.

NOTES

All names are left on the original entry. The two entries cannot reside in the same
directory because duplicate names are not allowed in a directory.

Only one matching name per entry is used when resolving the equal name. This is the
first matching name on that entry (in the order returned by hcs_$star-> for which the
specified equal name exists.

Name: create, cr

SYNTAX AS A COMMAND

cr paths {-control_args}

FUNCTION

creates a storage system entry for an empty segment in any directory.

ARGUMENTS

paths
are pathnames of segments to be created.

CONTROL ARGUMENTS

-max_length N, -ml N
sets the maximum length of the created entry to N. Used with -msf. -ml sets
future MSF components to N words long.

-multisegment_file, -msf
creates an MSF with one empty component, instead of an empty segment When
you foresee that you need much storage, creating an MSF prevents the expensive
copying occurri~"1g when a segment is converted 10 an tv1SF.

-name STR, -nm STR
specifies an entryname STR that begins with a minus sign, to distinguish it from
a control argument

-rin!-.brackets N1 {N2 {N3}}, -rb N1 {N2 {N3}}
specifies the desired ring brackets for the created segment. N3 defaults to N2.
which defaults to Nl, which defaults to your validation level.

create

3-173 AG92-06A

create

ACCESS REQUIRED

You must have m access to a directory to create the segment, and you are given rw
to it.

,'VOTES

If there is a one-name segment with an identical name to the segment you are
creati..'lg, you are asked whether to delete the old segment. If it has multiple names.
the conflicting one is removed and a message is issued to you. In either case, since
the directory is being changed, you must also have modify permission f or the
directory.

All directories specified in paths must already exist; that is, only a single level of the
storage system hierarchy can be created with this command.

See the create_dir and link commands for the creation of directories and links.

EXAMPLES

The command line

cr first_class_mail >udd>Demo>IEBunin>alpha>beta

creates the segment first_class_mail in the working directory and the segment beta in
the directory >udd>Demo>IEBunin>alpha.

Name: create_area

SYNTAX AS A COMMAND

create_area virtual_pointer {-control_args}

FUNCTION

creates an area and initializes it with user-specified area management control
inf ormation.

ARGUMENTS

virtual_pointer
is a virtual pointer specifier to the area to be created (see Section 1 ior a
description of virtual pointers). If the segment already exists, the specified portion
is still initialized as an area.

3-174 AG92-06

CONTROL ARGUMENTS

-dont_free
is used during debugging to disable the free mechanism. This does not affect the
allocation strategy.

-extend
causes the area to be extensible. i.e .• span more than one segment This feature
should be used only for perprocess, temporary areas.

-id STR
specifies a string to be used in constructing the names of the components of
extensible areas.

-no_freeing
allows the area management mechanism to use a faster allocation strategy that
never frees.

-size N
specifies the octal size, in words, of the area being created or of the first
component, if extensible. If this control argument is omitted, the default size of
the area is the maximum size allowable for a segment. The minimum area is
forty octal words.

-zero_on_alloc
instructs the area management mechanism to clear blocks at allocation time.

-zero_on_free
instructs the area management mechanism to clear blocks at free time.

Name: create_data_segment, cds

SYNTAX AS A COMMAND

cds path {-control_arg}

FUNCTION

translates a create_data_segment (CDS) source program into an object segment A
listing segment is optionally created. These results are placed in your working
directory. This command cannot be called recursively.

3-175 AG92-06

ARGUMENTS

path
is the pathname of a CDS segment. If path does not have a cds suffix. one is
assumed; however the cds suffix must be the last component of the name of the
source segment.

CONTROL .ARGUMENTS

-list. -Is
produces a source listing of the CDS program used to generate the data segment
followed by object segment information (as printed by the print_link_info
command) about the actual object segment created.

NOTES

The source for create_data_segment programs is standard PL/I with the restriction that
the program include a call- to· ... the .. create=data:....segmenl_ subroutine. The
create_data_segment_ subroutine creates a standard object segment from PL/I data
structures passed to it as parameters. These data structures can be initialized with
arbitrarily complex PL/I statements in the CDS program.

Since the create_data_segment command invokes the PL/I compiler to first compile
the CDS segment. any errors that the compiler finds are reported by its standard
technique. If any errors with a severity greater than 2 occur. the CDS run is aborted
and an object segment is not created.

Name: create_dir, cd

SYNTAX AS A COMMAND

cd paths {-control_args}

FUNCTION

creates a specified directory branch in a specified directory or in your working
directory; that is. it creates a storage system entry for an empty subdirectory.

ARGUMENTS

paths
are pathnames of directories to be created.

3-176 AG92-06

CONTROL ARGUMENTS

-access_class SlR -acc STR
applies to each pathi and upgrades each directory created to the specified access
class. You can give the access class with either long or short names.

-account STR, -acct STR
specifies the volume quota account from which the created master directory is to
draw its quota, where STR must match an existing quota account on the given
logical volume. If omitted, an account that matches the owner User_id is used (if
any). You can supply -account only if you select -logical_volume.

-dir_quota N
specifies the directory quota to be given to the directory when it is created,
where N must be a positive integer and applies to each pathi. If omitted. the
directory is given zero directory quota.

-logical_volume VOL, -Iv VOL
specifies that each directory created is to be a master directory whose segments
are to reside on the logical volume named VOL.

-name STR, -nm STR
specifies an entryname STR that begins with a minus sign. to distinguish it from
a control argument, or consists solely of white space.

-owner USER_ID. -ow USER_ID
specifies the owner of the created master dire.ctory. You can supply -owner only
if you select -logical_volume. (Default: your User_id)

-quota N
specifies the segment quota to be given to the directory when it "is created. where
N must be a positive integer and applies to each pathi. You must provide -quota
if you use either -access_class or -logical_volume. If omitted, the directory is
given zero segment quota.

-rin~brackets Nl {N2} , -rb Nl {N2}
specifies the ring brackets of the created directory. N2 defaults to Nl. which
defaults to 7.

ACCESS REQUIRED

You must have a access to a directory in order to create a subdirectory in that
directory.

The -account and -owner control arguments are allowed only for volume administrators
(i.e.. only those who have e access to the volume).

3-177 AG92-o6

NOTES

If you specify a directory or segment quota and the directory you are creating is not
a master directory. the containing directory must have sufficient directory or segment
quota to move quota to the directory being created (see move_quota).

If the creation of a new subdirectory introduces a duplication of names within the
directory and if the old entry has only one name. you are asked whether to delete
the old entry. If the old entry has multiple names. the conflicting name is removed
and a message is issued to you. You are given sma access on the created subdirectory.

All superior directories specified in pathi must already exist. That is. you can only
create a single level of storage system directory hierarchy in a single invocation of
create_dire

To create a master directory. you must have a quota account on the logical volume
with sufficient volume quota to create the directory. If you are not a volume
administrator. you can create a master directory only if the administrator has created a
quota account that matches your User_ide A master directory must always have a
nonzero quota; therefore you must always give -quota when creating a master
directory. You can create a master directory even though the logical volume is not
mounted.

Each upgraded directory must have a quota greater than zero and must have an access
class that is greater than its containing directory. The specified access· class must also
be less than. or equal to. the maximum access authorization of the process.

When you supply -access_class. the command does not create a new directory through
a link. Creating through links is allowed only when the access class of the containing
directory is taken as the default.

See the create and link commands for the creation oi segments and links.

EXAMPLES

The command line

cd sub >my_dir>a1pha>new

creates the directory sub immediately inferior to your current working directory and
the directory new immediately inferior to the directory >my _dir>alpha. The directories
my _dir and alpha must already exist. Both directories are assigned the access class of
their containing directory.

3-178 AG92-06

The command line

cd subA -access_class a,cl,c2 -quota 5

creates the directory subA, immediately inferior to your working directory. with an
access class of a.cl,c2 and a quota of five pages. (The access class names a. cl, and
c2 used in the example represent possible names defined for your site. See
print_auth_names for details on access class names.)

The command line

cd subB -logical_volume volz -quota 100

creates a master directory subB immediately inferior to your working directory.
Segments created in this new directory will reside on the logical volume named volz.
The directory subB is given a quota of 100 records.

SYNTAX AS A COMMAND

FUNCTION

creates an unpopulated data management (DM) file for use with Multics data
management (see the Programmer's Reference 1v1anuaI). Files created in this manner
would be used primarily for test purposes or in applications calling the file_manager_
subroutine directly.

ARGUMENTS

path
is the pathname of the DM file to be created.

CONTROL ARGUMENTS

-concurrency, -conc
provides automatic concurrent access protection to a protected OM file by
enforcing locking conventions on get and put operations to the file (see ·'Notes·').
(Default)

-no_concurrency. -nconc
turns concurrency protection off for a protected OM file. saving on overhead
when locking is unnecessary (see "Notes").

3-179 AG92-06

11/86

-no_rollback, -nrIb
turns the rollback capability off for a protected OM file, saving on overhead
when rollback is unnecessary (see "Notes").

-protected. -prot
creates a protected OM file. which means the file is entitled to the protection
features provided by the integrity services of data management You can access a
protected DM file only within the context of a transaction. (See "Notes. It)
(Default)

-rins-brackets W {R}, -rb W {R}
sets the write ring bracket to Wand the read ring bracket to R. If you don't
specify the read ring bracket. it defaults to the value given for the write ring
bracket Both Wand R must be greater than or equal to your validation level.

-rollback. -rIb
provides an automatic rollback capability for a protected OM file by logging
before images of modifications made to the file. These images are used in the
event of transaction. process, or system failure to restore the file to its original
state. (See "Notes.") (Default)

-unprotected. -unprot. -not_protected. -nprot
creates an unprotected DM file, without the benefit of integrity services. You can
access an unprotected DM file outside a transaction. (See "Notes. n)

ACCESS REQUIRED

You need sma access on the directory in which the OM file is created and s access
on the directory containing that directory.

NOTES

The -unprotected control argument is mutually exclusive with -concurrency,
-no_concurrency. -no_rollback, -protected. and -rollback. If you use two mutually
exclusive control arguments. the rightmost option in the command line takes
precedence.

This command is part of the command level interface to Multics data management.

3-180 AG92-06A

cross_ref erence cross_ref erence

11/86

Name: cross_reierence, crei

SYNTAX AS A COMMAND

cref library_descriptions {-control_args}

FUNCTION

creates a cross-reference listing of any number of object programs. The listing
contains information about each object module encountered, including the location of
each program, its entry points and definitions, any synonyms. and which other modules
encountered reference each entry point or definition. It also optionally supplies a
cross-reference listing of include files used by the modules encountered.

3-180.1 AG92-06A

This page intentionally left blank.

11/86 AG92-06A

cross_ref erence cross_ref erence

ARGUMENTS

library_descriptions
can be chosen from the following:

paths
are the pathnames of segments to be examined and cross-referenced. The star
convention is allowed.

-library library_name {-all} paths. -lb library_name {-all} paths
specifies that all modules represented by paths are treated by the cross-referencer
as if they were in a common library of that name. The library_name
argument can be any identifier you choose. If -library contains -all. all the
module names encountered are considered external (see "Resolving References.")
This control argument is generally used only for cross-references of the
Multics hardcore libraries.

CONTROL ARGUMENTS

-brief. -bf
suppresses nonfatal error messages. It does not affect the reporting of error
messages to the output file.

-first
specifies. with -input_file. that once any instance of a particular module has been
located. the cross-referencer need not search the remaining directories for other
instances of modules with the same name. If omitted. the cross-referencer
searches an libraries in the search list for each moduie name suppiied.

-include_files. -icf
cross-references include files used by all modules examined.

-input_file path. -if path
uses a control file describing the modules to be cross-referenced instead of the
library descriptions. If the crl suffix is not part of the supplied filename. it is
assumed. If -input_file is given. no library descriptions are allowed.

-line_length N. -11 N
formats lines in the output file to the given line length. (Default: 132)

-output_file path. -of path
creates the cross-reference list in a segment of the specified name. If the
cross-reference suffix is not part of the supplied filename. it is assumed. If
-output_file is not selected. but -input_file is, the output file takes its name
from the input file. with the suffix ".crossref" replacing the suffix ".crI";
otherwise, the output file is named "crossref.crossref".

3-181 AG92-D6

cross_ref erence

-short, -sh
does not include in the output referenced modules that are not included in the
scope of any library_descriptions. With -short, the output reflects only the
interrelationships among the modules in the libraries specified.

MODULE EXAMINATION

Module examination is performed in two' passes: the first defines all the segment
names, synonyms, and definitions; the second examines external references and attempts
to resolve them with existing definitions.

Segments encountered fall into four classes: nonobject. bound segments, stand-alone
modules, and archives.

When a nonobject segment is encountered, a warning message is printed and the
segment is included in the results of the cross-reference.

When a bound segment is found, a warning message is printed and the segment is
ignored. Bound segments are useless to the cross-referencer. since information
necessary to determine which components use which external reference links is no
longer available due to the binding process. Use instead the object archive from which
it was bound.

When a stand-alone segment is met, it is analyzed for entry points. definitions, and
external references. All additional names on the segment are entered as synonyms for
the module. This information is then included in the results of the cross-reference.

When an archive is encountered, each component is analyzed for entry points.
definitions, and external references. If a bind file exists, synonyms for each component
are derived from "synonym" statements in the bind file. when they exist. This
information is then inciuded in the results of the cross-reference.

Modules are also identified by the segment in which they are found (either themselves.
for a stand-alone segment, or the containing archive, for an archive) and by the
library_name of the directory in which they are found. If the directory is given
without a library_name, the pathname of the directory is used as the library_name.
This allows having multiple occurrences of segments with the same name, as long as
they differ by at least one of these identification criteria.

RESOLVING REFERENCES

When a module is examined by the cross-referencer, its name and synonyms are
classified as "internal" or "external" by the following criteria:

1. If the module is stand alone, its name and synonyms are external.

2. If the module is archived and the library description contained -all . its
name and all its synonyms are considered external.

3-182 AG92-()6

cross_reference cross_reference

3. If the module is archived and the library description did not contain -all, its
name and each of its synonyms are external only if they appear in the
"Addname:" statement of the bind file. If no bindfile exists. the name and
synonyms are considered internal.

The cross-referencer tries to resolve external references on a best-match basis by using
the following criteria:

1. If the reference can be satisfied by a definition in the same module. that
definition is used.

2. If the referencing module is part of a bound segment and can be satisfied by
a definition in the same bound segment, that definition is used.

3. If the reference can be satisfied by an external definition in the same
library_name. that definition is used.

4. Otherwise. the first external definition found that satisfies the reference is
used. If more than one such definition exists. a warning message is printed.

FORMAT OF A DRIVING FILE

If -input_file is given. the cross-referencer takes its input from a special file.

The first lines of the file must contain the names of one or more directories to be
searched. They are specified in the following manner:

-1 ibrary:
pathname 1
pathname_2

(OR -library -all:)
1 i brary_name_a
library.;.name_b

Each pathname_i specifies a directory to be searched. When present, a library name
(which can contain spaces) is used to describe the preceding directory name. (See
"Module examination" above.) The tokens "-wd" or semicolon ends the search list

The next information in the file is a list of the segments to be examined. They must
appear one to a line.

If you wish to defhle explicitly synonyms for any modules that would not otherwise
be generated (e.g., a nonapparent reference name by which a segment is sometimes
initiated), they can be included in this section with one or more lines of the form:

modulename synl syn2 •.• synN

These lines do not by themselves cause the cross-referencer to search for the module
"modulename", since it may not be a freestanding segment Any synonyms defined in
this manner are considered external.

3-183 AG92-{)6

cross_ref erence

A file can consist of several repetitions of the format described above; that is, a
search list, segment names, another search list. more segment names, etc. Whenever a
new search list is found, it replaces the old search list If a driving file is to be
used, make it consist of multiple occurrences of a one-directory search list followed
by the segments contained in that directory.

Here is example of a centrol file constructed to cross-reference a student subsystem:

-library:
>udd>Class>systemdir>object CLASS SUBSYSTEM;

class_login_responder.archive
class_tests.archive
student_grades_database
audit_procedure
class_uti 1 ities.archive
unallowed_compiler_stub fortran pll
unallowed_compiler_stub

SPECIAL CASES

Segments with unique names and with single-digit last components are ignored, since
these are conventions used by the system library tools to denote segments to be
deleted shortly.

Archives whose names are identical with the exception of a different numeric
next-to-Iast component are considered the same archive.

Definitions or entry points in archive components that masquerade as segment names
by an added name on the bound segment. without being defined as a synonym fOT

their containing component, are not cross-referenced satisfactorily.

INCLUDE FILES

The cross-reference listing of include files, when requested, is appended to the regular
output of the cross-referencer. Each include file met is classified by its entryname
and its date/time modified. This ensures that modules that use different versions of
the same include file are apparent.

EXAMPLES

The following command produces a cross_reference listing of the Standard Service
System in the file "standard.crossref":

cref -library STANDARD >ldd>sss>o>** -of standard

To produce a cross-reference listing of the hard core library, you can use

cref -library HARD -all >ldd>h>x>* >ldd>h>o>*.archive -of hard

3-184 AG92-o6

cross_ref erence

OUTPUT EXAMPLE

Entries are separated by dashed lines in the output listing. The following is a sample
entry:

----------*****bound_x_ in SSS *****---------------
sample_segname SYNONYM: one syn, another_syn
one_entrypoint program_a program_b
second_entrypoint program_a program_c
unused entrypoint
undefined_ent (1)

The entry shown is for segment "sample_segname", which is a component of bound_x_
in the library specified as SSS. It possesses three entry points: "one~entrypoint".
"second_entrypoint", and "unused_entrypoint". The information shows that
"sample_segname$one_entrypoint" is called by module "program_a" and module
"program_b". The question mark after entry point "undefined_ent" signifies that this
entry point is an implicit definition: the module "program_d" refers to
"sample_segname$undefined_ent". but that entry point does not exist (A diagnostic is
printed when this situation is encountered.)

All error messages produced during the run, including warning messages that may not
have been printed at the terminal because of -brief, are -appended to the end of the
output file for reference.

Name: cumulative_page_trace, cpt

SYNTAX AS A COMMAND

cpt command_line {-control_args}

FUNCTION

accumulates page trace data so that the total set of pages used during the invocation
of a command or subsystem can be determined. The command accumulates data from
one invocation of itself to the next. The output is in tabular format showing all pages
that have been referenced by your process. You can obtain the same trace as that
produced by page_trace.

ARGUMENTS

command_line
is a character string to be interpreted by the command processor as a command
line. If this character string contains blanks, enclose it in quotes. All procedures
invoked as a result of processing this command line are metered by
cumulative_page_trace.

3-185 AG92-D6

CONTROL ARGUMENTS

-count. -ct
prints the accumulated results. gIvIng the number of each page and the number of
faults for each page. Do not use -count with -print or -total (see "Notes"
below).

-flush
clears primary memory before each invocation of the command line and after
each interrupt. This helps you determine the number of page faults but increases
the cost.

-interrupt N. -int N
interrupts execution every N virtual CPU milliseconds for page fault sampling.
(Def ault: 500 CPU milliseconds)

-long, -lg
produces output in long format. giving full pathnames.

-loop N
calls the command to be metered N times.

-print. -pr
prints the accumulated results. giving the number of each page referenced. Do not
use -print with -count or -total (see "Notes. tt)

-prin t_linkage_f aul ts
prints all accumulated linkage faults and calls the hcs_$make_ptr entry point

-reset, -rs
resets the table of accumulated data.. If the table is not reset. data from the
current use of cumulative_page_trace is added to that obtained earlier in the
process.

-short, -sh
formats output for a line length of 80.

-sleep N
waits for N seconds after each call to the command being metered.

-temp_dir path, -td path
creates temporary segments, used for flushing main memory. in the directory
identified by path. Use -temp_dir with -flush. (Default: to create them in the
process directory)

-timers
includes all faults between signal and restart

3-186 AG92-()6

cumulative_page_trace

-total. -tt
prints the total number of page and segment faults and the number of pages
referenced for each segment Do not use -total with -count or -print (see
"Notes.")

- trace_linkage_f aul ts
accumulates linkage. page. and segment fault information.

-trace path
writes the trace on the segment "path" using an I/O switch named "cpt.out" (see
"Examples"); cumulative_page_trace attaches and detaches this switch.

NOTES

This command operates by sampling and reading the system trace array aiter
invocation of a command and at repeated intervals.

At least one of three generic operations must be requested. They may all be combined
and. if so. are performed in the following order: resetting the table of accumulated
data. calling the command to be metered. applying the specified control arguments,
and printing the results in the specified format. If 500 milliseconds is too long.
messages indicate that some page faults may have been missed; choose then a smaller
value, but the cost of a smaller value is high and may cause additional side effects.
If the command or subsystem to be metered includes the taking of CPUT interrupts,
then supply -timers, which includes some of the page faults of the metering
mechanism as well.

You can give only one of -count. -print. or -total. Each of these control arguments
produces printed output in a different iormat. If you want more than one format.
invoke the command once for each format.

For -flush to operate correctly, the directory used for temporary segments must have
sufficient quota for as many pages as there are in main memory.

EXAMPLES

The command line

cpt "pll test" -interrupt 400 -trace trace_out

calls the pH command to compile the program named "test." requesting an interrupt
every 400 milliseconds to obtain page trace information. Trace information is placed in
a segment named "trace_out."

The command line

cpt "list -pn >udd>Multics" -loop 2 -sleep 10

calls the list command twice and sleeps for 10 seconds between calls.

3-187 AG92-()6

The command line

cpt -print

prints the accumulated results of previous metering. The command line

cpt !Ideo ls" -trace cpt. trace

produces the following output:

LINKAGE FAULT BY
RESOLVED LINK TO
MAKE-PTR-CALL

2.05 674
3. 14 256

10. 18
5.18 310

bound_meterin9_: cpt l21 36
bound_library_l_$cp

7 s

where the first column is the event, what is happening (if it is blank. it means that
there is a page fault); the second is the CPU time; the third, the segment number; the
fourth, the page number; and the fifth, the name of the segment

SYNTAX AS A COMMAND

FUNCTION

compiles a terminal type file (TIF) into a terminal type table (TIT) for installation.

ARGUMENTS

path
is the pathname of the TIF to be compiled. It must have the ttf suffix. The
resulting TIT is placed in your working directory; its entry name is the same as
the entryname of the TIF with the ttt suffix added.

CONTROL ARGUMENTS

-brief, -bf
prints all error messages produced by cv_ttf in short form.

-long. -lg
prints all error messages produced by cv_ttf in long form.

3-188 AG92-06

-severity N, -sv N
does not write error messages whose severity is less than N (where N is 0, 1, 2,
3, or 4) to the user_output switch. If not given, a severity level of 0 is assumed;
i.e., all error messages are written to the user_output switch. (See "Notes on
Severity Values. n) .

NOTES

If neither -brief nor -long is selected, the first instance of a given error produces a
long message and all subsequent instances of that error produce short messages.

NOTES ON SEVERITY VALUES

This command associates the following severity values to be used by the severity active
function:

Value
o
1
2
3
4
5

Name: date

Meaning
No compilation yet or no error
Warning
Correctable error
Fatal error
Unrecoverable error
Could not find source

SYNTAX AS A COMMAND

date {time_string} {-control_arg}

SYNTAX AS AN ACTIVE FUNCTION

FUNCTION

returns a date of the form "mm/dd/yy" (e.g.. "12/23/82"). The format string to
produce this is "Amy/Adm/Aye".

ARGUMENTS

time_string
indicates the date about which inf ormation is desired. If you supply no
time_string, the current date is used. The time string is concatenated to form a
single argument even if it contains spaces; you need not quote it (See Section 1
for a description of valid time_string valUes.)

date

3-189 AG92-06

date

11/86

CONTROL ARGUMENTS

-zone STR
STR specifies the zone that is to be used to express the result (Default: the
process default)

NOTES

Use the print_time_defaults command to display the default zone. Use the
display_time_info command to display a list of all acceptable zone values.

Due to exec_coms, etc., that have been built around the expected date format, this
command does not honor the process date format (set by set_time_default). You are
encouraged to use "clock date" instead of date to get the proper default handling.

Name: date_compiled, dtc

SYNTAX AS A COMMAND

dtc path {-control_arg} {components}

SYNTAX AS AN ACTIVE FUNCTION

[dtc path {-controi_arg} {components}]

FUNCTION

prints the date and time compiled and the compiler identifier for an object file or an
archive of object segments. For a bound object file, it prints the date and time
compiled for each component. The active function returns the first line of output that
would be printed if you invoked it as a command.

ARGUMENTS

path
is the pathname of an object segment, bound object segment, bound object
multisegment file (MSF), or an archive of object segments.

components
are names of components in a bound object file or archive of object segments. If
you supply component names, information on only these components is listed.

CONTROL ARGUMENTS

-brief, -bf
lists only the date and time compiled (see "Examples").

3-190 AG92-06A

11/86

-long, -lg
lists the date and time compiled, the file name! your User_id, and the long form I
of the compiler identifier (see "Examples").

NOTES

If an archive is listed! the bind file is ignored.

If you give neither control argument! dtc lists the date and time compiled! the file I
name! your User_id! and the short compiler identifier (see "Examples").

EXAMPLES

To check the compilation date of a private version of the list command in your
working directory, type

dtc list -bf
04/11/83 0922.2

To check information on the latest compilation of a Multics-system-installed command
that is unbound, such as demo_command, type

dtc >system_library_standard>demo_command
03/09/83 i615.2 demo_command ARomanov.SysMaint.a PL/i

To get compilation information on an entire bound object segment that is part of the
standard M ultics system. type

dtc >sss>bound binder - -
Bound 10/26/83 1337.4 bound_binder_ ARomanov.SysMaint.a binder
07/26/82 1048.4 bind ARomanov.SysMaint.a PL/I
10/26/83 1328e2 bx_ ARomanov.SysMaint.a cds

12/27/82 1354.3 old_make_bindmap_ BDerek.SysMaint.a PL/I

To get detailed information on one component of a bound object segment (in this
case, bind in bound_binder->, type

dtc >sss>bound_binder_ -19 bind

07/26/83 1048.4 bind ARomanov.SysMaint.a Multics PL/I
Compiler, Release 25q, of May 22, 1983

3-191 AG92-06A

Name: date_deleter

SYNTAX AS A COMMAND

FUNCTION

deletes segments and multisegment files (MSFs) older than a specified number of days
or older than a given date-time.

ARGUMENTS

dir_path
is the pathname of the directory in which the deletions are to occur; dir_path
can be -workinLdirectory (-wd) to indicate the working directory.

cutoff
is a positive integer number of days. If it is an integer N, files with a date
more than N days old are deleted; if it is a date-time DT, files with a date
earlier than DT are deleted. (See Section 1 for a description of valid DT valUes.)

star_names
are the optional starnames of files to be deleted. If you supply none, all files
older than the specified number of days are deleted; otherwise only files matching
one or more of the starn ames, and older than the specified number of days, are
deleted.

CONTROL ARGUMENTS

-absolute_pathname, -absp
prints the entire pathname of the entnes listed by -long, -query _all, and
-query_each. (Default: to print entrynames)

-all, -a, -branch, -br
deletes directories, segments, and multisegment files.

-date_time_contents_modified, -dtcm
uses the date/time value specified in the dtcm attribute to calculate
date. (Default)

-date_time_dumped, -dtd
uses the dtd of each entry instead of the dtcm.

-date_time_entry _modified, -dtem
uses the dtem of each entry instead of the dtcm.

-date_time_used, -dtu
uses the dtu of each entry instead of the dtcm.

3-192

deletion

AG92-()6

-directory. -dr
deletes directories only.

-entryname, -etnm
prints only the entrynames of the files listed by -long. -query_all. and
-query_each rather than the entire pathname. (Default)

-file. -f
deletes segments and multisegment files. (Default)

-long, -lg
prints a message of the form "Deleted <type> <path>" for each entry deleted.

-multisegment_file. -msf
multisegment files only.

-name STR. -nm STR
specifies a starnarne STR that begins with a minus sign. to distinguish it from a
control argument

-query_all. -qya
lists all entries to be deleted and queries whether they should be deleted or not

-query_each. -qye
queries for every entry to be deleted.

-segment. -sm
deletes segments only.

EXAMPLES

Tne command line

date_deleter >ldd>old 7

deletes all files in >ldd>old last modified more than a week ago.

The command line

date_deleter >udd>Proj>listing_pool 2 **.list

deletes all listing files in the directory >udd>Proj>listins-pool that are more than two
days old.

3-193 AG92-06

Name: date_time

SYNTAX AS A COMMAND

SYNTAX AS AN ACTIVE FUNCTION

[date_time {time_string} {DT} {-control_args}]

FUNCTION

returns a date and time value for a specified date-time or the current date-time
consisting of a date, a time from 0000.0 to 2359.9, a time zone, and a day of the
week. The date and time value is returned as a single quoted string of the form
"mm/dd/yy hhmm.m zzz www" (e.g., "06/01/84 0840.9 mst Fri"). The format string
to produce this is "Amy / Adm/ Ayc AHdA99v.9MH AxxxxzaAxxxda".

ARGUMENTS

time_string
indicates the date_time about which information is desired. If you supply no
time_string, the current date and time are used. The time string is concatenated
to form a single argument even if it contains spaces; you need not quote it (See
Section 1 f or a description of valid time_string values.)

CONTROL ARGUMENTS

-language STR, -lang STR
STR specifies the language in which month name, day names, and zone names are
to be expressed. (Default: the process default)

-zone STR
STR specifies the zone that is to be used to express the result. (Default: the
process def aul t)

NOTES

Use the print_time_defaults command to display the default language and zone. Use
the display_time_info command to display a list of all acceptable language and zone
values.

Due to exec_corns, etc., that have been built around the expected date_time format,
this command does not honor the process date_time format (set by set_time_default>.
You are encouraged to use "clock date_time" in place of date_time to get the proper
default handling.

3-194 AG92-D6

Name: date_time_after, dtaf

SYNTAX AS A COMMAND

dtaf A B {-control_arg}

SYNTAX AS AN ACTIVE FUNCTION

[dtaf A B {-control_arg}]

FUNCTION

returns "true" if the date-time A is later than the date-time B.

ARGUMENTS

A and B
indicates the date and time about which information is desired (see Section 1 for
a description of valid time_string values).

CONTROL ARGUMENTS

-date, -dt
compares only the date portions of A and B as represented in GMT. If the day I
that A falls on is after the day that B falls on, the value returned is "true".

Name: date_time_before, dtbe

SYNTAX AS A COMMAND

dtbe A B {-control_arg}

SYNTAX AS AN ACTIVE FUNCTiON

[dtbe A B {-control_arg}]

FUNCTION

returns "true" if the date-time A is earlier than the date-time B.

ARGUMENTS

A and B
indicates the date and time about which information is desired (see Section 1 for
a description of valid time_string values).

3-195 AG92-06

CONTROL ARGUMENTS

-date, -dt
compares only the date portions of A and B as represented in GMT. If the day
that A falls on is before the day that B falls on, the value returned is "true".

SYNTAX AS A COMMAND

dteq A B {-control_arg}

SYNTAX AS AN ACTIVE FUNCTION

[dteq A B {-control_arg}]

FUNCTION

returns "true" if the date-time strings A and B are equivalent

ARGUMENTS

A and B
indicates the date and time about which information is desired (see Section 1 for
a description of valid time_string values).

CONTROL ARGUMENTS

-date, -dt
compares only the date portions of A and B as represented in GMT. If A and B
fall on the same day, the value returned is "true".

Name: date_time_interval, dti

SYNTAX AS A COMMAND

dti {time_stringl} time_string2 {-control_args}

SYNTAX AS AN ACTIVE FUNCTION

[dti {time_stringl} time_string2 {-control_args}J

3-196 AG92-06

date_time_in terval

FUNCTION

returns the difference between two date values, relative to the first, in offset terms:
"0 yr 0 mo --2 da -6 hr 0 min -4.64 sec". You are able to specify that the result be
only in terms of certain units.

ARGUMENTS

time_string1
is the beginning of the interval. If not specified, the current time is used (see
"Notes").

time_string2
is the end of the interval. If the end is earlier than the beginning, all numbers
are preceeded by a minus sign (see "Notes").

CONTROL ARGUMENTS

-brief, -bf
specifies that the units displayed are in the abbreviated form (Default).

-fractional_digits {N}, -fd {N}
specifies the maximum number of fractional digits to be included on the smallest
unit The value being formatted is rounded to the number of digits specified. All
trailing zeros are removed and then the decimal point if it is last N can't
exceed 20. If you supply no N, the maximum is used. (Default 2)

-zero_units, -zu
specifies that all units are output even if their value is zero (e.g., "2 da 0 hr 0
min 4.2 sec".

-language STR, -lang STR
STR specifies the language in which the result is to be expressed. This can be in
any of the languages known to the date / time system. If STR is "system_lang",
the system default is used. If you choose no -language or it is present with STR
being "", the per-process default is used. Use the display_time_info command to
obtain a list of acceptable language values.

-long, -lg
specifies that the units displayed are in the singular/plural form.

-no_zero_uni~, -nzu
specifies that any unit that has a value of zero are not included in the output;
however if all units are zero, the smallest is shown with the value of "0".
Example: "2 da 4.2 sec". (Default)

3-197 AG92-D6

-units STRs
specifies that the result is to be expressed in terms of a given set of units. All
arguments following -units on the command line are taken as the set of units to
use; therefore make -units, if given, the last control argument You can enter the
units in any language available on the site and in any order. All units, however,
must be in the same language. These are the units that you can specify: year.
month, week, day. hour, minute, second, and . microsecond. The output appears in
that order.

NOTES

When you specify no units, this set is used: years, months. days. hours, minutes.
seconds. A default result could look like this: "-2 da -6 hr -4.05 sec"; but if the
arguments given were: -fd -units hr min, the same interval could be: -54 hr
-0.0676252166666666666 min. Note that there is a truncation in the first instance to
two decimal places with the corresponding loss of accuracy.

See Section 1 for a description of valid time_string values.

SYNTAX AS A COMMAND

dtv time_string

SYNTAX AS AN ACTIVE FUNCTION

FUNCTION

returns "true" if the argument is a valid date-time string. "false" otherwise.

ARGUMENTS

time_string
is a string that is checked. Since the concatenation of all the arguments is
checked. the argument need not be quoted if it contains white space. (See Section
1 for a description of valid time_string valUes.)

3-198 AG92-06

EXAMPLES

dtv foo

returns IIfalse".

format_line [dtv 12/31/83 8pm]

returns "true".

Name: day

SYNTAX AS A COMMAND

day {time_string} {-control_arg}

SYNTAX AS AN ACTIVE FUNCTION

[day {time_string} {-control_arg}]

FUNCTION

returns a one= or two-digit number oi a day oi the month, irom 1 to 31. The
format string to' produce this is "AZ9dm".

ARGUMENTS

time_string
indicates the day about which information is desired. If you supply no
time_string, the current day is used. The time string is concatenated to form a
single argument even if it contains spaces; you need not quote it. (See Section 1
for a description of valid time_string values.)

CONTROL ARGUMENTS

-zone STR
STR specifies thp, zone that is to
process def aul 1)

NOTES

be used to express the {Default: the

Use the print_time_defaults command to display the default zone. Use the
display_time_info command to display a list of all acceptable zone values.

day

*

3-199 AG92-06

day_name

Name: day_name

SYNTAX AS A COMMAND

SYNTAX AS AN ACTIVE FUNCTION

FUNCTION

returns the full name of a day of the week for a specified date or the current date.
The format string to produce this is ""dn".

ARGUMENTS

time_string
indicates the day_name about which information is desired. If you supply no
time_string. the current day_name is used. The time string is concatenated to
form a single argument even if it contains spaces; you need not quote it. (See
Section 1 for a description of valid time_string valUes.)

CONTROL ARGUMENTS

-language STR. -lang STR
STR specifies the language in which month name, day names. and zone names are
to be expressed. (Default: the process default)

-zone STR
STR specifies the zone that is to be used to express the result. (Default: the
process default)

NOTES

Use the print_time_defaults command to display the default language and zone. Use
the display_time_info command to display a list of all acceptable language and zone
values.

3-200 AG92-06

debug

Name: debug, db

SYNTAX AS A COMMAND

debug

FUNCTION

is an interactive debugging aid to be used in the Multics environment. It allows you
to look at or modify data or code. You can stop execution of a program and
examine its state by inserting "breakpoints" in the program before and/or during
execution. A concise syntax for user requests, coupled with a complete system of
defaults for unspecified items. allows you to make many inquiries with little effort
Symbolic references permit you to retreat from the machine-oriented debugging
techniques of conventionai systems and to refer to variables of interest directly by
name.

The debug command uses a segment in the home directory to keep track of
information about breaks. This segment is named Person_id.breaks. where Person_id is
your login name. The break segment is created if not found. If the segment cannot
be created. the break features of debug are disabled and unusable.

Users who do not need the sophisticated machine level debugging provided by this
command should refer to the probe command in this manual.

With the debug command you can

Look at data or code;

Modify data or code;

Set a break;

Perform (possibly nonlocaI) transfers;

Call procedures;

Trace the stack being used;

Look at procedure arguments;

Control and coordinate breaks;

Continue execution after a. break fault;

Change the stack reference frame;

Prin t machine registers;

Execute commands.

debug

3-201 AG92-Q6

debug

These functions are provided by two types of debug requests: data requests and
control requests. The first five functions above are performed by data requests; the
others. by control requests. Multiple debug requests (either data or control) can be
placed on a line separated by semicolons (;).

NUMBER REPRESENTATION CONVENTIONS

Debug uses both octal and decimal' representation of numbers. In general,
machine-dependent numbers such as pointers. offsets, and registers are assumed to be
octal, while counting arguments (e.g., specifying a source line number. printing the
first 20 lines) and variables referenced by name are assumed to be decimal.

A decimal default can be changed to octal by preceding the number with the escape
sequence "&0". An octal default can be changed to decimal by preceding the number
with "&d".

Example

x = 8

$q 77

I test I &a19

&a19,s8

DAT A REQUESTS

Descri ption

assign the value 8 to the program variable x. Program variables
ref erenced by name are assumed to be decimal; if octal
representation is preferred. type:

x = &010

assign the value of 77 to the q-register. Register values are
machine dependent and assumed to be octal; if decimal representation
is preferred. type:

$q = &d63

print line 19 of the source segment for test.

print 8 source lines, beginning at line 19.

Data requests consist of three fields and have the following format:

<generalized address> <operator> <operands>

The generaiized address defines the actual data or code of interest. It is ultimately
reduced to segment number and offset by debug before being used. The operator field
indicates to debug which function to perform, e.g., print or modify the data
ref erenced by the generalized address. The operands field mayor may not be
necessary, depending on the operator. When these fields are specified. they are
separated by blanks or commas.

debug

3-202 AG92-06

debug

When debug decodes a data request, it parses the generalized address and generates a
pointer to the data being referenced. This pointer, called the working pointer. is
changed whenever the generalized address is changed. It points into either the working
segment, its stack frame, or its linkage section. The actual segment depends on the
most recent specification in a generalized address. The form for a generalized address
is as follows:

/<segment name>/<offset><segment ID><relative offset>

where each of the four fields is optional. The segment name is either a pathname, a
reference name, or a segment number, and defines what is called the working segment.
The segment ID specifies which of the data bases associated with the working segment
is to be used in setting the working pointer. The segment ID can be one of the
following:

&s refers to the stack frame if the working segment is a procedure segment with
an active stack frame.

&1 refers to an active linkage section (i.e., one with an entry in the linkage offset
table (LOT) for your ring).

&t refers to the working segment itself.
&a refers to the source program for the working segment
&p refers to the parameters of an active invocation of a procedure.
&i refers to an active internal static section (i.e., one with an entry in the internal

static offset table (I SOT) for your ring).

The offset field is used as an offset within the segment referenced by the working
pointer. For the working segment, this offset is relative to the base of the segment.
If the working pointer points into an active stack frame, the offset is reiative to the
base of that frame. If the working pointer points into an active linkage section, the
offset is relative to the beginning of that linkage section.

The offset can be either a number or a symbolic name. If a symbolic name is
specified, a symbol table must exist for the working segment. See the translator
commands for descriptions of symbol table creation. If a symbolic name begins with a
numeric character, the escape characters &n (f or name) must precede the name. to
avoid interpreting the name as a number. For example:

/test/ &n10&t

can be used in a debug request to specify the location associated with FORTRAN line
number (i.e., label) 10.

The relative offset field allows you to relocate the working pointer by a constant
value or register. For example, if you wish to reference the fourth word after the
stack variable i, you could use

/test/i+4

as the generalized address. The relative offset can also assume the value of a register.
For example, if the a-register contains the value 4 at the time of a break, then:

debug

3-203 AG92-06

debug

/test/l00&s$a

sets the working pointer to offset 104 from the base of the stack frame. It is
important to note that a + sign is not present when a register is used. (See
"Registers" below.)

The three most common values for the segment In field are &t, &s, and &1. These
designate that the working pointer is to refer to, respectively, the working segment
itself, its active stack frame, or its active linkage section. In addition, two other
possible values of segment In allow alternate methods of ref erring to locations in
either the working segment or its stack frame.

A segment In of &a refers to the ASCII source program for the working segment
Associated with this segment ID is a decimal line number, which must immediately
follow the &a. This line number is used to generate a working pointer to the first
word of code compiled for that line. A relative offset can follow the line number.
Note that the line-number /code-Iocation association can only be determined if a
symbol table exists for the working segment This example:

/test_seg/ &a219+36

generates a working pointer that points to the thirty-sixth (octal) word in the text
after the first word of code generated for line 219 in the source for the segment
test_seg. If an offset field is given before &a, the offset is ignored. The offset of
the working pointer is generated solely from the line number and the relative offset

A segment In of &p refers to the parameters of an active invocation of a procedure.
If the current defaults specify an active stack frame, a number following the &p
specifies the parameter that is to be addressed. The offset field is ignored, but a
relative offset can be specified. This example:

/test_seg/ &s;&p4+36,a14

causes the stack frame for test_seg to be the working segment, and the first 14
characters of the data contained at a location 36 words after the beginning of the
fourth parameter are printed in ASCII format

It is not necessary to specify all four fields of a generalized address. In fact, every
field is optional. If a field is not specified, a default value is assumed that is
frequently the last value that the field had. For example:

/test_seg/line&s+ 3

followed by the generalized address

+4

is acceptable. The latter request is equivalent to

/ test_seg/line&s+ 7

debug

3-204 AG92-Q6

debug

One time that the defaults assumed are not the values of the previous data request is
when a symbolic variable name or label is specified that causes some field to change.
If this is the case, debug might recognize that the segment ID, for example, of the
previous data request is not valid and set it appropriately. For example:

followed by

regp

would cause the defaults to be changed to

if regp is found at a relative offset of 140 (octal) in the linkage section. Note that
the segment ID is changed to &1 where it remains until explicitly or implicitly
changed again.

Defaults are also reset to values different from the previous values when the segment
name field is specified in a generalized address. In this case, the following actions are
taken:

1) If the segment name begins with &n. take the rest of the characters composing
the segment name and go to step 3 below. treating the string as a name. This
convention allows the use of debug on segments whose names are composed of
numeric characters.

2) If the segment name is really a segment number. this number is used in a search
of all active stack frames to see if one exists for this segment. The search is
from the highest stack depth (deepest in recursion) to the base of the stack so
that if an active stack frame is found. it is the one most recently used. If an
active stack frame is found. the generalized address defaults are set as follows:

working segment

offset

segment ID

relative offset

the one specifie-d by the given segment number.

zero.

&s, i.e.. the working pointer points into the latest
stack frame for the working segment.

zero.

If no active stack frame is found. the defaults are set as above except that the
segment ID is &t instead of &s, i.e., the working pointer points into the working
segment itself.

3) If the segment name is a reference name known in this ring. the segment number
for the segment being referenced is found. and then the defaults are calculated as
if this segment number were given directly.

debug

3-205 AG92-D6

debug debug

4) If the segment name is a pathname, the specified segment is initiated (it can
already have been known) and the returned segment number is used as above.

5) If the segment name is of the form segname$entname, the stack is searched from
the highest active frame (as in step 2) for the most recent frame associated with
the entry point entname in the segment segname. The working segment becomes
segname, and the remaining defaults are set as described in step 2.

The entire set of defaults that apply to a debug data request can be determined at
any time by issuing the .d control request to print defaults. For the format and use
of this request, see the description under "Control Requests" below.

OPERATOR FIELD OF DATA REQUESTS

After decoding the generalized address and determining the working pointer, debug
checks the operator. The following five operators are recognized:

(comma) print

= assign

< set a break

> alter program control (i.e., "go to")

can a procedure

If a debug request is terminated before an operator is encountered either by a
semicolon or a newline character, the default operator used is ",", i.e., print The one
exception is that a blank line is ignored. The first. second, and fifth operators above
have operands.

PRI NT REQUEST

For the print request, there are three optional operands. They are a single character
specifying the output mode desired; a number indicating how much output is being
requested; and a number in parentheses indicating the size of the output The size has
two meanings that are dependent on the output mode being used.

1) If the mode is comp-8 or comp-5, the size is the number of digits plus the sign,
if present.

2) If the mode is not comp-8 or comp-5, the size is the number of bits to use in
prin ting one item.

The size specification is permitted for the following modes: 0, h, d, e, f, p, comp-5,
comp-8. It is ignored for the following modes: i, I, a. b, comp-6. comp-7. All of
the arguments are optional and spaces can appear between arguments. For example:

142&s,o(18)12

3-206 AG92-o6

debug

requests that 12 (decimal) half words starting at 142 (octal) in the stack be printed in
octal format.

The following output modes are available for print requests (see "Output Modes" below
f or a full description):

a ASCII f floating point
b bit string f 1 long floating point
comp-5 COBOL 9 graphic
comp-6 COBOL h half-carriage octal
comp-7 COBOL instruction
comp-8 COBOL code for 1 i ne number
d decimal n no output
e floating point with 0 octal

exponent p pointer
el long floating point s source statement

with exponent

The request

+36,a14

requests that 14 (decimal) characters starting at 36 (octal) words after the current
working pointer be printed in ASCII format. The output might be

1416 1416 ">user_dir_dir>"

The two numbers printed in most output modes should be interpreted as follows:

1) If the data is from a stack frame. the first number is the relative offset from the
base of the stack segment and the second number is the relative offset within the
stack frame. If the second number is negative, the variable does not exist in the
current stack frame and is a parameter or a global variable.

2) If the data is from a linkage section, the first number is the offset within the
combined linkage segment and the second number is the offset within the linkage
section.

3) For all other segments, both numbers are the same and represent the offset within
the segment.

If a mode is not specified for output, the last specified mode is used unless debug
realizes another mode is more appropriate (e.g., when a symbol specifies a variable of
a different type). If the amount of output is not specified, it is assumed to be one
unit, i.e., one word for octal output, one line for source output, one character for
ASCII output, etc.

debug

3-207 AG92-D6

debug

ASSIGN REQUEST

When modifying data or code, the operands (at least one is expected) specify the new
values to use. For example:

i = 8; pel) = 206110, 206132

assigns the decimal value 8 to i and the values 206110 and 206132 to p(l) and p(2),
respectively. (It is assumed that both are variables that are defined for the current
working segment) If more than one operand is specified in an assignment request,
consecutive words starting at the working pointer are changed. This is illustrated by
the assignment to the pointer array p.

There are nine acceptable forms for assignment operands:

1. octal number

2. decimal number

3. character string

4. register value (see "Registers" below)

5. instruction format input

6. floating point number

7. pointer

8. bit string

9. variable

Whether a number is assumed to be octal or decimal on input depends on the target.
A variable referenced by name is assumed to be decimal unless overridden by "&0".
Assignment to a location specified by offset is assumed to take an octal value unless
overridden by n&d".

x = 99 (decimal)
+2 = 77 (octal)

Character strings being input must be bracketed by quote characters (n). Bit strings
being input must be bracketed by quote characters and followed by a b. Floating
point numbers must not have exponents.

debug

3-208 AG92-06

debug

The word-offset portion of a pointer value being input can optionally be followed by
either a decimal bit offset in parentheses. a ring number in square brackets. or both.
If both a bit offset and a ring number are specified. the ring number must follow
the bit offset. with no intervening blanks. For example:

p = 206125 (29); q = 2521104 [5]; rp = 211 1200 (3) [4]

The format for instruction input is

(opcode address. tag)

The address can specify a base register or a number. For example:

/test/Iab2 = (Ida pr6120) (sta prOI2,,·:0) (nop 0)

Some value must be given for the address field. The zero opcode is specified by the
opcode argo

Input of bit strings and character strings changes only those bits or characters
specified. i.e .• a full word might not be completely changed.

Several types of input can be interspersed in the same assignment request. For
example:

/145/13000 = "names" &d16 126

When different types of input are specified In one request. you should be aware that
the bit offset of the temporary working pointer might be ignored for certain types of
input In the example above, the ASCII for "name" is placed at 145113000 and the
ASCII for "s" is placed in the first character position of. 145113001. The next
assignment argument (&d16) fills in 145113001 with the decimal 16 and hence
overwrites the "s" of the previous argument.'

In order to better specify more complicated assignments, a repetition factor is
provided. Ii a single number' (decimal) appears in parentheses in an assignment. the
next data item is assigned repeatedly (Le., the specified number of times), updating the
working pointer each time. An example of this is

string = (32)" II "alpha"

which results in string being modified so that the first 32 (de.cimaI)
blanks. and the 33rd through the 37th contain the string "alpha".

SET BREAK REQUEST

characters

A breakpoint is a special modification to the code of a program that. when executed.
causes control to pass to debug. You are then free to examine and change the states
of variables, set other breaks, continue execution, etc. When setting a break. the
working pointer is used directly unless it points into the stack. In that case, the
working pointer is temporarily forced to the text. To set a break at the label

debug

3-209 AG92-()6

debug

loop_here in the program parse_words, type:

You can also type

/parse_words/loop_here+23<

to set the breakpoint 23 (octal) locations after the first word of code for the
statement labelled loop_here in the text segment.

You can also set a break by specifying a line number. For example:

/rand/ &a26<

sets a break at the first word of code generated for line 26 (decimal) of the source
program.

The break number printed by debug when setting a breakpoint is used as the name of
the break when referring to breaks. After a break is reset, the break number is
reused. (Resetting a break restores the code to its previous value.)

Once a break has been set at a given location, another break cannot be set there. The
list breaks control requests . bl and . bgl can be used to find out which breaks are set.

ALTER PROGRAM CONTROL REQUEST

To alter program control by issuing an explicit transfer, type:

/216/2176>

causing debug to search the stack for an active stack frame for the segment 216
(octal) and set the stack pointer to this frame. It then transfers to 2176 (octal) in the
text associated with this stack frame.

If no active stack frame is found, debug prints a message and waits for further
requests.

CALL A PROCEDURE REQUEST

You can cause debug to call a specified procedure and return values into specified
locations. This is done by specifying := as the operator in a data request. This
operator expects one operand that is a procedure name with its associated arguments.
There are two slightly different ways to invoke this feature: first, to invoke a
procedure as a function call (with the argument n+1 being the returned value); and
second, to explicitly call a procedure. When a procedure is invoked as a function
reference, the current working pointer is used as the last argument in the argument
list and, hence, the procedure returns a value into wherever the working pointer is
pointing. For example:

debug

3-210 AG92-06

debug

/test/fi := sqrt_(2.0)

causes the sqrt_ function to be called with the first argument 2.0 and the return
argument of fi; debug converts the 2.0 into a floating point number before the call.
If no fields are present before the := is encountered. debug does not specify a return
argument in the call. (The '- can be thought of as "call" in a PL/I program.) For
example:

:= who

sets up a call to who$who with no arguments. The call

: = rename (lifoOIl, "moo")
and

oerename foo moo

are functionally equivalent. (See Multics command execution under "Control Requests"
below.)

The method debug uses in setting up the call is to use ten temporary storage areas,
one for each of ten possible arguments. debug converts the arguments appropriately
and stores the values in these areas. Each area starts on an even location and consists
of eight words. These temporary storage areas can be looked at or altered with
standard data requests. They are named % 1, ••. , % 1 0 . For example:

:= cpu_time_and_paging_(O,O,O)
%l,d
%2,d
%3,d

prints three decimal numbers. all being return values from hcs_$usage_ values. The
actual call that debug made had three arguments that were all O. (The first words of
the first three storage areas were zeroed out prior to the call.) The above call can
also be made as follows:

If this is done, the third argument is not zeroed before the call.

Variables can also be used as arguments. For example:

sum : = sqr t_ (n)

No conversion is done by debug if n is fixed and sqrt_ expects a floating argument

The above mentioned temporaries can be used to do simple mode conversion. For
example, to get the floating point representation of 3.7 (in octaI) , type:

%1 = 3.7; ,0

debug

3-211 AG92-06

debug

To find the ASCII value for 137 (octal), type:

%1 = 137137137137 ; ,a4

A reference to one of these storage areas causes the working segment to be changed
to the stack segment

If one of the arguments in a procedure call is the character %, the temporary storage
for that argument is not changed (e.g., overwritten with the usual argument value).
Results from some previous work can be passed in that argument position. For
example:

%2 := sqrt (2.0)
: = i oa_ (II "'e" ,%)

REGISTERS

The hardware registers at the time of a fault (in particular a break fault) are available
to you f or inspection or change. These registers are ref erenced by preceding the
register name immediately by a dollar sign ($). The register can be looked at by
merely typing the register name. For example:

$a

prints the contents of the a-register at the time of the last fault The value in the
a-register can be changed to octal 146 by typing

$a = 146

Decimal input is allowed also:

$a = &d19

The value in a pointer register, the tpr, or the ppr can be set to a pointer:

$prO = 25411173
$ppr :: 512\0

The value assigned must always be a pointer.

No assignment may be made to the registers regs, ind, seu, all, or prs. The register
name must always be given on the input line. You are warned that the working
pointer is not set or referenced by register operations.

debug

3-212 AG92-06

debug

The predefined register names used by debug are

a a -register.
all alI machine conditions.
aq the a- and q-registers considered as a single register.
eaq the exponent, a- and q-registers in floating point format
even even instruction of Store Control Unit (SCU) data.
exp exponent register.
i nd indicator register.
odd odd instruction of seu data.
ppr procedure pointer register.
prN pointer register N where N can be 0 through 7.
p r s alI pointer registers.
q q-register.
r a 1 r ring alarm register.
regs all registers xO, a, q, aq, exp, tr, and ralr.
scu all SeD data.
tpr temporary pointer register.
t r timer register.
xN index register N where N can be 0 through 7.

You can change the above registers at will (with the exception of i nd and eaq) with
the understanding that if execution continues after the break or transfers directly (via
> in a data request), the values of. the hardware registers are set to those of the
above registers.

The values in the registers are automatically filled in by debug (when it is called or
faulted into) with those values associated with the last fault found in the stack. You
can override these values with the fill registers (.n and crawlout registers (.e) control
requests. See "Control Requests" below.

You can also define registers and use them as a small symbolic memory. For example:

$sta1 = 600220757100; $nop = 11003

allows you to later specify

/test/210&t = $sta1 $nop $nop

To print out the contents of all user-defined registers, type:

$ user

The setting and displaying of registers follows the syntax of data requests. However.
only the register name and a possible new value can appear in a register request.
Registers can be specified in a general data request only in the relative offset field
and as operands in assignment requests. Register names must be less than or equal to
four characters in length. Some examples of the use of registers follow:

debug

3-213 AG92-D6

debug

/test/i =$q
/test/O = $xO
/test/46$xO.a5

CONTROL REQUESTS

Control requests provide you with useful'· functions not necessarily related to any
specific data. The format for a control request is

.<request name>

Control requests and data requests can be freely mixed on a command line if
separated by semicolons. However, certain control requests use the entire input line
and hence ignore any semicolons found therein. Spaces are not allowed in most
control requests.

The following is a list of all control requests and the functions they perform. See
"Summary of Data and Control Requests" below for a complete review of all requests.

Trace Stack

The general form is • t i , j

The stack is traced from frame i (counting from 0 at the base of the stack) for j
frames. where i and j are decimal integers. If i is less than 0, tracing begins at 0; if
i is greater than the last valid frame. then only the last frame is traced. If i is not
specified. it is assumed to be 0; if j is not specified, all valid stack frames from i on
are traced. The name printed in the stack trace is the primary segment name unless
the segment is a PL/I or FORTRAN program in which case it is the entryname
invoked for the stack frame (i.e .. the label on the entry or procedure statement).

Examples:

.t2,3

.tlOO

Pop Or Push Stack

The general form is . + i or . - i

The working segment is changed by moving up or down the stack i frames, where i is
a decimal integer. For example. if the working segment's active stack frame is at
depth 4 in the stack, then:

.+3

debug

3-214 AG92-06

debug

changes the working segment to the segment whose stack frame is at depth 7 in the
stack. The defaults for working pointer. segment ID. and offset are reinitialized to
the base of the stack frame, &s, and O. respectively.

Set Stack

The general form is • i

The working segment is set to that of stack frame i (starting at O), where is a
decimal integer. The defaults are set as in pushing or popping the stack.

Execute Multics Command

The general form is •. <Mu 1 tics command 1 i ne>

The input line is interpreted as a standard Multics command line and is passed to the
standard command processor with any preceding characters blanked out Any valid
Multics command line can be given. When setting breaks, the program being debugged
must be called in this manner because debug sets up a condition handler (for break
faults) that is active only as long as debug's stack frame is active.

Print Defaults

The general form is • d or . D

The output might look like

.vm 6,3,2,20

3 /test_seg/14(0)&t,i 212

or

3 />udd>m>foo>test_seg/14(0)&t,i 212

The first number (3 above) is the stack frame depth in decimal, unless there is no
stack frame for the working segment, in which case the number is -1. The name of
the working segment appears between the slashes (test_seg above); if • D is used, the
full pathname occurs here. The offset appears next (14 above); the bit offset (in
decimal) of the working pointer appears next; the segment ID (& t above) appears next;
the operator appears next (, for print); the output mode appears next (i for
instruction); finally the segment number of the working segment appears (212 above).
To find the name/segment number association for a given segment, for example
segment number 206. type:

/206/,n;.d

debug

3-215 AG92--Q6

debug

yielding

60 /test_caller/O(O)&S,O 206

Knowing the name, you can obtain the same output by typing

/test_caller/,n;.d

Conti nue Execution After a Break

The general forms are • c, i . c t, i . c r, i

If i is not specified, it is assumed to be O. If i is specified, the next i break faults
for the current break are skipped. The first instruction executed upon continuation is
the instruction on which the break occurred. If a t follows the c, debug continues in
temporary break mode (see "Break Requests" below). If an r follows the c, debug
resets the mode to normal (not temporary).

Examples:

Quit

• c continue execution .
. ,c,3 continue execution, but skip the next three break faults for the

curren t break .
. c t continue execution in temporary break mode.

The general form is %.fnt typ%.q%.fnt%

This request returns from debug to its caller. Note that if debug was entered via a
break, typing . q returns to the last procedure that explicitly called debug.

Change Output Mode

Requests pertaining to debug's terminal output begin with .m.

1) Enter brief output mode: .mb

This request places debug in brief output mode, which is somewhat less verbose
than its normal output mode. In particular, assignment requests and the resetting
of breaks are not acknowledged on your terminal; the column headings are not
printed for a stack trace; the printing of register contents is somewhat more
compact; some error messages are abbreviated.

debug

3-216 AG92-06

debug

2) Enter long output mode: • m 1

This returns debug to long output mode. which results in fuller and more explicit
terminal output. Long mode is the initial default

Set I/O Switch Names

These requests allow you to debug a program that is run with file output because it
generates extensive output or a program that is run from within an exec_com after
&attach because it requires much input The general form is

.si switch_name

.so switch_name

where switch_name identifies the switch_name to use for input (.si) or output (.so).
The named switch must be attached by you before the request is made. If no switch
name is given. debug creates one (either debuK-input or debuLoutput).

1) User makes a switch request but does not give a switch name:

• s i
.so

debug creates a switch named debuK-input or debuK-output and attaches it to the
user_i/o switch. This is the usual request for debugging programs that require the
user_input or user_output switches to be attached to a file instead of to user~i/o.
Debug detaches the debuK-input and debuLoutput switches when you quit debug.

2) User makes a switch request and gives the switch name:

.si input_switch

.so output_switch

You must attach t.lJe switch_name before making the request This can be used
when you want to read debug requests from a file. The switches can be restored
by typing

.si user_input

.so user_output

Examples:

You have directed the output switch named user_output to a segment. but wants debug
diagnostics to be printed on the terminal. This can be done by typing

debug
.so

debug

3-217 AG92-06

debug

Since a switch name is not given with the request, debug sets up a new I/O switch
named debu~output as a synonym for user_i/o, which is the terminal in this case.
When you quit debug, the switch named debu~output is detached.

You want to debug a procedure that uses the user_input switch and has a set of
debug requests in another segment named debu~macro. An input switch named macro
has been attached to the segment of debug requests. You type

debug
.si macro

and debug takes requests from the switch named macro and does not detach the
switch when you exit debug. An attempt by debug to read beyond the end of the
macro input stream results in an exit from debug.

Break Requests

The following control requests are specific to breaks and begin with . b. Reference is
made to the default object segment, which is merely that segment that debug is
currently working with when performing break requests. The default object segment is
generally specified implicitly when a break is set or hit. It can be changed and
determined upon request. The default object segment used for break requests is not
necessarily the same as the segment addressed by the working pointer used in data
requests.

Breaks are numbered (named) sequentially starting at 1 but the numbers are unique
only for the object segment in which the break resides. You can have several breaks
with the same number defined in different object segments.

There are two types of global requests that can be performed on breaks. The first. or
subglobal requests, refer to all breaks within the default object segment. The second,
or global requests, refer to all breaks set by you (as determined from the break
segment in the home directory). The subglobal request is specified by omitting the
break number in a break request. The global request is specified by a "g" immediately
after the "b" of all break requests (see below).

The general form of all break requests is . bgx i args

where the "g", the number i. and the arguments are optional. The "x" is replaced by
the control character for the break request desired. The following break requests are
currently defined:

1) Reset a break (or breaks). The forms of the requests are

. br i to reset break i of the default object segment.
• br to reset all breaks of the default object segment.
. bgr to reset all breaks known to debug.

2) List (print information about) a break. The forms of the request are

debug

3-218 AG92-06

debug

• b 1 i
• b 1
.bgl

to list break i of the default object segment
to list all breaks of the default object segment
to list all breaks known to debug.

3) Execute a debug request at break time. The forms for this request are

.bei <rest of line>

.be <rest of line>

.bge <rest of line>

Specifying the above request causes <rest of 1 i ne> to be interpreted as a debug
input line whenever the appropriate break(s) is encountered. If <r es t of 1 i ne>
is nUll, the specified breaks have this execute feature reset to normal.

4) Disable a break (or breaks). The forms of this request are

· bo i disable (turn off) break i of the default break segment
· bo disable all breaks in the default break segment
• bgo disable all breaks known to debug.

Disabling a break has the effect of preventing the break from being taken
without discarding the information associated with it You can disable a break
rather than reset it if the break is to be needed again in the future. A disabled
break can be eliminated altogether (reset) by the • br request, or reenabled by the
• bn request If the break has already been disabled, these requests have no
effect

5) Enable a break or breaks. The forms of this request are

• bn i enable (turn on) break i of the default break segment
· bn enable all breaks in the default break segment
• bgn enable all breaks.

This request restores a previously disabled break. If the break was not disabled,
the request has no eff eel

6) Establish a temporary command line to be executed whenever breaks are
encountered. This request is of the form:

.bgt <rest of line>

This causes <rest of i i ne> to be executed as a debug request whenever any
break is encountered during the current process. The difference between this
request and • bge is that when • bge is typed, the associated line remains
associated with all breaks until they are reset, or until they are changed by .be
requests. It is possible to have a temporary global command without removing
request lines associated with individual breaks. If <res t of 1 i ne> is nUll, a
previously-established temporary command line is disestablished.

debug

3-219 AG92-{)6

debug

7) Break conditionally. The following requests allow you to change a break into a
conditional break, i.e .• a break that stops only if a certain condition is met

.bei argl <rel> arg2

.be argl <rel> arg2

arg 1 and arg2 can be constants or variables; <re 1 > can be = or A=. Whenever
a specified break is encountered. a test is made to see if the equality exists and
breaks according to whether you specified = or ""= in setting up the conditional
break. For example:

.be3 i ""= 0

causes break 3 to fault whenever it is encountered and the value of is nonzero.
Another example:

.be3 i = j

causes break 3 to fault whenever it is encountered and the value of i is the same
as the value of j. The comparison is a bit by bit comparison with the number of
bits to compare being determined by the size and type of the second argument

If no arguments are given to a set conditional request. the specified break is set
back to a normal break. For example:

.be

causes all breaks of the default object segment to fault normally.

8) Specify the number of times a break should be ignored (skipped). The general
form is

.bsi N

This causes the number of skips to be assigned to break i of the default object
segment to be N.

9) Print or change the default object segment The form for this request is

.bd name

where name is the (relative) pathname. reference name, or segment number of the
segment to become the default object segment. If name is not specified, the
pathname of the default object segment is printed.

10) List the current segments that have breaks. The form for this request is

.bp

This request merely interprets the break segment in the initial working directory.

debug

3-220 AG92-Q6

debug

Print Arguments

The general form is • ai, m

Argument i for the current stack frame is printed in the mode specified by m. If i
is not specified. all arguments are printed. If m is not specified, debug decides the
output mode. Valid values for mare

o full word octal
p pointer
d decimal
a ASCII
b bit string
I location of argument
e,f floating point
? debug decides (the default value for m)

Examples:

.a3
ARG 3: ">user_dir_dir"
.a3,o
ARG 3: 076165163145

Get Fault Registers

The general form is . f

For register requests debug uses the machine registers of the last fault found in the
stack starting at the frame currently being looked at. (This is the default when debug
is entered as a result of a break fault.)

Crawlout Registers

The general form is • C

For register requests debug uses the fault data associated with the last crawlout
(abnormal exit from an inner ring).

PROGRAM INTERRUPT FEATURE

You can interrupt debug by pressing the quit button at any time, in particular during
unwanted output To return to debug request level (Le .• to where debug waits for a
new request), type:

debug

3-221 AG92-06

debug

pi

which is the standard program interrupt manager. (See the description of the
program_interrupt command.)

TEMPORARY BREAK MODE

When debug is in temporary break mode (placed there via a • c t control request), the
following actions are taken automatically:

1) When you continue any break, another (temporary) break is set at the first word
of code for the next line of source code after the source statement containing the
break being continued. If debug cannot determine the location of the next line of
source code, the temporary break is set at the word of object code immediately
following the break being continued.

2) A temporary break is restored automatically whenever it is continued. A
temporary break must be explicitly reset by you only when it is not continued.

Since temporary breaks are set sequentially in a program (i.e., at the next statement in
the source program), any transfers within a program can either skip a temporary break
or cause code to be executed that was stopped earlier with a temporary break.
Temporary break mode is designed to be used in programs that are fairly uniform and
sequential in their flow of control. You should list breaks after using temporary break
mode to see if any breaks remain active.

INDIRECTION

It is quite often desirable to reference the data pointed to by the pointer that is
pointed to by the working pointer, i.e., to go indirect through the pointer .. You can
instruct debug to do this by typing * instead of the segment name, offset, and
segment ID in a generalized address. For example:

/test/regp

might print

1260 110 21412360

To find what two octal words begin at 21412360, type:

*,02

This causes the working pointer to be set to 21412360 and not necessarily point into
the same segment as before the request.

debug

3-222 AG92-G6

debug

IMPLEMENTATION OF BREAKPOINTS

Breakpoints are implemented by using a special instruction (mme2) that causes a
hardware fault whenever it is executed. When the fault is first encountered in a
process using the standard process overseer. a static handler for the fault is set up
that passes control to debug. When debug is entered via a break, it does the
following:

1) fills the registers with those of the break fault;

2) prints the location of the break fault;

3) waits for requests.

When continuing after a break fault, debug changes the control unit information so
that when it is restarted. it executes the instruction that used to exist where the break
word was placed.

The debug command keeps track of a default object segment. All break requests made
are relative to the default object segment. For example. any reference to break 3
really means break 3 of the default object segment. To change (or find out) the value
of the default object segment, the • bd request should be used.

VARIABLE NAMES FOR PLII AND FORTRAN PROGRAMS

If a symbol table was created for a PL/I or FORTRAN program using the table
option, then names of labels, scalars, structures, and arrays can be used. The only
restrictions are

1) that the entire structure name must be specified;

2) the only expressions that are allowed for subscripts are of the form:

variable +/- constant

where var i ab 1 e can be an arbitrary reference as above;

3) all subscripts must appear last. If a variable is based on a particular pointer, that
pointer need not be specified. Some examples of valid variable references are

p-> a. b. c (j ,3)
a"b
p(3,i+2) -> qp.a.b(x(x(4)+l)->j.a

BIT ADDRESSING

When a working pointer is generated to a data item that is based on or is a part of
a substructure, a bit offset may be required. This bit offset is indeed kept and used.
When making references to data relative to a working pointer with a bit offset, the
relocated addresses can still contain a bit offset For example, if the working pointer

debug

3-223 AG92-06

debug

has the value

151 13706 (13)

then the request

+16,b3

sets the working pointer to

15 113724 (13}

and prints the three bits at this location.

OUTPUT MODES

The following output modes are acceptable to debug:

o The data pointed to by the working pointer is printed in full word octal
format, eight words per line.

h Half carriage octal: the data is printed as in 0 format except that only four
words per line are printed.

d The data is printed in decimal format. eight words per line.

a a
The data is interpreted as ASCII and printed as such. No more than 256
characters are printed in response to a single request.

i
The data is printed in instruction format.

p The data is printed in pointer format, i.e., segment number and offset (and bit
offset if nonzero).

s One or more source statement lines are printed starting with the line of source
code that generated the code pointed to by the working pointer (assumed to be
pointing into the text). For example:

/test/loop_here+32,s2

prints two lines of source code starting with the line that generated the code,
32 (octal) words after the label loop_here. Another example:

/test/&a219,s

debug

3-224 AG92-()6

debug

prints line number 219 (decimal) of test lang where lang is the appropriate
language suffix. Note that if there was no code generated for the specified
line. debug prints a message. increments the line number, and tries again for
up to 10 lines.

The code associated with the specified line number is printed in instruction
format The line number is determined as in s type output. For example:

/test/&a27,1

prints the code generated for line 27 (decimal) of test lang.

n No output. This is used to suppress output when changing defaults.

e Floating point with exponent (single precision)

el Long floating point with exponent (double precison).

f Floating point (single precision).

fl Long floating point (double precision).

b The data is printed as if it were a bit string. No more than 72 bit positions
are printed in response to a single request.

g The specified number of characters are interpreted as Multics standard graphics
code. The type and value of each recognizable item is printed to the terminal.
(Refer to the Muitics Graphics System Manuai, AS40, for details.)

comp-5, comp-6. comp-7. comp-8
The data is printed as if it were a COBOL data type. If the size field is used
for cornp-5 or comp-8, it is the number of digits plus sign to use in printing
the data.

comp-5 byte-aligned packed decimal
comp-6 full-word binary integer
comp-7 half-word binary integer
comp-8 digit-aligned packed decimal

debug

3-225 AG92-06

decat

Name: decat

SYNTAX AS A COMMAND

decat strA strB C

SYNTAX AS AN ACTIVE FUNCTION

[decat strA strB C]

FUNCTION

performs operations on bit or character strings. These operations are specified by a
three-digit bit string given last in the usage line.

ARGUMENTS

strA. strB
are character strings or bit strings entered as 0 and 1 characters.

c
is any three-digit bit string expressed as 0 and 1 characters such as 000.001 •...• 111.

NOTES

The first occurrence of strB found in strA divides strA into three parts: part prior to
strB, part matching strB, and part following strB. The digits given in C correspond to
these three parts. The return string contains the parts of str A whose corresponding bit
in C is 1. All three parts are returned in their original order of appearance in strA.

EXAMPLES

decat abcdef123ghi 123 110
abcdef123
string [decat decat. incl.pl1 • incl 101]
decat.pl1

decat

3-226 AG92-06

decimal

Name: decimal, dec

SYNTAX AS A COMMAND

dec values

SYNTAX AS AN ACTIVE FUNCTION

[dec va 1 ues]

FUNCTION

returns one or more values in decimal.

ARGUMENTS

value
is a value to be processed. The last character of the value indicates its type.
Acceptable types are binary (b), quartenary (q), octal (0), hexadecimal (x), or
unspec (u).

Any valid PL/I real value is allowed. The absence of any specifier means decimal.
The unspec value is limited to eight characters.

EXAMPLES

dec 110. 1 b
6.5

string [dec abcu]
25478243

Name: decode

SYNTAX AS A COMMAND

decode pathlA {path2A ••• pathlN path2N} {-control_arg}

FUNCTION

reconstructs an original segment from an enciphered segment according to a key that
is not stored in the system. The encode command is used to encipher segments.

decode

3-227 AG92-Q6

decode

ARGUMENTS

pathlA
is the pathname of an enciphered segment The code suffix should not be
specified because the command attaches the code suffix to the pathl argument
(e.g., if you type alpha_x. code as the pathl argument, the command attaches the
suffix and looks for a segment named alpha_x. code. code). The star convention is
allowed.

path2A
is the pathname of the deciphered segment to be produced. If the last path2
argument is missing, the command constructs a pathname from the pathl argument
(see "Notes" below). The equal convention is allowed.

CONTROL ARGUMENTS

-key STR
specifies the encipherment key STR on the command line and does not query for
one. This control argument is useful in exec_corn's for multiple invocations of the
command with the same key.

NOTES

The .decode command requests the key from the terminal only once. All segments
specified in an invocation of decode are deciphered with the same key.

If the last path2 argument is not given, the command places the deciphered segment
in a segment whose name is the pathl argument. minus the code suffix.

EXAMPLES

If you type the command line

decode alpha_x

the command looks for an enciphered segment named alpha_x. code and places the
deciphered segment produced in a segment named alpha_x,

decode

3-228 AG92-Q6

SYNTAX AS A COMMAND

dac STR

SYNTAX AS AN ACTIVE FUNCTION

[dac STR]

FUNCTION

decodes a character string produced by the encode_access_class command or the
convert_access_class_$encode subroutine to return the authorization or access class.

ARGUMENTS

STR
is the encoded access class string to be decoded. The null string is converted to
the string "system_low."

Name: default

SYNTAX AS A COMMAND

default STRA {STRB}

SYNTAX AS AN ACTIVE FUNCTION

[default STRA {STRB}]

FUNCTION

supplies default arguments to commands and can override this default when desired.
Use this command with the abbrev and do commands.

NOTES

If you provide no STRB or it is the null string, STRA is returned (see "Examples").

EXAMPLES

In the first example, you set up an abbreviation using the default active function to
automatically compile a program with the -map and -table control arguments. You
can override the defaults by specifying more than one argument when using the
abbreviation. Assume that comp_pll is an abbreviation for

default

*

3-229 AG92-o6

default def ault_ wdir

do "p11 &1 [default IIII-map -tab1e'"' &2] &f3"

Thus typing "comp_pU test" is the same as typing "pH test -map -table"; typing
"comp_pH test -list -profile" is the same as typing "pH test -list -profile".

The next example shows the null input feature of the default active function. Assume
that my_dp is an abbreviation for

do "dp -he [string [default [entry &1] &r2]]
-q [default 3 &3] &f4 &1"

When you type the command line

my _dp >udd>Demo>Bach>des i gn_memo. runout '"' 2 -d 1

the null input for the second argument means that default uses the default value for
this argument (in this case, the entryname portion of the pathname). Thus the
expansion of the command line is

dp -he design_memo.runout -q 2 -d1 >udd>Demo>Roy>design_memo.runout

Name: default_wdir, dwd

SYNTAX AS A COMMAND

dwd

SYNTAX AS AN ACTIVE FUNCTION

[dwd]

FUNCTION

returns the pathname of the default working dhectory of the process in which you
'invoke it, as set by the change_default_ wdir command.

3-230 AG92-()6

11/86

Name: defer_messages, dm

SYNTAX AS A COMMAND

dm {mbx_specification}

FUNCTION

suspends printing of messages.

ARGUMENTS

mbx_specification
specifies the mailbox on which messages are to be deferred. If not given, the I
user's default mailbox (>udd>Project>Person>Person.mbx) is used.

LIST OF MBX SPECIFICATIONS

-log
specifies the user's logbox and is equivalent to

-mailbox >udd>Project_id>Person_id>Person_id.sv.mbx

-mailbox path, -mbx path
specifies the pathname of a mailbox. The suffix .mbx is added if necessary.

-save path. -sv path
specifies the pathname of a savebox. The suffix .sv.mbx is added if necessary.

-user STR
specifies either a user's default mailbox or an entry in the system mail table.

STR
is any noncontrol argument and is first interpreted as -mailbox STR; if no
mailbox is found, STR is then interpreted as -save SIR; if no savebox is found,
it is interpreted as -user STR.

NOTES

Deferred messages stay in your mailbox until you issue print_messages. The
immediate_messages command restores printing of messages as you get them.

For a description of mailbox creation and characteristics see accept_messages.

3-231 AG92-o6A

delete

11/86

Name: delete, dl

SYNTAX AS A COMMAND

dl {paths} {-control_args}

FUNCTION

deletes the specified segments, multisegment files (MSFs), data management (DM) files,
and/ or extended entries. Use delete_dir to delete directories, unlink to delete links.

ARGUMENTS

paths
are the pathnames of segments, MSFs, DM files, or extended entries. You can
use the star convention.

CONTROL ARGUMENTS

-absolute_pathname, -absp
prints the entire pathname of entries listed by -lg, -qya, and -qye.

-brief, -bf
does not print an error message if a segment, MSF, or DM file to be deleted is
not found.

=chase
deletes targets of links specified by paths as well as segments.

-entryname, -etnm
prints only the entrynames of the entries listed by -lg, -qya, and -qye, rather
than the entire pathname. (Default)

-force. -fc
deletes the specified entries, whether or not they are protected, without querying.

-in terpret_as_extended_en try, -inaee
interpret the selected entry as an extended entry type.

-in terpret_as_standard_en try, -inase
interpret the selected entry as a standard entry type.

-long. -lg
prints a message of the form "Deleted file <path>" for each entry deleted.

delete

3-232 AG92-06A

delete

11/86

-name STR, -nm STR
specifies a nonstandard entryname STR (e.g., an invalid star name such as
..compout or a name containing <).

-no_chase
does not delete targets of links. (Default)

-query_all, -qya
lists all segments to be deleted and queries whether they should be deleted or not
Unless you give -fc. an individual query is given for protected segments.

delete

3-232.1 AG92-06A

delete

-query_each, -qye
queries for every entry to be deleted. whether it is protected or not Prote.cted
segments are noted in the query.

ACCESS REQUIRED

You must have modify permission on the containing directory.

NOTES

You must supply at least one path or -name STR.

To delete a segment or MSF the entry must have both its safety switch and its copy
switch off. If either is on. you are interrogated whether to delete the entry.

You can't delete OM files if a transaction is still pending.

Name: delete_acl, da

SYNTAX AS A COMMAND

da path {User_ids} {-control_args}

FUNCTION

removes entries from the access control lists (ACLs) of nonlink entries in a directory.
(For a description of ACLs see the Programmer's Reference Manual.)

ARGUMENTS

path
is the pathname of an entry. If it is -workin~directory (-wd), your working
directory is assumed. The star convention is allowed.

User_ids
are access control names of the form Person_id.Project_id.tag. All ACL entries
with matching names are deleted. If you give no User_ids, your Person_id and
current Project_id are assumed.

CONTROL ARGUMENTS

-all, -a
deletes all ACL entries except for *.SysDaemon.*.

-brief, -bf
suppresses the messages "User name not on ACL" and "Empty ACL"

3-233 AG92-o6

-chase
chases links when using the star convention. Links are always chased when path is
not a star name.

-directory. -dr
affects only directories. (Default: segments. multisegment files. and directories)

-no_chase
does not chase links when using the star convention. (Default)

-segment. -sm
affects only segments and multisegment files.

-select_entry _type STR. -slet STR
affects only entries of the entry type selected by SIR. which is a comma-delimited
list of file system entry types. Use the list_entry _types command to obtain a list
of valid entry type values. Example: da ** -slet mbx.segment.

ACCESS REQUIRED

You need modify permission on the containing directory.

Name: delete_dir, dd

SYNTAX AS A COMMAND

dd {paths} {-contro l_args}

FUNCTION

deletes the specified directories and any segments. links. multisegment files, data
management files, and extended entries they contain. All inferior directories and their
contents are also deleted. Use the delete command to delete segments and the unlink
command to delete link entries.

ARGUMENTS

paths
are pathnames of directories. The star convention is allowed.

CONTROL ARGUMENTS

-absolute_pathname. -absp
prints the entire pathname of the entries listed by -long. -query _all, and
-query_each.

3-234 AG92-06

delete dir delete dir

11/87

-brief. -bf
inhibits the printing of an error message if the directory to be deleted is not found.

-entryname. -etnm
prints only the entrynames of the entries listed by -long. -query_all, and -query_each.
(Default)

-force. -fc
deletes the specified directories without issuing a query.

-long. -lg
prints a message of the form "Deleted directory <path>" for each directory deleted.

-name SIR. -nm STR
specifies a nonstandard entryname SIR which begins with a hyphen or contains ASCII
control characters or any of the nonstandard characters n. <. >. $. %, ? *. =, (,), [,], ::.

-query_all. -qya
lists all directories to be deleted. and issues one query for all of them.

-query_each. -qye
issues a query for each directory being deleted. (Default)

ACCESS REQUIRED

You must have modify permission on both the directory and its superior directory.

NOTES

At least one path or -name must be given.

If -force is not supplied. delete_dir asks you whether to delete the spe-eified directory; it is then
deleted only if you type "yes." When deleting a nonempty master directory. or a directory
containing inferior nonempty master directories, you must have previously mounted the logical
volume(s). If a nonempty master directory for an unmounted volume is encountered. no subtrees
of that master directory are deleted, even if they are mounted.

When you are deleting a directory containing data management files, you can't delete those files if
a transaction is still pending.

3-235 AG92-D6B

delete_external_ variables

Name: delete_external_variables, dey

SYNTAX AS A COMMAND

dev names {-control_arg}

FUNCTION

deletes from your name space specified variables managed by the system for you. All
links to those variables are unsnapped and their storage is freed.

ARGUMENTS

names
are the names of the external variables, separated by spaces, to be deleted.

CONTROL ARGUMENTS

-unlabeled_common, -uc
indicates unlabeled (or blank) common.

SytvTAX AS A COIVlIVlAND

did path {User_ids} {-control_args}

FUNCTION

deletes entries from a directory's initial access control list (initial ACL) in a specified
directory. A directory initial ACL contains the ACL entries to be placed on
directories created in the specified directory. (For a description of initial ACLs. see
the Programmer's Reference Manual.)

ARGUMENTS

path
specifies a pathname of the directory whose directory initial ACL should be
changed. If path is -workinLdirectory (-wd) or omitted, your working directory
is assumed. The star convention is allowed.

User_ids
are access control names of the form Person_id.Project_id.tag. All entries in the
directory initial ACL that match the User_ids are deleted (for a description of
the matching strategy. see the set_acl command). If you give no User_ids, your
Person_id and current Project_id are assumed.

3-236 AG92-06

CONTROL ARGUMENTS

-all, -a
deletes the entire directory initial ACL except an entry for *.SysDaemon.*.

-brief. -bf
suppresses the messages "User name not on ACL of path" and "Empty initial
ACL."

-ring N. -rg N
identifies the ring number whose directory initial ACL is to be deleted. It can
appear anywhere on the line and affects the whole line. If present, follow it by
N (where 0 <= N <= 7). If not given, your ring is assumed.

ACCESS REQUIRED

You must have modify permission on the directory.

EXAMPLES

The command line

did news .Faculty Dickinson ••

deletes from the directory initial ACL of the news directory all entries ending in
.Faculty.* 'and all entries with Person_id Dickinson.

The command line

did -a

deletes all entries from the directory initial ACL of the working directory.

The command line

did store Emerson -rg 5

deletes the entry for Emerson.*.* from the ring 5 directory initial ACL of the store
directory.

3-237 AG92-Q6

SYNTAX AS A COMMAND

dis path {User_ids} {-control_args}

FUNCTION

deletes entries from a segment initial access control list (initial ACL) in a specified
directory. A segment initial ACL contains the ACL entries to be placed on segments
created in the specified directory. (For a discussion of initial ACLs, see "Access
Control" in the Programmer's Reference Manual.)

ARGUMENTS

path
specifies the pathname of a directory whose segment initial ACL is to be changed.
If it is -workin~directory (-wd) or omitted. your working directory is assumed.
The star convention is allowed.

User_ids
are access control names of the form Person_id.Project_id.tag. All entries in the
directory initial ACL that match the User_ids are deleted. (For a description of
the matching strategy, see the set_acl command.) If you give no User_ids, your
Person_id and current Project_id are assumed.

CONTROL ARGUMENTS

-all, -a
deletes the entire initial ACL except an entry for *.SysDaemon.*.

-brief. -bf
suppresses the messages "User name not on ACL of path" and "Empty initial
ACL."

-ring N, -rg N
identifies the ring number whose directory initial ACL is to be deleted. It can
appear anywhere on the line and affects the whole line. If present, follow it by
N (where 0 <= N <= 7). If not given. your ring is assumed.

ACCESS REQUIRED

Your must have modify (m) permission on the directory.

3-238 AG92-06

11/86

EXAMPLES

The command line

dis news .Multics. JJoyce

deletes from the segment initial ACL of the news directory all entries with Project_id
Multics and the entry for JJoyce.*.*.

The command line

dis -a

deletes all entries from the segment initial ACL of the working directory.

The command line

dis store Hawthorne •• -rg 5

deletes all entries with Person_id Hawthorne from the ring 5 segment initial ACL of
the store directory.

Name: delete_message, dIm

SYNTAX AS A COMMAND

dlm mS9_specs {mbx_specification} {-control_args}

FUNCTION

deletes any interprocess messages that were received (and saved in the user's mailbox)
while the user was not accepting messages, not logged in, or "accept_messages
-hold_messages" was in effect.

ARGUMENTS

ms~specs

are one or more numbers or ranges. Numbers are as printed next to each
message when "accept_messages -hold_messages" is in effect. Ranges are of the
form N:1vl, where N<=M and both Nand M are valid message numbers. IOU can
use the keywords "first" (0 and "last" (1) as message num bers and the keyword
"all" (a) as a range (equivalent to "f:l").

mbx_specification
specifies the mailbox from which messages are to be deleted. If not given. the I
user's default mailbox (>udd>Project>Person>Person.mbx) is used.

3-239 AG92-06A

LIST OF MBX SPECIFICATIONS

-log
specifies the user's logbox and is equivalent to

-mailbox >udd>Project_id>Person_id>Person_id.sv.mbx

-mailbox path, -mbx path
specifies the pathname of a mailbox. The suffix .mbx is added if necessary.

-save path, -sv path
specifies the pathname of a savebox. The suffix .sv.mbx is added if necessary.

-user STR
specifies either a user's default mailbox or an entry in the system mail table.

STR
is any noncontrol argument and is first interpreted as -mailbox STR; if no
mailbox is found, STR is then interpreted as -save STR; if no savebox is found,
it is interpreted as -user STR.

CONTROL ARGUMENTS

-after time_string
deletes messages sent after time_string only (see "Notes").

-all, -a
delets all messages, including those held by -hold_messages mode (see accept_messages).

-before time_string
deletes messages sent before time_string only (see "Notes").

-brief, -bf
suppresses an error message when no matching messages are found.

-comment STR, -com STR
deletes messages with comment fields containing STR only.

-exclude STR
deletes messages with text not containing STR only.

-force, -fc
deletes selected unseen messages.

-from STR, -fm STR
deletes messages sent from STR only. STR can be of the form Person. Project,
Person, or .Project.

3-240 AG92-06

-long, -}g
overrides -brief.

-match STR
deletes messages with text containing STR only.

-messages, -msg
deletes regular messages (nonnotifications) only.

-no_force, -nfc
prevents deletion of unseen messages. (Default)

-no_messages, -nmsg
suppresses -messages.

-no_notifications, -nnt
suppresses -notifications.

-notifications, -nt
deletes notifications only.

NOTES

If you supply no mailbox. your default one is assumed (for a description of the
mailbox see accept_messages and print_maiD.

See Section 1 for a description of valid time_string values.

Name: delete_name, do

SYNTAX AS A COMMAND

dn {paths} {-control_args}

FUNCTION

deletes specified name(s) from segments, multisegment files (MSFs), links, directories,
data management (DM) files, or extended entries that have multiple names.

ARGUMENTS

paths
are the pathnames to be deleted. This argument can be "-name STR" to specify a
nonstandard name, such as one beginning with a minus sign or containing * or >.
The star convention is allowed, but does not apply to STR.

3-241 AG92-o6

delete name delete name

11/87

ARGUMENTS

paths
are the path names of a segment, multisegment file, directory, extended entry, or link. This
argument can consist of "-name STR" to specify a nonstandard entryname STR which
already exists and which begins with a hyphen or contains ASCII control characters or any of
the nonstandard characters n, <, >, $, %, ?, *, =, (,), [,], ::.

CONTROL ARGUMENTS

-brief, -bf
suppresses error messages when entries are not found with specified pathnames.

-long, -lg
prints error messages when entries are not found. (Default)

ACCESS REQUIRED

You need modify permission on the parent directory.

NOTES

Specify at least one path or "-name STR." The final portion of the relative or absolute pathname
is deleted from the storage system entry it specifies, provided that doing so does not leave the
segment or directory without a name, in which case an error message is printed.

See the add_name and rename commands.

EXAMPLES

The command line

dn alpha >my_dir>beta

deletes the name alpha from the names of an entry in the current working directory and also
deletes the name beta from the names of an entry in >my_dir.

3-242 AG92-o6B

11/86

Name: delete_search_paths, dsp

SYNTAX AS A COMMAND

dsp search_list search_paths {-control_arg}

FUNCTION

allows you to delete one or more search paths from the specified search list

ARGUMENTS

search_list
is the name of the search list from which the specified search paths are deleted.
Quote it if it contains spaces or other command language characters.

search_paths
specifies a search path to be deleted. The search path must be an absolute
pathname. Use the same name that appears when you invoke print_search_paths.

CONTROL ARGUMENTS

-all; -8

specifies that the search list itself is to be deleted. Any search paths specified are
ignored. Use -all to delete all the search paths in a search list

NOTES

For a complete list of the search facility commands see add_search_paths.

Name: delete_search_rules, dsr

SYNTAX AS A COMMAND

dsr paths

FUNCTION

deletes search rules for object segments.

ARGUMENTS

paths
are usually directory pathnames (relative or absolute) to be deleted from the
current search rules. One of the paths can be the keyword workin~dir (see
"Notes").

3-243 AG92-06A

11/86

NOTES

This command accepts no site-defined keywords and no home_dir and process_dir;
add_search_rules does. Even though dsr accepts initiated_segments and referencin~dir,
be careful because their deletion may lead to unpredictable results.

Name: delete_volume_quota, dlvq

SYNTAX AS A COMMAND

dlvq logical_volume account

FUNCTION

deletes a quota account for a logical volume; used by the volume executive (the owner
or manager of logical volumes).

ARGUMENTS

logical_ volume
is the name of the logical volume from which quota is to be deleted.

account
is the name of the quota account (in the form Person_id.Project_id. tag) to be
deleted.

ACCESS REQUIRED

To use this command you must have e access to the iogical volume. It is not
necessary that the volume be mounted.

NOTES

You can~t delete the quota account if there are still master directories whose quotas
are charged against the account to be deleted. You must either delete such directories
or transfer them to another account (see the set_mdir_account command).

3-244 AG92-06A

11/86

Name: describe_entry _type, dset

SYNTAX AS A COMMAND

dset type {-control_args}

SYNTAX AS AN ACTIVE FUNCTION

[dset type -control_arg]

FUNCTION

prints or returns information about a file system entry type.

3-244.1 AG92-06A

ARGUMENTS

type
identifies a storage system entry type. Use the list_entry _types command to obtain
a list of entry type values.

CONTROL ARGUMENTS

-all. -a
prints all information about the entry type, which includes name, plural name,
access modes, supported attributes, and the default values and all names for
switches. You can't use -all in the active function.

-attributes, -attr
prints or returns the names of the storage system attributes that this entry type
supports. These are the attributes that can be copied or moved by the copy . and
move commands.

-default NAME
prints or returns the default value of the specified switch for this entry type.
You can give only one -default argument. This control argument is incompatible
with -all and -switches.

-extended_acl. -xacl
returns "true" if the entry type supports extended ACLs, "false" otherwise. You
can Use it only in the active function.

-info_pathname, -ipn
prints or returns the pathname of an info segment containing more information
about the entry type, if such an info segment is available.

-modes
prints or returns the acceptable access modes for the specified entry type.

-name, -nm
prints or returns the name of an entry of the selected entry type.

-plural_name, -plnm
prints the plural name of the specified entry type.

-switches
prints the names and default values of all switches supported by the entry type
given.

NOTES

When invoked with no control arguments, the command prints the name, plural name,
modes, attributes, info seg pathname, switch names and default values.

3-245 AG92-()6

Name: describe_psp

SYNTAX AS A COMMAND

describe_psp Marketing_Identifier Key

SYNTAX AS AN ACTIVE FUNCTION

[describe_psp Marketing_Identifier Key]

FUNCTION

returns various information about priced separate products (PSP) available to Multics
sites.

ARGUMENTS

Marketin&-Identifier
is the Honeywell order number of PSPs (e.g., SGL6803 for COBOL). It can be
entered in uppercase or lowercase.

LIST OF KEYS

sti
returns the current software technical identifier for the product released at the
instalied release.

source
returns the absolute path of the product's source archive.

object
returns the absolute path of the product's object archive.

executable
returns the absolute path of the product's executable segment.

title
returns the official name by which the product is known.

name
returns a short descriptive name by which the product is known.

3-246 AG92-()6

Name: detach_audit, dta

SYNTAX AS A COMMAND

dta {switchname}

FUNCTION

removes audit_ from the specified switch (see attach_audit and the audit_ I/O
module).

ARGUMENTS

switchname
is the switch from which audit_ is to be removed. If switchname is not specified.
user_i/o is assumed.

Name: detach_Iv, dlv

SYNTAX AS A COMMAND

dlv volume_names

FUNCTION

detaches one or more logical volumes that have been attached for your process by the
resource control package (RCP).

ARGUMENTS

volume_names
specifies the volumes to be detached.

NOTES

You can detach all logical volumes by specifying "all". rather than any volume names.

The detaching involves telling the storage system that the logical volume is no longer
attached for this process; it does not affect the attached/detached state of the logical
volume for any other process.

3-247 AG92-06

dial_manager _call

SYNTAX AS A COMMAND

dial_manager_call request {STRl {STR2} {STR3}}

FUNCTION

provides a command interface to the answering service's dial facility. All functions
that are available through the dial_manager_ subroutine interface are available through
this command.

ARGUMENTS

request
maps into a call to an identically named entry in dial_manager_. Each request
requires the use of a particular STR, which is listed in the request description. A
request must be one of the following:

allow_dials STR, ad STR
requests that the answering service establish a dial line to allow terminals to
dial to the calling process. STR must be a dial_qualifier as described below.

dial_out STRl STR2 {STR3}, do STRl STR2 {STR3}
requests that an auto call channel be dialed to a given telephone number and,
if the channel is successfully dialed, that the channel be assigned to the
requesting process. STRl must be a channel_name and STR2 must be a
dial_out_destination as described below. SIR3, which can be omitted, is a
reservation_string as described below.

privileged_attach STR, pa STR
allows a privileged process to attach any terminal that is in the channel
master file, and is not already in use. (See the description of
dial_manager_$privileged_attach for information on what access is required.)
The effect is as if that terminal had dialed to the requesting process. SIR
must be a channel_name as described below.

registered_server STR, rs STR
requests that the answering service allow terminals to dial the calling process
using only the dial qualifier. STR must be a dial_qualifier as described
below.

release_channel STR, rc STR
requests the answering service to release the channel specified by channel_name.
This channel must be dialed to the caller at the time of the request. If the
channel was dialed, the channel is returned to the answering service and
another access request may be issued. If the channel is a slave channel, the
channel is hung up. STR must be a channel_name as described below.

3-248 AG92-o6

STR

release_channel_no_hangup STR, rcnh STR
is the same as release_channel except that this request does not hang up slave
channels. STR must be a channel_name as described below.

release_dial_id STR, rdi STR
informs the answering service that your process wishes to prevent further dial
connections, but that existing connections should be kept You can release
later any connections kept with the release_channel request STR must be a
dial_qualifier as described below.

shutoff_dials STR, sd STR
informs the answering service that your process wishes to prevent further dial
connections and that existing connections should be terminated. STR must be
a dial_qualifier as described below.

start_report, start
turns on the reporting feature (see "Notes" below).

stop_report, stop
turns off the reporting feature (see "Notes" below).

terminate_dial_out STR, tdo STR
requests that the answering service hang up an auto call line and unassign it
from the requesting process. STR must be a channel_name as described
below.

depends on the request STR is selected from the following list (For details on
the interpretation of the following qualifiers see the dial_manager_ subroutine.)

channel_name
is the name of a tty_channel.

dial_qualif ier
is the name for which you are to be a dial server.

dial_out_destination
is the destination (e.g., phone number) of up to 32 characters.

reservation_string
is a dial_manager _ reservation string of up to 256 characters.

3-249 AG92-06

11/86

NOTES

This command establishes an event call channel for communication with the answering
service. This event channel and its handler (which is an entry point in dial_manager_call)
remain active after the command terminates. Any events following the command
termination, such as channel hang-ups, dial-ups, and dial requests are decoded using
convert_dial_message_ and reported on the user_output I/O switch when they happen.
You can turn this reporting feature on (the default) and off by using the start_report
and stop_report requests.

When the destination specifies an X.25 address you can optionally precede it with "*"
or "x29," to indicate that an X.29 (PAD) call should be made. For example, a
destination of .

x29,3106:mitmul or
,'c 3106: m i tmu 1

specifies an X.29-type call on TYMNET.

SYNTAX AS A COMMAND

dial_out channel {destination} {-contrcl_args}

connect channel {destination} {-control_args}

FUNCTION

permits you to access a remote system through a dial-out channel.

ARGUMENTS

channel
is the name of the dial-out or slave channel to be used. The star convention is
allowed, which means the answering service selects a channel that has a matching
name or generic destination and matching attributes (if specified).

destination
is the dial-out destination. This string is used when making the connection. If
omitted. the channel is priv _attached rather than dialed.

3-250 AG92-o6A

CO/ViROL ARGUlViENiS

-8 hit
does not suppress the parity bit of characters from the foreign system.

-abbrev
enables abbreviation processing of request lines.

-brief. -bf
disables printing of informational messages.

-echo
locally echoes characters typed by you.

11/86 3-250.1 AG92-06A

-escape CHAR. -esc CHAR
makes CHAR the escape character. (Default:. !)

-modes MODES
allows you to select the initial values of dial_out's modes (see "List of Modes"
below).

-no_start_up, -ns
disables execution of your start_up. dial_out. This is assumed for the connect
command.

-profile PATH
establishes PATH as the abbrev profile to be used for request lines. (Default:
your current profile).

-request REQUEST, -rq REQUEST
executes the given request before entering its interaction loop. The rightmost
-request is the one that is executed. (See "List of Requests" below.)

-resource RSC_DESC. -rsc RSC_DESC
allows you to specify a resource description to be used when attaching the
dial_out channel.

-terminal_type TYPE. -ttp TYPE
sets the terminal type of the remote connection to TYPE. You can use this for
hosts with unusual communications requirements.

LiST OF REQUESTS

escape CHAR, esc CHAR
sets the escape character.

file_output PATH, fo PATH
starts copying output to a file.

interrupt, int, break, brk, ip
sends an interrupt signal (line break) to the foreign system.

modes STR
allows you to control operational modes.

revert_output, TO

finishes a previous file_output.

send STR
sends its arguments to the foreign system as if they were typed by you.

3-251 AG92-()6

send_file PATH {-control_arg}
sends the contents of pathname PATH to the foreign system. Any characters sent
from the foreign system during this time are discarded; thus foreign echo of the
file being sent is rejected. (If the foreign echo is slow, you may still see some
echo after this request has finished.)

Control arguments are:

-display_input, -dsin
displays characters sent from the foreign system during the transfer.

-no_display _input, -ndsin
does not display characters sent from the foreign system during the transfer.

switch_name
returns the name of the I/O switch used by dial_out

wait {STR} {-control_args}, [wait {STR} {-control_args}]
waits for a specified string to come from the foreign system. With no arguments,
this request waits until any characters are sent from the foreign system. Invoked
with a string and/or -nl, it waits until the specified string is sent

Control arguments are:

-nl
waits until the specified string is sent with a trailing new line.

-nnl
waits until the specified string is sent but without a trailing new line.

-no_timeout, -ntm
specifies that there is no limit to how much time can elapse between
character transmissions from the foreign system before dial_out assumes that
the foreign system has finished transmi tting. (Def aul t)

-timeout N, -tm N
specifies the maximum number of seconds that can elapse between character
transmissions from the foreign system before dial_out assumes that the foreign
system has finished transmitting.

As an active request (and if a timeout did not occur), all the text sent from the
foreign system since the last text processed by dial_out, including the string
specified. is returned as a quoted string.

LIST OF MODES

echo, "echo
enables/disables local echoing of characters typed by you.

3-252 AG92-06

echo_If. Aecho_lf
enables/disables echoing of LF after you type a CR.

line, " line
enables/disables line-at-a-time mode as opposed to character-at-a-time mode for
your terminal.

quit. Aquit
enables/disables transparent quit mode. In this mode the BREAK key performs an
"interrupt" request, rather than the normal Multics function.

raw, "raw
enables/disables direct transmission to the foreign system of characters typed.
(Default: raw)

send_If, "send_If
enables/disables transmISSIon of a LF character as part of the new-line sequence.
If you don't set this mode, the new-line sequence consists of CR only; if you set
it, it is CR-LF. The new-line sequence is sent when you type the CR key or an
NL is encountered in a file.

LIST OF SUBSYSTEM REQUESTS

prints a line of requests available in dial_out.

executes ~1ultics command lines.

?
prints a list of requests available in dial_out.

abbrev, ab
controls abbreviation processing of requests lines.

answer
provides preset answers to questions asked by another request.

do
executes/returns a request line with argument substitution.

execute~ e
executes a M ultics command line.

exec_com. ec
executes a file of dial_out requests that can return a value.

help
prints information about dial_out requests and other topics.

3-253 AG92-06

11/86

if
conditionally executes/returns one of two request lines.

list_help, lh
displays the name of all dial_out info segments on given topics.

quit, q
exits dial_out

ready, rdy
prints a Multics ready message.

subsystem_name
prints the name of this subsystem.

subsystem_version
prints the version number of this subsystem.

ACCESS REQUIRED

You must have the dialok attribute and rw access to the access control segment for
the channel (type "user attributes" to determine what attributes you have).

NOTES

The dial_out command executes your start_up. dial_out exec_com on invocation, whereas
the connect command executes an exec_com speciiic to the given destination (or
channel if you give no destination). The .dial_out ec suffix for dial_out and connect
exec_corns is assumed if you don't supply it

The dial_out and connect commands acquire an appropriate communications' channel to
a foreign system, execute your dial_out start_up and initial request. and then enter an
environment in which characters typed on your terminal are sent to the foreign system
and in which characters sent from the foreign system become output at your terminal.

When the destination specifies an X.25 address, you can optionally precede it with ,,*n
or "x29n

• to indicate that an X.29 (PAD) call should be made. For example. a
destination of

x29,3106:mitmul or
1c 3 1 06 : m i tmu 1

specifies an X.29-type call on TYMNET.

After the dial_out environment is entered. you can enter dial_out requests by
preceeding them with the escape character (n" by default). Characters from the
escape character to the next escape character or the end of the line are interpreted as
a request You must double the escape character to send it to the remote system.

3-254 AG92-06A

11/86

directories

EXAMPLES

dial_out b.h218 9-482-5622 -echo
Ready on tty_ b.h218 -destination 9-482-5622 •••

dial_out tymnet x29,3106:p25

Name: directories, dirs

SYNTAX AS A COMMAND

dirs star_names {-control_args}

SYNTAX AS AN ACTIVE FUNCTION

[dirs star_names {-control_args}]

FUNCTION

returns the entrynames or absolute pathnames of directories that match one or more
star names.

ARGUMENTS

star_names
are star names to be used in selecting the names to be returned.

CONTROL ARGUMENTS

-absolute_pathname. -absp
returns absolute pathnames rather than entrynames. (Default to return entrynames)

-chase
processes the targets of links when you specify a starname.

-inhibit_error. -ihe
returns false if star_name is an invalid name or if access to tell of an entry's
existence is lacking.

-no_chase
does not process the targets of links when you specify a starname. (Default)

-no_inhibit_error, -nihe
signals an error if star_name is an invalid name or if access to tell of an entry's
existence is lacking. (Default)

3-255 AG92-06A

directories directory

11/86

NOTES

Only one name per directory is returned; i.e., if a directory has more than one name
that matches star_name, only the first match found is returned.

Since each entryname (or pathname) returned by directories is enclosed in quotes, the
command processor treats each name as a single argument regardless of the presence
of special characters in the name.

Name: directory, dir

SYNTAX AS A COMMAND

d i r path

SYNTAX AS AN ACTIVE FUNCTION

[dir path]

FUNCTION

returns the directory portion of path after it has been expanded into an absolute
pathname.

ARGUMENTS

path
is the pathname whose directory portion is to be returned.

NOTES

Since the pathname is returned in quotes, the command processor treats it as a single
argument regardless of special characters in the name.

EXAMPLES

In the working directory >udd>Proj >Myname:

dir start_up.ec
>udd>Proj>Myname

dir >udd>Multics>Library>Source>bound_command_demos_.s::program.pl1
>udd>Multics>Library>Source

3-256 AG92-06A

discard_output discard_output

11/86

Name: discard_output, dco

SYNTAX AS A COMMAND

dco {-control_arg} command line

FUNCTION

executes a command line while temporarily suppressing output on specified I/O
switches.

ARGUMENTS

command_line
is a command line. You need not quote it.

CONTROL ARGUMENTS

-output_switch STR. -osw STR
where STR is the name of an I/O switch. If you give no -osw, output on the
user_output I/O switch is suppressed. You can specify -osw more than once.

NOTES

If the command specified in command_line cannot be executed, an error message is
printed.

3-256.1 AG92-06A

disconnect disconnect

11/87

Name: disconnect

SYNTAX AS A COMMAND

disconnect

FUNCTION

disconnects the terminal from the current process, suspending that process if the user's
disconnect_ok process attribute is on. If the trusted path login installation parm is off the
terminal will remain dialed to the system. If the disconnect_ok process attribute is on and the
trusted path login installation parm is on then a message will be displayed stating the line must be
hung up followed by a hangup. If the disconnect_ok process attribute is off then an message will
be displayed stating the process cannot be suspended and no further action will take place.

NOTES

If disconnect is called from an absentee or daemon process an error message will be returned
without further action.

When the process is suspended after disconnection. it will remain that way for a period of time
equal to or less than the site-specified inactivity time. Contact your project administrator for
process attribute information.

3-256.2 AG92-06B

SYNTAX AS A COMMAND

daf {path} {-control_args}

FUNCTION

displays the file produced by the audit_ I/O module.

ARGUMENTS

path
is the path name of the audit file to be displayed. If path is not indicated. the
audit file associated with the user_i/o switch is assumed. If user_i/o is not being
audited. the audit file currently in use is displayed.

CONTROL ARGUMENTS

-append_nl. -anI
appends new lines to the end of entries that do not end in a new line. It
overrides -no_append_nl to the left in the command line. By default. new lines
are appended if a "leader generating" control argument (i.e., -class_identifiers.
-entry_numbers. or -metering) is present.

-class SIRl t .. SIRn}
prints the entries having a class identifier matching any of the STRs. Class
identifiers are as follows:

EL. el (edit line)
IL. il (input line)
IC. ic (input characters)
DC. oc (output characters)
IM, tm (trace of modes operations)
IC. tc (trace of control operations)

If SIR contains only one character. it is matched on the first character of the
class identifiers; for example. if SIR is I, entries having either IL or Ie class
identifiers are displayed. If -class is not given. the audit file is displayed without
class identifiers.

-class_identifiers. -cli
displays the audit file with the class identifiers before each entry. If -metering is
also specified, the metering information precedes class identifiers.

-entry_numbers. -etn
prints the entry numbers before each entry.

3-257 AG92-()6 .

-exclude STRl {. .. STRn}, -ex STRl {. .. STRo}
excludes any entries containing strings matching any of the STRs. If -exclude is
not chosen, all selected entries are printed.

-from STR, -fm STR
specifies the first audit file entry to be displayed. If STR is a positive integer, it
is interpreted as an entry number. If STR is a positive number containing a
decimal point, it is interpreted as a time in 24-hour format If it is neither, the
audit file is displayed from the first entry that matches STR. If -from is not
supplied, the audit file is displayed from the beginning.

-insert_nl, -inl
inserts new lines whenever an entry is over length (as determined by -line_length
or the current line length for the switch). (Default)

-last STR
displays entries beginning at the point specified by STR, starting at the end of
the audit file. If STR is in entry number format, the first entry displayed is STR
entries back from the end of the file. If STR is in time format, the first entry
is STR hours and minutes from the end of the file. If STR is a character string,
the first entry contains a match for STR searching from the end of the file. If
-last is not selected, the audit file is displayed from the beginning.

-line_length N, -11 N
inserts a new line after the character specified by N if a line· of output is
greater than N characters long. A continuation line is indented to allow for any
entry descriptors produced by -metering, -entry _numbers, or -class_identifiers and
is preceded by an "*" to indicate it is a continuation of the previous line.

-match STRl I. .. STRn}
prints entries containing strings matching any of the STRs. If it is not specified,
all selected en tries are printed.

-metering, -mt
displays the audit file with metering information at the beginning of each line,
preceding the class identifiers if -class or -class_identifiers is also used.

-next STR
displays a given number of entries from an explicit point in the file to the point
specified by STR. If STR is in entry number format, the next STR entries are
displayed. If STR is in time format, the entries within the next STR period of
time after the beginning entry are displayed. If STR is a character string, the
entries up to the next match of STR are displayed. If -next is not selected, all
entries to the end of the file are displayed.

-no_append_nl, -nanl
does not append new lines to entries that do not end in a new line. This control
argument overrides the appending of new lines because of "leader generating"
control arguments or an occurrence (to the left in the command line) of
-append_nl.

3-258 AG92-D6

-no_insert_nl, -ninl
does not insert new lines.

-output_file path, -of path
displays the audit file into the segment named path.

-reverse
prints the entries in reverse chronological order.

-string STR. -str STR
uses STR as a character string with no special interpretation. This is useful for
preventing STR from being interpreted as a control argument, a time, or an entry
number. It can be given with -from, -to, -next. -last. -match, and -exclude. for
example, "-from -string 81" (see "Notes").

-switch STR
displays the audit file associated with the I/O switch specified by STR if the I/O
switch is currently attached. If the I/O switch is not attached. an error message
is printed. If -switch is not chosen, the audit file associated with the user_i/o
switch is displayed.

-to STR
stops the display of the audit file at the point specified by STR. where STR can
have any of the values for -from. If -to is not specified, the audit file is
displayed up to the end.

NOTES

You specify the format of the output. which entries are selected to be output. and the
file to which the output is directed (see attach_audit and the audit_ I/O module).

The audit_meter mode must be on for there to be any metering information in the
audit file; without this information. time arguments are invalid.

The -string control argument is useful in the following situatiOJ.1S. To pass 1005.2 as a
character string to be matched. rather than a time value for -from. type:

daf -from -string 1005.2

To pass -last as a character string to -match. type:

oaf -match

3-259 AG92-D6

SYNTAX AS A COMMAND

der {-eontrol_args}

FUNCTION

displays the current state of a COBOL run unit.

CONTROL ARGUMENTS

-all. -a
prints information about all programs in the run unit. including those that have
been cancelled.

-files
displays information about the current state of the files that have been referenced
during the execution of the current run unit.

-long, -lg
displays more detailed information about each COBOL program in the run unit

NOTES

The minimal information displayed tells which programs compose the run unit.
Optionally. more detailed information can be displayed concerning active illes. data
location. and other aspects of the run unit. Refer to the run_cobol command for
information concerning the run unit and the COBOL runtime environment

Name: display _component_name, dcn

SYNTAX AS A COMMAND

den path offsets

FUNCTION

converts an offset within a bound segment (e.g.. bound_zilch_123017) into an offset
within the referenced component object (e.g.. comp 11527). This command is especially
useful when it is necessary to convert an offset within a bound segment (as displayed
by a stack trace) into an offset corresponding to a compilation listing.

3-260 AG92-06

display _component_name

ARGU /III E !tITS

path
is the pathname of a bound object segment or an octal segment number. You can
specify a pathname that looks like an octal segment number by -name nnn.

offsets
are octal offsets within the text of the bound object segment specified by path.

EXAMPLES

The command line

dcn bound_zi1ch_ 17523 64251

might respond with the following lines:

17523
64251

component511057
component7 63

If bound_zilch_ were known with segment number 532, the following command would
generate the same output:

dcn 532 17523 64251

Name: display _entry _point_del, depd

SYNTAX AS A COMMAND

depd virtual_entry

SYNTAX AS AN ACTIVE FUNCTION

[depd virtual_entry]

FUNCTION

prints a PL/I declare statement describing a procedure entry point or other,
system-wide external data constant The command obtains the entry point declaration
from data files that contain the declarations of all unusual procedure entry points
(ALM segments, procedures written as subroutines but called as functions, etc.) and
system-wide external data values (e.g.. sys_info$max_se&-size, iox_$user_output, etc.) or
from argument descriptors for the entry point parameters that are included with the
procedure entry point itself.

3-261 AG92-06

11/86

The active function returns the declaration as a quoted string.

ARGUMENTS

virtual_entry
a character string representation of the procedure entry point or external data
value whose declaration is to be printed (see Section 1 for a description of virtual
entries). You can use the archive component pathname convention.

NOTES

Most command and active function entry points do not declare arguments in their
procedure statements since they accept a variable number of arguments. They also do
not use the options(variable) attribute in their procedure statements. Therefore. when
the depd command encounters a procedure entry point with no declared arguments and
without options(variable). it ass~es the options(variable) attribute required for
commands and active functions and prints a declare statement of the form:

del help entry options(variable);

depd distinguishes between such assumed options(variable) entries and those that
explicitly use the options(variable) attribute in their procedure statement by printing
"entry" for the assumed case and "entry()" for the explicit case. Thus, it prints a
declaration for depd. which explicitly uses options(variable). as

del depd entry() option5(variable);

For procedures that use structures as arguments, certain structure declarations are
inexactly returned as parameter declarations because the mechanism for encoding
argument descriptors does not provide an adequate description of the alignment of a
structure. . The descriptor only determines whether the overall structure is packed or
not and does not specify whether or not it was originally declared with the aligned
attribute.

The following structures generate the same argument descriptors, even though PL/I
treats the level 1 structures as having different attributes:

dell 52 structure al igned,
2 ell fixed bin aligned,
2 e12 fixed bin aligned;

del 1 s2 structure,
2 ell fixed bin aligned,
2 e12 fixed bin aligned;

depd reproduces the declaration for s2 when either s1 or s2 are used as parameters
for an entry point To bypass this problem. declare the subroutine properly in your
personal .dcl segment (see "User-provided Data Files" below) and place this segment in
your "declare" search paths.

3-262 AG92-06A

display _mailin~address

NOTES ON SEARCH LIST

The depd command uses the "declare" search list. which has the synonym "dcl", to
find data files describing unusual procedure entry points. The default search list
identifies the data file:

>sss>pll.dcl

For more information about search lists, see the descriptions of the search facility
commands and, in particular, the add_search_paths command.

USER-PROVIDED DATA FILES

You can provide data files that redeclare standard system entry points (e.g.. redeclaring
a subroutine as a function) or that declare their own entry points or external data
items. Data items have the general form of

virtual_entry declaration

For example:

ioa_ entry options(variable)

Note that the word "dcl" is not included in the data item. nor does the declaration
end with a semicolon (;). External data values are declared in a similar fashion. For
example:

iox_$user_output ptr external static

Name: display _mailin~address, dsmla

SYNTAX AS A COMMAND

dsmla {names}

FUNCTION

dispiays the specluea maii taDle entries with default mailing addressees). which appear
in the format used in message headers displayed by read_mail. In addition. if the
mail table entry specifies an ACS segment to allow other maintainers to update it, this
pathname is displayed.

3-263 AG92-06

display _mailinLaddress dispiay _pIlio_error

ARGUMENTS

names
are the Person_ids or aliases of the user whose mailing address should be
displayed, or the names or aliases of a mail table entry for a forum or mailing
list The command displays the mailing address for each one (printing a warning
message for invalid ones). If you give none, the default is your Person_id.

Name: display _pllio_error, dpe

SYNTAX AS A COMMAND

dpe

FUNCTION

describes the most recent file on which a PL/I I/O error was raised and displays
diagnostic information associated with that type of error. This command is designed to
be invoked after the occurrence of an I/O error signal during a PL/I I/O operation.

EXAMPLES

The command line

dpe

might respond with the following display:

Error on file afile
Title: vfile_ afile
Attributes: open input keyed record sequential
Last i/o operation attempted: write from
Attempted "write" operation conflicts with fi le "input" attribute.
Attempted "from" operation conflicts with file "input" attribute.

3-264 AG92-o6

display _pnotice display _pnotice

Name: display _pnotice

SYNTAX AS A COMMAND

disp1ay_pnotice name {contr01_arg}

FUNCTION

displays information on software protection notices contained in source programs.

ARGUMENTS

name
is the full or relative pathname of the source language module. The language
suffix or the archive suffix must be included if an entire archive is to be
processed. The archive pathname convention is supported, but the star convention
is not

CONTROL ARGUMENTS

-brief, -bf
specifies that the primary name of notices. without the "pnotice" suffix. be
printed instead of the text of notices found. (Default)

-long, -lg
displays the full text of notices found.

A ,"'T'-i'"
IYVI CO:>

By default. the primary names of protection notices are printed instead of the entire
notice text If path includes the full archive name, then archives of source code
programs can be audited for protection notices. If a source module does not contain
any notices. or contains conflicting notices (copyright and trade secret). an error
message is displayed. A warning message is also displayed if there is an embedded
notice found in a source program (protection notices should be the first comment
encountered).

EXAMPLES

display pnotice add pnotice.p11
add_pnotice.p11: HIS.1982

display_pnotice add_pnotice.p11 -1g
Notices in add_pnotice.p11:

Copyr i ght, (C) Honeywe 11 I nformat ion Sys terns Inc., 1982

display_pnotice farf.pI1
Warning: farf.p11 has no protection notice.

3-265 AG92-06

display _subsystem_usage

Name: display _subsystem_usage

SYNTAX AS A COMMAND

display_subsystem_usage sUbsystem_name {-control_args}

FUNCTION

displays usage information recorded by a subsystem.

ARGUMENTS

subsystem_name
is normally the name of the subsystem whose usage information is to be displayed
(see "Notes on Subsystem Usage Segments" below).

CONTROL ARGUMENTS

-first N
prints only the first N entries; when combined with -reverse, prints only the last
N entries. The entries are sorted, if requested, before application of -first. It is
incompatible with -totals.

-header. -he
prints a header defining each column of output. (Default)

-no_header. -nhe
suppresses printing of the header.

-no_reverse, -nr\'
prints the entries in the selected order. (Default)

-reverse, -rv
prints the entries in reverse order from that selected.

-sort TYPE
sorts the individual entries before displaying them. It is incompatible with -totals.
(See "List of Sorting Types" below.)

-totals, -tt
prints only the total number of invocations of the subsystem without listing any
individual entries. It is incompatible with -first and -sort.

-user NAME
prints only those entries for users whose Person_id matches NAME. The star
convention is allowed.

-version VERSION
prints only those entries for users who last used the version of the subsystem
named by VERSION.

3-266 AG92-o6

display _subsystem_usage

LIST OF SORTING TYPES

The TYPE given to -sort must be one of the following:

count
sorts by the total number of invocations of the subsystem by the user.

date_time_used, dtu
sorts by the date-time of the last invocation of the subsystem by the user.

name
sorts by the Person_id of the user whose usage is recorded in this entry.

version
sorts by the version number of the subsystem's last version used by the user.

NOTES

The information displayed by this command for a user of the subsystem includes

1. the user's Person_id.

2. the total number of times the user has used this subsystem.

3. the version number of the last version of the subsystem used by the user.

4. the number of times the user has used this version of the subsystem.

5. the date-time the user last used the subsystem.

NOTES ON SUBSYSTEM USAGE SEGMENTS

Subsystem usage information is recorded in the segment named "subsystem_name.ssusage"
(e.g., read_mail. ssusage) , and you can locate that segment by using the linker search
rules. If you can't locate it. you can give the pathname of the subsystem usage
segment, with or without the ssusage suffix. as an argument to this command in
addition to the subsystem name.

3-267 AG92-06

Name: display_time_info, dsti

SYNTAX AS A COMMAND

dsti -control_args

FUNCTION

displays information selected from time_info_.

CONTROL ARGUMENTS

-all, -a
specifies an data are to be printed.

-day
asks for a list of all the day names.

-format, -fmt
asks for a list of all keywords that can be given in a time_format control string.
This list does not include "date". "date_time", and "time" as they are not
contained in time_info_. Use print_time_defaults to see them.

-language, -lang
asks for a list of all the time languages available, showing the name of each
language in each language, You would usually use this form alone to enable you
to see what languages you can refer to.

-language STR, -lang STR
asks for the output to be given in language SIR. (Default: to show requested
data in the process default language)

-map
asks for a time zone map of the world. with all the defined time zones and their
offsets. Each zone is at its proper place on this map. The map is horizontally
broken according to the line length currently in effect

-month
asks for a list of all the month names.

-offset
asks for all the offset words to be printed.

-table STR. -tb STR
STR specifies the pathname of the table to be displayed. (Default the reference
name "time_info_")

3-268 AG92-06

11/86

-token {STR}
displays the structure used for binary, searching the tokens declared in the table.
The (iisplay shows all words, with their meanings, in all languages, grouped by
token. A token is a word converted to lowercase. If you give STR, only the data
for that token is shown. Since STR represents a token and not a word, enter it
in lowercase.

-word
asks for all the miscellaneous words to be printed.

-zone
asks for a list of all the zones available.

Name: display _ttt

SYNTAX AS A COMMAND

display_ttt {-control_args}

FUNCTION

prints all or part of a terminal type table (TIT) on your terminal, or outputs it to a
file. The output's format is such that you can use it as a terminal type file (TIP).

CONTROL ARGUMENTS

-header, -he
prints a header (see "Notes").

-no_header, -nhe
suppresses printing of the header.

-output_file PATH, -of PATH
directs output to the file whose pathname is PATH. If you omit the ttf suffix
from PATH, it is added. If you omit PATH, output is directed to your terminal.

-pathname PATH, -pn PATH
displays the TIT whose pathname is PATH. If you omit the ttf suffix from
PATH. it is assumed. If you omit PATH, the process's current TIT is displayed.

-table NAME. -tb NAME
displays only the conversion, translation, function keys, or special table named
NAME (see "Notes").

-terminal_type NAME. -ttp NAME
displays only the terminal type entry for the terminal type named NAME (see
"Notes").

3-269 AG92-()6A

display _ttt dm_display _version

NOTES

If you give neither -ttp nor -tb, the entire contents of the TIT are displayed. If you
give either -ttp or -tp, only the specified terminal type entry or table is displayed9

without the introductory comment, unless you also give -he. If you give no -nhe, an
introductory comment is printed, giving the pathname of the TIT, the date9 and the
User_id of the author of the original TIT.

Name: divide

SYNTAX AS A COMMAND

divide numA numB

SYNTAX AS AN ACTIVE FUNCTION

[divide numA numB]

FUNCTION

returns the integer part of the decimal quotient of numA divided by numB (see the
mod and quotient commands).

EXAMPLES

string [divide 5 4]
1

Name: elm_display _version

SYNTAX AS A COMMAND

FUNCTION

displays the version of the data management (DM) system software currently in use by
the executing process.

3-270 AG92-06

11/86

SYNTAX AS A COMMAND

FUNCTION

removes the process invoking it from the current invocation of the data management
system (DMS).

NOTES

All user process references to per-process and per-system data are invalidated to
permit subsequent reentry to DMS. Ii a transaction is in progress in the process when
you issue the command, the DM Daemon (Data_Management. Daemon) rolls it back
automatically.

Normally all processes using data management are shut down as part of a data
management system shutdown, with no explicit user intervention.

This command is part of the com.rnand level interface to Multics data. management
Use it in a test environment or in debugging.

Name: do

SYNTAX AS A COMMAND

do {-control_args} {control_string {args}}

SYNTAX AS AN ACTIVE FUNCTION

[do control_string {args}]

FUNCTION

substitutes arguments into a control string. The expanded control string is then passed
to the command processor or the subsystem request processor for execution. As an
active function or active request, returns the expanded control string without executing
it

do

*

3-271 AG92-{)6A

do

11/86

ARGUMENTS

control_string

args

is a character string that can contain substitution constructs (see "List of
Substitutions" below).

are zero or more character string arguments. Any argument supplied but not
referenced by an argument substitution designator is ignored.

CONTROL ARGUMENTS

If you give control arguments with no control string. subsequent do invocations in the
process are affected; with a control string and its arguments. subsequent do invocations
are not affected. Give the control arguments first (See "Notes on modes" below.)

-abort_line. -abl
aborts the line containing the do request if the request line is aborted during
execution. Applies only to subsystem request invocations of do. (Default)

-brief. -bf
does not print the expanded control string. (Default)

-control_string. -cs

-go

permits a control string to look like a control argument.

passes the expanded control string to the command processor or subsystem request
processor. (Def aul t)

-inhibit_error. -ihe, -absentee
establishes a handler for the any_other condition during the execution of the
expanded command control string.

-long. -lg
prints the expanded control string on error_output before executing or returning
it

-no_abort_line, -nabl
continues execution with the next request following the do request on the invoking
line if the request line do invoked is aborted during execution. Applies only to
subsystem request invocations of do.

-no_inhibit_error, -nihe. -interactive
does not catch any signals. (Default)

-nogo
does not pass the expanded control string to the request processor.

do

3-272 AG92-o6A

do

11/86

LIST OF SUBSTITUTIONS

The following expansion designators appearing in the control string are replaced by
their expansion value. as deScribed below. Any other use of the ampersand (&)
produces an error.

&0, &1, ... &9
expands to the zeroth through ninth arguments. &0 is the control string, &1 is
the first argument following the control string, and so on. If the corresponding
argument is missing, the designator expands to a null string.

&(0), &(1) •...
expands to any argument, including arguments after the ninth. Use parenthesis
when the argument number is two or more digits. If the corresponding argument
is missing, the designator expands to a null string.

&qO, ... &q9, &q(O), &q(1), ...
expands to the corresponding argument following the control string. Quotes within
the argument are doubled, according to the quote depth of the surrounding
context within the control string (see "Notes on Quote Doubling" below).

&rO, ... &r9, &r(O). &r(1) •...
expands to the corresponding argument following the control string. enclosed in an
added layer of quotes with internal quotes with the argument doubled accordingly
(see "Notes on Requoting" below). This designator keeps the argument as a single
unit after one layer of quote stripping by the command processor.

&f1 •... &f9, &f(l) •...
expands to the Nth through last arguments following the control string, with
arguments separated by one space. If N is greater than &n, expands to a null
string.

&qfl, ... &qf9. &qf(1) •...
expands to the Nth through last arguments following the control string, with
quotes doubled within arguJ.~ents. ~md arg'..h~ents separated by one space. If N is
greater than &n, expands to a null string.

&rf1, ... &rf9, &rf(1), ...

&n

expands to the Nth through last arguments following the control string, with each
argument individually requoted, and arguments separated by one space. If N is
greater than &n, expands to a null string.

expands to the number of arguments you give following the control string.

&f &n. &qf &n, &rf &n
expands to the last argument following the control string, with quotes doubled
(&qf&n) or with requoting (&rf&n).

do

3-273 AG92-()6A

do

11/86

&control_string

&!

&&

expands to the control string (without expansions), with quotes doubled. It is
equivalent to &qO.

expands to a unique name. Each use of &! is replaced by a IS-character
identifier. Every use within a single invocation is replaced by the same string, but
the string is different for every invocation of do.

expands to a single ampersand, to allow ampersands to be literally inserted into
the expanded control string.

NOTES

When the control string is executed, abbreviations are expanded if the abbrev processor
is enabled. Since the control string is usually enclosed in quotes, abbreviations in the
control string are not expanded until control string expansion. (See the abbrev
command.)

NOTES ON MODES

This command has four modes: the long/brief mode, the nogo/go mode, the
abort-line mode, and the inhibit-error mode. These modes are kept in internal static
storage and are thus remembered from one invocation of do to the next in a single
process. Set the modes for the life of the process by invoking do with control
arguments and no control string; set the modes for a single invocation by giving
control arguments, a control string, and its arguments.

The abort-line mode applies only to subsystem request invocations of do. You can set
the mode at command level, but cannot set it for a single command invocation of do.

Use the inhibit-error mode mainly in an absentee environment, in which any condition
that normally enters a new command level terminates the process. In this mode, any
signal caught by do terminates execution of the command line, not the process. The
following conditions are not handled by do, however, but are passed on to the
command processor: command_error, command_query_error, command_question.
program_interrupt, quit, and record_quota_overflow (see the Programmer's Reference
ManuaI).

The abort-line, inhibit-error, and go/nogo modes have no effect on active function
and active request invocations of do.

do

3-274 AG92-06A

~o

11/86

NOTES ON QUOTE DOUBLING

Each parameter designator to be expanded is found nested a certain level deep in
quotes. If it is found to be outside quotes. its quote level is zero; if found between a
single pair of quotes, its quote level is one; and so on. If an "&q" construct is found
nested to quote-level L. then. as the argument is substituted into the expanded control
string. each quote character found in the argument is replaced by 2**L quote
characters during insertion. This permits the quote character to survive the quote-stripping
action to which the command processor subsequently subjects the expanded control
string. If the "&q" construct is not between quotes, or if the corresponding argument
contains no quotes, quote doubling has no effect

NOTES ON REQUOTING

If an "&r" construct is found, the substituted argument is placed between an
additional level of quotes before having its quotes doubled. For example. if &rl is
found nested to quote level L. 2**L quotes are inserted into the expanded control
string; then. the first argument is substituted, with each of its quotes replaced by
2**(L+1) quotes; and. finally. 2**L more quotes are placed following it If you give
no argument, nothing is placed in the expanded control string; so, you can distinguish
between arguments that are not supplied and arguments that are supplied but are nUll.
If you give an argument, the expansion of an "&r" construct is identical to the
expansion of an "&q" construct surrounded by an extra level of quotes.

EXAMPLES

Consider the following abbreviations:

ADDPLI
AUTHOR
CREATE
LIST
LISTAB
LISTAC
P
P2

do lifo &1.1ist;ioa_ AI;p1i &l;ro"
do lIioa $nn1 &l;status -author &1"
do IIcd &l;sis &1 re 1c.Demo rew Jay.*"
do lifo Jay.1ist;LISTAB;ws &1 LISTAC;ro;dp -d1 Jay.list"
do II. 1"
"la;ls -dtem -all
do ··pi i &1 -i iSt &2 &3"
do "pl1 &1 -1 ist &f2 11

The command line

ADDPLI alpha

expands to

fo alpha.1ist:ioa_ AI:pli alpha;ro

The command line

AUTHOR beta

prints beta and the author of segment beta.

do

3-275 AG92-06A

do

11/86

The command line

CREATE games

expands to

cd games;sis games re *.Demo rew Jay.*

This shows an easy method of automatically setting initial access on the segments that
are cataloged in a newly created directory.

The command line

LIST >udd>Demo>Jay

expands to

fo Jay.list;LISTAB;ws >udd>Demo>Jay LISTAC;ro;dp -dl Jay.list

which is expanded by abbrev to

fo Jay.list;do ".l";ws >udd>Demo>Jay "la;ls -dtem -a";ro;
dp -dl Jay.list

See how you can use do at several levels and how it allows abbreviations within
abbreviations.

The command line

P alpha

generates the expansion

pll alpha -list

whereas the command line

P alpha -table

expands to

pll alpha -list -table

Note how references to arguments not supplied are deleted.

do

3-276 AG92-06A

do

11/86

The abbreviation P2 is equivalent to P for three or fewer arguments. The command
line

P2 alpha -table -sv3 -optimize

executes the pU command with the -list, -table, -sv3, and -optimize control
arguments, whereas

P alpha -table -sv3 -optimize

omits the -optimize control argument

SYNTAX AS A COMMAND

Master process or si ngle-process invocations:

do_subtree path -control_args

Slave process invocations:

do_subtree -slave

FUNCTION

operates on a given directory, called the starting node, and all directories inferior to it
by executing one or two given command lines after substituting the pathname of that
directory in the command line. The do command performs the substitution, the
directory pathname being taken as the first executed at each node before inferior
nodes are operated on (the top-down command line) and after inferior nodes are
operated on (the bottom-up command line).

This command enables you to execute the argument command lines in several
processes. The walking of the hierarchy can be substantially speeded up by use of this
facility. The process in which the initial command lines in starting node is given is
named the master process; the other cooperating processes are called the slave
processes. The cooperating processes communicate via a segment called dos_mp_seg,
which is found (or created if not found) in the working directory when do_subtree is
issued. The master process must be logged in and begin executing first when multiple
processes are used.

3-276.1 AG92-06A

11/86

ARGUMENTS

path
is the starting node; -workinLdir (-wd) specifies the working directory of the
master process if multiple processes are being used.

CONTROL ARGUMENTS

-bottom_up SlR -bu STR
specifies the bottom-up command line. If STR contains blanks, it must be
enclosed in quotes. The name of the directory of execution is the first argument
to the do command. Access this value with the string "&r1" rather than "&1" in
case any directory names contain special characters. Give one of -bottom_up or
-top_down, but you can use both.

-first N, -ft N
makes N the first level of the directory hierarchy at which the command lines
are executed. By definition, the starting node is at level 1. The default is -first
1.

-last, -It N
makes N the last level in the storage system hierarchy at which the command
lines are executed. The default is 99999, i.e., all levels.

-long, -Ig
prints Lite names of the directories at which the command lines are executed"
Unlike walk_subtree, this printing is off by default In multiprocess executions
with a bottom-up command line, an asterisk precedes all directory names for
which the process executing the bottom-up command line is not the process that
en tered the directory first

3-276.2 AG92-06A

-multiprocess, -mp
makes the invoking process the master process of a mUltiprocess execution. The
dos_mp_seg segment is created in the current working directory and execution
begins. As slave processes are started, work is distributed by the master process
among the slave processes. Execution ends in all processes simultaneously. The
top-down/bottom-up order of execution is guaranteed by all processes: no
command line is executed at a given directory until either the top-down command
line is executed in all superior directories or the bottom-up command line is
executed in all inferior directories.

-no_msf
does not treat multisegment files as directories. Unlike walk_subtree, multisegment
files are treated as directories by default. Avoid -no_msf for most storage system
maintenance operations.

-slave
executes the command line in another process, which must be in a working
directory where an active master process has begun executing a multiprocess
invocation of do_subtree. The master process uses all control arguments and
command lines of the slave process. Execution in all processes finishes at the
same time. Don't use more than 35 slave processes.

-top_down STR. -td STR
specifies the top-down cOqlmand line. If STR contains blanks. it must be enclosed

. in quotes. The name of the directory of execution is the first argument to the
do command. Access this value with the string "&r1" rather than "&1" in case
any directory names contain special characters. Give one of -bottom_up or
-top_down, but you can use both.

Entry: do_subtree$recover

This entry point is used to pick up the work load of a process that has died in a
multiprocess execution. The process picking up the work load of the dead process
must have as its working directory the directory in which the dos_mp_seg segment for
the current multiprocess execution exists.

SYNTAX AS A COMMAND

do_subtree$recover processnumber

ARGUIIIElVTS

processnum ber
is the process number of the dead process. The process number of a do_subtree
process in a multiprocess execution is typed out as it joins the execution.

Entry: do_subtree$abort

3-277 AG92-Q6

This entry point halts a multiprocess execution of do_subtree. All processes return to
command level at once. The process executing this command must have as its working
directory the directory in which the dos_mp_seg segment of the current multiprocess
execution exists.

SYNTAX AS A COMMAND

do_subtree$abort

Entry: do_subtree$status

This entry point prints out much debugging and status information about all processes
involved in a multiprocess execution of do_subtree. including the process identifiers
and command lines. The process executing this command must have as its working
directory the directory in which the dos_mp_seg of the current multiprocess execution
exists.

Name: dprint, dp

SYNTAX AS A COMMAND

dp {-control_args} {paths}

FUNCTION

queues specified segments and/or multisegment files for printing on one of the
Multics line printers. The output is by default identified by your Person_ide This
command does not accept standard object segments.

Use enter_output_request; it has functionally replaced dprint.

ARGUMENTS

paths
are pathnames of segments and/or multisegment files. The star convention is not
allowed.

CONTROL ARGUMENTS

-access_label, -albl
uses the access class of each pathi specified as a label at the top and bottom of
every page (see "Notes" below).

-brief. -bf
suppresses the message "j requests signalled. k already queued. (request_type
queue)." This control argument cannot be overruled later in the command line.
(See -request_type and -queue below.)

dprint

3-278 AG92-06

dprint

-bottom_label STR, -blbl STR
uses the specified string as a label at the bottom of every page (see "Notes"
below).

-copy N, -cp N
prints N copies (N <= 4) of specified paths. It can be overruled by a subsequent
-copy. If pathi is to be deleted after printing. all N copies are printed first If
this control argument is not specified, one copy is made.

-def er _un til_process_ termination, -dupt
does not process the request until the requesting process terminates. Process
termination is caused by the logout command, new_proc, or a fatal process error.

-delete, -dl
deletes (after printing) specified paths.

-destination STR. -ds STR
labels subsequent output with the string STR, which is used to determine where to
deliver the output STR is limited to 24 characters and must be quoted if it
contains spaces. If -destination is not specified, the default is your Project_ide
This control argument can be overruled by a subsequent -destination.

-forms STR
indicates the type of forms to be used when processing the print file. Standard
I/O daemon drivers ignore the forms specification when processing print requests.

-header STR, -he STR
identifies subsequent output by the string STR. STR is limited to 64 characters
and must be quoted if it contains spaces. If -header is not selected. the default
is your Person_ide This control argument can be overruled by a subsequent
-header.

-indent N, -in N
prints specified paths so that the left margin is indented N columns. If not
given, no indentation occurs.

-label STR, -lbl STR
uses the supplied string as a label at the top and bottom of every page (see
"Notes" below).

-line_length N, -11 N
prints spp.A;ified paths so that lines longer than N characters are continued on the
following line; i.e., no line of output extends past column N. If not chosen. a
line length of 136 characters is used.

-no_endpage, -nep
prints indicated paths so that the printer skips to the top of a page only when a
form-feed character is encountered in the input path. This control argument
ignores -page_length (if present).

dprint

3-279 AG92-06

dprint

-no_label, -nlbl
does not place any labels on the printed output

-non_edited, -ned
prints nonprintable control characters as octal escapes rather than suppressing their
printing.

-notify, -nt
sends a confirming message when the requested output is done, showing the
pathname and charge.

-page_length N, -pI N
prints no more than N lines per page, where N is the logical page length (i.e.,
the number of lines of user data to appear). (Default: varies depending upon the
request type)

-queue N, -q N
prints supplied paths in pnonty queue N. This control argument can be overruled
by a subsequent '-queue; if not specified, the default queue for the request type is
assumed. (See "Notes" below.)

-request_type STR, -rqt STR
places specified paths in the queue for requests of the type identified by STR
(see "Notes" below). If not specified, the default is "printer."

-single, -sg
prints specified paths so that any formfeed or vertical-tab character in any of the
paths is printed as a single newline character.

-top_label SiR, -tIbI STR
uses the specified string as a label at the top of every page (see "Notes" below).

-truncate, -tc
prints specified paths so that any line exceeding the line length is truncated rather
than "folded" onto subsequent lines.

ACCESS REQUIRED

You requires r access to the segment or multisegment file.

The process that performs the printing (as obtained by print_request_types) must have
at least r access to the file and at least s access to the containing directory to verify
that you also have at least r access to the file.

If -delete is specified, the I/O coordinator (normally IO.SysDaemon.z) must have at
least m access to the containing directory and at least s access to the parent directory
of the containing directory to verify that you also have at least m access to the
con taining directory.

dprint

3-280 AG92-06

dprint

NOTES

If you invoke dprint without any arguments. the system prints a message giving the
status of the default printer queue.

If control arguments are present. they affect only paths specified after their
appearance in the command line. If control arguments are specified without a
following pathi argument, they are ignored for this invocation of the command and a
warning message is printed.

The -queue 1 control argument places requests in the top priority queue, -queue 2 in
the second priority queue, and -queue 3 in the third. There can be 1 to 4 priority
queues for a specified request type as determined by the site. Higher priority queues
usually have a higher cost associated with them.

The -brief, -delete, -single. -truncate, and -no_endpage control arguments cannot be
reset in a specified invocation of the command; e.g., once -delete appears in a line,
all subsequently specified paths are deleted after printing.

The -request_type control argument is used to ensure that a request is performed by a
member of a particular group of printers. e.g., to distinguish between onsite printers
and remote printers at various locations. or between printers being charged to different
projects. . Only. request types of gelleric type "printer" can be specified; use the
print_request_types command to list them. It is a system restriction that you cannot
dprint from a private logical volume.

If a requested output operation cannot be done. the daemon process sends you a
message of the form:

Request path reason.

The -label, -top_label. -bottom_label, and -access_label control arguments allow you
to place labels on each page of printed output. The default labels are access labels;
i.e., -access_label is assumed. These control arguments are read, in sequence, from left
to right by dprint; for example, if -access_label is specified. it is printed at the top
and bottom of the page. If you next give -top_label STR. then the top access label
becomes STR, but the bottom label remains the same. Each label control argument
can override the preceding one. The label lines are printed on the second and the
next-to-Iast lines of the page. If the access class of pathi is system_low and the
access class name defined for system_low is nUll, then the default access label is
blank. The default access label can be overridden by -no_label, if labels are not
wanted. or by any other label control argument

The top and bottom labels are treated independently; thus, -top_label leaves an access
label as the default bottom label. A page label that exceeds 136 characters is truncated
to that length. Only the first line of a page label is printed, i.e., a new line
terminates the page label. Formfeeds and vertical tabs are not permitted. The label
control arguments are incompatible with -no_end page. and they are ignored regardless
of the -no_endpage's position in the command line.

dprint

3-281 AG92-06

dprint

Segments and multisegment files cannot be printed unless appropriate system processes
have sufficient access. The process (normally IO.SysDaemon) that runs devices of the
specified class must have r access to all paths to be printed and s permission on the
containing directory. A file cannot be deleted after printing unless its safety switch is
off and the system process has at least sm access on the containing directory. A file
is not deleted if it has a date-time-contents-modified value later than the
date-time-contents-modified value at the time of the dprint request

This command does not accept the star convention: if it finds a name contaInIng
asterisks. it prints a warning message and continues processing the other arguments.

If pathi specifies a standard Multics storage system object segment. dprint prints a
warning message and continues processing its other arguments.

EXAMPLES

The command line

dp -he Jones -ds BIN-5 -cp 2 -dl testl test7 -he Doe text.runout

dprints and then deletes two copies of the segments named test! and test7 in the
current working directory (with the header "Jones" and the destination "BIN-5") and
two copies of the segment named textrunout in the current working directory with the
header "Doe" and destination "BIN-5".

Name: dpunch, dpn

SYNTAX AS A COMMAND

dpn {-control_args} {paths}

FUNCTION

queues specified segments and/or multisegment files for punching by the Multics card
punch. It is similar to dprint

Use enter_output_request; it has functionally replaced dpunch.

ARGUMENTS

paths
are pathnames of segments and/or multisegment files. The star convention is not
allowed.

dpunch

3-282 AG92-06

dpunch

CONTROL ARGUMENTS

-7punch, -7p
punches the specified paths using 7-punch conversion. It can be overruled by
either -mcc or -raw.

-brief, -bf
suppresses the message "j requests signalled, k already queued. (request_type
queue)." This control argument cannot be overruled later in the command line.
(See -request_type and -queue below.)

-copy N, -cp N
punches N copies (N <= 4) of specified paths. It can be overruled by a
subsequent -copy. If pathi is to be deleted after punching, all N copies are
punched first If this control argument is not specified, one copy is made.

-defer_until_process_termination, -dupt
does not process the request until the requesting process terminates. Process
termination is caused by the logout command, new _proc, or a fatal process error.

-delete, -dl
deletes (after punching) all specified paths.

-destination STR, -ds STR
uses the string STR to determine where to deliver the deck. If not specified, the
default is your Project_id. This control argument can be overruled by a
subsequent -destination.

-header STR, -he STR
identifies subsequent output by the string STR. If not specified, the default is
your Person_id. This control argument can be overruled by a subsequent -header.

-mcc
punches the specified paths using character conversion. It can be overruled by
either -raw or -7punch. (Default)

-notify, -nt
sends a confirming message when the requested output is done, showing the
pathname and charge.

-queue N, -q N
punches speciiied paths in pnonty queue N (N <= 4). It can be overruled by a
subsequent -queue. If not specified. the default queue for the request type is
assumed. (See "Notes" below.)

-raw
punches the specified paths using no conversion. It can be overruled by either
-mcc or -7punch.

dpunch

3-283 AG92-06

dpunch

-request_type STR, -rqt STR
places specified paths in the queue for requests of the type identified by the
string STR (see "Notes" below). If not specified, the default request type is
"punch."

ACCESS REQUIRED

You require r access to the segment or multisegment file.

The process that performs the punching (as obtained by print_request_types) must have
at least r access to the file and at least s access to the containing directory to verify
that you also have at least r access to the file.

If -delete is specified, the I/O coordinator (normally 10.SysDaemon.z) must have at
least m access to the containing directory and at least s access to the parent directory
of the containing directory to verify that you also have at least m access to the
containing directory.

NOTES

If you invoke dpunch without any arguments, the system prints a message giving the
status of the default punch queue.

If control arguments are present, they affect only paths specified after their
appearance on the command line. If control arguments are specified without a
following pathi argument, they are ignored for this invocation of the command and a
warning message is printed.

The -delete control argument is the only one affecting segments that cannot be reset
in a specified invocation of the command. Once -delete appears in a line, all
subsequent segments are deleted after punching.

The -request_type control argument is used to ensure that a request is performed by a
member of a particular group of punches; for example, to distinguish between onsite
punches and remote punches at various locations, or between punches being charged to
diff erent projects. Specify only request types of generic type "punch." List request
types by using print_request_types. If a requested output operation cannot be done,
the daemon process sends you a message of the form:

"Unable to punch" path reason.

A segment or multisegment file cannot be punched unless appropriate system processes
have sufficient access. The process (normally IO.SysDaemon) that runs devices of the
specified class must have r access to all files to be punched and s permission on the
containing directory. A file cannot be deleted after punching unless its safety switch is
off and the system process has at least sm permission on the containing directory. A
file is not deleted if it has a date-time-contents-modified value later than the
date-time-contents-modified value at the time the request is completed.

dpunch

3-284 AG92-o6

dpunch

11/86

This command does not accept the star convention: if it finds a name containing
asterisks, it prints a warning message and continues processing the other arguments.

Before deleting a file that has been punched, read the deck back in and compare it
(using the compare command) with the original. to ensure the absence of errors.

EXAMPLES

The command line

dpunch a b -7punch -he RBurns copll -dl -he "FSchubert ll alpha

punches segments a and b in the current working directory using mcc conversion,
punches segment c.pll using 7-punch conversion with "for RBurns" added to the
heading, and punches and deletes segment alpha using 7-punch conversion with
"FSchubert" added to the heading.

Name: dump_segment, ds

SYNTAX AS A COMMAND

ds path {offset} {length} {-control_args}
ds segno {offset} {length} {-control_args}
ds virtual_pointer {offset} {length} {-control_args}

SYNTAX AS AN ACTIVE FUNCTION

[ds path {offset} {length} {-control args}]
[ds segno {off set} {l ength} {-control args}]
[ds virtual_pointer {offset} {length}-{-control_args}]

FUNCTION

prints, in octal or hexadecimal format, selected portions of a segment It prints out
either four or eight words per line and optionally prints out an edited version of the
ASCII, BCD, EBCDIC (in 8 or 9 bits), or 4-bit byte representation.

ARGUMENTS

_ t..
.fJCI.Ul

is the pathname or (octal) segment number of the segment to be dumped. If path
is a pathname but looks like a number. make the preceding argument be -name.
You can use the star convention for the command only.

3-285 AG92-06A

*

*

11/86

offset
is the (octal) offset of the first word to be dumped. If you omit both offset
and length, the entire segment is dumped. If you specify offset, add it to the
offset given in the virtual pointer (i.e., 234\40 10 5 implies seg 234150 for five
words). If you need no offset but need length, supply offset as zero.

length
is the (octal) number of words to be dumped. If you supply offset and omit
length, one word is dumped.

segno
is the octal segment number of the segment to be dumped. It cannot be a
hardcore segment number.

virtual_pointer
is an ASCII representation of a pointer (see Section 1).

CONTROL ARGUMENTS

-4bit
prints out, or returns, a translation of the octal or hexadecimal dump based on
the Multics unstructured 4-bit byte. The translation ignores the first bit of each
9-bit byte and uses each of the two groups of four bits remaining to generate a
digi t or a sign.

-address, -addr

-bed

prints the address (reiative to the base of the segment) with the data. (Defauit)

prints the BCD representation of the words in addition to the octal or
hexadecimal dump. There are no nonprintable BCD characters. so periods can be
taken literally. It causes the active function to return BCD.

-block N, -bk N
dumps words in blocks of N words separated by a blank line. The offset, if
being printed, is reset to the initial value at the beginning of each block.

-character, -ch, -ascii
prints the ASCII representation of the words in addition to the octal or
hexadecimal dump. Characters that cannot be printed are represented by periods.
It causes the active function to return ASCII. (Default)

3-286 AG92-06A

11/86

-ebcdic8
prints the EBCDIC representation of each eight bits in addition to the octal or
hexadecimal dump. It causes the active function to return 8-bit EBCDIC.
Characters that cannot be printed are represented by periods. If an odd number
of words is requested to dump, the last four bits of the last word do not appear
in the translation.

-ebcdic9
prints the EBCDIC representation of each 9-bit byte in addition to the octal or
hexadecimal dump. Characters that cannot be printed are represented by periods.
It causes the active function to return 9-bit EBCDIC.

3-286.1 AG92-o6A

This page intentionally left blank.

11/86 AG92-06A

-entry_point NAME, -ep NAME
specifies that the offset of the first word to be dumped is relative to the
location defined by the externally available symbol NAME. Use -entry_point only
for object segments (created by a compiler or by the create_data_segment
command).

-header, -he
prints a header line containing the pathname (or segment number) of the segment
being dumped as well as the date-time printed. (Default: to print a header only
if the entire segment is being dumped, i.e., if you give neither the offset nor the
length argument)

-hex8
prints the dumped words in hexadecimal with nine hexadecimal digits per word
rather than octal with 12 octal digits per word.

-hex9
prints the dumped words in hexadecimal with eight hexadecimal digits per word
rather than 12 octal digits per word. Each pair of hexadecimal digits corresponds
to the low-order eight bits of each 9-bit byte.

-interpreted, -it
prints the data decoded into the indicated format.

-long, -lg
prints eight words on a line. You can't use -long with -4bit, -bcd, -character,
-ebcdicB. -ebcdic9, or -short. (Default: four)

-name PATH, -nm PATH
indicates that PATH is a pathname even though it may look like an octal segment
number.

-no_address, -naddr
does not print the address.

-no_header, -nhe
does not print the header line even though the entire segment is being dumped.

-no_interpret, -nit
suppresses printing of the decoded data. (DefauD

-no_raw, -nraw
suppresses printing of the raw data.

-no_offset. -nofs
does not print the offset (Default)

-no_suppress_duplicates. -nsd
indicates that sequential lines are to be printed even if they would be identical to
previous lines.

3-287 AG92-G6

*

-octal, -oc
display the raw data in octal format, with 12 octal digits per word. (Default, for
raw data)

-offset {N}, -ofs {N}
prints the offset (relative to N words before the start of the data block being
dumped) along with the data. If you supply no N, 0 is assumed.

-raw
indicates that the raw data is to be printed. (Default)

-short, -sh
compacts lines to fit on a terminal with a short line length. Single spaces are
placed between fields, and only the two low-order digits of the address are
printed except when the high-order digits change. This shortens output lines to
less than SO characters.

-suppress_duplicates, -sd
indicates that if lines to be printed are identical to the previous line with a single
block, they are to be replaced by a short line of equal signs. (Default)

NOTES

The defaults for use as a command are -address, -no_interpret, -no_offset, -raw, and
-supress_duplicates with -header if the entire segment is printed. and -no_header if
only parts of the segment are to be printed. The defaults for use as an active
function are -no_address, -no_header, -no_interpret, -no_offset, -no_suppress_duplicates,
and -raw.

Supply only one of -4bit, -bcd, -character, -ebcdicS, or -ebcdic9.

If you invoke -4bit. -bed. -character, -ebcdicS. -ebcdic9, -hex8, or -hex9, the
information is returned in the specified format only. All other arguments are ignored
in active function invocation.

In the active function the following control arguments are invalid: -address. -block,
-header, -offset. and -suppress_duplicates.

When you give conflicting control arguments. the last one on the command line is
used.

The active function returns either raw data in octal or hexadecimal representation or
the interpreted data representation.

3-288 AG92-06

edm

Name: edm

SYNTAX AS A COMMAND

edm {path}

FUNCTION

invokes a simple Multics context editor. It is used for creating and editing ASCII
segments. You can't called it recursively.

ARGUMENTS

path
specifies the pathname of a segment to be created or edited. If you give no
path, edm begins in input mode (see "Notes" below), ready to accept whatever is
subsequently typed as input. If you supply path but the segment does not yet
exist, edm also begins in input mode; however if the segment already exists. edm
begins in edit mode.

LIST OF EDITOR REQUESTS

=

b
c
d
E
f
i
k
1
merge
move
n
p
q
qf
r
s
t
updelete
upwrite
v
w

backup
print current line number
comment mode
mode change
bottom
change
delete
execute
find
insert
kill
locate
insert segment
move lines within segment
next
print
quit
quitforce
retype
substitute
top
delete to pointer
write to pointer (upper portion of segment)
verbose
write

edm

3-289 AG92-06

edm

NOTES

This command operates in response to requests from you. To issue a request, make
edm be in edit mode. This mode is entered in two ways: if the segment already
exists, it is entered automatically when you edm invoke; if dealing with a new segment
(and edm has been in input mode), you must issue the mode change character. This
character is the period, issued as the only character on a line. The command
announces its mode by typing "Edit." or '''Input.'' when the mode is entered. From
edit mode, input mode is also entered via the mode change character.

The edm requests are predicated on the assumption that the segment consists of a
series of lines to which there is a conceptual pointer that indicates the current line.
(The "top" and "bottom" lines of the segment are also meaningful.) Various requests
explicitly or implicitly move the pointer; others manipulate the line currently pointed
to. Most requests are indicated by a single character, generally the first letter of the
name of the request. For these requests only the single character (and not the full
request name) is accepted by the command. Certain requests have been considered
sufficiently dangerous, or likely to confuse you, that you must specify their names in
full. If you issue a quit signal while in edit mode and then invoke the
program_interrupt command, the effect of the last request executed on the edited copy
is nullified; in addition, any requests not yet executed are lost. If you type
program_interrupt after a quit in comment or input modes, all input since last leaving
edit mode is lost; if you wish to keep the input, invoke the start command following
the quit.

See the FAST Subsystem User's Guide (AU25) for an introduction to the use of
edm.

Name: emacs

SYNTAX AS A COMMAND

emacs {-control_args} {paths}

FUNCTION

enters the Emacs text editor, which has a large repertoire of requests for editing and
formatting text and programs.

ARGUMENTS

paths
are pathnames of segments to be read in. Each is put into its own appropriately
named buffer. Star and archive component pathnames are accepted.

emacs

3-290 AG92-06

emacs

11/87

CONTROL ARGUMENTS

-apply function_name argl arg2 ... argi,
-ap function_name arg1 arg2 ... argi

evaluates (function_name 'arg1 'arg2 ... 'argi) , where the args are arguments to the named Lisp
function (e.g., an Emacs request). This is valuable for constructing abbreviations. This
control argument must be the last argument

-line_length N, -11 N
sets the line length to be different from the terminal's default line length.

-force, -fc
permits the use of terminal type control arguments (-ttp. -query, -reset) when in the video
system; however, the -ttp argument is restricted to video controllers.

-line_length N, -11 N
sets the line length to be different from the terminal's default line length.

-line_speed N, -Is N
indicates line speed to obtain proper padding (for ARPANet users), where N is the output
line baud rate in bits/second. This control argument is ignored in the video system.

-macros path, -macro path. -mc path
loads the segment, specified by path, as Lisp, so that features therein are available.

-no_f orce. -nf c
prevents the use of terminal type control arguments when in the video system. (Default)

-no_start_up, -no_startup. -ns
prevents use of your startup (start_up. emacs).

-page_length N, -pI N
sets the page length iO be different from the terminal's default page length.

-query
queries you for a terminal type without checking the Multics terminal type first The query
response can be any recognized editor terminal type. (See "Notes.")

-reset
specifies that Emacs disregard the terminal type set by -terminal_type and set it in accord
with the Multics terminal type instead (see "Notes").

-terminal_type STR, -ttp STR
specifies your terminal type to Emacs, where STR is any recognized editor terminal type or
the pathname of a control segment to be loaded. If STR is not a recognized type, Emacs
queries you after entry. providing a list of recognized types. (See "Notes.")

emacs

3-291 AG92-06B

emacs

NOTES

None of the terminal type control arguments (-ttp, -reset, -query, -line_speed) are
generally necessary; they are only used for solving various communications problems.

The control arguments -query, -reset, and -terminal_type are incompatible. You can't
use them in the video system unless you provide -force.

Emacs is a display-oriented editor designed for use on CRT terminals. Several modes
of operation for special applications (e.g., RMAIL, PL/I, FORTRAN) are provided; the
default mode entered is Fundamental major mode.

For a basic introduction to the Emacs Text Editor and descriptions of the most
generally used editing requests of emacs fundamental mode, see the Introduction to
Emacs Text Editor (CP31). You can find a tutorial introduction to the Emacs Text
Editor, fully describing the editing requests available and containing instructions for
using special features of emacs, in the Emacs Text Editor User's Guide (CH27). A
guide for programmers writing extensions and terminal control modules (CTLs) in Lisp
is provided in the Emacs Extension Writer's Guide (CT52).

You can get a complete. list of available requests in emacs via the make-waH-chart
request while in emacs. Type the following:

emacs
ESC-X make-wall-chart

where ESC is the escape key on the terminal.

In addition, emacs provides its own online, interactive tutorial. which you can invoke
by typing the following:

emacs
A ?

where 001\" stands for the CONTROL key. which you must hold down while pressing
the underscore character.

See also the list_emacs_ctls command.

emacs

3-292 AG92-06

encode

Name: encode

SYNT AX AS A COMMAND

encode pathlA {path2A •.• pathlN path2N} {-control_args}

FUNCTION

enciphers a segment's contents according to a key that is not stored in the system.
The enciphered segment has the same length as the original segment The encode
command provides additional security for data stored in a Multics segment

ARGUMENTS

pathl
is the pathname of a segment to be enciphered. The star convention is allowed.

path2
is the pathname of an enciphered segment to be produced. If the last path2 is
not specified, it is assumed to be the same as pathl. The equal convention is
allowed. This command always appends the code suffix to path2 to produce the
name of the enciphered segment

CONTROL ARGUMENTS

-key STR
specifies the encipherment key STR on the command line and does not query for
one. This control argument is useful in exec_corn's for multiple invocations of the
command with the same key.

NOTES

The encode command requests an encipherment key (1-11 characters not including
space, semicolon, or tab) from the terminal. Printing on the terminal is suppressed
(the printer is turned off) while the key is typed. The command then requests that
the key be typed again, to guard against the possibility of mistyping the key. If the
two keys do not match, the key is requested twice again.

All segments specified in an invocation of encode are enciphered with the same key.

To reconstruct the original segment from the enciphered segment, see the decode
command.

encode

3-293 AG92-06

Name: eneode_aceess~elass, eae

SYNTAX AS A COMMAND

eac {STR} {-control_arg}

SYNTAX AS AN ACTIVE FUNCTION

[eac {STR} {-control_arg}]

FUNCTION

prints/returns an encoded version (a short character string suitable for inclusion in
entrynames) of an access class; this is an interface to the subroutine
convert_access_class_$encode.

ARGUMENTS

STR
is the access class to be encoded. If you use STR, don't use the control
argument If you give no access class, the process's current authorization is used.

CONTROL ARGUMENTS

-access_class ACC, -ace ACC
is an alternate way to specify the access class, where ACe is the access class to
be encoded.

Name: enter_abs_request, ear

SYNTAX AS A COMMAND

ear path {-control_args}

FUNCTION

allows you to request the creation of an absentee process, which you can delay until a
specified time. An absentee process executes commands from a segment and places the
output in another segment.

ARGUMENTS

path
specifies the pathname of the absentee control segment associated with this
request. The absin suffix is assumed.

3-294 AG92-06

11/86

CONTROL ARGUMENTS

-arguments STRs, -argument STRs, -ag STRs
indicates that the absentee control segment requires arguments. STR can be one or
more arguments. All arguments following -ag are taken as arguments to the
absentee control segment; therefore put -ag last in the command line.

-brief, -bf
suppresses the message "ID: HHMMSS.f; N already requested."

-comment STR, -com STR
associates a comment with the request. If STR contains blanks or other command
language characters, enclose it in quotes. The comment is printed whenever you or
the operator lists the request. It indicates to the operator the time or
circumstances when a deferred job should be released, such as when a specified
reel of tape is delivered to the computer room.

-def er _indef ini tely, -df i
does not run the absentee process until the operator starts it.

-extend
appends absentee process output to the absout file. It overrides -tc. (Default)

-foreground, -fg
places the request in the foreground queue, rather than in one of the numbered
background queues. For load control and charging, jobs in the foreground queue
are treated as interactive logins; that is, a foreground job is logged in as if you
would have logged in interactively, and, while logged in, it occupies a primary slot
in your load control group. (See -secondary.)

-limit N, -li N
places a limit on the CPU time used by the absentee process. N must be a
positive decimal integer specifying the limit in seconds. Your site defines the
default limit for each queue and the upper limit for each queue on each shift.
Jobs with limits exceeding the upper limit for the current shift are deferred to a
shift with a higher limit.

-lon~id, -lgid
prints the long form of the request identifier in the normal message:

ID: yymmddHHMMSS.ffffff; N already requested

-notify. -nt
notifies you (by an interactive message sent to your mailbox) when the job is
logged in, when it is logged out, or when it is deferred for any reason other
than your request. The latter may occur because of the unavailability of resources
or a time limit higher than the maximum for the shifl

-output_file path, -of path
specifies the pathname of the output segment (see "Notes" below).

3-295 AG92-06A

11/86

-proxy User_id
enters the request on behalf of the specified user. An absentee process of that
User_id is logged in to run the job. The system administrator controls the use of
-proxy by an access control segment.

-queue N, -q N
submits the request to queue N, where N is an integer specifying the number of
the absentee process queue. Your site administrator designates the default queue.
There are four background queues, with queue 1 having the highest priority. Your
site determines the highest ntL.~bered queue processed on each shift For
convenience in writing exec_corns and abbreviations, the word "foreground" (fg)
following -q is equivalent to -fg.

-resource STR, -rsc STR
specifies resources given in STR (e.g., one or more tape drives); don't start them
until they are available. These resources are also reserved for the absentee job
before it is logged in. You need not do resource reservation (using the
reserve_resource command) in the absin segment. Enclose the resource description
in quotes if it contains blanks or other command language characters.

-restart, -rt
starts over the computation of this request from the beginning if interrupted (for
example, by a system crash). (Default: not to restart the computation)

-secondary
logs in a foreground job as a secondary user (subject to preemption) if there are
no primary slots available in your load control group. By default a foreground
job is only logged in if a primary process can be created for you.

-sender STR
enters requests only from sender STR. In most cases, the sender is an RJE station
identifier.

-time DT, -tm DT
delays the creation of the absentee process until a specified date-time. where DT
must be a character string acceptable to convert_date_to_binary _ (see the
Subroutines manual). If DT contains blanks, enclose it in quotes.

-truncate, -tc
truncates the absout file, so that the absentee process begins writing at the
beginning of the absout file.

NOTES

The main difference between an absentee process and an interactive one is that in an
absentee process the I/O switch user_input instead of being attached to a terminal is
attached to an absentee control segment containing commands and control lines, and
the I/O switch user_output instead of being attached to a terminal is attached to an
absentee output segment. The absentee control segment has the same syntax as an
exec_com segment. An error message--unless it says otherwise--indicates that the
request has not been submitted.

3-296 AG92-06A

11/86

If you don't supply the pathname of the output segment, the output of the absentee
process is directed to a segment whose pathname is the same as the absentee control
segment, having the absout suffix instead of absin. If you omit the absout suffix from
the output segment pathname, the suffix is assumed. The named output segment may
or may not already exist

If the absout segment exists, the absentee user (Person_id.Project_id.m or, in the case
of a proxy request, Person_id.Project_id. p) must have w access to the segment. If the
absout segment does not exist, the absentee user requires append permission to the
directory in which it is to be created.

The command checks for the existence of the absentee input segment and rejects a
request for an absentee process if it is not present

Specifying -tm is as if you issued ear at the deferred time. Be aware of differing
time zones when deferring absentee jobs. If there is a possibility of overlapping times
(i.e .. when est changes to edt, etc.), specify the time zone in the value given for -tm.
If an absentee job cannot be run or if it terminates abnormally, the system sends an
interactive user message to your mailbox. whether or not you give -nt.

All input and output that occurs in the absentee job is written to the segment
STR.absout in the same directory as the absentee segment STR.absin. This absout
segment has its safety switch turned on temporarily while the job is running, since
deleting the absout segment crashes the absentee job.

The absentee login and logout messages are generated by the absentee process itself.
The messages are written to the user_i/o switch. If a fatal process error or certain
types of process damage occur, the messages may not ap~~r in the absout segment If
you are diverting output to another file (by file_output, for example) when such an
error occurs, you may need to issue adjust_bit_count for that file; this is because
revert_output was never executed and the bit count of the file being written was not
updated.

To make sure that the absout is printed after absentee logout, even if it does not
reach completion. put the following command line near the beginning of the absin
HIe:

ear -dupt [user absoutJ

where "-dupt" is short for -defer_until_process_termination.

To delete the absout when done. make the following the last Hne in the absin file:

dl [user absoutJ -force; logout -brief

The logout command prevents an abnormal termination trying to write another line to
the deleted absout file.

3-297 AG92-06A

11/86

An alternative to deleting the absout is to rename it so as to keep only the latest
copy:

answer yes -brief rename [user absoutJ ===.old

This command line, which can appear anywhere in the absin file, forces deletion of
any previous old copy and saves the current absout with suffix old for later
examination.

To delete the absin when completed, make the following the last line in the absin
file:

dl [user absin]; logout

The logout command prevents an abnormal termination trying to read another line
from the deleted absin file.

The -tc control argument truncates the absout file at the time the absentee job is
starting to run. but if the job is being restarted after a system crash, the truncation is
not performed.

EXAMPLES

Suppose you want to request an offline compilation. This can be done with a control
segment called absentee_pll.absin containing

change_wdir current_dir
pll x -table -map
eor -delete x.list
logout

The command line

ear absentee_pll

creates an absentee process that does the following:

1. Sets the working directory to the directory named current_dir, which is inferior
to your normal home directory.

3-298 AG92-06A

11/86

2. Compiles a PL/I program named x,pll with two control arguments.

3. Prints one copy of the listing segment and then deletes it.

4. Logs out.

The output of these tasks appear in the directory containing absentee_pl1.absin in a
segment called absentee_pll.absout.

3-298.1 AG92-06A

This page intentionally left blank.

11/86 AG92-06A

Suppose that an absentee control segment, trans.absin, contains the following:

change_wdir &1
&2 &3 -map &4
eor -delete &3.1ist
&goto &2.b
& 1 abe 1 p 1 1 • b
&3
&label fortran.b
logout

The command line

ear trans -li 300 -rt -ag work pl1 x -table

requests a restartable absentee process, in the default queue having a CPU limit of 300
seconds, that does the following:

1. Sets the working directory to the directory named "work," which is inferior to
the normal home directory.

2. Compiles a PL/I program. x.pll. in that directory and produces a listing segment
containing a map and an object segment containing a symbol table.

3. Issues a dprint request for the listing segment.

4. Executes the program "x" just compiled in the

5. Logs out.

The command line

ear trans -rt -tm IIMonday 2300.00 edt ll -q 2 -ag comp fortran yz

creates a request for a restartable absentee process (in queue 2 at the first occurrence
of Monday. 11 P.M., Eastern Daylight Time) that does the following:

1. Sets the working directory to the directory named "comp." which is inferior to
the home directory.

2. Compiles a FORTRAN program named yz.fortran and produces a listing segment.

3. Issues a dprint request for the listing segment

4. Logs out

3-299 AG92-G6

-non_edi ted, -ned
prints nonprintable characters as octal escape sequences (e.g., \000 or \577).

A formfeed character in the input file normally begins printing the subsequent output
at the top of the next page. Similarly, a vertical-tab character normally begins
printing the subsequent output at the next vertical-tab stop. Vertical-tab stops are set
at lines 1, 11, 21. 31, 41, and 51.

-vertical_space, -vertsp
skips to the top of the page when a f ormf eed character is found in the file
being processed. It skips to the next vertical-tab stop when a vertical-tab
character is encountered. (Default)

-no_ vertical_space, -nvertsp
treats formfeed and vertical-tab characters as newline characters during printing.

Print Page Labels

The following control arguments govern the printing of labels at the top and bottom
margins of each page of printed output.

-label {-control_args} SIR. -lbl {-control_args} SIR
puts STR as a label at the top and bottom of each printed page.

The label can be constructed from SIR using the active string evaluation or the
equal convention, as described below.

~active_string. -astr
makes SIR an active string, which eor evaluates for each request that is
submitted. For example,

-label -astr date

uses today's date as the label.

Ihe pathname of the file being processed can be used in the active string
because SIR is evaluated as:

[do "[STR]" pathname]

For example,

-label -astr "date;string -;spe &1"

produces the label "12/23/84-test" when submitting a request to print test.pll
on December 23, 1984.

3-308 AG92-D6

Name: enter~output_request, eor

SYNTAX AS A COMMAND

eor {paths} {-control_args}

FUNCTION

submits requests to printer, punch, or plotter queues. All control arguments are
nonpositional. Paired control arguments override one another if both are used in a
single command. You can also establish personalized default settings for these control
arguments.

ARGUMENTS

paths
are pathnames of segments or multisegment files to be printed, punched, or
plotted. The star convention is accepted. Null links and directories matching a
starname are ignored without error.

BASIC CONTROL ARGUMENTS

-print, -pr
submits requests for printing. (Default)

-punch, -pch
submits requests for punching.

-plot
submits requests for plotting on an installation-defined plotting device.

-request_type STR, -rqt STR
submits requests to the STR printer, punch, or plotter request type (see "Queuing
Controls" below).

-queue N, -q N
submits requests to queue N of the request type (see "Queuing Controls" below).

-header {-control_args} STR, -he {-control_args} STR
identifies output with a heading of STR (see "Processing Controls" below).

-destination {-control_args} STR. -ds {-control_args} STR
labels output with STR, which is used to determine where to deliver the output
(see "Processing Controls" below).

-copies N, -cp N
produces N copies of the printed. punched, or plotted output (see "Processing
Controls" below).

3-300 AG92-o6

-delete, -dl
deletes files after they are printed, punched, or plotted.

-no_delete. -ndl
does not delete files after they are printed. punched, or plotted. (Default)

-notify, -nt
sends a confirming message to the submitter when the request has been processed,
showing the pathname and charge.

-no_notify, -nnt
does not send the confirmation. (Default)

BASIC OPERATION: When this command is invoked with a pathname argument, it
submits a request to print the file(s) identified by path. Each printed listing is
identified by a destination string, which tells the operator how to route the listing to
the submitter, and by a heading string, which further identifies the submitter or the
listing. When you give no control arguments, eor uses default values for the header,
the destination, the request type and priority at which the request is queued, the
number of copies to be printed, and so on.

This command provides standard settings for control arguments not given. However, it
also allows you to change. these default values for the various request types. __ By using
user-settable defaults, you can tailor eor to the type of print, punch. or plot requests
most frequently queued. (See "Setting Defaults" below.)

The eor command offers precise control over how print, punch, or plot requests are
queued; how the requests are processed (e.g., formatting of printed pages or conversion
of punched . files); and what actions are taken after processing (e.g., delete the file,
notify the submitter). However, many users find that the following subset of control
arguments provide adequate control for printing, punching, and plotting.

CONTROL ARGUMENTS

The control arguments accepted by eor are described below, organized by function.

QUEUING CONTROLS
-print, -pr
-punch, -pch
-plot
-request_type, -rqt
-queue. -q
-name, -nm
-brief, -bf
-long, -lg
-force, -fc
-no_f orce, -nfc

3-301 AG92-06

PROCESSING CONTROLS
-header, -he
-destination, -ds
-copies, -cp
-forms

POSTPROCESSING CONTROLS
-delete, -dl
-no_delete, -ndl
-notify, -nt
-no_notify, -nnt

PREPROCESSING CONTROLS
-def er _un til_process_ termination, -dupt
-no_defer_until_process_1ermination, -ndupt

PRINT FORMAT
-page_length, -pI
-line_length, -11
-inden t, -ind
-truncate. -tc
-fold
-no_end_page, -nep
-end_page. -ep

Queuing Controls

PRINT OUTPUT CONVERSION
-non_edited, -ned
-edited, -ed
-no_ vertical_space, -nvertsp
-vertical_space, -vertsp

PRINT PAGE LABELS
-label, -lbl
-top_label, -tlbl
-bottom_label, -blbl
-access_label, -albl
-no_label. -nlbl

PUNCH OUTPUT CONVERSION
-mcc_punch, -mce
-raw _punch. -raw
-7punch, -7p

SETTING DEFAULTS
-list_defaults, -ldft
-print_defaults, -pdft
-all. -a
-replace_defaults, -rdft
-set_defaults, -sdft
-delete_defaults, -ddft
-default_name, -dnm
-set_ defaul t_request_ type,

-sdrqt

The following control arguments govern how print, punch. and plot requests are
submitted.

A request is submitted to a particular request type to control where and how it is
printed, punched. or plotted. For example, a file to be printed on a remote printer
must be submitted to the request type associated with that printer. Similarly, a file to
be printed on a special print form must be submitted to a special request type
associated with that form. Use the print_request_types (prt) command to list available
request types.

Some request types are associated with printing, some are for card punching, and
others are for plotting of output on installation-defined plotting devices. The request
type can be chosen in several ways.

-request_type STR, -rqt STR
submits requests to the STR printer. punch. or plotter request type. STR must be
one of the request types listed by print_request_types. (Default printer when
printing, punch when punching. piotter when plotting)

3-302 AG92-06

-punch, -pch
submits requests to the default punch request type.

-plot
submits requests to the default plotter request type.

-print, -pr
submits requests to the default print request type. (Default)

To get the default print, punch, and plotter request types, use "eor -ldft" or
prin t_request_ types.

You can submit requests using priority queue 1, 2, 3. or 4, queue 1 having the highest
priority. Requests are processed by the 10 Driver process by priority: all requests
from queue 1 are processed before any ones from queue 2, and so on; within a given
queue, requests are processed in the order in which they were submitted. The higher
the queue number, the quicker the request is processed and the higher the billing rate.
Your site associates billing rates with each priority queue.

-queue N. -q N
submits the request to queue N of the request type. If N is "default" (dft) or
"-default" (-dft), the default priority queue is used. Some request types have
fewer than four queues, so the default priority queue varies, depending upon the
request type.

You can submit a request to process a file whose name looks like a control
argument or starname.

-name path. -nm path
submits a request for the single file identified by the pathname.

To print, punch. or plot a file the 10 Driver process must have at least r access to
the -file and s access - to the directory that contains the file and the file must have a
nonzero bit count. The print_request_types command lists the access name associated
with the 10 Driver for each request type.

-force, -fc
forces sufficient access to a file to allow pnntlng, punching, or plotting and
adjusts the bit count of segments having a zero bit count.

-no_force, -nfc
prints an error message for files having a zero bit count and for files to which
the 10 Driver has insufficient access. (Default)

The eor command reports how many files are submitted during an invocation with a
message of the form:

J requests submitted; K already in REQUEST_TYPE queue N.

3-303 AG92-06

11/87

-long, -lg
prints the above message. (Default)

-brief, -bf
suppresses the above message.

Processing Controls

The following control arguments govern how the 10 Driver processes the output request

The 10 Driver places leading and trailing "banner pages" around a print file to identify it
Similarly the driver for central-site card punch devices places specially punched "flip cards"
around a punch file. For remote card punches. special ID cards are punched at the start of each
output file. For plot requests the 10 driver creates a plotted banner page to identify each plot
request The banner pages, flip cards. and ID cards contain a destination, which tells the operator
how to route the output back to the submitter, and a heading, which further identifies the file.
For printed files the first 13 characters of the destination and header are printed in large, block
letters to help identify the file.

-header {-control_args} STR, -he {-control_args} STR
identifies output with a heading of STR. STR is limited to 59 characters; "quote" it if it
contains spaces. If "-default" (-dft) is given, the heading string is reset to its default value.
(Default submitter's Person_id)

You can construct the heading string from STR using the active string evaluation or the equal
convention, as described below.

-active_string, -astr
makes STR an active string, which eor evaluates for each request that is submitted; for
example,

-he -astr date

uses today's date as the heading.

The pathname of the file being processed can be used in the active string because STR is
evaluated as:

[do "[STR]" pathnatne]

For example,

-he -astr "date;string -;spe &1"

produces the heading "12/23/84-test" when submitting a request to print test.pl1 on
December 23, 1984.

3-304 AG92-06B

11/87

-equal_name. -enm
the heading is constructed by applying the equal convention to STR and the entryname
of t.he file being processed. If the STR con tains any equal signs (=) or percent characters
(%), then -equal_name is assumed by default unless you supply -string. You can give
this operand with -active_string to apply the equal convention to the evaluated active
string.

-string, -str
treats STR as an ordinary heading, even though it may contain equal signs or begin with
a hyphen.

-destination {-control_args} SIR. -ds {-control_args} SIR
labels output with STR, which is used to determine where to deliver the output. STR is
limited to 24 characters; quote it if it contains spaces. If "-default" (-dft)is used. the
destination string is reset to its default value.
(Default submitter's Project_id)

You can construct the heading string from STR using the active string evaluation or the equal
convention, as described by the control arguments listed with -header above. *.cbn

-copies N, -cp N
produces N copies of the printed, punched. or plotted output. N can be any number from 1
to 30, or it can be "default" (dft) or "-default" (-dft) to obtain the default number of copies.
(Def aul t: 1)

~no_separator, -nsep
specifies that when multiple copies of a request are processed the inner head and tail sheets
should not be included.

-separator, -sep
specifies that when multiple copies of a request are processed the inner head and tail sheets
should be included. (Default)

You can specify the type of software-generated forms to be used when printing a file (e.g., when
printing on microfiche equipment); such forms differ from printer paper stock, which you
should select by giving a -request_type identifying a set of queues associated with the desired
paper stock.

-forms SIR
specifies the type of forms to be used when printing a file. Currently standard I/O daemon
drivers ignore -forms when processing a print request

3-305 AG92-06B

Preprocessing Controls

The following control arguments govern when a request is to be processed.

-defer_until_process_termination, -dupt
does not process the request until the requesting process terminates. Process
termination is caused by the logout command, new_proc, or a fatal process error.

-no_defer_until_process_termination, -ndupt
processes the request normally. (Default)

Postprocessing Controls

The following control arguments govern what the 10 Coordinator does with a file
after it is printed or punChed.

-delete, -dl
deletes files after they are printed, punched, or plotted.

-no_delete, -ndl
does not delete files. (Default)

If -delete is specified, the 10 Coordinator (usually IO.SysDaemon.z) must have at least
m access to the directory containing the entry. A file is not deleted if it is modified
after the request to output it is submitted.

When the file is processed, the 10 Driver can send a confirmation message of the
form:

printed PATHNAME $COST queue N DEVICE_NAME PROCESSING_ID

where PATHNAME is the pathname of the file that was output, COST is the dollar
charge for processing the file, DEVICE_NAME is the name of the physical device on
which the file was printed (e.g., prta or MDC_Office. prt) , and PROCESSING_ID is a
number by which the file was identified to the operator.

-no_notify, -nnt
does not notify the submitter. (Default)

-notify, -n t
notifies the submitted after the entry is printed, punched, or plotted.

Print Format

The following control arguments govern the format of printed pages.

3-306 AG92-o6

11/87

You can control the length of lines in the printed output, the page length. the indentation of
the left margin, and the method used in processing lines longer than the line length or pages
longer than the page length. For example. when printing on special forms, it is often
necessary to specify an indentation for the left margin to position the output properly on the
form.

Most printers can print at least 132 columns per line, some as high as 136. and up to 66 lines
per page. However the maximum line and page length allowed for a particular request type
depends upon both the width and the length of print forms mounted on the printer and the
line and page length constraints of the printer device.

-line_length L. =11 L
prints L columns per line only. L can be any number from 1 to 250, or it can be "default"
(dft) to obtain the default line length. (Default: varies depending upon the request type)

-indent I. -ind 1
indents the left margin by 1 columns. 1 can be any number from 0 to L (the line length) or it
can be "default" (df!) to obtain the default indentation. (Default: 0)

-truncate. -tc
truncates lines longer than L-I columns.

-fold
continues lines longer than L-I columns on subsequent print lines.

-page_length p. -pI P
prints no more than P lines per page, where P is the logical page length (i.e .• the number of
lines of user data to appear). P can be "default" (dft) to obtain the default page length.
(Default: varies depending upon the request type)

-end_page. -ep
skips to the top of the next page after P lines are printed on a page. (Default)

-no_end_page. -nep
skips to the top of the page only when a formfeed (newpage) character is encountered in the
input Use of -no_end_page disables -page_length.

Print Output Conversion

The following control arguments govern how nonprinting ASCII (or non-ASCII) characters are
printed in the listing.

-edited. -ed
suppresses printing of nonprintable characters. (Default)

3-307 AG92-()6B

-equal_name, -enm
the label is constructed by applying the equal convention to STR and the
entryname of the file being processed. If the STR contains any equal signs
(=) or percent characters (<]b). then -equal_name is assumed by default (unless
-string is given). This operand can be given with -active_string to apply the
equal convention to the evaluated active string.

-string, -str
treats STR as an ordinary label, even though it may contain equal signs or
begin with a hyphen.

-center
centers the label on the printer page, based upon the line length given by
-line_length or the default line length associated with the request type.
(Default label is left justified)

-top_label {-control_args} STR, -tlbl {-control_argsJ STR
puts STR as a label at the top of each printed page.

The top label can be constructed from STR using the active string evaluation or
the equal convention, as described by the control arguments listed with -label
above.

-bottom_label {-control_args} STR. -blbl {-control_args} STR
puts STR as a label at the bottom of each printed page.

The bottom label can be constructed as the top label.

-access_label, -albl
puts. the access class of the entry being printed at the top and bottom of every
page; for entries at system_low access class, this is equivalent to -no_label.
(Default)

-no_label, -nlbl
does not place any labels in the printed output.

Access labels are centered in the top and bottom margins on each printed page. All
other labels are aligned with the left margin.

For a file at system_low access class, the access label is a null string. Thus,
-access_label for such files is equivalent to -no_label.

The top and bottom labels on a page are treated independently. Giving -top_label
alone leaves an access label at the bottom of the page; giving -bottom_label alone
leaves an access label at the top of each page.

When -no_end_page is specified, the top and bottom margins of each page are
eliminated; therefore, -no_end_page is incompatible with the label control arguments.

3-309 AG92-06

Punch Output Conversion

The following control arguments govern the type of output conversion performed when
punching a file. Three conversion modes are available: character conversion using
Multics card codes. binary conversion using Multics 7-puneh card codes. or raw (no)
conversion. (See the Programmer's Ref erenee Manual for inf ormation on the
input/ output system and conversion codes.)

-mcc_punch, -mec
punches files using character conversion. (Default)

-raw_punch. -raw
punches files using no conversion.

-7punch. -7p
punches files using 7-punch conversion.

When any of the above control arguments are used, -punch is assumed.

Setting Def auIts

The following control arguments allow you to print or change the default control
argument values used by eor (see "Examples.")

A different group of control argument values can be defined for each print. punch,
or plot request type. This allows different defaults for local and remote printers and
f or specialized print forms.

Groups of control argument settings are stored for each user in the default value
segment (usually a home directory segment called Person_id.value). If it does not
already exist. this segment is created automatically the first time you invoke eor. The
following control arguments list the values for one or more of the defined groups.

-list_defaults, -ldft
lists the names of all groups of control argument values that have been defined.
Printing, punching, and plotting groups are listed separately. The list also
identifies the default group used for printing. punching, or plotting (the group
used when -request_type is not given).

-print_defaults. -pdft
prints the control argument values associated with the group identified by
-request_type. If -request_type is omitted, prints values for the default punch
group (if punch-oriented control arguments are given), default plot group (if -plot
is given). or the default print group.

-all, -a
prints the control argument values associated with all defined groups (-print_defaults
is assumed).

3-310 AG92-Q6

A new group of control argument settings can be defined by referencing the group
name in -request_type and using either -replace_defaults or -set_defaults. Similarly, an
existing group can be modified or deleted.

When defining a group of control argument settings. the group can be initialized to
standard settings, and then any control arguments supplied in the command line are
used to modify these settings. Alternately, an existing group can be modified by
applying the given control arguments to the group without resetting the group to
standard values.

-replace_defaults, -rdft
resets control argument settings in the group to their standard values and then
applies the specified control arguments to modify the group.

-set_defaults, -sdft
adds control arguments given in the command line to the existing default values.

-delete_defaults, -ddft
deletes the definition of the named group of control argument settings.

When eor is invoked without -request_type. a default request type is used. The
standard default request type for print requests is "printer". which usually designates
the site's local printer; for punch requests is "punch". which usually designates the
site's local punch; and for plot requests is "plotter". You can change these default
request types.

-set_default_request_type STR, -sdrqt STR
sets the default request type for printing, punching, or plotting to STR. The print
default request type is set by default). STR must be a request type or the name
of a group of control argument settings.

It is sometimes desirable to define several different groups of control argument
settings associated with the same request type. For example. you might want to indent
only segments containing Multics mail. Several groups can be associated with the same
request type by using the following control argument along with -request_type.

-default_name STR, -dnm STR
uses STR as the name for a new group of control argument settings being
defined. Use -default_name when the name oi the new group differs from the
request type defined by the group. Subsequent references to the group are made
by using -request_type (i.e., the new group name becomes a user-defined request
type).

ACCESS REQUIRED

The 10 Daemon process that performs the printing or punching must have at least r
access to the entry and at least s access to the directory that contains the entry. Use
the print_request_types command to print the access name of 10 Daemon processes.

3-311 AG92-o6

11/87

If -delete is given, the 10 coordinator (normally 10.SysDaemon.z) must have at least m access to
the directory that contains the entry.

NOTES

If eor is invoked without arguments, it gives the status of the default printer request type.

EXAMPLES

The following examples illustrate how groups of control argument settings can be defined,
modif ied, printed, or deleted.

eor -rdft -rqt cisl_prt -nt -q 2 -ind 10

resets the cisl_prt group to the standard control argument values and then applies the -nt, -q, and
-ind settings to change the defaults. You can print the new defaults by

eor -rqt cisl_prt -pdft

cisl_prt:
-rqt cisl_prt -print
-he "LvBeethoven"
-ds ISysLib"
~nt -q 2 -ind 10 ~albl

You can make the cisl_prt group the default request type for printing by

When you invoke eor without control arguments, the cisl_prt control argument settings are used.
You can now modify and print these defaults by

eor -ind 0 -sdft -pdft

cis l_prt: (defau 1 t for pr i nt i ng)
-rqt cisi_prt -print
-he IJSBach"
-ds IISysLib li

-nt -q 2 -albl

You don't have to give the cisl_prt request type in the command line because it is now the default
request type for printing. Several groups of defaults can apply to the same request type by using
-default_name. For example, to define a request type to print mait indented by 20, use

eor -rdft -dnm mail -rqt printer -ind 20 -pdft -q dft

3-312 AG92-06B

ma i 1 :
-rqt printer -print
-he "LdVinci ll

-ds ISysLib"
-q 3 (default) -ind 20 -albl

Segments with a mail suffix can be printed with the mail defaults by

eor -rqt mail **.mail

The mail defaults can be modified by

eor -rqt mail -sdft -nt -dl -pdft

ma i 1 :
-rqt printer -print
-he ILdVinci"
-ds "SysLib ll

-q 3 (default) -dl -nt -ind 20 -albl

The known groups of defaults (and their associated request types) can be listed by

eor -ldft

Defaults for printing:
pri'nter

mail -rqt printer
Defaults for punching:

punch (def au 1 t)
Defaults for plotting:

plotter (default)

All the groups of control argument settings can be printed by

eor -pdft -a

cisl_prt: (default for printing)
-rqt cisl_prt -print
-he "LdVinci ll

-ds "SysLib ll

-nt -q 2 -albl

ma i 1 :
-rqt printer -print
-he "LdVinci ll

-ds "SysLib"
-dl -nt -q 3 (default) -ind 20 -albl

3-313 AG92-06

printer:
-rqt printer -print
-he ILdVinci"
-ds "SysLib"
-q 3 (default) -albl

punch: (def au 1 t for punch i ng)
-rqt punch -punch
-he "LdVinci ll

-ds IISysLib ll

-q 1 (def au 1 t) -mcc

plotter: (default for plotting)
-rqt plotter -plot
-he IILdVinci"
-ds IISysLib"
-q 1 (default)

Name: enter_retrieval_request, err

SYNTAX AS A COMMAND

err path {-control_args}

FUNCTION

queues volume retrieval requests for specific segments, directories, multisegment files
(MSFs). and subtrees.

ARGUMENTS

path
is the pathname of a segment, directory, or node of a subtree. The star
convention is not allowed.

CONTROL ARGUMENTS

-brief, -bf
supresses printing of the 10 and number of requests in queue.

-from DT, -fm DT
specifies that the search for path and all inferior branches, if supplied, stops at
time DT; thus, objects dumped before time DT are not recovered. (See Section 1
for a description of valid DT valUes.) If you give no -from. all valid dump
volumes are searched.

3-314 AG92-06

11/86

-lonLid
prints the long ID of the request. (Default to print the short ID)

-multisegment_file, -msf
specifies that the object named in path is an MSF and that all its components
are to be recovered.

-new_path newpath
specifies that if you have the correct access to retrieve the segment specified in
path and to create a segment with the pathname newpath, then the object
identified by path is retrieved into newpath. You can't cross-retrieve directories,
MSFs, or subtrees.

-notify, -nt
notifies you by online mail of the success or failure of the request. (Default: not
to notify you)

-previous, -prev
retrieves the object dumped prior to the object presently online. With -prev you
can retrieve successively earlier copies of an object. (Default: to retrieve the most
recent copy)

-queue N, -q N
queues requests in priority queue N. (Default: 3)

-subtree, -subt
retrieves the subtree inf erior to the directory given in path as well as the
directory. If a subtree is found intact after a directory is recovered, no further
action is taken unless you have provided a time interval (see "Notes"). (Default:
not to retrieve subtrees)

-to Dr
searches for path and all inferior branches from time DT backwards; thus, objects
dumped later than time Dr are not recovered. (See Section 1 for a description of
valid Dr valUes.) If you don't select -to, time Dr is assumed to be the start of
the retrieval operation.

ACCESS REQUIRED

To retrieve a segment, you need w access to the segment or m access to the
con taining directory; to retrieve a directory, you need m access to the directory or m
access to the containing directory.

NOTES

In certain cases where a directory is damaged the inferior subtree may be unavailable
until the directory is recovered. When a directory is recovered and you use -subt, a
check is made to see if the subtree is available. and, if so, retrieval is assumed
complete.

3-315 AG92-Q6A

en ter _retrieval_request

Retrieval requests of objects for which the online copy is more recent or the same as
the dump copy are refused unless you use -fm, -prev, or -to.

You need not supply as a set of primary names the pathnames of the segments and
directories to be retrieved. Any set of valid entrynames is acceptable.

You have to log in to ring 1 to submit retrieval requests for mailboxes and other ring
1 objects.

Name: entries

SYNTAX AS A COMMAND

entries star_names {-control_args}

SYNTAX AS AN ACTIVE FUNCTION

[entries star_names {-control_args}]

FUNCTION

returns the entry names or absolute pathnames of segments, directories. multisegment
files (MSFs), links, data management (DM) files, and extended entries that match one
or more star names.

ARGUMENTS

star_names
are star names to be used in selecting the names to be returned.

CONTROL ARGUMENTS

-absolute_pathname, -absp
returns absolute pathnames rather than entrynames.

-chase
processes the targets of links when you specify a starname.

-inhibit_error, -ihe
returns false if star_name is an invalid name or if access to tell of an entry's
existence is lacking.

-no_chase
does not process the targets of links when you specify a starname. (Default)

entries

11/86 3-316 AG92-06A

entries

11/86

-no_inhibit_error, -nihe
signals an error if star_name is an invalid name or if access to tell of an entry's
existence is lacking. (Default)

-select_en try_type type_name, -slet type_name
returns entrynames of entries of the specified type. You need not give the suffix
in the starname. Use the list_entry _types command to obtain a list of valid entry
type values.

NOTES

Only one name per entry is returned; i.e., if an entry has more than one name that
matches a starname. only the first match found is returned.

Since each entryname (or pathname) returned by entries is enclosed in quotes. the
command processor treats each name as a single argument regardless of the presence
of special characters in the name.

See the directories. directory, and entry commands.

entries

3-316.1 AG92-06A

This page intentionally left blank.

11/86 AG92-06A

entry entry_path

Name: entry

SYNT AX AS A COMMAND

entry path

SYNTAX AS AN ACTIVE FUNCTION

[entry path]

FUNCTION

returns the entryname portion of path. after it has been expanded into an absolute
pathname.

ARGUMENTS

path
is the pathname whose entryname portion is to be returned.

NOTES

Since the pathname is returned in quotes. the command processor treats it as a single
argument regardless of special characters in the name.

EXAMPLES

entry >udd>Proj>Myname>start_up.ec
start_up.ec

entry >udd>Multics>Library>Source>bound_command_demos_.s::program.pl1
bound_command_demos_.s.archive

Name: entry_path

SYNTAX AS A COMMAND

entry_path path

SYNTAX AS AN ACTIVE FUNCTION

[entry_path path]

3-317 AG92-06

entry_path

FUNCTION

returns the absolute pathname of the entry represented by the path argument If the
path is an archive component pathname. this returns the pathname of the archive
segment; otherwise this command is equivalent to the path command.

ARGUMENTS

path
is the pathname whose directory and entryname portion is to be returned as a
single absolute pathname.

NOTES

Since the pathname is returned in quotes, the command processor treats it as a single
argument regardless of special characters in the name.

EXAMPLES

entry_path [hd]>start_up.ec
>udd>Proj>Myname>start_up.ec

equal

entry_path >udd>Multics>Library>Source>bound_command_demos_.s::program.pl1
>udd>Multics>Library>Source>bound_command_demos_.s.archive

Name: equal

SYNTAX AS A COMMAND

equal STRA STRB

SYNTAX AS AN ACTIVE FUNCTION

[equal STRA STRB]

FUNCTION

returns true if str A is equal to strB; otherwise it returns false.

ARGUMENTS

STRA. STRB
are character strings to be compared.

3-318 AG92-Q6

equal

NOTES

The strings are compared character by character according to their ASCII code value
(i.e.. if the first character in each string has the same ASCII code value. compare the
second character; if their values are identical, compare the third character; etc.).
Strings of unequal length are compared by padding with blanks.

EXAMPLES

string [equal Ab ab]
false

string [equal this this]
true

Name: equal_name, enm

SYNTAX AS A COMMAND

enm path equal_path

SYNTAX AS AN ACTIVE FUNCTION

FUNCTION

returns a pathname, constructed by applying the equal convention to the specified
arguments.

ARGUll'IElVTS

path
is the source pathname to which the equal convention is applied. You can use the
archive component pathname convention.

equal_path
is a pathname whose entryname and component name portions are equal names.

NOTES

Since the pathname is returned in quotes, the command processor treats it as a single
argumen t regardless of special characters in the name.

With the active function you can apply equal names within abbreviations and exec_com
segments.

3-319 AG92-Q6

exec_com (version 2)

For a complete description of the equal convention see the Programmer's Reference
Manual.

EXAMPLES

enm apple.ec orange.==
orange.ec

enm fruits.archive::apple.ec orange.==
orange.ec

Name: exec_com, ec (version 2)

SYNT AX AS A COMMAND

ec {-control_args} path {ec_args}

SYNTAX AS AN ACTIVE FUNCTION

[ec {-control_args} path {ec_args}]

FUivCTiON

executes programs written in the exec_com language; used to pass command lines to
the Multics command processor and pass input lines to commands reading input. The
syntax described here is known as Version 2, so make the first line of the exec_com
program be "&version 2i1. For a description of Version 1 syntax. see exec_com
(version 1).

ARGUMENTS

path
is the path name of an exec_com program, written using the constructs described
below. The suffix ".ec" is assumed if not specified. The star convention is not
allowed.

ec_args
are optional arguments to the exec_com program and are substituted for parameter
references such as &1 (see "List of Parameters").

3-320 AG92-06

exec_com (version 2) exec_com (version 2)

CONTROL ARGUMENTS

-no_trace KEYWORD_LIST
turns off tracing of specified types of exec_com lines, overriding any &trace
statements in the exec_com for those types of lines. KEYWORD_LIST is
composed of any of the keywords "all_types". "command", "comment", "control",
and "input", separated by commas with no intervening space.

-trace KEYWORD_LIST
turns on tracing of specified types of exec_com lines, overriding any &trace
statements in the exec_com for those types of lines. KEYWORD_LIST is
composed of any of the following, separated by commas, with no intervening
space:

all_types, command, comment, control, input
turns on tracing for the corresponding type of line(s).

unexpanded, expanded, all_expansions or all, both
affects how the expansion of lines is traced. These are equivalent to
&unexpanded, &expanded, &all_expansions or &all, and &both in &trace
statements inside the exec_com.

prefix=STR
specifies a prefix for traced lines, equivalent to &prefix in &trace statements.

osw=SWITCHNAME
specifies an I/O switch on which to write the trace, equivalent to &osw in
&trace statements.

-trace_default
uses & trace statements in the exec_com and the default tracing modes to
determine what and how to trace. (Default)

LIST OF PARAMETERS

&1 - &9
expands to the 1st through 9th ec_args or to defaults defined by a &default
statement or to the null string if there is no corresponding ec_arg. The string &0
is invalid.

&(1) - &(9)
are synonyms for &1 - &9.

&(11), &(12), etc.
expands to the corresponding ec_arg or to a default defined by &default or to
null string if there is no corresponding ec_arg. The parentheses are required when
there are two or more digits.

3-321 AG92-()6

exec_com (version 2) exec_com (version 2)

&q1 - &q9
&q(1). &q(1l), etc.

expands to the corresponding argument with quotes doubled according to the quote
depth of the surrounding context (see "Notes on Quoting"). This parameter ensures
that quotes in the argument to exec_com are handled correctly under the
quote-stripping action of the command processor.

&r1 - &r9
&r(1), &r(1l), etc.

&n

expands to the corresponding argument enclosed in an added layer of quotes and
internal quotes doubled accordingly (see "Notes on Quoting"). This parameter
keeps the value of the argument as a single unit after one layer of quote
stripping by the command processor.

expands to the number of ec_args specified to exec_com.

&f1 - &f9
&f(1), &f(11), etc.

expands to a list of the Nth through last ec_args separated by spaces. If N is
greater than the value of &n, expands to null string.

&qfl - &qf9
&qf(1), &qf(1l), etc.

expands to a list of the Nth through last ec_args, with quotes doubled, separated
by spaces. If N is greater than the value of &n, expands to null string. This
parameter is equivalent to &qN &qN+ 1 &qN+ 2

&rfl - &rf9
&rf(1), &rf(11), etc.

expands to a list of the Nth through last ec_args, individually requoted. separated
by spaces. If N is greater than the value of &n, expands to null string. This
parameter is equivalent to &rN &rN+1 &rN+2

&f &n, &qf &n, &rf &n
expands to the last ec_arg given to exec_com as is, with quotes doubled, or
requoted.

&condition_inf o_ptr, &cond_inf o_ptr
inside an &on unit, expands to a virtual pointer «segment_number> I <offset» to
the condition_info structure for the condition that is signalled (see "List of
Condition-Handling Statements"). Programs can be written to interpret the
structure for a particular condition.

&condition_name, &cond_name
inside an &on unit, expands to the name of the condition that caused the &on
unit to be invoked (see "List of Condition-Handling Statements"). Outside an &on
unit, expands to null string.

3-322 AG92-06

exec_com (version 2) exec_com (version 2)

&ec_dir
expands to the pathname of the directory containing the exec_com currently
running. All links in the pathname have been chased. You can use this construct
to call other exec_corn's in the same directory: nec &ec_dir>foo".

&ec_name
expands to the entryname of the exec_com currently running, with any ec or
absin suffix removed (the absin suffix is for an exec_com invoked by the
absentee facility). This parameter can be used to simulate entrypoints in an
exec_com segment, by adding multiple names to the segment and transferring to a
different &label depending on the name invoked.

&ec_path
expands to the expanded, suffixed pathname of the current exec_com. Unlike
&ec_dir, links in the pathname have not been chased.

&ec_switch
expands to the name of the I/O switch over which the exec_com interpreter is
reading the exec_com.

&handlers
expands to a list of condition names for which &on handlers are currently in
effect (see "List of Condition-:Handling Statements"). Condition names are
individually requoted and separated by spaces. To test whether a handler is
currently in effect for NAME, type: n&if & [or [equal NAME (&handlers)]]
&then ... "

LIST OF VALUE EXPRESSIONS
All of these constructs can be nested arbitrarily inside each other.

&(NAME)
expands to the value assigned to the variable NAME by a previous &set statement
in the same exec_com. If NAME contains &'s, it is first expanded. Therefore,
&0 constructs can be nested. However, &'s in the expansion are not re-expanded.
A second level of expansion must be indicated. consequently, by &(&0). If
NAME has not been assigned a value by &set, an error occurs. Variable names
are allowed to contain any characters except & and cannot consist solely of digits
and white space.

&(N)
expands to the value of the Nth (where N is a positive integer) ec_arg to
exec_com; or if there is no Nth ec_arg, to the last default vaiue assigned to
argument N by a &default statement; or if no default value was assigned, to null
string.

&q(NAME), &q(N)
expands to the same thing as &(NAME) or &(N), but with quotes inside the value
doubled according to the quote depth of the surrounding context

3-323 AG92-06

exec_com (version 2) exec_com (version 2)

&r(NAME). &r(n)
expands to the same thing as &(NAME) or &(N). but requoted and with internal
quotes doubled.

& [ACTIVE STRING]. & I I [ACTIVE STRING]
expands to the return value of an active string by calling the command processor.
This construct ends with the matching right bracket. The & II [...] construct is
used in &set statements to treat the expansion as a single argument to &set. It is
important to note that & [...] active strings are expanded by exec_com, whereas
[...] strings are expanded at command line execution time. Therefore. II [...], not
& II [...] , must be used in a command line to treat the expansion as a single
command argument.

Lf ST OF LITERALS
See "Notes on White Space."

&" " ...
encloses an arbitrary character string to be taken literally. Quotes inside the string
must be doubled, and the closing undoubled quote ends the literal string.

&&
expands to a single & character, not further expanded.

&, &(N)
expands to a single ampersand character (ASCII 046), in which case it is identical
to &&. or to N ampersands where N is a positive integer.

&SP, &SP(N)
expands to a single space character (ASCII 040) or to N spaces.

&BS. &BS(N)
expands to a single backspace character (ASCII 010) or to N backspaces.

&HT, &HT(N)
expands to a single horizontal tab character (ASCII 011) or to' N horizontal tabs.

&VT. &VT(N)
expands to a single vertical tab character (ASCII 013) or to N vertical tabs.

&FF, &FF(N), &NP, &NP(N)
expands to a single form-feed character (ASCII 014) or to N form feeds.

&NL. &NL(N), &LF. &LF(N)
expands to a single newline character (ASCII 012) or to N new lines.

&QT, &QT(N)
expands to a single double-quote character (n) or to N of them.

3-324 AG92-06

exec_com, ec (version 2) exec_com, ec (version 2)

11/86

expands to a Multics 15-character unique name, for example " BBBhjBnWQpGbbc".
Multiple occurrences of &! within the same exec_com expand to the same string.

LIST OF PREDICATES

&is_defined(NAME)
expands to "true" if the variable named NAME has been assigned a value by an
&set statement in the current exec_com, "false" otherwise. This construct expands
to "true" if &(NAME) can be expanded, "false" if &(NAME) is an error.

&is_defined(N)
expands to "true" if an Nth (where N is a positive integer) ec_arg is given to
exec_com or an Nth default is defined by. the &default statement (see "List of
Assignment Statements" below), iifalseil otherwise.

&is_absin
expands to "true" if the exec_com is being executed by the absentee facility.
"false" if it is by the exec_com command or active function. In the case of an
absentee executing the start_up.ec, this value is returned as "false" because it is
being executed by the exec_com command. The command "ear program" causes
the absentee listener to execute program.absin, and then &is_absin returns "true."

&is_active_function, &is_af
expands to "true" if the exec_com is being executed by the exec_com active
function. "false" otherwise.

&is_attached
expands to "true" if input is currently attached by an &attach statement. "false"
otherwise (see "Notes on Input Attachment" below). Input is always attached when
running as an absentee.

&is_input_Iine
expands to "true" if the line in which it appears is being read as an input line
by some command. "false" otherwise.

&was_attached
inside an &on unit. expands to "true" if the parent exec_com was attached by
&attach at the time the condition occurred, "false" otherwise (see "List of
Condition-Handling Statements" below). Outside an &on unit, always expands to
"false. "

3-325 AG92-06A

exec_com, ec (version 2) exec_com, ec (version 2)

LIST OF CONTROL STATEMENTS

&attach {&trim on/off}
causes any commands subsequently invoked in command lines to read their input
from the exec_corn rather than from the terminal (see "Notes on Input
Attachment" below). Specifying "&trim off" causes the input lines to be read
intact, without stripping off the leading and trailing white space as is done with
most exec_corn lines. (Default: "&trim on")

&detach
causes any commands subsequently invoked in command lines to read their input
from the terminal (see "Notes on Input Attachment" below). (Default)

&if EXPRESSION
expands EXPRESSION to get a true or false value. EXPRESSION can contain any
exec_com-expandable constructs, such as & [... J (see "List of Value Expressions"
above). If the expanded value of EXPRESSION is "true," the following &then
statement (if any) is executed next If the value is "false," the following &else
statement (if any) is executed next If the value is neither "true" nor "false," an
error occurs (see "Examples of if Statements" below).

&then LINE
&then &do LINES &end
&else LINE
&else &do LINES &end

where LINE is any exec_com line, including another &if statement LINE is
executed or not· depending on the value of the preceding &if clause. The &then
and &else statements, unlike other exec_com statements, are allowed to appear on
the same line with one another and with &if; however, the &then or &else
cannot be on a separate line from the LINE or &do that it executes (see
"Examples of if Statements" below). The contents of an &do-&end block
reference the same variables as the containing exec_corn. No &goto's are allowed
into a &do-&end block from outside it.

&goto LABEL
causes the next statement to be executed to be the statement following the first
occurrence of "&label LABEL" in the exec_com.

&label LABEL
designates a target for "&goto LABEL" and is otherwise ignored. The string
LABEL can contain any characters except &.

&quit
terminates execution of the exec_com. If the program was invoked by the
exec_com active function, the active function return· value is a quoted null string
('''').

3-326 AG92-06

exec_com (version 2) exec_com (version 2)

&return LINE
terminates execution of the exec_com. If the program was invoked by the
exec_com active function, the active function value is the (expanded) value of
LINE, the rest of the line. If the program was invoked by the exec_com
command, the expanded value of LINE is printed on the terminal.

LIST OF ASSIGNMENT STATEMENTS

&set NAMEI V ALUEI ... NAMEn V ALUEn
assigns values to the variables NAMEI through NAMEn, which are created if no
assignments for them already exist. All NAMEj and VALUEj arguments are fully
expanded before any values are set Therefore, the statement

&set a &(b) b &(a)

exchanges the values of the variables a and b. Arguments to &set are delimited
by white space. White space and literals inside them must be enclosed in quotes,
for example:

&set answer "& [response Answer?]"

Alternatively, the & II [...] construct can be used, causing the entire return value
to be .taken as a single argument:

&set answer & I I [response Answer?]

There is no restriction on the lengths of NAMEj or V ALUEj. V ALUEj can
contain any characters. NAMEj cannot be all digits. If V ALUEj is the unquoted
keyword &undefined, any existing value for NAMEj is deleted and the
&is_defined(NAMEj) construct expands to "false."

&default VALUEl ... VALUEn
assigns default values for the exec_com parameters &(1) through &(n). The
default value of &U) only matters if no jth ec_arg was specified to exec_com.
The &(j) parameter reference expands to the value of the jth ec_arg; or if there
is none, to the jth default value set by &default; or if there is none, to null
string. VALUEj arguments are separated by white space, and each is fully
expanded before default values are set White space and literal's in them must
be enclosed in &" ... fl. If VALUEj is the keyword &undefined or &undef, no jth
default value is set. This keyword is used as a place holder to skip the jth
position.

LIST OF PRINTING STATEMENTS

&print LINE
prints the expanded remainder of the line, followed by a newline character. If
&print appears on a line by itself, a single newline character is printed.

3-327 AG92-06

exec_com (version 2) exec_com (version 2)

&print_nnl LINE
prints the expanded remainder of the line. without appending a newline character.

LIST OF CONDITION-HANDLING STATEMENTS

&on CONDITION_LIST &begin LINES &end
establishes a condition handler (&on unit) to be invoked whenever any of the
conditions named in CONDITION_LIST is signaled. Condition names are separated
by white space. LINES is any sequence of exec_com lines, optionally including
&goto statements to transfer to labels either inside the &on unit or outside (i.e .•
in the parent exec_com). When executed, LINES is treated as a separate exec_com
in the sense that changes to its &attach, &ready _proc, and &trace modes (initially
off) do not affect the parent exec_com. However, &on units share the parent ec's
variables, and any changes to variables affect the parent exec_com. The &begin
and &end keywords are required for delimiting LINES, even if it consists of a
single line. No &quit statement is required.

&revert CONDITION_LIST
reverts any &on units for the conditions named in CONDITION_LIST. Condition
names are separated by white space.

&signal CONDITION_NAME
signals the indicated condition.

The following statement is allowed only inside &on units:

&exit {&continue}
causes the &on unit to exit immediately. This statement is useful for conditionally
exiting part-way through an &on unit. If &continue is supplied, the condition
continues to be propagated to other handlers down the stack.

LIST OF TRACING STATEMENTS

&list_ variables {match_names} {&control_args},
&lsv {match_names} {&control_args}

lists the values of all or selected exec_com variables, where match_names are
starnames and/or qedx regular expressions surrounded by slashes (/). Control
arguments are "&exclude match_name" ("&ex match_name") to prevent certain
names from being listed, &variable (&var) to list just the variable names, and
&value (&vaI) to list just the values.

&ready on
&ready off

turns ready messages on or off. Turning them on causes the system ready
procedure to print a ready message when it is called. The default is off. This
statement does not affect whether the ready procedure is called. The ready
procedure is normally called after the execution of a command line (see the
description of the ready _on command). This statement is ignored in the absentee
environmen t.

3-328 AG92-06

exec_com (version 2)

&ready _proc on
&ready _proc off

exec_com (version 2)

determines whether or not the system ready procedure is called after each
command line is executed. The default is on for the exec_com command, off for
the active function. This statement is ignored in the absentee environment.

&trace {TYPES} ST ATE {&prefix PREFIX} {&osw SWITCHNAME}
sets tracing for one or more kinds of lines specified by TYPES. TYPES can be
any combination of the following:

&command
&comment
&control
&input
&all_types

command lines
comments, including those sharing other lines
control lines, for example, &print. ..
lines being read as input to some command
specifies all of &ccmmand, &ccmment, &control, and
&input.

The def aul t if TYPE is omitted is all four types.

STATE can be one of the following:

off, false
on, true

&unexpanded

&expanded

&all

&all_expansions
&both

disables tracing entirely.
enables tracing, in whichever of the f oHowing modes
was last specified. The default mode is "&expanded"
for command and input lines, "&both" for control
lines.
prints lines as they appear in the exec_com segment
Implies "on".
prints lines after all expansion has been done.
Implies "on".
prints at each stage of expansion. Implies "on". *
MeR 6691
is a synonym for &all. I
prints each line as it appears in the exec_com, and
again after all expansion. Implies "on".

Defaults for ec's invoked by the exec_com command/active function are
"&expanded" for command and input lines, "&unexpanded" for control lines, and
"off" for comments. Defaults in the absentee environment are "&expanded" for
command and control lines, "off" for control lines and comments.

PREFIX designates a string to be printed at the start of each line. Default
prefixes are all null string.

SWITCHNAME specifies an I/O switch on which to write the trace. The default
for all types of lines in ec's invoked by the exec_com command or active
function is user_output. The default in the absentee environment is user_io.

3-329 AG92-G6

exec_com (version 2) exec_com (version 2)

NOTES ON ABSENTEE ENVIRONMENT

An exec_com/absin runs in the absentee environment only when it has been invoked
directly by the absentee facility. i.e.. is running an absentee process. Exec_corn's called
within an absentee process are said to run in the normal exec_com environment

Input lines in an absentee process come from the absin segment running the process.
These, along with output lines, are directed to an· absout file. Since both input and
output lines are written to the same switch. the default switch is chosen to be user_io
for the absentee environment rather than user_output as for exec_corn's. This default
applies to all tracing, and ensures that even if user_output is redirected somewhere,
the input lines driving the process still appear in the absout

The &attach and &detach statements have no effect in the absentee environment, since
input to the absentee process always comes from the absin file. The &is_attached
predicate always returns true. The &ready and &ready _proc statements also have no
effect in the absentee environment Instead, the ready_on and ready_off commands
should be used.

NOTES ON VERSION

The current version of exec_com is known as Version 2 (V2). In many ways similar
to the old Version 1 (Vl), it adds automatic variables, parameter defaults, literal
character escapes, indentation, comments on lines, line continuation, expansion of active
strings in control lines, and tracing of comments and control lines.

In addition. there are two incompatible changes between the versions. Whereas VI
leaves unrecognized &strings alone, V2 rejects them as syntax errors. This change
makes V2 an extensible language. Second. V2 parses lines into control keywords and
tokens (separated by white space) before expansion, so that expansion can only change
the values of tokens but not the syntax of a line.

A V2 exec_com has "&version 2" as its first line. If this first line is not present, the
exec_com is interpreted as VI. VI exec_corn's can optionally begin with "&version 1".
At some future time. V2 will be the default and "&version 1" will be required.

A conversion command is available to translate VI exec_corn's to V2: convert_ec.

NOTES ON WHITE SPACE

White space (SPACE. HORIZONTAL TAB, VERTICAL TAB, and FORM-FEED) is
ignored at the beginning and end of each line, with the exception of input lines
specifically read with "&attach &trim off" in effect As a result, exec_com lines can
be indented as desired for readability. Intentional white space at the beginning or end
of a line (for example, an editor input line) must be specified by literal escapes such
as &SP. See "List of Literals".

3-330 AG92-06

exec_com (version 2) exec_com (version 2)

NOTES ON COMMENTS

Comments are specified by the character sequence &- anywhere in a line. Where this
sequence appears (outside of &" ... "), the remainder of the line is a comment and can
contain any characters. White space preceding the comment, if any, is ignored, and
can be specified by the literal escapes described in "List of Literals." Therefore,
comments can be aligned at a particular column without affecting the executable text.

NOTES ON CONTINUATION

Long command lines and other portions of text that must not be broken can be
continued on successive lines by means of the character sequence &+ at the beginning
of each continuation line. White space preceding the &+ is ignored. An example is

sm Bartley.TRG This is such a long message I prefer to
&+ stretch it onto a second line of the exec com.

Note that white space following the &+ is part of the executable line, and in the
above example it is necessary to separate arguments to sm.

Continuation is not affected by intervening comments, whether at the end of
executable text lines or on lines by themselves. This feature can be used to comment
parts of statements, for example:

sa fast_print adros *.Admin &-Maintainers
&-The XPer project should be added later
&+ aos ,': &-Non-maintainers

The complementary character sequences &+ and &- can be thought of as meaning
"This is part of the executable text" and "This isn't", respectively.

NOTES ON QUOTING

The exec_com interpreter strips one layer of exec_com quotes (&" ... ") from the text
It does not perform command-processor-type stripping of regular quotes (" ... ").

3-331 AG92-06

exec_com (version 2) exec_com (version 2)

To defeat one or more levels of command processor quote stripping, the values of
variable and parameter expansions can be quote-doubled or requoted using the "q" and
"rn prefixes. Quote doubling doubles existing quote characters in a string according to
the depth of quotes inside which the string is currently nested, so that one level of
quote stripping by the command processor results in the internal quotes looking the
same as they do inside the original string. Requoting goes a step further by first
quote-doubling, then surrounding string with an additional layer of quotes, thus causing
the entire string to remain a single argument after one level of quote stripping by the
command processor. In the examples below, "Level" refers to the number of levels
deep in quotes that the parameter reference appears in the exec_com text Assume
that the value of the first ec_arg to exec_com is the string a"b containing a
single-quote character:

&1 &ql &r1

Level 0 a"b allb II a" "b"
Level 1 lIalb" lIa"llb li III1"allll ""b"""
Level 2 '"I"a"b""" IIII"a""""a"I"1 "" 1111111111 a" 1111"" IIlIlIbli II 1111" II"

The exact number of quote characters is significant; the important thing is that &q
protects internal quotes from one level of quote stripping by the command processor,
and &r ensures that the value remains a single argument to the command processor.
These prefixes are very useful, since. if the value of the first ec_arg (for example)
contains a space, the value of &1 substituted into a command line is parsed into more
than one command line argument.

If a value is nUll, the &q prefix does not affect it, and the &r prefix results in a
pair of quotes, doubled according to the quote depth of the context The "q" and "r"
prefixes can be used in the following constructs:

&ql, &q(1)
&qf1, &qf(1)
&q&n, &qf&n
&q(V AR NAME)

NOTES ON INPUT ATTACHMENT

&rl, &r(1)
&rfl, &rf(1)
&r&n, &rf&n
&r(V AR NAME)

By default, commands invoked by command lines within an exec_com read their input
from the terminal. By preceding a command line with an &attach statement, the
command can be caused to read input lines from the text of the exec_com instead.
Note that "&attach" must precede the line on which the input-reading command is
invoked; otherwise, before the &attach statement is encountered, the command will
already have asked to read a line from the terminal. An example of &attach usage is

3-332 AG92-06

exec_com (version 2)

&attach
qedx
r actions. table
Sa
&f3
\f
w
q
&detach

exec_com (version 2)

This example appends to the segment named actions. table a line consisting of the third
through last ec_arg arguments to the exec_com. The &detach statement causes any
later input-reading command to get its input from the terminal.

While &attach is in effect, the &is_attached predicate expands to "true"; after
&detach. it expands to "false". In general, the answer command should be used to
answer questions asked by programs via the command_query _ subroutine. Placing the
answers in the text using &attach, as in

&attach
read tape -debug
50065
yes
no
&detach

relies on a spe.cific number of questions being asked, and is therefore prone to fail if.
f or example. an error occurs while executing the command. Note that there is no
inherent property of a line making it an input line rather than a command line; the
distinction is a property of whether input lines are being read by a command. Use of
the answer command makes this example less error-prone:

answer 50065 -then yes -then no read_.tape -debug

3-333 AG92-06

exec_com (version 2) exec_com (version 2)

EXAMPLES OF IF STATEMENTS

The line-placement of &then and &else statements is left up to you. Some examples
of their usage are

&if EXPRESSION &then LINEl &else LINE2

&if EXPRESSION
&then LINEl
&else LINE2
etc.

More examples:

&if EXPRl &then &if EXPR2 &then LINEl &else LINE2 &else LINE3

&if EXPRl
&then &if EXPR2 &then LINEl

&else LINE2
&else LINE3

&if EXPRl &then LINEl
&else &if EXPR2

&then LINEl
&else LINE2

&eise LiNE3

&if EXPRl &then &do
LINEl

&end

&if EXPR2 &then LINE2
&else &do

&end

LINE3
LINE4

LIST OF CONSTRUCTS

This alphabetical list of exec_com constructs names the sections in which they are
documented:

&" ... "
&&
&(1), &(11), etc.
&(VAR_NAME)
& [...]
&+
&-
&!

List of literals
List of literals
List of parameters
List of value expressions
List of value expressions
Notes on continuation
Notes on comments
List of literals

3-334 AG92-06

exec_com (version 2)

&1. &2. etc.
&. &BS, &FF, &HT,
&&NL, &QT, &SP. &VT
&all
&attach
&both
&command
&comment
&control
&default
&detach
&do
&ec_dir
&ec_name
&ec_path
&ec_switch
&else
&end
&expanded
&fl, &f(l), etc.
&goto
&if
&input
&is_absin
&is_active_function,

&is_af
&is_attached
&is_defined
&is_input_line
&label
&n
&print
&print_nnl
&ql, &q(l). etc.
&quit
&rl. &r(1), etc.
&ready
&ready _proc
&return
&set
&then
&trace
&undefined, &undef
&unexpanded
&version

exec_com (version 2)

List of parameters

List of literals
List of tracing statements (&trace)
List of control statements
List of tracing statements (&trace)
List of tracing statements (&trace)
List of tracing statements (&trace)
List of tracing statements (&trace)
List of assignment statements
List of control statements
List of control statements (&if)
List of parameters
List of parameters
List of parameters
List of parameters
List of control statements
List of control statements (&if)
List of tracing statements (&trace)
List of parameters
List of control statements
List of control statements
List of tracing statements (&trace)
List of predicates
List of predicates

List of pre-dicates
List of predicates
List of predicates
List of control statements
List of parameters
List of printing statements
List of printing statements
List of parameters
List of control statements
List of parameters
List of tracing statements
List of tracing statements
List of control statements
List of assignment statements
List of control statements (&if)
List of tracing statements
List of assignment statements (&default)
List of tracing statements (&trace)
Notes on version

3-335 AG92-()6

exec_com (version 1) exec_com (version 1)

Name: exec_com, ec (version 1)

SYNTAX AS A COMMAND

ec path {optional_args}

FUNCTION

executes a sequence of command lines contained in a segment. It allows you to
construct command sequences that are invoked frequently without retyping the
commands each time. In addition, you can use control strings to substitute argument
values into the executed text, manage I/O switches. and execute portions of the text
condi tionally.

This section describes Version 1 exec_com, which has effectively been replaced by
Version 2. The first line of a Version 1 exec_com can optionally be "&version 1"; 1
is currently the assumed version.

ARGUMENTS

path
is the pathname of a segment containing commands to be executed and control
statements to be interpreted. The entryname of the segment must have the ec
suffix, although you can omit the suffix in the command invOCation. If you
supply an entryname only, i.e., one containing no < or > characters, the exec_com
search list is used to locate the segment (See "Notes on Search List" below.)

optional_args
are character strings to be substituted for special strings in the exec_com segment
(see "Notes on Argument Substitution.")

CONTROL ARGUMENTS

-no_trace KEYWORD_LIST
turns off tracing of specified types of exec_com lines, overriding any &trace
statements in the exec_com for those types of lines. KEYWORD_LIST is
composed of any of the keywords "all_types", "command", "comment", "control",
and "input", separated by commas with no intervening space.

-trace KEYWORD_LIST
turns on tracing of specified types of exec_com lines, overriding any &trace
statements in the exec_com for those types of lines. KEYWORD_LIST is
composed of any of the following, separated by commas, with no intervening
space:

3-336 AG92-06

exec_com (version 1) exec_com (version 1)

all_types, command, comment, control, input
turns on tracing for the corresponding type of line(s).

unexpanded. expanded, all_expansions or all, both
affects how the expansion of lines is traced. These are equivalent to
&unexpanded, &expanded, &all_expansions or &all, and &both in &trace
statements inside the exec_com.

prefix=STR
specifies a prefix for traced lines, equivalent to &prefix in &trace statements.

osw=SWITCHNAME
specifies an I/O switch on which to write the trace, equivalent to &osw in
&trace statements.

-trace_default
uses &command_line, &comment_line, &control_line, and &input_line statements in
the exec_com and the default tracing modes to determine what and how to trace.
(Default)

NOTES ON INPUT SEGMENT

The exec_com segment should contain only command lines. input lines, and control
statements. Normally it is created using a text editor, such as qedx. You can use the
exec_com command in conjunction with the abbrev command to form abbreviations
for command sequences that are used frequently.

Vlhen the ampersand character (&) appears in the exec_com segment, it is interpreted
as a special character: it denotes a string used for argument substitution and to signify

. the start of a control statement

NOTES ON ARGUMENT SUBSTITUTION

Strings of the form &i in the exec_com segment are interpreted as dummy arguments
and are replaced by the corresponding arguments to the exec_com command; for
instance, optionai_argl is substituted for the string &i and optional_arglO is substituted
for &10. The strings &qi, &ri, &fi, &qfi, and &rfi also indicate argument
substitution. The string &qi is replaced by the i'th argument to the exec_com
command with quotes dOUbled. The string &ri is replaced by the i'th argument,
requoted. Refer to do in this manual for a description of quote doubling and
requoting and for examples of the use of &qi, &ri, &fi, &qfi, and &rfi. The string
&fi is replaced by a string of the i'th through last arguments to exec_com, separated
by blanks. Likewise, &qfi is replaced by a string of the i'th through last arguments
with quotes doubled and &rfi is replaced by a string of the i'th through last
arguments, requoted.

3-337 AG92-()6

exec_com (version 1) exec_com (version 1)

The string &n is replaced by the number of arguments to the exec_com command.
The string &f&n, therefore, is replaced by the last argument to exec_com. The string
&ec_name is replaced by the entryname portion of the exec_com pathname without
the ec suffix. The string &ec_dir is replaced by the directory name portion of the
exec_com pathname. The string &ec_switch expands to the name of the I/O switch
through which the exec_com is being read.

Argument substitution can take place in, .command lines, input lines or in control
statements. since the replacement of arguments is done before the check for a control
statement.

LIST OF PREDICATES

The following predicates expand to true or false:

&is_active_function. &is_af
expands to "true" if exec_com was invoked as an active function.

&is_absin
expands to "true" if the current exec_com is running as an absentee.

&is_attached
expands to "true" if &attach is currently in effect.

&is_input_line
expands to "true" if some program is currently reading input lines under &attach,
"false" if lines are interpreted as command lines.

LIST OF CONTROL STATEMENTS

Control statements permit more variety and control in the execution of the command
sequences. Currently the control statements are: &label, &goto, &attach. &detach,
&input_line, &command_line, &ready, &print, &quit, &if, &then, and &else.

Control statements generally must start at the beginning of a line with no leading
blanks. Two exceptions to this rule are the &then statement, which can follow an &if
clause, and the &else statement, which can follow a &then clause. Any control
statement other than &label, &if, &then, and &else is allowed to follow the control
words &then and &else.

&label and &goto

These statements permit the transfer of control within an exec_com segment

&label LOCATION
identifies the place to which a goto control statement transfers control. The
LOCATION is any string of 32 or fewer characters, unique within the exec_com
segment

3-338 AG92-06

exec_com (version 1) exec_com (version 1)

&goto LOCATION
causes control to be transferred to the place in the exec_com segment specified
by the label LOCATION. Execution then continues at the line immediately
following the label.

&attach, &detach, and &input_line

&attach
causes the user_input I/O switch to be attached to the exec_com segment. This
means that if this control statement is executed, all input read by subsequent
commands is taken from the segment rather than from the previous source of
data to which the user_input I/O switch was attached.

&detach
causes the user_input I/O switch to be reverted to its original value. By default,
the user_input I/O switch is left attached to its original source.

&input_line on
causes input lines returned when using the attach feature to be written on the
user_output I/O switch. This is the default.

&input_line off
causes input lines to not be written out.

Tracing, &ready, and &print

These statements allow the control of the user_output I/O switch. They are useful
as tools in observing the progress of the exec_com execution and in printing
messages.

&command_line on {osw SWITCHNAME}
&command_line off {osw SWITCHNAME}

causes· subsequent command lines to be written on the user_output I/O switch or
on another specified SWITCHNAME before they are executed. The "off" usage
causes subsequent command lines to not be written out.

&comment_line on {osw SWITCHNAME}
&comment_line off {osw SWITCHNAME}

controls tracing of comment lines, lines beginning with "&" The default if no
SWITCHNAME is specified is user_output

&control line on {osw SWITCHNAME}
&control-line off {osw SWITCHNAME}

controls tracing of &if, &goto and all other exec com control statements. The
default if no SWITCHNAME is specified is user_output

&input_line on {osw SWITCHNAME}
&input_line off {osw SWITCHNAME}

controls tracing of lines read as input lines under &attach. The default if no
SWITCHNAME is specified is user_output.

3-339 AG92-06

exec_com (version 1)

&ready on
&ready off

exec_com (version 1)

causes your ready procedure to print a ready message whenever it is invoked after
the execution of a command line. The "off" usage causes your ready procedure
not to print ready messages.

&ready _proc on
&ready _proc off

controls whether your ready procedure is called after each command line. The
default is "on". This mode is completely independent of "&ready".

&print char_string
causes the character string
I/O switch. The character
The following is a list of
them:

AI or ANI
AI or ANI
A_ or AN-

following &print to be written out on the user_output
1\ is treated as a special character in a print statement
strings that can appear and the characters that replace

newline character
form feed (new page)
horizontal tab
A

where N expresses the number of special characters to be written out No other
characters should appear following the 1\ character in the print statement

&quit

This statement causes the current invocation of exec_com to return to its caller
and not to execute subsequent command lines. If exec_com has been invoked as
an active function, the return value is the null string.

&return rest of line
Equivalent to &quit but returns a value. If exec_com was invoked as an active
function. the rest of the &return line is returned as the value. Otherwise, the
rest of the line is printed before quitting.

&if, &then, and &else

These statements provide the ability to have command lines, input lines, and
control statements interpreted conditionally.

The format of these control statements is

&if [ACfIVE_FUNCfION {argl} ... {argn}]
&then THEN_CLAUSE
&else ELSE_CLAUSE

The active function reference in an &if control statement is evaluated. If the
value of the active function is the string true, THEN_CLAUSE is executed. If the
value is false, ELSE_CLAUSE is executed.

3-340 AG92-06

exec_com (version 1) exec_com (version 1)

&if [ACTIVE_FUNCfION {argl} ... {argn}]
The active function is any active function (user-provided or system-supplied) that
returns as its value a string with the value true or false. The arguments to the
active function can themselves be active functions. (Nesting of active functions is
permitted.) The active function and its optional arguments, enclosed in brackets,
must be on the same line as the &if string. An &if must begin a line or
immediately follow &then or &else, as in the example:

&if [equal &1 tape]
&then &if [equal &2 hdr] •

&then THEN_CLAUSE
This statement must immediately follow the &if statement; it can appear on the
same line or on the following line. THEN_CLAUSE is an exec_com statement,
and can include a command line, an input line, the null statement and most
control statements. The &label, &then, and &else control statements are not
allowed. THEN_CLAUSE must be on the same line as &then.

&else ELSE_CLAUSE
This statement is optional. When it appears, it must immediately follow the &then
statement; it can appear on the same line or on the following line. ELSE_CLAUSE
is an exec_com statement and can include a command line, an input line, the null
statement and most control statements. The &label, &then and &else control
statements are not allowed. ELSE_ CLA USE must be on the same line. as &else.

NOTES ON SEARCH LIST

The exec_com command uses the exec_com search list that has the synonym ec. Type:

psp ec

to see what the current exec_com search list is. The default exeC_com search list is
the working directory. For more information on the search facility, see the description
of the add_search_paths command in this manual.

NOTES ON HANDLING CONDITIONS

The on command and active function can be used to handle conditions raised during
the execution of an exec_com. To handle command_error when executing the copy
command. for example, an exec_com can say:

&if [on command_error 1111 -bf copy PROJ_DIR>&l MY_DIR>=]
&then &goto copy failed

an MY_DIR>&l &l.[date]

&label copy_failed
&print PROJ_DIR>&l not copied

3-341 AG92-o6

exec_com (version 1) exec_com (version 1)

The -bf control argument suppresses a message printed by on when the condition is
raised.

The discard_output command can be used to suppress output from the command whose
success is being tested, for example:

&if [on command_error 1111 -bf dco.-osw error_output -osw
user_output archive tb source &l.pll]

&then &goto no_component
&print &l.pll in source.archive

&label no_component
&print &l.pll not found in source.archive

The on command can be used to execute another exec_com, or a recursive entry point
in the current one, with a handler in effect. For example:

on any_other "ee handler ll ec test_ms

&quit
&label handler
tmr mail mbsa mailbox_
in >sss>ma i 1
&quit
&label test_ms
tmr mail mbsa mailbox_
in MS>mailbox_
MS>mbsa test.mbx adros
MS>mail test
&quit

For more information, see the description of the on command.

NOTES ON HANDLING QUESTIONS

The answer command can be used to supply preset answers to questions asked by
commands invoked in an exec_com. (It is not recommended that answers be supplied
on successive lines of the exec_com with &attach on.) The following exec_com prints
only the first three sections of an info segment by answering "yes" twice and then
"no":

answer yes -times 2 -then no help &1
&quit

The following example prints the first three sections of an info segment, then prints
the next three only if your answer yes:

3-342 AG92-D6

exec_com (version 1)

answer yes -times 2 -then -query -then yes -times 2
-then no help &1

&quit

exec_com (version 1)

For more information, see the description of the answer command in this manual.

NOTES

If a line begins with the & character but is not one of the current control statements,
the entire line is ignored. This is one way of including comments in the exec_com
segment. You are cautioned to leave a blank immediately following the & to ensure
compatibility with control requests to be added to exec_com in the future.

The' segment executed by exec_com can contain calls to exec_com. You must exercise
caution when invoking this feature in conjunction with the &attach feature. wl1en
exec_com is called from an exec_com using this feature, the input read by commands
in the second exec_com is read from the first exec_com segment. Generally, if the
&attach feature is used, all calls to exec_com should be preceded by &detach control
statements.

Several exec_corns can be combined into one segment, by using the dummy argument
&ec_name together with the &label and &goto statements. If exec_corns are grouped
together, the exec_com segment should have all the names (concatenated with an ec
suffix) on its storage system entry that can replace &ec_name.

EXAMPLES

Assume that the segment a.ec in your working directory contains

pll &1 -table -list
dprint -delete &l.list
&quit

The command line

exec com a foo

causes the following commands to be executed:

pll foo -table -list
dprint -delete foo.list

3-343 AG92-()6

exec_com (version 1) exec_com (version 1)

Assume that the segment b.ec in your working directory has an additional name a.ec
and contains

&goto &ec_name
&
&label b
pr i nt & 1 1 99
&quit
&
&label a
pl1 &1 -table -list
dprint -delete &l.list
&quit

The command line

causes the following command to be executed:

print my_file 1 99

The command line

causes the following commands to be executed:

pll foo ~table -list
dprint -delete foo.list

Assume that the segment d.ec in your working directory contains the following:

&if [exists segment &lepl 1J &then
&else &goto not_found
pll &1 -table -list
dprint -delete &1.1 ist
&quit
&label not found
&print &l.pll not found
&quit

If the segment foo.pll exists, the command line

causes the following commands to be executed:

pl1 foo -table -list
dprint -delete foo. list

3-344 AG92-06

exec_com, ec (version 1)

If the segment foo.pll does not exist, the command line

outputs the following:

foo.pl1 not found

Assume that the segment testec in your working directory contains

&print begin &ec_name exec_com
&command_line off
create &l.pll
&attach
edm & 1 • p 11
i & 1: proc;
& i nput_l i ne off
i end & 1 ;
w
q
&detach
&goto &2
&label compile
p 11 & 1
&label nocompile
&print end &ec_name &1 &2 exec_com
&quit

The command line

exec_com test x compile

produces the following output:

begin test exec com
Edit.
i x: proc;

PL/I
end test x compile exec_com

3-345

exec_com, ec (version 1)

AG92-06

exec_com, ec (version 1)

11/86

LIST OF CONSTRUCTS

This is an alphabetical list of version 1 exec_com constructs:

&attach
&command_line
&comment_line
&control_line
&detach
&else
&goto
&if
&input_Iine
&is_absin

Name: execute_string, exs

SYNTAX AS A COMMAND

&is_active_function, &is_af
&is_attached
&is_input_Iine
&label
&print
&quit
&ready
&ready _proc
&return
&then

exs {-control_args} {control_string {args}}

SYNTAX AS AN ACTIVE FUNCTION

[exs {-control_args} control_string {args}]

FUNCTION

substitutes arguments into a control string. The expanded control string is then passed
to the command processor or the subsystem request processor for execution. As an
active function or active request, evaluates the expanded control string as an active
function.

ARGUMENTS

con tro1_string

args

is a character string that can contain substitution constructs (see "List of
Substitutions" below).

are zero or more character string arguments. Any argument supplied but not
referenced by an argument substitution designator is ignored.

3-346 AG92-06A

11/86

COlVTROL ARGUfv1ElVTS AS A COM/VIAND

If you give control arguments with no control string, subsequent exs invocations in the
process are affected; with a control string and. its arguments, subsequent exs
invocations are not affected. Give the control arguments first. (See "Notes on modes"
below.)

-abort_line, -abl
aborts the line containing the exs request if the request line is aborted during
execution. Applies only to subsystem request invocations of exs. (Default)

-brief, -bf
does not print the expanded control string. (Default)

-control_string, -cs

-go

permits a control string to look like a control argument.

passes the expanded control string to the command processor or subsystem request
processor. (Default)

-inhibit_error, -ihe, -absentee
establishes a handler for the any_other condition during the execution of the
expanded command control string.

-long, -lg
prints the expanded control string on error_output before executing or returning
it

-no_abort_line, -nabl
continues execution with the next request following the exs request on the same
line if the request line exs invoked is aborted during execution. Applies only to
subsystem request invocations of exs.

-no_inhibit_error, -nihe, -interactive
does not catch any signals. (Default)

-nogo
does not pass the expanded control string to the request processor.

CONTROL ARGUMENTS AS AN ACTIVE FUNCTION

-brief, -bf
does not print the expanded active string. (Default)

-control_string, -cs
permits a control string to look like a control argument.

3-347 AG92-06A

11/86

execute_string

-error_value CONTROL_STRING, -erv CONTROL_STRING
evaluates and returns the expanded control string if an error occurs, where
CONTROL_STRING is a character string that can contain substitution constructs.
In a subsystem active request, an error is anything that aborts the line; in an
active function, anything that raises the active_function_error condition; in
inhibit-error mode, any condition that -inhibit_error would handle as a command.
(See "Notes on modes" below.)

-inhibit_error, -ihe
establishes a handler for the any_other condition during the execution of the
expanded control string. Valid only if you give -erv.

-long, -lg
prints the expanded control string on error_output before it is evaluated.

-no_inhibit_error, -nihe
does not catch any signals. (Default)

-no_rescan, -nrsc
does not permit the command processor to rescan the result of the active function
for white space, semicolons, parentheses, or brackets. This is equivalent to the
II [... J evaluation, but the result is not . protected from reevaluation after exs
returns the result, unless II [... J also encloses the exs invocation. (Default)

-rescan. -rsc
permits the command processor to rescan the result of the active function
evaluation.

-rescan_tokens, -rsct
permits the command processor to rescan only the active function result for white
space and quotes. This is similar to I [... J evaluation. in that it strips a level of
quotes, but it concatenates the tokens back together without requoting, so that
information may be lost. Use -no_rescan and place the I [... J around the
execute_string invocation to retain this information.

LIST OF SUBSTITUTIONS

The following expansion designators appearing in the control string are replaced by
their expansion value, as described below. Any other use of the ampersand (&)
produces an error.

&0, &1, ... &9
expands to the zeroth through ninth arguments. &0 is the control string, &1 is
the first argument following the control string, and so on. If the corresponding
argument is missing, the designator expands to a null string.

&(0), &(1), ...
expands to any argument, including arguments after the ninth. Use parenthesis
when the argument number is two or more digits. If the corresponding argument
is missing, the designator expands to a null string.

3-348 AG92-06A

execute_string execute_string

11/86

&qO •... &q9. &q(O), &q(1), ...
expands to the corresponding argument following the control string. Quotes within
the argument are doubled, according to the quote depth of the surrounding
context within the control string (see "Notes on Quote Doubling" below).

&rO, ... &r9, &r(O), &r(1) •...
expands to the corresponding argument following the control string, enclosed in an
added layer of quotes with internal quotes with the argument doubled accordingly
(see "Notes on Requoting" below). This designator keeps the argument as a single
unit after one layer of quote stripping by the command processor.

&fl, ... &f9, &f(1) •...
expands to the Nth through last arguments following the control string, with
arguments separated by one space. If N is greater than &n, expands to a null
string.

&qfl, ... &qf9. &qf(1) •...
expands to the Nth through last arguments following the control string, with
quotes doubled within arguments, and arguments separated by one space. If N is
greater than &n, expands to a null string.

&rf1, ... &rf9, &rf(l), ...

&n

expands to the Nth through last arguments following the control string. with each
argument individually requoted, and arguments separated by one space. If N is
greater than &n, expands to a null string.

expands to the number of arguments you give following the control string.

&f &n, &qf &n, &rf &n
expands to the last argument following the control string. with quotes doubled
(&qf&n) or with requoting (&rf&n).

&control_string

&!

&&

expands to the control string (without expansions), with quotes dOUbled. It is
equivalent to &qO.

expands to a unique name. Each use of &! is replaced by a 15-character
identifier. Every use within a single invocation is replaced by the same string. but
the string is different for every invocation of exs.

expands to a single ampersand, to allow ampersands to be literally inserted into
the expanded control string.

NOTES

This command is similar to the do command. The do command is an older interface
that acts like exs as a command and like substitute_arguments as an active function.

3-349 AG92-06A

11/86

When the control string is executed, abbreviations are expanded if the abbrev processor
is enabled. Since the control string is usually enclosed in quotes, abbreviations in the
control string are not expanded until control string expansion. (See the abbrev
command.)

NOTES ON MODES

This command has f our modes: the long/brief mode, the nogo / go mode, the
abort-line mode, and the inhibit-error mode. These modes are kept in internal static
storage and are thus remembered from one invocation of exs to the next in a single
process. Set the modes for the life of the process by invoking exs with control
arguments and no control string; set the modes for a single invocation by giving
control arguments, a control string, and its arguments.

The abort-line mode applies only to subsystem request invocations of exs. You can set
the mode at command level, but cannot set it for a single command invocation of exs.

Use the inhibit-error mode mainly in an absentee environment, in which any condition
that normally enters a new command level terminates the process. In this mode, any
signal caught by exs terminates execution of the command line, not the process. The
following conditions are not handled by exs, however, but are passed on to the
command processor: command_error, command_query _error. command_question,
program_interrupt, quit, and record_quota_overflow (see the Programmer's Reference
Manual).

The abort-line and go/nogo modes have no effect on active function and active
request invocations of exs. The active fUi1ction is always evaluated, and execution of
the containing command line cannot continue if there is no active function result. The
inhibit-error mode is ignored for active function evaluation if you give no -erv.

The modes of the exs command are separate' from the modes of the do and
substitute_arguments commands, although they provide similar functions.

NOTES ON QUOTE DOUBLING

Each parameter designator to be expanded is found nested a certain level deep in
quotes. If it is found to be outside quotes, its quote level is zero; if found between a
single pair of quotes, its quote level is one; and so on. If an "&q" construct is found
nested to quote-level L, then, as the argument is substituted into the expanded control
string, each quote character found in the argument is replaced by 2**L quote
characters during insertion. This permits the quote character to survive the quote-stripping
action to which the command processor subsequently subjects the expanded control
string. If the "&q" construct is not between quotes, or if the corresponding argument
contains no quotes, quote doubling has no effect.

3-350 AG92-06A

execute_string

NOTES ON REQUOTING

If an "&r" construct is found, the substituted argument is placed between an
additional level of quotes before having its quotes doubled. For example, if &r1 is
found nested to quote level L, 2**L quotes are inserted into the expanded control
string; then, the first argument is substituted, with each of its quotes replaced by
2**(L+1) quotes; and, finally, 2**L more quotes are placed following it If you give
no argument, nothing is placed in the expanded control string; so, you can distinguish
between arguments that are not supplied and arguments that are supplied but are null.
If you give an argument, the expansion of an "&r" construct is identical to the
expansion of an "&q" construct surrounded by an extra level of quotes.

Name: exists

SYNTAX AS A COMMAND

exists argument {str_args}

exists key star_name{s} {-control_arg{s}}

SYNTAX AS AN ACTIVE FUNCTION

[exists argument {str args}]

[exists key star_name{s} {-control_arg{s}}]

FUNCTION

checks for the existence of various types of items depending on the value of the first
argument (key).

ARGUMENTS

argument
is the key "argument" described below in "List of Keys."

str_args
are character string arguments.

key
is any key as described below in "List of Keys."

star_name {s}
are star names to be matched. You can give up to 20 names.

exists

11/86 3-350.1 AG92-06A

exists

*

CONTROL ARGUMENTS

-chase
specifies that any keyword that looks for branch entries chase links and look at
the link targets. When used. the link names are used for starname matching and
the targets f or type matching.

-inhibit_error. -ihe
returns false if star_name is an invalid name or if access to tell of an entry's

exists

* existence is lacking.

11/86

-no_chase
specifies that any keyword that looks for branch entries do not chase links.
(Default)

-no_inhibit_error, -nihe
signals an error if star_name is an invalid name or if access to tell of an entry's
existence is lacking. (Default)

-select_entry _type STR, -slet STR
selects entries of the types specified by STR. which is a comma-delimited list of
file system entry types; for example. exists entry ** -slet ms.mbx. This control
argument is recognized when the key is "entry." Use the list_en try_types
command to obtain a list of valid entry type values.

LIST OF KEYS

argument
true if you specify any str_args, false otherwise.

branch
true if any branches--segments. multisegment files (MSFs) or directories--with a
pathname matching star_name exist. false otherwise.

component
true if any archive components with a pathname m~tching star_name exist, false
otherwise. Both the archive segment name and the component name can be a
star_name.

directory, dir
true if any directories with a pathname matching star_name exist, false otherwise.

entry

file

true if any entries--segments, directories, MSFs, links, data management (OM)
files~ or extended entries--with a pathname matching star_name exist, false
otherwise.

true if any segments or MSFs with a pathname matching star_name exist, false
otherwise.

3-350.2 AG92-06A

exists

11/86

link
true if any links with a pathname matching star_name exist, false otherwise.

master_directory, mdir

msf

true if any master directories with a pathname matching star_name exist, false
otherwise.

true if any MSFs with a pathname matching star_name exist, false otherwise.

non_null_link, nonnull_link. nnlink
true if any links with a pathname matching star_name exist and point to an
existing segment, directory, or MSF, false otherwise.

nonbranch
true if any links with a pathname matching star_name exist, false otherwise.

nondir
true if any segments, MSFs, or links with a pathname matching star_name exist,
false otherwise.

non file
true if any links or directories with a pathname matching star_name exist, false
otherwise.

nonlink
true if any directories, segments, or MSFs with a pathname matching star_name
exist. false otherwise.

nonmaster_directory, nmdir
true if any directories that are not master directories with a pathname matching
star_name exist. false otherwise.

nonmsf
true if any directories, segments, or links with a pathname matching star_name
exist, false otherwise.

nonobject_file, nobfile
true if nonobject files with a pathname matching starname exist. false otherwise.
Segments or MSFs you do not have at least r access to are ignored.

nonobject_msf, nobmsf
true if nonobject MSFs with a pathname matching starname exist, false otherwise.
MSFs you do not have at least r access to are ignored.

nonobject_segment. nobseg
true if nonobject segments with a pathname matching star name exist. false
otherwise. Segments you do not have at least r access to are ignored.

exists

3-350.3 AG92-06A

exists

11/86

nonobject_segment. noseg
true if no executable object segments with a pathname matching start_name exist,
false otherwise. Segments you do not have at least r access to are ignored.

nonsegment, nonseg
true if any links, directories, or MSFs with a pathname matching star_name exist,
false otherwise.

nonzero_file, nzfile
true if any nonzero-length segments or MSFs with a pathname matching
star_name exist, false otherwise.

nonzero_msf, nzmsf
true if any nonzero-length MSFs with a pathname matching star_name exist, false
otherwise.

nonzero_segment, nzseg
true if any nonzero-length segments with pathname matching star_name exist, false
otherwise.

null_link
true if any links with a pathname matching star_name exist and point to
nonexistent entries, false otherwise.

object_file, obfile
true if object files with a pathname matching starname exist, false otherwise.
Segments or MSFs you do not have at least r access to are ignored.

object_msf, obmsf
true if object MSFs with a pathname matching starname exist, false otherwise.
MSFs you do not have at least r access to are ignored.

object_segment, obseg
true if object segments with a pathname matching star_name exist, false otherwise.
Segments you do not have at least r access to are ignored.

segment, seg
true if any segments with a pathname matching star_name exist, false otherwise.

zero_segment, zseg
true if any zero-length segments with a pathname matching star_name exist, false
otherwise.

exists

3-350.4 AG92-Q6A

11/86

SYNTAX AS A COMMAND

ecs oldpath {newpath} {-control_args}

FUNCTION

applies a transf ormation to a COBOL source program. The nature of the source
transformation is defined by control arguments. If you give no control argument. a
segment containing text of a standard format COBOL source program that possibly
contains COpy and REPLACE statements is translated into an equivalent source
program not containing these statements.

ARGUMENTS

oldpath
is the pathname of the input segment If it does not have a suffix of . cobol. one
is assumed. The suffix . cobol. however. must be the last component of the name
of the source segment

newpath
is the pathname of the output segment If it does not have a suffix of . cobol.
one is assumed. If you omit it. the translated segment is in the form of the first
component with the suffix .ex.cobol.

CONTROL ARGUMENTS

-card
deletes meaningless trailing blanks from a standard fixed-format COBOL source
program in card-image format and ignores characters in the identification field
(columns 73-80).

-expand, -exp
translates a standard fixed-format COBOL source program that possibly contains
COPY and F-EPLACE statements into an equivalent sourc.e program not containing
these statements. (Default)

-format. -fmt
translates a pseudofree-form COBOL source program into a standard fixed-format
COBOL source program. All characters in the source program are left exactly as
typed.

-lower_case -lc
translates a pseudofree-form COBOL source program into a standard fixed-format
COBOL source program. All characters except for those in alphanumeric literals
are converted to lowercase.

3-350.5 AG92-06A

11/86

-no_expand, -no_exp
does not translate COpy and REPLACE statements in a standard fixed-format
COBOL source program.

-upper_case, -uc
translates a pseudofree-form COBOL source program into a standard fixed-format
COBOL source program. All characters except for those in alphanumeric literals
are converted to uppercase.

NOTES

You can use -fmt,. -lc, and -uc with -exp, but not with -card. Don't use them if
the source program is already in standard fixed format

The control argument -card causes a standard fixed-format COBOL source program in
card image format to be translated into an equivalent standard fixed-format program.
If a line is 80 characters long, the identification field is deleted before removing
meaningless trailing blanks. You can use -card with -expo

3-350.6 AG92-06A

If the -fmt, -lc, or -uc control arguments are used, the expand_cobol_source
command assumes that the input file is in free form (as would be typically typed in
from a terminal) and attempts to reformat each line into the standard COBOL
reference format described in the Mu/tics COBOL User's Guide (AS43). Statements in
a COBOL source program generally begin in area B (column 12 and beyond).
However, certain entries must begin in area A (column 8 through 11). These are
COBOL-defined division names, section names, paragraph names, level indicators, and
certain level numbers, as well as user-defined section names and paragraph names.
Additionally, certain characters have special meaning when appearing in the indicator
area (column 7), such as the asterisk, slash, hyphen, and letter "d".

The expand_cobol_source command recognizes all COBOL-defined names that are
required to appear in area A and reformats lines containing them to guarantee that
they do so. User-defined section names are recognized by the appearance of the word
"section" on the line while words beginning the line and followed immediately by a
period are assumed to be user-defined paragraph names. Source lines containing either
of these are reformatted similarly to lines containing COBOL-defined sections and
paragraphs. Lines beginning with level numbers 01, 66, 77, 88 are reformatted to begin
in area A (at column 8) as required in standard American National Standard (ANS)'
COBOL. Lines beginning with level numbers 02 through 49 are indented a number of
spaces identical to the numeric value of the level number plus seven (e.g., 02 begins
at column 9, 05 at column 12).

Certain characters force special interpretation when they begin a free form source line.
The slash (/) and asterisk (*) when used in this way denote a comment line with or
without page eject, respectively; the hyphen (-) denotes a continuation line. Such lines
are reformatted so that these special characters appear in the indicator area followed
by the rest of the line. Additionally, for continuation lines, the remainder of the line
following the hyphen is shifted to begin in area B as COBOL prohibits use of area A
in this case.

Debugging lines are probably of little interest for Multics COBOL users due to the
powerful symbolic debugging facilities available on an interactive basis, but they can be
specified in free form source by beginning the line with "d*". In rare instances, in
which a user-defined section or paragraph name is specified in a way not contextually
recognizable by the expand_cobol_source command. you can force reformatting
beginning in area A by beginning the line with "a*" (or "da*" in the case of
debugging lines).

All other source lines (i.e.. those not beginning with special character(s) and not
containing entries required to begin in area A) are reformatted by insertion of eleven
blanks forcing commencement in area B. Any indentation already existing in the free
form file is thereby maintained relative to column 12.

The expand_cobol_source command also converts all horizontal tab characters (ASCII
code 011) not contained in nonnumeric literals to spaces. The number of spaces is
determined by subtracting the position of the tab character on the source line modulo
10 from 10. In this way, you can input the source program using the tab character as
a formatting tool, yet avoid the fact that this is not part of the standard COBOL
character set.

3-351 AG92-o6

explain~doc

The COBOL source program output is acceptable to any ANS compiler with regard to
reference format (Actually, Multics COBOL relaxes many of these format requirements.
However, it is usually desirable to eliminate the warnings and observations issued when
such ANS rules are violated.) For transportability purposes, the output file can be
created entirely in uppercase or lowercase (with the contents of nonnumeric literals
left as is) by use of the -upper_case and -lower_case control arguments. If neither is
speciiied, the case of all words remains the same as in the input file. Notice, all
COBOL-defined names and characters with special meaning are recognized regardless of
case, i.e.. they can be all in uppercase. all in lowercase, or in mixed case.

For those users wishing to keep source files in free form, identical function described
above is available on a per use basis via the -format control argument of the cobol
command. Refer to the description of the cobol command for further information.

Name: explain_doc, edoc

SYNTAX AS A COMMAND

edoc manual_name {-control_args}

FUNCTION

returns information about a specified Multics manuaI(s).

ARGUMENTS

manual_name
is the manual's name, a short name for the manual, or the manual's order
number. The name or the short name can contain blank spaces; it need not be
enclosed in quotation marks. Capitalizing letters is not necessary. Use iteration to
get more than one manual (see "Examples" below).

CONTROL ARGUMENTS

-all, -a
prints all the sections of manual information.

-audience, -aud
describes the audience for which the manual is intended.

-database_pathname PATH. -dbpn PATH
specifies the pathname of the data base you want instead of the default one.
Once you supply -database_pathname. the specified data base is used for all
subsequent invocations of explain_doc during your process until you select another
data base.

3-352 AG92-06

-description. -dese
returns a brief description of the manual's contents. (Default)

-new_features, -nf
lists all new features that have been added to the manual with the last update
(revision or addendum).

-no_aUdience. -no_aud
does not describe the manual's intended audience. (Default)

-no_description, -no_dese
suppresses printing of the brief description of the manual's contents.

-no_new_features, -no_nf
does not list new features. (Default)

-no_request_loop, -nrql
does not enter the request loop.

-no_table_of_contents, -no_toe
does not print the manual's table of contents. (Default)

-output_file PATH, -of PATH
directs the output to a file instead of to your terminal.

-request_loop, -rql
enters a request loop after the sections specified by control arguments have been
printed. (Default)

-table_of _contents, -toe
prints the manual's table of contents.

NOTES

When explain_doc cannot find a data base entry that matches the manual name
supplied. it may, in some cases, find a partial match that enables it to identify that
name as belonging to a particular group such as the FORTRAN manuals or the
Administrator's manuals. In that case, the relevant set of manual names is listed, and
you can then choose to see the information on one of those manuals or return to
command level.

NOTES ON REQUESTS

When you have invoked explain_doc and the section has been displayed, you are
prompted

More information?

3-353 AG92-06

You can respond with one of the following requests:

yes, y
? (lists available responses)
description. desc
audience, aud
table_of_contents. toc
new _f eatures, nf
all, a
no, n, quit, q (quits the request loop and returns you to

command leveI).

EXAMPLES

edoc ag92 -audience

Title: Mu1tics Commands and Active Functions
Order No.: AG92-05A"
Release Supported: MR10.2

Audience:
Programmers and nonprogrammers who use Mu1tics commands and
active functions.

More information? no

r 13:51 6.782 183

When using iteration, enclose names containing blank spaces within quotes; for instance,

! edoc MAM (i'registration and accounting!! system project)

or

! edoc ("mu1tics commands" subroutines)

3-354 AG92-06

exponent_control exponen t_control

Name: exponent_control

SYNTAX AS A COMMAND

exponent_control -control_args

FUNCTION

controls the behavior of the system in the event of a computational overflow or
underflow.

CONTROL ARGUMENTS

-restart STRs, -rt STRs
specifies that either overflow or underflow or both are to be automatically
restarted with defined results. STRs can be either or both of the strings
"overflow" or "underflow."

-fault STRs, -flt STRs
specifies that either overflow or underflow or both are to cause the normal fault
conditions.

-overflow_value STR. -ovfv STR
specifies the value to be returned for an overflowing computation. If no value is
given the largest possible floating point value is used.

-print, -pr
prints the current behavior with respect to exponent errors and the current
overflow value.

NOTES

By default Multics signals fault conditions on computational overflows and underflows.
See the Programmer's Reference Manual for more information on faults and other
unusual c.onditions.

This command only affects the system's handling of exponent overflow and underflow
when the overflow condition or the underflow condition is raised. In certain cases, the
error condition is raised instead. This command does not affect the system's handling
of the cases in which the error condition is raised.

3-355 AG92-G6

exponent_control

EXAMPLES

To restart on underflows:

exponent_control -restart underflow

To signal a fault on overflows:

exponent_control -fault overflow

To restart on both underflows and overflows:

exponent_control -restart underflow overflow

Name: fast

SYNTAX AS A COMMAND

fast

FUNCTION

puts you into the FAST subsystem, a time-sharing facility designed primarily for
creating and running BASIC and FORTRAN programs.

NOTES

For a description of the commands available under FAST, see the Multics FAST
Subsystem User's Guide (AU25).

To exit the subsystem and return to Multics system command level, type quit (q).

Name: file_output, fo

SYNTAX AS A COMMAND

fo {path} {-control_args}

FUNCTION

directs I/O output switches to a specified file. The effects of this command can be
stacked.

3-356 AG92-06

11/86

ARGUMENTS

path
is the pathname of a segment If the segment does not exist, it is created. If
you give no path, the segment output_file in your working directory is assumed.

CONTROL ARGUMENTS

-extend
extends the output file. (Default)

-source_switch STR, -ssw STR
specifies the name of an I/O switch to be redirected. (Default: user_output)

-truncate. -tc
truncates an existing output file for file_output (Default to extend the output
file)

NOTES

Each command invocation of file_output stacks up another attachment for each of the
specified switches.

See the revert_output. syn_output, and terminal_output commands.

EXAMPLES

The command line

fo text.cpa;cpa text.old text.new;ro;dp text.cpa

makes a comparison of two text segments named text.old and text. new, places the
results of that comparison in the output file named text cpa, and dprints the file
text.cpa on a remote printer.

This sequence of commands within an exec_com segment

fo segs_and_links
1s -seg
to
1s -directory
ro
]5 ~lii"ik

ro

3-357 AG92-06A

11/86

lists segments and links in the output file named segs_and_links and lists directories
on the terminal. The sequence of lines within an exec_com segment

&if &[equal &1 tape] &then io attach sl tape_mult_ &2;
io open sl so

&if &[equal &1 file] &then io attach sl vfile_ &2;
io open sl so

&if &[equai &1 tty] &then io attach sl syn_ user_i/o
syn_output sl;

so sl; ws -wd IIlist -all";ro
&if &[not [equal &1 tty]] &then io close sl
io detach sl

outputs a listing of all segments in a subtree to a file, a tape, or the terminal as
specified by the first exec_com argument

Name: files

SYNTAX AS A COMMAND

files star_names {-control_args}

SYNTAX AS AN ACTIVE FUNCTION

[files star_names {-control args}]

FUNCTION

returns the entrynames or absolute pathnames of segments and multisegment files
(MSFs) that match one or more star names.

ARGUMENTS

star_names
are star names to be used in selecting the names to be returned.

CONTROL ARGUMENTS

-absolute_pathname, -absp
returns absolute pathnames rather than entrynames.

-chase
processes the targets of links when you specify a starname.

-inhibit_error, -ihe
returns false if star_name is an invalid name or if access to tell of an entry's
existence is lacking.

files

3-358 AG92-o6A

files

11/86

-no_chase
does not process the targets of links' when you specify a starname. (Default)

-no_inhibit_errort -nihe
signals an error if star_name is an invalid name or if access to tell of an entry's
existence is lacking. (Default)

NOTES

Only one name per file is returned; i.e., if a file has more than one name that
matches a star_name, only the first match found is returned.

Since each entrynarne (or pathname) returned by files is enclosed in quotes, the
command processor treats each name as a single argument regardless of the presence
of special characters in the name.

Name: floor

SYNTAX AS A COMMAND

floor num

SYNTAX AS AN ACTIVE FUNCTION

[floor num]

FUNCTION

returns the largest decimal integer less thant or equal tOt its argument

EXAMPLES

string
4.0
-5.0

[f loor 4.7]
string [floor -4.7]

floor

3-359 AG92-o6A

Name: format_document, fdoc

SYNTAX AS A COMMAND

fdoc path {-control_args}

FUNCTION

formats text segments.

ARGUMENTS

path
is the pathname of an input segment or multisegment file. The suffix "fdocin"
must be the last component of the entryname; you need not supply fdocin in the
command line.

CONTROL ARGUMENTS

-hyphenate {N}. -hph {N}
changes the default hyphenation mode from off to on. N is the length of the
smallest separated word part; its default value is 2. (Default: off)

-indent {N}. -ind {N}
indents the output N spaces from the left margin, in addition to any indention
established by the indent control line within the text of the input file.

-no_hyphenate. -nhph
does not hyphenate words. (Default)

-output_file {PATH}, -of {PATH}
directs the output to a fHe instead of to your terminal. If you provide no
PATH, then the output is written to an output file whose name is formed by
replacing the suffix "fdocin" of the input file entry name with the suffix
"fdocout". (Default: off)

-page_numbers. -pgno
ends each page with two blank lines and a centered· page number. (Default: off)

LIST OF CONTROL LINES

The following is a summary of the control lines recognized by the command:

.alb

• a 11

(align both) inserts extra spaces into each line so that both the left and the right
margins are even. This control line is effective only if fill (.fin) is also in effect.
(Default)

(align left) does not insert extra spaces into the lines. The left margin is even.
the right ragged. This control line is effective only if fill tfin) is also in effect.

3-360 AG92-06

format_document

.brf
(break format) finishes the current output line by formatting any pending texts as
a short line .

• brf (break page) finishes the current page, formatting any pending texts as a short
line .

• fif
(fill off) retains lines in the output file as they are in the input file no matter
the length .

• fin

.hy

(fill on) restructures the input file lines to the current line length for the output
file by taking a word or words from the next line in order to fill the line as
close as possible to the current line length. If a line in the input file is longer
than the current line length, move a word or words to the next line, etc. (See
.alb and .all above.) (Default)

hyphenates according to the default.

.hyf
sets the hyphenation to off. (Default)

.hyn {N}
sets hyphenation to on. (Default: 2)

• _ ru'l • _, ru'l
• I n loNJ t • I n I loNJ

(indent, indent left margin) sets the indention level. If you give N a + or -.
then N is added to or subtracted from the current indention level; without a sign,
N becomes the indention level. An error message is displayed if an indention
level is less than zero (default) or greater than the line length .

• pdl {N}
(page length) sets the page length. If you give N a + or - sign, then N is added
to or subtracted from the current page length; without a sign, the page length is
changed to N. The command inserts blank lines at the top and bottom of each
page, so be careful not to set the page length to a value less than 13 (or less
than 14 if you are having page numbers printed); if less than 13 or 14, an error
message is displayed. (Default: 66)

(space format) finishes the current output line and then adds N blank lines.
(Default: 1)

• pdw {N}
(page width) sets the page width (line length). If you give N a + or - sign, then
N is added to or subtracted from the current line length; without a sign, the line
length is changed to N. An error message is displayed if the set line length does
not accommodate the input file. (Default: 65)

3-361 AG92-D6

format_document format_document

• un {N}, • un 1 {N}
(undent. undent left margin) sets the indention level for the output of the next
line only. If you give N a + sign or no sign. then indent N characters less than
the current indention level; if you give N a -, then indent N characters more
than the current indention level. An error message is displayed if the indention
that is caused by undenting is less than zero or more than the line length.

NOTES

This command takes an input file that you have created using a text editor. formats
that file. and either displays it on your terminal or writes it to a new file with a
unique name. To direct format_document to perform certain actions. place special
control lines in the input file. All control lines begin with a period and must be on
a line by themselves. This command makes two assumptions about how the document
is to be formatted: it assumes that the output is to be on standard-sized paper with
66 lines per page and lines 65 characters wide (these values represent an 8 1/2 by 11
inch page with one-inch margins all around) and that both the left and right margins
are justified.

/

Output lines are built by the embedded control lines within the input file being
formatted; these input control lines do not appear in the output.

EXAMPLES

The following page shows an example of a business letter created using format_document
Suppose the letter is to be printed on a standard 8-1/2 by 11 inch piece of paper
with lines 60 characters long. The input file is first created with a text editor. In
this example the input file is labeled letter.fdocin. Line numbers are shown on the
example to reference comments below.

3-362 AG92-06

format_document format_document

1 .pdw 60
2 • f i f
3 . in 35
4 9341 Millennium Lane
5 Reston, Virginia 22061
6 November 24, 1982
7 <NL>
8 <NL>
9 <NL>
10 . in
11 Zimmerman Widget Company
12 53698 Dixie Highway
13 Drayton Plains, Michigan 48999
14 <NL>
15 <NL>
16 Dear Sir,
17 <NL>
18 .fin
19 .un-5
20 I recently purchased one of your model GX-721 widgets.
21 i feel that your engineering staff deserves high
22 praise for this new model. It is apparent
23 that a great deal of thought has gone into its
24 design. I am particularly pleased with the optional
25 cone top replacement mechanism.
26 <NL>
27 .un =5
28 My purpose in writing this letter, however, is to
29 obtain information. As you are well aware, the filter
30 requires a complete overhaul after each 250 hours of
31 use. The service brochure indicates that the nearest
32 service center to my location is in Chapel Hill, North
33 Carolina, which is a six-hour drive from my residence=
36 If you can direct me to a service center that is more
37 convenient to my location, , would be very grateful.
38 <NL>
39 <NL>
40 . f i f
41 . in 35
42 Sincerely yours,
43 <NL>
44 <NL>
45 <NL>
46 <NL>
47 Michael P. Marley

Line 1 sets the line length (page width) to 60 characters.

3-363 AG92-06

format~document .

Line 2 turns fill mode off so that the lines will appear just the way they are
input. If fill mode was not turned off then the address would be reformatted
by fdoc, words might be moved from line to line, or extra spaces might be
filled in. The same thing is done at line 40 just prior to the closing.

Line 3 sets the indention to character position 35 so that the return address be
on the right-hand side of the letter starting at character position 35.

Lines 4-6 is the return address.

Lines 7-9 are three blank lines inserted by pressing the newline (NL) or
carriage return (CR) key three times.

Line 10 resets the indention level to 0 (the absence of a number after the
control gives the default).

Lines 11-17 are the address of the recipient, two blank lines, the salutation,
and another blank line.

Line 18 turns fill mode on.

Line 19: the indention level is set to 0 by the control in line 10, but you
want to indent the next line by only five characters since it begins a
paragraph. To change the indention for only one line you use the undent
control, which works in the opposite direction of the indent control: undent
subtracts the number from the indention (Le., if you used .un 5 it would move
the indention 5 spaces to the left). You want to move 5 spaces to the right to
indent the paragraph, so you use a negative number.

Lines 20-37 is the body of the letter. No attempt to control the entered line
lengths has been made (free form). The fdoc command formats all the data
f or you, so long as fill mode is on. Lines can be as short or as long
(wrap-around) as you wish.

Line 40 turns fill mode off.

Line 41 sets the indention to character position 35 so that the letter closing,
signature, and sender's name appear on the right side of the page (lines 42-47).

Now that your input file (Ietter.fdocin) is ready you can have it formatted and
printed on the terminal for your perusal:

3-364 AG92-06

format_document

fdoc letter.fdocin

Zimmerman Widget Company
53698 Dixie Highway
Drayton Plains, Michigan 48999

Dear Sir,

9341 Millennium Lane
Reston, Virginia 22061
November 24, 1981

recently purchased one of your model GX-72l widgets.
feel that your engineering staff deserves high praise for

this new model. It is apparent that a great deal of thought
has gone into it~ design. I am particularly pleased with
the optional conetop replacement mechanism.

My purpose in writing this letter, however, is to
obtain information. As you are well aware, the filter
requires a complete overhaul after each 250 hours of use.
The service brochure indicates that the nearest service
center to my location is in Chapel Hill, North Carolina,
which is a six-hour drive from my residence. If you can
direct me to a service center that is more convenient to my
location, I would be very grateful.

Sincerely yours,

Michael P. Marley

r 1154 o. 149 25

To make a final copy of the letter, you must first center it on the paper. Most
terminals and printers print a standard 8-1/2 by 11 inch piece of paper with 85
characters on a line, which means that the lines are 25 characters shorter than the
width of the paper, so if each line begins at character position 12 (roughly half of
25) the letter will be centered on the page. The command line

3-365 AG92-06

format_document

fdoc letter -indent 12

accomplishes this.

If the letter is to be saved in a file so that it can be printed on another terminal or
on a high-speed printer, use -output_file:

fdoc letter -indent 12 -of

In this example, the file is named letter.fdocout

If you have a high-quality printing terminal that you wish to use to print this letter
on a piece of typing paper, you would type:

print letter.fdocout -stop

After entering this command, place the typing paper in the terminal, posItIon it so
that printing begins at the top, and then enter a carriage return (newline character).
The letter is then printed, stopping at the last line. At this point, you can remove the
paper and put in a new sheet (if the letter is more than one page). When the letter
has been printed you can enter another carriage return and you are returned to
Multics command level.

Name: format_line, fl

SYNTAX AS A COMMAND

fl control_string {args}

SYNTAX AS AN ACTIVE FUNCTION

[fl control_string {args}]

FUNCTION

returns a single, quoted character string that is formatted from an ioa_ control string
and other optional arguments.

3-366 AG92-06

ARGUMENTS

control_string
is an ioa_ control string used to format the return value of the active function
(see "Notes" below).

args
are character strings substituted in the formatted return value according to the
control string.

NOTES

The following ioa_ control codes are allowed (see the ioa_ subroutine). The control
string is output exactly as is except that certain constructs beginning with a caret (A)
are expanded, which may involve argument substitution or interpretation. Unimplemented
constructs are output as is, but avoid them to allow for future extensions.

CONTROL

Aa ANa
Ad ANd

Ai ANi
Af ANf
A .Of AN.Of
Ae ANe
AO ANo
A [••• A

••• A]
A(••• A) or
AN (••• A)
AS ANs

ACCEPTABLE ARGUMENTS

any character string
a character representation of a number, including
optional exponent (315.44 or .2789e+2 or 1101b)
same as Ad
same as Ad
same as Ad
same as Ad
same as Ad
"true", "false", or an integer character string
any number of any character string

an integer character string.

In addition, you can use any of the following carriage movement controls:

ANI
ANx
AS
AN.Dt AI

AX

AN
AR

ANt
AI
AA

where N is an integer count or a "v". When you give "v", an integer character string
f rom the args is used for count

If you don't give optional arguments, the value returned depends on the ioa_ control
string that you specified.

3-367 AG92-{)6

EXAMPLES

In an exec_com segment, the lines

&if [query [fl IIAa copies already exist.A/Build another?lI] &2]
&then ec build_new_data [plus 1 &2]

might be expanded when &2 is 3 to

3 copies already exist.
Build another?

The lines

string [fl "Insurance option: A[no faultA;regular"']"
[query "No Fault?"]]

print the following if you answer "no" to the query

Insurance option: regular

SYNTAX AS A COMMAND

flnnl control_string {args}

SYNTAX AS AN ACTIVE FUNCTION

[flnnl control_string {args}]

FUNCTION

is the command/active function interface to the ioa_$nnl subroutine. When used as a
command, the formatted string is printed without a trailing newline.

ARGUMENTS

con trol_string
is an ioa_ control string used to format the return value of the active function.

args
are character strings substituted in the formatted return value according to the
control string.

3-368 AG92-06

NOTES

The following ioa control codes are allowed (see the ioa_ subroutine). The control
string is output exactly as is except that certain constructs beginning with a caret (")
are expanded, which may involve argument substitution or interpretation. Unimplemented
constructs are output as is, but avoid them to allow for future extensions.

CONTROL

Ai ANi
Af ANf
A.Of AN~Df
Ae ANe
AO ANo
A [••• A

••• A]
A(••• A) or
AN (••• A)
AS ANs

ACCEPTABLE ARGUMENTS

any character string
a character representation of a number, including
optional exponent (315.44 or .278ge+2 or 1101b)
same as "d
same as "d
same as "d
same as "d
same as "d
"true", "false", or an integer character string
any number of any character string

an integer character string.

In addition, you can use any of the followipg carriage movement controls:

ANI ANI AN-
ANx ANA AR
AB "'t ANt
AN.Dt AI AI

AX
AA

where N is an integer count or a "v". When you give "v", an integer character string
from the args is used for count.

If you don't give optional arguments, the value returned depends on the ioa_ control
string that you specified.

3-369 AG92--D6

Name: format_pll, fp

SYNTAX AS A COMMAND

FUNCTION

formats a PL/I. create_data_segment. reductions. or pH_macro source segment to make
it more readable.

ARGUMENTS

in_path
is the pathname of the source segment. Suffixes for PL/I. create_data_segment,
reductions. and pH_macro are recognized. If in_path does not have a recognized
suffix. format_pH attempts to use in_path. pH or in_path. cds, in that order.

CONTROL ARGUMENTS

-brief, -bf
does not print a warning if the prevailing style differs from the command line
modes.

-check_comments, -ckcom
prints a warning if a comment contains "/*". It is useful if you have omitted a
"* I" from a comment.

-check_strings, -ckstr
prin ts a warning if a character string constant contains " 1*". "* /". or vertical
white space. It is useful after receiving an error message indicating that you have
omitted a quote from a character string constant

-force. -fc
forms the prevailing style by concatenating the default style, the prevailing style
control comment modes, and the command line modes. If the program already
has a prevailing style control comment and the prevailing style differs from the
prevailing style control comment modes, the prevailing style control comment is
deleted. If you provide -record_style, a new prevailing style control comment is
inserted.

-long, -lg
prints a warning indicating the modes that differ if the prevailing style differs
from the command line modes. (Default)

-modes STR, -mode STR. -md STR
specifies a modes string STR used in forming the prevailing style (see "Notes on
Prevailing Style" below).

3-370 AG92-()6

-no_cheek_comments. -nckcom
does not print a warning if a comment contains "/*". (Default)

-no_cheek_strings, -ncatr
does not print a warning if a character string constant contains "/*", "*/", or
vertical white space. (Default)

-no_force, -nfc
forms the prevailing style by concatenating the default style. the command line
modes. and the prevailing style control comment modes. (Default)

-no_record_style, -nrcst
does not put a control comment in the source specifying the prevailing style.
(Default)

-no_require_stYle_comment. -nrqst
formats the source even if it does not already contain a prevailing style control
comment (Default)

-no_version. -nver
does not print the version of format_pH. (Default)

=output_file path. -of path
specifies the pathname of the formatted source segment The equal convention is
allowed. The suffix of in_path is assumed if not specified. If omitted and there
were no errors. in_path is overwritten; if omitted and there were errors. a
formatted copy is left in the process directory.

-record_style, -rest
puts a control comment in the source specifying the prevailing style if the source
does not already have a prevailing style control comment The comment is placed
immediately before the first token of the program so it does not interfere with
copyright notices.

-require_style_comment, -rqst
prints an error message if the source does not already contain a prevailing style
control comment This is useful if you are concerned with accidentally destroying
the style of a hand-formatted program.

-version, -ver
prints the version of format_pH.

NOTES

Alternate methods of formatting particular language constructs are seleeted by means
of modes. Several popular styles. consisting of groups of modes, are defined. Modes
and styles are specified on the command line and in comments in the source segment

An exee_com tool called compare_pH compares PL/I source segments of dissimilar
formats via f ormat_pll.

3-371 AG92-06

If you give two opposing control arguments, the rightmost one is chosen. The term
"token" excludes comments. See the Multics PL/I Language Specification (AG94) for
definitions of words describing syntactic constructs in a PL/I program, e.g.,
independent statement, declaration list, etc. Condition and label prefixes are not
considered part of a statement

NOTES ON MODES STRING

A modes string changes the style format_pll uses to format a program. It consists of
mode names separated by commas. Many modes can be preceded by 1\ to turn the
specified mode off. The modes string is processed from left to right; thus, if two or
more contradictory modes appear within the same modes string. the rightmost mode
prevails. Modes not specified by the modes string are left unchanged.

NOTES ON CONTROL COMMENTS

A control comment has the form "1* format: STR *1", where STR is a modes string.
The control comment can start with one of the other comment indicators listed in
"List of Comment Indicators" below. Control comments can occur only before the
first token of the program. between a semicolon and the first token of the next
statement, or after the last semicolon in the program. Control comments cannot occur
in the middle of a statement. Optional horizontal white space can precede "format" or
surround STR. Some modes changed by a control comment may not take effect
immediately; for example, end statements are formatted according to the modes in
effect when the matching do, begin, or procedure statement was formatted.

There are two special control comments that are used in if statements. If a comment
containing "1* case * I" or "1* tree * In immediately follows the word "if" in an if
statement. then the current style is changed for the duration of that if statement;
exactly one space must precede and f oHow "case" and "tree". (See case and tree
modes in the "List of if Statement Modes" below.)

NOTES ON PREVAILING STYLE

The style in which format_pll formats a PL/I program is formed from a combination
of three sources: format_pU's default style, modes specified on the command line, and
control comments in the program. The first control comment of the program
preceding the first token of the program is called the prevailing style control
comment. A program might not have a prevailing style control comment The style
specified by the concatenation of the default style, the command line modes, and the
prevailing style control comment modes is called the prevailing style. This is the style
in which most of the program is formatted.

Since a styleN mode specifies the setting of every mode, if the prevailing style control
comment contains a styleN mode, the default format_pll style and the command line
modes are ignored. If the program doesn't already have a prevailing style control
comment, the command line

3-372 AG92-()6

formats a program in MY_STYLE and records the style in a prevailing style control
comment If the program has a prevailing style control comment, the program is
formatted in the style specified by its prevailing style control comment and
-record_style has no effect The prevailing style control comment created as a result
of -record_style always begins with a styleN mode.

NOTES ON EXAMPLES

The examples show how various program fragments are formatted. If you give no
control comment, then style! (default), is assumed; if you give a control comment, the
default is used for all unspecified modes. Unless you use delnl,insnl mode, each line
of the input source segment contains the same tokens as the corresponding line of the
example. If you use delnl,insnl mode, then newline characters are inserted and deleted
as required by the style. (See "Notes on Styles" below.)

LIST OF MODES
Modes for various language constructs are listed separately.

styleN
specifies formatting style N.

revert
changes the formatting style to the prevailing style. You can't supply this mode
in -modes or in the prevailing style control comment Note that the on mode is
changed to the phase specified in the prevailing style.

off, "'on
leaves the source exactly as it is until a control comment changes the style to on.
In this mode, block and group entries and exits are noticed so the program
following the on mode control comment is formatted correctly.

on, "'off
starts formatting the source again. (Default)

indN
N is the number of columns to indent for each block or group indentation level.
An independent statement in a then or else clause that does not have a condition
or label prefix is indented a minimum of five columns when not in if then mode
even if indN is less than five. This avoids placing the then or else clause on the
line after the "then" or "else". The five columns are measured from the column
the "else" would start in if the else clause was an indeoendent statement
(Default: 5) £

3-373 AG92-Q6

llN

Example: /* format: ind3 */
if v = 2
then

do;
x = 12;
y = 128;

end;
else z = 12;

N is the output line length. (Default: 122)

lineconindN
N is the number of columns to indent the continuation of lines that exceed the
output line length. (Default: 5)

equa 1 i ndN
if N is greater than zero, places the equal sign of assignment statements in a
column indented N columns from the left margin. If in insnl mode, a new line
is inserted if necessary to insure that the equal sign is indented the specif ied
column positions. If N is zero, then assignment statements are formatted just as
ordinary statements. (Default: 0)

Example: /* format: style2,equalind8 */

initcolN

a = 12;
index = 1;
second index

= 43;

N is the initial column that statements occurring before the first procedure
statement should start at This is useful for include files. (Default: 6)

NOTES ON DECLARE STATEMENTS

Depending upon delnl and insnl modes, each level one identifier that is declared is
placed on a Hne by itseif. In indattr mode, all attributes are indented to· the same
column. If a declaration list (parenthesized list) has all the attributes factored (i.e.,
each declaration component- in the declaration list consists only of an identifier) and
doesn't contain any comments and none of the identifiers contain a $, then the
declaration list is placed on as few lines as possible instead of placing each identifier
on a separate line.

Examp 1 e: de 1 (hbound, index, nu 11) bu i 1 tin;

LIST OF DECLARE STATEMENT MODES

indattr
always indents the attributes so they start in the same column. (Default)

3-374 AG92-06

"'indattr
doesn't indent the attributes from the identifier being declared.

inddels
indents declare statements so they start in the same column any other statement
would start in. (Default)

"inddels
always starts declare statements in column 1.

deelareindN
indents N columns after the start of dcl. (Default: 8)

de 1 i ndN
indents N columns after the start of dcl. (Default: 8)

idindN
indents N columns after the start of an identifier before starting the attributes.
Ignored if in I\indattr mode. (Default: 23)

struelvl indN
indents N columns for each level in a structure. (Default: 2)

LIST OF IF STATEMENT MODES

ifthenstmt
outs the then clause on the same line as the "if", if it fits. These criteria must
be met: (1) the then clause must be an independent statement and cannot be
another if statement; (2) the then clause must not have a condition or label
prefix; (3) if in tree mode, the if statement must not have an else clause; (4) if
in case mode, the if statement must fall into one of the following categories: (a)
there is no else clause, (b) the else clause consists of an if statement, or (c) the
if statement under consideration is an else clause of another if statement.

Example: 1* format: iftnenstmt *1
if x > 3 then return;

"'ifthenstmt
doesn't put the then clause on the same line as the "if". (Default)

Example: if x > 3
then return;

ifthendo
puts the "then do" on the same line as the "if", if it fits even if indN is less
than five, if the then clause of an if statement is a noniterative do group without
a condition or label prefix; puts the "then do" on the same line if it fits and in
I\thendo mode; lines the "then" up with the "if" if in thendo mode; puts the
"else do" on the same line, if it fits even if indN is less than five, if the else
clause of an if statement is a noniterative do group without a condition or label

3-375 AG92-D6

prefix. In Adelnl mode, the "then" or the "else" must already be on the same
line as the ttdo".

Example: /* format: ifthendo,Aindnoniterdo */
if v = 2 then do;

x = 8;
y = 9;

end;
else do;

x = 9;
y = 92;

end;

/* format: ind3, ifthendo,Aindnoniterdo */
if v = 2 then do;

x = 8;
y = 9;

end;
else do;

x = 9;
y = 92;

end;

Aifthendo
doesn't put the "then do" on the same line as the "if". (Default)

thendo

Example: /* format: Aindnoniterdo */
if v = 2
then do;

end;
else

end;

x = 8;
y =

do;
x =
y =

9;

9;
92;

if in ifthendo mode, lines the "then" up with the "if".

Example: /* format: ind3,ifthendo,thendo,Aindnoniterdo */
if v = 2
then do;

x = 8;
y = 9;

end;
else do;

x = 9;
y = 92;

end;

3-376 AG92-Q6

"thendo
if in ifthendo mode. puts the "then do" on the same line as the "if" if it fits.
(Default)

if then

Example: /* format: ind3,ifthendo,"indnoniterdo */
if v = 2 then do;

x = 8;
y = 9;

end;
else do;

x = 9;
y = 92;

end;

puts the "then" on the same line as the "if".

Example: /* format: ind3,ifthen */
if v = 2 then

"if then

do;
x = 12;
y = 128;

end;
else

do;
x = 128;
y - 12;

end;

lines the "then" up with the "if". (Default)

Example: if v = 2
then x = 8;
else x = 9;

elsestmt
places independent statements on the same line as the else clause; places
nonindependent statements on the same line as the else clause if indN is set to
five or more. (Default)

Aelsestmt
does not place any statements on the same line the else clause appears on unless
the else clause is part of an if statement in "case" mode and the statement
following the else clause is another if statement.

3-377 AG92-Q6

Example: /* format: style2, ifthen,Aelsestmt */
if a = b then

x = y;
else

x = Z;

indnoniterdo
indents the statements of the do group two indentation levels from the column in
which the "if" starts if a then or else clause contains a noniterative do group
without a condition or label prefix; indents three levels if in indthenelse mode.
(Default)

Example: if v = 2
then do;

x = 3;
y = 4;

end;
else do;

x = 35;
y = 27;

end;

Aindnoniterdo
indents the statements of the do group one indentation level from the column in
which the "if" starts if a then or else clause contains a noniterative do group
without a condition or label prefix: indents two levels if in indthenelse mode.

Example: /* format: Aindnoniterdo */
if v = 2

inditerdo

then do;

end;
else

end;

x = 3;
y =

do;
x =
y =

4;

35;
27;

indents the statements of the do group two indentation levels from the column in
which the "if" starts if a then or else clause contains an iterative do group and it
does not have a condition or label prefix; indents three levels if in indthenelse
mode. (Default)

Example: if v = 2
then do i = 1 to 4;

a (i) = i;
end;

3-378 AG92-<>6

"'inditerdo
indents the statements of the do group one indentation level from the column in
which the "if" starts if a then or else clause contains an iterative do group and it
does not have a condition or label prefix; indents two levels if in indthenelse
mode.

Example: /* format: "'insnl,Ainditerdo */
if v = 2 then do i = 1 to 4;

a 0) = i;
end;

indnoniterend
starts the end statement of the noniterative do group in the same column as the
statements of the noniterative do group if a then or else clause contains a
noniterative do group without a condition or label prefix.

Example: /* format: "'indnoniterdo,indnoniterend */
if v = 2

-~. i ndnon i terend

then do;
x = 8;
y = 9;
end;

else do;
x = 9;
y = 92;
end;

starts the end statement of the noniterative do group in the column that is one
indentation level before the column the statements of the noniterative do group
start in if a then or else' clause contains a noniterative do group without a
condition or label prefix. (Default)

Example: /* format: "'indnoniterdo */
if v = 2

indthenelse

then do;
x = 8;
y = 9;

end;
else do;

end;

x = 9;
y :: 92;

indents the then and else clauses two indentation levels from the column in which
the "if" is placed. Places the "else" one indentation level from the column in
which the "if" is started. If in Aifthen mode and the ifthenstmt and ifthendo
modes do not apply to the if statement. places the "then" in the same column as
the "else". If in case mode and the if statement under consideration is the else

3-379 AG92-D6

clause of another if statement, then indents from the column in which the
preceding "else" is placed instead of the column in which the "if" is placed. In
case mode this mode is ignored f or the else clause if the else clause consists of
an if statement or the if statement under consideration is an else clause of
another if statement

Example: I'': format: indthenelse *1
if v = 2

then x = 8;
else do;

x = 9;
ca 11 default;

end;

Itc format: indthene1se)'tl

if v = 2
then x = 8;

else if v = 3
then x = 25;

else ca 11 error;

"'indthene1se
indents the then and else clauses one indentation level from the column in which
the "if" is placed. Places the "else" in the same column as the "if" is placed. If
in f.ifthen mode and the ifthenstmt and ifthendo modes do not apply to the if
statement. places the "then" in the same column as the "else". If in case mode
and the if statement under consideration is the else clause of another if statement,
then indent from the column in which the preceding "else" is placed instead of
the column in which the "if" is placed. (Default)

Example: ! f v = 2
then x = 8;
else do;

x = 9;
ca 11 default;

end;

if v = 2
then x = 8;
else if v = 3
then x = 25;
else ca 11 error;

case, "'tree
indents "else if" clauses like a case statement. (Default)

3-380 AG92-06

Example: if char = "a"

tree, ""case

then call char a;
else if char =-lIb"
then call char b;
else if char =-IICIl
then call char_c;
else call error;

/* format: ifthenstmt */
if char = lIa ll then call char_a;
else if char = IIb ll then call char_b;
else if char = II C" then call char_c;
else call error;
/* Decision tree formatted 1 ike a case statement. */
if condition_l
then if condition_2

then ca 11 cond it i on (0);
else ca 1 1 cond i t i on (1);

else if condition_2
then ca 11 cond i t i on (2);
else ca 1 1 cond i t i on (3);

indents "else if" clauses like a decision tree.

Example: if /* tree */ condition
then if condition=2

then ca 1 1 cond it i on (0);
else ca 11 cond it ion (1);

else if condition_2
then ca 1 1 cond i t i on (2);
else ca 1 1 cond j t i on (3);

/* Case statement formatted like a decision tree. */
1* format: tree */
if char = "all
then call char_a;
else if char = IIb li

then call char_b;
else if char = IIC"

then call char_c;
else call error;

3-381 AG92-06

indbegin
indents the body of those begin blocks that do not follow then clauses, else
clauses, or on statements. (Default)

Example: a = 15;
begin;

x = 21;
end;
y = 2;

"indbegin
does not indent the body of those begin blocks that do not follow then clauses,
else clauses, or on statements.

Example: /* format: "indbegin */
a = 15;
begin;
x = 21;
end;
y = 2;

indbeginend
indents the end statement of those begin blocks that do not follow then clauses,
else clauses, or on statements to the level of tbe begin block body. If in
I\indbegin mode, this option does not effect the placement of the end statement.
The end statement always lines up under the begin block body and in the 5a..rne
column as the begin statement since they are the same column.

Example: /* format: indbeginend */
a = 15;
begin;

x = 21;
end;

y = 2;

Example: /* format: "indbegin,indbeginend */
a = 15;
begin;
x = 21;
end;
y = 2;

"indbeginend
places the end statement of those begin blocks that do not follow then clauses,
else clauses, or on statements in the same column as the begin statement.
(Default)

3-382 AG92-06

indthenbegin
indents the body of begin blocks that follow then clauses, else clauses, or on
statements. (Default)

Example: if a = 2
then begin;

Aindthenbegin

end;
y = 15;

x = 12;

does not indent the body of begin blocks that follow then clauses, else clauses, or
on statements. By default the corresponding end statement is indented one less
level than the begin block body (see indthenbeginend).

Example: /* format: Aindthenbegin */
if a = 2
then begin;

x = 12;
end;
y = 15;

indthenbeginend
indents the end statement of those begin blocks that follow then clauses, else
clauses, or on statements to the same level- as the begin block body.

Example: /* format: indthenbeginend */
if a = 2
then begin;

x = 47;
end;

y = 100;

Example: /* format: Aindthenbegin,indthenbeginend */
if a = 89
then begin;

x = y;
end;

y = 100;

Aindthenbeginend
indents the end statement of those begin blocks that follow then clauses, else
clauses, or on statements one less level than the indentation of the begin block
body. (Default)

Example: if a = b
then begin;

end;
y = 9;

x = 15;

3-383 AG92-06

Example: /* format: Aindthenbegin */
if a = b
then begin;

x = 15;
end;
y = 9;

indproc
starts the procedure statement in the same column as other statements of the
containing procedure if a procedure is contained within at least two other
procedures, i.e .• the procedure is an internal procedure of an internal procedure;
starts the procedure statement in column indN+ 1, otherwise.

Example: /* format: indproc */
extp:

Aindproc

procedure;
a = 1;

i ntp 1 :
procedure;

b = 2;
intp2:

procedure;
c = 3;

end intp2;
end i ntp 1 ;
end extp;

start procedure statements in column indN+ 1. (Default)

Example: extp:

indprocbody

procedure;
a = 1;

i ntp 1 :
procedure;

b = 2;
intp2:

procedure;
c = 3;

end intp2;
end i ntp 1 ;
end extp;

indents the body of the procedure, the statements following the procedure
statement, one level farther than the indentation of the procedure statement.
(Default)

3-384 AG92-oS

Aindprocbody
begins the statements following a procedure statement in the same column as the
procedure statement.

indend

Example: /* format: Aindprocbody */
test:

procedure;
a = 12;
end test;

starts the end statement of a do group, except those affected by indnoniterend
mode, in the same column as the statements of the group.

Example: 1* format: indend *1
do i = 1 to 5;

a (j) = i;
end;

Aindend
starts the end statement of a do group, except those affected by indnoniterend
mode, in the column that is one indentation level before the column the
statements of the group start in. (Default)

Example: do i = 1 to 5;
a 0) = i;

end;

NOTES ON HORIZONTAL WHITE SPACE

All horizontal white space, except within character string constants and comments, is
removed from the program. Spaces are inserted before left parentheses, after commas,
around operators, and in other places to improve readability. Where possible,
horizontal tabs are used to conserve space in the output segment.

Statements continued onto another line are indented lineconindN from the current left
margin. The left margin at which a statement is indented is increased by indN for
every nested begin block, group, and then or else clause except as required by the
indnoniterdo. inditerdo. indthenelse, case. indproc, and indprocbody modes. Entry
statements are placed in the same column as the corresponding procedure statement.
The left margin before a procedure statement is saved; it is restored after the
procedure's end statement. After a procedure statement the left margin is increased by
indN if the indprocbody option is set. End statements are started in the same column
as the statement that began the block or group except as required by the
indnoniterend, indend, indbeginend, and indthenbeginend modes. Condition and label
prefixes are placed on lines by themselves except possibly in "insnl mode.

3-385 AG92-oS

NOTES ON VERTICAL WHITE SPACE

Vertical white space within character string constants and comments is never changed.
Other vertical white space can be intrastatement and interstatement. In on mode,
vertical tabs and newlines before newpages are removed, newlines before vertical tabs
are removed, and mUltiple newpages are reduced to one. Then a newline is inserted
bef ore and after a sequence of vertical tabs and new pages if there is not already one
there. Interstatement vertical white space· is never changed except for the above
canonicalizations; intrastatement vertical white space is also canonicalized as above and
processed depending upon delnl and insnl modes.

LIST OF VERTICAL WHITE SPACE MODES

delnl
deletes all existing intrastatement vertical white space.

"'delnl
leaves existing intrastatement vertical white space in the program. (Default)

insnl
inserts newlines in the program if necessary. Newlines are inserted when
statements are too long to fit on a line. To determine where newlines are
inserted, various heuristics exist that use the statement type and the precedence of
the tokens in. the statement to determine where to insert newlines. The driving
force of format_pll is what column statements or other language constructs should
start in. Newlines are inserted to start a statement; subset of a statement. or a
comment in a particular column.

"'insnl
doesn't insert newlines into the program. (Default)

NOTES ON COMMENTS

Comments are classified by where they occur within a PLII program and where they
are placed in the output segment They are divided into three categories: intrastatement
comments, indented comments, and block comments. Intrastatement comments occur
between the first token of a statement and the semicolon ending the statement They
are normally separated from surrounding tokens by a space except as required for
linecom mode. Comments that follow a semicolon and are separated by at most one
newline character are considered indented comments. They are placed in column
comcolN. All other comments are block comments. Block comments are placed in
column one or indented to the current left margin according to the indcom and
indblkcom modes. All comments following a blank line, following a block comment,
and before the first token of the program are block comments. Placing a comment in
column N means that the" 1*" starts in column N.

3-386 AG92-G6

In these special cases intrastatement comments are treated as indented comments and
placed in column comcolN: comments following a comma; preceding the right
parenthesis of a declaration component; following the colon in a condition or label
prefix; and, in if statements that the ifthenstmt or ifthendo modes do not apply to,
following the "then" in if then mode and preceding the "then" in Aifthen mode.

A comment indicator is placed at the beginning of a comment to specify where the
comment is placed or to inhibit indcomtxt mode on the comment. If necessary, even
in Ainsnl mode, a newline is inserted to place the comment in the specified column.
Comment indicators consist of the "1*", which starts the comment followed by other
characters as listed below. A comment indicator does not affect the classification of
succeeding comments.

LIST OF COMMENT INDICATORS
i*

places the comment according to its default classification.

1**
places the comment in column comcolN.

1***
indents the comment relative to the current left margin according to indblkcom
mode.

1****

I*A

places the comment in column one.

Example: /* format: ind3,comco121 */
/**** column one comment */

/*** comment indented to left margin *1
/** indented comment */

a = 3; /* indented comment */

/* column one comment by default */
... = I,.
'#J - ..oo:'j

places the comment according to its default classification; formats the comment
according to Aindcomtxt mode.

I**A
places the comment in column comcolN; formats the comment according to
I\indcomtxt mode.

I***A
indents the comment relative to the current left margin according to indblkcom
mode; formats the comment according to Aindcomtxt mode.

3-387 AG92-06

1****"
places the comment in column one; formats the comment according to "indcomtxt
mode.

LIST OF COMMENT MODES

comcolN
N is the column indented comments are placed at. (Default: 61)

indcom
indents block comments relative to the current left margin according to indblkcom
mode. This mode doesn't apply before the first token of the program so it
doesn't interfere with copyright notices.

Example: /**** format: ind3 *1

Aindcom

/* comment indented to left margin */
a = 3;

places block comment in column one. (Default)

Example: /* format: ind3 *1

indblkcom

/* column one comment *1
a = 3;

starts comments that begin with the n 1***" or "1***1'." comment indicators and in
indcom mode, block comments, at the current left margin. (Default)

Example: /* format: ind3,indcom */
/**** column one comment */

/*** block comment */
a = 5;

Aindblkcom
starts comments that begin with the "1***" or "1***1'." comment indicators and in
indcom mode, block comments, one indentation level before the current left
margin.

Example: /* format: ind3,indcom,Aindblkcom */
/**** column one comment */

/*** block comment */
a = 5;

1 inecom
intrastatement comments at the end of a line in the original source segment apply
to an entire line. These comments are treated as indented comments and are
placed in column comcolN.

3-388 AG92-06

Example: /* format: linecom */
if line status < 3

"linecom

I char_count> 0
then return;

/* Is line active? */

intrastatement comments apply to the preceding token. (Default)

Example: /* format: "delnl */

indcomtxt

if char = I040"b3 /-;': space 1~/
I char_count> 0

then return;

inserts a space if there is no horizontal or vertical white space between the
comment indicator and the comment text or between the end of the comment
text and the "* I" or the reverse of any comment indicator. Indents the text of
continuation lines of a multiline comment so they line up; indenting the text of
continuation lines does not apply to in trastatement comments. The horizontal
white space between the comment indicator and the comment text on the first
line of a comment is not reduced; however, leading horizontal white space on
subsequent lines is replaced by sufficient horizontal white space to indent the line.
If the comment is placed in column N, the length of the comment indicator is L,
then the text of each line of the comment begins in column N+L+ 1. This mode
does not apply to comments whose comment indicator ends with "1\". Example:

Input: /* format: indcomtxt */
a = 3; /* Here we have a very

complicated assignment
statement. '1~/

Output:

"indcomtxt

/* format: indcomtxt */
a = 3; /* Here we have a very

complicated assignment
statement. 1~/

leaves the white space at the beginning of each line of a comment alone. The
character string between the "/*" and the "*/" of a comment is never changed in
this mode. (Default)

NorES ON iRREVERSiBLE CHANGES

Several modes can cause irreversible changes to be made to the source program.
Suppose that program p.pll was formatted with style S and does not contain a
prevailing style control comment, then style T causes an irreversible change if the
following command lines produce a program q.pll that differs substantially from p.pll:

format_pll p -modes T -output_file q.pll
format_pll q -modes 5

3-389 AG92-Q6

The following modes can cause irreversible changes: delnl. insnl, "1inecom, and
indcomtxt If a program is not formatted with format_pH. the on mode may also
cause irreversible changes.

NOTES ON STYLES

style1:

style2:

style3:

style4:

style5:

on,ind5, 11122, initco16,indattr,inddcls,declareind8,
dclind8,idind23,struclvlind2,Aifthenstmt,Aifthendo,
Athendo,Aifthen,indnoniterdo,inditerdo,
Aindnoniterend,Aindthenelse,case,Aindproc,Aindend,
Adelnl,Ainsnl,comco161,Aindcom,indblkcom,Alinecom,
Aindcomtxt (Default)

stylel,delnl,insnl

style2,Ainddcls,declareind10,dclind10, idind20

style1,Aindattr,Ainddcls,declareind9,dcl ind5,
ifthendo,Aindnoniterdo,Ainditerdo,indproc,linecom,
indcomtxt

style2,linecom,ifthen,Aindnoniterdo,indnoniterend,
indcomtxt,Aindthenbegin,indthenbeginend,Aindprocbody,
Ae l ses tmt,ind8, l180,initcolO,idind24,comco157, lineconind4,

Stylel indents declare statements, the attributes of declare statements, and the
statements of the do group and lines up the end statement of a noniterative do group
in a then or else clause under the "do". No irreversible changes, such as with the
delnl, insnl, or indcomtxt modes, are made. Example:

/* format: stylel */
declare entryname
if x = 2
then do;

end;

a = 43;
b = 21;

char (32);

Style2 is the same as stylel except it uses the delnl.insnl modes. It may cause
irreversible changes.

Style3 is the same as style2 except that declare statements start in column one and the
identifiers and attributes start in columns aligned on tab stops. It may can cause
irreversible changes. Example:

3-390 AG92-06

/* format: sty1e3 */
declare entryname

if x = 2
then do;

end;

a = 43;
b = 21;

char (32);

Style4 starts declare statements in column one, doesn't indent the attributes in declare
statements, formats noniterative do groups in then or else clauses by indenting the
statements of the noniterative do group one indentation level from the "if" or the
"else", and starts the end statement in the same column as the "if" or the "else". This
style uses the I\delnl, "insnl modes, but still may cause irreversible changes from
indcomtxt mode; it resembles that of the indent command. Example:

/* format: style4 */
declare entryname char (32);

if x = 2 then do;
a = 43;
b = 21;

end;

Style5 starts declare statements in column one. sets the. Hne length to 80 columns, sets
the indentation amount to eight columns, sets the line continuation indentation to four
columns, places the then clause of the "if/then" statement on the same line with the
if, doesn't place any statement on a line with an if statement or else clause except
for placing an if statement on the line after an else when in case mode, doesn't
indent the procedure body, and doesn't indent the body of "begin/end" blocks or
noniterative do groups under if statements.

Example: /* format: styleS */
test:

procedure;
a = 12;
if a = b then

a = 15;
else

a = -15;
b = 78;
if b = c then

do;
x ;; I;
y = 99;
end;

a = 0;
end test;

3-391 AG92-()6

format_string

NOTES ON ERROR CHECKING

Parenthesis balance checking is done for statements that are not partially contained in
include files. A warning is printed if an end statement with a closure label terminates
more than one block or group. If you provide no -output_file and there were errors,
the source segment is not overwritten and a formatted copy is left in the process
directory. An error message is printed if a control comment is incorrect.

NOTES ON ERROR SEVERITIES

The following severity values are returned by the severity active function when the
"f ormat_pll" keyword is used:

Value
o
1
2
3
4
5

Meaning
No error
Warning
Correctable error
Fatal error
Unrecoverable error
Bad control arguments, could not find source,
or other severe errors.

NOTES ON MACROS

This command makes certain assumptions about macros. Include files must contain
complete statements and balanced blocks or groups. Macro constructs can only occur
between statements; they must not occur within a statement. All macro constructs are
placed in column one. All %then and %else clauses of a %if macro must have the
same effect on the current left margin and on block and group nesting; in addition,
the effect on block and group nesting can only be to leave it unchanged or to start
new blocks or groups. Blocks or groups that were started before the %if macro
cannot be closed in the %then or %else clauses. A %then or %else clause cannot start
with an else clause.

Name: format_string, fstr

SYNTAX AS A COMMAND

fstr {-control_args} text

SYNTAX AS AN ACTIVE FUNCTION

[fstr {-control_args} text]

3-392 AG92-{)6

format_string format_string

FUNCTION

uses format_document_$string to fill and optionally adjust a text string. As a
command, it prints the filled and adjusted text; as an active function, it requotes the
return value.

ARGUMENTS

text
is the text strings to be filled. If you give more than one, they are concatenated,
separated by a space. All arguments that do not begin with a minus and are not
an operand of a preceding control argument are treated as text strings, and so are
all arguments following the first text string encountered, whether or not they
begin with a minus.

CONTROL ARGUMENTS

-adjust, -adj
left- and right-justifies text.

-break_word
to prevent line length from being exceeded, arbitrarily breaks into two or more
parts words that are longer than the current line length and that cannot be
hyphenated (when you use -hyphenate). (Default)

-column N, -col N
formats text as if N-l characters already appeared on the first line. The output
begins at column N. (Default: 1)

-hyphenate {N}, -hph {N}
changes the default hyphenation mode from OFF to ON. The optional parameter
N is the length of the smallest separated word part; its default value is 2.

-indent N, -ind N
indents output N spaces from the left margin. (Default: 0)

-line_length N, -11 N
sets the line length to N characters. (Def aul t: 65)

-no_adjust, -nadj
turns off justification. (Default)

-no_break_ word
does not brake words longer than the line length; instead, it returns a line longer
than the given line length.

-no_hyphenate, -nhph
turns off hyphenation. (Default)

3-393 AG92-06

format_string

-string text, -str text
treats all remaining arguments as part of the text to be formatted.

-undent N, -und N
undents the first line by N characters. If N is negative, the first line is indented
(with respect to the -indent value) by N characters.

EXAMPLES

ioa_ IIS ubject: A
_

A a" [fstr -in 10 -col 11 -11 20 lengthy subject to
be fill ed]

Subject: lengthy
subject to
be fill ed

fills the subject to lines 20 characters long, indented by 10 characters. The first
output line begins in column 11, and so is not indented.

The command line

fstr -11 23 -in 10 -un -3 -adj Now is the time for all good people to
support us Multicians.

produces

Now is the
time for all
good people
to support us
Multicians.

Name: fortran, ft

SYNTAX AS A COMMAND

ft path {-control_args}

FUNCTION

invokes the FORTRAN compiler.

fortran

3-394 AG92-D6

fortran

11/87

ARGUMENTS

path
is the pathname of a FORTRAN source segment; you need not give the fortran suffix.

CONTROL ARGUMENTS

-ansi66
interprets the program according to the 1966 standard for FORTRAN, with Multics
FORTRAN extensions. (Default)

-ansi77
interprets the program according to the 1977 standard for FORTRAN, with Multics
FORTRAN extensions.

-auto_zero
initializes to zero, when allocated, automatic storage for local variables. (Default) * MeR
7069

-binary _floatinLpoint, -bfp
makes the internal representation of floating point numbers be 2 ** exponent * mantissa.
(Default)

-brief. -bf
writes error messages in short iorm.

-brief _table, -bftb
generates partial symbol table giving correspondence between source line numbers and
object locations.

-card
specifies that the source segment is in card-image format

-check, -ck
checks the source segment for syntactic and semantic errors. Code generation is skipped; no
object segment is produced.

-check_multiplY, -ckffipy
produces code that checks for integer multiplication overflow. (Default, if you supply
-ansi77 but not -optimize)

-debuLio, -dbio
establishes a new command level after a run-time I/O error.

fortran

3-395 AG92-06B

fortran

11/87

-default_full, -dff
sets the default optimizer to "full_optimize" (see -optimize). (Default)

-default_safe, -dfs
sets the default optimizer to "safe_optimize" (see -optimize).

-fold
maps uppercase letters to lowercase form.

-full_optimize, -full_ot
invokes the full optimizer to speed up program execution and reduce its size.

-free
specifies that the source segment is in free-form format. (Default)

-hexadecimal_floatins-poin t, -hfp
allows the use of HFP numbers. Real, complex, and double-precision numbers can have four
times more magnitude in HFP mode at the expense of some precision. Compilations using
-hfp and execution of any such programs require rw access to
>sc1>admin_acs>Fortran_hfp.acs. This feature is only supported on the DPS8 hardware.
Your site may disallow the use of HFP code by not creating the above access control segment
or by denying access to it.

-large_array, -la
is used when more automatic or static storage is required by a program than would fit in
stackframes/linkage sections. Individual arrays and common blocks must not exceed 255K
words. (See -very_large_array.)

-line_numbers, -In
gives a source segment with line numbers.

-list, -Is
produces a complete source program listing plus an assembly-like listing.

-long, -Ig
writes error messages in long form. (Default)

-Ions-profile, -lpf
generates extra code to meter execution of individual statements using virtual CPU time and
page fault measurements.

-map
produces complete source program listing.

fortran

3-396 AG92-06B

fortran

11/87

-no_au to_zero
does not initialize to zero. when allocated. automatic storage for local variables; that is.
initial values of variables are undefined. It is faster than -auto_zero.

-no_cheek_multiply. -nckmpy
does not produce code that cheeks for integer multiplication overflow. (Default. if you
specify -ansi66 or -optimize)

-no_debuLio. -ndbio
does not establish a new command level after a run-time I/O error. (Default)

-no_fold
does not map uppercase letters into lowercase form. (Default)

-no_large_array, -nla
suppresses large_array.

fortran

3-396.1 AG92-06B

fortran

-no_line_numbers. -nIn
does not give a source segment with line numbers.

-no_map
produces no program listing. (Default)

-no_optimize, -not
performs no optimizations. (Default)

-no_stringrange, -nstrg
does not produce range-checking code for all substring references. (Default, if
you use -ansi66 or -optimize)

-no _subscriptrange, -nsubrg
does not produce range-checking code for all subscripted array references.
(Default. if you supply -ansi66 or -optimize)

-no_table, -ntb
does not generate a runtime symbol table. (Default, if you give -optimize)

-no_ version
does not print out the version of the current compiler.

-no_very_large_array, -nvla
suppresses -very_large_array. (Default)

-no_ vla_parm
inhibits -vla_parm.

-non_relocatable, -nrlc
inhibits generation of relocation information by the compiler. The resulting object
segmen t cannot be bound.

-optimize, -ot
invokes an extra compiler phase just before code generation to perform certain
optimiza tions.

-profile. -pf
generates extra code to meter execution of individual statements.

-relocatable, -rIc
generates relocation information. (Default)

-round
rounds intermediate results of real and double-precision calculations before storing.
(Default)

-safe_optimize, -safe_ot
like -optimize, but inhibits some code movement.

fortran

3-397 AG92-()6

fortran fortran

-severity N, -sv N
prints only error messages whose severity is N or greater (where N is 1, 2, 3, or
4). (Default: 1)

-stringrange, -strg
produces range-checking code for all substring references. (Default, if you give
-ansi77 but not -optimize)

-subscriptrange, -subrg
produces range-checking code for all subscripted array references. (Default, if you
specify -ansi77 but not -optimize)

-table, -tb
generates full symbol table. For use with the probe and debug commands.
(Default, unless you use -optimize)

-time, -tm
prints table giving time (in seconds), number of page faults, and size of
temporary area for each phase of the compiler.

-time_ot
prints out timing information on the subphases of the optimizer.

-top_down
optimizes loops using a top-down approach.

-truncate. -tc
truncates intermediate results of real and double-precision computations before
storing.

-version
prints out the version of the FORTRAN compiler before compiling.

-very _large_array. -vIa
is used when arrays or common blocks have sizes exceeding segment size (255K <
array size or common block length < 2**20 [16M] words). It implies
-large_array.

-vla_parm
is used in subroutines when parameters that are passed to them could come from
very-large-array procedures. It allows the use of very-large arrays but not of
large arrays within the subroutine.

3-398 AG92-D6

fortran

11/86

NOTES ON SEVERITY VALUES

This command associates the following severity values to be used by the severity active
function:

Value Meaning

o
1
2
3
4
5

No compilation yet or no error
Warning
()orrectable error
Fatal error
Unrecoverable error
()ould not find source.

NOTES

Mutually exclusive control arguments are:

-ansi66 and -ansi77
-lonK-profile and -profile
-optimize, -safe_optimize and -stringrange, -subscriptrange
-round and -truncate

For more information on the FORTRAN compiler and on using FORTRAN on
Multics, see the Multics FORTRAN Reference Manual (AT58) and the Multics
FORTRAN User's Guide (CC70).

Name: fortran_abs, fa

SYNTAX AS A COMMAND

fa paths {-ft_args} {-dp_args} {-control_args}

FUNCTION

submits an absentee request to perform FORTRAN compilations.

ARGUMENTS

paths
are pathnames of segments to be compiled.

ft_args
are one or more control arguments accepted by the fortran command.

dp_args
are one or more control arguments (except -delete) accepted by the dprint
command.

3-399 AG92-06A

11/86

CONTROL ARGUMENTS

-hold
specifies that fortran_abs should not dprint or delete the listing segment.

-limit N. -Ii N
places a limit on the CPU time used by the absentee process. N must be a
positive decimal integer specifying the limit in seconds. An upper limit is defined
by your site for each queue on each shift. Jobs with limits exceeding the upper
limit for the current shift are deferred to a shift with a higher limit (Default:
defined by your site for each queue)

-output_file path. -of path
specifies that absentee output is to go to the segment whose pathname is path.

-queue N, -q N
is the priority queue of the request (see "Notes" for a description of the
interaction with the dprinting of output files). (Default: defined by your site)

NOTES

The absentee process for which fortran_abs submits a request compiles the segments
named and dprints and deletes the listing segment. If you specify no -of. the output
segment path.absout is created in your working directory (if more than one path is
specified, only the first is used). If none of the segments to be compiled can be
found. no absentee request is submitted.

You can freely mix control arguments and can put segment pathnames anywhere on
the command line after fortran_abs. All control arguments apply to all segment
pathnames. If you give an unrecognizable control argument, the absentee request is not
submitted.

Unpredictable results may occur if you submit two absentee requests that could
simultaneously attempt to compile the same segment or write into the same absout
segment.

When doing several compilations, give several pathnames in one command invocation.
With one command. only one process is set up; thus the dynamic intersegment links
that need to be snapped when setting up a process and when invoking the compiler
need be snapped only once.

3-400 AG92-06A

11/86

If you give no -q, the request is submitted into the default absentee priority queue
defined by your site and, if requested, the output files is dprinted in the default
queue of the request type specified on the command line. (If you give no request
type, "printer" is used.)

If you give -q, the output files is dprinted in the same number queue as the absentee
request If the request type specified for dprinting does not have that queue,. the
highest numbered queue available for the request type is used and a warning is issued.

3-400.1 AG92-06A

This page intentionally left blank.

11/86 AG92-06A

gcos

Name: gcos, gc

SYNTAX AS A COMMAND

FUNCTION

invokes the GCOS environment simulator to run a single GeOS job, immediately. in
your process.

ARGUMENTS

job_deck_path
is the pathname of the file contalmng a GeOS job deck. The file can contain
ASCII lines or can be in GeOS standard system format.

CONTROL ARGUMENTS

-ascii, -aci
input file contains ASCII lines.

-block N, -bk N
specifies the block size to be used for gcos tape buffer (in words). For buffers
larger than 2800 words, the use must have rw access to >sc1>rcp>workspace.acs.
Use of the ",block=nnnn" control on the volume_id for nstd_ tape attachments
overrides this buffer size setting. If multiple buffer sizes are supplied on a
command line, the rightmost is used. (Default 2800 words; max 4096)

-brief, -bf
suppresss printing of all terminal output except fatal error messages.

-continue, -ctu
continues processing the job when a nonfatal error occurs.

-debug, -db
causes the simulator to call debug command under certain error conditions.

-dprint, -dp
queues the converted print files for printing followed by deletion (-list is
implied).

-dprint_options options, -dpo options
queues the converted print files for printing, but use -dprint supplied in the
options string (-list and -dprint are implied). The options argument must be
enclosed in quotes.

-dpunch, -dpn
queues converted punch files for punching in raw mode, followed by deletion
(-raw is implied).

gcos

3-401 AG92-06

gcos

-dpunch_options options. -dpno options
queues converted punch files for punching, but use -dpunch supplied in the
options string (-raw and -dpunch are implied). The options argument must be
enclosed in quotes.

-gcos, -gc
input file in GCOS standard system format.

-hold. -hd
does not perform the default conversion and daemon output of print and punch
files.

-job_id id, -jd id
uses job identification specified by id in the names of files created by the
simulator for this job. The id can be any character string of up to 18 characters,
or -unique to indicate Multics unique name, or -jd_seg (-jd) to indicate the
entryname of job deck segment.

-list, -Is
converts print files (both sysout and simulated printer) from BCD (or binary) to
ASCII and delete the BCD copy.

-long, -lg
prints certain lines from the execution report in addition to normal terminal
output.

-lower_case. -lc
translates alphabetic BCD characters in print files to lowercase ASCII. (Default:
. uppercase)

-no_bar, -nobar, -nb
request the simulator run the slave programs in Multics mode instead of BAR
mode.

-no_canonicalize, -nocan, -no
ASCII input file contains no tab characters, and the fields on all the card images
are aligned in the columns required by GCOS.

-parameter parameters, -pm parameters
specifies that the remaining arguments in the command line are to be used to
override the $PARAM card values.

-raw
converts punch files (both sysout and simulated card punch) from BCD to format
suitable for punching in raw mode and delete the BCD copy.

-smc path .
specifies a directory to be used as the system master catalog. When -smc is
given, the first field in catalog/filename descriptions is retained.

gcos

3-402 AG92-06

gcos

-syot_dir path, -sd path
puts GeOS format copies of print. punch. and sysout files in directory named
"path" rather than working directory. (Default)

-temp_dir path, -td path
puts temporary acos files in directory named "path" rather than process
directory. (Def aul t)

-truncate, -tc
discards ASCII input file lines longer than 80 characters (after canonicalization).
If not given. the first line longer than 80 characters causes the job to be
rejected.

-userlib
enables the use of GeOS slave software libraries supplied by you.

NOTES

Related facilities include the GeOS daemon, which provides batch processing for
GCQS jobs under Multics, and appropriate commands, used to manipulate GeOS
format files that reside in the Multics storage system. These commands. and the gcos
command, are fully described in the Multics GCOS Environment Simulator Manual
(AN05).

EXAMPLES

If no control arguments are given, the command

gees path

is equivalent to the command

gees path -aei -dpo -dl -dpno "-dl -raw" -id -jd -bk 2800

Name: general_ready, gr

SYNTAX AS A COMMAND

gr {-eontrol_args}

SYNTAX AS AN ACTIVE FUNCTION

[gr {-eontrol_args}]

3-403 AG92-D6

FUNCTION

prints a ready message containing specified values in a specified format.

LIST OF PREFIX CONTROL ARGUMENTS

You must use these control arguments prior to the format ones. They allow y~u to
override the default formats for the contents of the ready message.

-string
allows you to specify the character string at the beginning of the ready message.
The argument following -string is used instead of "rn at the beginning of the
ready message. Since it is put into the ioa_ control string. you can use "A /".

"AR". and "AB" to cause new lines, red ribbon shifts, and black ribbon shifts,
respectively.

-control
allows you to specify the entire ioa_ control string used to· format the ready
message. The string is passed to ioa_$nnl without change so it must contain
specifications for each of the various values to be included in the ready message.
The ioa_ control string formats for the various values that you can insert into the
ready message are given below for each type of value (see "List of Format
Control Arguments"). This control argument overrides any format arguments that
would normally affect the format of the ready message; however, you must still
give format keywords to indicate which values are to be output and the order in
which these values correspond to the ioa_ control characters in the control string.

LIST OF FORMAT CONTROL ARGUMENTS

The format and content of the ready message are controlled by format control
arguments. They include control arguments that identify values to be included in the
ready message. optional precision numbers following some of these control arguments
that control the number of digits after the decimal point in numeric values. and
literal character strings that are inserted in the ready message. The format control
arguments are combined in the order of their appearance in general_ready to form an
ioa_ control string that controls the format of the ready message. You can use seven
types of values in a ready message:

1. content values
2. processor usage values (virtual CPU seconds)
3. memory usage values (memory units)
4. usage cost values (dollar charges)
5. paging operations (and demand page faults)
6. command processor (level numbers)
7. date/time values (date, time of day, day of the week. etc.).

3-404 AG92-06

Both total usage values (total usage accrued during this process) and incremental usage
values (usage accrued since the last ready message printed by general_ready) can be
output in the same ready message. The values are selected for use in the ready
message by format control arguments to general_ready. The format control arguments
are listed below by type.

Content values:

-active_string STR, -astr STR
expands the active string STR each time the ready message is printed.

Processor usage values:

-inc_rcpu {N}
incremental real CPU value.

-inc_ vcpu {N}
incremental virtual CPU value.

-total_rcpu {N}
total real CPU value.

-total_ vcpu {N}
total virtual CPU value.

where N can be a single numeric digit from 1 to 9, indicating the number of digits
that should appear to the right of the decimal point in the number that is output.
The default is three digits. The output format of the value can be described by the
ioa_ control string "".Nf", where N is 3 by default.

Memory usage values:

-inc_mem_units {N}
incremental units.

-total_mem_units {N}
total memory units.

These control arguments are used in the same manner as the ones for processor usage
values.

Usage cost values:

-inc_cost {N}
incremental cost charges.

3-405 AG92-o6

general_ready general _ready

11/87

-total_cost {N}
is the cost charges.

These control arguments are used in the same manner as the ones for processor usage values
except that the default number of digits following the decimal point is two. The output format of
the value can be described by the ioa_ control string " $" .Nf" where N is 2 by default

Charges being accrued for devices (terminal, tape mounts, etc.) are not updated in the PIT where
the user can see them. Therefore, general_ready estimates the dollar figure based on
connect/ cpu time.

Paging operations values:

-inc_bf is the incremental bounds faults.

-inc_pft
is the incremental page faults.

-inc_sf
is the incremental segment faults.

-inc_vr
is the incremental VTOC reads.

-inc_vw
is the incremental VTDC writes.

-total_bf
is the bounds faults.

-total_pft
is the page f aul ts.

-total_sf
is the segment faults.

-total_vr
is the VTOC reads.

-total_vw
is the VTOC writes.

These control arguments are output by the ioa_ control string ""d", where "d is the number of
demand page faults.

3-406 AG92-06B

11/86

Command processor values:

-level, -lev
specifies the number of command processor invocations to be included in the
ready message. The level numbers are output by the ioa_ control string "Aa", but
the printed format can be described by "level Ad". If· the command processor
level is 1, the printed format is the null string. The number of digits is not
settable.

-frame, -fr
specifies the number of stack frame level numbers to be included in the ready
message. The level numbers are output by the ioa_ control string "Aa", but the
printed format can be described by "frame Ad". If the command processor level
is 1, the printed format is the null string.

If you give both control arguments, the printed format can be described by "level
Ad, Ad".

Date/time values:

-date
is your default date format. Type "print_time_defaults date" to display the format
and "gr -date" to display a sample date value.

-date_time
is your default date/time format. Type "print_time_defaults date_time" to display
the format and "gr -date_time" to display a sample date/time value.

-day
is a two-digit day (dd).

-day_name
is a three-character day of the week (www).

-hour
is a two-digit hour (hh).

-minute
is a two-digit minute (mm)

-month
is a two-digit month (mmj.

-time. -tm
is your default time format. Type "print_time_defaults time" to display the
format and "gr -time" to display a sample value.

-time_format STR, -tfmt STR
where STR is a time format control string defining a user-specified format for
any of the various date values (see "Time Format" in Section 1).

3-407 AG92-06A

11/86

-year
is a two-digit year (yy)

-zone
is a three-character time zone (zzz).

These values can be described by the ioa_ control string ""an except for the -day,
-minute, and -year control arguments, which use the ioa_ control string ""a" (without
a leading space). The number of digits is not settable.

LIST OF OPERATION CONTROL ARGUMENTS

The following control arguments affect the operation of gr, but do not change the
format of ready messages.

-call cmdline
when used with -set, calls the command processor to execute cmdline after the
completion of every command line. The argument cmdline is a single argument to
gr; you must therefore enclose it in quotes if it contains any blanks. A frequent
use of -call is "-call print_messages -brief"; cmdline is executed even if the
printing of ready messages has been inhibited by executing ready _off.

-reset
resets incremental usage values to zero without printing a ready message.

-revert

-set

makes the system ready procedure the current ready message procedure and resets
any timer alarms to catch shift changes.

establishes gr as the current ready message procedure and sets an alarm timer to
catch shiH changes. The command processor then calls gr to print a ready
message after each command line is complete. In addition, the ready, ready_on.
and ready_off system cOlnmands determine the operation of gr.

NOTES ON OPERATION CONTROL ARGUMENTS

The -revert and -set control arguments are mutually exclusive. A gr command that
includes -set does not print a ready message; instead it saves the ioa_ control string
built from the format and prefix control arguments in the command and uses this
ioa_ string to control the format of ready messages printed when command lines
complete execution or when a ready command is issued. A gr command that includes
-revert prints a single ready message only if format or prefix control arguments
appear in the command with -revert; otherwise no ready message is printed.

3-408 AG92-o6A

11/86

11 you give nenner -revert nor -set, gr prints one ready message according to the
format and prefix arguments given in the command.

This command is designed to allow an almost arbitrary format at no additional cost
(relative to the system's ready procedure) other than the one associated with gr, which
sets up the ready message. Once a ready message is specified, the ready , ready_on,
and ready_off commands control the printing of the ready message in the normal
manner.

3-408.1 AG92-Q6A

This page intentionally left blank.

11/86 AG92-06A

The command builds up an ioa_ control string (see the the Subroutines manual) from
the order of the keywords passed to it The keywords specify which values to output
in the ready message. Virtual CPU usage and cost can be printed. Both incremental
usage (usage accrued since the last ready message produced by general_ready) and total
usage (usage accrued during this process) can be in the same ready message with the
precision of the output (the number of decimal places to the right of the decimal
point) you specified. As a command, you can use general_ready to either print a
single ready message or define the contents of the ready message printed by the ready
command (and after every command line if you execute ready_on); as an active
function, the return value is the ready message.

The values for total virtual CPU time and total memory units is valid across new
processes. The value for cost is valid unless a shift change occurred during a previous
process. When you invoke general_ready for the first time in a process, the cost of
all usage in that process up to that time is computed at the rates then in effect.

Due to the manner in which ready message procedures and procedures that set up
alarm timers are invoked, such procedures should not be terminated (by the terminate
and terminate_ref name commands). If you want to terminate general_ready, invoke it
with -revert before it is terminated.

EXAMPLES

The following examples illustrate some of the facilities of general_ready:

gr -string READY -date AxTIME -time AXVCPU -inc_vcpu
-total_vcpu -set

establishes general_ready as the current ready procedure since the -set keyword
appeared. Each ready message has the format

READY 01/15/83 TIME 1234.3 VCPU 3.456 23.349

If the -set keyword had not appeared, a single ready message having the above format
is printed. The ioa_ control string that general_ready uses to generate the above ready
message is:

The command line

gr -string READY -date -hour
-total_vcpu 2

-minute "'xVCPUI

results in a single ready message of the form

READY 01/15/83 09:46 VCPUI 2.345 VCPUT 34.21

using the ioa_ control string

3-409

A,,\lrOI IT
AY"'I..,I

AG92-06

generate_pnotice

"READY "'a "'a:AaAxVCPUI A.3f AxVCPUT A.2f A 2/ 11

You can specify the above ready message by the command line:

gr -control "READY "'a Aa:Aa VCPUI A.3f VCPUT A.2fA2/" -date -hour
-minute -inc_vcpu -total_vcpu

Name: generate_pnotice

SYNTAX AS A COMMAND

generate_pnotice {-control_args}

FUNCTION

allows Multics source and object archives and executable software to be legally
protected via copyright or trade secret notices and provides software identification via
Software Technical Identifiers (STIs).

CONTROL ARGUMENTS

-id STR
specifies the Marketing Identifier (MI) of t...lte product as derived from psp_info_.
This control argument and -name are mutually exclusive.

-name STR, -nm STR
specifies the product's generic name found in psp_info_.

-special
used in cases where there may be no entry in psp_info_ for the software being
protected. This likely occurs when you are protecting software in an experimental
or development library. You are prompted for the information to be put into the
PNOTICE segments. (See "Notes.")

-sti STR
specifies a valid 12-character STI. You can use it to override the STI found in
psp_info_ when you give -name or -id.

NOTES

This command allows protection of software residing in a library other than the one
specified in psp_info_ or of software not specified in psp_info_, via -special.

The command generates ALM source and object segments with the names of
"PNOTICE.<generic name>.alm" and "PNOTICE.<generic name>", where <generic name>
comes from the psp_info_, data base or from -special.

3-410 AG92-{)6

generate_pnotice generate_pnotice

These segments contain the text of one or more software protection notices and three
12-character STls. The segments are appended to a product's primary source and
object archives, as defined in the psp_info_data base. If you select -special. you
must provide these archive names. If PNOTICE segments with the same name exist in
the archives, they are replaced. Order the archives such that these segments are the
first components. The binding of the object archive places the protection notices and
STIs into the qound segment as well. Make the bind file "Order" statement indicate
that the PNOTICE component be first. Don't retain the PNOTICE segment name in
the bound segment.

To find PNOTICE segments' information for installed products, issue the display_psp
command. Unless you use -special, the source and object archives must be in your
working directory, in which case you must have sma access to the directory as well as
rw access to the archives; then you can specify archive pathnames to generate_pnotice.
If you supply -special, access is checked, and if it is not sufficient it is forced;
otherwise. access is not forced.

The command asks you the following set of questions when you select -special. Have
the requested information ready.

Generic name?

STI?

You supply a short «= 20 characters) name that is descriptive of the module(s)
being protected. The name can be the same one contained in psp_info_ if the
module is a newer version; otherwise, you can create the name.

This is the Software Technical Identifier. a 12-character identifier usPA by
Honeywell to· provide information on released software products. It can be
blank for non products.

Include the notices from psp_info?
The module(s) being protected have an entry in psp_inf 0_. You are asked
whether the notices there are to be included.

Source pnotice name?
You are asked to provide primary names of notices, without the .pnotice suffix,
for protection of source. When done, type "q". Use the list_pnotice_names
command for available names.

Object pnotice name?
You are asked to provide primary names of notices. without the .pnotice suffix,
for protection of object and executable. When done. type "q". Use the
list_pnotice_names command for available names.

Pathname of source archive?
You are asked to provide an archive pathname of the source archive. The
".archive" suffix is not required, but can be given.

3-411 AG92-06

generate_pnotice

*

Pathname of object archive?
You are asked to provide an archive pathname of the object archive. The
suffix .archive is not required. but can be given.

These two archives need reside neither in the same directory nor in the working
directory.

SYNTAX AS A COMMAND

get_d i r _quota. {paths} {-contro l_arg}

SYNTAX AS AN ACTIVE FUNCTION

FUNCTION

prints information about the directory quota and pages used by inferior directories.

ARGUMENTS

paths
are pathnames of directories for which you want quota information. If one of
the paths is -workins-directory (-wd), your working directory is used. If you
don't supply paths, your working directory is assumed. The star convention is
allowed ..

CONTROL ARGUMENTS

-long, -lg
includes the cumulative time-page product for the current accounting period. The
active function doesn't accept it.

-quota
returns the terminal quota on each directory. (Default: to return terminal quota
and number of pages used)

-records_left, -rec_left
returns the number of available pages in each directory, equal to the terminal.
quota minus the pages used. If a directory has no terminal quota set, the

. available pages are computed from the terminal quota on the lowest parent with
nonzero terminal quota, minus the pages used under that parent with nonzero
terminal quota.

3-412 AG92-06

-records_used, -rec_used
returns the number of pages used in each directory.

ACCESS REQUIRED

You require status perm1SS10n on each directory for which you want quota.
Determining the value of -records_left may require access further up the hierarchy. If
the requi~ed access is lacking, an error message is printed.

NOTES

The short form of output (the default) prints the number of pages of quota used by
the segments in that directory and in any inferior directories charging against that
quota. The output is prepared in tabular format, with a total, when you specify more
than one pathname; when you give only one, a single line o(output is printed.

The long form of output gives the quota and pages-used information provided in the
short output. In addition, it prints the logical volume identifier of segments, the
time-record product in units of record days, and the date you last updated this
number. Thus, you can see what secondary storage charges your accounts are
accumulating. If you have inferior directories with nonzero quotas, you need print this
product for aU these directories in order to obtain the charge.

NOTES ON ACTIVE FUNCTION

Supply only one directory in the active function. The star convention is not allowed.

You can specify any of -quota, -records_left, or -records_used; the default is -quota.

Name: get_effective_access, gea

SYIVTAX AS A CO.fL,11I1AND

gea paths {-control_args}

SYNTAX AS AN ACTIVE FUNCTION

[gea paths {-control_args}]

FUNCTION

returns the specified user's effective access on the given path (see Section 6 of the
Programmer's Reference Manual).

3-413 AG92-06

ARGUMENTS

paths
are the pathnames of segments or directories for which effective access is to be
determined. You can use the star convention.

CONTROL ARGUMENTS

-in terpret_as_extended_entry , -inaee
interprets the selected entries as extended entry types.

-interpret_as_standard_entry, -inase
interpret the selected entries as standard entry types.

-ring RING
gets the effective access assuming the user is in the specified ring. (Default:
user's validation level)

-user USER
finds the effective access for USER. You can use the star convention. (Default:
user's own User_id)

SYNTAX AS A COMMAND

FUNCTION

prints the current state of the IPS mask for the calling process.

CONTROL ARGUMENTS

-brief, -bf
prints the names of masked signals. If no IPS signals are masked, it prints
nothing.

-long, -lg
prints a more descriptive message about the status of IPS signals, masked or
unmasked. (Default)

3-414 AG92-06

NOTES

If all undefined IPS signals are either masked or unmasked, they are not mentioned.
If, however, some are masked and others are not, an octal list is printed. This can
only happen when you have supplied an invalid (probably reinitialized) value in a call
to set that mask.

Name: get_library _segment, gls

SYNTAX AS A COMMAND

FUNCTION

finds source or object segments in the Multics system libraries and copies them into
your current working directory. You can specify which system libraries are to be
searched and the order of the search. You can also search for user libraries that may
not be organized like the Multics system libraries. (See "Operation" below.)

This command has functionally been replaced by library_fetch.

ARGUMENTS

se&;..names
are the nam~ of the segments to be found, including any language suffix.

CONTROL ARGUMENTS

-brief. -bf
does not print pathnames. (Default)

-control path. -ct path
looks in the directory specified by path to find the control segments. The path
argument can be -workin~directory (-wd) to specify the current working
directory (see "Operation" below). If -control is not specified. the command looks
in the directory > ldd to find its control segments.

-long. -lg
prints the pathname of the segment from which each segment is copied.

-rename new_name, -rn new_name
copies the immediately preceding se~name into your process directory and then
into a segment in the working directory. Th~ new_name can be an equal name,
in which case the equal convention is applied to the se~name; otherwise, the
segment created in the working directory is named new_name. The new_name
cannot be a pathname.

3-415 AG92-06

-sys lname
uses the control segment "lname.control".

NOTES

If you don't give -sys, get_library _segment uses all the control segments specified in
the root directory, whose default is > ldd. For a complete list of the control segments.
type

list -pn >ldd -all **.control
hard
standard
unbundled
auth_maint
network
languages
tools

You can give multiple -sys in the same command invocation. If so, all the control
segments referenced by the lnames in these arguments are searched. The order in
which the control segments are processed and searched is determined by the order in
which the lnames appear in the command and the directores referenced by each lname
appear in the lname control segment.

Control arguments and segment names can be interspersed throughout the command
invocation.

NOTES ON USER LIBRARIES

You can supply -control to extract segments from a user library, causing the command
to use a control segment with the pathname path> <keyword >.control. This allows you
to search your own library structure, using your own search procedure or one of the
Multics system library search procedures listed below.

OPERATION

If you don't select -control, gls searches for segments in one or more of the Multics
system libraries. From each keyword given in a -sys, it constructs a pathname of the
form >ldd><keyword>.control. It uses this as the pathname of a control segment. This
control segment tells gIs which directories are to be searched and how to search them.

Each control segment contains one or more lines of the form

directory_path: search_procedure;

where

directory _path
is the absolute pathname of a directory to be searched.

3-416 AG92-06

search_procedure
is . the name of a procedure that searches the directory to find seK-name. This
name can have the form

or
segment_name$entry _name

For each directory_path specified in the control segment. gls initiates the search_procedure
and calls it to search the directory. The calling sequence for search_procedure is

declare search_procedure (char(*), char(*), char(*), fixed bin(35»;

call search_procedure (directory_path, seg_name, containing_seg, code);

where

directory_path
is the absolute pathname of a directory to be searched. (Input)

selL-name
is the name of the segment to be found, including any language suffix. (Input)

con taininlLseg
is the name of the segment in directory_path in which selLname is found. This
name 'is either the same as selLname or the name of an archive containing
selL-name. (Output)

code
is a standard storage system status code. (Output)
o selL-name is found in directory_path>containinlL-seg
1 selL-name is not found.

If code is 0 and the final eight nonblank characters of containinlL-seg are the archive
suffix, gls issues the collLmand

archive x directory_path>containing_seg seg_name

to extract the segment into the current working directory. If you specify -rename for
selL-name, the segment is extracted and given the new name.

If code is 0 and the final eight nonblank characters of containinlLseg are not the
archive suffix, gls calls coPy_selL to copy directory _path>selLname into the current
directory, unless you have given a -rename, in which case the segment is copied into
directory _path>new _name.

3-417 AG92-Q6

If code is 1, gls continues the search with the next directory _path in the current
control segment. If the current control segment contains no more directory_paths. the
search continues with the first directory_path in the next control segment you specify.
If the segment has not been found after all control segments have been exhausted, gls
prin ts an error message and begins searching for the next se~name.

If search_procedure returns a code that is neither 0 nor 1, the error message
corresponding to the error code is printed and search_procedure continues the search
as if code were 1.

The get_primary_name_ procedure is used to find segments in the Multics system
libraries.

If you don't give -sys, gls uses all the control segments in > ldd.

EXAMPLES

The command line

gls abc.p11 -sys tools -sys sss random.alm

copies abc.pll and random. aIm from the directories specified in >ldd>tools.control and
> ldd>sss.control if they exist

gls -sys lang xyz.pl1 -sys os -sys hard

searches for xyz.pll in the directories specified by the set of control segments in >ldd.

gls gorp.pl1 -rename glop.p11

searches the default group of directories for segment gorp.pll and copies it into your
working directory with the name glop.pll.

gls fortran_blast_ bound_parse_obind -sys 1ang.o

searches for the segment fortran_blast_ and the bind segment bound_parse_.bind in the
directories specified in > ldd> lang. o. control.

You can use gls to extract a copy of the source program alpha.pll from a private
library archive with the command

gls -ct >udd>Project_id>Person_id -sys source alpha.pl1

if >udd>Project_id>Person_id>source.control contains the line

and if alpha.pll is a component of some archive segment
>udd>Project_id>Person_id>library, having alpha.pll as one of its names.

3-418 AG92-06

Name: get_mode

SYNTAX AS A COMMAND

SYNTAX AS AN ACTIVE FUNCTION

FUNCTION

extracts the value of a mode from a mode string.

ARGUMElviS

MODE_STR
is a mode string, as used with an I/O module.

MODE_NAME
is the name of a mode contained in the mode string.

NOTES

For a boolean mode, the value returned is "true" or "false", otherwise it is the
character string value of the mode.

Name: get_pathname, gpn

SYNTAX AS A COMMAND

SYNTAX AS AN ACTIVE FUNCTION

[gpn {-control_arg} argJ

FUNCTION

returns the absolute pathname of the segment designated by a specified reference name
or segment number. If the reference name or segment number is not in use, an error
message is printed.

ARGUMENTS

arg
is a reference name or octal segment number known to this process.

3-419 AG92~

CONTROL ARGUMENTS

-name, -nm
indicates that arg (which happens to look like an octal segment number) is to be
interpreted as a reference name. If this control argument is not specified, the
system assumes arg is a reference name only if arg is not a valid octal number.

SYNTAX AS A COMMAND

gq {paths} {-control_arg}

SYNTAX AS AN ACTIVE FUNCTION

[gq {path} {-control_arg}]

FUNCTION

returns information about the secondary storage quota and pages used by segments.

ARGUMENTS

paths
are pathnames of directories for which you want quota information. If one of
the paths is -workin&-directory (-wd), your working directory is used. If you
don't supply paths, your working directory is assumed. The star convention is
allowed.

CONTROL ARGUMENTS

-long, -Ig
includes the cumulative time-page product for the current accounting period and
the corresponding price according to the rate structure of the current process.

-nonzero, -nz
lists directories with nonzero quota used only.

-quota
returns the terminal quota on each directory. (Default: to return terminal quota
and number of pages used)

3-420 AG92-06

-records_left. -rec_Ieft
returns the number of available pages in each directory, equal to the terminal
quota minus the pages used. If a directory has no terminal quota set, the
available pages are computed frQm the terminal quota on the lowest parent with
nonzero terminal quota, minus the pages used under that parent with nonzero
terminal quota.

-records_used, -rec_used
returns the number of pages used in each directory.

-sort .
sorts directories by the requested quota value or by records used if you request
more than one value. The largest value is printed first

-total, -tt
returns, for quota used, the total quota used by the subtree. Master directories in
a subtree are not included in its total.

-zero
lists directories with zero quota used only.

ACCESS REQUIRED

You require status permlsslOD on each directory for which you want quota.
Determining the value of -records_left may require access further up the hierarchy. If
the required access is lacking, an error message is printed.

NOTES

The short form of output (the default) prints the number of pages of quota used by
the segments in that directory and in any inferior directories charging against that
quota. The output is prepared in tabuiar format, with a totai, when you specify more
than one pathname; when you give only one, a single line of output is printed.

The long form of output gives the quota and pages-used information provided in the
short output and prints the logical volume identifier of segments, the time-record
product in units of record days, and the date you last updated this number; thus you
can see what secondary storage charges your accounts are accumulating. If you have
inferior directories with nonzero quotas, you need print this product for all these
directories to obtain the charge.

NOTES ON ACTIVE FUNCTION

Supply only one directory in the active function. You can't use the star convention.

The active function doesn't accept -long, -nonzero, -sort, and -zero.

You can specify any of -quota, -records_left. or -records_used; the default is -quota.

3-421 AG92-{)6

SYNTAX AS A COMMAND

gssr

FUNCTION

prints the definitions of site-defined search rule keywords acceptable to the
set_search_rules command.

NOTES

This command prints a list of standard search rule keywords and directories, each one
followed by one or more site-defined keywords. If you include a site-defined
keyword in the search segment accepted by set_search_rules, the site-defined keyword
expands into its definition in the order printed by get_system_search_rules.

Name: greater

SYfVT AX AS A COMMAND

greater STRA STRB

SYNTAX AS AN ACTIVE FUNCTION

[greater STRA STRB]

FUNCTION

returns true if STRA is greater than STRB according to the ASCII collating seQuence,
otherwise returns false.

NOTES

The strings are compared character by character according to their ASCII code value:
if the first character in each string has the same ASCII code value, compare the
second character; if their values are identical, compare the third character; etc.

To make numeric comparisons of strings see the descriptions of ngreater and nless.

greater

3-422 AG92-06

hash_table

Name: hash_table, ht

SYNTAX AS A COMMAND

ht path nb

FUNCTION

used to create a hash table and to insert, delete, and search for entries in it It uses
the hash_ subroutine.

ARGUMENTS

path
specifies the name of a segment, which is an existing hash table.

nb
is the (optional) number of buckets with which the hash table is to be created.
If you don't give nb or if it is out of range (0 < nb <= 6552), then a default is
assigned to it

LIST OF REQUESTS

The command operates in response to the following -requests given by you. Each
request code must be the first character of the line and followed by one or more
arguments separated by any number of blanks (a blank before the first argument is
optionaI).

a add
d delete
q quit
s search

The a Request

SYNTAX

a namel valuel ••• nameN valueN

FUNCTION

inserts an entry into the hash table for namei and its corresponding valuei.

ARGUMENTS

namei
is a character string less than, or equal to, 32 characters.

3-423 AG92-06

valuei
is a decimal number you associate with namei to indicate its location in the
corresponding data table. It can be array subscript

The d Request

SYNTAX

d name 1 ••• nameN

FUNCTION

deletes the entry namei from the hash table and prints the value it was associated
with.

ARGUMENTS

namei
is a character string less than, or equal to, 32 characters.

The q Request

SYNTAX

q

FUNCTION

returns control to command level.

The s Request

SYNTAX

s namel ..• nameN

FUNCTIO/y

searches the hash table for namei and prints its corresponding value. You can then
locate namei in your data table by using valuei.

ARGUMENTS

namei
is a character string less than. or equal to. 32 characters.

3-424 AG92-06

hash_table

NOTES

If the hash table ever becomes full or inefficient, the number of buckets is doubled
or assigned the maximum, the hash table is rehashed, and a message is printed.

SYNTAX AS A COMMAND

have_mail mbx_specification {-control_args}

SYNTAX AS AN ACTIVE FUNCTION

[have_mail {mbx_specification} {-control_args}]

FUNCTION

returns "true" if there is mail in the specified mailbox.

ARGUMENTS

mbx_specification
specifies the mailbox to be examined. If not given, your default mailbox
(>udd>Project_id>Person_id>Person_id.mbx) is used.

LIST OF MBX SPECIFICATIONS

-log
specifies the user's logbox and is equivalent to

-mailbox >udd>Project_id>Person_id>Person_id.sv.mbx

-mailbox path, -mbx path
specifies the pathname of a mailbox. The suffix mbx is added if necessary.

-save path, -sv path
specifies the pathname of a savebox. The suffix sv.mbx is added if necessary.

-user STR

STR

specifies either a user's default mailbox or an entry in the system mail table (see
"Notes on Mailbox Selection by User" below).

is any noncontrol argument and is first interpreted as -mailbox STR. If no
mailbox is found, it is then interpreted as -save. If no savebox is found, it is
then interpreted as -user STR.

3-425 AG92-06

CONTROL ARGUMENTS

-interactive_messages, -im
returns "true" if there are any interactive messages in the mailbox. (Default)

-mail, -ml
returns "true" if there is any mail in the mailbox. (Default)

-no_in teractive_messages, -nim
returns "true" only if there is mail in the mailbox, ignoring whether there are any
interactive messages present

-no_mail, -nml
returns "true" only if there are interactive messages in the mailbox, ignoring
whether there is any mail in the mailbox.

NOTES ON MAILBOX SELECTION BY USER

The user's default mailbox is specified in the form Person_id.Project_id. For an entry
in the mail table, STR is usually in the form of Person_id (the mail table is fully
described in the Extended Mail System User's Guide, CH23).

If STR contains one period and no white space, it is interpreted as a User_id that
specifies the user's default mailbox; otherwise, it is interpreted as the name of an
entry in the mail table. For example,

-user DBuxtehude.SiteSA

is interpreted as a User_id that identifies a default mailbox. On the other hand,

-user "George G. Byron"
-user L.v.Beethoven
-user Burns

are all interpreted as the names of entries in the mail table: the first because it
contains white space; the second because it contains more than one period; the third
because it contains no period.

When interpreted as a User_id, the STR cannot contain any angle brackets «» and
must have the form Person_id.Project_id, where "Person_id" cannot exceed 28
characters and "Project_id" 32 characters. In this case, "-user STR" is equivalent to
the mbx_specification -mailbox >udd>Project_id>Person_id>Person_id.mbx.

When interpreted as the name of a mail table entry, STR cannot contain any commas,
colons, semicolons, backslashes (\), parentheses, angle brackets, braces ({}), quotes,
commercial at-signs (@), or white space other than spaces. The query of the mail
table is performed in a case-insensitive manner. Use the display_mailin~address
command to determine the actual address corresponding to the STR. The address in
the mail table must identify a mailbox.

3-426 AG92-()6

ACCESS REQUIRED

If you give either -no_interactive,....messages or -no_mail, you must have rs extended
access to the mailbox; otherwise, you only need s extended access.

EXAMPLES

You can use the following statement in your start_up.ec to invoke read_mail only
when there is mail present in your mailbox:

&if [have_mail -no_interactive_messages] &then read_mail -list

Name: have_messages

SYNTAX AS A COMMAND

have_messages mbx_specification {-control_args}

SYNTAX AS AN ACTIVE FUNCTION

[have_messages {mbx_specification} {-control args}]

FUNCTION

returns "true" if there are any interactive messages in the specified mailbox.

ARGUMENTS

m bx_specification
specifies the mailbox to be examined. If not given, your default mailbox
(>udd> Project_id> Person_id> Person_id.mbx) is i:lSed.

LIST OF MBX SPECIFICATIONS

-log
specifies the user's logbox and is equivalent to

-maiibox >udd>Project_id>Person_id>Person_id.sv.mbx

-mailbox path, -mbx path
specifies the pathname of a mailbox. The suffix mbx is added if necessary.

-save path, -sv path
specifies the pathname of a savebox. The suffix sv.mbx is added if necessary.

3-427 AG92-06

-user STR

STR

specifies either a user's default mailbox or an entry in the system mail table (see
"Notes on Mailbox Selection by User" below).

is any noncontrol argument and is first interpreted as -mailbox STR. If no
mailbox is found, it is then interpreted as -save. If no savebox is found, it is
then interpreted as -user STR.

CONTROL ARGUMENTS

-interactive_messages, -im
returns "true" if there are any interactive messages in the mailbox. (Default)

-mail, -ml
returns "true" if there is any mail in the mailbox. (Default)

-no_interactive_messages, -nim
returns "true" only if there is mail in the mailbox, ignoring whether there are any
interactive messages present.

-no_mail, -nml
returns "true" only if there are interactive messages in the mailbox, ignoring
whether there is any mail in the mailbox.

lVOTES ON MAILBOX SELECTION BY USEF?

The user's default mailbox is specified in the form Person_id.Project_id. For an entry
in the mail table, STR is U$ually in the form of Person_id (the mail table is fully
described in the Extended Mail System User's Guide, CH23).

If STR contains one period and no white space, it is interpreted as a User_id that
specifies a user's default mailbox; otherwise, it is interpreted as the name of an entry
in the mail table. For example,

-user DBuxtehude.SiteSA

is interpreted as a Usei_id that identifies a default mailbox. On the other hand,

-user."George G. Byron ll

-user L.v.Beethoven
-user Burns

are all interpreted as the names of entries in the mail table: the first because it
contains white space; the second because it contains more than one period; the third
because it contains no period.

3-428 AG92-06

When interpreted as a User_id, the STR cannot contain any angle brackets «» and
must have the form Person_id.Project_id, where "Person_id" cannot exceed 28
characters and "Project_id" 32 characters. In this case, "-user STR" is equivalent to
the mbx_specification -mailbox >udd> Project_id> Person_id> Person_id.mbx.

When interpreted as the name of a mail table entry, STR cannot contain any commas,
colons, semicolons, backslashes (\), parentheses; angle brackets, braces ({})t quotes,
commercial at-signs (@), or white space other than spaces. The query of the mail
table is performed in a case-insensitive manner. Use the display_mailin~address
command to determine the actual address corresponding to the STR. The address in
the mail table must identify a mailbox.

ACCESS REQUIRED

You must have rs extended access to the mailbox; however if you give-mail but give
no -no_interactive_messages, you only need s extended access.

SYNTAX AS A COMMAND

SYNTAX AS AN ACTIVE FUNCTION

[have_queue_entries ms paths]

FUNCTION

returns "true" if there are messages in the specified queue message segments.

ARGUJIIElvTS

InS_paths
are relative pathnames or star names for queue message segments to be examined.
The suffix ms is added if not present You can use the star convention.

ACCESS REQUIRED

You need s extended access to the queue message segments.

EXAMPLES

returns "true" if there are any requests in queue 3 of the I/O daemon "x1200" request
type.

3-429 AG92-D6

11/86

[have queue entries >udd>idd>printer *] - - -
returns "true" if there are any requests in any of the I/O daemon printer queues.

Name: help

SYNTAX AS A COMMAND

he 1 P {i nfo_names}' {-contro l_args}

FUNCTION

prints descriptions of system commands/active functions and subroutines, as well as
miscellaneous information about system status, system changes, and general information.
The command selects this information from segments maintained online, which are in a
special format, called information segments (info segs).

ARGUMENTS

info_names
specify the information to be printed. The suffix .info is assumed. If you supply
a pathname, it identifies the info seg to be printed; otherwise help searches for
segments matching an entryname using the info_segments search list For
subroutines you can include an entry point name in the info_name (e.g.,
subroutine_Sentry _poind. You can use the star convention except when you
specify an entry point name or when you give -entry _point (See "Notes on Star
Convention" below.)

If you select no info_names, help prints the default info seg (help_system. gi. info) ,
which gives a brief introduction to the help facility.

If help fails to find an info seg corresponding to a given info_name, use
list_help to find info segs that contain the specified info_name in their
entrynames.

LIST OF CONTROL ARGUMENTS BY FUNCTION

The control arguments are arranged below functionally. Detailed descriptions follow the
list, in the same order.

help

3-430 AG92-06A

help

11/87

Information Selection

-all, -a
prints entire info without questions.

-brief. -bf
prints summary of command/active function or subroutine info.

-brief_header, -bfhe
prints brief heading with info.

-control_arg STRs, -ca STRs
prints only description of an argument

-header, -he
prints only a heading line.

-list_entry -points, -lep
prints entry points.

-title
prints section titles.

Starting Paragraph

-search STRs, {-case_sensitive} {-non_case_sensitive} ,
-srh STRs {-cs} {-ncs}

selects by words in paragraph.
-section STRs {-case_sensitive} {-non_case_sensitive} ,
-sen STRs {-cs} {-ncs}

selects by section title.

Paragraph Grouping

-maxlines J
sets maximum paragraph grouping size.

-minlines I
sets minimum paragraph size.

Info-Seg Selection

-en try _point, -ep
selects main subroutine entry point

-pathname path, -pn path
selects an info segment

CONTROL ARGUMENTS FOR INFORMATION SELECTION

The following control arguments select the kind of information that help prints. If you specify
no control arguments from this group, help prints a long heading line, followed by the first
paragraph of info. At the end of each paragraph, help asks you if more help is needed.

-all, -a
prints the entire info or subroutine entry point desc~iption without intervening questions.

help

3-431 AG92-06B

help

11/87

-brief, -bf
prints a brief summary of a command/active function or subroutine info seg with no
intervening questions. The summary includes the Syntax section and, for commands/active
functions, a list of control arguments and/or other keywords used by the command.

-brief _header, -bfhe
prints a brief heading line (which consists of the heading and line count), followed by either
information selected by the other information selection control arguments or by the first
paragraph if you specify no other control arguments from this group.

-case_sensitive, -cs
when used with either -section or -search. performs the requested action in a case-sensitive
manner.

-control_arg STR, -ca STR
prints only the descriptions of the control (or other) arguments whose names contain STR.
STR must not include a leading minus sign (-). For example,

help mail -ca brief match exclude

prints descriptions of the -brief, -match and -exclude control arguments of the mail
command. All arguments following -ca until the next control argument are treated as STR.

-header, -he
prints only a long heading line consisting of the pathname of the info seg, heading, and line
count It conflicts with an other information selection control arguments. (Default)

-list_entry _points, -lep
lists the entry points in a subroutine info segment

-non_case_sensitive, -ncs
when used with either section or search, performs the requested action in a
non-case-sensitive manner. This is the default

-title
lists the section titles used in the info seg (including section line counts), then asks if you Wish
to see the first section.

The -all, -brief, -control_arg, and -title control arguments are mutually exclusive.

CONTROL ARGUMENTS FOR SELECTING A STARTING PARAGRAPH

Normally, help begins printing the first info paragraph. The control arguments below can select a
particular section and/or paragraph at which printing is to start

help

3-432 AG92-06B

help

11/87

-seareh STRs {case_sensitive} { -non_ease_sensitive} •
-srh STRs {-cs} {-ncs}

begins printing with the first paragraph containing STRs. All the strings must appear in the
selected paragraph, but they can appear in any order. You can type STRs in lowercase since
case is ignored when matching, unless -es is specified. All arguments and control arguments
following -srh are treated as STRs, so should be put -srh at the end of the command line. An
exception is that if -cs or -ncs is the last argument of the string, it will be interpreted as a
control argument and not one of the STRs. The search usually begins with the first
paragraph, but when you also specify -scn it begins with the matching section and continues
to the last paragraph (i.e.. without wraparound).

-section STRs {-case_sensitive} {-non_ease_sensitive},
-sen STRe; {-cs} {-ncs}

begins printing the section whose title contains STRs. The entire section title is not required.
The first section whose title matches STRs is selected. You can put STRs in any order in the
section title. You can type them in lowercase since case is ignored during matching
operations, unless -cs is specified. All arguments following -sen until the next control
argument are treated as STRs.

When you supply =srh or -sen and no matching paragraph is found in any of the info segs selected
by an info_name or info seg selection control argument, that info seg is passed over without
comment Thus, the starting-paragraph control arguments serve as a secondary info selection
mechanism.

You can use the control arguments from this group with any of the information selection control
arguments, but their effect differs depending upon which of them are used. When -srh or -sen is
used with -he, help prints the heading lines, not the matching paragraph. for infos containing a
matching paragraph. When you use them with -bf or -ca, help prints a heading line and then the
information selected by -bf or -ca; the matching paragraph is not printed.

\Vhen -srh or -sen is used with the -cs control argument, help will print only exact matches. If
the -ncs control argument is used. help will match to both uppercase and lowercase values. The
default is -nes.

When you use -srh or -sen with -bfhe, help prints a brief heading line preceding the matching
paragraph. When you use them with -title, help prints a heading line, then the list of section
titles, and finally the matching paragraph. When you use them with -a, the entire info is printed
for infos containing a matching paragraph.

CONTROL ARGUMENTS FOR PARAGRAPH GROUPING

The following control arguments determine how much information help prints before asking if
you want to see more.

-minlines I
sets the minimum paragraph size to I lines. Paragraphs smaller than this size are printed with
preceding paragraphs. (Default: 4)

help

3-432.1 AG92-o6B

help

11/87

-maxlines J
sets the maximum paragraph grouping size to J lines. (Default: 15)

Paragraphs that you have seen are not grouped with unseen paragraphs. Paragraphs at the end of
one section are not grouped with those beginning another section. Paragraphs are not grouped
when you give -srh or -sen.

CONTROL ARGUMENTS FOR SELECTING INFO SEGS

-entry _poin t, -ep
selects the info describing the main entry point of a subroutine. For example,

help ioa_ -ep

prints the info describing the ioa_$ioa_ subroutine entry point. When you omit -ep and
specify no entry point name by an info_name identifying a subroutine info segment~ help
prints the info describing the general purpose of the subroutine.

-pathname path. -pn path
specifies the pathname of a segment containing the info seg to be printed. It is useful when
the info to be printed is in your working directory or when the pathname begins with a minus
sign. For subroutines you can include an entry point name with the final entryname of path;
f or example,

A suffix of .info is assumed if you give none. You can use the star convention except when
you give an entry point name or -ep. (See "Notes on Star Convention.")

LIST OF RESPONSES

The responses accepted when help questions you are given in the list below. Those responses that
search the info seg or list section titles operate from the current paragraph to the end of the info
seg. No wraparound feature is employed.

prints "help" to identify the current interactive environment.

.. command_line
passes the remainder of the response to the Multics command processor as a command line.

?
prints a list of available responses.

brief, bf
prints a summary of a command/active function or subroutine info seg, including the Syntax
section and a list of control arguments. then repeats the previous question.

help

3-432.2 AG92-G6B

help

11/87

control_arg SIR, ca SIR
prints descriptions of control (or other) arguments whose names contain SIR, then repeats
the previous question.

entry_point {EP _NAME}. ep {EP _NAME}
skips to the description of subroutine entry point EP _NAME. You can specify EP _NAME
as entry_point_name or subroutine_$entry_point_name; if you omit it, help skips to the
description of the subroutine_$subroutine_ entry point if one exists.

header, he
prints a long heading line to identify the current info seg. The line consists of the pathname
of the info seg, heading, and line count.

list_en try_points, lep
lists the entry points in a subroutine info segment

list_requests {STRs}, lr {STRs}
prints information about available help requests.

no, n
exits from the current info seg, and begins printing the next info seg selected by inio_names
given in the help command; returns from the help command if all selected info segs have
been printed.

quit, q
causes the help command to return without printing the remaining info segs selected by the
info_names.

rest {-scn} {-all_entrypoints}, r {-sen} {-aep}
prints the rest of the info seg without intervening questions. If you choose -sen, help prints
only the rest of the current section without questions. When the section has been printed,
help then asks whether you want to see the next section.
If -all_entrypoints is specified, help will print the rest of the remaining entry points.

search {STRs} {-top} {-case_sensitive} {-non_case_sensitive},
srh {STRs} {-tJ {-cs} {-ncs}

skips to, and prints, the next paragraph containing STRs. Paragraph selection is performed
as described above for -srh. If you give -t, searching starts at the beginning of the info seg.
If the -cs argument is used, the search will be case-sensitive and find only exact matches. If
-ncs is used, the search will match both uppercase and lowercase values. The default is -ncs.
If STRs are omitted, help uses the strings from the previous search response or -srh. If the
search fails, help prints the message:

No matching paragraph found.

and repeats the previous question.

help

3-432.3 AG92-06B

help

11/87

section {STRs} {-top} {-case_sensitive} {-non_ease_sensitive} ,
sen {STRs} {-tJ {-cs} {-ncs}

skips to the next section whose title contains STRs. Title matching is performed as described
above for -sen. If you supply -t, title searching starts at the beginning of the info. If you
omit STRs, help uses the search strings from the previous section response or -sen. If the -cs
argument is used, the search will be case-sensitive 3.J."1d find only those section titles that are
exact matches. If the -ncs argument is used, help will match both uppercase and lowercase
values. The default is -ncs.
If the search fails, help prints the message:

No matching section found.

and repeats the previous question.

skip {-section} {-rest} {-seen} {-entry_point}, s {-sen} {-r} {-seen} {-ep}
skips the next paragraph and asks whether you want to see the paragraph following it If you
select -sen, help skips all paragraphs of the current section. If you supply -r or -ep, help
skips the rest of this info seg or subroutine entry point description, continuing with the next.
If you give -seen, help skips to the next paragraph that you haven't seen. You can use only
one of these control arguments at a time.

title {-top}, title {-t}
lists titles and line counts of an sections remaining in the current info seg. If you specify -t,
help lists all section titles.

top, t
skips to the beginning of the info seg, prints the heading line, and asks whether you want to
see the first section. This is useful if you wish to review earlier parts of the info seg.

yes, y
prints the next paragraph of information, then asks whether you want more help.

This command remembers which paragraphs you have seen and which you have skipped or not yet
reached. It asks you to "Review" paragraphs seen before and asks if "More help" is needed for
unseen paragraphs. It stops printing if you have seen all paragraphs when you reach the end of the
info. If you skipped any paragraphs, however, help asks if you want to see them; if you answer
"yes," the first unseen paragraph is printed. You can then answer "skip -seen" to view subsequent
unseen paragraphs. The question/answer dialogue continues until all the information is printed
or you reply "no."

CONTENTS OF INFO SEGS

Each segment contains one or more blocks of information that describe a particular
command/active function, subroutine, or topic. To validate the format of info segs, use
validate_inf 0 _seg.

An info seg begins with a heading line, consisting of a date on which it was last modified and a
brief title identifying it For command/active function info segs the program name, including
any short name, is used as the title; for subroutine info segs the subroutine name is used.

help

3-432.4 AG92-06B

help

11/87

Information in an info seg is divided into paragraphs, separated from one another by two blank
lines. The help command uses this separation to determine where one paragraph ends and the
next begins.

Each paragraph contains a logically complete unit of information. Control arguments and
responses are available to search for, and print, a particular paragraph. To avoid printing
unnecessary information when you perform such searches, paragraphs are short (1 to 15 lines
long) and deal with only a single subject.

The paragraphs describing a given topic are grouped together into a section. The first paragraph
of each section begins with a title that names the topic described in that section. Section titles are
short, usually consisting of one or two words followed by a colon (:).

Standard section titles are used in info segs provided with the MuItics system so that users can
search for a particular information topic. For command/active function info segs the standard
section titles in their proper order are:

Syntax As a Command:
shows how the program is invoked. Arguments are given a generic name (c.g., paths indicates
that one or more pathnames are allowed). Optional arguments are shown in braces (e.g.,
{paths}). If the program allows control arguments, they are shown as -control_args in the
syntax line.

Function:
gives a brief description of what the program does.

Arguments:
gives a brief description of each argument

Control Arguments:
gives a brief description of each control argument.

Notes:
gives comments, clarifications, or any special-case information.

The descriptions of arguments and control arguments are formatted in a special way so that "help
-bf" can print a list of all argument and control argument names (t.nd "help -ca" can find and
print the description of an individual argument or control argument. Each description begins
with a line naming the argument or control argument, including the short name, and any operands
it requires. This naming line begins in column 1. The description continues on subsequent lines
by defining the meaning and function of the argument or control argument. These lines are
indented three spaces from the left margin.

Subroutines are described by info segs containing a series of specially formatted information
blocks, one describing each subroutine entry point The first block describes the general purpose
of the subroutine and can include control information and notes common to all entry points. It
includes the following sections:

help

3-432.5 AG92-06B

help

11/87

Function:
describes the overall function performed by the subroutine. The heading is optional, the
description is not

Entry points in SUBROUTINE:
causes help to list the entry points definoo in the subroutine. Precede this line by two blank
lines and make it the last line (followed by two blank lines) before the first entry point
description.

Entry point descriptions are separated from the first block and each other by the following line:

:Entry: yyy: 12/07/86 SUBROUTINE_$ENTRYPOINT

The date is the date-last-modified. Use of -ep causes help to search through these lines for a
ENTRYPOINT matching STR. Always precede this line by two blank lines.

Section titles in their standard order for subroutine entry point descriptions are as follows:

Function:
gives a brief description of what the entry point does.

Usage:
gives the PL/I declare and call statements fer the entry point A sample description from
the cu_$arLcount entry point follows:

Usage:
declare cu_Sarg_count entry (fixed bin, fixed bin (35»;
call cu_Sar9_count (nargs, code);

Arguments:
lists the arguments shown in the call statement along with a brief description of their
functions.

Notes:
are general notes t.ltat apply to the entry point.

To keep info segs concise, avoid tutorial notes and examples except in special cases.

NOTES ON SEARCH LIST

The help command uses the "info_segments" (or "info_segs" or "info") search list The default
info seg directories contain info segs provided by your site and those supplied with the system.
Type "print_search_paths info_segments" to see what the current info segments search list is.
For more information about search lists, see the search facility commands, especially
add_search_paths.

help

3-432.6 AG92-o6B

help

11/87

NOTES ON STAR CONVENTION

When you use the star convention, help performs the following steps:

1. The info segs whose entrynanles match any of the star names are alphabetized within their
directory and scanned in that order.

2. When you give -srh and -scn help scans the matching info seg until the desired paragraph
and/or section is found. If a matching paragraph is found, help prints it, then asks you
whether to print remaining paragraphs. Any section and search responses given at this point
scan only the current info seg. If a matching paragraph is not found in one of the info segs
selected by a star name, that info seg is passed over without comment. Thus, it is possible to
scan all info segs and print only those containing certain section titles or certain words.

3. When you supply no --srh and -sen, help begins printing the first paragraph of each info seg
that matches any of the starnames. Then help asks you whether to print the remaining
paragraphs.

4. The -a, -bf. -ca, and -title control arguments apply to each info seg selected by the starnames
and -srh/-scn string matching. Section titles, a brief summary, or particular control
argument descriptions are printed before the matching paragraph. When you combine -a with
-srh or -sen, the entire info seg selected by the string matching is printed without questions.

5. The no, rest, skip, and yes responses operate on the next selected paragraph. This paragraph
can be the first paragraph of the next selected info seg or even the first paragraph that matches
the -srh and -sen cri teria in the next selected info seg.

6. If you issue a quit signal, you can use program_interrupt to reenter the interactive help
environment The question asked prior to the quit is repeated.

INFO SEG NAMING CONVENTIONS

Info segs for .M:ultics commands/active functions and subroutines are given the name of the
particular system module with a suffix of .info. For example, the info describing the PL/I
compiler command is called pll.info.

Information about changes made to a command/active function from one release to the next are
given the name of the particular system module with a suffix of .changes.info. For example,
changes to the FORTRAN compiler are described in fortran.changes.info.

General information describing features or use of the system is included in info segs whose names
end with a suffix of .gi.info. For example, acl_matching.gi.info describes how access control list
entries are matched with User_ids in access control commands such as set_ac!.

More than 800 info segs are available online. To find information about a particular area of the
system, use list_help or -he with an entryname containing stars to list the names of available
infos.

help

3-432.7 AG92-06B

help

11/87

hexadecimal

USER-CREATED INFO SEGMENTS

You can create info segs describing your own commands. exec_coms, and application programs.
To create proper info segs see "Contents of Info Segs" above.

N arne: hexadecimal, hex

SYNTAX AS A COMMAND

hex va1ues

SYNTAX AS AN ACTIVE FUNCTION

[hex va1ues]

FUNCTION

returns one or more values in hexadecimal.

ARGUMENTS

value
is a value to be processed. The last character of the value indicates its type. Acceptable types
are binary (b), quaternary (q), octal (0), hexadecimal (x). or un spec (u).

Any valid PL/I real value is allowed. The absence of any specifier means decimal. The unspec
value is limited to eight characters.

EXAMPLES

string [hex 3770J
ff

hex abcu
184c463

3-432.8 AG92-06B

high

11/87

Name: high

SYNTAX AS A COMMAND

high N

SYNTAX AS AN ACTIVE FUNCTION

[high N]

FUNCTION

history _comment

returns a specified number of copies of the last (highest) character in the ASCII character set, the
PAD character of 177 octal.

Name: high9

SYNTAX AS A COMMAND

high9 N

SYNTAX AS AN ACTIVE FUNCTION

[h i gh9 NJ

FUNCTION

returns a specified number of copies of the last (highest) 9-bit bit pattern, 777 octal.

Name: history _comment, hcom

SYNTAX AS A COMMAND

hcom operation path {args} {-control_args}

SYNT AX AS AN ACT IV E FUl'./CT I ON

[hcom oper a t i on path {args} {-contra l_args}]

FUNCTION

adds, checks. displays. formats. and updates software change history comments within a given
source module.

3-432.9 AG92-06B

history _comment history _comment

11/87

ARGUMENTS

operation
designates the operation to be performed.

path
is the name of a source code program that requires history comments. Include the language
suffix.

args
are optional arguments appropriate to the particular operation to be performed.

CONTROL ARGUMENTS

are optional control arguments that vary, depending on the particular operation to be
performed. .

HISTORY COMMENT FORMAT

Following is a PL/I history comment example. Other languages will have different comment
delimiters.

I**A HISTORY COMMENTS:
1) change(8S-0S-12, OOppenheimer), approve (8S-0S-2S, MCR23SS),

audit (8S-0S-26, EBlau), install (85-05-30, MRll.0-3382):
Increased size of test array to el iminate subscript error.

2) change (8S-0S-28, MLee)~ approve (85-05-29 MCR2356),
audi t (85-06-05, TYoffe) ~ install (85-06-10~ MRll.0-3384):
Added the -brief and -long control arguments.

END HISTORY COMMENTS I

NOTE: To determine if prior history comments exist in the module, the source module is
checked for a line containing the history comment block beginning, i.e., a line
beginning with the appropriate comment delimiter and "HISTORY COMMENTS:". If
found, the program then checks for the history comment block ending. i.e., a line
containing "END HISTORY COMMENTS."

LIST OF HISTORY COMMENT FIELDS

The fields within a given history comment are identified as follows:

NO) change (CHANGE DATE, CHANGE PERSON 10),
approve (APPROVE_DATE, APPROVE_IO):
audit (AUDIT DATE, AUDIT PERSON 10),
instal 1 (INSTALL_DATE, INSTALL_TO): SUMMARY

3-432.10 AG92-06B

history _comment history _comment

11/87

The fields in a history comment are named as described below. The sample validation routine
hcom_default_ validate_ validates field formats used by the Multics Development Center as
described below. Each site, however, can provide its own validation routines to tailor the contents
of the user-settable field values.

NO
is the number of the history comment. Comments are numbered sequentially in
chronological order, starting with 1. (Supplied by hcom)

CHANGE_DA TE
is the date (yy-mm-dd) on which the history comment was first added to the source module.
(Supplied by hcom)

CHANGE_PERSON_ID
is the Person_id. of whoever added the history comment. (Supplied by hcom)

APPROVE_DATE
is the date (yy-mm-dd) on which an approval value was supplied for a history comment.
(Supplied by hcom)

APPROVE_ID
is the identifier authorizing the change. The default validation routine expects an identifier
in the form "TYPEnnnn" for Multics change requests (MCRs), post-installation bug fix
(PBFs) associated with MCRnnnn, or Multics emergency change request (MECRs) (e.g.,
MCR6734, PBF6734, MECR0102). For critical fixes the identifier should be in the form of
fix_nnnn or fix_nnnn.ds. The maximum length of this field is 24 characters. (Supplied by
user)

AUDIT_DATE
is the date (yy-mm-dd) audit field added to the history comment. (Supplied by hcom)

AUDIT _PERSON_ID
is the Person_id of whoever audited the source module. (Supplied by hcom)

INST ALL_DATE
is the date (yy-mm-dd) install field added to the history comment. (Supplied by hcom)

INSTALL_ID
is the value identifying either a specific installaiion or the installer of a critical fix. The
default validation routine expects an identifier in the form "MRrel-nnnnn", consisting of a
release number and installation sequence count (e.g., MR12.0-00234). For a critical fix the
validation routine expects a Person_id naming the person who installed the fix. The
maximum length of this field is 24 characters. (Supplied by user)

SUMMARY
is a brief description of the change made to the module. This field contains text (up to 2000
characters) and is not validated. (Supplied by user)

3-432.11 AG92-Q6B

history _comment history _comment

11/87

NOTES

The following is a typical usage pattern expected for the various operations of the command:

• You make a change to the source module. You can add a new history comment by hand
(perhaps using an Emacs extension to prompt for field values). Or, after adding the change,
you can use the hcom add operation to add a new comment. A typical command line might be

hcom add prog.pl1

• You may not have had approval for the change at the time the history comment was added.
When approval is gained, you can use the hcom add_field operation to add the approve field.
For example,

hcom af prog.pll -approve MCR7235

• You can display the history comments in a program or even compare the comments in a
modified version of a program with those in the library copy of the program. For example.

hcom display prog.pll new -orig [lpn prog.pl1]

displays the new history comments in the source module, while

hcom compare prog.pii -orig [ipn prog.pii]

displays the differences between the source module and the original module.

• When the change is aUdited, the auditor uses the hcom add_field operation to supply an audit
field for all new or incomplete history comments. For example.

hcom af prog.pll -audit

• When you are ready to submit the change for installation, you use the hcom check operation
to ensure that all comment fields except the install field have been supplied in each changed
module. Since you have a site-defined validation routine called hcom_site_ validate_ in your
object search rules. this routine is used to fully validate the fields of all comments.

hcom check prog.pl1 -orig [lpn prog.pll]

• When the installer receives the modules in an installation, he uses the hcom install operation
to ensure that new history comments describing the changes are present. This operation also
adds an identifier to each new comment. indicating in which installation it was installed. The
installer can use a special library-defined validation routine to perform special field
validations. Here, the library validation routine is called hcom_mdc_ validate_:

hcom install prog.pl1 -vdt hcom mdc validate -install
MR12.0-0023 -orig [lpn prog.pl1]- -

3-432.12 AG92-o6B

history _comment history _comment

11/87

VALIDATION ROUTINE CALLING SEQUENCE

A site can define a site-wide history comment validation routine to validate the contents of the
APPROVE_ID and INSTALL_ID fields of history comments. This routine is called
hcom_site_validate_. If it is found in your object search rules. hcom uses this validation routine
instead of using hcom_default_validate_. The -validate control argument allows use of a
user-supplied validation subroutine, which can have any name, to validate the APPROVE_ID and
INST ALL_ID fields.

The calling sequence of both the hcom_site_ validate_ subroutine and user-written routines is
shown below.

dcl hcom site validate entry (charO var, charO var,
char() var, bit(l)~charO var, charO var, char(100) var);

call hcom site validate (caller, field name, input value,
result_bit, canonical_value, field_type, error_msg);

where:

caller
is the name of the calling program on whose behalf the validation routine should report'
errors, ask questions, etc. (Input)

iield_name
is the name of the field being validated. It can have a value of either
APPROV AL_FIELD_NAME or INST ALL_FIELD_NAME. These named constants are
declared in hcom_field_names.incl.pll. (Input)

input_value
is the field value you supply. (Input)

result_bit
is either "l"b if the input value is valid or "O"b if the input value is invalid. (Output)

canonical_ value
is the canonical text form of the field_name and input_value. (Output)

.... 1Al~ hrn.o.
J. J."'U'~_"J t""'

is the canonical text form of the field_name for use in error messages. (Output)

error_msg
is the text of the error message. (Output)

3-432.13 AG92-06B

history _comment history _comment

11/87

Operation: add

SYNTAX AS A COMMAND

hcom add path {-control_args}

FUNCTION

adds a new history comment to the requested module. The summary field is required; all other
fields are optional.

ARGUMENTS

path
is the name of a source code program that requires history comments. Include the language
suffix. You can give an archive pathname.

CONTROL ARGUMENTS FOR FIELD INPUT

-approve APPROVE_ID, -apv APPROVE_ID
specifies the APPROVE_ID field. The maximum length of this field is 24 characters. (See
"List of History Comment Fields" above for a description of valid APPROVE_IDs.)

-fill, -fi
sets fill mode on for the summary field. In fill mode text, words are moved from line to line
in such a way that the last word does not extend past the right margin. (Default)

-input_approve, -iapv
prompts for an APPROVE_ID. This is a single-line field value. (Default)

-input_install, -iin
prompts for the INSTALL_ID. This is a single-line field.

-input_summary, -ism
prompts you for the summary field. This is a multiline field. (See "Notes" below.) (Default)

-install INST ALL_ID, -in INST ALL_ID
specifies an identifier associated with installing the changed module into execution libraries.
See "List of History Comment Fields" above for a description of valid INSTALL_IDs. The
maximum length of this field is 24 characters.

-no_approve, -napv
specifies that an APPROVE_ID is not being entered.

-nofill, -nfi
sets the fill mode off for the summary field.

3-432.14 AG92-06B

history_comment history _commen t

11/87

-no_install. -nin
suppresses the prompt for INSTALL_ID. (Default, since the installation ID is usually
specified when the module is being installed rather than when the history comment is first
added)

-summary TEXT. -sm TEXT
gives text describing the change. Enclose the text within quotes if it contains spaces. quotes,
parentheses. etc.

CONTROL ARGUMENTS

-critical_fix. -cfix
specifies that critical-fix history comments are allowed in the program. All comments
following the first that contains critical-fix field values must also contain critical-fix field
values.

-validate RTN, -vdt RTN
validates user-supplied fields in the history comment, using a user-supplied validation
routine. RTN must be a virtual entrypoint name acceptable to cv _entry _. If you give no
-vdt, the default is to validate using the hcom_site_ validate_ subroutine, if your site has
provided it, or the hcom_default_ validate_ subroutine provided with hcom.

NOTES

For multiline fields all input is treated as text until reading a line with just a period. Input lines
beginning with n •• " are treated as Multics command lines, rather than as part of the field value.
After the command line is executed. you can continue answering the prompt or can replace input
text typed so far with a new answer. Optional field values answered with a period omit the field
from the history comment.

For single-line fields, input ends when you type a carriage return. If the input line begins with
.... ", the text that follows is treated as a Multics command line. After the command line is
executed, you are prompted again for the question. Optional field values answered with a carriage
return omit the field from the history comment.

Operation: add_field, af

SYl·.jTAX AS A COIIIIIIAND

hcom af path {comment_specs} {-control_args}

FUNCTION

inserts missing fields in selected comments.

3-432.15 AG92-Q6B

history _comment histo,ry _comment

11/87

ARGUMENTS

path
is the name of a source code program that requires history comments. Include the language
suffix. You can give an archive pathname.

comment_specs
specify which history comment(s) are to be updated. (See "List of Comment Specifiers"
below.) (Default: to select comments that are missing the fields given by the "Control
Arguments for Field Input")

CONTROL ARGUMENTS FOR FIELD INPUT

-approve APPROVE_ID. -apv APPROVE_ID
inserts the missing APPROVE_ID field. The maximum length of this field is 24 characters.
(See "List of History Comment Fields" above for a description of valid APPROVE_IDs.)

-audi t, -aud
inserts the user's Person_id in the AUDIT_PERSON_ID field.

-input_approve, -iapv
prompts for a new APPROVE_ID. This is a single-line field value. (Default, if you give no

. field input control arguments)

-input_install. -iin
prompts for the INSTALL_ID. This is a single-line field.

-install INST ALL_ID. -in INST ALL_ID
specifies an identifier associated with installing the changed module into execution libraries.
The maximum length of this field is 24 characters. (See "List of History Comment Fields"
above for a description of valid INSTALL_IDs.)

-no_approve. -napv
does not replace the APPROVE_ID field nor prompts for missing approve fields. (Default,
if you supply any field input control arguments)

-no_aUdit, -naud
does not add the AUDIT_PERSON_ID field. (Default)

-no_install, -nin
does not set the INST ALL_ID field nor prompts for missing install fields. (Default)

CONTROL ARGUMENTS

-critical_fix, -cfix
specifies that critical-fix history comments are allowed in the program. All comments
following the first that contains critical-fix field values must also contain critical-fix field
values.

3-432.16 AG92-06B

history _comment history _comment

11/87

-validate RTN. -vdt RTN
validates user-supplied fields in the history comment, using a user-supplied validation
routine. RTN must be a virtual entrypoint name acceptable to cv _entry_. If you give no
-vdt, the default is to validate using the hcom_site_ validate_ subroutine, if your site has
provided it, or the hcom_default_ v alidate_ subroutine provided with hcom.

LIST OF COMMENT SPECIFIERS

1, I:J
selects the comment(s) by a comment number or a range of numbers. You can use the
keywords "first" (f) and "last" 0) to identify the first and last comments.

all, a
selects all comments.

approved, apv
selects comments that have an approve field.

audi ted, aud
selects comments that have an audit field.

complete, cpt
selects comments that include all fields.

incomplete. icpt
selects comments that are missing the approve, aUdit. or install field.

installed, in
selects comments that have an install field.

new
selects. when you give -original. comments that do not appear in the original (eailier) version
of the program.

old
selects. when you give -original. comments that appear in both the original and new versions
of the program.

unapproved. unapv
selects comments that do not have an approve field.

unaudited. unaud
selects comments that do not have an audit field.

uninstalled. unin
selects comments that do not have an install field.

3-432.17 AG92-06B

history _comment history _ commen t

11/87

NOTES

If you provide no control args, the default is to print selected history comments and to prompt
you for missing approve fields.

Operation: check, ck

SYNTAX AS A COMMAND

hcom ck path {-control_args}

SYNTAX AS AN ACTIVE FUNCTION

[hcom ck path {-control_args}]

FUNCTION

looks for one or more incomplete (or new if you give -original) history comments and verifies
that their summary, approve, and audit fields are given while the install field is missing. The
active function returns true if the check succeeds (the history comments are ready for
submission). false otherwise.

ARGUMENTS

path
is the name of a source code program that has history comments. Include the language
suffix. You can give an archive pathname.

CONTROL ARGUMENTS

-errors, -er
displays history comments that failed check. (Default)

-no_errors, -ner
suppresses display of history comments that failed check. (Default, for the active function)

-original oris-path, -orig oris-path
specifies that the current version of the source program is to be cross-checked with an
earlier version (given as oris-path) to ensure that there are new history comments in the
current module. You can give an archive pathname and use the equal convention. (Default:
to check for incomplete history comments in the given source program)

-validate RTN, -vdt RTN
validates user-supplied fields in the history comment, using a user-supplied validation
routine. RTN must be a virtual entrypoint name acceptable to cv_entry_. If you give no
-vdt. the default is to validate using the hcom_site_ validate_ subroutine, if your site has
provided it, or the hcom_default_ validate_ subroutine provided with hcom.

3-432.18 AG92-06B

history_comment history_comment

11/86

NOTES

The presubmission check is run by developers to ensure that at least one history
comment has been added to describe modifications to the source module. These
history comments will be incomplete because they will not have an install field.
Supply all other fields prior to submission.

Operation: compare, cmp

SYNTAX AS A COMMAND

hcom cmp path -control_args

SYNTAX AS AN ACTIVE FUNCTION

[hcom cmp path -control_args]

FUNCTION

displays any diff erences between the source module and the original module. The
active function returns true if the comments in the source and original modules are
identical, false otherwise.

ARGUMENTS

is the name of a source code program that has history comments. Include the
language suffix. You can give an archive pathname.

CONTROL ARGUMENTS

-original oriLpath, -orig oriLpath
specifies the pathname of an earlier version of the module. You can give an
archive pathname and use the equal convention. (Required)

-validate RTN. -vdt RTN
validates user-supplied fields in the history comment, using a user-supplied
validation routine. RTN must be a virtual entrypoint name acceptable to
cv_entry_. If you give no -vdt. the default is to validate using the hcom_site_validate_
subroutine, if your site has provided it, or the hcom_default_ validate_ subroutine
provided with hcom.

Operation: display, cis

SYNTAX AS A COMMAND

hcom ds path {comment_specs} {-control_args}

3-432.19 AG92-06A

11/86

FUNCTION

displays selected history comments. Optionally, compares history comments in a
program with those in an earlier version of the program, displaying old comments
(which appear in both versions) or new comments (which do not appear in the earlier
version).

ARGUMENTS

path
is the name of a source code program. Include the language suffix. You can give
an archive patbname.

comment_specs
select which history comment(s) to display. (See "List of Comment Specifiers"
under the add_field operation.) (Default to display new comments if you specify
-original or all comments if you omit -original)

CONTROL ARGUMENTS

-original orilLpath, -orig orilLpath
specifies the patbname of an earlier version of the module. You can give an
archive patbname and use the equal convention.

-validate RTN, -vdt RTN
validates user-supplied fields in Lie history comment, using a user-supplied
validation routine. RTN must be a virtual entrypoint name acceptable to
cv_entry_. If you give no -vdt, the default is to validate using the hcom_site_validate_
subroutine, if your site has provided it, or the hcom_default_ validate_ subroutine
provided with hcom.

Operation: exists

SYNTAX AS A COMMAND

hcom exists path {comment_specs} {-control_args}

SYNTAX AS AN ACTIVE FUNCTION

[hcom exists path {comment_specs} {-control_args}

FUNCTION

prints or returns true if any history comments matching all the comment_specs are
found in every selected module, false otherwise.

3-432.20 AG92-06A

11/86

history_comment

ARGUMENTS

path
is the name of a source code program that has history comments. Include the
language suffix. You can give an archive pathname.

comment_specs
select which history comment(s) to print (See "List of Comment Specifiers" under
the add_field operation.) (Default: "all," to check whether any comments exist in
the source module)

CONTROL ARGUMENTS

-original oris-path, -orig oriS-path
specifies the pathname of an earlier version of the module. You can give an
archive pathname and use the equal convention.

-validate RTN, -vdt RTN
validates user-supplied fields in the history comment, using a user-supplied
validation routine. RTN must be a virtual entrypoint name acceptable to
cv_entry_. If you give no -vdt. the default is to validate using the hcom_site_validate_
subroutine, if your site has provided it, or the hcom_default_ validate_ subroutine
provided with hcom.

Operation: format, fmt

SYNTAX AS A COMMAND

hcom fmt path {comment_specs} {-control_args}

FUNCTION

reformats selected history comments in a program, including putting date fields into
standard "yy-mm-dd" format, filling lines of all COII'~1!lent entries to a 79-character
width, validating field values, etc.

ARGUMENTS

path
is the name of a source code program whose history comments are to be
reformatted. Include the language suffix. You can give an archive pathname.

comment_specs
select which history comment(s) to reformat (See "List of Comment Specifiers"
under the add_field operation.) (Default: "all," to check whether any comments
exist in the source module)

3-432.21 AG92-D6A

hist-Ory _comment history_comment

11/86

CONTROL ARGUMENTS

-fill, -fi
sets fill mode on f or the summary field. In fill mode text, words are moved
from line to line in such a way that the last word does not extend past the right
margin. (Default)

-nofill, -nfi
sets the fill mode off for the summary field.

-no_renumber, -nrnb .
prints an error if history comment numbers are out of sequence. (Default)

-renumber, -rnb
specifies that the history comments within the current module can be renumbered
if they are out of sequence.

-validate RTN, -vdt RTN
validates user-supplied fields in the history comment, using a user-supplied
validation routine. RTN must be a virtual entrypoint name acceptable to
subroutine cv_entry_. If you give no -vdt, the default is to validate using the
hcom_site_ validate_ subroutine, if your site has provided it, or the
hcom_default_validate_ subroutine provided with hcom.

Operation: get

SYNTAX AS A COMMAND

hcom get path comment_specs -control_args

SYNTAX AS AN ACTIVE FUNCTION

[hcom get path comment_specs -control_args]

FUNCTION

prints or returns given field values from selected history comments.

ARGUMENTS

path
is the name of the source code program whose history comments fields are to be
returned. Include the language suffix. You can give an archive pathname.

comment_specs
specify from which history comment(s) field values are extracted. Give at least
one specifier. (See "List of Comment Specifiers" under the add_field operation.)

3-432.22 AG92-06A

history_comment history_comment

11/86

CONTROL ARGUMENTS

-field_name FIELDS, -fn FIELDS
specify which fields from the selected history comments are to be returned or
printed. All arguments following -fn up to the first argument that begins with a
hyphen are considered field names. See "List of Field Names" below. (Default
to return or print all fields of matching entries)

-original ori~path, -orig ori~path
specifies the pathname of an earlier version of the module. You can give an
archive pathname and use the equal convention.

-validate RTN, -vdt RTN
validates user-supplied fields in the history comment, using a user-supplied
validation routine. RTN must be a virtual entrypoint name acceptable to
cv_entry_. If you give no -vdt, the default is to validate using the hcom_site_validate_
subroutine, if your site has provided it, or the hcom_default_ validate_ subroutine
provided with hcom.

LIST OF FIELD NAMES

You can supply the following values with -fn to specify which field to return.

approve_date, apvdt
is the date on which the approve field was entered.

approve_id, apvi
is the identifier from the approve field.

audit_date, auddt
is the date on which the audit field was entered.

audit_person_id. audpi
is the Person_id of whoever audited the source module.

change_date, edt
is the date on which the history comment was first entered.

change_person_id, cpi
is the Person_id of whoever entered the history comment

instaH_date, indt
is the date on which the install field was entered.

install_id, ini
is the identifier from the install field.

summary, sm
is the summary field from the history comment

3-432.23 AG92-D6A

11/86

NOTES

If several history comments are selected, specified fields from the first selected
comment are returned or printed, followed by fields from the second selected
comment, etc. If the selected field is not present in a given history comment, then a
null string is returned for that field Multiline field values are returned in a single
line (with newline characters replaced by a space) as a quoted string.

Operation: install

SYNTAX AS A COMMAND

hcom install path -control_args

SYNTAX AS AN ACTIVE FUNCTION

[hcom install path -control_args]

FUNCTION

performs a preinstallation check on modules being installed, as specified by system
integration personnel. It performs a variety of steps, including checking that new
history comments exist and are properly filled in. If the check succeeds, an
installation 10 is placed in the comment The active function returns true if the
check succeeds (the history comments are ready for installation), false otherwise.

ARGUMENTS

path
is the name of a source code program that requires history comments. Include
the language suffix. You can give an archive pathname.

CONTROL ARGUMENTS FOR FIELD INPUT

-approve APPROVE_IO, -apv APPROVE_IO
specifies the APPROVE_IO field to be assigned to all history comments that are
missing an approve field. An error occurs if you give -apv but no comments are
missing the approve field. (See "List of History Comment Fields" above for valid
APPROVE_IDs.) This control argument is used when only the installer knows
what the approval identifier is; e.g., only he knows what the MECR number is
because this number is assigned at installation time. The maximum length of this
field is 24 characters. If the AUDIT_DATE and AUDIT_PERSON_IO fields are
missing when you use -apv, an error message is issued but processing continues.

-input_approve, -iapv
prompts for an APPROVE_IO. This is a single-line field value.

-input_install, -Un
prompts for the installation identifier. (Default)

3-432.24 AG92-06A

11/86

-install INST ALL_ID, -in INST ALL_ID
specifies an identifier associated with installing the changed module into execution
libraries. This identifier is placed in all history comments that are missing the
install field. An error occurs if every comment has an install field. See "List of
History Comment Fields" above for valid INSTALL_IDs. The maximum length of
this field is 24 characters.

-no_approve. -napv
specifies that an APPROVE_ID is not being entered. (Default)

CONTROL ARGUMENTS

-critical_fix. -cfix
specifies that critical-fix history comments are allowed in the program. All
comments following the first that contains critical-fix field values must also
contain critical-fix history comments.

-errors. -er
displays history comments that fail the installation checks. (Default)

-no_errors. -ner
suppresses display of failing history comments. (Default, for the active function)

-original ori~path. -orig ori~path
specifies the pathname of an earlier module copy that is already installed in the
software library. This library copy is compared with the version being submitted
(see "Notes" below). You can give an archive pathname and use the equal
convention.

-validate RTN. -vdt RTN
validates user-supplied fields in the history comment, using a user-supplied
validation routine. RTN must be a virtual entrypoint name acceptable to
cv_entry_. If you give no -vdt, the default is to validate using the hcom_site_validate_
subroutine. if your site has provided it. or the hcom_default_ validate_ subroutine
provided with hcom.

NOTES

The install operation performs the following steps:

1. Make a working copy of history comments in the new module.

3-432.25 AG92-D6A

history_comment history_comment

11/86

2. If -original is given, check comments in the original module against those in the
working copy:

a) check for comments in the original that do not appear in the working copy.
This indicates changes that have been backed out If any are found, print an
error and stop further checking.

b) copy the install identifier from comments in the original module into
corresponding comments in the working copy that are missing this identifier.
This may occur when the developer makes changes to a modified version of the
program before. that version is installed in the libraries.

3. If -approve or -input_approve is given, check for comments in the working copy
that are missing the approve field. If none are found, report an error and stop
further checking. If the AUDIT_DATE and AUDIT_PERSON_ID fields are missing,
an error message is issued but processing continues.

4. If -install or -input_install is given, check for comments in the copy working that
are missing the install field. If none are found, report an error and stop further
checking. This indicates that the developer forgot to add a history comment when
he modified the module.

5. Check for completeness of summary and audit fields in all history comments. If
the AUDIT_DATE and AUDIT_PERSON_ID fields are missing, an error message is
issued but processing continues. If incomplete or erroneous entries are found, report
an error and stop further checking.

6. If -approve or -input_approve is given, place the approve identifier in the working
copy's new history comments. If -install or -input_install is given, place the
installation identifier in the working copy's new history comments.

7. Reformat the new history comments in the working copy.

8. If no error occurred, replace history comments in the new module with the
working comments built by the install operation.

Operation: replace_field, rpf

SYNTAX AS A COMMAND

hcom rpf path comment_specs -control_args

FUNCTION

replaces existing comment fields in selected history comments.

3-432.26 AG92-06A

11/86

ARGUMENTS

path
is the name of a source code program that requires history comments. Include
the language suffix. You can give an archive pathname.

comment_specs
specify which history comment(s) are to be updated. (See "List of Comment
Specifiers" under the add_field operation.)

CONTROL ARGUMENTS FOR FIELD INPUT

Give at least one of the following control arguments:

-approve -input_summary
-audit -install
-input_approve -summary
-input-install

-approve APPROVE_ID. -apv APPROVE_ID
replaces the APPROVE_ID field. The maximum length of this field is 24
characters. (See "List of History Comment Fields" above for valid APPROVE_IDs')

-audit, -aud
puts the user's Person_id in the AUDIT_PERSON_ID field.

-fill. -fi
sets fill mode on f or the summary field. In fill mode text, words are moved
from line to line in such a way that the last word does not extend past the right
margin. (Default)

-input_approve, -iapv
prompts for a new APPROVE_ID. This is a single-line field value.

-input_install, =iin
prompts for the INSTALL_ID. This is a single-line field.

-input_summary, -ism
prompts you for a new summary field. This is a multiline field.

-install INST ALL_ID, -in INST ALL_ID
specifies an identifier associated with installing the changed module into execution
libraries. (See "List of History Comment Fields" above for a description of valid
INSTALL_IDs.) The maximum length of this field is 24 characters.

-no_approve, -napv
does not replace the APPROVE_ID field nor prompts for missing approve fields.
(Default)

3-432.27 AG92-()6A

11/86

-no_audit, -naud
does not add the AUDIT_PERSON_ID field. (Default)

-nofill, -nfi
sets the fill mode off for the summary field.

-no_install, -nin
does not set the INST ALL_ID field nor prompts for missing install fields.
(Default)

-no_summary, -nsm
does not replace the summary field. (Default)

-summary TEXT, -sm TEXT
replaces the text describing the change. If the text contains spaces, quotes,
parentheses, etc., enclose it within quotes.

CONTROL ARGUMENTS

-critical_fix, -cfix
specifies that critical-fix history comments are allowed in the program. All
comments following the first that contains critical-fix field values must also
contain critical-fix history comments.

-original oriLpath, -orig oriLpath
specifies the pathname of an earlier version of the module. You can give an
archive pathname and use the equal convention.

-validate RTN, -vdt RTN
validates user-supplied fields in the history comment, using a user-supplied
validation routine. RTN must be a virtual entrYJX>int name acceptable to
cv_entry_. If you give no -vdt, the default is to validate using the hcom_site_validate_
subroutine, if your site has provided it, or the hcom_default_ validate_ subroutine
provided with hcom.

NOTES

If several history comments are selected, specified fields from the first selected
comment are returned or printed. followed by fields from the second selected
comment, etc. If the selected field is not present in a given history comment, then a
null string is returned for that field. Multiline field values are returned in a single
line (with newline characters replaced by a space) as a quoted string.

3-432.28 AG92-06A

11/86

SYNTAX AS A COMMAND

hd

SYNTAX AS AN ACTIVE FUNCTION

[hd]

FUNCTION

returns the patbname of your home directory (usually of the form
> user _dir _dir> Project_id> Person_idle

Name: hour

SYNTAX AS A COMMAND

hour {time_string} {-control_arg}

SYNTAX AS AN ACTIVE FUNCTION

[hour {time string} {-control_arg}]

FUNCTION

returns the one- or two-digit number of an hour of the day, from 0 to 23. The
format string to produce this is "AZ9Hd".

ARGUMENTS

time_string
indicates the hour about which information is desired. If you supply no
time_string, the current hour is used. The time string is concatenated to form a
single argument even if it contains spaces; you need not quote it. (See Section 1
for a description of valid time_string valUes.)

CONTROL ARGUMENTS

-zone STR
STR specifies the zone that is to be used to express the result (Default: the
process default)

hour

3-432.29 AG92-D6A

hour

11/86

NOTES

Use the print_time_defaults command to display the default zone. Use the
display_time_info command to display a list of all acceptable zone values.

Name: how_many_users, hmu

SYNTAX AS A COMMAND

hmu {-control_args} {optional_args}

FUNCTION

tells you how many users are currently logged in on the system.

3-432.30 AG92-06A

CONTROL ARGUMENTS

-absentee, -as
prints load information on absentee users only, even if the absentee facility is not
running.

-brief, -bf
suppresses the printing of the headers. Use it only together with one of the
optional arguments.

-long, -lg
prints additional information including the name of the installation, the time the
system was brought up, the time of the next scheduled shutdown, the time of the
last shutdown or crash, and load information on absentee users.

LIST OF OPTIONAL ARGUMENTS
list only selected users and can be one of the following:

Person_id
lists a count of logged in users with the name Person_id .

. Project_id
lists a count of logged 'in users with the project name Project_id.

Person_id.Project_id
lists a count of logged in users with the name Person_id and the project name
Project_id.

NOTES

In addition to how many users are currently logged in, hmu prints the name of the
system, the current load on the system, the maximum load, and, if the absentee
facility is running, the number of absentee users and the maximum number of
absen tee users.

If you invoke this command without any arguments, basic summary information is
printed (see "Examples.")

When you select hmu with optional arguments, absentee counts are denoted by an
asterisk (*).

You are permitted up to 20 classes of selected users.

3-433 AG92-06

EXAMPLES

To print summary information, type

hmu
Multics MR10.l, load 15.0/50.0; 15 users, 6 interactive,

9 daemons.

To print summary information on absentee users, type

hmu -as
Absentee users 0/2

To print additional information, type

hmu -lg
Mu1tics 10.1: peQ, Phoenix, Az.
Load = 13.0 out of 110.0 Units; users = 13,

4 interactive, 9 daemons.
Absentee users = 0 background;
Max background users = 2
System up since 02/02/83 0908.1
Last shutdown was at 01/31/83 02304.1

To print brief information about the SysDaemon project, type

hmu -bf .SysDaemon
.SysDaemon = 3 + 0*

To print brief information about the user Smith, type

hmu -bf Smith
Sm i th = 1 + l)'c

Name: hunt

SYNTAX AS A COMMAND

hunt name {path} {-c~ntrol_args}

SYNTAX AS AN ACTIVE FUNCTION

[hunt name {path} {-contro1_args}]

3-434

hunt

AG92-06

hunt

FUNCTION

searches a specified subtree of the hierarchy for all occurrences of a namecj segment
that is either freestanding or included in an archive file.

ARGUMENTS

name

path

is the name of a segment for which hunt is to search. The star convention is
allowed.

is the pathname of a directory to be interpreted as the root of the subtree in
which to search for the specified segment(s). If you don't supply path. the
subtree rooted at the current working directory is searched.

CONTROL ARGUMENTS

-all, -a
reports on finding links. directories. and segmen~.

-archive. -ac
looks inside archives for components whose names match the name argument
(Default)

-first
stops searching as soon as the first occurrence of the selected segment is found.
(Default to return all occurrences)

-no_archive, -nac
does not look inside archives and is therefore faster.

NOTES

This command displays the type of entry found (segment, directory, or link), followed
by the entry itself, and a total of the number of occurrences found.

If archive components are being examined, the matching components are reported
before added names on the archive segment

NOTES ON ACTIVE FUNCTION

As an active function, hunt returns a string of pathnames separated by spaces. Archive
components are returned as archive_path::component_name.

hunt

3-435. AG92-06

SYNTAX AS A COMMAND

hunt_dec {path} {-control_args}

FUNCTION

searches a specified subtree of the hierarchy for all PL/I object segments that are
either freestanding or included in an archive file.

ARGUMENTS

path
is the pathname of a directory to be interpreted as the root of the subtree in
which to search and classify PL/I object segments. If you don't specify path, the
working directory is assumed.

CONTROL ARGUMENTS

-aligned_decimal path, -ad path
creates the ASCII segment listing the absolute pathnames of PL/I object segments
and archive segments containing components classified as "aliS!1ed decimal"· with
path suffixed with "hd".

-unaligned_decimal path, -ud path
creates the ASCII segment listing the absolute pathnames of PL/I object segments
and archive segments containing components classified as "unaligned decimal" with
path suffixed with "hd".

NOTES

Each PL/I object segment is classified according to its use of arithmetic decimal
instructions and how these instructions access the data. The three classes are "no
decimal", "aligned decimal", and "unaligned decimal".

This command aids you when PL/I programs compiled using '~unaligned decimal" are
to be recompiled using the newer PL/I compiler implementing packed decimal. which
was part of Multics Release 8.0. This was an incompatible change because the layout
of variables containing the unaligned and decimal attributes was changed. Therefore,
find those PL/I programs that used "unaligned decimal" so that the appropriate
program and data base changes can be made bef ore recompiling the program using the
new compiler.

If you specify no control arguments, two ASCII segments are created in the working
directory. One segment, aligned_decimal.hd, is a list of the absolute pathnames of
PL/I object segmen~ and archive segments containing PL/I object segments classified
as "aligned decimal". The absolute pathname of the archive segment is followed by a

3-436 AG92-o6

space, then by the name of the archive's component classified as "aligned decimal".
This occurs for each component of the archive that is classified as such. Another
segment, unaligned_decimal.hd, is created in the working directory for the class
"unaligned decimal". No segment is created for the class "no decimal".

This command uses the following algorithm to classify PL/I object segments. The text
section is scanned for EIS decimal arithmetic instructions generated by the PL/I
compiler. If none are found, the object segment is classified as "no decimal". If some
are found, they and their descriptors are examined f or address modification and
nonzero digit offsets. If either is present, the object segment is classified as
"unaligned decimal"; otherwise, it is classified as "aligned decimal".

The validity of the classification algorithm rests upon knowledge of how the PL/I
compiler generates machine code. Below is a table listing the reliability of the
algorithm for the different classifications.

CLASSIFICATION

aligned decimal

unaligned decimal

no decimal

RELIABILITY

Always correct.

Fails when an unaligned decimal variable falls on a
word boundary. For example,

dcl 1 record aligned,
2 i tern 1 fixed bin (17) ,
2 itern2 fixed dec (3) unaligned;

The variable. item2, is unaligned decimal. But. since it
is located one word from the beginning of the
structure, the instruction accessing it appears to be
accessing aligned decimal data.

If fixed decimal variables are present in the source
program but are never referenced or do not have the
initial attiibute, no EIS fixed decimal instructions are
generated by the compiler.

Most of the time hunt_dec identifies correctly PL/I object segments that use unaligned
decimal data while letting a few segments slip by misclassified as aligned decimal or
no decimal.

This command forces access to all segments in its search path. If unable to access a
segment, it bypasses the segment without classifying it.

3-437 AG92-06

if

Name: if

SYNTAX AS A COMMAND

i f [E X PRJ - the n LIN E 1 { - e 1 s eLI N E 2}

SYNTAX AS AN ACTIVE FUNCTION

[if [EXPR] -then STRl {-else STR2}]

FUNCTION

conditionally executes one of two command lines depending on the value of an active
string. As an active function, returns one of two character strings to the command
processor depending on the value of an active string.

ARGUMENTS

EXPR
is the active string, which must evaluate to either "true" or "false".

LINE!
is the command line to execute if EXPR evaluates to "true". If the command line
contains any command processor characters, enclose it in quotes.

STRI
is returned as the value of the if active function if the EXPR evaluates to "true".

LINE2
is the command line to execute if EXPR evaluates to "false". If omitted and
EXPR is "false", no additional command line is executed. If the command line
contains any command processor characters, enclose it in quotes.

STR2
is returned as the value of the if active function if the EXPR evaluates to
"false". If omitted and the EXPR is "false", a null string is returned.

!J!
11

3-438 AG92-06

immediate_messages

11/86

Name: immediate_messages, im

SYNT AX AS A COMMAND

im {mbx_specification}

FUNCTION

restores the immediate printing of interactive messages and notifications.

ARGUMENTS

m bx_specif ication
specifies the mailbox on which the printing of messages is to be restored. If not I
given, the user's default mailbox (>udd>Project>Person>Person.mbx) is used.

LIST OF MBX SPECIFICATIONS

-log
specifies the user's logbox and is equivalent to

-mailbox >udd>Project_id>Person_id>Person_id.sv.mbx

-mailbox path. -mbx path
specifies the pathname of a mailbox. The suffix .mbx is added if necessary.

-save path. -sv path
specifies the pathname of a savebox. The suffix .sv.mbx is added if necessary.

-user STR
specifies either a user's default mailbox or an entry in the system mail table.

SIR
is any noncontrol argument and is first interpreted as -mailbox STR; if no
mailbox is found, STR is then interpreted as -save STR; if no savebox is found.
it is interpreted as -user STR.

NOTES

This command cancels defer_messages, but does not cancel any options that may have
been specified by accept_messages (see accept_messages and print_messages).

3-439 AG92-06A

indent

Name: indent, ind

SYNTAX AS A COMMAND

ind oldpath {newpath} {-control_args}

FUNCTION

improves the readability of a PL/I source segment by indenting it according to a set
of standard conventions described below.

ARGUMENTS

oldpath
is the pathname of the input source segment Source segments with suffixes for
PL/I, create_data_segment, and reductions are recognized. If the segment does not
have a recognized suffix, indent uses a suffix of .pll, name. cds, or name.rd, in
that order.

newpath
is the pathname of the output source segment. The output segment must have the
same suffix as the input segment If you omit newpath, the indented copy of the
program replaces the original one in oldpath. If errors are detected during
indentation and you don't give newpath, however, the original copy is not
replaced; instead, the pathname of the temporary file containing the indented CQpy
is printed in an error message.

CONTROL ARGUMENTS

-brief, -bf
suppresses warning comments on invalid or non-PL/I characters found outside of
a string or comment; such characters are never removed. When you select -bf.
those errors whose warning messages are suppressed do not prevent the original
copy from being replaced.

-comment STR, -cm STR
sets the comment column to STR. Comments are lined up in this column unless
they occur in the beginning of a line or are preceded by a blank line. (Default
61, if you omit -em)

-indent STR. -ind STR
sets indentation for each level to STR. Each do, begin, proc, and procedure
statement indents additional STR spaces until the matching end statement is
encountered. (Default: five, if you omit -ind)

-lmargin STR, -1m STR
sets the left margin (indentation for normal program statements) to STR. (Default:
11, if you omit -1m)

indent

3-440 AG92-06

indent

11/86

NOTES ON CONVElt/TIONS

Declaration statements are indented five spaces for dcl declarations and 10 for declare
declarations. Identifiers appearing on different lines of the same declare statement are
lined up under the first identifier on the first line of the statement Structure
declarations are indented according to level number; after level two, each additional
level is indented two additional spaces.

An additional level of indentation is also provided for the then clause of an if
statement; else clauses are lined up with the corresponding if. Statements continuing
over more than one line have an additional five spaces of indentation for the second
line and all succeeding ones.

Multiple spaces are replaced by a single space except within strings or for nonleading
spaces and tabs in comments. Trailing spaces and tabs are removed from all lines.
Spaces are inserted before left parentheses, after commas, and around the constructs =,
->, <=, >=, and "=. Spaces are deleted if they are found after a left parenthesis or
before a right parenthesis. Tabs are used wherever possible to conserve storage in the
output segment

Parentheses are counted and balanced at every semicolon. If they do not balance or if
the input segment ends in a string or comment, a warning message is printed.
Language keywords (do, begin, end, etc.) are recognized only at parenthesis level zero,
and most keywords are recognized only if they appear to begin a statement

This command treats comments that begin with / ****" as unindentable. These
comments are copied directly into the indented source program without reformatting or
indentation. This follows the format_pll command convention for identifying comments
that are not to be reformatted.

NOTES ON RESTRICTIONS

The only case in which indent splits a line is when lines are longer than 350
characters, since they overflow indent's buffer size.

Labeled end statements do not close multiple open do statements.

This command assumes that the identifiers begin, end, procedure, proc, declare, and
del are reserved words when they appear at the beginning of a statement If the
input contains a statement like

do = do + 1;

indent interprets it to mean that the statement delimits a do group and does not
inden t correctly.

Structure level numbers greater than 99 do not indent correctly.

indent

3-441 AG92-Q6A

index

Name: index

SYNTAX AS A COfv1MAND

index STRA STRB

SYNTAX AS AN ACTIVE FUNCTION

[index STRA STRB]

FUNCTION

returns an integer representing the character position in STRA where STRB begins. If
STRB does not occur in STRA, 0 is returned.

EXAMPLES

string [index abcdefhgij ef]
5
string [index "Now is the time" hte]
o

Name: index_set

SYNTAX AS A COMMAND

index_set {Fl} B1 {1l} ••• Fn Bn In

SYNTAX AS AN ACTIVE FUNCTION

[index_set {Fl} B1 {Il} •.. Fn Bn In]

FUNCTION

returns one or more integers, separated from each other by spaces.

ARGUMENTS

F
is the first number of a set and must be an integer. This argument is optional
(see "Examples").

B
is a bound on the set and must be an integer.

3-442 AG92-06

I
is the increment between the numbers of a set, either a positive or negative
integer. If F > B, then I is assumed to be a negative integer. Otherwise. I is
assumed to be positive. This argument is optional.

NOTES

If more than one F-B-I triple is specified. F, B, and I must be specified in each
triple. If only one F-B-I triple is specified, I or both I and F can be omitted. I
and F are assumed to be 1 if omitted.

EXAMPLES

The following interactions illustrate the index_set active function:

string [index_set 6]
1 2 345 6
string [index set 5 21 3]
5 8 11 14 17 20
string [index_set 0 6 2]
o 246
string [index set 4 0]
43210 -
string [index_set 0]
1 0
create fi1e_([picture 99 [index_set 5 21 3]])

listfile_*

Segments = 6. Lengths = o.

r w 0 f 1e_20
r w 0 f le_17
r w 0 f le 14 -r w 0 f le 1 1
r w 0 f le::08
r w 0 f le_05

The following interactions illustrate command usage:

index set 4 20 5
4 9 14 19
Inaex set 4 20 5 8 30 6
4 9 14 19 8 14 20 26
index set 5
1 2 3-4 5
index set 5 2
5 4 3-2

3-443 AG92-()6

initiate

11/86

Name: initiate, in

SYNTAX AS A COMMAND

in path {ref_names} {-control_args}

FUNCTION

initiates segments or multisegment files (MSFs).

ARGUMENTS

path
is the pathname of a segment or MSF. You can't use the star convention.

ref_names
are optional reference names by which to initiate the file. If you specify no
ref_names, the file is initiated by the entryname portion of path.

CONTROL ARGUMENTS

-all, -a
initiates the file by all its names.

-brief, -bf
does not print a message giving the segment number. (Default)

-chase
used with -a on a link pathname, initiates the target file by all the names on the
target segment. (Def aul t)

-force, -fc
terminates each reference name first if it is already known.

-long, -lg
prints a message giving the segment number assigned.

-no_chase
used with -a on a link pathname, initiates the target file by all the names en the
link.

-no_f orce, -nf c
prints an error message if a ref_name is already known. (Default)

ACCESS REQUIRED

Nonnull.

initiate

3-444 AG92-06A

initiate

11/86

!vOiES

When you use initiate to explicitly make known a segment by some reference name,
the first reference to that name accesses the initiated segment instead of searching
among the search directories for a segment by that name. (For a discussion of search
rules, see the Programmer's Reference Manual.)

If you give no ref_names, the segment is made known by the entryname part of the
pathname; if you give ref _names, the entryname of the segment is not initiated, but
the specified reference names are. If the pathname is a single-element name, the
directory assumed is your working directory.

Initiating a MSF involves initiating component 0 of the MSF with the reference names
specified.

initiate

3-444.1 AG92~06A

This page intentionally left blank.

11/86 AG92-06A

initiate

If you cannot initiate a ref_name, an error message is printed and the command
continues initiating the other names.

To make a segment known. you must have nonnull access to that segment

EXAMPLES

The command line

in >udd>Demo>JKeats>gamma x y

makes the segment >udd>Demo>JKeats>gamma known, initiating the names x and y.

The command line

in pop

makes the segment pop in your working directory known arid initiates it with the
ref erence name pop.

The command line

in xx u v -long

makes the segment xx in your working directory known, initiates the reference names
u and v, and prints out the assigned segment number.

Name: io_call, io

SYNTAX AS A COMMAND

io operation switchname {args}

SYNTAX AS AN ACTIVE FUNCTION

[io operation switchname {args}]

FUNCTION

performs diverse operations on specified I/O switches and returns a result

ARGUMENTS

operation
designates the operation to be performed. See "List of Operations" below for a
description of each operation, its command syntax line, and specific application.

3-445 AG92-06

*

switchname

args

is the name of the I/O switch through which the operation is performed.

can be one or more arguments, depending on the particular operation to be
performed.

LIST OF OPERATIONS

Unless otherwise specified, if a control block for the I/O switch does not already
exist, an error message is printed on error_output and the operation is not performed.
If the requested operation is not supported for the switch's attachment and/or
opening. an error message is printed on error_output

Differences between command and active function invocation are described under the
individual operations.

The explanations of the operations cover only the main points of interest and, in
general, treat only the cases where the I/O switch is attached to a file or device. For
details see the descriptions of the iox_ subroutine and the I/O modules in the
Subroutines manual, and the section on I/O facilities in the Programmer's Reference
manual.

Operation: attach

SYNTAX AS A COMMAND

io attach switchname attach_description

FUNCTION

attaches the I/O switch using the designated I/O module. If a control block for the
I/O switch does not already exist, one is created.

ARGUMENTS

attach_description
is the concatenation of modulename and args separated by blanks. I t must
conform to the requirements of the I/O module. If the I/O modulename is
specified by a pathname, it is initiated with a reference name equal to the
entryname. If the entryname or reference name does not contain a dollar sign,
the attachment is made by calling modulename$modulenameattach. If you supply a
$, the entry point specified is called. (See "Entry Point Names" in the
Programmer's Reference manual.)

3-446 AG92-()6

Operation: attach_desc

SYNTAX AS A COMMAND

io attach_desc switchname

SYNTAX AS AN ACTIVE FUNCTION

rio attach_desc switchname {-control_arg}]

FUNCTION

prints or returns the attach description of the switch, quoted unless you give
-no_quote.

CONTROL ARGUMENTS

-no_quote, -nq
does not enclose the returned data in quotes.

Operation: attached

SYNTAX AS A COMMAND

io attached switchname

SYNTAX AS AN ACTIVE FUNCTION

rio attached switchname]

FUNCTION

prints or returns true if the switch is attached, false otherwise.

Operation: close

SYNTAX AS A COMMAND

io close switchname

FUNCTION

closes the I/O switch.

3-447 AG92-06

Operation: close_file

SYNTAX AS A COMMAND

io close_file switchname {args}

FUNCTION

closes the I/O switch with the specified description. The close_file description is the
concatenation of all arguments separated by blanks. It must conform to the
requirements of the I/O module.

ARGUMENTS

args
can be one or more arguments, depending on what is permitted by the particular
I/O module.

Operation: closed

SYNTAX AS A COMMAND

io closed switchname

SYNTAX AS AN ACTIVE FUNCTION

[io closed switchname]

FUNCTION

prints or returns true if the switch is closed, false otherwise.

Operation: control

SYNTAX AS A COMMAND

io control switchname order {args}

SYNTAX AS AN ACTIVE FUNCTION

[io control switchname order {args}]

3-448 AG92-06

FUNCTION

applies only when the I/O switch is attached via an I/O module that supports the
control I/O operation. The exact format of the command line depends on the order
being issued and the I/O module being used. For more detailst see "Control
Operations from Command Level" in the appropriate I/O module. If the I/O module
supports the control operation and the paragraph just referenced does not appear.
assume that only control orders that do not require an info_structure can be
performed with the io_call command. This is true because this command/active
function uses a null info_ptr. (See the iox_$control entry. point in the Subroutines
manual and "Performing Control Operations from Command Level" and the I/O
module description in the Programmer's Reference Manual.)

The active function returns a value that depends on the I/O module and the order
specified.

ARGUMENTS

order
is one of the orders accepted by the I/O module used in the attachment of the
I/O switch.

args
are additional arguments dependent upon the order being issued and the I/O
module being used.

Operation: delete_record, delete

SYNTAX AS A COMMAND

io delete switchname

FUNCTION

deletes the current record in the file to which the I/O switch is attached. The
current record is determined as in rewrite_record.

Operation: destroy _iocb

SYNTAX AS A COMMAND

io destroy_iocb switchname

3-449 AG92-06

FUNCTION

destroys the I/O switch by deleting its control block. Be sure the switch is detached
before using this command. Any pointers to the I/O switch become invalid.

Operation: detach

SYNTAX AS A COMMAND

io detach switchname {args}

FUNCTION

detaches the I/O switch with the specified description. The detach description is the
concatenation of all arguments separated by blanks. It must conform to the
requirements of the I/O module.

ARGUMENTS

args
can be one or more arguments, depending on what is permitted by the particular
I/O module.

NOTES

If there are no arguments after switchname, this request is synonymous with the
detach_iocb request. This means that if you supply no detach description on the
command line, detach acts essentially as a short name for detach_iocb.

Operation: detach_iocb

SYNTAX AS A COMMAND

io detach_iocb switchname

FUNCTION

detaches the I/O switch.

Operation: detached

SYNTAX AS A COMMAND

io detached switchname

3-450 AG92-06

SYNTAX AS AN ACTIVE FUNCTION

[io detached switchname]

FUNCTION

prints or returns true if the switch is detached, false otherwise.

Operation: find_iocb

SYNTAX AS A COMMAND

io find_iocb switchname

SYNTAX AS AN ACTIVE FUNCTION

[io find_iocb switchname]

FUNCTION

prints or returns the location of the control block for the I/O switch. If it does not
already exist, the control block is created.

Operation: get_chars

SYNTAX AS A COMMAND

io get_chars switchname {N} {-control_args}

SYNTAX AS AN ACTIVE FUNCTION

[io get_chars switchname {N} {-control_args}]

FUNCTION

reads the next N characters from the file or device to which the I/O switch is
attached.

ARGUMENTS

N
is a decimal number greater than zero specifying the number of characters to be
read.

3-451 AG92-06

11/86

CONTROL ARGUMENTS

-allow_newline, -alnl
does not add to, nor delete from, the end of the line any newline character.
(Default, when you select -segment)

-append_newline, -apnl
adds a newline character to the end of the line if one is not present (Default,
when you don't choose -segment)

-lines
specifies that the offset, if given, is measured in lines rather than in characters.
This control argument has meaning only if you also supply -segment; ~ou can't
use it with the active function.

-no_quote, -nq
returns the data unquoted. (Default for active function only)

-remove_newline, -rmnl
deletes the newline character, if present, from the end of the line. (Default for
active function)

-segment path {offset}, -sm path {offset}
specifies that the data read from the I/O switch is to be stored in the segment
given by path. You can optionally describe the location at which to begin writing
in path with the offset parameter. This is normally specified as a character offset
(i.e., the number of characters to skip over before storing the new data in the
segment). For example, an offset of 0 causes the new data to overwrite the entire
file. When you also give -lines, then offset is a line offset (i.e., the number of
lines to skip over before storing the new data in the segment). For example, an
offset of 1 line begins storing data at the second line of the file. If you omit
offset, new data is appended to the end of the segment You can't use this
control argument with the active function.

NOTES

The characters read are written on user_output if you specify no -segment or stored
in a segment if you specify -segment.

The active function returns the data read as a quoted string, unless you specify
-no_quote. A trailing newline character i~ deleted. If you don't specify the maximum
number of characters N, the maximum segment size is assumed.

Operation: get_line

SYNTAX AS A COMMAND

io get_line switchname {N} {-control_args}

3-452 AG92-06A

11/86

SYNTAX AS AN ACTIVE FUNCTION

[io get line switchname {N} {-control_args}]

FUNCTION

reads the next line from the file or device to which the I/O switch is attached.

ARGUMENTS

N
is a decimal number greater than zero specifying the maximum number of
characters to be read.

CONTROL ARGUMENTS

-allow_neWline, -alnl
does not add to, nor delete from, the end of the line any newline character.
(Default, when you select -segment)

-append_newline, -apnl
adds a newline character to the end of the line if one is not present (Default,
when you choose no -segment)

-lines
specifies that the offset, if given, is measured in lines rather than in characters.
This control argument has meaning only if you also supply -segment; you can't
use it with the active function.

-no_quote, -nq
returns the data unquoted. (Default for active function only)

-remove_newline, -rmnl
deletes the newline character, if present, from the end of the line. (Default for
active function)

-segment path {offset}, -sm path {offset}
specifies that the data read from the I/O switch is to be stored in the segment
given by path. You can optionally describe the location at which to begin writing
in path with the offset parameter. This is normally specified as a character offset
(i.e., the number of characters to skip over before storing the new data in the
segment). For example, an offset of 0 causes the new data to overwrite the entire
file. When you also give -lines, then offset is a line offset (i.e., the number of
lines to skip over before storing the new data in the segment). For example, an
offset of 1 line begins storing data at the second line of the file. If you omit
offset, new data is appended to the end of the segment You can't use this
control argument with the active function.

3-453 AG92-06A

11/86

NOTES

If you give N and the line is longer than N, then only the first N characters are
read. The active function returns the data read as a quoted string, unless you give
-no_quote. A trailing newline character is deleted. If you don't give the maximum
number of characters N, the maximum segment size is assumed.

If you select no -segment, the line read is written onto the I/O switch user_output,
with a newline character appended if one is not present and if you have selected
neither -aInI nor -rmnl. If you select -segment, the line is stored in the segment
specified by path; if this segment does not exist, it is created. The bit count of the
segment is always updated to a point beyond the newly added data. If the segment
contains a trailing newline and you haven't selected -rmnl, that newline remains; if the
segment does not contain a trailing newline and you haven't selected -apnl, no newline
is appended.

Operation: io_module

SYNTAX AS A COMMAND

io i~_module switchname

SYNTAX AS AN ACTIVE FUNCTION

rio io_module switchname]

FUNCTION

prints or returns the name of the I/O module through which the switch is attached.

Operation: look_iocb

SYNTAX AS A COMMAND

io look_iocb switchname

SYNTAX AS AN ACTIVE FUNCTION

[io look_iocb switchname]

FUNCTION

prints, on user_output, the location of the control block for the I/O switch; if this
switch does not exist, an error is printed. The active function returns true if the
specified iocb exists, false otherwise.

3-454 AG92-06A

This page intentionally left blank.

11/86 AG92-06A

11/86

Operation: modes

SYNTAX AS A COMMAND

io modes switchname {string} {-control_arg}

3-454.1 AG92-06A

SYNTAX AS AN ACTIVE FUNCTION

rio modes switchname {string}]

FUNCTION

sets only new modes specified in string and then prints the old modes on user_output;
applies only when the I/O switch is attached via an I/O module that supports modes.
The active function performs the specified modes operation and returns the old modes.

ARGUMENTS

string
is a sequence of modes separated by commas. The string must not contain blanks.
See the description of the I/O module attached to the switch for a list of
acceptable modes.

CONTROL ARGUMENTS

-briet -bf
suppresses printing of the old modes.

NOTES

If the switch name is user_i/o, the command refers to the modes controlling your
terminal.

Operation: move_attach

SYNTAX AS A COMMAND

io move_attach switchname switchname2

FUNCTION

moves the attachment of the first I/O switch (switchname) to the second I/O switch
(switchname2). The original I/O switch is left detached.

ARGUMENTS

switchname2
is the name of a second I/O switch.

3-455 AG92-06

Operation: open

SYNTAX AS A COMMAND

io open switchname mode

FUNCTION

opens the I/O switch with the specified opening mode.

ARGUMENTS

mode
is one of the following opening modes:

direct_input, di
direct_output, do
direct_update, du
keyed_sequential_input, ksqi
keyed_sequential_output, ksqo
keyed_sequential_update, ksqu
sequential_input, sqi

Operation: open_desc

SYNTAX AS A COMMAND

io open_desc switchname

SYNTAX AS AN ACTIVE FUNCTION

[io open_desc switchname]

FUNCTION

sequential_output, sqo
sequential_input_output, sqio
sequential_update, squ
stream_input, si
stream_output, so
stream_in put_output, sio

prints or returns the current open description (stream_input, etc.), quoted.

Operation: open_file

SYNTAX AS A COMMAND

io open_file switchname mode {args}

3-456 AG92-o6

FUNCTION

opens the I/O switch with the specified opening mode and description. The open_file
description is the concatenation of all arguments separated by blanks. It must conform
to the requirements of the I/O module.

ARGUMENTS

mode
is one of the opening modes listed under open.

args
can be one or more arguments. depending on what is permitted by the particular
I/O module.

Operation: opened

SYNTAX AS A COMMAND

io opened switchname

SYNTAX AS AN ACTIVE FUNCTION

[io opened switchname]

FUNCTiON

prints or returns true if the switch is open, false otherwise.

Operation: position

SYNTAX AS A COMMAND

io position switchname type

SYNTAX AS AN ACTIVE FUNCTION

[io pos:t:on sw:tchname type]

FUNCTION

positions the file to which the I/O switch is attached.

3-457 AG92-G6

ARGUMENTS

type
can be one of the following:

bof
sets position to beginning of file.

eof
sets position to end of file.

forward N. fwd N. f N
sets position forward N records or lines (same as reverse -N).

reverse N, rev N, r N
sets position back N records (same as forward -N records). You can give any
other numeric argument or pair of numeric arguments, but its function
depends on the I/O module being used and cannot be implemented for all
I/O modules.

reverse N, rev N, r N

NOTES

If type is bof, the file is positioned to its beginning, so that the next record is the
first record (structured files) or the next byte is the first byte (unstructured files). If
type is eof, the file is positioned to its end; the next record (or next byte) is at the
end-of-file position. If type is forward or reverse, the file is positioned forwards or
backwards over records (structured files) or lines (unstructured files). The number of
records or lines skipped is determined by the absolute value of N. The active function
returns true if it succeed, false otherwise.

In the case of unstructured files, the next-byte position after the operation is at a
byte immediately following a newline character (or at the first byte in the file or at
the end of the file). The number of newline characters moved over is the absolute
value of N.

If the I/O switch is attached to a device, you are only allowed forward skips; this
discards the next N lines input from the device.

Operation: print_iocb

SYNTAX AS A COMMAND

io print_iocb switchname

3-458 AG92-Qt

11/86

FUNCTION

prints, on user_outpu~ all the data in the control block for the I/O switch, including
all pointers and entry variables.

Operation: put_chars

SYNTAX AS A COMMAND

io put_chars switchname {string} {-control_args}

FUNCTION

outputs a character string or an entire segment to a specified I/O switch.

ARGUMENTS

string
can be any character string.

CONTROL ARGUMENTS

-allow_newline, -alnl
does not add to, nor delete from, the end of the line any newline character.

-append_newline; -apnl
adds a newline character to the end of the line if one is not present (Default)

-lines
specifies that the offset and length operands of -segment are measured in lines
rather than in characters. This control argument has meaning only if you also
supply -segment

-remove_newline, -rronl
does not append a newline character to the end of the output string or segment
even if one is not present at the end.

-segment path {{offset} length}, -sm path {{offset} length}
specifies that the data for the output operation is to be found in the segment
specified by path. You can optionally describe the location and length of the data
with offset and length parameters. These are normally specified as a character
offset (i.e., 0 identifies the first character of the segment) and character length.
When you also give -lines, they are specified as a line offset and line count If
you give no offset, 0 is assumed. If you give no length and offse~ the entire
segment is used.

-string STR, -str STR
specifies an output string that can have a leading hyphen.

3-459 AG92-06A

11/86

NOTES

The string argument and -segment are mutually exclusive. If you supply a string, the
contents of the string are output to the I/O switch. If you supply -segment, the data
is taken from the segment specified by path, at the offset and length given.

If the I/O switch is attached to a device, io_call transmits the characters from the
string or the segment to the device. If the I/O switch is attached to an unstructured
file, the data is added to the end of the file.

Operation: read_key

SYNTAX AS A COMMAND

io read_key switchname

SYNTAX AS AN ACTIVE FUNCTION

[io read key switchname {-control arg}]

FUNCTION

prints, on user_output, the key and record length of the next record in the indexed
file to which the I/O switch is attached. The file's position is not changed. The
active function returns the value of the key, quoted, unless you select -no_quote.

CONTROL ARGUMENTS

-no_quote, -nq
does not enclose the returned data in quotes. Data containing spaces is quoted by
default

Operation: read_length

SYNTAX AS A COMMAND

io read_length switchname

SYNTAX AS AN ACTIVE FUNCTION

[io read_length switchname]

FUNCTION

prints, on user_output, the length of the next record in the structured file to which
the I/O switch is attached. The file's position is not changed. The active function
returns the length of the next record, in bytes.

3-460 AG92-06A

11/86

Operation: read_record, read

SYNTAX AS A COMMAND

io read switchname {N} {-control_args}

SYNTAX AS AN ACTIVE FUNCTION

[io read switchname {N} {-control_args}]

FUNCTION

reads the next record from the file to which the I/O switch is attached into a buffer
of length N ..

ARGUMENTS

N
is a decimal integer greater than zero specifying the size of the buffer to be be
used.

CONTROL ARGUMENTS

-allow_newline, -alnl
does not add to, nor delete from, the end of the line any newline character.
(Default for command)

-append_newline, -apnl
adds a newline character to the end of the line if one is not present

-lines
specifies that the offset, if given, is measured in lines rather than in characters.
This control argument has meaning only if you also supply -segment; you can't
use it with the active function.

-no_quote, -nq
returns the data unquoted. (Default for active function only)

-remove_newline, -rmnl
deletes the newline character, if present, from the end of the line. (Default for
active function)

*

3-461 AG92-06A

11/86

-segment path {offsetl9 -sm path {offset}
specifies that the data read from the I/O switch is to be stored in the segment
given by path. You can optionally describe the location at which to begin writing
in path with the offset parameter. This is normally specified as a character offset
(i.e., the number of characters to skip over before storing the new data in the
segment). For example, an offset of 0 causes the new data to overwrite the entire
file. When you also give -lines, then offset is a line offset (i.e.9 the number of
lines to skip over before storing the new data in the segment). For example, an
offset of 1 line begins storing data at the second line of the file. If you omit
offset, new data is appended to the end of the segment You can9t use this
control argument with the active function.

NOTES

The characters read are written on user_output if you specify no -segment or stored
in a segment if you specify -segment

The active function returns the data read as a quoted string, unless you give
-no_quote. A trailing newline character is deleted. If you don9t give the maximum
number of characters N. the maximum segment size is assumed.

Operation: rewrite_record, rewrite

SYNTAX AS A COMMAND

io rewrite switchname {string} {-control_args}

FUNCTION

replaces the current record in the file to which the i/O switch is attached.

ARGUMENTS

string
is any character string.

CONTROL ARGUMENTS

-allow_newline, -alnl
does not add to, nor delete from. the end of the line any newline character.
(Default, when you select -segment)

-append_newline, -apnl
adds a newline character to the end of the line if one is not present.

3-462 AG92-()6A

11/86

-lines
specifies that the offset and length operands of -segment are measured in lines· I
rather than in characters. This control argument has meaning only if you also I
supply -segment I

-no_quote, -nq
returns the data unquoted. (Active function usage only)

-remove_newline, -rmnl
deletes the newline character, if present, from the end of the line. (Default if
you give no -segment)

-segment path {{offset} length}, -sm path {{offset} length}
specifies that the data for the output operation is to be found in the segment
specified by path. You can optionally describe the location and length of the data
with offset and length parameters. These are normally specified as a character
offset (i.e., 0 identifies the first character of the segment) and character length.
When you also give -lines, they are specified as a line offset and line count If
you give no offset, 0 is assumed. If you give no length and offset, the entire
segment is used.

-string STR, -str STR
specifies an output string that can have a leading hyphen.

NOTES

The string argument and -segment are mutually exclusive. If you supply a string, the
contents of the string are output to the I/O switch. If you supply -segment, the data
is taken from the segment specified by path, at the offset and length given.

The current record must have been defined by a preceding read_record. seek_key, or
position operation as follows:

read_record
the current record is the last rer-..,ord read.

seek_key
the current record is the record with the specified key.

position
the current record is the one preceding the record to which the file was
positioned.

Operation: seek_key

SYNTAX AS A COMMAND

io seek_key switchname key

3-463 AG92-06A

11/86

SYIVTAX AS AN ACTIVE FUNCTION

rio seek_key switchname key]

FUNCTION

positions the indexed file to which the I/O switch is attached to the record with the
given key. The record's length is printed on user_output Trailing blanks in the key
are ignored. The active function returns true if the key exists, false otherwise.

ARGUMENTS

key
is a string of no more than 256 ASCII characters. You can use the null string
("") as a key.

NOTES

If the file does not contain a record with the specified key, it becomes the key for
insertion. A following write_record operation adds a record with this key.

Operation: test_mode

SYNTAX AS A COMMAND

io test_mode switchname mode

SYNTAX AS AN ACTIVE FUNCTION

[io test_mode switcnname mode]

FUNCTION

perf orms a modes operation and prints or returns true if mode appears in the mode
string, false if "mode appears.

Operation: valid_mode

SYNTAX AS A COMMAND

io valid_mode switchname mode

SYNTAX AS AN ACTIVE FUNCTION

rio valid_mode switchname mode]

3-464 AG92-()6A

11/86

FUNCTION

performs a modes operation and prints or returns true if either mode or I\mode
appears in the mode string, false otherwise.

Operation: valid_op

SYNTAX AS A COMMAND

io valid_op switchname operation

SYNTAX AS AN ACTIVE FUNCTION

[io valid_op switchname operation]

FUNCTION

prints or returns true if the operation is defined on the switch.

List of Operations

close
control
delete_record
destroy _iocb
detach_iocb
find_iocb
get_chars
get_line
look_iocb
modes

Operation: write_record, write

SYNTAX AS A COMMAND

move_attach
open
position
put_chars
"A"'~ lTA'fr
~"",",,_A"'J

read_length
read_record
rewrite_record
seek_key
write_record

io write switchname {string} {-control_args}

FUNCTION

adds a record to the file to which the I/O switch is attached.

ARGUMENTS

string
is any character string.

3-465 AG92-06A

11/86

CONTROL ARGUMENTS

-allow_newline, -alnl
does not add to, nor delete from, the end of the line any newline character.
(Default when you select -segment)

-append_newline, -apnl
adds a newline character to the end of the line if one is not present

-lines
specifies that the offset and length operands of -segment are measured in lines
rather than in characters. This control argument has meaning only if you also
supply -segment

-no_quote, -nq
returns the data unquoted. (Active function usage only)

-remove_newline, -rmnl
deletes the newline character, if present, from the end of the line. (Default if
you give no -segment)

-segment path {{offset} length}, -sm path {{offset} length}
specifies that the data for the output operation is to be found in the segment
specified by path. You can optionally describe the location and length of the data
with offset and length parameters. These are normally specified as a character
offset (Le .• 0 identifies the first character of the segment) and character length.
When you also give -lines. they are specified as a line offset and line count If
you give no offset, 0 is assumed. If you give no length and offset, the entire
segment is used.

-string STR, -str STR
specifies an output string that can have a leading hyphen.

NOTES

The string argument and -segment are mutually exclusive. If you supply a string, the
contents of the string are output to the I/O switch. If you supply -segment, the data
is taken from the segment specified by path, at the offset and length given.

If the file is sequential, the record is added at the end of the file. If the file is
indexed, the record's key must have been defined by a preceding seek_key operation.

3-466 AG92-06A

11/86

Name: is_component_pathname, icpn

SYNTAX AS A COMMAND

icpn path

SYNTAX AS AN ACTIVE FUNCTION

[i cpn path]

FUNCTION

returns true if the path is a valid pathname that refers to an archive component
(pathname).

3-466.1 AG92-()6A

This page intentionally left blank.

11/86 AG92-06A

is_component_pathname

EXAMPLES

icpn >udd>Proj>Myname>start_up.ec
false

icpn >udd>Multics>Library>Source>bound_command_demos_.s::program.pll
true

Name: kermit

SYNTAX AS A COMMAND

kermit {-control_args}

FUNCTION

invokes the Multics implementation of the Kermit file transfer program. The Multics
Kermit program provides the capability to transfer files between a Multics system and
a remotely located system (e.g., a personal computer) using the KERMIT protocol.
Once invoked, Multics Kermit prompts you for the various file transfer requests.
Multics Kermit has been implemented with a server feature that permits you to login
to Multics from a remote site and specify file transfer operations without having to
escape back and forth between the Multics system and the remote system.

CONTROL ARGUMENTS

-abbrev, -ab
enables abbreviation expansion of request lines.

-io_switch STR. -iosw STR
specifies that communication with the remote system be done over the I/O switch
whose name is STR. If you omit it, the user_i/o switch is assumed.

-no_abbrev, -nab
does not enable abbreviation expansion of request lines. (Default)

-no_prompt, =npmt
suppresses the prompt for request lines in the request loop.

-no_request_loop, -nrql
does not enter the request loop after performing any operations given by -request

-no_start_up, -nsu, -ns
does not execute the start_up exec_com.

kermit

3-467 AG92-D6

kermit

-profile PATH. -pf PATH
specifies the pathname of the profile to use for abbreviation expansion. The
suffix "profile" is added to PATH if you don't include it explicitly on the
command line. This control argument implies -abbrev.

-prompt STR! -pmt STR
sets the request loop prompt to STR. (Default: A/Multics-KermitA [(Ad)A] :A2x)

-quit
exits the Kermit program after performing any operations given by -request

-request STR, -rq STR
executes STR as a Kermit program request line before entering the request loop.

-request_loop, -rql
enters the Kermit program request loop after performing any operations given by
-request (Def ault)

-start_up, -su
executes the Kermit program start_up exec_com start_up. kermit The users home
directory, the project directory, and >site are searched, in that order, for the
start_up. The exec_com is executed before the request_string and before entering
the subsystem request_loop. (Default)

LIST OF REQUESTS

The following is a summary of requests used to respond to prompts from the Kermit
program. In this summary "-ca" is used as shorthand for "-control_args". For a
complete description of any request, issue the Kermit request:

help request_name

prints a line describing the current invocation of the Kermit program.

?
prints a list of requests available in the Kermit program.

abbrev {-ca} , ab {-ca}
controls abbreviation processing of request lines.

do rq_str {args}, [do rCLstr args]
executes/returns a request line with argument substitution.

exec_com ec_path {ec_args}, ec ec_path {ec_args}
[exec_com ec_path {ec_args}], [ec ec_path {ec_args}]

executes a file of Kermit program requests that can return a value.

kermit

3-468 AG92-06

kermit

execute cmd_Iine, e cmd_line
[execute active_str]. [e active_str]

executes a Multics command line or evaluates a Multics active string.

finish
sends a request to a remote server to shut down server operation and return the
remote system to its request's loop.

get remote_source_path {Iocal_destination_path}
sends a request to a remote server requesting that the named file(s) be sent from
the remote system.

help {topics} {-ca}
prints information about Kermit program requests and other topics. If you supply
no topics, methods for getting help are listed.

list_help {topics}, Ih { topics}
displays the name of all Kermit program info segments on given topics.

list_requests {STRs} {-ca}, Ir {STRs} {-ca}
prints a brief description of selected Kermit program requests. You can use STR
to specify that only specific requests be listed.

log {PATH} {-ca}
directs the Kermit program to start logging transactions.

logout
sends a request to the remote server directing it to log you out irom the remote
system.

quit, q
exits the Kermit program.

quit_log
directs the Kermit program to stop logging transactions.

receive {PATH}, r {PATH}
receives a file or file group from the other system.

send local_source_path {remote_destination_path}
s local_source_path {remote_destination_path}

sends a file or file group to the other system.

server
instructs the Kermit program to cease taking commands from the keyboard and to
receive all further instruction in the form of Kermit packets.

set mode {STR}
establishes or modifies various modes for file transfers.

kermit

3-469 AG92--()6

kermit

show {modes}
displays mode values.

statistics, st
shows statistics about the most recent file transfer.

subsystem_name, [subsystem_name]
prints/returns the name of this subsystem.

subsystem_version, [subsystem_version]
prints/returns the version number of this subsystem.

The following list of modes are recognized by the Kermit program and the set and
show Kermit requests. The values associated with each mode are also given.

LIST OF MODES AFFECTING FILE STORAGE

file_type STR
indicates the type of file being transferred. STR can be either binary or ascii.

file_warning STR
indicates the action to be taken when an incoming file name has the same name
as an existing file name in the default directory when receiving files. STR can be
either on or off. If file_warning is on, the Kermit program renames the file to
avoid overwriting the preexisting one; if file_warning is off, the incoming file
replaces the preexisting one. If logging transactions, the log indicates the name of
the file in which the data was stored. (Default: on)

incomplete STR
indicates the action to be taken if a file was not completely transferred. STR can
be either keep or discard. If you specify keep, ali incomplete files are saved; if
you give discard, incomplete files are discarded. (Default keep)

LIST OF MODES AFFECTING FILE TRANSFER

control_prefix CHR, cp CHR
is the character to use for quoting of control characters, where eRR is any
character in the range through > or ' through -, but difierent from
eight_bit_prefix and repeat_prefix. (Default #)

eight_bit_prefix CHR, ebp CHR
is the ASCII character Multics Kermit program uses, when transmitting binary
files via a 7-bit connection, to quote characters that have the 8th bit set. CHR is
one of the following, but different from control_prefix and repeat_prefix:

y
characters with the 8th bit set are quoted if the remote system requests it.

N
characters with the 8th bit set are not quoted.

kermit

3-470 AG92-()6

kermit

&
or any character in the range ! through > or ' through "'. Use the specified
character for quoting characters with the Sth bit set If the Multics Kermit
program's eight_bit_prefix character is different from the remote program's,
then no 8th bit prefixing is done.

The value of this mode is ignored if line_byte_size is 8. (Default &)

end_of_packet CHR, eop CRR
is the character the Multics Kermit program uses as a line terminator for
incoming packets, where CHR is an ASCII character between SOH (001 octal) and
US (037 octal) inclusive and different from the start_of_packet character.
(Default: carriage return, 015 octal)

line_byte_size N
indicates whether data is being transmitted via a 7-bit or S-bit connection, where
N can be either 7 or S. A 7-bit connection is desirable when transferring ASCII
files or when the Sth bit of each transmitted byte is required for parity or
changed by intervening communications equipment Use an S-bit connection for
transferring binary files, as it decreases protocol overhead. If you can't use an
S-bit connection for a binary file transfer, then you can use a 7-bit connection
with the eight_bit_prefix mode enabled to transfer binary files. (Default: 7)

pa,cket_Iength N, pI N
. is the maximum packet length the Multics Kermit program can receive, where N

is an integer between 20 and 94 (decimal). (Default SO)

parity STR
used for communicating with systems or networks that require the Sth bit for
character parity. The parity used must be the same for Kermit programs on both
the local and remote system. STR can be one of

none
eight data bits arid no parity.

mark
seven data bits with the parity bit set to 1.

space
seven data bits with the parity bit set to O.

even
seven data bits with the parity bit set to make the overall parity even.

odd
seven data bits with the parity bit set to 1 to make the overall parity odd.

The value of the mode is ignored if line_byte_size is S. (Default none)

kermit

3-471 AG92-06

kermit

repeat_prefix CHR rp CHR
is the character the Multics Kermit program uses to indicate a repeated character,
where CHR can be any character in the range ! through > or ' through "", but
different from the control_prefix and eight_bit_prefix. Space " " denotes no
repeat count processing is to be done. If the Multics Kermit program
repeat_prefix character is different from the remote system's, then no repeat
prefixing is done. (Default: -).

retry_threshold N, rt N
specifies how many times to try sending or receIVIng a particular packet before
giving uP. where N is an integer between 5 and 15 inclusive. (Default 5)

start_of_packet CHR sop CHR
is the character to be used f or the start of packet. where CHR is an ASCII
character between NUL (000 octal) and US (037 octal) inclusive. The start_of_packet
character must be the same for Kermit programs on both the local and remote
system. but different from the end_of_packet character. (Default SOH. octal 001)

timeout N
specifies how many seconds the Multics Kermit program wants the remote system
to wait for a packet from Multics before trying again, where N is an integer
value between 5 and 20. (Default 15)

NOTES ON KERMIT DEVELOPMENT

The KERMIT protocol was developed at Columbia University, Many implementations
of KERMIT are avaiable from the KERMIT group at Columbia. Direct inquiries
about KERMIT to

KERMIT Distribution
Columbia University Center fer Computing Activities
7th Floor, Watson Laboratory
612 West 115th Street
New York, New York 10025

NOTES ON REMOTE SYSTEMS

The Multics Kermit program supports the transfer of 7-bit ASCII files and 8-bit
binary files. You can transfer ASCII files between any two systems, whereas you can
only transfer binary files between systems that are able to retain the original value of
the data byte. For example. sending a Multics binary file in which all bits of the
9-bit byte are used to a system that uses 8-bit bytes results in the loss of the most
significant bit (i.e., the transferred file on the remote system differs from the original
file sent). However, a binary file received by the Multics Kermit program from a
remote system that uses 8-bit bytes can then be sent by Multics Kermit to a second
such remote system. The resulting file on the second system is identical to the
original file sent

kermit

3-472 AG92-o6

kermit

NOTES ON FILE TRANSFER

For transmission between systems, you must assign files to one of two categories--ASCII
or binary. On systems with 8-bit bytes, ASCII files have the high-order bit of each
byte set to zero, whereas binary files use the high-order bit of each byte for data, in
which case its value can vary from byte to byte and must be preserved. Binary file
transmission is permissible as long as the two Kermit programs involved can control
the value of the 8th bit (Le., it is not being used for parity or changed by
intervening communications equipment). In that case the 8th bit of a transmitted
character matches that of the original data byte without any special 8th bit prefixing.
For example, to send or receive a binary file of 8-bit bytes when an 8-bit connection
is possible, set line_byte_size . to 8, set file_type to binary, and start the transfer. If
an 8-bit connection is not possible, then you can send binary files via a 7-bit
connection using the eight_bit_prefix. For example, set file_type to binary, set
line_byte_size to 7. set parity to str, set eight_bit_prefixing to chr. and start the
transfer. To send or receive an ASCII file, set file_type to ascii. set line_byte_size to
7. set any other desired modes. and start the transfer.

The Multics Kermit program does not support the transfer of 9-bit bytes when the
most significant bit is used for data. Thus sending a Multics binary file to a second
Multics site results in the loss of the most significant bit of each byte.

PROCEDURE FOR USING KERMIT: MULTICSIPERSONAL COMPUTER

Use the following procedure to transfer files between Multics and a personal computer
using Kermit

1. Start Kermit on the personal computer.

2. Set any desired modes.

3. Connect to Multics via the connect command. Once connected, the standard
Multics banner is displayed.

4. Login to Multics.

5. Start Kermit on Multics. It responds with the prompt "Multics-Kermit".

6. Set any desired modes.

7. Execute either a send or receive request, specifying the file or file group.

8. Use the appropriate escape sequence to get back to Kermit command level on the
personal computer.

9. Execute the corresponding request on the personal computer. For example, if you
issue the send request on M ultics, execute the receive request on the personal
computer or vice versa.

kermit

3-473 AG92-06

kermit kermit

10. File transfer begins. The personal computer displays the status of the file
transfer.

11. To transfer more files, connect back to Multics Kermit and enter a carriage
return to get the "Multics-Kermit:" prompt. Go to step 7.

12. Exit Multics Kermit by issuing the quit request and logout.

13. Use the appropriate escape sequence to get back to Kermit command level on the
personal computer.

PROCEDURE FOR USING KERMIT: MULTICS SERVER/PERSONAL COMPUTER

Use the following procedure to transfer files between Multics and a personal computer
using the Kermit server:

1. Start Kermit on the personal computer.

2. Set any desired modes.

3. Connect to Multics via the connect command. Once connected, the standard
Multics banner is displayed.

4. Login to Multics.

5. Start Kermit on Multics. It responds with the prompt "Multics-Kermit:".

6. Set any desired modes.

7. Execute the server request.

8. Use the appropriate escape sequence to get back to Kermit command level on the
personal computer.

9. Execute the Kermit server request on the personal computer f or sending or
receiving files.

10. File transfer begins. The personal computer displays the status of the file
transfer.

11. To transfer more files. go to step 9.

12. Exit Multics Kermit by issuing the Kermit server quit request on the personal
computer.

13. Connect back to Multics and logout.

14. Use the appropriate escape sequence to get back to Kermit command level on the
microcomputer.

3-474 AG92-()6

kermit

PROCEDURE FOR USING KERMIT: MULTICS/MULTICS

Use the following procedure to transfer files between two Multics systems using
Kermit:

1. Login to the local Multics.

2. Connect to the remote Multics via the dial_out command.

3. Login to the remote Multics.

4. Start Kermit on the remote Multics.

5. Set any desired modes.

6. Execute the server request.

7. Use the appropriate escape sequence to start up Kermit on the local Multics (e.g.,
e kermit -iosw [switch_name])

8. Execute the Multics send request to send files to the remote system, or the get
request to receive files from the remote system.

9. To transfer more files, go to step 8.

10. When done, execute the finish request to exit the remote server and quit from
the local kermit to reconnect to the remote Multics, or execute the logout request
to iogout from the remote Muitics and then quit the local Kermit.

EXAMPLES

r 14:24 3.546 25
dial_out e.h024.* p25 •••

Multics Ope System M •••

I NCopernicus Multics
Password:

You are protected from •••

r 14:26 14.354 243
kermit -prompt ""/SysM-Kermit"[("d)"]:

SysM-Kermit: server
e kermit -iosw [switch_name]

Multics-Kermit: send x.pll test.pll

Send i ng I f i 1 e (s) •••

II

kermit

3-475 AG92-06

kermit

Transaction completed: 1 file(s) sent.

Multics-Kermit: get test.pl1 x2.pl1

Receiving •••

Successfully received 1 file(s).

Multics-Kermit: logout

Multics-Kermit: q

dial out: connection closed.
r 14:32 53.659 863

SYNTAX AS A COMMAND

FUNCTION

allows a process to handle file transfer requests from a DPS 6 using the DPS 6 File
Transfer Facility (FTF) protocol {referred to as L6 TRAN; see the DPS 6 & Level 6
to Level 66 File Transmission Facility User's Guide (CZ60).

ARGUMENTS

channel_name
is the name of a polled VIP subchannel over which the file transfers take place.
It must have the x prefix (i.e.. b.h217.xOl).

CONTROL ARGUMENTS

-long. -lg
prints a line describing each file transfer as it starts and as it completes.
(Default not to print this information)

-target_dir -td
restricts the pathnames of any files to be transferred to be relative to the target
directory. You can specify the root as ">", which allows you to give absolute
pathnames. (Default your working directory)

3-476 AG92-()6

ACCESS REQUIRED

You must have rw access to the access control segment (ACS) of the specified channel
name and the dialok attribute turned on in the project master file (PMF). The polled
VIP subchannel must have the slave attribute in the channel master file (CMF).

NOTES

This command continues to listen for, and carry out, DPS 6 requests until you
explicitly tell it to stop ("quit," "q") or the channel disconnects. You can type the
quit request at any time, but it only takes effect before any file transfer has started
or between two file transfers. You can only transfer sequential ASCII or sequential
binary files to or from the DPS 6. ASCII files on Multics are assumed to be stream
files when sending and are stored as stream files when receiving. Binary files on
Multics have a special format.

Interrupting and releasing a file transfer may result in aborting the operation
inconsistently -and hanging the DPS 6 task.

The polled VIP subchannel must be defined with a terminal type that assigns
max_message_len to a value of 1009 in its additional_info statement.

Blank lines in a DPS 6 file actually have some characters on them, usually a space or
tab. These characters end up in the Multics file. The command transmits blank lines
from Multics files to the DPS 6 by sending a line containing a single-space character.

Each sequential binary record on Multics is assumed to have the following format

dcl 1 binary record aligned based,
2 num_sextets fixed bin(35) aligned,
2 sextets (0 refer binary_record.num_sextets) fixed bin(6)

unsigned unaligned;

Each binary record is stored in a vfile_ record of size currentsize(binary_record) * 4.

Name: last_message, 1m

SYNTAX AS A COMMAND

im {mbx_specification}

SYNTAX AS AN ACTIVE FUNCTION

[1m {mbx_specification}]

3-477 AG92-D6

11/86

FUNCTION

returns the text of the last message received from send_message. See accept_messages,
last_message_sender, last_message_time, and send_message.

ARGUMENTS

m bx_specification
specifies the mailbox from which messages are to be displayed. If not given, the
user's default mailbox (>udd>Project>Person>Person.mbx) is used.

LIST OF MBX SPECIFICATIONS

-log
specifies the user's logbox and is equivalent to

-mailbox >udd>Project_id>Person_id>Person_id.sv.mbx

-mailbox path, -mbx path
specifies the pathname of a mailbox. The suffix .mbx is added if necessary.

-save path, -sv path
specifies the pathname of a savebox. The suffix .sv.mbx is added if necessary.

-user STR
specifies either a user's default mailbox or an entry in the system mail table.

STR
is any noncontrol argument and is first interpreted as -mailbox STR; if no
mailbox is found, STR is then interpreted as -save STR; if no savebox is found,
it is interpreted as -user STR.

Name: last_Message_destination, lmds

SYNTAX AS A COMMAND

lmds {-control_arg}

SYNTAX AS AN ACTIVE FUNCTION

[lmds {-control_arg}]

3-478 AG92-06A

11/86

FU.AJCTION

returns the User_id of the last destination to which a message was sent by
send_message.

CONTROL ARGUMENTS

-inhibit_error, -ihe
prints/returns a null string if there is no last message destination.

NOTES

Name: last_message_sender, lms

SYNTAX AS A COMMAND

lms {mbx_specification}

SYNTAX AS AN ACTIVE FUNCTION

Elms {mbx_specification}]

FUNCTION

returns the sender of the last message received (from send_message) in the form
"Person_id.Project_id" (e.g., GBShaw.Demo).

ARGUMENTS

m bx_specif ication
specifies the mailbox of the sender of the last message. If not given. the user's
default mailbox (>udd>Project>Person>Person.mbx) is used.

LIST OF MBX SPECIFICATIONS

-log
specifies the user's logbox and is equivalent to

-mailbox >udd>Project_id>Person_id>Person_id.sv.mbx

-mailbox path, -mbx path
specifies the pathname of a mailbox. The suffix .mbx is added if necessary.

3-479 AG92-Q6A

11/86

-save path. -sv path
specifies the pathname of a savebox. The suffix .sv.mbx is added if necessary.

-user STR
specifies either a user's default mailbox or an entry in the system mail table.

STR
is any noncontrol argument and is first interpreted as -mailbox STR; if no
mailbox is found, STR is then interpreted as -save STR; if no savebox is found,
it is interpreted as -user STR.

NOTES

You are cautioned against using the active function when in polite mode. In this
mode the system holds all messages until you finish typing a line (i.e.. until the
carriage is at the left margin); therefore it is possible that while you are sending a
message, your process receive another message from another user--a message not yet
seen. By using the active function in this situation. you can inadvertently attribute a
message to the wrong person.

EXAMPLES

Assume that a user has just received the following message:

From AFrance.Demo 11/19/86 1231.7 mst Wed: Need access to xy

A reply can be sent as follows:

sm Elms] Sorry for the oversight. You have access now.

SYNTAX AS A COMMAND

lmt {mbx_specification}

SYNTAX AS AN ACTIVE FUNCTION

[lmt {mbx_specification}]

FUNCTION

returns the date and time the last message (from send_message) was received.

3-480 AG92-06A

11/86

length

ARGUMENTS

m bx_specif ication
specifies the mailbox from which the last message was received. If not given. the I
user's default mailbox (>udd>Project>Person>Person.mbx) is used.

LIST OF MBX SPECIFICATIONS

-log
specifies the user's logbox and is equivalent to

-mailbox >udd>Project_id>Person_id>Person_id.sv.mbx

-mailbox path. -mbx path
s?-..Cifies the pathna.'l1e of a mailbox. The suffix .mbx is added if necessary.

-save path, -sv path
specifies the pathname of a savebox. The suffix .sv.mbx is added if necessary.

-user STR
specifies either a user's default mailbox or an entry in the system mail table.

STR
is any noncontrol argument and is first interpreted as -mailbox STR; if no
mailbox is found, STR is then interpreted as -save STR; if no savebox is found,
it is interpreted as -user STR.

NOTES

Name: length, In

SYNTAX AS A COMMAND

In STR

SYNTAX AS AN ACTIVE FUNCTION

[1 n STR]

FUNCTION

returns an integer representing the number of characters in STR.

3-481 AG92-D6A

length

ARGUMENTS

STR
is any string of alphanumeric characters. If STR contains blanks or other
command language characters, enclose it in quotes.

EXAMPLES

string [In "A multiple-word string ll
]

22

The following example from an exec_com segment tests for a string that is greater
than 27 characters.

&if [nless [In &1] 27] &then &goto OK
Sprint Entry name too long. &l.info
&quit
&label OK
ec exec_com2 &l.info

Name: less

SYNTAX AS A COMMAND

less STRA STRB

SYNTAX AS AN ACTIVE FUNCTION

[less STRA STRB]

FUNCTION

returns true if strA is less than strB according to the ASCII collating. sequence;
otherwise it returns false.

NOTES

The strings are compared character by character according to their ASCII code value
(i.e., if the first character in each string has the same ASCII code value, compare the
second character; if their values are identical, compare the third character; etc.). See
the descriptions of nless and ngreater for a way to compare numeric strings.

less

3-482 AG92-Q6

library_descriptor library_descriptor

Name: library_descriptor, Ids

SYNTAX AS A COMMAND

lds key {arguments}

SYNTAX AS AN ACTIVE FUNCTION

[lds key {arguments}]

FUNCTION

prints or returns information about library descriptors and controls their use by the
other library descriptor commands (see the It can print the pathname of the directory *
or archive associated with a library root, can print detailed information about one or
more library roots, can set and print the name of the default library descriptor used
by the other library descriptor commands, and can print the default library and search
names associated with each library descriptor command.

A library descriptor is a data base that associates directories or archives in the Multics
storage system with the roots of a logical library structure.

LIST OF KEYS

name, nm

set

returns the name of the default library descriptor that is currently being used.

Usage: lds name
[lds name]

sets the name of the default library descriptor.

Usage: lds set {desc_name}

where

desc_name
is the pathname or reference name of the new default library descriptor. If
you give a reference name, the descriptor is searched f or according to the
search rules. If you omit desc_name, the default library descriptor is set as
the descriptor for the Multics system libraries.

3-483 AG92-06

library_descriptor library_descriptor

pathname, pn
returns the pathname of the library root(s) that is identified by one or more
library names. Using pathname, you can invoke the command as an active
function.

Usage:

where

lds pathname library_names {-control_args}
[lds pathname iibrary_names {-control_args}]

library_names
are the names of the libraries whose pathnames are to be returned. You can
use the star convention to identify a group of libraries, and you can give up
to 30 library names.

-descriptor desc name
gives the pathname or ref erence name of the library descriptor defining
the library roots whose pathnames are to be returned. If you don't
choose -descriptor, the default library descriptor is used.

-library library _name, -lb library_name

default, dft

identifies a library name that begins with a minus to distinguish the
library name from a control argument There are no other differences
between library_names and those given with -library. You can supply one
or more -library control arguments.

prints the default library name{s) and search name(s) associated with one or more
of the library descriptor commands.

Usage: lds default {command_names} {-control_arg}

where

command_names
are the names of the library descriptor commands whose default library and
search names are to be printed. If you select no command names, the
defaults for all the library descriptor commands are printed.

control_arg
can be

-descriptor desc_name
gives the pathname or reference name of the library descriptor defining
the library roots whose pathnames are to be returned. It can appear
anywhere after the key. If you don't choose -descriptor, the default
library descriptor is used.

3-484 AG92-06

library_descriptor

root, rt
prints detailed information about library roots, including the names on each
library root, its pathname. and its type.

Usage: lds root library_names {-control_args}

where

library_names
are the names of the libraries whose pathnames are to be returned. You can
use the star convention to identify a group of libraries, and you can give up
to 30 library names.

control_args
select from the following:

-descriptor desc_name
gives the pathname or reference name of the library descriptor defining
the library roots whose pathnames are to be returned. If you don't
choose -descriptor, the default library descriptor is used.

-library library _name, -lb library_name
identifies a library name that begins with a minus to distinguish the
library name from a control argument There are no other differences
between library_names and those given with -library. You can supply one
or more -library control arguments.

-match
prints all library root names that match any of the library names.
(Default)

-name, -nm
prints all the names on each library root.

-primary, ~pri
prints the primary name on each library root.

Name: library_retch, If

SYNTAX AS A COMMAND

If {search_names} {-control_args}

3-485 AG92-Q6

library _fetch

FUNCTION

fetches entries from a library. It functionally replaces get_library_segment You can
fetch segments, archives, archive components, multisegment files (MSFs), and MSF
components.

ARGUMENTS

search_names
are star names identifying the library entries to be fetched. Defaults differ for
each library descriptor. You can supply up to 1000 search names; if you give
none, any default search names specified in the library descriptor are used.

CONTROL ARGUMENTS

-all, -a
includes in the output file complete status information for fetched entries.

-all_matches, -amch
fetches all matching entries. (Default, if you supply more than one search name,
any star names, or -component)

-brief, -bf
suppresses printing of information about fetched entries. (Default)

-chase
fetches through links.

-components
fetches library entries contained in, or with, a matching entry; it implies
-ail_matches.

-container
fetches the library entry containing a matching library entry, rather than the
matching entry itself.

-default, -dft
includes in the output file default status information for fetched entries.

-entry, -et
fetches matching library entries only. (Default)

-descriptor desc_name
specifies the descriptor defining the libraries to be searched.

-first_match, -fmch
fetches the first matching entry only. (Default, if you specify only one search
name)

3-486 AG92-06

-into path
fetches library entries into the specified pathname (absolute or relative). The
directory portion of the pathname identifies the directory into which each library
entry is copied; the final entry name of the pathname renames each library
entryname being placed on the copy. You can give an equal name as the final
entryname of the path. Use -into only once in a command line. If not given,
matching entries are copied into your working directory and no renaming occurs.

-library library _name, -lb library_name
fetches entries in the specified library. You can use star names. You can supply
up to 100 -library control arguments; if you give none, any default library names
specified in the library descriptor are used.

-long, -lg
prints information about fetched entries.

-match
puts entrynames that match a search name on the fetched entry. (Default)

-name, -nm
puts all the entrynames on the fetched library entry.

-no_chase
does not fetch through links. (Default)

-omit
does not fetch library entries awaiting deletion. (Default)

-output_file filename, -of filename
appends status of fetched library entries to named file.

-primary, -pri
puts first entryname on fetched library entry.

-retain, -ret
fetches library entries awaiting deletion.

-search_name search_name
gives search_name that looks like a control argument You can supply one or
more -search_name control arguments.

NOTES

This command uses a library descriptor and library search procedures, as described in
the Mu/tics Li brary Mai ntenance SDN, (Order No. AN80). The initial default
descriptor describes the Multics system libraries and allows library_fetch to extract
source programs, object segments and bind files, include files and info segments, and
compilation listings from the system libraries. (See the library_descriptor command.)

3-487 AG92-()6

iibrary _fetch library _fetch

You can give any combination of the control arguments governing naming (-name.
-primary, and -match). However, select only one from each· group of the following:
-chase or -no_chase; -long or -brief; -container, -components, or -entry; -retain or
-omit; and -all or -default

You must use -output_file if you give -all or -default The particular status
information recorded in the output file for -default is controled by the library search
program. It includes the information deemed most important for the type of entry
contained in the library.

If the file given in -output_file does not exist, it is created by library_fetch; if it
does, new status information is appended to the end of the file preserving any
previously recorded status. This feature allows you to build a history of the entries
copied out of a library. When using -into, ensure that the equal name included in the
pathname can be applied to all names to be placed on each of the copied entries.
Name duplications can easily result when more than one library entry matches the
search names.

The -container and -components control arguments facilitate copying all the library
entries included in a given bound segment or related to a given subsystem. For
example, by identifying a component of the source archive for a bound segment and
using -container, the entire source archive is copied into your directory; similarly, by
identifying a directory in the library containing all the component entries of a
subsystem and using -components, each component is copied into your directory.

\\T"ben you use =container, -components, or -chase, it may happen that none of the
entrynames on a copied library entry matches any of the search names. Because you
may have requested that only matching names be placed on the copies, the library
search program places the first entryname on the copy when you select one of these
control arguments, in addition to any names you requested.

You are given re access to copied object segments and rw access to all other segments.

EXAMPLES

The command line

If abbrev.pll -into >udd>Multics>user>new_=.=

copies the source segment abbrev.pIl into the directory >udd > Multics > user , renaming
the copy new _abbrev. pIl.

If bound_qedx_.** -library online

copies all the segments in the online libraries whose names begin with bound_qed x_
into your working directory. This might include the source archive, bindable object
archive, bound object segment, and bind listing.

If bound_qedx_.** -library online.source -components

3-488 AG92-o6

copies all the source components from the source archive for bound_qedx_ into your
directory.

1 f qedx. p 11 -componen ts

copies all the source components in the archive containing qedx. pll into your working
directory.

1f *.alm -lb network.source -into new_=.alm

copies all ALM source segments from the network source library into your working
directory and adds the prefix new_to the names placed on each segment

If pll_status.info -nm -Ib infof

copies the pll_status.info segment from the info segment libraries into your working
directory, copying all entrynames from the library entry onto the copy.

If **.ec -library online.??????

copies all exec_com segments from the online source and object libraries into your
working directory.

If -lb supervisor.bc bound_sss_wired_.*

copies the 'bind segment from the bindable object archive called bound_sss_ wired_.archive.
Although the object archive itself matches the search name you gave, only the
matching archive component is copied because you didn't supply -container.

If -lb include stack_frame.incl.*

copies the stack frame declaration include segments for all source languages from the
include library into your working directory.

Name: line_length, II

SYNTAX AS A COMMAND

i i {max i ength}

SYNTAX AS AN ACTIVE FUNCTION

[11 {max 1 ength}]

3-489 AG92-()6

FUNCTION

allows you to control the maximum length of a line output to the device (usually your
terminal) that your process is connected to through the user_output I/O switch.

ARGUMENTS

maxlength
is a positive decimal number greater than four that specifies the maximum number
of characters that can henceforth be printed on a single line using the I/O switch
named user_output. If you don't give it, the current line length is printed.
Output lines longer than maxlength are folded.

NOTES

As an active function, the current line length setting is returned and a new one set if
you supply maxlength.

Name: link, lk

SYNTAX AS A COMMAND

lk pathl {path2 ••• pathlN path2N} {-control_args}

FUNCTION

creates a storage system link with a specified name in a specified directory pointing to
a specified segment, directory, or Hnk (for a discussion of links, see the Programmer's
Reference ManuaI).

ARGUMENTS

path!
specifies the pathname of the storage system entry to which path2N is to point
The star convention is allowed. Give the pathnames in pairs.

path2
specifies the pathname of the link to be created. If omitted' (in the final
argument position of a command line only), a link to pathl is created in your
working directory with the entryname portion of pathlN as its entryname. The
equal convention is allowed.

CONTROL ARGUMENTS

-chase
creates a link to the ultimate target of pathl if pathl is a link. The default is to
create a link to pathl itself.

link

3-490 AG92-06

link

-check, -ck
refuses to create a link if the target does not exist or if its existence cannot be
determined due to access.

-copy_names, -cpnm
copies the names of the target to the link after creating it

-name STR, -nm STR
specifies an entryname STR (either as a path1 or a path2, depending on position)
that begins with a minus to distinguish it from a control argument

-no_chase
creates a link directly to the target specified. (Default)

-no_check, -nck
creates a link whether or not the target exists. (Default)

-no_copy_names, -ncpnm
does not copy the names of the target (Default)

ACCESS REQUIRED

You must have append permission f or the directory in which the link is to be
created.

NOTES

Entrynames must be unique within the directory. If the creation of a specified link
introduces a duplication of names within the directory and if the old entry has only
one name, you are asked whether to delete the entry with the old name. If you
answer "no," the link is not created. If the old entry has multiple names, the
conflicting name is removed and a message is issued to you. In either case. since the
directory in which the link is to be created is being changed. you must have modify
permission for that directory.

See the create_dir and create commands for the creation of directories and segments.

EXAMPLES

The command line

lk >my_dir>beta alpha >dictionary>grammar

creates two links. alpha and grammar. in the working directory: the first points to the
segment beta in the directory >my_dir, the second to the segment grammar in the
directory >dictionary.

link

3-491 AG92-06

11/86

Name: linkage_editor, Ie

SYNTAX AS A COMMAND

ie paths {-control arguments}

FUNCTION

Joms a series of object segments into a single execution unit resolving external
references to the explicitly named segment(s) within the named libraries.

ARGUMENTS

paths
are specifications of the input binaries that are to be included in the output
binary. Valid formats for a path specification are:

Archive
Library archives are unbound archives containing object segments that you can
use to resolve external references. To specify a library archive, include the
suffix .archive in the name.

Directory
You can specify library directories that contain loose object segments to which
external references can be resolved. Any archives found in the directory are
expanded and all the components included.

Pathname
You can specify pathnames to specific segments or archive components.

Starname
You can specify starn ames specifying groups of loose segments within a
directory or an archive component starname specifying a set of components
within a particular archive. A starname that includes archives expands each
archive.

CONTROL ARGUMENTS

-abort_severity severity, -asv severity
specifies the error severity at which the execution should be terminated; it must
be from 0 to 3 (see "Notes on Severity Values" below). Severity 0 errors generate
the tables and attempt to resolve links, but stop bef ore generating any output
Severity 4 errors are terminated immediately. (Default: 3, if you give no -asv)

-automatic_segnames, -asn
specifies that entrypoint names are to be automatically added to the containing
block as segnames, so that a reference to the entrypoint name alone resolves to
the correct block. (Default)

3-492 AG92-06A

11/86

-component_size pages, -compsz pages
specifies the maximum number of pages that a single component of the output
object should contain. This value is used to determine at what point the transition
is made from single-segment to multisegment file (MSF) and the size of an
individual MSF component (Default: 255, if you supply no -compsz)

-delete {entrypointl, -dl {entrypointJ
deletes the given entrypoint from the output binary. If you give no entrypoint
name, all entrypoints are deleted except the "main_" definition and its associated
segnames, if present You can remove this definition by using "-delete main_ft.

-display_severity severity, -dsv severity
sets the display severity to the given value. The display severity is the mmlDlum
severity error that displays a message; it must be from 1 to 5. (Default: 1)

-force, -fc
suppresses the query before overwriting a nonobject segment or an object segment
created by a translator.

-library library_specification, -lb library_specification
specifies one or more object library routines that the linkage editor uses to
resolve external references; The library specification is in the same form. and is
evaluated in the same manner, as the input path specification.

-list, -Is
creates a listing specifying what segments were involved in the creation of the
linked segment, the disposition of each in.put component, and a list of the
retained links and definitions. The name of the listing segment is the same as the
output binary with a .list suffix appended.

-map
creates a map of the input components and where they were placed. The name
of the listing segment is the same as the output binary with a .list suffix
appended.

-no_automatic_segnames, -nasn
does not add entrypoint names to the containing block as segname definitions.
This control argument has the same behavior as the binder, and requires that you
reference entrypoints with the name of the containing module (i.e., segment$entrypoint),
to be resolved internally.

-no_f orce, -nfc
queries before overwriting a nonobject segment or an object created by a
translator. (Def aul!)

-no_list, -nIs
does not produce a listing segment. (Default)

3-4921 AG92-06A

11/86

-no_version, -nvers
does not print out the version of the linkage editor.

-output_file pathname, -of pathname
specifies the pathname of the output binary to be created. If you give no -of,
the output binary is created in your working directory with the name a.out
Before generating the output, linkage_editor checks to insure that the target either
is nonexistent or was a bound object prior to overwriting. If the target is not an
object, or was not created by linkage_editor, you are queried before it is
overwritten unless you give -fc.

-retain entrypoint, -ret entrypoint
specifies an entrypoint that should be retained. The entrypoint is given in the
form segname$entryname. The entrypoint is found by conventional methods, and
that definition and all segname definitions for that block are retained in the final
output If you give no -ret or -dl, all segnames and entrypoints are retained. If
you give any -ret, all other entrypoint and segname definitions are deleted except
the "main_" definition, which is always retained, along with its associated
segnames, unless deleted by using "-delete main_ ".

-version, -vers
prints out the version of the linkage editor before linking. (Default)

NOTES

When specifying an entrypoint with -ret or -dl, the entrypoint name given is treated
as a pair of starnames: one starname for the segname portion and one for the
entrypoint name portion. Parts of the entrypoint not given are assumed to be **. If
you supply -ret but no -dl. a global -dl is assumed; otherwise a global -ret is
ass~ed.

When determining which -ret or -dl to apply to any given definition, the most and
least specific rules are applied:

1. The following list shows the order from the most specific to the least
specific rule. The most specific rule is applied first.

most specific: explicit segname and entrypoint
star segname and explicit entrypoint
any segname and explicit entrypoint
explicit segname and star entrypoint
star segname and entrypoint
any segname and star entrypoint
explicit segname and any entrypoint
star segname and any entrypoint

least specific: any segname and entrypoint

3-492.2 AG92-06A

11/86

where "any" name refers to a star name that matches any name, ;;starr. name
refers to a star name that is ambiguous (i.e., contains * or ? characters) but
does not match all names, and "explicittt name refers to a name with no * or
? characters.

2. Entrypoint specs with the same class above are ordered based on the order
they occurred in the input If two star names both match a given entrypoint,
the first you give on the command line is used.

Here are some examples:

-retain bar$foo = -retain bar$foo
= -retain **$foo
- -retain bar$**
= -reta in *'''$**

-retain foo
-retain barS
-retain
-retain b??$ = -retain b?1$**

NOTES ON SEVERITY VALUES

This command associates the following severity values to be used by the severity active
function:

Value

o
1
2
'1 .,
4

Meaning

No error
Warning
Correctable error

lJnrecoverab1e error

Name: links

SYNTAX AS A COMMAND

links star_names {-control_args}

SYNTAX AS AN ACTIVE FUNCTION

[links star=names {-control~args}]

FUNCTION

returns the entrynames or absolute pathnames of links that match one or more star
names.

links

3-492.3 AG92-06A

links

11/86

ARGUMENTS

star_names
is a star name to be used in selecting the names to be returned.

CONTROL ARGUMENTS

-absolute_pathname, -absp
returns absolute pathnames rather than entrynames.

-chase
processes the targets of links when you specify a starname.

-inhibit_error, -ihe
returns false if star_name is an invalid name or if access to tell of an entry's
existence is lacking.

-no_chase
does not process the targets of links when you specify a starname. (Default)

-no_inhibit_error, -nihe
signals an error if star_name is an invalid name or if access to tell of an entry's
existence is lacking. (Default)

NOTES

Only one name per link is returned; i.e., if a link has more than one name that
matches star_name, only the first match found is returned.

Since each entryname (or pathname) returned by links is enclosed in quotes, the
command processor treats each name as a single argument regardless of the presence
of special characters in the name.

Name: list, Is

SYNTAX AS A COMMAND

Is {entrynames} {-control_args}

FUNCTION

prints information about entries contained in a single directory. There are five entry
types supported by this command: segments, multisegment files (MSFs), data management
(DM) files, directories, and links. Segments, DM files, and MSFs are referred to
collectively as files; segments, MSFs. DM files, and directories are referred to
collectively as branches.

list

3-492.4 AG92-06A

list

ARGUMENTS

entrynames
are the names of entries to be listed. The star convention is allowed. If you
specify entrynames. only entries having at least one name matching an entryname
argument are listed; if you supply no entryname argument. all entries (of the
types given by control arguments) in the directory are listed. You can specify a
pathname instead of an entryname; in this case, entries matching the entryname
portion of the pathname in the directory specified by the directory portion of the
pathname are listed. (See "Control Arguments for Directory.")

Except where otherwise noted in the descriptions of the control arguments, entrynames
and control_args can appear anywhere on the command line.

CONTROL ARGUMENTS

Control arguments enable you to specify the directory to be listed, which entries are
to be listed, the amount and kind of information 'to be printed for each entry, and
the order in which the entries are to be listed. For convenience, control arguments
have been arranged by function.

directory
-pathname path. -pn path

columns
-count, -ct

list

-date_time_contents_modified. -dtcm
entry type

-all. :"'a
-branch, -br
-data_management_file. -dmf
-directory, -dr
-file, -f
-link. -lk
-multisegment_file. -msf
-segmen t, -sm

totals/header line
-no_header. =nhe
-total. -tt

multiple-name entries
-match
-primary. -pri

entry order
-reverse, -rv
-sort XX, -sr XX

CONTROL ARGUMENTS FOR DIRECTORY

-date_time_entry _modified, -dtem
-date_time_used, -dtu
-length, -In
-link_path. -lp
-mode, -md
-name. -nm
-record. -rec

entry exclusion
-exclude entryname,

-ex entryname
-first N, -ft N
-from D, -fm D
-to D

output format
-brief. -bf
-short, -sh

If you give no directory, your working directory is assumed. This command can list
only one directory at a time.

3-493 AG92-06

list

-pathname path, -pn path
lists entries in the directory specified by path.

You can specify the directory to be listed by gIvIng a pathname instead of an
entryname. The difference between the two methods is that the entire pathname after
..;.pathname is taken to be that of a directory whose entries are to be listed, while a
pathname not preceded by -pathname is separated into its directory and entryname
portions; the former specifies the directory, the latter the entries within it that are to
be listed.

CONTROL ARGUMENTS FOR ENTRY TYPE

-all, -a
lists information about all entry types in the following order: segments,
multisegment files, data management files, directories, and links.

-branch, -br
lists information about branches (i.e., segments, multisegment files,
data_management_files, and directories, in that order).

-data_management_file, -dmf
lists data management files.

-directory, -dr
lists information about directories.

-file, -f
lists information about files (i.e., segments, multisegment files, and data management
files, in that order). (Default)

-link, -Ik
lists information about links.

-multisegment_file. -msf
lists information about multisegment files.

-segment, -sm
lists information about segments.

CONTROL ARGUMENTS FOR COLUMNS

-count, -ct
prints the count column, which gives the total number of names for entries that
have more than one name.

-date_time_contents_modified, -dtcm
prints the date and time the contents of the segment or directory were last
modified. This control argument is inconsistent with and more expensive than
-date_time_entry _modified.

list

3-494 AG92-()6

list

-date_time_entry _modified, -dtem
prints the date and time the entry was last modified (e.g., by the changing of
attributes such as names, ACL, or bit count).

-date_time_used, -dtu
prints the date and time the entry was last used.

-length, -In
prints the current length computed from the bit count. This control argument is
inconsistent with and less expensive than -record. (Default)

-link_path, -lp
prints the link-path column.

-mode. -md
prints the access-mode column.

-name, -nm
prints the names column, giving the primary name and any additional names of
each entry. The names column is printed in every invocation of the command
except when you explicitly request only totals information.

-record, -ree
prints the records used.

If you supply no control arguments from this category, the access-mode, length, and
names columns (in that order) are printed for branches and the names and link-path
columns (in that order) are printed for links. Vlhen you give -brief, -mode, -record,
-length. or -name. only the names column plus those columns explicitly selected by
control arguments is printed.

CONTROL ARGUMENTS FOR TOTALS AND HEADER LlNE

-no_header, -nh~
omits all heading lines.

-total, -tt
prints only the heading line (totals information) for each entry type specified; this
line ~ves the total number of entries and the sum of their sizes.

If you select neither -no_header nor -total, totals and detailed information are
printed.

CONTROL ARGUMENTS FOR MULTIPLE-NAME ENTRIES

-match
prints in the names column only those uimes that match one of the given
entrynames.

list

3-495 AG92-06

list

-primary, -pri
prints in the names column the primary name of each entry. not its secondary
names. It does not suppress the printing of any other columns.

These control arguments are applicable only to entries that have more than one name.
If you give neither one, all the names of the specified entries are printed.

CONTROL ARGUMENTS FOR ENTRY ORDER

-reverse. -rv
prints entries in the reverse order in which they are found in the directory. If
you also supply -sort, the specified sort is reversed.

-sort xx. -sr XX
sorts entries within each entry type according to the sort column XX, where XX
can be one of the following (see "Notes on Sorting" below):

count, ct
sort entries by number of names, the ones with the most names first

date_time_contents_modified, dtcm
sort entries by the date and time the contents of the entry were last
modif ied, the most recent ones first. This argumen t is inconsisten t wi th
-date_time_entry_modified. If you choose -date_time_contents_modified and
no key follows -sort, that control argument is implied as the default sort
key.

date_time_entry _modified, dtem
sort entries by the date and time the entry
recent ones first. This argument
-date_time_contents_modified. If you supply
and no key follows -sort, that control argument
key.

date_time_used, dtu

was last modified, the most
is inconsisten t with

-date_time_con ten ts_modified
is implied as the default sort

sort entries by the date and time used, the most recent ones first

length. In
sort entries by length computed from the bit count, the largest ones first.
This argument is inconsistent with -record.

mode, md
sort entries by access mode in this order: nUll, r (or s), rw (or sm), re, rew
(or sma). This order is the result of sorting by the internal representation of
the mode.

name, nm
sort entries by primary name. according to the standard ASCII collating
sequence.

list

3-496 AG92-o6

list

record, rec
sort entries by records used. the largest ones first This argument is
inconsistent with -length. If you specify record and the size column is being
printed, the value printed in that column is records used, rather than length·

If you use neither -reverse nor -sort, entries are printed in the order in which they
are found in the directory.

CONTROL ARGUMENTS FOR ENTRY EXCLUSION

The following control arguments limit the amount of output produced by excluding
entries according to either n.ame or date or by setting an upper limit on the number
of entries listed. '

-exclude {entryname}, -ex {entryname}
does not list entries having at least one name that matches the specified
entryname. The star convention is allowed. The entryname specified in -exclude
and any names specified in the entrynames argument to the command operate
together to limit the entries that are listed.

-first N, -ft N
lists only the first N entries (after sorting, if specified) of each entry type being
listed. The heading lines contain the totals figures for all entries that would have
been listed had you not given -first

The following two control arguments exclude entries according to date. The date
used in this comparison is the modification-date value in all cases except when
the only date column being printed or sorted on is the date-time-used column. If
no date column is being printed, the date-time-entry-modified value is used.

-from D, -fm D
does not list any entries having a date value before the one specified by D.

-to D
does not list any entries having a date value after the one specified by D.

The D value after -from or -to must be a string acceptable to convert_date_to_binary_,
If the date-time string contains spaces, enclose the string in . quotes. The D value
specifies both a date and a time; if you give only a date, convert_date_to_binary_
uses the current time as the default

If you supply both -from and -to, the -from value must be earlier than the -to
value.

list

3-497 AG92-06

list

CONTROL ARGUMENTS FOR OUTPUT FORMAT

-brief, -bf
if just totals information is being printed, -brief abbreviates and prints on a
single line the totals information for all selected entry types; otherwise. it does
not print the default columns when you don't explicitly name them in control
arguments. For example, typing:

ls -dtu -bf

prints the names and date-time-used columns, but not the access-mode and length
columns.

-short, -sh
prints link pathnames starting two spaces after their entrynames, instead of
aligning them in column position 35.

If you select neither -brief nor -short, the output format is not changed.

NOTES

The set of possible columns is different for branches and links. For branches the set
(with column order from left to right) is modification date, date and time used, access
mode, size, names, and number of names; for links: date and time entry modified,
names, number of names, and link pathname. The modification-date column contains
either the date and time the entry was modified or the date and time the contents
were modified; the size column contains either records used or length (in records)
computed from the bit count, as specified by control arguments. Unless otherwise
specified by control arguments, these are the items printed for branches: access modes,
length. and names; for links: names and link pathname.

The obsolete name for a modification date (date_time_modified, dtm) is accepted. in
both the control argument and sort key form, as a synonym for the
date-time-entry-modified value.

Links do not have a date-time-contents-modified value. If you are listing links and
give either modification-date value for printing. sorting, or entry exclusion (using
-from and -to), the date-time-entry-modified value of links is used.

NOTES ON SORTING

It is not necessary for a column to be printed in order to sort on it, but note the
restrictions described earlier regarding sorting on and printing the modification-date
and size columns.

If you omit the sort column XX, the default sorting column is determined as follows:
if no date column is being printed, sort by primary name; if only one of the date
columns is being printed, sort by that date; if both the modification-date and
date-time-used columns are being printed, sort by the modification-date column.

list

3-498 AG92-D6

list

You can only sort links by the name, modification-date, or count columns. If you
specify sorting by any other column, links are printed in the order in which they are
found in the directory, while branches (if also being listed) are sorted by the specified
column. (See "Notes" above.)

NOTES ON THE DEFAULT

If you invoke the command without any arguments, it lists all segments and
multisegment files in the working directory thus: access mode, length of each, and
name(s). Segments and multisegment files are listed separately (segments first), each
preceded by a line giving the total entries of that type and the sum of their lengths.
Within each entry type, entries are listed in the order in which they are found in the
directory.

EXAMPLES

The command line

ls -pri -ct

lists all files in your working directory (default); the names column contains only the
primary names of all entries; the total number of names (for entries having more than
one) is printed after the primary name; besides the names column. the access-mode
and length columns are printed.

The command line

1 s -ex '1~.-.':

lists all the files in your working directory having other than two-component names,
printing the three default columns (access mode, length, and names).

The command line

ls -sm *.* -ex *.pll

lists all the segments in your working directory having two-component names whose
second component is not pU, printing the default columns.

The command line

ls -dtem -sr

lists all files in your working directQry, sorted by the date-time-entry-modified
column. The date-time-entry-modified and the default columns are printed.

list

3-499 AG92-Q6

list

The command line

ls -nm -sr dtm

lists all files in your working directory, sorted by the date-time-entry-modified value.
Only the names column is printed. The argument dtm is a synonym for dtem.

The command line

ls -sm -nm -pri -nhe

lists only the primary name of each segment in your working directory without
printing the heading line or any blank lines. This combination of arguments, together
with the file_output command, is useful for generating a file that contains the primary
names of a selected set of entries.

The command line

ls -md -pri

lists the access mode and primary name of each file in your working directory.

The command line

ls -tt -to "7/1/84 000.0" -dtu -rec

Prints the totals for all files that have not been used since the end of June 1984. The
-dtu control argument is used to specify that the -to date refers to the date and time
used.

SYNTAX AS A COMMAND

lar {path} {-control_args}

FUNCTION

lists requests in the absentee queues.

ARGUMENTS

path
is the pathname of a request to be listed. The star convention is allowed. Only
requests matching this pathname are selected. If you don't supply path. all
pathnames are selected. This argument is incompatible with -entry.

3-500 AG92-()6

CONTROL ARGUMENTS

-absolute_pathname, -absp
prints the full pathname of each request selected, rather than the entryname.

-admin {User_id}, -am {User_id}
selects the requests of all users or of the user specified by User_ide If you don't
choose -am, only your own requests are selected. (See "Notes.")

-all, -a
searches all queues and prints the totals for each nonempty queue whether or not
any requests are selected from it If you specify no -a, nothing is printed for
queues from which no requests are selected. This control argument is incompatible
with -q.

-brief. -bf
does not print the state and comment of each request This control argument is
incompatible with -lg and -tt

-deferred_indefinitely, -dfi
selects only requests that are deferred indefinitely. Such requests are not run until
the operator releases them.

-entry STR, -et STR
selects only requests whose entrynames match STR. You can use the star
convention. Directory portions of request pathnames are ignored when selecting
requests.

-foreground, -fg
searches only the foreground queue and prints the totals for this queue whether
or not any requests are selected from it (see -q).

-id ID
selects only requests whose identifier matches the specified ID.

-immediate, -im
selects only requests that can be run immediately upon reaching the heads of their
respective queues. This excludes requests deferred indefinitely, requests deferred
until a specific time. or requests that have reached the head of the queue and
have been deferred by the system because their CPU time limits are higher than
the maximum for the current shift; but it includes requests deferred because of
load control or resource unavailability. because those conditions could change at
any time. (See -psn.)

-long, -lg
prints all the information pertaining to an absentee request, including the long
request identifier and the full pathname. If you omit -180 only the short request
identifier. entryname. state, and any comment, are printed.

3-501 AG92-06

11/86

-lonLid, -lgid
prints the long form of the request identifier. If you supply no -lgid, the short
form of the request identifier is printed.

-pathname, -pn
prints the full pathname of each selected request, just as -absp does.

-position, -psn
prints the position within its queue of each selected request When used with -tt,
it prints a list of all the positions of the selected requests. When used with -im,
it considers only immediate requests when computing positions.

-queue N, -q N
searches only queue N and prints the totals for that queue whether or not any
requests are selected from it If you give no -q, all queues are searched but
nothing is printed for queues from which no requests are selected. For
convenience in writing exec_corns and abbreviations, the word "foreground" (fg)
following -q is equivalent to -fg.

-resource {STR}. -rsc {STR}
selects only requests having a resource requirement If you specify STR, only
requests whose resource descriptions contain that string are chosen. This control
argument also prints the resource descriptions of the selected requests, even when
you supply no -lg. (See the reserve_resource command for details on resource
description specification.)

-restarted
prints only requests that have been restarted by the system after a system crash
(see "Notes").

-sender STR
lists only requests from sender STR. You must specify one or more request
identifiers. In most cases, the sender is an RJE station identifier.

-total, -tt
prints only the total number of selected requests and the total number of requests
in the queue, plus a list of positions if you choose -psn. If the queue is empty,
it is not listed.

-truncate, -tc
prints only the requests that have the -tc absout option (see "Notes").

-truncate_restarted. -tc_restarted
prints only those requests that have the -tc absout option and that also have been
restarted after a system crash (see "Notes").

-user User_id
selects only requests entered by the specified user (see "Notes").

3-502 AG92-()6A

11/86

ACCESS REQUIRED

You must have 0 access to the queue(s). You must have r extended access to the
queue(s) to use -am, -psn. or -user, since it is necessary to read all requests in the
queue(s) to select those entered by a specified user or to co~pute the positions of the
chosen requests.

NOTES

All queues are searched for your requests. The request identification, entryname. state,
and any comment of each request is printed. If you supply no arguments, only your
own requests are selected. Nothing is printed for queues from which no requests are
chosen. (See enter_abs_request)

When you give a user name with -am or -user, a proxy request is chosen if either
your name or the proxy user's one on whose behalf you entered the request matches
the specified user name.

The entry portion of the pathname argument, the entryname given with -et, and the
RJE station name specified after -sender can be star names.

The User_id arguments selected after -am or -userean have any of the following
forms:

Person_id.Project_id
Person_id.*
D.8 " :..a
I 'WI "'''''11_1''''

*. Proj ect_i d
.Project_id
,-c. *

matches that user only
matches that person on any project
same as Peison_id.*
matches any user on that project
same as *.Project_id
same as -am with no User_id following it

Use "enter_abs_request -tc" if you want the absout file of an absentee request to be
truncated before the job is run. Truncation occurs as the job starts up, unless a
system crash has occurred. If the request is restarted, the truncation indicator is
ignored and the output of the interrupted job is appended to the absout file.

Name: list_accessible, lac

SYNTAX AS A COMMAND

lac {path {User_id}} {-control_args}

FUNCTION

scans a directory and lists segments, multisegment files (MSFs), and directories with a
specified access for a given User_ide

3-503 AG92-06A

11/86

ARGUMENTS

path
is the pathname of the directory to be scanned. If you omit it, or if you supply
-workinLdirectory (-wd) , your working directory is scanned.

User_id
is an access name. If you omit it. the User_id of the calling process with a star
tag is assumed. It can have null components. You can use the star convention for
access names (see the set_acl command).

CONTROL ARGUMENtS

If you select no control arguments, all the segments and directories to which the
named user(s) has nonnull access are listed.

-dir_mode STR
lists directories to which the named user(s) has any of the modes stated in STR,
where STR can be any or all the letters sma.

-ses-mode STR
lists segments to which the named user(s) has any of the modes indicated in STR,
where STR can be any or all the letters rew.

ACCESS REQUIRED

You must have s permission on the directory.

NOTES

You can't use User_id unless you have first suppiied a path.

If there are more than one User_id (i.e., the specified User_id has null components),
the modes for each matched User_id are listed on a per-entry basis.

SYNTAX AS A COMMAND

la {path} {User_ids} {-control_args}

SYNTAX AS AN ACTIVE FUNCTION

[la {path} {User_ids} {-control_args}]

3-504 AG92-06A

11/86

FUNCTION

lists the access control lists (ACLs) of nonlink entries in a directory.

ARGUMENTS

path
is the patbname of an entry. If it is -workins-directory (-wd). your working
directory is assumed. You can use the star convention.

3-504.1 AG92-()6A

This page intentionally left blank.

11/86 AG92-06A

User_ids
are access control names of the form Person_id.Project_id.tag. All ACL entries
with matching names are listed. If you don't give User_ids. the entire ACL is
listed.

CONTROL ARGUMENTS

-brief, -bf
suppresses the message "User name not on ACL of path." If you invoke list_acl
as an active function and User_id is not on the ACL, the null string is returned.

-chase
chases links matching a star name. Links are always chased when path is not a
star name.

-directory, -dr
lists the ACLs of directories only (see "Notes" below). (Default: segments,
multisegment files, and directories)

-in terpret_as_extended_en try , -inaee
interpret the selected entry as an extended entry type.

-interpret_as_standard_entry, -inase
interpret the selected entry as a standard entry type.

-no_chase
does not chase links. (Default)

-rin~brackets, -rb
lists the ring brackets. Not valid in the active function.

-segment, -sm
lists the ACLs of segments and multisegment files only.

-select_en try_type STR, -slet STR
affects only entries of the entry type selected by STR, which is a comma-delimited
list of file system entry types. Use the list_entry _types command to obtain a list
of valid entry type values.

ACCESS REQUIRED

You need status permission en t..~e directory.

NOTES

This command provides effective access information only when discretionary access
control is being used (regulated by an ACL). If either nondiscretionary access control
(regulated by the AIM) or intraprocess access control (regulated by the ring structure)
is in operation, use the status command to determine actual access.

3-505 AG92-Q

The -directory, -segment, and -select_entry_type control arguments are used to resolve
an ambiguous choice that may occur when path is a star name.

If you invoke list_acl with no arguments, it lists the entire ACL of your working
directory.

For a description of ACLs and ring brackets, see the Programmer's Reference Manual.
For a description of the matching strategy, see set_acl.

EXAMPLES

The command line

la notice.runoff .Faculty. Milton

lists, from the ACL of notice.runoff, all entries with Project_id Faculty and the entry
for Milton.*.*.

The command line

la ,'c.pll -rb

lists the whole ACL and the ring brackets of every segment in the working directory
that has a two-component name with a second component of pll.

The command line

la -wd -rb .Faculty. *.*.*

lists access modes and ring brackets for all entries on the working directory's ACL
whose middle component is Faculty and for the *.*.* entry.

Name: list_daemon_requests, ldr

SYNTAX AS A COMMAND

ldr {path} {-control_args}

FUNCTION

lists requests in the I/O daemon queues. The request identifier and entryname of each
request are printed.

3-506 AG92-06

•
ARGUMENTS

path
is the pathname of a request to be listed. The star convention is allowed. Only
requests matching this pathname are selected. If you give no path, all pathnames
are selected. This argument is incompatible with -entry.

CONTROL ARGUMENTS

-absolute_pathname, -absp
prints the full pathname of each selected request, rather than the just entryname.

-admin {User_id}, -am {User_id}
selects the requests of all users, or of the user specified by User_id. If you don't
choose -admin, only your own requests are selected. This control argument is
incompatible with -user. (See "Access Required" and "Notes" below.)

-all, -a
searches all queues and prints the totals for each non empty queue whether or not
any requests are selected from it. If you supply no -all, the default queue is
searched. This control argument is incompatible with -queue.

-brief, -bf
does not print the state and comment of each request. This control argument is
incompatible with -long and -total.

-entry STR. -et STR
selects only requests whose entrynames match STR. The star convention is allowed.
Directory portions of request pathnames are ignored when selecting requests.

-id ID
selects only requests whose identifier matches the specified ID.

-immediate, -im
selects only requests that can be r1L~ immediately and skips requests deferred by
the I/O daemon.

-long, -lg
prints all the information about each selected request including the long request
identifier and the full pathname. If you omit -long, only the short request
identifier. entry name. and state are printed.

-lon&-id. -lgid
prints the long the request identifier.

-position. -psn
prints the position within its queue of each selected request When used with
-total. it prints a list of all the positions of the selected requests. (See "Access
Required" and "Notes. n)

3-507 AG92-()6

-queue N, -q N
searches only queue N. If you don't select -queue, all queues are searched but
nothing is printed for queues from which no requests are selected.

-request_type STR, -rqt STR
specifies that requests are to be found in the queue f or the request type
identified by STR. If you give no -request_type, the default is ttprinter". List
request types with print_request_types.

-total, -tt
prints only the total number of selected requests and the total number of requests
in the queue plus a list of positions if you choose -position. If the queue is
empty, it is not listed.

-user User_id
selects only requests entered by the specified user. (See "Access Required" and
Notes.")

ACCESS REQUIRED

You must have 0 access to the queue(s). You must have r extended access to the
queue(s) to use -admin, -position, or -user, since it is necessary to read all requests
in the queue(s) to select those entered by a specified user or to compute the positions
of the chosen requests.

NOTES

The User_id arguments specified after -admin or -user can have any of the following
forms:

Person_id.Project_id
Person_id.*
Person_id
*.Project_id
• Proj ect_ i d
,,:. *

matches that usei only
matches that person on any project
same as Person id.*
matches any user on that project
same as *.Project_id
same as -admin with no User_id following it.

The state is printed only if it is deferred and you don't supply -brief.

3-508 AG92-o6

SYNTAX AS A COMMAND

FUNCTION

lists the contents of a directory information segment created by save_dir_info.

ARGUMENTS

path
is the pathname of the directory information segment. If path does not end in
the suffix dir_info. it is assumed.

CONTROL ARGUMENTS

-brief, -bf
produces a short output.

-long. -lg
produces a long output

NOTES

If you provide neither -long nor -brief, an intermediate verbosity level is used.

The output of this command is written on the user_output I/O switch. For each
entry, a series of lines of the form

item name: value

is written. Entries are separated by a blank line.

See the list_dir_info_ subroutine for information on the items printed for each
verbosity level.

3-509 AG92-()6

SYNTAX AS A COMMAND

FUNCTION

produces a list of all known Emacs terminal types. or verifies the existence in your
search rules of specified Emacs terminal controllers.

ARGUMENTS

terminal_type
is a terminal type name. It can be a single starname.

NOTES

When given with no arguments, this command lists all Emacs terminal types.

When given with the name of a terminal type as an argument, list_emacs_ctls either
verifies the existence of any Emacs terminal controller in your search rules that
matches the starname or prints the message "No Emacs terminal controllers found."

Name: list_entry _types, lset

SYNTAX AS A COMMAND

lset

SYNTAX AS AN ACTIVE FUNCTION

[1 set]

FUNCTION

prints or returns a list of all the file system entry types that can be found using your
search rules.

3-510 AG92-06

Name: list_external_variables, lev

SYNTAX AS A COMMAND

lev names {-control_args}

FUNCTION

prints information about variables managed by the system for the user, including
FORTRAN common and PL/I external static variables whose names do not contain
dollar signs. The default information is the location and size of each specified
variable.

ARGUMENTS

names
are names of external variables, separated by spaces.

CONTROL ARGUMENTS

-all. -a
prints information for each variable the system is managing.

-lon~ -lg
prints how and when the variables were allocated.

-no_header, -nhe
suppresses the header.

-unlabeled_common, -uc
is the name for unlabeled (or blank) common.

Name: list_fort ran_storage, Ifs

SYNTAX AS A COMMAND

lfs

FUNCTION

lists the extended storage segments assigned to the process, grouped according to the
storage to which they are extensions.

3-511 AG92-06

11/86

Name: list_heap_ variables, lhv

SYNTAX AS A COMMAND

Ihv names {-control_args}

FUNCTION

prints information concerning heap variables. Only variables at the specified execution
level(s) are printed. The default information is the location and size of each specified
variable. A level description is printed for each execution level specified. The heap
variables are displayed starting at the lowest execution level specified.

ARGUMENTS

names
are names of external variables. separated by spaces.

CONTROL ARGUMENTS

-all. -a
prints information for all heap levels. Starting at execution level 0 and ending
with the current execution level.

-brief. -bf
prints out the variable name. size, and where it is allocated. (Default)

-from level
specifies 'what execution level to start printing variables at If not present,
execution level 0 is assumed,

-header. ~he
prints the header. (Default)

-long. -lg
prints how and when the variables were allocated.

-no_header. -nhe
suppresses printing of the header.

-to level
specifies what execution level to stop printing variables at If not present. the
current execution level is assumed.

NOTES

Use -from and -to together to specify a range of execution levels to be printed. If
you give none, the current execution level is assumed.

3-512 AG92-o6A

11/86

Name: list_help, lh

SYNTAX AS A COMAIJAND

Ih topics {-control_args}

SYNTAX AS AN ACTIVE FUNCTION

[lh topics {-control args}]

FUNCTION

displays the names of all info segments (info segs) pertaining to a given topic.

ARGUMENTS

topics
are strings to be searched for in info seg names.

CONTROL ARGUMENTS

-absolute_pathname, -absp
prints or returns full pathnames of info segs. rather than entrynames.

-all, -a
displays the names of all info segs. (Default: to display the names of only those
info segs whose names match the topics specified)

-brief, -bf
does not display the alternate names of the info segs. You can9 t use -brief in the
active function. (Default: to display them)

-no_sort
does not sort the output (Default)

-pathname path, -pn path
specifies the pathname of a directory to search for applicable segments. Multiple
-pathname control arguments are allowed. (See "Notes.") (Default: to search the
directories in the info_segments search list)

-sort
sorts the output in ascending alphabetic order using as key the primary nam.e of
the info segs. If you give -absoiute_pathname. -sort uses the entry name part of
it as primary name.

NOTES

An info seg is considered to pertain to a given topic if the topic name appears in
(i.e.. is a substring of) the inf 0 seg name. The active function returns the selected
names separated by spaces. For information on info segs, see the help command.

3-512.1 AG92-06A

This page intentionally left blank.

11/86 AG92-06A

The default info seg directories contain info segs provided by the site and those
supplied with the system. Type "print_search_patbs info_segments" to see what the
current info segs search list is. For information about search lists. see the search
facility commands--add_search_paths. in particular.

SYNTAX AS A COMMAND

lid {path} {User_ids} {-control_args}

SYNTAX AS AN ACTIVE FUNCTIOIV

[lid {path} {User_ids} {-control args}]

FUNCTION

lists some or all the entries on a directory initial access control list (initial ACL) of a
specified directory.

ARGUMENTS

path
specifies the directory in which the directory initial ACL should be listed. If path
is -workin~directory (-wd) or omitted, your working directory is assumed; if
omitted, you cannot specify User_ids. The star convention is allowed.

User_ids
are access control names of the form Person_id.Project_id. tag. All access names
matching the given User_ids are listed. If you don't give User_id. the entire
initial ACL is listed.

CONTROL ARGUMENTS

-brief, -bf
suppresses the message "User name not on ACL of path." If you invoke lid as an
active function and User_id is not on the initial ACL, the null string is returned.

-chase
chases links matching a star name. (Default: to chase a link only when specified
by a nonstarred pathname)

-no_chase
does not chase links.

3-513 AG92-()6

-ring N, -rg N
identifies the ring number whose directory initial ACL is to be listed. It can
appear anywhere on the line and affects the whole line. If present. follow it by
N (where 0 <= N <= 7). If omitted, your ring is assumed.

ACCESS REQUIRED

You require status permission on the containing directory.

NOTES

If you invoke list_iacl_dir without any arguments, the entire initial ACL for your
working directory is listed.

A directory initial ACL contains the ACL entries to be placed on directories created
in the specified directory.

For information on initial ACLs. see the Programmer's Reference Manual. For a
description of the matching strategy for User_ids, see the set_acl command.

EXAMPLES

The command line

lid all runoff .Faculty Erasmus .•

lists, from the directory initial ACL of the all_runoff directory, all entries ending in
Faculty.* and all entries with the Person_id Erasmus.

The command line

1 i d -wd -rg 5

lists entries in the ring 5 directory initial ACL of the working directory.

SYNT AX AS A COMMAND

lis {path} {User_ids} {-control_args}

SYNTAX AS AN ACTIVE FUNCTION

[lis {path} {User_ids} {-control_args}]

3-514 AG92-06

FUNCTION

lists some or all the entries on a segment initial access control list (initial ACL) in a
specified directory.

ARGUMENTS

path
specifies the directory in which the directory initial ACL should be listed. If path
is -workins-directory (-wd) or omitted, then your working directory is assumed.
If omitted, you can't specify User_ids. The star convention is allowed.

User_ids
are access control names of the form Person_id.Project_id.tag. All access names
matching the given User_ids are listed. If you don't give User_id, the entire
initial ACL is listed.

CONTROL ARGUMENTS

-brief, -bf
suppresses the message "User name not on ACL of path." If you invoke lid as an
active function and User_id is not on the initial ACL. the null string is returned.

-chase
chases links matching a star name. (Default: to chase a link only when specified
by a nonstarred pathname)

-no_chase
does not chase links.

-ring N, -rg N
identifies the ring number whose directory initial ACL is to be listed. It can
appear anywhere on the line and affects the whole line. If present, follow it by
N (where 0 <= N <= 7). If omitted, your ring is aSsumed.

ACCESS REQUIRED

You need status permission on the containing directory.

NOTES

ii you invoke list_iacl_seg without any argw-nents, the entire initial ACL for your
working directory is listed.

A segment initial ACL contains the ACL entries to be placed on segments created in
the specified directory.

For information on initial ACLs, see the Programmer's Reference Manual. For a
description of the matching strategy for User_ids, see the set_acl command.

3-515 AG92-D6

EXAMPLES

The command line

lis all_runoff .Faculty. Whitehead

lists, from the segment initial ACL of the all_runoff directory, all entries with the
Project_id Faculty and the entry for Whitehead.*.*.

The command line

lis -wd -rg 5

lists entries in the ring 5 segment initial ACL of the working directory.

Name: list_mdir, Imd

SYNTAX AS A COMMAND

lmd volume_names {-control_args}

FUNCTION

prints logical volume and master directory quotas.

ARGUMENTS

volume_names
are the names of the logical volumes.

CONTROL ARGUMENTS

-account User_ids
specifies a list of quota account names for which information is desired, where
each User_id is of the form Person_id.Project_id. You can't use asterisks when
specifying quota account names. Asterisks in account names only match quota
account names that contain asterisks.

-all, -a
prints information about all users of the logical volume.

-brief, -bf
suppresses header and shortens the output lines.

-directory, -dr
prints only master directory information.

3-516 AG92-()6

-long, -lg
prints additional information, including the quota. account for each directory.

-owner User_ids
specifies a list of directory owners for which information is desired, where each
User_id is of the form Person_id.Project_id. You can use an asterisk when
specifying either component of an owner name. If you omit -owner, information
is printed only for directories owned by you.

-quota.
prints only quota information.

ACCESS REQUIRED

You must have e access to the logical volume to use -account, -all. and -owner= The
volume need not be mounted.

NOTES

If you specify neither -quota. nor -directory, information about both quotas and
directories is printed.

If you give -all, you can't supply -owner and -account If you use both -owner and
-account, information is printed only for directories that match both conditions.

EXAMPLES

In the example below, the user with Person_id Jones on the Fed project requests
information on the logical volume named work. The system responds with information
about Jones's master directories.

1md work
QUOTA PATHNAME
100 >udd>Fed>Jones>sub
250 >udd>Fed>Jones>subl>sub2
350 records of quota assigned, 500 available.

In the example below, Jones requests brief information on the logical volume named
work. The system responds with information about Jones' master directories.

1md work -bf
>udd>Fed>Jones>sub
>udd>Fed>Jones>subl>sub2
Quota=500, used=350.

In the example below, Jones requests brief, quota information about the logical volume
named work.

lmd work -quota -bf
Quota=500, used=350.

3-517 AG92-06

In the example below, Jones requests inf ormation about all users of the logical volume
named work. The use of the -all control argument requires "e" access on the logical
volume.

lmd work -all
OWNER
Jones.Fed
Jones.Fed
Smi tho Fed

ACCOUNT
Smi th. Fed
*. Fed

QUOTA
100
250
900

900

Total volume quota: 1500
Total quota used: 1250

Name: list_not_accessible, lnac

SYNTAX AS A COMMAND

FUNCTION

PATHNAME
>udd>Fed>Jones>sub
>udd>Fed>Jones>sub1>sub2
>udd>Fed>Smith>work

USED
1000
350

VOLUME QUOTA

500

scans a directory and lists segments and directories to which a specified User_id does
not have a given access condition.

ARGUMENTS

path
is the pathname of the directory to be scanned. If you omit path or give
-workinLdirectory (-wd) , your working directory is scanned.

User_id
is an access name that can have null components. If you omit it, your process's
User_id is assumed. The star convention for access names is allowed. (See the
set_acl command.)

CONTROL ARGUMENTS
If you select no control arguments, all segments and directories to which the
named user(s) has null access are listed.

-(iir _mode STR
lists directories to which the named user(s) does not have any of the modes
specified in STR, where SIR can be any or all of the letters sma.

3-518 AG92-()6

-se~mode STR
lists segments to which the named user(s) does not have any of the modes
specified in STR, where STR can be any or all of the letters rew.

ACCESS REQUIRED

You must have status permission on the directory_

EXAMPLES

lnac >udd>work>Smith
null Smith.mbx

lnac >udd>work>Smith
s index
nu 11 Smith.mbx
s newindex
s garyl
s stuff

SYNTAX AS A COMMAND

-di r _mode m

lor {request_identifier} {-control_args}

FUNCTION

lists requests in the I/O daemon queue.

ARGUl'if1 E "'IT S

request_identifier
choose it from the following. If you specify no request_identifier, all requests are
listed.

path
is the relative pathname of one or more requests to be listed. The star
convention is allowed.

-entry STR. -et STR
selects only requests whose entry names match STR. The star convention is
allowed. Directory portions of request pathnames are not used for selecting
requests.

3-519 AG92-06

-id ID
selects only requests whose request_ids match ID.

CONTROL ARGUMENTS

-absolute_pathname, -absp
prints the full pathname.

-admin {User_id}, -am {User_id}
selects requests of all users or of the specified user. It requires r extended access
to the queue{s) to read other users' requests. (Default: to list your own requests)'

-all, -a
searches all queues.

-brief, -bf
does not print the request state in normal (not -long) mode. It is incompatible
with -long and -total.

-immediate, -im
selects only I/O requests that are not deferred. With -position, it ignores
deferred requests when computing position.

-long. -lg
prints all information about each selected request. including the long request_id
and full pathname (see "Notes"), (Default: to print the short request_id and
entryname)

-lon~id. -lgid
prin ts the long request_id.

-position, -psn
prints queue positions of each selected request. With -total. it prints a list of
queue positions. It requires r extended access to the queue(s) to read other users'
requests.

-queue N, -q N
searches only queue N. If you supply no -queue. all queues are searched but
nothing is printed for queues from which no requests are selected.

-print, -pr
specifies that the requests listed are found in the queue(s) associated with the
default printer request type (see "Notes.")

-punch. -pch
specifies that the requests listed are found in the queue(s) associated with the
default punch request type (see "Notes. n)

3-520 AG92-06

-plot
specifies that the requests listed are found in the queue(s) associated with the
default plotter request type (see "Notes.")

-request_type STR. -rqt STR
searches the 110 daemon queues belonging to the specified request type (see
"Notes.")

-total, -tt
prints only the total number of selected requests and the total number in the
queue.

-user User_id
selects only requests of the specified user. It requires r extended access to the
queue(s).

NOTES

You can only choose printer. punch. or plotter generic request types with -request_type
when you give -long. The print_request_types command gives you a list of these
request types.

The -print, -punch, -plot, and -request_type control arguments are .mutually exciusive.
If you give none, lor lists the default request type used by eor -print (as displayed by
prin t_request_types).

SYNTAX AS A COMMAND

FUNCTION

displays the primary names of all protection notice templates.

CONTROL ARGUMENTS

-aU, -a
specifies that the entire pnotice search list is to be processed and all templates,
including duplicates, are to be listed.

-check, -ck
specifies that the entire pnotice search list is to be processed and that all
templates, including duplicates, are to be listed. Checks are also made to the text
of each template. and any errors encountered are reported.

3-521 AG92-06

list~ref ~names

NOTES

Default copyright and trade secret notices are indicated. Names displayed by this
command are shown as they should be input to the add_pnotice and generate_pnotice
commands. If no control arguments are used, names are output in search list order,
omitting duplicates.

SYNT AX AS A COMMAND

lrn paths {-control_args}

FUNCTION

lists the reference names associated with a given segment. You can specify segments
by either pathname or segment number.

ARGUMENTS

paths
are the segment numbers and pathnames of segments known in your process. They
can be "-name STR" ("-nm STR") to specify a pathname that begins with a
minus sign or looks like a segment number. If you supply no paths, information
for all segments known in your process is printed, excluding those known in ring
o.

CONTROL ARGUMENTS

-all. -a
prints information for all known segments. including ring 0 segments. It is
equi valen t to -from O.

-brief. -bf
suppresses printing of the reference names for the entire execution of the
command.

-from N, -fm N

-to

allows you to specify a range of segment numbers. You can use it with -to;
information for the segment numbers in this range is printed. If you don't select
-to. the highest used segment number is assumed.

allows you to specify a range of segment numbers. If you supply no -from. the
segment number of the first segment not in ring 0 is assumed.

3-522 AG92-06

NOTES

You can mixed all the above arguments (segment specifiers and control a~guments).
For example. in the command line

1rn 156 -from 230 path_one

information is printed for segment 156. all segments from 230 on. and the segment
whose pathname is path_one. In the default condition. when called with no arguments,
list_ref_names prints information on all segments that are not in ring O.

Name: list_resource_types, irt

SYNTAX AS A COMMAND

1rt {type1 •.. typeN} {-contro1_args}

FUNCTION

prints a list of all resource types described in a resource type description table
(RTDT).

ARGUMENTS

~~ I
is the resource type defined in the RTDT for which information is to be listed.
If you give no type. all known resource types are listed.

CONTROL ARGUMENTS

-long. -lg
lists the defined attributes for each resource type.

-no_header, -nhe
omits the column headers.

-pathname path. -pn path
lists resource types defined in the RTDT specified by path. If you give no
-pathname, the RTDT residing in >system_control_1 is used.

NOTES

See also the list_resources command. which lists groups of resources according to
specified criteria. For example. list_resources can list all resources known by the
Resource Control Package (Rep) or those owned by a given user and/or project

3-523 AG92-()6

Name: list_resources, lr

SYNTAX AS A COMMAND

lr {-control_args}

SYNTAX AS AN ACTIVE FUNCTION

[lr {-control_args}]

FUNCTION

lists groups of resources managed by the Resource Control Package (RCP) , selected
according to the criteria specified by you.

CONTROL ARGUMENTS

-acquisitions, -acq
lists resources acquired by you specified by -user. If you supply -acquisitions, you
must also give -type.

-assignments, -asm
lists resource assignments.

-awaitinLclear
lists those resources awaiting manual clearing.

-device STR. -dv STR
lists only device resources with the name STR.

-logical_volume, -Iv
lists logical volumes that are currently attached.

-long, -lg
prints all the information known about each resource listed. If you don't supply
it. only the name for each resource listed is printed. It has no effect if you
select -acquisitions.

-mounts. -mts
lists resources currently mounted by the process.

-reservations, -resv
lists only device and volume reservations.

-type STR. -tp STR
lists resources of the type STR. See list_resource_types for inf ormation on
obtaining the names of resource types.

-user User _id
selects a particular user or group of users for whom resource information is to be

3-524 AG92-Q6

list_retrieval_requests

printed. If you select no -user, your User_id is assumed. You can use -user only
in conjunction with -acquisitions. User_id can be any oi the following:

Person. Project
specifies a particular Person_id and Project_id combination.

*.Project
specifies all users on a given project project

.
specifies all users (i.e .. all acquired resources are listed).

free
specifies all resources in the free pool.

system
specifies all resources in the system pool.

**
specifies all users plus the free and system pools (Le., all registered resources
are listed).

NOTES ON ACCESS RESTRICTIONS

You require access to rcp_admin_ to obtain information on other users and read
access to the Project Definition Table (PDT) of a given project to obtain information
for that project

NOTES

If you invoke list_resources without any arguments, all resources assigned and devices
attached to the calling proc.ess are liste-d.

You cannot use the -assignments, -device, -logical_volume, -long, -mounts, and
-reservations control arguments with the active function.

SYNTAX AS A COMMAND

lrr {path} {-control_args}

FUNCTION

lists retrieval requests in the retrieval daemon queues. The request identifier and
entryname of each request are printed.

3-525 AG92-06

list_retrieval_requests

ARGUMENTS

path
is the pathname of a request to be listed. The star convention is allowed. Only
requests matching this pathname are selected. If you give no path, all pathnames
are selected. This argument is incompatible with -entry.

CONTROL ARGUMENTS

-absolute_pathname, -absp
prints the full pathname of each selected request, rather than the just entryname.

-admin {User_id}, -am {User_id}
selects the requests of all users, or of the user specified by User_id. If you don't
choose -admin, only your own requests are selected. This control argument is
incompatible with -user. (See "Access Required" below.)

-all, -a
searches all queues and prints the totals for each nonempty queue whether or not
any requests are selected from it. This control argument is incompatible with
-queue.

-brief, -bf
does not print the state and comment of each request. This control argument is
incompatible with -long and -total.

-entry STR, -et STR
selects only requests whose entrynames match STR. The star convention is allowed.
Directory portions of request pathnames are ignored when selecting requests.

-id ID
selects only requests whose identifiers match the specified 1D.

-long, -lg
prints all the information pertaining to a retrieval request If you omit -long,
only the full pathname of the object or subtree to be retrieved is printed.

-lontLid, -lgid
prints the long the request identifier.

-posi tion, -psn
prints the position within its queue of each selected request. When used with
-total, it prints a list of all the positions of the selected requests. (See "Access
Required. ")

-queue N, -q N
searches only queue N. If you don't select -queue, all queues are searched but
nothing is printed for queues from which no requests are selected.

3-526 AG92-06

11/86

-total. -tt
prints only the total number of selected requests and the total number of requests
in the queue plus a list of positions if you choose -psn. If the queue is empty,
it is not listed.

-user User_id
selects only requests entered by the specified user (see "Access Required").

ACCESS REQUIRED

You must have 0 access to the queue(s). You must have r extended access to the
queue(s) to use -am, -psn, or -user, since it is necessary to read all requests in the
queue(s) to select those entered by a specified user.

NOTES

The default is to list only pathnames for the default queue. .

The User_id arguments specified after -am or -user can have any of the following
forms:

Person_id.Project_id
Person_id.*
Person_id
)·c. Proj ect_ i d
• Proj ect_i d
.. '... ...',
,'\ ... "

matches that user only
matches that person on any project
same as Person_id.*
matches any user on that project
same as *.Project_id
same as -admin with no User_id following it •

If you select no arguments, only your own requests are selected for listing (see
en ter_retrieval_request).

SYNTAX AS A COMMAND

1st {pathnames} {-control_args}

FUNCTION

lists the segments in a specified subtree of the hierarchy. The complete subtree is
listed unless you supply -dh.

ARGUMENTS

pathname
is the relative pathnarne of the subtree to be searched. If you specify more than
one pathname, only the last one is listed. If you specify no pathnarne. your
working directory is assumed.

3-527 AG92-o6A

11/86

CONTROL ARGUMENTS

-all, -a
prints all the names of a segment. (Default: to print only the primary names)

-depth NNN, -dh NNN
scans the hierarchy to the depth indicated by NNN. The depth is relative to the
base of the given subtree and must be specified by a decimal integer.

NOTES

For each level listed in the hierarchy, the names are indented three more spaces to
indicate the depth of the segments.

Each segment printed includes the number of records used by the segment

Name: list_tape_contents, ltc

SYNTAX AS A COMMAND

ltc voll {-comment comment string} .•• volN {-comment comment_string}
{-attach_args} {-control_args}

FUNCTION

prints information about files recorded on 9-track magnetic tape in either ANSI
standard labeled or IBM standard labeled format

ARGUMENTS

voI(s) {-comment comment_string}
specifies the name of the tape volume set to be listed (see "Notes on Volume
Selection" below).

CONTROL ARGUMENTS

-attach_args
makes mtape_ attach control arguments (see "Notes on Attachment" below).

-brief, -bf
prints the identifier and sequence number of each file selected from the volume
set

-comment comment_string. -com comment_string
displays comment_string on the operator's console when the volume name
immediately preceding -comment is mounted.

3-528 AG92-o6A

11/86

-from N
starts output of information with file number N, where 0 < N < 10000.

-lon~ -lg
prints detailed information about each file selected from the volume set.

-to N
stops processing the volume set after file number N, where 0 < N < 10000.

-volume_type type, -vt type
specifies the format type of the volume set being processed, where "type" can be
"ibm" or "ansi." (Default: ansi, if you omit -vt)

NOTES ON VOLUME SELECTION

When you specify the volume identifier, use -vt before any volume identifier
beginning with a hyphen.

If the volume set to be listed was created on Multics, give only the first volume
identifier of the set; the command retrieves the remainder of the identifiers. If it was
not created on Multics, give each volume identifer. Up to 64 volumes can be selected.

NOTES ON VOLUME SET INFORMATION

The information ltc prints is extracted from the tape labels and printed in various
amounts according to the control arguments you supplied. The information available
for each level of control is shown below. Where information is not obtainable from
th~ 1~~~1 th~ V~l11~ n •••• " 1e! 1·,,·1nt~r1 Ole! th~ 1t~"" ~nt1"V
1fI.LI, """",v...,.&., ..,.&..&.W .. 'IIWr.&., • - _. .&,tOJ' t',£..&..&..1. ... ~ ~l..., .a.,~ W.l..&LJ.

Information printed by list_tape_contents

Id:
Number:
Format:
Blksize:
Lrec 1 :
Mode:
Created:
Expires:
Section:
Version:
Generation:

<file identifier>
<file sequence number>
<record format>

-brief
-bf

<physicaJ block size in characters>
<logical record length in characters>
<encoding mode>
<file creation date>
<file expiration date>
<file set section number>
<file generation version number>
<file generation number>

3-529

(defau 1 t)

-long
-lg

AG92-06A

1ist~ tape=contents

11/86

NOTES ON ATTACHMENT

A complete attach description is created for processing the volume set It is composed
of the string

or

Ilmtape_ -vo 1 ume_ type ans i -no_d i sp 1 ay -dens i ty 1600 -track 9
-error -device 1 -label -no_system -no_wait II

"mtape_ -volume_type ibm -no_display -density 1600 -track 9
-error -device 1 -label -no_system -no_wait II

Any mtape_ attach control arguments you give to ltc are added to the end of the
attach description and passed to mtape_ (see the mtape_ I/O module in the
Subroutines manual).

NOTES ON mtape_ ARGUMENT DEFAULTS

To avoid unexpected resUlts, ltc supplies complete open, close, and detach descriptions
to mtape_. These arguments override any default values that may have been
established by the mtape_set_defaults command.

EXAMPLES

The command ltc m9999

produces

Mounting volume IIm9999 11 with no write ring
Mounted ANSI volume "m9999" (recorded at 1600 BPI) t on device tapa_07

10

FILEOOOl
FILE0002

Number

1
2

Format

5B
SB

Blksize

8192
2048

Lrecl

1044480
1044480

3-530

Mode

BINARY
BINARY

Created

09/30/85
09/30/85

Expires

12/31/99
12/31/99

AG92-06A

11/86

The command

Itc m9999 -bf -from 2 -to 4 -vt ansi

produces

Mounting volume "m9999" with no write ring
Mounted ANSI volume IIm9999" (recorded at 1600 BPI), on device tapa_07

10

FILE0002
FILE0003
FILE0004

The command

Itc m9999 -Ig

produces

Number

2
3
4

Mounting volume "m9999 11 with no write ring
Mounted ANSI volume "m9999" (recorded at 1600 BPI), on device tapa_03

10: ATTRIBUTEFILEOOOl Number: 1 Section:
Created: 10/21/85 Expires: 12/31/99 Generation: 1 Version: 0
Format: SB Mode: BINARY Blksize: 8192 Lrec 1 : 1044480

! D: ATTR!BUTEF!LEOOO2 Number: ") ...

10: ATTRIBUTEFILEOO03 Number: 3

Oisp1ayed characteristics for the last 3 files are identical.

The command

ltc m9999 -long -comment "message to console" -vt ibm

3-530.1 AG92-D6A

This page intentionally left blank.

11/86 AG92-06A

SYNTAX AS A COMMAND

list_temp_segments {names} {-control_arg}

FUNCTION

lists the segments currently in the temporary segment pool associated with your
process. This pool is managed by the get_temp_segments_ and release_temp_segments_
subroutines.

ARGUMENTS

names
is a list of names identifying the programs whose temporary segments are to be
listed. It cannot be used with -all.

CONTROL ARGUMENTS

-all, -a
lists all temporary segments. including free ones. If the command is issued with
no arguments (the default invocation). it lists only those temporary segments
currently assigned to programs (i.e.. free temporary segments are not listed). This
control argument is incompatible with the names argument.

EXAMPLES

To list all the segments currently in the pool. type

5 Segments, 2 Free

!BBBCdfghgffkkkl.temp.0246
!BBBCdffddfdffkl.temp.0247
!BBBCddffdfffhhh.temp.0253
!BBBCdgdgfhfgfsf.temp.0254
!BBBCvdvfgvdgvvv.temp.0321

work
work
(free)
(free)
editor

To list the segments currently in use. type

3 Segments

!BBBCdfghgffkkkl.temp.0246 work
!BBBCdffddfdffkl.temp.0247 work
!BBBCvdvfgvdgvvv.temp.0321 editor

3-531 AG92-D6

To list segments used by the program named "editor", type

segment

BBBCvdvfgvdgvvv.temp.0321 editor

SYNTAX AS A COMMAND

login_args {argument_number} {-control_args}

SYNTAX AS AN ACTIVE FUNCTION

[login_args {argument_number} {-control_args}]

FUNCTION

prints or returns information about selected login arguments. You can supply login
arguments on the command line that creates the process. For interactive processes, this
is the login and enter or enterp preaccess requests; for absentee processes,
en ter _abs_request.

ARGUMENTS

argument_num ber
selects a single login argument

CONTROL ARGUMENTS

-count, -ct
prints or returns the number of login arguments you gave when you entered the
process creation command. You can't use -count in combination with either
argument_number or the other control arguments.

-from argument_number, -fm argument_number
selects all login arguments from argument_number through the last login argument.

-no_requote
does not requote arguments in the string that is returned or printed.

-quote
doubles embedded quotes of each selected argument before it is returned or
printed.

3-532 AG92-o6

-requote
requotes each selected argument before it is returned or printed. (Default)

NOTES

If you supply no argument_number and no -count, the default is -from 1.

If no login arguments exist for the process, login_args prints "There are no login
arguments." The active function returns the empty string.

If argument_number exceeds the number of login arguments for the process, login_args
prints "Argument number N exceeds the number of login arguments (NN)." The active
function returns the empty string.

If -from is in force, explicitly or by deiauit. iogin_args prints each argument on a
separate line, prefixed by its number, a right parenthesis, and a space; for example,
the fourth argument is preceded by "4) ft. The active function separates multiple
arguments by a single space in the return string. which is not itself embedded in
quotation marks, and inserts no argument number in the return string.

The -from, -no_requote, -quote and -requote control arguments allow you to obtain
return strings that are equivalent to exec_com argument substitution forms.

no control arguments
argument_number
-from argument_number
-no_requote
argument_number -no_requote
-from argument_number -no_requote
-quote
argument_number -quote
-from argument_number -quote
-count

&rfl
&r(argument_number)
&rf(argument_number)
&fl
&(argumen t_num ber)
&f(argument_number)
&qfl
&q(argument_number)
&qf(argument_number)
&n

The active function cannot duplicate some exec_com argument forms. The exec_com
interpreter has information about surrounding context and produces different results
for &ql and "&ql".

3-533 AG92-06

logout

Name: logout

SYNTAX AS A COMMAND

logout {-control_args}

FUNCTION

terminates your session and ends communication with the Multics system. It signals the
finish condition for the process and, after the default on unit for the finish condition
returns, closes all open files and destroys the process.

CONTROL ARGUMENTS

-brief, -bf
prints neither the logout message nor, if you give -hold, the login message.

-hold, -hd
terminates your session but not communication with the system: you can
immediately log in without redialing.

NOTES

If your site is security conscious, it may have disabled "logout -hold"; in this case if
you wish to change authorization, do this:

1. log out

2. verify, using terminal/modem indications, that the terminal has dropped OrR
and that the system acknowledged by dropping DSR

3. log in at the new authorization.

This procedure is the only way to guarantee that you are communicating with the
answering service and not with a Trojan horse.

DTR and DSR are EIA RS232 control signals that are part of the interface between
your terminal and the system.

iogout

3-534 AG92-06

lon~date lon~date

Name: lon~date

SYNTAX AS A COMMAND

SYNTAX AS AN ACTIVE FUNCTION

FUNCTION

returns a month name, a day number, and a year as a single string in the form
"month day, year" (e.g., November 2, 1985). The format string to produce this is
;;Amn Adm, A 9999yc".

ARGUMENTS

time_string
indicates the date about which information. is desired. If you supply no
time_string, the current date is used. The time string is concatenated to form a
single argument even if it contains spaces; you need not quote it. (See Section 1
for a description of valid time_string values.)

CONTROL ARGUMENTS

-language STRj -lang STR
STR specifies the language in which month name, day names, and zone names are
to be expressed. (Default the process default)

-zone STR
STR specifies the zone that is to be used to express the result (Default: the
process default)

NOTES

Use the print_time_defaults command to display the default language and zone. Use
the display_time_info command to display a list of all acceptable language and zone
values.

3-535 AG92-()6

lonuear

Name: long,....year

SYNTAX AS A COMMAND

SYNTAX AS AN ACTIVE FUNCTION

FUNCTION

returns the four-digit number of a year in the clock from 0001 through 9999. The
format string to produce this is "A 9999yc".

ARGUMENTS

time_string
indicates the date about which information is desired. If you supply no
time_string, the current date is used. The time string is concatenated to form a
single argument even if it contains spaces; you need not quote it (See Section 1
for a description of valid time_string values.)

CONTROL ARGUMENTS

-zone STR
STR specifies the zone that is to be used to express the result. (Default: the
process default)

NOTES

Use the print_time_defaults command to display the default zone. Use the
display _time_info command to display a list of all acceptabie zone values.

Name: low

SYNTAX AS A COMMAND

low N

SYNTAX AS AN ACTIVE FUNCTION

[low N]

low

3-536 AG92-06

low

FUNCTION

returns a specified number N of copies of the first (lowest) character in the ASCII
character set (NUL or OOOoctaI).

NOTES

See the description of the high command.

Name: lower_case, lowercase

SY,"'JTAX AS A COMMAND

lowercase strings

SYNTAX AS AN ACTIVE FUNCTION

[lowercase strings]

FUNCTION

returns strings with all uppercase alphabetic characters translated to lowercase.

ARGUMENTS

strings
is one or more character strings.

NOTES

Returned strings are separated from each other by a space. See the description of the
upper_case c.ommand.

EXAMPLES

The following interactions illustrate use of lower_case as an active function:

ioa_ [lower_case liThe time zone is EST."]
the time zone is est.

The following interactions illustrate use of lower_case as a command:

lower_case It is winter in Boston. The time zone is EST.
it is winter in boston. the time zone is est.

3-537 AG92-OC

Itrim

Name: Itrim

SYNTAX AS A COMMAND

ltrim STRA STRB

SYNTAX AS AN ACTIVE FUNCTION

[ltrim STRA STRB]

FUNCTION

returns a character string trimmed of specified characters on the left

NOTES

The ltrim command, or active function, finds the first character of strA not in strB.
trims the characters from strA preceding this character, and returns the trimmed
result Space characters are trimmed if strB is omitted.

EXAMPLES

string [ltrim 000305.000 0]
305·000
s tr i ng [1 tr i m" Th is is it. II]
Th is is it.

Name: Iv_attached

SYNT AX AS A COMMAND

SYNTAX AS AN ACTIVE FUNCTION

FUNCTION

returns true if the volume specified (Le., the lv_name argument) is attached to the
user's process or if the volume is a public logical volume; otherwise it returns false.

ARGUMENTS

lv_name
is the name of the logical volume.

3-538 AG92-06

11/87

NOTES

See the related commands attach_Iv and detach_Iv.

Name: mail, ml

SYNTAX AS A COMMAND

ml path Userl ••. {UserN} {-control_args}

ml {destination} {-control_args}

FUNCTION

sends a message to another user or prints messages in any mailbox to which you have sufficient
access.

ARGUMENTS

path
is the patbname of a segment to be sent or is an asterisk (*) to indicate that you wish to type a
message to be sent (see "Notes on Composing Mail" below).

User_1
is the User_id of a person to whom mail is to be sent. Mail is sent to the mailbox
>udd>Project_id>Person_id>Person_id.mbx fer each Person_id.Project_id (User_id)
argument in the command line.

destination
can be User_id to specify a mailbox. If destination contains a < or >, it is the pathname oj a
mailbox. The mbx suffix is assumed in this case. You cannot use destination with
-pathname. (Default your default mailbox)

CONTROL ARGUMENTS

-acknowledge, -ack
requests acknowledgement of the pieces of mail. The acknowledgement consists of the
string:

"Acknowledge message of <date-time sent>1I

and is sent as an interactive message when you invoke this command to print mail.

-brief, -bf
prints the total number of messages in the mailbox. If the mailbox is empty, nothing is
printed.

mail

3-539 AG92-06B

mail

-exclude STR, -ex STR
ignores messages sent by users whose User_id matches the User_id specified in
STR. The star convention is allowed. If you supplied -match. exclusion is
performed before matching.

-header, -he
prints only the header line for each message. No messages are deleted.

-match STR
prints messages sent by users whose User_id matches the User_id specified in
STR. The star convention is allowed. If you gave -exclude, exclusion is
performed before matching.

-no_notify, -nnt
suppresses the sending of an interactive "You have mail" notification.

-pathname path, -pn path
specifies a mailbox by pathname. The mbx suffix is assumed.

NOTES

The extended access used on mailboxes (which are ring 1 segments) permits you to
control other users' access to it. Adding, reading, and deleting messages are
independent privileges under extended access; for example, you can give a user access
to only add messages, to other user access to add messages and to read and delete
only the messages he or she has added. Mail and interactive messages sent to a user
are placed in the mailbox >udd>Project_id>Person_id>Person_id.mbx.

If you are accepting interactive messages, you receive an immediate notification of the
form:

You have mail from Person_id.Project_id.

Segments to be mailed have a maximum length of one record (4096 ASCII characters).

NOTES ON COMPOSING MAIL

If path is *, mail responds with "Input" and accepts lines from the terminal until you
type a period on a line by itself. The typed lines are then sent to the specified
user(s).

mail

3-540 AG92-()6

mail

NOTES ON PRINTING MAIL

When the contents of the mailbox named by path are printed, they are preceded by a
line of the form:

N messages.

Each message is preceded by a line of the form:

i) From: Person_id.Project_id (sent_from) date time (N lines)

where:

is the incremental number of the message. The messages are printed in ascending
numerical order; the oldest one is numbered 1.

Person_id
is your registered person identifier.

Project_id
is the name of the project on which you were logged in when you sent the
message.

sent_from

date

time

is an optional field that further identifies you, e.g., your anonymous log-in name.

is the date you sent the message, of the form mm/dd/yy to indicate the month,
day, and year.

is the time you sent the message, of the form hhmm.m zzz www to indicate the
hours, minutes, and tenths of minutes in 24-hour time followed by the time zone
and day of the week.

N lines
is the number of lines in the message.

After printing all messages, this command asks whether you want them deleted. If yes,
all messages are deleted; if no, no messages are deleted. In either case, your return to
command level.

If you quit while the messages are being printed and then issue program_interrupt, the
command stops printing and asks whether to delete all messages, including those that
were not printed.

mail

3-541 AG92-()6

mail

11/87

NOTES ON CREATING A MAILBOX

A default mailbox is created the first time print_mail, read_mail, or accept_messages is used. The
default mailbox is

>udd>Project_id>Person_id>Person_id.mbx

NOTES ON EXTENDED ACCESS

Access on a newly created mailbox is set to adrosw for you, aow for *.SysDaemon.*, and aow for
..*. The types of extended access for mailboxes are:

add, a
adds a message.

delete, d
deletes any message.

read, r
reads any message.

own, 0

reads or delete only your own messages, i.e .. those sent by you.

status, s
finds out how many messages are in the mailbox.

wakeup. w
sends a wakeup when adding a message (used by send_message).

The modes n, nUll. and "" indicate null access.

The mode u indicates that the user has access to send "urgent" messages to the user accepting
messages on the mailbox. However, urgent messages are not currently implemented.

SYNTAX AS A COMMAND

mvp key {args} {-control_args}

SYNTAX AS AN ACTIVE FUNCTION

[mvp key {args} {-control_args}]

3-542 AG92-06B

FUNCTION

allows a user or a group of users to regulate the use of a predefined set of volumes
(tape reels, etc.). The concept of volume sets as used with tape_ansi_/tape_ibm_ is
also supported. The default volume pool for each user pool is named Person_id.volumes
and exists in your home directory. This default can be reset via the use key described
below.

ARGUMENTS

key

args

can be any of the tokens (see "List of Keys"):

add (a)
allocate (alloe)
append_volume_set (appvs)
delete (d})
free
list (Is)
print (pr, p)

pv _expire (pvexp)
remove_volume_set (rmvs)
reserve (rsv)
reuse
set
test
use

are optional arguments associated with the various keywords. They can be volume
names of volumes to be acted upon according to the key given.

CONTROL ARGUMENTS

are optional control arguments associated with the various keywords.

LIST OF KEYS

add, a
Usage: mvp a vol_names {-control_args}

adds the selected volumes to your volllIile pool. Each volume added is considered
a volume set of size one.

Control Arguments:

-force, -fc
adds the volumes it can without aborting the entire request or querying you
(see "Notes on Querying" below).

-pv_expire DATE, -pvexp DATE
sets the expiration date of all given physical volumes to DATE. DA TE must
be acceptable to convert_date_to_binary _" (See "Notes on Expiration Dates"
below.)

Failure can occur when the volume to be added already exists in the volume pool.

3-543 AG92-()6

As an active function, "true" is returned if all volumes were successfully added
(see "Notes on Active Function" below).

allocate, alloc
Usage: mvp alloe {vol_names} {-eontrol_args}

ailocates the suppiied free or reserved volume sets. Tne vol_names argument can
be primary or secondary volumes of a set

Control Arguments:

-comment STR, -com STR
designates STR as the comment to be associated with the vol_names chosen.

-expire DATE, -exp DATE
sets the expiration date associated with the data on the allocated vol_names.
DATE must be acceptable to convert_date_to_binary _. (See "Notes on
Expiration Dates" below.)

-first {N}, -ft {N}
allocates the first N free volume sets in the pool; "first" is defined as the
volume sets that have been most recently freed (i.e., volume sets that have
the most recent state change date associated with them). (Default I, if you
give no N)

-force. -fc
assigns the volume sets it can without aborting the entire request or querying
you (see "Notes on Querying").

-last {N}, -It {N}
allocates the last N free Yolu..'D.e sets in the pool; "last" is defined as the
volume sets that have been in the free state the longest (i.e., volume sets that
have the oldest state change date associated with them). (Default 1, if you
supply no N)

-volume_size {N}, -vs {N}
allocates a volume set of size N. If more than one volume set of size N
exists and neither -first nor -last is used, then the last free (least recently
freed) volume set of size N is assigned. If there are no volume sets of size
N, an error message occurs. The test key can be used to avoid such errors.
(Default 1, if you supply no N)

The use of vol_names and -ft, -It, or -vs are mutually exclusive. If -vs is not
selected, the default action is to consider all volume sets of any size in the pool.

Reserved volume sets to be allocated must be specified by their vol_name. Failure
can occur if the volume sets to be allocated do not exist in the volume pool, if
they are not in the free or reserve state, or if N free volume sets are requested
and only N-l free volume sets exist in the pool.

3-544 AG92-06

As an active function9 the allocated vol_names are returned.

append_volume_set, appvs
Usage: mvp appvs primary_vol_name {vol_names} {-control_args}

appends the vol_names to the volume set specified by the primary_vol_name. The
vol_names cannot be secondary volumes of another existing volume set The
pv_expire date of each vol_name is checked before appending; if this date is
passed (i.e, less than the current date), the state of the volume becomes expired, a
message to that effect is printed, and the volume is not appended.

Control Arguments:

If no vol_names are given, acceptable control arguments are

-first {N}, -ft {N}
appends the first N free volume sets to the new set; "first" is defined as the
volume sets that have been most recently freed. (Default: 1, if you give no
N)

-force, -fc
appends the volumes it can without aborting the entire request or querying
you (see "Notes on Queryingfl).

-last {N}. -It {N}
appends the last N free volume sets to the new set; "last" is defined as the
volume sets that have been in the free state the longest (Default: 1. if you
supply no N)

-volume_size {N}, -vs {N}
appends a volume set of size N. If more than one volume set of size N
exists, and neither -first nor -last is used, then the last free volume set of
size N is appended to the new set If no volume set of size N exists. an
error message occurs. The test key can be used to avoid such errors.
(Default 1. if you supply no N)

The vol_names argument and -ft. -It, or -vs are mutually exclusive. If -vs is not
chosen, the default action is to consider volume sets of any size in the pool.

Failure can occur when a given volume set does not exist or when a volume to
be appended is not free.

As an active function, the volume names that were appended to the volume set
are returned. If a multiple volume set is appended, all the volumes in the set are
returned (see "Notes on Active Function").

delete, dl
Usage: mvp dl vol_names {-control_arg}

deletes the specified physical volume sets from your volume pool. Volume sets

3-545 AG92-06

free

manage~ volume~pool

must be in the free, reserve, or pv _expire state to be deleted. If vol_name is a
multiple volume set. all volumes in the set are deleted from the pool; if it is a
secondary _vol_name, the volume set to which the secondary volume belongs to is
deleted.

Control Argument:

-force, -fc
deletes the volume sets it can without aborting the entire request or querying
you (see "Notes on Querying").

As an active function, a successful delete returns "true," "false" otherwise (see
"Notes on Active Function").

Usage: mvp free {vol_names} {-control_args}

frees the selected volume sets in your volume pool by changing the state to
"free." Upon freeing a volume set, the pv _expire date of each volume in the set
is checked; if one of these dates is passed, the state of the volume set becomes
pv_expired and a message to that effect is printed. In the case of an allocated
volume to be freed, the -expire date is checked first; if this date has not passed
yet, the volume set is not freed and a message to that effect is printed. If
vol_name is a secondary _vol_name, the state of the volume set to which the
secondary volume belongs to becomes free.

Control Arguments:

-brief, -bf
suppresses the pv _expire message or the allocate expire message when
appropriate.

-expire, -exp
frees all allocated volume sets for which the respective expiration date has
been passed.

-force, -fc
frees the volume sets it can without aborting the entire request or querying
you (see "Notes on Querying").

-force_expire, -fexp
overrides the checking of the -expire date, freeing allocated volume sets with
an unexpired expiration date.

-match STR
frees only those volume sets whose comment contains STR as a substring.
The volume sets can be in the allocate, reserve, or pv _expire state. Both
expirations dates are first checked before freeing the volume sets.

The vol_names argument and -exp, -fc, or -match are mutually exclusive.

3-546 AG92-()6

As an active function. a successful free returns "true," otherwise "false" is
returned (see "Notes on Active Function").

list, Is
Usage: mvp 1s {vol_names} {-contro1_args}

lists information about the specified volume sets or about all volume sets in the
pool if no arguments are supplied. The list is printed in state change date order
with the volumes whose states changed most recently listed first

Control Arguments:

-header, -he
prints the header information of the list display. (Default)

-no_header, -nhe
suppresses printing of the header.

-total. -tt
prints the total number of volume sets in the pool.

Control Arguments for Field Selection:

These control arguments determine which fields are displayed by list

-comment, -com
lists only the comment field of the designated volumes.

-default_format, -dfmt
lists the name, state date, state, and comments fields, as illustrated below.
This is the default list format if no other field control arguments are chosen.

Name
1234567890
1000

1001
1002

-expire_date. -edt

State Change
06/05/83 1316.1 mst
01/23/83 0645.0 mst

State Comment
ALOC This is a comment
FREE Multiple volume set

lists the expiration date field of the given allocated volume sets.

-name, -nm
lists the volume name field of the selected volume sets.

-pv _expire_date, -pvedt
lists the physical expiration date field of the supplied physical volume sets.

-state
lists only the state field of the indicated volume sets.

3-547 AG92-()6

-state_date, -sdt
lists only the state change date field of the designated volume sets.

If you want to list the expiration dates, you have to use -edt and/or -pvedt

Control Arguments for Volume State Selection:

Volume sets can be listed according to what state they are in: allocate, free,
pv_expire, or reserve. The default format is displayed unless field control
arguments are also selected. The specified vol_names and the control arguments
listed below are mutually exclusive.

-all_states, -ast
lists all volume sets in the pool. (Default, when you invoke list with no
arguments)

-allocate, -alloc
lists only those volume sets that are allocated.

-free
lists only those volume sets that are free.

-pv _expire, -pvexp
lists only those volume sets that are in the pv _expire state.

-reserve, -!SV

lists only those volume sets that are reserved.

Add itional Selection Control Arguments:

These control arguments allow one to list volume sets by criteria other than the
volume state or in combination with the volume state control arguments. The
default format display is used unless field arguments are given. The indicated
vol_names are incompatible with these control arguments:

-expire, -exp
lists all allocated volume sets for which the respective expiration date has
been passed.

-first {N}, -ft IN}
lists the first N volume sets in state change date order: "first" is defined as
the volume sets that have the most recently changed state. (Default: 1, if
you give no N)

-last IN}, -It {N}
lists the last N volume sets; "last" is defined as the volume sets that have the
least recently changed state. (Default: 1, if you supply no N)

-match STR
lists only those volume sets whose comment contains STR as a substring.

3-548 AG92-06

-volume_size {N} t -vs {N}
lists only the volume sets in the data base of size N. If -vs is not given~ all
volume sets of any size are listed. (Default: 1, if you supply no N). The
volume sets have the following format:

Volume
4123

1000
3400

State Change
12/11/83 1022.9 mst

State
RESV

Comment
backup

where vol_name 4123 is the primary volume of the volume set and 1000 and
3400 are the secondary volumes.

As an active function, list with no control arguments returns a list of the primary
volume names of all volume sets; otherwise, the control arguments chosen
determine what is returned for each selected volume. Examples:

Given the pool:

Volume State Change State Comment
500 10/23/83 1042.9 mst FREE
1000 10/23/83 0853.1 mst ALOC acct
5000 09/11/83 1022.9 mst RESV backup

200
457

6500 06/28/83 1134.1 mst ALOC test1
4100 06/28/83 1132.8 mst ALOC testl
374 03/27/83 0740.0 mst RESV

mvp" ls -alloc -It 2 -dmft -edt

Volume
6500
4100

State Change
06/28/83 1134.1 mst
06/28/83 1132.8 mst

State
ALOC
ALOC

Expi res
01/31/84 2100.0 mst
01/31/84 2100.0 mst

mvp ls -al1oc -match ac -state date -name

Volume
1000

State Change
10/23/83 0853.1 mst

mvp ls -It 2 -name -sdt -pv_expire_date

Volume
4100
374

State Change
06/28/83 1132.8 mst
03/27/83 0740.0 mst

Volume Expires
06/30/85 2100.0 mst

where volume 374 has no physical volume expiration date.

3-549

Comment
test1
test1

AG92-06

print, pr, p
prints the pathname of the current volume pool segment As an active function,
the pathname is returned.

pv _expire, pvexp
Usage: mvp pvexp vol_names {-control_arg}

designates the specified volume sets and their secondary volumes as expired by
changing the state to pv _expire. The set key can be used to reset the physical
volume expiration date. Volume sets cannot be in the allocate state. If vol_name
is a secondary _vol_name, the state of the volume set to which the secondary
volume belongs to becomes pv _expire. As an active function, "true" is returned
when all indicated vol_names are successfully expired, otherwise "false" is returned
(see "Notes on Active Function").

Control Argument:

-force. -fc
expires the volume sets it can without aborting the entire request or querying
you (see "Notes on Querying").

remove_volume_set, rmvs
Usage: mvp rmvs primary_vol_name {secondary_vol_names} {-control_args}

removes the secondary _vol_names from the volume set as specified by
primary _vol_name. The volumes removed are placed in the pool as volume sets of
size 1 in the free state. The primary volume of a volume set cannot be removed
unless -all is used. If the volume set supplied is in the allocate state, the -expire
date is checked first If this date has not passed yet, the request is aborted and
a message is printed. Upon freeing each volume, its pv _expire date is checked; if
this date is passed, the state of the volume becomes expired and a message to
that effect is printed.

Control Arguments:

-all. -a
breaks the volume set into individual volume sets of size 1, each with a state
of free (or pv _expire. as explained above); this includes freeing the primary
volume.

-brief. -bf
suppresses the pv _expire message or the volume-not-removed message when
appropriate.

-force. -fc
removes the volumes it can without aborting the entire request or querying
you (see "Notes on Querying").

3-550 AG92-06

-f orce_expire. -f exp
overrides the checking of the -expire date. freeing allocated volume sets with
an unexpired expiration date.

-pv_expire, -pvexp
removes all volumes of the designated volume set whose pv _exire date has
been passed and puts them in the pool with the pv_expire state.

The specified secondary _vol_names and -all and -pvexp are mutually exclusive.

Failure can occur when the volumes to be removed do not exist in the volume
set.

As an active function. the vol_names removed from the volume set are returned
(see "Notes on Active Function;;).

reserve, rsv
Usage: mvp rsv {vol_names} {-control_args}

reserves the indicated free volume sets. If vol_name is a secondary volume name
of a volume set, this volume set is reserved. Only a free volume set can be
reserved and used by a person. so long as her or his process is active. When the
reserved volume is referenced, a check is made to see if one's process is still
active; if not, the volume can be used as requested. When reserving, the
pv _expire date is checked; if this date is passed, the state of the volume set
becomes pv_expire and a message is printed.

Control Arguments:

-comment Sm. -com STR
states that STR be the comment associated with the given volume sets
reserved.

-first {N}. -ft {N}
reserves the first N free volume sets; "first" is defined as the volunle sets
that have been most recently freed. (Default: 1. if you give no N)

-force, -fc
reserves the volumes it can without aborting the entire request or querying
you (see "Notes on Querying").

-last {N}, -It {N}
reserves the last N free volume sets; "last" is defined as the volume sets that
have been in the free state the longest. (Default 1, if you supply no N)

-volume_size {N}, -vs {N}
reserves a volume set of size N. If more than one volume set of size N

3-551 AG92-()6

exists and neither -first nor -last is given. then the last free volume set of
size N is reserved. If no volume set of size N exists. an error message
occurs. The test key can be used to avoid such errors. (Default: 1, if you
supply no N)

The vol_names argument and -ft. -It. or -vs are mutually exclusive. If -vs is not
given, the default action is to consider volume sets of any size in the pool.

Failure can occur if the specified vol_names to be reserved do not exist, if they
are not in the free state, if no volume set of size N exists, or if there are only
N free volumes in the pool and N+ 1 volumes are selected to be reserved.

As an active function, a list of the volume set names reserved is returned (see
"Notes on Active Function").

reuse
Usage: mvp reuse {vol_names} {-control_args}

allows one to free and reallocate a designated number of allocated volume sets.
without needing to know the volume names. Before this operation is performed,
the -expire date is checked; if this date has not passed yet, the request is not
performed and a message with that purport is printed.

Control Arguments:

-brief. -bf
suppresses the reuse request message not performed.

-first {N}, -ft {N}
reallocates the first N allocated volume sets; "first" is defined as the volume
sets that have been most Tecently allocated. Failure can occur when N
volume sets are requested and only N -1 volume sets are in the pool.
(Default: 1, if you give no N)

-force, -fc
reuses the volume sets it can without aborting the entire request or querying
you (see "Notes on Querying").

-force_expire, -fexp
overrides the checking of the -expire date and reallocates the specified
volume sets with an unexpired expiration date.

-last {N}. -It {N}
reallocates the last N allocated volume sets; "last" is defined as the volume
sets that have been in the allocated state the longest. Failure can occur when
N volume sets are requested and only N-1 volume sets are in the pool.
(Default: 1, if you supply no N)

-match STR
reallocates all volume sets whose comment contains the substring STR.

3-552 AG92-o6

set

-volume_size {N}, -vs {N}
reallocates a volume set of size N. If more than one volume set of size N
exists and neither -first nor -last is given, then the last allocated volume set
of size N is reallocated. If no volume set of size N exists. an error message
occurs. The test key can be used to avoid such errors. (Default: 1, if you
supply no N)

The vol_names argument and -ft, -fc, -It, -match, or -vs are mutually exclusive.
If -vs is not supplied, the default action is to consider all allocated volume sets
of any size in the pool.

As an active function, the primary names of the volume sets that were reused are
returned (see "Notes on Active Function").

Usage: mvp set vol_names -control_args

sets the comment or expiration date fields of the specified volume sets.

Control Arguments:

-comment STR, -com STR
sets the comment field of the designated vol_names to STR. If the volume
name is secondary. the comment field of the volume set to which it belongs
is changed.

-expire DATE. -exp DATE
sets the expiration date associated with allocated vol_names selected. The
vol_names argument must be in the allocated state, otherwise a message is
printed to that effect If the volume name is secondary, the expire date of
the allocated volume set to which the secondary volume belongs is changed.
DATE must be acceptable to convert_date_to_binary _. (See "Notes on
Expiration Dates. tt)

-pv_expire DATE; -pvexp DATE
sets the physical volume expiration date of the specified vol_names to DATE.
The volume set state does not become pv _expire until the next time the
volume set state is changed (via the alloc, free, and rsv keys), after the date
is reached. If the volume name is primary, the expiration date is reset to
DATE for only the primary volumes unless followed by -secondary_volumes.
Secondary volumes of a volume set can be selected individually to set their
pv_expire date. DATE must be acceptable to convert_date_to_binary_. (See
"Notes on Expiration Dates. n)

-secondary_volumes, -svol
is used in conjunction with -pvexp to indicate that the secondary volumes of
the primary volume name preceeding -svol should also be set to the given
pv _expire date.

3-553 AG92-()6

test

As an active function, "true" is returned when the date and/or comment has been
successfuly changed for all designated vol_names (see "Notes on Active Function").

Usage: mvp test {vol_names} {-control_args}

tests what state the specified volume sets are in. If the vol_name supplied is a
secondary volume, the attributes of the set to which it belongs to are tested.

Control Arguments:

-allocate, -alloc
tests whether any volume sets or vol_names selected are in the allocate state.

-first {N}, -ft {N}
tests the first N volume sets; "first" is defined as the volume sets that have
been most recently allocated. (Default: I, if you give no N)

-free
tests whether any volume sets or vol_names given are in the free state.
(Default)

-last {N}, -It {N}
tests the last N volume sets; "last" is defined as the volume sets that have
been in the allocated state the longest Failure can occur when N volume sets
are requested and only N-l volume sets are in the pool. (Default: 1. if you
supply no N)

-match STR
tests all volume sets whose comment contains the substring STR.

-pv _expire, -pvexp
tests whether any volume sets or vol_names specified are in the expire state.

-reserve, -rsv
tests whether any volume sets or vol_names selected are in the reserve state.

-volume_size {N}, -vs {N}
tests whether volume sets of size N are in one of the specified states. If
more than one volume set of size N exists and neither -first nor -last is
given. then the last free, reserved, and so on (as indicated by the state
control arguments) volume set of size N is tested. If no volume set of size
N exists, an error message is returned. (Default: I, if you supply no N)

The vol_names argument and -ft, -It, -match, or -vs are mutually exclusive. If
-vs is not given, the default action is to consider all volume sets of any size in
the pool.

As an active function, "true" is returned if a volume set with the state specified
is found in the pool.

3-554 AG92-G6

use; u
Usage: mvp u {path}

specifies the pathname of the mvp segment to be used by future invocations of
mvp in this process.· -The volumes suffix is asSUmed. If you omit path, your
default volume segment is used. If the segment specified by path does not exist,
mvp creates it As an active function, the pathname is returned.

NOTES

Normally a tape reel or disk pack is a volume, but any other set of objects, such as
library books or portable terminals, could just as easily be regulated. The default
volume pool for each user pool is named Person_id. volumes and exists in your home
directory; you can reset this default using this key. You can add objects to, or delete
objects from, the pool. An object can have one of four states: allocate, free,
pv _expire, or reserve. Associated with each object in the pool is a state, a slate
change date, a comment, and two optional expiration dates. The comment field can be
any ASCII string of up to 64 characters. The comment is intended to describe the
contents of the volume, but can easily describe the attach description that creates the
volume, etc.

NOTES ON ACTIVE FUNCTION

As an active function, mvp returns "true, " a list of volume names, or pathnames,
depending on the actual key request. In the case of a partial success when an attempt
to query you is made, active_fnc_err_ is called; however, its action is overridden when
you give -force or -fexp. This results in returning "true" or the partial list of volume
names successfully acted upon.

NOTES ON EXPIRATION DATES

There are two kinds of expiration dates. One is associated with the physical volume
and is referenced with -pv _expire. The state pv _expire is associated with the physical
volume also. The pv _expire date is checked whenever the volume state is changed to
free, allocate, or reserve or when a volume is removed from, or appended to, another
volume set. When a 8eC.ondary volume within a volume set expires, the next time that
volume set state is changed the state of the volume set changes to pv _expire and you
are notified. The date is not checked when you use the reuse key. When the physical
expiration date of a volume set is reached, the state changes to pv _expire and a
message is printed. You can only delete or free expired volume sets from the volume
pool; if you free them, you can reset the expiration date using the set key. Physical
volume expiration dates are useful for keeping track of old and bad tapes.

3-555 AG92-06

11/86

master_directories

The other optional expiration date applies only to allocated volume sets. It is
referenced by -expire and refers to the time when the information on the volume set
is considered no longer relevant You can set this date at allocation time. When the
volume set is f reed. the expire date field is cleared. This expire date is useful for
keeping track of recycling volume sets. There is no state associated with this expire
date.

Both kinds of expiration dates have to be explicitly set by you using control argu..'D.ents
or the set key. If not set. the default is for volume sets never to expire.

NOTES ON QUERYING

You are queried on whether to continue a requested action (allocate, reserve, etc.)
when the action can only be performed on some but not all volume names specified.
You can use -force to override the query. If you answer "no," the entire request is
aborted and no action is taken. If you answer "yes" to the query or use -f orce, the
request is performed on the volume sets eligible and a message is printed listing the
volume sets on which no action was taken.

NOTES ON VOLUME SETS

The volume pool is made up of volume sets. A volume set consists of a primary
volume and, optionally, a group of secondary volumes. The set is referenced by the
primary volume name. The size of a volume set can range from 1 to N volumes.
Therefore a single volume A is a volume set of size one; it is a primary volume with
no associated secondary volumes. A volume set grows and shrinks by the appvs and
rmvs keywords. For example, three volume sets, A, B, C, each of size one, can be
"bound" together into one volume set thus: "mvp appvs ABC". The primary volume
name to reference this set is A with two secondary volumes, Band C, associated with
it The state of a volume set is changed by the allocate, free, reserve, and pv_expire
keys, given the primary volume name or the -volume_size and any optional control
arguments.

Name: master_directories, mdirs

SYNTAX AS A COMMAND

mdirs star_names {-control_args}

SYNTAX AS AN ACTIVE FUNCTION

[mdirs star_names {-control_args}]

FUNCTION

returns the entrynames or absolute pathnames of master directories that match one or
more star names.

3-556 AG92-o6A

master_directories master_directories

11/86

ARGUMENTS

star_names
are star names to be used in selecting the names t-o be returned.

CONTROL ARGUMENTS

-absolute_pathname. -absp
returns absolute pathnames rather than entrynames.

-chase
processes the targets of links when you specify a starname.

-inhibit_error, -ihe
returns false if star=name is an invalid name or if access to tell of an entry's
existence is lacking.

-no_chase
does not process the targets of links when you specify a starname. (Default)

-no_inhibit_error. -nihe
signals an error if star_name is an invalid name or if access to tell of an entry's
existence is lacking. (Default)

NOTES

Only one name per directory is returned; Le.. if a master directory has raore than one
name that matches star_name, only the first match iound is returned.

Since each entryname (or pathname) returned by master_directories is enclosed in
quotes. the command processor treats each name as a single argument regardless of the
presence of special characters in the name.

EXAMPLES

The following interaction illustrates the use of the mdirs active function.

string [mdirs >udd>**]
Multics SysMaint

3-557 AG92-06A

max

11/86

Name: max

SYNTAX AS A COMMAND

SYNTAX AS AN ACTIVE FUNCTION

[max num_args]

FUNCTION

returns the maximum of the numeric arguments passed to it

EXAMPLES

string [max 3.6 le-3]
3.6

Name: mbx_create, mbcr

SYNTAX AS A COMMAND

mbcr paths

FUNCTION

creates a mailbox with a given name in a specified directory.

ARGUMENTS

paths
are pathnames of mailboxes to be created. You need not give the mbx suffix.

ACCESS REQUIRED

Modify and append permissions are required on the parent directory.

NOTES

Name duplication is handled this way: If the old segment with that name has other
names, the conflicting name is removed and you are notified; otherwise you are asked
whether to delete the old segment The extended access placed on a new mailbox is

adrosw Person.*.*
aow *.SysDaemon.*
aow *. 'I:. 'Ie

3-558 AG92-o6A

11/86

For more informaiion on exiended access, see the mail command.

EXAMPLES

The command line

mbcr JBentham RAmundsen.home >udd>Multics>LAriosto>LAriosto

creates the mailboxes JBentham.mbx and RAmundsen.home.mbx in the working
directory and creates the mailbox LAriosto.mbx in the directory >udd>Multics>LAriosto.

Name: memo

SYNTAX AS A COMMAND

memo {-memo_options} memo_text

memo {-action_args} {-memo_options} {-selection_args}

SYNTAX AS AN ACTIVE FUNCTION

[memo memo_text]

[memo -list {-totals}]

FUNCTION

maintains a user-created reminder list in a memo segment, which is normally
Person_ID.memo, in your home directory.

ARGUMENTS

memo_text
is the text of the memo being set It cannot be longer than 132 characters. You
can specify it in one of two forms:

STR
is the string without an initial hyphen that begins the memo text No further
arguments are accepted.

-memo STRs
treats all succeeding STRs as part of the memo text. whether or not they
begin with hyphens.

LIST OF MEMO OPTIONS

Use these control arguments to control various options of the memo being set or to
select memos being otherwise processed.

memo

*

3-559 AG92-06A

memo

11/86

-alarm, -al

-can

specifies that the memo is to be an alarm. An alarm memo is printed, or
executed if set with -call, when its timer goes off, if timers are enabled, rather
than being explicitly processed. It is deleted immediately after it reaches maturity,
unless you supplied -retain.

passes the memo text to the command processor as a command line when the
memo matures, rather than printing it

-date DT, -dt DT
identifies a date for the memo to mature. DT is truncated to the midnight
preceding the date in which DT falls. (See "Notes. ")

-expires DT, -exp DT
identifies the expiring time of the memo; this is treated as a delta from the
maturity time (which it must be greater than) so that repeating memos with
expiration times work properly. When used as a selection argument, all expiring
memos are selected, regardless of the expiration dates. (See "Notes" and "Notes on
Expiring Memos. tt)

-invisible, -iv
specifies that the memo never be mature and never be printed during a normal
memo print

-no_retain, -nret
processes the memo only once and then deletes it. (Default for alarm memos)

-repeat DT, -rpt DT
identifies the repeat interval of the memo. where DT must be greater than or
equal to one minute. When the memo is reset. the new maturity time is the next
successive interval that matures in the future. When used as a selection argument,
all repeating memos are selected, regardless of the repeat intervals given. (See
"Notes" and "Notes on Repeating Memos.")

-repeat_ when_processed. -rwp
specifies that the repeat time of a repeating memo be applied from the time the
memo is processed, rather than from the maturity time. This is useful for memos
that are only significant within a single process.

-retain, -ret
keeps an alarm memo as an ordinary printing (or executing if set with .-call)
memo after it matures, rather than being deleted. (Default for nonalarm memos)

memo

3-560 AG92-06A

memo

11/86

-time DT, -tm DT
identifies a time for the memo to mature (see "Notes").

LIST OF ACTION ARGUMENTS

These control arguments Control various memo options. The -delete, -list, -postpone, *
-print, and -process actions are mutually exclusive.

-brief, -bf
does not print message "No memos." if no memos are found.

memo

3-560.1 AG92-()6A

This page intentionally left blank.

11/86 AG92-06A

memo

-delete { -f oree} , -dl { -f c}
deletes all memos selected by the optional arguments. You must explicitly supply
at least one memo. It queries you bef ore deleting nonmature memos; however.
with -foree, it deletes memos-without querying you--even if they are not yet
mature.

-list, -Is

-off

-on

prints text and control information of selected memos; no memos are executed. If
you don't explicitly select memos, all memos are listed. If you also give -totals,
only the total number of selected memos is printed.

suppresses all memo alarms until the next memo command with no explicitly
specified action. You can combine -on and -off with other actions.

enables memo alarms without printing or executing nonalarm memos.

-pathname -default, -pn -dft
resets the default memo segment to Person.ID.memo in your home directory.

-pathname path, -pn path
changes the default memo segment to path if specified with no other action;
otherwise the memo segment specified by path is used for the execution only of
the current memo command. If you supply -pathname along with -on or -off,
the default memo segment is changed and alarms are turned on or off. as
appropriate. for the new segment You need not give the suffix . memo.

-postpone DT, -pp DT
reschedules the maturity of the selected memos to the time specified by DT, if
DT is later than the current maturity time. You must explicitly provide at least
one memo. (See "Notes.")

-print, -pr
prints text of all selected memes; No memes are executed. If you don't explicitly
select memos, only mature memos are printed.

-process
causes all mature memos to be processed. and alarms to be turned on. if not
otherwise specified. This is equivalent to explicitly specifying no action.

-status, -st
prints information about the current default memo segment If you specify it. it
must be the only argument.

-totals, -tt
you can only use it together with -list. When you give it, the total number of
memos selected is printed, rather than listing each of the memos.

memo

3-561 AG92-()6

memo

LIST OF SELECTION ARGS

These arguments are used to select memos to be listed, printed, deleated, or postponed.
You can also use some memo_options to specify types of memos to be selected (see
"Notes"). When you supply more than one selection_args, only those memos that
match all the selection criteria are chosen.

memo_number
is either a positive decimal number specifying a single memo (e.g., 32) or two
such numbers separated by a colon, specifying a range of memos (e.g .• 12:16).

-from DT. -fm Dr
selects all memos that mature on. or after. DT. You can combine it with -to,
but specify each only once. It is incompatible with -date and -time. (See
"Notes. tt)

-match STR
specifies a string against which memo texts are matched to select memos. STR
cannot be longer than 32 characters. You can supply up to 40 STRs; all memos
that match at least one are selected.

-to DT
selects all memos that mature on, or before, DT. This control argument is
incompatible with -date and -time. (See "Notes.")

NOTES

See Section 1 for a description of valid DT values.

No more than 5082 memos can be contained in a single memo segment An individual
memo can be no more than 132 characters long.

If you explicitly specify no action and set no memo, all mature memos are processed
(printed or executed) and the alarm timer is turned on, enabling the processing of
alarm memos.

You can use the memo_options to specify types of memos to be selected; those that
take a date/time interval (-repeat. -expires, but not -date or -time) cause the
selection of all repeating or expiring memos, as the time interval (which you must
specify) is ignored.

NOTES ON DEFAULT MEMO SEGMENT

The memo command operates on the default memo segment (unless -pathname is
specified with one of the actions -delete, -list, -postpone. -print or -process). This
default memo segment is also used when processing alarm timers. to find the memos
which should be processed for the alarm. If the default memo segment has never
been explicitly specified (by using -pathname without any other actions), it is the
segment Person_ID.memo in the user's home directory.

memo

3-562 AG92-G6

memo

The default memo segment is created if it does not already exist If the default
memo segment is changed. alarms are turned off for the old memo segment. and then
turned on for the new one (if requested). Thus, only one memo segment can have
alarms active at a time.

NOTES ON REPEATING MEMOS

A repeating memo repeats by setting a new memo that is identical to the original one,
and then turning off the repeat specification in the original memo. Thus the actual
repeating memo, rather than its visible consequences, gets a new number each time it
repeats. Since the repeat specification is turned off in the original memo, it never
repeats again. but remains until deleted. unless it has an expiration date or was set
with -no_retain.

An alarm memo that repeats will mature once, and then be automatically deleted,
unless it was set with -retain, in which case it is turned into an ordinary, non-alarm
memo and lasts un til it expires or is deleted.

NOTES ON EXPIRING MEMOS

Expired memos are deleted without being reprinted or executed. However, if they are
repeating memos, they are repeated before being deleted. This is useful for cases such
as a reminder of a weekly meeting, where the reminder of this week's meeting should
always be set, but the reminder of this week's meeting should not be printed if the
current time is after the end of this week's meeting. A sequence of repeating memos
must be terminated manually (by deleting the current memo); the -expires control
argument is not useful for this purpose.

NOTES ON ACTIVE FUNCTION

The memo active function can only be used to set and list memos. When a memo is
set, the number assigned to the newly set memo is returned. When memos are listed,
a string consisting of the memo numbers selected, separated by spaces, is returned; if
-totals is specified, the total count is returned.

Name: menu_create

SYNTAX AS A COMMAND

menu_create menu name {-control_args}

FUNCTION

creates a menu description, assigns it a specified name, and stores it in a segment
The menu description can be used with other menu commands, active functions, and
subroutines.

3-563 AG92-06

ARGUMENTS

menu_name
is the name assigned to the menu when it is stored.

CONTROL ARGUMENTS

-brief, -bf
creates the segment given by -pathname without querying you.

-header STR. -he STR
specifies a line of header. All header lines supplied appear in the menu in the
order given. Quote STR if it contains blanks or special characters.

-option STR, -opt STR
specifies a menu option. The options appear in the menu in the order given.
Supply at least one option. Quote STR if it contains blanks or special characters.

-pathname PATH. -pn PATH
is the pathname of the value segment in which the menu is stored. The value
suffix is assumed. If the value segment selected does not exist, you are asked if
you want to create it (unless you have used -brief). If you omit -path name, your
default value segment (>udd>Project_id>Person_id>Person_id.value) is used to store
the menu.

-trailer STR, -tr STR
specifies a trailer line. All trailers appear in the menu in the order given. Quote
STR if it contains blanks or special characters.

LIST OF FORMAT CONTROL ARGUMENTS
The following control arguments manipulate the format of the menu:

-center_headers. -ceh
cen ters all header lines.

-center_trailers, -cet
cen ters all trailer lines.

-columns N, -col N
sets the number of columns in the menu to N, where N is a positive decimal
integer. (Default: one column)

-line_length N, -11 N
specifies the line length for the menu, where N is a positive decimal integer. If
not supplied, the line length is your terminal's line length at the time you invoke
menu_create.

-no_center_headers. -nceh
left-flushes header lines. (Def ault)

3-564 AG92-06

-no_center_trailers, -ncet
left-flushes trailer lines. (Default)

-option_keys STR, -okeys STR
specifies the keystrokes to be associated with each option. Each character in STR
is associated with the corresponding option, so that if it is typed, the
corresponding option is selected. There must be at least as many characters in
STR as there are options. If you give no -option_keys, the string
"123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" is used.

-pad C
specifies the padding character to be used for centering headers and trailers,
where C is one character. (Default: space character)

ACCESS REQUIRED

You must have rw access on the value segment

EXAMPLES

The following example sets up a small menu named compile:

menu_create comp i 1 e -pn [pd] >temp -pad = -he iiSAMPLE MENU 'i

-tr = -ceh -cet -columns 2 -11 78 -opt "Compile with No Options"
-opt "Symbol Table" -opt "Profile Info"

The menu looks like this:

=================================SAMPLE MENU==================================
(1) Compile with No Options (3) Profile Info
(2) Symbo 1 Tab 1 e

==

3-565 AG92-o6

Name: menll.-delete

SYNTAX AS A COMMAND

FUNCTION

deletes a menu description from a specified value segment

ARGUMENTS

menu_name
is the name that was assigned to the menu when it was stored.

CONTROL ARGUMENTS

-pathname PATH, -pn PATH
is the patbname of the value segment in which the menu is stored. The value
suffix is assumed. If you don't give it. your default value segment
(>udd>Project_id>Person_id>Person_id.value) is searched for the menu.

Name: men~describe

SYNTAX AS A COMMAND

SYNTAX AS AN ACTIVE FUNCTION

[menu_describe menu_name -control args]

FUNCTION

prints or returns information about a menu.

ARGUMENTS

menu_name
is the name that was assigned to the menu when it was stored.

CONTROL ARGUMENTS

-count, -ct
returns the number of options defined in the menu.

3-566 AG92-()6

-height
returns the height of the menu.

-pathname PATH, -pn PATH
is the pathname of the value segment in which the menu is stored. The value
suffix is assumed. If you don't give it, your default value segment
(>udd>Project_id>Person_id>Person_id.value) is searched for the menu.

-width
returns the width of the menu.

NOTES

As a command, any number of control arguments is allowed. If none are given, all
attributes are displayed.

As an active function, one of -count, -height, or -width must be given.

Name: menu=display

SYNTAX AS A COMMAND

FUNCTION

displays a menu in a window.

ARGUMENTS

menu_name
is the name that was assigned to the menu when it was stored.

CONTROL ARGUMENTS

-io_switch STR, -is STR
specifies the name of an I/O switch for a window. This serves to identify a
window. (Default: user_i/o)

-pathname PATH, -pn PATH
is the pathname of the value segment in which the menu is stored. The value
suffix is assumed. If not given, your default value segment
(>udd>Project_id>Person_id>Person_id.value) is searched for the menu.

3-567 AG92-06

Name: men~et_choice

SYNTAX AS A COMMAND

SYNTAX AS AN ACTiVE FUNCTION

FUNCTION

gets a menu choice from you and prints or returns it

ARGUMENTS

menu_name
is the name assigned to the menu when it is stored.

CONTROL ARGUMENTS

-default_fkeys STR. -dfkeys STR
specifies the keys to be used if the terminal does not have function keys or the
proper set of function keys. (See "Notes on Function Keys" below.)

-function_keys STR, -fkeys STR
specifies the keys to be used to simulate function keys. This control overrides any
function key definitions already established for the terminal. (See "Notes on
Function Keys.!!)

-io_switch STR. -is 'STR
specifies the name of an I/O switch for a window. (Default: user_i/o)

-pathname PATH, -pn PATH
is the pathname of the value segment in which the menu is stored. The value
suffix is assumed. If not given, your default value segment
(>udd>Project_id>Person_id>Person_id.value) is searched for the menu.

NOTES

Many terminals have function keys. On many of these terminals (such as the
Honeywell VIP780l), they are labeled "FIn, "F2", etc. If you type one of these
function keys, menuJet_choice returns the string "F*", where * is a one- or
two-digit number signifying which function key is pressed. It is possible to specify
your own set of keystrokes to be used instead of the terminal's function keys
(-function_keys), or to specify a set of keystrokes to be used if the terminal does not
have enough function keys (-default_fkeys). Each character in the string simulates a
function key: The first one simulates function key 0, the next, function key 1, etc.
To simulate a given function key, type esc-C, where C is the character corresponding
to the function key; thus, if the string is "0123456789", typing esc-2 returns F2.

3-568 AG92-06

Supply -function_keys to specify keystrokes to be used instead of any that might be
defined for the terminal; if given. the simulation of function keys always takes place.

Give -default_fkeys if you want to use the terminal-defined function keys when
possible. but wish to specify key sequences to be used to simulate function keys if
necessary. Each character in the string following -default_fkeys corresponds to one
function key_ If the character is a space. it means it makes no difference if the
terminal has a function key corresponding to that position. If the character is not a
space, that character is employed to simulate a function key if necessary. If the
terminal does not have a function key for every nonspace character in the string, then
STR is used to simulate function keys. Thus, the string II ?p q" means that you do
not care whether the terminal has a function key 0 or a function key 3, but you wish
to use function keys 1, 2. and 4. If any of these three function keys is not present
on the terminal. then esc-? substitutes for Pl, esc-p substitutes for F2. and esc-q
substitutes for F4.

SYNTAX AS A COMMAND

SYNTAX AS AN ACTIVE FUNCTION

[menu_list {menu_starname} {-control_arg}]

FUNCTION

lists the names of the menu descriptions stored in a value segment

ARGUMENTS

menu_stamame
is a stamame used to search for menu descriptions. If omitted. the default is **.

CONTROL ARGUMENTS

-pathname PATH, -pn PATH
is the pathname of the value segment in which the menu is stored. The value
suffix is assumed. If not given, your default value segment
(>udd>Project_id>Person_id>Person_id.value) is searched for the menu.

3-569 AG92-()6

Name: merge_ascii, ma

SYNTAX AS A COMMAND

rna paths {-control_args}

FUNCTION

merges two or more related ASCII text segments.

ARGUMENTS

paths
are pathnames of segments to be merged as automatically as possible. The equal
and archive component pathname conventions are allowed. You can merge up to
six segments. including those preceded by -edit.

CONTROL ARGUMENTS

-edit path
merges the segment named path in a nonautomatic manner. Edit mode is entered
each time a modification is found in the specified segment

-minchars N
specifies the minimum number of characters that must be identical for merge_ascii
to assume blocks of text in different segments are identical. (Default: 25)

-minlines N
specifies the mInImum number of lines that must be identical for merge_ascii to
assume blocks of text in different segments are identical. (Default: 2)

-old_original path. -old_orig path
identifies path as the pathname of a segment antecedent to the most recent
common ancestor of the texts being merged and allows the automatic picking up
of identical changes present in all the texts being merged.

-original path, -orig path
identifies path as the pathname of a segment containing the original version of
the text The proper original is the most recent common ancestor of the texts
being merged. Overlapping changes, even if identical, enter edit mode.

-output_file path, -of path
puts the merged output text in the segment named path. The archive component
pathname convention is not allowed.

3-570 AG92-()6

NOTES

This command is typically used to merge texts that have been independently modified
by several users. If an original version of the text is available. and if you desire,
merge_ascii performs the merge automatically, requiring your intervention only when it
detects overlapping modifications. When your intervention is required, merge_ascii
displays line-numbered blocks of text and then enters edit mode allowing you to
choose lines from any text or insert new ones.

When blocks of text are displayed, each line is preceded by a text identifier and a
line number. The text identifier A is reserved for the original. whether supplied or
not The identifiers B-G are assigned to the texts being merged in the order in which
their pathnames are encountered on the command line. The identifier M is used for
the merged output if printed while in edit mode.

You can use either -original or -old_original to enable automatic merging. If you
supply neither. edit mode is entered each time differences are found in the segments
being merged. Use -old_original judiciously, only if appropriate and when you fully
understand the relationships between the texts being merged.

LIST OF EDIT REQUESTS

In the syntax of the edit requests. <text_i d> is the lowercase letter corresponding to
the text identifier used by merge_ascii and, < 1 i ne_no> is a line number in the text
segment You can specify line numbers as 11<" to address the first line or as 11>11 to
specify the last line of a current block.

<text_id>k
copy current block from specified text (e.g., bk copies current block from text
B).

<text_id><line_no>k
copy specified line from specified text (e.g., b5k copies line 5 from text B).

<text_id><line_no>,<line_no>k
copy specified lines from specified text (e.g., b4,7k copies lines 4 through 7 from
text B).

<text_id>p
print current block from specified text (e.g., bp prints current block from text
B).

<text_id><line_no>p
print specified line from specified text (e.g., b6p prints line 6 from text B).

<text_id><line_no>,<line_no>p
print specified lines from specified text (e.g.. b12.16p prints lines 12 through 16
from text B).

3-571 AG92-()6

<text_id>d
delete the current block in specified text (e.g., md deletes the current block in
text M).

input
enter input mode.

return from input mode to edit mode.

go
exit editor and continue comparison.

quit
abort merge and return to command level. If you give this request during a
merging procedure, all work is lost; work is not saved unless merging is done
from the beginning to the end of the segments.

e
execute rest of line as a Multics command line.

x
display identifiers, current line numbers, and pathnames of each text

help
print a list of the edit requests and a brief explanation of each one.

NOTES ON EDIT REQUESTS

In any invocation of edit mode the current block in each text is just the block of
lines previously displayed. The current block in text M is initially empty and grows as
you select or input lines (see "Examples" below).

The print (p) and copy (k) requests can address any lines in any text (A to M)
known to merge_ascii. The delete (d) request can only be applied to the current block
in text M and has the effect of undoing all edit requests made since changes were
last displayed.

You can give multiple edit requests, delimited by blanks, on a single request line;
however, quit, go, input, and e must not be followed by other requests.

EXAMPLES

The command line

rna -orig pathA pathS pathC -of pathM

automatically merges the contents of pathB and pathC into pathM. Because you
supplied an original version (pathA), all nonoverlapping changes in pathB and pathC
are placed in pathM.

3-572 AG92-06

The command line

rna pathS pathC -of pathM

performs a nonautomatic merge on the contents of pathB and pathC, displays all
differences. and enters edit mode. This type of merging is typically used when there
is no original segment

The command line

rna -orig pathA -edit pathB -edit pathC -of pathM

performs a nonautomatic merge, but gives you information about the contents of the
original text In this case, although an original segment exists, you want complete
control over what goes into the output segment

The command line

rna -original pathA pathB -edit pathC -of pathM

performs a merge in which changes found in pathe enter edit mode. Nonoverlapping
changes in pathB are picked up and automatically placed in the output segment This
combination of control arguments is useful when you are familiar with the changes
present in pathB but wishes to review changes present in pathC before picking them
up.

The command line

rna -old_orig pathA pathB pathe -of pathM

merges pathB and pathC automatically assuming that pathA is an earlier version of the
text than the most recent common ancestor of pathB and pathC. Changes present in
both pathB and pathC are picked up automatically. You can use -old_original to
obtain an automatic merge if pathA is a true original but some changes have been
applied to both pathB and pathC. If you give -old_original and pathA contains
changes not present in both pathB and pathC, then the resulting output segment is
nearly always useless to you.

3-573 AG92-06

11/86

Name: message_status, msgst

SYNTAX AS A COMMAND

msgst {mbx_specification} {-control_arg}}

SYNTAX AS AN ACTIVE FUNCTION

[msgst {mbx_specification}]

FUNCTION

prints information about mailboxes on which messages are being accepted.

ARGUMENTS

mbx_specification
specifies the mailbox on which messages are being accepted. If not given. the
user's default mailbox (>udd>Project>Person>Person.mbx) is used.

CONTROL ARGUMENTS

-all, -a
prints information for all mailboxes on which the user is accepting or deferring
messages.

LIST OF MBX SPECIFICATIONS

-log
specifies the user's logbox and is equivalent to

-mailbox >udd>Project_id>Person_id>Person_id.sv.mbx

-mailbox path, -mbx path
specifies the pathname of a mailbox. The suffix .mbx is added if necessary.

-save path. -sv path
specifies the pathname of a savebox. The suffix .sv.mbx is added if necessary.

-user STR
specifies either a user's default mailbox or an entry in the system mail table.

STR
is any noncontrol argument and is first interpreted as -mailbox STR; if no
mailbox is found, STR is then interpreted as -save STR; if no savebox is found,
it is interpreted as -user STR.

3-574 AG92-06A

11/86

NOTES

As an active function, msgst returns the command string that you can use to set the
message acceptance state on the specified mailbox to the current state. Thus you can
push and pop multiple acceptance states using the value segment:

value_set old_state II[msgst] -push
dm
value_set old_state II[msgst] -push
am -call !lec message_handler"
[value_get old_state -pop]
[value_get old_state -pop].

(" II" means the returned string is not to be rescanned for command language special
characters; the returned value is a single token.)

3-574.1 AG92-06A

This page intentionally left blank.

11/86 AG92-o6A

micro_ transf er micro_transfer

Name: micro_transfer, mt

SYNT AX AS A COMMAND

mt path {-control_args}

FUNCTION

transfers files between a Multics system and a remote microcomputer (personal
computer) using either 1) the xmodem protocol or 2) the IBM PC-to-Host protocol.
Your terminal must be connected to the system through the tty_ I/O module. (This is
the usual method of connecting terminal to the Multics system.)

ARGUMENTS

path
can be one of the following:

1) is the pathname of the source segment on Multics when transferring files
from Multics to a microcomputer.

2) is the pathname of the target segment on Multics when transferring files
to Multics from a microcomputer.

CONTROL ARGUMENTS

-attach_description STR, -atd STR
specifies the I/O module to be used to implement the file transfer, where STR
specifies the I/O module to be used and the I/O switch to which the module is
to be attached. Enclose STR in quotation marks if it contains spaces or other
command language characters. STR can be one of the following:

xmodem_io_ user_i/o
specifies the XMODEM protocol is to be used. (Default)

ibm_pc_io_ user_i/o
specifies the IBM PC-to_Host protocol is to be used.

3-575 AG92-D6

micro_transfer micro_transf er

-eof STR
specifies the end-of-file sequence for the microcomputer, where STR is the
end-of-file character. STR can be a printable ASCII character or a control
character; you must express the latter type in the octal equivalent and surround it
by quotation marks. When transmitting a file to a microcomputer the end-of -file
character is transmitted as STR; when receiving a file from a microcomputer the
occurrence of STR indicates the end-of-file to Multics.

-eol STR
specifies the end-of-line sequence for the microcomputer, where STR is the
end-of-line character. STR can be a printable ASCII character or a control
character; you must express the latter type in the octal equivalent and surround it
by quotation marks. When transmitting files to a microcomputer, each linefeed
character is translated to STR; when receiving files from a microcomputer, each
occurrence of STR is translated to a linefeed character.

-modes STR
sets the modes for file transfer according to STR, which is a string of mode
names separated by commas. You can optionally precede many modes by A to
turn the specified mode off. Modes not specified in STR are left unchanged.
Modes are restored to their original value after the file transfer is complete. (See
set_tty for a list of valid modes; see "Notes on Data Transfer I/O Modules" for
the def aul t modes.)

-receive
receives data from the microcomputer. Give either -receive or -send.

-send
sends data to the microcomputer.

NOTES ON DATA TRANSFER liD MODULES

The micro_transfer command provides an interface between the Multics file system
and a data transfer protocol. The data transfer protocol is implemented as an 110
module. Such I/O modules must specify a target 110 switch, and they must support
the stream_input and stream_output opening modes. The switch identified by the
switch argument must be open for stream_in put_output. The following I/O modules
are currently available for use with micro_transfer:

3-576 AG92-06

micro transfer micro transfer

11/87

xmodern_io_
uses the XMODEM data transfer protocol. The default mode string used by micro_transfer
f or file transfer is: "no_outp,8bit, breakall. "echoplex,rawi, "crecho," If echo," tabecho,rawo"

ibm_pc_io_
uses the IBM PC-to-Host data transfer protocol. This protocol does not transfer binary data
or check for errors. The default mode string used by micro_transfer for file transfer is:
""8bit,breakall, " echoplex.rawi, "crecho, " lfecho, " tabecho,rawo"

Users writing their own data transfer protocol I/O modules with micro_transfer may do so. Its
descriptions would be:

xxx
uses the user-specified data transfer protocol for the file transfer. The default mode string
used by micro_transfer for file transfer is:
"no_outp,8bit, breakall, "echoplex,rawi, "crecho," Ifecho, "tabecho,rawo"

NOTES ON FILE TRANSFER SPEED

There is no guarantee of any particular line speed when transferring files between Multics and a
microcomputer. Line speed is dependent on the microcomputer and the load of the FNP and
communication system for Multics. Due to the nature of the XMODEM and IBM PC-to-Host
protocols, files may not be successfully transferred to Multics over high-speed lines. The actual
limit depends on the site configuration and current load. The Video System sheld net be used
when using micro_transfer.

PROCEDURE FOR USING ,MICRO TRANSFER

Use the following procedure to transfer files between Multics and a microcomputer with
micro_transf er:

1. Invoke the control program on the microcomputer. This program is a terminal emulator and
file transfer program.

3-577 AG92-D6B

micro_transfer micro _ transf er

2. Connect to Multics by issuing the appropriate command to the microcomputer. To
find out which command to use, refer to the manual that documents the
microcomputer's file transfer protocol. Once connected, the standard Multics
~9).ner is displayed.

3. Login to Multics.

4. Issue micro_transfer on Multics specifying the pathname on Multics and the
applicable control arguments.

5. Escape now back to the microcomputer. The escape sequence used depends on the
microcomputer. To find out which escape sequence to use, refer to the manual
that documents the microcomputer's file transfer protocol. Upon return to the
microcomputer, enter the type and direction of the file transfer and the
microcomputer file name. This must correspond to the type and direction
specified on Multics. For example, if you used micro_transfer -send, the
command used for receiving a file transfer must be executed on the microcomputer.

6. The file transfer begins. A display indicating the status of the transfer mayor
may not occur, depending on the communications package residing on the
microcomputer.

7. At the end of the transfer, the microcomputer returns to the communications
command level.

EXAMPLES

micro_transfer foobar.foo -send -atd "ibm_pc_io_ user_i/o" -eo1 "\015"

3-578 AG92-D6

min

Name: min

SYNTAX AS A COMMAND

SYNTAX AS AN ACTIVE FUNCTION

[m in num_args]

FUNCTION

returns the minimum of the numeric arguments passed to it

EXAlIIPLES

string [min 3 -4]
-4

Name: minus

SYNT AX AS A COMMAND

minus {numA {numB}}

SYNTAX AS AN ACTIVE FUNCTION

[minus {numA {numB}}]

FUNCTION

returns the result of numA minus numB. If numB is not specified, the negative of
numB is returned. If you give no arguments, returns O.

EXAMPLES

string [minus 3.5 3]
0·5
minus 5
-5
minus -6
6
minus
0

minus

3-579 AG92-06

minute

Name: minute

SYNTAX AS A COMMAND

minute {time_string} {-control_arg}

SYNTAX AS AN ACTIVE FUNCTION

[minute {time_string} {-control_arg}]

FUNCTION

returns the one- or two-digit number of a minute of the hour, from 0 to 59. The
format string to produce this is ""Z9MH".

ARGUMENTS

time_string
indicates the minute about which information is desired. If you supply no
time_string, the current minute is used. The time string is concatenated to form a
single argument even if it contains spaces; you need not quote it (See Section 1
for a description of valid time_string valUes.)

CONTROL ARGUMENTS

-zone STR
STR specifies the zone that is to be used to express the result (Default: the
process default)

NOTES

Use the print_time_defaults command to display the default zone. Use the
display_time_info command to display a list of all acceptable zone values.

Name: mod

SYNTAX AS A COMMAND

mod numA numB

SYNTAX AS AN ACTIVE FUNCTION

[mod numA numB]

FUNCTION

returns the remainder of numA divided by numB (numA modulo numB).

mod

3-580 AG92-06

mod

EXAMPLES

string [mod 4. 3]
1
string [mod 4.5 3.5]
1

Name: monitor_quota

SYNTAX AS A CO'A'IIAND

monitor_quota {-control_arguments}

FUNCTION

calculates storage of a directory and sends a warning message when approaching a
record quota overflow condition.

CONTROL ARGUMENTS

-call STR {N}
passes STR to the command processor as a command when a directory's segment
quota used is found to be greater than 90 percent (default) of the quota assigned.
If you give N, the default is overridden. (See "Notes" below.)

-console {N}

-off

sends a warning of an approaching record quota overflow condition to the system
console. You require access to the phcs_ gate to issue warnings on the system
console. If you specify N, the default percent value at which the warning is to
be issued (as given in the functional description) is overridden.

turns off all monitoring in the current process. You cannot use -off with any
other control arguments.

-pathname. -pn
IS the pathname of" the directory to be monitored. You can give only one path.
(Default your working directory)

-repeat DT, -rpt DT
identifies the interval for setting the monitor time. It overrides the default time
calculation. DT is a relative time >= 1 minute and acceptable to
convert_date_to_binary _ (e.g., 10min, 1hr).

3-581 AG92-06

-warn Person_id.Project_id {Person_id.Project_id ... } {N}
sends the warning message to Person_id.Project_id. You can list up to 10 users.
You get a message by default if you omit -warn and -console. If you give N,
the default percent value at which the warning is to be issued is overridden.

NOTES

You can use monitor_quota several times in a process to monitor different directories.

The number of records given with -call, -console, and -warn must be less than the
quota assigned to the directory. The default interval when you invoke monitor_quota
without -repeat is set with a time interval dependent on storage availability: if the
directory is 50 percent full, an alarm is set to trigger in 30 minutes to check again; if
80 percent full, a message is sent and an alarm time of two minutes is set; if 90
percent, a warning is sent every minute, and if you provide -call the specified string
is passed to the command processor.

Name: month

SYNTAX AS A COMMAND

month {time_string} {-control_arg}

SYNTAX AS AN ACTIVE FUNCTION

[month {time string} {-control_arg}]

FUlVCTION

returns the one- or two-digit number of a month of the year, from 1 to 12. The
format string to produce this is "AZ9my".

ARGUMENTS

time_string
indicates the month about which information is desired. If you supply no
time_string, the current month is used. The time string is concatenated to form a
single argument even if it contains spaces; you need not quote it. (See Section 1
f or a description of valid time_string valUes.)

CONTROL ARGUMENTS

-zone STR
STR specifies the zone that is to be used to express the result (Default: the
process default)

month

3-582 AG92-06

month

NOTES

Use the print_time_defaults command to display the default zone.
display_time_info command to display a list of all acceptable zone values.

Use the I
I

Name: month_name

SYNT AX AS A COMMAND

SYNTAX AS AN ACTIVE FUNCTION

FUNCTION

returns the full name of a month of the year (e.g., "June"). The format string to
produce this is "Amo".

ARGUMENTS

time_string
indicates the month about which information is desired. If you supply no
time_string, the current month is used. The time string is concatenated to form a
single argument even if it contains spaces; you need not quote it (See Section 1
for a description of valid time_string valUes.)

CONTROL ARGUMENTS

-language SIR, -lang STR
STR specifies the language in which month name, day names, and zone names are
to be expressed. (Default: the process default)

-zone STR
STR specifies the zone that is to be used to express the result (Default: the
procesS default)

NOTES

Use the print_time_defaults command to display the default language and zone. Use
the display_time_info command to display a list of all acceptable language and zone
values.

*

*

3-583 AG92-()6

move

Name: move, mv

SYNTAX AS A COMMAND

mv move path1 {path2 •.• path1N path2N} {-control_arg}

FUIl/CTION

moves a specified segment or multisegment file (along with its access control list and
all names) to a new position in the storage system hierarchy.

ARGUMENTS

pathl
is the pathname of a segment or multisegment file to be moved. The star
convention is allowed.

path2
is the pathname to which pathl is to be moved. The equal convention is allowed.
If you don't give the last path2 segment, pathl is moved to your working
directory and given the entryname pathl.

CONTROL ARGUMENTS

-acl
copies the ACL. (Default>

-all, -a
copies multiple names and ACLs.

-brief, -bf
suppresses the messages "Bit count inconsistent with current length ... " and "Current
length is not the same as records used n

-chase
copies the targets of links that match pathl (see "Notes").

-long
prints warning messages as necessary. (Default)

-name, -nm
copies multiple names. (Default)

-no_acl
does not copy the ACL. The segment is given the IACL of the target directory.

-no_chase
does not copy the targets of links that match pathl. (See "Notes. ")

move

3-584 AG92-o6

move

-no_name, -nnm
does not copy the multiple names.

ACCESS REQUIRED

You need read access for pathl, status and modify permISSIon for the directory
containing path!, and status, modify, and append permission for the directory
containing path2.

NOTES

The default for chasing links depends on pathl: if it is a star name, links are not
chased by default; if it is not, links are chased.

If the primary name of path1 is the only one, it is added as a secondary name to
path2.

If' an entry with the entryname pathl already exists in the target directory, you are
asked whether the already-existing entry should be deleted. If you answer "no," the
move does not take place.

If pathl is protected by the safety switch, you are asked whether you want to delete
pathl after it has been moved.

EXAMPLES

The command line

move alpha >Verdi>= >Verdi>beta b

moves alpha from the current working directory to the directory > Verdi, keeping the
name alpha. and moves beta from the directory > Verdi to the current working
directory with the names b and beta.

SYNTAX AS A COMMAND

mar request_identifiers {-control_args}

FUNCTION

moves a request from one absentee queue to another. The request is always placed at
the end of the target queue.

3-585 AG92-()6

ARGUMENTS

request_identifiers
you can specify them in one of the following forms:

path
is the full or relative pathname for the absentee input segment of requests to
be moved. The star convention is allowed.

-entry STR, -et STR
identifies requests to be moved by STR, the entryname portion of the
absentee input segment pathname. The star convention is allowed.

-id ID
identifies one or more requests to be moved by request_identifier. You can
use this identifier to further define any path or -entry identifier (see
"Notes").

CONTROL ARGUMENTS

-all. -a
searches all queues f or the requests to be moved. The target queue is not
searched by -all if the source and target request types are identical. This control
argument is incompatible with -queue.

-brief. -bf
suppresses messages telling that a particular request_id was not found or which
requests were moved when using star names or -all.

-foreground, -fg
moves the requests contained in the foreground queue.

-queue N, -q N
specifies that queue N for the given request type contains the request to be
moved, where N is an integer specifying the number for the queue. If you omit
-queue, all the queues are searched.

-sender STR
moves only requests from sender STR. You must give one or more request
identifiers.

-to_queue N. -tq N
specifies which queue to move the request to. (Required)

3-586 AG92-06

-user User_id
is a character string giving the name of the submitter of the request if not equal
to the group ID of the process. This control argument is primarily for operators
and administrators. User_id can be Person_id.Project_id, Person_id, or .Project_id.
You need both rand d extended access to the queue. This control argument
causes the command to use privileged message segment primitives that preserve the
original identity of the submitter. You need the AIM rin~l privilege to preserve
the original AIM attributes. If rin~l privilege is not present, your AIM
attributes are used. (Default: only requests entered by you are moved)

ACCESS REQUIRED

You must have 0 extended access to the queue from which the request is being taken,
and a access to the queue to which the request is being moved. You must have rand
d extended access to move a request owned by another.

NOTES

If you give any path or -entry, only one -id is accepted and it must match any
requests selected by path or -entry.

You can supply multiple -id identifiers in a single invocation only if you give no path
or -entry.

When you use no star names and a single request identifier matches more than one
request in the queue(s) searched, none of the requests are moved; however, a message
is printed telling how many matching requests there are.

If the request is already running, it is not moved and a message is printed.

Name: move_daemon_request, mdr

SYNTAX AS A COMMAND

mdr request_identifiers {-control_args}

FUNCTION

moves a request from one l/U aaemon queue to another. The move can be within
the same request type or from one request type to another. The request is always
placed at the end of the target queue.

ARGUMENTS

request_iden tifiers
Can be specified in one of the following forms:

3-587 AG92-06

move~daemon~request

path
identifies a request to be moved by the full or relative pathname of the
input data segment The star convention is allowed.

-entry STR, -et STR
identifies a request to be moved by STR, the entryname portion of the input
data segment pathname. The star convention is allowed.

-id ID
iden tif ies one or more requests to be moved by request iden tif ier. You can
use this identifier to further define any path or -entry identifier (see
"Notes").

CONTROL ARGUMENTS

-all, -a
searches all queues f or the requests to be moved. The target queue is not
searched by -all if the source and target request types are identical. This control
argument is incompatible with -queue.

-brief, -bf
suppresses messages telling you that a particular request identifier was not found
or that requests were moved when using star names or the -all control argument

-queue N, -q N
specifies that queue N for the given request type contains the request to be
moved, where N is an integer specifying the number for the queue. If you omit
-queue, all the queues are searched.

-request_type STR, -rqt STR
specifies that the request moved is found in the queue(s) for the request type
identified by STR. If this control argument is not specified, the default request
type is "printer". Request types can be listed by the print_request_types command.

-to_QUeue N, -tq N
specifies which queue to move the request to. If not given, the default queue of
the target request type is used.

-to_request_type STR. -to_rqt STR
specifies that the request should be moved to request type STR. If this control
argument is not specified, the original request type is used. The target request
types must be of the same generic type as the original request type.

3-588 AG92-D6

-user User_id
specifies the name of the submitter of the requests to be moved. The default is
to move only requests entered by the user executing the command. The User_id
can be Person_id.Project_id, Person_id, or .Project_id. This control argument is
primarily for the operator and administrators. Both rand d extended access to
the queue are required. This control argument causes the command to use
privileged message segment primitives that preserve the original identity of the
submitter. If the process has access isolation mechanism (AIM) ring one privilege,
the AIM attributes of the original submitter are preserved. Otherwise, the AIM
attributes of the current process are used.

ACCESS REQUIRED

You must have 0 extended access to the queue from which the request is being taken
and a access to the queue to which the request is being moved. You must have rand
d extended access to move a request owned by another user (see -user).

NOTES

If any path or -entry STR request identifiers are given, only one -id ID request
identifier will be accepted and it must match any requests selected by path or
entryname.

Multiple -id ID identifiers can be specified in a single command invocation only if
no path or entry request identifiers are given.

When star names are not used and a single request identifier matches more than one
request in the queue(s) searched, none of the requests are moved. However, a message
is printed telling how many matching requests are found.

If the request is already running, it is not moved and a message is printed.

EXAMPLES

To move from every queue, to queue 1, in the default request_type an requests where
the last component of the pathname matches "list", type

mdr -et *.list -tq 1 -all

Daemon request mydir.list moved from queue 2 to queue 1.
Daemon request myseg.list moved from queue 3 to queue 1.

3-589 AG92-Q6

Name: move_dir, mvd

SYNT AX AS A COMMAND

FUNCTION

moves a directory and its subtree, including all of the associated attributes. to another
poin t in the hierarchy.

ARGUMENTS

source_dir
is the pathname of the directory to be moved. The star convention is allowed to
match directory names. Matching names associated with other storage types are
ignored. The source_dir cannot be contained in target_dir.

target_dir
is the new pathname for source_dir. If the entryname is different from one
already on source_dir, it is added to the existing names. If target_dir is not
specified, source_dir is moved to the working directory and given the same
entryname. The equal convention is allowed.

CONTROL ARGUMENTS

-brief. -bf
suppresses the printing of warning messages such as "Bit count inconsistent with
current length" and "Current length is not the same as records usedtt

•

-force
continues execution when target_dir already exists. without asking you. If you
don't supply -force. you are queried.

-replace, -rp
deletes the contents of target_dir existing before the copying begins. If target_dir
is non-existent or empty, this control argument has no effect The default is to
append the contents of the source directory to the target directory if it already
exists.

LIST OF ENTRY TYPE KEYS - -
These keys control what type of storage system entry is moved. The default is to
move all entries. The keys are

-branch, -br
-directory, -dr
-file, -f
-link, -lk
-multisegment_file, -msf

3-590 AG92-06

-non_null_link, -nnlk
-segment, -srn

If one or more entry_type_keys are specified, but not the -directory key, the subtree
of source_dir will not be followed.

ACCESS REQUIRED

Status and modify permission are required for source_dir and all of the directories in
its tree, and its containing directory_ If target_dir does not exist, append permission is
required for its containing directory. If it does exist, modify and append permission
for target_dir are required. This command does not force access.

The access control list associated with source_dir is moved to target_dire

NOTES

If target_dir is contained in source_dir, an appropriate error message is printoo and
control is returned to command level.

If name duplication occurs while appending the source_dir to the target_dir and the
name duplication occurs between directories, you are queried whether processing should
continue. If you answer yes. the contents of the directory are moved (appended) to
target_dirt but none of the attributes of that directory are moved. If the answer is
no, the directory and its subtree is skipped. If name duplication should occur between
segments, you are asked whether to delete the existing one in target_dire (See the
ft\nv"," ,."nUTI!H,ti \
......... ,,".... ...,,,I..L ... ~ ,

Links are translated; that is, if there are references to a source directory in a link
pathname, the link pathname is changed to refer to the target directory.

If part of the tree is not moved, problems with link translation may occur. If the
target of the link in the source_dir tree was in the part of the tree not moved, there
may be no corresponding entry in the target_dir tree. Hence, translation of the link
(presumably originally nonnull) win cause the link to become nuli.

See also the copy. move. and copy _dir commands.

EXAMPLES

If the working directory is >udd>Project>Smi th, the command line

mvd source_dir new>target_dir -rp

moves the directory named >udd>Proj ect>Sm i th>source_d i r and its subtree to
>udd>Proj ect>Sm i th>new>target_d i r replacing its contents with the contents of
source_dire

3-591 AG92-()6

Name: move_names

SYNTAX AS A COMMAND

FUNCTION

moves all the names but the one used to designate the entry from one entry
(directory, segment, multisegment file, data management file, extended entry, or link)
to another. To copy the alternate names, see copy_names.

ARGUMENTS

from_pathi
is the pathname of the entry whose names are to be moved. The star convention
is not allowed.

to_pathi
is the pathname of the entry to which names on from_pathi are to be moved.
The equal convention is allowed. If you omit the last to_path, the entry with the
same name as from_path in your working directory is assumed.

Name: move_output_request, mor

SYNTAX AS A COMMAND

mor request_identifiers {-control_args}

FUNCTION

moves a request from one I/O daemon queue to another. The move can be within
the same request type or from one request type to another. The request is always
placed at the end of the target queue.

ARGUMENTS

request_iden tifiers
can be chosen from the following:

path
identifies a request to be moved by the full or relative pathname of the
input data segment The star convention is allowed.

-entry STR, -et SIR
identifies a request to be moved by SIR, the entryname portion of the input
data segment pathname. The star convention is allowed.

3-592 AG92-06

-id ID
identifies one or more requests to be moved by request identifier. This
identifier may be used to further define any path or -entry identifier (see
"Notes").

CONTROL ARGUMENTS

-all, -a
searches all queues for the requests to be moved. The target queue is not
searched by -all if the source and target request types are identical. This control
argument is incompatible with -queue.

--brief, -bf
suppresses messages telling the user that a particular request identifier was not
found or that requests were moved when using star names or the -all control
argument

-queue N, -q N
specifies that queue N for the given request type contains the request to be
moved, where N is an integer specifying the number for the queue. If you omit
-queue, all the queues are searched.

-print. -pr
specifies that the request moved is found in the queue(s) associated with the
default printer request type (see "Notes").

-punch, -pch
specifies that the request moved is found in the queue(s) associated with the
default punch request type (see "Notes").

-plot
specifies that the request moved is found in the queue(s) associated with the
default plotter request type (see "Notes").

-request_type STR. -rqt STR
specifies that the request moved is found in the queue(s) f or the request type
identified by STR. Use the print_request_types command to list request types.
(See "Notes. ")

-to_queue N, -tq N
specifies which queue to move the request to. If not given. the default queue of
the target request type is used.

-to_request_type STR. -to_rqt STR
specifies that the request should be moved to request type STR. If you don't give
-to_request_type, the original request type is used. The target request types must
be of the same generic type as the original request type.

-user User _id
specifies the name of the submitter of the requests to be moved. The User_id

3-593 AG92-()6

can be Person_id.Project_id. Person_id, or .Project_id. This control argument is
primarily for the operator and administrators. Both rand d extended access to
the queue are required. This control argument causes the command to use
privileged message segment primitives that preserve the original identity of the
submitter. If the process has access isolation mechanism (AIM) ring 1 privilege,
the AIM attributes of the original submitter are preserved; otherwise the AIM
attributes of the current process are used. (Default: to move only requests
entered by the user executing the command)

ACCESS REQUIRED

You must have 0 extended access to the queue from which the request is being taken
and a access to the queue to which the request is being moved. You must have rand
d extended access to move a request owned by another user (see -user).

NOTES

The control arguments -print, -punch, -plot. and -request_type are mutually exclusive.
If you use none, the default request type for enter_output_request -print (as displayed
by print_request_types) is assumed.

If you supply any path or -entry STR request identifiers. only one -id ID request
identifier are accepted and it must match any requests selected by path or entryname.
You can specify multiple -id ID identifiers in a single command invocation only if
you give no path or entry request identifiers.

When you use no star names and a single request identifier matches more than one
request in the queue(s) searched, none of the requests are moved. However, a message
is printed telling how many matching requests are found.

If the request is already running. it is not moved and a message is printed.

See the Programmer's Reference Manual for a description of request identifiers.

Name: move_quota, mq

SYNTAX AS A COMMAND

mq pathl quota_changel ••• {pathN quota_changeN}

FUNCTION

allows you to move records of quota between two directories, one immediately inferior
to (contained in) the other.

3-594 AG92-06

ARGUMENTS

pathi
is the pathname of a directory. The quota change. occurs between this branch and
its containing directory. A pathi of -workinLdirectory (-wd) specifies your
working directory. You can't use the star convention.

quota_changei
is the numbers of records to be moved between the immediately superior
(containing) directory quota and the pathi quota. This argument can be either
positive or negative. If it is positive, the quota is moved from the containing
directory to pathi; if negative, the move is from pathi to the containing directory.

ACCESS REQUIRED

You must have modify permission on both directories.

NOTES

After the change, the quota on pathi must be greater than or equal to the number of
records used in pathi unless the change makes the quota zero. If the change makes
the quota on pathi zero, there must be no immediately inferior directory with nonzero
quota and the records used and the rec.ord-time product for pathi are reflected up to
the superior directory.

If pathi is an upgraded directory (its access class is greater than the one of its
containing directory), quota_changei must be positive. You can move quota back to the
containing directory of an upgiaded directory only by deleting the latter.

You can't move quota between a master directory and its containing directory.

EXAMPLES

The command line

mq >udd>m>WShakespeare>subi_dir ieee

adds 1000 records to the quota on >udd>m>WShakespeare>subl_dir and subtracts 1000
records from the quota on >udd>m>WShakespeare.

The command line

mq >udd>m>JJoyce>subl_dir>sub2_dir -50

subtracts 50 records from the quota on >udd>m>JJoyce>sub1_dir>sub2_dir and adds 50
records to the quota on >udd>m>JJoyce>subl_dir.

3-595 AG92-06

msfs

11/86

Name: msfs

SYNTAX AS A COMMAND

msfs star_names {-control_args}

SYNTAX AS AN ACTIVE FUNCTION

[msfs star_names {-control_args}]

FUNCTION

returns the entrynames or absolute pathnames of multisegment files (MSFs) that match
one or more star names.

ARGUMENTS

star_names
are star names to be used in selecting the names to be returned.

CONTROL ARGUMENTS

-absolute_pathname, -absp
returns absolute pathnames rather than entrynames.

-chase
processes the targets of links when you specify a starname.

-inhibit_error, -ihe
returns false if star_name is an invalid name or if access to tell of an entry's
existence is lacking.

-no_chase
does not process the targets of links when you specify a starname. (Default)

-no_inhibit_error, -nihe
signals an error if star_name is an invalid name or if access to tell of an entry's
existence is lacking. (Default)

NOTES

Only one name per MSF is returned; i.e., if a MSF has more than one name that
matches star_name, only the first match found is returned.

Since each entryname (or pathname) returned by msfs is enclosed in quotes, the
command processor treats each name as a single argument regardless of the presence
of special characters in the name.

msfs

3-596 AG92-06A

11/86

SYNTAX AS A COMMAND

mtape_delete_defaults OPN {-control_args}

FUNCTION

deletes default arguments set by the mtape_set_defaults command. It deletes the
default arguments, from a specified value segment, that are associated with a given
volume type and tape-processing operation.

ARGUMENTS

OPN
is the type of tape operation (attach, open, close, or detach) that uses the default
arguments.

CONTROL ARGUMENTS

-pathname path, -pn path
specifies the pathname of a value segment to be searched for default arguments.
If you omit it, the value segment >udd> [user project] > [user name] > [user
name] .value is used.

-volume_type VI, -vt VI
specifies the volume type (ansi or ibm) used by mtape_ to select the per-format
module for tape processing. Give -vt when you supply either the open or close
operations; emit it when yeu supply either the attach or detach operations.

EXAMPLES

Suppose you want to delete all defaults in the value segment >udd> [user project> [user
name] > [user name] .value that apply to the close operation for ANSI tapes:

mtape_delete_defaults close -vt ansi

Now you want to delete all the defaults in the value segment >udd>m>slk>defaults. value
that pertain to the detach operation:

mtape_delete_defaults detach -pn >udd>m>slk>defaults.value

In this case you must give the pathname. The volume type is not given bP...cause attach
and detach are general operations that are applicable to all volume types,

3-597 AG92-06A

11/86

Name: mtape~et_defaults

SYNTAX AS A COMMAND

FUNCTION

prints default arguments set by the mtape_set_defaults command. It prints the default
arguments, stored in a specified value segment, that are associated with a given volume
type and tape-processing operation.

ARGUMENTS

OPN
is the type of tape operation (attach, open, close, or detach) that uses the default
arguments.

CONTROL ARGUMENTS

-pathname path, -pn path
specifies the pathname of a value segment to be searched for default arguments.
It is incompatible with -usl.

-use_search_list, -usl
specifies that each value segment in the mtape_arguments search list is to be
searched for default arguments and that the final default linear form that the
mtape_ argument-processing subroutine uses is to be printed. (Defauit)

-volume_type VI, -vt VT
specifies the volume type (ansi or ibm) used by mtape_ to select the per-format
module for tape processing. Give -vt when you use either the open or close
operations; omit it when you use either the attach or detach operations.

EXAMPLES

Suppose you want to print out the final form of all defaults that affect the open
operation for IBM tapes, then

mtape_get_defaults open -vt ibm -us1

prints out the default linear form associated with the open operation for IBM tapes.

If you. then want to print out the defaults found in a particular value segment that
affect the open operation for IBM tapes, the value segment being
>udd>m>slk>defaults. value, type:

mtape_get_defaults open -vt ibm -pn >udd>m>s1k>defaults.value

3-598 AG92-06A

11/86

Now you want to piint out the defaults contained in the value segment >udd> [user
project] > [user name] > [user name] .value that affect all tape attachments:

mtape_get_defaults attach -pn
>udd>[user project]>[user name]>[user name].value

The volume type is not given because attach and detach are general operations that are
applicable to all volume types. You must specify the pathname because the default
operation is -usl.

Finally, if you want to scan all the value segments in your mtape_arguments search
list for default arguments associated with the detach option, type:

mtape_get_defaults detach -pn ([psp mtape_args])

Since the print_search_paths active function returns ali pathnames in the search list,
the default arguments associated with the detach operation in each value segment in
the mtape_arguments search list are printed.

SYNTAX AS A COMMAND

FUNCTION

sets default arguments used by the mtape_ I/O module.

ARGUMENTS

OPN
is tb.e type of tape operation (attach, open, close, or detach) that uses the default
arguments.

CONTROL ARGUMENTS

-arguments ARGS, -argument, -ag ARGS
are the arguments appropriate to the specified operation and tape formal They
must be syntactically correct and appropriate to the conditions under which they
are applied. (Required; it must be the last one specified on the command line)

-pathname path, -pn path
is the name of the value segment in which the requested default values are
stored. If you omit it, the value segment >udd> [user project] > [user name] > [user
name] . value is used.

3-599 AG92-06A

11/86

-volume_type VT, -vt VT
specifies the volume type (ansi or ibm) used by mtape_ to select the per-format
module for tape processing. Give -vt when you specify either the open or close
operations; omit it when you supply either the attach or detach operations. This
control argument, along with -operation, defines restrictions on the specification
of the default arguments (see the mtape_ I/O module in the Subroutines manuaI).

NOTES

The command sets the default arguments associated with a given volume type and
tape-processing operation. These default arguments are eventually used to complete
attach, open, close, and detach descriptions when you have not explicitly supplied all
the necessary information.

The default arguments specified in the command line are processed by the mtape_
argument-processing subroutine to assure that they follow all the restrictions imposed
by their intended future usage. The result of this processing is then converted to a
character string and is stored in the data space of a specified value segment The
stored value is later located and used as default information for argument processing
when tapes are being processed by the mtape_ I/O module (see the Programmer's
Reference Manual for tape processing).

NOTES ON USING DEFAULT ARGUMENTS

When it is necessary to use default arguments in a particular application, they are
located by the mtape_ argument-processing routine using the mtape_arguments search
list The default mtape~arguments (mtape_args) search list, is as follows:

mtape_arguments
mtape args

>udd>[user project]>[user name]>[user name].value
>site>mtape_orguments.value
>sss>mtape_arguments.value

You can add or delete search paths as necessary using the search paths commands.

In locating default arguments, the mtape_ argument-processing routine looks in every
value segment in the search list and takes the appropriate default arguments from each
(if it finds them). Whether a group of default arguments is determined to be
appropriate for an application depends on the volume type and tape-processing
operation for which is intended.

Default arguments from value segments at the top of the search list take precedence
over those from value segments at the bottom. Equivalently arguments on the right
side of an argument list take precedence over arguments on the left This means that
after all default arguments for a particular application have been gathered from the
search list, if an argument occurs more than once, the argument with the highest
precedence is retained and the others are excluded. The result is called the default
linear form.

3-600 AG92-06A

11/86

EXAMPLES

Suppose you want to set some defaults (using mtape-> for attaching tapes:

mtape_set_defaults attach -ag -track 9 -density 6250 -ring -display

Assuming that you have retained the default mtape_arguments search paths (as
described above), these default arguments have the highest level of precedence for the
attach operation. Now suppose that the >site and >sss mtape_arguments. value segments
contain defaults for the attach operation as follows:

>site contains "-density 800 -track 7 -no_ring"
>sss contains "-density 1600 -track 9 -no_system -no_ring"

Using the precedence rules, the default linear form that results is

-no_system -track 9 -density 6250 -ring -display

The control argument -no_ring does not appear in the linear form because it has been
excluded by -ring.

If you specify the following mtape_ attach description:

mtape_ volume_name -vt ansi

the default linear form is used intact (as previously specified). You can, however,
override anything in the default linear form by respecifying it in the attach
description. For example, if you want to override the default density of 6250 with a
density of 1600~ you specify it in the attach description this way:

mtape_ volume_name -vt ansi -density 1600

Arguments actually specified by you in an attach, open, close, or detach description
always override those in the default linear form.

Name: nequal

SYNTAX AS A COMMAND

nequal numA numB

SYNTAX AS AN ACTIVE FUNCTION

[nequal numA numB]

FUNCTION

returns true if numA is numerically equal to numB, false otherwise.

nequal

3-601 AG92-06A

nequal

•

11/86

EXAMPLES

string [nequal 5 5.0]
true
string [nequal 001 1]
true
string [nequal one 1]
Error

Name: network_request, nr

SYNTAX AS A COMMAND

FUNCTION

allows you to interactively transfer files to or from a DPS 6 X.25 Satellite.

ARGUMENTS

source_path
specifies the source file to be used for the transfer:

{-name} file_name {-at net_address}

Precede file_name by -name (-nm) if it begins with a hyphen, enclose it in
quotes if it contains spaces or special characters, and follow it by "-at
net_address" if the file does not reside on the local host Supply the file name
in a syntax acceptable to the host on which the file resides. The net_address
consists of the address of the DPS 6 on the X.25 connection (as specified in the
DPS 6 CLM_USER file) followed by the end-task-ID of the DPS 6 Listener (as
specified in the DPS 6 eLM file) in the X.25 directive. If the file resides on
Multics, you can use an arbitrary star name; if it resides on a DPS 6, you can
give the name n •• " to transfer all the files in a directory on the Level 6.

destination_path
specifies the destination file to be used for the transfer:

{-name} file_name {-at net_address}

It has the same syntax and restrictions as source_path. You can use the equal
convention.

3-602 AG92-06A

network_request

CONTROL ARGUMENTS

-attended. -att
specifies that the DPS 6 already has a server running and no login dialogue is
needed.

-brief. -bf
does not print messages as the command executes.

-data_type ascii
-data_type binary
-data_type bed

specifies the data type of the Multics file. If binary. then the Multics file must
be sequential or blocked; it can not be unstructured. (Default: ascii)

-long, -lg
prints a message when the transfer starts and when it is finished, giving the
pathnames. records transfered, etc. (Default)

-network_name channel_name, -net channel_name
specifies the channel name of the X.25 channel (i.e., the network "name") to be
used for the transfer. (Required)

-not_attended. -natt
specifies that a login dialogue is needed with the DPS 6 to initiate the transfer.
(Default)

-password STR, -pw STR
specifies the password used by the remote host to authenticate the file transfer.
If the remote host requires a password and none is given. you are prompted for
one with a mask. (Default none)

-user STR
STR specif ies the user wishing the transf er. This can be used by the remote host
for authentication of the file transfer. (Default: the Multics User_id of the user
who submitted the request)

ACCESS REQUIRED

You must have the "dialok" attribute and have rw access to the X.25 channel specified
by -nel

NOTES

Either the source file or the destination file must be on the local host (i.e.. both
must not use the -at argument); thus third-party transfers are not allowed.

3-603 . AG92-()6

network_request

EXAMPLES

where mult_file is the source on Multics. 16_file is the destination file on the DPS 6,
and the connection between the DPS 6 and Multics is on channel g.hl02. This
example transfers mult_file to 16_file.

SYNTAX AS A COMMAND

FUNCTION

destroys your current process and creates a new one, using the control arguments given
initially with login and -authorization.

CONTROL ARGUMENTS

-authorization STR, -auth STR
creates the new process at authorization STR, where STR is any authorization
acceptable to the convert_authorization_ subroutine. The authorization must be less
than. or equal to, both the maximum authorization of the process and the access
class of the terminal. (Default to create the new process at the same
authorization)

NOTES

Just before the old process is destroyed, the "finish" condition is signaled. After the
default on unit returns, all open files are closed. The search rules, I/O attachments,
and working directory for the new process are as if you had just logged in.

If your initiai working directory contains the segment start_up.ec and you did not log
in with -no_start_up. new _proc automatically issues the command line "exec_com
start_up new_proc interactive" in the new process.

If your site is security conscious, it may have disabled "new _proc -auth"; in this case
if you wish to change authorization, do this:

1. log out

2. verify, using terminal/modem indications. that the terminal has dropped DTR
and that the system acknowledged by dropping DSR

3. log in at the new authorization.

3-604 AG92-06

This procedure is the only way to guarantee that you are communicating with the
answering service and not with a Trojan horse.

DTR and DSR are EIA RS232 control signals that are part of the interface between
your terminal and the system.

Name: ngreater

SYNTAX AS A COMMAND

ngreater numA numB

SYNTAX AS AN ACTiVE FUNCTiON

[ngreater numA numB]

FUNCTION

returns true if numA is numerically greater than numB, false otherwise.

EXAMPLES

string [ngreater 5 8]
false
string [ngreater 9 4]
true

Name: nless

SYNTAX AS A COIl//MAND

nless numA numB

SYNTAX AS AN ACTIVE FUNCTION

[nless numA numB]

FUNCTION

returns true if numA is numerically less than numB; otherwise it returns false.

nless

3-605 AG92-06

nless

11/86

nonbranches

EXAMPLES

string [nless 8 4]
false
string [nless 4 8]
true
string [nless -5 -3]
true

SYNTAX AS A COMMAND

FUNCTION

disables process preservation across hangups in your process, causing the process to log
itself out automatically if its terminal channel hangs up.

NOTES

This command is meaningful only if process preservation was in effect for the process
at login time, either by default or because you gave -save_on_disconnect on the login
command line.

Name: nonbranches

SYNTAX AS A COMMAND

nonbranches star_names {-control_args}

SYNTAX AS AN ACTIVE FUNCTION

[nonbranches star_names {-control args}]

FUlvCTION

returns the entrynames or absolute pathnames of nonbranches that match one or more
star names.

ARGUMENTS

star_names
is a star name to be used in selecting the names to be returned.

3-606 AG92-06A

nonbranches nondirectories

11/86

CONTROL ARGUMENTS

.-absolute_pathname, -absp
returns absolute patbnames rather than entrynames.

-chase
processes the targets of links when you specify a starname.

-inhibit_error, -ihe
returns false if star_name is an invalid name or if access to tell of an entry's
existence is lacking.

-no_chase
does not process the targets of links when you specify a starname. (Default)

-no_inhibit_error, -nihe
signals an error if star_name is an invalid name or if access to tell of an entry's
existence is lacking. (Default)

NOTES

Only one name per nonbranch is returned; i.e., if a nonbranch has more than one
name that matches star_name, only the first match found is returned.

Since each entryname (or pathname) returned by nonbranches is enclosed in quotes, the
command processor treats each name as a single argument regardless of the presence
of special characters in the name.

Name: nondirectories, nondirs

SYNTAX AS A COMMAND

nondirs star_names {-control~args}

SYNTAX AS AN ACTIVE FUNCTION

[nondirs star_names {-control_args}]

FUNCTION

returns the entrynames or absolute pathnames of segments, multisegment files (MSFs),
and links that match one or more star names.

3-607 AG92-06A

nondirectories nonfiles

11/86

ARGUMENTS

star_names
are star names to be used in selecting the names to be returned.

CONTROL ARGUMENTS

-absolute_pathname, -absp
returns absolute pathnames rather than entrynames.

-chase
processes the targets of links when you specify a starname.

-inhibit_error, -ihe
returns false if star_name is an invalid name or if access to tell of an entry's
existence is lacking.

-no_chase
does not process the targets of links when you specify a starname. (Default)

-no_inhibit_error. -nihe
signals an error if star_name is an invalid name or if access to tell of an entry's
existence is lacking. (Default)

NOTES

Only one name per entry is returned; i.e., if a segment, MSF, or link has more than
one name that matches star_name, only the first match found is returned.

Since each entryname (or pathname) returned by nondirectories is enclosed in quotes,
the command processor treats each name as a single argument regardless of the
presence of special characters in the name.

Name: nonfiles

SYNTAX AS A COMMAND

nonfiles star_names {-control_args}

SYNTAX AS AN ACTIVE FUNCTION

[nonfiles star_names {-control_args}]

FUNCTION

returns the entrynames or absolute pathnames of directories and links that match one
or more star names.

3-608 AG92-06A

nonfiles non links

11/86

ARGUMENTS

star_names
are star names to be used in selecting the names to be returned.

CONTROL ARGUMENTS

-absolute_pathname, =absp
returns absolute pathnames rather than entrynames.

-chase
processes the targets of links when you specify a starname.

-inhibit_error, -ihe
returns false if star_name is an invalid name or if access to tell of an entry's
existence is lacking.

-no_chase
does not process the targets of links when you specify a starname. (Default)

-no_inhibit_error, -nihe
signals an error if star_name is an invalid name or if access to tell of an entry's
existence is lacking. (Default)

NOTES

Only one name per entry is returned; i.e .• if a directory or link has more than one
name that matches star_na...'lle, only the first match found is returned.

Since each entryname (or pathname) returned by nonfiles is enclosed in quotes, the
command processor treats each name as a single argument regardless of the presence
of special characters in the name.

Name: nonlinks

SYNTAX AS A COMMAND

nonlinks star_names {-control_args}

SYNTAX AS AN ACTIVE FUNCTION

[nonlinks star_names {-control_args}]

FUNCTION

returns the entrynames or absolute pathnames of segments, directories. and multisegment
files (MSFs) that match one or more star names.

3-609 AG92-06A

nonlinks nonmaster_directories

11/86

ARGUMENTS

star_name
is a star name to be used in selecting the names to be returned.

CONTROL ARGUMENTS

-absolute_pathname, -absp
returns absolute pathnames rather than entrynames. (Default: to return entrynames)

-chase
processes the targets of links when you specify a starname.

-inhibit_error, -ihe
returns false if star_name is an invalid name or if access to tell of an entry's
existence is lacking.

-no_chase
does not process the targets of links when you specify a starname. (Default)

-no_inhibit_error, -nihe
signals an error if star_name is an invalid name or if access to tell of an entry's
existence is lacking. (Default)

NOTES

Only one name per nonlink is returned; i.e.. if a nonlink has more than one name
that matches star_name. only the first match found is returned.

Since each entryname (or pathname) returned by nonlinks is enclosed in quotes. the
command processor treats each name as a single argument regardless of the presence
of special characters in the name.

Name: nonmaster _directories, nmdirs

SYNTAX AS A COMMAND

nmdirs star_names {-control_args}

SYNTAX AS AN ACTIVE FUNCTION

[nmdirs star_names {-control_args}]

FUNCTION

returns the entrynames or absolute pathnames of directories that are not master
directories that match one or more star names.

3-610 AG92-06A

nonmaster _directories nonmsfs

11/86

ARGUMENTS

star_names
are star names to be used in selecting the names to be returned.

CONTROL ARGUMENTS

-absoiute_pathname, -absp
returns absolute pathnames rather than entrynames.

-chase
processes the targets of links when you specify a stamame.

-inhibit_error, -ihe
returns false if star_name is an invalid name or if access to tell of an entry's
existence is lacking.

-no_chase
does not process the targets of links when you specify a starname. (Default)

-no_inhibit_error, -nihe
signals an error if star_name is an invalid name or if access to tell of an entry's
existence is lacking. (Default)

NOTES

Only one name per directory is returned; i.e., if a directory has more than one name
that matches sLar_name, only the first match found is returned.

Since each entryname (or pathname) returned by nonmaster_directories is enclosed in
quotes, the command processor treats each name as a single argument regardless of the
presence of special characters in the name.

Name: nonmsfs

SYNTAX AS A COMMAND

nonmsfs star_names {-control_args}

SYNTAX AS AN ACTIVE FUNCTION

[nonmsfs star_names {-control_args}]

FUNCTION

returns the entrynames or absolute pathnames of segments, directories, and links that
match one or more star names.

3-611 AG92-06A

nonmsfs

11/86

ARGUMENTS

star_names
are star names to be used in selecting the names to be returned.

CONTROL ARGUMENTS

-absoiute_pathname, -absp
returns absolute pathnames rather than entrynames.

-chase
processes the targets of links when you specify a starname.

-inhibit_error, -ihe
returns false if star_name is an invalid name or if access to tell of an entry's
existence is lacking.

-no_chase
does not process the targets of links when you specify a starname. (Default)

-no_inhibit_error, -nihe
signals an error if star_name is an invalid name or if access to tell of an entry's
existence is lacking. (Default)

NOTES

Only one name per entry is returned; Le~i if a segment, directory; or link has more
than one name that matches star_name, only the first match found is returned.

Since each entryname (or pathname) returned by nonmsfs is enclosed in quotes, the
command processor treats each name as a single argument regardless of the presence
of special characters in the name.

Name: nonnull_links, nnlinks

SYNTAX AS A COMMAND

nnlinks star_names {-control_args}

SYNTAX AS AN ACTIVE FUNCTION

[nnlinks star_names {-control_args}]

FUNCTION

returns the entrynames or absolute pathnames of links for which the target entry exists
that match one or more star names.

3-612 AG92-06A

11/86

ARGUMENTS

star_names
are star names to be used in selecting the names to be returned.

CONTROL .ARGUMENTS

-absolute_pathname. -absp
returns absolute pathnames rather than entrynames.

-chase
processes the targets of links when you specify a starname.

-inhibit_error. -ihe
returns false if star_name is an invalid name or if access to tell of an entry's
existence is lacking.

-no_chase
does not process the targets of links when you specify a starname. (Default)

-no_inhibit_error, -nihe
signals an error if star_name is an invalid name or if access to tell of an entry's
existence is lacking. (Default)

NOTES

Only one name per link is returned; i.e.. if a link has more than one name that
matches star~name! only the first match found is returned.

Since each entryname (or pathname) returned by nnlinks is enclosed in quotes, the
command processor treats each name as a single argument regardless of the presence
of special characters in the name.

Name: non object_files, nobfiles

SYNTAX AS A COMMAND

nobfiles star_names {-control_args}

SYNTAX AS AN ACTIVE FUNCTION

[nobfiles star_names {-control_args}]

FUNCTION

returns the entrynames or absolute pathnames of files that are not executable object
files and that match one or more star names.

3-613 AG92-06A

11/86

ARGUMENTS

star_names
are star names to be used in selecting the names to be returned.

CONTROL ARGUMENTS

-absolute_pathname, -absp
returns absolute pathnames rather than entrynames.

-chase
processes the targets of links when you specify a starname.

-inhibit_error, -ihe
returns false if star_name is an invalid name or if access to tell of an entry's
existence is lacking.

-no_chase
does not process the targets of links when you specify a starname. (Default)

-no_inhibit_error, -nihe
signals an error if star_name is an invalid name or if access to tell of an entry's
existence is lacking. (Default)

NOTES

Only one name per iiie is returned; i.e., ii a HIe has more than one name that
matches star _name, only the first match found is returned.

Since each entryname (or pathname) returned by nobfiles is enclosed in quotes, the
command processor treats each name as a single argument regardless of the presence
of special characters in the name.

Segments and MSFs that you do not have at least r access to are ignored, since r
access is needed to determine if the file is an object file.

Name: nonobject_msfs, nobmsfs

SYNT AX AS A COMMAND

nobmsfs star_names {-control_args}

SYNTAX AS AN ACTIVE FUNCTION

[nobmsfs star names {-control_args}]

3-614 AG92-06A

11/86

FUNCTION

returns the entrynames or absolute pathnames of multisegment files (MSFs) that are
not object MSFs and that match one or more star names.

ARGUMENTS

star_names
are star names to be used in selecting the names to be returned.

CONTROL ARGUMENTS

-absolute_pathname, -absp
returns absolute pathnames rather than entrynames.

-chase
processes the targets of links when you specify a starname.

-inhibit_error, -ihe
returns false if star_name is an invalid name or if access to tell of an entry's
existence is lacking.

-no_chase
does not process the targets of links when you specify a starname. (Default)

-no_inhibit_error, -nihe
signals an error if star_name is an invalid nanle or if access to tell of an entry's
existence is lacking. (Default)

NOTES

Only one name per msf is returned; i.e., if an MSF has more than one name that
matches star_name. only the first match found is returned.

Since each entryname (or pathname) returned by nobmsfs is enclosed in quotes, the
command processor treats each name as a single argument regardless of the presence
of special characters in the name.

MSFs that you do not have at least r access to are ignored, since r access is needed
to determine if the file is an object MSF.

3-615 AG92-06A

nonobject_segments nonobject_segments

11/86

Name: nonobject_segments, nobsegs

SYNTAX AS A COMMAND

nobsegs star_names {-control_args}

SYNTAX AS AN ACTIVE FUNCTION

[nobsegs star_names {-control_args}]

FUNCTION

returns the entrynames or absolute pathnames of segments that are not executable
object segments, and that match one or more star names.

ARGUMENTS

star_names
are star names to be used in selecting the names to be returned.

CONTROL ARGUMENTS

-absolute_pathname, -absp
returns absolute pathnames rather than entrynames.

-chase
processes the targets of links when you specify a starname.

-inhibit_error, -ihe
returns false if star_name is an invalid name or if access to tell of an entry's
existence is lacking.

-no_chase
does not process the targets of links when you specify a starname. (Default)

-no_inhibit_error, -nihe
signals an error if star_name is an invalid name or if access to tell of an entrts
existence is lacking. (Default)

ACCESS REQUIRED

You need at least r access to the segments.

NOTES

Only one name per segment is returned; i.e., if a segment has more than one name
that matches star_name, only the first match found is returned.

3-616 AG92-06A

non object_segments nonsegmen ts

11/86

Since each entryname (or pathname) returned by nobsegs is enclosea In quoies, the
command processor treats each name as a single argument regardless of the presence
of special characters in the name.

Name: nonsegmentsj nonsegs

SYNTAX AS A COMMA,VD

nonsegs star_names {-control_args}

SYNTAX AS AN ACTIVE FUNCTION

[nonsegs star_names {-controi_args}]

FUNCTION

returns the entrynames or absolute pathnames of directories, multisegment files (MSFs),
or links that match one or more star names.

ARGUMENTS

star_names
are star names to be used in selecting the names 10 be returned.

CONTROL ARGUMENTS

-absolute_pathname, -absp
returns absolute pathnames rather than entrynames.

-chase
processes the targets of links when you specify a stamame.

=inhibit_error, -ihe
returns false if star name is an invalid name or if access to tell of an entry's
existence is lacking.

-no_chase
does not process the targets of links when you specify a starname. (Default)

-no_inhibit_error, -nihe
signals an error if star_name is an invalid name or if access to tell of an entry's
existence is lacking. (Default)

NOTES

Only one name per entry is returned; i.e., if a directory, MSF, or link has more than
one name that matches star_name, only the first match found is returned.

3-616.1 AG92-06A

nonsegments

11/86

Since each entryname (or pathname) returned by nonsegs is enclosed in quotes, the
command processor treats each name as a single argument regardless of the presence
of special characters in the name.

Name: nonzero_files, nzfiles

SYNTAX AS A COMMAND

nzfiles star_names {-control_args}

SYNTAX AS AN ACTIVE FUNCTION

[nzfiles star_names {-control_arg}s]

FUNCTION

returns the entrynames or absolute pathnames of files--segments and multisegment files
(MSFs)-with a nonzero-bit count that match one or more star names.

ARGUMENTS

staT_names
are star names to be used in selecting the names to be returned.

CONTROL ARGUMENTS

-absolute_pathname, -absp
returns absolute pathnames rather than entrynames.

-chase
processes the targets of links when you specify a starname.

-inhibit_error, -ihe
returns false if star_name is an invalid name or if access to tell of an entry's
existence is lacking.

-no_chase
does not process the targets of links when you specify a starname. (Default)

-no_inhibit_error, -nihe
signals an error if star_name is an invalid name or if access to tell of an entry's
existence is lacking. (Default)

NOTES

Only one name per file is returned; i.e., if a file has more than one name that
matches star_name, only the first match found is returned.

3-616.2 AG92-06A

11/86

Since each entryname (or pathname) returned by nzfiles is enclosed in quotes! the
command processor treats each name as a single argument regardless of the presence
of special characters in the name.

Name: nonzero_msfs, nzmsfs

SYNTAX AS A COMMAND

nzmsfs star_names {-control_args}

SYNTAX AS AN ACTIVE FUNCTION

[nzmsfs star_names {-control args}]

FUNCTION

returns the entrynames or absolute pathnames of multisegment files (MSFs) with a
nonzero-bit count that match one or more star names.

ARGUMENTS

star_names
are star names to be used in selecting the names to be returned.

CONTROL ARGUMENTS

-absolute_pathname, -absp
returns absolute pathnames rather than entrynames.

-chase
processes the targets of links when you specify a starname.

-inhibit_error, -ihe
returns false if star_name is an invalid name or if access to tell of an entry's
existence is lacking.

-no_chase
does not process the targets of links when you specify a starname. (Default)

-nc_inhibit_error. -nme
signals an error if star_name is an invalid name or if access to tell of an entry's
existence is lacking. (Default)

NOTES

Only one name per MSF is returned; i.e., if a MSF has more than one name that
matches star_name, only the first match found is returned.

3-616.3 AG92-06A

11/86

nonzero_segments

Since each entryname (or pathname) returned by nzmsfs is enclosed in quotes, the
command processor treats each name as a single argument regardless of the presence
of special characters in the name.

Name: nonzero_segments, nzsegs

SYNTAX AS A COMMAND

nzsegs star_names .{-control_args}

SYNTAX AS AN ACTIVE FUNCTION

[nzsegs star_names {-control_args}]

FUNCTION

returns the entrynames or absolute pathnames of segments with a nonzero-bit count
that match one or more star names.

ARGUMENTS

star_names
are star names to be used in selecting the names to be returned.

CONTROL ARGUMENTS

-absolute_pathname, -absp
returns absolute pathnames rather than entrynames.

-chase
processes the targets of links when you specify a starname.

-inhibit_error, -ihe
returns false if star_name is an invalid name or if access to tell of an entry's
existence is lacking.

-no_chase
does not process the targets of links when you specify a starn arne. (Default)

-no_inhibit_error, -nihe
signals an error if star_name is an invalid name or if access to tell of an entry's
existence is lacking. (Default)

NOTES

Only one name per segment is returned; i.e., if a segment has more than one name
that matches star_name, only the first match found is returned.

3-616.4 AG92-06A

nonzero_segments nothing

11/86

~mce each entryname (or pathname) returnee by nzsegs is enclosed in quotes, the
command processor treats each name as a single argument regardless of the presence
of special characters in the name.

Name: not

SYNTAX AS A COMMAND

not STR

SYNTAX AS AN ACTIVE FUNCTION

[not STR]

FUNCTION

returns false if STR is equal to true; true if STR is equal to false; otherwise prints
an error message.

Name: nothing, nt

SYNTAX AS A COMMAND

nt {optional_args}

FUNCTION

performs a return to its caller and does nothing.

ARGU}II E ftlTS

optional_args
are optional arguments, which can have any value and are ignored.

NOTES

This command uses a special feature in the Multics linking mechanism that allows it
to be executed by any reference name; thus you can use it as a "stub" procedure for
testing the development of programs. To do this, initiate it with the reference name
of the program it is supposed to replace. You can't use it in this fashion if the
entrypoint name is different from the reference name.

3-616.5 AG92-()6A

11/86

Name: null_links, nlinks

SYNTAX AS A COMMAND

nlinks star_names {-control_args}

SYNTAX AS AN ACTIVE FUNCTION

[nlinks star_names {-control_args}]

FUNCTION

returns the entrynames or absolute pathnames of links for which the target does not
exist that match one or more star names.

ARGUMENTS

star_names
are star names to be used in selecting the names to be returned.

CONTROL ARGUMENTS

-absolute_pathname, -absp
returns absolute pathnames rather than entrynames.

-chase
processes the targets of links when you specify a starname.

-inhibit_error, -ihe
returns false if star_name is an invalid name or if access to tell of an entry's
existence is lacking.

-no_chase
does not process the targets of links when you specify a stamame. (Default)

-no_inhibit_error, -nihe
signals an error if star_name is an invalid name or if access to tell of an entry's
existence is lacking. (Default)

NOTES

Only one name per link is returned; i.e., if a link has more than one name that
matches star_name, only the first match if returned.

Since each entryname (or pathname) returned by nlinks is enclosed in quotes, the
command processor treats each name as a single argument regardless of the presence
of special characters in the name.

3-616.6 AG92-06A

11/86

Name: object_files, obfiles

SYNTAX AS A COMMAND

obfiles star_names {-control_args}

SYNTAX AS AN ACTIVE FUNCTION

[obfiles star_names {-control_args}]

FUNCTION

returns the entrynames or absolute pathnames of files that are executable object files
and that match one or more star names.

ARGUMENTS

star_names
are star names to be used in selecting the names to be returned.

CONTROL ARGUMENTS

-absolute_pathname, -absp
returns absolute pathnames rather than entrynames.

-chase
processes the targets of links when you specify a starname.

-inhibit_error. -ihe
returns false if star name is an invalid name or if access to tell of an entry's
existence is lacking.

-no_chase
does not process the targets of links when you specify a starname. (Default)

-no_inhibit_error. -nihe
signals an error if star_name is an invalid name or if access to tell of an entry's
existence is lacking. (Def aul t)

NOTES

Only one name per file is returned; i.e., if a file has more than one name that
matches star_name, only the first match found is returned.

Since each entryname (or pathname) returned by obfiles is enclosed in quotes, the
command processor treats each name as a single argument regardless of the presence
of special characters in the name.

Files that you do not have at least r access to are ignored, since r access is needed to
determine if the file is an object file.

3-616.7 AG92-D6A

11/86

Name: object_msfs, obmsfs

SYNT AX AS A COMMAND

obmsfs star_names {-control_args}

SYNTAX AS AN ACTIVE FUNCTION

[obmsfs star_names {-control_args}]

FUNCTION

returns the entrynames or absolute pathnames of multisegment files (MSFs) that are
executable object MSFs and that match one or more star names.

ARGUMENTS

star_names
are star names to be used in selecting the names to be returned.

CONTROL ARGUMENTS

-absolute_pathname, -absp
returns absolute pathnames rather than entrynames.

-chase
proces...~ the targets of links when you specify a starname~

-inhibit_error, -ihe
returns false if star_name is an invalid name or if access to tell of an entry's
existence is lacking.

-no_chase
does not process the targets of links when you specify a starname. (Default)

-no_inhibit_error, -nihe
signals an error if star_name is an invalid name or if access to tell of an entry's
existence is lacking. (Default)

NOTES

Only one name per MSF is returned; i.e.. if a MSF has more than one name that
matches star_name, only the first match found is returned.

Since each entryname (or pathname) returned by obmsfs is enclosed in quotes, the
command processor treats each name as a single argument regardless of the presence
of spe.cial characters in the name.

MSFs that you do not have at least r access to are ignored, since r access is needed
to determine if the file is an object MSF.

3-616.8 AG92-06A

11/86

Name: object_segments, osegs

SYNTAX AS A COMMAND

osegs star_names {-control_args}

SYNTAX AS AN ACTIVE FUNCTION

[osegs star_names {-control_args}]

FUNCTION

returns the entrynames or absolute pathnames of segments that are executable object
segments and that match one or more star names.

ARGU tv'! E NTS

star_names
are star names to be used in selecting the names to be returned.

CONTROL ARGUMENTS

-absolute_pathname, -absp
returns absolute pathnames rather than entrynames.

-chase
processes the targets of links when you specify a starname.

-inhibit_error, -ihe
returns false if star_name is an invalid name or if access to tell of an entry's
existence is lacking.

-no_chase
does not process the targets of links when you specify a starname. (Default)

-no_inhibit_error. -nihe
signals an error if star_name is an invalid name or if access to tell of an entry's
existence is lacking. (Default)

ACCESS REQUIRED

You need at least r access to the object segments.

NOTES

Only one name per segment is returned; i.e., if a segment has more than one name
that matches star_name, only the first match found is returned.

Since each entryname (or pathname) returned by osegs is enclosed in quotes, the
command processor treats each name as a single argument regardless of the presence
of special characters in the name.

3-616.9 AG92-06A

octal

11/86

Name: octal, oct

SYNTAX AS A COMMAND

oct values

SYNTAX AS AN ACTIVE FUNCTION

[oct values]

FUNCTION

returns one or more values in octal.

ARGUMENTS

value
is a value to be processed.

NOTES

The last character of the value indicates its type. Acceptable types are binary (b),
quaternary (q), octal (0), hexadecimal (x), or unspec (u). Any valid PL/I real value is
allowed. The absence of any specifier means decimal. The unspec value is limited to
eigh t characters.

EXAMPLES

string [octal 1024]
2000

string [octal abcu]
141142143

Name: on

SYNTAX AS A COMMAND

SYNTAX AS AN ACTIVE FUNCTION

on

3-616.10 AG92-06A

on

11/86

FUNCTION

establishes a handler for a specified set of conditions. executes an embedded command
line with this handler in effect, and then reverts the handler. The handler is another
embedded command line to be executed if the condition is signaled.

ARGUMENTS

conditions
is a list of condition names separated by commas to be trapped by the command.

handler_corn_line
is the command line to be executed when one of the conditions contained in the
list of condition names is raised. If handler_corn_line contains spaces or other
command language characters. enclose it in quotes. If no command is to be
executed when a condition is raised. give handler_corn_line as "".

subject_corn_line
is the command line to be executed under the control of on; it consists of the
remaining arguments. Quote it if it contains parentheses, brackets, quotes, or
semicolons.

CONTROL ARGUMENTS

-brief. -bf
suppresses the comment printed when a condition occurs.

on

3-616.11 AG92-06A

This page intentionally left blank.

11/86 AG92-06A

on

-cl
establishes a new command level after the execution of handler_com_line. You
cannot use it in the active function. The state of subject_corn_line is preserved.
If you issue the start command, the same action is taken as would have -been had
you not specified -cl.

-exclude STR, -ex STR
prevents on from trapping the conditions given in STR. If you list more than
one condition, separate condition names by commas. This control argument is
useful when handling the any_other condition.

-long, -lg
prints a detailed message describing the condition raised if one is available. This
message is the same as the one printed by the reprint_error command.

-restart, -rt
continues execution of the subject_corn_line after execution of handler_corn_line
or, if you also selected -cl, after execution of start It is incompatible with
-retry _command_line.

-retry _command_line, -rcl
aborts and executes over again subject_corn_line after executing handler_corn_line.

NOTES

The default action after executing handler_corn_line is to abort the execution of
subject_corn_line.

If a condition is raised and trapped by on while executing the handler_corn_line, it is
considered a recursive signal and the entire invocation is aborted.

See the Programmer's Reference Manual for a list of standard system conditions.

NOTES ON ACTIVE FUNCTION

The active function returns "true" if any of the specified conditions are signaled
during the execution of subject_corn_line, "false" otherwise.

EXAMPLES

The command line

on command_error "pwd;ls" -bf ws node la

does a walk_subtree starting at the node directory, listing the access of the working
directory. If the list_ac1 (Ia) command fails because of insufficient access, for
example, the pathname and contents of the working directory are printed and you are
returned to command level since you didn't select -restart

on

3-617 ACT92-06

on

The command line

on any_other -ex quit,program_interrupt,mme2 "ec dump" -lg myprog

executes the myprog command. If any condition except quit, program_interrupt, and
mrne2 is raised, on executes nec dump", after printing a detailed explanation of the
condi tion raised.

The command line

on quit,mme2 db -bf -rt testcom

executes the testcom command, but responds to quits and breaks set in testcom by
invoking debug; -rt continues execution of testcom after you quit out of debug; and
-bf suppresses a warning message when one of the specified conditions is signaled.

In an exec_corn, the command line

on linkage_error "ec linkerr" ec recurse

calls a recursive entry point in the exec_com to continue execution, but with a
linkage_error handler in effect. When linkage_error is signaled during the course of
running recurse.ec, that exec_corn is aborted and linkerr.ec is run.

The exec_com &if control line

& if & [on command_er ror 1111 -bf -r t command_name]
&then &quit

executes the command command_name. If the command_error condition is raised, the
exec_com being executed is terminated after compieting the execution of the command.
The on command does not print any message in this example; restarting the
command_error condition prints a message.

Name: or

SYNTAX AS A COMMAND

SYNTAX AS AN ACTIVE FUNCTION

[or {tf_args}]

or

3-618 AG92-06

or

FUNCTION

returns true if any tf_arg is equal to true; otherwise it returns false. If there are no
tf_args, it returns the or-identity "false". If any tf_arg has a value other than true or
false, an error message is printed.

ARGUMENTS

tf_args
are any active functions that return either "true" or "false".

EXAMPLES

The command line

or [equal ([st -mode ([segs 1:*])]) rew]

returns true if there is at least one segment in the working directory to which you
have rew access. It returns false if there are no segments in the working directory.

The active function

[or [equa 1 (&r 1 &r 2 &r 3) tape 1 J J

inside an exec_com returns true if either the first, second, or third argument to ec is
"tapel".

Name: overlay, ov

SYNTAX AS A COMMAND

ov paths {-control=args}

FUNCTION

reads several ASCII segments and writes the result of superimposing print positions
from each segment on the user_output I/O switch output

ARGUlv1ENTS

paths
are the pathnames of input segments. The archive convention is allowed.

overlay

3-619 AG92-()6

overlay page_trace

CONTROL ARGUMENTS

-indent N, -ind N
indents the print positions of an input segment N columns on output. It only
affects the path immediately preceding it If you don't give it, an indent of 0 is
used.

-page_length N, -pI N
sets the page length of the output If you don't supply it, a page length of 60 is
used.

NOTES

Because the overlay command uses the printer conversion programs, control characters
are removed from input files except for newline (NL), backspace (BS), vertical tab
(VT), and formfeed (FF).

If identical print positions containing the same characters are superimposed, a boldface
type results. By following input segments with -indent, you create output containing
columns of text

Name: page_trace, pgt

SYNTAX AS A COMMAND

pgt {N} {-control_args}

FUNCTION

prints a recent history of page faults and other system events within the calling
process.

ARGUMENTS

N
prints the last N system events (mostly page faults) recorded for the calling
process. If you give no N, all the entries in the system trace list for the calling
process are printed. Currently, there is room for approximately 300 entries in the
system trace array.

CONTROL ARGUMENTS

-from STR, -fm STR
searches the trace array for a user marker matching STR. If one is found,
printing begins with it; otherwise, printing begins with the first element in the
array.

3-620 AG92-06

-long, -lg
prints full pathnames where appropriate. (Default: to print only entrynames)

-no_header, -nhe
suppresses the header that names each column. (Default: to print the header)

-output_switch swname, -osw swname
writes all output on the I/O switch named swname, which must already be
attached and open for stream_output (Default: to write all output on the
user_output I/O switch)

-to STR
stops printing if a user marker matching STR is found. If you specify both
-from and -to. the "from" marker is assumed to occur before the "to" marker.
(Default: to print until the end of the array)

NOTES

You can't give a count value (N) and either -from or -to in the same invocation.

If you give -long. page_trace prints two lines of information for each page fault the
first indicates the page on which the fault occurred; the second. the location of the
instruction that caused the fault (i.e., the instruction that referenced the page in the
first line). This second line is printed only if the system administrator has enabled the
collection of this data.

Since it is possible for segment numbers to be reused within a process and since only
segment numbers (not entrynames or pathnames) are kept in the trace array, the
entrynames and pathnames associated with a trace entry may be for previous uses of
the segment numbers. not the latest ones. In fact. the entry and pathnames printed
are the current ones appropriate for the given segment number.

For completeness. events occurring while inside the supervisor are also listed in the
trace. The interpretation of these events sometimes requires detailed knowledge of the
system structure; in particular they may depend on activities of other users. For many
purposes you will find it appropriate to identify the points at which the supervisor
was entered and exited and ignore the events in between.

Typically any single invocation of a program does not induce a page fault on every
page touched by the program. since some pages may still be in primary memory from
previous uses or used by another process. It may be necessary to obtain several traces
to identify fully the extent of pages used.

3-621 AG92-06

11/86

NOTES ON OUTPUT FORMAT

The first column of output describes the type of trace entry; an empty column
indicates that the entry is for a page fault. The second column is the real time, in
milliseconds, since the previous entry's event occurred. The third (printed for page
faults only) is the ring number in which the page fault occurred. The fourth contains
the page number for entries, where appropriate. Tne fifth gives the segment number
for entries, where appropriate. The last is the entryname (or pathname) of the
segment for entries, where appropriate.

Name: pascal, pas

SYNTAX AS A COMMAND

pas path {-control_args}

FUNCTION

invokes the Pascal compiler t which compiles a source program written in Pascal and
produces a Multics executable object segment.

ARGUMENTS

path
is the pathname of the source segment. The suffix . pascal is assumed.

CONTROL ARGUMENTS

-add_exportable_names, -aen
adds names of exported variables and procedures to the object segment.

-brief_map, -bfm
produces a compilation listing containing source, error messages, and a statement
map.

-brief_table, -bftb
generates a partial symbol table consisting of only a statement table that gives the
correspondence between source line numbers and object locations for use by
symbolic debuggers. The table appears in the symbol section of the object
segment. This control argument does not significantly increase the size of the
object segment

-compilation_warnings, -cw
prints compilation warnings for minor errors. (Default)

pascal

3-622 AG92-06A

pascal

11/86

-conditional_execution VAR_NAME true/false, -cond V AR_NAME true/false
forces the value of the conditional compilation variable V AR_NAME to either
true or false. It overrides any assignments of V AR_NAME in the text of the
program.

-debug, -db
generates code to check for references outside of array bounds, invalid
assignments. values that are out of range, and a variety of other potential errors.
Also initializes program storage to blanks (\040) so that a reference through an
uninitialized pointer causes a fault_taLl condition. (Default)

-english
assumes that Pascal reserved words are in English. (Default)

-error_messages, -em
prints error messages on user_output and includes them in the listing segment
(Default) cbn A

-extended_character_code, -ecc
extends internal code allowed for characters to 255 (decimal).

-french
accepts Pascal reserved words in French. Type "help pascal_french_keywords.gi"
f or the correspondence between French and English reserved words.

-full_extensions, -full
uses an nonstandard extensions defined for ivlultics Pascal. (Default)

-interactive, -int
allows text files to operate in interactive mode. On reset or readln, "get" of next
character is deferred until the next reference to the file or to one of the
variables attached to the file, such as eof, eoln. and fileA• (Default)

-io_ warnings, -iow

-list

allows warnings to be printed by I/O procedures called by the compiled program.
(Default)

produces a compilation listing including source. error messages, map and cross-reference
of symbols, statement map, and generated code in symbolic ALM.

-lonK-profile, -lpf
generates additional code that records the virtual CPU time and number of page
faults for each source statement It is incompatible with -pf. The profile
command can handle both regular and long profiles. This feature adds considerable
CPU overhead to heavily executed code. The extra CPU time is subtracted out so
that it does not appear in the report printed by profile.

pascal

3-623 AG92-06A

pascal

11/86

-map
produces a compilation listing including source, error messages, map and cross-reference
of symbols, and statement map.

-no_compilation_ warnings, -ncw
does not print compilation warnings.

-no_debug
does not generate code to test for references outside of array bounds, values out
of range, or other errors, and does not initialize storage to blanks.

-no_error _messages, ':'nem
does not print error messages on user_output. They are still included in the
listing segment.

-no_extended_character_code, -necc
allows internal code range of 0 .. 127 for characters, as required by the standard.
(Default)

-no_interactive, -nint
does not allow text files to operate in interactive mode.

-no_io_ warnings, -niow
does not print I/O warnings if a nonfatal error occurs in I/O procedures called
by this program.

-no_list
does not produce a compilation listing. (Default)

-no_lonLprofile, -nlpf
does not generate additional code to record the virtual CPU time and number of
page faults for each source segment. (Default)

-no_private_storage, -nps
dynamically allocates exported variables in external static. (Default)

-no_profile, -npf
does not generate code to meter the execution of source statements. (Default)

-nonrelocatable, -nrlc
generates an object segment that cannot be bound, thus saving from 10 to 20
percent of compilation time.

-no_table, -ntb
does not generate a symbol table in the object segment.

-page_length N, -pI N
specifies a page length for the listing segment (Default: 59 lines)

pascal

3-624 AG92-o6A

pascal

11/86

-private_storage. -ps
allocates all exported variables in a segment in the process directory named
progname.defs, where progname is the entryname of the path argument. without
the . pascal suffix. This segment is created if it does not exist

-profile, -pf
generates additional code to meter the execution of individual statements. Each
statement in the object program contains an additional instruction to increment an
internal counter associated with that statement. After a program has been
executed, you can use the profile command to print the execution counts.

-reference_table -rftb
generates a full symbol table (see -table) and adds for each variable a table of
statements where this variable is referenced or modified. This feature, used by
pascal_cross_reference, is experimental.

-relocatable, -rIc
generates an object segment that can be bound. (Default)

-sol_extensions, -sol
allows only French SOL extensions to be used (type "help pascal_extensions.gi" for
their lis!).

-standard
allows only standard (ISO) Pascal to be used. (Default: -full)

-table, -tb
generates a full symbol table for use by symbolic debuggers. The symbol table is
part of the symbol section of the object segment and consists of two parts: a
statement table that gives the correspondence between source line numbers and
object locations, and an identifier table containing information about every
identifier actually referenced by the source program. This control argument usually
lengthens the object segment significantly. (Default)

NOTES

If compilation errors are encountered, error messages are printed on user_output.

If you supply incompatible control arguments, the rightmost one is used.

Multics Pascal is case insensitive. All identifier names are mapped to lowercase in the
progranl and its symbol table. As a result, the Pascal program header

program: Foo;

produces a segment entry point with the name "foo."

For information on Pascal see the Multics Pascal User's Guide (GB62).

pascal

3-625 AG92-06A

pascal

11/86

NOTES ON LISTING

The Pascal compilation listing contains the following sections in this order:

1. Header: gives the full pathname of the source segment, the Multics site
indentification, the date and time of compilation, and the compiler indentification.

2. Source: with lines numbered sequentially. In include files, file number
precedes the line number.

3. Any error messages.

4. Storage requirements for the object segment

5. List of source files used.

6. Complete map and cross-reference for symbols declared and used, symbols
declared and never used, and symbols declared by default

7. Displacement for fields given in octal (bytes). locations for variables given in
octal (words), and sizes given in octal (bytes).

8. "DEF:" followed by the number of the line where the symbol is defined.
"REF:" followed by the number of the line(s) where the symbol is referenced.
An asterisk is printed for each reference where the variable or field is set or
passed by reference ("var" parameter) to a subroutine.

9. Complete map and cross-reference of labels. "DEF:" is followed by the
number of the line where the label is defined "DeL:" is followed by the
number of the line where the label is declared. "REF:" is followed by the
number of the lines where the label is referenced in a GOTO statement An
asterisk is printed where the GOTO statement exits the current procedure.

10. Statement map: gives the octal location of the first instruction of each
statement of the source program.

SYNTAX AS A COMMAND

pascal_area_status {names} {-control_args}

FUNCTION

displays and sets attributes of specified Pascal areas.

3-626 AG92-o6A

11/86

ARGUMENTS

names
are relative pathnames of Pascal object segments that have their own private areas
(see pascal_create_area).

CONTROL ARGUMENTS

-all, -a
operates on all private Pascal areas as well as on the default Pascal area.

-brief, -bf
does not print a dump of each allocated block. (Default)

-default
specifies the default area used by Pascal to allocate storage.

-dump
prints a comprehensive, unformatted dump of the area(s). To be used by the
maintainers of the Pascal compiler and related software.

-long, -lg
prints a dump of each allocated block.

-no_dump
does not print a comprehensive dump of the area(s). (Default)

-no_status. -nst
does not print status information.

-no_trace
does not print the address and length of each block. (Default)

-status, -st
prints the maximum size, the size occupied by allocated blocks, and the maximum
possible size for a new allocation.

-trace
prints the address and length of each block and, if you give -lg. an octal dump
of each block.

NOTES

The Pascal areas are temporary segments. Allocation is performed by the Pascal "new"
statement, deallocation by the the "dispose" and "reset" statements.

You can give names and control arguments in any order.

3-627 AG92-()6A

11/86

If you specify no areas, -default is assumed. If you specify no actions, -st is
assumed. If you specify more than one action, the operations are performed in this
order:

-st -dump -trace

For information on Pascal see the Multics Pascal User's Guide (GB62).

SYNTAX AS A COMMAND

pascal_create_area names {-control_args}

FUNCTION

creates temporary, private areas in the process directory for the specified Pascal object
segments.

ARGUMENTS

names
are relative pathnames of Pascal object segments that are to have their own
private areas. An error' occurs for each object segment for which a private area
has already been created.

CONTROL ARGUMENTS

~brief, ~bf

suppresses the error message that is printed when the private area for a specified
program already exists.

-long, -lg
allows the error message that is printed when the private area for a specified
program already exists. (Default)

-size N
sets the maximum size of each area to N pages. (Default: 225 records)

NOTES

All Pascal "new" operations executed by the object segments use the associated private
areas.

By default, the new operation uses the default Pascal area in the process directory.
You can examine this area, and any that are created, using pascal_area_status.

3-628 AG92-06A

pascal_create_area

11/86

For information on Pascal see the Multics Pascal User's Guide (GB62).

SYNTAX AS A COMMAND

pascal_cref pathnames {-control_args}

FUNCTION

examines a set of Pascal object segments that import variables a.lld procedures.

ARGUMENTS

pathnames
are absolute or relative pathnames of Pascal object segments. They must have
been compiled with -table.

CONTROL ARGUMENTS

-external_ref erences, -ext_refs
includes line numbers of statements where external (i.e., imported or exported)
variables and procedures are referenced or set. The modules must have been
compiled with -reference_table to include this information.

-in ternal_ref erences, -int_ref s
includes a list of internal variables or procedures and line numbers of statements
where they are referenced or modified. The modules must have been compiled
with -reference_table to include this information.

-no_external_references, -no_ext_refs
excludes line numbers of statements where external variables and procedures are
referenced. (Default)

-no_in ternal_ref erences. -no_int_refs
excludes a list of internal variables and procedures. (Default)

-output_file path, -of path
produces a listing named path. x_map. If you use no .x_map suffix as part of the
pathname, it is assumed. You must specify -of to get a cross-reference list
including include files used and error reporting; otherwise the command writes any
error or warning messages on error_output

3-629 AG92-06A

11/86

NOTES

The modules must have been compiled with -table. The cross-referencer checks
declarations of shared variables and procedures, producing an error list of differences
between modules. It also notes if the difference may have undesirable results, for
exampie, destruction of data outside the program, such as may occur when sizes of
shared objects do not match.' Warnings are printed if types do not match but object
sizes do.

Unlike the cross_reference command, pascal_cref includes no declarations of variables
and procedures in the listing, nor does it compare types. It accepts no modules
generated by other translators.

SYNTAX AS A COMMAND

pascal_delete_area names {-control_args}

FUNCTION

deletes the private areas associated with the specified Pascal object segments. For
information on Pascal see the Multics Pascal User's Guide (GB62).

ARGUMENTS

na.rne5
are relative pathnames of Pascal object segments whose private areas are to be
deleted.

CONTROL ARGUMENTS

-brief, -bf
suppresses the message that is printed when a specified program is active on the
M ul tics stack.

-long. -lg
allows the message that is printed when a specified program is active on the
stack. (Default)

3-630 AG92-06A

11/86

Name: pascal_display

SYNTAX AS A COMMAND

pascal_display {entry_names}

FUNCTION

traces the Multics stack and displays on user_output contents of variables declared in
all procedures active in the stack.

ARGUMENTS

{ entry_names}
are Pascal entry names. If you give entry ~names, only the variables of named
procedures that are currently active are displayed; if you give no entry_names,
variables of all active Pascal procedures are displayed.

NOTES

If you compile programs with -table, the contents of variables are symbolic and are
displayed as they would be using the value request under probe. Without symbol
tables, octal and ASCII dumps of the variables are provided. Dump location counters
have the values of location counters available on the compilation listing.

This command_is particularly useful with absentee executions. You can use it in an on
condition, as follows:

on pascal_error pascal_display program_name

3-631 AG92-06A

pascal_display

11/86

EXAMPLES

PROGRAM test_display (input, output)

TYPE
charac8 = string (8)
ptbox = ""'box ;
box = RECORD

name : charac8
value: real
next : ptbox ;

END ;
VAR

first ptbox
vf 1 : rea 1 ;

str charac8;

PROCEDURE build (name charac8

VAR
newbox : ptbox

BEGIN

END

BEGIN

new (newbox) ;
newboxA.name := name;
newboxA.value := val ;
newboxA.next := first
first := newbox ;

first := NIL;
WHILE true DO

END.

BEGIN
str := I I;

wr i te (I name : I) ;
readln (str) ;
wr i te (I va 1 ue : I)
readln (vfl) ;
build (str, vfl) ;

END ;

3-632

val rea 1)

AG92-06A

11/86

pascal test_display
Pascal 8.03

on pascal_error pascal_display -long test_display
name: ?Blaise
value: ?134
name : ?Deryl
value: ?123.56
name : ?Amy
value: ?xx
on: Condition "pascal error" raised.
pascal_io_$READ_text: Error during READ at line 6 of Pascal file input
pascal error condition by
>user=dir_dir>PASCAL>JMAthane>v803>info>test_diSPlayI133 (line 36)

(actually by support procedure pascal io $READ text 17422 (line 2907)
(>user_dir_dir>PASCAL>JMAthane>v803>e>bound_pascal_runtime_i 43506»

input chain has a bad real format
pascal_io_$READ_text: Error during READ at line 6 of Pascal file input

Active procedures in the Multics stack are
234146600 command_processor_$command_processor_1 245

(bound_mu 1 t i cS_bce_1245) (PL/ I)
234146120 abbrev$abbrev_processorI1307 (bound_command_loop_l10111)

(PL/ I)
234 43540 on$handlerl1505 (bound_command_env_116331) (PL/I)
234 43200 signal_$signal_152 (bound_l ibrarY_1_175l2) (PL/I)
234 40320 pascal~io_$READ_textI6614 (bound_pascal_runtime_132700)

(PL/ I) (1 i ne 2907)
234140140 test_display$test_displayI46 (PASCAL) (line 36)

- main -

234137300

234136620

234136160
234 35320

234134640

234 134340
234 133740

234131200

command_processor_$command_processor_1 245
(bound_mu 1 t i cS_bce_1245) (PL/ I)

abbrev$abbrev_processor/1307 (bound_command_loop_110111)
(PL/!)

on$on 1220 (bound_command_env _115044) (PL/ I)
command_processor_$command_processor_1 245

(bound_mu 1 t i cS_bce_1245) (PL/ I)
abbrev$abbrev_processorI1307 (bound_command_loop_110111)

(PL/ I)
1 isten_$re~ease_stackI72 (bound_command_loop_!23444) (PL/I)
get_to_cl_Sunc1aimed_signal 177 (bound_command_loop_1 25025)

(PL/ I)
default_error_hand1er_$wa11 1377 (bound_error_handlers_1377)

(PL/ I)

234131100 in it i ali ze_process_$any_other. 21431 (bound_process_i n i t_1431)
(PL/ I)

234130540 signal_$signal_152 (bound_l ibrary_l_17512) (PL/I)
234 27660 ipc_fast_$ipc_fast_$blockI12 (bound_ipc_154) (PL/I)

3-632.1 AG92-o6A

11/86

234126220 tty_io_$tty_io_$get_1ineI3202 (bound_command_loop_13202)
(PL/I)

234 20060 aUdit_$audit_get_lineI5702 (b,ound_audit_ 15702) (PL/I)
234 16500 tedut i 1_$ tedread_ptr _ 2041 (bound_ ted_16 7331) (PL/ I)
234 7400 ted_$ted_13177 (bound_ted_16425) (PL/I)
234 5660 ted_command_$ted 1543 (bo~~d_te~_J 1~33) ~PL/I).
234 5220 command_processor_$read_listi511b \bouna_multlcs_bce_15116)

(PL/ I)
23414240 command_processor_$comp1ex_command_processorI1741

(bound_mu1 t i cS_bce_11740 (PL/ I)

234 13400

234 12700

23412400
234 2000

command_processor_$command_processor_1 245
(bound_mu 1 t i cS_bce_1245) (PL/ I)

abbrev$abbrev_processorI1307 (bound_command_loop_110ll1)
(PL/ I)

1 isten_$l isten_150 (bound_command_loop_12 3422) (PL/I)
initial ize_process_$initial ize_process_ 241

(bound_process_i n i t_1240 (PL/ I)

globals for >user_dir_dir>PASCAL>JMAthane>v803>info>test_display are
str I: IIAmy"
vfl = 123.56
first = 5221116 [pd]> BBBJQWPnghPmKg.temp.0522
input =

- Multics io switch:
syn_ user_input
stream_input_output

- Pascal file status:
text file input interactive

input"" I: IXI

output :=

- Mu1tics io switch
syn_ user_output
stream_input_output

- Pascal file status:
text file output interactive eof

output"" = I I

item at 5221116 [pd]> BBBJQWPnghPmKg.temp.0522
(box) I:

name I: "Deryl"
value = 123.56
next = 5221102 [pd]> BBBJQWPnghPmKg.temp.0522

3-632.2 AG92-06A

11/86

item at 5221102 [pd]> BBBJQWPnghPmKg.temp.0522
(box) =

name = "Blaise"
value = 134.
next = null

SYNTAX AS A COMMAND

FUNCTION

displays information on the status of all standard Pascal files currently in use and all
files of active Pascal procedures in the Multics stack. For information on Pascal see
the Multics Pascal Users Guide (GB62).

Name: pascal_indent

SYNTAX AS A COMMAND

FUNCTION

indents a Pascal source program according to a standard set of conventions described
below. For information on Pascal see the Multics Pascal User's Guide (GB62).

ARGUMENTS

old_path
is the pathname of the source segment to be indented. The . pascal suffix is
assumed.

new_path
is the optional pathname of the indented result. The .pascal suffix is assumed. If
you omit new_path. the indented copy replaces the original segment. If errors are
detected in the source, however, a temporary indented copy is created instead and
its patbname is printed in an error message.

3-632.3 AG92-06A

11/86

CONTROL ARGUMENTS

-brief, -bf
suppresses warning messages for invalid or non-Pascal characters found outside a
string or comment. Errors corresponding to suppressed messages do not prevent
the original source segment from being replaced.

-comment N. -com N
indents comments at column number N. Comments are lined up at this column
unless they occur at the beginning of a line and are preceded by a blank line.
(Default: column 61)

-english
assumes that the source program is written in English. (Default)

-french
assumes that the source program is written in French.

-highlight, -hI
translates reserved symbols of the Pascal language to lowercase if you provide -uc;
to uppercase otherwise so that they stand out from the rest of the text

-indent N, -in N
indents each level an additional N spaces. (Default 5 spaces)

-1 margin N, -1m N
sets the left margin for top-level program statements after the Nth column.
(Default: 10>

-long, -lg
allows warning messages for invalid or non-Pascal characters. (Default)

-lower_case, -lc
translates all uppercase letters outside of strings and comments to lowercase.

no_case_translation, nct
does not translate letters outside strings and comments to uppercase or lowercase.
(Default)

-no _highligh t, -nhl
does not translate Pascal reserved symbols to lowercase or uppercase. (Default)

-upper_case, -uc
translates all lowercase letters outside of strings and comments to uppercase.

3-632.4 AG92-Q6A

11/86

NOTES ON INDENTING STYLE

Multiple spaces are replaced by single spaces. except inside strings and for nonleading
spaces and tabs in comnlents. Trailing spaces and tabs are removed from all lines
before indenting. Spaces are inserted before left parentheses. brackets, and braces, and
removed after them. Spaces are inserted after right parentheses, brackets, and braces,
and removed before them. Spaces are inserted around the constructs =. 1\=. <>, <=,
>=. :=. ;, and : and operators in expressions.

Parentheses, brackets, and braces must balance. The keywords "begin," "case," and
"repeat" must balance with their corresponding "end" statements; likewise for "repeat"
and "until" constructs.

SYNTAX AS A COMMAND

FUNCTION

frees all blocks in the specified areas. For information on Pascal see the Multics
Pascal User's Guide (GB62).

ARGUMENTS

names
are relative pathnames of Pascal object segments that have their own private areas.
If you supply no names, the default Pascal area is reset (See pascal_create_area.)

CONTROL ARGUMENTS

-size N
sets the maximum size of each specified area to N records after resetting the
area. (Default: 255 records)

3-632.5 AG92-06A

11/86

SYNTAX AS A COMMAND

FUNCTION

sets the prompt string used by Pascal programs in interactive mode. Type "help
pascal_terminal_ion for a description of the interactive mode.

ARGUMENTS

string
specifies the prompt string.

CONTROL ARGUMENTS

-no_prompt, -npmt
prints nothing for a prompt

NOTES

If you provide no arguments. the default prompt "1" is restored.

For information on Pascai see the Muitics Pascai User's Guide (GB62).

Name: path

SYNTAX AS A COMMAND

path path {entry {component}}

SYNTAX AS AN ACTIVE FUNCTION

[path path {entry {component}}]

FUNCTION

returns the absolute pathname represented by the argument if you supply one
argument; returns the absolute pathname of the archive component (if you give
component) of the entry in the directory specified by path if you specify two or
three arguments.

path

3-632.6 AG92-06A

path

ARGUMENTS

path
If you don't give entry, this is the pathname to be expanded and returned;
otherwise it is the pathname of the directory to be used in the returned
pathname.

entry
is the optional entryname to be used in the returned pathname.

component
is the optional archive component name to be used in the returned pathname.

NOTES

Since the pathname is returned in quotes, the command processor treats it as a single
argument regardless of special characters in the name.

EXAMPLES

Assume that the user's working directory is >udd>Proj>Myname.

path start_up.ec
>udd>Proj>Myname>start_up.ec

path >udd>Multics>Library>Source>bound_command_demos_.s::program.pll
>udd>Mu 1 t i cs>L i brary>Source>bound_command_demos_. s: :'program. p 11

path <s>bound_expand_path_.s.archive
>udd>Proj>s>bound_expand_path_.s.archive

path [hd] my_exec_coms.archive start_up.ec
>udd>Proj>Myname>my_exec_coms::start_up.ec

Name: pause

SYNTAX AS A COMMAND

pause {t i me}

FUNCTION

interfaces the timer_manager_$sleep entry point, which allows the caller to "sleep" for
a given number of seconds.

pause

3-633 AG92-{)6

pause peruse_ cros.sref

ARGUMENTS

time
is the number of seconds (decimal integer) to sleep. If you specify no time. 10
seconds is used.

Name: peruse_crossref, pcref

SYNTAX AS A COMMAND

pcref {cref_path} search_names {-control_args}

SYNTAX AS AN ACTIVE FUNCTION

[pcref {cref_path} search_names]

FUNCTION

prints or returns information extracted from the output file generated by the
cross_ref erence command.

ARGUMENTS

cref_path
is the pathname of the crossref output file to search. It can be a multisegment
file (MSF). It must contain a > or < character to distinguish it from a
search_name. If you supply no cref_path, the total system cross-reference
(>ldd>crossref>totaLcrossref) is used. To specify a cross-reference in your working
directory, use -pathname.

search_names
are one or more names to search f or ref erences to in the crossref. They can be
either symbolic linker references or include file names and can have any of the
following forms:

segname
segname$entryname
XXX. i nc 1 • YYY

Any component of a search name can be a star name, except that neither a
segname nor an include file name can begin with a star name character and the
string ".incl" must appear in toto. If you specify no entryname with the segname,
all references to any entry points in the segment are listed. XXX.incl is accepted
as an abbreviation for XXX.incl.*. Don't use > and < in a search name.

3-634 AG92-06

CONTROL ARGUMENTS

-brief, -bf
does riot print any information for selected cross-reference items that have no
entries (callers). (Default)

-brief_errors, -bfe
suppreses any error messages due to entrypoints or include files that are not
found in the crossref.

-long, -lg
print selected cross-reference items that have no entries.

-lon~errors, -lge -I
prints an error message if one or more entrypoints or include files given on the I
command line are not found in the crossref. (Default) I

-pathname crossref path, -pn crossref path
specifies crossref path as the crossref to search.

NOTES

This command uses a Dlnary search to locate the desired information and thus is quite
inexpensive, even when searching the total system crossref. Average cost for a single
search of the system crossref is about 45 page faults and 0.5 CPU seconds, or roughly
30 times cheaper and far more convenient than using an editor.

No attempt is made to combine the results of the search names--if you ask for
something twice, it gets printed twice.

This command does not perform any significant validation on the input filen and is
likely to either take faults or signal the logic_error condition if asked to search
something other than a crossref output file.

There is no support f or synonyms: a search name must be the primary name of a
segment and not a synonym established in a bindfile or the hardcore header.

There is no way to select specific types of things, such as all the unresolvable
ref erences in the crossref.

EXAMPLES

pcref
pcref
pcref

phcs
hphcs_S*acl
>ldd>crossref>total.crossref

OUTPUT EXAMPLE

stack_frame.incl

References to objects matching search names are displayed as follows:

3-635 AG92-()6

References to phcs_Srin&-O_peek: (STAND-AWNE in HARDCORE)

as_meter_, copy_salvager_output, display_branch, namef_,
ring_zero_peek_, sweep_pv, vpn_cv_uid_path_

If a matching object is not referenced by anything, it is identified as such. If a
search name does not match anything found in the crossref, a diagnostic is displayed.
The listing is a maximum of 72 characters wide.

Name: picture, pic

SYNTAX AS A COMMAND

pic pic_string values {-control_arg}

SYNTAX AS AN ACTIVE FUNCTION

[pic pic_string values {-control_arg}]

FUNCTION

returns one or more values processed through a specified PL/I picture.

ARGUMENTS

pic_string
is a valid PL/I picture as defined in the PL/I Reference Manual and the PL/I
Language Specification.

values
are strings having data appropriate for editing into the picture. Each value must
be convertible to the type implied by the picture specified. If multiple values are
presented, the results are separated by single spaces. Any resulting value that
contains a space is quoted.

CONTROL ARGUMENTS

-strip
removes leading spaces from edited picture values; removes trailing zeros following
a decimal point; removes a decimal point if it would have been the last character
of a returned value.

NOTES

For more information on PL/I picture and picture strings. see the PL/ I Reference
Manual (AM83) or the PL/ I Language Specification (AG94).

picture

3-636 AG92-06

picture

EXAMPLES

create file_([pic 999 [index_set 8 14]])
1 ist fi le_'"

Segments = 7, Lengths = °
r w ° file_Ol4
r w ° fi1e_Ol3
r w ° file_Ol2
r w ° file_Oll
r w ° file 010
r w ° file_009
r w ° f i 1 e 008

string [pic zzzzz9v.9999 000305.000]
305.0000
string [pic zzzzz9v.9999 000305.000 -strip]
305

Name: pll

SYNTAX AS A COMMAND

pI1 path {-control_args}

FUNCTION

invokes the PL/I compiler to translate a segment containing the text of a PL/I source
program into a Multics object segment. You cannot call it recursively.

ARGUMENTS

path
is the pathname of a PL/I source segment that is to be translated by the PL/I
compiler. If path does not have a suffix of pU. one is assumed; it must be the
last component of the source segment's name.

CONTROL ARGUMENTS

-brief. -bf
produces error messages written onto the user_output I/O switch containing only
an error number, a statement identification, and, when appropriate, the identifier
or constantin error.

pll

3-637 AG92-()6

pll

-brief_table, -bftb
generates a partial symbol table consisting of only a statement table that gives the
correspondence between source line numbers and object locations for use by
symbolic debuggers. The table appears in the symbol section of the object
segment This control argument does not significantly increase the size of the
object program.

-check. -ck
does a syntactic and semantic checking of a PL/I program. Only the first three
phases of the compiler are executed. Code generation and the manipulation of the
working segments used by the code generator are skipped.

-check_ansi
generates a severity 1 error message for each construct the compiler detects that
is allowed by Multics PL/I but not by the ANSI standard X3.53-1976.

-list. -Is
produces a source program listing with symbols. followed by an assembly-like
listing of the compiled object program. It significantly increases compilation time;
avoid it whenever possible by using' -lnap.

-long, -lg
.produces error messages written onto the user_output I/O switch contaInIng an
error number. statement identification, wh~n appropriate. the identifier or constant
in error, an explanatory message of one or more sentences, and. in most cases.
the text of the erroneous statement Onc.e a given error message is printed in the
long form, all further instances of it are printed in the brief form. (Default)

-Ions-profile, -lpf
generates additional code that records the virtual CPU time and number of page
faults for each source statement It is incompatible with -profile. The profile
command can handle both regular and long profiles. Use of this feature adds
considerable CPU overhead to heavily executed code. The extra CPU time is
subtracted out, so that it does not appear in the report generated by profile.

-map
produces a source program listing with symbols, followed by a map of the object
code generated by the compilation. It gives sufficient information to allow you to
debug most problems online.

-no_check, -nck
generates an object segment (Default)

-no_check_ansi
does not generate an error message for Multics-dependent PL/I constructs.
(Default)

-no_list. -nls
does not produce a listing segment (Default)

pll

3-638 AG92-06

pll

-no_optimize, -not
does not invoke the extra compiler phase. (Default)

-no_profile, -npf
does not generate code to meter the execution of source statements. (Default)

-no_separate_static. -nss
places internal static variables in the linkage section of the object segment
(Default)

-no_table, -ntb
does not generate a symbol table in the object segment (Default, if you supply
-optimize)

-optimize, -ot
invokes an extra compiler phase just before code generation to perform certain
optimizations, such as the removal of common subexpressions, which reduces the
size and execution time of the object segment Use of this control argument adds
10 to 20 percent to the compilation time.

-prefix SIR
if STR is not nUll, compiles the program as if it were preceded by the condition
prefix n(STR):". SIR is a list of one or more PL/I enabled or disabled I
computational condition names separated by commas and optional horizontal white
space. Since the program is compiled as if "(STR):" was inserted before the first I
line of the source segment, -prefix does not override condition prefixes given in
the source segment If STR is nUll, no additional condition prefix is used. The
enabled computational condition names are: conversion (conv), fixedoverflow (fofI),
overflow (ofl) , size, stringrange (strg) , stringsize (strz), subscriptrange (subrg),
underflow (ufI) , and zerodivide (zdiv). The disabled computational condition names
are: noconversion (noconv), nofixedoverflow (nofof)), nooverflow (noofl). nosize.
nostringrange (nostrg), nostringsize (nostrz), nosubscriptrange (nosubrg). nounderflow
(noufl), and nozerodivide (nozdiv). STR cannot contain an enabled condition name
and a disabled condition name that identify the same condition.

-profile. -pf
generates additional code to meter the execution of individual statements. Each
statement in the object program contains an additional instruction to increment an
internal counter associated with that statement After a program has been
executed, you can use the profile command to print the execution counts.

-separate_static, -ss
generates separate sections in the object segment created for the linkage
information and the internal static variables. The default is to place internal static
variables in the linkage section since both types of data are per process and
writable. This control argument is useful primarily for programs that are
prelinked and can therefore share the linkage section with other users.

pll

3-639 AG92-06

pll

-severityNt -svN
writes error messages whose severity is less than N (where N is t 2t 3t -or 4)
into the user_output switch although all errors are written into the listing. If you
dontt select this control argumentt a severity level of 1 is assumed (see "Notes on
Error Diagnostics" below).

-single_symbol_list, -ssl
produces a source program listing with symbols. The symbols are listed in onet
single, alphabetized list If you don't give -single_symbol_list but specify -list,
-map, or -symbols, the symbols are separated into four lists, arranged by
declaration type.

-source, -sc
produces a source program listing.

-symbols, -sb
produces a source program listing with symbols.

-table, -tb
generates a full symbol table for use by symbolic debuggers. The symbol table is
part of the symbol section of the object program and consists of two parts: a
statement table that gives the correspondence between source line numbers and
object locations and an identifier table containing information about every
identifier actually referenced by the source program. This control argument usually
lengthens the object segment significantly. (Default, unless you supplied -optimize)

LIST OF ADDITIONAL CONTROL ARGUMENTS

The following control arguments, while available, are probably not of interest to you.

-debug, -db
leaves the list-structured internal representation of the source programs intact after
a compilation. This control argument is used for debugging the compiler. You
can use the command pU$clean_up to discard the list structure.

-no_debug, -ndb
deletes the internal representation after compiling a program. (Default)

-no_time, -ntm
does not print a table of the time used by each phase of the compiler after the
compilation. (Default)

-time, -tm
prints a table after compilation, a table giving the time (in seconds), the number
of page faults, and the amount of free storage used by each of the phases of the
compiler. This information is also available from the command pl1$times invoked
immediately after a compilation.

pll

3-640 AG92-06

pU

NOTES

If you invoke this command without control arguments, it generates an object segment

If you give both a control argument and an incompatible alternative on the same
command line, the rightmost one is used. For example:

pll prog -brief_table -map -no_list -table

is equivalent to

pll prog -table

A successful compilation produces an object segment and leaves it in your working
directory. If an entry with that name already exists in the directory, its access control
list (ACL) is saved and given to the new copy; otherwise, you are given re access to
the segment with ring brackets v,v,v, where v is your process's validation level.

If you specify -map, -list, -source, -symbols, or -single_symbol_list, the command
creates a listing segment in your working directory and gives it a name consisting of
the entry name portion of the source segment with a suffix of list rather than pU
(e.g., a source segment named valid.pll has a listing segment named valid.list). The
ACL is as described for the object segment except that you are given rw access to the
newly created segment Previous copies of the object segment and the listing segment
are replaced by the new segments created by the compilation.

See the Multics PLII Language Specification Manual (AG94) and the Multics PL/I
Reference Manual (AM83).

NOTES ON SEARCH LIST

The PL/I compiler uses the translator search list, which has the synonym trans. For
more information on search lists, see the search facility commands--add_search_paths.
in particular.

NOTES ON ERROR DIAGNOSTICS

The PL/I compiler can diagnose and issue messages for about 350 errors. These
messages are graded in severity as follows:

1 Warning only. Compilation continues without ill effect

2 Correctable error. The compiler remedies the situation
and continues, probably without ill effect For example, a mISSIng end
statement can be corrected by appending the string ";end;" to the source.
This action does not, however, guarantee the correct results.

pU

3-641 AG92-06

3 An uncorrectable but recoverable error. That is, the
program is definitely in error and cannot be corrected, but the compiler can
and does continue executing up to just before code is generated. Thus, any
further errors are diagnosed. If the error is detected during code generation,
code generation is completed although the code generated is not correct
After the compilation, a message is printed to the error_output I/O switch to
inform you that a severity 3 error has occurred.

4 An unrecoverable error. The compiler cannot continue
beyond this error. The message is printed and then control is returned to the
pll command unwinding the compiler. The command writes an abort message
into the error_output I/O switch and returns to its caller.

Error messages are written into the user_output I/O switch as they occur; thus, you
can quit the compilation immediately when an error message is printed. You can
specify -brief so that the messages are shorter. Here is an example of a long error
message:

ERROR 158, SEVERITY 2 ON LINE 30
A constant immediately follows the identifier "z ilch ll

•

SOURCE: a = zilch 4;

If you choose -brief, you see instead:

ERROR 158, SEVERITY 2 ON LINE 30
"zilch"

Once a given error message is printed on your terminal in the long form, all further
instances of it are printed in the short form.

If a listing is being produced, the error messages are also written into the listing
segment They appear, sorted by line number, after the listing of the source program.
No more than 100 messages are printed.

NOTES ON SEVERITY VALUES

This command associates the following severity values to be used by the severity active
function:

Value

o
1
2
3
4
5

Meaning

No compilation yet or no error
Warning
Correctable error
Fatal error
lJnrecoverable error
Could not find source.

pll

3-642 AG92-06

pll

NOTES ON LISTING

The listing created by the pll command begins with a line-numbered image of the
source segment. If you specify -symbols, -single_symbol_list, -map, or -list, this is
followed by a table of all the names declared within the program. The names are
categorized by declaration type as follows:

1. declared by declare statement

2. declared by declare statement and never referenced

3. declared by explicit context (labels and entries)

4. declared by implicit context or implication.

Within these categories, the symbols are sorted alphabetically and then listed with their
location; storage class; data type; size or precision; level; attributes such as initial,
array, internal, external, aligned, and unaligned; and a cross-reference list If you give
-single_symbol_list, these four categories are combined into one alphabetized list Next
is a table of the program's storage requirements and the reasons why a block is
nonquick. Next is a listing of any internal static variables, sorted by offset, and a
listing of any automatic variables, sorted by block and offset. Next is a listing of
external operators used, external entries called, and external variables referenced by the
program. The symbol listing is followed by any error messages.

If you select -map, the object code map follows the list of error messages. This table
gives the starting location in the text segment of the instructions generated for
statements starting on a given line. The table is sorted by ascending storage iocations.

Finally, the listing contains the assembly-like listing of the object segment produced (if
you specify -list). The executable instructions are grouped under an identifying header
that contains the source statement that produced the instruction. Operation code, base
register, and modifier mnemonics are printed beside the octal instruction. If the
address field of the instruction uses the Ie (self-relative) modifier, the absolute text
location corresponding to the relative address is printed on the remarks field of the
line. If the reference is to a constant, the octal value of the constant's first word is
also printed. If the address field of the instruction references a symbol declared by
you, its name appears in the remarks field of the line.

EXAMPLES

The following command line compiles the segment prog.pll
debugging:

pll prog -table -prefix size,strz,strg,subrg

options facilitate

The default action for the stringsize condition returns to the point where the
condition is signaled without printing a message. All computational conditions except
size, stringsize, stringrange, and subscriptrange are enabled by default

pll

3-643 AG92-()6

Name: pll_abs, pa

SYNTAX AS A COMMAND

pa paths {-pll_args} {-dp_args} {-control_args}

FUNCTION

submits an absentee request to perform PL/I compilations.

ARGUMENTS

paths
are the pathnames of segments to be compiled.

pll_args
are one or more control arguments accepted by the pll command.

dp_args
are one or more control arguments (except -delete) accepted by the dprint
command.

CONTROL ARGUMENTS

-queue N, -q N
is the priority queue of the request (See "Notes:') (Default defined by your
site)

-hold. -hd
specifies that pll_abs should not dprint or delete the listing segment.

-limit N, -Ii N
specifies a time limit in seconds for the absentee job. (Default defined by your
site)

-output_file path, -of path
specifies that absentee output is to go to the segment whose patbname is path.

NOTES

The absentee process for which pll_abs submits a request compiles the segments named
and dprints and deletes the listing segments. If you don't supply -output_file, an
output segment (path.absout) is created in your working directory; if you specify more
than one path, only the first is used. If none of the segments to be compiled can be
found, no absentee request is submitted.

Control arguments and segment pathnames can be mixed freely and can appear
anywhere on the command line. All control arguments apply to all segment pathnames.
If you give an unrecognizable control argument, the absentee request is not submitted.

3-644 AG92-06

Unpredictable results may occur if two absentee requests are submitted that could
simultaneously attempt to compile the same segment or write into the same absout
segment

When doing several compilations, it is more efficient to give several segment
pathnames in one command rather than several commands. With one command, only
one process is set up_ Thus the dynamic intersegment links that need to be snapped
when setting up a process and when invoking the compiler need be snapped only once.

If you give no -queue, the request is submitted into the default absentee priority
queue defined by your site and, if requested. the output files are dprinted in the
default queue of the request type specified on the command line. If you don't specify
request type, the "printer" request type is used.

If you supply no -queue, the output files is dprinted in the same number queue as
the absentee request. If the request type specified for dprinting does not have that
queue, the highest numbered queue available for the request type is used and a
warning is issued.

Name: pll_macro, pmac

SYNTAX AS A COMMAND

FUNCTION

invokes the stand-alone pll macro processor to translate a segment in accordance with
the defined pll macro language.

ARGUMENTS

in_path
is the pathname of the source segment. The source segment name must have at
least three components, a suffix of "pmac", and a penultimate component of "pll"
or "cds" or "rd". If you don't supply the suffix, it is assumed. The star
convention is not supported.

out_path
is the pathname of the macro processed output segment If you haven't used
-print or -process_dir, then the name of the inpath less the suffix is assumed if

. not given. The outpath cannot be the same segment as the inpath. The equal
convention is not supported. This argument is incompatible with -print and
-process_dire

3-645 AG92-()6

CONTROL ARGUMENTS

-arguments STRs, -ag STRs
passes the strings as command line arguments. It must be the last control
argument, and at least one STR must follow. These arguments are used in
conjuntion with the %isarg macro construct (see "Command Line Argument
Testing" below).

-call STR
calls STR as a command after the translation is complete if the macro processor
does not discover an error.

-no_version, -nver
does not print the version of pll_macro.

-parameter IDENTIFIER V ALUE, -pm IDENTIFIER VALUE
sets the value of macro replacement identifiers on the command line. IDENTIFIER
must be a pll identifier; V ALUE, a decimal integer, a bit string constant, a
character constant, or an identifier. (See "Command Line Constants and Their
Def aul ts. ")

-print, -pr
prints the macro processed output on user_output rather than place it in a
segment.

-process_dirt -pci
places the macro processed output in the process directory rather than in your
working directory.

-target STR. -tgt STR
makes the macro processor interpret STR as a target machine and sets the %target
builtin (see "Code for Different Target Machines").

-version, -ver
prints the version of pll_macro. (Default)

BASIC REPLACEMENT CONSTRUCT

To facilitate the use of named constants in places where internal static options
(constant) don't work (e.g., label arrays and functions of named constant), there are
three ways of defining replacement identifiers--pll_identifiers that are transformed at
lex level to their defined values--by the %replace statement, by the %set statement,
and, on the command line, by the %default statement.

Macro Time Constants

%replace <identifier> by <constant-expression>

3-646 AG92-06

where <constant-expression> is an expression whose operands are either constants or
identifiers previously defined in other statements or on the command line. The valid
operators are the arithmetic ones (+, -, *, and /) the concatenation operator (II), the
logical operators (I\ &, and I), and the relational operators (=, 1\=, <, <=, >, >=, 1\>,
and 1\<). Arithmetic values are represented internally as fixed binary (71). Parentheses
can be in all expressions. The usual semantics of expression evaluation apply, and
pll-like conversions are not done implicitly.

Semantic Rules

1. All replacement identifiers must be lexically declared by a replace statement prior
to use.

2. A replacement identifier may not appear lexically prior to its declaration in a
replace statement This is to insure that its meaning remains constant throught the
compilation unit

3. Once declared, a replacement identifier may not be redefined to have a different
value by a replace statement, nor is there any way to "undefine" a replacement
identifier; however, to facilitate replacement' identifiers being used in a variety of
include files, redeclaration to the same value is permitted.

4. After its. declaration, the replacement identifier is replaced where it appears as a
token in the lexed source by the value defined in ~he replace statement

5. Replacement identifiers have four data types: arithmetic, bit, character, and
identifier. For all data types, operands must agree with their operators. The
identifier data type is associated with no operator except the = and 1\=
comparison.

Macro Time Variables

%set <identifier> to <constant-expression>

The %set statement is like the %replace statement in the way it deals with replacement
activity and constant expression evaluation, conflicts with parameters. etc. The only
diff erence is that the placement identifier declared in an %set statement may appear in
another %set statement with a different value. Its replacement rule is that it uses the
value set in the last %Set statement (in the lexical sense). The use of variables in any
two of %default. %replace, and %Set statements is not allowed.

Command Line Constants and Their Defaults

The -parameter control argument allows the virtual equivalent of a replacement
identifier declaration on the command line.

3-647 AG92-{)6

The macro processor uses the replacement identifiers as though they had been declared
in %replace statements, with two important differences: (1) these parameters must not
be declared in the source in a %replace statement, even to the same value; (2) they
must be declared in a %default statement If the same identifier appears in more than
one instance of a "-pm IDENTIFIER V ALUE" triplet, the last such triplet takes
effect

%default <identifier> to <constant-expression>;

If the identifier has been used in a parameter statement, this statement is ignored
except to check that the data type of the constant given in the command line and the
data type of the expression in the statement agree; otherwise, this statement causes the
same substitution behavior as a %replace statement

Macro Variable Declaration Builtin

%isdef «identifier»

is a macro builtin function that returns a value of data type bit (1). Its value is true
only if the argument is a macro replacement identifier that you have lexically declared
either in a %default, %set, or %replace construct prior to using %isdef or as a
command line parameter.

Command Line Argument Testing

%isarg «pll-token»
%isarg «char_string»

is a macro builtin function that returns a value of data type bit (1). Its value is true
only if the argument is one of the character strings following -arguments on the
command line.

The character string form of the argument is necessary if a command line argument is
a string according to the command processor, but is not a pU token (e.g., 34xy). If
the argument to %isarg is a character string, it is dequoted and the dequoted value is
used in the test; for example, if the command line has -ag 34xy, the test in the
source must be phrased as %isarg ("34xy"), rather than %isarg (34xy) because the macro
processor works on pll tokens. So use only identifiers as command line arguments. to
facilitate more reasonable-looking code.

Conditional Compilation

SYNTAX

%if <constant-expression> %then <token-string>
[%elseif <constant-expression> %then <token-string>] ..•
[%else <token-string>] %endif

where <token-string> is a possibly null string of tokens and the <constant-expression>'s
must evaluate to a bit_string constant

3-648 AG92-()6

Semantic Rules

1. The usual semantics of if-then-elseif-then-else statements apply. If the boolean
expression in the test clause equals ~, then the condition is false, otherwise it is
true. The %elseif and %else terms are optional. but the %then and %endif
keywords are required.

2. The conditional compilation construct is invalid if all the constant expressions do
not evaluate to proper logical values.

3. There is no restriction on what may appear as the object token-string of a then
or else clause. In particular it may be standard pll tokens or further macro
constructs such as %replace, %include, etc.

4. In order to facilitate the maintainabilirJ of code, use the conditional compilation
facility to construct token strings that comprise entire pll statments, rather than
code fragments.

Code for Different Target Machines

There is a strategy for informing translators which machine they should generate code
for. The macro processor also uses this same strategy for use in conditional
compilation.

%target «identifier»

is a replacement identifier of data type bit (1) whose value is true only if the value
of the <identifier> is equal to the value of the identifier given as the argument of
-target on the command line. If you use %target without -target. a default value is
supplied and an error of severity 2 indicated. If you don't use %target, then you need
supply no information on the command line about the target machine.

There are currently two flavors of target machines. The names 168, 6180, and dps8 are
cannonically equivalent and refer to the standard Multics cpu·s.

Expansion Time Include Files

%INCLUDE <identifier>;
%INCLUDE <quoted-string>;

provides an expansion time include file feature. Include files are found through the
transiator search ruies and have the same naming conventions as compiie time inciude
files. You are permitted a maximum of 255 include files in one expansion, and you
can nest them 64 deep. This differs from %include in that the macro processor
merely checks to see that the %include statement is syntactically correct and outputs
the statement

3-649 AG92-()6

User-Generated Messages

%print <char_string>;
%warn <char_string>;
terror <char_string>;
%abort <char_string>;

The macro processor sets a severity, an external fixed binary (35) variable, called
pll_macro_severity _. These four constructs allow you to send messages to user_output
at macro time and set the minimum value of pll_macro_severity _ to zero, one, three,
and four respectively. The %abort construct immediately aborts the macro_processor.
The char_string can be generated as a result of macro time activity.

Skip and Page Macros

These are features that the pll compiler accepts. The macro processor checks them for
syntactic correctness and passes the statement through.

EXAMPLES

pmac pc.p11.macro -call "p11 pc -ot -map" -target L68
-pm VERSION 1 -ag PTE

The example

%set FOO to 1;
first = FOO;
%set FOa to 2;
second = FOO;
%set FOO to (FOD + 3)**2;
third = FOO;

assigns the values 1, 2, and 25 to first, second, and third, respectively.

With no -parameter triplet to declare FRED on the command line, the statement

%defau1t FRED to 2345;

replaces all future references of FRED with 2345. If, however, the command line
contains the triplet

-pm FRED 123

all references to FRED are replaced by 123. If the command line contains the triplet

-pm FRED foo

an error of incompatible data types occurs.

3-650 AG92-()6

Examples of the $isdef macro builtin function are:

%if A %isdef (fred) %then
terror liThe replacement identifier IlIlfredllll has not been defined.";

plus

%replace paradise by %isdef (adam) & %isdef (eve) & A %isdef (snake);

An example of good style in conditional compilation can be:

%if %target (168)
%then call x (2);
%else call y (22); z = z + foo; %endif

An example of bad style can be:

ca 1 1 % if %target (6180)
%then x (2);
%else y (22); z = z + foo; %endif

Examples of the %target replacement identifier can be:

%if %target (dpsB)
%then %include sdw.t3;
%else %incl~de sdw.tl; %endif

%if %target (168)
%then call foo$bar (carrot~uice, fruit_salad, code); %endif

Here are some examples of user-generated messages:

%default NAME to "6180";
%print, "NAME has been set to II I I NAME;

%if A $isdef (FRED) %then
terror, "You forgot to define II"FRED"II."; %endif

%if %isarg (PTE) & %isarg (NOPTE) %then
%abort, "PTE and NOPTE cannot both be arguments"; %endif.

Name: plus

SYNTAX AS A COMMAND

plus {num_args}

3-651 AG92-06

plus

SYNTAX AS AN ACTIVE FUNCTION

[plus {num_args}]

FUNCTION

returns the sum of num_args. If you provide no num_args, 0 (the additive identity) is
returned.

EXAMPLES

plus 3.5 3
6.5

plus -5
-5

Name: print, pr

SYNTAX AS A COMMAND

pr paths {-control=args}

FUNCTION

prints ASCII segments and multisegment files on user_output

ARGUMENTS

paths
are the pathnames of the segments and multisegment files to be printed. The star
and archive component pathname conventions are accepted.

CONTROL ARGUMENTS

-archive, -ac
treats each archive component as a new file for heading and line numbering. If
any lines are printed from an archive component and if you supplied -header,
prints a header identifying the archive component name and the date of
modification of the archive component, in the format

ARCHIVE::COMPONENT date time

where date and time are those stored in the archive. This control argument is the
default if archive components were named with the :: convention or if the
entryname of the segment ends in .archive, unless you give -no_archive.

print

3-652 AG92-06

print

-chase
includes links in the search if a starname is specified, and does not complain
about missing link targets for starnames.

-exclude STRING, -ex STRING
does not print lines containing STRING. Exclusion is done after matching. Thus,
"-match A -exclude B" prints all lines with an A except those with a B.

-exclude IREGEXP I. -ex IREGEXP I
does not print lines containing a string matching the regular expression REGEXP.
(See the qedx command for the definition of regular expressions.)

-for N
prints N lines from the file, including the first line. If you also use -to, printing
stops when the first control argument is satisfied. (Default: to print the whole
file)

-from X, -fm X
begins printing from the Xth line. This control argument and -last are
incompatible. (Default line 1)

-from IREGEXP I, -fm /REGEXP /
begins with first line matching the regular expression REGEXP.

-from_page P
starts printing with the Pth page, counting the first page as 1. (Default to start
with page 1)

-header, -he
prints a header of the form

NAME date time

before each segment If you choose -archive, the header is printed before each
archive component lIiStead of before each segment This control argument is the
default if you give no other control argument or if you use the star convention
or multiple pathnames.

-indent N. -ind N
indents the printed output N columns. (Default: no indentation)

-last N, -It N
print the last N lines from the file. or the last N lines of the region selected by
-to.

-left_col N, -lc N
does not print columns 1 to N-1. It truncates on the left, printing each line of
the file starting with column N. If a line has fewer than N columns, a blank
line is printed. (Default: to print starting with column 1)

print

3-653 AG92-Q6

print

-line_length Nt -11 N
formats the page with a maximum physical line length of N characters. Space
generated by -indent and -number is not counted. If more than N characters are
in an output line! the line is split and continued on the next line. The default
maximum line length is 1024 characters although you can give larger values.

-match STRING
prints only lines containing the character string STRING.

-match /REGEXP /
prints only lines containing a string matching the regular expression REGEXP.

-name NAME, -nm NAME
takes NAME literally! even if it is all numeric or begins with "-".

-no_archive, -nac
does not print headings for individual archive components (even if the file being
printed is an archive) and treats the file being printed as a single segment for
line numbering and heading.

-no_chase
does not include links when processing starnames. (Default)

-no_header, -nhe
suppresses the header before segments or archive components. This is the default
if you give only one pathn3.t~e and other control arguments.

-no_vertsp
simulates formfeed and vertical-tab characters by outputting newline characters.

-numbert -nb
prints line numbers before each line. The line number and the spaces separating
it from the line take up 10 spaces.

-output_switch SWITCH_NAME! -osw SWITCH_NAME
directs the output to an attached and open (f or stream output or stream
input/output) I/O switch. If not supplied, the output is directed to the
user_output switch.

-page_length N, -pI N
starts a new page by inserting a formfeed character after every N lines of the
file are printed (see "Notes"). (Default: no pagination)

-phys_page_Iength N, -ppl N
determines how many newline characters should be inserted between pages when
you specify -no_vertsp. N, whose default value is 66, is the number of lines on
a whole page of paper. (See "Notes.")

-right_col N, -rc N
does not print columns past N. Lines extending past column N are truncated on

print

3-654 AG92-()6

print

the right (Default to print all columns)

-stop, -sp
pauses before the first page and after each successive page until you type a
newline.

-to N
stops printing with line number N. (Default to print all lines)

-to /REGEXP /
stops printing with the first line matching the regular expression REGEXP. The
search for REGEXP begins after the first line printed.

-to_page N
stops printing after the Nth page.

-vertsp
sends formfeed and vertical-tab characters to the terminal. (Default)

-wait, -wt
pauses before the first page until you type a newline.

NOTES

The -page_length control argument works with -phys_page_Iength to eject the proper
amount of spacing between pages. For example:

pr test_file -pl 40 -no_vertsp

prints 40 lines of the segment test_file and uses the default value for -phys_page_Iength
of 66 to emit 26 blank lines before the next 40 lines are printed. If you position the
printer paper so that text begins printing on the 13th line, then there are even
amounts of leading and trailing space on each page.

If you select any of -line_length, -page_length, -phys_page_lengtb, or -right_color
-left_col is > 1, printing is done via the printer conversion software: overstrikes are
replaced by multiple lines separated by CR (015) characters, and other control
characters are ignored.

Numeric arguments are processed specially for compatibility with previous versions of
print If no file name has been found, a number is interpreted as a file name; other
numeric arguments are interpreted as -from and -to, in that order. You can use
-name to indicate that a number is intended as a pathname.

You can supply· more than one -match and more than one -exclude; a line is printed
if any -match selects it unless one -exclude prevents it from being printed.

print

3-655 AG92-06

print

EXAMPLES

The command line

print xyz

prints the segment or multisegment file "xyz" with a header.

The command line

print **.archive -match "/bit (fixed/" -nb -he

scans all archive segments in your working directory for lines matching the regular
expression /bit *(fixed/. Those lines are printed, with a line number giving the
position in the archive component Each new archive component is preceded by a
header that names the component and gives its date of modification.

The command line

print abc::**

prints all components of abc. archive. Headers are printed for each component.

SYNTAX ASA COMMAND

pat {switch_names} {-control_argsl

SYNTAX AS AN ACTIVE FUNCTION

[pat {switch_names} {-control_args}]

FUNCTION

prints information on your terminal about the I/O switch name associations created by
attach calls in your current ring. As an active function, returns the switch names
selected by switch_names and control arguments.

ARGUMENTS

switch_names
are the names of I/O switches. The star convention is allowed. You can use
-name to inhibit star name processing or to supply a switch name that appears to
be a control argument Information about only the specified switches is printed.
If a given switch is not currently attached, a message is printed on your terminal.

3-656 AG92-o6

CONTROL ARGUMENTS

-all, -a
prints the state of all the selected switches that match the star names, whether
they are attached or not Specify only one of -all, -attached, or -open.

-attached, -att
prints the state of those switches that match the star names only if they are
currently attached. (Default)

-brief, -bf
does not print information for the four standard switch_names (user_i/o,
user_input, user_output, and error_output) even if they match a star name.

~name switch_name, -nm switch_name
interprets the switch_name literally, even if it looks like a star name or a control
argument

-open
prints the state of those switches that match the starnames only if they are
attached and open.

NOTES

If you invoke it as a command, the attach and open descriptions associated with the
indicated switch names are printed.

If you supply no arguments, the information for all switches currently attached is
printed.

See the io_call command.

SYNTAX AS A COMMAND

pan {-control_args}

FUNCTiON

prints the names of the sensitivity levels and access categories defined for the
installation.

CONTROL ARGUMENTS

-all, -a
lists all possible names (above system high).

3-657 AG92-()6

-brief, -bf
suppresses the title and headings.

-category, -cat
lists only the access categories.

-level
lists only the sensitivity levels.

NOTES

Only the names that can be used to describe an access class or access authorization
between system low and system high are printed. unless you give -all.

This command lists the names that are acceptable to convert_authorization_ (see the
Subroutines manual) to define an access class or access authorization. (All commands
and system interfaces that use a character string to describe an access class use this
subroutine.) Both the long and short names are printed.

SYNTAX AS A COMMAND

pbm path {components} {-control_args}

FUNCTION

displays all or part of the bind map of an object segment generated by version 4 or
subsequent versions of the binder.

ARGUMENTS

path
is the pathname of a bound object segment.

components
are the optional names of one or more components of this bound object and/or
the bindfile name. Only the lines corresponding to these components are
displayed. A component name must contain one or more nonnumeric characters.
If it is purely numerical, it is assumed to be an octal offset within the bound
segment, and the lines corresponding to the component residing at that offset are
displayed. A numerical component name can be specified by preceding it with
-name. If no component names are supplied, the entire bind map is displayed.

3-658 AG92-06

11/86

CONTROL ARGUMENTS

-long, -lg
prints the components' relocation values (also printed in the default brief mode),
compilation times, and source languages.

-name S1R -nm STR
is used to indicate that STR is really a component name, even though it appears
to be an octal offset

-no_header, -nhe
omits all headers, printing only lines concerning the components themselves.

-page_offset, -pgofs
prints as an octal number the page number of the first word of the text section
of each component, which is the format used by the cumulative_page_trace
command. If the component crosses at least one page boundary, a plus (+)
character follows the page number.

Name: print_configuration_deck, pcd

SYNTAX AS A COMMAND

pcd {card_names} {-control_args}

SYNTAX AS AN ACTIVE FUNCTION

[pcd {card_names} {-control_args}]

FUNCTION

displays the contents of the Multics configuration deck. The data is kept up-to-date
by the reconfiguration commands and, hence. reflects the current configuration being
used. The active function returns the selected cards in quotes, separated by a single
space.

ARGUMENTS

card_names
are the names of the particular configuration cards to be diSplayed. You can give
up to 32 card names (see the Multics System Maintenance Procedures Manual,
AM81, f or the names of the configuration cards).

3-659 AG92-06A

prin t_conf iguration_deck print_configuration_deck

*

CONTROL ARGUMENTS

-exclude FIELD_SPECIFIERS, -ex FIELD_SPECIFIERS
excludes particular cards or card types from being displayed. You can supply one
to 14 field specifiers with each -exclude and up to 16 -exclude control arguments.
To be eligible for exclusion a card must contain fields that match all field
specifiers selected with any -exclude.

-label, -lbl
displays cards with mnemonic labels for each field.

-match FIELD_SPECIFIERS
selects particular 'cards or card types to be displayed. You can give one to 14
field specifiers with each -match and up to 16 -match control arguments. To be
eligible for selection a card must contain fields that match all field specifiers
supplied with any -match.

-no_label, -nlbl
does not display field labels. (Default)

-pathname PATH, -pn PATH
displays the configuration deck in the segment specified by PATH, rather than the
configuration deck of the live system.

NOTES

Field specifiers can consist of a complete card field or a partial field and an asterisk.
An asterisk matches any part of any field; for example, the field specifier "dsk*"
matches any card containing a field beginning with the characters "dsk". You can give
specifiers for numeric fields in octal or decimal, but if decimal they must contain a
decimal point. You can't use asterisks in numeric field specifiers. All numeric field
specifiers are converted to decimal and matched against numeric card fields. which are
also converted to decimal. Hence, the field specifier "1024." matches a card containing
the octal field 2000, and the field specifier "1000" matches a card containing the
decimal field 512.

Selection is performed as follows. If you give no card names. all cards are selected;
if you supply any card names, only the cards matching those names are selected; and
if more than one card exists with a specified name, all such cards are displayed. If

* you request a nonexistent card, an error message is displayed. If you give any -match
arguments, those eligible cards are matched against all field specifiers of each -match
argument group; however, at least one -match group must have all its field specifiers
match some field on the card to make that card eligible. A similar algorithm is used
for any -exclude argument groups. So, if a card is eligible and you supply -exclude
arguments, then at least one -exclude group must have all its field specifiers match
some field on the card to make that card ineligible. If no match for a given card
name or -match group is found in the configuration deck, nothing is displayed for
that name or group and no error is displayed. If you give no arguments, the complete
configuration deck is displayed.

11/86 3-660 AG92-06A

Specify all card names bef ore the first -match or -exclude argument Field specifiers
following a -match or -exclude argument include all arguments until the next -match
or -exclude argument

No action is taken for misspelled arguments or valid arguments for which there are
no corresponding configuration cards.

EXAMPLES

pcd cpu
cpu a 7 168 80. on
cpu b 6 168 80. on
cpu c 5 168 80. off

(For the configuration deck dispiayed above.)

pcd cpu -match on
cpu a 7 168 80. on
cpu b 6 168 80. on

pcd -match 16 -ex off -ex b
cpu a 7 168 80. on

SYNTAX AS A COMMAND

pdwd

FUNCTION

prints out the pathname of the current default working directory on the user's
terminal.

NOTES

3-661 AG92-()6

SYNTAX AS A COMMAND

pem code

SYNTAX AS AN ACTIVE FUNCTION

[pem code]

FUNCTION

prints out the standard Multics (error_table.J interpretation of a specified error code.
The various entries given below allow you to specify the error code in either decimal
or octal and have the output come out in either the short or long error_table_ form.
The active function returns, as a single quoted string, what the command prints.

ARGUMENTS

code
is the decimal integer to be interpreted. The short form of the error message is
printed.

Entry: pel

This entry is the same as pem except that the long form of the error message is
printed or returned as a single quoted string.

SYNTAX AS A COMMAND

pel code

SYNTAX AS AN ACTIVE FUNCTION

[pel code]

Entry: peo

This entry is the same as pem except that the input code is assumed to be octal.

SYNTAX AS A COMMAND

peo octal_code

SYNTAX AS AN ACTIVE FUNCTION

[peo octal_code]

3-662 AG92-06

11/86

Entry: peol

This entry is the same as pel except that the input code is assumed to be octal.

SYNTAX AS A COMMAND

peol octal_code

SYNTAX AS AN ACTIVE FUNCTION

[peol octal_code]

SYNTAX AS A COMMAND

pli paths {-control_args}

FUNCTION

prints selected items of information for the specified object segments.

ARGUMENTS

paths
are the pathnames of object files. You can use the archive component pathname I
convention (::).

CONTROL ARGUMENTS

-entry. -et
prints a listing of pathi external definitions. giving their symbolic names and their
relative addresses within the segment If pathi is an object multisegment fBe
(MSF), the external definitions in each of the executable components are listed.

-header. -he
prints the header. which is not printed by default if you select -entry. -length.
or -link.

-length, -In
prints the lengths of the sections in pathi. If pathi is an object MSF. the lengths
of the sections for each executable component are printed.

3-663 AG92-06A

11/86

-link, -lk
prints an alphabetically sorted listing of all external symbols referenced by pathi.
If pathi is an object MSF, the list of external links in each executable component
is printed. If you use a link in more than one component, the link is listed
more than once.

-long
prints additional information when the header is printed. This information
includes a listing of source programs used to generate the object segment, the
contents of the "comment" field of the symbol header (often containing compiler
options), and any unusual values in the symbol header.

-no_header
suppresses printing of the header.

NOTES

If you select no control arguments, -et, -he, -In, and -lk are assumed. If a path
given is an object MSF, the information for each of the executable components is
printed.

3-664 AG92-06A

11/86

EXAMPLES

pli program -long -length
copy OS/27/83 1126.7 edt Fri

Object Segment >user_dir_dir>MPM>user_documents>commands>copy
Created on 12/23/82 1205.4 edt Thu
by Moore.SysLib.m
using Mu1tics PL/I Compiler, Release 27d, of September 28, 1982

Translator: PL/I
Comment: optimize map sing1e_symbo1_1ist
Source:

12/23/82
11/16/82
OS/25/82

1205.5 edt Thu >ldd>oi>2873dir>copy.p11
1554.7 edt Tue >ldd>inc1ude>status_structures.inc1.pl1
1715.1 edt Tue >ldd>inc1ude>star_structures.incl.pl1

Attributes: relocatable, procedure, standard

Start
Length

<ready>

Object
o

7036

Also printed is

Text
o

5510

Defs
5510

576

Severity, if it is nonzero.
Entrybound, if it is nonzero.
Text Boundary, if it is not 2.
Static Boundary, if it is not 2.

Link
6306

152

3-664.1

Symb
6460

342

Static
6316

o

AG92-o6A

This page intentionally left blank.

11/86 AG92-G6A

11/86

SYNTAX AS A COMMAND

plu

FUNCTION

lists the locations and size of linkage and static sections allocated for the current ring.
This information is useful for debugging purposes or for analysis of how a process
uses its linkage segments.

NOTES

A linkage section is associated with every procedure segment and every data segment
that has definitions.

For standard-procedure segments, the information printed includes the name of the
segment, its segment number, the offset of its linkage section, and the size (in words)
of both its linkage section and its internal static storage.

Name: print_mail, prm

SYNTAX AS A COMMAND

prm {mbx_specification} {-control_args}

FUNCTION

prints the messages in a mailbox, querying you whether to delete each one after it is
printed.

ARGUMENTS

m bx_specif ication
specifies the mailbox from which messages are to be printed. If not given, the I
user's default mailbox (>udd>Project_id>Person_id>Person_id.mbx) is used.

CONTROL ARGUMENTS

-accessible, -ace
selects only those messages in the mailbox that you are permitted to read. If you
have read (r) extended access on themailbox.print_mail selects all messages in
the mailbox; if you have own (0) extended access on the mailbox, it selects only
those messages that you sent to the mailbox. (Default)

3-665 AG92-06A

-acknowledge, -ack
acknowledges messages that request acknowledgement (Default)

-all, -a
selects all messages in the mailbox regardless of who sent them. It requires read
(r) extended access on the mailbox.

-brief, -bf
shortens the greeting message. This message indicates the number of messages in
the mailbox.

-brief_header, -bfhe
displays the minimal amount of information from the message header. The date
and authors are always displayed; the subject is displayed if it is not blank; the
number of recipients is displayed either if there is more than one recipient or if
you are not the sole recipient of the message; if the message is forwarded with
comments, they are also displayed.

-count, -ct
displays the number of messages read from the mailbox before printing the first
message. (Default)

-debug, -db
enables print_mail's debugging facilities. It is not recommended for normal users
of print_mail.

-header, -he
displays all information from the message header, including user-defined fields and
excluding the message trace and redundant information. (Default)

-in teractive_messages t -im
includes interactive messages (as sent by the send_message command) along with
regular mail. (Def aul t)

-list, -Is
prints a summary of all the messages before printing the first message. This
summary is identical to that produced by the read_mail list request

-long, -lg
prints the long form of the greeting message. (Default)

-Ions-header, -lghe
displays all information from the message header, including network-tracing
information, even if some of it is redundant (e.g., if the From, Sender, and
Delivery-By fields are all equal, -Ions-header forces print_mail to display them
when it prints the message).

-mail, -ml
prints ordinary messages in the mailbox. (Default)

3-666 AG92-06

11/86

-no_acknowledge. -!laCK
does not acknowledge messages that request acknowledgement

-no_count. -nct
does not display the message count

-no_debug. -ndb
disables print_mail's debugging facilities. (Default)

-no_header, -nhe
displays no information from the message header. Only the message number.
message body line count, and message body are displayed.

-no_interactive_messages. -nim
does not include interactive messages. It is incompatible with -no_mail.

-no_list, -nIs
does not print a summary of the messages. (Default)

-no_mail. -nml
does not print ordinary messages.

-no_reverse, -nrv
prints the messages in ascending numeric order. (Default)

-not_own
selects only those messages in the mailbox that were not sent by you. It requires
read (r) extended access on the mailbox.

-own
selects only those messages in the mailbox that you sent to the mailbox. It
requires own (0) extended access on the mailbox.

-reverse, -rv
prints the messages in descending numeric order.

LIST OF MBX SPECIFICATIONS

-log
specifies the user's logbox and is equivalent to

-mailbox >udd>Project_id>Person_id>Person_id.sv.mbx

-mailbox path, -mbx path
specifies the pathname of a mailbox. The suffix mbx is added if necessary.

-save path, -sv path
specifies the pathname of a savebox. The suffix sv.mbx is added if necessary.

3-667 AG92-06A

-user STR
specifies either a user's default mailbox or an entry in the system mail table (see
"Notes on Mailbox Selection by User" below).

STR
is any noncontrol argument and is first interpreted as -mailbox STR; if no
mailbox is found, STR is then interpreted as -save STR; if no savebox is found,
it is interpreted as -user STR.

LIST OF QUERY RESPONSES

After printing each message, print_mail asks the question

print_mail: Delete IN?

The acceptable answers are

'1
prints the list of acceptable answers.

abort
exits print_mail without deleting any messages.

no, n
does not delete this message.

,."".:+ ,.. 'fUlL, 'i

deletes the indicated messages and exits print_mail; the message just printed is not
deleted (see "Notes").

reprint, print, pr, p
prints the message and asks the question again.

yes, y
deletes this message (see "Notes").

NOTES

Answering "yes" to the query after a message is printed does not delete the message
immediately but marks it as one for deletion.

Messages are actually deleted either after you answered the query for the last message
(unless you typed "abort") or after you answered any query with "quit"

3-668 AG92-06

prine.mail

lVOTES a/v iv7AiLBOX SELECTiON BY USER

A user's default mailbox is specified in the form Person_id.Project_id. For an entry
in the mail table, STR is usually in the form of Person_id. The mail table permits
you to address mail by Person_id without knowing the Project_id of the recipient.
The mail table is described in the Extended Mail System User's Guide (CH23) and
the Multics System Administration Procedures (AK50) manuals.

If STR contains one period and no white space, it is interpreted as a User_id that
specifies a user's default mailbox; otherwise it is interpreted as the name of an entry
in the mail table.

For example,

-user DBuxtehude.SiteSA

is interpreted as a User_id that identifies a default mailbox. On the other hand,

-user "George G. Byron"
-user L.v.Beethoven
-user Burns

are all interpreted as the names of entries in the mail table: the first because it
contains white space; the second because it contains more than one period; the third
because it contains no period.

When interpreted as a User_id, STR cannot contain any angle brackets «» and must
have the form Person_id.Proje-et_id, where "Person_id" cannot exceed 28 characters and
"Project_id" 32 characters. In this case, "-user STR" is equivalent to the mbx_specification
"-mailbox > udd> Project_id> Person_id> Person_id.mbx."

When interpreted as the name of a mail table entry, STR cannot contain any commas,
colons, semicolons, backslashes (\), parentheses, angle brackets, braces ({}), quotes,
commercial at-signs (@), or white space other than spaces. The query of the mail
table is performed in a case-insensitive manner. Use the display _mailing_address
command to determine the actual address corresponding to STR. The address in the
mail table must identify a mailbox.

3-669 AG92-06

11/86

Name: print_messages, pm

SYNTAX AS A COMMAND

pm msg_specs {mbx_specification} {-controJ_args}

FUNCTION

prints any interprocess messages that were received (and saved in the user's mailbox)
while the user was not accepting messages, not logged in, or "accept_messages
-hold_messages" was in effect

ARGUMENTS

ms8-specs
are one or more numbers or ranges. Numbers are as printed next to each
message when accept_messages -hold_messages is in effect Ranges are of the
form N:M, where N<=M and both Nand M are valid message numbers. You can
use the keywords "first" (f) and "last" 0) as message numbers and the keyword
"all" (a) as a range (equivalent to "f:l").

m bx_specif ication
specifies the mailbox from which messages are to be printed. If not given, the
user's default mailbox (>udd>Project>Person>Person.mbx) is used.

CONTROL ARGUMENTS

-after DATE_TIME
prints messages sent after DATE_TIME only.

-all, -a
prints all messages, including those held by the -hoid_messages mode (see
accept_messages). (Def aul 1)

-before DATE_TIME
prints messages sent before DATE_TIME only.

-brief, -bf
suppresses an error message when no matching messages are found.

-call cmdline
calls the command processor with a string of the form:

cmdline number sender time message {path}

where:

cmdline
is any Multics command line; enclose it in quotes if it contains blanks or
other command language characters.

3-670 AG92-06A

number
is the sequence number of the message, assigned when you use -hold;
otherwise it is O.

sender
is the User_id of the person who sent the message.

time
is the date-time the message was sent

message
is the message sent

path
is the pathname of the mailbox to which the message was sent If the
message was sent to the default mailbox, path is omitted.

-comment STR, -corn STR
prints messages with comment fields containing STR only.

-exclude STR
prints messages with text not containing STR only.

-from STR, -fm STR
prints messages sent from STR only. STR can be of the form Person. Project,
Person, or .Project

-last, -It
prints only the latest message receiVed. You can't use it with any other
message selection arguments.

-long, -lg
prints the sender and date-time of every message, even when the same for
two consecutive messages. It overrides -brief.

-match STR
prints messages with text containing STR only.

-messages, -rnsg
prints regular messages (nonnotifications) only.

-no_messages, -nmsg
suppresses -messages.

-no_notifications. -nnt
nullifies -notifications.

-notifications, -nt
deletes notifications only.

3-671 AG92-06

-new
when accept_messages -hold is in effec~ prints only those messages that have
not been printed before. (Default: to print all held messages)

-short, -sh
precedes consecutive messages from the same sender by "=" instead of the
Person_id and Project_id, and does not print the date-time string, but only if
less than five minutes have passed since the previous message. It omits the
date if the current message and the previous one are received on the same
date. (Def aul t)

LIST OF MBX SPECIFICATIONS

-log
specifies the user's logbox and is equivalent to

-mailbox >udd>Project_id>Person_id>Person_id.sv.mbx

-mailbox path, -mbx path
specifies the pathname of a mailbox. The suffix .mbx is added if necessary.

-save path, -sv path
specifies the pathname of a savebox. The suffix .sv.mbx is added if necessary.

-user STR
specifies either a user's default mailbox or an entry in the system mail table.

STR
is any noncontrol argument and is first interpreted as -mailbox STR; if no
mailbox is found, STR is then interpreted as -save STR; if no savebox is found.
it is interpreted as -user STR.

NOTES

A default mailbox is created the first time you issue print_mail, read_mail, or
accept_messages. The default mailbox is:

>udd>Project_id>Person_id>Person_id.mbx

Messages are deleted after they are printed unless accept_messages -hold_messages is in
effect); however, the last message remains available for the life of the process or until
replaced by a new message. (See also last_message, last_message_sender, and
last_message_time.>

If you are deferring messages, it is a good practice to use the print_messages
command periodically to print out pending messages.

3-672 AG92-()6

11/87

Name: print_motd, pmotd

SYNTAX AS A COMMAND

pmotd {control_arguments}

FUfo/CTION

prints out changes to the message of the day. The default is to print changes to the system and
user_project message_of_the_day segments since the last time the command was called.

CONTROL ARGUMENTS

-all_ text, -all, -a
specifies that the entire contents of the system and/ or project message_of _the_day segment
will be displayed, regardless of whether or not any of the messages in the segment have been
previously seen.

-current_project, -cpj
prints lines from Ll}e message of the day for the project on which the user is logged in. If the
project administrator has not created a message for your project, nothing is printed.
(default)

-new
specifies that only unseen messages in the system and/or project message_of_the_day
segment will be displayed. (default)

-project projects, -pj projects
prints new or changed lines in the message of the day for the named projects. A warning is
printed if there is no message for one or more of the projects.

-system, -sys
prints lines from the message of the day created by the system administrator. (default)

NOTES

If -system. -current_project and -project are not specified, print_motd prints lines from the
system message and from the message for the current project If one or more of these arguments
are given, print_motd prints lines only from those messages~

3-673 AG92-06B

11/87

For comparison purposes, copies of project motds are stored in the default value segment with the
name project_motd.PROJECT._ where PROJECT is the default user project or a project
specified by the -project control argument. Project motds will be created by a project
administrator and placed in the project directory with the name
>udd>PROJECT>PROJECT.motd with an addname of >udd>PROJECT>PROJECT.info.

The first time that print_motd is used for a specific project, it will print the entire contents of the
message-of -the-day segment. Subsequent uses will default to print those lines which have been
modified or added to the message-of -tbe-day since the last use of the command unless the user
specifies the -all_text control argument. Since a copy of each motd segment is stored in the user's
value segment, project administrators should keep the size of the project motd segments to a
minimum by deleting older messages as they expire.

SYNTAX AS A COMMAND

ppa {-control_args}

FUNCTION

prints the access authorization of the current process and any current system privileges.

CONTROL ARGUMENTS

-all, -a
prints the maximum access authorization of this process.

-long, -lg
prints the site-defined long names (up to 32 characters) for the sensitivity levels and
categories.

3-673.1 AG92-06B

NOTES

If you supply no -long, the site-defined short names (eight characters or less) for
sensitivity levels and categories are printed.

The maximum authorization printed by -all is the one that this process could have
been given at login and corresponds to the maximum access class of upgraded
directories that can be created by this process.

Name: print_request_types, prt

SYNTAX AS A COMMAND

prt {rqt_names} {-control_args}

SYNTAX AS AN ACTIVE FUNCTION

[prt {rqt names} {-contro 1 args}]

FUNCTION

prints information about request types handled by I/O Daemons. As an active
function. returns the names of the selected request types that would have been printed.

ARGUMENTS

rqt_names
are the names of request types to be printed. The star convention is allowed.

CONTROL ARGUMENTS

-access_name User_id. -an User_id
prints information about request types serviced by the I/O driver process
identified by User_id (see "Notes").

-brief, -bf
does not print heading line.

-directory PATH. -dr PATH
specifies the pathname of a test directory to be used in place of the 10 Daemon
Directory (>ddd>idd). This command looks for an iod_workins-tables segment in
this directory.

-generic_type STR, -gt SIR
lists request types of generic type STR. You can use it to support site-defined
generic types.

3-674 AG92-06

11/86

1I/"'T"~""
IVVI C';:'

You can select only one control argument

The relocation bits are interpreted one word at a time. Each line contains symbolic
relocation information for two half words. Printing of duplicate lines is suppressed
and indicated by the string "(repeats)".

EXAMPLES

pri >udd>Project>Person>a 100 20

100 absolute absolute
(repeats)

103 1 ink ptr 15 absolute
104 absolute absolute

(repeats)
110 int static 15 absolute
111 absolute absolute
112 int static 15 absolute
113 absolute absolute

(repeats)

SYNTAX AS A COMMAND

prt {rqt_names} {-control_args}

SYNTAX AS AN ACTIVE FUNCTION

FUNCTION

prints information about request types handled by I/O Daemons. As an active
function, returns the names of the selected request types that would have been printed.

ARGUMENTS

rqt_names
are the names of request types to be printed. You can use the star convention.

3-674.1 AG92-06A

11/86

CONTROL ARGUMENTS

-access_name User_id, -an User_id
prints information about request types serviced by the I/O driver process
identified by User_id (see "Notes").

-brief, -bf
does not print heading line.

-directory path, -dr path
specifies the pathname of a test directory to be used in place of the I/O
Daemon Directory (>ddd>idd). This command looks for an iod_workinLtables
segment in this directory.

-generic_type STR, -gt STR
lists request types of generic type STR. You can use it to support site-defined
generic types.

3-674.2 AG92-06A

-plot
prints information about request types associated with the plotter generic type.

-print, -pr
prints information about request types associated with the printer generic type.

-punch. -pch
prints information about request types associated with the punch generic type.

-user_defined, -udf
prints information about request types for which user-defined output control
argument settings have been defined using enter_output_request The printed
output includes both the user-defined request type name and its target request
type name. As an active function, only the user-defined request type name is
returned.

NOTES

The User_id argument specified after -access_name can have any of the following
forms:

Person_id.Pro ject_id
Person_ide *
Person_id
* .Project_id
. Project_id

matches that user only.
matches that person on any project
same as Person_ide *.
matches any user on that project
same as * .Project_id .

The enter_output_request command allows you to define named groups of default
control argument settings. The names of these groups can be referenced as if they
were user-defined request types. These names are shown in the output of
print_request_types, indented under the request type to which they apply. The active
function returns the names of any user-defined request types that match the selection
criteria.

SYNTAX AS A COMMAND

FUNCTION

interprets the three data segments produced by the sample_refs command, and produces
a printable output segment that contains the following information: a detailed trace of
segment references, a segment number to pathname dictionary, and histograms of the
Procedure Segment Register (PSR) and Temporary Segment Register (TSR) segment
reference distributions. (See the description of the sample_refs command.)

3-675 AG92-()6

ARGUMENTS

name
specifies the names of the data segments to be interpreted, as well as the name
of the output segment to be produced. This argument can be either an absolute
or relative pathname. If name does not end with the suffix srf, it is assumed.

The appropriate directory is searched for three segments with entrynames as
follows:

(entry portion of) name.srf1
(entry portion of) name.srf2
(entry portion of) name.srf3

The output segment is placed in the user's working directory with the entryname:

(entry portion of) name.list

CONTROL ARGUMENTS

-brief, -bf
specifies that the detailed trace of segment references is not to be generated.

NOTES

The print_sample_refs command is able to detect a reused segment number. The
appearance of a parenthesized integer preceding a segment number indicates reusage.

EXAMPLES

(1)
(2)

234 6542
234 2104
234 6160

>udd>user>bound_alpha_1 6542
>udd>user>max35 1512
>system_library_1anguages>assign_16160

The occurrence of the above three lines in the detailed trace indicates the following:

1. A reference was made to location 6542 in bound_alpha_. The particular
component of bound_alpha_ being referenced could not be determined.
bound_alpha_ was assigned segment number 234.

2. A reference was made to location 512 in max35. max35 is a component of a
bound segment whose name can be determined from the segment number to
pathname dictionary. The segment bound_alpha_ has been terminated and.
when the segment of which max35 is a component was initiated, it was
assigned segment number 234.

3. A reference was made to location 6160 in assign_. The segment of which
max35 is a component has been terminated and. when assign_ was initiated. it
was assigned segment number 234.

3-676 AG92-06

The appearance of a segment number suffix (Le.. 1. 29 etc.) indicates a component of
a bound segment

310
310. 1
310.2

>system_1ibrary_standard>bound_ti_term_
tssi_
trans1ator_info_

The appearance of the above lines in the segment number to path name dictionary
indicate that tssi_ was the first component of bound_ti_term_ to be referenced, and
that translator_info_ was the second component of bound_ti_term_ to be referenced.

SYNTAX AS A COMMAND

psp {search_lists} {-control_arg}

FUNCTION

prints the search paths in the specified search lists.

ARGUMENTS

search_lists
is the name of a search list. If you specify no search lists. all search lists
referenced in this process are printed.

CONTROL ARGUMENTS

-expanded. -exp
prints all keyword search paths, except -referencin~dir. and all unexpanded search
paths as absolute pathnames.

NOTES

All synonyms of a search list name are printed if you give no search lists.

For a complete list of the search facility commands, see add_search_paths.

3-677 AG92-06

SYNTAX AS A COMMAND

psr

FUNCTION

prints the object segment search rules currently in use.

NOTES

See also the descriptions of the add_search_rules, delete_search_rules, and set_search_rules
commands. The standard search rules are described in the Programmer's Reference
Manual (Section 4, under "Search Rules").

SYNTAX AS A COMMAND

ptt {path}

FUNCTION

prints the names of all terminal types defined in the terminal type table (TIT)
currently in use. If the TIT being used is not the system default 'ITT, the command
prints the current TIT's pathname at the head of the list of terminal names.

ARGUMENTS

path
specifies the pathname of the TIT. If omitted, the current TIT is used.

Name: print_time_defaults, ptd

SYNTAX AS A COMMAND

ptd {keys} {-control_arg}

SYNTAX AS AN ACTIVE FUNCTION

[ptd key {-control_arg}]

3-678 AG92-G6

11/86

FUNCTION

displays system or process time-related defaults.

ARGUMENTS

key
selects which default value is to be displayed.

CONTROL ARGUMENTS

-system, -sys
requests that the system defaults be displayed instead of the process defaults.

LIST OF KEYS

date
displays the default date format A date format shows the year, month, and day
in month.

date_time
displays the default date/time format. This combines both date and time.

debug, db
displays the default status of debugging in the date/time system.

language, lang

time

zone

displays the default language. Any time words in output time strings are in
language.

displays the default time format. A time format shows the hour, minutes. and
(optionally) seconds.

displays the default time zone name. Unless explicitly specified, aU input time
strings are interpreted relative to this zone and all output time values are
expressed in this zone.

NOTES

If set_time_default has pushed any values, these are also shown. The keys specify
which defaults to print. When called with no keys, all time-related defaults are
displayed, except for the debugging switch, which is shown only if it is on. As an
active function, it returns the current value of one of the defaults. The debugging
switch is returned as "true" if debugging is on, "false" otherwise.

The values displayed are in this order: date. date_time, time, language, zone, and
debug.

3-679 AG92-06A

SYNTAX AS A COMMAND

FUNCTION

prints the name of the terminal type table (TIT) segment currently in use. This is the
path name last set by a set_ttt_path command or the pathname of the default system
TIT.

Name: print_wdir, pwd

SYNTAX AS A COMMAND

pwd

FUNCTION

prints the pathname of your current working directory.

NOTES

A working directory is a directory in which your activity is centered. Its pathname is
remembered by the system so that you need not type the absolute pathname of
segments inferior to that directory.

See the change_wdir, change_defauit_wdir, and worKm~dir commands. See also
"Search Rules" and "Pathnames" in the Programmer's Reference Manual.

Name: probe, pb

SYNTAX AS A COMMAND

pb {procedure_name} {-control_args}

probe

3-680 AG92-()6

probe

FUNCTION

provides symbolic, interactive debugging facilities for programs compiled with PL/I.
FORTRAN, Pascal. COBOL, or ALGOL-68. Its features permit you to interrupt a
running program at a particular statement, examine and modify program variables in
their initial state or during execution, examine the stack of block invocations, and list
portions of the source program. You can invoke external subroutines and functions,
with arguments as required, for execution under probe control. You can call probe
recursively.

ARGUMENTS

procedure_name
is the pathname or reference name of an initiated program. If you don't give it,
the procedure owning the frame in which the last condition was raised is assumed.

CONTROL ARGUMENTS

-handle_ condi tions
sets up a handler for any conditions signaled while in probe that prints an
appropriate message and prevents faulting. (Default)

-no_handle_conditions
does not set up the handler.

OVERVIEW OF PROCESSING

When you invoke probe, it accepts requests from you. A probe request consists of a
keyword (or its abbreviation) that specifies the desired function and any arguments
required by the particular request. Requests are separated from each other by newlines
or semicolons.

You can give a series of requests in the form of a request list. This is used in
breakpoint request lists and conditional execution lists. Here. each request is separated
by semicolons; for example:

value a; v b; continue

Probe at all times has a "current language." It communicates with you in terms
appropriate to the language of the procedure being examined. The syntax of an
expression and the form of probe's output vary from language to language. To use
probe to the fullest. you must compile a program so that the object segment produced
has both a symbol table and a statement map (see "List of Probe Terms" below). A
symbol table and statement map are produced for the languages supported if you give
-table to the compiler. You can also compile a program with -brief _table, which
produces only a statement map. In this case you can retrieve information about source
statements and where the program was interrupted and can set breakpoints, but can do
little else.

probe

3-681 AG92-06

probe

11/86

Don't compile with -optImIze the program being probed because compiler optimization
can cause program variables to appear different than they actually are and thus cause
program statements to behave unpredicatably.

NOTES ON COBOL

Probe uses a COBOL-like syntax when the current language is COBOL. The current
language is COBOL whenever the current source line is in a COBOL program. You
can use the hyphen to form names, as it is in COBOL. You can qualify aggregate
names in the COBOL manner (c of b of a) as well as in the PL/I manner (a.b.c).
An aggregate is expressed by displaying the values of each of its members.

NOTES ON FORTRAN

When the current source line is a FORTRAN statement, probe is in fortran mode,
where logical variables are displayed as n.true." or ".false." instead of as "I"b or "O"b.
Case is ignored if you compiled the program with -card or -fold. You can use the
relational -operators ole" .It, .«1., .nc., .gt., and.g.e •.

NOTES ON PASCAL

Invoked on a Pascal program, probe understands all the Pascal data types, including
enumerated types, typed pointers, sets, records, files, and user-defined types, as well as
the Pascal built-in functions chr, eof, eoln, false, nil, ord, and true.

Array indices are enclosed in brackets, e.g., "a [i,j] n. Cross-section ranges are written
with " .. ", as in Ita [first.last] ". References to record fields must specify all levels;
impiicit level names are not allowed; for example. you can't abbreviate "a. b.c.dn as
"a.d" as you can sometimes do with PL/I structure elements.

Pointer values are written with a circumflex (t.) as the up-arrow, for example "pt." to
indicate the value that p points to. String constants are enclosed in apostrophes: 'This
is a string'. The two boolean values are "true" and "false".

The notation

denotes a value of type type_id located at p, where p can be any Pascal-typed.
pointer, probe pointer variable, or pointer constant.

The probe statement

let pl = p2

is allowed for pI and p2 being any kind of pointer value, i.e., Pascal-typed pointer,
pointer constant (for p2 only), or probe pointer variable.

probe

3-682 AG92-06A

probe

11/86

These extensions have been implemented so that you can write. for example.

del p ptr
let p = first
wh i 1 e p <> nil (v p -> data; let p = p -> data.next)

which can be useful if you want to display a list of records of type "data," chained
by their field "next."

PROBE POINTERS

Two internal "pointers" are used by probe to keep track of the program's state: the
"source" pointer, which indicates the current source program statement, and the
"control" pointer. which indicates the current control point. The values of these
pointers can be obtained by using the "where" request. The source pointer is set by
using the "position" or "use" request. The control pointer is set when you enter probe.

The source pointer always indicates some location in a program. If the program is
active, then the source pointer also indicates a stack frame associated with the
program. If you compile the object segment with the "table" options. then a source
line number is available; otherwise, the location is indicated by an octal offset from
the base of the segment to an instruction.

probe

3-682.1 AG92-06A

This page· intentionally left blank.

11/86 AG92-06A

probe

If you compile the program with a "table" option, probe obtains the text of source
lines from the program's source segment (NAME.pU, NAME. fortran, etc.). This is
either the segment from which the program was originally compiled, if it exists, or
the first segment with the appropriate name found using the "probe" search paths. If
no source segment can be found, the position and source requests are unable to print
source lines.

The language of the source line is the one probe uses with you. The meaning of a
block depends on the language: for a PL/I program it specifies the smallest begin
block or procedure that contains the source line; for a FORTRAN program it specifies
the program or subprogram on which the statement occurs; for a COBOL program it
indicates the program-id of the containing program. The frame specifies a stack frame
associated with the block. When there are several invocations of the same block on
the stack, the frame distinguishes between them. If there is no activation of the
block, the frame portion of the source pointer is nun; in this case, Certain types of
storage (i.e., PL/I automatic) are not defined.

The control pointer indicates the last location executed in the procedure first examined
and whether it took a fault or was called out (unless it was inactive, in which case it
is the location of the entry statement). If you invoked probe by a breakpoint, the
control pointer indicates the statement where the break occurred.

1. If you invoke probe from a breakpoint, the control pointer is set to the line
where the break occurred.

2. If you invoke probe from the command line and specify a procedure_name, then
if the procedure is active the control pointer is set to the last line executed in
the most recent invocation of that procedure.

3. If the procedure in the command line is not active, the control pointer is set to
the entry statement for the procedure.

4. If you supply no procedure_name and there is a QUIT signal or condition frame
on the stack, the control pointer is set to the location being executed when the
condition was signaled.

5. If you give no procedure_name and there are no condition frames on the stack,
the last line executed in the most recent frame is used (this is usually the
command processor).

Information about programs being debugged is stored by probe in your home directory
in a segment called Person_id.probe, where Person_id is your log-in name. This
segment is created automatically when needed. Don't delete it because probe will be
unable to reset any breaks it has set

probe

3-683 AG92-()6

probe

RESTRICTIONS ON INPUT LINES

A probe input line cannot contain unbalanced parenthesis or quotes. This means that a
request or request list must fit on one line. It cannot contain a newline character. If
a long line must be typed, the Multics escape convention of placing a backslash before
the newline can be useci If the newline character is needed (in a character string
constant, for example), the escape sequence (\012) can be entered instead.

PROBE REQUESTS

The following pages present the format and function of each probe request. gtVtng the
name of the request, any abbreviated form. and its arguments (required and optional).
Optional material is enclosed in braces.

Each request that takes arguments is shown with examples of its use. Examples may
be in the syntax used for PL/I, FORTRAN. or COBOL. If an example does not
make sense to you. it may be in another language.

The following items are used throughout the requests section:

CROSS-SECTION
Probe provides cross-sections to allow reference to more than one element of an
array at a time. To reference the ith through jth elements of an array, the
cross-section reference is i:j (for Pascal, Lj). The asterisk (*) is used to reference
all elements of an array.

EXPRESSION
Probe expressions are made up using the arithmetic operators + (addition), -
(subtraction). * (multiplication), and / (division). Precedence of * and / over +
and - is used in evaluating, and parentheses are used to alter the order of
evaluation.

COBOL "abbreviated" expressions are not supported.

LINE
identifies a location in an object segment and possibly the source line associated
with that location. A LINE can be a label known in the current procedure, the
name of an external entry. a line number in the source file for the current
procedure, $b (which denotes the current break), or $c (which denotes the current
line).

Source line numbers consist of a source file number and a line number. The file
number is optional; if not specified, the main file (file 0) is used. You can find
file numbers by examining the compilation listing. The first include file is file
number 1. and so 00. The second part of a source line number is the actual line
in the file. This number is found printed on the left edge of a compiler listing.
It is also the number you would use with an editor.

probe

3-684 AG92-o6

probe

N, M

Note: Since FORTRAN labels are numbers, which probe also uses to specify
line numbers, FORTRAN labels must be preceded by a dollar sign; for
example, "100" is a reference to line number 100, but "Sl00" is a reference
to the line whose label is 100.

COBOL allows the use of labels that look like numbers. When a number is
used for a LINE, it refers to a source statement line number, not a label.
But if the number is preceded by a dollar sign, it is treated as the name of
a paragraph label.

are positive, unsigned integers.

OBJECT
is a path name or reference name of an entry point into some object segment

PATH
Some probe requests accept a Multics pathname as an argument If a PATH
contains characters other than the letters of the alphabet, the digits 0-9, or the
characters ">", "<", ".", ",", "-", "_", "$", "I", it must be enclosed in quotes.

REGEXP
is a qedx regular expression. For details, see the qedx command.

REQUEST
is any probe request (or list of requests).

STRING
Probe recognizes character strings and bit strings. You can use the quote character
and the apostrophe (for FORTRAN and Pascal) to delimit the string. The
maximum length of a string is 256 characters. Strings can contain any character.
To enclose the quote character in a string, double it; for example, "a""b"
represents the string a"b containing a single embedded quote character.

LISi OF BASIC REQUESiS

arguments, args
Usage: args

args N
args OBJECT

displays the names and values of the arguments to the current procedure or a
specified procedure invocation. If you supply N, stack level N is used. If you
give OBJECT, the last stack frame for the procedure OBJECT is used.

probe

3-685 AG92-()6

probe

handlers
Usage: - handlers

handlers N
handlers ORTECT

displays the condition names and actions of the condition handlers established by
the current procedure or a specified procedure invocation. If you give no N,
stack level N is used. If you supply OBJECT, the last stack frame for the
procedure OBJECT is used.

Information about a handler is printed in the following format

on CONDITION_NAME {(FILENAME)} {snap} ACTION

where ACTION is one of the following:

call PROCEDURE~NAME
begin block at line N
system

help {TOPIC}
Usage: help

help *
help TOPIC

prints information about probe. If you invoke it with no argument, it prints
general information about probe; if the argument is an asterisk, it prints a list of
all topics for which info exists; otherwise it prints information about TOPIC.

1 et, 1
Usage: I VARIABLE = EXPRESSION

I CROSS-SECTION = EXPRESSION

sets the specified variable or cross-section of array elements to the value of the
expression (see "Syntax of a Variable" below). If the variable and expression are
of different types, conversion is performed according to the rules of PL/I. Array
cross-sections are expressed as in the value request. One array cross-section
cannot be assigned to another nor can structures be assigned to as a whole.
Certain data types cannot be assigned to any type other than their own (e.g., area,
file).

Note that because of unpredictable compiler optimization, the change sometimes
may not take effect, even though the value request shows that the variable has
been altered.

list_builtins, lb
prints a summary of ali buiitins and their meanings (see ;;Probe Buiitinsn below).

probe

3-686 AG92-06

probe

1 is t_he 1 p, 1 h
prints a summary of all probe topics for which there is an info.

list_requests, lr
prints a summary of all probe requests.

list_variables {NAME}, lsv {NAMES}
lists all variables that have been declared by the "declare" request in the current
invocation of probe, along with their types and values. If you supply one or
more NAMEs, only those variables are listed; otherwise, all defined variables are
listed.

quit, q
returns the current level of probe. If there is more than one invocation of probe
on the stack, you may still be in probe, although at a lower level; if there is
only one, quit returns to command level.

stack, sk
Usage: sk {{M ,} N} {all} {Iong}

displays your stack, showing block names and line numbers (if known) last
executed in each frame, and conditions raised. Each fra.rne is displayed with a
number, which is the "level number," and used in various requests to indicate a
stack frame.

This request traces the stack backwards and displays the first N frames. If you
don't supply ~Y1, the highest numbered frame is the first frame displayed,
otherwise the Mth frame is the first displayed. If you don't give N, all frames
are displayed and you can't specify M.

If you supply long. the following information is printed for each frame: block
name, offset within the component, line number (if known), segment pathname,
and offset within the segment. If you don't give long, only the block name and
the line number (if known) are printed.

If you specify all, "support" frames are included in the trace; they are skipped by
default (See "Notes on Support Frames" below.)

Examples:
sk
sk 3

displays the whole stack.
displays three frames starting with the current one.

symbol VARIABLE {long}, sb VARIABLE {long}
displays the attributes of the variable specified and the name of the block in
which it is declared. If the size or dimensions of the variable are not constant,
an attempt is made to evaluate the size or extent expression; if the value cannot
be determined, an asterisk is displayed instead. If "long" appears after the name
of the identifier and if the identifier is a PL/I structure or COBOL record, the
attributes of all members of the structure or record are displayed as well.

probe

3-637 AG92-D6

probe

value, v
Usage: v EXPRESSION

v CROSS-SECfION

displays the value of the given EXPRESSION or the array elements specified by
CROSS-SECfION. EXPRESSION can be a simple variable name or a more
complex expression.

You speciiy a CROSS-SEeltON by gIVIng me upper ana lower bounds oi one or
more subscripts. You can use an asterisk, which is equivalent to a cross-section
from the lowest to highest subscript of an array. For example:

value arr (1:5, 3:7)
value p -> a.b(j)
value a of b of lrec
value ijptr ()'(,3)

You can use the value request with PL/I structures-but not areas--or COBOL
records, in which case the value of every component is displayed as well.

You can call external functions with the value request The argument list can
involve arbitrary expressions, and the arguments are converted to the proper type
if the called function specifies what type of arguments are expected.

Under your control, the value request can print identifier names in short or long
form (see the modes request).

This request causes probe to identify itself by printing "probe" and the current
version number on the terminal. It may be used, for example, to determine if a
called routine has returned. If the current invocation of probe is not the first
invocation of probe on the stack, the recursive depth is also printed. The version
number is useful for determining whether the version of probe being used has
certain features or bug-fixes. It should always be included in any trouble report
about probe.

COMMAND_LINE
This request passes the COMMAND_LINE directly to the Multics command
processor. It can never be used in a break request list or a conditional execution
list. When used, it must be the only request on the line.

NOTES ON SUPPORT FRAMES

Support frames are frames that belong to a support procedure. A support procedure is
a system utility that performs action directly related to the compiled user code (for
example, allocation) and in which there is a high probability that any errors that arise
are due to improper use by the user (allocating in a full area). When conditions arise
in support frames, the standard Multics error handler attributes the error to the user
..... _ri,... +1.... + n 11 ri +"'" '" ""' ""',.... ... +, "',...b.,:I'I1Ift ... ""+ ,..... ...""..,..... " 'I'I ~_.. "',.,I"JI,.,\I" ,.,
...,vu~ LHaL ,-au,""", LU~ ;'UpPVl I. PIV\,f\A4Ul'-, lal..U\.fl I..uau LU'- "'UpPUl L. PIV\.f",,",Ul\.f.

probe

3-688 AG92-o6

probe

11/86

The probe "stack" request does not display support frames unless invoked as "stack
all." Support frames are given incremental numbers between those of the surrounding
frames (6.1. 6.2 •...• 6.11, .. .).

LIST OF SOURCE REQUESTS

The source pointer is used to indicate a block in a program (to resolve variable name
conflicts), a stack frame (to resolve separate invocations of a block). and a statement
(to be printed). You can display its value with the where request. can change the
value with the position or use request. and can print the source line pointed to with
the source request.

position. ps
sets the source pointer to the statement specified, and prints the statement (see
the use request).

source, sc
Usage: sc {N}

use

sc path PATH

The first form prints source lines of the current procedure, beginning with the
current source line. If you omit N, then one statement is printed. The source
pointer remains unchanged.

A statement can take up many lines, and there may be blank lines (or
nonexecutable source lines, such as comments or declarations) between statements.
Although you can set the source pointer only to a line for which code is
generated, you can display these extra lines along with the statements. If N
statements are displayed, any nonexecutable lines between the first and the last are
also displayed.

The second form gives the pathname of the source segment for the current
procedure. Multics object segments contain within them the absolute pathnames of
the source segments used to compile them. Sometimes these segments have been
moved by the time the object segment is being debugged, and when probe wants
to locate them, it fails. When it does, it informs you that the source cannot be
located; in that case, give the path of the source after the path argument.

If you give no PATH, the source segment used is either the one you originally
compiled the program from or the first segment with the appropriate name
(NAME.pll, NAME. fortran, etc,) found using the probe search paths. If no
source segment can be found, probe is unable to print source lines.

sets the SO'jrce pointer to the statement specified. Unlike the position request, use
does not prints the source line positioned to.

You can use this request in any of the following forms:

probe

3-689 AG92-06A

probe

use
with no argument, source pointer is reset to initial value (same as control
pointer).

use LINE
specifies a line in the current procedure.

use +N
specifies the statement N statements after the current one.

use -N
specifies the statement N statements before the current one.

use line +N
specifies the statement N lines after the current one.

use line -N
specifies the statement N lines before the current one.

use level N
specifies the last line executed in the block at stack level N.

use level +N
specifies the last line executed for stack level (this + N).

use level -N
specifies the last line executed for stack level (this - N).

use OBJECI
specifies the last line executed in the most recent invocation of OBJECT.

use STRING
specifies the next statement containing the literal string.

use /REGEXP /
specifies the next statement that matches the qedx regular expression
REGEXP.

It is possible to set the source pointer only to an executable statement Every
language has nonexecutable statements, for example, blank lines, comments. and
declarations. (See the where request and "LINE. n)

probe

3-690 AG92-Q6

probe

In PL/I, names, including labels, are not known (available for probe) when the
source pointer is outside the block in which they are declared. This means that
probe cannot find a label in an internal procedure or begin block unless that
block is now the "current block". The label can still be found by a search for a
character string that appears in the labeled line, for example, "label". The source
segment used is either the one you originally compiled the program from or the
first segment with the appropriate name (NAME.pll. NAME. fortran. etc.) found
using the "probe" search paths. If no source segment can be found. probe is
unable to print source lines.

where, wh
displays the values of the probe pointers. If invoked with no arguments, it
displays the values of the source and control pointers. The following are also
allowed:

wh source, wh sc
prints the value of the source pointer.

wh source path, wh sc path
prints the pathname of, the segment referenced by the source pointer (i.e .•
the source segment currently in use).

wh control, wh ctl
wh object

prints the value of the control pointer.

wh control path. wh ctl path
wh object path

prints the pathname oi the segment reierenced by the control pointer (i.e .•
the current object segment).

wh path
prints pathnames of segments referenced by the source and control pointers.

NOTES ON BREAKPOINTS

A breakpoint is a list of one or more probe requests associated with a source
statement. When the statement of a breakpoint is executed. the user program is
suspended and probe executes the requests associated with the breakpoint. When the
requests of the breakpoint have executed. the program resumes (unless one of the
requests is a "quit". "halt" or "goto"). A breakpoint can be set "before" or "after" a
given iine. The difference is that a break before a line is executed immediately before
the line is executed. and a break after a line is executed after the line has been
executed. Theref ore if a transf er is made at line X of a program. a break bef ore line
X is executed. but a break after line X is not. If a transfer is made to the statement
on line X. a break set before line X is executed. but one set after line X-I is not
If statement X assigns a new value to a variable. a break set before X is executed
before the variable changes. but one after X takes effect after the variable has been
changed.

probe

3-691 AG92~

probe

No breaks can be set after any COBOL statement due to restrictions of the compiler.
Multiple requests in a breakpoint request list are separated by semicolons. A
breakpoint list of more than one request must be enclosed in parentheses; for example:

b 495: (v x (1) ; v y (1) ; stack 3)

which invokes the "before" ("b") request to set a break at line 495 consisting of the
three requests "v x(1)", "v y(1)", and "stack 3". Note that the "if" request for writing
.......... _~~+; __ .. 1 l.. 1, ~""~ ... "",. .,., ... ~l"A ... t},AC!AC!· fnl" ... v!lt'nnlp,
C1 '-'VIIUl"lUllC11 Ul'-'CLA "'~ llV," "'""" yu.£~""~~, £"' .. _ u.t" ... _.

b 495: if x (1) <y (1): (v x (1) ; v y (1))

which sets a break executing 2 requests if x(1)<y(1), and

b 495: (v x(1);if x(l)<y(1):v yeO)

which sets a break that always prints the value of x(1) but prints the value of y(1)
only if x(1)<y(l).

Requests that transfer control (continue, continue_to, goto and step) should only be
used at the end of a breakpoint request list, since any requests following them are not
executed.

Breakpoints that print more than one variable value can benefit from using the call
request instead of value; f or example:

b 221: call ioa_ (IIJ=Ad, x(J)=A5.2fA[, BUF=AaA] II , i, x(i), buf_sw, buf)

LIST OF BREAK REQUESTS

The next requests deal with setting, printing information about, and resetting
breakpoin ts.

after, af, a
Usage: a {LINE} {:REQUEST}

a /REGEXP / {:REQUEST}

sets a breakpoint after the location in the object segment given by LINE. The
default for LINE is the current line ($c) and the default for REQUEST is "halt".
If you use /REGEXP / instead of LINE, a break is set after every line matching
the qedx regular expression REGEXP. (Type "breaks".)

probe

3-692 AG92-()6

probe

A break set after a line happens after all effects of the statement are completed.
Ii the statement sets a variable. the variable will have its new value by the time
the break is executed. Depending on the nature of the code generated by the
translator for the statement. a break set after a line sometimes cannot be
executed. This is often the case for do loops and if-then-else constructions and
always the case for return statements and gotos.

The "after" request cannot be used on COBOL statements.

before, be, b
Usage: b {LINE} {:REQUEST}

b /REGEXP / {:REQUEST}

sets a breakpoint before the location in the object segment given by LINE. The
deiauit ior LINE is the current line ($c) and the default for REQUEST is "halt".
If you use /REGEXP / instead of LINE, a break is set after every line matching
the qedx regular expression REGEXP.

reset, r
resets breakpoints set by probe at selected lines in selected procedures. You can
use it in any of the following forms:

r
resets the break at the current statement

r LINE
resets the break at LINE in the current procedure.

r STRING
resets breaks at all lines containing STRING in the current procedure.

r /REGEXPj
resets breaks at all lines matching the qedx regular expression.

r OBJECT
resets all breaks in the object segment ORTECI.

r -all

r .. '~ ..
resets all breaks set by you in all segments.

same as reset -all.

Precede LINE, "STRING", and /REGEXP / by "before" to set only breaks before
statements or "after" to set only breaks after statements.

As breaks are reset, their line numbers are printed. unless you supply -brief.

probe

3-693 AG92-06

probe

Examples:

r -all
r a $259,1

r -bf
r <my_dir>work

status~ st

reset every break probe can find.
reset the break after the first statement after the line
labelled "259".
reset all breaks in the current procedure.
reset all breaks in procedure named.

displays line numbers of breaks and optionally the break request list. You can use
it in one of the following forms:

st
displays all breaks in the current procedure.

st LINE
displays break at LINE in current procedure.

st OBJECT
displays all breaks in procedure OBJECf.

s t -all
displays all breaks set by you in all procedures.

st 1<

displays the pathnames of all procedures with breaks set by the you.

The break request list of the break is displayed by default for status LINE and
omitted for all other forms. The -long control argument prints the break list;
-brief suppresses it.

As for "reset," you can distinguish a break before a line from a break after a
line by prefacing the LINE with "before" or "after."

Examples:

st >udd>m>my_seg
st 35 -lg
st b 7
s t -all

lists all breaks in my _seg.
prints the list of breaks before and after line 35.
lists only the break bef ore line 7.
lists all segments in which breaks have been set.

REQUESTS USEFUL IN BREAKPOINT REQUEST LISTS

halt, h
invokes a new probe command level, with the control and source pointers set to
the line of the breakpoint. This is the default break request After a subsequent
continuation, probe resumes interpreting the break request list that contains the
halt When the list is empty, your program is resumed. This request has no
effect when typed at probe command level. If a break is set with no break
request list supplied by you, halt is assumed.

probe

3-694 AG92-()6

probe

Example:

b12:if K>O:h
(va; h; v a)

pause, p

this breakpoint stops if K>O.
this list displays the value of a before and after stopping.

is like halt in that it suspends execution of the breakpoint request list and causes
probe to read from the terminal; unlike halt, when the breakpoint is continued
(by the continue request), the break is immediately reset The effect is a
one-time-only temporary break. This request is used to implement the step and
continue_to requests.

FLOW OF CONTROL REQUESTS

Requests are provided for selected execution of program statements. The user can
resume execution after a break, call external procedures, or perform explicit "goto"s.

continue, c
restarts a program that has been suspended by a probe breakpoint If this request
is used in any other context, probe returns to its caller, which is usually
command level.

continue_to LINE, ct LINE
inserts a temporary breakpoint before the LINE specified. then continues. The
effect is as if the user had typed the following:

before LINE: pause
continue

When the user resumes after a temporary break, it is automatically reset

call OBJECT (ARGUMENTS), cl OBJECT (ARGUMENTS)
calls the external procedure named with the arguments given. ARGUMENTS
should be a list of arguments to the called procedure, separated by commas. If
the procedure expects arguments of a certain type, those given are converted to
the expected type. The value request (see above) can be used to invoke a
function, with the same sort of conversion occurring. If the procedure has no
arguments, an empty argument list "0" must be given.

Examples:

PLl:
call sub ("abcd ll

, p -> p2 -> by, 250, addr(k»
COBOL:

call eat-master (a of b of new-unit, REC-LEVEL)
FORTRAN:

call gamma (43, marigold (i), substr (cs,3»

goto LINE, g LINE
leaves probe and resumes execution of your program at LINE. Don't use this

probe

3-695 AG92-()6

probe

request if the LINE is in a program that is not active. Because of unpredictable
compiler optimizations, this request may be dangerous if you compile the program
with -optimize.

Examples:

step s

9 label var
9 action (4)
9 110
9 $110
9 $c, 1

transfer to value of label variables.
transfer to value of label constant

transfer to line with label 110.
transfer to the statement after the current one.

tries to step through the current program one statement at a time. If the
program has been stopped before line N, a break is set before line N+1. If you
are stopped after line N, the break is set before line N+2. These breaks contain
"~~~' __ as tq~jrS9le ___ request _ listancjthus are self .. resetting. If _ the statements
being stepped do no{- execute iOn sequence, --thestepPlngmay---be unsuccessfuL----PL./I
and FORTRAN do-loops and conditional statements in all languages do not
execute sequentially.

CONDITIONAL REQUESTS

if PREDICATE: REQUEST
evaluates its PREDICATE argument If the result is true, REQUEST is executed,
otherwise it is skipped. This request is useful in break request lists, where you
can use it to cause conditional breakpoints; for example. to stop whenever the
variable "odin" equals I, the break request list can include "if odin = l:halt".

while PREDICATE: REQUEST
repeatedly executes REQUEST, testing the conditional expression PREDICATE
before each execution. REQUEST can be a single request, or several probe
requests, enclosed in parentheses and separated by semicolons.

REQUESTS TO CONTROL PROBE

You can manipulate probe's behavior in a few ways: you can control the length of
error messages and the amount of printing done by breaks and by the value request;
you can specify explicitly the current language; you can control the streams used by
probe for input and output. Unlike other requests, the effects of input_switch,
output_switch, input_description and output_description are static to the process and
remain from one probe invocation to the next until reverted.

probe

3-696 AG92-G6

probe

input_description, ids
takes an attach description and creates an loeB. then makes probe read all its
input from this IOCB until further notice. The IOCB is destroyed the next time
input_description or input_switch is invoked. Example:

ids tty_ stereo_console

causes further input to be read from the device stereo_console.

input_switch {SWITCH}, isw {SWITCH}
causes probe to take all further command input from the switch named. SWITCH
is the name of an already-attached IOCB. If you supply no SWITCH, user_input
is used. If there are any other requests in the input line or break request list
that contain this request, they are ignored without comment Input is read from
the switch until either a new input_switch request is read or all available
characters are processed, in which case a message is printed and input is reset to
user_input. If any errors occur, input is reset to user_input. SWITCH must be
attached and open before you give this request

language {LANG}, lng {LANG}
given the name of one of the languages supported by probe, sets the current
language mode; otherwise displays the name of the current language mode. Names
accepted are: pll, fortran. ft, cobol, and algol-68.

modes {MODE VALUE}, mode {MODE VALUE}
sets various modes internal to probe that change the way it functions, where
MODE is the name of the mode to set. and V ALUE is the new value. A mode
is a probe variable that specifies how a particular function behaves. The values of
all modes can be displayed by using "modes" with no arguments. If you set
conflicting modes, the last one in the request determines the setting of the mode.
If you give no arguments, the current modes are printed.

Most modes can be set to a value that is either a LENGTH or a BOOLEAN. A
LENGTH is "long" (Ig). "short" (sh) or intermediate, or "brief" (bf) and is used
to specify the amount of printing to be done by probe; in some cases, "short" is
synonymous with "brief". A BOOLEAN is used to turn a feature on or off and
can be "yes", "on", or "true" or "no", "off", or "false".

MODES can be any combination of the following:

error_messages LENGTH, em LENGTH
controls the length of the text used for an error message. (Default: long)

probe

3-697 AG92-{)6

probe

meter
controls the printing of meter values when breaks are hit. The meter values
are the number of minutes and seconds of real time ("TIME"). the number
of seconds of virtual CPU time ("VCPU"). and the number of page faults
("PAGE FAULTS") since the last break was restarted or since "mode meter
on." These values do not include any overhead from probe itself. Example:

Stopped after line 37 of test_program
Time = 3 min 42 sec, Vcpu = .057 sec, Page faults = 103

These values do no include any overhead from probe itself.

output_description, ods
takes an attach description and creates an IOCB. then causes probe to write
all its output on this IOCB until further notice. The IOCB is destroyed the
next time you invoke output_description or output_switch. Example:

ods vfi1e_ probe_trace.output

writes further output to the segment probe_trace. output

output_switch {SWITCH}, osw {SWITCH}
with no argument, writes probe output (except for error output) on the
default switch. user_output; otherwise. writes nonerror output on a specified
switch. SWITCH is the name of an already-attached IOCB.

prompt BOOLEAN
controls whether or not probe prints a prompting string on your terminal
when it is listening for a request (see "prompt_string"). (Default off)

prompt_string STRING
specifies the string to be used for prompting. The initial value is
"probel'l [(!"d)I\] ". STRING is used in a call to ioa_$nnl, where the first
argument is a bit (1) that is on if the current invocation of probe is
recursive and the second argument is the current probe depth.

qualification LENGTH, qf LENGTH
controls the format of variables names as printed by "value": for brief.
prints only the last name of a structure (default); for long, prints names with
full qualification. COBOL and FORTRAN are always printed briefly.
regardless of the value of this mode.

truncate_strings
truncates character and bit string values to 200 characters or bits. printing
"<MORE>" at the end if the string is longer than 200. (Default on)

value_print LENGTH, vp LENGTH
controls whether or not the value request prints the name of a variable: for
brief. names are never printed; for short, names of array and structure
elements are printed (default); for long, names are always printed.

probe

3-698 AG92-o6

probe

value_separator STRING, vs STRING
controls the string printed by the value request between the name of a
variable and its value. Only the first 32 characters of STRING are used.
(Default: "=")

MISCELLANEOUS REQUESTS

declare, del
Usage: del NAME TYPE {-force} {external} {defined EXPR}

creates new probe variables and declares external variables. NAME is the name of
a new variable to be created or the name of an external variable if you supply
external (ext). TYPE is a keyword specifying the type of the variable. If you
don't give external and a variable named NAME already exists, you are queried
whether to delete the old one. The -force (-ic) control argument deletes the old
one in this case without a query. There are four possible values for TYPE: The
first is equivalent to PL/I fixed bin (35), Fortran or Pascal integer, and COBOL
comp-6; it can be referred to as fixed, integer. int, or comp-6. The second is
equivalent to PL/I float bin (27) or Fortran real; it can be referred to as float
or real. The third is equivalent to PL/I aligned pointer (Multics ITS ptr); it can
be referred to as pointer or ptr. The fourth is PL/I unaligned (packed) pointer;
it can be referred to as "pointer unaligned" or "ptr unal".

If you give "defined EXPR". where EXPR is a variable expression designating a
region of storage having one of the above TYPEs, NAME becomes a synonym for
that region. This feature allows you to use a short name in place of a
complicated expression.

You are warned about a name conflict if a program variable of the given NAME
is known in the current block when the variable is declared. If this warning is
given, you must refer to the variable with a percent sign before its name to
distinguish it from the program variable.

Examples:

del gravel eomp-6
del clover ptr -force
del sys_info$max_seg_size fixed -ext
del axi fixed defined info_ptr -> aregs (i) .x.index

probe

3-699 AG92-06

probe

display, ds
Usage: ds {*} ADDRESS {FORMAT} {COUNT}

displays an arbitrary location in a selected formal The location displayed depends
on the type of ADDRESS supplied. If ADDRESS is a reference to a VARIABLE,
the address of the V ARIABLE is the location displayed. Otherwise, ADDRESS
must be an expression that evaluates to a pointer; the value of the expression
gives the location to be displayed. If an asterisk appears before a pointer
V ARIABLE, data pointed 10 by L~e pointer's value is displayed.

FORMAT can be one of the following:

ascii, character, ch
N is the number of characters dumped. A non-printable character is printed
as ""

binary, bin, binary35, bin35
N is the number of fixed binary (up to 35) values dumped.

binary71, bin71
N is the number of fixed binary (36 to 71) values dumped.

bit, b
N is the number of bit strings dumped.

code
prints the error message associated with a status code.

float, f, float27, f27
N is the number of float binary (up to 27) values dumped.

float63, f63
N is the number of float binary (28 to 63) values dumped.

instruction, i
N is the num ber of instructions dumped. If the instruction has descriptors,
they are dumped with the instiuction.

octal, 0

N is the number of (36 bit) words dumped.

po inter, ptr, its
N is the number of ITS pointers displayed.

COUNT is the number of elements displayed; the default is one. The size of an
element depends on the format displayed. One pointer is 72 bits (two words), and
one instruction can be as many as four words (for an EIS instruction).

probe

3-700 AG92-o6

probe

Examples:

ds * 2531 100 octal 20

ds foo asci i 64
ds iplO i
ds error_code code

execute STRING, e STRING

dump 20 words in octal, pointed to by
2531100.
display the first 64 characters of foo.
dump current instruction.
displays error message for status code value
assigned to error_code variable.

passes the quoted STRING to the Multics command processor. It is useful in
break request lists because the more convenient "" escape to the Multics
command processor is not available there. Example:

e IIjoa_ IIlIstopped at a break 111111

object {N}, obj {N}
displays the assembly instructions for the current source line. or for the next N
source lines.

SYNTAX OF A VARIABLE

Variables can be simple identifiers, subscripted references, structure qualified references,
and locator qualified references. Subscripts can also be expressions.

Spaces are significant in the names of FORTRAN and COBOL names. A FORTRAN
name cannot contain embedded spaces. Case is insignificant in COBOL names in
FORTRAN names when the object segment was compiled with either "-fold" or
"-card".

Examples:

COBOL:
data-elem

PL1:

log-type of gen-record (3)
gen-record.log-type(3)

ignat2 (p -> lemma - 3)
PASCAL:

arraypA.first [6,2]

The block in which a variable reference is resolved is normally determined by the
source pointer, but can be altered by providing a different block in brackets after the
variable name. A block can be specified in the following ways:

probe

3-701 AG92-D6

probe

Example:

level N
-N

LINE

OBJECT

the block and frame at level N.
the Nth previous invocation of the current block.

the block that contains LINE, in its most recent
invocation.
the block named. It can be internal to the
current proce.dure or externaL

WARNING: Specifying a block explicitly does not change probe's "current language".
It is possible that the block named is in another language than the current block.
Even if this is so, data is referenced in terms of the current language.

SYNTAX OF A CONSTANT

The attributes of a constant are determined by the appearance of the constant Probe
reeogniies arithmetic constants (fixed or floating point, binary of decimaI). string
constants (character or bit), and pointer constants. The maximum length of a string
constant is 256 characters. You can enter bit constants in any radix from binary to
hex. You can enter integers in octal by following them with a lower case "0".
FORTRAN double-precision constants are not implemented.

Probe pointer constants are of the form SSS I WWW or SSS I WWW{bbb), where SSS is
the segment number in octal, WWW is the word offset in octal, and bbb is the bit
offset (optional) in decimal. You can replace SSS with a two-letter code to specify a
pointer relative to the current stack frame (sp). linkage section Up), text segment (tp) ,
or instruction (ip).

Examples:

-123
lOb
45.37
4.73elO
4.2lflO
2.1-0.3i
123456700
"abc"
"quote"llinstring"
11010"b
IFA07"b4
11222"b2
25611200
232 7413 (9)
true
'Nix Olympia'
1230

fixed dec (3)
fixed bin (2)
fixed dec (4,2)
float dec (3)
fixed dec (3, -8)
comp 1 ex dec i ma 1 (2, 1)
fixed bin (24) entered in octal
character string
character string with embedded quote
binary bit string
hexadecimal bit string
quatenary bit string
pointer
pointer with bit offset
FORTRAN logical constant
FORTRAN string constant
fixed bin (35), octal integer, value is

83 decimal

probe

3-702 AG92-06

probe

Specify the segment number and word offset of a pointer in octal, but any bit offset
in decimal.

PROBE BUILT-INS

Many built-in functions are provided. They can be referenced as if they were external
functions. but if no argument is needed. then you can omit the argument list You
can use substr and unspec as pseudo-variables.

addr (A)
addre 1 (p, N)
baseptr (N)
1 ength (5)
max 1 ength (5)
null 0

octa 1 (N)
ptr (P, N)
re 1 (P)
segno (P)
subs tr (5, N)
unspec (A)

A stands for any reference to storage. N for any expression that yields a number, P
for any expression that yields a pointer value, and S for any expression that yields a
string.

All probe built-ins, except "segno" and "ptr", are equivalent to the Multics PL/I
built-ins. The ptr built-in is like the Multics PL/I ptr built-in, but you can also
supply it with a bit offset after the word offset The segno built-in is like the
Multics PL/I baseno built-in, but its result is an integer instead of a, bit string.

The probe command reads numbers in decimal, so a reference to "baseptr(64)" is the
same as "baseptr(1000)".

You can preface built-ins with the dollar sign to distinguish them from program
variables of the same name.

Assume that the following declarations are more or less equivalent, that cs has the
value "abcdef ", and that i is 2:

PL 1 :
dcl i fixed bin;
dc 1 cs char (8);

FORTRAN:
integer i
char~(8 cs

COBOL:
77 i usage is comp-6.
77 cs pic a (8) •

probe

3-703 AG92-()6

probe

addr (j)
v substr (cs, i, 3)
let substr (cs, 4, 1) =
v length (cs)
value maxlength(cs)
v baseptr (2540)

LIST OF PROBE TERMS

active

II II

the address of i.
displays "bed".
sets cs to "abc efn.
displays 8.
also displays 8.
displays 2541 o.

a procedure is said to be active if its execution is ongoing or suspended by an
error, quit signal. breakpoint. or call. An active procedure is distinguished from
one that has never been run. has completed execution or has been interrupted and
aborted by a Multics release command, in that an active procedure has at least
one stack frame associated with it

automatic storage
a·· ·storage-·'class for which-· space·· is allOcated dyriiriiically in ·a· stack .. frame upOn···
block invocation. As a result, variables of this class only have storage assigned to
them, and hence a legitimate address and value, when the block in which they are
declared is active. PL/I variables, by default, belong to this class. FORTRAN
variables must appear in an "automatic" statement in order to belong to this class.

block
corresponds to a PL/I procedure or begin block or FORTRAN program or
subroutine. and identifies a particular group of variable declarations.

breakpoint
a point at which program execution is temporarily interrupted and probe requests
executed.

invocation
when a procedure is called recursively, it appears on the stack two or more times.
and has storage allocated for it the same number of times. Each instance of the
procedure on the stack is considered a separate and distinguishable invocation of
the block. The values of automatic variables can be different in different
invocations of the same block. The most recent invocation is the topmost in stack
trace.

level number
an integer used by probe to uniquely designate each block invocation (i.e., each
entry in a stack trace). Level one is the first (least recent) procedure invoked.
Level number is NOT necessarily the same as either of the numbers given after
the word "level" in a ready message. The first of this pair gives the count of
command levels in effect and gives the value N+ 1, where N is the number of
programs (or groups of programs) whose execution has been suspended, the second
gives the number of stack frames in existence and since the probe stack includes
quick blocks. this number is less than or equal to the level number of the last
command level in the stack trace.

probe

3-704 AG92-()6

,robe

quick block
internal procedures and begin blocks that satisfy certain requirements (e.g .• are not
called recursively, do not contain on. signal, or revert statements, etc.) have their
automatic storage allocated by the blocks that call them. Hence. they do not
actually have their own stack frames, but share the one of the caller. Certain
system commands. such as trace_stack. ignore these blocks. The probe command,
however, includes them in a stack trace and treats them as if they were the same
as any other blocks. You can determine the quickness of a block from a program
listing containing information about the storage requirement of the program
(produced with the -list, -map, or -symbols control arguments). For example,
procedure "quick" shares stack frame of external procedure "main."

stack
if a procedure A calls another procedure B, the execution of A is suspended until
B returns. If B in turn calls C, this is an ordered list of procedure or subroutine
calls indicating which program called which other program, and which returns to
which. This ordered list is called the "stack. n In probe, you can display a trace
of the stack with the stack request. The list is given in top-down fashion with
the most recently called procedure listed first.

3 c
2 B
1 A

The numbers are level numbers.

stack frame
when a block is invoked (that is, a procedure is called or a begin block is
entered), storage is allocated for its automatic variables. The area allocated is
called a stack frame, and logically corresponds to each en try in the stack.

statement map
a table in the symbol section of an object segment that relates locations in the
text section (executable mode) to source line numbers. This table is produced by
a language translator when you specify -table or -brief_table.

static storage
a storage class for which space is allocated once per process, effectively at the
time the procedure is first referenced. As a result, variables of this class always
have a legitimate address and value. Regular FORTRAN variables, and those in a
common block, have static storage. You must explicitly declare PL/I variables.

support procedure
a system utility routine that provides runtime support for other procedures (e.g.,
the procedure that allocates storage as requested by a PL/I allocate statement).

symbol table
a table in the symbol section of an object segment that contains information
about the variables (symbols) used in the program. A symbol table is produced by
a language translator when you give the -table control argument.

probe

3-705 AG92-06

probe

SUMMARY OF REQUESTS

Request
after
arguments
before
call
continue
continue_to
declare

display
execute
goto
halt
handlers
help
if-

input_description

input_switch
language
let
list_ buil tins
list_help
list_requests
list_variables

modes
object
ou tpu t_description

output_switch
pause
position
quit
reset
source
stack
status
step
symbol
use
value
where
while

11/86

Abbrev
a
args
b
cl
c
ct
dcl

ds
e
g
h

ids

isw
lng
I
lb
lh
lr
Isv

mode
obj
ods

osw
pa
ps
q
r
sc
sk
st
s
sb
u
v
wh
wI

3-706

Function
sets a break after a statement.
prints arguments to current procedure.
sets a break before a statement.
calls an external procedure.
restarts after a breakpoint.
inserts a temporary break and continues.
creates probe variables, declares

external variables.
displays storage in a selected format.
passes string to the command processor.
transfers control to a statement.
in break text, establishes a probe level.
displays condition handler information.
prints information about probe.
executes probe requestsi-f- condition

is true.
creates an IOCB and causes probe to

read all its input from it.
reads probe requests from switch.
sets probe language.
assigns a value to a variable.
prints a summary of probe builtins.
lists probe topics for which there is info.
prints a summary of probe requests.
lists all variables that have been deciared

by the "declare" request.
controls probe's behavior.
displays assembly instructions.
creates an IOCB and causes probe to
write all its output on it.
directs probe output to a switch.
stops a program once.
sets the source pointer.
returns from current probe invocation.
deletes breaks.
prin ts source lines.
traces the stack.
lists breakpoints.
advances one statement and halts.
displays attributes of a variable.
sets source pointer.
displays value of an expression.
displays value of probe pointers.
executes commands while condition is true.
causes probe to identify itself.
escapes to command processor.

probe

AG92-06A

Name: process_dir, pd

SYNTAX AS A COMMAND

pd

SYNTAX AS AN ACTIVE FUNCTION

[pd]

FUNCTION

returns the pathname of the process directory of the process in which you invoke it

Name: process_switch_off, pswf

SYNTAX AS A COMMAND

pswf switch_names

FUNCTION

turns off specified per-process switches.

ARGUMENTS

switch_names
are the names of per-process switches.

LIST OF SWITCHES

256k_switch, 256ksw, 256k
allows 256K segments, currently used by FORTRAN programs, to hold very large
arrays.

3-707 AG92-()6

SYNTAX AS A COMMAND

pswn switch names

FUNCTION

ARGUMENTS

switch_names
are the names of per-process switches.

LIST OF SWITCHES

256k_switch. 256ksw, 256k
allows 256K segments, currently used by FORTRAN programs, to hold very large
arrays.

Name: profile, pf

SYNTAX AS A COMMAND

pf {program_names} {-control_args}

FUNCiiON

analyzes the time spent executing each source statement of a program, along with
other parameters of interest, after the program is run.

ARGUMENTS

program_names
are pathnames or ref erence names of programs to be analyzed. Any program
name that does not include "<" or ">" characters is assumed to be a reference
name. You need not specify them if you use -input_file.

CONTROL ARGUMENTS

Apply to all programs specified and can be given in any order.

-brief, -bf
use it with -print to exclude from the output all information for statements that
have never been executed. (Def ault)

profile

3-708 AG92-06

profile

-comment STR, -com STR
use it with -output_file to include STR with the stored profile data as a
comment Yo~ can a® use it with -plot Enclose STR in quotes if it contains
blanks or other special characters. STR can be up to 128 characters long.

-first N, -ft N
use it with -sort to print only the first N values.

-from N, -fm N
use it with -print or -plot to begin the output with the data for line number N.
(Default: 1)

-hardcore. -hard
indicates that the specified programs are supervisor (hardcore) segments. The
current (internal static) profile data for such programs is retrieved from the
address space of the supervisor. Install hardcore programs compiled with -profile
or -lonLprofile by generating a Multics system tape and rebooting Multics (see
generate_mst). You cannot reset (zero) the current profile data for hard core
programs. This control argument and -reset are mutually exclusive.

-input_file path, -if path
retrieves the profile data from the profile data file (pfd) specified by path. This
control argument ignores any current profile data. The pfd suffix is appended to
path if it is not already present If you supply any program_names, they select a
subset of the stored data for analysis; if you give none, all data stored in the
profile data file is used. This control argument is inconsistent with -output_file
and -reset

-line_length N, -11 N
use it with -list to specify an output width of N characters. (Default: 132)

-list. -Is
creates a profile listing for all specified programs. The profile listing file (pfl) is
given a name consisting of the first program name with the language suffix
replaced by the pfl suffix. It is placed in your working directory. The
information described for -print is placed in columns to the left of each source
line in the profile listing.

-long. -lg
use it with -print to include in the output information for statements that have
never been executed.

-max_points N. -mp N
use it with -plot to specify the maximum number of points (line numbers) to be
plotted (the graphics resolution). The Multics graphics system is capable of
plotting up to 1024 points. (Default: 250)

-no_header. -nhe
use it with -print to suppress column headings.

profile

3-709 AG92-06

profile

-output_file path. -of path
stores the profile data for the given program_names in the pfd specified by path.
The file is created if it does not already exist and is overwritten if it does. The
pfd suffix is added to path if it is not already present The profile data is
stored in a format acceptable to -input_file. The format of pfd data files is
described by the PL/I include file pfd_formatincl.pll. The stored data is
determined by -comment, the program_names specified, and whether you did the
compilation using -profile or -lonK-profile. The compiling program name is saved
in the profile data file. If program_name slY'-eifies a bound object segment,
profile data about each component of the bound object segment is saved.

-plot STR
plots a bar graph, on any supported graphics terminal, of the values of the
specified field STR. STR can be any of the fields in the "List of Fields" section
below. This control argument requires that your site has installed the Multics
Graphics System and that you have executed the setup~aphics command. (See
the Multics Graphics System, Order No. AS40.)

-print, -pr
prints the following information for each statement in the specified program(s):

1. Line Number

2. Statement Number

3. Count

4. Cost

if more than one statement on the line.

the number of times the statement was executed.

an approximation to the accumulated execution time for the statement.
Equal to the number of instructions executed plus 10 times the number
of external operators called.

5. Stars (asterisks)
an indication of the percentage of total cost (or time, for 10nK-profile
data) used in the statement The number of stars is selected according to
the following table:

4 stars:
3 stars:
2 stars:
1 star:
no stars:
one period:

20% to 100%
10% to 20%
5% to 10%
2.5% to 5%
0% to 2.5%
Statement was not executed.

6. Names of all external operators called by the statement.

profile

3-710 AG92-06

profile profile

For -lon&-profile (actual accumulated time) data, item 4 is changed to the
following:

4a. Time
actual execution time for the statement in virtual CPU microseconds,
including all time spent in any operators or subroutines invoked by the
statement

4b. A verage Time
Time divided by Count (the average execution time for one execution of
the statement).

4c. Page Faults
page faults incurred in executing the statement

-reset, -rs
resets all current profile data for the named program (s). When specified, the
resetting is done last if -print, -list, -plot, or -output_file is also given.

-search~dir path, -srhd path
use it with -hardcore to add path to an internal search list of hardcore object
directories. You can supply up to eight directories. If you give no search list,
>ldd>hard>o is searched for copies of the specified program(s).

-sort STR
use it with -print to sort in descending order profile information of the specified
field STR. which can be any of the fields in "List of Fields."

-source_dir path, -sed path
use it with -list when the source segments to be listed have been moved from
the directories in which they were compiled. If given, only the directory specified
by path is searched f or source segments.

-to N
use it with -print or ~plot to end the output with the data for line number N.
(Default: line number of the last executable statement)

LIST OF FIELDS

count

time

cost

the number of times the statement was executed.

the vpcu time of the statement (available if you compile the program with
-lonLprofile).

the approximate cost of the statement (available if you compile the program with
-profile).

3-711 AG92-D6

profile

page_faults (pfs)
page faults taken during the statement (available if you compile the program with
-lonlLprofile).

NOTES

If you supply no control arguments, the default ones are -print and -brief.

Object 5eoIuents that
of statement time.

19 hours

Compile the program using cobol, fortran, and pU commands' -profile, or using pU's
-Ions-profile. The latter is used to acquire exact elapsed time statistics and is much
more expensive than -profile.

When analyzing several runs of the same program(s) on various test cases, select
~reset. If y01Jgiv~no -reset, the _c~ITent profile data is accumulated (added) for all
runs.

If you supply several identical control arguments, only the last one is used, except for
-search_dir.

The current data acquired by programs compiled with -Ions-profile may have small
perturbations due to asynchronous events outside the control of the data acquisition
mechanism. Therefore. -lon~profile results are most reliable when obtained from
long-executing programs or from multiple executions of the same program.

The execution time for -Ions-profile programs can be up to 10 times as long as
normal due to the overhead of acquiring CPU time and paging data from the
supervisor. This overhead is subtracted from the current profile data before any
further processing is done.

There are two forms of profile data: current and stored. Current data is in a form
suitable for direct incrementing by the program(s) being analyzed and is stored using
the pU internal static storage class. Current profile data (except for hardcore
programs) can be zeroed by -reset. Stored profile data is permanent data as stored by
-output_file. The pfl's and pfd's are automatically stored as multisegment files if they
are too large to fit into a single segment. This feature allows very-large bound object
segments to be analyzed and very-large source segments to be listed.

Profile data generated from statements in include files are printed only if you specify
no -from or -to. Include file profile data cannot be plotted. Include files that
generated profile data are listed after the main source program. If you give
-source_dir, include files are searched for first in the specified source directory and
then in the directory in which they are found when the program is compiled.

profile

3-712 AG92-Q6

profile

EXAMPLES

The following command lines compile a PL/I program with -profile. execute the
program once to acquire current profile data, and print the five most expensive
statements.

pl1 factorial -profile
PL/I 24c
factorial
n n!
1 1
2 2
3 6
4 24
5 120
6 720
7 5040
8 40320
9 362880
10 3628800

profile factorial -sort cost -first 5

Program: factorial
LiNE STMT COUNT

20 45
10 10

18 55
18 10
11 10

Totals: 144

COST STARS
1710 **'1dc
440 ,b'c*

220 *,'c
120 'Ie

50

2604

OPERATORS
call_int_other, return
ca 11_i nt_th is

caii_ext_out_desc

return

The following command line saves the current profile data in factorial.pfd.

profile factorial -of factorial

The following command line creates a profile listing in factorial.pfl from the source
segment factorial.pll and the profile data file factoria1.pfd. The listing is prepared for
a printer with only 50 columns.

profile -if factorial -ls -11 50

The contents of the profile listing segment factorial.pfl is shown below. Profile
information for a then clause has the same line number and statement number as the
if statement.

profile

3-713 AG92-()6

profile program_interrupt

Profile listing of >udd>Work>Mann>r>faetoriai.pil
Profile data file >udd>Work>Mann>r>factorial.pfd
Created by Mann.Work.a on 12/11/84 1547.5 edt Tues
Date: 12/11/84 1548.3 edt Tues
Total count: 144 Total cost: 2604

COUNT COST STARS LINE SOURCE
1 /* Program to print a table of the first 10

factorials. */
2
3 factorial:
4 procedure;
5 declare n fixed binary (35);
6 declare ioa_ entry options (variable);

1
1

11
10
10

1

55
10

45

19
2

33
440 **'1,

50
10

220 **
120 *

1710 ****

Name: program_interrupt, pi

SYNTAX AS A COMMAND

pi

FUNCTION

7
8
9

10;

ca 1 1 i oa (IInA- n ! ") ;
do n = 1 to

10 ca 11 i oa_ ("AdA_Ad", n , fact (n»;
11 end;
12 return;
13
14 fact:
15 procedure (n) returns (f i xed binary (35»;
16 declare n fixed binary (35);
17
18 if n <=

19
20
21
22
23

then return (1);
else return (n 'Ie fact (n - 1);

end fact;

end factorial;

informs a suspended invocation of an interactive subsystem that you wish to abort a
subsystem request and reenter the subsystem.

3-714 AG92-D6

program_interrupt progress

NOTES

To abort a subsystem request, use the quit (break) key to interrupt execution and then
issue program_interrupt If the subsystem supports the use of this command, it aborts
the interrupted request and asks you for a new one; if it does not, the command
prints an error message. You can then either restart the interrupted operation with the
start command or abort the entire subsystem invocation with the release command.

If there is more than one suspended command in your stack, the stack is searched for
a program that supports program_interrupt and any intervening programs are released.

Name: progress, pg

SYNTAX AS A COMMAND

pg {command_l ine} {-control_arg}

FUNCTION

executes a specified command line and prints information about how its execution is
progressing in terms of CPU time, real time, and page faults.

ARGUMENTS

command_line
is any string that is executable as a command line. If given, no control arguments
to progress can appear on the same line except for -brief. *

CONTROL ARGUMENTS
you can supply only one control argument *

-brief command_line. ~bf command_line
prints only the message at completion of the specified command_line.

-cput N

-off

-on

prints incremental messages every N seconds of virtual CPU time. (Default: 10)

suppresses the incremental messages printed during execution of a command line
previously initiated, but does not suppress the message printed when that command
line is finished (see "Notes on Output Messages" below). You can use -off to
suppress messages while debugging.

restores the printing of incremental messages during execution of the command
line.

3-715 AG92-()6

progress progress

-output_switch name, -os name
directs output from the progress command to be printed on the I/O switch
named name. (Default user_i/o)

-realt N
prints incremental messages every N seconds of real time instead of virtuai CPU
time.

NOTES ON OUTPUT MESSAGES

After every 10 seconds of virtual CPU time (assuming the default triggering value is
used), progress prints out a message of the form:

ct/rt = pt%, ci/ri = pi% (pfi)

where:

ct

rt

pt

ci

ri

pi

pfi

is the number of virtual CPU seconds used by the command line so far.

is the total real seconds used so far.

is the ratio of virtual to real time used by the command so far.

is the incremental virtual CPU time (since the last message).

is the incremental real time.

is ci expressed as a percentage of rio

is the number of page faults per second of virtual CPU time (since the last
message).

When the command line finishes, progress prints the following message:

finished: ct/rt = pt% (pft)

where:

pft
is the number of page fauits per second of virtual CPU time for the
execution of the entire command.

3-716 AG92-06

progress

EXAMPLES

In the following example, you want to see how execution is progressing for the
compilation of a PL/I source program (named newseg.pll) using -list to the pll
command.

progress pl1 newseg -list
PL/I
10/30 = 33%, 10/30 = 33% (26)
20/50 = 40%, 10/20 = 50% (17)
30/123 = 24%, 10/73 = 13% (20)
finished: 33/150 = 22% (22)

Name: qedx, qx

SYNTAX AS A COMMAND

FUNCTION

The qedx editor is used to create and edit ASCII segments. This description *
summarizes the editing requests and addressing features provided by qedx. Complete
tutorial information on qedx is available in the qedx Text Editor User's Guide
(CG40).

ARGUMENTS

macro_path
specifies the pathname of a segment from which the editor is to take its initial
instructions. Such a set of instructions is commonly ref erred to :;!~ a macro. The
editor automatically concatenates the suffix "qedx" to macro_path to obtain the
complete pathname of the segment containing the qedx instructions. The editor
executes the qedx requests contained in the segment given and then waits for you
to type further requests. If macro_path is omitted, the editor waits for you to
type a qedx request. The archive component pathname convention (::) is accepted.

macro_args
are optional arguments that are appended, each as a separate line, to the buffer
named "args" (the first optional argument becomes the first line in the buffer and
the last optional argument becomes the last line). Arguments are used in
conjunction with a macro specified by the macro_path argument.

The editor executes the qedx requests contained in the segment selected and then
waits for you to type further requests. If macro_path is omitted, the editor waits
for you to type a qedx request

qedx

3-717 AG92-o6

qedx

CONTROL ARGUMENTS

-no_rw _path
prevents you from making read (r) or write (w) requests with a pathname. All
read and write requests for buffer 0 affect the pathname specified supplied by
-pathname. This control argument must precede macro_path and is intended to be
used within exec_corns that are providing a limited environment; you are
prevented from examining or altering segments other than the one used with
-n!lthn!ltnP r &&&& ... &&&-·

-pathname path, -pn path
causes qedx to read the segment given by path into buffer 0, simulating "r path,"
before executing a macro (see macro_path). This control argument must precede
macro_path. If no macro is given. you are placed immediately in the editor
request loop. The archive component pathname convention (::) is accepted.

NOTES

Once the qedx editor is invoked, you can immediately begin to issue qedx requests
from the terminal. Requests fall into one of two general categories: input requests
and edit requests. Input requests place the editor into input mode and allow you to
enter new ASCII text from the terminal until an appropriate escape character sequence
is typed to switch the editor back to edit mode. Edit requests allow you to read and
~rite ASCII segments and perform various editing functions on ASCII data. Input and
editing operations are not performed directly on the target segments but in a
temporary workspace known as a buffer.

You can create and edit any number of segments with a single invocation of the
editor as long as the contents of the buffer are deleted before work is started on
each new segment

NOTES ON ADDRESSING

Most editing requests are preceded by an address indicating the line or lines in the
buffer on which the request is to operate. Lines in the buffer can be addressed by
absolute line number; relative line number. i.e., relative to the "current" line (+2
means the line that is two lines ahead of the current line; - 2 means the line that is
two lines behind); and context (locate the line containing /any s tr i ng between
these s 1 ashes/). The current line is denoted by a period (.); the last line of the
buffer, by a dollar sign ($).

An address can be formed using a combination of techniques (/foo/+5 means the line
that is 5 lines ahead of the first line that contains the string "foo"). To designate a
series of lines, two adresses must be given in the following general form:

ADR1,ADR2

The pair of addresses specifies the series of lines starting with the line addressed by
ADR1 through the lines addressed by ADR2, inclusive. When a comma is used to
separate addresses, the address computation of the second address is unaffected by the

qedx

3-718 AG92-06

qedx

computation of the first (Le., the value of "." is not changed by the evaluation of
the first address). However, if a semicolon is used to separate addresses instead of a
comma, the value of n." is set to the line addressed by ADR1 before the evaluation
of ADR2 begins. For example, the address pair

label; .+10

is equivalent to the address pair

/abe/,/abe/+10

NOTES ON REGULAR EXPRESSIONS

The following characters have specialized meanings when used in a regular expression.
A regular expression is the character string between delimiters, such as in a substitute
request or a search string. You can reinvoke the last-used regular expression by giving
a null regular expression (f f).

$

signifies any number (or none) of the preceding character.

when used as the first character of a regular expression signifies the (imaginary)
character preceding the first character on a line.

when used as the last character of a regular expression signifies the (imaginary)
character following the last character on a line.

matches any character on a line.

LIST OF ESCAPE SEQUENCE REQUESTS

\f

\e

exits from input mode, terminates the input request, and returns you to edit
mode. It is used constantly when editing a document, and is the key to
understanding the difference between the input and edit modes.

suppresses the meaning of the escape sequence or special character following it.

\b (X)
redirects editor stream to read subsequent input from buffer X.

\r
temporarily redirects the input stream to read a single line from your terminal.

qedx

3-719 AG92-06

qedx

NOTES ON CURRENT LINE

All editor requests that alter the contents of the buffer or cause information to be
output on your terminal change the value of the current line (.). Usually, the value of
"." is set to the last address used (either explicitly or by default) in the editor
request The one major exception to this rule is the delete request, which sets "." to
the line after the last line deleted. (If the line deleted was the last one in the buffer.
then fl." is set to II $+ 1".)

NOTES ON REQUESTS

In the list given below, editor requests are divided into four categories: input requests,
basic edit requests, extended edit requests, and buffer requests. The input requests and
basic edit requests are sufficient to allow a user to create and edit segments. The
extended requests give you the ability to execute commands in the Multics system
without leaving the editor and also to effect global changes. You should learn the
input and basic edit requests before the extended requests. The buffer requests require
aknowledge-ofauxiliary---buffers~ --(Since-the nothing- and comment requests are
generally used in macros, they are included with the buffer requests.) The buffer
requests, used with any of, the other requests, and special escape sequences allow you
to make qedx function as an interpretive programming language through the use of
macros.

The following request descriptions contain a brief function. the request format, the
default if no ADR is given. and the value of "." after the request is given. For the
value of ADR, see "Notes on Addressing" above; for the value of regexp, see "Notes
on Regular Expressions" above.

LIST OF INPUT REQUESTS

The editor can be placed in input mode with the use of the following input requests.
The input request is followed by the literal text to be input in the buffer and can
contain any number of ASCII lines. To exit from input mode and terminate the input
request. the escape sequence \ f is typed, usually as the first characters of a new
line. The \ f sequence can be followed immediately with other editor requests on the
same line.

append (a)
appends lines typed from the terminal after a designated line.

Format

Default

Value of " ft.

ADRa
TEXT
\f

.a

Set to last line appended.

qedx

3-720 AG92-06

qedx

change (c)
replaces the indicated line or lines with lines typed from the terminal.

Format:

Default:

Value of " ft.

insert (i)

ADR1,ADR2c
TEXT
\f

• , • c

Set to last line entered f rom the terminal.

inserts lines typed from the terminal before a specified line.

Format:

Default:

Value of " ft.

ADRi
TEXT
\f

· i

Set to last line inserted.

LIST OF BASIC EDIT REQUESTS

delete (d)
deletes specified line or lines from the buffer.

Format: ADR1,ADR2d

Default: • , • d

Value of " n. Set to line immediately following the last line deleted.

print (p)
prints designated Hne or Hnes on the terminal; special-case print needs address
only.

Format:

Default:

Value of " ft.

ADR1,ADR2p

• , • p

Set to last line addressed by the print request (i.e., the last
line to be printed.)

qedx

3-721 AG92-()6

qedx

print line number (=)
prints the line number of specified line.

Format ADR=

Defauit: =

Value of t1 tf. Set to line addressed by request.

quit (q)
exits the editor but first checks for modified buffers. If allY modified buffers
are present, qedx displays their status and asks for permission to exit. If
permission is granted. all changes made to those buffers since they were last
written are lost.

The quit request does not itself save the results of any editing that might have
been _.done. If. the contents of a modified bMffer ar~. to be~y~cl, the .write
request (w) must be issUed.

Format q

Note: The quit request must be followed immediately by a newline character.

quit force (qf) (Q)
exits the editor without checking for modified buffers. If any modified buffers
are present, all changes made to those buffers since they were last written are
lost

Format qf or Q

read (r)
appends the contents of the segment named "path" after the given line. The
archive component pathname convention (::) is accepted. If path is omitted, a
default pathname is used if possible. (See "Notes on Default Pathnames" below.)

Format ADRr path

Default: $i path

Value of " ft. Set to the last line read from the segment.

Note: The request "Or path" is used to insert the contents of a segment before
line 1 of the buffer.

substitute (s)
modifies the contents of the addressed line or set of lines by replacing all strings
that match a given regular expression with a supplied character string.

qedx

3-722 AG92-()6

qedx

Format ADR1,ADR2s/regexp/string/

Default: .,.s/regexp/string/

Note: If string contains the special character "&", each "&" is replaced by the
characters that matched regexp. The special meaning of II & II can be suppressed by
preceding it with the escape sequence \c. The escape sequence can also be used
in a substitute request to insert a newline, by preceding the newline character
(\012), or any ASCII character (such as "$11, ".11, 1111, or "\"), with \c. The
first character after s is the delimiter; it can be any character not appearing in
either regexp or string. Strings matching regexp do not overlap, and the result of
substitution is not rescanned.

write (w)
writes the specified lines of the buffer into the segment named "path". The
archive component pathname convention (::) is not accepted. If path is omitted, a
default pathname is used if possible; however, if the default pathname identifies
an archive component, an error message is printed. (See "Notes on Default
Pathnames" below.)

Format:

Default:

ADR1,ADR2w {path}

l,$w path

Note: path is the pathname of the segment whose contents are to be the
addressed lines in the buffer.

LIST OF EXTENDED EDIT REQUESTS

execute (e)
invokes the Multics command processor without leaving the qedx editor. The
remaining characters in the request line are passed to the command processor.

Format: e <command line>

Note: If you wish to abort a command line invoked with the execute request by
issuing the QUIT signal, program_interrupt aborts the command line and restores
control to qedx.

global (g)
prints, deletes, or prints line numbers of all addressed lines that contain a match
for a specified regular expression.

Format ADR1,ADR2gX/regexp/

Where X must be one of the following:

d delete lines containing regexp.
p print lines containing regexp.

qedx

3-723 AG92-G6

qedx

print line numbers of lines containing regexp.

Default: 1,$gX/regexp/

Value of " ft. Set to ADR2 of request

Note: The character immediately following the request X is taken to be the
regular expression delimiter and can be any character not appearing in regexp.

exclude (v)
prints, deletes, or prints line numbers of all addressed lines that do not contain a
match f or a designated regular expression.

Format:

Default:

Value of " ft.

ADR1,ADR2vX/regexp/

Where X must be one of the following:

d delete lines not containing regexp.
p print lines not containing regexp.

print line numbers of lines not containing regexp.

1.$vX/regexp/

Set to ADR2 of request

Note: The character immediately following the request X is taken to be the
regular expression delimiter and can be any character not appearing in regexp.

LIST OF BUFFER REQUESTS

change buffer (b)
designates an auxiliary buffer as the current buffer. The previously designated
current buffer becomes an auxiliary buffer.

Format:

Value of " ft.

b (X)

where X is the name of the buffer that is to become the
current buiier. A singie-character buffer name need not be
enclosed in parentheses.

Restored to the value of "." when buffer X was last used
as the current buffer (i.e., the value of "." is maintained
separately for each buffer and saved as part of the buffer
status). If X is a new buffer. then "." is set to line O.

qedx

3-724 AG92-G6

qedx

move (m)
moves line(s) from the current buffer to a chosen auxiliary buffer. The addressed
lines are deleted from the current buffer and replace the previous contents (if
any) of the auxiliary buffer.

Format

Default

Value of " ft.

buffer status (x)

ADR 1 , ADR2m (X)

.,.m(X)

where X is the name of the auxiliary buffer to which the
lines are to be moved. A single-character buff er name need
not be enclosed in parentheses.

Set to the line after the last line moved in the current
buffer. Set to line 0 in the specified auxiliary buffer.

prints a summary status of all buffers currently in use.

Format

Value of 't ".

Example:

nothing (n)

x

Unchanged.

If you have created the additional buffers alpha and beta
and have designated alpha as the current buffer, the output
from the buffer status request might be as follows:

157
32
53

(0)
-> (a 1 pha)

(beta)

demo. r unof f

This output indicates 157 lines in buffer 0 (the initial
buffer), 32 lines in alpha (the current buffer), and 53 lines
in beta. It also indicates that the default pathname for
buffer 0 is demoorunoff (in your working directory) and
that buffers alpha and beta have no default pathnames.

addresses a line in the segment (i.e., set the value of "" to a particular line).
No other action is taken.

Format: ADRn

Default: .n

Value of " ft. Set to line addressed by request

qedx

3-725 AG92-()6

qedx

comment (")
the editor ignores the remainder of this request line. This request is generally
used to annotate qedx macros and can also be used to annotate online work.

Format: ADR" <comment text>

Default: II <comment text>

Set to line addressed by ADR.

NOTES ON DEFAULT PATHNAMES

The qedx editor maintains a default pathname for each buffer. This default pathname
is used whenever a read (r) or write (w) request is given without a pathname.

Initially, the default pathname for a buffer is null; i.e., any attempt to read or write
"without"apathnam~_"J~l1lt£_jn an~rr()rJl:1~g~.Whenevera read reqllest is issued
with a pathname and the buffer is empty, qedx saveS that" Pathnameas-ihe- deraulCfoi
the buffer. Whenever a write request is issued with a pathname that writes the entire
contents of the buffer (i.e., no address range is given), qedx saves that pathname as
the default for the buffer.

If a read request is given when the buffer is not empty or a write request is given
that does not write the entire buffer, qedx considers the default pathname of that
buffer to be no longer trustworthy. The next use of the read or write request without
a pathname in that buffer causes qedx to ask for permission to use the default
pathname. If permission is given. qedx once again considers the pathname to be
dependable.

For example, given the following sequence:

qedx
r first
r second
w

qedx asks for permISSIon to write the buffer to the segment named "first" because the
'Or second" request was issued when the buffer was not empty.

qedx

3-726 AG92-06

qedx

On the other hand, given the following sequence:

qedx
r first
<editing requests>
1, $d
r second
<editing requests>
w

qedx writes the buffer to the segment named "second" without asking permission
because the buffer was empty when the nr second" request was given.

NOTES ON SPACING

The following rules govern the use of spaces in editor requests.

1. Spaces are taken as literal text when appearing inside of regular expressions. Thus,
/the n/ is not the same as /then/.

2. Spaces cannot appear in numbers; e.g., if 13 is written as 1 3, it is interpreted as
1+3, or 4.

3. Spaces within addresses except as indicated above are ignored.

4. The treatment of spaces in the body of an editor request depends on the nature of
the request.

RESPONSES FROM THE EDITOR

In general, the editor does not respond with output on the terminal unless explicitly
requested to do so (e.g., with a print or print-line-number request). The editor does
not comment when you enter or exit from the editor or change to and from input
and edit modes. The use of frequent print requests is recommended for new users of
the qedx editor. If you inadvertently request a large 3...'TIount of terminal output from
the editor and wish to abort the output without abandoning all previous editing, you
can issue the quit signal (by pressing the proper key on your terminal, e.g., BRK,
ATIN, INTERRUPT), and, after the quit response, you can reenter the editor by
invoking program_interrupt. This action causes the editor to abandon its printout, but
leaves the value of n. t1 as if the printout had gone to completion.

If an error is encountered by the editor, an error message is printed on your terminai
and any editor requests already input (i.e., read ahead from the terminal) are
discarded.

qedx

3-727 AG92-06

qedx

If you interrupt an invocation of qedx (e.g.. via use of the quit signal) and invoke
qedx again bef ore using the start, program_interrupt. or release commands, qedx
informs you that you have one or more suspended invocations and asks if you wish to
continue. If you answer "1" to this query, qedx prints an explanation of the
implications of answering "yes" to this query along with our recommendation of the
proper response to this situation.

NOTES ON MACRO USAGE

You can place elaborate editor request sequences (called macros) into auxiliary buffers
and then use the editor as an interpretive language. This use of qedx requires a fairly
detailed understanding of the editor. To invoke a qedx macro from command level.
you merely place your macro in a segment that has the letters "qedx" as the last
component of its name, then type:

NOTES ON I/O SWITCHES

While most users interact with the qedx editor through a terminal, the editor is
designed to accept input through the user_input I/O switch and transmit output
through the user_output I/O switch. These switches can be controlled (using the iox_
subroutine) to interface with other devices/files in addition to your terminal. For
convenience, the qedx editor description assumes that your input/output device is a
terminal.

Name: query

SYNTAX AS A COMMAND

query arg {-control_args}

SYNTAX AS AN ACTIVE FUNCTION

[query arg {-contro1 args}]

FUNCTION

asks you a question and prints or returns the value "true" if your answer is "yes" or
"false" if your answer is "no"; if you type anything else, the active function asks for
a "yes" or "no" answer.

query

3-728 AG92-Q6

query

ARGUMENTS

arg
is the question to be asked. Enclose the question in quotes if it contains spaces
or other command language characters.

CONTROL ARGUMENTS

-brief, -bf
suppresses extra spacing and newlines when asking questions.

-disable_cp_escape, -dcpe
disables the ability to escape to the command processor via the
"Notes on Command Processor Escape" below).

-enable_cp_escape, -ecpe

" " response (see

enables the ability to escape to the command processor via the " .. " response.

-input_switch STR -isw STR
specifies the I/O switch to use for input of your response. (Default user_input)

-long, -lg
adds a leading newline and three trailing spaces to the question. (Default)

-output_switch STR, -osw STR
specifies the I/O switch to use for output of the question to you. (Default:
user_output)

-repeat DT, -rp DT
repeats the question every DT if you have not responded, where DT must be in a
form suitable for input to convert_date_to_binary_.

NOTES

You can use the format_line active function to insert other active function values into
the question.

NOTES ON COMMAND PROCESSOR ESCAPE

The -disable_cp_escape and -enable_cp_escape control arguments override the system
or subsystem default. The system default is "enabled". Subsystems can define the
default to be either "enable" or "disable". (See the command_query _ subroutine.)

query

3-729 AG92-06

query quotient

EXAMPLES

The following lines from an exec_com segment allow you to control the continued
execution of the exec_com.

&if &[query 1100 you wish to continue? II]
&then
&else &quit

&if &[query [format_line 1100 you want the default date of "'a?1I [date]]]
&then
&else &quit

Name: quotient

SYNTAX AS A COMMAND

quotient numA numB

SYNTAX AS AN ACTIVE FUNCTION

[quotient numA numB]

FUNCTION

returns the result of numA divided by numB.

NOTES

See the description of divide, which returns only the integer portion of quotient, in
this manual.

EXAMPLES

The following interaction illustrates the quotient active function.

string [quotient 5 4]
1.25
string [quotient 1 3]
0.33
string [quotient 5 2]
2.5

3-730 AG92-Q6

rank

11/86

Name: rank

SYNT AX AS A COMMAND

rank CHAR {-control_arg}

SYNTAX AS AN ACTIVE FUNCTION

[rank CHAR {-control_arg}]

FUNCTION

Prints or returns the position of a character in the Multics ASCII collating sequence.
The null (NUL) character is at rank O.

ARGUMENTS

CHAR
is a single character whose rank is to be returned. If it is a special character to
the command processor (i.e .• space, tab, semicolon, etc.). enclose it in quotes.

CONTROL ARGUMENTS

-decimal, -dec
returns the rank as a decimal number. (Default)

-octal, -oc
returns the rank as an octal number.

Name: read_mail, rdm

SYNTAX AS A COMMAND

rdm {mbx_specification} {-control_args}

FUNCTION

selectively lists. prints, deletes. saves and forwards messages and mail sent to a
mailbox.

ARGUMENTS

mbx_specification
specifies the mailbox to be manipulated. If not given. the user's default mailbox I
(> udd > Project> Person> Person.m bx) is used.

3-731 AG92-Q6A

11/86

LIST OF MBX SPECIFICATIONS

-log
specifies the user's logbox and is equivalent to

-mailbox >udd>Project_id>Person_id>Person_id.sv.mbx

-mailbox path, -mbx path
specifies the pathname of a mailbox. Ihe suffix "mbx" is added if necessary.

-save path, -sv path
specifies the pathname of a savebox. Ihe suffix "sv.mbx" is added if necessary.

-user SIR

STR

specifies either a user's default mailbox or an entry in the system mail table (see
"Notes on Mailbox Selection by User" below).

is any noncontrol argument and is first interpreted as -mailbox SIR; if no
mailbox is found, SIR is then interpreted as -save SIR; if no savebox is found,
it is interpreted as -user SIR.

CONTROL ARGUMENTS

-abbrev, -ab
enables abbreviation expansion of request lines.

-accessible, -ace
selects only those messages in the mailbox that you are permitted to read. If you
have read (r) extended access on the mailbox, read_mail selects all messages in the
mailbox; if you have own (0) extended access on 'the mailbox, read_mail selects
only those messages that you sent to the mailbox. (Default)

-acknowledge. -ack
acknowledges messages which request acknowledgement. (Default)

-all, -a
selects all messages in the mailbox regardless of who sent them. It requires read
(r) extended access on the maiibox.

-brief, -bf
shortens some informative messages and suppresses others.

-count, -ct
prints the number of messages being read before entering the request loop.
(Default)

-debug, -db
enables read_mail's debugging facilities. Use of this control argument is not
recommended for normal users of read_mail.

3-732 AG92-06A

read_mail

11/86

-interactive_messages, -im
includes interactive messages in the mailbox in addition to ordinary mail as the
messages that you can manipulate.

-list. -Is
lists the messages in the mailbox before entering the request loop.

-long, -lg
prints the long form of all informative messages. (Default)

-mail, -ml
includes only ordinary messages in the mailbox. (Default)

-no_abbrev, -nab
does not enable abbreviation expansion of request lines. (Default)

-no_acknowledge, -nack
does not acknowledge messages which request acknowledgement.

-no_count, -nct
does not print the message count.

-no_debug. -ndb
disables read_mail's debugging facilities. (Default)

-no_interactive_messages, -nim
includes only mail in the mailbox. (Default)

-no_list, -nls
does not list the messages before entering request loop. (Default)

-no_mail, -nml
does not include ordinary messages. It is incompatible with -nim.

-no_print, -npr
does not the print messages before entering request loop. (Default)

-no_prompt
suppresses the prompt for request lines in the request loop.

-no_request_loop. -nrql
does not enter the request loop if there are no messages in the mailbox. (Default

-not_own
selects only those messages in the mailbox that were not sent by you. It requires
read (r) extended access on the mailbox.

-own
selects only those messages in the mailbox that you sent to the mailbox. This
control argument requires own (0) extended access on the mailbox.

3-733 AG92-06A

11/86

-print, -pr
prints all messages in the mailbox before entering the request loop.

-profile path, -pf path
specifies the pathname of the profile to use for abbreviation expansion. The
suffix "profile" is added if necessary. This control argument implies -abbrev.

-prompt STR
sets the request loop prompt to STR. The default is

A/read_mailA[(Ad)A]:A2x

-quit
exits read_mail after performing any operations given by the -list, -print, or
-request control arguments; this control argument must be given in combination
wi th one of those.

-request STR, -rq STR
executes STR as a read_mail request line before entering the request loop.

-request_loop, -rql
enters the read_mail request loop even if there are no messages in the mailbox.

-totals, -tt
prints the number of the messages in the mailbox and exits without entering the
request loop. This control argument is incompatible with -print, -list, -request,
and -quit.

NOTES ON MAILBOX SELECTION BY USER

A user's default mailbox is specified in the form Person_id.Project_id. For an entry
in the mail table, STR is usually in the form of Person_ide The mail table permits
you to address mail by Person_id without knowing the Project_id of the recipient.
The mail table is described in the The mail table is described in the Extended Mail
System User's Guide (CH23) and the Multics System Administration Procedures
(AK50) manuals.

If STR contains one period and no white space, it is interpreted as a User_id that
specifies a user's default mailbox; otherwise it is interpreted as the name of an entry
in the mail table.

3-734 AG92-06A

For example:

-user DBuxtehude.SiteSA

is interpreted as a User_id that identifies a default mailbox. On the other hand,

-user IIGeorge G. Byron"
-user L.v.Beethoven
-user Burns

are all interpreted as the names of entries in the mail table: the first because it
contains white space; the second because it contains more than one period; the third
because it contains no period.

When interpreted as a User_id. the SIR cannot contain any angle brackets «» and
must have the form Person_id.Project_id. where "Person_id" cannot exceed 28
characters in length and "Project_id" is limited to 32 characters. In this case. "-user
STR" is equivalent to the mbx_specification "-mailbox
>udd>Project_id>Person_id>Person_id.mbx."

When interpreted as the name of a mail table entry. STR cannot contain any commas.
colons. semicolons, backslashes (\). parentheses, angle brackets, braces ({}). quotes.
commercial at-signs (@). or white space other than spaces. The query of the mail
table is performed in a case-insensitive manner. The display_mailins-address command
can be used to determine the actual address corresponding to the STR. The address in
the mail table must identify a mailbox.

NOTES ON CONTROL ARGUMENTS AFFECTING INDIVIDUAL REQUESTS

Control arguments can be specified on the read_mail command line to change the
default beavior of individual requests. Use of these control arguments on the
command line is identical to specifying them for each use of the particular request.
Of course. the modified default behavior of a request can be overriden for individual
uses of the request by use of the appropriate control argument. Type:

help request_name

within read_mail for more detail on the effect of the following control arguments.

LIST OF CONTROL ARGUMENTS AFFECTING THE FORWARD REQUEST

-acknowledge, -ack
specifies that each recipient of your forwarded message will send an acknowledgement
to you after they have read the message.

-no_acknowledge, -nack
specifies that you do not want to receive acknowledgements. (Default)

3-735 AG92-()6

-add_comments

-log

adds a comment to a message before forwarding the message. You are prompted
for the text of the comment, which can be edited in the same way that the
message created by send_mail is edited before transmission. The text of the
comment is placed in the new "Redistributed-COmment" field that is added by
this request in addition to the standard redistribution header fields. The original
copy of the message is not modified by this operation.

places a copy of the forwarded message in your logbox. If the logbox does not
exist, it is created and a message to that effect is displayed.

-notify, -nt
sends a "You have mail." notification to each recipient of the message. (Default)

-no_notify, -nnt
does not send notification messages.

-save path, -sv path
places a copy of the forwarded message into the savebox with the specified
pathname. The suffix "sv.mbx" is added if necessary. If the savebox does not
exist, you are queried for permission to create the savebox. If you refuse to give
permission, the forward request is aborted without actually sending the message to
any of the recipients.

LIST OF CONTROL ARGUMENTS AFFECTING THE PRINT REQUEST

-header, -he
displays all information from the message header including user-defined fields
while excluding the message trace and redundant information. (Default)

-brief _header, -bfhe
displays the minimal amount of information from the message header. The date
and authors are always displayed; the subject is displayed if it is not blank; the
number of recipients is displayed either if there is more than one recipient or if
you are not the sole recipient of the message; if the message was forwarded with
comments, these comments are also displayed.

-lon~header, -lghe
displays all information from the message header including network-tracing
information even if some of the information is redundant (i.e.. if the "From:",
"Sender:", and "Delivery-By:" fields are all equal, this option forces the print
request to display all three fields when it prints the message).

-no_header. -nhe
displays no information from the message header. Only the message number.
message body line count. and message body are displayed.

3-736 AG92-06

LIST OF CONTROL ARGUMENTS AFFECTING THE PRINT HEADER REQUEST

-default
displays all information from the message header including user-defined fields
while excluding the message trace and redundant information. (Default)

-brief. -bf
displays the minimal amount of information from the message header (see
-brief _header above).

-long, -lg
displays all information from the message header (see -lon~header above).

LIST OF CONTROL ARGUMENTS AFFECTING THE REPLY REQUEST

-include_authors. -iat
includes the author(s) of the message as recipients of the reply. (Default)

-no_include_authors, -niat
does not include the author(s) of the message as recipients of the reply.

-include_recipients, -irc
includes the recipients of the message as recipients of the reply.

-no_include_recipients, -nirc
does not include the recipients of the message as recipients of the reply.
(Default)

-include_self, -is
allows you to be a recipient of the reply without explicit use of -to or -cc.

-no_include_self, -nis
does not include you as a recipient of the reply unless explicitly requested via -to
or -cc. (Default)

-include_original, -io
includes the original message as part of the text of the reply.

-no_include_original, -nio
does not put the original message into the reply's text. (Default)

-in den tN, -ind N
indents the original message when -include_original is specified. (Default: 4)

-fill, -fi
causes the reply message to be filled before transmission. (Default for -terminal_input)

-no_fill, -nfi
causes the reply message to not be filled before transmission. (Default for
-input_file)

3-737 AG92-D6

-line_length N, -11 N
specifies the line length used when filling the reply message. (Default: 72)

-notify, -nt
sends a "You have mail." notification to each recipient of the message. (Default)

-no_notify, -nnt
does not send notification messages.

NOTES

Messages are not actually deleted until read_mail is exited via the quit request. While
within read_mail, messages which are accidently marked for deletion can be restored
by using the retrieve request

For a description of the message specifiers, selection control arguments, and addresses
used by. the. individual. read_mail_.requests~ type:

help message_specifiers.gi
help selection_control_args.gi
help addresses'.gi

within the read_mail request loop.

Lf ST OF REQUESTS

In the following summary of read_mail requests. "spec" is used as shorthand for
"message_specifier", "-selca" is used as shorthand for "-selection_args" and "-ca" is
used as shorthand for "-control_args". For a complete description of any request, issue
the read_mail request:

help request_name

prints a line describing the current invocation of read_mail.

?
prints a list of requests available in read_mail.

abbrev {-cal, ab {-cal
controls abbreviation processing of request lines.

all -ca, [all -ca]
prints/returns the message numbers of all messages of the specified type in the
mailbox.

answer STR -ca request_line
provides preset answers to questions asked by another request

3-738 AG92-06

append {specs} path -ca, app {specs} path -ca
writes the ASCII representation of the specified messages to the end of a
segment

apply {specs} {-cal cmd_l ine, ap {specs} {-cal cmd_line
executes a Multics command line on the ASCII form of the messages.

copy {specs} path {-cal
copies the specified messages into another mailbox.

current, c, [current], [c]
prints/returns the current message number.

debug_mode {-cal
enables/disables read_mail's debugging facilities.

delete {specs} {-cal {-selca},
d 1 {specs} {-ca} {-se 1 cal ,
d {specs} {-ca} {-se 1 cal

deletes the specified messages.

do rq_str {args}, [do rq_str args]
executes/returns a request line with argument substitution.

exec com ec Dath {ec arasl,
ec ec_path {~c_args}: -
[exec com ec path {ec args}],
[ec ec_path {ec_args}]

executes a file of read_mail requests which can return a value.

execute cmd_line,
e cmd line,
rex~r-utc ~r+i·v- ~~rl L,.. ... "'"' -- a.... ;. ~ _ j

[e active_str] -
executes a Multics command line/evaluates a Multics active string.

first -ca, f -ca, [first -ca] , [f -ca]
prints/returns the message number of the first message of the specified type in
the mailbox.

forward {spec} {addresses} {-cal,
fwd {spec} {addresses} {-cal,
for {spec} {addresses} {-ca}

forwards the specified message to the specified recipients.

help {topics} {-cal
prints information about read_mail requests and other topics.

3-739 AG92-()6

11/87

if expr -then linel {-else line2},
[if expr -then STRl {-else STR2}]

conditionally executes/returns one of two request lines.

last { -ca}, 1 { -cal, [last {-ca}], [1 {-ca}]
prints/returns the message number of the last message of the specified type in the mailbox.

last_seen, [last_seen]
prints or returns the message number of the last nondeleted message that has been printed
with the print request by a user having d extended access to the mailbox.

last_unseen, [last_unseen], lu, [lu]
prints or returns the message number of the last nondeleted message that has not been
printed with the print request by a user having d extended access to the mailbox.

1 i Sot {s-pe-c-s} {-ca} {--s-el cal t 1 s {specs} {-cal {-selca},
[1 ist {specs} {-cal {-se1ca}], [ls {specs} {-cal {-se1ca}]

displays a summary of the selected messages or returns their message numbers.

list_help {topics}, Ih {topics}
displays the name of all read_mail info segments on given topics.

list_requests {STRs} { -ca}, lr {STRs} { -cal
prints a brief description of selected read_mail requests.

log {specs} { -cal
places a copy of the specified messages into your logbox.

mailbox, mbx, [mailbox] t [mbx]
prints or returns the absolute pathname of the mailbox being read.

next {-ca} , [next {-cal]
prints or returns the message number of the first message of the specified type after the
current message.

new, [new]
prints or returns the message number of all nondeleted messages since the last one that have
been printed with the print request by a user having d extended access to the mailbox.

next_seen {specs}, [next_seen {specs}], ns {specs}, [ns {specs}]
prints or returns the message number of the first nondeleted message after the specified
message (or after the current message by default) that has been printed with the print request
by a user baving d extended access to the mailbox.

3-740 AG92-06B

read_mail

11/87

next_unseen {specs}, [next_unseen {specs}],
nu {specs}, [nu {specs}]

prints or returns the message number of the first nondeleted message after the specified
message (or after the current message by default) that has not been printed with the print
request by a user having d extended access to the mailbox.

preface {specs} pathname {-ca}, prf {specs} pathname {-cal
writes the ASCII representations of the specified messages to the beginning of a segment.

previous {-ca} , [previous {-cal]
prints or returns the message number of the last message of the specified type before the
curren t message.

previous_seen {specs}, [previous_seen {specs}],
ps {specs}, Cps {specs}]

prints or returns the message number of the last nondeleted message before the specified
message (or before the current message by default) that has been printed with the print
request by a user having d extended access to the mailbox.

previous_unseen {specs}, [previous_unseen {specs}],
pu {specs}, Cpu {specs}]

prints or returns the message number of the last nondeleted message before the specified
message (or before the current message by default) that has not been printed with the print
request by a user having d extended access to the mailbox.

pr i nt {specs} {-ca} {-se 1 cal ,
pr {specs} {-cal {-se 1 cal ,
p {specs} {-ca} {-se 1 cal

prints the specified messages.

print_header {specs} {-ca} {-selca}, prhe {specs} {-ca} {-selca}
prin ts the specified messages' headers.

quit {-ca}, q {-cal
exi ts read_mail.

ready, rdy
prints a Multics ready message.

ready_off. rdf
disables printing of a ready message after each request line.

ready_on, rdn
enables printing of a ready message after each request line.

reply {specs} {-ca} {addresses}, rp {specs} {-ca} {addresses}
creates a send_mail invocation to answer the specified messages.

3-740.1 AG92-o6B

l1i8i

retrieve {specs} {-selca}, rt {specs} {-selca}
retrieves the specified deleted messages.

save {specs} path {-ca} , sv {specs} path {-ca}
places a copy of the specified messages into a save mailbox.

seen, [seen]
prints or returns the message number of all nondeleted messages that have been printed with
the print request by a user having d extended access to the mailbox.

subsystem_name, [subsystem_name]
prints or returns the name of this subsystem

subystem_ version, [subsystem_version]
prints or returns the version number of this subsystem.

switch_off switch_name {specs}, swf switch_name {specs}
turns off a specified switch for each selected message.

switch_on switch_name {specs}, swn switch_name {specs}
turns on a specified switch for each selected message.

unseen, [unseen]
prints or returns the message number of all nondeleted messages that have not been printed
with the print request by a user having d extended access to the mailbox.

write {specs} path {-ca}, w {specs} path {-cal
writes the ASCII representation of the specified messages to the end of a segment.

3-740.2 AG92-o6B

11/87

SYNTAX AS A COMMAND

read_tape_and_query volume id {-control args},
- rtq vOlume_ld {-control_args}

FUNCTION

allows the user to interactively inspect and determine the contents of a magnetic tape. Physical
tape file processing capabilities are also provided. Note that once the command is invoked. the
user is placed in the read_tape_and_query subsystem where the user may use the
read_tape_and_query requests. The read_tape_and_query requests are listed below under "List
of requests" .

ARGUMENTS

volume_id
is the local tape library designation of the requested tape volume.

CONTROL ARGUMENTS

-abbrev, -ab
enables abbreviation processing within read_tape_and_query. If this argument is specified
and the -profile control argument is not given, the user's default profile segment
(> udd> Project_id> Person_id> Person_id. profile) is used.

-block N. -bk N
specifies the maximum physical record size to be processed. where N is the number of bytes.
The default is 11200 bytes (2800 36-bit words).

-comment STR. -com STR
displays STR as a message on the operators console at the time that tape volume
<vo 1 ume_ i d>is mounted. If SIR contains spaces. tabs or special characters. the entire SIR
must be enclosed in quotes.

-density N. -den N
specifies the initial density setting for tape attachment. where N is the number of bits per
inch (bpi). The default is 800 bpi. Although the density is automatically determined (see
"Notes"' below). some tape subsystems may not have tape drives capable of handling the
default density.

-no_abbrev, -nab
specifies that abbreviation processing is not to be done by the read_tape_and_query request
processor. (Default)

-no_prompt
suppresses printing of the prompt character string (IIHa: >") for read_tape_and_query
requests.

3-741 AG92-{)6B

11/87

-no_request_loop, nrql
does not enter the read_tape_and_query request loop.

-profile PATH, -pf PATH
specifies that abbreviation processing is to be done using PATH. The suffix ".profile" need
not be given; however, ".profile" must be the last component of PATH. If this control
argument is given; the "-abbrev" control argument need not be given.

-prompt STR
changes the prompt for the read_tape_and_query request loop to STR. If STR is a null
string, "", no prompt is given. (Default is to prompt with "rtq:").

-quit
exits after performing any operations specified by control arguments. (Default is to enter
the read_tape_and_query request loop).

-request STR, -rq STR
specifies that an initial request line of STR is to be executed before entering the
read_tape_and_query request loop.

-request_loop, -rql
specifies that the read_tape_and_query request loop be entered. (Default).

-ring. -rg
specifies that the tape is to be mounted with a write ring. This allows a tape that is already
mounted with a write ring to be attached without operator intervention. The default is to
mount the tape with no write ring.

-track N, -tk N
where N is 7 or 9 for 7 or 9 track tapes. If this control argument is not specified, 9 track is
assumed.

NOTES

The read_tape_and_query command requests the specified tape volume to be mounted. After the
mount request has been satisfied, read_tape_and_query automatically determines the tape
density and checks for a recorded tape label. If the density can be determined, an informative
message is displayed that includes the density. If the tape has a standard Multics, GCOS, IBM,
ANSI or CPS tape label, an informative message is displayed that includes the standard label type
and the recorded volume name. If the tape contains a valid IBM or ANSI label, a second message
is displayed informing the user of the physical block size and logical record length (in bytes) of
the first data file. For all standard labeled tape volumes, the tape is then positioned to the
beginning of the first data file. If the tape label is not recognized as one of the five standard types
mentioned above, it is designated as unlabeled and the tape volume is repositioned to the
beginning of the tape.

3-742 AG92-06B

11/87

The read_tape_and_query command then goes into a request loop whose requests are listed
below.

LIST OF REQUESTS

The rtq request loop displays the prompt character stri.'1g
"rtq:" unless
"-no_prompt" control argument has been specified. Some requests acceptable to
read_tape_and_query take arguments that are optional. These optional arguments are enclosed in
braces. The valid user responses while in this request loop are as follows:

?
lists the available read_tape_and_query requests and active requests.

abbrev {-off I -on I -profile PATH}. ab {-off I -profile PATH}
turns abbreviation processor on or off and changes profile segments. As an active request,
[ab] , returns "true" if abbreviation expansion of request lines is currently enabled within
the subsystem and "false" otherwise.

<rest_of _1 i ne>
passes <rest_of _1 i ne>to the command processor for execution as a Multics command.

displays the command name read_tape_and_query with its short name (rtq) in parentheses.

answer STR {-brief, (bi) I -caB STR i-match STR i-exclude STR,
-ex STR I -query I -then STR I -times N} request_line

bof

provides preset answers to questions asked by another request. where STR is the desired
answer to any question and request_line is any subsystem request line.

positions to the beginning of the current physical tape file.

bsf {N}
backspaces N files. If N is not specified, 1 is assumed.

bsr {N}
backspaces N records. If N is not specified, 1 is assumed. bsr will not cross backward to the
previous file.

density N, den N
sets the tape density to N bits per inch (bpi), where N can be 6250, 1600, 800, 556, or 200.
Density requests must be issued while the tape is positioned at the BOT marker or a request
reject status results. Normally the tape density need not be set as it is automatically set by
read_tape_and_query before the request loop is entered.

3-743 AG92-06B

11/87

do request_string {args}
or: do -long, -lg I -brief, -bf I -nogo I -go I -absentee I -interactive
expands a request line by substituting the supplied arguments into the line before execution.
The request_string is a request line in quotes and args are character string arguments that
replace parameters in request_string. As an active request, [do "request_string" args]
returns the expanded request_string rather than executing it

dump {offset} in_words} {char_types}
displays the contents of the record buffer (filled with the read_record request) on the users
terminal. If no arguments are specified, the contents of the entire tape buffer are displayed
in octal format

If the n_words argument is specified. it must follow offset However, these arguments may
. Q~ p<>~itJ()n~b~f Qre QJ a.fter any char_type arguments that may be specif ied.- The offset and
n_words arguments must be specified in octal. If offset is specified without being followed
by n_words, then the tape buffer is dumped starting with the <offset>th word and ending
with the last word in the tape buffer. The char_type optional arguments allow interpretation
of the data contained in the tape buffer in various character formats. If more than one
char_type argument is specified, then the tape buffer is dumped with the first character
interpretation, followed by the next character interpretation, and so on until all requested
data formats have been dumped.

The value of char_type can be selected from the following:
-ascii

displays the contents of the record buffer in octal with an ASCII interpretation of the
data on the right side.

-bed
displays the contents of the record buffer in octai with a BCD interpretation of the data
on the right side

-ebcdic

-hex

displays the contents of the record buffer in octal with an EBCDIC interpretation of the
data on the right side.

displays the record buffer in hexadecimal format

exec_com ec_path {ec_args}, ec ec_path {ec_args}
executes a program written in the exec_corn language which is used to pass request lines to
the rtq subsystem and to pass input lines to read_tape_and_query requests which read input
ec_path is the pathname of an exec_com program. The suffix ".rtq" is assumed if not
specified. ec_args are optional and are substituted for parameter references in the program
such as &1. As an active request, [ec ec_path {ec_args}], the exec_com program specifies a
return value of the exec_com request by use of the &return statement.

3-744 AG92-()6B

11/87

execute LINE~ e UNE
executes the supplied line as a Multics command line. As an active request, [e LINE],
evaluates a Multics active string and returns the result to the subsystem request processor.
LINE is the Multics command line to be executed or the Multics active string to be evaluated.
It need not be enclosed in quotes.

execute_string {-control_args} {control_string {args}}
[exs {-control_args} control_string {args}

eof

substitutes arguments into a control string. The expanded control string is then passed to the
command processor or the rtq subsystem request processor f or execution. where
control_string is a character string whjch may contain substitution constructs and args are
zero or more character string arguments. Any argument supplied but not referenced by an
argument substitution designator is ignored. As an active function,

positions to the end of the current physical tape file, after the last record.

fsf {N}
forward spaces N files. If N is not specified, 1 is assumed.

fsr {N}
forward spaces N records. If N is not specified, 1 is assumed.

hpln ftnn;r-c:.!l [_~'.:Il r \. """.t"'~"'U'~ l ..., J

prints information about request names or topics, where topics are the topics on which
information is to be printed.

if EXPR -then LINE1 {-else LINE2}
conditionally executes one of two request lines depending on the value of an active string.
EXPR is the active string which must evaluate to either "true" or "false". LINE1 is the
subsystem request line to execute if EXPR evaluates to "true" and LINE2 is the subsystem
request line to execute if EXPR evaluates to "falsen

• If LINE2 is omitted and EXPR is
"false", no additional request line is executed. As an active request, returns one of two
character strings to the subsystem request processor depending on the value of an active
string.

list_help {topics}, lh {topics}
displays the names of all subsystem info segments pertaining to a g1Yen set of

list_requests {STRs} {-all, -a I -exact},
lr {STRs} {-all, -a I -exact}

prints a brief description of selected subsystem requests, where STRs specifies the requests to
be listed.

3-745 AG92-06B

11/87

list_tape_contents {-long} {-label}. ltc {-lg} {-Ibn
displays information about each record on the tape. The tape is positioned to BOT and each
record is read in. If the tape is one of the five known standard types, the current record is
inspected to determine if it is a valid label or trailer record; if so, information pertinent to
that particular label or traiier record is displayed, in interpreted format. If the -long
argument is used, the contents of the label record is displayed (in ASCII) as well. Otherwise.
the length of the current record is compared to the length of the last record read. If the
lengths are the same, a tally of the number of records with the same length is incremented. If
the length of the current record is different from that of the last record, or if an end of file
mark is detected, a message is displayed that includes: the number of records of equal length,
and the record length in hits, words, 8-bit bytes. 9-bit bytes, and 6-bit characters.

This display of record lengths can be circumvented by using the -label argument. which only
displays the label records. 'Fhis-operationcontinnesuntilthe-togicat-endof tape is rea-ched
(two end of file marks in succession or an end of volume trailer record, followed by an end
of file mark). The tape is repositioned to BOT after the list_tape_contents request is
complete. Use of the -label argument with unlabeled tapes is treated as an error.

mode SIR
sets the hardware mode for reading tape to STR, which can be one of the following modes:

bin

bed

nine

eight bit bytes are read in and packed (nine eight bit bytes per memory double word).
This is the default mode.

reads in tape that was originally written in binary coded decimal (BCD): The hardware
performs input character conversion.

eight bit bytes are read in and converted to nine bit bytes by forcing the most significant
bit of each nine bit byte to "O"b.

position, pos
displays the current physical tape file and record position for the user.

quit, q
detaches the tape and returns control to the current command processor.

read_file {args} , rdfile {args}
reads the current tape file into the segment described by args. The default action of this
request with no arguments queries the user as to the segment name he wishes the tape file to
be read into and then issues a warning telling the user that the current tape file will be read in
as a stream file with no conversion. The user is asked if he wishes to continue. If he answers
yes, then the tape file is read into the designated segment and a newline character is
appended to each physical record. If the user answers no, then control is returned to the

3-745.1 AG92-06B

11/87

request loop. If the tape is one of the five standard types, each record is checked to
determine if it is a valid label or trailer record. If it is, pertinent information about the
record is displayed and the record is not written to the output segment. The optional
arguments associated with the read_file request are:

-output_file {STR}, -of {STR}
where STR specifies the segment name for the tape file to be read into. If SIR is
omitted, the user is queried for the segment name.

3-745.2 AG92-06B

-count N, .-ct N
allows reading up to N files, or until logical end of tape is encountered.
After the first file is read in, the -count iteration count is appended to the
end of the user-designated output file name as a second component For
example:

rdfi1e -ct 3 -of fi1e1

names the first output file filel, the second filel.2, and the third file1.3.

-multics, -mult
specifies that the input tape file is in Multics standard system format. The
data portion of each unrepeated record is written to the specified stream
output file. No attempt is made to separate the contents of the physical
record into a logical format. Since standard Multics tape format specifies that
an EOP mark be written every 128 records, the "-extend" and "-count"
arguments should be used to ensure that all of the data is recovered.

-gcos, -gc

-cp5

-dec

specifies that the input tape file is in GCOS standard system format. That is,
each record has a block control word and several record control words
dividing the physical record into logical records. Each record is processed
accordingly. BCD records are converted to ASCII. ASCII records are copied
directly. Binary compressed deck card images are decompressed and converted
to ASCII. If a BCD card image is identified as a "$ object" card, this card
image and all successive binary card images, until a "$ dkend" card image is
identified, are copied to a separate file whose name is formed from columns
73 - 76 of the $ object card with a suffix of ".obj". If a BCD card image
is identified as a "$ snumb" card, this ·card and all following card images,
until another $ snumb card or end of file, are copied into a file whose name
is formed from columns 16 - 21 of the $ snumb card with a suffix of
".imcv". If a BCD card image is identified as a "$ < 1 anguage>" card, this
card and all following card images, until another $ < 1 anguage> card or end
of file, are copied into a file whose name is formed from columns 73 - 76
of the $ <1 anguage> card with a suffix of ".ascii". This file is also
surrounded by sufficient GCOS "JCL cards" so that the completed "deck" can
be assembled using the Multics GCOS Environment Simulator. If columns
73 - 76 of the $ <language> card are blank, the $f <language> card
image is displayed and the user is queried for the filename.

specifies that the input tape file is in CP5 standard system format, which
consists of variable length records. recorded in EBCDIC. Each variable length
logical record is written to the specified stream file, with a newline character
appended to the end. The data read from the tape is automatically converted
from EBCDIC to ASCII.

specifies that the input tape file is in Digital Equipment Corporation (DEC)
standard system format Each DEC word is 40 bits long, of which the first

3-746 AG92-06

11/86

32 bits and the last four bits are concatenated to form one 36-bit word. The
other four bits are discarded. The converted data is then written onto the
specified file in raw format.

-ibm_vb {STR}
specifies that the input tape file has standard IBM VB-formatted variable-length
records with embedded block and control words. STR can be ebcdic. ascii. or
binary (bin). (Default: ebcdic)

-ansi_db {SIR}
specifies that the input tape file has ANSI-standard DB-formatted variable-length
records with embedded record control words. STR can be ascii. ebcdic. or binary
(or bin). (Default ascii)

-output_description, -ods
allows you to specify a standard Multics I/O attach description to receive the
tape file data. User queries ask you to input the attach description and the
opening mode. You can express opening modes in long form or in abbreviation
form (e.g., sequential_output, sqo).

-extend

-nn1

allows you to concatenate the contents of several tape files into one output file.
This control argument has meaning only if you also specify -count

allows escape from the read_file default of appending a new line character to the
end of each physical record. when you give no other format specification.

-truncate N. -tc N
allows you to truncate each physical record to a length of N characters.

-skip N
allows you to skip N characters (e.g.. a record or block control word) at the
beginning of the physical tape record. It is useful when you are processing tapes
of an unfamiliar format.

-logica1_record_Iength N, -irl N
allows you to divide each physical tape record into several logical records of
length N. Each logical record is written to the specified file with a new line
character appended to the end. Logical records cannot span physical blocks.

-convert STR, -conv STR
allows you to convert the data format of each tape record, where STR can be
one of the following:

3-747 AG92-06A

11/87

ebcdic_to_ascii. ebcdic
converts input EBCDIC data to ASCII.

bcd_to_ascii. bcd
converts input BCD data to ASCII.

comp8_to_ascii. comp8
converts inpui compS (four-bii-packed decimal) dam io iis equivaieni ASCii
represen tation.

read_record {-count N}. rdrec {-ct N}
reads the current record into a temporary buffer. If the tape is one of the five known
standard labeled tapes, the record is checked to determine if it is a label or trailer record; if it
is. information pertinent to that particular record type is displayed. Otherwise. information
pertaining to the physical record length in bits. words. 8-bitbytes. 9~bit bytes. and 6-bit
characters is displayed. When the -count argument is specified, N records are read,
overlaying each other in the temporary buffer.
Note that when read_record encounters a tape mark, it leaves you positioned at the
beginning of the next file.

records_in_file, rif
displays the total number of records in the current physical tape file. This operation reads
each of the records in the file. repositions the tape to its original position, prior to this
operation, and displays the count of records read.

rewind, rew
issues a rewind command and positions the tape to the beginning of tape (BOT) marker.

substitute_arguments {-control_args} {control_string {args}}
[sbag control_string {args}]

substitutes arguments into a control string and prints the result on user_output. As an active
function, the result is returned.

Tape Positioning: When inspecting multifile tape reels, you may find the action of various
positioning requests confusing. The table below illustrates the starting and ending position when
using various tape positioning requests:

Start Ibsition Operation End Position
file 6, record 7 rewind file 1, record 1
file 6, record 7 bof file 6. record 1
file 6, record 7 bsf f He 5, record 1
file 6, record 7 fsf file 7, record 1
file 6, record 7 bsr file 6. record 6
file 6, record 7 fsr file 6, record 8
file 6, record 7 bsf 8 (1) file 1. record 1
~~1"" t:.. .. ,..,,."" ~ "7 bsr 10 (2) ~~1 t:.. .. "'I'II -~ 1
111'-' V, 1 \A.lVIU I 1 U~ V, J IIAIUJ U J.

file 6, record 1 read_file -count 3 file 9, record 1

3-748 AG92-06B

11/87

Note 1: This causes a rewind operation to occur. since the resultant file number would be less than
one.
Note 2: This causes a bof operation to occur, since the resultant record number would be less than
one.

Examples:

A typical example of a read_tape_and_query invocation follows. including the initial
information displayed for a labeled tape.

read_tape_and_query usertl
Tape usertl,blk=2800 will be mounted with no write ring.
Tape usertl,blk=2800 mounted on drive tape_02 with no write ring.
Tape density is 1600 bpi
Tape usertl is a labeled ANSI tape
Volume name recorded on tape label is USERT1
Setting tape dim to read in nine mode
First data file format:

ANSI HDR2 label record. Next file format:
Record format DB; Block length 4000; Record length 4000: Mode ASCII;

Positioning to beginning of physical tape file # 2,
(logical file # 1)

rtq:

3-748.1 AG92-()6B

ready

Name: ready, rely

SYNTAX AS A COMMAND

rdy

FUNCTION

prints an up-to-date ready message whose format is optionally set by the general_ready
command. The default ready message if general_ready is not used gives the time of
day and the amount of CPU time and page faults used since the last ready message
was typed. If the user is not at the first command level, i.e., if some computation
has been suspended and the stack frames involved not released, the default ready
message also contains the number of the current command level.

NOTES

See the descriptions of the ready _on, ready_off, and general_ready commands.

EXAMPLES

r 9:47 3.61 29

r 15:03 .47 12 Level 2

Name: ready_off, rdf

SYNTAX AS A COMMAND

rdf

FUNCTION

turns off the ready message typed on the terminal after the processing of each
command line. Automatic typing of the message is suspended until a ready_on
command. is given.

NOTES

See the descriptions of the ready, ready_on, and general_ready commands.

3-749 AG92-G6

ready_on rebuild_dir

Name: ready_on, rdn

SYNTAX AS A COMMAND

rdn

FUNCTION

types a ready message on your terminal after each command line has been processed.

NOTES

Since automatic printing of the ready message is in effect until you invoke ready_off,
ready_on is generally used only to "cancel" ready_off.

See the ready , ready_off, and general_ready commands.

Name: rebuild_dir

SYNTAX AS A COMMAND

rebuild_dir path {-control_arg}

FUNCTION

compares a saved directory. information segment created by the save_dir_info command
with the current version of the directory in the storage system. If any subdirectories
are missing, rebuild_dir recreates them; if any links are missing, it relinks them; if
any segments are missing, it prints a comment.

ARGUMENTS

path
is the pathname of a directory information segment. If path does not have the
dir_info suffix, it is assumed.

CONTROL ARGUMENTS

-brief, -bf
suppresses the comments "creating directory X" and "appending link X".

-long, -lg
prints full information about any missing segments.

-priv
sets quotas and the sons' logical volume identifier, You need acce.s.s to the hphcs_
gate here.

3-750 AG92-06

reconnect_ec_disable

Name: reconnect_ec_disable

SYNTAX AS A COMMAND

reconnect ec disable

FUNCTION

reverses the effect of the reconnect_ec_enable command. Following reconnection to a
disconnected process, no attempt is made to find or invoke the exec_com "reconnect.ec".
If a standard process overseer (e.g., process_overseer_ or project_start_up) is in use
(the normal case), reconnect_ec_enable is in effect by default

SYNTAX AS A COMMAND

reconnect ec enable

FUNCTION

reverses the effect of the reconnect_ec_disable command. When the user. reconnects to
a disconnected process, an attempt is made to find the segment reconnect.ec. First the
user's home directorY. then the user's oroiect directory (>user _ d i r d i r>Proj ect_name) .
then >system_coniro l_d i r will be ·searched. At the first i'uccess, the command
"exec_com >Di rectory_name>reconnect.ec" will be executed.

NOTES

The use of reconnect.ec is enabled automatically by the standard process overseer
process_overseer _.

The current command processor is used to execute the command. Thus, if the user is
using the abbrev command processor, any applicable abbreviation will be expanded.

Invocation of the reconnect.ec is not automatically enabled by the project_start_up_
process overseer. Thus, when using project_start_up_. the project administrator may
enable the invocation of reconnect.ec at any point in the project_start_up.ec.

3-751 AG92-()6

reductions reductions

Name: reductions, rdc

SYNTAX AS A COMMAND

rdc path {-control_args}

FUNCTION

generates language translators. It compiles a segment containing reductions and action
routines into a PL/I source segment; it then invokes the pU compiler to compile the
PL/I source. The reductions specify the syntax and semantics of a new language; the
action routines perform the basic operations (e.g, generating code) required to translate

* the language.

ARGUMENTS

path
is the pathname of a translator source Segment that is to be compiled by rdc. If
path does not have a suffix of rd, one is assumed; however the rd suffix must be
the last component of the name of the source segment

CONTROL ARGUMENTS

-brief. -bf
prints all error messages with only a brief summary of the error that has
occurred.

-long, -lg
prints all error messages with a detailed description of the error that has
occurred.

-trace {STR}
adds a tracing facility to the generated translator. STR defines whether tracing is
enabled or disabled by default It can be "on" (default) or "off." (See "Notes on
Tracing" below.)

-no_trace
generates a translator without the tracing facility. (Default)

In addition, you can give any control argument accepted by the pH command.

NOTES

Reductions are expressed in a highly compact form that emphasizes the syntax and
semantics of the new language. This command compiles these reductions into tables
that drive an rdc-provided semantic analyzer for the language. This analyzer compares
the tokens (basic units) of a program written in the new language with the valid
token phrases defined in the reductions. When a valid phrase is found. the action
routines defined by the reduction are invoked to translate the phrase.

3-752 AG92-o6

reductions reductions

Translators generated by the command can be written more quickly than hand-programmed
translators because rdc provides the semantic analyzer for the language. They are
easier to understand and to maintain because the all-important language syntax and
semantics is concentrated in the r-eduetions, rather than being spread throughout the
seman tic analyzer.

This command can generate translators for the simplest type of language. a right-linear
(finite state automaton) language. Often such languages are composed of keywords with
operands, such as the control language of the bind command.

The organization of an rdc translator, the translation process, and the reduction
language are described below.

If you supply neither -brief nor -long. a detailed description is printed the first time
an error occurs in a given compilation and a brief description is printed in subsequent
occurrences of that error.

NOTES ON SEVERITY VALUES

The following severity values are returned by the severity active function when the
"reductions" keyword is used:

VALUE

o
2

4

MEANING

No compilation yet, or no error.
Correctable error. This error has been bypassed, but
may result in other, more severe errors.
Fatal error, but rae translation continues to report
other errors.
Unrecoverable error. Translation stops.

In addition, the severity value can be any of those associated with compilation of the
resultant PL/I source segment by the pll command.

NOTES ON TRACING

The tracing facility helps in debugging the reductions for a new translator by showing
which reductions are being applied, along with the source tokens of the language being
compiled that match each reduction. This gives you a running view of the flow of
control through the reductions and of the processing of tokens.

Because the tracing facilit;T generates l~rge amounts of output, it can be selective1]'
turned on and off during debugging by setting a variable declared as follows:

del TRACING bitO) aligned int static init("l"b);

A value of "1 fIb turns tracing on; "O"b turns it off. The initial value is set by the
operand of -trace.

3-753 AG92-()6

reductions reductions

The translator can accept a control argument to turn TRACING on or off, or it can
have a debugging entry point to set the switch, or the switch can be set at a
particular probe breakpoint. For example, to trace from the 28th through the 40th
reductions, you can use the following set of probe requests:

probe translator
ps "RD_ACTION(NRED)"
go to RD_ACTION(NRED);
b: if NRED = 28: halt

When halted, type:

let TRACING = "l"b
reset
b: if NRED = 40: h

! c

And when the 40th reduction was reached, type:

let TRACING = "O"b
reset

! c

OVERVIEW OF THE TRANSLATION PROCESS

A translator for a given language must perform three steps to translate a source string
written in, the language:

1. Parse the source string into a list of tokens. These tokens are the basic units
of the language being translated. They are character strings in the source that
are separated from one another by language-defined delimiter characters.

2. Analyze the syntax of the tokens to identify groups of tokens (token phrases)
that are valid or invalid in the language.

3. Assign some semantic meaning to each valid token phrase by performing a
translation action. Print error messages diagnosing invalid token phrases.

Parsing the source string into tokens is a process that depends upon the types of units
that make up the language, the delimiter characters defined by the language, and other
language characteristics. For most languages, the lex_strin~ subroutine provides
facilities that are sufficient to parse the language. However, some languages have
syntax characteristics that cannot be handled by lex_strin~; your must code a special
parsing routine for such languages (see "Parsing the Source into Tokens" below). See
lex_strin~ in the Subroutines manual for more information about its parsing
capabilities.

3-754 AG92-06

reductions reductions

Once the source string is parsed into a list of tokens, these tokens are analyzed by a
semantic analysis procedure that is generated by the reductions command from the
reductions specified in the translator source segment The procedure contains tables
generated from- the reductIons,tables tha(define an of the - valid tOKen phrases
accepted by the lan.guage.

For each valid token phrase. the semantic analyzer invokes the programmer-supplied
action routines given in the reductions to translate the phrase. For invalid phrases. the
reductions command provides - a mechanism for diagnosing the errors in printed error
messages.

CONTENTS OF A TRANSLATOR

The source segment for a translator to be compiled by the reductions command
contains the following items. which ale organized as shown in Figure 3-1.

1. An optional copyright notice and other PL/I comments.
2. A set of reductions consisting of reduction attribute declarations and reduction

statements. The delimiters / *++ and ++* / open and close the set of reductions.
3. A PL/I procedure statement for the main procedure of the translator.
4. PL/I declarations for the translator'S variables.
5. An optional PL/I declaration for an error_control_table, which defines the text

of error messages to be generated by the translator. This error_control_table is
used by -the error-reporting mechanism provided by the. reductions command.

6. Code to parse source strings of the new language into tokens. This is shown in
Figure 3-1 as a call to lex_strin~. but programmer-supplied code could be used
here instead.

7. A PL/I call statement invoking SEMANTIC_ANALYSIS. the semantic analyzer
procedure generated by the reductions command from the reductions.

8. A PL/I return statement to return after the translation process is complete.
9. One or more optional PL/I function subprograms (relative syntax functions) that

are used to define the syntax of valid token phrases.
10. One or more PL/I subroutines (action routines) that are invoked to translate

valid token phrases.

3-755 AG92-06

reductions

/* ******************** * c Copyright ••• *
******************** */

1*++
MAX_DEPTH 5 \
BEGIN

/
/

/
/

/ \
/ RETURN \ _

++*/

translator: procedure;

dcl , ,

dcl error_control_table ••• ;

call lex_string_Slex(.•)~
Pthis token = ... ;
call SEMANTIC_ANALYSIS();
return;

fcn: procedure returns
(bit(l) aligned);

end fcn;

act ion: proc (••.) ;

end action;

copyright notice

reduction statements and
attribute declarations

translator's
declarations

calls to parse translator
input into tokens,
translate these tokens,
& return

relative syntax
functions

action
subroutines

Figure 3-1. Organization of a Translator

3-756

reductions

AG92-06

reductions reductions

The definition of the reductions. the error-reporting mechanism. the parsing routine.
relative syntax functions, and action routines are described further below.

No PL/I end statement is included for the main procedure of the translator in the
translator source segment The reductions command appends code for the
SEMANTIC_ANALYSIS subroutine and for other utility programs to the contents of
the translator source segment It then appends the end statement for the translator's
main procedure. Therefore, when coding the translator source segment, make sure that
all the relative syntax functions and action routines are ended correctly, and that no
end statement is included for the main procedure of the translator.

COMPILING THE TRANSLATOR

A typical translator source segment, translator.rd, is compiled by a two-step process as
shown in Figure 3-2. First, the reductions command compiles translator.rd into a PL/I
source segment. translator.pU, which it creates in your' working directory. Second, rdc
invokes the pll command to compile the translator.pll into an object segment caned
translator. The translator object segment is placed in your working directory.

3-757 AG92-06

reductions

translator.rd __________ __
I /* ***************

,'c C Copyr i ght *
*************** */

/*++ reductions ++*/
1. rdc

translator.pll __________ _
/* * * * * * * * * */
/* heading */
/* * * * * * * * * */

/* ***************
,'c C Copyr i ght *
*************** */

/*++ reductions ++*/

translator: proc(•.•); -------> translator: proc(•••);

dc 1 ••• ,
error_control_table ••• ;

call lex_string_$lex .. ;
call SEMANTIC_ANALYSIS;
return;

fen: proc returns
(b i t (1) ali 9 ned) ;

end fcn;

ac t i on: proc (•••) ;

end action;

dc 1 ••• ,
error_control_table ••• ;

call lex_string_$lex .• ;
call SEMANTIC_ANALYSIS;
return;

fcn: proc returns
(b i t (1) ali gned) ;

end fcn;

action: proc(.....);

end action;

SEMANTIC ANALYSIS:
procedure 0 ;

translator end SEMANTIC_ANALYSIS;

2. pll %include rdc_lex_;
<------- %include rdc_error_;

%include rdc_delete_;

end translator;

Figure 3-2. Two Steps of Compiling

The output of the reductions command is a PL/I source segment that contains

reductions

1. A heading that identifies the translator source segment, the version of the
reductions command used to compile the translator source segment into the PL/I
source segment, and the date and time of compilation.

3-758 AG92-06

reductions reductions

2. The contents of the translator source segment

3. The SEMANTIC_ANALYSIS procedure generated by the reductions command from
the reductions·· in··· the -translator -source segment

4. PL/I %include statements for utility procedures used in SEMANTIC_ANALYSIS
and perhaps in the action routines to perform various functions.

5. A PL/I end statement for the main procedure of the translator. This is provided
by the reductions command.

THE TRANSLATION PROCESS

The next few paragraphs describe the process of translating a language source string.
It is important to understand how these steps are performed in rdc-generated
translators. The reductions command or the lex_strin~ subroutine provide code to
perform many of these steps. For others, the programmer must supply a procedure to
perform the steps.

PARSING THE SOURCE INTO TOKENS

As mentioned above, the first step of the translation process is for a translator to
parse its input source string into a list of tokens. These tokens are the basic units of
the language. For many languages, the lex_strin~ subroutine provides sufficient
facilities to parse the language. However, some languages may have a syntax that
requires the special parsing facilities of a programmer-supplied parsing routine.

The lex_strins- subroutine or the supplied parsing routine must generate a chained list
oi token descriptors, as shown in Figure 3-3. Each descriptor describes one of the
tokens in the source string. The token descriptors are chained together (f orward and
backward) in the order in which their respective tokens appear in the source string.

Volume: 70092;
Write;
F i 1 e 4;

might be

-->1 1-->1 1-->1 1-->1 1-->1 1-->1 1-->1 1-->1 1-->1 1 <-- <-- <-- <-- <-- <-- <-- <--

I-I I-I I-I I-I I-I I-I I-I I-I I-I
I I I I I I I I I
v v v v v v v v v

Volume 70092 Write F i 1 e 4

Figure 3-3. Input Tokens and Their Descriptors

3-759 AG92-06

reductions reductions

Languages whose syntaJ(includes statements separated by explicit statement delimiters
can use a statement descriptor to identify the group of tokens forming each statement
The statement descriptor points to the descriptors for the first and last tokens in the
statement In turn. each token descriptor points to its respective statement descriptor.
The statement descriptors are chained together (forward and backward) to create an
ordered list of the statements appearing in the source string. as shown in Figure 3-4.

-->

------------>
<------------

-------> <-------

v v
--> --> --> -->
<-- <-- <-- <--

-I -I -I -I
v v v v

v -

-I
v

Volume 70092 Write

-------------->
<--------------
<--- --->

v v ---> --> -->
<-- <-- <--

-I -I
v v

F i 1 e

<----

v
-->
<--

-I -I
v v

4

Figure 3-4. Tokens, Token Descriptors, and Statement Descriptors

There are no special requirements for a programmer-supplied parsing routine other
than that it create a list of token descriptors and optional statement descriptors. The
format of these descriptors is defined in the description for the lex_strinL subroutine.
Refer to this description for more information about descriptors, as well as for
information on the use of the lex_strin8- subroutine. Figure 3-5 shows the lex_strin8-
subroutine being invoked first to initialize the lex_delims and lex_control_chars break
definition strings, and then to parse the translator'S source string (described by Pinput
and Linpud into tokens. In this example: a double quote (n) character is used to
open and close quoted strings; the characters /* open comments, which are closed by
* /; a semicolon (;) is the statement delimiter; and the colon (:). comma (.), space (),
and all of the ASCII control characters including the PAD character operate as
delimiters. The space character and all control characters except backspace are ignored
delimiters that are not returned as tokens themselves, even though they separate tokens.
Both token descriptors and statement descriptors are generated by the lex_string_
subroutine in this example. No descriptors are generated for the double quotes that
enclose quoted strings. although descriptors are generated for the quoted strings
themselves.

3-760 AG92-o6

reductions

breaks = substr(collate,1,33) 11 11
:,11 II substr(collate,128,l);

ignored_breaks = substr (collate, 1 ,8) I substr (collate, 10,24) II
substr(col1ate,128,1);

reductions

ca 11 1 ex_str i ng_$ i n i t_l ex_de 1 ims (..... m, .. " , "/*ll, 11*/11, .. ; II, 1I10ub,
breaks, ignored_breaks, lex_delims, lex_control_chars);

call lex_string_$lex(Pinput, Linput, Linput_ignore, Psegment, IIIOOllb, 11111111,

11111111, 11/*11, 11*/11, 11;11, breaks, ignored_breaks, lex_delims,
lex_control_chars, Pfirst_stmt_descriptor, Pfirst_token_descriptor,
code);

Pthis token = Pfirst token descriptor;
call SEMANTIC_ANALYSTS(); -
return;

Figure 3-5. Parsing Translator Input Into Tokens,
Semantically Analyzing Those Tokens,

and Returning

ANALYZING AND TRANSLATING THE TOKENS

Once the source string has been parsed into tokens, the translation continues by
analyzing the syntax of the source tokens. The syntax specifications of the language
are used to identify groups of tokens (token phrases). Valid token phrases are
translated according to the language semantics (translation action specifications). and
invalid token phrases are diagnosed to you.

The language syntax and translation action specifications are coded in the set of
reductions contained in the translator source segment The reductions command uses
these reductions to generate a SEMANTIC_ANALYSIS internal procedure that is
appended to the translator when it is compiled.

When the SEMANTIC_ANALYSIS procedure is invoked as shown in Figure 3-5, it
compares token phrases found in the list of source tokens with the syntax
specifications defined in the reductions. If a token phrase matches the syntax
specifications of a given reduction, the translation action routines associated with the
reduction are invoked to translate the phrase. Then action routines are invoked to
move on to the next token phrase, which is translated in a similar manner.

The translation is complete when each of the token phrases in the list of source
tokens has been identified as a valid token phrase and translated, or has been
diagnosed as an in vaiid Loken phrase.

REDUCTION LANGUAGE

The reductions that define the syntax and semantics of a language to be translated are
written in the reduction language. This translator generation language consists of two
kinds of statements: reduction statements and attribute declarations.

3-761 AG92-06

reductions reductions

Reduction statements specify the syntax of token phrases in the language being
translated. They also name action routines that are invoked to translate valid phrases
and to diagnose invalid token phrases.

Attribute declarations control the size of some fixed-length tables that the generated
translator uses and cause translation action routines provided by the reductions
command to be included in the translator. They are described below under "Attribute
Declarations. "

THE SYNTAX OF REDUCTION STATEMENTS

All reduction statements contain four parts: a reduction label field, a syntax
specification field, an action specification field, and a next-reduction field. A
reduction statement has the form

labels / syntax specifications / action routines / next-reduction label \

All of the fields must appear in each reduction, in the order shown above. The fields
are separated from one another by a right slant (/) character. and the next-reduction
field is terminated by a left-slant (\) statement delimiter. The fields of a reduction
statement can span any number of lines in the translator source segment.

The syntax specifications, action routines, and other items that appear in a reduction
statement are separated from one another by one or more of the delimiters shown in
Table 3-1 below. When these delimiter characters are used, they are treated as part of
the reduction. The meaning of left and right slant was described above. The double
quote (") character is used as a quoting character to delimit quoted character strings in
the PL/I convention. When any of the delimiter characters appears in a quoted string,
it is treated as a regular character rather than as a delimiter. The use of the other
delimiters is described in more detail as each field of the reduction statement is
described below.

Table 3-1. DELIMITING CHARACTERS USED BY rdc

/ separates fields of a reduction statement.

\ ends each reduction statement or attribute declaration.

< > delimits a syntax function in the syntax field of a reduction. For example,
<no-token> ..

[] delimits a PL/I statement in the action field of a reduction. For example,
[file_no = token.Nvalue] .

separates PL/I statements in the action field of a reduction when more than
one statement is given between [] delimiters. For example, [a=b; c=dJ •

() delimits the argument list of a PL/I subroutine call in the action field of a
reduction. For example, perform_io (volume, file_no) .

3-762 AG92-06

reductions reductions

separates arguments in the argument list of a PL/I subroutine call given in
the action field of a reduction.

begins and ends quoted strings within a reduction statement. Inside a quoted
string, a double quote (tt) character is expressed by two double quotes ('m).

used to detect the special PL/I character sequence, -> • which can appear in
an action specification.

used to detect the special PL/I character sequences, A= <= >= , which can·
appear in an action specification.

/I. used to detect the special PL/I character sequences, A= A< A> • which can
appear in an action specification.

<BS> (backspace) used in the syntax field of a reduction to detect an underlined
delimiter character. The special meaning of such a character is ignored, and
the character is treated as a syntax specification character.

\" begins a comment in a reduction statement The comment ends with the next
newline character.

There are also five delimiters that delimit items in a reduction but are ignored by the
reductions command unless enclosed in a quoted string. These characters have no
meaning in the reduction language but serve mainly to separate the specifications in a
reduction statement

space newline horizontal tab vertical tab newpage

SEMANTICS OF REDUCTION STATEMENTS

The most important part of any set of reductions are the syntax fields given in the
reduction statements. These fields describe the syntax of the valid and invalid token
phrases in the -language to be translated. The syntax specifications can require a token
in a particular phrase to have a specific character string value, or to have a value
that meets some general list of requirements defined in a syntax function (a PL/I
function subprogram).

When a token phrase does not match the syntax requirements of a reduction it is
compared with, H is compared with the syntax requirements of the reduction that
follows. This process continues until the syntax requirements of some reduction are
matched.

3-763 AG92-()6

reductions reductions

When a token phrase matches the syntax specifications of a particular reduction, the
phrase is translated by invoking the action routines given in the action field of that
reduction. Action routines can be simple PL/I statements or calls to PL/I subroutines
with arguments. The routines can perform some constant translation operation, or an
operation that depends on the values of one or more tokens in the matching token
phrase. They can also skip over one or more of the tokens in the matching token
phrase to permit the next token phrase to be examined.

After the action routines have been invoked, the next-reduction field of the matched
reduction controls which reduction syntax field the next token phrase is compared
with. The next reduction can be identified by label, using one of the reduction labels
given in a label field. Also, the reduction following the matched reduction can be
used next In addition, special next-reduction operations are provided to return from
the SEMANTIC_ANALYSIS procedure, and to return from a group of reduction
statements used as a reduction subroutine.

LABEL FIELD OF A REDUCTION STATEMENT

One or more labels can be specified in the label field of a reduction statement to
identify the reduction. A label is a character string that begins with an alphabetic
character, and contains 32 or fewer alphanumeric or underline U characters.

The labels on a reduction statement can be referenced in the next-reduction field of
reduction statements to direct the order in which tokens are compared with the
reduction syntax specifications. To prevent any ambiguities in these references, each of
the labels defined in a set of reductions must be unique.

In every set of reductions, any attribute declarations that are given must appear before
all of the reduction statements. To distinguish between the attribute declarations and
reduction statements. the first reduction statement must have a special first label called
BEGIN.

The BEGIN label acts as a keyword that separates the attribute declarations from the
reduction statements. It also identifies the first reduction with which token phrases are
compared. Thus, the comparison of token phrases with reductions starts with this
beginning reduction, the first reduction following the attribute declarations, the
reduction with the BEGIN label.

With the exception of the BEGIN label on the first reduction statement, no labels are
required on any reduction statement Their use is optional, and is intended to
facilitate the division of the set of reductions into groups of reduction statements or
reduction subroutines. However, every reduction statement must have a label field even
if it consists of an empty label field with a field delimiter (I). All four of the fields
mentioned above must appear in every reduction statement.

Use of reduction labels is discussed further in the description of "The Next-Reduction
Field" below.

3-764 AG92-06

reductions reductions

SYNTAX FIELD OF A REDUCTION STATEMENT

The syntax field of a reduction statement defines the syntax of one token phrase in
the language· being tiiIiSla:teiL - The· tokens iIi lhe -input Ust are ·compared with· the
syntax fields of one or more reductions. When the tokens match the syntax field of a
reduction, then the action field of that reduction is invoked to perform a translation
action. If the reduction specifies the syntax for a valid token phrase, the translation
action can compile code to implement the semantic meaning of the phrase or it can
immediately interpret the phrase or store a value in a table or perform any other
translation action. If the reduction specifies the syntax for an invalid token phrase,
then the translation action can diagnose the error in an error message.

CURRENT TOKEN PHRASE

Before learning how syntax specifications are defined, some terminology for dealing
with the tokens in the token list must be developed.

In Figure 3-3 above, a list of tokens is described by token descriptors that are
chained together. The reductions command declares a pointer in the main procedure
of the translator that points to the particular tokens being compared with reductions
at any given time. This pointer is called Pthis_token, and it points to the descriptor
of the "current token." The current token and those tokens that follow it in the list
of tokens are the tokens being compared with the reduction syntax specifications. This
group of tokens is called the "current token phrase." These relationships are shown in
Figure 3-6 below.

Notice that the current token phrase does not contain a fixed number of tokens.
Instead, the number of tokens varies to accommodate the number of syntax
specifications in the reduction being examined. Of course, if there are fewer tokens
remaining to be translated than syntax specifications in a reduction, the current token
phrase cannot match that reduction.

At any point in time, one of the tokens in the current token phrase is being
compared with its corresponding syntax specification in a reduction. The descriptor for
this token is pointed to by Ptoken, another pointer variable declared by the reductions
command in the main procedure of the translator.

3-765 AG92-Q6

reductions reductions

Pthis token Ptoken -I I
v v - -

--> --> --> --> --> --> --> --> -->
<-- <-- <-- <-- <-- <-- <-- <--

'-1' ~I . '=1 . . =,. .=, . '=, ' '-I '-1-' '-1 ·
v v v v v v v v v

Volume 70092 Write F i 1 e 4

A A

TOKEN BEING EXAMINED

CURRENT TOKEN

I_CURRENT TOKEN PHRASE_I

Figure 3-6. The Current Token Phrase Used by Reductions

SYNTAX SPECIFICATIONS

The tokens in the current token phrase are compared consecutively with the syntax
specifications in a reduction syntax field to identify valid and invalid token phrases.
The syntax specifications place requirements on the tokens in the current token phrase.
If each token in the phrase meets the requirements of its corresponding syntax
specification in the reduction. the entire phrase matches the reduction, and the
reduction action field is invoked.

Three types of syntax specifications are allowed by the reduction language: absolute
syntax specifications, relative syntax functions, and built-in syntax functions.

ABSOLUTE SYNTAX SPECIFICATIONS

Absolute syntax specifications require that their corresponding input token equal a
particular character string. Absolute specifications are defined in the syntax field of a
reduction statement by using their character string value. For example, a reduction
statement that would identify the first two tokens in Figure 3-6 might be

vol_stmt / Volume : / / \

If reductions were written to translate all of the tokens in Figure 3-6 then "Volume,"
"Write," "File," n:". and ";" would probably be specified as absolute syntax
specifications.

3-766 AG92-06

reductions reductions

The delimiter characters used in the reduction language (see Table 3-1 above) can be
used in an absolute specification by enclosing the entire specification in quotes. For
example. II and/ or ", ">udd>Proj ec t_ i d>prog", 11111111, II (", and II, II. In addition.
the delimiters- -that-have a special-mea-ningwithin the syntax field (/ < » can be
used as one-character absolute specifications by underlining the delimiter character.
and thus are treated as single-character absolute syntax specifications.

RELATIVE SYNTAX FUNCTIONS

Relative syntax functions are a second type of syntax specification. A relative syntax
function requires that its corresponding input token meet some special requirements
that are defined by a PL/I function subprogram. The requirements defined by such
functions can be quite specific or very general in nature.

A relative syntax function is defined as a specification in the syntax field of a
reduction by enclosing the name of the function in angle brackets (i.e .. <funct ion_name».
For example. if the volume_id function defines the requirements for a volume
identifier like that used in Figure 3-6. the following reduction would match the first
four tokens of Figure 3-6.

vol_stmt / Volume: <volume_id> ; / / \

Other examples of relative syntax functions might be a <re 1 at i ve_pa th name>
function that requires that a token be a relative pathname. and that calls the
absolute_pathname_ subroutine to associate an absolute pathname as the semantic value
of this pathname token; a <pos it i ve_ integer> function that requires that the token
be a character string representation of a positive integer; and <date_t ime> that
requires a token that is acceptable as input to the convert_date_to_binary _ subroutine.

Relative syntax functions must be coded by the programmer and included in the main
procedure of the translator source segment. Their calling sequence is shown below.

declare function_name entry returns (bit(l) aligned);

token_meets_requirements = function_name 0 ;

where the function returns a value of "1 "b if the input token meets the requirements
of the function. and "O"b otherwise. The function can have any valid PL/I function
name that is 32 or fewer alphanumeric or underline characters in length. and that
contains at least one lowercase alphabetic character. The lowercase letter is required to
avoid naming conflicts with variables and procedures declared by rdc for use in the
SEMANTIC_.-A~~ .. Aa.L YSIS prccedure.

Relative syntax functions must be internal procedures of the main procedure of the
translator so that they can reference the token to be examined. Ptoken points to the
descriptor for this token as shown in Figure 3-6. The token descriptor itself is a
structure variable named token that is based on Ptoken. as described in the lex_strin8-
subroutine description. The character string value of the token can be referenced by
way of the token_value variable. Ptoken. the token structure. and token_value are
variables declared by the reductions command in the main procedure of the translator.

3-767 AG92-06

reductions reductions

A relative syntax function can associate a semantic value with the token being
examined in one of three ways. It can set a variable that has been declared in the
main procedure of the translator. It can set token.Nvalue to some integer semantic
value. such as the numeric value of a token that matches the <positive_integer>
function. Or it can allocate a semantic value structure in the temporary segment used
for token descriptors. and chain t..ltis structure onto the token descriptor using the
token. Psemant pointer. Refer to the description of the lex_strin&- subroutine for a
complete declaration of the token structure.

LIST OF BUILT-IN SYNTAX FUNCTIONS

The third type of syntax specification that can be used in a reduction syntax field is
the built-in syntax function. These are relative syntax functions that have been
predefined by the reductions command. Although several of these built-in syntax
functions make requirements on the input token string that would be difficult to
implement directly as relative syntax functions. most of the built-in syntax functions
are defined merely to facilitate the implementation of the reductions command itself.
Below is a list of the built-in syntax functions and the requirements they place on the
input tokens.

<no-token>
requires that no corresponding token exists in the current token phrase, that the
list of input tokens -is exhausted, and that no more tokens remain to be
translated. It differs from other syntax functions that require the existence of a
corresponding token in the token phrase. It is used to determine when the
translation is complete.

<any-token>
requires that a corresponding token exist in the current token phrase. It places no
other requirements on the token. It is used when any token value is acceptable in
the language being translated.

<name>
requires that a corresponding token exist in the current token phrase, and that the
token is a character string that begins with an alphabetic character and contains
32 or fewer alphanumeric, underline U. or dollar sign ($) characters.

<decimal-integer>
requires that a corresponding token exist in the current token phrase, and that the
token is a valid, optionally signed decimal integer (as defined by the cv_dec_check_
subroutine). The numeric value of the token is stored as its semantic value in the
token.Nvalue element of the token descriptor.

<quoted-string>
requires that a corresponding token exist in the current token phrase, and that the
token.S.quoted_string bit is turned on in the descriptor of the token. The
lex_strin&- subroutine turns on this bit if the token is enclosed within quoting
delimiters when the input to the translator is parsed.

3-768 AG92-06

reductions reductions

<85>
requires that a corresponding token exist in the current token phrase, and that the
token is a single backspace character. It is used as a convenience for defining

-syntax--specifications---Iot----one~natacter, underlinea---rolens.------- ---- --- --

COMPLETENESS OF THE SYNTAX SPECIFICATIONS

One of the most difficult aspects of writing a translator is identifying all possible
invalid token phrases that could be received as input so that error messages can be
issued. This problem must be addressed in each set of reductions, and in each group
of reductions within a set as well, if the translator is to operate deterministically and
to perform the expected translation.

A typical solution for the problem is to have a group of reductions that identify all
possible valid token phrases. followed by one or more reductions that use the
<any-other> built-in syntax function or an empty syntax field to identify all other
invalid token phrases. For example, if the language for the tokens in Figure 3-6
requires that a colon. volume identifier, and semicolon always follow the Volume
keyword, then the following group of reductions might be used to diagnose an error.

vol stmt / Volume: <volume - id> ; / / \
/ Voiume : <any-token> ; / / \

\It check for bad volume identifier.
/ Volume / / \

\" check for bad volume statement.
/ / / \

\" check for unknown or unexpected statement.

THE NEXT-REDUCTION FIELD OF A REDUCTION STATEMENT

The next-reduction field governs the flow of control between reductions. When the
translator calls the SEMANTIC_ANAL YSIS procedure, control passes to the reduction
whose label is BEGIN. The first of the current token phrases is compared with this
beginning reduction and those that follow until it matches the syntax requirements of
one of the reductions. The action field of that reduction is then invoked to translate
to the current token phrase, and to make the next token phrase current.

The next-reduction field of the matched reduction controls which reduction the new
current token phrase is compared with. The next-reduction field can be blank, or it
can contain a reduction label. If it is blank, the reduction immediately following the
matched reduction is used in the next comparison. If a reduction label is specified,
then the reduction identified by that label is used in the next comparison. In either
case, comparison of the new current token phrase with reductions continues until a
matching reduction is found.

3-769 AG92-06

reductions reductions

This process of analyzing token phrases continues until all of the input tokens have
been translated. Each set of reductions must contain one or more reductions that use
the <no- tok en> built-in syntax function to detect when all the input tokens have
been translated. When such a <no-token> reduction is invoked, its next-reduction
field usually contains the RETURN keyword, instead of a reduction label, to specify
that the flow of control should return to the caner of the SEMANTIC_ANALYSIS
procedure. On return from SEMANTIC_ANALYSIS, the translation is complete.

Often if several <no- token> reductions appear in a set of reductions, a reduction
label is used in their next-reduction field (rather than a RETURN keyword) to branch
to a final <no-token>· reduction that performs epilogue actions and then returns via a
RETURN keyword. Having only one of the <no- token> reductions perform the
epilogue actions reduces the amount of translation code generated by rdc.

SAMPLE REDUCTIONS

Figure 3-7 shows the Backus-Naur Form (BNF) for the syntax of a language that
identifies records to be read or written from a tape file on a particular volume, using
a given record format Several examples below employ this language to illustrate the
use of reductions.

<spec> ::= Volume: <volume-id>[,{gtrackI7track}]
{ReadIWrite} ;
File <number> ;
Records: <number>[, <number>] •..
Format: {FIFBIFBSIVIVBIVBSIU} ;

Figure 3-7. BNF Syntax for a Tape Language

3-770 AG92-Q6

reductions reductions

Figure 3-8 shows how reduction statements can be used to define the syntax of the
tape language (see "Relative Syntax Functions" above.)
Note_thatJ'ed:u~tiQn~ CQn~i:nJJ;lg_QnlYJln <a.Ily-tok~ll>or <no-tQlcen> SYl1ta~ specificaJiQn
are included in each group of reductions to detect errors. The <any-token> reduction
matches any token phrase except the empty token phrase (a phrase containing no
tokens because all of the input tokens have been translated). The <no-token>
reduction matches empty token phrases.

BEGIN
stmt

vol

/ Volume: <volume_id>
/ Read ;
/ Write;
/ File <positive_integer>
/ Records :
/ Format :
/ <any-token>
/ <no-token>

/
/ , 9track ;
/ , 7track ;
/ <any-token>
/ <no-token>

numbers / <positive_integer>
/ <any-token>
/ <no-token>

punct /
/
/ <any-token>
/ <no-token>

format / F ;
/ FB ;
/ FBS ;
/ V ;
/ VB ;
/ VBS ;
/ U ;
/ <any-token>
/ <no-token>

/
/
/
/
/
/
/
/

/
/
/
/
/

I
/
/

/
/
/
/

/
/
/
/
/
/
/
/
/

/ vol
/ stmt

\
\
\
\

/
/
/
/
/
/

stmt
stmt
numbers \
format \
stmt \
RETURN \

/ stmt \
/ tmt \
/ stmt \
/ stmt \
/ RETURN \

/ punct \
/ punct \
/ RETURN \

/ numbers \
/ stmt \
/ numbers \
/ RETURN \

/ stmt \
/ stmt \
/ stmt \
/ stmt \
/ stmt \
/ stmt \
/ stmt \
/ stmt \
/ RETURN \

Figure 3-8. Reductions for the Tape Language

3-771 AG92-06

reductions reductions

ACTION FIELD OF A REDUCTION STATEMENT

When a valid token phrase matches the syntax specifications of a reduction statement,
the phrase must be translated according to the semantics of the source language. The
translator does this by invoking the action routines specified in the action field of the
matched reduction. These routines are invoked in the order of their appearance in the
action field.

There are two types of action routines: those that perform some translation action on
the current token phrase, and those that perform a lexing action to make another
token the current token so that a new token phrase can be translated. Translation
action routines are described below, and lexing routines are described under "Lexing
Action Routines," which follows.

TRANSLATION ACTION ROUTINES

Translation action routines translate token phrases that match reductions according to
the semantics of the source language. For example, they can construct tables; build
compilation trees; generate object code, ALM statements, or PL/I statements; or
perform any other type of translation function that can be expressed in the PL/I
language.

There are two kinds of translation action routines: action statements and calls to
action subroutines.

ACTION STATEMENTS

An action statement is a PL/I statement that appears in the action field of a
reduction, enclosed in square brackets without its semicolon statement delimiter. For
example, a tape language source string of

Write;

might be translated by setting a mode variable as follows:

[mode = "W"]

Action statements can be used to perform the simplest translation operations, such as
turning on a bit or assigning a particular value to a variable. Such simple operations
occur frequently in translators, and are most clearly and easily expressed as a PL/I
statement Action statements can use the token_value variable, just as relative syntax
functions do, to reference the character string value of the current token. For
example, the tape language string

Volume: 70092;

might be translated by making 70092 the current token, and then invoking an action
statement like

[volume = token_value]

3-772 AG92-06

reductions reductions

Action statements can also use the token structure to reference the descriptor of the
current token or a semantic value structure chained to the descriptor. For example,
the tape- language sourCe string

File 4;

might be translated by a reduction of the form

/ File <positive_integer> ; / LEX [file no=token.Nvalue]
LEX12) / \

where LEX and LEX(2) are a lexing action routines that make the next, or second
next, token be the current token. Notice that. in the reduction above, the
<pos it ive_i nteger> relative syntax function sets token.Nvalue when it validates the
syntax of the "4" token.

More than one PL/I statement can be used as an action statement if the PL/I
statements are separated by a semicolon (;). This allows compound PL/I statements to
be used as action statements. For example. the action statement

[if token_value = "SCRATCH" then volume = "scratch";
else volume = token_value]

checks for the special tape volume name SCRATCH and uses scratch in its place if
found; otherwise. the token value given in the source string is used as the volume
name.

ACTION SUBROUTINES

An action subroutine is a PL/I subroutine that performs some translation operation. It
appears in the action field of a reduction as a PL/I call statement, without the call
keyword or the semicolon statement delimiter. For example. the subroutine

call perform_io ("tape_input", volume, file_no, mode, "l"b);

appears in the action field as:

A subroutine with no arguments, such as:

call set_record_no();

appears as:

An example of a reduction containing action subroutines is

3-773 AG92-()6

reductions

/ <no-token> / perform_io("tape_input",
volume, file_no, mode, "1"b)/

reductions

\

The programmer must supply these action subroutines as part of the translator. Usually
they are internal procedures defined in the main procedure of the translator. This
facilitates references to the tokens being translated and to other data declared in the
translator. However, an external procedure can be used as an action subroutine by
calling it with arguments to pass any required information.

NAMING REQUIREMENTS FOR ACTION ROUTINES

Several facts must be considered when defining action subroutines and other variables
used in the action field of a reduction. First, action statements and subroutines are
executed within the SEMANTIC_ANALYSIS procedure. Therefore, all variables used in
action statements or as arguments to action subroutines must be declared in the main
procedure of the translator. Similarly, internal action subroutines must be defined in
this main translator procedure, and external action subroutines must be declared there.
Figure 3-2 illustrates the relationship between the main translator procedure and the
SEMANTIC_ANALYSIS procedure.

Second, care must be taken to avoid naming conflicts between the variables declared
by SEMANTIC_ANALYSIS and the variables and subroutines used in the action field.
With only a few exceptions, the variables used by SEMANTIC_ANALYSIS have
uppercase names. Therefore, the programmer can avoid name conflicts by using names
with one or more lowercase letters or digits.

There are three classes of exceptions to the uppercase naming rules used in
SEMANTIC_ANALYSIS. First, SEMANTIC_ANALYSIS has declared the following
PL/I built-in functions: addr, max. nUll, search. substr. and verify. Second.
SEMANTIC_ANALYSIS has declared the cv _dec_check_ subroutine to implement the
<dec i rna 1- integer> built-in syntax function. Third, the variables and structures
required to reference tokens and their descriptors are declared by the reductions
command in the main procedure of the translator. SEMANTIC_ANALYSIS assumes the
existence of these declarations. which have lowercase names. (Refer to the description
of the lex_strinL subroutine for a complete declaration of these variables.) All three
classes of exceptions must be avoided when naming variables and action subroutines.

LIST OF LEXING ACTION ROUTINES

Lexing action routines are useful in two ways. They can skip over a token phrase
once it has been translated so that the next token phrase can be analyzed. Also, they
can skip from the first token of a phrase to another of its tokens so that a
translation action routine can reference that token. By default, the first token of the
phrase that matches the reduction syntax field is the current token when the routines
in the action field are invoked.

3-774 AG92-()6

reductions reductions

The following lexing action routines are provided by the reductions command.

LEX(N)

LEX

makes the Nth taken the new current token, where N is the token number
relative to the existing current token. The current token has a relative token
number of O. Positive relative token numbers denote tokens following the current
token, while negative numbers denote tokens preceding the current token. Thus,
LEX(3) makes the third token following the current token the new current token.

is equivalent to LEX(1).

NEXT_STMT
makes the first token of the next statement (the statement following the statement
that contains the current token) the new current token. This lexing routine can
only be used when the tokens have been parsed with statement descriptors.
NEXT_STMT is most useful to skip over the remaining tokens of a statement
when an unrecoverable error has been detected in the statement

DELETE(M.N)
un threads tokens from the token list so that they are not scanned by subsequent
reductions. Tokens are unthreaded (deleted) from the Mth token relative to the
current token through the Nth relative token. Thus. DELETE(2,3) deletes the
second and third tokens following the current token. When the current token is
one of those being deleted. the next token following those deleted becomes the
current token. Thus, DELETE(-l,+l) deletes the token preceding the current
token, the current token, and the token following the current . token, and makes
the second token following the current token the new current token.

DELETE(N)
is equivalent to DELETE(N,N).

DELETE
is equivalent to DELETE(O.O).

DELETE_STMT
deletes all tokens of the current statement. making the first token of the next
statement the new current token. The current statement is the statement
containing the current tokens. DELETE_STMI can only be used when the tokens
have been parsed with statemen~ descriptors.

USING LEX!NG ROUT!NES !N TRANSLAT!OlV SUBROUT!NES

Lexing action routines can be invoked from translation action subroutines if it is
necessary for the subroutine to examine more than one token in the current token
phrase. However, use of lexing routines from translation subroutines can obscure the
translation process because the lexing is perf ormed unexpectedly by a translation
subroutine, rather than in the action field of a reduction where it is highly visible. If
a translation routine examines only one token, it is best to place a LEX operation in
the action field to make the desired token current before the translation routine is

3-775 AG92-()6

reductions reductions

invoked. If the routine must examine several tokens, it is best to position to the first
of these tokens before the routine is invoked and to include the number of tokens
skipped over by the routine in its subroutine name (e.g., process_names_and_LEX2).
Such naming makes the lexing action of the translation routine more visible when
reading the reductions.

A translation subroutine can call the internal procedures that rdc defines in a
translator to perform the lexing actions. These internal procedures have the following
calling sequences.

declare LEX entry (fixed bin);

call LEX (N) ;

where N is the token number relative to the existing current token.

declare NEXT_STMT entry;

call NEXT_STMT();

declare DELETE entry (fixed bin, fixed bin);

call DELETE (M, N);

where tokens are un threaded (deleted) from the Mth token relative to the current
token through the Nth relative token.

declare DELETE_STMT entry;

call DELETE_STMTO;

Notice that only the two-argument version of DELETE and the one-argument version
of LEX can be used from translation routines. If the particular routine to be called
has not been used in any reduction, it must be explicitly included in the translator by
using an INCLUDE attribute declaration statement, as described below under "Attribute
Declarations. "

SAMPLE REDUCTIONS

Figure 3-9 shows the reductions for our tape language, with the action fields filled in.
Notice that only one of the <no-token> reductions performs epilogue functions, and
that this reduction receives control from all other <no-token> reductions. The action
field of reductions that identify invalid phrases have not, as yet, been specified.

3-776 AG92-D6

reductions

BEGIN
stmt

vol

/ Volume <volume_id>

I-Read;
/ Write;
I File <positive_integer>

I Records :
I Format :
I <any-token>
I <no-token>

I
I , 9track ;
I , 7track ;
I <any-token>
I <no-token>

numbers I <positive_integer>
I <any-token>
I <no-token>

punct I,
I
I <any-token>
I <no-token>

format IF;

end

I FB ;
/ FBS ;
I V ;
I VB ;
/ VBS ;
I U ;
I <any-token>
I <no-token>

/ <any-token>
I <no-token>

I LEX(2) [volume=token value]
[track = 9] LEX I vol \

I LEX (2) [mode=lIr"] I stmt \
I LEX (2) [mode="w"] I s tmt \
I LEX [file no=token.Nvalue]

LEX(2) - / stmt \
I LEX(2) I numbers\
I LEX(2) I format \
I NEXT STMT I stmt \
I perform_io("tape_input ll

,

volume, file no,
mode, II 1 lib) - / end \

I LEX
I LEX (3)
I [track = 7]
I NEXT STMT
I -

I stmt
/ stmt

LEX(3)/ stmt
I stmt
I end

\
\
\
\
\

I set_record_no LEX / punct \
I LEX / punct \
/ / end \

/ LEX
I LEX
/ LEX
/

/ LEX (2) format (1)
/ LEX (2) format (2)
/ LEX (2) format (3)
/ LEX (2) format (4)
/ LEX (2) format (5)
/ LEX (2) format (6)
/ LEX (2) format (7)
/ NEXT_STMT
/

/ epi logue
/ epilogue

/ numbers\
/ stmt \
/ numbers\
/ end \

/ stmt
/ stmt
/ stmt
/ stmt
/ stmt
I stmt
/ stmt
/ stmt
/

\
\
\
\
\
\
\
\
\

/ RETURN \
/ RETURN \

Figure 3-9. Reductions for the Tape Language
(Error-Diagnosing Actions Omitted)

3-777

reductions

AG92-06

reductions reductions

ERROR-DIAGNOSING ACTION ROUTINES

Translators must identify and translate all valid token phrases in the source string, and
must identify and diagnose all invalid token phrases to aid in their correction. Invalid
token phrases can be detected in several ways.

1. Following a series of reductions that identify the valid token phrases for a given
language construct, a reduction with an <any-token> syntax specification can be
used to match all other invalid token phrases.

2. Specific reductions can identify predictable errors, such as tokens that do not
match the specifications of the relative syntax function in a preceding reduction,
or token phrases that have missing or invalid punctuation, misspelled or invalid
keywords, and the like.

3. A reduction with a <no- token> syntax specification can be used to detect a
premature end of the source string.

4. Action routines can detect an inconsistency in the seman tic meaning of the source
string and can diagnose the error.

When an error is detected. the translator must notify you of the type and location of
the error. The reductions command provides two facilities for printing error messages:
the ERROR action subroutine and the lex_error_ external subroutine.

THE ERROR ACTION SUBROUTINE

The ERROR action subroutine is an internal procedure provided by the reductions
command to print error messages. It can be called as follows:

declare ERROR entry (fixed bin(17»;

call ERROR (error_number);

The error_number can be an arithmetic constant or the name of a PL/I variable that
can be converted to a fixed binary number. For example,

or

ca 1 1 ERROR (5);

declare missing_semicolon_error fixed bin(l7) internal static
opt ions (cons tant) in it (5) ;

ca 11 ERROR (m iss i ng_sem i co lon_error) ;

ERROR can be used in the action field of a reduction that identifies invalid token
phrases. For example,

/ <any=token> / ERROR(l) NEXT_STMT / stmt \

3-778 AG92-06

reductions reductions

or it can be called from an action subroutine to diagnose a semantic inconsistency.

ERROR prints messages that have the following form:

prefix error_number, SEVERITY severity_no IN STATEMENT k OF LINE 1.
error_message_text
SOURCE:
statement_containing_current_token_phrase

For example.

ERROR 7, SEVERITY 2 IN STATEMENT 2 OF LINE 2.
A bad track specification was given in a Volume statement.
9track has been assumed.
SOURCE:
Volume: 70082, 8track;

ERROR prints the error messages declared in an error_control_table structure array
variable that the programmer declares in the main procedure of the translator. Each
structure element in the array defines an error message, and the error_number is the
array index of the desired error message. The structure contains a severity level
associated with the error, a switch that controls the printing of the current statement
as part of the error message, a long form of the error message text, and a brief
form of the error message text. The error_control_table must be declared as a
one-dimensional array of structures, with a lower bound of one, and an upper bound
equal to the highest error_number that can be used. Figure 3-10 below shows a
typical error_control_table declaration.

3-779 AG92-{)6

reductions reductions

dell error control table (7) internal static options (constant) t

2 sever i -ty fixed bin (17) una 1 i gned i nit (3, 2, 3, 2, 3, 2, 2),
2 Soutput_stmt bit(l) unaligned

init ("l"b, "l"b, "Ollb, "l"b, 1I1"b, 1I1"b, II 1 lib) ,
2 message char (70) varying init(

"An unknown statement has been encountered.!!,
II I Aa lis an i nva 1 i d record number. ",
IITranslator input ends with an incomplete statement.",
IIIAa l is invalid punctuation in a list of record numbers.",
IIIAal is an inval id record format.",
"Input follows the end of the tape file specification.",
IIA bad track specification was given in a Volume statement.
9track has been assumed.") ,

2 brief message char (28) varying init(
"Unknown statement.",
"Bad record number IAal.",
"Incomplete statement. lI

,

"Inval id punctuation lA.a l • ll ,
III nva 1 i d record format I A.a I .11,

"Too much input.",
"Bad track in Volume.");

Figure 3-10. error_control_table for the Tape Language

The severity_no associated with an error controls the prefix that is placed in the error
message, as shown in Table 3-2 below.

Table 3-2. RELATIONSHIP OF error_control_table. severity_no
TO ERROR MESSAGE PREFIX

SEVERITY PREFIX

o COMMENT

1 WARNING

2 ERROR

EXPLANATION

Comment. The error message is a comment,
which does not indicate that an error has
occurred, but merely provides information for
you.

Warning only. The error message warns of a
statement that mayor may not be in error,
but compilation continues without ill effect.

Correctable error. The message diagnoses an
error that the translator can correct, probably
without ill effect. Compilation continues, but
correct results cannot be guaranteed.

3-780 AG92-06

reductions

3 FATAL ERROR

4 TRANSLATOR ERROR

reductions

An uncorrectable but recoverable error. The
translator has detected an error that it cannot
correct Translation continues in an attempt
to diagnose further errors~ ... -but no- output is
produced by the translation.

An unrecoverable error. The translator cannot
continue beyond this error. The translation is
aborted after the error message is printed.

The statement and line numbers in the printed message are obtained from the
descriptor of the current statement. if statement descriptors are available, or from the
descriptor of the current token.

The phrase "IN STATEMENT k OF LINE I" appears if statement descriptors are
available. Line I is the line number on which the statement containing the current
token begins. Statement k identifies which statement in line I is in error. if more
than one statement appears in line 1. "STATEMENT k OF" is omitted from the
message if only one statement appears in Line 1.

If no statement descriptors are available, the phrase "STATEMENT k OF" is omitted
from the message. Line I is the line number on which the current token appears.

If Pthis_token is nUll, the phrase "IN STATEMENT k OF LINE I" is omitted
altogether. since there is no current statement and no current token. \Vhen the
output_stmt_sw of an error is on, the current statement is included in the printed
error message. The stmt.output_in_err_msg switch is turned on in the statement
descriptor to prevent the source statement from being reprinted in subsequent error
messages. Since the current statement is obtained from its statement descriptor, the
translator must parse its source string with statement descriptors. If statement
descriptors are not present, error_control_table.output_stmt_sw has no effect. Refer to
the description of the lex_strin~ subroutine for information about the structure,
contents, and generation of statement descriptors.

The printed error message contains either the error_message_text or the brief_message_text.
depending upon the value of the SERROR_CONTROL variable. This variable is
declared by the reductions command, in the main procedure of the translator, as
follows:

de 1 SERROR_CONTROL bit (2) in it i a 1 ("OOllb);

Table 3-4 below shows how the setting of these bits controis the r_message_text in
the printed error message.

3-781 AG92-()6

reductions reductions

Table 3-3. SERROR_CONTROL BITS CONTROL THE error_message_text

SERROR_CONTROL

"OO"b

"10"b

"11"b

"OI"b

INTERPRETATION

The printed error contains the error_message_text the first
time the error occurs and the brief_message_text for subsequent
occurrences of that error during a given translation.

The printed error always contains the error_message_text.

The printed error always contains the error_message_text.

The printed error always contains the brief:...message_text.

The reductions command declares the SERROR_PRINTED variable in the main
procedure of the translator as follows:

dcl SERROR PRINTED (dimension(error control table), 1) bit(l) unaligned
initial(dimension(error_control_table, l)(l)1I0Ilb);

The ERROR routine turns on SERROR_PRINTED(error_number) whenever an error
message is printed, and uses the current value of SERROR_PRINTED to control the
printing of the error_message_text or brief_message_text when SERROR_CONTROL
equals "OO"b.

The translator can be implemented with control arguments to alter the use of
error_message_text or brief_message_text in error messages. For example, the reductions
command uses the normal value ("OO"b) by default, but implements the -brief (-bf)
control argument to set a brief value ("01 "b) and the -long (-lg) control argument to
set a long value ("10"b).

The error_message_text and brief_message_text of an error are defined as ioa_ control
strings that can contain up to three occurrences of the Aa control code. Each
occurrence of Aa is replaced by the token_value character string value of the current
token. In addition, any number of the following ioa_ control codes that do not
require an input argument can be used in the error_message_text and brief_message_text
strings: A_, A /, A I, AX, and AA. The ioa_ subroutine imposes a maximum length of
256 characters on the errof_message_text and on the brief_message_text after all ioa_
substitutions have been performed.

The ERROR routine maintains the severity of the highest severity error encountered
during a translation in the variable

dcl MERROR_SEVERITY fixed bin(17) initial (0);

which the reductions command declares in the main procedure of the translator. The
translator can reference the value of this variable to determine whether an
uncorrectable error has occurred or to determine when to abort the translation due to

3-782 AG92-()6

reductions reductions

The ERROR routine is also controlled by the values of MIN_PRINT_SEVERITY and
PRINT_SEVERITY_CONTROL. These variables are declared by the rdc command. in
the main procedure of the translator. as follows:

del MIN PRINT SEVERITY fixed bin initial (0);
del PRINT_SEVERITY_CONTROL bit (2) aligned init ("l 1 lib) ;

MIN_PRINT _SEVERITY defines the minimum severity of error that is printed; that is.
all calls to ERROR having error_control_table (error_number). severity _no greater or
equal to MIN_PRINT _SEVERITY results in calls to lex_error_. The lex_err or_
subroutine operates on the values of MERROR_SEVERITY and SERROR_PRINTED as
part of its function. If the severity associated with the error is less than
MIN_PRINT_SEVERITY. the ERROR routine does not call lex_error_; however.
according to the value of PRINT_SEVERITY_CONTROL, it manipulates the values of
MERROR_SEVERITY and SERROR_PRINTED. Table 3-4 shows this interaction.

Table 3-4. PRINT_SEVERITY_CONTROL Bits Control the Values of
MERROR_SEVERITY and SERROR_PRINTED

PRINT_SEVERITY_CONTROL INTERPRET ATION

"OO"b Neither MERROR_SEVERITY nor SERROR_PRINTED
are changed.

"01 "b SERROR_PRINTED is updated as though the error
had been printed.

"10"b MERROR_SEVERITY is updated as though the error
had been printed.

"11"b MERROR_SEVERITY and SERROR_PRINTED are
both updated as though the error had been printed.

The ERROR action routine and declarations for SERROR_CONTROL. SERROR_PRINTED,
and MERROR_SEVERITY are automatically included in the main procedure of the
translation when ERROR is used in the action field of one or more reductions. An
INCLUDE attribute declaration can be used to include these error diagnostic facilities
when the ERROR routine is used only by other action routines, and does not appear
in any reductions. Refer to "Attribute Declarations" below for more information.

THE lex_error_ SUBROUTINE

The ERROR action routine is a very simple diagnostic tool, but this simplicity is
possible only because ERROR does not generate highly specific error messages
containing several different variable information fields. ERROR only allows the
character string value of the current token to be included in the message.

3-783 AG92-{)6

reductions reductions

ERROR uses lex_error_ to print its error messages. The translator can call lex_error_
directly to produce more flexible error messages. In this way. error messages
containing more than one token value, or containing variables defined by the
translator. can be printed using a standard mechanism. (See the lex_error_ subroutine.)

SAMPLE REDUCTIONS--COMPLETE

Figure 3-11 shows the reductions for the tape language with errors being diagnosed by
the ERROR action routine.

BEGIN
stmt / Volume <volume id> - / LEX (2) [volume=token_value]

[track = 9] LEX / vol \
/ Read ; / LEX (2) [mode=" r "] / stmt \
/ Write; / LEX (2) [mode="w"] / stmt \
/ File <positive_integer> / LEX [file_no=token.Nvalue]

LEX (2) / stmt \
/ Records : / LEX (2) / numbers\
/ Format : / LEX (2) / format \
/ <any-token> / (ERROR (1) NEXT STMT / stmt \
/ <no-token> / perform_io("tape_input",

volume, f i 1 e_no,
mode, II 1 lib) / end \

vol / . . , / LEX / stmt \
/ , 9track ; / LEX 0) / stmt \
/ 7track ; / [track = 7] LEX 0) / stmt \
/ <any-token> / ERROR (7) NEXT_STMT / stmt \
/ <no-token> / ERROR (3) / end \

numbers / <positive_integer> / set record no LEX / punct \
/ <any-token> / ERROR (2) LEX / punct \
/ <no-token> / ERROR (3) / end \

punct / , / LEX / numbers\
/ / LEX / stmt \
/ <any-token> / ERROR (4) LEX / numbers\
/ <no-token> / ERROR (3) / end \

format / F ; / LEX (2) format (1) / stmt \
/ FB ; / LEX (2) format (2) / stmt \
/ FBS ; / LEX (2) format 0) / stmt \
/ V ; / LEX (2) format (4) / stmt \
/ VB ; / LEX (2) format (5) / stmt \
/ VBS ; / LEX (2) format (6) / stmt \
/ U ; / LEX (2) format (7) / stmt \
/ <any-token> / ERROR (5) NEXT_STMT / stmt \
/ <no-token> / ERROR (3) / \

end / <any-token> / ERROR (6) epilogue / RETURN \
/ <no-token> / epi logue / RETURN \

Figure 3-1l. Compleie Reduciions for ihe Tape Language

3-784 AG92-06

reductions reductions

REDUCTION SUBROUTINES

Often a new language contains phrases that are similar in form but that differ in
their use of· keywords, types of keyword operand values expected, or in other minor
ways. As an example, the value language specified in Figure 3-12 below includes three
types of statements, each of which begins with a keyword followed by a punctuated
list of keyword operand values.

<stmt> ::=

<name> : :=

<attr> : :=

Name: <name>[,<name>] •.• ;

I
Attribute: <attr>[,<attr>] •••
Value: <number>[,<number>] •••

is the name of a variable.

fixed I float I decimal I binary

<number> ::= is a numeric value to be assigned to a variable.

Figure 3-12. BNF Specification for the Value Language

Since all the punctuated lists used in each statement have the same form, a single
group of reductions can be written to translate the punctuation for all three types of
statements. This sharing of reductions reduces the total number of reductions needed
to translate the value language. Reduction subroutines provide the facility for shared
reductions.

A reduction subroutine is a group of reductions. As with a PL/I subroutine, a
reduction subroutine has a primary entry point named by the label given in the label
field of its first reduction. Alternate entry points are identified by the labels on other
reductions in the subroutine. For example, the following reduction subroutine has a
primary entry point of punct and an alternate entry of punct_no_comma.

punct / ,
punct_no_comma

/
/ <any-token>
/ <no-token>

/ LEX

/ LEX
/ ERROR (7) NEXT STMT
/ ERROR (4)

/ STACK_POP\

/ STACK POP\
/ stmt - \
/ RETURN \

A reduction calls a reduction subroutine by storing a return label in a label stack (a
pushdown stack of label values), and then giving the subroutine entry point name in
the next-rcGuctioli field. The 5ubrouthit: reduction labeled by thaI enlry point name is
then the next reduction that is compared with the current token phrase. When the
reduction subroutine has completed its translation of input tokens, it returns to the
calling reduction (or group of reductions) at a label that the caller stores in a label
stack prior to the call. For example, the punct subroutine shown above is called by
each reduction in the group shown below.

3-785 AG92-()6

reductions reductions

attr / fixed
/ float

/ LEX attr (1) PUSH (attr)
/ LEX attr(2) PUSH (attr)
/ ERROR (5) LEX PUSH (attr)

/ punct
/ punct
/ punct

\
\
\ / <any-token>

The label stack performs the same function as the activation stack for PL/I
subroutines. A caller stores the desired return point label on the top of the stack by
giving that return point label in the PUSH label stacking action routine. The caller
then transfers to the desired subroutine entry point by giving that entry point label in
its next-reduction field. The called subroutine returns by using the ST ACK_POP
keyword in the next-reduction field of one or more of its reductions. STACK_POP
causes a transfer to the label on top of the label stack as it removes that label from
the stack.

The next few paragraphs describe more fully the facilities for writing and calling
reduction subroutines. A set of reductions for translating the value language follows
this description.

LABEL STACK ACTION ROUTINES

Two action routines manipulate the label stack used by reduction subroutines: PUSH
and POP.

PUSH

POP

pushes the named label onto the top of the stack. Up to 10 labels can be stored
in the stack by default

pops the top label off the top of the label stack. The label below the popped
label becomes the new top of the stack. If the popped label is the only label· in
the stack, the stack becomes empty. If no labels are on the stack before popping,
the POP is ignored.

If a PUSH would cause the label stack to overflow, then PUSH calls the lex_error_
subroutine to report a severity 4 error and then calls the cu_$cl entry point to return
to command level. A start command cannot be given, but translator maintenance
personnel can perform debugging operations to determine why the stack has
overflowed.

By default, only 10 labels can be stored in the stack. This number can be increased
by use of the MAX_DEPTH attribute declaration. See "Attribute Declarations" below
for more information.

POP is useful for reduction subroutines that are called by stacking two return labels, a
normal return label, and an error return label, before transferring to the subroutine.
The following example illustrates this usage.

3-786 AG92-06

reductions reductions

attr / fixed / LEX attr (1) PUSH (attr)
PUSH (syntax_err) / punct \

/ float / LEX attr (2) PUSH (attr)
-PUSl1 tsyntax _ err-) / punct-- \

/ <any-token> / ERROR (5) LEX PUSH (attr)
PUSH (syntax_err) / punct \

syntax_err
/ / ERROR (6) POP NEXT_STMT / stmt \

punct / , / LEX POP / STACK POP\
/ / LEX POP / STACK-POP\
/ <any-token> / / STACK=POP\

The label stack is implemented as an array of fixed binary integers. The reductions
command converts all labels appearing in a PUSH action routine to a reduction
number that is passed as an argument to a PUSH internal procedure provided by the
reductions command. The PUSH procedure increments a STACK_DEPTH variable that
records the array index of the top stack element, and then stores its input reduction
number in the new top-of-label-stack element. POP pops the top label from the
stack by decrementing STACK_DEPTH. It is sometimes useful to clear the label stack
when an error occurs. This can be done by an action statement that sets
STACK_DEPTH to zero.

LABEL STACK NEXT-REDUCTION KEYWORDS

Two keywords can be given in the next reduction field of a reduction to perform
reduction subroutine return operations: STACK and STACK_POP.

STACK
transfers to the label stored on top of the label stack. If the label stack is
empty, then no ST ACK operation occurs, and a transf er occurs to the next
reduction (the reduction following the one that used the STACK keyword) just as
if an empty next-reduction field had been given.

STACK_POP
performs a STACK operation followed by a POP operation. This implements the
typical subroutine return operation.

SAMPLE REDUCTIONS USING REDUCTION SUBROUTINES

Figure 3-13 below shows the reductions required to translate the value language
described in Figure 3-10. The punct reduction subroutine is caiied to process the iisi.
punctuation symbols by the names, attr, and values reduction groups. These groups in
turn are reduction subroutines that are called to process statement operands by the
stmt group of reductions.

3-787 AG92-()6

reductions reductions

The error messages used below can be summarized as follows: ERROR(1)--severity 2,
unrecognized statement; ERROR(2)-severity 2, unexpected 'Aa' punctuation mark in a
name list; ERROR(3)--severity 2, invalid name 'Aa' in a Name list; ERROR(4)--severity
3, incomplete statement; ERROR(5)-severity 2, invalid attribute 'Aa' in an Attribute
list; ERROR(6)--severity 2, invalid number 'Aa' in a Value list; and ERROR(7)--severity
3, unexpected I Aa I when a punctuation mark was expected in a name list

MAX_DEPTH 2 \
BEGIN
stmt / Name / LEX (2) PUSH (stmt) / names \

/ Attribute / LEX (2) PUSH (stmt) / attr \
/ Value: / LEX (2) PUSH (stmt) / values \
/ <any-token> / ERROR (1) NEXT_STMT / stmt \
/ <no-token> / / RETURN \

names / <name> / set name LEX PUSH (names) / punct \
/ / ERROR (2) LEX / STACK_POP \
/ , / ERROR (2) LEX / names \
/ <any-token> / ERROR (3) LEX PUSH (names) / punct \
/ <no-token> / ERROR (4) / RETURN \

attr / fixed / attr (1) LEX PUSH (attr) / punct \
/ float / attr (2) LEX PUSH (attr) / punct \
/ decimal / attr (3) LEX PUSH (attr) / punct \
/ binary / attr (4) LEX PUSH (attr) / punct \
/ / ERROR (2) LEX / STACK_POP \
/ , / ERROR (2) LEX / attr \
/ <any-token> / ERROR (5) LEX PUSH (attr) / punct \
/ <no-token> / ERROR (4) / RETURN \

values / <decimal_number>
/ set num LEX PUSH (va 1 ues) / punct \

/ / ERROR (2) LEX / STACK_POP \
/ , / ERROR (2) LEX / values \
/ <any-token> / ERROR (6) LEX PUSH (va 1 ues) / punct \
/ <no-token> / ERROR (4) / RETURN \

punct / I LEX POP / STACK_POP \
/ , I LEX / STACK_POP \
/ <any-token> / ERROR (7) NEXT STMT POP / STACK_POP \
/ <no-token> / ERROR (4) / RETURN \

Figure 3-13. Reductions for the Value Language

3-788 AG92-06

reductions reductions

ATTRIBUTE DECLARATIONS

Two attribute declarations control the maximum depth of the reduction subroutine
. ·laoeTsUiCf-anamCfuslorf-of tdc-provloeCf Internal procedures fof -use m-lfansTatof"";pfovlded

action subroutines. These attribute declarations are described below.

MAX_DEPTH number \
defines number, a decimal integer. as the maximum depth of the reduction
subroutine label stack.

INCLUDE action_routine \
causes the reductions command to include an internal procedure that implements
the named lexing or error action routine. NEXT_STMT, ERROR. LEX, DELETE,
and DELETE_STMT can be given as action_routine values. The action routine
internal procedures can then be called by the translator'S action routines.

SUMMARY OF THE REDUCTION LANGUAGE

Table 3-5 below summarizes the elements of the reduction language.

Table 3-5. ELEMENTS OF THE REDUCfION LANGUAGE

labels syntax actions next reduction

MAX_DEPTH label_stack_depth_number \
!NCLUDE NEXT STMT
\ INCLUDE ERROR \
INCLUDE LEX \
INCLUDE DELETE \
INCLUDE DELETE STMT \
BEGIN / absolute_spec / semant(•..) / label

/ <relative_fcn> / [var=1I1"b] /
label
labe12 / I / I

/ <no-token> / LEX / RETURN
/ <any-token> / LEX (n) / STACK
/ <name> / / NEXT STMT / STACK_POP
/ <decimal-integer>

/ DELETE /
/ <quoted-string>/ / DELETE (n) /
/ <BS> / DE LETE (m, n) /
/ / DELETE_STMT /
/ / ERROR (n) /
I I PUSH(label) /
I / POP /

3-789

\
\

\
\
\
\

\
\
\
\
\
\
\

AG92-{)6

release

Name: release, rl

SYNTAX AS A COMMAND

rl {-control_arg}

FUNCTION

releases the stack history that was automatically preserved after an unclaimed or quit
signal; that is, the Multics stack is returned to a point immediately prior to the stack
frame of the command that was being executed when the most recent quit or
unclaimed signal occurred.

CONTROL ARGUMENTS

-all, -a
releases the stack history preserved (and not already released) after all previous
quit and/or unclaimed signals rather than after only the most recent quit or
unclaimed signal.

Name: release_resource, rlr

SYNTAX AS A COMMAND

rlr type STR1 .•• STRN {-control_arg}

FUNCTION

releases a resource into the free pool. A resource may only be released by its
accounting owner or privileged processes.

ARGUMENTS

type

STRi

is a resource type defined in the resource type description table (RTDT).

is the unique identifying name of the particular resource being released. If STR
looks like a control argument, precede it with -name (-nm).

CONTROL ARGUMENTS

-priv
specifies that the you wish to perform a privileged release of this resource from
the accounting owner, even though you may not be the accounting owner (see
It Access Restrictions. ")

3-790 AG92-()6

11/87

ACCESS REQUIRED

The -priv control argument requires execute access to the rcp_admin_ gate.

You must have rew effective access to the resources named.

Name: rename, rn

SYNTAX AS A COMMAND

rn path 1 name 1 {. •• pathN nameN} {-contro l_args}

FUNCTION

replaces a specified segment, multisegment file (MSF), data management (DM) file, directory,
link, or extended entry name by a specified new name, without affecting any other names the
entry might have.

ARGUMENTS

paths
are the pathnames of a segment, multisegment file, data management file, directory, link, or
extended entry. This argument can consist of "-name SIR" to specify a nonstandard
entryname SIR which already exists and which begins with a hyphen or contains ASCII
control characters or any of the nonstandard characters ", <, >, $, %, 1, *, =. (,). [,], ::.

names
are additional names to be added. This argument can consist of "-name STR" when the
entryname begins with a hyphen. The other nonstandard characters detailed above are not
recommended for entrynames and this command will not generate entrynames which
contain them.

CONTROL ARGUMENTS

-in terpret_as_extended_ entry, -inaee
interpret the selected entry as an extended entry type.

-in terpret_as_standard_ en try, -inase
interpret the selected entry as a standard entry type.

ACCESS REQUIRED

You require modify permission on the containing directory.

rename

3-791 AG92-06B

rename reorder_archive

EXAMPLES

The command line

rn alpha beta >sample_dir>gamrna delta

renames alpha to beta in your working directory and renames gamma to delta in the
directory >sample_dir.

The command line

rn -name *stuff junk

renames the segment *stuff to junk in your working directory.

Name: reorder_archive, ra

SYNTAX AS A COMMAND

ra {-control_arg} pathl {-control_arg} pathN

FUNCTION

provides a convenient way of reordering the contents of an archive segment.
eliminating the need to extract. order, and replace the entire contents of an archive.
This command places designated components at the beginning of the archive, leaving
any unspecified components in their original order at the end of the archive. For
more information on archives and how they can be sorted. see the archive and
archive_sort commands.

ARGUMENTS

pathi
is the pathname of the archive segment to be reordered. If pathi does not have
the archive suffix, one is assumed.

CONTROL ARGUMENTS

-console_input. -ci
indicates the command is to be driven from terminal input. (Default)

-file_input. -fi
indicates the command is to be driven from a driving list (see "Notes").

3-792 AG92-G6

reorder_archive reorder_archive

CONTROL ARGUMENTS

-console_input, -ci
indicates the command is to be driven from terminal input. (Default)

-file_input, -fi
indicates the command is to be driven from a driving list (see "Notes").

11/86 3-792.1 AG92-06A

This page intentionally left blank.

11/86 AG92-06A

reorder_archive

NOTES

Wh~n th~_~9mmand is invoked_ with _ -Co~J~9Ie_t1Jl'uLor ~i~ no control arguments, the
message "input for archive_name" is printed, where archive_name is -the -riame --of the
archive segment to be reordered. Component names are then typed in the order
desired, one component name per line. A period (.) on a line by itself terminates
input. The two-character line ".*" causes the command to print an asterisk (*). This
feature can be used to make sure there are no typing errors before typing a period.
The two-character line ".q" causes the command to terminate without reordering the
archive.

When reorder_archive is invoked with -file_input, it reads a driving list to determine
the order of components. That list resides in the working directory with the name
"name. order" (where "name. archive" is the name of the archive segment to be
reordered) and it consists of a list of component names in the order desired, one
component name per line. No period is necessary to terminate the list. Any errors in
the list (name not found in the archive segment. name duplication) cause the command
to terminate without altering the archive. A temporary segment named "ra_temp_.archive"
is created in the user's process directory. which is created once per process and is
truncated after it is copied into the directory supplied by pathi. If the command
cannot copy the temporary segment, it attempts to save it in the process directory by
renaming it with the name of the archive.

This command does not operate on archive segments containing more than 1000
components.

Name: repeat_line, rpl

SYNTAX AS A COMMAND

rpl {N} {string}

FUNCTION

allows certain limited testing of the performance of your interactive terminal by
"echoing" an arbitrary message you typed in.

ARGUMENTS

N
is the number of times the message is to be printed. If you don't give N or if
N is 0, its previous value is used; the default first-time value is 10.

string
is the arbitrary message you typed in to be printed. Quote it if it contains
blanks.

3-793 AG92--Q6

repeat_query

NOTES

The first time you use repeat_line in a process, a canned message, consisting of "The
quick brown fox ... " (alternate words in red and black shift), followed by three
separate lines, each containing one horizontal tab character plus ASCII graphics in
ascending numeric sequence, is used. If you don't supply string, you are requested to
type in a new string. Once the message to be printed has been determined, it is
printed N times. (In the case of "The quick brown fox" message, 4N lines are
printed.) If string is an asterisk, the previous message is reused.

When printing of the message is completed or when you don't give an initial message,
the line

Type line (or q or <NL»:

is printed. Typing only the newline «NL» character prints the previous message
another N times. The lowercase letter q followed by <NL> returns repeat_line to its
caller. Any other line is interpreted as a new message to be printed N times.

Name: repeat_query, rq

SYNTAX AS A COMMAND

rq

FUNCTION

repeats the last query (by command_query_, described in the Subroutines and I/O
Modules manual) if it has not yet been answered.

NOTES

The repeat_query command is useful for reinterpreting questions (asked by other
commands) that are garbled.

If no question has been asked, or if the latest question was answered, the error
message "No pending query." is printed.

This command does not completely restore the environment in effect at the time of
the original query. For example, nonstandard attachments of I/O switches are not
restored.

3-794 AG92-06

repeat_query

EXAMPLES

Suppose that the system starts to print a question while you are typing. The query
looks like

E@foo.pll?

The user signals QUIT and invokes the repeat_query command. The system prints

Do you want to delete the old segment foo.pll?

The user answers and continues.

Alternatively, you can use the command escape Col to issue repeat_query.

E@foo.pll? ! .. rq

The system responds with

Do you want to delete the old segment foo.pll?

The user then answers and continues.

Another use is to return to a query after interrupting a command line issued within
the query

Do you want to delete the old segment foo.pll?

•. print foo.pll 1
foo: proc;
(user signals QUIT)

rq
Do you want to delete the old segment foo.pll? ! yes

If there is more than one suspended command in your stack, the stack is searched for
the program that asked a question, and any intervening programs are released.

3-795 AG92-06

Name: reprint_error, re

SYNTAX AS A COMMAND

re {-control_args}

FUNCTION

makes the system condition handler print its message for a condition that has already
been handled and for which stack history is preserved.

CONTROL ARGUMENTS

-all, -a
prints messages corresponding to all existing sets of condition information.

-brief. -bf
prints the short form of the message.

-depth N, -dh N
indicates which instance of saved fault information is to be used for the message;
the most recent instance is depth 1. Make -depth appear only once per command
line. (Def aul t: 1)

-long, -lg
prints the long form of Llte message.

NOTES

If you select no control argument, the default selects less extensive information than
-long.

The message mode options for reprint_error have no effect on the operation.

Name: ieseivc_iesource, rsr

SYNTAX AS A COMMAND

rsr -control_arg

FUNCTION

reserves a resource or group of resources f or use by the calling process. The
reservation takes effect immediately and lasts until canceled by cancel_resource or by
process termination. (See Section 5 of the Programmer's Reference Manual for more
information on resource reservation.)

3-796 AG92-06

CONTROL ARGUMENTS

-resource STR. -rsc STR
specifies a description of the resources to be reserved. If the description contains
spaces or special characters, enclose it in quotes. (See "Notes on Resource
Description. ")

NOTES ON RESOURCE DESCRIPTION

A resource description describes certain devices and volumes by name or by attributes
and an optional number. It has the following format:

{-resource_type} resource_specl ••• {-resource_type resource_specN}

which is a series of at least one resource_spec where all but the first must be
preceded by -resource_type (-rsct).

The format of a resource_spec can be any of the following:

volume_type namel {names}

device_type {names}

device_type {-control_args}

where:

volume_type
can be either tape_vol or disk_vol. You must supply at least one name with
volume_type, and it is the name of the volume, for example. 050102.

device_type
can be either tape_drive or disk_drive; "names" are the names of devices such as
tape_Ol; if you select no names, you can choose from these control arguments:

-attributes STR, -attr STR
is a list where STR consists of a string of attributes with values separated by
commas with no spaces. For tape drives the attributes are:

mode=
track=

speed=

For disk drives the only attribute is model=.

Use list_resource_types to find suitable values for these attributes.

-number N, -nb N
is the number of identical resources of the type desired.

3-797 AG92-()6

EXAMPLES

rsr -rsc "tape_vol 50102 u-309 -rsct tape_drive -attr
track=9,den=800 -nb 2"

This command line reserves four resources: two tapes. 050102 and u-309~ and two tape
drives that are 9 track and capable of 800 bpi operation.

Name: reset_external_variables, rev

SYNTAX AS A COMMAND

rev names {-control_arg}

FUNCTION

reinitializes system-managed variables to the values they had when they were allocated.

ARGUMENTS

names
are the names of the external variables, separated by spaces, to be reinitialized.

CONTROL ARGUMENTS

-unlabeled_common, -uc
indicates unlabeled (or block) common.

NOTES

A variable cannot be reset if the segment containing the initialization information is
terminated after the variable is allocated.

SYNTAX AS A COMMAND

FUNCTION

sets the IPS mask for the current process to unmask some or all IPS signals.

3-798 AG92-06

ARGUMENTS

signal_names
are - the names of one or more IPS signals to be unmask-ed. The signal names
must be defined in sys_info$ips_mask_data. Presently the defined signal names are
quit, alrm, neti, cput, trm_, SUS_, wkp_, pgt_, system_shutdown_scheduled_. and
dm_shutdown_scheduled_. Supply either signal_names or -all.

CONTROL ARGUMENTS

-all. -a
sets the IPS mask to unmask all IPS signals.

-brief. -bf
suppresses printing of the previous state of the IPS mask after setting it

-long, -lg
prints the previous state of the IPS mask after setting it (Default)

NOTES

If all undefined IPS signals are either masked or unmasked and you give -long. they
are not mentioned; if, however, some are masked and others are not, an octal list is
printed. This can only happen when you specify an invalid (probably uninitialized)
value in a call to set that mask.

Name: resolve_linkage_error, rle

SYNTAX AS A COMMAND

rle virtual_pointer

FUNCTION

satisfies the linkage fault taken when a process encounters a linkage error by locating
the virtual pointer specified as an argument and patching the linkage information of
the process. When you issue the start command, the process continues as if the
original linkage fault had located the specified virtual pointer.

ARGUMENTS

virtual_poin ter
is a virtual pointer specifier (see Section 1 for a description of virtual pointers).

3-799 AG92-()6

NOTES

The program locates the virtual pointer specified as an argument and patches the
linkage inf ormation of the process so that when the start command is issued the
process continues as if the original linkage fault had located the specified virtual
pointer.

EXAMPLES

This example is typical. The program is running and a linkage error is encountered.
The command is issued, correcting the linkage error and allowing the program to
continue.

myprog
Error: Linkage error by >udd>m>vv>myprogI123
referencing subroutine$entry
Segment not found.
r 1234 2.834 123.673 980 level 2, 26

rle mysub$mysub entry
r 1234 0.802 23:441 75 level 2, 26

start
<myprog is running>

Name: resource_status, rst

SYNTAX AS A COMMAND

rst type STR1 ••• STRN {-control_args}

SYNTAX AS AN ACTIVE FUNCTION

Erst type name -control_arg]

FUNCTION

prints selected information about the status of a given resource. As an active function,
returns the value requested by the specified control argument.

ARGUMENTS

type
is a resource type defined in the resource type description table (RTDT). (For
more information and for a list of the resource types on the system, use the
list_resources and list_resource_types commands.)

3-800 AG92-06

STRi
is the unique identifying name of the particular resource desired. If STR looks
like a control argument, precede it by -name.

CONTROL ARGUMENTS

-access_class. -ace
prints the AIM access class or the access class range of the resource.

-acs_path
prints the pathname of the ACS for this resource.

-all, -a
prints all information maintained about this resource. It is not allowed in the
active function.

-alloc
prints the state of your allocation switch for this resource.

-attributes. -attr
prints the current and protected attributes of this resource.

-charge_type. -crgtp
prints the charge type for this resource.

-comment, -com
prints the user-settable comment associated with this resource.

-location, -loc
prints the location field associated with this resource.

-lock
prints the status of the resource lock for this resource. In the active function,
returns "true" if the lock is on, "false" if it is off.

-mode, -md
prints your effective mode to the resource.

-owner, -ow
prints the name of the owner of the resource.

-po ten tial_access_class, -pace
prints the potential access class or potential access class range for this resource.

-potential_attributes, -pattr
prints the potential attributes of this resource.

-priv
returns your privileged effective access to the resource (see "Access Restrictions"
below).

3-801 AG92-D6

-release_lock, -rIl

-uid

prints the status of the lock that prevents the owner from releasing this resource.
In the active function, returns "true" if the lock prevents the owner from
releasing the resource, "false" otherwise.

prints the unique identifier of this resource.

ACCESS REQUIRED

You need execute access to the rcp_admin_ gate to use -priv.

Name: resource_usage, ru

SYNTAX AS A COMMAND

ru {-control_arg}

FUNCTION

prints a month-to-date report of your resource consumption.

CONTROL ARGUMENTS
are used to select portions of the available resource usage information. You can
give only one of the following:

-brief, -bf
prints a header describing the resource usage reporting period, followed by the
month-to-date dollar charge, the monthly spending dollar limit. and three
dollar-totals figures giving your interactive, absentee, and I/O daemon usage.

-long, -lg
prints the most comprehensive picture of your resource usage. In addition to
including the information selected by -brief, it gives an expanded report of
interactive, absentee, I/O daemon. and device usage.

For interactive usage. the dollar charge is broken down according to shift,
monthly dollar limit per shift, charged virtual CPU time, charged terminal connect
time, and charged memory units expressed in thousands. Absentee usage is
presented giving usage per queue: number of dprint/dpunch requested pieces,
charged virtual CPU time, and charged lines of printed or punched output

The device usage category includes charges for tape (time spent with a drive
assigned), tape mounts, disk (time spent with a disk drive assigned). disk mounts,
and logical volumes (time spent with a private logical volume attached). In
addition, a site can define devices corresponding to the various lines (tty or
network) by which the system is accessed and set prices for their usage.

3-802 AG92-Q6

resource_usage response

-total, -tt
prints your dollar-totals figures for the month-to-date dollar charge, the monthly
spending dollar limit, and the absolute total spending.

If the project administrator has set an absolute dollar limit for you (which is
independent of the monthly spending limit), it is printed, along with the date on
which the limit was last reset and the limit's reset interval. The absolute total
spending is the dollar charge against this absolute limit. In cases where no
absolute limit has been set, the absolute total spending represents charges running
from your registration date.

NOTES

If you supply no control argument, the default selects slightly less resource usage
information than that printed by -long.

The system calculates your month-to-date dollar charges when it creates your process.
Issue the new _proc command prior to typing resource_usage if you wish the most
updated figures.

In a given usage report, shift and queue numbers may not appear in consecutive order
because only shifts or queues with accrued charges are listed.

If no dollar limit stop has been set by your project administrator, the resource usage
report prints "open" as the dollar limit entry.

You can't invoke resource_usage to obtain information about another's resource
consumption.

Name: response

SYNTAX AS A COMMAND

response arg {-control_args}

SYNTAX AS AN ACTIVE FUNCTION

[response arg {-control_args}]

FUNCTION

asks you a question and returns the answer you typed. The answer is not returned in
quotes; the command processor therefore treats the answer as several strings if it
contains spaces. You can use the command language II [feature if you want the
command processor to treat the returned string as a single argument (See also the
query active function.)

3-803 AG92-G6

response response

ARGUMENTS

arg
is the question to be asked. If arg contains spaces or other command language
characters. enclose it in quotes.

CONTROL ARGUMENTS

-accept STRs
where STRs are the only responses accepted from you. If a STR contains spaces
or other command language characters, enclose it in quotes. If you respond to the
question with an answer that is not one of the specified STRs, the active function
prints a message explaining that your answer is unacceptable. lists the acceptable
answers. and repeats the question.

-brief, -bf
suppresses extra spacing and new lines when asking questions.

-disable_cp_escape. -dcpe
disables the ability to escape to the command processor via the
(See "Notes on command processor escape" below.)

-enable_cp_escape. -ecpe
enables that ability.

-input_switch STR. -isw STR

" " response.

specifies the I/O switch to use for input of your response. (Default user_input)

-long, -lg
adds a leading newline and three trailing spaces to the question. (Default)

-non_null
indicates that you must give a response. If you reply with an empty (blank) line,
the active function prints a message explaining that a null response is not allowed
and repeats the question.

-output_swi tch STR, -osw STR
specifies the I/O switch to use for output of the question to you. (Default
user _output)

-repeat DT, -rp DT
repeats the question every DT if you have not responded (see Section 1 f or a
description of valid DT values).

NOTES

You can use the format_line ;lctive function to insert other active function values mto
the question.

3-804 AG92-06

response response

NOTES ON COMMAND PROCESSOR ESCAPE

The -disable_cp_escape and -enable_cp_escape control arguments override the system
or subsyStem default The system default is "enabled." Subsystems can define the
default to be either "enable" or "disable." (See the command_query_ subroutine for
details.)

EXAMPLES

Assume that dpc is an abbreviation for

do "dp -cp [response IIIINumber of copies?

then the following interaction:

dpc report_l.runout memo_phone.runout
Number of copies? ! 2

gets you two copies of each runout segment

1111] &fl"

Assume that the exec_com segment named x.ec contains the following line:

dp -he [response IIWhat header?" -non_null] -cp 2 report.print

then the following interaction:

ec x
What header? ! <carriage return>
response: Null response not allowed, please retype.

What header? ! Aul in

prints two copies of report print with the header AuIin. Use of -non_nUll ensures that
a header follows the -header control argument to the enter_output_request (eor)
command; otherwise. the -copy control argument to the eor command would be
interpreted as the header and the number 2 as the segment name.

3-805 AG92-%

response

Assume the k.ec exec_com segment contains the following line:

dp -rqt [response "Wh i ch rqt?" -accept pr inter un 1 i ned remote] resume

then the following interaction:

ec k
Which rqt? ! plotter
response: ' plot ter' is not an acceptab 1 e answer.
Acceptable answers are:

'printer'
'unlined'
'remote'

Which rqt? ! printer

enters a printer request for one copy of the resume segment

The following illustrates the usage of format_line to insert other active function values
into the response:

[response [format_line "Enter date (default is "'a) II [date]]]

Name: reverse, rv

SYNTAX AS A COMMAND

rv STR

SYNTAX AS AN ACTIVE FUNCTION

[rv STR]

FUNCTION

returns the characters of a specified string in reverse order.

EXAMPLES

string [rv abcdef]
fedcba

reverse

3-806 AG92-D6

Name: reverse_after, rvaf

SYNTAX AS A COMMAND

rvaf STRA STRB

SYNTAX AS AN ACTIVE FUNCTION

[rvaf STRA STRS]

FUNCTION

performs lhe same function as the after command/active function, but in reverse
order.

NOTES

The active function returns that part of STRA following the last occurrence of STRB
in STRA (after uses the first occurrence). If STRB occurs last in STRA or does not
occur at all, a null string is returned.

[reverse_after STRA STRB]

is the same as:

[reverse [before [reverse STRA] [reverse STRS]]]

when STRB appears in STRA. It is a null string when STRB does not appear in
STRA.

EXAMPLES

string [reverse_after abcdef123def456 def]
456
string [rvaf acebdf g]

string XY[rvaf 17.245et17 17]ZZ
XYZZ

3-807 AG92-()6

Name: reverse_before, rvbe

SYNT AX AS A COMMAND

rvbe STRA STRB

SYNTAX AS AN ACTIVE FUNCTION

[rvbe STRA STRB]

FUNCTION

performs the same function as the before command/active function, but in reverse
order.

NOTES

The active function returns that part. of STRA preceding the last occurrence of STRB
in STRA (before uses the first occurrence). If STRB occurs first and nowhere else in
STRA, a null string is returned. If STRB does not occur in STRA, STRA is returned.

[reverse_before STRA STRB]

is the same as:

[reverse [after [reverse STRA] [reverse STRB]]]

when STRB appears in STRA. It is the same as STRA when STRB does not appear in
STRA.

EXAMPLES

string [reverse_before abcdef123def456 def]
abcdef123
string [rvbe acebdf g]
acebdf
string XY[rvbe 17.245e+17 17]ZZ
XY17.245e+ZZ

3-808 AG92-D6

Name: reverse_decat, rvdecat

SYNTAX AS A COMMAND

rvdecat STRA STRS C

SYNTAX AS AN ACTIVE FUNCTION

[rvdecat STRA STRS C]

FUNCTION

performs the same function as the decat command/active function, but in reverse
order.

NOTES

The active function returns the "decatenation" of STRA with respect to the last
occurrence of STRB in STRA (decat uses the first occurrence). The value for C is
any three-digit bit string expressed as 0 or as 1 characters such as 000,001 •...• 111. The
last occurrence of STRB found in STRA divides STRA into three parts: the part prior
to STRB. the part matching STRB, and the part following STRB. Digits of C
correspond to these three parts. The return string contains the parts of STRA whose
corr~ponding bit in C is 1. The parts are returned in their original order of
appearance in STRA.

[reverse_decat STRA STRS C]

is the same as:

[reverse [decat [reverse STRA] [reverse STRS] [reverse C]]]

when STRB appears in STRA. It is also the same as:

[decat STRA STRS C]

when STRB does not appear in STRA.

EXAMPLES

string [rvdecat abcdef123defghi def 110]
abcdef123det
string [rvdecat abcdef g 100]
abcdef

3-809 AG92-06

Name: reverse_index, rvindex

SYNTAX AS A COMMAND

rvindex STRA STRB

SYNTAX AS AN ACTIVE FUNCTION

[rvindex STRA STRB]

FUNCTION

performs the same function as the index command/active function, but in reverse
order.

NOTES

The active function returns the index (character position) in STRA of the beginning of
the last occurrence of STRB (index uses the first occurrence). If STRB does not
appear in STRA, 0 is returned.

[reverse_index STRA STRB]

is the same as:

[length STRA] - [index [reverse STRA] [reverse STRB]] + 2 - [length STRB]

when STRB appears in STRA. It is 0 when STRB does not appear in STRA.

EXAMPLES

string [rvi ndex abc123defghi123jk1 123]
13
string [rv index "Now is the time. 11 hte]
0
string [rvi ndex abcdefghi ef]
5

3-810 AG92-06

Name: reverse_search, rvsrh

SYNTAX AS A COMMAND

rvsrh STRA STRS

SYNTAX AS AN ACTIVE FUNCTION

rvsrh STRA STRS

FUNCTION

performs the same function as the search command/active function, but in reverse
order.

NOTES

The active function returns the index (character position) of the last character in
STRA that appears in STRB (search returns the first such character). If no characters
of STRA appear in STRB, 0 is returned.

[reverse_search STRA STRS]

is the same as

[length STRA] - [search [reverse STRA] STRS] + 1

when a character of STRR appears in STR_A, It is 0 when a character of STRB does
not appear in STRA.

EXAMPLES

string [rvsrh "abc = 213 11 0123456789]
9
string [rvsrh "abc = def" 0123456789]
o

3-811 AG92-o6

reverse_ verify reverse_ verify

11/86

Name: reverse_verify, rvverify

SYNTAX AS A. COMMAND

rvverify STRA STRB

SYNTAX AS AN ACTIVE FUNCTION

[rvverify STRA STRB]

FUNCTION

performs the same function as the verify active function, but in reverse order.

NOTES

The active function returns the index (character position) of the last character in
STRA that does not appear in STRB (verify returns the first such character). If all
characters of STRA appear in STRB, 0 is returned.

[reverse_verify STRA STRB]

is the same as

[length STRA] - [verify [reverse STRA] STRB] + 1

when the characters of STRA do not appear in STRB. It is 0 when all characters of
STRA appear in STRB.

EXAMPLES

string [rvver i fy lIabc = 123 11 0123456789]
6
string [rvver i fy lIabc = def ll 0123456789]
9
string [rvver i fy 21435 0123456789J
0

3-812.1 AG92-o6A

This page intentionally left blank.

11/86 AG92-o6A

11/86

Name: reverse_substr, rvsubstr

SYNTAX AS A COMMAND

rvsubstr STR J {N}

SYNTAX AS AN ACTIVE FU,VCTIOIV

[rvsubstr STR J {N}]

FUNCTION

performs the same function a~ the substr command/active function, but counts
characters from right to left The returned string has its characters in the same order
as the input string.

NOTES

The active function returns that portion of STR starting with the character in position
J (the characters in the string being numbered from right to left starting with 1) and
continuing for N characters, where J and N are decimal integers; J must be greater
than 0 and N must be greater than or equal to O. If you omit N, the remainder of
STR is returned. If J is greater than the length of STR, the null string is returned; if
N is greater than the remainder of STR, the remainder is returned.

The string

[rvsubstr STR J {N}]

is the same as

[reverse [substr [reverse STR] J {N}]]

EXAMPLES

rvsubstr abcdefg 2 3
def

rvsubstr frobozz 4
frob

rvsubstr spatula 5 4
spa

3-812 AG92-06A

revert_output revert_output

Name: revert_output, ro

SYNTAX AS A COMMAND

ro {-control_args}

FUNCTION

reverts the effect of the file_output, syn_output, and terminal_output commands. i.e .•
releases the most recent preceding command.

CONTROL ARGUMENTS

-all, -a
reverts all file_output, syn_output. and terminal_output attachments for specified
I/O switches or for all switches if you specify none.

-source_switch SIR. -ssw SIR
specifies the name of an I/O switch to be redirected. (Default: user_output)

NOTES

Each command invocation of file_output, terminal_output, or syn_output stacks up
another attachment for each of the specified switches. The revert_output command
pops and restores one attachment from the stack; it does not revert attachments made,
for example, by the io_call command.

EXAMPLES

The command line

revert_output -ssw STR

reverts the latest attachment by one of the following command lines:

file_output -ssw STR
syn_output target -ssw STR
terminal_output -ssw STR

To avoid getting ready messages in the output file, the file_output or syn_output and
revert_output commands should appear on the same command line.

See the file_output, syn_output, and 'terminal_output commands.

3-813 AG92-06

rtrim

Name: rtrim

SYNTAX AS A COMMAND

rtrim STRA STRB

SYNTAX AS AN ACTIVE FUNCTION

[rtrim STRA STRBJ

FUNCTION

returns a character string trimmed of specified characters from the right.

NOTES

The rtrim active function finds the last character of STRA not in STRB, trims
characters from STRA following this character. and returns the trimmed result. Space
characters are trimmed if STRB is omitted.

EXAMPLES

string [rtrim 000305.000 0]
000305.
string [rtrim [ltrim 000305.000 0] oJ
305.
string X[rtrim II This is it. lI]y
X This is it.Y

Name: run

SYNTAX AS A COMMAND

run {-control_args} {program} {program_args}

FUNCTION

provides the user with a temporary, somewhat isolated, environment for the execution
of programs.

ARGUMENTS

program
is the reference name or pathname of the main program for the run unit.

run

3-814 AG92-06

run

program_args
are the arguments passed to the main program or the exec_com specified by
-exec_com. See "Notes on the exec_com Feature" below.

CONTROL ARGUMENTS

-copy_ref erence_names, -crn
begins the run unit with a copy of the reference names initiated prior to the run
unit. See "Notes on Reference Name Control Arguments" below.

-exec_com path. -ec path
executes the exec_com path after the environment of the run unit is established.

-limit N. -li N
interrupts the run unit every N seconds of virtual CPU time to ask the user
"Time limit reached. Do you want to continue the program?"

-new_ref erence_names, -nrn
begins the run unit without any reference names known. The reference name
control arguments are explained further in "Notes on Reference Name Control
Arguments". This is the default.

-no_exec_com, -nec
always invokes the main program directly.

-old_ref erence_names, -orn
uses the same reference names inside and outside the run unit. See "Notes on
Reference Name Control Arguments" below.

NOTES

The -new_reference_names, -copy_reference_names, and -old_reference_names control
arguments are mutually incompatible.

NOTES ON FUNCTION

The run command is primarily intended to aid users in executing programs written on
systems that have a different definition of program than the Multics system has.
Within the Multics system, a process is a program. Although many separately compiled
"programs" can be executed in a process, they all share such program environment
items as FORTRAN common block.s, PL/I external static variables, reference names,
and file openings. This carl cause problems for users with programs ihat depend on,
for example, FORTRAN common being reinitialized each time the program is executed.
However, within the Multics system a run unit is also a program. The run command
executes the specified program in a temporary program environment that is separate
from the rest of the process and from any other run unit.

run

3-815 AG92-()6

run

The program attributes that are managed (restored, reset, etc.) by the run command
are:

1) PL/I internal static storage.

2) PL/I external static variables whose names do not contain "$".

3) FORTRAN common blocks whose names do not contain "$".

4) allocations of PL/I based and controlled storage when the program does not
specify a particular area.

5) files used only through programming language I/O constructs.

6) reference names and search rules.

All of these are restored to their prior state when the run unit terminates. An
optional feature, specified . by the -old_reference_name control argument, does not
restore search rules or reference names.

NOTES ON REFERENCE NAME CONTROL ARGUMENTS

The three reference name control arguments affect the management of the addr~
space (the segments known to the process). Reference names are the names by which
the known segments are initiated. The default action during environment restoration is
to terminate all segments made known (initiated for the first time) inside the run
unit. When this happens, all the reference names used inside the run unit are
discarded and the names in use prior to the run unit are restored.

The -nrn control argument causes segments to be terminated and reference names and
search rules to be restored at the end of the run unit. The run unit begins without
any reference names. This option should be chosen when the user wants to be sure
that the program is calling all the right subroutines and not inadvertantly getting some
subroutine that happened to have the same name but was used earlier in the process.

The -crn control argument also causes segments to be terminated and reference names
and search rules to be restored at the end of the run unit. The run unit begins with
the reference names already initiated. This option is suitable when the user does not
expect name conflicts with already known segments.

The -orn control argument does not terminate segments and does not manipulate
reference names at the end of the run unit. It is generally safer. It is necessary in
certain situations, such as when files are opened before the run unit begins.

NOTES ON THE EXEC COM FEATURE

The run command uses an exec_com segment if the -exec_com control argument is
specified or if -no_exec_com is not specified and the segment program_name.run.ec is
found in the same directory as the main program. Otherwise; the specified main
program is invoked directly.

run

3-816 AG92-06

run

If an exec_com segment is used, all command arguments after the run control
arguments are passed to the exec_com.

If an exec_com is not used, the first non-control argument is interpreted as the name
of the main program for the run.

NOTES ON SEARCH RULES

The search rules in effect at the beginning of the run unit are always the same as
those used just before the run unit. In order to get the default system search rules,
an exec_com must be used that invokes the set_search_rules command with no
arguments before executing the main program.

If -old_ref erence_names (-orn) is specified, any changes to the search rules remain
when the run unit ends. Otherwise, the search rules are restored to' the values they
had at the beginning of the run.

NOTES ON TERMINATING RUN UNIT

There are several ways to terminate a run unit

1) return from the main program or exec_com invoked by the run command.

2) execute a stop statement in PL/I or FORTRAN.

3) invoke the stop_run command. This can -De· done from a program, an
exec_com, or at interactive command level.

4) invoke the release command.

Either executing a stop statement or calling stop_run causes the finish condition to be
signaled. User code can optionally be called during run unit termination. Refer to the
description of add_epilogue_handler_ in the Subroutines manual.

NOTES ON RUN UNIT LIMITATIONS

Run units incur significant overhead costs. Run units should be used primarily for
debugging and executing user-written programs.

Any files attached/opened via iox_ or io_call during the run unit must be explicitly
detached/closed before the run unit terminates.

If any files used in the run unit are opened before the run unit begins, -orn must be
used.

Run units are not recursive.

The trace and change_error_mode commands should not be used inside run units.

The answer command's command line cannot include the run command.

run

3-817 AG92-()6

run

The profile command cannot be used on an object segment that was executed inside a
run unit unless the object segment's per-process static switch was turned on. (See
"Notes to Subsystem Writers" below.)

The list_external_ variables, delete_external_variables, and reset_external_variables commands
do not handle any PL/lexternal static variables or FORTRAN common blocks in the
prerun unit environment that object segments with per-process static use.

NOTES TO SUBSYSTEM WRITERS

If a procedure's internal static storage and linkage section are to be left alone during
the run unit, the object segment must be given the perprocess_static attribute. This
can be done by including the global keyword "Perprocess_Static;" in the bindfile (with
no parameters) for bound segments, or by including the per process_static pseudo-operation
in aIm procedures, or by typing:

switch_on perprocess_static_switch segname

See the description of the switch_on command.

Object segments without per-process static that are used both inside and outside the
run units should not have internal static pointers to named temporary external
segments. Each execution of such an object segment in a run unit destroys the
previous contents of the segment Instead, the internal static pointer should point to a
segment managed by the Multics temporary segment facility (see get_temp_segments_ in
the Subroutines manual). If using temporary segments is inappropriate because the
information must be cumulative. the object segment must have per-process static.

The run command sets up a "condition wall" so that procedures before the run
command on the stack do not get control (as the result of a signaled condition) until
the run unit is terminated.

run

3-818 AG92-06

run

EXAMPLES

The folloyying command line shows how to run the program prog2 with
-old_ref erence_names:

run -orn prog2 prog2_argl

The following exec_com uses the default search rules and invokes a program whose
arguments were given to the run command:

&command_line off
set_search_rules
prog2 &fl
&quit

The run command line that uses this exec_com might be:

The example shown above is useful when the user wants to call a library subroutine
and not a private subroutine that has the same name and that was already used in the
process. The example should not be used with -orn because the search rules would be
changed permanently. and the main purpose of the example is to avoid using existing
ref erence names.

The following example shows how to invoke an arbitrary command from an exec_com
within the environment of a run unit:

&command_line off
&fl
&quit

Name: run_cobol, rc

SYNTAX AS A COMMAND

rc name {-control_args}

FUNCTION

This command is not needed to execute COBOL object programs on Multics; it is used
to simulate an environment in which traditional COBOL concepts can be defined
easily. This command cannot be called recursively.

3-819 AG92-06

ARGUMENTS

name
is the reference name or pathname of the "main program" in which execution is
to be initiated. If a pathname is specified, the specified segment is initiated with
a reference name identical to the entrynarne portion of the pathname. Otherwise,
the search rules are used to locate the segment If the name specified in the
PROG-ID statement of the COBOL program (i.e., the entry point name) is
different from the current reference name of the object segment, then the name
specified here must be in the form A$B where A is the pathname or reference
name of the segment and B is the PROG-ID as defined in the IDENTIFICATION
DIVISION of the source program.

CONTROL ARGUMENTS

-cobol_switch N. -cs N
sets one or more of the eight COBOL-defined "external switches" on, where N is
a number from 1 to 8 (or a series of numbers separated by spaces) that
corresponds to the numbered external switch. At the outset of the run unit, the
default setting of these external switches is off. (The eight external switches are
defined in the Multics COBOL Reference Manual, Order No. AS44.)

-no_stop_run, -nsr
avoids establishment of a handler for the stop_run condition. (See "Notes" below.)

-sort_dir path, -sd path
specifies the directory to be used during execution of this run unit for temporary
sort work files. If this control argument is not specified, the process directory is
assumed.

-sort_file_size N, -sfs N
is the floating point representation of the estimated average size in characters of
the files to be sorted during execution of this run unit. This information is used
to optimize sorting. If not specified, le6 is assumed (i.e., one million characters).

NOTES

This command enables the user to explicitly define and start execution of a COBOL
run unit. A run unit is either explicitly started by the execution of the run_cobol
command or implicitly started by the execution of a COBOL object program either by
invocation from command level or from a call by another program written in COBOL
or another language. A run unit is stopped either by the execution of the STOP RUN
statement in a COBOL object program or by invocation of the stop_cobol_run
command. For the duration of time after a run unit is started and before it is
stopped, it is said to be active. All COBOL programs executed while a run unit is
active are considered part of that run unit.

3-820 AG92-06

A run unit is a subset of a Multics process; it is stopped when the process is ended.
Also, when all programs contained in a run unit are cancelled, the run unit is stopped
(refer to the cancel_cobol_program command). Only one run unit can be active at any
given time in a process. Therefore, the run_cobol command cannot be invoked
recursively. Additionally, if a run unit has been started implicitly (as described above).
the run_cobol command cannot be used until that run unit has been stopped; i.e .• the
run_cobol command does not terminate a currently active run unit

The explicit creation of a run unit with the run_cobol command performs the
following functions:

1. Establishment of a "main program", i.e., a program from which control does
not return to the caller. The EXIT PROGRAM statements, when encountered
in such a program, have no effect, as required in the COBOL definition. An
implicitly started run unit has no "main program". The EXIT PROGRAM
statement in all programs contained in such a run unit always causes control to
be returned to the caller. even if the caller is a system program, e.g., the
command processor.

2. Setting of the COBOL external switches. These switches are set to off unless
otherwise specified by the -cobol_switch control argument.

3. User control of the action taken when a STOP RUN statement is executed in a
COBOL object program. The action normally taken for STOP RUN is
cancellation of all programs in the run unit, closing any files left open. After
this has been done, the data associated with any of the programs is no longer
available. Thus in a debugging environment. it may be useful to redefine the
action taken for STOP RUN. When the run unit is explicitly initiated with the
run_cobol command, the STOP RUN statement causes the signalling of the
stop_run condition for which a handler is established that performs the normal
action described above. If the -no_stop_run control argument is specified, this
handler is not established, thus allowing the user to handle the signal using
other Multics commands. If the user has not explicitly provided a handler for
stop_run and specifies the -no_stop_run control argument, an unclaimed signal
results.

The name specified in the run_cobol command line need not be a COBOL object
program. It can be a program produced by any language compiler that provides a
meaningful interface with COBOL programs (e.g., PL/I, FORTRAN).

Refer to the following related commands:

display _cobol_run_unit, dcr
stop_cobol_run, ser
cancel_cobol_program, ccp

3-821 AG92-o6

runoff runoff

x

11/87

Name: runoff, rf

SYNTAX AS A COMMAND

rf paths {-controi_args}

FUNCilON

is used to type out text segments in manuscript form.

ARGUMENTS

paths
are the pathnames of input segments or multisegment files. The runoff suffix is assumed if
not supplied. If two or more pathnames are specified, they are treated as if runoff had been
invoked separately for each one, in the order in which they occur in the command line.

CONTROL ARGUMENTS
can be intermixed arbitrarily with paths.

-character, -ch
flags certain key characters in the output by putting the line containing the key character in a
segment named entryname.chars. The normal output is not affected. Page and line numbers
referring to the normal output appear with each flagged line, and reminder characters,
enclosed by color-shift characters, are substituted for the key characters. The default set of
key and reminder characters corresponds to those unavailable with a 963 typeball, as follows:

Key
left square bracket
right square bracket
left brace
right brace
tilde
grave accent

Reminder
<
>
(
)
t

The key and reminder characters can be changed by use of the .ch control line; specifying a
blank reminder character removes the associated key character from the set of key
characters. If a key character would print normally in the output, it should also appear in a
. tr control line to turn it into a blank in the output.

3-822 AG92-()6B

rWlOff

11/87

-from N, -fm N
starts printing at the page numbered N. If the -page control argument is used, printing starts
at the renumbered page N.

-hyphenate, -hph
When this control argument is used. a procedure named hyphenate_word_. that the user
supplies, is invoked to perform hyphenation when the next word to be output does not fit in
the space remaining in a line (see "Hyphenation Procedure Calling Sequence" at the end of
this description). Otherwise. no attempt is made to hyphenate words.

-indent N, -in N
indents output N spaces from the left margin (default indentation is 0 except for
"-device 202," which is the default for -segment and has a default indentation of 20; see also
-number below). This space is in addition to whatever indentation is established by use of
the .in control word.

-no_pagination, -npgn
suppresses page breaks in the output

-number, -nb
prints source line numbers in the left margin of the output; minimum indentation of 10 is
forced.

-page N, -pg N
changes the initial page number to N. All subsequent pages are similarly renumbered. If the
control1ine.pa is used within the segment, the -page control argument is overridden and the
page is numbered according to the .pa control line.

-parameter arg, -pm arg
assigns the argument arg as a string to the internal variable "Parameter".

-pass N
processes the source segments N times to permit proper evaluation of expressions containing
symbols that are defined at a subsequent point in the input No output is produced until the
last pass.

runoff

3-823 AG92-06B

runoff

-segment, -sm
directs output to the segment or multisegment file named entryname.runout This
control argument assumes by default that the material is to be dprinted, so the
segment is prepared compatible with device 202 unless another device is specified;
thus, unless overridden by the -indent control argument, each printed line in the
output segment is preceded by 20 leading spaces so that the text is approximately
centered on the page when dprinted.

-stop, -sp
waits for a carriage return from the user before beginning typing and after each
page of output (including after the last page of output).

-to N
ends printing after the page numbered N.

-wait, -wt
waits for a carriage return from the user before starting output, but not between
pages.

NOTES

Output lines are built from the left margin by adding text words until no more words
fit on the line; the line is then justified by inserting extra blanks to make an even
right margin. Up to 20 "lines each of headers and footers can be printed on each
page. The pages can be numbered, lines can be centered, and equations can be
formatted. Space can be allowed for diagrams. Detailed control over margins, spacing,
headers, justification, numbering, and other aspects of format is provided by control
lines that begin with a period. Although the control lines are interspersed within the
text, they do not appear in the output segment. The output can be printed page by
page to allow positioning of paper, or it can be directed into a segment Characters
not available on the device to which output is directed are replaced by blanks. If
special symbols must be hand drawn, a separate segment can be created that indicates
where each symbol should be placed. The user can define variables and cause
expressions to be evaluated; he also has the ability to refer to (and sometimes modify)
variables connected with the workings of the runoff command.

A runoff input segment contains two types of lines: control lines and text lines. A
control line begins with a period; all other lines are considered text lines. A
two-character control word appears in the second and third character positions of each
control line. The control word can take a parameter that is separated from the
control word by one or more spaces. Lines that are entirely blank are treated as if
they contained a .sp 1 control line.

Text lines contain the material to be printed. If an input line is too short or too
long to fill an output line, material is taken from or deferred to the next text line.
A line beginning with a space is interpreted as a break in the text (e.g., the beginning
of a new paragraph) and the previous line IS printed as IS.

runoff

3-824 AG92-06

runoff

Tab characters (ASCII HT) encountered in the input stream are converted to the
number of spaces required to get to the next tab position (11, 21, ...). Nonprinting
control characters in the input segment are discarded in the output segment. The .tr
cofllrol" W(n'a-- canoe used -10- -prliU -lhese- conItol-cnaracters-tn:- tneoutpursegmenc --

When an input text line ends with any of the characters 11.11, II?II, II! II, II; II, or
1111, or with 11.11, "?", or II! II followed by a double quote or II) ", two blanks
precede the following word (if it is placed on the same output line), instead of the
normal single blank.

The translate character (!) is used both to "count" spaces and to prevent an
unattractive line split See the sample runoff segment at the end of this description . ..

The maximum number of characters per input or output line is 361; this permits 120
underlined char~cters plus the newline character.

TERMINOLOGY

The following paragraphs describe various terms that are used throughout the runoff
description.

FILL AND ADJUST MODES

Two separate concepts are relevant to understanding how runoff formats output: fill
mode and adjust mode. In fill mode, text is moved from line to line when the input
either exceeds or cannot fill an output line. Adjust mode right justifies the text by
inserting extra spaces in the output line, with successive lines being padded alternately
from the right and from the left Initial spaces on a line are not subject to
adjustment. Fill mode can be used without adjust, but in order for adjust to work,
fill mode must be in effect

LINE LENGTH

The line length is the maximum number of print positions in an output line, including
all spaces and indentations, but not including margins set or implied by the -device,
-indent, or -number control arguments.

BREAK

A break ensures that the text that follows is not run together with the text before the
break. The previous line is printed out as is, without padding.

SPACING BETWEEN LINES

Vertical spacing within the body of the text is controlled by the three control words:
.SS, .ds, and .ms (for single, double, and multiple spacing respectively). Single spacing
is the default Multiple spacing is set by the control line .ms N where N-l is the
number of blank lines between text lines.

runoff

3-825 AG92-06

runoff

PAGE EJECT

A page eject ensures that no text after the control line causing the page eject (e.g.,
.bp for "begin page") is printed on the current page. The current page is finished
with only footers and footnotes at the bottom, and the next text line begins the
following page.

MARGINS

There are f our margins on the page vertically. The first margin on the page is the
number of blank lines between the top of the page and the first header; this margin
is set by the .m! control word. The second, set by .m2, specifies the number of lines
between the last header and the first line of text The third (.m3) is between the last
line of text and the first footer. The fourth (.m4) is between the last footer and the
bottom of the page. The default for the first and fourth margins is four lines; for
the second and third, two lines.

PAGE NUMBERS

As the output is being prepared, a page number counter is kept This counter can be
incremented or set by the user. The current value of the counter can be used in a
header or footer through the use of the symbol "%". A page is called odd (even) if
the current value of the counter is an odd (even) number. The page numbers can be
output as either arabic (the default) or roman (using the .ro control word).

HEADERS AND FOOTERS

A header is a line printed at the top of each page. A footer is a line printed at the
bottom of each page. A page can have up to 20 headers and 20 footers. Headers are
numbered from the top down, footers from the bottom up. The two groups are
completely independent of each other. Provision is made for different headers and
footers for odd and even numbered pages. Both odd and even headers (footers) can
be set together by using the .he (.fo) control words. They are set separately by using
the .eh •. oh •. ef. and .of control words.

A header/footer control line has two arguments. the line number (denoted in the
control line descriptions as n#,,), and the title.

The line number parameter of the control line determines which header or footer line
is being set If the number is omitted, it is assumed to be 1. and all previously
defined headers or footers of the type specified (odd or even) are cancelled. Once
set, a line is printed on each page until reset or cancelled.

runoff

3-826 AG92-()6

runoff

.nf
No fill: fill mode is suppressed, so that a break is caused after each text line.
Text is printed exactly as it is in the input segment This control line causes a
break .

. of # 'partl'part2'part3'
Odd footer: this defines odd page footer line number #. If # is omitted, 1 is
assumed. If both # and the title (parts 1 to 3) are omitted, all footers defined
by any .of control line are cancelled. For more information, see the discussion
entitled "Headers and Footers."

.oh # 'partl'part2'part3'

.op

Odd header: this defines odd page header line number #. If # is omitted, 1 is
assumed. If both # and the title (parts 1 to 3) are omitted, all headers defined
by any .oh control line are cancelled. For more information, see the discussion
entitled "Headers and Footers."

Odd page: the next page number is forced to be odd by adding 1 to the page
number counter if necessary. A break is caused and the current page is ejected.
No blank even page is made; the even page number is merely skipped .

. pa +/-N
the current line is finished as is (i.e., a break occurs) and the current page is
ejected. The page number counter is set to N, or is changed by N if N was
signed. If N is omitted. the page number counter is incremented by 1.

.pi N
Picture: if N lines remain on the present page, N lines are spaced over;
otherwise, the text continues as before until the bottom of the page is reached. N
lines are skipped on the next page before any text is printed. Headers are printed
normally; the space resolved is below the headers. This option can be used to
allow for pictures and diagrams. If several .pi control lines occur consecutively,
each N is added to the number of lines pending and the total is checked against
the space remaining on the page. All pending space is allotted together. If the
total is greater than the usable space on a page, the next page contains only
headers and footers and the rest of the space is left on the following page. If N
is not specified, 1 is assumed .

. pl +/-N

.rd

Page length: the page length is set to N lines. If N is not specified, 66 is
assumed. If N is preceded by a plus 01 a illinus sign, the page length is changed
by N rather than reset

Read: one line of input is read from the user_input I/O switch; this input line
is then processed as if it had been encountered instead of the .rd control line.
Thus it can be either a text line or a control line; a break occurs only if the
replacement line is one that would cause a break.

runoff

3-835 AG92-06

runoff

.ro

. rt

Roman numerals: when page numbers (% variable) are substituted into text or
control lines as a result of a .ur control line or into a title or equation as it is
printed, they are in lowercase roman notation. This can be reset to arabic
numerals (the default) by use of the .ar control line .

Return: cease processing characters from the current input segment If the current
input segment was entered by a .if control line in another segment, return to the
line following the .if control line .

. sk N
Skip: N page numbers are skipped before the next new page by adding N to the
current page number counter. No break in text occurs. This control line can be
used to leave out a page number for a figure. If N is not specified, 1 is
assumed .

. sp N
Space N lines: If N is not specified, 1 is assumed. If not enough lines remain
on the current page, footers are printed and the page ejected, but the remaining
space is not carried over to the next page. The N blank lines are produced in
addition to any that may occur automatically due to a .ds or .ms control line.
For example, if .sp 4 is used with .ss or .ms 1, in effect four blank lines appear
between two text lines, with .ds or .ms 2, five lines appear, with .ms 3, six lines.

After skipping the space. the equivalent of a .ne 2 is performed in an attempt to
avoid separating the first line of a paragraph at the bottom of a page from the
rest of the paragraph on the next page. The .ne feature can be avoided, if the
user so desires, by using a blank line rather than .sp. Otherwise, a blank line is
treated as if it were a .sp 1 control line.

This control line causes a break.

Note: A series of .sp control lines such as:
.sp a
.sp b

is not always equivalent to a single .sp control line whose argument is the sum of
the individual arguments:

.sp a+b
If the .sp a finishes a page. causing a page ejection, b blank lines are produced
at the top of the new page. If .sp a+b is used, the space does not appear at the
top of the next page .

. sr name <express ion>
Set reference: associates value of <express i on> with the identifier name. The
type of name is set to the type of <express i on> (either numeric or string); if
the expression i~ Hot provided or caliHot be Pfo~flY evalliclted, d. dlagno;)Lic
message is printed. The name identifier can be either a user-defined identifier or
one of the built-in symbols that the user can set (see "Built-In Symbols" below).

runoff

3-836 AG92-06

runoff

.SS
Single space: begin single spacing text This is the default condition. This control
line causes __ a_ .break .

. tr ed ..
Translate: the nonblank character c is translated to d in the output An arbitrary
number of cd pairs can follow the initial pair on the same line without
intervening spaces. An unpaired c character at the end of a line translates to a
blank character. (Translation of a graphic character to a blank only in the output
is useful for preserving the identity of a particular string of characters, so that
the string is neither split across a line, nor has padding inserted within it) If
several .tr control lines are used in a segment, the cd pairs are "added together."
Also a particular c character can be translated to a different d character by using
a new . tr control line to override the previous translation. To cancel a cd pair
(i.e., have the _c character print out as itself), use another . tr control line of the
form ".tr cc". A .tr control line with no cd pair is ignored .

• ts N
Test: process the next input line if the value of N does not equal zero (false).
If N is not specified, 1 is assumed .

. ty STR
Type: write STR (i.e., the rest of the control line) onto the error_output I/O
switch. Substitution of variables can occur if the first or second character of STR.
is "%". If STR is omitted, a blank line is written onto the I/O switch .

. un N
Undent: the next output line is indented N spaces less than the current
indentation. Adjustment, if in effect, occurs only on that part of the line
between the normal left indentation and the right margin. If N is not specified,
its value is the current indentation value (i.e., the next output line begins at the
current left margin). This control line causes a break .

. ur text

. wt

*

Use reference: the remainder of the .ur control line (text) is scanned, with
variables of the form "%name%" replaced by their corresponding values (converted
back to character string form if they were numeric). The line thus constructed is
then processed as if it had been encountered in the original input stream (e.g., it
can be another control line, including possibly another .ur) .

Wait: read one line from the user_input I/O switch and discard it (see the .rd
control word description).

This line is treated as a comment and ignored. No break occurs.

This line is treated as a comment and ignored with respect to the output segment;
however, the line is printed in the appropriate place in the chars output segment.

runoff

3-837 AG92-06

runoff

SUMMARY OF CONTROL WORDS

The following conventions are used to specify arguments of control words:

c
cd
exp
N
+/-N
f
t

integer constant
character.
character pair.
expression (either numeric or string).
integer expression.
indicates update by N; if sign not present, set to N.
segment name.
title of the form 'partl'part2'part3'.

SUMMARY OF REQUESTS

Request Break

• ad yes
• ar no
• bp yes
• br yes
.cc c no
.ce N yes
• ch cd .••. no
• ds yes
.ef 1/ t no
.eh # t no
.eq N yes
.ex text no
.fh t no

Request Break

• f i yes
.fo # t no

.fr c no

• ft no
.gb STR no
.gf STR no
.he # t no

• if f exp no

· in +/-N yes

Default

on
arabic

%
N=l

off

N=l

line of
underscores

Meaning

Right justify text .
Arabic page numbers •
Begin new page •
Break, begin new line •
Change special character from % to c.
Center next N lines.
Note "c" in chars segment as lid" •
Double space •
Defines even footer line #.
Defines even header line #.
Next N lines are equations.
Call command processor with "text".
Format of footnote demarcation line.

Default Meaning

on

t

N=O

Fill output lines.
Equivalent to: .ef # t

.of # t
Control footnote numbering:

II til reset each page.
IIf" continuous.
"U" numbering suppressed

for next footnote.
Delimits footnotes •
"go back" to label ST.
"go forward" to label STR.
Equivalent to: .eh # t

.oh # t
Segment f.runoff inserted at point

of request; value of "exp"
..... ,..--: ,. + IID~ .. ~ a+.e. .. 11
a;»;» I ~1I1;;"'" &.\.1 I COIl glll"." .. '-' •

Indent left margin N spaces.

3-838

runoff

AG92-06

runoff

• 1 i N
• li +/-N
.ma +/-N

.mp +/-N

.ms +/-N

.ml +/-N

.m2 +/-N

.m3 +/-N

.m4 +/-N

.na

.ne N

.nf

• of # t
• oh H t
.op
.pa +/-N
.pi N

.pl +/-N

.rd

~ro

• rt
.sk N

.sp N

.sr sym exp

.ss

. tr cd .•••

.ts N

.ty STR

.un N

.ur text

.wt

. ,,:

.-

no
no
no

no
yes
no
no
no
no
yes
no

yes

no
no
yes
yes
no

no
no

no
no
no

yes
no

yes
no

no

no

yes
no

no

no
no

N=l
N=65
N=4

N=l
N=l
N=4
N=2
N=2
N=4
off
N=l

off

N=l

N=66

arabic

N=l

N=l

no

N=l

left margin

Next N lines treated as text.
Line length is N •
Equivalent to: .ml N

.m4N
Print only every N-th page.
Multiple space N lines.
Margin above headers set to N.

runoff

Margin between headers and text set to N.
Margin between text and footers set to N.
Margin below footers set to N.
Do not right justify.
Need N lines; begin new page if not

enough remain.
Do not.fill output lines; print them

exactly as entered.
Defines odd footer line H •
Defines odd header line # .
Next page number is odd.
Begin page N.
Skip N lines if N remain;

otherwise skip N lines on next page
before any text.

Page length is N.
Read one line of text from the

user_input I/O switch and process
it in place of .rd line.

Roman numeral page numbers.
"Return ll from this input segment •
Skip N page numbers before next

new page.
Space N lines.
Assign value of Ilexpll to variable

named "symll.
Single space.
Translate nonblank character c into

d on output.
Process the next input line only if

N is not zero.
Write "STR" onto the error_output

I/O switch.
Indent next text line N spaces less.
Substitute values of variables in

"text ll , and scan the line again.
Read one line of text from the

user_input I/O switch and discard it
(for synchronization with terminal).

Comment line; ignored .
Comment line; ignored.

3-839 AG92-{)6

runoff

BUILT-IN SYMBOLS

Only those symbols marked "yes" in the Set column can have values assigned by the
user.

All symbols are of type Number uniess they are speciiied to be of type String.

Control words and control arguments that affect the values of the variables are
indicated in parentheses: (x/y) indicates that x sets the switch to true (-1), and y sets
it false (0); (a) or (a, b, c) indicates that it is affected by a or by a, b, and c.

Symbol

Ad
Ce

CharsTable

Charsw

ConvTable

Date

Device

DeviceTable

Eq
Eqcnt

ExtraMargin

F i
F i 1 eName

F i lesw

Foot
FootRef

Fp

Fr
From
Ft
Hyphenating

In

Set

yes

yes

yes

yes

yes

yes

yes

yes
yes

yes

yes

yes

Value

Adj us t (. ad/ • na) .
Number of lines remaining to be

centered (. ce) •
Translation table for chars segment

output (String) (.ch).
A chars segment is being created

(-character) '.
Translation table for output. Product

of DeviceTable and TrTable (String)
(. tr, -dev ice) .

Date of" this invocation of runoff;
format is mm/dd/yy" (String).

Type of device output is to be formatted
for (-device, -ball, -segment).

Translation table for physical device
(Str i ng) (-dev ice) .

Equat i on 1 i ne counter (. eq) .
Equation reference counter (incremented

each reference).
Indent entire text this many spaces

(-segment, -device, -indent).
Fill sw itch (. f i / • nf) .
Name of current primary input segment

(Str i ng) •
True if output is going to a segment

(-segment) .
Footnote counter (.ft, .fr).
Footnote reference string in footnote

body (Str i ng) .
First page to print (set at the beginning

of each pass to the value of From).
Footnote counter reset switch.
First page to print (-from).
Footnote process i ng sw itch (. f t) .
True if an attempt to break a word

should be made (-hyphenate).
I ndent to here (. in) .

runoff

3-840 AG92-()6

runoff

Symbol

I nputF i 1 eNiime

InputLines

LinesLeft

Ll
Lp

Mal
Ma2
Ma3
Ma4
Ms

MultiplePagecount
NestingDepth
Nl
NNp
NoFtNo

NoPaging

Np

PadLeft

Parameter

Passes

Pi
Pl
Print

Printersw

PrintLineNumbers

Roman
Selsw

Start
Stopsw

Set

yes

yes

yes

yes

yes

yes

yes

yes

yes
yes

Value

Name of curre-nt input seg-ment -(Str i ng)
(. i f) •

Current line number in current source
f i 1 e.

Number of usable text lines left on
this page.

Line length (.ll).
Last page to print (initialized each

pass from To) •
Space above header (.ma, .ml).
Space below header (.m2).
Space above foot (.m3).
Space below foot (.ma, .m4).
Spacing between lines (ss = 1, ds = 2,

etc.) (.ms, .ss, .ds).
Form feeds between pages to printer (.mp).
Index into stack of input fi les (. if).
Last used line number.
Next page number (-page, .pa).
True to suppress number on next

footnote reference (.fr).
True if no pagination is desired

(-no pagination) •
Current page number (.pa, -page,

initialized each pass from Start).
Alternate left/right padding switch

(. un, . ad) •
Argument passed during insert processing

(-parameter; • if).
Number of passes left to make (= 1 when

printing is being performed) (-pass).
Space needed for pictures (.pi).
Page 1 ength (. p 1) •
Whether or not to print:

({Fp <= Np <= Lp) & (Passes <= 1»
Output is intended for bulk printer

(-device, -segment).
True if source 1 ine numbers are to be

printed in output (-number).
Roman numeral pagination (.ro/.ar).
True if typeball other than 963 is

be i ng used (-ba 11) .
In it i a 1 page number (-page).
Stop between pages of output (-stop).

runoff

3-841 AG92-()6

runoff

Symbol

TextRef

Time

To
TrTable

Un
Waitsw

Set

yes

yes
yes

yes

Value

Footnote reference string in main text
(Str i ng) •

local time, in seconds, since
January 1, 1901.

Last page to be printed (-to).
Translation table for user-supplied

substitutions (String) (.tr).
Undent to here (.un).
Wait for input before printing first

page (-wa it) •

NOTES ON HYPHENATION PROCEDURE CALLING SEQUENCE

The runoff command provides a means whereby a user-supplied program can be called
whenever the space available on a line is less than the length of the next word
(including attached punctuation. if any). The mechanism is activated by use of the
-hyphenate control argument. and the PL/I calling sequence is provided below.

runoff

declare hyphenate_word_ entry(char(*) unal igned, fixed bin, fixed bin);

call hyphenate_word_(string, space, break);

where:

string
is the text word that is to be split (Input)

space
is the number of print positions remaining in the line. (Input)

break
is the number of characters from the word that should be placed on the current
line; it should be at least one less than the value of space (to allow for the
hyphen), and can be 0 to specify that the word is not to be broken. Thus if the
word "calling" is to be split, and 6 spaces remain in the line, the procedure
should return the value 4 (adjustment is performed after hyphenation). (Output)

3-842 AG92-{)6

runoff_abs

Name: runoff_abs, rfa

SYNTAX AS A COMMAND

rfa paths {-rf_args} {-dp_args} {-control_args}

FUNCTION

submits an absentee request to process text segments using the runoff command.

ARGUMENTS

paths
are the pathnames of segments to be processed by the runoff command.

rf_args
can be one or more control arguments accepted by the runoff command.

dp_args
can be one or more control arguments accepted by the dprint command, except
-brief (-bf) and -truncate (-te).

CONTROL ARGUMENTS

Control arguments and paths can be mixed freely and can appear anywhere on the
command line.

-hold, -hd
specifies that runoff_abs should not dprint or delete the output file.

-limit N, -Ii N
places a limit on the CPU time used by the absentee process. The parameter N
must be a positive decimal integer specifying the limit in seconds. The default
limit is defined by the site for each queue. An upper limit is defined by the site
for each queue on each shift. Jobs with limits exceeding th upper limit for the
current shift are deferred to a shift with a higher limit.

-.-output_file path, -of path
specifies that absentee output is to go to the segment whose name is path.

-queue N, -q N
is the prionty queue of the requesL Ine aeraun queue is oennea oy ihe ~iie.
See the Notes for a description of the interaction with the dprinting of output
files.

NOTES

Unpredictable results can occur if two absentee requests are submitted that simultaneously
attempt to process the same segment or write into the same absout segment.

3-843 AG92-06

runoff_abs

The -indent control argument is given to this command, it is interpreted as the runoff
control argument; not as the dprint control argument

If the -queue control argument is not specified, the request is submitted into the
default absentee priority queue defined by the site and. if requested, the output files
will be dprinted in the default queue of the request type specified on the command
line. (If no request type is specified. the "printer" request type is used.)

If the -queue control argument is specified. the output files will be dprinted in the
same number queue as the absentee request unless the -hold control argument is also
specified. If the request type specified for dprinting does not have that queue, the
highest numbered queue available for the request type is used and a warning is issued.

Name: sample_refs

SYNT AX AS A COMMAND

FUNCTION

periodically samples the machine registers to determine which segments a process is
referencing. Three output segments are produced that are interpretable by the
print_sample_refs command.

CONTROL ARGUMENTS

-segment name, -sm name
specifies the names to be given the three output segments; name can be either an
absolute or relative pathname. If name does not end with the suffix srf. it is
assumed. The output segments are narned as follows:

(entry portion of) name.srfl
(entry portion of) name.srf2
(entry portion of) name.srf3

The default places the output segments in your working directory, with entrynames
as follows:

mml dd/yy_hhmm.m_zzz_ www.srfl
mml dd/yy_hhmm.m_zzz_ www.srf2
mml dd/yy_hhmm.m_zzz_ www.srf3

3-844 AG92-o6

-time N, -tnt N
specifies the rate in milliseconds at which the process is sampled. N must be a
positive integer. (Default: N = 1000; i.e., the process is sampled once every
seCond)"

NOTES

You are allowed one active invocation per process: a second invocation terminates the
first. whereupon the new invocation proceeds normally .. spb

You can sample the machine registers only when the process is running in a ring
other than O. For example. a process using a total of 100 seconds of processor time
and sample_refs running at the default sample rate and recording 23 samples indicate
that 77 seconds of processor time were spent in ring O.

Under certain conditions. the contents of one of the machine registers sampled--the
Temporary Segment Register (TSR)--can be invalid. This invalidity is noted, but does
not necessarily indicate that the process is in error.

At the maximum sample rate (one millisecond) execution time can be increased by as
much as 50 percent. Using a one-second sample rate, the increase in execution time is
negligible.

The accuracy of sample rates less than 1000 milliseconds is not guaranteed. due to load
factors. The accuracy of such sample rates increases with load.

If the process being sampled is terminated without an invocation of sample_refs with
the -reset option. interpretable output segments are still produced; however. both the
off -time and the last recorded sample may be invalid.

SYNTAX AS A COMMAND

FUNCTION

creates a segment containing an iniormation avaiiab1e from the storage system about a
directory and its con ten ts.

ARGUMENTS

dir_path
is the pathname of the directory to be scanned.

3-845 AG92-06

seLpath
is the pathname of the directory information segment to be created. If you omit
seLpath. the entryname portion of dir_path is assumed. If seLpath does not end
with the dir_info suffix. it is assumed.

NOTES

This command is not recursive; the entire subtree inferior to the selected directory is
not scanned. just the immediately inferior branches and links. The saved information
segment can be processed by the comp_dir_info and list_dir_info commands.

Name: save_history _registers

SYNTAX AS A COMMAND

save_history_registers {state} {-control_args}

FUNCTION

allows a user to save processor history registers upon each occurrence of a signalable
fault in the signalers stack frame. By default. the history registers are not saved. and
the history register block in the signalers stack frame is set to all zeros.

ARGUMENTS

state
can be either "on" or "off." The default is off.

CONTROL ARGUMENTS

-prin4 -pr
displays the current state of the history register save switch if it is present
without the state argument; with this argument. the state of the switch is
displayed before the new state is applied.

-priv
specifies manipulation of the per-system state by directing the state and -print
arguments to operate on the per-system history register save switch,
wired_hardcore_data$global_hregs. When set, this switch causes all processes to
save their history registers upon each occurrence of a signalable fault in the
signalers stack frame. If -priv is not specified, then the state and -print
arguments operate on pds$save_history _regs, the per-process history register save
switch of the user's process executing this command.

ACCESS REQUIRED

When the -priv control argument is used. access to the hphcs_ gate is required.

3-846 AG92-06

SYNTAX AS A COMMAND

FUNCTION

reverses the effect of the no_save_on_disconnect command, re-enabling process
preservation across hangups in your process.

NOTES

This command is meaningful only if process preservation was in effect for the process
at login time, either by default or because you gave -save_on_disconnect on the login
command line.

Name: search, srh

SYNTAX AS A COMMAND

srh STRA STRB

SYNTAX AS AN ACTIVE FUNCTION

[srh STRA STRB]

FUNCTION

returns the integer representing the character position in strA of the leftmost
occurrence of any character contained in strB. If no character of strB occurs in strA,
o is returned.

EXAMPLES

The following lines from an exec_com segment demonstrate how you can use the
search active function to check that argument 1 does not contain either of the special
characters used by the star convention. If the argument does not contain special
characters. execution continues: if it does, a message is printed and execution stops.

&if &[nequal [srh &1 *1] 0]
&then &goto continue
&print Star name not permitted: &1
&quit
&label continue

search

3-847 AG92-06

search

11/86

segments

The following interactions also illustrate the search active function:

s t r i n 9 [s r h " P a u 1, Ma r y ;" ",;"]
5
string [srh "Harry" 11,;"]
o

Name: segments, segs

SYNTAX AS A COMMAND

segs star_names {-control_args}

SYNTAX AS AN ACTIVE FUNCTION

[segs star_names {-control_args}]

FUNCTION

returns the entrynames or absolute pathnames of segments that match one or more star
names.

ARGUMENTS

star_names
are star names to be used in selecting the names to be returned.

CONTROL ARGUMENTS

-absolute_pathname, -absp
returns absolute pathnames rather than entrynames.

-chase
processes the targets of links when you specify a starname.

-inhibit_error. -ihe
returns false if star_name is an invalid name or if access to tell of an entry's
existence is lacking.

-no_chase
does not process the targets of links when you specify a starname. (Default)

-no _inhibi t_error, -nihe
signals an error if star_name is an invalid name or if access to tell of an entry's
existence is lacking. (Default)

3-848 AG92-06A

segments segments

11/86

NOTES

Only one name per segment is returned; i.e., if a segment has more than one name
that_mat~h~_a star_name, only the fir$t match found is reU1rn~.

Since each entryname (or pathname) retu.rned by segs is enclosed in quotes, the
command processor treats each name as a single argument regardless of the presence
of special characters in the name.

3-848.1 AG92-06A

This page intentionally left blank.

11/86 AG92-06A

select

Name: select

SYNTAX AS A COMMAND

select test_string {args}

SYNTAX AS AN ACTIVE FUNCTION

[select test_string {args}]

FUNCTION

tests a set of arguments and returns those arguments that pass the test The test is
given as the first argument and is used to select the second through last arguments. A
string consisting of the concatenation of all the arguments which pass the test,
separated by spaces, is returned. Each argument is requoted.

ARGUMENTS

test_string

args

is the test to apply to each argument See the "Notes" section below.

are the arguments to be tested. Any number of arguments, including zero, may
be supplied.

NOTES

Each argument is requoted, and the following active string is constructed:

[test_string argi]

The active string is evaluated. The result must be either "true" or "false". If the
result is "true", argi is selected and the requoted argument appears in the result string.
If the result is "false", the argument is not selected.

The test_string argument can be the name of an active function which takes one
argument, or the name of an active function which expects more than one argument,
followed by all but its last argument. In the latter case, test_string should be enclosed
in quotes. The "do" and "if" active functions can be used in this manner to construct
arbitrarily complex tests. .

When used as a command, select prints out the string it would have returned as an
active function.

select

3-849 AG92-()6

select

EXAMPLES

Assume the working directory contains three segments, named a, b, and d:

select "exists segment" abc d e f
a b d

In this example, the test_string is "exists segment".
constructed:

[ex sts segment a]
[ex sts segment b]
[ex sts segment c]
[ex sts segment d]
[ex sts segment e]
[ex sts segment f]

The following active

These active strings are evaluated. producing the following results:

true true false true false false

Thus, the first, second. and fourth arguments are selected.

strings are

The following command line asks the user about each segment in his working
directory. and renames each one for which he answers "yes" to "old." concatenated
with its old name:

rename ([select query [segs **]]) old.===

In the next example. the "do" active function is used to construct an active function
which indicates whether its argument is a segment modified before 12/29/82 or not:

do lI[date_time_before [status &r1 -dtcm] 12/29/82]"

This whole string serves as an active function. The following command line will delete
any segments modified before 12/29/82:

delete [select lido IIII[date time before [status &rl -dtcm]
12/29/82] Ill1ii [segs "n'c]]

In the next example, an abbrev for an active function is defined which takes two or
more dates as arguments. The first two dates specify limits. The active function
returns all dates after the first two dates that are between the first two dates.

select

3-850 AG92-o6

select

. a DTRANGE do II Ese 1 ect IIlIdate time before &r JlIII

[select IIlIdate_time_after &r2i'i1l &rf3]]"

string [DTRANGE ljan1980 5may1981 2may1979 6may1982
3march1981 2feb1981]

3march1981 2feb198l

The inner select selects dates that are before the second argument, i.e. those which
the second argument is after. Of those selected, the outer select selects dates after the
first argument, i.e. those which the first argument is before.

Name: send_mail, sdm

SYNTAX AS A COMMAND

sdm {addresses} {-control_args}

FUNCTION

sends a message to one or more recipients.

ARGUMENTS

addresses
specifies the primary recipients of the message. By default. the message has no
primary recipients.

CONTROL ARGUMENTS

-abbrev. -ab
enables abbreviation expansion of request lines.

-abort
prints an error message and returns to its caller immediately upon detecting an
invalid address. An invalid address is either a sequence of arguments that cannot
be converted into an address by send_mail (e.g.. missing arguments, bad pathname
syntax) or a nonexistent address (e.g., a nonexistent mailbox, a foreign address on
a host that cannot b€ reached frow the local system). (Default)

-acknowledge. -ack
requests an acknowledgement from the recipients when they read the message.

-auto_write
specifies that the qedx request automatically updates the message when you quit
the editor.

3-851 AG92-<l6

-bee addresses
specifies a list of "blind" recipients of the message. "Blind" recipients are listed
in the bee field for the message header. When the message is transmitted. this
field is not included in the copy of the message sent to the primary and
secondary recipients; it is. however. included in the copy of the message sent to
the actual "bUnd" recipients. By default, the message has no "blind" recipients.

-brief. -bf
shortens some informative messages and suppresses others.

I -cc {addresses}
specifies the secondary recipients of the message. By default. the message has no
secondary recipients.

-debug. -db
enables send_mail's debugging facilities. It is not recommended for normal users
of the command.

-fill. -fi
reformats the message text according to "fill-on" and "align-left" mode in
compose. The message is reformatted after initial input is completed and after
each execution of the qedx and apply requests. (Default for terminal input)

-frolIl {addresses}
specifies the authors of the message. By def ault, the user issuing send_mail is the
sole author of the message.

-input_file path. -if path
takes the message text from the specified file rather than from the terminal.

-line_length N. -11 N
specifies the line length to use for filling the message text. (Default: 72)

-long. -lg
prints the long form of all informative messages. (Default)

-no_abbrev, -nab
does not enable abbreviation expansion of request lines. (Default)

-no_abort
prints an error message for any invalid addresses that are encountered on the
command line but then proceeds to prompt for a subject and message text. After
you type the message text, send_mail enters its request loop to allow you to
correct the lists of recipients before sending the message.

-no_acknowledge, -nack
does not request an acknowledgement. (Default)

-nn !:Illtn wTitp .&..&_---,..-_ -
specifies that the qedx request requires you to use the write request to update the

3-852 AG92-o6

11/86

message before quitting the editor. Any attempt to exit without writing results in
a query. (Default)

-no_debug, -ndb
disables sdm's debugging facilities. (Default)

-no_fill, -nfi
does not reformat the message text unless you use the fill request or the -fill
control argument of the qedx and apply requests. (Default for file input)

-no_notify, -nnt
does not send notification messages.

-no_prompt
suppresses the prompt for request lines in the request loop.

-no_reQuest_loop, -nrql
sends the message immediately upon completion of input unless input was from
the terminal and was terminated by "\f" or "\q". (Default for terminal input)

-no_subject, -nsj
specifies that the message has no subject

-notify, -nt
sends a "You have mail." notification to each recipient of the message. (Default)

-profile path. -pf path
specifies the pathname of the profile to use for abbreviation expansion. The
suffix profile is added if necessary. This control argument implies -abbrev.

-prompt STR
sets the request loop prompt to 8TR.. (Default "/send_mail" [("d)"] :"2x)

-reply_to {addresses}, -rpt {addresses}
specifies the list of recipients who are to receive replies to the message instead of
the message's authors. By default, the authors of the message receive the replies.

-request STR, -rq STR
executes STR as an sdm request line after reading the message text but before
entering the request loop. This control argument implies -request_loop.

-request_loop, -rql
enters sdm's request loop after reading the message text (Default for file input)

-subject 8m, -sj 8TR
specifies the subject of the message. By default, sdm prompts you for the subject

3-853 AG92-06A

11/86

send_mail

-terminal_input, -ti
accepts the message text from the terminal (see "Notes on Terminal Input" below).
(Default)

-to {addresses}
specifies additional primary recipients oi the message.

LIST OF ADDRESSES

-log
specifies the user's logbox and is equivalent to

-mailbox >udd>Project_id>Person_id>Person_id.mbx

It is included as a "blind" recipient of the message.

-mailbox path, -mbx path
specifies the pathname of a mailbox. The suffix mbx is added if necessary.

-mailinLlist path, -mls path
specifies the pathname of a mailing list. The suffix mls is added if necessary.
You can use the archive component pathname convention. A mailing list is a list
of addresses contained in a segment or archive component.

-meeting path, -mtg path
specifies the pathname of a Forum meeting. The suffix control or forum is added
if necessary. If the pathname given is just an entryname (Le., no < or >
characters appear in the pathname), the forum search path is used to find the
meeting.

-save path. -sv path
specifies the pathname of a savebox. The suffix sv.mbx is added if necessary. It
is included as a "blind" recipient of the message.

-user STR

STR

specifies either a user's default mailbox or an entry in the system mail table (see
"Notes on the -user Address Control Argument" below).

is any noncontrol argument. If STR contains either < or >. it is interpreted as
-mailbox path; otherwise it is interpreted as -user STR.

STR -at FSystem {-via RelayN ... -via Relay!}
specifies an address on another computer system (see "Notes on Foreign Address").

3-854 AG92-06A

11/86

LIST OF ADDRESS QUALIFIERS

-COIDD1~~t SIR. -com.STR_
must appear immediately following one of the above forms of an address and
supplies additional descriptive information about the address such as the user's full
name. It is considered obsolete.

-name STR! -nm STR
must appear immediately following one of the above forms of an address and
specifies the name of the address. An address name is usually the full name of
the person who receives mail at that address or~ for mailing lists! a description of
the addresses comprising the mailing list (e.g., site administrators).

LIST OF REQUESTS

In the following summary of sdm requests! "-ca" is used as shorthand for
"-control_args". For a complete description of any request, issue the sdm request:

help request_name

prin ts a line describing the current invocation of sdm.

?
prints a list of requests available in sdm.

abbrev -{-cal; ab {-cal
controls abbreviation processing of request lines.

answer STR -ca request_line
provides preset answers to questions asked by another request

append path, app path
writes the ASCII representation of the message to the end of a segment

apply {-cal cmd_Iine! ap {-ca} cmd_Iine
passes the message text and header to a Multics command line for possible
editing.

bee {addresses}
prints or updates the list of "blind" recipients of the message. Blind recipients are
listed in the bec field for the message header. When the message is transmitted!
this field is not included in the copy of the message sent to the primary and
secondary recipients; it is, however, included in the copy of the message sent to
the actual blind recipients.

cc {addresses}
prints or updates the list of secondary recipients of the message.

3-855 AG92-()6A

11/86

copy path, cp path
copies the message into the specified mailbox.

debu8-mode {-ca}
enables/disables sends_mail's debugging facilities.

do rCLstr {args}, [do rq_str args]
executes/returns a request line with argument substitution.

exec_com ec_path {ec_args},
ec ec_path {ec_args},
[exec_com ec_path {ec_args}],
[ec ec_path {ec_args}]

executes a file of read_mail requests that can return a value.

execute cmd_line,
e cmd_Iine,
[execute active_str],
[e active_str]

executes a Multics command line or evaluates a Multics active string.

fill {-ca} , fi {-ca}
reformats the text of the message.

from {addresses}
prints or updates the list of authors of the message.

help {topics} {-cal
prints information about sdm requests and other topics.

if expr -then linel {-else line2} ,
[if expr -then STRl {-else STR2}]

conditionally executes/returns one of two request lines.

list_help {topics}, lh {topics}
displays the name of all sdm info segs on given topics.

list_requests {STRs} {-cal, Ir {SIRs} {-cal
prints a brief description of selected sdm requests.

log
places a copy of the message into the user's logbox.

message_id, mid
prints the unique identifier of the message and includes a Message ID field in the
message.

pref ace path, prf path
writes the ASCII representation of the message to the beginning of a segment

3-856 AG92-06A

11/86

print {-ca}, pr {-cal, p {-cal
prints the message.

print_header {-cal, prhe {-cal
prL'1ts the header of the message.

qedx {-cal, qx { -cal
edits the message text and header using the Multics Qedx editor.

quit {-cal, q { -cal
exits sdm.

ready, rdy
prints a Multics ready message.

ready_off, rdf
disables printing of a ready message after each request line.

ready_on, rdn
enables printing of a ready message after each request line.

remove {addresses} {-ca}, rm {adressesl {-cal
deletes addresses from the list of primary/secondary recipients, authors, or reply
recipients and/or deletes the Subject, Message 10, and/or In Reply To field.

reply_to {addresses}, rpt {addresses}
prints or updates the list of recipients of ~ny -replies to this message.

save path, sv path
places a copy of the message into the specified save mailbox.

send {addresses} {-ca}
delivers the message.

b · ISTRs} . ISTRsl r 'h' , [.] 5U ~t l , 5J l), L5UvJectJ , 5J
prints, changes, or returns the subject of the message.

subsystem_name, [subsystem_name]
prints/returns the name of this subsystem

subystem_ version, [subsystem_version]
prints/returns the version number of this subsystem.

to {addresses}
prints or updates the list of primary recipients of the message.

write path {-ca}, w path {-cal
writes the ASCII representation of the message to the end of a segment

3-857 AG92-06A

11/86

You can use the following requests only within an invocation of sdm that is created
using the read_mail reply request. In this summary, "specs" is short for "message_specifiers"
and "-elsa" is short for "-control_args -selection_args".

in_reply_to {specs}, irt {specs}
prints or changes the content of the message's in Reply To field.

list_original {specs} {-elsa}, Iso {specs} {-elsa} ,
[list_original {specs} {-elsa}], [Iso {specs} {-elsa}]

displays a summary of the messages being answered or returns their message
numbers.

los-original {specs} {-ca}, logo {specs} {-cal
places a copy of the messages being answered into the user's logbox.

print_original {specs} {-elsa}, pro {specs} {-elsa}
prints the messages being answered.

print_original_header {specs} {-elsa}, prohe {specs} {-elsa}
prints the message headers of the messages being answered.

save_original {specs} path {-ca}, svo {specs} path { -cal
places a copy of the messages being answered into a save mailbox.

write_original {specs} path {-ca}, wo {specs} path { -cal
writes the ASCII representation of the messages being answered to the end of a
segment

NOTES ON THE -user ADDRESS CONTROL ARGUMENT

A user's default mailbox is specified in the form Person_id.Project_id. For an entry
in the mail table, STR is usually in the form of Person_id (the mail table is fully
described in the Extended Mail System User's Guide, CH23).

If STR contains one period and no white space, it is interpreted as a User_id that
specifies the user's default mailbox; otherwise it is interpreted as the name of an entry
in the mail table.

3-858 AG92-06A

send mail send mail

11/87

For example:

-user DBuxtehude.SiteSA

is interpreted as a User_id that identifies a default mailbox. On the other hand.

-user "George G. Byron"
-user L.v.Beethoven
-user Burns

are all interpreted as the names of entries in the mail table: the first because it contains white
space; the second because it contains more than one period; the third because it contajns no
period.

When interpreted as a User_id, the STR cannot contain any angle brackets « » and must have the
form Person_id.Project_id. where "Person_id" cannot exceed 28 characters in length and
"Project_id" is limited to 32 characters. In this case, "-user STR" is equivalent to the address
-mailbox >udd>Project_id>Person_id>Person_id.mbx.

When interpreted as the name of a mail table entry, STR cannot contain any commas. colons.
semicolons. backslashes (\). parentheses. angle brackets, braces ({}), quotes. commercial at-signs
(@). or white space other than spaces. The query of the mail table is performed in a
case-insensitive manner. The display_mailin~address command can be used to determine the x

actual address corresponding to the STR.

NOTES ON FOREIGN ADDRESS

STR identifies the user (or group of users) to receive the message and is not interpreted in any way
by the local system. FSystem is the name of the foreign system where the address is loc:ated.

If the -via control arguments are not given. FSystem must be one of the names of a foreign system
in the local system's network information table (NIT); if they are given. however, the foreign
system name need not be known to the local system.

The -via control arguments identify an explicit route to be used to reach the foreign system.
Relay1 must be one of the names of a foreign system in the local system's NIT. Mail destined for
this foreign address is forwarded to the system identified as Relay!, then to the system identified
as Relay2, and so on until it reaches the system identified as RelayN where it is delivered to the
system on which the foreign address actually resides.

Whe!l the N!T is queried for either FSyslem or Relay!. the query is performed in a
case-insensitive manner.

3-859 AG92-()6B

For example, the address

HOT -at OZ -via Me -via mit-multics

identifies the address HDT on a system named OZ. The local system relays mail sent
to this address to the system mit-multics, which then forwards the mail to a system
named Me, which actually delivers the mail to its final destination.

NOTES ON TERMINAL INPUT

By default or if you give -terminal_input, send_mail issues the prompt "Message:" and
reads the message text from the terminal.

If you terminate the text with a line containing just a period, send_mail reformats the
message (unless you provide -no_fill on the command line) and sends it to the
specified recipients (unless you also give -request or -request_loop on the command
line). If any errors occur while sending the message, send_mail enters its request loop
to allow you to correct the problem.

If you terminate the text with a line containing "\f" anywhere on the line, the
command enters the qedx editor on the message text Any characters on the line after
the "\ftf are treated as qedx requests. (See "Notes on the qedx Editor" below.)

If you terminate the text with a line containing "\q" anywhere on the line, send_mail
reformats the message, unless you supply -no_fill on the command line. and enters its
request loop. Any characters on the line after the "\q" are ignored with a warning
message.

NOTES ON THE Qedx EDITOR

You can invoke the qedx editor either by the "qedx" request in the send_mail request
loop or by terminating a message being input with "\ftf. Any requests typed are
processed as qedx requests until you enter the qedx "q" (quit) request and you are
returned to send_mail's request loop.

Use the "w" (write) request to reflect any changes made to the message text. If you
issue the "q" request and you have modified the message since it was last written,
qedx queries for permission to exit; if permission is given. any changes made since the
last write are lost. You can use the ~~qf" (quit-force) request to abort unwanted
editing of the message without being queried.

3-860 AG92-()6

The request line

1, $dr

only restores the original message text to the buffer if you have not yet used the
write request, but it restores the message text as saved by the last write request in the
buffer if you give it after a write request

Type "help qedx" within sdm for more information on the qedx request

NOTES ON ADDRESSES ON THE send mail COMMAND LINE

Successive uses of -from, -cc, -reply_to, and -to do not override previous uses;
instead. the addresses specified in the multiple uses are merged to form the actual list

For example.

sdm DErasmus.Multics -from JJRousseau.PDO -to BShields.Multics

sends the message from JJRousseau.PDO to DErasmus.Multics and BShields.Multics.

Name: send_message, sm

SYNTAX AS A COMMAND

sm {-control_args} address {message}

FUNCTION

sends a message(s), one line at a time, to a given user on a given project or to a
specified mailbox.

ARGUMENTS

address
can be of the form Person_id.Project_id to specify a mailbox belonging to that
person; a string containing at least one > or < to specify the pathname of a
mailbox; one of the arguments -log. -mailbox (-mbx). or -save (-sv). immediately
followed by a string giving the pathname of a 10gboX. mailbox. or save box,
respectively; -last_message_destination (-lmds) if you have used send_message in
this process; or -last_message_sender (-lms) if a message has been received in the
user's default mailbox. All arguments beginning with the first noncontrol argument
after a destination are considered to be message text

3-861 AG92-06

11/86

message
is anything that appears up to the end of the command. It can be one or more
words. If you omit it, sm enters an input loop; you can then send a multiline
message (see "Notes on Input Loop" below).

COlvTROL ARGUlrIIENTS

-access_class STR, -acc STR
sends messages at the specified AIM access class. The ring 1 privilege must be
turned on in the sending process.

-acknowledge, -ack
requests that the recipient's process return an acknowledgment message when the
message is read. It implies -brief.

-acknowledge_if _deferred, -ackid
requests that the recipient's process return an acknowledgment message when the
message is read only if the recipient is not accepting messages or has deferred
them. Requesting acknowledgments while in the input loop is not affected by
changes in the recipient's wakeup state.

-brief, -bf
does not print an error message if the message cannot be sent or if the recipient
is not accepting messages.

-comment STR, -com STR _
adds a comment of the form (STR) after the user's person and in the message's
header. The default is to use the value of the "full_name._" variable in the user's
default value segment as a comment

-escape, -esc
turns on the " .. " escape convention to execute Multics commands from within
input mode for the current message. (Default)

-express, -xps
sends the message only if the recipient is likely to see it immediately, that is, is
currently accepting messages.

-long, -lg
prints error messages. (Default)

-no_acknowledge, -nack
requests that the recipient's process do not return an acknowledgment message
when the message is read. (Default)

-no_conunen~ -ncom
suppresses adding of a comment

3-862 AG92-06A

11/86

-no_escape, -nesc
turns off the " .. " escape convention.

-no_express, -nxps
always sends the message. (Default)

-no_print_destination, -nprds
does not print the destination to which the message is being sent if you supply
the message on the command line. (Default. if you use -lmds and -lms)

-no_update_destination, -nupds
does not set the last message destination.

-print_destination, -prds
prints the destination to which the message is being sent if you supply the
message on the command line. (Default, if you don't use -lmds and -lms)

-silent, -sil
suppresses all error messages.

-update_destination, -upds
sets the last message destination. (Default)

NOTES

If the message has a parenthesis, bracket, or semicolon character, enclose it in quotes
because that character is not treated specially by sm. You can type a quotation mark
as ''''''''.

For a description of the mailbox, see accept_messages and print_mail.

NOTES ON INPUT LOOP

When sm enters the input loop it types "Input to <destination>" and accepts lines that
are sent one at a time. Input loop is terminated by a line consisting solely of a
period. When in input loop, you can execute Multics commands if typed on a line
beginning with two periods. You can receive messages while in the input loop, so this
is a way to hold conversations.

If the user whom you are sending messages to changes message status {e.g.. defers
messages, logs oud, sm prints a message to that effect unless you supplied -bf or -sil.

3-863 AG92-06A

11/86

EXAMPLES

If SHolmes on the Alpha project sends the following to AChristie on the Beta project

sm AChristie.Beta I need access to your lsg command.

If AChristie is accepting messages, the message prints as follows:

Message from SHolmes.Alpha 07/11/86 1200.6 mst Fri:
I need access to your 1sg command.

If an acknowlegment is requested, the acknowledgment says

From SJohnson <time>: Acknowledged.

if the message is read right away, or

From SJohnson <time>
Acknowledge message of <sent_time>

if the message is read later.

If the recipient has insufficient access to return an acknowledgment, none is sent No
error message is printed.

The command line

sm AChristie.Beta Testing complete; please install this week.

sends

Message from SHolmes.Alpha 07/11/86 1505.7 mst Fri:
Testing complete

and then prints the error message "Segment please not found." because the characters
typed after the semicolon are interpreted as another command line.

The command line

sm AChristie.Beta So long (for now).

sends two lines:

So long for.
So long now.

The sender's intended message would have been sent if it had been enclosed in quotes:
"So long (for now)."

3-864 AG92-o6A

11/86

SYNTAX AS A COMMAND

sa path model {User_idl ••• modeN User_idN} {-control_args}

FUNCTION

manipulates the access control lists (ACLs) of nonlink entries in a directory (see the
Programmer's Reference Manual for a discussion of ACLs).

ARGUMENTS

path
If it is -workinL.directory (-wd) , the user's working directory is assumed. You
can use the star convention, which applies to types of entries, depending on the
type of mode specified in modeN.

3-864.1 AG92-06A

This page intentionally left blank.

11/86 AG92-06A

modeN
is a valid access mode. For segments or multisegment files it can consist of any
or _alL_the letters __ lew.; JOJ_ dileclories~_oJ __ anY_QJ'_ all __ theJeU~r~ __ ~m_~ ____ ~x~~P1._JhClt jf
you give m, you must supply s also. Use null (n, "tt) to specify null access. To
obtain a list of modes for extended types, see the describe_en try_type command.

User_idN
is an access control name of the form Person_id.Project_id.tag. All ACL entries
with matching names receive modeN. (For a description of the matching strategy,
see "Examples" below.) If no match is found and you give the three components.
an entry is added to the ACL. If you omit the last User_id, your Person_id and
Project_id are assumed.

CONTROL ARGUMENTS

-brief, -bf
suppresses error messages of the form "No match for User_id on ACL of
<path>", where User_id omits components.

-chase
chases links matching a star name. Links are always chased when path is not a
star name.

-no_chase ,
does not chase -links when using the star convention. (Default)

-no_syroaemon, -nro
does not add "rw *.SysDaemon.*" when using -replace.

-replace, -rp
deletes all ACL terms--with the exception of the default *.SysDaemon.* term
unless you supplied -no_sysdaemon--before adding the terms specified on the
command line. (Default: to add to and modify the existing ACL)

-sysdaemon, -sd
adds, with -replace, a "rw *.SysDaemon.*" ACL term before adding the terms
specified on the command line. (Default)

Select either of the following control arguments to avoid the ambiguity that occurs
only when modeN is null and you use the star convention in path:

-directory, -dr
affects directories only.

-interpret_as_extended_entry, -inaee
interpret the selected entry as an extended entry type.

-in terpret_as_standard_ en try, -inase
interpret the selected entry as a standard entry type.

3-865 AG92-Q6

-segment, -sm
affects segments and multisegment files only. (Default)

-select_entry _type SIR. -slet SIR
affects only entries of the entry type selected by SIR, which is a comma-delimited
list of file system entry types. Use the iist_entry _types command to obtain a list
of valid entry type values.

ACCESS REQUIRED

You require modify permission on the containing directory.

NOTES

The arguments are processed from left to right; therefore the effect of a particular
pair of arguments can be changed by a later pair. When you use the star convention
to specify the last component of an entryname, extended entries are excluded from
any matches.

The strategy for matching an access control name argument is defined by three rules:

1) A literal component, including n*", matches only a component of the same
name.

2) A missing component not delimited by a period is treated the same as a
literal n*" (e.g.. "*.Multics" is treated as "*.Multics.*"). Missing components
on the left must be delimited by periods.

3) A missing component delimited by a period matches any component

EXAMPLES

Some examples of User_ids and the ACL entries they match are:

..*

Multics

JRSmith.o

'''I

matches only the literal ACL entry "*.*.*".

matches only the ACL entry "Multics.*.*". (The absence of a leading
period makes Multics the first component)

matches any ACL entry with a first component of JRSmith.

matches any ACL entry.

matches any ACL entry with a last component of *.

(null string) matches any ACL entry ending in n.*.*n.

3-866 AG92-06

The command line

set_acl *.pll rew *

adds an entry with mode rew to *.*.* (everyone) to the ACL of every segment in the
working directory that has a two-component name with a second component of pll if
that entry does not exist; otherwise, it changes the mode of the *.*.* entry to rew.

The command line

sa -wd sm Keats.Faculty

adds an entry with mode sm for Keats.Faculty.* to the ACL of the working directory
if that entry does not exist; otherwise, it changes the mode of the Keats.Faculty.*
entry to sm.

The command line

sa alpha.basic rew .Faculty. r Keats.Faculty.

changes the mode of every entry on the ACL of alpha. basic with a middle component
of Faculty to rew, then changes the mode of every entry that starts with Keats.Faculty
to r.

The command line

sa foo.mbx adrosw Degas

setts the ACL of the mailbox named foo.mbx to adrosw for the Person_id Degas.

SYNTAX AS A COMMAND

sbc pathl countl { ..• pathN countN}

FUNCTION

sets a specified bit count on a specified segment, wultiscgrnent file (MSF), ~!3.
management (DM) file, or extended entry and changes the bit count author for that
entry to be the user who invoked the command.

ARGUMENTS

pathi
is the pathname of the entry. If pathi is a link, the bit count of the entry
linked to is set

3-867 AG92-()6

counti
is the bit coun~ in decimal, desired for pathi.

ACCESS REQUIRED

You must have write access on the entry whose bit count is to be set

NOTES

Setting the bit count on a directory is permitted. but several system modules then
regard the directory as a MSF.

See Section 2 of the Programmer's Reference Manual for a description of the bit
count and bit count author.

SYNTAX AS A COMMAND

set_cc fileNN {-control_arg}

FUNCTION

sets the carriage control transformation for a specified FORTRAN formatted file either
on or off.

ARGUMENTS

fileNN
is the name of a FORTRAN file in the range of fileO! to file99. If fileNN is
out of range, an error message is printed.

CONTROL ARGUMENTS

-off
turns the carriage control transformation off for the specified FORTRAN file.

-on
turns the carriage control transformation on for the specified FORTRAN file.

NOTES

When the transformation is on, the first character of each line written to the file is
changed to a control character in accordance with the following table:

3-868 AG92-06

Character

o
1

blank

Resulting Control Character

Newline 012 (double space)

Newpage 014 (page eject)

None (single space)

+ The previous and current lines are written as a single line split by a
carriage return character, which causes the second line to overprint
the first. If the file is attached to a terminal, the + is ignored; the
result is a single space between lines.

When the transformation is off, the first character is not changed. The default is off
for all files except for file06 and file42, for which the default is on.

EXAMPLES

To turn off the carriage control transformation for file06, type:

set_cc file06 -off

Name: set_dir_rinL,.brackets, sdrb

SYNTAX AS A COMMAND

sdrb path {rb 1 {rb2}}

FUNCTION

allows a user to modify the ring brackets of a specified directory.

ARGUftAENTS

path
is the relative or absolute pathname of the directory whose ring brackets are to
be modified.

rbl, rb2
are the numbers that represent the directory ring brackets: rbl is the number to
be used for the first ring bracket of the directory, and rb2 is the one to be used
for the second. The ring brackets must be in the allowable range v through 7
(where v depends on your current validation level) and must have the ordering

rbl <= rb2

3-869 AG92-06

11/86

If rbl and rb2 are omitted, they are set to your current validation level. If rbl
is omitted, rb2 cannot be given and rbl and rb2 are set to your current
validation level.

NOTES

Your process must have a vaiidation level less than or equal to ro!. See the
Programmer's Reference Manual for a discussion of ring brackets and validation levels.

SYNTAX AS A COMMAND

FUNCTION

establishes the command line as an epilogue of the process. Just before a process is
destroyed the command line is executed.

ARGUMENTS

command_line
is a single string containing the command line to be executed. Quote it if it
contains spaces, special characters, abbreviations, etc.

NOTES

This command can only store a single command line. If you invoke it several times
within a single process, only the final command line is executed when the process
terminates.

EXAMPLES

The command lines

set_epilogue_command " s tring a"
set_epilogue_command "string b"
logout
b

establish "string btl to be executed when the process terminates.

3-870 AG92-06A

11/86

The command line

establishes "application$close_date_bases" to be executed when the process terminates.

Name: set_fort ran_common, sfc

SYNTAX AS A COMMAND

sfc paths {-control_arg}

FUNCTION

initializes common storage for a FORTRAN run. Supply as an argument every object
file that is part of the FORTRAN run to ensure that the common blocks are properly
initialized. This command allows you to specify the files containing the block data
subprograms prior to the run.

ARGUMENTS

paths
is a list of pathnames of files containing block data subprograms that initialize I
common.

CONTROL ARGUMENTS

-long, -lg
prints a message if a referenced common block has already been allocated.

NOTES

This command is useful in the run exec_com, which initializes the environment for a
FORTRAN run.

Due to dynamic linking in Multics. if the first program to reference a common block
is not compiled or bound with the block data subprogram that initializes the common
block, this block may not be successfully initialized.

Any common blocks referenced in the specified files are allocated (if necessary) and
initialized. If no initialization information is associated with the referenced common
block. it is initialized to binary zeroes. If a common block was previously allocated.
it is effectively deleted and reinitialized.

3-871 AG92-06A

11/86

SYNTAX AS A COMMAND

sid path model {User_idl •.• modeN User_idN} {-control_args}

FUNCTION

manipulates the directory initial access control lists (initial ACLs) of directories.

ARGUMENTS

path
specifies the directory whose directory initial ACL is to be changed. If it is
-working_directory (-wd), the directory initial ACL for the user's working
directory is changed. You can use the star convention.

modes
is the mode associated with User_ids. It can consist of any or all the letters sma
except that if you give m. you must also give s. The strings nUll, n, and ""
specifically deny access to User_ids.

User_ids
is an access control name of the form Person_id.Project_id.tag. If one or more
of the components is missing, all entries that match User_ids are changed to
modes (see set_ac1 for a description of the matching strategy). If the three
components are present, the directory initial ACL entry with that name is changed
to modes or one is added if none exists. If the last modes has no User_ids
following it, your name and project are assumed.

CONTROL ARGUMENTS

-no_sysdaemon, -nsd
does not add "sm *.SysDaemon.*" when using -replace.

-replace, -rp
deletes all directory initial ACL terms--with the exception of the default
.SysDaemon. term unless you supplied -no_sysdaemon--before adding the terms
specified on the command line. (Default: to add to, and modify, the existing
initial ACL)

-ring N, -rg N
identifies the ring number whose directory initial ACL is to be set. It can appear
anywhere on the line, except between a mode and its associated User_id. and
affects the whole line. If present, follow it by N (where 0 <= N <= 7). If
omitted, your ring is assumed.

-sysdaemon, -sd
adds, with -replace. an "sm *.SysDaemon.*" initial ACL term before adding the
teiffiS specified on the command line. (Default)

3-872 AG92-06A

11/86

NOTES

A directory initial ACL contains the ACL entries to be placed on directories created
in the specified directory (see "Access Control" in the Programmer's Reference
Manual).

EXAMPLES

The command line

sid listings sm * -ring 5

adds an entry, if it does not exist, with the mode sm for everyone (*.*.*) to the ring
5 directory initial ACL of the listings directory; otherwise it changes the mode of the
..* entry to sm.

The command line

sid -wd sa BShields ••

changes the mode of all entries with Person_id BShields in the directory initial ACL
of the working directory to sa. If no such entries exist, an error message is printed.

SYNTAX AS A CO!lt1MAND

sis path model {User_idl ••• modeN User_idN} {-control_args}

FUNCTION

manipulates the segment initial access control lists (initial ACLs) of directories.

ARGUMENTS

path
specifies the directory whose segment initial ACL is to be changed. If it is
-workinK-directory (-wd), the segment initial ACL for the user's working
directory is changed. You can use the star convention.

modes
is the mode associated with User_ids. It can consist of any or all the letters rew.
The strings null, n, and '''' specifically deny access to User_ids.

3-873 AG92-06A

11/86

User_ids
is an access control name of the form Person_id.Project_id.tag. If one or more
of the components is missing, all entries that match User_ids are changed to
modes (see set_acl for a description of the matching strategy). If the three
components are present, the segment initial ACL entry with that name is changed
to modes or' one is added if none exists.

CONTROL ARGUMENTS

-no_sysdaemon, -nsd
does not add "rw *.SysDaemon.*" when using -replace.

-replace, -rp
deletes all segment initial ACL terms--with the exception of the default
.SysDaemon. term unless you supplied -no_sysdaemon--before adding the terms
specified on the command line. (Default: to add to. and modify, the existing
initial ACL)

-ring N. -rg N
identifies the ring number whose segment initial ACL should be set. It can
appear anywhere on the line, except between a mode and its associated User_id,
and affects the whole line. If present, follow it by N (where 0 <= N <= 7). If
omitted, your ring is assumed.

-sysdaemon, -sd
adds, with -replace, an "rw *.SysDaemon.*" initial ACL term before adding the
terms specified on the command line. (Default)

NOTES

A segment initial ACL contains the ACL entries to be placed on segments created in
the specified directory (see "Access Control" in the Programmer's Reference Manual).

EXAMPLES

The command line

sis tes t rew ,',

adds an entry with mode rew for everyone (*.*.*) to the segment initial ACL in the
test directory if that entry does not exist; otherwise it changes the mode of the *.*.*
en try to rew.

The command line

sis -wd re Socrates .. -rg 5

changes the mode of ail entries with Person_id Socrates in the ring 5 segment initial
ACL of the working directory to reo If no such entries exist, an error message is
printed.

3-874 AG92-06A

11/86

SYNTAX AS A COMMAND

FUNCTION

sets the IPS mask for the current process to mask some or all IPS signals.

ARGUMENTS

signal_names
are the names of one or more IPS signals to be masked. The signal names must
be defined in sys_info$ips_mask_data. Presently the defined signal names are quit.
alrm, neti. cput. trm_. sus_. wkp_. pgt_, system_shutdown_scheduled_, and
dm_shutdown_scheduled_. Supply either signal_names or -all.

CONTROL ARGUMENTS

-all, -a
sets the IPS mask to unmask all IPS signals.

-brief, -bf
suppresses printing of the previous state of the IPS mask after setting it.

-long, -lg
prints the previous state of the IPS mask after setting it. (Default)

NOTES

If all undefined IPS signals are either masked or unmasked and you give -lg, they are
not mentioned; if. however, some are masked and others are not, an octal list is
printed. This can only happen when you specify an invalid (probably uninitialized)
value in a call to set that mask.

Name: set_mailin~address, smla

SYNTAX AS A COMMAND

smla {address} {-control_args}

3-875 AG92-06A

11/86

FUNCTION

sets the user's preferred mailing address, which is used by the mail system when mail
is addressed to him by Person_id or alias alone (i.e., "sdm Opus", instead of "sdm
Opus. Bloom"). The user can also indicate that his mailing address be reset to the
default (Person_id.default_Project_id). For example, mail addressed to "Milo" is sent to
Milo. DProject, where "DProject" is Milo's default project at the time the mail is sent.
Maintainers of other mail table entries can also use this command to update those
entries.

ARGUMENTS

address
can be any recipient address accepted by send_mail. You can specify only one
address. It is incompatible with -dp.

CONTROL ARGUMENTS

-default_project, -dp
resets the mailing address using the default project.

-user name
specifies the en try whose mailing address is to be updated. Enclose the name in
quotes if it contains white space. If name is an alias, its associated regular entry
is updated. You can use -user only if you have rw access to the ACS segment
associated with the entry. (Default: your own entry)

NOTES

Don't use -dp if the entry is not associated with a registered user, since only users
have default projects. If you attempt this, an error is reported.

SYNTAX AS A COMMAND

sml path length {-control_args}

FUNCTION

allows the maximum length of a non directory segment to be set

3-876 AG92-06A

11/86

ARGUMENTS

path
is the pathname of the segment whose maximum length is to be set If path is a
link, the maximum length of the target segment of the link is set You can use
the star convention.

length
is the new maximum length expressed in words. If this length is not a multiple
of 1024 words, it is converted to the next higher multiple of 1024 words.

CONTROL ARGUMENTS

-brief, -bf
suppresses the warning message that the length argument has been converted to
the next multiple of 1024 words.

-decimal, -dc
specifies that length is a decimal number. (Default)

-interpret_as_extended_entry, -inaee
interpret the selected entry as an extended entry type.

-interpret_as_standard_entry, -inase
interpret the selected entry as a standard entry type.

-octal, -oc
s}Y"..-Cifies that length

ACCESS REQUIRED

You need m permission on the directory containing the segment

NOTES

The maximum length is the maximum size the segment can attain. Currently maximum
length must be a multiple of 1024 words (one page).

If the new maximum length is less than the current length, you are asked if the
segment should be truncated to the maximum length. If you answer "yes," the
truncation takes place and the maximum length of the segment is set; if "no," no
action is taken.

You can't set the maximum length of a mailbox or message segment unless the
segment is empty.

3-876.1 AG92-06A

11/86

EXAMPLES

The command line

! sm1 report -oc 10000

sets the maximum length of the segment report in your working directory to four
pages.

The command line

! sml *.archive 16384

sets the maximum length of all two-component segments with a second component of
archive in your working directory to 16 pages.

3-876.2 AG92-06A

SYNTAX AS A COMMAND

smda path {User_id}

FUNCTION

sets the quota account of a master directory; used by the volume executive (the owner
or manager of logical volumes).

ARGUMENTS

path
is the pathname of the master directory whose quota account is to be changed.

User_id
is the name (Person_id.Project_id) of the new quota account of the master
directory. If omitted. your User_id is assumed.

ACCESS REQUIRED

You need e access on the logical volume containing the master directory. The volume
need not be mounted.

NOTES

The quota for the master directory is returned to the old quota account and
withdrawn from the new one, which must have sufficient quota to allow this.

Name: set_mdir_owner, smdo

SYNTAX AS A COMMAND

smdo path {User_id}

FUNCTION

sets the cwner of a !n.aster Prvgrammer's Reference ivianual).

3-877 AG92-()6

set_mdir_owner

ARGUMENTS

path
is the pathname of the master directory to be changed.

User_id
is the Person_id.Project_id of the new owner of the master directory. If omitted,
your User_id is assumed.

ACCESS REQUIRED

You need e access on the logical volume containing the master directory. The volume
need not be mounted.

SYNTAX AS A COMMAND

smdq pathl changel ... {pathN changeN}

FUNCTION

sets the quota on a master directory (see the Programmer's Reference Manual).

ARGUMENTS

pathi
is the pathname of a master directory whose quota is to be changed.

changei
is the amount of quota. or the amount of quota 'change; you can specify it as
follows:

+n add n records of quota to pathi
-n subtract n records of quota from pathi

n set the quota on pathi to n records

ACCESS REQUIRED

You must have m permission on the master directory and must be the owner of the
master directory, be a volume administrator, or have the same quota account as the
master directory.

3-878 AG92-Q6

NOTES

If the quota is being increased. the master directory's quota account must have
sufficient volume quota to satisfy the request

The quota of a master directory can never be zero, and it can never be set less than
the current number of records being charged against the master directory.

Name: set_resource, setr

SYNTAX AS A COMMAND

setr type STR1 .•. STRN {-control_args}

FUNCTION

modifies parameters of a resource.

ARGUMENTS

type
is a resource type defined in the Resource Type Description Table (RTDT).

STRi
is the unique identifying name of the particular resource being modified. If STR
looks like a control argument (with a preceding hyphen). then use -name (-nm)
before it.

CONTROL ARGUMENTS

-access_class accr, -acc accr
sets the initial AIM access class parameters, where accr is the access class range;
you must supply -priv with it. If your authorization is within the access class
range inclusive, you are allowed to read and write to the resource (provided you
also meet other access requirements).

-acs_path path
specifies the pathname of the access control segment (ACS) for this resource. The
ACS and the desired access controi Ust set are not created by set_resource but by
the accounting owner. If you give no -acs_path, the accounting owner of the
resource is given rew access by default

-alloc SIR
sets the allocation state of the resource to free or allocated. where STR must be
either "on" or "off"--on sets the allocation state to allocated, off to free. If you
don't supply -alloc, the allocation state is free. (The allocation state flag is a
convenience to you and is largely ignored by resource management.)

3-879 AG92-()6

-attributes STR, -attT STR
specifies the desired values for the attributes of this resource.

-charge_type name, -crgtp name
specifies the name of the billing algorithm used to account for the use of this
resource.

-comment STR, -com STR
specifies the desired value of the comment string for this resource.

-location SIR. -loc SIR
specifies a descriptive location f or the resource. to aid the operator in locating
the resource when it is stored in a special place (e.g .• a vaUlt. a different room,
etc.); you must supply -priv with -location.

-lock SIR
locks or unlocks the resource, where STR must be either "on" or "off"--on
prevents any use of the resource, off allows its use. If you don't give -lock, the
lock is off. You must supply -priv with -lock.

-priv
makes a privileged call to obtain the status of this resource (see "Access
Required" below). If you are a privileged user (Rep Administrator). it allows you
to set and change certain fields (including the acs_pathname) for this resource in
the registry, thus effectively allowing yourself enough access to mount a tape for
a write.

-release_lock SIR, -rll SIR
specifies whether the resource can be released ·by the owner or only by a
privileged process (see "Access Required" below)--on resources can only be
released by a privileged process, off resources by the owner. If you don't supply
-release_lock, the resource can be released by the owner. You must give -priv
with -release_lock.

ACCESS REQUIRED

You need write effective access to the resource named to modify its status; execute
effective access to the resource named to modify protected attributes (only the
accounting owner can modify the ACS path); and execute access to the rcp_admin_
gate to use -access_class, -lock. -location, -priv, and -release_lock.

NOTES

If you specify multiple resources and an error occurs in the modification of one of
them, none are modified.

3-880 AG92-06

Name: set_ri~brackets, srb

SYNTAX AS A COMMAND

srb path {ring_numbers}

FUNCTION

allows you to modify the ring brackets of a specified segment, multisegment file
(MSF), data management (OM) file, or extended entry.

ARGUMENTS

path
is the relative or absolute pathname of the segment, MSF, OM file, or extended
entry whose ring brackets are to be modified.

rin~numbers
are the numbers that represent the ring brackets of the segment, MSF, OM file,
or extended entry. For a segment or MSF there are three ring brackets (rbl rb2
rb3). The ring brackets must be in the allowable range 0 through 7 and must
have the ordering

rbl <= rb2 <= rb3

If you omit rbl, rb2, and rb3, they are set to your current validation level. The
rbl ring bracket is the number to be used as the first ring bracket of the
segment; if omitted, you can't give rb2 and rb3 and rbl, rb2, and rb3 are set to
your current validation level. The rb2 ring bracket is the number to be used as
the second ring bracket of the segment; if omitted, you can't give rb3, and it is
set, by default, to rbl. The rb3 ring bracket is the number to be used as the
third ring bracket of the segment; if omitted, it is set to rb2.

For a OM file there are only two ring brackets (rbl rb2). They have the same
properties as rbi and rb2 for segments.

For an extended entry the ring brackets you can give depend on the entry type
(see describe_entry _type).

NOTES

Your process must have a validation level less than or equal to rbl. Ring brackets
and validation levels are discussed in "Intraprocess Access Control" of the Programmer's
Ref erence Manual.

3-881 AG92-06

SYNTAX AS A COMMAND

ssp search_list {search_paths} {-control_arg}

FUNCTION

allows you to replace the search paths contained in a specified search list.

ARGUMENTS

search_list
is the name of a search list. If this search list does not exist, it is created. A
warning message is printed if a search list is created and it is not system defined.

search_paths
are search paths to be added to the specified search list. The search paths are
added in the order in which they are specified in the command line. The search
path can be an absolute or relative pathname or a keyword. (See add_search_paths
for a list of acceptable keywords.) If no search paths are specified, then the
specified search list is set as if it were being initialized for the first time in your
process.

CONTROL ARGUMENTS

-brief, -bf
suppresses a warning message for the creation of a search list not defined by the
system.

-default, -df
replaces the search list with its system-defined default. No search_paths can be
specified with this control argument.

NOTES

The specified search list is replaced by the specified search paths. It is an error to
create a new empty search list.

For a complete list of the search facility commands, see the add_search_paths
command description:

3-882 AG92-Q6

SYNTAX AS A COMMAND

FUNCTION

sets, with only minor restrictions, your dynamic linking search rules to suit your needs.

ARGUMENTS

path
is the pathname of a segment containing the ASCII representation of search rules.
Search rules are absolute pathnames and any keyword in "List of Keywords," one
search rule per line. If you supply no path, use -default.

CONTROL ARGUMENTS

-def aul t. -df
resets the search rules to the default search rules, as set for a new process.

LIST OF KEYWORDS

ini tiated_segmen ts
checks the already-initiated segments.

ref erencing_dir
searches the containing directory of the segment making the reference.

workin~dir
searches the working directory.

home_dir
searches the home directory.

process_dir
searches the process directory.

site_defined
expand into one or more directory pathnames. (An example of a site_defined
keyword is system_libraries.) You can use the default keyword to obtain the
site-defined default rules.

NOTES

You can give up to 21 rules. You can leave leading and trailing blanks, but not
em bedded blanks.

3-883 AG92-06

11/86

If you don't include the system libraries in the search rules. many standard commands
cannot be found.

See also add_search_rules, and
prin t_search_rules.

Name: set_severity ~indicator, ssi

SYNTAX AS A COMMAND

ssi name value

FUNCTION

allows you to set severity indicators from command level (see the severity command).

ARGUMENTS

name
is the name of the severity indicator to be set

value
is the decimal integer to be used as the new value of the severity indicator.

SYNTAX AS A COMMAND

FUNCTION

establishes an area as the storage region in which normal system allocations are
performed.

ARGUMENTS

virtual_poin ter
is a virtual pointer to an initialized area (see Section 1).

CONTROL ARGUMENTS

-create
creates and initializes a system-free segment in your process directory.

3-884 AG92-06A

11/86

-system
specifies the area used for linkage sections.

NOTES

Specify either virtual_pointer or the control arguments.

To initialize or create an area, see the create_area command. Set up the area as either
zero_on_free or zero_on_alloc. Make the area specified extensible.

EXAMPLES

The command line

places objects in the segment whose reference name is free_ at the offset whose entry
point name is free_.

The command line

uses the segment whose reference name is my_seg. The area is assumed to be at an
offset of 0 in the segment The segment must already exist with the reference name
my_seg and must be initialized as an area.

The command line

uses the segment whose relative pathname is my _seg. The segment must already exist.

SYNTAX AS A COMMAND

std key value {-control_arg}

SYNTAX AS AN ACTIVE FUNCTION

[std key value {-control_arg}]

FUNCTION

sets a default date/time value for the process. As an active function. it returns "true"
if the action requested was successful, "false" otherwise.

3-885 AG92-Q6A

11/86

ARGUMENTS

key
is a keyword representing the default to be set.

value
is a value to become the new default. Ii the value is ~'-system~' (-sys), the system
default is used; if it is -pop, a remembered value is used, saved by an earlier
setting with -push. I t is an error if you have used no -push before.

CONTROL ARGUMENTS

-push
saves the current value of the default before setting to the new value.

LIST OF KEYS

date
sets the process default date. The value must be acceptable to date_time_$format
(see "Notes").

date_time
sets the process default date_time. The value must be acceptable to date_time_$format
(see "Notes").

debug, db
sets the process date/time debugging switch. The value can be "on" or "true," or
"off" or "false." When debugging is enabled, convert_date_to_binary_ displays a
description of time strings as they are parsed, and identifies the exact location of
any error in the time string. The system default value is off.

language, lang

time

sets the process default language. The language name can be in any of the
languages known to the date/time system. To print a list of acceptable language
values. type "display_time_info -language".

sets the process default time. The value must be acceptable to date_time_$format
(see "Notes").

3-886 AG92-06A

zone
sets the process default zone. The zone abbreviation can be in any of the
languages known to the date/time system. To print a list of acceptable zone
values, type "display_time_info -zone" or "display_time_info -map".

NOTES

The named format strings acceptable to date_time_$format are described in Section 1,
under "Time Format." The names "date", "date_time". and "time" are not allowed in
this context.

SYNTAX AS A COMMAND

FUNCTION

changes the pathname of the terminal type table (TIT) associated with your process.

ARGUMENTS

path
is the pathname of the TIT. If you don't give it, you must supply the control
argument.

CONTROL ARGUMENTS

-reset, -rs
resets the TIT pathname to its default value: >system_control_l>ttt.

Name: set_tty, stty

SYNTAX AS A COMMAND

stty {-control_args}

FUNCTION

modifies the terminal type associated with your terminal and/or various parameters
associated with terminal I/O. The type as specified by this command determines
character conversion and delay timings; it has no effect on communications line
control.

3-887 AG92-06

CONTROL ARGUMENTS

-all, -a
is the equivalent of specifying the four control arguments -print, -print_edit,
-print_frame, and -print_delay.

-brief, -bf
may only be used with the -print control argument and causes only those modes
that are on plus those that are not on/off type modes (e.g., 1179) to be printed.

-buff er _size N, -bsize N
specifies the terminal'S buffer size to be used for output block acknowledgement
where N is the terminal's buffer size in characters. If the end_of_block and
acknowledgement characters have not been specified (either as part of the terminal
type description or by means of the -output_etb_ack control argument to set_tty),
this control argument may not be specified.

-delay STR, -dly STR
sets the delay timings for the terminal according to STR, which is either the
word "default" or a string of six decimal values separated by commas. If
"default" is specified, the default values for the current terminal type and baud
rate are used. The values specify vert_nl, horz_nl, const_tab, var_tab, backspace,
and vt_ff. in that order. (See "List of Delay Types" below.)

-edit edit_chars, -ed edit_chars
changes the input editing characters to those specified by edit_chars. The
edit_chars control argument is a 2-character string consisting of the erase
character and the kill character, in that order. If the erase character is specified
as a blank, the erase character is not changed; if the kill character is omitted or
specified as a blank, the kill character is not changed.

-frame STR, -fr STR
changes the framing characters used in blk_xfer mode to those specified by STR,
where STR is a 2-character string consisting of the frame-begin and the
frame-end character, respectively. These characters -must be specified in the
character code of the terminal, and may be entered as octal escapes, if necessary.
The frame-begin character is specified as a NUL character to indicate that there
is no frame-begin character; the same is true for a frame-end character. These
characters have no effect unless blk_xfer mode is on. It is an error to set the
frame-end character to NUL if the frame-begin character is not also set to NUL.

-initial_string, -istr
transmits the initial string defined for the terminal type to the terminal.

-input_flow_control STR, -ifc STR
sets the input_suspend and input_resume characters to those specified in STR,
which is a string of one or two characters. If STR contains two characters, the
first character is the input_suspend character and the second one is the
input_resume character. If STR contains only one character, it is the input_resume
character and there is no input_suspend character.

3-888 AG92-06

-io_switch STR, -is STR
specines_ th~t the command be applied to the I/O switch whose name is STR. If
this control argument is -omitted, the user_i/o switch is assumoo.

-modes STR, -md STR
sets the modes for terminal I/O according to STR. which is a string of mode
names separated by commas. Many modes can be optionally preceded by IIAII to
turn the specified mode off. For a list of valid mode names, see "List of modes"
below. Modes not specified in STR are left unchanged.

-output_etb_ack STR, -oea STR
sets the output_end_of_block and output_acknowledge characters to those specified
in STR, which is a string of two characters. The first character of STR is the
end_of_block character and the second one is the acknowledge character. If a
buffer size has not been specified (either as part of the terminal type description
or by means of the -buffer_size control argument to set_tty), this control
argument may not be specified.

-output_suspend_resume STR, -osr STR
sets the output_suspend and output_resume characters to those specified in STR,
which is a string of two characters. The first character of STR is the
output_suspend character and the second is the output_resume character.

-print, -pr
prints the terminal type and modes on the terminal. If any other control
arguments are specified, the type and modes printed reflect the result of the
command.

-print_delay, -pr_dly
prints the delay timings for the terminal.

-print_edit, -pr_ed
prints the input-editing characters for the terminal.

-print_frame, -pr_fr
prints the framing characters for the terminal.

-reset, -rs
sets the modes to the default modes string for the current terminal type.

-terminal_type STR, -ttp STR
sets your terminal type to STR. where STR can be anyone of the types defined
in the terminal type table (TIT). The default modes for the new terminal type
are turned on and the initial string for the terminal type, if any, is transmitted
to the terminal. Refer to the print_terminal_types command for information on
obtaining a list of terminal types currently in the ITT.

3-889 AG92-D6

LIST OF DELAY TYPES

vert_nl
is the number of delay characters to be output for all newlines to allow for the
linefeed (-127 <= vert_nl <= 127). If it is negative, its absolute value is the
minimum number of characters that must be transmitted between two linefeeds
(for a device such as a TermiNet 1200).

horz_nl
is a number to be multiplied by the column position to obtain the number of
delays to be added for the carriage return portion of a newline (0 <= horz_nl <= 1).
The formula for calculating the number of delay characters to be output following
a newline is

ndelays = vert_nl + fixed (horz_nl*column)

const_tab
is the constant portion of the number of delays associated with any horizontal tab
character (0 <= const_tab <= 127).

var_tab
is the number of additional delays associated with a horizontal tab for each
column traversed (0 <= var_tab <= 1). The formula for calculating the number of
delays to be output following a horizontal tab is

ndeJays = const_tab + fixed (var_tab*n_columns)

backspace
is the number of delays to be output following a backspace character
(-127 <= backspace <= 127). If it is negative, its absolute value is the number of
delays to be output with the first backspace of a series only (or a single
backspace). This is for terminals such as the TermiNet 300 that need delays to
allow for hammer recovery in case of overstrikes, but do not require delays for
the carriage motion associated with the backspace itself.

vt_ff
is the number of delays to be output following a vertical tab or formfeed
(0 <= vt_ff <= 511).

The horz_nl and var_tab values are floating-point numbers; all other values are
integers. If any of the six values is omitted. the corresponding delay value is not
changed; if values are omitted from the end of the list, trailing commas are not
required.

3-890 AG92-o6

LIST OF MODES

The following is a list of modes which can be set with the -modes control argument
Some mades have ··aoomplement indicated··· by the . circum-flex character ("')_ .. that turns
the mode off. For these modes the complement is displayed with the mode. Normal
defaults are indicated for those modes that are generally independent of terminal type.
The modes string is processed from left to right Thus, if two or more contradictory
modes appear within the same modes string, the rightmost mode prevails.

8bit, "'8bit
causes input characters to be received without removing the 8th (high-order) bit,
which is normally interpreted as a parity bit This mode is valid for HSLA
channels only. (Default is off.)

blk_xfer, "'blk_xfer
specifies that your terminal is capable of transmitting a block or "frame" of input
all at once in response to a single keystroke. The system may not handle such
input correctly unless blk_xfer mode is on and the set_framin~chars order has
been issued. (Default is off.)

breakal1, "'breakall
enables a mode in which all characters are assumed to be break characters,
making each character available to your process as soon as it is typed. This mode
only affects get_chars operations. (DefauH is off.)

can, "'can
performs standard canonicalization on input (Default is on.)

can_type=everstrike
the canonicalization algorithm for use when you are typing input on a terminal
which is capable of displaying Several characters in a single column. Canonicalization
is only performed when the I/O switch is in "can" mode. This is the default for
hard-copy terminals.

can_type=replace
the canonicalization algorithm for use when you are typing input on a column.
(Examples of these terminals include most modern video (CRT) terminals.)
Replacement canonicalization causes the canonical form of typed input to contain
only the last character entered in any column. Canonicalization is only performed
when the I/O switch is in "can" mode. This is the default for video terminals.
See "Examples" below.

cape, "'cape
outputs all lowercase letters in uppercase. If edited mode is on, uppercase letters
are printed normally; if edited mode is off and capo mode is on, uppercase
letters are preceded by an escape (\) character. (Default is off.)

creche, "'creche
echoes a carriage return when a line feed is typed. This mode can only be used
with terminals and line types capable of receiving and transmitting simultaneously.

3-891 AG92-D6

ctl_char, Actl_char
specifies that ASCII control characters that do not cause carriage or paper motion
are to be accepted as input, except for the NUL character. If the mode is off,
all such characters are discarded. (Default is off.)

default
is a shorthand way of specifying erkl, can, Arawi, Arawo , ~ake_tbl, and
esc. The settings for other modes are not affected.

echoplex, Aechoplex
echoes all characters typed on the terminal. The same restriction applies as for
crecho; it must also be possible to disable the terminal's local copy function.

edited, Aedited
suppresses printing of characters for which there is no defined Multics equivalent
on the device referenced. If edited mode is off, the 9-bit octal representation of
the character is printed. (Default is off.)

erkl, Aerkl
performs "erase" and "kill" processing on input. (Default is on.)

esc, Aesc
enables escape processing on all input read from the device. (Default is on.)

force
can be used to prevent unimportant modes from causing errors if they cannot be
set. Force is positional: any mode specified after it is affected by it. For
instance, in the command line

stty -modes fulldpx,force,replay,Aforce,polite

if the fulldpx mode cannot be set, the command fails; no error message is
returned if replay cannot be set; and an error occurs if polite cannot set.

ful1dpx, Afulldpx
allows the terminal to receive and transmit simultaneously. This mode should be
explicitly enabled before enabling echoplex mode. (Default is on.)

hndlquit, Ahndlquit
echoes a newline character and performs a resetread of the associated stream when
a quit signal is detected. (Default is on.)

iflow, Aiflow
specifies that input flow control characters are to be recognized and/or sent to
the terminal. The characters must be set before iflow mode can be turned on.

i ni t
sets all switch type modes off, sets line length to 50. and sets page length to
zero.

3-892 AG92-06

lfecho, Alfecho .
echoes and inserts a line feed in your input stream when a carriage return is
typed. The same restriction applies as for crecho.

lIN, All
specifies the length in character positions of a terminal line. If an attempt is
made to output a line longer than this length, the excess characters are placed on
the next line. If "" 11 is specified, line length checking is disabled (i.e., no \c! s
appear). In this case, if a line of more than 255 column positions is output by a
single call to iox_$put_chars, some extra white space may appear on the terminal.

no_outp, ""no_outp
causes output characters to be sent to the terminal without the addition of parity
bits. If this mode and rawo mode are on, any 8-bit pattern can be sent to the
terminal. This mode is valid for HSLA channels only. (Default is off.)

oddp, ""oddp
causes any parity generation that is done to the channel to assume odd parity.
Otherwise. even parity is assumed for line types other than 2741 and 1050. This
mode is valid for HSLA channels only. (Default is off.)

of low, "'oflow
specifies that output flow control characters are to be recognized when sent by
the terminal. The characters and the protocol to be used must be set before
oflow mode can be turned on.

plN, "'pl
specn les the lengrn m lines of a page. w"aen an attempt is made to exceed this
length. a warning message (which usually defaults to EOP) is printed. When you
type a formfeed or newline character (any break character), the output continues
with the next page. EOP is displayed on a new line after N consecutive output
lines are sent to the screen (including long lines which are folded as more than
one output line). To have the EOP displayed on the screen without scrolling lines
off the top, N should be set to one less than the page length capability of the
screen. If "'p 1 is specified, end-of -page checking is disabled. (See description of
scroll mode below.)

po 1 i te, "'po 1 i te
does not print output sent to the terminal while you are typing input until the
carriage is at the left margin, unless you allow 30 seconds to pass without typing
a newline. (Default is off.)

prefixnl, "'prefixnl
controls what happens when terminal output interrupts a partially complete input
line. In prefixnl mode. a newline character is inserted in order to start the
output at the left margin; in "'pref i xn 1 mode, the output starts in the current
column position. (Default is on.) Polite mode controls when input may be
interrupted by output; prefixnl controls what happens when such an interruption
occurs.

3-893 AG92-06

rawi, "'rawi
reads the data specified from the device directly without any conversion or
processing. (Default is off.)

rawo, "'rawo
writes data to the device directly without any conversion or processing. (Default
is off.)

red, "'red
sends red and black shifts to the terminal.

replay, "'replay
prints any partial input line that is interrupted by output at the conclusion of the
output, and leaves the carriage in the same position as when the interruption
occurred. (Default is off.)

sero 11, "'sero 11
specifies that end-of-page checking is performed in a manner suited to scrolling
video terminals. If the mode is on, the end-of -page condition occurs only when
a full page of output is displayed without intervening input lines. The mode is
ignored whenever end-of-page checking is disabled. (Default is off.)

tabeeho, "'tabeeho
echoes the appropriate number of spaces when a horizontal tab is typed. The
same restriction applies as for crecho.

tabs, "'tabs
inserts tabs in output in place of spaces when appropriate. If tabs mode is off,
all tab characters are mapped into the appropriate number of spaces.

vertsp, "'vertsp
perf orms the vertical tab and f ormf eed functions, and sends appropriate characters
to the device. Otherwise, such characters are escaped. (Default is off.)

wake_tbl, "'wake_tbl
causes input wakeups to occur only when specified wakeup characters are received.
Wakeup characters are defined by the set_wakeup_table order. This mode is
ineff ective unless breakall mode is also on. This mode cannot be set unless a
wakeup table has been previously defined.

NOTES

Invoking the set_tty command causes the system to perform the following steps in the
specified order:

1. If the -terminal_type control argument is specified, set the specified type, turn
on the default modes for that type and send the initial string for that type .

., T4-' "'ho _ ,."" ""1 ., ... lYlln'\O ... t ';C' C'~,..;f.;on C'ot 1"\'0 """noC' 1"" t\'", n",f'!l111t n'I"n",,~
k. .1.1 "I!~ 1"""""'1. ,",VUI.J.V! u,J.6"'J.J.J."'UL J.~ ~t"""'J.J.J.""'" ~L LU'" J.J.J.\,''''''~ LV '" "" J.

string for the current terminal type.

3-894 AG92-06

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

If the -modes control argument is specified, turn on or off those modes
explicitly specified.

If the -initial_string control argument is specified, transmit the iniihll string to
the terminal.

If the -edit control argument is specified, set the editing characters.

If the -frame control argument is specified. set the framing characters.

If the -delay control argument is specified, set the delay values.

If the -input_flow_control control argument is specified. set the input flow
control characters.

If the -buffer_size, -output_etb_ack, or -output_suspend_resume control argument
is specified, set the corresponding output flow control parameters.

If the -print control argument is specified, print the type and modes on the
terminal.

If the -print_edit control argument is specified, print the editing characters on
the terminal.-

If the -print_frame control argument is specified, print the framing characters
on the terminal.

If the -print_delay control argument is specified, print the delay values on the
terminal.

EXAMPLES

The command line

set_tty -delay 6,0,0,0,-6,59

sets all six delay values to those used by a TermiNet 300.

The command line

set_tty -delay 5,0.6",2,63

sets the delay values so that 5 delays will be output with a newline, plus 3 more for
every 5 columns of carriage return; 2 delays will be used for each backspace, 63 for a
vertical tab or formfeed, and whatever values were already in force for horizontal
tabs.

The command line

set_tty -delay, 1.3".8

3-895 AG92-D6

sets horz_nl to 1.3 and var_tab to 0.8, while leaving all other delay values as they
were before.

The command line

set_tty -frame \002\003

sets the frame-begin and frame-end characters to the ASCII STX and ETX characters,
respectively.

For example with can_type=replace. typing

This is a tsetBBBest of tpying text.BBBBBBBBBBByp<LF>

where B is a backspace character and < L F > is the line-f eed character will appear on
the screen and be input as:

This is a test of typing text.

When using can_type=replace, it is not possible to overstrike a character with the erase
character. In other words, it is not possible to delete a character in the middle of a
typed line without repositioning to the character in question and retyping the rest of
the line. Therefore, you may wish to disable the erase character when using
replacement canonicalization. This may be accomplished by the command line

set_tty -edit \400

SYNTAX AS A COMMAND

FUNCTION

establishes an area as the storage region in which normal user allocations are
performed. These allocations include FORTRAN common blocks and PL/I external
variables whose names do not contain dollar signs.

ARGUMENTS

virtual_poin ter
is a virtual pointer to an initialized area (see Section 1 for a description of
virtual pointers).

3-896 AG92-06

CONTROL ARGUMENTS

-create
creates (and initializes) a system-free segment in your process directory.

-system
specif ies the area used for linkage sections.

NOTES

The control arguments must be given only if virtual_ptr is not specified and vice
versa.

To initialize or create an area, refer to the description of the create_area command.
The area must be set up as either zero_on_free or zero_on_alloc. It is recommended
that the area specified be extensible.

EXAMPLES

The command line

places objects in the segment whose reference name is free_ at the offset whose entry
point name is free_.

The command line

uses the segment whose reference name is my_seg. The area is assumed to be at an
offset of 0 in the segment. The segment must already exist with the reference name
my_seg and must be initialized as an area. The command line

uses the segment whose relative pathname is my _seg. The segment must already exist.

3-897 AG92-o6

Name: set_volume_quota, svq

SYNTAX AS A COMMAND

svq logical_volume change {account}

FUNCTION

sets a quota account's volume quota on a logical volume; used by the volume executive
(the owner or manager of logical volumes).

ARGUMENTS

logical_ volume
is the name of the logical volume for which quota is to be set.

change
is the amount of quota, or the amount of quota change; you can specify it as
follows:

account

+n add n records to the quota
-n subtract n records from the quota

n set the quota to n records

is the name of the quota account (in the form Person_id.Project_id) to be set. If
omitted, your User_id is used.

ACCESS REQUIRED

To use this command you must have e access to the logical volume. It is not
necessary that the volume be mounted.

NOTES

If you set the volume quota less than the quota account's current quota used, the
quota is changed as directed. but a warning message is printed.

3-898 AG92-o6

severity severity

Name: severity

SYNTAX AS A COMMAND

severity command_name {-control_arg}

SYNTAX AS AN ACTIVE FUNCTION

[severity command_name {-control_arg}]

FUNCTION

returns a number representing the severity of the most recent translation or invocation
of the specified command.

ARGUMENTS

command_name
is the name of any command that provides a severity indicator (see "Notes on
Severity Indicators").

CONTROL ARGUMENTS

-default XX, -dft XX
specifies the default value XX to be returned if referencing a nonexistent or
uninitialized severity indicator.

NOTES

If the command specified has not defined a severity indicator or you haven't invoked
it yet, an error ·is indicated unless you give -default.

The fortran command only supports the severity active function if your site is using
the new FORTRAN compiler as its standard FORTRAN compiler.

NOTES ON SEVERITY INDICATORS

Severity indicators are set by system commands, user commands, or from command
level by the set_severity _indicator command. They are single-precision (one word)
binary values. The meaning of the value depends on the particular command. System
commands supporting severity indicators explain their values under "Severity" in the
description of the cOillmand. Under program control yOu cun define a.nd set 3Cvcrity
indicators by assigning an integer value to an external variable.

EXAMPLES

Examples for PL/I and FORTRAN follow.

3-899 AG92-o6

severity

PL/I:

x: proc;

dcl x_severity_ fixed bin (35) ext static;

end;

FORTRAN:

common ly_severity_1 idum
idum = 5

Name: shortest_path

SYNTAX AS A COMMAND

shortest_path path {entry {component}}

SYNTAX AS AN ACTIVE FUNCTION

[shortest path path {entry {component}}]

FUNCTION

returns the shortest absolute pathname represented by the argument if you give one
argument, or the shortest absolute pathname of the archive component or the entry in
the directory specified by path if you give two or three arguments. The shortest name
is determined by using the shortest of each of the names on each component in the
path.

ARGUMENTS

path
is the pathname to be expanded and returned if you don't use entry; otherwise
this is the pathname of the directory to be used in the returned path name.

entry
is the entryname to be used in the returned pathname.

component
is the archive component name to be used in the returned pathname.

3-900 AG92-06

NOTES

Since the pathname returned by path is in quotes, the command processor treats it as
a single argument regardless of special characters in the name.

When more than one name qualifies as the shortest name for a directory,
shorthest_path tries to select the name containing all lowercase characters. If several
names still qualify, they are compared to the primary name of the directory: the first
name found with the same first character as the primary name is chosen; this
comparison is case independent

EXAMPLES

Assume the working directory is >udd>Proj>JKeats; then,

shortest_path start_up.ec
>udd>Proj>JKeats>start_up.ec

shortest_path >user_dir_dir>Multics>Library>Source
>bound_command_demos_.s::program.pll

>udd>m>lib>s>bound_command_demos_.s::program.pll

shortest_path <s>bound_expand_path_.s.archive
>udd>Proj>JKeats>s>bound_expand_path_.s.archive

Name: signal

SYNTAX AS A COMMAND

signal CONDiTiON_NAME {-control_args}

FUNCTION

signals Multics conditions, allowing you to specify some information to be associated
with the condition. The result of a condition signal depends on your program or the
system progra.T.. hand!i!!g the condition signal,

The descriptions that follow assume that the signal is handled by the default unclaimed
signal handler {default_error_handler_$wall}. Any messages described are sent over the
error_output switch.

signal

*

3-901 AG92-06

signal

ARGUMENTS

CONDITION_NAME
is the name of the condition to signal. It can't contain embedded white space
because condition names are only significant to the first space character. It can't
be longer than 256 characters.

CONTROL ARGUMENTS

-can t_restart
sets the cant_restart flag for this signal. The default handler establishes a new
listener level after printing a message and refuses to accept the start command.
(See "Notes.")

-code ET_CODE_NAME
associates the error table code name ET_CODE_NAME with this signal. It must
be a virtual pointer to an error table acceptabe to cv _ptr_. If you omit the
segment name portion of the virtual pointer, error_table_ is assumed. The text
message defined for this error table code is printed if an error message is
printed; thus an ET_CODE_NAME of noentry is interpreted as error_table$noentry,
not as a pointer to noentry 10.

-def aul t_restart
sets the default_restart flag for this signal. The default handler prints a message
and restarts execution.

-info_string INFO_MESSAGE
associates the string INFO_MESSAGE with this signal. If an error message is
printed, this string is also printed. Enclose it in quotes if it contains white space
or special characters. The string can't be longer than 256 characters.

-quiet_restart
sets the quiet_restart flag for this signal. The default handler restarts execution
without printing a message.

-support_signal
sets the support_signal flag for this signal. This indicates that the error is being
signaled on behalf of another procedure and should only be used when your
handler is present on the stack that expects it.

NOTES

Don't use this command with any of the system conditions defined in the
Programmer's Reference Manual or with PL/I language conditions because they require
other associated information that you can't specify with signal and unpredictable results
may occur.

You can use the on command to handle signals produced with this command.

signal

3-902 AG92-06

signal

The default handler deals with all condition signals that are otherwise unhandled by
your programs or system programs on the stack. If you select none of -cant_restart,
-default_restart~ or -quiet __ restart, the default handler prints the error message
described below, and establishes a new listener level. If you type "start" at this point,
execution continues. If the command is executed in an exec_com and you type start,
execution continues with the next command in the exec_com.

The default message printed for a condition signaled is of the form

Error: CONDITION_NAME condition by signal$signal locta 1 number
ERROR_TABLE_MESSAGE
I NFO_STRI NG_MESSAGE

If you give no -info_string, the INFO_STRING_MESSAGE line is omitted. If you
don't chose -code, the ERROR_TABLE_MESSAGE line is omitted.

Name: sort_seg, ss

SYNTAX AS A COMMAND

ss path {-control_args}

FUNCTION

orders the contents of a segment according to the ASCII collating sequence.

ARGUMENTS

path
specifies the pathnarne of an input segment. The star convention is not allowed.

3-903 AG92-()6

CONTROL ARGUMENTS

The control arguments accepted by the command are described below, organized
by function.

SORT UNITS
-block, -bk
-delimiter, -dm

HANDLING DUPLICATES
-duplicates, -dup
-only_duplicates, -odup
-only _duplicate_keys, -odupk
-only_unique, -ouq
-only _unique_keys, -ouqk
-unique, -uq
-unique_keys, -uqk

Sort Units

-block N, -bk N

OUTPUT FILES
-output_file, -of
-replace, -rp

SORT ORDER
-all. -a
-ascending, -asc
-case sensitive, -cs
-character, -ch
-descending, -dsc
-field, -fl
-in teger, -in t
-non_case_sensitive, -ncs
-numeric, -num

makes the sort unit a block of N strings where N must be a positive integer.
The default for N is 1 (see "Examples" below).

-delimiter /REGEXP /, -dm /REGEXP /
uses REGEXP as a regular expression as the string delimiter. Strings to be sorted
are delimited by the characters that match the regular expression. (See the qedx
command.)

-delimiter L. -dm L
make:t each L characters of the input segment a delimited string. where L is a
positive integer. This essentially divides the input into character strings of length
L.

-delimiter {-string} STR, -dm {-str} STR
uses STR concatenated with a newline character as the string delimiter. The
character STR can be any sequence of ASCII characters. I t can be preceded by
-string (-str) to distinguish it from an integer or a regular expression. The
default is a single newline character (see "Examples").

Handling Duplicates

-duplicates. -dup
retains duplicate sort units in the sorted results. (Default)

3-904 AG92--()6

-only_duplicates, -odup
only sort units that occur more than once in the segment appear in the sorted
results. One unit from each set of duplicate sort units is placed in the output
segmen t~ sorted.

-only _duplicate_keys, -odupk
only sort units that have duplicate sort fields appear in the sorted results. All
such units having duplicate sort fields are placed in the output segment since the
nonsort field portions of the units may differ.

-only_unique, -ouq
only sort units that are unique appear in the sorted results. Whenever a set of
duplicate units are found, they are removed from the output segment.

-only _unique_keys, -ouqk
only sort units that have unique sort fields appear in the sorted results. All units
having duplicate sort fields are removed from the output segment.

-unique, -uq
deletes duplicate sort units from the sorted results. For each set of duplicate sort
units only the first appears in the sorted results. along with nonduplicate sort
units.

-unique_keys. -uqk
deletes sort units having duplicate sort fields from the sorted results. For each set
of sort units having duplicate fields only the first appears in the sorted results,
along with nonduplicate sort units.

Output Files

-output_file path. -of path
places the sorted units in a segment whose pathname is path. You can use the
equal convention.

-replace. -rp
replaceS the original contents of the input segment with the sorted units. The
default is to ask you if the input segment should be replaced with its sorted
contents.

Sort Order

-all. -a
makes the primary (and only) sort field be the entire sort unit; i.e.. the entire
sort unit is considered when sorting. (Default)

-ascending. -asc
makes the sort in ascending order, according to the ASCII collating sequence.
(Default)

3-905 AG92-06

11/86

-case_sensitive, -cs
makes the sort by comparing sort fields without translating letters to lowercase.
(Default)

-character, -ch
makes the sort based on the character representation of the sort field. (Default)

-descending, -dsc
makes the sort in descending order, according to the ASCII collating sequence.

-field field_specs, -fl field_specs
specifies the field(s) to be used when comparing two sort units. This allows units
to be sorted based upon comparison of only a part of each sort unit. You can
use multiple -fields to specify more than one field. (See "Syntax of Field
Specifications" below.)

-integer, -int
makes the sort by converting the sort field to fixed binary (71,0) integers when
comparing one sort unit with another (see "Notes" below").

-non_case_sensitive, -ncs
makes the sort by translating letters in the sort fields to lowercase when
comparing one sort unit with another. The actual sorted results remain unchanged.

-numeric, -num
makes the sort by converting the sort field to float decimal (59) numbers when
comparing one sort unit with another (see "NOtesfV).

SYNTAX OF FIELD SPECIFICATIONS

The field_spec operands of -field define the fields within each sort unit by which the
uni t is sorted. The first field_spec defines the primary sort field, the second, a
secondary sort field, and so forth.

Each field_spec consists of a field start location, field length, and optional sorting
controls, which must appear in the following order:

field_start field_length {sort_controls}

LIST OF field start FORMATS

You can give the field start location in one of the following formats:

S
a positive integer, gIvmg the character position of the start of the field in the
sort unit (e.g.. 1 if the field begins at the first character). If the sort unit
contains fewer than S characters. then the unit is sorted as if space characters
appeared in the sort field.

3-906 AG92-06A

-from S, -fm S
where S is a positive integer giving the character position of the start of the
field in the sort unit

-from STR, -fm STR
where STR is a character string that identifies the beginning of the sort field.
The field begins with the first character of the sort unit that follows STR. If
STR does not appear in the sort unit, then the unit is sorted as if the sort field
con tains space characters.

-from /REGEXP /. -fm /REGEXP /
where REGEXP is a regular expression that identifies the beginning of the sort
field. The field begins with the first character of the sort unit that follows the
part of the sort unit matching REGEXP (see the qedx command). If no match
for REGEXP is found in the sort unit. then the unit is sorted as if the sort
field contains space characters.

-from -string STR. -fm -str STR

L

treats STR as a character string that identifies the beginning of the sort field.
even though STR may look like an integer or a regular expression. For example.

-from -string 25

identifies a sort field that begins with the character following "25" in the sort
unit

LIST OF field_length FORMATS

The sort field length can be specified in one of the following ways:

a positive integer. gIvmg the length of the sort field in characters. If the sort
unit is too short to hold a sort field of L characters (i.e., if the number of
characters from the first character of the sort field to the end of the sort unit is
less than L), then the unit is sorted as if the field were extended on the right
with space characters to a length of L characters. Alternately, L can be -1 to
indicate that the remainder of the sort unit is to be used as the sort field.

-for L
where L is a poSItIve integer gIVIng the length of the sort field in characters, or
-1 to use the remainder of the sort unit as the sort field.

-to E
where E is a positive integer giving the character position of the end of the sort
field in the sort unit (e.g., 5 if the field stops after the fifth character of the
sort unit). If the sort unit contains fewer then E characters, then the unit is
sorted as if space characters were added on the right to extend the unit to E
characters.

3-907 AG92-Q6

-to STR
where STR is a character string that identifies the end of the sort field. The
field ends with the first character of the sort unit preceding STR. If STR does
not appear in the sort unit after the starting position of the sort field, then the
unit is sorted as if space characters appeared in the sort field.

-to /REGEXP /
where REGEXP is a regular expression that identifies the end of the sort field.
The field ends with the first character of the sort unit that precedes the part of
the sort unit matching REGEXP (see the qedx command). If no match for
REGEXP is found in the sort unit after the starting position of the sort field,
then the unit is sorted as if space characters appeared in the sort field.

-to -string STR
treats STR as a character string that identifies the end of the sort field, even
though STR may look like an integer or a regular expression.

Note that when -to is used to indicate the end of the field, then sort_seg examines
all sort units to determine the length of the longest instance of this sort field in any
sort unit It then sort units as if the sort field in each unit were extended on the
right with space characters to the length of the longest sort field instance.

LIST OF sort_controls

The sort controls may be one from each of the following sets of arguments. If no
sort control is given. then the default is specified by the corresponding control
argument (-ascending or -descending, -case_sensitive or -non_case_sensitive -character
or -integer or -numeric).

asCending. asc
sorts units with this field in ascending order. This sort control is incompatible
with descending.

descending, dsc
sorts units with this field in descending order. This sort control and ascending are
mutually exclusive.

case_sensitive. cs
sorts units by treating uppercase letters in this field as being different from
lowercase letters. This sort control is incompatible with non_case_sensitive.

non_case_sensitive, ncs
sorts units by translating this field to lowercase. This sort control is incompatible
with case_sensitive.

character. ch
sorts units with this field by the character representation. It is incompatible with
integer or numeric.

3-908 AG92-o6

integer, int
sorts unit with this field by converting the character representation to its integer
value (fixed binary (71,0». This sort control is incompatible with character or
numeric.

numeric, num
sorts units with this field by converting the character representaion to its numeric
value (float decimal (59». It is incompatible with character or integer.

NOTES

Using the control arguments, the segment is broken down into separate sort units,
which are strings or blocks of strings. A string can comprise one or more lines.
These sort units are then sorted, and the ordered units either replace the original
segment or are placed in a new segment

If the command is invoked without any control arguments, -replace. -ascending, -all,
-character and -delimiter are assumed. and the default delimiter of a newline
character is used; that is, sort_seg, when invoked with path as the only argument, sorts
the lines of that segment as character strings in ascending ASCII collating sequence,
replacing the original segment with the sorted result As a safety measure, the
following question is asked when -replace is not supplied:

Do you really want to sort the contents of PATH?

This helps avoid accidental sorting of segments.

The start position of a sort field is calculated relative to the beginning of a sort unit
If the blocking factor is N = 1, the start position is calculated corresponding to the
beginning of a string. If the blocking factor is N > 1, the start position is calculated
relative to the beginning of the first string of a block. When calculating field
specifications within a sort unit of N > 1 strings (blocking factor N > 1). string
delimiters internal to the sort unit should not be considered (see "Examples").

Sort fields/units of unequal length are compared by assuming the shorter field/unit to
be padded on the right with space characters, immediately following the rightmost
character. If a field/unit contains nonprinting graphic characters (such as BS, HT, NL,
VT, FF. CR, etc.), which precede the space character in the ASCII collating sequence.
they are sorted accordingly, with sometimes unexpected results. The string delimiter is
never considered when padding (see "Examples").

Ine numeric sort mode converts the sort field character string to a float decimal (59)
value for sorting purposes. Similarly, the integer sort mode converts the sort field
character string to a fixed bin (71,0) value. The character string representation must
be acceptable to the PL/I or FORTRAN language conversion rules. The actual sort
field remains unchanged in the sorted results.

3-909 AG92-()6

If characters are detected in the input segment following the final delimited sort unit.
they are ignored f or the purposes of sorting but appear in the sorted output
immediately following the final delimited sort unit. An error message specifies the
location of the first nondelimited character.

A maximum of 261.119 units can be sorted. The sort is staDle; i.e., duplicate units
appear in the same order in the sorted segment as in the original segment

The input segment is sorted using temporary segments in the process directory. If
-output_file is given and path is the pathname of an already-existing segment. its
contents are destroyed upon beginning the sort If the sorted results are to replace the
original contents of the input file, that replacement does not occur until the last
possible moment

The determination of whether or not a sort unit is to be deleted (see -unique) is
independent of sort field specifications; i.e .• given a number of nonidentical sort units
that contain identical sort fields, all the units do appear in the sorted results.

The following groups of control arguments are mutually exclusive with other control
arguments in the same group. If more than one from a group is given in a single
command, the last one given in the command overrides the others.

-all, -field

-ascending. -descending

-character, -integer. -numeric

-duplicates, -only _duplicates. -only _duplicate_keys, -unique, -unique_keys

-replace, -output_file

In addition, if -delimiter is used several times, the final specification overrides the
previous ones.

EXAMPLES

Suppose a segment contains the following lines (nl stands for the ASCII newline
character and # stands for the ASCII space character):

ABCDEFGHXYnl
ABCDEFXYnl
ABCDEFGHIJXYnl
ABCXYnl

The display below shows how sort_seg sorts the contents of this segment, according to
the arguments sr...cified in the first column.

3-910 AG92-o6

these
arguments

-dm XY

-bk 2
-dm XY

-fl 6 4

-f 1 1 4 7 2

-dm Y
-bk 2
-fl 6 4 4 2

-fl 6 4 dsc
3 3 asc

-f 1 1 3
-unique_key
-dm XY

-f 1 1 3 5 2
-odupk
-dm XY

define these
sort units

ABCDEFGH
ABCDEF
ABCDEFGHIJ
ABC

ABCDEFGHABCDEF
ABCDEFGHIJABC

ABCDEFGHXY
ABCDEFXY
ABCDEFGHIJXY
ABCXY

ABCDEFGHXY
ABCDEFXY
ABCDEFGHIJXY
ABCXY

sorted on
these fields

ABCDEFGH##
ABCDEF####
ABCDEFGHIJ
ABC#######

ABCDEFGHABCDEF
ABCDEFGHIJABC#

FGHX
FXY#
FGHI

first
ABCD
ABCD
ABCD
ABCX

second
GH
XY
GH
Hi

ABCDEFGHXABCDEFX FGHX DE
DE ABCDEFGHIJXABCX FGHI

ABCDEFGHXY
ABCDEFXY
ABCDEFGHIJXY
ABCXY

ABCDEFGH
ABCDEF
ABCDEFGHIJ
ABC

ABCDEFGH
ABCDEF
ABCDEFGHIJ
ABC

first
FGHX
FXY#
FGHI

ABC
ABC
ABC
ABC

first
ABC
ABC
ABC
ABC

3-911

second
CDE
CDE
CDE
CXY

second
EF
EF
EF

giving
these results

ABCXYnl
ABCDEFXYnl
ABCDEFGHXYnl
ABCDEFGHIJXYnl

ABCDEFGHXYnl
ABCDEFXYnl
ABCDEFGHIJXYnl
ABCXYnl

ABCXYnl
ABCDEFGHIJXYnl
ABCDEFGHXYnl
ABCDEFXYnl

ABCDEFGHXYnl
ABCDEFGHIJXYnl
ABCDEFXYnl
ABCXYnl

ABCDEFGHIJXYnl
ABCXYnl

ABCDEFGHIJXABCX
ABCDEFXYnl

ABCDEFXYnl
ABCDEFGHXYnl
ABCDEFGHIJXYnl
ABCXYnl

ABCDEFGHXYnl

ABCDEFGHXYnl
ABCDEFXYnl
ABCDEFGHIJXYnl

AG92-06

Name: sort_strings, sstr

SYNTAX AS A COMMAND

sstr {-control_args} strings

SYNTAX AS AN ACTIVE FUNCTION

[sstr {-control_args} strings]

FUNCTION

orders the argument strings according to the ASCII collating sequence.

ARGUMENTS

strings
are the strings to be sorted. All arguments following the first strings are
treated as strings. You can use -string to identify a first string that looks
like a control argument or to separate a numeric string from operands of
-field.

CONTROL ARGUMENTS

The control arguments accepted by the command are described below, organized
by function.

SORT UNITS
-block. -bk

HANDLING DUPLICATES
-duplicates. -dup
-only_duplicates, -odup
-only _duplicate_keys, -odupk
-only _unique, -ouq
-only _unique_keys, -ouqk
-unique, -uq
-unique_keys, -uqk

Sort Units

-block N. -bk N

INPUT STRINGS
-string, -str .

SORT ORDER
-all, -a
-ascending, -asc
-case_sensitive. -cs
-character, -ch
-descending. -dsc
-field, -fl
-integer, -int
-non_case_sensitive. -ncs
-numeric, -num

makes the sort unit a block of N strings, where N must be a positive integer (see
"Examples" below). (Default one string)

3-912 AG92-06

Handling Duplicates

-duplicates, -dup
retains duplicate sort units in the sorted results. (Default)

-only_duplicates. -odup
only sort units that occur more than once in the input appear in the sorted
results. One unit from each set of duplicate sort units is placed in the return
value, sorted.

-only _duplicate_keys, -odupk
only sort units that have duplicate sort fields appear in the sorted results. All
such units having duplicate sort fields are placed in the return value since the
nonsort field portions of the units may differ.

-only_unique, -ouq
only sort units that are unique appear in the sorted results. Whenever a set of
duplicate units are found, they are removed from the return value.

-only_unique_keys, -ouqk
only sort units that have unique sort fields appear in the sorted results. All units
having duplicate sort fields are removed from the return value.

-unique, -uq
deletes duplicate sort units from the sorted results. For each set of duplicate sort
units only the first appears in the sorted results, along with nonduplicate sort
units.

-unique_keys, -uqk
deletes sort units having duplicate sort fields from the sorted results. For each set
of sort units having duplicate fields only the first appears in the sorted resUlts,
along with nonduplicate sort units.

Input Strings

-string strings, -str strings
identifies the strings that follow as the strings to be sorted. All remaining
arguments are treated as input strings.

Sort Order

-all, -a
makes the primary (and only) sort field be the entire sort unit; i.e., each string is
sorted based upon its entire value, rather than being split into one or more sort
fields. (Default)

-ascending, -asc
returns the sorted results in ascending order. (Default)

3-913 AG92-Q6

11/86

-case_sensitive. -cs
makes the sort by comparing sort fields without translating letters to lowercase.
(Default)

-character, -ch
makes the sort based on the character representation of the sort field. (Default)

-descending, -dsc
returns the sorted results in descending order.

-field field_specs, -fl field_specs
specifies the field(s) to be used when comparing two sort units. This allows units
to be sorted based upon comparison of only a part of each sort unit. You can
use multiple -fields to specify more than one field. (See "Syntax of Field
Specifications" below.)

-in teger. -in t
makes the sort by converting the sort field to fixed binary (71.0) integers when
comparing one sort unit with another (see "Notes" below).

-non_case_sensitive, -ncs
makes the sort by translating letters in the sort fields to lowercase when
comparing one sort unit with another. The actual sorted results remain unchanged.

-numeric, -num
makes the sort by converting the sort field to float decimal (59) numbers when
comparing one sort unit with another (see "Notes").

SYNTAX OF FIELD SPECIFICATIONS

The field_spec operands of -field define the fields within each sort unit by which the
unit is sorted. The first field_spec defines the primary sort field, the second, a
secondary sort field, and so forth.

Each field_spec consists of a field start location, field length, and optional sorting
controls, which must appear in the following order:

field_start field_length {sort_controls}

LIST OF field start FORMATS

You can give the field start location in one of the following formats:

S
a positive integer, gIvmg the character position of the start of the field in the
sort unit (e.g., 1 if the field begins at the first character). If the sort unit
contains fewer than S characters, then the unit is sorted as if space characters
appeared in the sort fieid.

3-914 AG92-06A

-from S, -fm S
where S is a positive integer giving the character position of the start of the
field in the sort unit.

-from SIR. -fm SIR
where STR is a character string that identifies the beginning of the sort iield.
Ihe field begins with the first character of the sort unit that follows SIR. If
SIR does not appear in the sort unit, then the unit is sorted as if the sort field
contained space characters.

-from /REGEXP/, -fm /REGEXP/
where REGEXP is a regular expression that identifies the beginning of the sort
field. Ihe field begins with the first character of the sort unit that follows the
part of the sort unit matching REGEXP (see the qedx command). If no match
for REGEXP is found in the sort unit, then the unit is sorted as if the sort
field contained space characters.

-from -string SIR, -fm -str SIR
treats SIR as a character string that identifies the beginning of the sort field,
even though SIR may look like an integer or a regular expression. For example,

-from -string 25

identifies a sort field that begins with the character following 25 in the sort unit

LIST OF FIELD LENGTH FORMATS

You can specify the sort field length in one of the following ways:

L
a positive integer, gIvIng the length of the sort field in characters. If the sort
unit is too short to hold a sort field of L characters (i.e., if the number of
characters from the first character of the sort field to the end of the sort unit is
less than L), then the unit is sorted as if the field were extended on the right
with space characters to a length of L characters. Alternately, L can be -1 to
indicate that the remainder of the sort unit is to be used as the sort iieid.

-for L
where L is a positive integer giving the length of the sort field in characters, or
-1 to use the remainder of the sort unit as the sort field.

~to E
where E is a posItIve integer giving the character position of the end of the sort
field in the sort unit (e.g .• 5 if the field stops after the fifth character of the
sort unit). If the sort unit contains fewer then E characters, then the unit is
sorted as if space characters were added on the right to extend the unit to E
characters.

3-915 AG92-D6

-to STR
where STR is a character string that identifies the end of the sort field. The
field ends with the first character of the sort unit preceding STR. If STR does
not appear in the sort unit after the starting position of the sort field. then the
unit is sorted as if space characters appeared in the sort field.

-to /REGEXP /
where REGEXP is a regular expression that identifies the end of the sort field.
The field ends with the first character of the sort unit that precedes the part of
the sort unit matching REGEXP (see the qedx command). If no match for
REGEXP is found in the sort unit after the starting position of the sort field,
then the unit is sorted as if space characters appeared in the sort field.

-to -string STR
treats STR as a character string that identifies the end of the sort field, even
though STR may look like an integer or a regular expression.

Note that when you use -to to indicate the end of the field, then sort_strings
examines all sort units to determine the length of the longest instance of this sort
field in any sort unit; it then sort units as if the sort field in each unit were
extended on the right with space characters to the length of the longest sort field
instance.

LIST OF SORT_CONTROLS

The sort controls may be one from each of the following three sets of arguments; the
arguments within each set are incompatible with each other. If you give none, then
the default is specified by the corresponding control argument

ascending, asc
sorts units with this field in ascending order.

descending, dsc
sorts units with this field in descending order.

case_sensitive, cs
sorts units by treating uppercase letters in this field as being different from
lowercase letters.

non_case_sensitive. ncs
sorts units by translating this field to lowercase.

character, ch
sorts units with this field by the character representation.

in teger , in t
sorts unit with this field by converting the character representation to its integer
value (fixed binary (71,0».

3-916 AG92-06

numeric. num
sorts units with this field by converting the character representaion to its numeric
value (float decimal (59».

NOTES

Using the control arguments, each string (or group of strings if you supply -block) is
treated as a separate sort unit These sort units are then sorted, and the ordered units
are printed or returned as the active function return value.

If you invoke sort_strings without any control arguments, -ascending, -all, and
-character are assumed.

The start position of a sort field is calculated relative to the beginning of a sort unit
If the blocking factor is N = 1, the start position is calculated corresponding to the
beginning of a string. If the blocking factor is N > 1. the start position is calculated
relative to the beginning of the first string of a block. When calculating field
specifications within a sort unit of N > 1 strings (blocking factor N > 1), you should
not consider string delimiters internal to the sort unit (see "Examples"). Each group of
N strings is concatenated without intervening spaces to form the sort unit

Sort fields/units of unequal length are compared by assuming the shorter field/unit to
be padded on the right with space characters, immediately following the rightmost
character. If a field/unit contains nonprinting graphic _characters (such as BS, HT, NL,
VT, FF, C~ etc.), which precede the space character in the ASCII collating sequence,
they are sorted accordingly, with unexpected results sometimes.

The numeric sort mode converts the sort field character string to a float decimal (59)
value for sorting purposes. Similarly, the integer sort mode converts the sort field
character string to a fixed binary (71.0) value. The character string representation must
be acceptable to the PL/I or FORTRAN language conversion rules. The actual sort
field remains unchanged in the sorted results.

You can sort a maximum of 261,119 units. The sort is stable; i.e., duplicate units
appear in the same order in the sorted results as in the original input.

The input strings are sorted using temporary segments in the process directory.

The determination of whether or not a sort unit is to be deleted (see -unique) is
independent of sort field specifications; i.e., given a number of nonidentical sort units
that contain identical sort fields. all the units do appear in the sorted results.

The following groups have control arguments that are mutually exclusive with each
other. If you provide more than one from a group in a single command, the last one
given in the command overrides the others.

-all, -field

-ascending. -descending

3-917 AG92-Q6

-case_sensitive, -non_ease_sensitive

-character, -integer, -numeric

-duplicates, -only _duplicates, -only _duplicate_keys,
-unique, -unique_keys

EXAMPLES

sstr -str [segs **.pl1]

sorts the list of pll segments in the current directory into alphabetical order.

sstr [index_set 1 20 2]
1 11 13 15 17 19 357 9

sorts the numeric strings in ASCII collating sequence. Sorted in integer sequence, the
strings are:

sstr -integer [index_set 1 20 2]
1 3 5 7 9 11 13 15 17 19

Sorting on the second character of each string gives

sstr -integer -fl 2 1 -str [index_set 1 20 2]
1 3 5 7 9 11 13 15 17 19

-str is included to separate the numeric operands of -field from the strings to be
sorted. Reversing the sort order gives:

sstr -dse -integer -f1 2 1 -str [index_set 1 20 2]
19 17 15 13 11 1 357 9

Values from 11 through 19 are sorted on their second digit Values from 1 through 9
have no second digit and are extended on the right with a space that is converted to
the integer O. Since they all have the same sort field value, their original order is
maintained.

You can block strings together for sorting purposes

sstr -block (1 2 3) xyz uvw def bed abc def ghi
abe bed def def ghi uvw xyz
abe def def bed ghi xyz uvw
bed abe def ghi xyz uvw def

3-918 AG92-D6

start

Name: start, sr

SYNTAX AS A COMMAND

sr {-control_arg}

FUNCTION

is used after you have issued the quit signal to resume execution of your process from
the point of interruption.

CONTROL ARGUMENTS

-no_restore, -nr
does not restore the standard I/O attachments (see "Notes").

NOTES

You can also use start to resume execution after an unclaimed signal, provided that
the condition that caused that signal either is innocuous or has been corrected. This
command restores the attachments of the user_input, user_output, and error_output
I/O switches and the mode of user_i/o to their values at the time of the interruption
unless you give -no_restore.

You can issue start at any time after a quit signal as long as you haven't given a
relea..~ c.ommand.

If there is no suspended computation to restart, the command prints the message "start
ignored."

. Name: status, st

SYNTAX AS A COMMAND

st paths {-control_args}

SYNTAX AS AN ACTIVE FUNCTION

Est path -control_args {-chase}]

FUNCTION

prints selected detailed status information about specified storage system entries.

status

3-919 AG92-06

status

11/87

ARGUMENTS

paths
are the pathnames of segments, multisegment files (MSFs), data management (OM) files,
directories, and links for which you want status information. The default pathname is your
working directory (-wd). This argument can be n-nonstandard_names (-nsn) STR" to
specify a nonstandard segment name, such as one beginning with a minus sign or containing
any of the nonstandard characters n<, *, 7, =, %, $, .,:, ,::". In this case STR must be in the
working directory. The star convention is allowed but does not apply to STR.
You can't use the star convention in the active function.

CONTROL ARGUMENTS

You can use the following control arguments with any type of entry; they can appear anywhere on
the line after the command name and are in effect for the whole line. Give at least one control
argument in the active function.

-author, -at
prints the author of the entry.

-chase
prints information about the branch targets of links instead of the links themselves. An
error occurs for a null link or a link to a null link.

-chase_if _possible, -cip
prints information about the targets of links where branch targets exist and about the
ultimate link in the chain for null links and links to null links. It does not affect the
processing of nonlinks.

-date, -dt
prints all the relevant dates on the entry.

-date_time_dumped, -dtd
prints the date-time-dumped by the hierarchy dumper.

-date_tim e_en try _modified, -dtem
prints the date-time-entry-modified.

-directory, -dr
selects directories when using the star convention.

-entry_type, -ettp, -type, -tp
prints the type of entry, which can be one of the standard types (segment, MSF, OM file,
directory, or link) or one of the available extended types (e.g., mailbox).

-in terpret_as_extended_en try, -inaee
interprets the selected entries as extended entry types. (Default)

status

3-920 AG92-D6B

status

11/87

-in terpret_as_standard_entry, -inase
interpret the selected entries as standard entry types.

-link. -He
selects links when using the star convention.

-name, -nm
prints all the names on the entry.

-no_chase
prints link information about links. (Default)

-no_chase_if _possible, -ncip
prints link information about links. (Default)

-nonstandard_names, -nsn
specifies a nonstandard segment name, such as one beginning with a minus sign or containing
any of the nonstandard characters "<, *, 1, =, %. $ •.• :. ,::". In this case SIR must be in the
working directory.

-primary. -pri
prints the primary name on the entry.

-segment, -sm
selects segments when using the star convention.

-select_entry _type SIR. -slet STR
selects entries of the types specified by SIR, which is a comma-delimited list of file system
entry types. Use the list_entry _types command to obtain a list of valid entry type values.

-switch SW _NAME
prints whether the specified SW _NAME is on or off. where SW _NAME is the name of a
switch. Valid switch names are copy. complete_volume_dump. damaged.
incremental_ volume_dump, safety, synchronized or any valid extended entry type switch
name.

LIST OF TYPE-SPECIFIC CONTROL ARGUMENTS

You can use the following control arguments only for segments, MSFs, and directories.

-access. -ac
prints your effective mode, ring brackets, access class (if different from the default), and
safety switch (if on).

-access_class. -acc
prints the access class.

status

3-921 AG92-{)6B

status

11/87

-all, -a, -long, -lg
rints all relevant information about the object or link: the type of entry, the pathname of the
entry being linked to, names, the unique identifier, the date-used, the date-modified, the
date-branch-modified, the date-link-modified, the date-dumped by hierarchy and volume
dumpers, the author, the bit count author (if different from the author), the device, the bit
count, records used, current blocks (for segments. if different from records used), the
maximum length in words (if type is segment), the safety switch (if on), the damaged switch
(if on), your mode, ring brackets, the access class (if not nUll), the copy switch (if on), and the
volume dumper control switches (if off). Bit count author, bit count, safety switch, and copy
switch are not printed for DM files. Synchronized switch is not printed for directories.

-bc_author, -bca
prints the bit count author of the entry. Not valid for DM files.

status

3-921.1 AG92-06B

status

11/87

-bit_count. -bc
prints the bit count. Not valid if the files selected are not· DM files.

-copy_switch. -csw
prints whether the copy switch is on or off. Not valid for OM files.

-current_length. -cl
prints the current length in pages.

-damaged_switch. -dsw
prints whether the damaged switch is on or off.

-date. -dt
prints all the dates on the entry (date-used, date-con~ents-modified.
date-brancb-modified. date-dumped).

-date_time_contents_modified. -dtcm
prints the date-time-contents-modified.

-date_time_used, -dtu
prints the date-time-used.

-date_time_ volume_dumped. -dtvd
prints the date-time-dumped by the volume dumper.

-device. -dv, -logical_volume. =lv
prints the logical volume on which the entry resides.

-length. -In
1. When used as a status active function with -length, then for segments or MSRs or DM

files: returns the current length; for directories: returns the bit count.

2. When used as a status command with -length. then

for segments: prints the bit count, the number of records used, the current blocks (if
different from records used), and the maximum length in words. The length is in
records and is based on the bit count;

for MSFs: prints the number of records used by the whole file, the sum of the bit
counts of all components; and the nll..f!lber of cO!nponents. The length is ill records Cind
is based on the bit count;

for DM files: prints the number of records used and the number of the highest control
interval. The length is in records and is based on the bit count.

for directories: prints the number of records used and the bit count.

status

3-922 AG92-o6B

status status

-max_length, -ml
prints the maximum length of a segment

-mode, -md
prin ts your effective mode.

-records, -ree
prin ts the records used.

11/87 3-922.1 AG92-06B

status status

-rin~brackets. -rb
_ prints the ring brackets.

-safety_switch. -ssw
prints whether the safety switch is on or off. Not valid for DM files.

-synchronized_swi tch. -synch
prints whether the synchronized switch is on or off. Not valid for directories.

-unique_id, -uid
prints the entry's unique identifier. For OM files, prints the file manager (fm) unique id.

LIST OF CONTROL ARGUMENTS FOR SEGMENTS

You can use the following control arguments only for segments.

-comp_ volume_dump_switch, -cvds
prints whether the complete volume dump switch is on or off.

-incr_ volume_dump_switch, -ivds
prints whether the incremental volume dump switch is on or off.

-usage_count. -use
prints the number of page faults taken on the segment since creation.

LIST OF CONTROL ARGUMENTS FOR DIll FILES

You can use the following control arguments only for DM files.

-concurrency_sw. -concsw
prints whether the concurrency switch is on or off.

-highest_control_interval, -hci
prints the number of the highest control interval aHocated to the file.

-pro tec ted_sw. -psw
prints whether the protected switch is on or off.

-rollback_sw. -rlbsw
prints whether the rollback switch is on or ofL

LIST OF CONTROL ARGUMENTS FOR LINKS

You can use the following control argument only for links.

-link_path, -lp
prints the target pathname.

11/87 3-923 AG92-()6B

status

NOTES

If you supply no control arguments. the following information is printed for segments,
MSFs, DM files, and directories: names. the type, the date-used, the date-modified.
the date-branch-modified, the bit count, records used, your mode, and the access class;
for links: the path name of the entry linked to, names, the date-link-modified. the
date-dumped.

The -device, -length. -logical_volume, and -mode control arguments are ignored for
links.

Zero-valued dates (i.e .• dates that have never been set) and attributes in the default
state are not printed.

Attribute

bit count author
current blocks
access class
safety switch
copy switch
damaged switch
complete volume dump switch
incremental volume dump switch

Default

same as author
same as records used
null
off
off
off
on
on

Directories that have been used to implement MSFs are iabeled as such.

For a description of the attributes listed, see "Entry Attributes" in the Programmer's
Reference Manual.

status

3-924 AG92-{)6

status

EXAMPLES

In the example below. you request all the status information on the segment named
>user_dir_dir> Demo> MTwain>workins-file.

st >user_dir_dir>Demo>MTwain>working_fi1e -long

names:

type:
unique id:
date used:

test_segment
working_file

date modified:
branch modified:
date branch dumped:
date volume dumped:
author:
bit count author:
volume:
bit count:
records used:
max length:
mode:
access class:
ring brackets:
safety sw:
ivds switch:
use count:

segment
764576046673
01/09/84 1459.0 est Mon
01/09/84 1459.0 est Mon
11/19/82 1542.6 est Fri
01/27/84 0305.4 est Fri
01/31/84 0305.4 est Tue
LNTo1stoy.Demo.a
MTwain.m
pub1 ic
292968
8
261120
rw
confidential
4, 4, 4
on
off
869221

(The current blocks, copy switch, damaged switch, and incremental volume dump
switch attributes are not printed because they have the default state values.)

status

3-925 AG92-06

status

In the next example, you ask for specific status information on entrynames with the
first component of newtest in the current working directory.

status -type -mode -date newtest.*

type: segment
date used: 01/26/84 2145.0 est Thu
date modified: 01/13/84 1630.0 est Fri
branch modified: 01/13/84 1626.7 est Fri
date branch dumped: 01/14/84 0305.4 est Sat
date volume dumped: 01/16/84 0305.4 est Mon
mode: rew
ring brackets: 4, 4, 4

>user dir_dir>Demo>OFOWWi1de>newtest. list

names:
type:
1 inks to:

date link modified:

newtest.list
1 ink
user_dir_dir>Demo>OFOWWilde>sub_dir>

newtest. list
01/26/81 2139.3 est Fri

In the following example, you ask for status information about the directory named
> user_dir_dir > Demo >JWVGoethe> test

status >user_dir_dir>Demo>JWVGoethe>test

names:
type:
date used:
date modified:
branch modified:
bit count:
records used:
mode:
access class:

SYNTAX AS A COMMAND

scr {-control_arg}

test
directory
12/05/84
12/05/84
11/29/84
o
1

606.6 est Wed
606.6 est Wed
957.2 est Thu

sma
Sensitive,Research

3-926 AG92-06

FUNCTION

terminates the current COBOL run unit.

CONTROL ARGUMENTS

-retain_data. -retd
leaves the data segments associated with the programs of the run unit intact for
debugging purposes (see "Notes").

NOTES

The results of stop_cobol_run and the execution of the STOP RUN statement from
within a COBOL program are identical. Stopping the run unit consists of cleaning up
all files that have been opened during the execution of the current run unit and
ensuring that the next time a program that was a component of this run unit is
invoked its data is in its initial state.

To maintain the value of all data referenced in the run unit in its last used state, use
-retain_data.

Refer to the run_cobol command for information concerning the run unit and the
COBOL runtime environment. See also the cancel_cobol_program and
display _cobol_run_unit commands.

SYNT AX AS A COMMAND

FUNCTION

is used in conjunction with the run command to effect an abnormal termination of
the run-unit created by the run command.

NOTES

The stop_run command signals the finish ronditicn, exec!!tes the epilogue handlers, a....,Q
forces a return from the run command to its caller. It is normally called internally
by any fortran main program, or any of "call exit", "stop", or the "end" of a main
program. For a description of run units see the run command.

3-927 AG92-06

string

Name: string

SYNTAX AS A COMMAND

str i ng {STRs}

SYNTAX AS AN ACTIVE FUNCTION

[string {STRs}]

FUNCTION

returns a single character string formed by concatenating all of the strings together,
separated by single spaces. If no strings are specified, a null character string is
returned. If one or more strings are specified, any quotes in these are returned as
single quotes.

EXAMPLES

The following interactions illustrate the string command.

string He said, "Hi."
He said, Hi.
s tr i ng He sa i d, 'II'IIH i . """
He sa i d, "H i ."

The following interaction illustrates the active function.

string [string This is "food".]
This is food.

Name: strip

SYNTAX AS A COMMAND

strip path {STR}

SYNTAX AS AN ACTIVE FUNCTION

[strip path {STR}]

strip

3-928 AG92-06

strip

FUNCTION

returns the absolute pathname of the specified entry, with the last component removed
if the entryname portion has more than one component -- If an -archive-- component
pathname is specified, the components are stripped off the archive component name if
it has more than one component

ARGUMENTS

path

SIR

is the pathname from which the trailing name component is removed.

is the character string to be stripped. If SIR is not specified, the last component
is removed. If SIR is specified, the last components are removed only if they
match SIR and SIR does not equal path.

NOTES

Since the pathname is returned in quotes, the command processor treats it as a single
argument regardless of special characters in the name.

EXAMPLES

Assume the working directory is >udd>Proj>Myname.

strip IIfoo bar.compin ll compin
>udd>Proj>Myname>roo bar

strip start_up.ec.old
>udd>Proj>Myname>start_up.ec

strip start_up.ec.old ec.old
>udd>Proj>Myname>start_up

strip start_up.ec.old xyz
>udd>Proj>Myname>start_up.ec.old

strip >udd>Multics>Library>Source>bound_command_demos_.s::program.pll
>udd>Multics>Library>Source>bound_command_demos_os::program

strip

3-929 AG92-()6

strip_component strip_component

Name: strip_component, spc

SYNTAX AS A COMMAND

spc path {STR}

SYNTAX AS AN ACTIVE FUNCTION

[spc path {STR}]

FUNCTION

returns the archive component name portion of the absolute pathname of the specified
entry with the last component removed. If an archive component pathname is not
supplied, then this is equivalent to strip_entry.

ARGUMENTS

path
is the pathname from which the trailing name component is removed.

STR
is the character string to be stripped. If STR is not specified, the last component
of the entryname portion of path is removed. If STR is .specified, the last
components are removed only if they match STR and STR does not equal path.

NOTES

Since the pathname is returned in quotes, the command processor treats it as a single
argument regardless of special characters in the name.

EXAMPLES

spc >udd>Proj>Myname>start_up.ec.old ec.old
start_up

spc >udd>Multics>Library>Source>bound_command_demos_.s::program.pll
program

3-930 AG92-Q6

Name: strip_entry, spe

SYNTAX AS A COMMAND

spe path {STR}

SYNTAX AS AN ACTIVE FUNCTION

[spe path {STR}]

FUNCTION

returns the entryname portion of the specified pathname with the last ·component name
removed. if the entryname portion has more than one component.

ARGUMENTS

path
is the pathname from which the trailing name component is removed.

STR
is the character string to be stripped. If STR is not specified. the last component
of the entryname portion of path is removed. If STR is specified. the last
components are removed only if they match STR and STR does not equal path.

NOTES

Since the pathname is returned in quotes, the command processor treats it as a single
argument regardless of special characters in the name.

EXAMPLES

spe start_up.ec.old
start_up.ec

spe [hd]>start_up.ec.old ec.old
start_up

spe >udd>Multics>Library>Source>bound_command_demos_.s::program.pll
bound_command_demos_.s

(The ".s" is not stripped because the actual entryname
"bound_command_demos_os.archive".)

3-931

is

AG92-()6

substitute_arguments substitute_arguments

11/86

Name: substitute_arguments, sbag

SYNTAX AS A COMMAND

sbag {-control~args} {control_string {args}}

SYNTAX AS AN ACTIVE FUNCTION

[sbag control_string {args}]

FUNCTION

substitutes arguments into a control string and prints the result on user_output. As an
active function, the result is returned.

ARGUMENTS

con trol_string

args

is a character string that can contain substitution constructs (see "List of
Substitutions" below).

are zero or more character string arguments. Any argument supplied but not
referenced by an argument substitution designator is ignored.

CONTROL ARGUMENTS

If you give control arguments with no control string. subsequent sbag invocations
in the process are affected; with a control string and its arguments. subsequent
sbag invocations are not affected. Give the control arguments first. (See "Notes
on modes" below.)

-brief, -bf
does not print the expanded control string. (Default)

-control_string, -cs
permits a control string to look like a control argument.

-long. -lg
prints the expanded control string on error_output before it is printed or
returned.

LIST OF SUBSTITUTIONS

The following expansion designators appearing in the control string are replaced by
their expansion value, as described below. Any other use of the ampersand (&)
produces an error.

3-932 AG92-06A

substitute_arguments substitute_arguments

11/86

&0, &1, ... &9
expands to the zeroth through ninth arguments. &0 is the control string, &1 is
the first argument following the control string. and so on. If the corresponding
argument is --ri1Issing~ the --designator--expands --toi null strtng.-

&(0), &(1), ...
expands to any argument, including arguments after the ninth. Use parenthesis
when the argument number is two or more digits. If the corresponding argument
is missing. the designator expands to a null string.

&qO, ... &q9. &q(O). &q(1) •...
expands to the corresponding argument following the control string. Quotes within
the argument are doubled. according to the quote depth of the surrounding
context within the control string (see "Notes on Quote Doubling" below).

&rO •... &r9. &r(O), &r(1) •...
expands to the corresponding argument following the control string, enclosed in an
added layer of quotes with internal quotes with the argument doubled accordingly
(see "Notes on Requoting" below). This designator keeps the argument as a single
unit after one layer of quote stripping by the command processor.

&f1, ... &f9, &f(1)
expands to the Nth through last arguments following the control string. with
arguments separated by one space. If N is greater than &n, expands to a null
string.

&qf1 •... &qf9, &qf(1) •...
expands to the Nth through last arguments following the control string. with
quotes doubled within arguments, and arguments separated by one space. If N is
greater than &n, expands to a null string.

&rf1 &rf9. &rf(1)

&n

expands to the Nth through last arguments following the control string, with each
argument individually requoted. and arguments separated by one space. If N is
greater than &n. expands to a null string.

expands to the number of arguments you give following the control string.

&f&n. &qf&n. &rf&n
expands to the last argument following the control string. with quotes doubled
(&qf&n) or with requoting (&rf&n).

&control_string
expands to the control string (without expansions), with quotes doubled. It is
equivalent to &qO.

3-933 AG92-Q6A

substitute_arguments substitute_argumen ts

11/86

&!

&&

expands to a unique name. Each use of &! is replaced by a 15-character
identifier. Every use within a single invocation is replaced by the same string, but
the string is different for every invocation of exs.

expands to a single ampersand, to allow ampersands to be literally inserted into
the expanded control string.

NOTES

The substitute_arguments active function is similar to the do active function. The do
command is an older interface that acts like exs as a command and like sbag as an
active function.

NOTES ON MODES

This command has a long/brief mode. This mode is kept in internal static storage and
is thus remembered from one invocation of sbag to the next in a single process. Set
the mode for the life of the process by invoking sbag with control arguments and no
control string; set the modes for a single invocation by giving control arguments, a
control string, and its arguments.

The modes of the sbag command are separate from the modes of the do and
execute_string commands, although they provide similar functions.

NOTES ON QUOTE DOUBLING

Each parameter designator to be expanded is found nested a certain level deep in
quotes. If it is found to be outside quotes, its quote level is zero; if found between a
single pair of quotes, its quote level is one; and so on. If an "&qtt construct is found
nested to quote-level L, then, as the argument is substituted into the expanded control
string, each quote character found in the argument is replaced by 2**L quote
characters during insertion. This permits the quote character to survive the quote-stripping
action to which the command processor subsequently subjects the expanded control
string. If the "&q" construct is not between quotes. or if the corresponding argument
contains no quotes, quote doubling has no effect.

NOTES ON REQUOTING

If an "&r" construct is found. the substituted argument is placed between an
additional level of quotes before having its quotes dOUbled. For example, if &r1 is
found nested to quote level L, 2**L quotes are inserted into the expanded control
string; then, the first argument is substituted, with each of its quotes replaced by
2**(L+1) quotes; and. finally, 2**L more quotes are placed following it. If you give
no argument, nothing is placed in the expanded control string; so, you can distinguish
between arguments that are not supplied and arguments that are supplied but are nUll.
If you give an argument, the expansion of an "&r" construct is identical to the
expansion of an "&q" construct surrounded by an extra level of quotes.

3-934 AG92-06A

substr

11/86

Name: substr

SYNTAX AS A COMMAND

substr STR J {N}

SYNTAX AS AN ACTIVE FUNCTION

[substr STR J {N}]

FUNCTION

returns the portion of STR starting with the character in position J and continuing for
N characters .(where J and N are decimal integers; J must be greater than zero and N
must be greater than or equal to zero). If you omit N, the remainder of STR is
returned. If J is greater than the length of STR, the null string is returned; if N is
greater than the remainder of STR. the remainder is returned.

EXAMPLES

The following interaction illustrates the substr active function:

string [substr programmers 4 4]
gram

string [substr trounce 3]
ounce

Name: suffix

SYNTAX AS A COMMAND

suffix path

SYNTAX AS AN ACTIVE FUNCTION

[suffix path]

~I I.'''''' ~ ""',.,
rulVl,/ IV/V

returns the last component of the entrynarne--or archive component name, if you
supply an archive component pathname--portion of the specified segment. If that
entrynarne has only one component. the null string is returned.

suffix

3-935 AG92-o6A

suffix

11/86

ARGUMENTS

path
is the path~ame from which the trailing name component is removed.

NOTES

Since the pathname is returned in quotes, the command processor treats it as a single
argument regardless of special characters in the name.

EXAMPLES

suffix >udd>Proj>Myname>start_up.ec
ec

suffix >udd>Mu1tics>Library>Source>bound_command_demos_.s::program.p11
p 11

Name: switch_off, swf

SYNTAX AS A COMMAND

swf keyword paths {-contro1_args}

FUNCTION

turns off a specified switch for one or more entries--directory. segment. multisegment
file (MSF). data management (DM) file, and extended entry. For an MSF, the switch
of the MSF directory (when possible) and those of all the components are turned off.

ARGUMENTS

keyword
specifies the name of a switch (see "List of Keywords" below).

paths
are the pathnames of entries for which it is possible to set the specified switch.
You can use the star convention. which includes links only if you give -chase.
You can specify by "-name STR" a pathname that looks like a control argument
or contains starname special characters not meant to be matched.

CONTROL ARGUMENTS

-chase
includes links and chases them when you use the star convention.

3-936 AG92-06A

switch off switch off

11/87

-interpret_as_extended_entry, -inaee
interprets the selected entry as an extended entry type.

-interpret_as_standard_entry, -inase
interprets the selected entry as a standard entry type.

-name STR. -nm SrR
specifies a pathname that looks like a control argument or contains starname special
characters not meant to be matched.

-no_chase
does not include links when you use the star convention. (Default)

LIST OF KEYWORDS

copy_switch, csw
if ON, allows processes lacking write access to modify a copy of the segment in the process
directory. (Segments)

complete_ volume_dump_switch, cvds
if ON, the entry is dumped during a complete volume dump of the physical volume on which
it resides.

damaged_switch, dsw
if ON, the segment is assumed to have been damaged by a device error or system
crash.

incremental_ volume_dump_switch, ivds
if ON, the entry is dumped during an incremental dump cycle of the volume dumper.

perprocess_static_switch, ppsw
if ON, the segment's internal static storage is not initialized when a run unit is created.
(Object segment)

safety_switch, ssw
if ON, the delete command and delete_ subroutine query you before deleting the entry.

synchronized_switch
if ON, writes out to disk the segment's pages only after corresponding pages in an associated
before journal are written out. Only authorized users can set this switch. (Segments)

ACCESS REQUIRED

You require modify permission on the parent directory.

3-937 AG92-06B

system

department
is the computer center department name.

ds_company
is the company name. with the characters of the name double spaced.

ds_department
is the computer center department name. with the characters of the name double
spaced.

installation_id
is the installation identification.

last_down_reason
is the reason for the last system service interruption, if known. The reason can
be:

shutdown
crash
N

normal system shutdown
system crash (no number assigned)
number of system crash

max rate structure_number
returns the largest valid rate structure number. If it is zero. there are no rate
structures defined at. this site other than the default one in installation_parms.

max_units
is the current maximum number of load units. in the form "nnn.n".

max_users
is the current maximum number of users.

n_units
is the current number of logged-in load units including daemon and absentee, in
the form "nnn.n".

n_users
is the current number of logged-in users including daemon and absentee.

next_shift
is the next shift number.

rate_structure_name . frs_number}
returns the name of the rate structure corresponding to rs_number. If you give
no number, the names of all rate structures defined at the site are returned in
ascending order by rate structure number. separated by blanks, in a single string.

rate_structure_number irs_name}
returns the number corresponding to rs_name.

reason_down
is the reason for next shutdown. if specified by the operator.

system

AG92-06

switch on switch on

11/87

LIST OF KEYWORDS

copy_switch. csw
if ON. allows processes lacking write access to modify a copy of the segment in the process
directory. (Segments)

complete_ vOlume_dump_switch. cvds
if ON. the entry is dumped during a complete volume dump of the physical volume on which
it resides.

damaged_switch. dsw
if ON. the segment is assumed to have been damaged by a device error or system
crash.

incremental_ volume_dump_switch. ivds
if ON. the entry is dumped during an incremental dump cycle of the volume dumper.

perprocess_static_switch. ppsw
if ON. the segment's internal static storage is not initialized when a run unit is created.
(Object segment)

saf ety _switch, ssw
if ON. the delete command and delete_ subroutine query you before deleting the entry.

synchronized_switch
if ON. writes out to disk the segment's pages only after corresponding pages in an associated
before journal are written out. Only authorized users can set this switch. (Segments)

ACCESS REQUIRED

You require modify permission on the parent directory.

NOTES

The keywords can also include switches defined for particular extended entry types (see
describe_entry _type).

3-939 AG92-06B

system_type

&if [equal [system_type] [system_type 6180]] &then logout -brief

Name: tape_archive, ta

SYNTAX AS A COMMAND

ta key table_path {args}

FUNCTION

performs a variety of operations to create and maintain a set of files on magnetic
tape.

ARGUMENTS

key
is one of the key functions described below.

table_path

args

is the pathname of a segment created and maintained by tape_archive to serve as
a table of contents for the archive. If the table segment does not exist, it is
created by the append operation or the direct interactive mode.

are additional arguments or control arguments as required by the particular key
chosen (see below).

LIST OF EXTRACT OPERATIONS

x

xd

Usage: ta x table_path {components} {-control_arg}

extracts from the archive those components named by the path arguments, placing
them in segments in the storage system. The star convention is allowed for
components. The directory where you place a segment is the directory portion of
the component argument. The ACL, names, and other settable segment attributes
that were in effect when you archived the component are placed onto the new
segment. If a segment of the same name already exists, it observes the duplicate
name convention like that of the copy command. If you supply no component
names, all components are extracted and placed in your working directory.

Usage: ta xd table_path {components} {-control_arg}

extracts and deletes; operates like x, but deletes the component from the archive
if the extraction is successful.

3-940 AG92-06

system

11/86

LIST OF KEYS

all
prints all the information available in alphabetical order sorted by keyword name.
You can't use it in the active function.

company
is the company name.

date_time_Iast_down
is the date and time that service was last interrupted by shutdown or crash.

date_time_Iast_up
is the date and time that the system was brought up.

date_time_next_down
is the date and time that service will next be shut down if specified by the
operator.

date_time_next_up
is the date and time that the system will next be brought up if specified by the
operator.

date_time_shift_change
is the date and time at which the current shift number will change to next_shift.

-
default_absentee_queue

is the def aul t a bsen tee queue.

department
is the computer center department name.

ds_company
is the company name, with the characters of the name double spaced.

ds_department
is the computer center department name, with the characters of the name double
spaced.

installation_id
is the installation identification.

last_down_reason
is the reason for the last system service interruption if known. The reason can
be:

shutdown
crash
N

normal system shutdown
system crash (no number assigned)
number of system crash

system

3-940.1 AG92-06A

system

11/86

max_rate_structure_num ber
returns the largest valid rate structure number. If it is zero, there are no rate
structures defined at this site other than the default one in installation_parms.

max_units
is the current maximum nUlnber of load units, 1n the form "nnn.n".

max_users
is the current maximum number of users.

n_units
is the current number of logged-in load units including daemon and absentee, in
the form "nnn.n".

n_users
is the current number of logged-in users including daemon and absentee.

next_shift
is the next shift number.

rate_structure_name {rs_number}
returns the name of the rate structure corresponding to rs_number. If you give
no number, the names of all rate structures defined at the site are returned in
ascending order by rate structure number, separated by blanks, in a single string.

rate_structure_number frs_name}
returns the number corresponding to rs_name.

reason_down
is the reason for next shutdown if specified by the operator.

session_ type

shift

sysid

returns the type of Multics session currently in force. This will be ninit" (during
answering service initialization), "special" (during special session), "normal" (during
normal service), and "shut" (during shutdown).

is the current shift number.

is the system identifier as written on the hardcore system tape currently running.
Normally this is the Multics release number (e.g., MR10.2). This information is
different from the one obtained with version_ide

trusted_path_login
returns "true" if logout -hd and new _proc -auth are disabled, "false" otherwise.

system

3-940.2 AG92-o6A

system

11/86

system_type

version_id
is the version identifier as written on the MULT tape that was used to bring up
the current system. You might set this to "37-19.3", which is _an internal version
nUmber. This information is different from the one obtained with sysid.

Name: system_type

SYNTAX AS A COMMAND

system_type {SystemName}

SYNTAX AS AN ACTIVE FUNCTION

[system_type {SystemName}]

FUNCTION

prints the canonical system type name either for the running system or for a
user-specified system type. As an active function, it returns the system type name,
rather than printing it

ARGUMENTS

SystemName
is a system type name acceptable to the system_type_ subroutine. Its canonical
name is printed. If you supply no SystemName, the canonical name for the
system type of the running system is printed.

NOTES

To avoid embedding knowledge of the canonical names for system types in exec_corns,
always use the active function first to canonicalize any name being compared with.
For instance, in this example, system_type is used to compare the canonical name for
"6180" against the type of the running system:

&if [equal [system_type] [system_type 6180]] &then logout -brief

3-940.3 AG92-D6A

11/86

Name: tape_archive, ta

SYNT AX AS A COMMAND

ta key table_path {args}

FUNCTION

performs a variety of operations to create and maintain a set of files on magnetic
tape.

ARGUMENTS

key
is one of the operations described below.

table_path

args

is the pathname of a segment created and maintained by tape_archive to serve as
a table of contents for the archive. If the table segment does not exist, it is
created by the append operation or the direct interactive mode.

are additional arguments or control arguments as required by the particular key
chosen.

LIST OF EXTRACT OPERATIONS

x

xd

Usage: ta x table_path {components} {-control_arg}

extracts from the archive those components named by the path arguments, placing
them in segments in the storage system. You can use the star convention for
components. The directory where you place a segment is the directory portion of
the component argument. The ACL, names, and other settable segment attributes
that were in effect when you archived the component are placed onto the new
segment. If a segment of the same name already exists, it observes the duplicate
name convention as that of the copy command. If you supply no component
names, an components are extracted and placed in your working directory.

Usage: ta xd table_path {components} {-control_arg}

extracts and deletes; operates like x, but deletes the component from the archive
if the extraction is successful.

3-940.4 AG92-06A

xdf

xf

Usage: ta xdf table_path {components} {-control_arg}

extracts forcibly and deletes; operates like xd. but forcibly deletes any existing
segments in the storage system if all their names conflict with names of
components being extracted. This request also disregards the safety switch when
deleting components from the archive.

Usage: ta xf table_path {components} {-control_arg}

extracts forcibly; operates like x. but forcibly deletes existing segments in the
storage system if all their names conflict with names of components being
extracted.

The extract operation has this control argument:

-single_name. -snm
places the name of the component. as it appears in the table, as the only
name on the newly. created file in the storage system. (Default place all the
names)

LIST OF APPEND OPERATIONS

a

ad

adf

Usage: ta a table_path {paths} {-control_args}

appends named files to the archive. The star convention is allowed for paths.
The files that are appended to the archive are not otherwise affected. If the
named file is already in the archive. a diagnostic is issued and the component is
not replaced. At least one file must be explicitly named by the path arguments.
If the tape archive does not exist. it is created.

Usage: ta ad table_path {paths} {=control_args}

appends and deletes; operates like a. but then deletes each file that was appended
to the archive. Deletion takes place after the tape is processed and the file has
been successfully appended to the tape. If the safety switch is on for any named
file, you are queried whether the file should be deleted.

Usage: ta adf table_path {paths} {-control_args}

appends and deletes forcibly; operates like ad, but the safety switch is disregarded.

3-941 AG92-06

The append operation has these control arguments:

-mode ascii
-mode binary
-mode ebcdic

specifies that the file is to be replaced on or appended to the tape arcntve
using the supplied encoding mode. If you give the ascii or ebcdic encoding
mode, the file is verified to ensure that it can be encoded in the specified
mode without loss of information; if it can't, a warning message is printed
and the encoding mode for that file is changed to binary. If you don't give
explicit mode specifications, the file is encoded in the mode determined by
the criteria described under "Notes on Default Encoding Modes" below.

-single_name, -snm
records the name of the component, as specified in the command line, as the
only name for the file on the volume set.

LIST OF REPLACE OPERATIONS

r

rd

rdf

Usage: ta r table_path {paths} {-control_args}

replaces components in or adds components to the ta}'e archive. The star
convention is allowed for paths. If you name no files in the command line, all
files of the archive for which files by the same name are found in your working
directory are replaced. If a· file is explicitly named 3.1id does not already exist in
the tape archive, it is appended and an advisory is printed. If the tape archive
does "not exist, then it is created.

Usage: ta rd table_path {paths} {-control_args}

replaces and deletes; operates like r, but deletes each file that was replaced in or
appended to the archive. Deletion takes place after the tape is processed and the
file has been successfully replaced on or appended to the tape. If the safety
switch is on for any named file, you are queried whether the file should be
deleted.

Usage: ta rdf table_path {paths} {-control_args}

replaces and deletes forcibly; operates like rd, but the safety switch is disregarded.
The replace operation has these control arguments:

3-942 AG92-06

-mode ascii
-mode binary
-mode ebcdic

specifies that the file is to be replaced on or appended to the tape archive
using the supplied encoding mode. If you give the ascii or ebcdic encoding
mode, the file is verified to ensure that it can be encoded in the specified
mode without loss of information; if it can't, a warning message is printed
and the encoding mode for that file is changed to binary. If you don't give
explicit mode specifications, the file is encoded in the mode determined by
the criteria described under "Notes on Default Encoding Modes" below.

-single_name, -snm
records the name of the component, as specified in the command line, as the
only name for the file on the volume set.

LIST OF UPDATE OPERATIONS

u

ud

udf

Usage: ta u table_path {paths}

operates like r, but replaces only those components for which the corresponding
file has a date-time-modified later than the date-time associated with the
component in the archive. If the file is not found in the archive, it is not
added.

Usage: ta ud table_path {paths}

updates and deletes; operates like u, but deletes each file that was updated in the
archive. Deletion takes place after the tape is processed and the file has been
successfully updated on the tape. If the safety switch is on for any named file,
you are queried whether the file should be deleted.

Usage: ta udf table_path {paths}

updates and deletes forcibly; operates like ud, but the safety switch is disregarded.

LIST OF DELETE OPERATIONS

d

df

usage: ta d tabie_paLn componenLS

deletes named components from the archive. The star convention is allowed for
components.

Usage: ta df table_path components

deletes forcibly; operates like d, but the safety switch is disregarded.

3-943 AG92-()6

LIST OF CANCEL OPERATIONS

cancel
Usage: ta cancel table_path {components}

cancels any pending requests for the components named. The star convention is
allowed for componen ts. This operation removes any requests scheduled to be
performed on the named components. If you name no components. you are
queried whether all pending requests are to be canceled. Use cancel to reinstate
dead components (components that have been logically deleted or replaced from a
tape archive but still exist on the volume set).

LIST OF TABLE OF CONTENTS OPERATIONS

t
Usage: ta t table_path {components} {-control_args}

prints table of contents and associated information for each named component of
the archive (including files scheduled to be placed into the archive). as well as
information about the archive itself. The star convention is allowed for
components.

The table-of -contents operation has these control arguments:

-all, -a
prints dead components (see the cancel operation).

-brief, -bf
prints the component name only.

-header. -he
prints the header information.

-long, -lg
prints all the information shown below, in the absence of -header.

-no_header, -nhe
suppresses the header information, even if you select -iong.

-pending
prints only those components for which requests are pending.

If you give no control arguments, a short header, pending operations. for the
named components, and the component names are printed.

The information printed in the table of contents for each component includes

1. Any type of request pending for the component

2. The en tryname of the cornponen t

3-944 AG92-06

11/86

3. The filename of the file on the tape

4. A one-letter indication of the recording mode of the file (b for binary, a for
ascii. and e for ebcdic)

5. The length of the file in storage system records

6. The bit count author of the file

7. The date the file was archived to tape

8. The date the file was last modified while still in the storage system previous to
its archival

9. The date the file was dumped by the Multics backup facility

10. The pathname of the directory in which the file exists or is to be created if a
request is pending.

LIST OF PROCESSING OPERATIONS

go
Usage:ta go table_path {-control_args}

performs the actual tape mounting and processing of the queued file transfer
requests. First, the current volume set is mounted. If the current volume set is
empty, ta asks you which volume is to be used. This volume then becomes the
current volume set and is remembered in the table. Those components scheduled
for extraction are processed. Next, additions and replacements are performed.
When all tape processing has been completed, requests to delete files in the
storage system that have been appended or replaced are processed. Finally, if the
processing involves writing to tape. the table is modified. to reflect the new state
of the tape archive. and appended to the tape.

The go operation has these control arguments:

-long, -lg
prints a message for all file searches, extractions, or appendings as they are
perfomed on the volume set.

-retain all
specifies that the 9volum~ set is to remain mOunted after processing is
complete. In cases where several successive tape-processing operations are
planned. -retain speeds up the processing of requests by reducing the physical
handling of the tapes. The volume set remains mounted until you invoke go
with -retain none.

-retain none
reverts the effect of -retain all. (Default)

3-945 AG92-06A

11/86

LIST OF COMPACTION OPERATIONS

compact
Usage: ta compact table_path

schedules the tape archive for compaction. The compaction process copies the
active components on the current volume set onto the alternate volume set. This
process removes cumulative tape waste attributable to inactive tape files (components
that have been' logically deleted. updated. or replaced. but never physically
removed). Having the same volume for both primary and alternate volume sets is
not allowed. You can process other file transfer requests at the same time that
the archive is being compacted. After the compaction operation. the alternate
volume set becomes the current volume set and vice versa.

LIST OF PARAMETER ALTERATION OPERATIONS

alter
Usage: ta alter table_path alter_spec

changes global attributes of the tape archive that can be set by you. The specific
attribute modified depends on the alter_spec arguments. which can be:

auto_limit floatnum
automatically schedules the tape archive for compaction at the next mounting
whenever the number of wasted tape records on the volume set exceed a
certain fraction of the total tape records used. When compaction is
automatically scheduled in this manner, an advisory message is printed. The
floatnum argument must be between 0.0 and 1.0. (Initial default: 1.0; never
automatically compact)

compaction off
unschedules any pending compaction of the tape archive.

density N {-alternate}
selects the recording density (BPI) to be used on the volume set. To select a
density other than the default. enter alter for the primary volume set prior
to any tape operations. To change the density of an existing volume set. give
~alternate. This schedules a compaction of the primary volume set onto the
alternate volume set at the selected density. (Initial defaul: 1600)

volume -number N new_volume_spec {-alternate}
makes the volume with label new_volume_spec supersede the Nth volume in
the primary volume set (the alternate volume set if you give -alternate.) If
new_volume_spec is the null string. the volume is deleted. If N is greater
than the number of volumes currently contained in the volume set, the
volume is appended to the volume set You can't have the same volume for
both primary and alternate volume sets.

3-946 AG92-06A

11/86

volume old_volume_spec new_volume_spec {-alternate}
makes the volume (reel) with label new_volume_spec supersede the volume
old_volume_spec. If old_volume_spec is the null string and you supply
-alternate, new _volume_spec is appended to the alternate volume set; otherwIse
it is appended to the primary volume set If new_volume_spec is the null
string, old_volume_spec is deleted from the appropriate volume set. You can't
have the same volume for both primary and alternate volume sets.

volume_type STR
selects the tape standard to be used, where STR is ansi or ibm. You can't
change this parameter unless the volume set is empty. (Initial default ansi)

warnin~limit floatnum
prints an advisory message whenever the number of wasted tape records on
the volume set reaches or exceeds a certain fraction of the total tape records.
The floatnum argument must be from 0.0 to 1.0. (Initial default: 0.5)

LIST OF LOAD TABLE OPERATIONS

load_table
Usage: ta load_table {table_path} {-control_args} {volume_ids}

loads the copy of the online table kept on a volume set into the segment
specified by table_path. If the segment already exists. you are asked whether it
should be overwritten. If you don't give the tape volume name in load_table, ta
queries you for a volume name. There is no way to specify the density or other
characteristics of the volume, or multiple volume names. when responding to the
query; use, therefore, the full load_table syntax unless the tape was recorded at
1600 BPI on a 9-track tape drive using the ANSI standard and ASCII recording
mode.

Control arguments for this operation are:

-density N, -den N
specifies t.lte density of the tape volume 10 be N. (Default 1600)

-retain all
specifies that the volume set is to remain mounted after processing is
complete. In cases where several successive tape processing operations are
planned, -retain speeds up processing of requests by reducing the handling of
the tapes. The volume set remains mounted until you invoke the processing
operation (go) with -retain none.

-volume_type STR, -vt STR I
specifies the per-format module originally used by mtape_ to generate the
tapes. Acceptable volume tapes are ansi and ibm. (Default: ansi)

3-947 AG92-()6A

11/86

LIST OF RECONSTRUCT TABLE OPERATIONS

reconstruct
Usage: ta reconstruct table_path {volume_ids} {-control_args}

scans the volume set and constructs a valid table into the segment specified by
table_path. If the segment already exists, you are asked whether it should be
overwritten. If you don't give the tape volume name in the command line, ta
queries you for a volume name. There is no way to specify the density or other
characteristics of the volume, or multiple volume names, when responding to the
query; use, therefore, the full reconstruct syntax unless the tape was recorded at
1600 BPI on a 9-track tape drive using the ANSI standard and ASCII recording
mode. Examine the table that is reconstructed for accuracy, as deleted or replaced
files on the volume set may be also reconstructed.

Control arguments for this operation are:

-density N, -den N
specifies the density of the tape volume to be N. (Default: 1600)

-force, -fc
forces the overwriting of an already-existing tape_archive table. (Default: to
query for overwriting)

-long, -lg
displays on the terminal the names of the files it has added to the table and
the tables that it has found on the volume set and processed. (Default: not
to display anything except error messages)

-retain all
specifies that the volume set is to remain mounted after processing is
complete. In cases where several successive tape processing operations are
planned, -retain speeds up processing of requests by reducing the handling of
the tapes. The volume set remains mounted until you invoke the processing
operation (go) with -retain none.

-volume_type STR, -vt STR
specifies the per-format module originally used by mtape_ to generate the
tapes. Acceptable volume tapes are ansi and ibm. (Default: ansi)

LIST OF INTERACTIVE MODES

direct
Usage: ta direct table_path {-control_arg}

allows you to direct the actions of ta using an interactive mode in which each
line typed is interpreted as a key followed by the arguments (except for
table_path) accepted by that key. This mode of operation is exited by typing
"go". If any requests are outstanding when the mode is exited, the tapes are
automatically mounted and the requests performed except as noted below.

3-948 AG92-06A

11/86

The direct operation has this control argument:

-retain all
specifies that the volume set is not to be dismounted when the "go" request
is complete. If you give -retain, the "go" request does not terminate the
command invocation, but returns you to the interactive mode of ta so that
you can enter more requests. Use the "quit" request to exit this mode and
dismount the volume sets.

In addition, the following special commands are accepted in this mode of operation:

causes ta to identify itself .

• • {command_l i ne}

go

quit

passes the specified command line to the command processor.

specifies that all preceding requests are to be recorded into the table and that
the volume set is to be mounted and processed. If you haven't set the
volume name with the alter request, the go request queries you for a volume
name. All other infofmation about the tape volume set must have been
previously set by alter requests; otherwise the defaults apply. Use a 1600 BPI
minimum (or 6250 if available) for tape archives unless they are specifically
intended for interchange with non-Multics systems. To set the first volume
name, use a request of the following form:

tape_arch i ve alter foo vo 1 ume 1111 VOLUME_NAME
tape_archive alter foo density 1600

You can't alter the tape archive until at least one component has been added.
Alter the volume and density after adding a component, but before using the
go request for the first time.

exits the interactive mode without performing the actual processing of the
requests. Unless preceded by save, all requests made in this invocation of ta
are discarded. If unsaved requests exist, you are asked to confirm the
command.

permanently records in the table all requests made during this invocation of
the commando

While in the interactive mode, all requests are maintained in a temporary copy of the
online table, allowing you to abort processing if desired without recording any requests
in the actual online table.

All keys are accepted in this mode of operation except for load_table.

3-949 AG92-06A

11/86

NOTES

This command provides you with the ability to append components to the archive,
replace its components with new versions. extract and delete its components, list its
contents, and re-create the online table in the event of a catastrophe or for file
transf erring.

You can use a tape archive to temporarily hold files that will be needed at some
future time. but that meanwhile take up large amounts of expensive storage space.
Additionally you can use tape archives to transfer files between Multics systems and,
in a limited fashion, from Multics to other operating systems.

A tape archive consists of one or more reels of tape. known as the "volume set," on
which files are stored in ANSI or IBM standard tape format, one archive per volume.
The constituent files that compose the tape archive are called components of the
archive. Associated with each tape archive is a Multics segment known as the table.
This segment is created and maintained by ta and contains information about each
component in the archive.

You can request to move components between the tape and the storage system by
invoking ta before any reels are actually mounted and processed. Once you have
specified all desired transfer requests, invoke ta to mount and process the tape.

An interactive mode of operation is supplied that allows you to specify multiple
requests to a single invocation of the command and that automatically performs the
requests after you have satisfactorily entered them all.

NOTES ON DEFAULT ENCODING MODES

If you give no particular encoding mode for files being appended to, or replaced in,
the archive. the following criteria are applied to determine the most appropriate mode:
When performing file replacement, the default encoding mode remains unchanged if it
is determined that the file has not been altered in any way that precludes encoding it
in the same mode; otherwise a diagnostic is printed, and the replacement is performed
in binary mode.

NOTES ON TAPE FILE NAMING CONVENTIONS

Tape files of a ta volume set follow certain conventions regarding ordering and
naming.

3-950 AG92-o6A

11/86

Each user file is preceded by an attribute file. containing the information necessary to
re-create the file faithfully in the storage system (e.g.. names, ACL). Attribute files
are named "ATIRIBUTEFILENNNN" for ANSI tapes, and "ATIRIBUT.FILENNNN"
for IBM· tapes. where NNNN is the physical file number (by order of occurrence on
the tape) of the attribute file, e.g., "ATIRIBUTEFILEOO23".

Each user file is named with a unique name constructed of all or part of the Multics
entryname of the file, translated to uppercase, one or more reserved characters. and
the physical file number of the file. For ANSI tapes, the reserved character is a slash
(I); for IBM tapes, the commercial-at sign (@). The Multics file name is truncated
or padded with reserved characters to 12 characters. In addition. characters appearing
in the Multics file name that are not allowed as part of a tape file name under the
applicable standard are translated to the reserved character. Due to IBM file-naming
restrictions. the ninth character of all tape file names on IBM tapes is translated to a
period. and if the character following the period is not alphabetic. that character is
translated to an X.

For example. on an ANSI tape the name of the tape file containing the Multics file
named "alpha" might be "ALPHA 1 / 1 1 1 1 1 10024", and the name of the tape file
containing the Multics file named "source. archive" might be "SOURCE.ARCHI/0037".
On an IBM tape these files might appear as "ALPHA@@@.X@@@0024" and
"SOURCE@A.CHI@0037". respectively.

Copies of the online table describing the tape are named "ONLINE-TABLE-NNNN"
for ANSI tapes and "ONLINE#T.BLE#NNNN" for IBM tapes, where NNNN is a
number representing the serial number of the online tables on this volume sel This
number starts from 1 and increases by one each time a new table is written to the
tape.

3-950.1 AG92-06A

This page in ten tionally left blank.

11/86 AG92-06A

SYNTAX AS A COMMAND

tape_in path {-control_args}

FUNCTION

allows the user to transfer files between magnetic tape and the storage system. To
accomplish a file transfer, the tape_in command accesses either the tape_ansi_ or the
tape_ibm_ I/O module for the tape interface, and the vfile_ I/O module for the
storage system interface. Unstructured format storage system files (for stream I/O)
and sequential format storage system files (for record I/O) may be specified; 9-track
ANSI standard labeled tapes, 9-track IBM standard labeled tapes, and any 9-track
unlabeled tape structured according to OS standards may be read.

ARGUMENTS

path
is the pathname of the control file governing the file transfer. If path does not
end with the tel suffix, it is assumed.

CONTROL ARGUMENTS

-severityN, -svN
causes the tape_in compiler's error messages with severity less than N (where N is
0, 1, 2, 3, or 4) not to be written into the error_output 1/0 switch~ The default
value for N is O. See "Error Diagnostics" below f or further inf ormation on error
reporting.

-check, -ck
performs only semantic checking on the Tape Control Language (TCL) control file.
No tapes are mounted if this control argument is specified.

-ring
mounts volumes of the volume-set with write permit rings.

BASIC TCL CONTROL FILE

The control file that governs file transfer is actually a program, written by the user,
in the Tape Control Language (TeL). The contents of this control file describe the
file transfer(s) to take place. When the user issues the tape_in or tape_out command,
the control file named in the command line by the path argument is compiled and if
the compilation is successful, the generated code is interpreted to accomplish the
desired file transfer(s). The same control file may be used with both the tape_in
command (to read a file from tape into the storage system) and with the tape_out
command (to write a file from the storage system onto tape).

3-951 AG92-06

The TCL control file consists of a list of statements of the form:

<keyword>: <argument (s»;
or:

<keyword>;

These statements are combined to form file-groups and file-groups are combined to
form volume-groups. A TCL control file consists of one or more volume-groups.

A file-group is a list of statements that define one tape to storage system file
transfer. A file-group must begin with a File statement and must contain a path
statement In addition, it may contain one or more local statements. A file-group is
terminated by a global statement, an End statement, or another File statement

A volume-group is a series of statements that specify the file transfer(s) to be
performed between the storage system and a particular tape volume-set A volume-group
must begin with a Volume statement, contain one or more file-groups, and terminate
with an End statement In addition, a volume-group may optionally contain one or
more global statements, which apply to all the file-groups within the volume-group
that follow the global statement

All TCL control files must have at least four statements: a Volume statement, a File
statement, a path statement, and an End statement; all other TCL statements are
optional. The simplest control file has just these f.our statements. for example:

Volume:
F i 1 e:
path:
End;

012345;
F i 1 e 1 ;
>udd>Project_id>Person_id>demo;

This example control file relies on TCL control file defaults. which are listed below
under "Volume-Group Defaults." The file transfers possible with this sample control
file are two: either writing tape file Filel from storage system file demo; or writing
storage system file demo from tape file Filel.

LIST OF TCl CONTROL FILE STATEMENTS

Volume statement

Volume: <volid>;

specifies the tape volume to be used in file transfer. This statement causes a tape
volume whose volume identifier is <vo 1 i d> to be mounted on a 9-track drive. If
<vo 1 i d> contains any of the following characters. it must be enclosed in quotes.

3-952 AG92-06

1. any ASCII control character.
2. :;, or blank
3. the sequence / * or * /
4. If <\10-1 id> itSelf contains a quote character, the quote must be doubled and the

entire <vo 1 i d> string enclosed in quotes.

Some examples of Volume statements are:

Volume: 23; (mounts volume 23)
Volume: 001234; (mounts volume 001234)
Volume: XJ56; (mounts volume XJ56)
Volume: "asllll

; 56"; (mounts volume as";56)
Volume: -00451 ; (mounts volume -00451)

See the descriptions of ~e tape_ansi_ and tape_ibm_ I/O modules in the Subroutines
manual for more details on volume specifications. Also, see "Multivolume Files" below
for a discussion of multivolume volume-groups.

F i Ie statement

F i 1 e: <f i 1 e i d>;

specifies the tape file to be read or written. For output, <f i 1 e i d> must be from
one to 17 characters for ANSI labeled tapes and must be a valid DSNAME for IBM
labeled tapes. A valid DSNAME is from one to eight characters long. The first
character must be an alphabetic or national (@, S ,#) character; the remaining
characters can be any alphanumeric or national characters, a hyphen (-), or a plus
zero (12-0 punch). For input, <f i 1 e i d> may be an asterisk () for labeled tapes. if a
tape file sequence number is also specified. For output with labeled tapes, <f i 1 e j d>
may not be an asterisk. <f i 1 e i d> for IBM unlabeled tapes, which are discussed
below, must be an asterisk. The File statement marks the beginning of any local
attributes for a given tape file transfer.

path statement

path: <pathname>;

associated with every File statement must be one path statement. The path statement
specifies the pathname of the storage system file to be read or written. <pathname>
may be either a relative or absolute pathname.

£ nd statement

End;

associated with every Volume statement must be an End statement, to mark the end
of the TCL for that volume-group.

3-953 AG92-()6

LIST OF GLOBAL STATEMENTS

A global statement changes a volume-group default The Tape and the Density global
statements may appear only once in a volume-group. and must preceed all file-groups.
The Block, Expiration, Format, Mode, Record, and Storage global statements may
appear any number of times within a volume-group. These statements apply to aU
subsequent file-groups within the volume-group.

Block statement

Block: <blklen>;

specifies the tape file (maximum) physical block length. in bytes. to be used with
subsequent file-groups. The <b 1 k 1 en> specification must be a decimal integer >= 18.
For IBMSL, IBMNL, and IBMOOS formats, the maximum value is 32760 bytes. For
ANSI formats, the maximum value is 99996 bytes. WARNING: <b 1 k 1 en> greater that
2048 does not comply with the ANSI standard for tapes.

Density statement

Density: <den>;

indicates the density in which the volume is (to be) recorded. <den> must be either
800, 1600, 6250, 2, 3, or 4 (for IBM compatibility) to indicate 800, 1600 or 6250 bpi
respectively. WARNING: the use of 1600 or 6250 bpi for ANSI interchange tapes is
nonstandard. This global statement may appear only once within a volume-group or an
error is indicated.

Expiration statement

Expiration: <date>;

specifies the expiration date of files to be written (created). <da te> is a string of a
form acceptable to the convert_date_to_binary_ subroutine, for example "11/08/82".
Because overwriting a file on a tape logically truncates the file set at the point of
overwriting, the expiration date of a file must be earlier than or equal to the
expiration date of the previous file (if any) on the tape; otherwise, an error is
indicated. If an attempt is made to overwrite an unexpired file, the user is queried
for explicit permission at the time of writing, unless the -force control argument is
specified in the command line (only possible with tape_out).

3-954 AG92-06

Format statement

Format: <form>;

specifies the tape record format to be used with subsequent file-groups. <form> must
be either 11, f, fb, d, db, s, or sb for ANSI tapes (using tape_ansi_ I/O module) and
f, fb~ u, v, vs, vb, or vbs for IBM tapes (using tape_ibm_ I/O module).

Mode statement

Mode: <mode>;

specifies the tape mode and character code to be used with subsequent file-groups.
<mode> may be either ascii or ebcdic for IBM tapes (using tape_ibm_ I/O module)
and may be either ascii, ebcdic, or binary for ANSI tapes (using tape_ansi_ I/O
module). WARNING: the use of ebcdic mode or binary mode is not standard for
ANSI tapes. See "I/O Module Compatibility and Record Length Tables" below for a
description of the interaction between a given combination of format, block, and
record specification. Values must be carefully chosen to ensure desired results.

Record statement

Record: <reclen>;

specifies the tape file (maximum) logical record length, in bytes~ to be used with
subsequent file-groups. <rec 1 en> must be a decimal integer, such that
1 <= <rec 1 en> <= maximum segment size in bytes.

Storage statement

Storage: <structure>;

states the internal (logical) structure of the storage system file(s) to be specified by
subsequent file-groups. An unstructured file is referenced as a series of 9-bit bytes,
commonly called lines; a sequential file is referenced as a sequence of records, each
record being a string of 9-bit bytes. <structure> must be either unstructured or
sequential. When an unstructured file is written into the storage system from a tape
the NL character is appended as each line is written, unless the record already ends in
u NL character, in which case nothing further is appended. When an unstructured file
is written from the storage system to tape, the NL character is stripped off before
writing the tape record. If a line of an unstructured file consists of just a NL
character, it is written to tape as a zero length record. If the Storage global statement
is omitted from a control file volume-group, the assumed storage system file format is
unstructured. If a sequential file is referenced within that volume-group, the results
are undefined and an error is indicated. Processing is terminated on that file in which
the error is indicated.

3-955 AG92-D6

Tape statement

Tape: <tape-type>;

specifies the kind of tape that is processed. <tape-type> may be ibmsl for IBM
standard labeled tape, ibmnl for IBM unlabeled tape. ibmdos for IBM OOS standard
labeled tape, or ansi for ANSI standard labeled tape~ The tape label processing is
done automatically by the I/O module in use. This global statement may appear only
once within a volume-group or an error is indicated.

LIST OF LOCAL STATEMENTS

A file-group may contain one or more local statements. A local statement overrides
the volume-group defaults in effect at the time a file-group is evaluated. A local
statement has no effect outside of the file-group in which it occurs and may appear
anywhere within the file-group.

The block, expiration, format, mode, record and storage local statements operate
exactly as do their global statement counterparts, except that they affect only the
file-group in which they are contained.

generate statement

generate;

causes the entire contents of a file on an ANSI tape to be replaced while retaining
the structure of the file itself and incrementing the file generation number. The file
to be modified is identified by the File statement, or by a combination of the File
statement and the number statement

mod i fy statement

modify;

causes the entire contents of a file on an ANSI or IBM labeled tape to be replaced
while retaining the structure of the file itself. The file to be modified is identified
by the File statement, or by a combination of the File statement and the number
statement

number statement

number: <number>;

specifies the file sequence number of the file to be used in the file transfer.
<number> must be either an integer between 1 and 9999 inclusive, or the character
n*". For input with labeled tapes, <number> = is ignored unless was specified for
the <f i 1 e i d> in the File statement. (In this case an error is indicated.) For output

3-956 AG92-G6

with labeled tapes. <number> = appends the current file to the volume-set If a
tape volume has not yet been initialized. that is, if the first file to be written is the
first file_on that tape volume, <number> = -is considered a fataI-- erro-r. Until a
volume has been initialized. files cannot be appended to it In this situation, either
the number statement should be omitted or, ii used. <number> must be equal to 1.

If the control file is to be used with the tape_in command. <number> specified in a
number statement must correspond with a file on the specified tape volume-set If
both. the <f i 1 e i d> in the File statement and the <number> in the number statement
are specified in the file-group. they must identify the same tape file; otherwise an
error is indicated.

When reading unlabeled tapes. the number statement is required to identify the file to
be read. When writing unlabeled tapes, the number statement is required to locate the
tape position at which to write the file.

When the control file is to be used with the tape_out command for writing labeled
tapes, the number statement is optional. If the number statement is given in a control
file for use with the tape_out command, the file location specified in the number
statement is the location where the file is written on the tape. Otherwise, with no
number statement, the first file to be written in a volume-group is the first file
position on the tape (for labeled tapes only). Subsequent files on that volume are
appended after the first file.

rep! ace statement

replace: <fileid>;

if an existing tape file is to be replaced on an ANSI or IBM standard labeled tape
and its name is known, the file to be overwritten is identified by <f i 1 e i d> in the
replace local statement and the new file to be written is identified by <f i 1 e i d> in
the File statement. If the file identified in the replace statement does not exist. an
error is indicated.

storage_extend statement

storage_extend;

Normally when a user set~ up a file-group to transfer a !ape file to 3. st~rage :;y:;tcm
file, it is intended that a new file be created in the storage system. Should the user
want to extend an already existing file in the storage system, the storage_extend local
statement should be used in the TeL control file. If the storage system file to be
extended does not exist, an error is indicated. If the storage_extend local statement
exists in a control file used with tape_out, it is ignored.

3-957 AG92-()6

tape _extend statement

allows new data records to be appended to an eXistIng file on an ANSI or IBM
standard labeled tape without in any way altering the previous contents of the tape
file. The tape file to be extended is identified by the File statement or by the File
statement and number local statement in combination. If the tape file to be extended
does not exist on the tape, an error is indicated. Recorded in the labels of an ANSI
or IBM labeled tape file is the version number. Initially, it is zero when the file is
created. Every time a file is extended, its version number is incremented. The version
number field is two digits and is reset to zero when the one-hundredth revision is
made.

CONTROL FILE COMMENTS

Comments may be inserted anywhere within the TeL program by surrounding the
comment text with the comment delimiters. /* is the delimiter that begins a
comment, and * / is the delimiter that terminates the comment

VOLUME-GROUP DEFAULTS

Associated with a volume-group are a set of default characteristics. In the absence of
overriding global statements or local statements, these defaults apply to all file-groups
within the volume-group. If no tape-type is specified in the control file, ANSI
standard labeled tape is assumed. If, however, a tape-type is specified (using a Tape
statement), the volume-group defaults for that tape-type are in effect until overridden.

Tape-type ANSI or no Tape statement (this is the default):

1. density: 800 bpi
2. file expiration: immediate
3. storage system file format: unstructured
4. mode: ascii
5. tape file record format variable length records. blocked
6. physical block length: 2048 characters (maximum)
7. logical record length: 2048 characters (maximum)

Tape-type ibmsl, ibmnl, or ibmdos:

1. density: 1600 bpi
2. file expiration: immediate
3. storage system file format unstructured
4. mode: ebcdic
5. tape file record format variable length records, blocked
6. physical block length: 8192 characters (maximum)
7. logical record length: 8188 characters (maximum)

3-958 AG92-06

I/O MODULE COMPATIBILITY AND RECORD LENGTH TABLES

tape~ansi_

mode: asci i (default) I binary I ebcdic
block length: 18 <= B <= 99996 bytes (2048 default)

for output mode, block length must be divisible by 4
dens i ty: D = 800 (defau 1 t) I 1600 I 6250
file sequence number: 1 <= N <= 9999 or *
record length: 0 < R < 1044480
format: F = fb I f I db (default) I dis I sb I u

tape_ibm_

mode: ascii I ebcdic (default)
block length: 20 <= B <= 32760 bytes (8192 default)

for output mode, block length must be devisible by 4
dens i ty: D = 800 I 1600 (defau 1 t) I 6250
file sequence number: 1 <= N <= 9999 or *
record length: 0 <='R <= 1044480
format: F = fb I f I vb (default) v I vbs I u

Format Record length
in bytes (~)

Block length
in bytes (B)

--------------------------~--
u

f
fb
d
db
s
sb
v
vb
vs
vbs

NOTES

R is undefined

R = amr 1
R = amrl
amrl+4 <= R <= 99996
amrl+4 "<= R <= 99996
amrl <= R <= 1044480
amrl <= R <= 1044480
amrl+4 <= R <= 32756
amrl+4 <= R <= 32756
amrl <= R <= 1044480
amrl <= R <= 1044480

amrl <= B <= 99996 (tape_ansi_)
amrl <= B <= 32760 (tape_ibm_)
B = R
B must satisfy mod (B,R) = 0
B = R
B >= R
18 <= B <= 99996
18 <= B <= 99996
B = R + 4
B >= R + 4

20 <= B <= 32760
20 <= B < 32760

amrl is the actual or maximum record length of a given record format. i.e .• the actual
or maximum number of characters that can be recorded in a logical record. The value
of R is dependent on the choice of record format For ANSI tapes. B must be an
integer in the range of 18 <= B <= 999%. For IBM tapes. B must be an integer in
the range of 20 <= B <= 32760. For ANSI tapes, in order to comply . with the ANSI
standard, B must be in the range of 18 <= B <= 2048. For IBM tapes. the condition
mod(B,4) = 0 must be satisfied. The TeL record statement should not be used for
U-format file transfer.

3-959 AG92-{)6

ADDITIONAL OPTIONS AVAILABLE FOR THE Tel USER

A number of options are available to the user who wants to do more than the simple
file transf er between a tape volume-set and the storage system. These features need
not be of concern to most users, but for the user with specialized needs, these
additional options are explained below.

Multivolume Files

Multivolume files are specified in a control file by a slightly more complicated
Volume statement than shown above. The multiple <vo 1 i d>s of such a volume-set are
separated from one another by commas and are listed either in the order in which
they became members of the volume-set, for input, or in the order in which they are
candidates for volume-set membership, for output The entire volume-set membership
need not be specified in a Volume statement referencing a volume-set, but the first
(possibly only) member must be mentioned. Up to 64 <vo 1 i d>s may be specified in a
single control file Volume statement

Volume switching for multivolume files is handled automatically by the I/O modules.
If sufficient volume-set members are given in the TCL control file, the volume
switching is transparent to the user. If insufficient members of a volume-set are given
or the membership is being developed, the user is queried during execution for names
of additional volume-set members.

Sending Messages to the Operator

If it is necessary for the user to have a message displayed on ·the operator's console,
the comment phrase can be included in the Volume statement The comment text
consists of the keyword -comment followed by the text of the message. Whenever the
volume with the <vo 1 i d> immediately preceding the comment phrase is to be
mounted, the specified message is displayed on the operator's console. The message
may be from 1 to 64 characters and must be a contiguous string with no embedded
spaces or a quoted string with embedded quotes doubled. For example:

Volume: 060082 -comment "tape is Smith's" 060083 -comment tape_also_Smith's;

370lDOS Tapes

The tape_ibm_ I/O Module processes tapes created by or destined for IBM/DOS
installations as well as tapes for IBM/OS installations. The Tape: ibmdos; global
statement is used in the TeL control file to specify that the tape files referenced by
the given volume-group are destined for or have been produced by a IBM/DOS
installation. The important difference between tape files created by as and those
created by DOS operating system is that the tape file structure attributes are not
recorded in the tape labels under DOS. It is therefore necessary for all of the
structure attributes of a DOS tape file, namely encoding mode, logical record format.
logical record length, and block size to be specified in the TCL control file.

3-960 AG92-06

Unlabeled Tapes

The tape_ibm_ I/O Module supports processing of unlabeled tapes, provided that the
tapes- -are - structured according to - theOS-standard~ -DOS- leading tape mark (LTM)
unlabeled format tapes cannot be processed. The ibmnl specification in the Tape
statement is mutually exclusive with any statement, global or local, which refers to
labeled tapes: namely, the Expiration global statement and the expiration, generate,
modify, replace, and tape_extend local statements. If any of these appear together
within the same file-group, an error is indicated. When referencing unlabeled tape
files in a given iile-group, the argument of the File statement, <f i 1 e i d>, must be
specified by an asterisk, and the tape file desired must be specified by the number
local statement.

ERROR DIAGNOSTICS

The error messages issued during tape_in and tape_out compilation are graded and
have the form:

prefix errornumber, SEVERITY # IN STATEMENT M OF LINE N
<text of error message>
SOURCE:
<source statement in error>

where N is the line number on which the described statement begins and M is a
number identifying which statement in line N is in error. If line N contains only one
statement, "IN STATEMENT M OF" is omitted from the error message.

Tne severity numbers produce one of the following prefixes:

SEVERITY PREFIX

o COMMENT
1 WARNING

2 ERROR

3 FATAL ERROR

4 TRANSLATOR ERROR

EXPLANATION

The error message is a comment.
The error message warns that a possible error
has been detected. However, the translation
still proceeds.
The error message warns that a probable error
has been detected. However. the error is
nonfatal, and the translation still proceeds.
The error message warns that a fatal error
has been detected. Processing of the input
still continues to diagnose further errors, but
nO translat.ion is performed.
The error message warns that an error has
been detected in the operation of the translator.
No translation is performed.

3-%1 AG92-()6

CONTROL FILE EXECUTION

When the TeL control file is being executed in response to the tape_in command. the
volume named in each volume-group of the control file is mounted in turn without a
write ring (unless the -ring control argument has been specified). If any output
options appear in a control file being executed in response to the tape_in command,
these statements are ignored. Then each file-group in that volume-group is processed
resulting in one file transfer to the storage system per file-group.

FILE TRANSFER

File transfer is performed as follows. One logical record is read from the tape file,
and as many characters as were read are written into the storage system file either as
a line with newline (NL) character appended. if necessary, (unstructured case) or as
one logical record in a sequential format file.

EXECUTION TIME DIAGNOSTICS

Any fatal error from an I/O module during execution of a control file causes the
user to be queried as to whether or not he wishes to continue processing the other
file-groups and volume-groups in the control file or whether to terminate processing
of the control file. In the case of some correctable errors the user will be given the
alternative of controlling the process. This alternative places the user at command
level allowing resolution of the problem. When the user wishes to continue processing,
the start command is used. Executing the release command will cause the tape_in
command to be terminated.

CONTROL FILE EXAMPLES

Below are examples of typical control files. In the first example, the user wishes to
load into the storage system, the contents of volume "2314dp" which contains a dump
of a disk pack containing source and data.

The numbers at the left-hand side of the page in the examples below do not actually
appear in the control file, but are included only for annotation reference.

3-962 AG92-06

Example 1:

tape_in sample1.tcl -ring

1 Volume: 23l4dp;
2 /* Source Pack being loaded */
3 Tape: ibmsl;
4 Storage: unstructured;
5 Density: Boo;
6 Format: fb;
7 Record: Bo;
B Block: Boo;
9 File: FILEX;
10 path: <setup>data_entry>FILEX;
11 File: FILEXX;
12 path: <setup>data_entry>FILEXX;
13 File: FILEY;
14 path: <setup>data_entry>FILEY;
15 File: FILEYY;
16 path: <setup>data_entry>FILEYY;
17 File: FILEZ;
18 path: <setup>data_entry>FILEZ;

5B File: FILEZZ;
59 path: <setup>data_entry>FILEZZ;
60 End;

Annotations for sample1.tcl:

1. mounts the volume 2314dp with a write ring.

2. comment.

3. specifies an IBM standard labeled tape.

4. files are created in unstructured format, ready for use in stream I/O. NL
characters are appended as the file is written to disk. The mode is the default
for the ibmsl tape-type, namely. ebcdic.

5. tape is recorded at 800 bpi.

6. all files on tape are in fixed block format unless stated otherwise. Possible
record padding problems may be encountered.

7. all logical records are 80 characters unless stated otherwise (card image files).

8. all files blocked to 800 characters unless stated otherwise.

3-963 AG92-{)6

9. first file to be read from tape is named FILEX. It may be at any file location
on the tape. The tape is automatically positioned to the file by name.

10. read tape file, FILEX, into storage system file named FILEX. The relative
pathname, <setup>data_entry>FILEX, is expanded.

11. continue reading files off the tape volume, one by one, into files in the storage
system with the same name.

60. end of volume-group and end of control file.

Example 2: Control File for Reading DOS tape

tape_in sample2.tcl

1 Volume: 042281 -comment "Please send tape to accountingll;
2 Tape: ibmdos;
3 Density: 800;
4 Storage: unstructured;
5 Mode: ebcdic;
6 F i 1 e: abc;
7 record: 80;
8 block: 800;
9 format: fb;
10 path: >udd>Examp1e>Foo>fargo.pll;
11 End;

Annotations for sample2. tcl:

Note: Only selected statements in the control file are annotated here.

1. mount volume 042281 without a ring after printing comment message for
operator.

2. read IBM DOS standard labeled tape.

4. read tape file into storage system as unstructured format files appending NL
characters to each record from tape.

3-964 AG92-()6

Example 3: Control File for Reading an Unlabeled Tape

tape_ in samp le3 .tc 1

1 Volume: 042381;
2 Tape: ibmn1;
3 Storage: sequential
4 File: ,'q
5 format: vbs
6 number: 3;
7 path: >udd>Example>Foo>foobar.data;
8 End;

Annotations for sample3.tcl:

Note: Only selected statements in the control file are annotated here.

2. unlabeled tape is to be read. Files are unnamed. This statement must appear
when processing unlabeled tapes.

4. <fileid> is specified by "*" for unnamed files.

6. the number statement must be present when processing unlabeled tapes. The third
file on the tape is read.

The tape file record format is VBS. the tape file record length for VBS format is
1044480 bytes. and the tape file block length is 8192 bytes.

SYNTAX AS A COMMAND

tape_out path {-control_args}

FUNCTION

allows you to transfer files between the storage system and magnetic tape. To
accomplish a file transfer. the tape __ out command accesses either the tape_=mS1_ or th~
tape_ibm_ I/O module for the tape interface. and the vfile_ I/O module for the
storage system interface. Unstructured format storage system files (for stream I/O)
and sequential format storage system files (for record I/O) can be specified; 9-track
ANSI standard labeled tapes. 9-track IBM standard labeled tapes. and any 9-track
unlabeled tape structured according to OS standard can be written.

3-965 AG92-()6

ARGUMENTS

path
is the pathname of the control file governing the file transfer. If pathname does
not end with the tel suffix, it is appended.

CONTROL ARGUMENTS

-severityN, -svN
causes the tape_out compiler's error messages with severity less than N (where N
is 0, 1, 2, 3, or 4) not to be written into the error_output I/O switch. The
default value for N is O. See "Error Diagnostics" in the tape_in command for
further information on error reporting.

-check, -ck
specifies that only semantic checking be done on the Tape Control Language
(TCL) control file. No tapes are mounted if this control is specified.

-force, -fc
specifies that the expiration date of a tape file to be overwritten is to be
ignored. This control argument extends unconditional permission to overwrite a
tape file, regardless of the file's "unexpired" status. This unconditional permission
supresses any query made by the I/O module to inquire about tape file's
expiration date.

-ring
mounts volumes of the volume-set with write permit rings (default).

Tel eONT ROl FILE

The control file that governs file transfer for the tape_out command is written in the
control file language described in the tape_in command.

ADDITIONAL OPTIONS AVAILABLE FOR THE TeL USER

A number of options are available to you if you want to do more than the simple
file transfer between storage and a tape volume-set. These features need not be of
concern to most users, but for the user with specialized needs, these additional options
are explained below.

Protecting Tape File From Accidental Overwriting

To protect tape files from being accidentally overwritten tape_ansi_ and tape_ibm_
include expiration dates in the tape labels they write. The expiration local statement
or Expiration global statement can be used in the TCL source file. To overwrite or
delete a tape file the current date must be later than the expiration date specified in
the tape label. If this is not the case, the attempt to destroy the tape file will fail
and an error will be indicated unless the -force control argument has been specified
in the tape_out command line. In that case expiration date checking will not be done.

3-966 AG92-06

Special Outer Modes

Nf?:rlp.~nY, when you set up a TCL'cop.tr()l fUe. Ule~grollP ~()writ~ a~t()ragesystem
file onto a tape volume that is for use with tape_out, it is inte~ded that a new file
be created on the tape volume. The TCL default output mode is create. This is the
only output mode available for unlabeled tapes. For labeled tapes, however, the TCL
language offers four additional specialized output modes: generate, modify, replace, and
tape_extend. The replace mode causes the tape file labels to be rewritten using
specified and default file structure attributes. The tape_extend, modify, and generate
local statements do not cause the tape file labels to be recomposed, so any file
attributes specified in the file-group or volume-group that do not match those
recorded in the tape labels cause an error.

CONTROL FILE EXECUTION

When the TCL control file is being executed in response to tape_out, the volume
named in each volume-group of the control file is mounted in turn with a write ring.
Then each file-group in that volume-group is processed resulting in one file transfer
to the volume-set per file'-group.

FILE TRANSFER

File transfer.· is performed as follows. Either a line or a record is read from the
storage system file depending on whether the file is unstructured or structured. For
unstructured format storage system files, a line read is a line from the file up to. and
including, the first newline character (NL) encountered; for sequential format storage
system files, a record read is one logical record of the file. The characters read from
the storage system are then written on the tape as one logical record of the tape file.

Under certain circumstances. tape records being written must be padded in accordance
with a set of per-format padding rules (see the descriptions of tape_ansi_ and
tape_ibm->. Because of padding rules and treatment of newline characters when
writing tape. a file that is written out to tape may not appear the same when read
back in from tape. The following suggestions are offered:
1. Use the defaults to write character data (Le., source files or text files); with

tape_ansi_, use d. db, s, or sb format with the maximum block length and
choose the record length so that the amrl (the actual or maximum record length
of a given record format) is greater than the longest line in the storage system
file. Don't use f or fb format to avoid unwanted pad characters resulting from
block padding.

2. Use the defaults with mode of binary or use s or sb format, with the maximum
permissible block and/or record lengths and mode of binary. to write binary
data with tape_ansi_.

3. Use vbs format with the maximum block length and choose the record length so
that the amrl is greater than the longest line in the storage system file to write
character data with tape_ibm_ (vb may cause one to three blanks to be
appended to lines).

3-967 AG92-()6

4. When transfering sequential format files to tape, use a variable length record
format (d, db, s, or sb with tape_ansi_ and v, vb, or vbs with tape_ibm-> to
avoid unwanted padding characters being inserted into records. (vb may cause
one to three blanks to be appended to lines.)

EXECUTION TIME DIAGNOSTICS

Any fatal error from an I/O module during execution of a control file causes you to
be queried whether or not you wish to continue processing the other file-groups and
volume-groups in the control file or whether to terminate processing of the control
file. In the case of some correctable errors you are given the alternative of
"controlling the process." This alternative places you at command level allowing
resolution of the problem. When you wish to continue processing, the start command
is used. Executing the release command causes the tape_out command to be
terminated.

CONTROL FILE EXAMPLES

Below are examples of typical control files. In the first example, you wish to produce
two tapes, one for the Multics system, the other for an Os installation. The Multics
tape contains the source code of user subsystem SDmYS, as well as its object code.
The as tape contains only the source code.

EXAMPLE: SAMPLE1.TCL

tape_out samplel.tcl

1 Volume: 001234;
2 /* Dump source in DB and object in SB format */
3 F i 1 e: F I LE_l ;
4 path: SUBSYS.pll;
5 File: FILE_2;
6 mode: binary;
7 path: <object>SUBSYS;
8 format: SB;
9 End;
10 Volume: DFG054;
11 /* append source to tape */
12 Tape: ibms1;
13 File: TESTSAVE;
14 format: VBS;
15 block: 4096;
16 path: SUBSYS.pll;
17 number: 3;
18 End;

1. mounts volume 001234 with a ring. The volume defaults are set to ANSI
standard labeled tape-type, 800 bpi density, ASCII encoding mode. DB record
format, block length = 2048, and record length = 2048.

3-968 AG92-()6

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

is a comment in the control file. Since the storage statement is mlSSmg, the
default storage system file format is set to transfer unstructured files.

_. - _. -_ ...

since there is no number statemen~ the default positions the tape so that
FILE_1 is created as a new file at the first file position on the. tape volume.

specifies the pathname of the storage system file to be written to tape. Since
the file-group contains no local statements, the file is written according to the
current volume defaults.

positions the tape so that the file to be written is appended at file position
two on the tape volume.

specifies that the file is to be written in binary encoding mode.

specifies the pathname of the storage system file to be written to tape.

specifies that the file is to be written in SB format Notice that the block
length is the current volume default block length (2048) and the record length
is the current volume default record length (2048).

signifies end of volume~group. The_ 1/0 switch is closed and detached. The
volume-set is taken down and the drive is released.

mounts volume DFG054 with a ring.

is a comment Storage format is still unstructured.

changes tape-type to IBM standard labeled; changes the volume-group defaults
to those associated with ibmsl: 1600 bpi, ebcdic, VB format, block length =
8192, and record length = 8188.

specifies name of file to be written onto tape. Notice that the underscore U
cannot appear in an IBM file name whereas it can appear in an ANSI file
name.

changes the record format to VBS. A spanned record format transfering a
sequential file is needed. so that unwanted block padding is not inserted into
the file as it is transferred. The default record length for VBS format is
1044480 bytes.

changes the block length to 4096.

specifies the pathname of the storage system file to be written.

This number statement is required to make sure the file is appended to an
already existing tape volume. Without this number statement, the file would be
created as the first file on the tape volume, overwriting any existing files. If
files one and two do not exist. an error is indicated. but if these files do
exist. the file is written at file position three on the tape volume.

3-%9 AG92-()6

18. rewinds and takes down the volume since no more file-groups in the control
file reference the current tape volume.

EXAMPLE: SAMPLE2.TCL

tape_out sample2.tcl -fc

1 Volume: 070067 -comment in_slot_1000, 070068;
2 Tape: ansi;
3 File: BIG_LISTING;
4 replace: FILE_20;
5 number: 20;
6 expiration: 2weeks;
7 format: db;
8 block: 2048;
9 record: 133;
10 path: >udd>Example>Mega>test. list;
11 End;

1. The first member of the volume-set, 070067, is mounted without a ring,
displaying the message "in_slot_10000" on the operator's console. Later if
necessary, the volume-set member 070068 can be mounted to continue writing a
large listing file. A message appears upon mounting the second member of the
volume-set

2. writing an ANSI standard tape.

3. tape file named BIG_LISTING, into which the storage system file is to be
written.

4. is to replace tape file named FILE_20.

5. by the number statement FILE_20 is the 20th file on the current volurne-set
As no density statement is included in the control file, the default for
tape_ansi_, 800 bpi, is used. Upon execution of the control file, the tape is
positioned at the 20th file automatically. providing 20 files exist on the tape.
As no Storage statement is present in . the control file, the default storage
system format is unstructured, and as the files are written to tape, the NL
character is stripped.

6. The file, BIG_LISTING, is protected against accidental overwriting for two
weeks, meaning that if you attempt to overwrite the file within that time, you
are first queried for permission to do so. The -force control argument in the
command line inhibits a query for permission to overwrite FILE_20, in case it
has not yet expired.

7. BIG_LISTING is recorded in variable length blocked record format Mode is
the default for tape_ansi_, namely ascii.

3-970 AG92-D6

8.

9.

10.

11.

Block length is maximum allowed f or ANSI interchange standard, 2048.

record length _ is 133. --

the listing file is transferred from testlist in the storage system.

signifies termination of volume-group and of control file.

If. after putting the listing file out onto tape, you wish to delete the on-line listing,
and at a later time, read the listing back from tape into storage, you can type:

! tape_in sample2.tcl

The output statements in the control file, namely the replace local statement and the
expiration local statement are ignored on input

Name: teco

SYNTAX AS A COMMAND

teco {pa th 1 J {pa th2J

FUNCTION

provides a basic set of requests for creating and editing ASCII text segments and an
extensive macro facility for creating sophisticated text-editing request combinations. It
is a character-orien ted text editor.

ARGUMENTS

path 1
is the pathname of a text segment to be read into the teco text buffer. If it is
not specified, the buffer is initially empty and you can read in or enter text
segments from the terminal.

path2
is the pathname used when writing out the text. If it is not specified, the buffer
is initially empty and you can read in or enter text segments from the terminal.
If not ~, pathl is used when writing Ollt the segment (See ·~Stari-Up Macro~;
below.)

teco

3-971 AG92-06

teco

OVERVIEW OF teco

The teeo editor implemented for Multics is modeled after the TECO in general use on
the Digital Equipment Corporation PDP-10, which was originally written at MIT's
Artificial Intelligence project The teco editor allows simple editing requests on a line
basis as wen as a character basis. in addition, iterative and conditional facilities are
provided for writing macro definitions. These permit you to do simple manual editing
of ASCII files or to write complex macros that do automatic editing. Although this
implementation is modeled after the teco editor in general use, many new requests and
features have been added that make the macro facility more powerful and easy to use.
Some of the additions include adding if ... then ... else... statements, allowing the contents
of Q-registers to be used as quoted strings; allowing numeric and string arguments to
be passed to macros; allowing searches using regular expressions, automatically executing
a start_up macro whenever teco is invoked; and allowing macros that reside in files to
be called directly from the editor.

The line-oriented features of teeo are similar to those of the edm and qedx
commands. The character-oriented requests use a pointer that can be positioned
between any two characters in the buffer. permitting insertion, deletion, and so on of
characters without the need to retype the line.

The teeo editor reads request lines from your terminal line by line until a line ending
with a dollar sign ($) is typed. Execution of the complete request string is started
when this line is read. The teeo editor types a ,prompt when it is waiting for a new
request string. To exit from the editor. type the EQ request (followed by $ and a
newline).

MACRO USAGE

Syntax as a Command

teco$macro macro {macro_arguments}

Arguments

macro
is the name of a teeo macro to be exeeuted when the editor is invoked.

macro_arguments
are optional arguments processed by the macro invoked. This entry point is
provided for users who write teco "programs" that are intended to run without
ever reaching teco request level. The command line:

teco pathl path2

is equivalent to:

teco$macro start_up {pathl} {path2}

teco

3-972 AG92-{)6

teco

teco STORAGE AREAS

The teco editor uses four storage areas:

The buffer

an area where text to be edited is examined and modified. At all times it contains a
(possibly null) character string. There is a pointer into the buffer, denoting the
current position. This pointer does not point to a character; it points between two
characters. The pointer can assume any value between 0 and Z, where Z is the
number of characters currently in the buffer. 0 indicates that the pointer is to the
left of the first character, and Z represents the position to the right of the last
character in the buffer. The value of the pointer is represented by ""

Request String Area

editor requests are read into the request string area as a continuous character stream
for subsequent parsing into operational requests. Uppercase and lowercase letters can
be used interchangeably in requests.

Q-registers

locations for storing either numeric quantities or strings of text for later use. Each
Q-register is designated by a single character name. There are 95 Q-registers. one for
each printing ASCII character. Each Q-register can contain a positive or negative
in teger or a character string.

O-register pushdown list

a Last-In-First-out (LIFO) list that can be used to temporarily store the contents of
a Q-register. It is cleared (i.e .. the contents are lost) every time you return to tew
request level.

NUMERIC EXPRESSIONS

The teeo editor uses numeric expressions for many of its operations. These consist of
operators and operands. Operands can be decimal numbers, octal numbers. teco
requesTS mat return values, teco macros that return values, or teco special symbols.
Operators are unary minus (-), arithmetic binary operators addition (+), subtraction (-).
multiplication (*). division (f), and the boolean binary operations or (I>. and and (&).
All operators are of equal precedence and expressions are evaluated from left to right.
Notice. however. that parentheses can be used in their normal manner. Spaces are
ignored except to terminate numbers. If two numeric quantities are given with no
operator between them. the default operator + is used. Notice that a string of digits
followed immediately by a is interpreted as an octal rather than a decimal
number. Division using the "f" operator is integer division, i.e., the remainder is

teco

3-973 AG92-()6

teco

ignored. The special symbols allowed in an expression at any point are:

B (Beginning) equivalent to O.

Z equivalent to the number of characters in the buffer.

equivalent to the current value of the pointer or the number of characters
to the left of the pointer.

H (wHole) equivalent to O,Z. It is the only symbol to have two values. It is
useful for referring to the entire buffer.

Requests that return values can also be used in expressions, but they cannot appear
immediately to the right of an operator if it requires arguments. This is because
requests that take arguments assume that everything to its left is part of one of its
arguments. If a request appears within parentheses, its arguments are entirely contained
by the closest left parenthesis that encloses the request A request does not read parts
of an expression outside the parentheses in which it is enclosed.

The plus and minus binary operators assume a right operand of 1 if none is given.

The examples below show the evaluation of numeric expressions in teco. Assume that
the current value of the pointer is 500.

expression value

(1) (7 12)/3 = 6
(2) 9+ = 10
(3) b- = -1
(4) = -1
(5) 4+8/2 = 6
(6) 101 • = 65
(7) 31 10 = 11
(8) 1++++ ++ +++ + = 11
(9) 9*-2 = -18
(10) 9,'c--2 = 18
(11) .10 = 510
(12) 10. = 8

NOTES ON QUOTED STRINGS

Quoted strings are strings of text delimited by a quoting character. The quoting
character can be any character not contained in the string except a letter or a digit
The contents of a Q-register can be used as a quoted string if the letter "q" followed
immediately by the letter specifying the Q-register is typed instead of the first
quoting character. The following examples show valid quoted strings:

teco

3-974 AG92-06

teco

(1) "hello"
(2) IThis is a quoted string I
(3}.This string is delimited by the comma. character .. andcontains 2. newline

characters . .
(4) q1

NOTES ON ERROR MESSAGES

Error messages are printed by teco in one of two modes: long or short Short error
messages are from one to eight characters long while long error messages are less than
50 characters long. The default mode is short To change the error mode teco is
using. give the following Multics commands:

teco$teco_error_mode long
or:

! teco$teco_error_mode short

If a short error message. such as "I: 'lIt, cannot be understood. the following Multics
command prints the long error message:

teco$teco_error "I: 1"

The above holds for teco error messages only.

IMPLEMENT AT ION RESTRICT IONS

The maximum number of characters allowed in a Q-register, in a quoted string, or in
a teco request line is 1044480 characters. Notice that these sizes are all one segment
long. When the Multics segment size changes. these restrictions also change. The
maximum number of items in the pushdown list is 20. The maximum depth of macro
calls is 20. The maximum depth of parentheses is 20.

LIST OF REQUESTS

The teco editor requests have the basic form:

m,nX/stringl

where m and n are optional numeric arguments, X is the request to be executed, and
/ string/ is a quoted string. In most cases, the request is just one character, though in
some cases, it is two characters. Not all of the requests take arguments. Those that
do generally have default values for missing arguments. Only a few requests expect
quoted strings. The string must not be omitted if the request expects one. Some
requests also return values; this is discussed later in "Advanced teco Commands."

Some letters chosen for requests have mnemonic meanings, which are indicated in the
description of each request Unfortunately, teco has a fairly long history, having
originally been developed for editing paper tapes. and so some of the mnemonic
meanings are lost now. As many requests as one wishes can be typed at a time.

teco

3-975 AG92-{)6

teco

Execution of the requests does not start until after a line is typed ending with a "$".
Spaces can be inserted anywhere except in the middle of numbers, and newline
characters can be inserted anywhere except between a request and its arguments.
Uppercase and lowercase letters can be used interchangeably as requests.

Reading a File--EI (External Input)

EI/pathname/
reads in the file specified by pathname. which is assumed to be a standard
Multics pathname. The contents of the file are inserted in the buffer at the
current pointer position. and then the pointer is moved to the right of the text
inserted.

Writing a File--EO (External Output)

EO /pathname/
is equivalent to HEO/pathname/. It writes .the contents of the entire buffer to
the file specified by pathname. This request takes arguments similar to the T
request; it writes out that part of the buffer that would be printed by T.
However. if no arguments are given. EO assumes B, Z as the default rather than
1. NOTE: The pointer is never moved by the EO request

Typing the Buffer--T (Type)

T
is equivalent to IT

nT n > 0
prints the buffer beginning at the current pointer position and terminating after n
newline characters have been encountered. T prints the rest of the current line.
and 2T prints the rest of the current line and the next line. The last character
printed by T is a newline. If n is greater than the number of new line
characters to the right of the pointer, all text to the right of the pointer is
printed.

nT n <= 0
prints the characters between the (-n+1)th newline character and the pointer. The
(-n+ 1)th newline character is not printed. If (-n+ 1)th is greater than the number
of newline characters to the left of the pointer, all text to the left of the
pointer is printed. OT prints the beginning of the line up to the current pointer.
-T prints the previous line and the beginning of the current line. If the pointer
is at the beginning of a line, -T prints the previous line.

m.nT
prints the (m+1)th through the nth characters of the buffer.

teco

3-976 AG92-o6

teco

NOTE: The pointer is never moved by the T request Usually two T requests are
given at once, such as Ott, which prints the entire line that the pointer is
in.

Moving the Pointer--J (Jump), C (Characters), R (Reverse), and L (Lines)

nJ

nC

nR

moves the pointer to the right of the nth character in the buffer. i.e., sets "." to
the value of n. If n is not specified, 0 is assumed. That is. the pointer is moved
to the left of the first character in the buffer. The value of n must be from 0
to z.

moves the pointer n characters to the right of its current position (equivalent to
.+nJ). If n is omitted. 1 is assumed. The new value of "." must be from 0 to z.

like nC except it moves the pointer to the left (equivalent to -nC). If n is
omitted. 1 is assumed. The new value of "." must be from 0 to z.

nL n >0
positions to the beginning of a line. Moves the pointer to the right. stopping
after it has passed over n newline characters. If n is omitted. 1 is assumed. L
moves the pointer to the beginning of the next line. There must be at least n
newline characters to the right of the pointer.

nL n <= 0
moves the pointer to the left. stopping after it -has passed over (-n+ 1) newline
characters and then moving it to the right of the last newline character passed
over. OL moves the pointer to the beginning of the current line. -L moves the
pointer to the beginning of the previous line. There must be at least (-n+1)
newline characters to the left of the pointer.

Deleting Text--D (Delete) and K (Kill)

nD

K

deletes n characters. If n is positive, the characters are deleted to the right of
the pointer. If n is negative, the characters are deleted to the left of the pointer.
If n is omitted, 1 is assumed. If n is zero, nothing is deleted.

takes arguments like the T request except it deletes the text T prints. The pointer
is moved to where the deletion took place. If no arguments are specified, 1K is
assumed.

teco

3-977 AG92-06

teco teco

K n > 0
deletes all the characters beginning at the current pointer position and terminating
after n newline characters have been encountered. There must be at least n
newline characters to the right of the pointer. K deletes the rest of the current
line and the newline character at the end of the line, while 2K deletes the rest
of the current line and the next line. OLK deletes the current line as does OKK.

K n <=0
deletes all the characters between the (-n+l)th newline character and the pointer.
There must be at least (-n+1) newline characters to the left of the pointer. OK
deletes the beginning of the current line without deleting the newline character at
the end of the previous line. -K deletes the previous line and the beginning of
the current line. To ensure that only the previous line is deleted, the request
sequence OL-K is used.

m,nK
deletes the (m+l)th through the nth characters of the buffer. The pointer is
moved to m. Equivalent to mJ n-mD. HK deletes the entire buffer.

I nserti ng T ext- -/ (! nsert)

I/text/

nI

inserts the text of the quoted string at the current pointer poSitIOn and moves the
pointer to the right of the inserted text /text/ can also be specified as a
Q-register, for example, Iq2.

inserts the character whose ASCII code value is n. It moves the pointer to the
right of the inserted character.

Search for Text--S (Search)

S/string/
is equivalent to lS/string/

nS/string/
searches for the nth occurrence of the quoted string. If n is positive, the text is
searched from the current pointer through the end of the buffer for the nth
occurrence of the string. If found, the pointer is set to the right of the
matching string. Otherwise, the pointer is not moved, and an' ,error message is
printed. If n is negative, the text is searched from the current pointer position to
the beginning of the buffer for the (-n)th occurrence of the quoted string. The
pointer is set to the left of the matched string. If the string is not found, the
pointer is not moved, and an error message is printed.

m,nS / string/
searches m lines from the current pointer for the nth occurrence of the quoted
string instead of searching the entire buffer. If m is positive, n must be positive,

3-978 AG92-()6

teco

and the only part of the buffer that is searched is from the current pointer to
just after the mth newline character after the current pointer. If m is 0 or
negative, n .must be negative, and the ollly part of the b_~ffer that is searched .. is
froinihe current pOinter to jUst after the (m+l)th newline before the current
pointer. l,lS/text/ only searches the rest of the current line. O,-IS/text/ only
searches the beginning of the current line.

Search for Regular Expression--N

N/string/
is equivalent to IN/string/; searches from the current pointer position through the
end of the buffer for the first occurrence of the regular expression, string.

The term "regular expression" refers to the character string used to address a line
of text that contains that string of characters. In its simplest form, a regular
expression is a character or string of characters delimited by the right slant
character (/). For example, in the following text, the regular expression /abc/
matches line 2:

a:procedure
abc = def

x = y
end a

nN/string/
searches from the current pointer position to the end of the buffer for the nth
occurrence of the regular expression, string. The value of n must be greater than
o.

m,nN / string/
searches the next m lines for the nth occurrence of the regular expression. The
values of m and n must be greater than O.

Printing Values--= (Equals)

n= or: m,n=
prints the decimal value of its arguments, separated by spaces and followed by a
newline.

n:= or: m,n:=
prints the octal value of its arguments, separated by spaces and followed by a
newline.

teco

3-979 AG92-D6

teco

Leaving teco--EO (External Quit)

EQ
returns to the caller of teco (e.g., Multics command leveI). (Remember ~ do an
EO request before the EQ if the editing is to be saved.)

Restarting teeD After a Quit

If a quit signal is used to abort a request string, the Multics program_interrupt (pi)
command can be used to restart the teco editor. Issuing a quit does not abort the
entire command string; only those commands not yet executed. The current request is
aborted when it is completed.

At times it is desirable to get around this feature. When doing an EO, for instance,
teco does not allow you to return to teco request level until it has completed writing
the file. To get around this, type:

(quit)
teco$abort

When teco$abort is called, the most recent invocation of teco aborts its current
operation without checking for consistency of states. This is useful if an EO request
fails because of insufficient access. Using the program_interrupt command would cause
teco to reattempt the write. Notice that teco is in a consistent state whenever it
actually accesses a file, and so there should be no problems encountered if this feature
is used to get out of an EO request Under other circumstances, however, it is wise
for you to type:

-5t5t

to ensure that control is maintained. Except for the case of an unsuccessful EO
request, this feature should not be used.

STAND-ALONE EXAMPLES

Entering teco:

teco source.pll
enters teco and reads in the file source.pll from the working directory.

teco <x>y>z>a.ec
enters teco and reads in the file specified.

teco
enters the buffer initially empty.

teco >t>start_up.teco start_up.teco
enters teco and reads in >t>start_up.teco. Q-register * is set to start_up.teco.

teco

3-980 AG92-06

teco

Reading a File:

EI / souree. pll/
inserts the text contained in souree.pll at the current point in the buffer.

Writing a File:

EO / new _souree. pIlI
writes the whole buffer out into new_souree.pI!.

.,zEO/bottom/
writes out the buffer from the current pointer to the end into the file named
bottom.

2EO/lines/
writes out two lines starting at the current pointer position to the file named
lines.

Printing Text:

2T
prints from the pointer to the end of the next line.

OT
prints the current line from its beginning to the pointer.

OTT
prints all of the current line.

25,100T
prints the 25+1 (26th) through the 100th character of the buffer.

Moving the Pointer:

J
positions the pointer at the beginning of the buffer.

ZJ
positions the pointer at the end of the buffer.

L
positions the pointer at the beginning of the next line in the buffer.

OL
positions the pointer at the beginning of the current line.

teco

3-981 AG92-()6

teco

-L
positions the pointer at the beginning of the previous line.

R
backs up the pointer by one character position.

812-388C
moves the pointer ahead 812-388 (424) character positions.

Deleting Text:

19,22K
deletes the 19+1 (20th) through the 22nd character of the file. Sets the pointer to
19.

19J 3D

HI(

-D

moves the pointer to the right of the 19th character and then deletes the next
three characters (20-22).

deletes the whole buffer.

deletes the character just to the left of the pointer.

Inserting Text:

I/abc
/

inserts the line abc followed by a newline character at the current pointer
position.

I. abc.
inserts the string abc without a newline character.

651
inserts the character with ASCII code 65 (A) at the current pointer position.

Printing Values:

Z=

Z,.=

prints how many characters are in the buffer.

prints how many characters are in the buffer followed by the current pointer
position.

teco

3-982 AG92~

teco

prints a newline character.

Q6+53 =
prints the value 53 plus the value contained in Q-register 6.

Searching for Text:

J S/Hello/
positions the pointer just to the right of the first occurrence of the string Hello
in the buffer.

Z J -S"Hello"
positions the pointer just to the left of the last occurrence of the string Hello in
the buffer.

J 3S"*
"

positions the pointer just after the third occurrence of a line ending with an
asterisk (*).

J 1,lS/Hello
/

positions the pointer just after the first line in the buffer if it ends in Hello. If
the first line does not end in Hello, prints an error message.

EXAMPLES OF BASIC EDITING REQUESTS

teco abe.pl1

enters teco and reads in the segment abc. pIl.

5LT$

moves to the 6th line and prints it out

del a fixed bin;

S/a/-DI/b/OLT$

changes the "a" to a "b" and prints the line.

del b fixed bin;

Sldel d/OLKT$

searches for "dcl d" and deletes the line that contains it Then prints out the next
line.

teco

3-983 AG92-06

teco

del f fixed bin;

KI/del 9 char (2) ;
/$

deletes this line and then insert a declaration of g.

EO/abe.pll/EQ$

writes the edited text out to the file and then returns from teco.

ADVANCED COMMANDS

In "List of Requests" above, the general form of a teco request was given. Some
items were left out, however. A more complete format is:

m,nXq/stringl//string2/ ••. /stringN/

The q indicates a Q-register on which the request is to act It should also be noted
that more than one string can be given. Although no teco request currently accepts
more than one quoted string, a macro can be called with multiple string arguments
that can be retrieved inside the macro by the :X request

"Numeric Expressions" specifies that expressions can be built from numbers, special
valued requests, and symbols. Examples of valued requests are given in this section.
Notice that requests with values that require arguments only appear on the left side of
the first operator, or within parentheses. Otherwise, the part of L'le expression
preceding the request is considered to be an argument to the request.

The effect of many requests can be changed by preceding the request with a colon (:).
The colon has no fixed meaning--it is defined for each request individually. The
following requests given earlier have the following changed effect:

:Iq/string/ or n:lq

n:L

is similar to the I request except that the specified string is inserted into
Q-register q instead of the buffer. The former contents of Q-register q are lost

is equivalent to nLR. :L moves to the end of the line rather than the beginning.

:S/string/
is similar to S except that it returns a value. The value is 0 if the search fails
and -1 if it succeeds. Even if the search fails, teeo continues execution.

:n/string/
is similar to N except that it returns a value. The value is 0 if the search fails
and -1 if it succeeds. Execution continues even if the search fails.

:T /string/
prints the specified string on your terminal. This

teco

3-984 AG92-06

teco

:=

:EI

is identical to = except it prints values in octal instead of decimal.

is similar to EI except that it returns a value. The value returned is -1 if the
read succeeds and 0 if the read fails. No error is printed if the read fails.

:J,n:J
is similar to j except that errors cannot occur. If n is less than O. the pointer is
moved to the" beginning of the file. If n is greater than Z. the pointer is moved
to the end of the file.

:C.:R
are similar to C or R except that errors cannot occur. If the pointer would be
moved to before B. move it to B. If the pointer would be moved beyond Z.
move it to Z.

NUMERIC Q-REGISTERS

Q-registers can be used to hold numeric values. "These values can be used in
expressions.

Saving a Value- - U (Update)

Uq
sets Q-register q to a very large positive number.

nUq
sets Q-register q to n.

m,nUq
sets Q-register q to n and returns m as its value.

Reading Q-Registers--Q (Q-register)

Qq
returns the number stored in Q-register q as the value. Q is not a request-it is
a special symbol. Thus, in the expression 5+Q3 the 5+ is not considered an
ar~.!ment 10 Q; the res~1t is the SUill of Q3 aud 5. If Q-register q contains teAL,

"the length of the text, in characters. is returned.

Incrementing Q-Registers--%

adds 1 to Q-register q and returns the new number as the value. Q-register q
cannot contain text Note that % is a special symbol, too.

teco

3-985 AG92-06

teco

TEXT Q-REGISTERS

Q-registers can also be used to hold character strings. to move text from one place in
the buffer to another, to save request lines for execution as macros, or to provide
quoted strings.

Extracting Text to a Q-Register- - X (eXtract)

Xq
takes arguments like the T request, but copies the text into Q-register q. The
former contents of Q-register q are deleted. The text is not deleted from the
buffer, and the current pointer is not moved.

nXq n>O
copies all the text from the current pointer to past the nth newline character to
the right of the pointer into Q-register q. Xl copies the rest of the current line
including the newline at the end of the line into Q-register 1. 2Xa copies the
text on the rest of the current line and all the next line into Q-register a.

nXq n<=O
copies the characters between the (-n+l)th character and the pointer. The (-n+l)th
newline character is not copied. OXI copies the beginning of the current line into
Q-register I. In this case, no newline character is put into Q-register I. -Xa
puts the previous line and the beginning of the current line in to Q-register a.

m,nXq
copies the (m+l)th character through the nth character into Q-register q.

Appending Text to a Q-Register--P (aPpend)

Takes arguments like the X request, except it appends to the former contents of the
q-register instead of deleting the former contents. The text is not deleted from the
buffer and the current pointer is not moved.

Inserting Text Directly into a Q-Register--:I (Insert)

: Iq I string I

n:Iq

is similar to the normal I request except that the text is inserted into Q-register
q rather than the buffer. The former contents of Q-register q are deleted. The
text buffer is not affected.

is similar to :1 except that it puts the character corresponding to n into the
Q-register q.

teco

3-986 AG92-()6

teco

Getting Text from a Q-Register--G {Get}

Gq
inserts th~ text contained in Q-register q into the buffer to the left of the
current pointer. If the Q-register contains a number. the decimal representation
of the number is inserted.

OBTAINING QUOTED STRINGS FROM Q-REGISTERS

Whenever teco expects a quoted string. it is possible to indicate that the string is in a
Q-register. Normally, letters and digits are considered invalid quoting characters. If.
however. the letter Q is found where a quoted string is expected. the next character
after the Q is considered a Q-register name. Whenever a quoted string is retrieved by
any request. it is loaded into Q-register n. As an example, SQ", immediately after
another search. searches again for the same string. This notation is invalid if the
specified Q-register contains a number.

THE Q-REGISTER PUSHDOWN STACK

There is one Q-register pushdown stack (not one per Q-register) in which the values
of Q-registers can be saved. It is organized as a pushdown (LIFO) list It is emptied
every time teco waits for a new request string.

Pushing a Value onto the STACK-- [(opposite of])

[q
pushes the current value of Q-register q onto the top of the stack. The
Q-register is not affected.

Popping a Value from the STACK--] {opposite of [}

]q
pops the top value on the stack into Q-resister q. The previous contents of the
Q-register are lost It is an error to do a] request if the stack is empty.

LOOPS

The teco editor has the ability to execute a request string repeatedly. just as
FORTRAN or PL/I provides do-loops.

Loops--< and > (opposite of each other)

<
begins a loop. It is equivalent to n< except that n is set to a very large number
that is for all practical purposes infinite.

teco

3-987 AG92-()6

teco

n<
begins a loop to be executed n times. The value of n and the position of the <
in the request string are saved. The value of n must not be negative.

:<,n:<

>

is simiiar to < except that errors that occur within the iteration group just
terminate the iteration group and the > returns a value. The returned value is -1
if no errors occurred, and it is 0 if the group was terminated by an errOT. The
error message that terminates the loop is not printed.

ends a loop. It returns to just after < if the string has not yet been executed n
times.

n< ••. >
executes the string between the angle brackets n times.

Terminating a Loop Before n Executions--;

n;

. . . ,

if n is less than 0, then nothing is done. Otherwise, execution of the current
loop is aborted and teco skips to just after the closing >. If n is not specified,
the result of the most recent S or N request is used (terminate loop if search
failed). The ; request cannot appear outside of a loop .

is similar to ; except that the sense of the test is inverted. If n is less than 0,
execution of the current loop is terminated and teco skips to just after the
corresponding >.

Special Loop Facilities--throwing and catching values

F<! 1 abe 1 !
provides for a nonlocal transfer of control. F < and > define an iteration group
like < and >. From the time that the F < iteration group is entered until the
time it is exited, F < sets up a handler to "catch" values "thrown" by the
F ; /1 abe 1/ request. If no F; / 1 abe 1/ request with matching-string argument is
executed before the F < iteration group is exited, the iteration group returns -1 as
a value. If, however, an F; /1 abe 1/ request is executed (where the label string
matches the one in the F <! 1 abe 1 !), the execution of all macros and iteration
groups encountered since the F < is abandoned, and the F < iteration group returns
the numeric argument of the F; request as a value.

: F <! 1 abe 1 !
is similar to F < except that if an error is encountered during the execution of
the : F < iteration group, the latter returns zero as a value.

teco

3-988 AG92-Q6

teco

nF;/string/
"throws" the numeric value n to the most recent F < or : F < iteration group where
the string argument matches the string argument of the F; request It is an error
to execute a F; / s t r i ng/ request when there is no F < or : f < iteration group in
execution with a matching-string argument

NOTE: These requests provide a method of exiting several nested loops at once.
Execution of a F; request terminates the F< loop as well as any contained loops.

GOTOS

The teco editor provides the ability to transfer control to a different part of the
request string.

Goto--O (gOto)

O/string/
searches the current macro (or, if we are not in a macro, the request line) for
the label !string!. If it is found, teco begins interpreting requests just after the
label. If not found, but execution is currently in a macro, the search is repeated
in the previous execution level, i.e., the caller of the macro. This is repeated
until teco has checked all the way down to the request line typed by you. Notice
that although teco can exit a macro using an 0 request, it cannot use that request
to exit a loop. Only a semicolon (;) can be used to terminate a loop.

MACROS

The teco editor has the ability to execute strings of text (macros) other than those
read from your terminal. The associated requests are listed below:

Executing A Macro in a Q-Register--M (Macro)

Mq

:Mq

executes the contents of Q-register q as a request string. Notice that if the M
request is given any numeric arguments, they are passed to the first request inside
the macro. String arguments can be fetched by the :X request

is similar to the M request except that if issued within a macro, the return from
Q-rcgister q causes the invoking macro to retutn also.

Executing A Macro in a File--EM (External Macro)

M/string/
is similar to the M request except that the request string is found in a file whose
entryname is string.teco. This file is looked for in three directories: the working
directory, your login directory, and the teco library.

teco

3-989 AG92-()6

teco

Obtaining a String Argument to a Macro

:Xq
suspends execution of the current macro, returns to its caller to fetch a quoted
string into Q-register q. and then restores the macro that was being executed.
Notice that each :X request in a macro ietches another quoted string. The U
request(s) should be the first request in a macro if one wishes to fetch numeric
arguments in a macro.

NOTES

1. Loops cannot cross macro boundaries, i.e .. a loop cannot start in one macro and
end in another. This does not, however, prohibit the M or EM request from
being used within a loop.

2. A macro can modify itself if it is in a Q-register. Notice, however, that the
current invocation of the macro is not affected; only future accesses to the
Q-register. If the macro is invoked by the EM request, the results of modifying
the file are hard to predict as teco reads the request string directly from the
file.

3. When a macro is invoked by the EM request, it should be noted that the name
of the macro is found in the Q-register named ". Thus several macros can be
put in one segment with the first request in the segment being OQ". (Do not
forget to put all the appropriate names on the segment)

4. If an M or EM request is given as the last request in one macro. the request is
interpreted as a goto rather than a call. Thus, unlimited M's can be done in
this manner although there is an implementation-defined limit to the depth of
calls.

5. When the teco editor is entered, a macro named start_up is searched for. If it
is found. the arguments to teco are put onto the pushdown stack. and the
start_up macro is executed. There is a default start_up macro if you do not
provide yours. This macro is described below.

CODING CONVENTIONS FOR MACROS

Since there are only a small number of Q-registers (95). each with a one-character
name. there are serious problems in writing a set of macros that are compatible. A
set of macros become incompatible if one macro uses a Q-register for long-term
storage that any other macro uses at all. There are two ways this effect can be
combated. First. by establishing certain coding conventions, and second, by use of a
documented macro library. Probably the most important coding convention is the
specification of which Q-registers can be used inside a macro for temporary storage.
Many library teco macros use the ten Q-registers 1,2,3,4,5.6,7,8,9, and 0 for temporary
storage. If one macro calls another macro that destroys the contents of one of these
registers, the calling macro can save the value of the Q-register in the pushdown list
and then restore it after the other macro has been caned.

teco

3-990 AG92-D6

teeo

Fortunately, calling a macro is a very inexpensive operation in teco if the macro is in
a Q-register. The EM request is more expensive. This leads to the practice of
~r~tiIlg ~ m~~r9 jn a. ID,f!(;I9._ ·liPr~rY_.Jh~t.J9~<iS. ~ Q~regist~r .wHp .. a_ .. ~f:lll .. m~~r9·.
Realizing that you want the macro, you give the EM request that loads that macro
into a Q-register, where you can then call it anytime. It now becomes necessary to
have coding conventions that specify which registers can be loaded permanently with
macros. Since it should be easy to type the macro names, the lowercase alphabetic
letters should be used for this purpose. Sometimes a macro uses a Q-register for
long-term storage. If you do not have to type the name of this Q-register, names
that must be escaped are good; otherwise, other special characters can be used. This
leaves the uppercase alphabetic letters entirely for you to store intermediate results in
editing. Besides, the special characters -, .. ., /, space, tab, and newline should be
reserved f or you since these are all lowercase on most terminals.

An extremely useful feature of teeo is that the last quoted string is loaded into
Q-register n. To allow this to continue to be useful, all macros should make sure that
Q-register " either contains the last quoted string argument to the macro. if there are
any, or contains what it contained before the macro was called. Q-register " can be
saved on the pushdown 'list on entry to a macro and then restored just before leaving
the macro. Use of the pushdown list is very inexpensive.

RELATIVE COSTS IN TECO

The teeo editor stores the buffer in two pieces. The first piece, all the characters
from the beginning of the buffer to the current pointer, is stored at the beginning of
one buffer segment The second piece, all the characters from the current pointer to
the end of the buffer~ is stored at Lhe end of another buffer segment Inserting text
merely adds text to the end of the first buffer segment and increases the number of
valid characters in the first buffer segment Deleting text merely changes the number
of valid characters in one or both of the buffer segments. In order to move the
pointer, a string copy from one buffer segment to the other is performed unless an
unmodified copy of the string already exists in the other buffer. It does not matter
to teco which direetion the pointer is moved.

Reading a file into an empty buffer causes that file to be used as the buffer until
the text is modified. Thus this request string causes an invalid segment fault:

HK EI/File/ EC/dl File/$

Positioning to the end of the buffer (ZJ) puts all the text into one temporary
segment Thereafter, pointer moves do not actually move text As long as all the text
remains in one temporary segment, pointer moves do not actually move text' An
insertion or deletion anywhere but at the end of the text causes the text to be split
up.

Each text Q-register is presently kept in its own segment This means that if a
start_up macro loads many Q-registers with macros, entering teco for the first time in
a process is somewhat slow since all these segments must be created. The teco
command has its own segment manager (get_temp_se~ that allows it to reuse
segments without calling hardcore to create and delete segments when the values of

teco

3-991 AG92-06

teco

Q-registers are changed. Whenever a string is quoted, or a Q-register loaded with
text, a new segment is retrieved from get_temp_se&- and loaded with the value. If
the string that is being loaded into the Q-register is in another Q-register, the new
Q-register is just made to point to the same copy of the text in the first Q-register.
:IAQB is therefore a very simple operation, as are [(Push) and] (Pop). The feature
of keeping the last quoted string in Q-register " lets you take advantage of this
scheme.

If you want to write a macro that must do some editing on another file, it is much
cheaper if you save the value of "." and "Z-." , insert the text to be edited, edit it.
write it out or copies it into a Q-register. and then delete what you were just editing
from the buffer. The net change to the buffer by all these operations is zero. but
the text that you were editing was never moved. This method is much cheaper than
storing the entire buffer in one Q-register. the value of the pointer in another, and
then using the buffer for the editing within the macro.

There are four ways to transfer control in teco, by the > request, the; request, the ..
or :' request. and the 0 request Of these, the > request is the fastest, since teeo
already knows exactly where to transfer it The ;, ", and :' requests are next. since
they merely search from where they are. Although the > request and the ; request
cannot change macro levels. the ". and :' requests can. This adds a small expense. The
; and :; requests have to check so that a ; request completely skips over another
nested loop and looks beyond it for a >. Similarly, the" transfer skips over nested if
statements, as does the :' request. Usually, the matching , or > is not far from the
transf er, so this only causes a short search.

WARNING: The teCo editor implements < and > searches very simply. It does
not check the semantics of the request string. The request string
is searched forward for the first < or >. If a < is encountered, a
counter is incremented. If a > is encountered and the counter is
zero, the search is complete; otherwise the counter is decremented.
Any and all < and > appearing in the searched portion of a
request string participate in this process.

o is the most general and most expensive transfer of control in teco. It must search
the entire macro from the beginning, then the entire macro that called the present
macro, etc., until it finds it or finishes searching the request line and gives an error.
Although this is the most expensive transfer, its cost is proportional to the distance of
the label from the goto request.

CONDITIONALS

The teco editor has the ability to conditionally execute strings. The " request
corresponds to the PL/I statement "if ... then do;". The ' request corresponds to the
PL/I statement "end;". " and ' are matched and can be nested.

W AR-NING: The teco editor implements " and ' searches very simply. It does
not check the semantics of the request string. The request string
is searched forward for the first " or '. If a " is encountered, a
counter is incremented. If a ' is encountered and the counter is

teco

3-992 AG92-06

teco

zero, the search is complete; otherwise, the counter is decremented.
Any and all " and ' appearing the searched portion of a request
string participate in this process.

The letter following the " determines what test is made.

Numeric Comparisons--"E (Equals), "N (Not equal), "G (Greater than),
"L (Less than)

m,n"E

nnE

if m=n, then execution continues; otherwise, execution skips to just after the
corresponding '.

is identical to n.O"E.

m,n"N
is similar to m,n"E except it tests for m "'= n.

n"N
is identical to n.O"N.

m.n"G
is similar to m,n"E except it tests for m > n.

n"G
is identical

m,n"L
is similar to m.n "E except it tests for m < n.

n"L
is identical to n.O"L.

Testing for a Symbol Constituent- _ftC (Symbol Constituent)

nnC
if n is the ASCII code for a letter. a digit, or one of the characters ., _, or $;
then execution continues; otherwise. execution skips to the corresponding '.

String Comparison - -"M (Match)

"M / string/
if the specified string appears immediately to the right of the pointer, then
execution continues; otherwise. execution skips to just after the corresponding '.

:"M/string/
is similar to "M/string/ except that the sense of the test is inverted.

teco

3-993 AG92-06

teco

Terminating a Conditional Do- -' (Matches It)

.'

is ignored when executed in normal execution. It is used to close a conditional
statement

transf ers to the next " just as a 1 tIe does. Since this request looks like a '. it
can serve to close a conditional statement This is useful if an if. .. then ... else ...
statement is desired. The if expression is a " statement, then the expression is
terminated by the :' request and the else expression is terminated by the ' request
(See the warning under "Conditionals" above.)

Reading Input from the User's Terminal- - VW (V then wait for input)

vw
does a V request (presently does nothing on Multics) and then reads one character
from your terminal. The ASCII value of the character is returned as the value of
the request

:VWq
does a V request and then reads one line from your terminal. The line is put
into register q. The newline is the last character read in.

Passing a Command to the Command Processor--EC (External Command)

EC/string/
passes the specified string to the M ul tics request processor for execution.

Invoking an Active Function--EA

EAq/ string/
passes the specified string to the command processor's active function application
entry. The result of the active function application is returned in Q-register q.
The specified string must not include square brackets.

Examining a Character in the Buffer--A (ASCII)

nA
The ASCII code for the (.+n)th character in the buffer is returned as the value
of the request. n must be specified. (Notice that 1 indicates the character just to
the right of the current pointer; 0 indicates the character just to the left.)

teco

3-994 AG92-06

teco

Tracing Command Execution--?

?

??

. turns ·tracing·· -on~ -When tracing is-on.-eachrequest--executed by-teco -is--printed ---on
your terminal just before it is executed.

turns off tracing.

Translating Numbers to ASCII and Vice Versa--\

\

n\

reads the decimal number found to the right of the current pointer and returns
its value as the value of the request The pointer is moved to the right of the
number. The number can be signed and can be preceded by any number of
blanks or tabs. It is an error if no number is found.

inserts the decimal interpretation of n into the buffer to the left of the current
pointer.

m,n\

:\

inserts the decimal interpretation of m into the buffer to the left of the current
pointer. The interpretation is padded on the left to be at least n characters wide.

is simiiar to \ except that it converts to and from octal representations' of
numbers.

Null Command--W

w
does nothing. It is most useful for throwing away unneeded numeric arguments.

newline character
has the same effect as W.

$
has the same effect as W.

teco

3-995 AG92-06

teco

EXAMPLES OF MACROS

Write Macro

*.
This macro writes out the entire buffer into a file whose name is in Q-register
*. The pathname is changed by doing:

EOQ*
assumes that the name of the file we are editing is in Q-register *. It writes out
the entire buffer into this file.

A Restart Macro

This macro zeros out the buffer, changes Q-register * to be a new file name and
reads the file into the buffer:

:x* hk eiq* j

takes one string argument and loads it into Q-register *.

HI(

deletes all the text in the current buffer before editing is restarted.

EIQ*
reads the new file into the buffer.

J
puts the pointer at the beginning of the buffer.

Start-Up Macro

This macro only uses the first and second argument to teco. It treats it as a file
name, loads it into Q-register * and reads the file into the buffer. It also loads the
writing macro into Q-register w:

] 1

] 1 : iwleoq*1 ifqwql"n])'c eiq''c j ql-l"q]*1

pops the top item off the pushdown list and puts it into Q-register 1. This is
the ntL"nber of arg'Jments teeo was caned with.

teco

3-996 AG92--()6

teco

: iwleoq I
loads Q-register w with the write macro given in the above example.

:ifqw
loads Q-register f with a copy of the contents of Q-register w.

ql"n
if the contents of Q-register 1 are not zero, then execute the following
statements; otherwise, transfer to the matching '.

pops the first argument to teco off the pushdown list and into Q-register *.

ei q"(
reads the file whose name is the contents of Q-register *, into the buffer.

j
, moves the pointer to the beginning of the buffer.

ql-lllq
if the value of the expression (ql-l) is greater than zero. execute the following;
otherwise. skip to the matching , .

pops the next (second) argument off the pushdown list and into Q-register *.

matches ql-l"q. End of request string for second argument

matches ql"n. End of request string for processing arguments.

Substitute Macro

This macro takes two string arguments. The first string argument is searched for. then
it is deleted. and the second string inserted:

:xl :x2 sql -qld 92

:x1
loads the first string argument into Q-register 1.

:x2
loads the second string argument into Q-register 2.

sql
searches for the first string.

teco

3-997 AG92-()6

teco

-qld
deletes the first string when it is found. (Could also be -q"d)

g2
replaces the string found with the second string argument.

When the macro returns Q-register, 1 and 2 contain the first and second strings.
respectively. Q-register " contains the second quoted string.

SUMMARY

NAME USE AND EXPLANATION

a nA

b B

c nC

:C n:C

d D

The value of the request is the ASCII code for the (. +n)th character in
the buffer.

The value of this symbol is always zero.

moves the pointer n characters to the right. If n is omitted, 1 is
assumed.

is similar to c, only error messages are not printed.

deletes the one character to the right of the pointer.

+nD
deletes n characters to the right of the pointer.

-nD
deletes n characters to the left of the pointer.

ea EAq/string/ passes the string to the Multics active function command
process; result is put in Q-register q.

ec EC/request/
passes the string to the Multics command processor.

ei EI/file/
reads the file into the buffer to the left of the current pointer.

:ei :EI/file/
is similar to EI, only no errors are possible. Returns 0 if read fails; -1
if it succeeds.

teco

3-998 AG92-Q6

teco

NAME

em

USE AND EXPLANATION

EM/macro_name/
searches for the file macro_name.teco, first in the working directory,
then the login directory, then the teco library. If found, it executes it
as a macro.

eo EO/file_name/
writes out the entire buffer into the file specified.

+nEO/file_name/
writes out the next n lines.

(0 or -n)EO /file_name/
writes out the last n lines.

m.nEO/file_name/

eq EQ

g GQ

h H

writes out the (m+l)th through the nth characters.

returns to its caller.

inserts the text contained in Q-register q into the buffer to the left of
the pointer. If Q-register q contains a number. it is converted to a
character string and inserted.

is equivalent to O.Z. It is the only symbol that has two values.

I/string/
inserts the quoted string to the left of the pointer.

nI
n is the ASCII code for a letter that is inserted.

:i : Iq/string/

j nJ

:j n:j

inserts the quoted string into Q-register q.

n:Iq
inserts the single character whose code is n into register q.

moves the pointer to the right of the nth character in the buffer. If n
is omitted, 0 is assumed.

is similar to j. only no errors.

teco

3-999 AG92-06

teco

NAME USE AND EXPLANATION

k K
deletes the rest of the current line from the buffer.

+nK
deletes the next n lines from the buffer.

(0 or -n)K
deletes the last n lines from the buffer.

m,nK
deletes the (m+l)th through the nth characters from the buffer.

L
moves the pointer to the beginning of the next line.

+nL
moves the pointer to the beginning of the next nth line.

(0 or -n)L moves the pointer to the beginning of the last nth line.

:1 :L
moves the pointer to the end of the current line.

+n:L
moves the pointer to the end of the next (n-1)th line.

(0 or -n):L
moves the pointer to the end of the 1st (n+ 1)th line.

m m,nMq/string1/ /string2/ ... /stringN /
starts executing the text in Q-register q as a macro. m and n are
numeric arguments to the first request in the macro. string1 through
stringN are string arguments to the macro that can be retrieved with
the :X request. EM also takes all these arguments.

:m m,n:M/string1/ /string2/ .. ./stringN/
is similar to m only when control returns from Q-register q, macro
containing :m request returns as well.

n N/string/
searches from the current pointer to the end of the buffer for the
regular expression "string".

:n :N /string/
is similar to N/string/ except that :N returns a value. It returns 0 if
the string is not found; -1 if it is.

teco

3-1000 AG92-06

teco

NAME

o

p

q

r

USE AND EXPLANATION

O/label/

Pq

Qq

R

transfers control.~ just after label in the current macro, its caller, etc.,
or the request strint-

appends texts to Q-register q.

the value of this request is the value of Q-register q if it is a numeric
Q-register or the number of characters in Q-register q if it contains
text This request can also replace any quoted string if Q-register q
contains text The contents of the Q-register are used as the quoted
string.

moves the pointer one character to the left

nR
moves the pointer n characters to the left

:r R
is similar to R only no errors are possible.

s S/string/
searches from the current pointer to the end of the buffer for "string";
if found, it moves the pointer to the right of the string.

+nS / string/
searches for n occurrences of the string. Moves the pointer to the right
of the nth occurrence.

-nS/stringl
searches for n occurrences of "string" from the current pointer to the
beginning of the file. If found, it moves the pointer to the left of the
nth occurrence.

+m, +nS I string I
only searches from the current pointer to the beginning of the next
mth line.

(0 or -m),-nS/string/
only searches from the current pointer to the beginning of the last mth
line.

teco

3-1001 AG92-06

teco

NAME

:s

t

USE AND EXPLANATION

:S/string/

T

takes arguments in all the ways S does, except that if S does not find
the string, it prints out an error message and returns to teco request
level. :S does not. Instead. :S has the value -1 if the search succeeds
and 0 if the search fails.

prints out the rest of the current line of the terminal.

+nT
prints out the buffer from the current pointer to the beginning of the
next nth line.

(0 or -n)T
prints the buffer from the beginning of the last nth line to the current
pointer.

m.nT
prints the (m+l)th through the nth characters of the buffer.

:t :T /string/
prints the quoted string on the terminal.

u Uq
sets· Q-register q to a very large positive number.

nUq
sets Q-register q to n.

m,nUq
sets Q-register q to n and returns m as its value. This can be used
inside a macro to get the numeric arguments to the macro.

vw VW
when this request is executed, one character is read from the terminal.
The ASCII code for the character read is the value of the VW request

:vw :VWq

w W

x Xq

reads in an entire line from the terminal and puts it into Q-register q.
The newline character is the last character in the register.

is used for throwing away unwanted numeric arguments.

loads the rest of the current line into Q-register q.

teco

3-1002 AG92-06

teco

NAME USE AND EXPLANATION

+nXq
loads Q-register q with everything from the current pointer to the
beginning of the next nth line.

(0 or -n)Xq
loads Q-register q with everything from the beginning of the last nth
line to the current pointer.

m.nXq

:x :Xq

z Z

% %q

$ $

loads Q-register q with everything from the (m+ 1) character to the nth
character.

loads Q-register q with the next string argument to the macro we are
executing in.

is the total number of characters in the buffer. ZJ moves the' pointer
to the right of the last character in the buffer.

if Q-register q contains a numeric value, this request increments the
register by 1. The value of the request is the new value of the
Q-register.

throws away its arguments and does nothing.

newline newline

? ?

?? ??

\ \

n\

throws away its arguments and does nothing.

turns tracing on.

turns tracing off.

is the oeclmai number immediately to the nght of the pointer. It
moves the pointer to just after the number.

inserts the decimal representation of n to the left of the pointer.

m.n\
inserts the decimal representation of m to the left of the pointer. The
representation is padded on the left to be at least n characters wide.

teco

3-1003 AG92-()6

teco

NAME USE AND EXPLANATION

:\ :\

: [[q

]]q

< <

:< :<

> >

n;

.. .. -, -,

is similar to \ except the values are octal and not decimal.

pushes the contents of Q-register q onto the pushdown list

pops the top element off the pushdown list and into Q-register q.

marks the place in the request string that is transferred to by the >
request This loop can only be exited by the ; request

is similar to < except inhibits errors within the loop and causes > to
return a value.

transfers control to just after the last < request executed and
decrements the loop count If enough loops have occurred, this request
does nothing. Nested loops are allowed.

if the last :s.n, *s, or :n request was unsuccessful, transf ers to just after
the next > and exits the present loop; otherwise, does nothing.

if n is positive, transfers control to just after the next > request and
exits the present loop; otherwise. does nothing.

is similar to ; except that the sense of the test is inverted.

ftC n"C
if n is the ASCII code for a letter, a digit, ., _, or $ does nothing.
Otherwise, it transfers to just after the matching '.

"e m,n"E
if m=n, then "E does nothing; otherwise, transfers to just after the next

n"E
if n=O, then "E does nothing; otherwise, it transfers to just after the
matching '.

teco

3-1004 AG92-06

teco

NAME

"g

USE AND EXPLANATION

m,n"G
if m>n, then "G does nothing; otherwise, it transfers to just after the
matching '.

nnG
if n>O, then "G does nothing; otherwise, it transfers to just after the
matching '.

"1 m,n"L
if m<n, then "L does nothing; otherwise, it transfers to just after the
matching '.

n"L
if n<O, then "L does nothing; otherwise, it transfers to just after the
matching '.

"n m,n"N
if mA=n, then "N does nothing; otherwise, it transfers to just after the
matching '.

n"N
if nA=O, then "N does nothing; otherwise, it transfers to just after the
matching '.

"rn "m/string/
if characters immediately to the right of the pointer are equal to string,
"m does nothing; otherwise; it transfers to just after the matching '.

:"m :"m/string/

.' .'

if the characters immediately to the right of the pointer are not equal
to string. "m does· nothing; otherwise, it transfers to just after the
matching '.

marks the location a " request transfers to. If executed as a request, it
does nothing.

marks the location a .. request transfers to. If executed as a request, it
transf ers to just after the next • .

!label!
is a label; it is ignored if it is executed.

its request is the value of the current pointer.

teco

3-1005 AG92-06

teco

NAME USE AND EXPLANATION

prints a newline.

n=
prints n in decimal followed by a newline.

m,n=
prints the value of m followed by a space, followed by the value of n,
followed by a newline. The values are printed in decimal.

:= m,n:=
is similar to = except that the values are printed in octal.

F< F; used to define throw-catch loops.

Name: teco_error

USAGE

declare teco_error entry (char (*» ;

ca11 teco_error (name);

FUNCTION

prints the long form of a teco error message given the short term.

ARGUMENTS

name
is the short form of a teco error message. (Input)

3-1006 AG92-G6

SYNTAX AS A COMMAND

FUNCTION

specifies a directory for teco to search when trying to find a teco macro to execute.

ARGUMENTS

path
is the absolute patbname of a directory, instead of your home directory, to be
searched by tecoJet_macro_.

Name: terminal_output, to

SYNTAX AS A COMMAND

to {-control_arg}

FUNCTION

directs I/O output switches to your terminal. The effects of this command can be
stacked.

CONTROL ARGUMENTS

-source_switch STR. -ssw STR
specifies the name of an I/O switch to be redirected. (Default: user_output)

NOTES

Each command invocation of terminal_output stacks up another attachment for each of
the specified swi tches.

See the file_output, revert_output, and syn_output commands.

3-1007 AG92-06

terminate terminate

11/86

Name: terminate, tm

SYNTAX AS A COMMAND

tm paths

FUNCTION

removes a segment or multisegment file (MSF) from your address space and resets
links to the terminated segment. It is commonly used prior to initiating a different
version of a program.

ARGUMENTS

paths
are pathnames of files to be terminated.

CONTROL ARGUMENTS

-brief, -bf
suppresses the error message printed when a file to be terminated is not known
(initiated).

-long, -lg
does not suppress the above error message. (Default)

-name STR, -nm STR
specifies an entryname STR that begins with a minus sign, to distinguish it from
a control argument

NOTES

Be careful not to unintentionally terminate a segment of the command language
interpreter or another critical piece of the environment Fatal process errors usually
result from such an action.

You can't use the star convention.

Terminating a MSF terminates only component 0 of the MSF unless it is an object
MSF, in which case all components are terminated.

3-1008 AG92-06A

11/86

Name: terminate refname, tmr

SYNTAX AS A COMMAND

tmr ref_names

FUNCTION

removes a segment or multisegment file (MSF) from your address space and resets
links to the terminated segment It is commonly used prior to initiating a different
version of a program.

ARGUMENTS·

ref_names
are the reference names of segments or MSFs to be terminated.

CONTROL ARGUMENTS

-name STR. -nm STR
specifies a reference name STR that begins with a minus sign, to distinguish it
from a control argument

NOTES

This command allows termination by reference name rather than by pathname. The
segment or MSF itself is terminated, 110t merely the reference name specified.

Be careful not to unintentionally terminate a segment of the command language
interpreter or another critical piece of the environment Fatal process errors usually
result from such an action.

You can't use the star convention.

If the reference name you specified is on a component of an object MSF, all
components of the MSF are terminated and links to them unsnapped.

3-1009 AG92-06A

11/86

Name: terminate_segno, tms

SYNTAX AS A COMMAND

tms segnos

FUNCTION

removes a segment number(s) from your address space and resets links to the
terminated segment It is commonly used prior to initiating a different version of a
program.

ARGUMENTS

segnos
are segment numbers (in octal) to be terminated.

CONTROL ARGUMENTS

-brief, -bf
suppresses the error message printed when you give an invalid segno.

-long, -lg
does not suppress the above error message. (Default)

NOTES

This command allows termination by segment number rather than by pathname.

Be careful not to unintentionally terminate a segment of the command language
interpreter or another critical piece of the environment Fatal process errors usually
result from such an action.

You can't use the star convention.

If the segment number given identifies a component of an object MSF, all components
of the MSF are terminated and links to them unsnapped.

3-1010 AG92-()6A

11/86

Name: terminate_single_refname, tmsr

SYNTAX AS A COMMAND

tmsr ref_names

FUNCTION

removes a file or a single reference name from your address space and resets links to
the terminated segment or multisegment file (MSF). It is commonly used prior to
initiating a different version of a program.

ARGUMENTS

ref_names
are the reference names of segments or MSFs to be terminated.

CONTROL ARGUMENTS

-name STR, -nm STR
specifies reference name STR that begins with a minus sign, to distinguish it from
a control argument

NOTES

This command terminates a single reference name. Unless the specified reference name
is the only one by \'/hich the segment or MSF is known, the file itself is not
terminated.

Be careful not to unintentionally terminate a segment of the command language
interpreter or another critical piece of the environment Fatal process errors usually
result from such an action.

You can't use the star convention.

If the reference name is on a component of an object MSF, links to any of the
components are unsnapped; if it is the only name on the MSF, all components are
terminated.

3-1011 AG92-06A

11/86

SYNTAX AS A COMMAND

test_archive paths

FUNCTION

checks an archive segment for archive format errors and other inconsistencies. It is a
library maintenance tool that is run weekly to check all archive segments in the online
libraries. .

ARGUMENTS

paths
are the patbnames of the archive segments in question. The archive suffix is
assumed.

Name: time

SYNTAX AS A COMMAND

time {time_string} {-control-arg}

SYNTAX AS AN ACTIVE FUNCTION

[time {time_string} {-control-arg}]

FUNCTION

returns a five-character time of day of the form "HH:MM", e.g., "16:15". The format
string to produce this is ""Hd:"MH".

ARGUMENTS

time_string
indicates the time about which information is desired. If you supply no
time_string, the current time is used. The time string is concatenated to form a
single argument even if it contains spaces; you need not quote it (See Section 1
f or a description of valid time_string values.)

CONTROL ARGUMENTS

-zone STR
STR specifies the zone that is to be used to express the result (Default: the
process def awt)

time

3-1012 AG92-()6A

time

11/86

NOTES

Use the print_time_defaults command to display the default zone. Use the
display_time_info command to display a list of all acceptable zone values.

Due to exec_corns, etc., that have been built around the expected date_time format,
this command does not honor the process date_time format (set by set_time_defauld.
You are encouraged to use "clock time" in place of time to get the proper default
handling.

Name: times

SYNTAX AS A COMMAND

times {num_args}

SYNTAX AS AN ACTIVE FUNCTION

[times {num_args}]

FUNCTION

returns the product of the num_args. If you give no num_args, 1 (the multiplicative
identity) is returned.

EXAMPLES

string [times 6 7.3]
43.8

times

3-10121 AG92-06A

This page intentionally left blank.

11/86 AG92-06A

Name: total_output_requests, tor

SYNT AX AS A COMMAND

tor {request_typ-es} {-control_args}

SYNTAX AS AN ACTIVE FUNCTION

[tor {request_type}]

FUNCTION

prints the total number of requests in one or more I/O daemon queues.

ARGUMENTS

request_type
identifies the request type(s) for which totals are to be listed. The default is to
list totals in the queues of the default printer request type used by enter_output_request
-print (as displayed by print_request_types).

CONTROL ARGUMENTS

you can't give them when you invoke tor as an active fUnction.

-all, -a
lists totals for all I/O daemon request type queues.

-brief, -bf
omits request types that are empty.

-inhibit_error, -ihe
suppresses error messages for request type queues to which you don't have access.
Totals for such queues are printed as *****.

-long. -lg .
includes request types that are empty. (Default)

ACCESS REQUIRED

You need status extended access to the queue. segments for the request type.'

NOTES

Each request type can have from one through four queues. The totals by queue are
reflected in from one through four numbers listed for each request type. If an error
occurs while accessing a queue, an asterisk is printed for the total in that queue.

3-1013 AG92-06

11/86

EXAMPLES

The. command line

tor -all -brief

requesting a summary of all queues, but excluding any empty request types, mi~'1t
print the following:

printer: 0 0 3 2
f 11 x8: 0 2
hdsa _prt: *,'c*,':)'c

Incorrect aCGess on entry. hdsa _prt queue 1
punch: 2

indicating the current number of output requests by queue for the first, second, and
fourth request types and an access error f or the third type. As an active function, tor
might be embedded in an admin.ec to test for cards to punch. The following
exec_com fragment demonstrates this usage:

&if &[ngreater [plus [tor punch]] 0]
&then &goto START_PUNCHING_CARDS
&print No cards to punch.
&quit

Name: trace

SYNTAX AS A COMMAND

trace {entrypoints} {-control_args}

FUNCTION

debugs systems of programs, stops execution at any call or return, and measures the
resources spent in each program. It helps you isolate which programs might be
malfunctioning by tracing calls, returns, argument lists, and signals. A metering mode
helps expose inefficient programs by measuring and accumulating real time, virtual
CPU time, and page faults spent in each program. The trace facility works with
programs written in PL/I, FORTRAN, COBOL. Pascal. and ALM. (See also the
trace_meters and watch commands.)

trace

3-1014 AG92-o6A

trace

ARGUMENTS

entrypoints
represent program en trypoints. You must separate multiple entrypoints by spaces
(see "Notes on the Syntax of Entrypoints"). If you don9 t use any control
arguments, the entrypoints are added to the trace table with the default trace
parameters currently in effect

CONTROL ARGUMENTS
fall into three groups: those that tell how to trace the specified entrypoints (trace
parameters), those that tell trace how to behave in general (global parameters).
and those that specify actions (such as information display).

Trace Parameters

-arguments in lout I on I off. -ag in lout I on I off
lists the arguments when the specified entrypoints are traced at call (in). return
(ou1) , both (on), or neither (of!). Tracing arguments is useful for debugging. but
greatly increases the volume of trace information. (Default initially off)

-call COMMAND-LINE
executes a command line whenever the specified entrypoints are traced at both
call and return, but not at unwind. When COMMAND-LINE contains spaces,
quote it It can't exceed 256 characters. Trace is temporarily disabled while
COMMAND-LINE is being executed. Specifying -no_call or -call "" turns off
this fu...Ylction. (Default initially =no_call)

-every N, -ev N
prevents the specified entrypoints from being traced unless their call count is a
multiple of N; for example, -every 10 permits every tenth call to be traced.
Specifying -no_every or -every 0 eliminates this constraint (Default initially
-no_every)

-first N, -ft N
prevents the specified entrypoints from being traced when their call count is less
than N; for example, if an entrypoint's -first is 1000, the first 999 calls are not
traced. Specifying -no_first or -first 0 eliminates this constraint (Default
initially -no_first>

-high N
prevents the specified entrypoints from being traced when their recursion level is
greater than N; for instance. if an entrypoint's -high is t no recursive
invocations are traced. Specifying -no_high or -high 0 eliminates this constraint
(Default initially -no_high)

trace

3-1015 AG92-()6

trace

-last N, -It N
prevents the specified entrypoints from being traced when their call count is
greater than N; for example, -last 1 traces only the first call of each entrypoint
Specifying -no_last or -last 0 eliminates this constraint (Default: initially
-no_last)

-low N
prevents the specified entrypoints from being traced when their recursion level is
less than N; for instance, -low 2 permits only recursive invocations to be traced.
Specifying -no_low or -low 0 eliminates this constraint (Default initially
-no_low)

-new_high on I off
permits the specified entrypoints to be traced only when their recursion level has
reached a new high. It is useful for tracing runaway recursion. (Default initially
off)

-no_call
turns off the -call function for the specified entrypoints. (Default, initially)

-no_every, -nev
eliminates the -every constraint for the specified entrypoints. (Default, initially)

-no_first, -nft
eliminates the -first constraint for the specified entrypoints. (Default, initially)

-no_high
eliminates the -high constraint for the specified en trypoints. (Default, initially)

-no_last. -nIt
eliminates the -last constraint for the specified entrypoints. (Default, initially)

-no_low
eliminates the -low constraint for the specified entrypoints. (Default, initially)

-no_stop_every, -nspev
eliminates the -stop_every constraint for the specified entrypoints. (Default,
initially)

-no_stop_low, -nsplow
eliminates the -stop_low constraint for the specified entrypoints. (Default,
initially)

-stop in lout I on I off, -sp in lout I on I off
stops execution of the specified entrypoints when they are called (in), when they
return (out), both (on), or neither (off). (Default: initially off)

trace

3-1016 AG92-o6

trace

-stop_every N. -spev N
prevents the specified entrypoints from being stopped unless their call count is a
multiple of N; for instance. -stop_every 10 permits every tenth call to be
stopped. Execution can be stopped at call, return. or both by specifying -stop in,
-stop out, or -stop on. Specifying -no_stop_every or -stop_every 0 eliminates
this constraint (Default: initially -no_stop_every)

-stop_low N, -splow N
prevents the specified entrypoints from being stopped unless their recursion level
is N or greater; for example, -stop_low 2 only stops recursive invocations.
Execution can be stopped at call, return. or both by specifying -stop in, -stop
out. or -stop on. Specifying -no_stop_low or -stop_low 0 eliminates this
constraint (Default: initially -no_stop_low)

-trace in lout I on I off
traces the specified entrypoints when they are called (in), when they return (out),
both (on), or neither (ofn. (Default: initially on)

Global Parameters

-aIm onloff
sets the -aIm global parameter on or off. ALM {Assembly Language for Multics}
programs sometimes use nonstandard call-return protocols that malfunction when
traced, or make trace malfunction. This parameter controls how ALM entrypoints
are handled. When -aIm is on. they are handled like ordinary entrypoints. When
-aIm is off, they are ignored by the trace facility. even if they are in the trace
table. Initially -aIm is off.

-automatic on I off, -auto on I off
sets the -automatic global parameter on or off. This parameter provides an easy
way to trace everything. It automatically adds entrypoints to the trace table when
they are first called. Their trace parameters are set to the current defaults.
Specifying -automatic on implies -signals on, and specifying -automatic off
implies -signals off, If you want automatic mode without signal tracing, specify
-automatic on -signals off. Initially -automatic is off.

-brief, -bf
sets the -brief global parameter, which abbreviates trace messages by excluding the
time of the trace event, the caller of the entrypoint being traced, and the meters
when the entrypoint returns. This reduces wraparound when the trace is displayed
on an 80-column terminal instead of a line printer. Initially -brief is set

-buffer on I off, -buf on loff
sets the -buffer global parameter on or off. Specifying -buffer on redirects the
trace information to a circular buffer in the process directory. The buffer
contains 8192 entries. You can display it with -print_buffer. Buffering is much
more efficient than regular tracing. but buffer entries do not have room for
argument lists. Initially -buffer is off.

trace

3-1017 AG92-06

trace

-disable, -disa
disables trace; for instance, to stop the trace messages, to "freeze" the meters, or
to turn trace off when it is not being used. Trace is enabled when you use the
trace command for the first time in a process.

-enable, -ena
reverses the eff eet of -disable.

-long, -lg
sets the -long global parameter for full trace messages, which include clock time
and meters. This setting is appropriate for a 132-column output device, Initially
-brief is set

-loud
sets the -loud global parameter, which tells the trace and watch commands to
summarize the eff eet of each command line and warn when trace is disabled.
Initially -loud is set

-meter on I off, -mt on I off
sets the -meter global parameter on or off. Trace always meters, even if you
specify -meter off. Specifying -meter on tells trace to concentrate on metering
and skip all trace, stop, and watch cheeks. The trace_meters command displays
and resets the meters. Initially -meter is off.

-no_output_file, -nof
resets the -output_switch global parameter to its initial value, user_output

-no_output_switch, -nosw
resets the -output_switch global parameter to its initial value, user_output

-no_stop_proc, -nspp
resets the -stop_proc global parameter to its initial value, the command processor
(cu_$cI).

-output_file PATH, -of PATH
sets the -output_switch global parameter so that the trace is written to the file
specified by PATH. The ".trace" suffix is added to PATH if you don't give it;
the file is truncated if it already exists. or created if it does not If the trace
was already being written to a file, that file is closed after the new one is
opened. Specifying -no_output_file or -output_file '''' resets -output_switch to its
initial value, user_output

-output_switch SWITCH, -osw SWITCH
sets the -output_switch global parameter to SWITCH. This parameter determines
the I/O switch through which trace, watch, and stop messages are written. If
SWITCH is not attached to the same device as error_output, watch and stop
messages are also written to error_output The switch must be open and prepared
to receive stream output Specifying -no_output_switch or -output_switch "" resets
-output_switch to its initial value, user_output

trace

3-1018 AG92-06

trace

-quiet
sets the -quiet global parameter, which tells the trace and watch commands not to
summarize the effect of each command line or warn when trace is disabled.
_Initially __ ._~lo_ud ___ .is __ -Se.t •. __ .. - .---- _. -- ----_ .. __ .

-signals on I off, -sig on loff
sets the -signals global parameter on or off. It controls whether signaled
conditions are traced. Initially -signals is off.

-stop_proc ENTRYNAME, -spp ENTRYNAME
sets the -stop_proc global parameter to ENTRYNAME. where ENTRYNAME can
be any string acceptable to the cv_entry_ subroutine. This parameter is the
entrypoint that trace calls to stop execution. It is called with trace temporarily
disabled. When the -stop_proc returns, trace is re-enabled and execution resumes.
If the -stop_proc is the command processor, the start command makes it return.
Specifying -no_stop_proc or -stop_proc "" reset -stop_proc to its initial value,
the command processor (cu_$cI).

Actions

-add

-off

-on

adds the specified entrypoints to the trace. table. If any of them are already in
the trace table, their trace parameters are updated. In either case, their trace
parameters assume the current default values amended by. any control arguments
that specify trace parameters.

turns the specified entrypoints off. They remain in the trace table, but tracing,
watching, stopping, and metering are disabled. When an entrypoint is turned off,
calls to it continue to be counted.

turns the specified entrypoints on.

-parameters, -pm
displays the default trace parameters and the global parameters.

-print_buffer N, -prbuf N
displays the last N events in the circular trace buffer (see -buffer). If N is
greater than 8191, the entire buffer is displayed. The amount of information
displayed depends on whether -brief or -long is ~n effect

-remove, -rm
removes the specified entrypoints from the trace table.

-set_defaults, -sdft
makes the trace parameters specified in the command line be the defaults.

trace

3-1019 AG92-D6

trace

-status, -st
displays the counters and trace parameters of the specified entrypoints in the trace
table. Use the trace_meters command to display the meters.

NOTES

If you specify entrypoints and don't specify -add, -remove, -on, -off, or -status,
-add is assumed.

Execution is stopped either before an entrypoint has pushed its stack frame or after it
has popped its stack frame; therefore, its stack frame cannot be inspected. When
execution is stopped, trace is temporarily disabled until execution is resumed.

The recursion level of an entrypoint is actually the number of invocations that have
not yet returned, not the number of recursive invocations, which would be one less
since the first invocation is not a recursive invocation.

The order of entrypoints in the trace table is determined by their segment numbers
and offsets. The table is ordered first by ascending segment number and then by
ascending offset This permits rapid lookup by binary search.

Tracing with -automatic on and -meter on typically doubles execution time, but the
overhead is excluded from the meters. Tracing with -automatic on and -buffer on
typically triples execution time. Tracing with -automatic on and -arguments on into an
output file requires about 20 milliseconds to trace each event and typically increases
execution time by a factor of 50. It also uses up quota fast

The trace facility can watch virtual memory locations for changes in their contents.
See the documentation of the watch command for more information. The trace facility
has the following restrictions:

1. Gates cannot be traced. Trace must be separately invoked in each ring.

2. Some programs use nonstandard call-return protocols that malfunction when
traced or make trace malfunction. Programs that look at their caller's stack
frame malfunction because trace inserts its own stack frame ahead of every
entrypoint that it traces or meters (to detect the return or unwind).

The trace facility has a list of some entrypoints that cannot be traced. These
entrypoints may be added to the trace table but they are effectively turned
off (see -off). The list includes: cobol_control_ *, cobol_rts_ *, condition_$*,
cu_$*, formline_ *, fortran_io_ *. link_trap_caller_ *, lisp_ *, nonlocaIJoto_$*.
pascal_area_management_$*. pascal_errors_$*. pascal_io_$*, pascal_timeS * •
pro be*, ssu_$standalone_in vocation, ssu_invocation_$create_standalone,
unwind_stack_, and unwinder_.

3. The trace table can hold up to 10,000 en trypoints.

trace

3-1020 AG92-06

trace trace

4. An ALM entrypoint can only be traced if it invokes the ALM entry
operator. The "entry" and "get_Ip" pseudo-ops do this. The first instruction
of an ALM entrypoint must be a transfer to the ALM entry operator,
otherWise it is effectivelytiirned-off -(see.:off). Entrypoints thaI do-not -have
segdefs may be added in automatic mode with names like bound_foo_$1234.

NOTES ON THE SYNTAX OF ENTRYPOINTS

Trace uses an entryname syntax that is capable of referring to individual entrypoints
or sets of entrypoints. An entryname can have the following forms:

pathname I entryname
designates an entrypoint by the absolute or relative pathname of its segment and
by its symbolic offset within that segment (e.g., >sss>bound_fscom2_1 copy).

pathname
same as pathname I [entry pathname] . If pathname contains no "<" or ">"
characters, it is interpreted as reference_name.

pathnamel *
designates some or all entrypoints in a segment If the segment is not bound, it
designates all entrypoints. If the segment is bound and the entry portion of the
pathname is the name of the bound object, it designates all entrypoints (e.g .•
>sss>bound_fscom2_1 *). If the segment is bound and the entry portion of the
pathname is the name of a component of the bound object. it designates all
entrypoints in the component (e.g.. >sss~copy 1*).

reference_name$entryname
designates an entrypoint by the reference name. absolute pathname, or relative
pathname of its segment and by its symbolic offset within that segment (e.g .•
copy$cp). If reference_name contains "<" or ">" characters. it is interpreted as a
pathname. otherwise it is interpreted as a reference name and is located via the
search rules for executable segments.

reference_name
same as ref erence_name$ref erence_name.

reference_name$*

*

similar to pathname I *. except that the segment is designated by its reference
name.

designates all entrypoints in the trace table. If you specify *. you cannot specify
any other entrypoints.

3-1021 A(}92-06

trace

NOTES ON ERROR MESSAGES

The trace facility frequently checks the consistency of the trace table. When an
inconsistency is detected, it halts with a message of the form:

or

Error: Linkage error by trace_catch_1141
(>sss>bound trace)
referencing-trace:error_halt_ltable_index_oob
Segment not found.

Error: error condition by trace_tables_$parameters_ptrI6247
(>sss>bound_trace_)

Malfunctioning programs can cause this kind of error by accidentally writing on the
trace table. You can cause this kind of error by modifying the trace table while an
invocation of trace is suspended. For example, if you QUIT while tracing. and then
do "trace -remove *; start", an error of this form is likely. You can, however. do
QUIT, "trace -disable; start", or QUIT, "trace -remove *; release".

EXAMPLES

The command sequence

trace

tells the number of entrypoints in the trace table and displays the global parameters,
the default parameters, and a list of the action control arguments.

The command sequence

trace -meter on -automatic on
some script
trace -disable
trace_meters -output_file PATH.tmt

puts a report in the file PATH.tmt that shows real time, CPU time, and page fault
meters for all entrypoints that were invoked during the script. Some inaccuracy results
from linkage faults and other initializations that occur the first time the script is run
in a process. This error can be eliminated by running the script twice with
"trace_meters -reset" in between. The command sequence

trace -buffer on -auto on
some script that blows up
trace -disable
fo PATH.trace; trace -print_buffer 9999; ro

puts the iast 8192 trace events in the file PATH. trace. It shows all calls. returns,
unwinds, and signals leading up to the failure.

trace

3-1022 AG92-Q6

trace

The command sequence

trace -of PATH. trace -auto 'on---argument's on' -set_defaurts
some script
trace -nof -auto off -arguments off -set_defaults -remove *

puts a complete call-return history in the file PATH. trace. It shows all calls and
returns with arguments and all conditions that were signaled. This is a good way to
diagnose fatal process errors (use the adjust_bit_count command on the file before
examining it).

The command line

trace -parameters -status *

displays the default trace parameters and the global parameters. It also displays a list
of all the entrypoints in the trace table with their counts and parameters that are
different from the defaults.

SUMMARY OF TRACE PARAMETERS

-trace infoutlonloff

-eve'ry N
-first N
-last N
-low N
-high N
-new_high onloff

(-ev)
(-ft)
(-1 t)

-stop inloutlonloff (-sp)

Trace ca 11 s, returns, both, ne i ther. (on)
Donlt trace unless •••
call count iS,a multiple of N. (-no_every)
call count is N or greatero (-no_first)
call count is N or less. (-no last)
recursion level is N or greater. (-no_low)
recursion level is N or less. (-no high)
recursion level is the highest yet: (off)

Stop calls, returns, both, neither. (off)
Donlt stop unless •••

trace

-stop_every N
-stop_low N

(-spev)
(-sp low)

call count is a multiple of N. (-no stop every)
recursion level is N or greater. (-no_stop_low)

-arguments inloutlonloff (-ag) Args at call, return, both, neither. (off)
-call COMMAND-LINE Call whenever entrypoint is traced. (-no_call)

SUMMARY OF GLOBAL PARAMETERS

-::11 """,,~~ w,.11""'1 I

-automatic onloff
-buffer onloff
-meter onloff
-signals onloff
-enable/-disable
-long/-brief

How to handie ALM programs. (off)
(-auto) Add entrypoints automatically. (off)
(-but) Send the trace to a c i rcu 1 ar buf f er. (of f)
(-mt) Just meter, donlt trace or stop. (off)
(-s i g) Trace signa 1 ed cond it ions. (off)
(-ena/-disa) Enable/disable trace. (-enable)
(-lg/-bf) Use full/abbreviated trace messages. (-bf)

3-1023 AG92-()6

trace

-loud/-quiet
-output_file PATH (-of)
-output_switch SWITCH (-osw)
-stop_proc ENTRYNAME (-spp)

Summarize effect of each command. (-loud)
Write trace to PATH.trace. (-no_output_file)
Write trace through SWITCH. (user_output)
Call ENTRYNAME to stop execution. (cu_$cl)

SUMMARY OF ACTIONS

-add
-remove
-on
-off
-status
-set_defaults
-parameters
-print_buffer N

(-rm)

(-s t)
(-sdft)
(-pm)
(-prbuf)

Name: trace_meters, tmt

SYNTAX AS A COMMAND

tmt {-control_args}

FUNCTION

Add entrypoints to the trace table.
Remove entrypoints from the trace table.
Turn on entrypoints in the trace table.
Turn off entrypoint~ in the trace table.
Display entrypoints in the trace table.
Make specified trace parms the defaults.
Display the trace and global parameters.
Display the last N events in the buffer.

formats and displays the cpu time and page fault meters of entry points that
are traced with "-meter on" (see the trace command).

CONTROL ARGUMENTS

-global_percent N, -gpct N, -g% N
reports only entry points whose global cpu time or global page faults exceed
N% of the total. N must be a whole number.

-output_file path, -of path
causes output to be d.irected to the file specified by path. The file is
overwritten if it already exists, or created if it does not. The ft. tmt"
suffix is added to path if it is not given.

-percent N, -pet N, -% N
reports only entry points whose local cpu time or local page faults exceed N%
of the total. N must be a whole number.

-report_reset, -rr
displays the report and zeroes the meters.

3-1024 AG92-()6

-reset -rs
set the meters of every entry point in the trace table to zero and does not
display the· report

NOTES

If no arguments are supplied. the report is displayed and the meters are not
reset

Entry points that have not been called since the last reset are not reported.

Some programs are on a special list of programs that can never be traced (see
the trace command). Some entry points can not be traced because they are
written in aIm and are added to the trace table when "-aIm off" is in effect
The tracing of some entry points may have been turned off by the "trace -off"
command. Entry points that are not metered either because they can not be
traced or because they have been turned off are, nevertheless, counted and are
reported with empty meter columns.

If the local virtual cpu time reported for a procedure that has been called
only a few times is unbelievably large, consider the possibility that it
snapped some dynamic links during its run. This metering error can be
eliminated by reseting the meters and repeating the run within the same
process. It can be completely avoided by making a trial run bef ore metering.

NOTES ON COLUMN HEADINGS

The column headings of the report are interpreted as f onows:

GREAL
GVCPU
GPF
LREAL
LVCPU
LPF
LVCPU!CALL
LVCPU%
CALLS

global real time in seconds
global virtual cpu time in seconds
global page faults
local real time in seconds
local virtual cpu time in seconds
local page faults
local virtual cpu time in seconds per call
local vcpu time as a percentage of total vcpu time
number of calls

Global means the resources used by an entry point and everything it calls. Local
means the resources used by an entry point less the resources used by all traced entry
points that it calis.

3-1025 AG92~

Name: trace_stack, ts

SYNTAX AS A COMMAND

ts {-control_args}

FUNCTION

prints a detailed explanation of the current process stack history in reverse order
(most recent frame first). For each stack frame, all available information about the
procedure that established the frame (including, if possible, the source statement last
executed), the arguments to that (the owning) procedure, and the condition handlers
established in the frame are printed.

CONTROL ARGUMENTS

-brief, -bf
suppresses listing of source lines, arguments, and handlers. It is incompatible with
-long.

-depth N, -dh N
dumps only N frames.

-long, -lg
prints octal dump of each stack frame.

-stack_ptr PTR, -sp PTR
starts tracing from stack frame at PTR. where PTR is a virtual pointer acceptable
to cv_ptr_. PTR points to the stack frame at which tracing is to begin.

NOTES

This command is most useful after a fault or other error condition. If you invoke
trace_stack after such an error, the machine registers at the time of the fault are also
printed, as well as an explanation of the fault. The source line in which it occurred
can be given if you compile the object segment with the -table option.

For a discussion of the Multics stack frame. see the Programmer's Reference Manual.

NOTES ON OUTPUT FORMAT

When you invoke trace_stack with no -stack_ptr. it first searches backward through
the stack for a stack frame containing saved machine conditions as the result of a
signaled condition. If such a frame is found, tracing proceeds backward from that
point; otherwise. tracing begins with the stack frame preceding trace_stack.

If a machine-conditions frame is found and you didn't supply -brief. trace_stack
repeats the system error message describing the fault, source line, and faulting
instruction and a listing of the machine registers at the time the error occurred.

3-1026 AG92-D6

transaction

The command then performs a backward trace of the stack, for N frames if you gave
the -depth argument or else until the beginning of the stack is reached.

For each stack f:rime trace~si:ack prints the offset of the frame, the condition name if
an error occurred in the frame, and the identification of the procedure that
established the frame. If the procedure is a component of a bound segment, the
bound segment name and the offset of the procedure within the bound segment are
also printed.

Unless you supply -brief. trace_stack then locates and prints the source line associated
with the last instruction executed in the procedure that owns the frame (i.e., either a
call forward or a line that encountered an error). The source line can be printed only
if the procedure has a symbol table and if the source for the procedure is available
in your working directory. If the source line cannot be printed, trace_stack prints a
comment explaining why.

Next, trace_stack prints the machine instruction last executed by the procedure that
owns the current frame. If the machine instruction is a call to a PL/I operator, the
command also prints the name of the operator. If the instruction is a procedure call.
trace_stack suppresses the octal printout of the machine instruction and prints the
name of the procedure being called.

Trace_stack then lists the arguments supplied to the procedure that- owns the current
frame and also lists any enabled condition, default, and cleanup handlers established in
the frame.

If you select -long. the command then prints an octal dump of the stack frame,
eigh t words per line.

Name: transaction, txn

SYNTAX AS A COMMAND

txn key {-control_args}

SYNTAX AS AN ACTIVE FUNCTION

[txn key {-control_args}]

FUNCTION

.. ,';+1-.
" lLll

enables you to define and execute atomic operations interactively. You can invoke the
services of the transaction manager to begin, commit. abort, rollback, abandon, or kill
a transaction. There is also a status request for displaying inf ormation about the
current transaction. There is an execute request to wrap a given command line in a
transaction. This command is part of the command level interface to Multics data
management (OM) (see the Programmer's Reference Manua!).

3-1027 AG92-06

transaction transaction

ARGUMENTS

key
designates the operation to be performed. See "List of Operations" below for a
description of each operation, its command syntax line, and specific application.

CONTROL ARGUMENTS
can be one or more control arguments, depending on the particular operation.

LIST OF OPERATIONS

Each operation is described in the general format of a command/active function.
Where appropriate, notes and examples are included for clarity.

Operation: abandon

SYNTAX AS A COMMAND

txn abandon

SYNTAX AS AN ACTIVE FUNCTION

[txn abandon]

FUNCTION

your process surrenders control of the transaction to the OM Daemon, which aborts it
as part of its normal caretaker responsibilities. The active function returns true if the
transaction is successfully abandoned, false otherwise.

NOTES

By abandoning a transaction, your process can start another transaction without waiting
for the abort operation to conclude (your process is still charged for the abort). The
data locked by the original transaction remains inaccessible. however, until the rollback
is completed.

Operation: abort

SYNTAX AS A COMMAND

txn abort

SYNTAX AS AN ACTIVE FUNCTION

[txn abort]

3-1028 AG92-06

transaction transaction

FUNCTION

aborts the current transaction so thatt in effectt it never exis~. Any modifications to
protected files caused by the aborted transaction are rolled back, and references to the
transaction are removed from system tables. The active function returns true if the
transaction is successfully aborted, false otherwise.

Operation: begin

SYNTAX AS A COMMAND

txn begin {-control_args}

SYNTAX AS AN ACTIVE FUNCTION

[txn begin {-control_args}]

FUNCTION

starts a transaction by reserving a slot in the transaction definition table (TDT) for
your processt with a unique transaction identifiert date/time of the start, pathname of
the before journat and other information pertinent to the transaction (see the status
operation). If your process already owns a transactiont an error occurs. The active
function returns true if a transaction is started successfully, false otherwise.

CONTROL ARGUMENTS

-no_waitt -nwt
causes an error if the data management system (DMS) is not currently invoked.
(Default)

-wait N, -wt N
if OMS is not currently invoked, wait N seconds before starting the transaction.
An error occurs if OMS is still not up after the elapsed time.

-wai t_indef ini tely, -wti
if OMS is not currently invokedt wait as long as necessary to start the
transaction. The status of OMS is checked at 10-second intervals, and notification
is given when command line execution begins.

NOTES

This operation is a tool for isolating and testing the transaction startup function. In a
production environment the transaction execute command is the recommended method
of starting transactions from command level because it builds in the atomicity: it
begins the transaction, executes a command line, and then terminates the transactiont
within the one request (see the execute operation).

3-1029 AG92-06

transaction transaction

EXAMPLES

The following example shows an absentee job intended not to run until a transaction
can be started in absentee.

&if &[not [txn begin -wait 100]] &then &do
ear &ec_path -time "+1 hour" -ag &f1
&quit

&end

Operation: commit

SYNTAX AS A COMMAND

txn commit

SYNTAX AS AN ACTIVE .FUNCTION

[txn comm it]

FUNCTION

signals successful completion of the currently active transaction. Modifications made to
protected files by this transaction are considered permanent Any locks held by the
transaction are released. making the data public again. The active function returns true
if the commit operation is successful, false otherwise.

Operation: execute, e

SYNTAX AS A COMMAND

txn e {-control_args} {command_line}

SYNTAX AS AN ACTIVE FUNCTION

[txn e {-control_args} {command_line}]

FUNCTION

starts a transaction. executes a command line, and, provided the command line is
successfully executed, commits the transaction. Control arguments govern what action
to take based on conditions encountered. The active function returns true if the
execute operation is successful, false otherwise.

3-1030 AG92-06

transaction transaction

ARGUMENTS

command_line
specifies the command line to be executed as part of the transaction. Enclose it
in quotes if it contains parentheses, brackets. or semicolons. If you omit it. the
system prompts "Command line:".

CONTROL· ARGUMENTS

-abandon_on CONDITION_LIST
abandons the transaction and results in a nonlocal exit of the command line if
any of the listed conditions is encountered during command line execution.
Separate the listed conditions by commas, with no intervening whitespace. The list
can include any_other. The default action is as described under "Notes" below.
This control argument is incompatible with -existinLtransaction_allowed and
-existinLtransaction_required.

-abort_on CONDITION_LIST
aborts the transaction and results in a nonlocal exit of the command line if any
of the listed conditions is encountered during command line execution. Separate
the listed conditions by . commas, with no intervening whitespace. The list can
include any_other. The default action is as described under "Notes" below. This
control argument is incompatible with -existinLtransaction_allowed and
-existinLtransaction_required.

-command_Ievel~ -cl
places your process at the next command level. from which commands can be
entered in the transaction. You can use the start or release command to exit this
command level.

-existinLtransaction_allowed. -eta
accepts the existing transaction (if one already exists in your process) as the origin
of command line execution. No new transaction is begun. This control argument
is incompatible with -retry _on and -suspend_on. (Default to return an error if a
transaction already exists)

-existinLtransaction_required, -etr
requires that a transaction already exist in your process; returns an error if no
transaction exists. This control argument is incompatible with -retry_on and
-suspend_on. (Default to return an error if a transaction already exists)

-nc_3.ction_on CONDITiON_LIST
overrides any special action (e.g., -abandon_on, -retry _on) you previously specified
in the command line for the listed conditions. The default action (see "Notes") is
also overridden.

-no_existinLtransaction_allowed, -neta
causes an error if a transaction already exists in your process. (Default)

3-1031 AG92-06

transaction transaction

-no_wait, -nwt
causes an error if DMS is not currently invoked. (Default)

-retry_on N CONDITION_LIST
executes the command line up to N times if any of the listed conditions is
encountered dw-ing command line execution. If N is O. the command line is not
retried. Separate the listed conditions by commas, with no intervening whitespace.
The list can include any_other. The default action is as described under "Notes"
below.

-suspend_on CONDITION_LIST
suspends the transaction and goes to the next command level if any of the listed
conditions is encountered during command line execution. Separate the listed
conditions by commas. with no intervening whitespace. The list can include
any_other. The default action is as described under "Notes" below.

-wait N. -wt N
if DMS is not currently invoked. waits N seconds before starting the transaction
and executing the command line (you are notified when command line execution
begins). An error condition is returned if DMS is still not up after the elapsed
time. This operation is useful for absentee jobs submitted to perform operations
within transactions.

-wai t_indef ini tely, -wti
if DMS is not currently invoked. waits as long as necessary to. start the
transaction and execute the command line. The status of DMS is checked at
10-second intervals. and notification is given when command line execution begins.

NOTES

If a transaction already exists in your process, the default action is -no_action_on
any_other, otherwise the default action is -suspend_on any_other -abort_on cleanup.

A transaction begun by txn execute is committed unless the command line fails to
execute properly. in which case the transaction is aborted.

A transaction severity code (displayable by the "severity transaction" command) denotes
the status of the execute operation. as follows:

o the operation was completed without errors and was not retried.
1 the operation was completed. but was retried one or .more times.
2 the operation failed; the transaction was aborted or abandoned.
3 the operation failed; the transaction could not be aborted or abandoned.
4 the transaction could not be begun.

The active function returns true if the severity after execution is 0 or 1; false if it is
2, 3, or 4.

If a transaction is currently suspended in your process, the txn execute command gets
an error and the active function returns false.

3-1032 AG92-06

transaction

Operation: kill

SYNTAX AS A COMMAND

txn k i 11 {I O}

SYNTAX AS AN ACTIVE FUNCTION

[txn k i 11 {I O}]

FUNCTION

transaction

expunges the current or specified transaction with no attempt to preserve consistency
of any DM files that might have been modified by this transaction. Killing a
transaction may destroy the consistency of any databases that the transaction is using;
therefore use this operation when neither you nor the Daemon is able to complete the
transaction. The active function returns true if the operation is executed successfully,
false otherwise.

ARGUMENTS

ID
is the unique identifier of the transaction to be killed (obtainable through txn
status). (Default: the current transaction in your process)

ACCESS REQUIRED

Operation: rollback

SYNTAX AS A COMMAND

txn ro 11 back

SYNTAX AS AN ACTIVE FUNCTION

[txn ro 11 back]

Fu/veriON

rolls back the current transaction to its beginning (txn begin), undoing any changes to
protected files caused by the transaction and releasing the locks held by it. The
transaction is still considered active in your process. The active function returns true
if the transaction was successfully rolled back, false otherwise.

3-1033 AG92-()6

transaction transaction

Operation: status, st

SYNTAX AS A COMMAND

txn st {-control_args}

SYNTAX AS AN ACTIVE FUNCTION

[txn st {-control_args}]

FUNCTION

displays information about the current transaction, selected transactions, or all
transactions, depending on the nature of the request and your access permissions. The
active function takes only one information control argument

CONTROL ARGUMENTS FOR SELECTING TRANSACTIONS

If you supply no control arguments. or lack the proper access, only information
pertaining to your current transaction is displayed.

-abandoned
displays the requested information about all TOT entries marked as abandoned.

-all. -a
displays the requested information about all TDT entries.

-dead
displays the requested information about all TOT entries belonging to dead
processes.

-transaction_id In. -tid 10, -id 10
displays the requested information about the transaction with unique identifier 10,
where In is a decimal integer. Transaction identifiers are assigned at txn begin
time and can be viewed by the txn status command.

-transaction_index N. -tix N, -index N
displays the requested information about entry number N in the TnT. TDT entry
indexes are of interest mainly to data management maintainers and can be viewed
by the txn status command.

CONTROL ARGUMENTS FOR SELECTING INFORMATION

If you give none of the following control arguments, all information is displayed for
each TDT entry selected. You can specify only one control argument for the active
function.

-bef ore.Journal_path. -bj_path
returns the pathname of the before journal 11~.d by the current transaction.

3-1034 AG92-D6

transaction transaction

-date_time_begun. -dtbg, -begun
returns the date and starting time of each transaction.

-error, erro-r _in-fo
returns a description of the latest error. if any, to have occurred while processing
each transaction.

-owner
identifies the owner (User_id.Project_id) of each TOT entry.

-process_id. -pid
returns the octal process_id of the owner of each TDT entry.

-rollback_count. -rbe
returns the number of times each transaction has been rolled back.

-state
indicates the state of each transaction, which must be one of the following:

no transaction (e.g., the process might have owned a transaction, which has
been taken over by the DM Daemon)

in progress

{Error - } OPERATION, calling PROGRAM_NAME, which gives the
operation currently in progress, such as abort or commit, and the entry point
being called; and is followed by an error message if appropriate.

-switches, -switch. -sw
lists those transactions that are either abandoned. killed, or suspended or whose
owner processes are dead.

-total, -tt
prints totals information for the TOT, including:

number of slots available (not yet reserved by processes)

number in use (i.e., reserved by processes at first invocation of DMS)

number of entries owned by dead processes (of the number in use)

n~T..be!" cf abandcnea entries (of the number in n~)

number of entries occupied by transactions (i.e., slots reserved by processes
that have started transactions)

3-1035 AG92-06

transaction transaction

number of transactions in error.

-transaction_id, -tid, -id
supplies the unique identifier of each transaction. Use of -transaction_id with a
specific transaction ID returns information about that transaction.

-transaction_index, -tix, -index
returns the index of entries in the TOT. This index is mainly of interest to data
management maintainers. Use of -transaction_index with a specific integer N
returns information about a given TOT entry number.

NOTES

You can't use the following control arguments with the active function: -abandoned,
-all, -dead, and -total.

You need re access to dm_admin-pte_ to view the status of any other user's
transactions.

EXAMPLES

The command

txn status -"t i d
9

asks for the unique identifier of the transaction currently owned by the requesting
user process.

The command

txn status -a -owner -dtbg -tid
TOT size: 6 entries
In use: 4
Dead processes: 1
Abandoned entries: 0
Transactions: 3
Error transactions: 0

Transaction id: 4
Owner: Merri11.Multdev
Begun at: 02/12/84 0837.11 est wed

Owner: Lynch.Multdev
No Transaction.

Transaction id: 9
Owner: Pierce.Debug
Begun at: 02/12/84 0846.3 est wed

3-1036 AG92-06

transaction

Transaction id: 12
Owner: Fenner.Support
Begun at: 02/12/84 0901.5 est wed

translate

requests that each transaction in the TDT be identified as to its unique identifier,
owner, and date/time of origin.

The command

txn status
Transaction id: 4
TOT index: 2
Process id: 467265315627
Owner: Smith.Applications
Begun at: 02/12/84 0846.3 est wed
State: In progress
Error: none
Checkpoint id: 0
Rollback count: 0
Before journal path: >site>dm>system_low>system_default.bj
Switches: none

requests all available information on the transaction owned -by the requesting uSer
process.

The command

txn status -tix 1 -pid -state -error -switches
Process id: 625731253642 (dead)
State: Error - Abort, calling bjm_$write_aborted_mark
Error: The before journal is full.
Switches: ABANDONED, DEAD_PROCESS

requests the process id, state, error condition, and switch settings for the specified
transaction index entry.

Name: translate

SYNT AX AS A COMMAND

translate STRA STRB {STRC}

SYNTAX AS AN ACTIVE FUNCTION

[translate STRA STRB {STRC}]

3-1037 AG92-06

translate

FUNCTION

returns translation in which all the characters of a string STRA that appear in string
STRC are translated to the corresponding characters in string STRB. If STRC is
omitted, a default string containing all possible 9-bit bit patterns is used, as returned
by collate9.

EXAMPLES

string [translate abcdefgh BDFH bdfh]
aBcDeFgH·

string [translate liMy work" KLMNOPQRSTUVWXYZ klmnortvwxyz]
MY WORK

Name: trunc

SYNTAX AS A COMMAND

trunc num

SYNTAX AS AN ACTIVE FUNCTION

[trunc num]

FUNCTION

returns the largest decimal integer whose absolute value is less than or equal to the
absolute value of num.

EXAMPLES

string [trunc 7.6]
7

string [trunc -7.6J
-7

trunc

3-1038 AG92-G6

truncate

Name: truncate, tc

SYNTAX AS A COMMAND

tc {-control_arg} path {length}

tc segno {length}

FUNCTION

truncate

truncates a segment to an optionally specified length and resets the bit count
accordingly, setting the bit count author to be the user who invoked the command.

ARGUMENTS

path
is the pathname of a segment You can't use the star convention.

length
is an octal integer indicating the length of the segment in words after truncation.
If you don't provide length. zero is assumed.

segno
is an octal segment number.

CONTROL ARGUMENTS

-name, -nm
specifies that the octal number following it is a pathname.

ACCESS REQUIRED

You need write access on the segment to be truncated.

NOTES

If the segment is already shorter than the specified length, its length is unchanged,
but the bit count is set to the length given.

Don't use truncate on segments that are, or are components of, structured files.

If you use truncate on a consistent MSF, it is operated on as in a single segment If
the truncation length is less than the current length, components are deleted until the
sum of the bit counts of all the components is equal to the truncation length; if the
truncation length is greater than that sum, components are created as needed.

3-1039 AG92-Q6

truncate

EXAMPLES

The command line

tc alpha 50

truncates segment alpha to 50 words; i.e., all words from word 50 (octal) on are zero.
The bit count of the segment is set to the truncated length.

Name: tutorial

SYNTAX AS A COMMAND

tutorial

FUNCTION

invokes the Multics Tutorial, a menu-driven introduction to Multics.

NOTES

The Tutorial covers seven main topics: the help system, commands, the text editors,
the mail systems, the storage system, logging in and out, and WORDPRO. Operation
of the Tutorial is explained as you proceed through it It also has a glossary facility
that enables you to get definitions of terms encountered in the various explanations.

Name: unassign_resource, ur

SYNTAX AS A COMMAND

ur resources {-control_args}

FUNCTION

unassigns one or more resources that have been assigned to your process by the
Resource Control Package (RCP).

ARGUMENTS

resources
specifies the resources to be unassigned from your process. Currently, the only
resources managed by RCP are devices. If a device is attached, it is automatically
detached.

3-1040 AG92-o6

unassign_resource underline

CONTROL ARGUMENTS

-admin, -am
-forces""an uIlassigtiinenl This "control argument should be "specified -by highly
privileged users who want to unassign a resource that is assigned to some other
process.

-aU
specifies that all devices assigned to the process be unassigned.

-comment STR -com STR
is a comment string that is displayed to the operator when the resource is
unassigned. This comment is displayed only once. even if several resources are
being unassigned. (See the assign_resource command for details about comment
strings.)

NOTES

This command must not be used to unassign a device attached through the tape_ansi_
or tape_ibm_ I/O module with -retain all specified. In that case. the user must
specify argument 1 (no retention) of the retention operation. before detaching the I/O
module. See the descriptions of tape_ansi_ and tape_ibm_ I/O modules in the
Subroutines manual.

EXAMPLES

In the example that follows. the user unassigns a tape previously assigned by the
assign_resource command by typing the command line:

Name: underline

SYNTAX AS A COMMAND

underline str_args

SYNTAX AS AN ACTiVE FU,VCTiON

[underline str_args]

FUNCTION

underlines str_args. Each str_arg is underlined separately in the return value. and this
value is canonicalized.

3-1041 AG92-06

underline

EXAMPLES

underline abcdefg
abcdefg

underline lIabc def ghijll
abc def gh i i

underline abc DEF ghij
abc DEF 9.hll

Name: unique

SYNTAX AS A COMMAND

unique {arg}

SYNTAX AS AN ACTIVE FUNCTION

[unique {arg}]

FUNCTION

returns a unique character string as generated by the unique_chars_ subroutine
(described in the Subroutines manuaI). Unique character strings are 15 characters long
and begin with an exclamation mark (!).

ARGUMENTS

arg
is an octal number from which the unique character string is to be generated. If
arg is omitted, the current clock value is assumed.

EXAMPLES

string [unique]
!BBBJHwHtizmmxMF

string [unique [user process_id]]
!BPGBzBBBBBBB

unique

3-1042 AG92-06

unlink

Name: unlink., ul

SYNTAX AS A COMMAND

ul {paths} {-control_args}

FUNCTION

deletes link en tries.

ARGUMENTS

paths
specify storage system link entries to be deleted.

CONTROL ARGUMENTS

-brief. -bf
does not print an error message if a link to be deleted is not found.

-force
suppresses the query "Do you want to unlink ** in <dir_path>?" when
appropriate.

-long. -lg
prints a message of the form "Deleted link <path>" for each link deleted.

-name STR. -nm STR
specifies a nonstandard entryname such as a name containing >. <. *. or ?
(interpreted literally). It allows you to unlink strangely named links.

ACCESS REQUIRED

You require modify permission on the directory containing the link.

NOTES

Use delete to delete segments and multisegment files. Use delete_dir to delete
directories.

For a discussion of links see the Programmer's Reference Manual.

unlink

3-1043 AG92-()6

Name: upper_case, uppercase

SYNTAX AS A COMMAND

uppercase strings {-control_args}

SYNTAX AS AN ACTIVE FUNCTION

[uppercase strings {-control_args}]

FUNCTION

returns all strings with lowercase alphabetic characters translated to uppercase
characters.

CONTROL ARGUMENTS

-argument, -ag
specifies that the following argument begins the string to be translated, whether or
not it begins with a minus. The default is for the string to begin with the first
noncontrol argument .

-leading
translates only the first character of each word, where words are separated by
spaces.

NOTES

Returned strings are separated from each other by single spaces. Each input string is
returned as a separate output string. enclosed in quotes if necessary.

EXAMPLES

string [uppercase Now is the time.]
NOW IS THE TII'\E.

string [uppercase "Now is the time"]
NOW IS THE TIME

string [uppercase -leading Now is the time.]
Now I s The Time.

3-1044 AG92-06

user

11/86

Name: user

SYNTAX AS A COMMAND

user key

SYNTAX AS AN ACTIVE FUNCTION

[user key]

FUNCTION

returns various user parameters.

LIST OF KEYS

256k_switch, 256k
returns "true" if 265K segments are allowed in the process. This feature is
currently used by FORTRAN programs for very large array. (Default: off)

abs_queue
is the queue number in which your absentee process is running. It returns
"interactive" if you have no absentee process.

absentee
returns "true" if you are an absentee user, "false" otherwise.

absentee_request_id. abs_rqid
is the request ID corresponding to this absentee process. Use the request ID only
in full-length character string comparisons. Make no assumptions regarding the
construction of a request ID by the system. For an interactive or daemon process,
the request_id returned is O.

a bsen tee_restarted
returns "true" if the absentee process has been restarted after a system crash,
"false" otherwise; see the enter_abs_request (ear) and list_abs_requests Oar)
commands.

absin
is the absolute pathname of your absentee input segment, including the absin
suffix; otherwise it returns a null string.

absout
is the absolute pathname of your absentee output segment, including the absout
suffix; otherwise it returns a null string.

absout_truncation
returns "true" if you have used -truncate with ear or lar, "false" otherwise.

user

3-1045 AG92-06A

user

11/86

all
prints all the information available in alphabetical order sorted by keyword name.
You can't use it in the active function.

anonymous ,
ret.urns "true" if you are an anonymous user, "false" otherwise.

attributes

auth

are your attributes determined at login time. They are separated by a comma and
a blank and end with a semicolon. You can choose them from the following:

anonymous
bumping
brief
daemon
dialok
disconnect_ok
guaran teed_login
igroup

multip
no_eo
no_prime
no_secondary
no_warning
nobump
nolist

nopreempt
nostartup
primary_line
save_on_disconnect
save_pdir
vhomedir
vinitproc

is a short character string describing the authorization of your process or
"system_low. "

auth_long
is a long character string (in quotes) describing the authorization of your process
or "system_low. n

auth_range
returns your authorization range as a standard low /high aim range.

auth_range_Iong
returns your authorization range as a standard low/high aim range in long mode.

brief_bit
returns "true" if you specified -brief in the login line, "false" otherwise.

charge_type
is the device charge type associated with your terminaL

cpu_sees
is your CPU usage (in seconds) since login, in the form sss. t~ with leading zeros
suppressed.

device_channel
is the I/O device channel associated with your terminal.

user

3-1046 AG92-06A

user

11/86

group
is your load control at login.

ini tial_term_id
is your terminal identifier code at login.

ini tial_term_type
is your terminal type at login. If you change your terminal type and then do a
new process or reconnect after disconnecting. initial_term_type will reflect the new
terminal type.

user

3-1046.1 AG92-06A

This page intentionally left blank.

11/86 AG92-06A

user

limit
is your absolute spending limit in dollars.

limit_type
is your spending reset mode. Ii can be one of the following:

absolute
spending is never reset

day
spending is reset each day.

month
spending is reset each month.

year
spending is reset each year.

calendar
spending is reset each calendar year.

fiscal-year
spending is reset each fiscal year.

line_type
is the line type of your terminal. I t can have one of the following values:

MC Sync SYNC1
TELNET Gl15 SYNC2
none 'BSC SYNC3
ASCII 202ETX POLLED_VIP
1050 ASYNC1 VIP
2741 ASYNC2
ARDS ASYNC3

lo~time
is your connect time (in minutes) since login. in the form "mmm.t".

login_date
is the date at login time, in the form "mm/dd/yy".

login_time
is the time of login, in the form "hhmm. t".

login_word
is the word you used to log in (login. enter, or enterp).

max_auth
is a short string describing the maximum authorization of your process or
system_low.

user

3-1047 AG92-{)6

user

max_auth_Iong
is a long string (in quotes) for the maximum authorization of your process or
system_low.

min_auth
returns the user's minimum login authorization.

min_auth_Iong
returns the user's minimum login authorization in long mode.

monthly_limit
is your monthly spending limit in dollars.

monthly_spending
is your total spending in dollars for the current month.

n_processes
is the number of processes created for you since login: 1 plus the number of
new_proc commands plus the number of fatal process errors.

name
is your Person.id at login time.

outer _module
is the initial outer module for the terminal channel.

preemption_time
is the time at which the primary user becomes eligible for group preemption, in
the form "hhmm. t".

process_id
is your process identification in octal.

process_type
is your process type. It can have one of the following values:

interactive
absentee
daemon

process_overseer
is the name of your process overseer.

project
is your Project_id.

protected
returns "true" if you are currently a primary user and protected from preemption,
"4-' ... 1 .. ",," "''''' .. n',. 1 a.l~. VL,11""1 n 1""".

3-1048 AG92-D6

user

rate_structure_name
returns the name of the rate structure that is in effect for this process.

rate_structure_number
returns the number of the rate structure that is in effect for this process.

secondary
returns "true" if you are currently subject to preemption, "false" otherwise.

service_type
is the service type of your terminal (login or PIP).

shift_limit
is your spending limit in dollars for the current shift.

shift_spending
is your total spending in dollars for the current shift within the current month.

spending
is your total spending in dollars.

term_id
is your terminal identifier code. It is "none" if your terminal does not have the
answerback feature.

term_type
is your terminal type, which can be any terminal type name defined in the
terminal type file described in the Programmer's Reference Manual.

weight
is the loading factor that the system assumes for your process.

Name: validate_pictured_data, vpd

SYNTAX AS AN ACTIVE FUNCTION

[vpd pic_string values]

FUNCTION

returns "true" if all values can be formatted via pic_string. "false" otherwise.

ARGUMENTS

pic_string
is a valid PL/I picture.

3-1049 AG92-D6

values
is a string to be edited into the picture.

NOTES

For information on PL/I picture and picture strings, see the PLII Reference Manual
(Order No. AM83) or the POI Language Specification (Order No. AG94).

Name: validate_info_seg, vis

SYNTAX AS A COMMAND

vis paths {-control_args}

SYNTAX AS AN ACTIVE FUNCTION

[vis paths {-control_args}]

FUNCTION

validates the syntax of an information segment (info seg). The active function returns
the number of the highest severity error that occurs.

ARGUMENTS

paths
are the pathnames of info segs. You need not supply the info suffix. You can
use the star convention.

CONTROL ARGUMENTS

-names, -nm
changes the names on the info seg, if necessary, to match the names used in it.

-no_names. -nnm
does not change the names on the info seg, but merely reports discrepancies.
(Default)

-severity N. -sv N
* suppresses error messages of severity less than N.

-total, -tt
prints only the total number of errors for each severity or nothing if there are

* no errors.

11/86 3-1050 AG92-06A

11/86

LIST OF ERROR MESSAGES

The following is a list of error messages printed by vis, in order of severity. N
represents line numbers referenced by vis. For information on the proper formatting
of, and standards on, info segs, see the help command and info_seg.gi.info.

SEVERITY 4
Invalid or missing header line
Header longer than one line
Invalid date on header line
Missing Syntax section(s)
Missing Function section(s)

SEVERITY 3
Lines >71 chars: N
Nonstandard section breaks (not 2 blank lines)
Sections out of sequence: N
Segment ends in blank lines
Segment does not end in newline
Variant section title format:

<N section titles>
Backspaces: N

SEVERITY 2
Blank lines containing white space: N
Paragraphs > 15 lines: N
Sections >50 lines: N

SEVERITY 1
Sections > 30 lines: N
Nonstandard section ti tIes:

<N section titles>

Name: value_defined, vdf

SYNTAX AS A COMMAND

vdf name {-control_args}

SYNTAX AS AN ACTIVE FUNCTION

[vdf name {-control_args}]

FUNCTION

returns "true" if name has a value set by value_set or by "value~et -call", "false"
otherwise. The value can be per process or reside in a value segment (see value~et).

*

3-1051 AG92-06A

11/86

ARGUMENTS

name
is a character string. It can be -name STR to specify a name beginning with a
minus sign, to distinguish it from a control argument.

CONTROL ARGUMENTS

-pathname path, -pn path
specifies a value' segment other than the current default one, without changing the
default (see "Notes on Value Segment").

-permanent, -perm
returns true only if a value is defined in the value segment. regardless of whether
a per-process value exists. (Default: to return true for either a per-process or a
permanent value)

-perprocess. -pp
returns true only if a per-process value is defined.

3-1052 AG92-06A

ACCESS REQUIRED

You require r access to the value segment, except for per-process values. Lack of r
access- iseqiiivalerif to-no -value -dennect-in the-segment

NOTES ON VALUE SEGMENT

The value segment searched is either the one specified by -pathname or the current
default value segment The default segment is initially

[home_dir]>[user name].value

but can be changed by means of value_set_path and listed by value_path. Use of
-pathname does not change the default segment

NOTES

Name: value_delete, vdl

SYNTAX AS A COMMAND

val {name} {-control_args}

FUNCTION

causes one or more names not to have defined values, as set by value_set or value~et
-call.

ARGUMENTS

name
is a character string. It can be -name STR to specify a name beginning with a
minus sign, to distinguish it from a control argument (See "Notes.")

CONTROL ARGUMENTS

-all, -a
deletes data values set by value_$set_data as well as other values.

-brief, -bf
suppresses the warning message "No match for starname."

-data
deletes values set by value_$set_data, which you can list by giving -all or -data
to value_list (Default delete values set by value_set or value_$set)

3-1053 AG92-Q6

-exclude STR, -ex STR
deletes all existing values except those for names that match STR. If STR is
surrounded by slashes (f), it is interpreted as a qedx regular expression to match
names; otherwise, it is interpreted as a starname. Only per-process values are
deleted if you supply -perprocess, and only permanent ones if you give
-permanent (See ""Notes.")

-long, -lg
allows the warning message "No match for stamame." (Default)

-match STR
deletes all existing values for names that match STR. If STR is surrounded by
slashes, it is interpreted as a qedx regular expression to match names; otherwise, it
is interpreted as a starname. Only per-process values are deleted if you supply
-perprocess, and only permanent ones if you give -permanent (See "Notes.")

-pathname path, -pn path
specifies a value segment other than the current default one, without changing the
default (see "Notes on Value Segment").

-permanent, -perm
deletes only values stored in the value segment

-perprocess, -pp
deletes only per-process values. The default is to delete the per-process value if
one exists, otherwise to delete any permanent value.

ACCESS REQUIRED

You require rw access on the value segment except for per-process values.

NOTES

The -match and -exclude control arguments are applied in the order specified.
Successive -match control arguments add to the set of names processed (union), and
successive -exclude control arguments narrow down the set (intersection). They are
incompatible with the name argument and can appear multiple times together. (See
"Examples. n)

NOTES ON VALUE SEGMENT

The value segment searched is either the one specified by -pathname or the current
default value segment The default segment is initially

[home_dir]>[user name].value

but you can change it by value_set_path. Use of -pathname does not change the
default segment

3-1054 AG92-()6

value~et

EXAMPLES

The following are examples using -match and -exclude:

Assume the defined variables to be

The command line

vdl -match I_lenl -exclude I_lengthl -match Iseg_lengthl

operates as follows: The first -match / _len/ makes this set of selected names:

The following -exclude / _length/ produces the intersection of this set with the set of
names not matching / _length/:

The following -match /seLlength/ produces the union of this set with the one
matching / _se&-length/:

Finally. the value of each of these selected variables is deleted.

Name: value~et, vg

SYNTAX AS A COMMAND

vg name {-control_args}

SYNTAX AS AN ACTIVE FUNCTION

[vg name {-control_args}]

FUNCTION

returns the character string value of a name, as set by value_set If the name has no
value and you choose -default, an error occurs. Values, except for per-process values,
are stored in a value segment with suffix "value" (see "Notes on Value Segment").

3-1055 AG92-()6

value~et value~et

ARGUMENTS

name
is a character string. It can be -name STR to specify a name beginning with a
minus sign, to distinguish it from a control argument

CONTROL ARGUMENTS

-call STR
if no value is found for name, the active function [STR] is expanded to produce
a value, which is both set for name and returned. Enclose STR in quotes and
omit the brackets if it contains special characters such as spaces. This control
argument is incompatible with -default

-default STR, -df STR
specifies a default value to be returned if none is set Enclose STR in quotes if
it contains special characters. A null string is returned if STR is ''''. If you don't
give -default and no value exists, an error occurs.

-pathname path, -pn path
specifies a value segment other than the current default one, without changing the
default (see "Notes on Value Segment"). It is incompatible with -perprocess.

-permanent, -perm
does not look for a per-process value. The default is to return the per-process
value if one exists, otherwise to return the value stored in the value segment; if
none exists, an error occurs.

-perprocess, -pp
looks only for a per-process value, not for one stored in any value segment If a
per-process value is not found, an error occurs.

-pop
deletes the current value that it prints or returns. If a previous value was saved
by value_set -push, that value is reinstated.

ACCESS REQUIRED

You require read access on the value segment, except for per-process values.

NOTES

Per-process values are stored in a temporary value segment in the process directory
and disappear when the process terminates.

By default, both "vg name" and "vg name -pn path" return the per-process value of
name if there is one; otherwise, they return the value stored in the appropriate value
segment. By contrast, "vg -pp" returns only the per-process value, and "vg -perm"
returns only the one in the value segment

3-1056 AG92--()6

value-!et

11/86

NOTES ON VALUE SEGMENT

The value segment searched is either the one specified by -pathname or the current
default value segment The default segment is initially

[home_dir]>[user name].value

but you can change it by value_set_path. Use of -pathname does not change the
default segment

Name: value_list, vIs

SYNTAX AS A COMMAND

vls {name} {-control_args}

SYNTAX AS AN ACTIVE FUNCTION

[vls {name} {-control_args}]

FUNCTION

lists one or more name-value pairs as set by value_set and value-set -call.

ARGUMENTS

name
is a character string. It can be -name STR to specify a name beginning with a
minus sign. to distinguish it from a control argument (See "Notes.")

CONTROL ARGUMENTS

-all, -a
lists variables set by value_$set_data in addition to the variables set by value_$set
and the value commands. These are listed in the form

foo (N words)

Word counts alone are listed for data variables since their values have meaning
only to the caller of value_. If you select -all. the default is to omit the data
variables.

-brief, -bf
suppresses the error messages allowed by -long.

3-1057 AG92-06A

11/86

-data
lists only the values set by value_$set_data.

-depth N, -dh. N
lists the latest N-1 pushed values for any variable in addition to the current
value. Any further pushed values result in the message "(~1 more pushed values)".
The default is to print the latest value followed by the message "(M pushed
values)". In the active function, -depth returns only the latest N values.

-exclude STR, -ex STR
lists all values except those for names that match STR. The character string STR
is searched for in names: if it is surrounded by slashes (I), it is interpreted as a
qedx regular expression to match names; otherwise it is interpreted as a starname.
Only per-process values are listed if you supply -perprocess, and only permanent
ones if you give -permanent (See "Notes.")

-long, -lg
allows the error messages "Name not found" and "No match for ... " for individual
name and -match arguments. (Default)

-match STR
lists all values f or names that match STR. The character string STR is searched
for in names: if it is surrounded by slashes (I). it is interpreted as a qedx
regular expression to match names; otherwise it is interpreted as a starname. Only
per-process values are listed if you supply -perprocess, and only permanent ones
if you give -permanent (See "Notes.")

-pathname path. -pn path
specifies a value segment other than the current default one, without changing the
default (see "Notes on Value Segment"). You are allowed multiple -pathname
control arguments to list values in more than one value segment

-permanent, -perm
lists only values stored in the value segment

-per process, -pp
lists only per-process values.

-value, -val
lists values only.

-variable, -var
lists variable names only.

ACCESS REQUIRED

You require read access on the value segment, except for per-process values.

3-1058 AG92-06A

11/86

NOTES

The list is sorted alphabetically by name, the per-process value first where both exist.

By default, this command lists both variable names and values, and both per-process
and permanent values interspersed, the per-process names preceded by "(P)".

Either -value or -variable is required by the active function. The active function
returns the selected names or values separated by spaces.

The -match and -exclude control arguments are applied in the order specified.
Successive -match control arguments add to the set of names processed (union), and
successive -exclude control arguments narrow down the set (intersection). They are
incompatible with the name argument and can appear multiple times together. (See
"Examples. ")

NOTES ON VALUE SEGMENT

The value segment searched is either the one supplied by -pathname or the current
default value segment. The default segment is initially

[home_dir]>[user name].value

but you can change it by value_set_path. Use of -pathname does not change the
default segment.

EXAMPLES

The following are examples using -match and -exclude:

Assume the defined variables to be

The command line

vls -match I_lenl -exclude I_lengthl -match Iseg_lengthl

operates as follows:

The first -match / _len/ makes this set of selected names:

3-1059 AG92-06A

The following -exclude / _length/ produces the intersection of this set with the set of
names not matching / _length/:

The following -match /seLlength/ produces the union of this set with the set of
names matching / seLlength/:

rs_str _len, arLstr _len, . rs_seLlength

Finally, the value of each of these selected variables is listed.

Name: value_path, vp

SYNTAX AS A COMMAND

vp

SYNTAX AS AN ACTIVE FUNCTION

[vp]

FUNCTION

returns the pathname of the current default value segment used by the value
commands without -pathname.

NOTES

Name: value_set, vs

SYNTAX AS A COMMAND

vs {name} {value_string} {-control_args}

SYNTAX AS AN ACTIVE FUNCTION

[vs {name} {value_string} {-control_args}]

3-1060 AG92-06

FUNCTION

associates a character string name with a character string value. The value replaces- any
previous -- value for name. - - -

ARGUMENTS

name
is a character string. It can be -name STR to specify a name beginning with a
minus sign, to distinguish it from a control argument There is no restriction on
the length of the name.

value_string
is a character string value, quoted if it contains blanks or other special characters.
It can be -value STR to specify a value STR that begins with a minus sign, to
distinguish it from a control argument There is no restriction on the length of
the value.

CONTROL ARGUMENTS

-add N
adds N to the integer val~e of_each name selected by the other control
arguments. If any of the names has no value or has a value that is not the
character string representation of an integer, an error occurs. N can be negative
or zero, as can be the resulting value.

-exclude STR. -ex STR
changes all existing associations except those for names that match STR. If STR is
surrounded by slashes (/), it is interpreted as a qedx regular expression to match
names; otherwise, it is interpreted as a starname. Only per-process associations are
changed if you select -perprocess, only permanent ones if you supply -permanent,
and both are changed by default. (See "Notes. n)

-if V ALUE_STR
sets value_string only if an old value exists and is equal to V ALUE_STR.
otherwise returns an error. If you also specify -match and/or -exclude, all
selected names with current values equal to V ALUE_STR are set to value_string.

-match STR
changes all existing associations for names that match STR. If STR is surrounded
by slashes, it is interpreted as a qedx regular expression to match names;
otherwise, it is interpreted as a starname. Only per-process associations are
changed if you select -perprocess, only permanent ones if you supply -permanent,
and both are changed by default (See "Notes.")

-pathname path, -pn path
specifies a value segment other than the current default one, without changing the
default (see "Notes on Value Segment").

3-1061 AG92-()6

-permanent, -perm
sets a value in the value segment, regardless of whether any old value is per
process or permanent The default is to change any existing per-process value,
otherwise to change the permanent value if one exists, otherwise to set a
permanent value.

-perprocess, -pp
sets a per-process value, regardless of whether any old value is per process or
permanent.

-pop
restores the previous value, saved by an invocation of "value_set -push", for each
variable specified on the command line. If any given variable lacks a previous
value, an error message is printed and the other variables' values are still popped.
This control argument is incompatible with specifying a value and with -push.

-push
saves the old value of each variable before setting the value specified.

-update, -ud
makes the active function return the previous value or null string if there is no
previous value. (Default return the value that is set)

ACCESS REQUIRED

You need rw access on the value segment, except for per-process values.

NOTES

You must give one of value_string, -value STR, -add, or -pop.

The -match and -exclude control arguments are applied in the order specified.
Successive -match control arguments add to the set of names processed (union), and
successive -exclude control arguments narrow down the set (intersection). They are
incompatible with the name argument and can appear multiple times together. (See
"Examples. tt) You can't use either -match or -exclude in the active function.

If you supply -per process or the old value is a per-process one, the value set is per
process; otherwise, the association is stored in a value segment (see "Notes on Value
Segment"). Per-process values are stored in a temporary value segment in the process
directory and disappear when the process terminates.

When a value is set in a value segment that does not exist, you are asked whether to
create the segment Your default value segment [hd] > [user name] .value is created
automatically and a message is printed.

3-1062 AG92-06

NOTES ON VALUE SEGMENT

The-value--segmenL searched._is_either _ the_one_ .specified_by_~pathname_ or the _ current
default value segment The default segment is initially

[home_dir]>[user name].value

but you can change it by value_set_path. Use of -pathname does not change the
default segment

EXAMPLES

The following are examples using -match and -exclude:

Assume the defined variables to be

The command line

vs 0 -match I_len/ -exclude I_lengthl -match /seg_lengthl

operates as follows:

The first -match / _len/ makes this set of selected names:

The following -exclude / _length/ produces the intersection of this set with the set of
names not matching / _length/:

The following -match /5e!Llength/ produces the union of this set with the set of
names matching / _~length/:

Finally, the value of each of these selected variables is set to O.

3-1063 AG92-()6

SYNTAX AS A COMMAND

vsp {path} {-control_arg}

FUNCTION

sets the default value segment used by the value commands without -pathname.

ARGUMENTS

path
is the pathname of a value segment or a nonexistent segment, which is created.
The value suffix is assumed. If you don't give path or is equal to the null string
(""), it is restored to your default value segment

CONTROL ARGUMENTS

-brief, -bf
suppresses the warning printed when you lack write access to the value segment

ACCESS REQUIRED

You need at least r access to the value segment, and rw is pref erred. If you lack r
access, the default path is not changed and an error message is printed; if you lack
rw, the default path is changed, but a warning is printed. You can use -brief to
suppress this warning.

NOTES

The default value segment in a process is initially

[home_dir]>[user name].value

3-1064 AG92-o6

verify

Name: verify

SYNTAX AS A COMMAND

verify STRA STRB

SYNTAX AS AN ACTIVE FUNCTION

[verify STRA STRB]

FUNCTION

returns an integer representing the first character position in strA that contains a
character that does not occur anywhere in strB. If every character of strA occurs in
strB, 0 is returned.

EXAMPLES

The following interactions illustrate the verify active function.

string [verify chart chapter]
o

string [verify chapter chart]
4

string [verify 31 0123456789]
o

string [verify 31q22 0123456789]
3

Name: vfile_adjust, vfa

SYNTAX AS A COMMAND

vfa path {-control_arg}

FUNCTION

adjusts structured files left in an inconsistent state by an interrupted opening. or
unstructured files in any state.

3-1065 AG92-D6

ARGUMENTS

path
is the pathname of a file to be adjusted.

CONTROL ARGUltliENTS
must be specified only for unstructured files.

-set_be
sets the bit count of the file's last nonempty segment to the last nonzero byte in
that segment Any components beyond it are deleted.

-set_nl
appends a newline character if the last nonzero byte in the file is not a newline
character. The bit count of the file's last nonempty segment is then set to the
file's last nonzero byte (which is now sure to be a newline character).

-use_be {N}
truncates the file to the byte specified by the bit count of multisegment file
component N. If N is not given, it is taken to be the last nonempty component.

-use_nl
truncates the file after the last newline character.

NOTES

For unstructured files a control argument must specify the desired adjustment;
otherwise, no control arguments are allowed. A sequential or blocked file is adjusted
by truncation after the last complete record. An indexed file is adjusted by finishing
the interrupted operation.

The adjust_bit_count command used with -character is equivalent to vfile_adjust used
with -set_be except that the latter only operates on a file that appears to be
unstructured.

See the description of the vfile_ I/O module in the Subroutines manual for further
details.

3-1066 AG92-G6

SYNTAX AS A COMMAND

SYNTAX AS AN ACTIVE FUNCTION

FUNCTION

examines a vfile_ keyed file to determine whether the vfile_ multisegment file (MSF)
components that contain keys are in a consistent state. The keys in a keyed file are
maintained in a tree structure in which each node of the tree is stored in a separate
page of an MSF component The consistency checks that are performed are
summarized below. Nodes reported as bad by this heuristic are almost certainly
damaged.

ARGUMENTS

path
is pathname of the indexed file whose nodes are to be checked.

CONTROL ARGUMENTS

-check MODES. -ck MODES
enables only the types of checking given in the MODES string (see "List of
Modesu below). (Default: -check default)

-io_switch STR, -isw STR
identifies an I/O switch that is already attached to the indexed file to be
checked. The switch may be closed; if open, it must be opened for
keyed_sequential_input

-no_request_loop, -nrql
prints information about the bad nodes and then continues checking without
entring the request loop. (Default: when invoked as an active function)

-request_loop, -rql
enters the request loop when bad nodes are found. (Default: when invoked as a
command)

LIST OF MODES

all
is a shorthand for enabling all possible checking. It it equivalent to
node_branch, key _region, key _loe,key _overlap, key _order ,node_tree.

3-1067 AG92-06

default
is a shorthand way of enabling checks that can be quickly performed. I t is
equivalent to node_branch,key_region,key_loc. The settings of other modes are not
affected.

key _loc, 1\ key _loe
performs key-location checking, as described below.

key_order, I\key_order
performs key-order checking, as described below.

key_overlap, 1\ key_overlap
performs key-overlap checking, as described below.

key _region, 1\ key _region
performs key-region checking, as described below.

node_branch, I\node_branch
performs node-branch checking, as described below.

node_tree, "node_tree
performs node-tree checking, as described below.

LIST OF CONSISTENCY CHECKS

The following consistency checks are always performed to validate the file header:

1) Does the counted number of nonempty (key-containing) nodes equal -the count
stored in the file header? If not, the file header may have been damaged.

2) Does the counted number of keys in all nodes equal the count stored in the file
header? If not, the file header may have been damaged.

3) Does the counted total length of all keys equal the count stored in the file
header? If not, the file header may have been damaged.

For each node in the file the following consistency checks are performed:

4) Is this a freed node? If so, skip further checks.
5) Are there any branches (keys) in this node? If not, skip further checks.

Node-branch checks

6) Is branch_count greater than 313? If so, node is bad because space in a page
limits a node to having, at most, 313 one-character keys.

7) Is branch_count less than 01 If so, node is bad.

3-1068 AG92-()6

11/86

Key-region checks

8) Is start_of _key_region greater than 4096? If so, the node is bad because the
character position of the first key must lie within the node page.

9) Does start_of_key _region overwrite the branch array? If so, the node is bad
because keys have overwritten the array of branches in the node.

10) Is scattered_free_key _space greater than 4096 minus start_of _key_region? If so,
the node is bad because the count of unused space within the key region is
greater than the size of the key region itself.

11) Is scattered_free_key_space less than O? If so, the node is bad.
12) Is length of all keys in node equal to 4096 minus start_of _key_region minus

scattered_free_key _space? If not, the node header is bad.

Key-location checks

13) Does any branch declare its key to begin prior to start_of_key_region? If so,
the node is bad.

14) Does any branch declare its key to extend beyond the end-of-node page? If so,
the node is bad.

Key-overlap check

15) Does the storage for any key overlap storage for another key? If so, the node
is bad. This test is somewhat time consuming.

Key-order check

16) Are the keys within the node ordered in increasing ASCII collating sequence? If
not, the· node is bad. This test is somewhat time consuming.

Node-tree check

17) For each child pointer in the node. does the child pointer reference another
node that resides in a node-containing component of the vfile? If not, the child
poin ter is bad.

18) Does the child pointer reference another node that contains keys (is nonempty)?
Jf not. the child pointer is bad.

19) Does the child pointer reference another node that is not on the list of freed
nodes? If not, the child pointer is bad.

20) Does each child pointer in the node reference another node that is not the root
node? If not, the child pointer is bad.

21) Is every nonempty node but the root node referenced by a child pointer of
some other node? If not, the node is inaccessible and its keys are effectively
not part of the key tree.

22) Is any nonempty node referenced by more than one superior node? If so, the
key tree is inconsistent

3-1069 AG92-06A

11/86

REQUEST LOOP OPERATION

When a bad node is found, its location is printed out. followed by the number of
branches in the, node, its low_key_pos. and its unused key space (scat_space). Then a
request loop is entered that allows you to continue checking other nodes. to quit
further checking, or to enter a totaling loop that counts the number of damaged
nodes in the current component without printing their statistics. The request

.. ds node_seg node_offset count -ch

is useful. Type "c" in the request loop to continue checking the next node.

LI ST OF REQUESTS

gives the name and version number of this program, plus pathname or I/O switch
of the file being examined.

.. command_line"
escapes Multics command level to execute command_line.

?
lists available requests.

continue. c
continues searching for damaged nodes.

quit, q
stops further processing, reporting total of damage found so far.

total, tt
stops reporting, for the remainder of this MSF component, information about
each damaged node and counts the damaged nodes in this component.

NOTES

Give either a pathname argument or -io_switch to identify the file to be checked.

As an active function, returns "true" if bad nodes are found, "false" otherwise.
Normal diagnostic messages are still printed.

3-1070 AG92-06A

EXAMPLES

! vfile find bad nodes >sc1>perm syserr log -ck default,key order
[1] - - - - - -

[2] Begin checking free node list (node_ptr = 4731314000).
[3] Found 59 undamaged free nodes. Processing continues.
[4]
[5]
[6]
[7]
[8]
[9]

Begin checking component 0, node:
25 50 75 100 125 150 175 200 225 250

Begin checking component 6, node:
25 50 75 100 125 150 175 200 225 250

No damaged nodes.

Lines 2 and 3 of the output show that the key-containing components of the file
contain some unused node pages. These free node pages are catalogued, and no further
checking occurs on them.

Line 5 shows the beginning of testing in component 0 of the file. Each component
contains 255 pages, numbered from 1 to 255. The numbers printed on line 6 show the
progress of checking through these pages (i.e., 25 is printed after the first 25 pages
are checked, 50, when 50 pages are checked, etc.).

Line 9 is printed when no .damage is found.

vf i 1 e_f i nd_bad_nodes user_reg -c.heck all
[1]
[2] Begin checking component 0, node:
[3]
[4] ERROR 13 in Camp 0, node 5 (node_ptr = 464110000)
[5] Key (2) > Key (3)
[6] branch_count = 203 keys
[7J start_cf_key_region = char position 2470
[8J key_space = 1626 chars,
[9J scattered_free_key_space = 0 chars
[10] vfile_find_bad_nodes: c
[11]
[12] ERROR 6 in Comp 0, node 6 (node_ptr = 464112000)
[13] branch count> 313
[14] br~nch_count = 9420723823 keys
[15] start_of_key_region = char position 15733420590
[16] key_sp~ce = -15733416494 chars,
[17J scattered_free_key_space = 11171849844 chars
[18] vfile_find_bad_nodes: tt
[19] 25 50 75 100 125 150 175 200 225 250
[20] 4 bad nodes in comp 0
[21]
[22] Begin checking references between 247 nonempty tree
[23] nodes:
[24]
[25] ERROR 21, Comp 0, node 7 (node_ptr= 464114000)

3-1071 AG92-{)6

[26] never referenced by superior node and it is not the
[27] root node.
[28]
[29] 5 key nodes were damaged.

Line 2 shows the beginning of checking on component 0 of another file. The error
message on lines 4 to 9 shows a key-order error in node 5 of component O.

Line 10 shows the request loop. The c request was issued to continue checking.

Lines 12 to 17 show a second error, in node 6 of component O. In this error, more
than 313 keys were found in the node.

Line 18 shows issuing tt gets a count of the remaInIng errors in component O. The
count is shown in line 20--4 bad nodes--which includes the two for which errors
were shown plus two others.

Lines 22 and 23 show the beginning of the check that insures that all nodes but the
root are children of some other node.

Lines 25 to 27 show an error in a node that contains keys but is never referenced by
any superior node in the key tree.

Line 29 prints a summary of all checking, showing that a total of five key nodes
were found among all the components of the file.

Name: vfile_status, vfs

SYNTAX AS A COMMAND

vfs path

FUNCTION

prints information about and the apparent type (unstructured, sequential, blocked, or
indexed) and length of files.

ARGUMENTS

path
is the pathname of a segment or multisegment file. If the entrynameportion of
a pathname denotes a directory, it is ignored. If no files are found for the given
pathname, a message is printed. If the entry is a link, the information returned
pertains to the entry to which the link points. The star convention is allowed.

3-1072 AG92-()6

NOTES

For structured files, information about the state of the file (if busy) and the file
version (unless current) is printed. For blocked files the maximum record length is
printed. For indexed files the following statistics are printed:

1. the number of records in the file, including zero-length records

2. the number of nonnull records in the file, if different from the above

3. the total length of the records (bytes)

4. the number of blocks in the free-space list for records

5. the height of the index tree (equal to zero for empty files)

6. the number of nodes (each 1K words, page aligned) in the index tree

7. the total length of all keys (bytes)

8. the number of keys (if different from record count)

9. the number of duplicate keys (if nonzero)

10. the total length of duplicate keys (if any).

For additionai iniormation see the status command.

EXAMPLES

Assume that the file foo is in your working directory. The command line

vfile_status foo

might produce the following output

type: unstructured
bytes: 4993

if the file is unstructured, or:

type: sequentiai
records: 603

if the file is sequential, or:

type: blocked
records: 1200
max reel: 7 bytes

3-1073 AG92-06

if the file is blocked, or:

type: indexed
records: 397
state: locked by this process
action: write in progress
record bytes: 3970
free blocks: 1
index height: 2
nodes: 3
key bytes: 3176

if the file is indexed and a write operation has been interrupted in your process.

Name: walk_subtree, ws

SYNTAX AS A COMMAND

ws path command_line {-control_argsl

FUNCTION

executes a specified command line in the directory selected (called the starting node)
and in its inferior directories. It prints the pathname of every directory in which the
command line is executed.

ARGUMENTS

path
is the starting node. This must be the first argument. A path of -workin~directory
(-wd) specifies the working directory.

command_line
is the command line to be executed. The entire command line is taken to be a
single argument A multiple-word command line should be typed as a quoted
string.

CONTROL ARGUMENTS

-brief. -bf
suppresses printing of the names of the directories in which the command line is
executed.

3-1074 AG92-Q6

-bottom_up, -bu
causes execution of the command line to commence at the last level and to
proceed upward through the storage system hierarchy until.. the first level is
reached. . In the· default ·mode~execution begins· at .. the highest-(first)· level and
proceeds downward to the lowest (last) level.

-first N, -ft N
makes N the first level in the storage system hierarchy at which the command
line is to be executed, where, by definition, the starting node is level 1. The
default is -ft 1.

-last N, -It N
makes N the last level in the storage system hierarchy at which the command line
is to be executed. The default is -It 99999, i.e., all levels.

-msf
treats multisegment files as directories, which, normally, are not considered as
such.

-priv
invokes a highly privileged primitive to list directories. It requires access to the
hphcs_ gate.

NOTES

This command has a cleanup handler--if one quits out of it and immediately types
"rI" (release), one's directory is changed back to what it was prior to walk_subtree's
invocation.

EXAMPLES

To list all segments in the current working directory having a two-component name
with a second component of "pU" the user types:

ws -wd "1ist *.p11 11

To list two-component names with a second component of "pU" in directories
subordinate to the working directory named George, the user types:

ws >udd>m>George 111 is t 1c. P 1111 -a 11

3-1075 AG92-06

watch

Name: watch

SYNTAX AS A COMMAND

watch {locations} {-control_args}

FUNCTION

manipulates the table of virtual memory locations under scrutiny by the trace facility,
which can monitor up to 1024 locations for content changes. The word at each
location is checked whenever any entrypoint in the trace table is called or returns.
When a change is detected, execution is stopped and the old and new contents are
displayed. (See the trace command for more information about the trace facility.)

ARGUMENTS

locations
represent memory locations in a form acceptable to the cv_ptr_ subroutine. You
must separate mUltiple locations by spaces (refer to virtual pointers in Section 1).

CONTROL ARGUMENTS

-add

tell what to do with the specified locations. If you select neither -add nor
-remove, -add is assumed.

adds the specified locations to the watch table. When a location is added to the
watch table, its content is saved there for later comparison; when a specified
location is already in the watch table, its saved content is brought up to date.

-changed
specifies all locations with content changes.

-remove, -rm
removes the specified locations from the watch table.

-status, -st
displays the specified locations and their contents from the watch table.

NOTES

To prevent trace messages while watching, use the "-trace off" argument to the trace
command when adding entrypoints to the trace table.

The order of entrypoints in the watch table is determined by their segment numbers
and word offsets. The table is ordered first by ascending segment number and then
by ascending word offset

watch

3-1076 AG92-06

watch

All locations in the watch table are checked whenever any entrypoint in the trace
table is called or returns unless the entrypoint is off or all tracing is disabled. If any
locations have changed, the trace facility prints a stop message, displays the old and
new contents, and calls the -stop_proc. When the -stop_proc returns. the new
contents are recorded in the watch table and execution resumes.- Unless-yoll change it,
the -stop_proc is the command processor, so you can invoke a debugger to get
further information. To get a trace of the changing contents without stopping, use the
command "trace -stop_proc nothing".

NOTES ON THE SYNTAX OF LOCATIONS

Acceptable representations include the following:

pathnamelword_number
pathname (same as pathnamelO)
pathnamelentryname
pathname~entryname (pathname must contain> or <)
reference name$word number
reference-nameS - (same as reference_name$O)
reference=name$entryname
segment_numberlword_number
segment_number (same as segment_number 10)
segment_numberlentryname
"J'C (all locations in the watch table)

Pathnames can be relative or absolute. All numbers are octal. Bit offsets are ignored.
If you use *, you can't specify any other locations.

EXAMPLES

The command sequence

watch

tells the number of locations in the watch table and lists the action control arguments.

The command sequence

watch 24410 3331100
trace bound_graphics_$* -trace off
some script

causes trace to watch two words: wore U In segment number 244 (octaD and word 100
(octal) in segment number 333 (octal). These words are checked for changes in their
contents each time any entrypoint in boundJTaphics_ is called or returns. If either
word has changed, trace prints the name of the entrypoint, displays the old and new
contents, and stops execution by calling the command processor. You can resume
execution with the start command; execution is stopped again if further changes occur.

watch

3-1077 AG92-06

watch

11/86

The command sequence

watch 2341 (0 1 2 3 4 5 6 7)
trace -automatic on -buffer on
some script

watches eight locations during the running of a script. Automatic mode traces
everything (except gates, which can't currently be traced). Specifying "-buffer on"
records all calls, returns, unwinds, and signals in a circular trace buffer. Whenever
one or several of the locations change, a message is printed and execution is halted.
You can display the events leading up to the change by typing "trace -print_buffer
N" (where N is the number of events you want to see).

The command line

watch -status 'le

displays every location in the watch table and its contents.

Name: where, ~Th

SYNTAX AS A COMMAND

wh names {-control_args}

SYNTAX AS AN ACTIVE FUNCTION

[wh name {-control_args}]

FUNCTION

uses the standard search rules to search for a given file or entry point.

ARGUMENTS

names
are file and entry point names. You can't use the star convention.

CONTROL ARGUMENTS

-all. -a
lists the pathnames of all files and entry points with the specified names that you
can find using the current search rules, your effective access to each segment or
entry point. and the name of the search rule used to find each file or entry
point. It is incompatible with -lg.

-brief, -bf
prints only the pathname of each entry found. (Default)

where

3-1078 AG92-06A

where

11/86

-en try _poin t, -ep
searches for entry points. If a name argument does not contain a dollar sign,
where searches for the entry point name$name.

-inhibit_error, -ihe
does not print an error message if no file can be found for a given name. For
the command no output is printed, for the active function the null string is
returned.

-long, -lg
prints the pathname, the name of the search rule used to find each segment or
multisegment file (MSF). and your effective access to the segment.

-no_inhibit_error. -nihe
prints an error message if no segments or MSFs can be found for a given name.
(Default)

-segment, -sm. file
searches for segments or MSFs. (Default, unless name contains a $)

NOTES

This command prints out the full pathname of the file. using its primary name, and
the entry point name if you request one. If the file or entry point is not in the
search path, an error message is printed.

The primary name of a storage system entry is the name that is first in t.he list of
names on that entry.

If you supply -a, where prints information only about the first matching file or entry
point encountered.

The -ep and -file control arguments are mutually exclusive. If you provide one of
them, all the name arguments are assumed to be of the type specified. If you provide
neither -ep nor -file, where scans the name arguments: Any name arguments that
contain a dollar sign are assumed to be names of entry points; all others, names of
files.

See "Search Rules" in the Programmer's Reference Manual.

NOTES ON ACTIVE FUNCTION

The active iunciion returns the pathname OJ tne segment. You can'i use -a, -01, and
-lg. Unless you supply -ihe, an error occurs if no segment or MSF can be found.

where

3-1079 AG92-{)6A

where

11/86

EXAMPLES

If you have a private copy of the cwd command in your working directory, and you
have initiated that copy, the command line

wh cwd -all

prin ts three lines:

>udd>Project>Person>wd>cwd (re) search rule "initiated_segments"
>udd>Proj ect>Per son>wd>cwd (re) search ru 1 e "wd ll

>sss>cwd (re) search rule "system_library_standard"

Name: where_doc, wdoc

SYNTAX AS A COMMAND

wdoc topic_name {-control_args}

FUNCTION

returns the names of manuals that contain information about the specified topic name.

ARGUMENTS

topic_name
is the name of a topic, command, subroutine, or I/O module. Use iteration to
get more than one topic (see "Examples" below).

CONTROL ARGUMENTS

-all, -a
prints all the sections of manual information.

-allow _partial_matches, -apm
searches for a partial match of the topic name if an exact match is not found.

-audience, -aud
describes the audience for which the manual is tntended.

-database_pathname PATH, -dbpn PATH
specifies the pathname of the database you want instead of the default one. Once
you supply -database_pathname, the specified database is used for all subsequent
invocations of wdoc during your process until you select another database.

3-1080 AG92-06A

11/86

-description, -desc
returns a brief description of the manual's contents. (Default)

-dont_allow_partial_matches, -dapm
does not allow partial matches. (Default)

-new _f eatures, -nf
lists all new features that have been added to the manual with the last update
(revision or addendum).

-no_audience, -no_aud
does not describe the manual's intended audience. (Default)

-no_description. -no_desc
suppresses printing of the brief description of the manual's contents.

-no_new_features, -no_nf
does not list new features. (Default)

-no_table_of_contents, -no_toc
does not print the manual's table of contents. (Default)

-output_file PATH. -of PATH
directs the output to a file instead of to your terminal.

-table_of_contents, -toc
prints the manual's table of contents.

NOTES

If you can't find a match for topic_name and didn't select -apm or -dapm, you are
asked whether or not you want wdoc to search for partial matches.

When you use a control argument giving additional information about the manuals
found (e.g., -aud or -toc) and wdoc finds more than one manual with information
about the topic_name. a menu containing the names of the manuals is displayed. You
can then choose to see the information on one or more of the manuals listed or
return to command level.

EXAMPLES

When wdoc finds a manual that contains the topic name, it displays the manual's title,
order number, and the Multics rei ease that the current revision or addendum supports.
For example.

wdoc dynamic linking

Title: Introduction to Programming on Multics
Order No.: AG90-03
Release Supported: MR9.0

*

3-1080.1 AG92-06A

11/86

Certain control arguments enable you to get additional information about any manuals
found:

wdoc help -audience

Title: Multics Commands and Active Functions
Order No.: AG92-05
Release Supported: MR10.l

Audience:
Programmers and nonprogrammers who use Multics commands and
active functions.

When using iteration, enclose in quotes names containing blank spaces; for instance,

wdoc (access create_d i r "user r i ngl')

Name: where_search_paths, wsp

SYNTAX AS A COMMAND

wsp search_list entryname {-control_arg}

SYNTAX AS AN ACTIVE FUNCTION

[wsp search_list entryname {-control_arg}]

FUNCTION

prints or returns the absolute pathname(s) of entryname when you give search_list and
entryname. The search for the entryname is made using the current search paths
contained in the specified search list

3-1080.2 AG92-06A

ARGUMENTS

search_list
is-the name of the search -list searched.

entryname
is the entryname sought

CONTROL ARGUMENTS

-all, -a
specifies that all occurrences of this entryname found by probing this search list
should be returned.

ACCESS REQUIRED

You must have s access on the containing directory or nonnull access to the entry.

NOTES

For a complete list of the search facility commands see add_search_paths.

EXAMPLES

To find the include file structincl.pll using the translator search list, type:

wsp translator struct.incl =pl1
>user_dir_dir>Project_id>Person_id>struct.inci.pii

Here is a case in which -all is selected and there is more than one occurrence of the
entryname chosen:

wsp translator struct.incl.pll -all
>user dir dir>Project id>Person id>struct.incl.pll
>user-dir-dir>Project-id>include>struct.incl.pll - - ->1 ibrary_dir_dir>include>struct.incl.pll

3-1081 AG92-D6

who

Name: who

SYNTAX AS A COMMAND

who {User_ids} {-control_args}

SYNTAX AS AN ACTIVE FUNCTION

[who {User_ids} {-control_args}]

FUNCTION

lists the number. identification. and status of all users of the system; it prints out a
header and lists the name and project of each user. The header consists of the system
name. the total number of users. the current system load, the maximum load, the
current number of absentee users. and the maximum number of absentee users. (See
the how_many_users command to print only the header.)

ARGl/MENTS

User_ids
are match names, where:
Person_id

lists users with the name Person_ide
. Project_id

iists users with the project name Project_id.
Person_id. Project id

lists users with the specified person and project

CONTROL ARGUMENTS

-absentee, -as
lists absentee users (see "Notes").

-all, -a
lists all the interactive, absentee, and daemon users.

-brief. -bf
suppresses the printing of the header. Not allowed for the active function.

-daemon, -dmn
lists daemon users (see "Notes").

-interactive, -ia
lists interactive users (see "Notes").

who

3-1082 AG92-06

who

-long, -lg
prints the date and time logged in, the terminal identification, and the load units,
name, and project of each user. The header includes installation identification and
the time the system was brought up. If available, the time of the next sCheduled
shutdown, the time when service will resume after the shutdown, and the time of
the previous shutdown are printed. Not allowed for the active function.

-name, -nm
sorts the output by the name (Person_id) of each user.

-project, -pj
sorts the output by the Project_id of each user.

NOTES

If you supply none of -interactive, -absentee, or -daemon and give no User_ids, then
all interactive and absentee users are listed; but if you specify User_ids, then all
matching users are listed. If you provide one or more of -interactive, -absentee, or
-daemon, only processes of the selected type(s) are listed; if you also select User_ids,
then only users matching those control arguments and the User_ids are listed.

Absentee llSers are denoted in the list by an asterisk following Person_id.Project_id.

If you omit -name and -project, the output is sorted on login time. You can't use
both arguments together because the sort is performed on one key at a time.

Ii you suppiy a User_id, the header is suppressed even if you give -iong. if you use
who with no arguments, the system responds with a two-line header followed by a list
of interactive users sorted according to login time.

Sometimes a Person_id.Project_id returned by the command is followed by a "0"
and/or an "S", where "0" refers to a disconnected process and "S" refers to a
suspended process.

You can prevent your own name from being listed by all users' invocations of who;
to do this, see your project administrator.

NOTES ON ACTIVE FUNCTION

The active function returns a list of Person_id.Project_id pairs, requoted and separated
by spaces. You can use control arguments to select and sort

who

*

3-1083 AG92-06

Name: window_call, wdc

SYNTAX AS A COMMAND

wdc arguments {-control_args}

SYNTAX AS AN ACTIVE FUNCTION

[wdc arguments {-control args}]

FUNCTION

provides a command interface to the video system (see the Programmer's Reference
Manual for a description of the video system).

ARGUMENTS

are listed below; some of them require control arguments. A detailed description
follows the control arguments section.

bell
change_window, chgwd
clear_region, clrgn
clear_to_end_of_line, cleol
clear_to_end_of _window, cleowd
clear_window, c1wd
create_window, crwd
delete_chars, dlch
delete_window, dlwd
get_echoed_chars, gech
get_first_line, gfl
get_one_unechoed_char, gouch
get_position, gpos
get_terminal_height, gtmhgt
get_terminal_ width, gtmwid

CONTROL ARGUMENTS

-column N, -col N

get_unechoed_chars. guch
get_window _height, gwdhgt
insert_text, itx
invoke
overwrite_text, otx
revoke
scroll_region, scrgn
set_posi tion, spos
set_position_rel, sposrel
supported_terminal
sync
video_invoked
write_sync_read, wsr

specifies a column on the screen. If you don't give it, the default is the
remainder of the screen. (Default: 1, the leftmost column)

-count N, -ct N
specifies a count

-height N, -hgt N
specifies the height of a region or a window for a request. If you don't supply
it, the default is the remainder of the screen.

3-1084 AG92-06

-io_switch STR, -is STR
specifies the name of an I/O switch for a window. This serves to identify the
window. If you don't provide it, user_i/o is ~umed.

-line N
specifies a line on the screen. (Default 1, the top line)

-line_speed N. -Is N
specifies the speed of the terminal's connection to Multics, where N is in
characters per second.

-string STR, -str STR
specifies a text string for display, where N must be quoted if it contains blanks.

-terminal_type Sm. -ttp STR
states the name of the terminal type, where STR is a terminal type. To see
accepted terminal types, type "print_terminal_types."

-width N, -wid N
specifies the width of a region for a request If you don't provide it, the default
is the remainder of the screen.

LIST OF ARGUMENTS

bell

SYNTAX AS A COMMAND

wdc bell {-io_switch STR}

FUNCTION

activates the terminal bell. On some terminals, this may produce a visual indication
instead of an audible tone. The cursor position must be defined. The cursor is
positioned to the current position of the specified window, if it is elsewhere on the
screen.

change~ window. chgwd

SYNTAX AS A COMMAND

wdc chgwd {-line N} {-column N} {-height N} {-width N} {-io_switch STR}

*

3-1085 AG92-D6

window_call

FUNCTION

changes the ortgtn or size of the specified window. You must give at least one of
-column, -height, -line, or -width._ If you give only -line (changing the top line of
the window), the window length is automatically adjusted: i.e .• if -line increases the
value of the top line number (moving the window down), the window length shrinks
accordingly; however if -line decreases the top line number (moving the window up),
the length remains the same. If you supply only -height (changing the window length),
the origin line remains the same. If you select only -width (changing the window
width), the origin column remains the same.

clear_region, clrgn

SYNTAX AS A COMMAND

wdc clrgn -line N -column N -height N -width N {-io_switch STR}

FUNCTION

clears the specified rectangular region of the window to blanks. The region may be
part or all of the window.

SYNTAX AS A COMMAND

wdc cleol {-io_switch STR}

FUNCTION

clears the line from the current cursor position to the end of the line to blanks. You
must define the current cursor position.

SYNTAX AS A COMMAND

wdc cleowd {-io_switch STR}

FUNCTION

clears the window from the current cursor position to the end of the window to
blanks. You must define the current cursor position.

3-1086 AG92-Q6

window_call window_call

SYNTAX AS A COMMAND

wdc clwd {-io_switch STRJ

FUNCTION

clears the specified window so that its content becomes entirely blank. The current
cursor position is defined to be at line 1, column 1 of the specified window.

create_window, crwd

SYNTAX AS A COMMAND

wdc crwd -io_switch STR {-line N -column N -height N -width NJ

FUNCTION

creates a new window on the screen with name (and I/O switch) STR. The window is
blank when created, and the cursor position is line 1, column 1 of the new window.

delete_chars, dlch

SYNTAX AS A COMMAND

wdc dlch -count N {-io_switch STRJ

FUNCTION

deletes N characters to the right of the current cursor position on the current line.
The cursor remains stationary; characters to the right of the deleted characters move
to the left to fin the vacated space. You must define the current cursor position.

delete_window, dlwd

SYNTAX AS A COMMAND

wac aiwd -io_switch STR

FUNCTION

destroys the specified window. The I/O switch is closed and detached.

3-1087 AG92-06

get_echoed_chars, gecb

SYNTAX AS A COMMAND

wdc gech -count N {-io=switch STR}

SYNTAX AS AN ACTIVE FUNCTION

[wdc gech -count N {-io_switch STR}]

FUNCTION

reads characters from the terminal until either N characters or a break character is
read. All characters except the break are echoed on the screen in the current window.
For information on break characters, see the break_table control order in the
description of window_io_. You must define the current cursor position. As an active
function, two strings are returned: the first contains any nonbreak characters read, and
the second contains the break character, if any_

SYNTAX AS A COMMAND

wdc gfl {-io_switch STR}

SYNTAX AS AN ACTIVE FUNCTION

[wdc gfl {-io_switch STR}]

FUNCTION

prints/returns the line on the screen where the specified window begins.

SYNTAX AS A COMMAND

wdc gouch {~io_switch STR}

SYNTAX AS AN ACTIVE FUNCTION

[wdc gouch {-io_switch STR}]

FUNCTION

reads/returns a single unechoed character from the terminal.

3-1088 AG92-Q6

get_position, gpos

SYNTAX AS A COMMAND

wdc gpos {-io_switch STR}

SYNTAX AS AN ACTIVE FUNCTION

[wdc gpos {-io_switch STR}]

FUNCTION

prints the current line and column position of the cursor. As an active function.
returns the line and column position as a pair of integers separated by a space.

SYNTAX AS A COMMAND

wdc gtmhgt

SYNTAX AS AN ACTIVE FUNCTION

[wdc gtmhgt]

FUNCTION

prints/returns the total number of lines on your terminal.

SYNT AX AS A COMMAND

wdc gtmwid

SYNTAX AS AN ACTIVE FUNCTION

[wdc gtmwi d]

FUNCT!OlV

prints the total number of columns on your terminal. As an active function. returns
the total number of columns on your the terminal until either a break character or N
characters are read. You must define the current cursor position.

3-1089 AG92-06

window_call window _call

SYNTAX AS A COMMAND

wdc guch -count N {-io_switch STR}

SYNTAX AS AN ACTIVE FUNCTION

[wdc guch -count N {-io_switch STR}]

FUNCTION

reads characters from the terminal until either N characters or a break character are
read. You must define the current cursor position. As an active string, returns two
strings: the first con tains any non break characters read, the second contains the break
character, if any.

SYNTAX AS A COMMAND

wdc gwdhgt {-io_switch STR}

FUNCTION

prints the height of the specified window.

SYNTAX AS A COMMAND

wdc itx -string STR {-io_switch STR}

FUNCTION

displays the text string STR at the current cursor position. If there are any characters
to the right of the current position on the current line, they are moved to the right
to accommodate the new string. There is no wrap-around feature: if text goes off the
screen, it is dropped. The text string STR must contain only printable ASCII
characters. Use "io_call put_chars" to display nonprintable characters in a readable
form.

invoke

SYNTAX AS A COMMAND

wdc invoke {-line_speed N}

3-1090 AG92-G6

window_call

FUNCTION

activates the video system on your terminal. If you give no line speed, the current
oneis---used. Y-OuT---term-inal--must--be attached---with--the- tty-.;;.;. 11-0 module.- -- If-graphics
or auditing is in use, remove it before you give this command. The settings of the
following tty_modes are copied when you invoke the video system: vertsp, can, erkl,
esc, red, and ctl_char. In addition, if ApI is set on video system invocation. Amore
will be set in the video system. (For more details on modes, see the window_io_ I/O
module.) Similarly, the settings of the current erase and kill characters are copied
when the video system is invoked.

overwrite_text, otx

SYNTAX AS A COMMAND

wdc otx -string STR {-io_switch STR}

FUNCTION

displays the text string STR at the current cursor position in the window. If there is
any text to the right of the current position in the window, it is overwritten with the
string supplied. The text string STR must contain only prin-table ASCII characters. Use
"io_call put_chars': to display nonprintable characters in a readable form.

revoke

SYNTAX AS A COMMAND

wdc revoke

FUNCTION

removes the video system from your terminal. The standard tty_attachment is
restored. The settings of the f oliowing modes are copied when you revoke the video
system: vertsp, can, erkl, esc, red, and ctl_char. If Amore is set while in the video
system. ApI mode is set after revoking the video system. (For more details on modes,
see the window_io_ I/O module.) Similarly, the settings of the current erase and kill
characters are copied when the video system is revoked.

SYNTAX AS A COMMAND

wdc scrgn -count N {-line N -height N -io_switch STR}

3-1091 AG92-D6

window_call

FUNCTION

scrolls the specified region N lines as indicated by -count The specified region is the
whole width of the screen. It can be a whole window or part of a window. If
-count N is negative. the window is scrolled down; if positive. the window is scrolled
up. If lines are scrolled off the screen. they are dropped.

set_position, spos

SYNTAX AS A COMMAND

wdc spos -line N -column N {-io_switch STR}

FUNCTION

positions the cursor to the specified line and column of the specific window.

SYNTAX AS A COMMAND

wdc sposrel -line N -column N {-io_switch STR}

FUNCTION

changes the cursor position by N lines and N columns. You must define the current
cursor position. You must give one of -line or -column and can use both; whichever
control argument you don·t supply defaults to zero.

supported_terminal

SYNTAX AS A COMMAND

wdc supported_terminal {-ttp terminal_type}

SYNTAX AS AN ACTIVE FUNCTION

[wdc supported_terminal {-ttp terminal_type}]

FUNCTION

prints the terminal type that is supported by the video system. If you don·t supply a
terminal type. the current one is used. As an active function, returns "true" if you
can invoke the video system on the given terminal type, "false" otherwise.

3-1092 AG92-{)6

window_call

sync

SYNTAX AS A COMMAND
_... ---

wdc sync {-io_switch STR}

FUNCTION

waits for the last operation performed on the window to be completed. Over certain
networks it may not be possible to actually wait for delivery of the characters to the
terminals.

SYNTAX AS A COMMAND

wdc video_invoked

SYNTAX AS AN ACTIVE FUNCTION

[wdc video_invoked]

FUNCTION

prints the message "The video system has been invoked" if you are already in the
video system; otherwise it prints "The video system has not been invoked. ~~ As an
active function, returns "true" if the video system is in use in your process, "false"
othewise.

SYNT AX AS A COMMAND

wdc wsr -string STR -count N {-io_switch STR}

SYNTAX AS AN ACTIVE FUNCTION

[wdc wsr -string STR -count N {-io_switch STR}]

FUNCTION

displays a prompting string STR at the current cursor position in the window and then
reads input typed in response to the prompt Characters are read unechoed until either
N characters or a break character is read. As an active function, prints a prompting
string and returns the characters read.

3-1093 AG92-06

workinLdir

Name: workinL-dir, wd

SYNTAX AS A COMMAND

wd

SYNTAX AS AN ACTIVE FUNCTION

[wd]

FUNCTION

returns the pathnarne of the working directory of the process in which you invoke it

Name: year

SYNTAX AS A COMMAND

year {time_string} {-contro1_arg}

SYNTAX AS AN ACTIVE FUNCTION

[year {time_string} {-contro1_arg}]

FUNCTION

returns the two-digit number of a year of the century from 00 through 99. The
format string to produce this is "Aye".

ARGUMENTS

time_string
indicates the year about which information is desired. If you supply no
time_string, the current year is used. The time string is concatenated to form a
single argument even if it contains spaces; you need not quote it (See Section 1
for a description of valid time_string valUes.) .

CONTROL ARGUMENTS

-zone STR
STR specifies the zone that is to be used to express the result (Default the
process default)

NOTES

Use the print_time_defaults coIilinand to display the default zone.
display_time_info command to display a list of all acceptable zone values.

Use .1.._
Ul~

year

3-1094 AG92-06

11/86

Name: zero_segments, zsegs

SYNTAX AS A COMMAND

zsegs star_names {-control_args}

SYNTAX AS AN ACTIVE FUNCTION

[zsegs star_names {-control_argsJ]

FUNCTION

returns the entrynames or absolute pathnames of segments with a zero-bit count that
match one or more star names.

ARGUMENTS

star_name
is a star name to be used in selecting the names to be returned.

CONTROL ARGUMENTS

-absolute_pathname, -absp
returns absolute pathnames rather than entrynames.

-chase
processes the targets of links when you specify a starname.

-inhibit_error. -ihe
returns false if star_name is an invalid name or if access to tell of an entry's
existence is lacking.

-no_chase
does not process the targets of links when you specify a starname. (Default)

-no_inhibit_error, -nihe
signals an error if star_name is an invalid name or if access to tell of an entry's
existence is lacking. (Default)

NOTES

Only one name per segment is returned; i.e., if a segment has more than one name
that matches star_name, only the first match found is returned.

Since each entryname (or pathname) returned by zsegs is enclosed in quotes, the
command processor treats each name as a single argument regardless of the presence
of special characters in the name.

3-1095 AG92-D6A

This page intentionally left blank.

11/86 AG92-06A

SECTION 4

ACCESS TO THE SYSTEM

This section describes the requests interpreted by the answering service. These requests
can only be issued from a terminal connected to the answering service; that is, one
that has just dialed up or one that has been returned to the answering service after a
session terminated with a "logout -hold" command.

For clarity, this section identifies two categories of answering service requests:
preaccess and access. The preaccess requests are necessary because certain terminals do
not have an answerback. By convention, Multics uses a terminal answerback to identify
the particular type of device being used. The device type is used by the system to
interpret all input/output Therefore. for input to be understood by Multics and
output understood by the user. these requests must be specified before the access
requests. The access requests connect the terminal to a process. This process may exist
already (e.g.. dial) or be created in response to the request (e.g.. login).

4-1 AG92-()6

11/87

Name: access_class, acc

SYNTAX

acc

FUNCTION

prints the current terminal channel access class on your terminal.

EXAMPLES

acc
Channel access class: system_low: system_high

Name: dial, d

SYNTAX

d dial id {User_id} {-control_args}

FUNCTION

connects an additional terminal to an existing process. It requests the answering service to
connect and notifies your process of the connection.

ARGUMENTS

dial_id
is the identifying keyword, supplied by a logged-in process, that uniquely specifies that
process that is accepting dial connections.

User_id
is the Person_id.Project_id of the process that you wish to connect to. This argument is
required only if the dial_id is not registered with the system. Registered aliases are allowed
for the Person_id and Project_id.

CONTROL ARGUMENTS

-authorization ACCESS_CLASS, -auth ACCESS_CLASS
specifies the AIM level and category, or categories, of the data that will be transmitted to
and from the system in this session. If not provided, the default authorization from the PNT
is u..~d. Only can be supplied with -user.

-no_print_off t -npf
overtypes a string of characters providing a black area for you to type the pa...c;sword. You can
only give it with -user. (Default: depends on the terminal type)

4-2 AG92-G6B

dial

11/87

-print_oft -pf
suppresses the overtyping of the password. You can only provide it with -user. (Default:
depends on the terminal type)

-user Own_person_id, -user Own_user_id
specifies a User_id to give when validating access to the communications channel.
Own_person_id is your registered personal identifier; Own_user_id is your
Person_id.Project_id. If you supply no Project_id, the default project associated with the
Own_person_id is used. Registered aliases are allowed for Person_id and Project_id.

NOTES

When you invoke dial, the answering service searches for a logged-in process accepting dial
connections using the dial_id you provided. If not found, the message "Dial line not active." is
printed and you can try again, with a different dial_id; if found, a one-line message verifying the
connection is printed. All further messages printed on the terminal are from your process.

This request is administratively restricted. The project administrator must register you and your
project if you want dialed terminals. The system administrator must register the dial_id if you
want dialed terminals without Own_user_id and can restrict your access to a login service
communications channel. Give -user with your User_id. This request then asks for your
password ensuring its nonvisibility. When your identification and permission to use the channel
are verified the dial request is processed.

All argu..9Jlents must be supplied in the correct order.

If your process terminates or logs out, a message is printed and control of the terminal is returned
to the answering service.

Name: echo

SYNTAX

echo

FUNCTION

used to set the terminal in to echoplex mode before login.

NOTES

This command is equivalent to:

modes echoplex

echo

4-3 AG92-06B

enter

Name: enter, e

SYNTAX

e {anonymous_name} Project_id {-control_args}

ep {anonymous_name} Project_id {-control_args}

FUNCTION

used by anonymous users to gain access to Multics. Either one is actually a request to
the answering service to create a process for the anonymous user. Anonymous users
who are not to supply a password use the enter (e) request. Anonymous users who are
to supply a password use the enterp (ep) request. (See "Notes on Passwords" below.)

CONTROL ARGUMENTS

-arguments STR, -ag STR
supplies arguments to the process. STR can be one or more arguments. All
arguments following -ag on the command line are taken as arguments to the
process. Therefore -ag, if present, must be the last control argument to the enter
request The process can determine the number and value of each argument with
the login_args active function.

-brief, -bf
suppresses messages associated with a successful login. If the standard process
overseer is being used, the message of the day is not printed.

-force
logs the user in if at all possible, provided the user has the guaranteed login
attribute. Only system users who perform emergency repair functions have· the
necessary attribute.

-home_dir path, -hd path
sets the user's home directory to the path specified, if the user's project
administrator allows that user specify a home directory.

-modes STR, -mode STR, -md STR
sets the I/O modes associated with the user's terminal to STR, where the string
STR consists of modes acceptable to the tty_ I/O module. (See the tty_ I/O
module description in the Subroutines manual f or a complete explanation of
possible modes.) The STR string is usually a list of modes separated by commas;
the STR string must not contain blanks. (See "Examples" below.)

-no_preempt, -np
refuses to log the user in if login can be achieved only by preempting some
other user in the load control group.

-no_print_off, -npf
causes the system to over type a string of characters to provide a black area for
typing the password.

enter

4-4 AG92-06

enter

-no_start_up. -ns
instructs the standard process overseer not to execute the user's start_up.ec
segment, if one exists, and if the project administrator allows the user to avoid it.

-no_warning, -nw
suppresses even urgent system warning and emergency messages from the operator,
both at login and during the user's session. Use of this argument is recommended
only for users who are using a remote computer to simulate a terminal, or are
typing out long memoranda, when the process output should not be interrupted by
even the most serious messages.

-outer_module p, -om p
attaches the user's terminal via the outer module named p rather than the user's
registered outer module, if the user has the privilege of specifying an outer
module.

-print_off, -pf
suppresses overtyping for the password. (Default: determined by the terminal
type)

-process_overseer path, -po path
sets the user's process overseer to the procedure given by the path specified, if
the user's project administrator allows that user to specify a process overseer. If
path ends in the characters ",direct", the specified procedure is called directly
during process initialization rather than by the init_admin procedure provided by
the system. This means that the program specified by path must perform the
tasks that would have been performed by the init_admin procedure.

-ring N, -rg N
sets the user's initial ring to be ring N, if this ring number is greater than or
equal to the user's registered initial ring and less than the user's registered
maximum ring.

-subsystem path, -ss path
creates the user's process using the prelinked subsystem in the directory specified
by path. The permission to specify a process overseer, which can be given by the
user's project administrator, also governs the use of the -subsystem argument. To
override a default subsystem by the project administrator, type -ss "".

-terminal_type STR, -ttp STR
sets the user's terminal type to STR, where STR is any terminal type name
defined in the standard terminal type table. (To obtain a list of terminal types,
refer to the print_terminai_types command.) This control argument overrides the
def ault terminal type.

NOTES

If neither the -print_off nor -no_print_off control argument is specified at log-in,
the system attempts to choose the option most appropriate for the user's terminal type.

enter

4-5 AG92-06

enter

If the project administrator does not allow the user to specify the -subsystem,
-outer_module, -home_dir, -process_overseer, or -ring control arguments or if the
administrator does allow one or more of these control arguments and they are
incorrectly specified by the user, a message is printed and the login is refused.

NOTES ON PASSWORDS

The password is a string of one to eight characters. The characters can be any
printing character from the ASCII character set except space and semi-colon. The
backspace character is also allowed and is counted as a character. The password used
for interactive logins cannot be "quit", "help", "HELP", or "1", because these have
special meaning to the password processor. Typing a password of "quit" terminates the
login attempt. A response of "help", "HELP", or "1" produces an explanatory message,
and the request for the password is repeated.

Name: hangup

SYNTAX

hangup

FUNCTION

terminates communication between the terminal and Multics system.
If the communication is via a dial-up phone line, the line is hung up. A user who is
unable to log in can issue the hangup request as an alternative to manually hanging up
the phone.

Name: hello

SYNTAX

he 110

FUNCTION

repeats the greeting message that is printed whenever a terminal is first connected to
the system. The request is particularly useful after a 963 or 029 request since the
greeting message is then printed in the proper code.

hello

4-6 AG92-06

help

11/86

Name: help, HELP

SYNTAX

help

FUNCTION

provides online assistance f or logging in by giving examples of correct login and the
phone number of the system administrator to call for more help. Use HELP with
those terminals whose keyboards generate only uppercase characters.

Name: login, I

SYNTAX

FUNCTION

gives you access to the system. It is a request to the answering service to start your
identification procedure and then either create a process for you or connect the
terminal to your disconnected process. The command line can be up to 300 characters
long.

ARGUMENTS

Person_id
is your registered personal identifier, which can be replaced by a registered "login
alias" if you have one. Aliases, like personal identifiers, are registered by the
system administrator and are unique at the site. The login alias is translated into
your personal identifier during the login process, and there is no difference
between a user process created by supplying a personal identifier and one created
by supplying an alias. (Required)

Project_id
is the identification of your project. If you don't give it, the default project
associated with the Person_id is used. (See -change_default_project.)

login

4-7 AG92-06A

login

CONTROL ARGUMENTS

The following is an alphabetized list of control arguments; their description is
provided in one of the three functional lists given below.

-arguments -new_proc
-authorization -no_preempt
-brief -no_print_off
-change_default_auth -no_save_on_disconnect
-change_default_project -no_start_up
-change_password -no_warning
-connect -outer_module
-create -print_off
-destroy -process_overseer
-force -ring
-generate_password -save_on_disconnect
-home_dir -subsystem
-list -terminal_id
-modes -terminal_type

LIST OF GENERAL CONTROL ARGUMENTS

The following are permitted in any use of the login command:

-brief, -bf
suppresses messages associated with a successful login except the ones indicating
that you have incorrectly specified your password and the ones indicating all your
login attempts with the same Person_ide If you are using the standard process
overseer, the message of the day is not printed.

-change_default_auth, -cda
changes your registered default login authorization to the one specified by
-authorization. If you give a valid authorization, the default authorization is
changed for subsequent logins and the message "default authorization changed" is
printed. If you give -cda without -authorization, an error message is printed.

-change_default_project, -cdp
changes your default project to the Project_id specified on this login request line.
The default Project_id is changed for subsequent logins. and the message "default
project changed" is printed. If you specify -cdp without a Project_id, an error
message is printed.

-change_password, -cpw
changes your password to a new one. The login request asks for the old password
before it requests the new one. twice, to verify the spelling. If you don't type it
the same way both times. the login and the password change are refused. If the
old password is correct. the new one replaces the old for subsequent logins and
the message "password changed" is printed. Don't type the new password as part
of the control argument. (See "Notes on Passwords" below.)

login

4-8 AG92-06

login

-generate_password, -gpw
changes your password to a new one, generated f or you by the system. The login
request asks f or the old password first; then, a new password is generated and
typed on your terminal. You are asked to retype the new password, to verify
having seen it If you type it correctly, it replaces the old· for subsequent logins
and the message "password changed" is printed. If you mistype it, the login and
password change are refused.

-long, -lg
reverses the effect of -brief, or the brief attribute in the project definition table
(see the MAM Project, AK51).

-modes STR, -mode STR, -md STR
sets the I/O modes associated with your terminal to STR, where STR consists of
modes acceptable to the tty_I/O module (see the set_tty command). STR is
usually a list of modes separated by commas; it must not contain blanks. (See
"Examples. n)

-no_print_off, -npf
overtypes a string of characters to provide a black area for you to type the
password.

-no_warning, -nw
suppresses even urgent system warning messages and emergency messages from the
operator, both at login and during your session. Give this argument when using a
remote computer to simulate a terminal or when typing out long memoranda,
when the process output should not be interrupted by even serious messages.

-print_off, -pf
suppresses over typing for the password. (Default: depends on the terminal type)

-terminal_id STR, -tid STR
sets your terminal identification to STR. This control argument is illegal if the
site has specified answerback checking.

-terminal_type STR, -ttp STR
sets your terminal type to STR, where STR is any terminal type name defined in
the standard terminal type table. This control argument overrides the default
terminal type.

-warning
reverses the effect of -no_warning, or the no_warning attribute in the project
definition table (see the MAM Project, AK5i.).

login

4-9 AG92-06

login

LIST OF CONTROL ARGUMENTS FOR PROCESS CREATION

Use the following when requesting the creation of a new process.

-arguments STR, -ag STR
supplies arguments to the process; STR can be one or more arguments. If you use
-arguments, put it last because everything following it on the command line is
taken as arguments to the process. The process can determine the number and
value of each argument with the login_args active function.

-authorization STR, -auth STR
sets the authorization of the process to that specified by STR; STR is a character
string composed of level and category names for the desired authorization,
separated by commas. STR cannot contain any embedded blank or tab characters.
(The short names for each level and category always contain no blanks or tabs,
and can be used whenever the corresponding long names contain blanks or tabs.)
STR must represent an authorization that is less than or equal to the maximum
authorization of Person_id on the Project_id .. If -authorization is omitted, your
registered default login authorization is used. (See the Programmer's Reference
Manual for more information about process authorizations.)

-force
logs you in, provided you have the guaranteed login attribute. Only system users
who perform emergency repair functions have the necessary attribute.

-home_dir path, -hd path
sets your home directory to the path specified if your project administrator allows
it

-no_save_on_disconnect. -nosave
logs your process out instead of saving it if it is disconnected from its login
terminal. This control argument is used to override a default of -save_on_disconnect
if that default has been set by your project administrator.

-no_preempt, -np
does not log you in if you might preempt somebody in this user's load control
group.

-no_start_up, -ns
instructs the standard process overseer not to execute your start_up.ec segment if
the project administrator allows it.

-outer_module path, -om path
attaches your terminal via the outer module named path rather than your
registered outer module if you are allowed.

login

4-10 AG92-G6

login

11/86

-process_overseer path, -po path
sets your process overseer to the procedure given by path if your project
administrator allows it If path ends in the characters ",direct", the specified
procedur~__ is _ called dir~t1y during process initialization r~~her than by the
standard system-provided procedure. This means that the program used by path
must perform the tasks that would have been performed by the standard
procedure. The combined length of the -po and -ss character strings must be less
than 64 characters.

-ring N, -rg N
sets your initial ring to N if this ring number is greater than or equal to your
registered initial ring and less than your registered maximum ring.

-save_on_disconnect, -save
saves your process if it is disconnected from its login terminal because of a
communications line hangup or FNP crash. Your project administrator gives
permission to use the process-saving facility and to enable it by default (See
-nosave and the save_on_disconnect and no_save_on_disconnect commands.)

-subsystem path, -ss path
creates your process using the prelinked subsystem in the directory specified by
path if your project administrator allows it To override a default subsystem
specified by the project administrator, type -ss ''''.

LIST OF CONTROL ARGUMENTS FOR DISCONNECTED PROCESSES

Use the following to specify the disposition of disconnected processes (see "Notes on
Disconnected Processes" below):

-connect {N}
connects the terminal to your disconnected process. If more than one such process
exists, indicate the process number N.

-create
creates a new process without destroying any disconnected ones. This is permitted
only if you are allowed to have multiple interactive processes.

-destroy {N}
destroys your disconnected process and logs out If more than one such process
exists, specify the process number N.

-immediate

-list

bypasses termination of the existing process by the trm_ IPS signal (which causes
running of finish and epilogue handlers in the existing process) and instead tells
the hardcore to destroy the existing process immediately.

lists your disconnected process, its number, the time of the original login, and the
ID of the channel and terminal that were last connected to the process.

login

4-11 AG92-06A

login

11/86

-new _proc {N}
destroys your disconnected process and creates a new one. If more than one such
process exists. give the process number N.

NOTES

unless you already have one or more processes, login creates a process .fOi you. The
load control mechanism is consulted to determine if the creation of your process
overloads either the system or your load control group.

If the mechanism allows it, a process is created for you and the terminal is connected
to it (i.e., the terminal is placed under that process's control). (See "List of Control
Arguments for Process Creation" above.)

You might have a disconnected process because of a phone line hangup or an FNP
crash. Then, you can choose among the following alternatives: connecting the terminal
to the process; destroying the disconnected process, with or without creating a new
one; or logging out without affecting the disconnected process (see "List of Control
Arguments for Disconnected Processes" above and "Notes on Disconnected Processes"
below).

If you specify neither -pf nor -npf at log-in, the system chooses the option most
appropriate for your terminal type.

Several parameters of your process, as noted above, can be controlled by your project
administrator; for example, allowing you to override attributes by specifying control
argumen ts on the login line.

If the project administrator does not allow you to use -hd -om, -po, -rg, -save, or
-ss or does allow you to give one or more of them and you specify· them incorrectly,
a message is printed and the login is refused.

NOTES ON PASSWORDS

The login request asks you for a password and ensures either that the password does
not appear on your terminal or that it is thoroughly hidden in a string of cover-up
characters. The password is a string of one to eight characters, which can be any
character from the ASCII character set (including the backspace) except space and
semicolon. The password used for interactive logins cannot be "quit", "help", "HELP",
or "7" because these have special meaning to the password processor. Typing "quit"
terminates the login attempt; "help", "HELP", or "7" produces an explanatory message
and repeats the request for the password.

After you type the password the answering service looks up the Person_id, the
Project_id, and the password in its tables and verifies that the Person_id and the
Project_id are valid, that you are a legal user of the project, and that the password
given matches the registered password. If these tests succeed, you are logged in.

login

4-12 AG92-06A

login

11/86

NOTES ON DISCONNECTED PROCESSES

If your project administrator allows it, your process can be preserved when it becomes
disconnected from its terminal. You can call back any time before the installation-defined
maximum inactive tiriieand ask to be reConnected. This feature is controlled by -save
and -nosave; your project administrator sets the default.

If your project administrator allows you to have several interactive processes
simultaneously, you can have more than one disconnected process. Multiple disconnected
processes are numbered consecutively starting with 1, in the order of their login times.
Use these process numbers as arguments when referring to one of a set of multiple
disconnected processes. The number and login time of each is printed by -list or the
"list" request You can, however, anticipate the number and use it with a control
argument The time listed and sorted on is the time of the original login from which
the process is descended; this time is not affected by new_proc or reconnection.

LIST OF REQUESTS FOR DISCONNECTED PROCESSES

If you do not specify on the login line what to do with the disconnected processes,
you are told of the disconnected processes and given these choices:

connect {N}
to connect the terminal to a disconnected process

create
to create an additional process

destroy {N} {-control_args}
to destroy a disconnected process and log out

help
to print a description of these options

list
to list your disconnected processes

logout {-control_args}
to log out without affecting any process

new _proc {N} {-control_args}
to destroy a disconnected process, create a new one with the same attributes, and
connect the terminal to it.

When issued from a logged-in but disconnected terminal, the help request explains
these options, not how to log in.

login

4-13 AG92-06A

login

11/86

LIST OF CONTROL ARGUMENTS FOR DISCONNECTED PROCESS REQUESTS

-hold, -hd
prevents the breaking of the connection between the terminal and the answering
service. You can use it only with destroy and logout. (Default)

-immediate
bypasses termination of the existing process by the trm_ IPS signal (which causes
running of finish and epilogue handlers in the existing process) and instead tells
the hardcore to destroy the existing process immediately. You can use it only
with destroy and new_proc.

-no_hold, -nhd
drops the connection. You can use it only with destroy and logout.

EXAMPLES

In the examples below, the user's password is shown even though in most cases the
system either prints a string of cover-up characters to hide the password or
temporarily turns off the printing mechanism of the user's terminal.

Probably the most common form of the login request is to specify the Person_id and
the Project_id and then the password:

login GDScarlatti Demo
Password:
mypass

To set (or change) the default project to Demo:

login GDScarlatti Demo -cdp
Password:
mypass
Default project changed.

To set the tabs and crecho I/O modes so the terminal uses tabs rather than spaces
where appropriate on output and echoes a carriage return when a linefeed is typed
(assuming the user has a default project):

login GDScarlatti -modes tabs,crecho
Password:
mypass

login

4-14 AG92-06A

login

11/86

To change the password from mypass to newpass (assuming the user has a default
project):

log-in GDScar 1 at t i -cpw
Password:
mypass
New Password:
newpass
New Password Again:
newpass
Password changed.

login

4-14.1 AG92-()6A

login

The following example illustrates a login involving a disconnected process:

login JBrahms.Demo
Password:
mypass

You have 1 disconnected process.
JBrahms.Demo logged in 11/16/84 1435.9 est Fri from ROSY terminal "nonell
Last login 11/16/84 1435.1 est Fri from ROSY terminal IInonell
Please give instructions regarding your disconnected process (es) .
Please type list, create, connect, new_proc, destroy, logout, or help.

list

logout

1) logged in 11/16/84 1435.1 est Fri- over channel a.h001, terminal "none"
Please type list, create, connect, new_proc, destroy, logout, or help.

connect
Your disconnected process will be connected to this terminal
Wait for QUIT.
QUIT
r 1503:03 .47 12 Level 2

Name: logout

SYNiAX

logout {-control_args}

FUNCTION

terminates your session and ends communication with the Multics system. It is used
from a terminal that is logged in but not connected to a process. (See "Notes on
Disconnected Processes" under the login request) It informs the answering service that
the user who gave a correct Person_id-password combination is no longer using the
terminal.

CONTROL ARGUMENTS

-brief, -bf
prints neither the logout message nor, if you give -hold. the login message.

-hold, -hd
terminates your session but not communication with the system: you can
immediately log in without redialing.

4-15 AG92-()6

logout

NOTES

If your site is security conscious, it may have disabled "logout -hold"; in this case if
you wish to change authorization, do this:

1. log out

2. verify, using terminal/modem indications, that the terminal has dropped DTR
and that the system acknowledged by dropping DSR

3. log in at the new authorization.

This procedure is the only way to guarantee that you are communicating with the
answering service and not with a Trojan horse.

DTR and DSR are EIA RS232 control signals that are part of the interface between
your terminal and the system.

Name: MAP

SYNTAX

MAP

FUNCTION

tells the system that the user is attempting to gain access from a terminal whose
keyboard generates only uppercase characters. This request must be invoked before the
access requests (e.g., login) can' be successfully iSSUed.

NOTES

Once the request has been issued, the system changes the translation tables used by the
terminal control software so that all uppercase alphabetic characters are translated to
lowercase. The user still needs to use the special escape conventions to represent the
ASCII graphics that are not on the uppercase-only terminal keyboard. Uppercase
alphabetic characters also require the escape conventions. After the MAP request is
given. the user may log in normally.

This request must be used for 150-, 300-, and 1200-baud terminals if their keyboards
can transmit only uppercase characters; for any other terminal type, it is ignored.

MAP

4-16 AG92-Q6

MAP

EXAMPLES

The following example shows a user invoking the MAP request

MAP

LOGIN \JONES \DEMO

PASSWORD:
MYPASS

Name: modes

SYNTAX

modes {mode_string}

FUNCTION

sets the terminal modes bef ore login. Accepts the same mode_string as the set...Jty
-modes control argument. Without arguments, it gives the current modes.

ARGUMENTS

mode_string
is a list of modes to be set

Name: noecho

SYNTAX

noecho

FUNCTION

aHows you to tum off the echoplex mode which may be on by default This
command is equivalent to the "modes I\echoplex" preaccess command line.

noecho

4-17 AG92-()6

slave

Name: slave

SYNTAX

slave {-control_args}

FUNCTION

changes the service type of the channel from login to slave for the duration of the
connection.

CONTROL ARGUMENTS

-authorization ACCESS_CLASS, -auth ACCESS_CLASS
specifies the AIM level and category, or categories, of the data that will be
transmitted to and from the system in this session. If you don't provide it, the
default authorization from the PNT is used. You can only supply it with -user.

-no_print_off, -npf
overtypes a string of characters providing a black area f or you to type the
password. You can only give it with -user. (Default depends on the terminal
type)

-print_off, -pf
suppresses the overtyping of the password. You can only provide it with -user.
(Default depends on the terminal type)

-user Own_person_id, -user Own_user_id
specifies a User_id to give when validating access to the communications channel.
Own_person_id is your registered personal identifier; Own_user_id is your
Person_id.Project_id. If you supply no Project_id, the default project associated
with the Own_person_id is used.

NOTES

The slave command enables a privileged process to request the answering service to
assign the channel to it, and then attach it (see the dial_manager_ subroutine for an
explanation of the mechanism for requesting channels from the answering service).

This request is administratively restricted. The project administrator must register you
and your project if you want dialed terminals. The system administrator must register
the dial_id if you want dialed terminals without Own_user_id' and can restrict your
access to a login service communications channel. Give -user with your User_ide This
request then asks for your password ensuring its nonvisibility. When your identification
and permission to use the channel are verified the dial request is processed.

slave

4-18 AG92-06

11/86

terminal_type

Name: terminal_id, tid

SYNTAX

tid {STR}

FUNCTION

sets your terminal identification to STR. Without arguments, it gives the current
terminal_id. This command is illegal if your site has specified answerback checking.

Name: terminal_type, ttp

SYNTAX

FUNCTION

sets the terminal type prior to login. Without arguments, it gives the current
terminal_type.

ARGUMENTS

terminal_type_name
is the name of a system-defined terminal type.

*

4-19 AG92-06A

MULTICS

COMMANDS AND ACTIVE FUNCTIONS
ADDENDUM B

SUBJECT

Additions snd Changes to the Manual

SPECIAL INSTRUCTIONS

This is the second addendum to AG92-06, dated February 1985. Insert the
attached pages into the manual according to the collating instructions on the
back of this cover. Marginal change indicators (change bars and asterisks) indi
cate technical changes.

See "Significant Changes" in the Preface.

Note: Insert this cover behind the manual cover to indicate the updating of this
document with Addendum B.

SOFTWARE SUPPORTED

Multics Software Release 12.1

ORDER NUMBER

AG92-06B

51321
1088
Printed in U.S.A.

November 1987

HoneMel1 Bull

COLLATING INSTRUCTIONS

To update this manual, remove old pages and insert new pages as follows:

Remove

Front cover, blank
Title page, Preface
iii through xiv
3-3 through 3-6
3-14.1,3-14.2
3-14.3, blank
3-35,3-36

3-147 through 3-150

3-153,3-154

3-157,3-158
3-165 through 3-168

3-235,3-236
3-241, 3-242
3-256.1, blank
3-291,3-292
3-303 through 3-308
3-311,3-312

Insert

Front cover, blank
Title page, Preface
iii through xiv
3-3 through 3-6
3-14.1,3-14.2
3-14.3, blank
3-35,3-36
3-36.1, blank
3-147,3-148
3-149,3-149.1
3-149.2,3-150
3-153, blank
3-153.1,3-154
3-157,3-158
3-165,3-166
3-166.1,3-166.2
3-167, blank
3-167.1,3-168
3-235, 3-236
3-241,3-242
3-256.1,3-256.2
3-291,3-292
3-303 through 3-308
3-311,3-312

Remove

3-395,3-396

3-405, 3-406
3-431,3-432
3-432.1 through 3-432.18
3-539 through 3-542
3-577,3-578
3-673,3-674

3-739 through 3-748

3-791,3-792
3-821 through 3-824
3-859,3-860
3-919 through 3-924

3-937 through 3-940
4-1 through 4-4
i-I through i-55
blank, rear coVer

Honeywell Bull disclaims the implied warranties of merchantability and fitness for a par
ticular purpose and makes no express warranties except as may be stated in its written
agreement with and for its customer. In no event is Honeywell Bull liable to anyone for any
indirect, special or consequential damages.

The information and specifications in this document are subject to change without notice.
Consult your Honeywell Bull Marketing Representative for product or service availability.

Copyright @ Honeywell Bull Inc., 1988 File No.: 1L13

Insert

3-395,3-396

3-405,3-406
3-431, 3-432
3-432.1 through 3-432.18
3-539 through 3-542
3-577,3-578
3-673, blank
3-673.1,3-674
3-739,3-740
3-740.1,3-740.2
3-741 through 3-745.1
3-745.2,3-746
3-747,3-748
3-748.1, blank
3-791,3-792
3-821 through 3-824
3-859, 3-860
3-919,3-920
3-921,3-921.1
3-922,3-922.1
3-923, 3-924
3-937 through 3-940
4-1 through 4-4
i-I through i-33
blank, rear cover

11187
AG92-06B

MULTICS

COMMANDS AND ACTIVE FUNCTIONS
ADDENDUM A

SUBJECT

Additions and Changes to the Manual

SPECIAL INSTRUCTIONS

This is the first addendum to AG92-06 dated February 1985.

Insert the attached pages into the manual according to the collating instruc
tions on the back of this cover. Change bars in the margins indicate technical
changes; asterisks denote deletions.

Refer to the Preface for "Significant Changes:'

Note: Insert this cover behind the manual cover to indicate the manual is
updated with Addendum A.

SOFTWARE SUPPORTED

Multics Software Release 12.0

ORDER NUMBER

AG92-06A

47143
287
Printed in U.S.A.

November 1986

Hone~ell

COLLATING INSTRUcnONS

To update the manual, remove old pages and insert new pages as follows:

Remoye

Title page/Preface

iii through xiv

1-1 through 1-4

2-1 through 2-4

2-7 through 2-11

3-1 through 3-14

3-27, 3-28

3-33, 3-34

3-89, 3-90

3-97, 3-98

3-105, 3-106

3-117, 3-118

3-123, 3-124

Insert

Title page/Preface

iii through xiv

1-1 through 1-4
1-4.1, blank

2-1 through 2-4

2-7 through 2-11

3-1 through 3-14
3-14. 1, 3-14.2
3-14.3, blank

3-27, 3-28

. 3-33, 3-34
3-34.1, blank

3-89, 3-90

3-97, 3-98
3-98.1, blank

3-105, 3-106
3-106.1, blank

3-117, 3-118
3-118.1, blank

3-123, 3-124
3-124.1, blank

The information and specifications in this document are subject to change without notice. Consult
your Honeywell Marketing Representative ior product or service avaiiabiHty.

©Honeywell Information Systems Inc., 1986 File No.: 1L13, lU13 AG92-06A

11/86

3-129, 3-130

3- i 49, i - i 50

3-153, 3-154

3-171 through 3-174

3-179, 3-180

3-189 through 3-192

3-231, 3-232.

3-235, 3-236

3-239 through 3-244

3-249, 3-250

3-253 through 3-256

3-261, 3-262

3-269 through 3-276

3-285, 3-286

3-295 through 3-298

3-315, 3-316

3-325, 3-326

3-345 through 3-350

3-357 through 3-360

3-399, 3-400

Insert

3-129, 3-130

3- i 49, i -150
3-150.1, blank

3-153, 3-154
3-154.1, blank

3-171 through 3-174

3-179, 3-180
3-180.1, blank

3-189 through 3-192

3-231, 3-232
3-232.1, blank

3-235, 3-236

3-239 through 3-244
3-244.1, blank

3-249, 3-250
3-250.1, blank

3-253 through 3-256
3-256.1, blank

3-261, 3-262

3-269 through 3-276
3-276.1, 3-276.2

3-285, 3-286
3-286.1, blank

3-295 through 3-298
3-298.1, blank

3-315, 3-316
3-316.1, blank

3-325, 3-326

3-345 through 3-350
3-350.1 through 3-350.6

3-357 through 3-360

3-399, 3-400
3-400.1, blank

AG92-06A

~~ Insert

3-405 through 3-408 3-405 through 3-408
3-408el. blank

3-429 through 3-432 3-429 through 3-432
3-432.1 through 3-432.30

3-439 through 3-444 3-439 through 3-444
3-444.1, blank

3-451 through 3-454 3-451 through 3-454
3-454.1, blank

3-459 through 3-466 3-459 through 3~466
3-466.1, blank

3-477 through 3-482 3-477 through 3-482

3-491, 3-492 3-491, 3-492
3-492. r through 3-492.4

3-501 through 3-504 3-501 through 3-504
3-504.1, blank

3-511, 3-512 3-511, 3-512
3-512.1, blank

3-527 through 3-530 3-527 through 3-530
3-530.1, blank

3-555 through 3-560 3-555 through 3-560
3-560.1, blank

3-573, 3-574 3-573, 3-574
3-574.1, blank

3-595 through 3-602 3-595 through 3-602

3-605 through 3-616 3-605 through 3-616
3-616.1 through 3-616.10
3-616.11, blank

3-621 through 3-632 3-621 through 3-632
3-632~1 through 3-632.6

3-659, 3-660 3-659, 3-660

3-663, 3-664 3-663! 3-664
3-664.1, blank

3-665 through 3-670 3-665 through 3-670

3-673, 3-674 3-673, 3-674
3-674.1, 3-674.2

11/86 AG92-06A

11/86

3-679 through 3-682

3-689, 3-690

3-705, 3-706

3-731 through 3-734

3-747, 3-748

3-791, 3-792

3-811, 3-812

3-847, 3-848

3-853 through 3-858

3-861 through 3-864

3-869 through 3-876

3-883 through 3-886

3.-905, 3-906

3-913, 3-914

3-919 through 3-924

3-931 through 3-940

3-945 through 3-950

3-1007 through 3-1012

3-1013, 3-1014

3-1045, 3-1046

3-1049 through 3-1052

3-1057 through 3-1060

Insert

3-679 through 3-682
3-682.1, blank

3-689, 3-690

3-705, 3-706

3-731 through 3-734

3-747, 3-748

3-791, 3-792
3-792.1, blank

3-811, 3-812
3-812.1, blank

3-847, 3-848
3-848.1, blank

3-853 through 3-858

3-861 through 3-864
3-864.1, blank

3-869 through 3-876
3-876.1, 3-876.2

3-883 through 3-886

3-905, 3-906

3-913, 3-914

3-919 through 3-924

3-931 through 3-940
3-940.1 through 3-940.4

3-945 through 3-950
3-950.1, blank

3-1007 through 3-1012
3-1012~1, blank

3-1013, 3-1014

3-1045, 3-1046
3-1046.1, blank

3-1049 through 3-1052

3-1057 through 3-1060

AG92-06A

11/86

3-1069, 3-1070

3-1077 through 3-1080

3-1095

4-7, 4-8

4-11 through 4-14

4=19, 4=20

i-1 through i-55

Insert

3-1069, 3-1070

3-1077 through 3-1080
3-1080.1, 3-1080.2

3-1095

4-7, 4-8

4-11 through 4-14
4-14.1, blank

i-l through i-58

AG92-06A

A

aa
see alm_abs

ab
see abbrev

abbrev (ab) command/active function 3-2
abbreviations

abbrev 3-2
abc

see adjust_bit_count
absen tee usage

absin file

ac

acc

exec com 3-320. 3-336
cancelling jobs

can.ceT_abs_request 3-108
executIons

pascal displa,' 3-631
listmg joos ~

li:St_abs_requests 3-500
movmg

move_abs request 3-585
process creatIOn

enter abs request 3-294
log1n-4-7-
10gin_B;rgs 3-532

queuemg JOos
aIm aDS 3-48
cobOl abs 3-134
fortran abs 3-399
pH abs-3-644
runoff abs 3-843

status -
how _many users 3-432.30
user 3-1043
who 3-1082

see archive

see access_class
accept_messages (am) command 3-8
accepting command 3-12
access control

checking
checK iacl 3-125

effective-access
2et effective access 3-413

ini tlal-A CL f or -new directories
copy iacl dir 3-171
delete iad dir 3-236
list iacI dir 3-513
set lacI -dir 3-872

initial-ACL for new segments
copy iacl seg 3-172
delete iac1 se~ 3-238
list iaC! seg J-514

. set.Jacl'=-seg 3-873
nngs

12/87 i-I

INDEX

access control (cont.)
set_d.ir_ring_brackets 3-869
set_nng- -brackets 3-881

segment ana directory ACLs
copv acl 3-160 .,
delete acl 3-233
f.et_efiective_access 3-413
lISt accessible 3-503
list - acl 3-504
list=not accessible 3-518
set acl j-864.1

terminals
dial_manager_call 3-248

access ~ontrol segment lACS)
acquIre resource 3-12
l6_ftf J-476

access isolation mechanism (AIM)
access class

decode access class 3-229
encode-access - class 3-294

prin t_auth-=-names 3-657
pnnt_proc_auth 3-673.1

access requests
login 4-4, 4-7
logout 4-16

access_class (acc) preaccess request 4-2
accounting

active functions
get_dir quota 3-412
system ""3-940
user 3-1045

prin ting usage
resource_usage 3-802

storage quota
delete volume quota 3-244
get_dlr_quota j-412
get_guota 3-420
mom tor quota 3-581
move_quota 3-594
set_ yolume_quota 3-898

acquire_resource (aqr) command 3-12

ACS
see access con trol segment

add_name (an) command 3-14
add_pnotice command 3-14.2
add_search_paths (asp) command 3-15
add_search_rules (asr) command 3-17

address space
making se~ents addressable

add_search_paths 3-15
add search rules 3-17
initiate 3-444-
where 3-1078

refreshing
new proc 3-601
termInate 3-1008
terminate_ref name 3-1007

AG92-06B

address space (cont.)
terminate se~o 3-1010
~erminate=single_refname 3-1011

statlC bindln~
bind 3-85

adjust_bit_count (abc) command 3-18
af

see after
after (an command/active function 3-19
AIM

see access isolation mechanism
ALGOL -68 language

debugging
prol>e 3-680

aIm command 3-20
ALM language

absen tee usage
aIm abs 3-48

aIm 3-10
alm_abs command 3-48
alv

see a ttach_l"
am

see accept_messages
an

see add_name
and command/active function 3-50
anonymous users

active functions
user 3-1045

login
enter 4-4

answer command 3-50
answerin.E service

dial racilir\"
dial 4-2
dial_manager _call 3-248

APL lane:ua2e
apl command 3-53

aqr .
see acqutre_resource

ar
see assign_resource

archive
component

contents of
compare ascii 3-142
con ten ts """3-153

name manipulation
component 3-152
entry 3-317
entry_path 3:-317_
~ual name 3-319
is comp~ment pathname 3-466.1
strip 3-928 -

12/87

strip component 3-930
strip' -entry 3-931
suffiX 3-935

i-2

archive (cont.)
operations

append 3-55
delete 3-58
extract 3-58
replace 3-57
laDle of contents 3-58
4pdate 3-58

sortIng
archive sort 3-64
reorder:archive 3-792

archive (ac) command 3-54
archive_sort (as) command 3-64
area management

area status 3-67
creafe area 3-174
pascal-area status 3-626
pascal-create area 3-628
pasca]-delete -area 3-630
pascal-reset area 3-632.5
set svstem Siorage 3-884
set=liser _siOrage 3-896

area_status command 3-67
argumen t list

debug 3-201
display_en try_win t_dcl 3-261
trace_stack 3-1026

arithmetic operations
active functions

ceil 3-121
divide 3-270
floor 3-359
max 3-558
min 3-578
minus 3-579
mod 3-580
plus 3-651
quotient 3-730
urnes 3-1012.1
trunc 3-1038

as

commands
calc 3-99

see archive_sort
ASCII collatin~ sequence

collate 3-136
collate9 3-136
rank 3-731

asking questions
answer 3-50

asr

query 3-728
repeat_query 3-794
response 3-803

see add_search_rules
assembly language

aIm 3-20
aIm_abs 3-48

assign resource (ar) command/active function
- 3-68

AG92-06B

ata
see attach_audit

attach_audit (ata) command 3-71
attach_Iv (alv) command 3-78

audit files
attach audit 3-71
detach- audit 3-247
display-="audi t_f ile 3-257

author
status 3-919

auto call channel
dial_manager_call 3-248

automatic logout
see logout

B

backup
copy _dump_tape 3-165

BASI C language
basic command 3-79

bd
see bind

be
see before

before (be) command/active function 3-80
before.Journal_status (bjst) command 3-81
bin

see binary
binary (bin) command/active function 3-84
bind (bd) command 3-85
binding

arcnive 3-54
bind 3-85
linkage editor 3-492
object Segnlen t

print_bind_map 3-658
bit count

manipulating
adjust bIt coun t 3-18
close Tile j-129
set bIt count 3-867

printing -
status 3-919

bJ_mgr _can 3~JTc) commancii active function

bj_mgr_c~l1 command
operatIons

close 3-92
closed 3-93
create 3-94
get_default_path 3-94
open 3-95
opened 3-95
set attribute 3-96.
set:default_path 3-96

bjmc
see bj_mgr_call

12/87 i-3

bjst
see bef ore.Journal_sta tus

bound segments
display_component_name 3-260

branch
listing

branches 3-98
list 3-492.4
non links 3-609

branches command/ active function 3-98
breakpoint

debug 3-201
bulk I/O

offline
cancel daemon request 3-111
cancel=output_~eguest 3-113
copy_cards 3-161
dprmt 3-278
dpunch 3-282
enter output request 3-300
list aaemon requests 3-506
list-output requests 3-519
move daemon request 3-587
move-output request 3-592
print -requesC types 3-674.1
total'=-output_requests 3-1013

C

calc command/active function 3-99
calendar command 3-102
calendar_clock command/active function 3~107
cancel_abs_request (car) command 3-108
cancel_cobol_program (ccp) command 3-110
cancel_daemon_request (cdr) command 3-111
canceI_output_request (cor) command 3-113
cancel_resource (cnr) command 3-115
cancel_retrieval_request (crr) command 3-116
canon

see canonicalize
canonicaIize (canon) command 3-118
canonicaIize_mailbox command 3-119
car

see cancel_abs_request

carri~ control transformation
FURTRAN files

set_cc 3-868

cba
see cobol_abs

ccd
see copy_cards

ccp
see cancel_cobol_program

cd
see create_dir

AG92-06B

cdr
see cancel_daemon_request

cds
see create_data_segment

cdwd
see change_default_ wdir

ceil command/active function 3-121
cern

see change_error_mode
cf

see close_file
cfsd

see check_file_system_damage
change_default_ wdir (cdwd) command 3-121
change_error_mode (cern) command 3-122
change_ wdir (cwd) command 3-123
channel master file (CMF)

16_ftf 3-476
character string operations

after 3-19
before 3-80
collate 3-136
collate9 3-136
convert characters 3-154
copy _cnaracters 3-162
decat 3-226
forma t line 3-366
format-line nnl 3-368
higp 3=432.!f
high9 3-432.9
inoex 3-442
length 3-481
low 3-536
lower case 3-537
Itrim ""3-538
picture 3-636
rank 3-731
reverse 3-806
reverse_after 3-807
reverse bef ore 3-808
reverse - decat 3-809
reverse-index 3-810
reverse-search 3-811
reverse - substr 3-812
reverse-verify 3-812.1
rtrim 3=-814
search 3-847
string 3-928
substr 3-935
translate 3-1037
underline 3-1041
unique 3-1042
upp'<!r case 3-1044
verify - 3-1065

check_file_system_damage (cfsd) command 3-124
check_iacl command 3-125
check info segs {cis} command/active function

- -3-126

12/87 i-4

cipher
decode 3-227
encode 3-293

cis
see check_inf o_segs

cleanup
checking fer changes

compare_~ii 3-142
program enVlfonment

stop run 3-927
refresfimg address space

new proc 3-601
terniinate 3-1008
terminate ref name 3-1007
terminate - segn:o 3-1010
terminate - sin~le ref name 3-1011

releasing staCk trame
release 3-790

storage system
adjust bit count 3-18
close Tile j-129
set bIt count 3-867
truncate 3-1039

clock command/active function 3-128
close_file (cO command 3-129
CMF

see channel master file
cnr

see cancel_resource
cob

see compare_object
COBOL .language

compilation
cobol 3-130
cobol abs 3-134

debugging
prol?e 3-680

run una
cancel cobol program 3-110
display co boT run unit 3-260
run coful 3-B19 -
stop cobol run 3-926

source reformatting
expand_cobol_source 3-350.5

cobol_abs (cba) command 3-134
collate command/active function 3-136
collate9 command/active function 3-136
collating

character set
collate 3-136
collate9 3-136

segment
sort_seg 3-903

com bi~ing segments
ar bl trary segments

archive 3-57
ASCII text ~gmelJ~

merge ascii 3-570
object segments

bind 3-85
linkage_editor 3-492

AG92-06B

command environment
c-ontrol

io call 3-445
program interrupt 3-714
release 3=-790
run 3--814
start 3-919
stop run 3-927

ini tiahzlng segments
add search paths 3-15
add-search -rules 3-17
initfate 3-444
link 3-490
profile segglent

abbrev 3-2
ready message

general ready 3-403
ready Off 3-749
read v-on 3-750

see conwtions
sYstem

W reconnect ec disable 3-751
reconnect-ec-enable 3-751
system_tyPe "3-940.3

system status
how many users 3-432.30
no save on disconnect 3-606
prInt motdj-673
save on disconnect 3-847
svstem 3"-940

terminal
set ttv 3-887 user 3-1045

user
resource usage 3-802

user attributes
profile 3-708
user 3-1045

command. language
executIon

do 3-271
do subtree 3-276.1
exec com 3-320, 3-336
execute_string 3-346
progress 3-715
repeat line 3-793
status j-919
substitute_arguments 3-932
walk subtree 3-1074

expansion
abbrev 3-2
default 3-229
do 3-271
exec com 3-320, 3-336
execute string 3-346
:1:''' .. ~
11 ,)-"',)0

substitute arguments 3-932
question askfng

answer 3-50
default 3-229
do 3-271
ex~ute string 3-346
if 3-43"&
query 3-728
response 3-803
select 3-849
substitute_arguments 3-932

12/87 i-5

command line
execution

set_epilogue_command 3-870
command line processing

do 3-2-7-1 --
execute string 3-346
substitute_arguments 3-932

comp_dir_info command 3-137
compare command/active function 3-140
compare_ascii (cpa) command 3-142
compare_object (cob) command 3-150.1
compare_pU (cpp) exec_com 3-151
comp-aring

ASCII segments
compare ascii 3-142

binary segffien ts
compare 3-140

character strings
equal 3-318
greater 3-422
less 3-482

numeric data
nequal 3-597
ngreater 3-605
nress 3-605

object segments
compare_object 3-150.1

PL/I source segrpents
compare_pH 3-151

component
bOund ~ent

aisplay_component_name 3-260
component command/active function 3-152
conditions

error messages
change error mode 3-122
reprInt-error-3-795
resolve-linkage error 3-799
signal 3"-901 -

error recovery
program interrupt 3-714
release 3=-790
start 3-919

handling
exec com 3-320, 3-336. 3-341
on 3=-616.10

signaling
sjgnal 3-901

traCIng _ .'
trace :;-1U14

warning
monItor_quota 3-581

connect command
see dial_out

connection
connect 3-152
failure checking

cbeck_file_system_damage 3-124
contents command/active function 3-153

AG92-06B

conversion (cont.)
conversion

character
convert_ch~racters 3-154

exc~ ~crn verSIOn
convert ec 3-155

value -
binarv 3-84
decimal 3-227
hexadecimal 3-432.8
octal 3-616.9

convert_characters (eve) command 3-154
convert_ec (cvec) command 3-155
copy (cp) command 3-158
copy _acl command 3-160
copy_cards (ccd) command 3-161
copy characters (cpch) command/active function

- 3-162

copy _dir (cpd) command 3-163
copy_dump_tape command 3-165
copy_file (cpr) command 3-167.1
copy_iacl_dir command 3-171
copy _iacl_seg command 3-172
copy _names command 3-172
copyriRht notice

ada pnotice 3-14.2
display pnotice 3-265
generate pnotice 3-410
nst_pnofice_names 3-521

cor
see cancel_output_request

cost-saving features
absentee

cp

aIm abs 3-48
cobOl abs 3-134
enter -abs reguest 3-294
fortran aos 3-399
pll abs-3-644
runoff_abs 3-843

space
archive 3-57
bind 3-85
tape_archive 3-940.3

see copy

cpa ..
see compare_ascll

cpch
see copy _characters

cpd
see copy _dir

cpf _ ..
see copy _t He

cpp
see compare_pU

12/87 i-6

cpt
see curnulative_page_trace

CPU usage
profile 3-708
progress 3-715
reao'· 3-749
resource usage 3-802
system r-94O

cr

trace meters 3-1024
user)-1045

see create
create (cr) command 3-173
create_area command 3-174
create_data_segment (cds) command 3-175
create_dir (cd) command 3-176
create_dm_file command 3-179
cref

see cross_reference
cross_ref erence command 3-180.1
crr

see cancel_retrieval_request
cumulative_page_trace (cpt) command 3-185
cv_ttf command 3-188
cvc

see convert_characters
cvec

see convert_ec
cwd

see change_ wdir
D

d
see dial

da
see delete_acl

dac
see decode_access_class

daemon
offline I/O

cancel daemon request 3-111
canceI-outRut request 3-113
dprint-3-278 -
dpunch 3-282
enter output request 3-300
list aaemon requests 3-506
list-output requests 3-519
move daemon request 3-587
move-output request 3-592
total.]>utput_requests 3-1013

request types
print_reQuest_types 3-674.1

daf
see display _audit_file

AG92-06B

data management (cont.)
data management

bef ore Journals
bef ore-iournal status 3-81
bj_mgr~call 3-=92
transa~110n 3-1027

dJIl_displ.ay v~rsion 3-270
fde manIpulatIon

before-iournal status 3-81
bj mgr call 3-=92
create_am file 3-179
dm user snutdown 3-271
transaction 3-1027

files
set_ac1 3-864.1

data management file
deleting

delete 3-232
delete_dir 3-234

names
deleting

delete name 3-241
pathname -

mani pulating
copy_names 3-172

date and time
active functions

calendar clock 3-107
clock 3-128
date 3-189
date time 3-194
date-time after 3-195
date -time-before 3-195
date=ttme=~ual 3-196
date tIme Interval 3-196
date-time -valid 3-198
day j-199""
day _name 3-200
hour 3-432.29
lon~date 3-535
long vear 3-536
minute 3-579
month 3-582
mon th name 3-583
print time defaults 3-678
set_tIme c:1efault 3-885
time 3-ID12
vear ~-1094

calendar -3-102
displav time info 3-268
reminaers -

memo 3-559
date command/active function 3-189

date_deleter command 3-192

date_time command/active function 3-194
date_time_after (dtar) command/active function

3-195
date_time_before. (dtbe) command/active

functIon 3-195
date_time_equal (dteq) command/active function

3-196

date_time_intervaJ (dtD command/active
functIon 3-196

12/87 i-7

date time valid (dtv) command/active function
- - 3-198

day command / active function 3-199
day_name command/active function 3-200

db
see debug

dcn
display _component_name

dco
see discard_output

dcr
see display _cobol_run_unit

dd
see delete_dir

debug (db) command 3-201
debugging

bouno segment
print bind map 3-658

bound segment off set
display_component_name 3-260

error messages
change error mode 3-122
disp1ay=pllio=error 3-264
reprmt error 3-795
set severity indicator 3-884
severi tv 3-899

external procedures
trace 3-1014
watch 3-1076

inspecting segments
qompare_ascii 3.:-1~7_
aump segment j-llS'

linkage sectIon
pnnt linkage_usage 3-665

page faUlts
trace_meters 3-1024

program
debug 3-201
probe 3-680

staCK frame
trace stack 3-1026

static section
p'rin.t_linkage_usage 3-665

svmbohc

dec

. debu~ 3-201
pll 3'-637

see decimal
decat cQmmand/active function 3-226
decimal (dec) command/active function 3-227

decode command 3-227
see also encode command

decode_access_class {dad command/active
function 3-229

default command/active function 3-229
def ault error handling

change_error _mode 3-122
reprInt error 3-795
signal j-901

AG92-06B

default working directory
change default wdir 3-121
change - wdir 3=123
defaulCwdir 3-230
print_clefault_ wdir 3-661

default wdir (dwd) command/active function
- 3-230

defer_messages (dm) command 3-231
delete (dl) command 3-232
delete_ac1 (da) command 3-233
delete_dir (dd) command 3-234
delete_external_variables (dev) command 3-236
delete_iacl_dir (did) command 3-236
delete_iacl_seg (dis) command 3-238
delete_message (dIm) command 3-239
delete_name (dn) command 3-241
delete_search_paths (dsp) command 3-243
delete_search_rules (dsr) command 3-243
delete_volume_quota (dlvq) command 3-244
deleting

directories
d.elete_dir 3-234

entrIes
date deleter 3-192
delete 3-232

external variables
delete external variables 3-236

initial ACL entries
delete iacl dir 3-236

lin~elete:iacl:seg 3-238

unlink 3-1043
menu description

menu delete 3-566
multiple -names

delete name 3-241
per-process switches

process switch off 3-707
process:switch=on 3-708

quota accounts
delete_ volume_quota 3-244

ref erence names
terminate 3-1008

safety switch
switch off 3-936
switch -on 3-938

search paths
delete search paths 3-243

search rules -
delete_search_rules 3-243

depd
see display_entry_point_dcl

describe_entry _type (dset) command/active
functton 3-244.1

describe_psp command/active function 3-246
desk calculator

calc 3-99

12/87 i-8

desk calendar
calendar 3-102

detach_audit (dta) command 3-247
detach_Iv (dlv) command 3-247
dey

delete_external_ variables
dial f acili ty

dial 4-2
dial manager call 3-248
dial=out 3-250

dial preaccess request 4-2
dial_out command 3-250
did

see delete_iacl_dir
dir

see directory
dir info segments

rebuild_air 3-750
directories (dirs) command/active function 3-255
directory

access control
set dir ring brackets 3-869

access-control TIst
copy ac1 3-160
delete acl 3-233
list accessible 3-503
list-acl 3-504
list-not accessible 3-518
set -acl "'3-864.1

active -functions
def ault wdir 3-230
home Otr 3-432.29
proceSs dir 3-707
workin~dir 3-1094

attributes
set dir rinLbrackets 3-869
status 3"-919

changing
cnange_ wdir 3-123

contents
branches 3-98
entry attributes set bit count 3-867
files j-35&
links 3-492.3
list 3-492.4
msfs 3-596
non branches 3-606
nonlinks 3-609
nonobject files 3-613
nonobJect:msfs 3-614
nonobJect_segments 3-616
nonsegt1}ents 3-616.1
object files 3-616.6
obJect-msfs 3-616.7
obJect-segplents 3-616.8
segments 3-848
zt:ro_segments 3-1095

creatIng
copy dir 3-163
create dir 3-176
move3ir 3-590

AG92-Q6B

directory (cont.)
current
. workin~dir 3-1094
damage

check file sYstem damage 3-124
default - - w -

change default wdir 3-121
defaulC wdir 3=230

deleting -
date deleter 3-192
delete dir 3-234

hierarchy-
do subtree 3-276.1
linK 3-490
list sub tree 3-527
walK sUDtree 3-1074

home dIrectory
home dir 3-432.29

inf ormation
comp' dir info 3-137
list aIr im 0 3-509
rebuild-dir 3-750
save drr info 3-845
status 3-=919

initial ACL
COPy iacl dir 3-171
delete iaCI dir 3-236
list iacl dIr 3-513
set lacl-dir 3-872

master directory
list mdir 3-~16
maSter directories 3-556
set mdir account 3-877
set-mdir-owner 3-877
set=mdir=quota 3-878

names
deleting

delete_name 3-241
pathname

manipulating
add name 3-14
copv names 3-172
delete name 3-241
move -names 3-592
rename 3-791

returning
directories 3-255
directorx 3-256
entries .)-316
entry 3-317
entry path 3-317
nonmaster directories 3-610
path 3-6316
print default wdir 3-661
p'rin t= wdir 3=680
shortest_path 3-900

quota -
get_dir_quota 3-412
get guota 3-420
moi1itor_quota 3-581

recreatmg
rebuiIo_dir 3-750

directory (diT) command/active function 3-256
dirs

see directories
dis

see delete_iacl_seg
discard_output (dco) command 3-256.1

12/87 i-9

disconnect command/active function 3-256.2
disconnection

hangup 4-6
display_audit_file (daf) command 3-257
display_cobol_run_unit (dcr) command 3-260
display entry point dc] (depd) command/active

- function 3-261
display _mailin~address (dsmla) command 3-263
display_pllio_error (dpe) command 3-264
display _pnotice command 3-265
display _subsystem_usage command 3-266
display_time_info (dsti) command 3-268
display_ttt command 3-269
diverting output

file output 3-356
io call 3-445
revert output 3-813
svn output 3-940
terminaI_output 3-1007

divide command/active function 3-270
dl

see delete
dlm

see delete_message
dlv

see detach_Iv
divq

see delete_ volume_quota
dm

see defer_messages
dm_display _version command 3-270
dm_user_shutdown command 3-271
dn

see delete_name
do command/active function 3-271
do_subtree command 3-276.1
documentation

dp

manuals
explain doc 3-352
wliere_ooc 3-1080

see dprint

dpe see display _pllio_error

dpn
see dpunch

dprint (dp) command 3-278
DPS 6

file transfer facility
16 ftf 3-476
network_request 3-597

AG92-()6B

dpunch (dpn) command 3-282
ds

see dump_segment

dset
see describe_entry _type

dsmla
see display _mailin~address

dsp
see delete_search_paths

dsr
see delete_search_rules

dsti
see display _lime_info

dta
see detach_audit

dtaf
see date_lime_after

dthe
see date_time_before

dtc
see date_compiled

dteq
see date_time_equal

dti
see date_time_interval

dtv
see date_time_ valid

dump analysis
complete volume dump switch

switch on 3-938
dump ta~

copy dump tape 3-165
incremental v01ume dump switch

switch_on 3-938
dump segment (ds) command/active function

- 3-285

dwd
see default_ wdir

E

e
see enter

eac
see encode_access_class

ear
see enter_abs_request

ec
see exec_com

echo preaccess request 4-3
ecs

see expand_cobol_source
editing

audit files

12/87

editing (cont)
attach audit 3-71. 3-74

character-string
format line 3-366
format-line nnl 3-368

info segments -
validate_info_seg 3-1049

segments
convert characters 3-154
edm 3-189
emacs 3-290
qedx 3-717
teco 3-971

editor
linkage

linkage_editor 3-492
text

emacs 3-290
edm command 3-289
edoc

see explain_doc
electronic mail

see interuser communication
emacs text editor 3-290
encode command 3-293

see also decode command
encode access class (eac) command/active

- function 3-294
enm

see equal_name
enter (e) access request 4-4
enter_abs_request (ear) command 3-294
enter_output_request (eor) command 3-300
enter_retrieval_request (err) command 3-314
enterp (ep) access request 4-4
entries command/active function 3-316
entrY see link
entry command/active function 3-317
en try P-Oin t

disp'laying
d~play _entry _point_dcl 3-261

locattng
where 3-1078

manipulating
linka~~_editor 3-492

output Dlnary .
linkage_editor 3-492

en try_path command/active function 3-317
eor

see enter_output_request
ep

see enterp
equal command/active function 3-318

i-l0 AG92-06B

equal name (enm) command/active function
- 'l_'l1n

"}-.:JJ.7

error handling
change error mode 3-122
displa v - pllio -error 3-264
on 3-"'610.10 -
reprin terror 3-795
set severitv indicator 3-884
severitv 3":8'99
signal "3-901

error messages
print error message 3-662
reprint error 3-7'15
teeo_error 3-1006

error reeovery
on 3-616.10
program interrupt 3-714
release ~ 790
resolve linkage error 3-799
start 3=919 -

even t channel
communication

dial_manager _call 3-248
exec_com Jec) command

convertIng
convert ec 3-155

version 1 exec_com 3-336
exec com (ec) command/active function

version 2 exec_com 3-320
execute_string command/active function 3-346
existence checking

PV1<:t<: ~_~''''\ 1 hunt f_434V

• .L

list 3-492.4
status 3-919
where 3-1078

exists command/active function 3-350.1
expand_cobol_source (ecs) command 3-350.5
explain_doc (edoc) command 3-352
exponent_control command 3-354
exs

see execute_string
extended ACLs

describe_entry _type 3-244.1
extended entry

deleting
delele 3-232
delete_dir 3-234

names
deleting

delete_name 3-241
extepd.ed en try types

lIStIng
list_entry _types 3-510

modes
describe entry type 3-244.1
set_acl 3"-864.r

external variables
delete_external_variables 3-236

12/87

external variables (cont.)
iist external variableS 3-511
reset_externaI_ variables 3-796

fa
see f ortran_abs

fast command 3-356
fdoc

see format_document
file system utility

mOdes
set_acl 3-864.1

file transfer
copy file 3-167.1
16 ftf 3-476

F

mIcro transfer 3-575
network_request 3-597
remote system

kermit 3-467
tape_in 3-951
tape_out 3-965

file_output (fo) command 3-356
files command/active function 3-358
fl

see format_line
fInnl

see format_line_nnl
floor command/active function 3-359
fo

see file_output
format_document (fdoc) command 3-360
format_line (fn command/active function 3-366
format line nnl (flnnI) command/active function

- j-368

format_pH (fp) command 3-369
format string (fstr) command/active function

- 3-392

formatting
character string

format line 3-366
format-line nnl 3-368
picture -3-63"6

i.nf~aIffai:!'l~fO seg 3-1049
PL/ I source -

format-pll 3-369
indent J-44O

text
format document 3-360
format=string 3-392
overlay 3-619
runoff 3-822
runoff _abs 3-843

fortran command 3-394

FORT~N .language
comptlatlon

i-II AG92-06B

FORTRAN lan~ua~e (cont)
fortran 3~39""4
fortran abs 3-399
set_forfran_common 3-871

debuggIng
jJrooe 3-680

I/O
close file 3-129
set_cc 3-868

fortran_abs (fa) command 3-399
fp

see f ormat_pll

fstr
see format_string

ft
see fortran

G

gc
see gcos

gcos (gc) command 3-401
gea

see get_eff ective_access

general_read v (~) command/active function
3-403

generate_pnotice command 3-410
get_dir_quota command/active function 3-412
get_effective access (gea) command/active

Junction 3-413
get_ips_mask command 3-414
get_library_segment (gls) command 3-415
get_mode command/active function 3-419

get_pathnam~_~~n) command / active function

get_quota (gq) command/active function 3-420
get_system_search_rules (gssr) command 3-424
gls

see get_library _segment
gpn

see get_pathname
gq

see get_quota
gr

see general_ready

greater command/active function 3-422
gssr

see get_system_search_rules

H

hangup preaccess request 4-6
hardware

machine language
aIm 3-20

12/87

hardware (cont.)
aIm abs 3-48

registers
debug 3-201
print sample refs 3-675
sampTe_refs '3-844
trace_stack 3-1026

have_mail command/active function 3-425
have_messages command / active function 3-427
have_queue entries command/ active function

-3-429

hcom
see history _comment

hd
see home_dir

heap variables
llst_heap_ variables 3-512

hello preaccess request 4-6

hex
see hexadecimal

hexadecimal (hex) command/active function
3-432.8

hierarchy
backup

coPJ _dump_tape 3-165
searclimg

hunt dec 3-436
walking-

do subtree 3-276.1
list sub tree 3-527
waIK_suotree 3-1074

high command/active function 3-432.9
high9 command/active function 3-432.9
history registers

save_hIstory _registers 3-846
history_comment (hcom) command 3-432.9

history _c9mment command
operatIons

add 3-432.14

hmu

add field 3-432.15
checK 3-432.18
compare 3-432.19
display 3-432.19
exists 3-432.20
format 3-432.21
get 3-432.17
Install 3-432.19
replace_field 3-432.21

see how _many_users
home_dir (hd) command/active function

3-432.29
hour command/active function 3-432.29
how_many_users (hmu) command 3-432.30
hunt command/active function 3-434
hunt_dec command 3-436

i-12 AG92-Q6B

I

I/O
attachments

attach_audit 3-71
attach Iv 3-78
io calf 3-445

audit-files
attach audit 3-71
detach-=..audit 3-247
display _audi t_f ile 3-257

cards
copy cards 3-161
dpunch 3-282
enter_output_request 3-300

cleanup
adjust bit count 3-18
close Tile j-129
vfile.=-adjust 3-1065

detachments
detach audit 3-247
detach-Iv 3-247

diverting -
syn output 3-940
terminal_output 3-1007

errors
change error mode 3-122
di~play=pl1io=error 3-264

escaPIng
discard output 3-256.1

file -
copy file 3-167.1
file output 3-356
vfife status 3-1072

FORTRAN
set cc 3-868

modestr~~
get muue 3-419

offIine (daemon)
cancel daemon request 3-111
cancel-out~ut request 3-113
dprint-3-278 -
dpunch 3-282
enter output request 3-300
list aaemon requests 3-506
list=output_requests 3-519
move daemon request 3-587
mQve=output_request 3-592
pnnt request types 3-674.1
to~l-=-output_reQuests 3-1013

o~ratl0ns
io call 3-445

peripneral
acquire resource 3-12
assl~ resource 3-68
cancer- resource 3-115
list reSource ty~ 3-523
list-resourceS 3-523
release_resource 3-790
reserve resource 3-796
resource status 3-800
set resource 3-879
unassign resource 3-1040

record -
copy_file 3-167.1

reverting
revert_output 3-813

12/87

I/O (cont.)
syn output 3-940
terminal output 3-1007

switches -
io call 3-445
process switch off 3-707
process-switch -on 3-708
switch off 3-936
switch -on 3-938

terminal -
line length 3-489
print 3-653
set tty 3-887
terminal_output 3-1007

icpn
see is_component_pathname

if command/active function 3-438
im

see immediate_messages
immediate_messages (im) command 3-439
in

see initiate
include files

ind

cross reference 3-180.1
get_library segment 3-415
library_fetCh 3-485
peruse_crossref 3-634

see indent
indent (ind) command 3-440
index command/active function 3-442
info segs

check info segs 3-126
validaTe_info_seg 3-1049

information
directory contents

comp' dir info 3-137
list Otr im 0 3-509
save dir info 3-845

online - -

fi~rc~eIi8f ~=-~I~\ 3-126
tutorial 3-1040
validate info seg 3-1049
where_aoc 3=352, 3-1080

storage system
status 3-919

system status
~~~f~agla~~33-432.30 
sy.stem 3-940 
who 3-1082 

ini tializa tion 
profile sewent 

abbrev 3-2 
segment 

add search paths 3-15 
add-search -rules 3-17 
initiate 3-444 

value segment 
value_set 3-1061 

initiate (in) command 3-444 

i-13 AG92-06B 



interuser communication 

io 

mail 
display _qlailinLaddress 3-263 
have matI 3-425 
mail-3-539 
mbx create 3-558 
print mail 3-665 
read -mail 3-731 
send-mail 3-850 
set_mailing_address 3-875 

message segment 
have_Queue_entries 3-429 

messages 
accept ...... messaites 3-8 
acceptIng 3-I2 
defer messages 3-231 
delete- message 3-239 
have messages 3-427 
immediate_messages 3-439 
last message 3-477 
last-message destination 3-478 
last-message -sender 3-479 
last - message -time 3-480 
meSSage statUs 3-574 
print messages 3-670 
send~message 3-861 

see io_call 
io call Cio) command/ AF 3-445 

-opera tions 
attach 3-446 
attach desc 3-446 
attached 3-447 
close 3-447 
closed 3-448 
con trol 3-448 
delete record, delete 3-449 
destroy iocb 3-449 
detach eo 3-450 
find iocb 3-451 
get Chars 3-451 
get-line 3-452 
10 module 3-454 
loOk iocb 3-454 
modes 3-454.1 
move attach 3-455 
open ""3-455 
ouen desc 3-456 
oPen - file 3-456 
opened 3-457 
position 3-457 
print iocb 3-459 
put Chars 3-459 
reaa key 3-460 
read-length 3-460 
read-record, read 3-461 
rewrIte record;, rewrite 3-462 
seek key 3-46..1 
test -mooe 3-464 
valia mode 3-464 
valid-op 3-465 
write:record, write 3-465 

IPS sigQals 
get ips mask 3-414 
reset iPS mask 3-798 
set_iPs_mask 3-875 

is component pathname (icpn) command/active 
- function 3-466.1 

12/87 

iteration 
answer 3-50 
memo 3-559 
repeat_query 3-794 . 
see pathname actIve functIons 

K 

kermit command 3-467 
L 

see login 
16_ftf command 3-476 
la 

lac 
see list_accessible 

languages .. 
absentee compIlatIon 

aIm abs 3-48 
cobOl abs 3-134 
fortran abs 3-399 
pH abs-3-644 

i-14 

assem@ers 
aIm 3-20 

command language 
version 1 exec com 3-336 
version 2 exec -com 3-320 

compilers -
apl 3-53 
basic 3-79 
cobol 3-130 
create data segment 3-175 
fortran 3-3'94 
pascal 3-622 
pascal area status 3-626 
pascal-create area 3-628 
pascal-delete-area 3-630 
pascal-reset area 3-632.5 
pH 3..:037 -
reductions 3-752 

debugfring 
deout 3-201 
probe 3-680 

editing 
edm 3-289 
emacs 3-290 
qedx 3-717 
teco 3-971 

formatting 
format-p11 3-369 
inden t 3-440 
runoff 3-822 

I/O 
close file 3-129 

object segments 
bind 3-85 
compare object 3-150.1 
date compiled 3-190 
linkage_editor 3-492 

011 macro 
a pll_macro 3-645 
source programs 

compare p11 3-151 
get library segment 3-415 
ubrary _fetCh 3-485 

AG92-06B 



lar 
see list_abs_requests 

last message Om) command/active function 
- 3-477 

last message destination (lmds) command/active 
- function 3-478 

last message sender (lms) command/active 
- function 3-479 

last message time Omt) command/active 
- function 3-480 

ldr 
see list_daemon_requests 

Ids 
see library _descriptor 

Ie 
see linkage_editor 

length (In) command/active function 3-481 
lengtlJ qf segment 

pnntIng 
list 3-492.4 
status 3-919 

setting 
adjust bit count 3-18 
close Tile j-129 
set bTt count 3-867 
truncate 3-1039 

less command/active function 3-482 
lev 

see list_external_variables 
If 

see library_fetch 
lfs 

see list_f ortran_storage 
Ih 

see list_help 
lhy 

see list_heap_ variables 
libraries 

search paths 
add search-paths 3-15 
delete search paths 3-243 
print_Search_paths 3-677 
set_search_paths 3-882 
where search paths 3-1080.2 

sP-2.rch rules -
add search rules 3-17 
delete_searCh_rules 3-243 
get system search rules 3-424 
print_searcn_rules -3-678 
set_search_rules 3-883 

library tools 
cross reference 3-180.1 
eet library segment 3-415 
library deserip-tor 3-483 
library-fetch 3-485 
linkage- editor 3-492 
peruse_crossref 3-634 

12/87 

library descriptor command/active function 
- 3-483 

library_fetch command 3-485 

lid 
see list_iacl_dir 

line_length (II) command/active function 3-489 

link 
deleting 

delete dir 3-234 
manipulaTIng 

copy_names 3-172 
names 

deleting 
delete_name 3-241 

link Ok) command 3-490 
linkage editor 

linkage_editor 3-492 
linkage section 

pnnt_linkage_usage 3-665 
set system storage 3-884 
set=riser_siOrage 3-896 

linkage_editor (le) command 3-492 

linkers 
linkage_editor 3-492 

linking 
error 

resolve_linkage_error 3-799 

links 
active function 

links 3-492.3 
non branches 3-606 
nonnull links 3-612 
null linKS 3-616.5 

creating 
link 3-490 

deleting 
unlink 3-1043 

inf ormation 
. print_linkage_usage 3-665 
In terproced ure 

add_search_paths 3-15 
add search rules 3-17 
bineT 3-85 -
delete search paths 3-243 
delete-search -rules 3-243 
get system search rules 3-424 
linKage editor 3-492 
print search paths 3~677 
print=search=rules 3-678 
set_search_paths 3-882 
set search rules 3-883 
terminate j-l008 
where search paths 3-1080.2 

listing - -
list 3-492.4 
status 3-919 

links command/active function 3-492.3 
lis 

see list_iacl_seg 
list (Is) command 3-492.4 

i-15 AG92-o6B 



list_abs_requests (lar) command 3-500 
list_accessible (lac) command 3-503 
list_acl (la) command/active function 3-504 
list_daemon_requests (Idr) command 3-506 
list_dir_info command 3-509 
list_emacs_ctls command 3-510 

list_entry_ty~1~set) command/active function 

list_external_variables (Iev) command 3-511 
list_fortran_storage (Us) command 3-511 
list_heap_ variables (Ihv) command 3-512 
list_help (lh) command/active function 3-512.1 
list_iacl_dir (lid) command/active function 3-513 
list_iacl_seg (lis) command/active function 3-514 
list_mdir (lmd) command 3-516 
list_not_accessible (lnac) command 3-518 
list_output_requests (lor) command 3-519 
list_pnotice_names command 3-521 
list_ref _names (lrn) command 3-522 
list_resource_types (Irt) command 3-523 
list resources Or) command/active function 

- 3-523 

list_retrieval_requests (Irr) command 3-527 
list_sub_tree command 3-527 
list_tape_contents command 3-528 
list_temp_segrnents command 3-531 
listing 

access 
list accessible 3-503 
list-acl 3-504 
list-not accessible 3-518 

directors -
list 3-492.4 

emacs terminal tyRCs 
list emacs ctls 3-510 

info segmentS 
list h~ 3-512.1 

initial-ACL 
list iacl dir 3-513 

lini~st=iacI=seg 3-514 

links 3-492.3 
list 3-492.4 
non branches 3-606 

requests 
list abs requests 3-500 
list-daemon requests 3-506 
list-output requests 3-519 
list=retrieval_requests 3-527 

resonrces 
list mdir 3-516 
list:resources 3-523 . 

see storage system entnes 
segment 

12/87 

listing (cont.) 
names 

list 3-492.4 
list_ref _names 3-522 

ta~ contents 
list_tape_contents 3-528 

listings 
retrieving source programs 

get library segment 3-415 
library_fetCh 3-485 

lk 
see link 

11 
see line_length 

1m 
see last_message 

lmd 
see list_mdir 

Imds 
see last_message_destination 

Ims 
see last_message_sender 

Imt 
see last_message_time 

In 
see lenght 

Inac 
see list_not_accessible 

logging in 
access class 4-2 
enter "4-4 
enterp 4-4 
hanguI? 4-6 
login ~-7 
login_args 3-532 
see preaccess requests 

logging out 
- aisconnect 3-256.2 
logout 3-534, 4-16 

logical o~rations 
and 3-50 
equal 3-318 
exists 3-350.1 
greater 3-422 
less 3-482 
nequal 3-597 
ngreater 3-605 
nless 3-605 
not 3-616.5 
or 3-618 

logical volume 
attach_Iv 3-78 
delete volume~uota 3-244 
detach-Iv 3-24T 
list mOir 3-516 
Iv attached 3-538 
sef_ volume_quota 3-898 

login 0) access request 4-7 
login_args command/active function 3-532 

i-16 AG92-06B 



logout access request 4-16 
logout command 3-534 
long_date command/active function 3-535 
long_year command/active function 3-536 
lor 

see list_output_requests 
low command/active function 3-536 
lower case (lowercase) command/active function 

- 3-537 

Ir 
see list_resources 

Irn 
see list_ref _names 

Irr 
see list_retrieval_requests 

lrt 
see list_resource_types 

Is 
see list 

lset 
see list_en try_types 

1st 
see list_sub_tree 

ltc 
see list_tape_contents 

ltrim command/active function 3-538 
iv_attached command/active function 3-538 

M 

rna 
see merge_ascii 

machine conditions 
disconnection 

no save on disconnect 3-606 
reConneCt eC disable 3-751 
reconnect-ec-enable 3-751 
save on disconnect 3-847 

examinmg -
debug 3-201 
trace_stack 3-1026 

machine language 
aIm 3-20 
aIm_abs 3-48 

machine registers 
print sample refs 3-675 
sampfe_refs 3-844 

macros 
command language 

abbrev 3-2 
answer 3-50 
default 3-229 
do 3-271 
exec com 3-320. 3-336 
execute string 3-346 
if 3-43"& 
query 3-728 

12/87 

macros (cont) 
response 3-803 
select 3-849 
substitute_arguments 3-932 

pllmacro processor 
pH macro 3-645 

text editing 
emacs 3-290 
teco 3-971 
teco_ssd 3-1007 

magnetic ta~ 
file transfer 

tape in 3-951 
tape:out 3-%5 

mail (mn command 3-539 
mail system commands 

display mailinLaddress 3-263 
have mail 3-425 
print mail 3-665 
read -mail 3-731 
send-mail 3-850 
set_mailing_address 3-875 

mailbox commands 
canonicalize mailbox 3-119 
mbx_create ""3-558 

manuals 
documentation 

mar 

explain doc 3-352 
wliere_ooc 3-1080 

see move_abs_request 
master directory 

owner 
set mdir owner 3-877 

pathname -
master directories 3-556 

quota -
list mdir 3-516 
set -mdir account 3-877 
set:mdir =quota 3-878 

master directories (mdirs) command/active 
- function 3-556 

max command/active function 3-558 
mbcr 

see mbx_create 
mbx_create (mber) command 3-558 
mdirs 

see master_directories 3~556 
mdr 

see move_daemon_request 
memo command / active function 3-559 
menu active functions 

menu describe 3-566 
menu~et choice 3-568 
menu_list-3-569 

menu commands 

i-17 

menu create 3-563 
menu -delete 3-566 
menu-describe 3-566 
menu:display 3-567 

AG92-Q6B 



menu commands (cont.) 
menu~et_choice 3-568 
menu_Tist 3-569 

menu d~ription 
creattng 

menu create 3-563 
deleting -

menu_delete 3-566 
menu_create command 3-563 
menu_delete command 3-566 
menu_describe command/active function 3-566 
menu_display command 3-567 
menuJet_choice command/active function 3-568 
menu_list command/active function 3-569 
merge_ascii (rna) command 3-570 
message commands 

accept messages 3-8 
acceptfng 3-I2 
defer_messages 3-231 
delete_message 3-239 
have messages 3-427 
immediate_messages 3-439 
last message 3-477. 3-478 
last=message_destination 3-478 
last message sender 3-479 
last=message=time 3-480 
message status 3-574 
prin t_messages 3-670 
send_message 3-861 

message of the day 
lOgin 4-7 
pnnt_motd 3-673 

message segment 
have_Queue_entries 3-429 

message_status (msgst) command/active function 
3-574 

metering 
get_dir_quota 3-412 
get quota 3-420 
prorile 3-708 
progress 3-715 
ready 3-749 
resource usage 3-802 
trace_meters 3-1024 

micro_transfer (mt) command 3-575 
microcomputers 

f He transfer 
kermit 3-467 

f He transfer f acili ty 
micro_transfer 3-575 

min command/active function 3-578 
minus command I active function 3-579 
minute command/active function 3-579 
",,1 
.... ,u see mail 

mod command/active function 3-580 

12/87 

mode string 
get_mode 3-419 

modes 
setting 

modes 4-17 
set_tty 3-887 

modes preaccess request 4-17 
monitor_quota command 3-581 
moni toring . 

program executIon 
profile 3-708 
progress 3-715 

quota 
get quota 3-420 
monitor_quota 3-581 

month command/active function 3-582 
month_name command/active function 3-583 
mor 

see move_output_request 
move (mv) command 3-584 

see copy 
move_abs_request (mar) command 3-585 
move_daemon_request (mdr) command 3-587 
move_dir (mvd) command 3-590 
move_names command 3-592 
move_output_request (mor) command 3-592 
move_quota (mq) command 3-594 
mq 

see move_quota 
MSF 

see multisegment file 3-232 
msfs command/active function 3-596 
msgst 

see message_status 
mtape_delete_defaults command 3-596 
mtapeJet_defaults command 3-597 
mtape_set_defaults command 3-598 
multip'le names 

ada name 3-14 
copy names 3-172 
delete name 3-241 
listing-

list 3-492.4 
move_names 3-592 

multiprocess execution 
do_subtree 3-276.1 

multisegrpent file (MSP) 
checking 

vfile_find_bad_nodes 3-1067 

i-18 

dam~ge. _.. . _ _ __ 
cnecK tHe system damage 3-124 

deleting - - -
delete 3-232 
delete_dir 3-234 

AG92-06B 



multisegment file (MSF) (cont) 
msfs 3-596 

mv 

names 
deleting ~ 

delete nam£ j·-241 
nonobject msfs 3-614 
nonzero msfs 3-616.3 
object_msfs 3-616.7 
pathname 

manipulating 
copy _names 3-172 

see move 
mvd 

see move_dir 
N 

names 
access categories 

print auth names 3-657 
print-proc-auth 3-673.1 

external-symbol (entry point) 
print hnk info 3-f>63 

sensitivif}' levels 
print auth names 3-657 
print=proc=auth 3-673.1 

network_request (nr) command 3-597 
new _proc command 3-601 
ngreater command/active function 3-605 
nless command/active function 3-605 
nlinks 

see null_links 
nmdirs 

see nonmaster _directories 
nnlinks 

see nonnull_links 
no_save_on_disconnect command 3-606 
nobfiles 

see nonobject_fiies 
nobmsfs 

see nonobject_msfs 
nobsegs 

see nonobject_segments 
noecho preaccess request 4-17 
non branches command/active function j-bUb 

nondirectories (nondirs) command/active 
function 3-607 

nondirs 
see nondirectories 

nonfiles command/active function 3-608 
nonlinks command/active function 3-609 
nonmaster directories (nmdirs) command/active 

- function 3-610 
nonmsfs command/active function 3-611 

12/87 

nonnul1 link..s (nnlinks) command/active function 
- 3-612 

nonobject files (nobfiles) command/active 
- function 3-613 

nonobject msfs (nobmsfs) command/active 
- function 3-614 

nonobject segments (nobse~) command/active 
- function 3-616~ 

nonsegments (nonsegs) command/active function 
3-616.1 

nonsegs 
see nonsegments 

nonzero files (nzfiles) command/active function 
- 3-616.2 

nonzero_msfs (nzmsfs) command/active function 
3-616.3 

nonzero segrpents (nzse~) command/ active 
- function 3-b16.4 

not command/active function 3-616.5 
nothing (nt) command 3-616.5 
nr 

see network_request 
nt 

see nothing 
null links (nlinks) command/active function 

- 3-616.5 

nzfiles 
see nonzero_files 

nzmsfs 
see nonzero_msfs 

nzsegs 
see nonzero_segments 

obfiles 
see object_files 
see obJect_msfs 

o 

obj~t ~egment . 
bIt InterpretatIon 

Print relocation info 3-674 
bound - -

i-19 

print_bind_map 3-658 
comblnlIl$ 

bind .)-85 
linkage_editor 3-492 

com,ponen ts of 
display _component_name 3-260 

contents 
com~re_o1?ject 3-150.1 

cross-ref erencIng 
pa,sc.al_cross~ref erence 3-630 

exanunIng 
p~al_cross_ref erence 3-630 

extractIng 
get library segment 3-415 
library fetCh 3-485 

inf ormatIon 

AG92-()6B 



object segment (cont.) 
cross reference 3-180.1 
peruSe crossref 3-634 
print relocation info 3-674 

locating - -
hunt dec 3-436 

per-process static switch 
process switch off 3-707 
process-switch-on 3-708 
switch off 3-936 
swi tch -on 3-938 

status -
display_ component name 3-260 
print olnd map 3-=658 
prin t -link Info 3-663 
print=reloeation_info 3-674 

object_files (obfiles) command/active function 
3-616.6 

object_msfs (obmsfs) command/active function 
3-616.7 

object segments (osegs) command/active function 
- 3-616.8 

octal (oct) command/acthe function 3-616.9 
octal dumping of segment 

debug 3-201 
dump_segment 3-285 

on command/active function 3-616.10 
online information 

check info segs 3-126 
how many -users 3-432.30 
list nelp 3=512.1 
print motd 3-673 
tutorIal 3-1040 
validate info se~ 3-1049 
where cfoc 3=352. 3-1080 
who 3=-1082 

or command / active function 3-618 
osegs 

see object_segments 
outp~t 

btnary 
manipulating 

linkage editor 3-492 
diverting -

syn outfut 3-940 
ten nina output 3-1007 

offline -
cancel daemon request 3-111 
cancel-OU!j?ut request 3-113 
dprint-3-278 -
dpunch 3-282 
enter output request 3-300 
list daemon request 3-506 
list=output_Tequests 3-519 
move aaemon request 3-587 
move-output request 3-592 
print -requesC types 3-674.1 
!Otal':output_requests 3-1013 

redtrecttng 
Co"-" nntnnt 'l-O..M\ 
t~rPirnaLoutputV3-1oo7 

revertmg 

12/87 

output (cont.) 
revert output 3-813 
terminal_output 3-1007 

storage system 

ov 

file output 3-356 
terminal 

print 3-653 

see overlay 
overlay (ov) command 3-619 

p 

pa 
see pll_abs 

packing 
bind 3-85 

page f~ults 
tractng 

cumulative .page trace 3-185 
page_trace -3-620-
trace_meters 3-1024 

page_trace (pgt) command 3-620 
pan 

see print_auth_names 
pas 

see pascal 
pascal (pas) command 3-622 
Pascal files 

status 
pascal_file_status 3-632.3 

Pascal language 
area management 

pascal area status 3-626 
pascal-create area 3-628 
pascal-delete-area 3-630 
~al-reset area 3-632.5 

compilatiOn -
pascal 3-622 

cross-ref erencing 
pascal cross reference 3-630 

debugging -
prObe 3-680 

displaYing contents 
. paScal_display 3-631 

fde status 
I/d'ascal_file_status 3-632.3 

cl~_file 3-129 
prompttng 

pascal set_prQmpt 3-633.5 
source rerormatttng 

pascal indent 3-632.4 
storage allocation 

pascal area status 3-626 
pascal-create area 3-628 
pascal-delete-area 3-630 
pascal=reset_area 3-632.5 

pascal_area_status command 3-626 
pascal_create_area command 3-628 

i-20 AG92-06B 



pascal cref 
see-pascal_cross_reference 

pascal_delete_area command 3-630 
pascal_display command 3-631 
pascal_file_status command 3-632.3 
pascal_indent command 3-632.4 
pascal_reset_area command 3-632.5 
pascal_set_prompt command 3-633.5 
passwords 

enterp 4-4 
login 4-7 

path command/active function 3-633.6 
pathname 

active functions 
branches 3-98 
component 3-152 
directories 3-255 
directorv 3-256 
entries j-316 
entry 3-317 
entrv path 3-317 
~ual-name 3-319 
files )-358 
get_pathname 3-419 
IS compqnent pathname 3-466.1 
liii'ks 3-492.3-
master directories 3-556 
msfs 3=596 
nonbranches 3-606 
nondirectories 3-607 
nonfiles 3-608 
nonlinks 3-609 
nonmaster directories 3-610 
nonmsfs 3=611 
nonnull links 3-612 
nonobjeet_files 3-613 
nonobJect_msfs 3-614 
nonobJect_segplents 3-616 
nonsegments 3-616.1 
nonzero files 3-616.2 
nonzero - msfs 3-616.3 
nonzero-segments 3-616.4 
null links 3-616.5 
object files 3-616.6 
obJect-msfs 3-616.7 
obJect-se~ents 3-616.8 
path 3"""-633.6 
segments 3-848 
~h",.test ",,':ltr 'l_Q()(\ 
sir1pw3:~28 £ ~ /vv 

strip component 3-930 
strip-entry 3-931 
suffiX 3-935 
zero segments 3-1095 

directory 
default wdir 3-230 
home Otr 3-432.29 
process dir 3-707 
workinLdir 3-1094 

listing 
list 3-492.4 

locating 
hunt 3-434 
where 3-1078 

12/87 

pathname (cont.) 
manipulation 

add name 3-14 
copy names 3-172 
delete name 3-241 
move -names 3-592 
rename 3-791 

ref erence names 
list_ref _names 3-522 

pause command 3-634 
pb 

see probe 
pbm 

see print_bind_map 
peref 

see peruse_crossref 

pd d" see process_ lr 
pdwd 

see print_default_wdir 

pem " 
see prmt_error_message 

personal computers 
file transfer 

kermit 3-467 
peruse_crossref (perer) command/active function 

3-634 
of 
. see profile 

pg 
see progress 

pgt 
see page_trace 

pi 
see program_interrupt 

picture (pic) command/active function 
PL / I lang~age 

companng source 
compare_ascii 3-142 
co~p~re_pl1 3-151 

compllallon 
create data segment 3-175 
pll 3.:037 -
pll abs 3-644 
redUctions 3-752 

debugging 
prooe 3-680 

errors 
display pllio error 3-264 

I/O ~ -
close ftle 3-129 

object segment 
hunt dec 3-436 

source reformatting 
format-pll 3-369 
indent 3-440 

pll command 3-637 
pll_abs (pa) command 3-644 

i-21 

3-636 

AG92-06B 



pll_macro (pmac) command 3-645 
r pl. I· k . f see pnnt_ln ·_In 0 

plotter 
offline output 

enrer_output_request 3-300 
pnnt_request_types 3-674.1 

plu 
see print_linkage_usage 

plus command/active function 3-651 

pm . 
see pTln t_messages 

pmac 
see pll_macro 

PMF 
see project master file 

pmotd 
see print_motd 

ppa . 
see pnnt_proc_auth 

pr . 
see pnnt 

preaccess r~uests 
access class 4-2 
dial 4=2 
echo 4-3 
hangup. 4-6 
hello ~-6 
modes 4-17 
noecho 4-17 
slave 4-18 
terminal id 4-19 
terminal=type 4-19 

pri. .. 
see pnn t_reloca tIon_lnf 0 

priced separate Qroduct (PSP) 
descrioe_psp -3-246 

print (pr) command 3-653 
print_auth_names (pan) command 3-657 
print_bind_map (pbm) command 3-658 
print_default_ wdir (pdwd) command 3-661 
prin t_error _messa.ge (pem) command/active 

functIon 3-662 
print_Hkage_usage (plu) command 3-665 
print_link_info (pH) command 3-663 
print_mail (prm) command 3-665 
print_messages (pm) command 3-670 
print_motd (pmotd) command 3-673 
print_proc_auth (ppa) command 3-673.1 

print request ty~ (Qrt) command/active 
- Iunction 3-674.1 

12/87 

print_sample_refs command 3-675 
print_search_paths (psp) command 3-677 
print_search_rules (psr) command 3-678 
print_terminal_types (ptt) command 3-678 
print_time_defaul.ts (~td) command/active 

functlon 3-678 
print_ttt_path command 3-680 
prin t_ wdir (pwd) command 3-680 
printing 

calendar month 
calendar 3-102 

offline output 
dprint 3-278 
enter output request 3-300 
p~int-requesc.types 3-674.1 

termmal 
dump segment 3-285 
print j-653 

prm 
see prin t_mail 

probe (pb) command 3-680 
process . 

i-22 

access categones 
pI:int_proc_auth 3-673.1 

creatIon 
enter 4-4 
enter abs request 3-294 
enterp 4-4 
login 4-7 
Iogin_args 3-532 
new proc 3-601 

d irec ton' 
process dir 3-707 

disconnectIon 
hangup 4-6 
no save on disconnect 3-606 
reConnect_eC_disable 3-751 
reconnect ec enable 3-751 
save on disconnect 3-847 

epilogue -
. set_ep'ilogue_command 3-870 
mformatton 

print sam~le refs 3-675 
profiTe 3-70S-
sample refs 3-844 
user 3=1045 

in terruption 
program interrupt 3-714 
release j-790 
start 3-919 

linkage segrpents 
pnnt_ltnkage_usage 3-665 
set system storage 3-884 
set-user stOrage 3-896 

linkin- -
ad~ search rules 3-17 
delete searCh rules 3-243 
print Search rules 3-678 
set search rilles 3-883 

non-iVlultics -
gcos 3-401 
run 3-814 

AG92-06B 



process (cont.) 
stop _t:UD 3-927 

preservatton 
no save on disconnect 3-606 
reconnect ec disable 3-751 
reconnect-ec-enable 3-751 
save on disconnect 3-847 

signals - -
get i~ mask 3-414 
reset iPS mask 3-798 
set_iPs_mask 3-875 

temporary segments 
It~t_temp_segments 3-531 

termmal type 
modes ~-17 
set tty 3-887 
te.rmipal_type 4-19 

termmatlon 
logout 3-534. 4-16 

. new _proc 3-"601 
tImer 

pause 3-634 
process overseer 

reconnect_ec_disable 3-751 
reconnect_ec_enable 3-751 

process_dir (pd) command/active function 3-707 
process_switch_off (pswf) command 3-707 
process_switch_on (pswn) command 3-708 
profile (pf) command 3-708 
program execution 

run 3-814 
program in terruption 

probe 3-680 
program interrupt 3-714 
release 3-=-790 
start 3-919 

program_interrupt (pi) command 3-714 
programming aids 

run cobo1 3-819 
valiCIate_pictured_data 3-1051 

progress (pg) command 3-715 
proiect master file (PMF) 

f6_ftf 3 -476 

projec~ name 
listmg 

how many users 3-432.30 uset" -l_11l45 

who 3-io82 
specifying 

enter ~-4 
login 4-7 

project start up 
reconnect-ec disable 3-751 
reconnect=ec=enable 3-751 

protection 
access control list 

copy acl 3-160 
delete acl 3-233 
list accessible 3-503 
list-acl 3-504 
list=not_accessible 3-518 

12/87 

protection (cont.) 
set acl 3-864.1 

copvriiht notice 
ada pnotice 3-14.2 
disp1ay pnotice 3-265 
generate unotice 3-410 
Iist pnofice names 3-521 

initial-access control list 
check iacl 3-125 
copy Tacl dir 3-171 
copy-iacl-seg 3-172 
delete iaCT elir 3-236 
delete -iac1-se..g 3-238 
list iaC! diT 3-513 
list-iacl-seg 3-514 
set lacl-dir 3-872 
set-iac1-seg 3-873 

ring Orackets 
set dir rin~brackets 3-869 
set=rini-brackets 3-881 

prt . 
see pnnt_request_types 

PSP. h see pnnt_search_pat s 
psr 

see print_search_rules 
pswf 

see process_switch_off 
pswn 

see process_switch_on 

ptt 
see print_terminal_types 

punched cards 
offline input 

copy cards 3-161 
offline out~ut 

dpunch )-282 
en~er_output_request 3-}00 
pnnt_request_types 3-6/4.1 

pwd 
see print_ wdir 

Q 

qedx (qx) text editor 3-717 

query c~mmand/acti'!e fU .. '1ction 3-728 
question 

asking 
query 3-728 
response 3-803 

handling 
answer 3-50 
exec_com 3-342 

queue 
absentee 

i-23 

cancel abs request 3-108 
enter abs request 3-294 
list aDs requests 3-500 
move aDS request 3-585 

I/O daemon-

AG92-Q6B 



queue (cont.) 
cancel daemon request 3-111 
dprint-3-278 -
dpunch 3-282 
enter output request 3-300 
list aaemon requests 3-506 
list=output_requests 3-519 
move daemon request 3-587 
move-output request 3-592 
t~tal output3equests 3-1013 

retnevaf requests 
cancel retrieval request 3-116 
enter retrieval request 3-314 
list_retrieval_requests 3-527 

quit 
abort execution 

release 3-790 
raise condition 

prQgram_interrupt 3-714 
releasIng 

release 3-790 
restart 

start 3-919 
quota 

account 
set mdir account 3-877 
set=mdir =quota 3-878 

accounts 
delete volume quota 3-244 
set vo1ume qUota 3-898 

master directory 
list mdir 3-516 
~t-=~dir _account 3-877 

monltonng 
monitor_quota 3-581 

storage quotas 
get_quota 3-420 
move_quota 3-594 

quotas 
CPU limits 

resource_usage 3-802 
storage QUotas 

get_dlT_quota 3-412 
quotient command/active function 3-730 
qx 

see qedx 
R 

ra 
see reorder_archive 

rank command/active function 3-731 
rc 

see run_cobol 
RCP 

see resource control package 
rdc 

see reductions 
rdf 

see ieady_off 

12/87 

rdn 
see ready _on 

rdy 
see ready 

re 
see reprint_error 

read_mail (rdm) command 3-731 
ready (rdy) command 3-749 
ready message 

dISplaying 
ready 3-749 
ready off 3-749 
~eady =on 3-750 

settIng 
general_ready 3-403 

ready_off (rdf) command 3-749 
ready_on (rdn) command 3-750 
rebuild_dir command 3-750 
reconnect_ec_disable command 3-751 
reconnect_ec_enable command 3-751 
redirecting outQllt 

file_output 3-356 
revert output 3-813 
syn outfU{ 3-940 
teriiiina _output 3-1007 

reductions command 3-752 
ref erence name 

get pathname 3-419 
Iniiiate 3-444 
list ref names 3-522 
terminate ref name 3-1007 
terminate-sin~le refname 3-1011 
where 3-1078 -

release (rn command 3-790 
release_resource (rlr) command 3-790 
reminders 

memo 3-559 
remote system 

access 
dial out 3-250 

file transfer 
kermit 3-467 

rename (rn) command 3-791 
reorder_archive (ra) command 3-792 
repeat_line command 3-793 
repeat_query (rq) command 3-794 
reprint_error (re) command 3-795 
reserve_resource (rsr) command 3-796 
reset_external_variables (rev) command 3-796 
reset_ips_mask command 3-798 
resolve_linkage_error (rIe) command 3-799 

i-24 AG92-06B 



resource control packa~e (Rep) 
acquire_resource 3-12 
assI~ resource 3-68 
attach-Iv 3-78 
canceC resource 3-115 
detach-Iv 3-247 
list millr 3-516 
lis1-resource tx~ 3-523 
lis1-resourceS ..,-523 
Iv attached 3-538 
reTease resource 3-790 
reserve-resource 3-796 
resource status 3-800 
set resource 3-879 
unissign_resource 3-1040 

resource limits 
resource_usage 3-802 

resour~ type descri~tion table (RTDT) 
acguIre_resource 3-12 
release resource 3-790 
set_resOurce 3-879 

resource status (rst) command/active function 
- 3-800 

resource_usage (ru) command 3-802 
response command/ active function 3-803 
restarting 

after quit 
start 3-919 

retrieval 

rev 

cancel retrieval request 3-116 
enter retrieval request 3-314 
list_retrieval_requests 3~527 
see backup 

see reset_external_variables 
reverse (rv) command/active function 3-806 
reverse after (rvan command/active function 

- 3-807 

reverse before (rvbe) command/active function 
- 3-808 

reverse_decat (rvdecat) command/active function 
3-809 

reverse index (rvindex) command/active function 
- 3-810 

reverse_search (rvsrh) command/active function 
3-811 

reverse substr (rvsubstr) command/active 
- function 3-812 

reverse verify (rvverify) command/active 
- function 3-812.1 

revert_output (ro) command 3-813 
rf 

see runoff 
rfa 

see runoff_abs 

12/87 

1"1ng h1"'l~1r~tc 

.L U.L set"' ait"'ring brackets 3-869 
set:rini-brackets 3-881 

rin~ 
allocation 

print_Iinkage_usage 3-665 
rl 

see release 
rle 

see resolve_linkage_error 
rlr 

see release_resource 
rn 

see rename 
ro 

see revert_output 
rpl 

see repeat_line 
rq 

see repeat_query 
rsr 

see reserve_resource 
rs1 

see resource_status 
RTDT 

see resource type description table 
rtrim command/active function 3-814 
ru 

see resource_usage 
run command 3-814 
run unit 

COBOL 
cancel cobol program 3-110 
display cobof run unit 3-260 
run cODol 3-'8"19 -
stop cobol run 3-926 

run 3-S-14 -
stop_run 3-927 

run_cobol (rc) command 3-819 
runoff (rn command 3-822 
runoff _abs (rfa) command 3-843 
rv 

see reverse 
rvaf 

see reverse_after 
rvbe 

see reverse_before 
rvdecat 

reverse_decat 
rvindex 

see reverse_index 

i-25 AG92-06B 



rvsrh 
see reverse_search 

rvsubstr 
see reverse_substr 

rvverifv 
see ~reverse_ verify 

s 
sa 

see set_acl 
sample_refs command 3-844 
save_dir _inf 0 command 3-845 
save_history _registers command 3-846 
save_on_disconnect command 3-847 
sbag 

see substitute_arguments 

sbc 
see set_bit_count 

ser 
see stop_cobol_run 

sdm 
see send_mail 

sdrb 
set_dir _rin&-brackets 

search command/active function 3-847 
search list 

locating 
where search paths 3-1080.2 

modifying -
add search-Paths 3-15 
delete searcfi-paths 3-243 

. se~_seirch_paths 3-882 
pnntlng 

print_search_paths 3-677 
search rules 

by~ing 
initiate 3-444 

modifying 
add search rules 3-17 
delete searCh rules 3-243 

. se~_seirch_ruTes 3-883 
pnntmg 

get system search rules 3-424 
priii' t_searcli_rules - 3-678 

segment 
access control 

set rin~brackets 3-881 
access-control list 

copy acl 3-160 
delete acl 3-233 
list ad 3-504 
set -acl 3-864.1 

attributes 
list 3-492.4 
set_max_Iength 3-876 
status 3~919 

contents 
canonicalize 3-118 
contents 3-153 

12/87 

segmen t (con t.) 
print 3-653 

copy switch 
switch off 3-936 
switch -on 3-938 

i-26 

creating -
COPY 3-158 
create 3-173 
edm 3-289 
emacs 3-290 
file_outQut 3-356 
qedx 3-717 

damage 
check file system damage 3-124 

damaged-switcli -
sWItch off 3-936 
switch-on 3-938 

deleting -
date deleter 3-192 
delete 3-232 
delete dir 3-234 

editing -
convert characters 3-154 
edm 3-"289 
emacs 3-290 
qedx 3-717 
teeo 3-971 

information 
print sample refs 3-675 
sampTe refs J-844 
status j-919 

initial ACL 
check iacl 3-125 
copy Tacl seg 3-172 
delete iac1 se~ 3-238 
list iacl seg 3-514 
set.Jacl.=-seg 3-873 

length 
linfi~n t_link_inf 0 3-663 

lint 3-490 
unlink 3-1043 

locating 
hunt 3-434 
hunt dec 3-436 
list r-492.4 
list fortran storage 3-511 
list-sub tree 3-527 
where 3""-1078 

making known 
initIate 3-444 

manipulating 
adjust bIt count 3-18 
copy j-l58 
overlay 3-619 
set_bit_count 3-867 

numbers 
get pathnarne 3-419 
list-ref names 3-522 
terminate segno 3-1010 

obj~~ . -
JomIng 

linkage_editor 3-492 
octal dumptng 

dump_segment 3-285 
pathname 

manipulating 
add name 3-14 
copy names 3-172 
delete_name 3-241 

AG92-06B 



move names 3-592 
rename 3-791 -
strip 3-928 
strip component 3-930 
strirCentrJ 3-931 
suffiX 3-::135 

returnin~ 
equal~name 3-319 
get_pathname 3-419 
list_ref _names 3-522 
nonzero_segrrtents 3-616.4 
segmen ts 3-848 
zero_segments 3-1095 

quota 
monitor_quota 3-581 

ref erence names 
list ref names 3-522 
terminate ref name 3-1007 
terminate-single ref name 3-1011 

saf ety switch- -
switch off 3-936 
switch-on 3-938 

switches -
process switch off 3-707 
process - swi tch -on 3-708 
switch off 3-936 
switch=on 3-938 

temporary 
h~t_t~mp_segments 3-531 

termmatlng 
terminate 3-1008 

translating 
plt ... macro 3-645 

truncatIng 
truncate 3-1039 

segmen~/mul~isegment 
manIpulattng 

move 3-584 
segments (segs) command/active function 3-848 
select command/active function 3-849 
send_mail (sdm) command 3-850 
send_message (sm) command 3-861 
set_acl (sa) command 3-864.1 
set_bit_count (sbc) command 3-867 
set_cc command 3-868 
set_dir_rin~brackets (sdrb) command 3-869 
set_epilogue_command command 3-870 
set_fortran_ .. "common (sf c) command 3-871 
set_iacl_dir (sid) command 3-872 
set_iacl_seg (sis) command 3-873 
set_ips_mask command 3-875 
set_mailin&-address (smla) command 3-875 
set_max_length (sm}) command 3-876 
set_mdir_account (smda) command 3-877 
set_mdir_owner (smdo) command 3-877 
set_mdir_quota (smdq) command 3-878 
set_resource (setr) command 3-879 

12/87 

set_rin~brackets (sTb) command 3-881 
set_search_paths (ssp) command 3-882 
set_search_rules (ssr) command 3-883 
set_severity _indicator (ssi) command 3-884 
set_system_storage command 3-884 
set time default (std) command/active function 

- - 3-885 

set_ttt_path command 3-887 
set_tty (stty) command 3-887 
set_user_storage command 3-896 
set_ volume_quota (svq) command 3-898 
setr 

see set_resource 
setting 

quota accounts 
set_ volume_quota 3-898 

seven-punch cards 
d punch 3-282 

severity command/active function 3-899 
sfc 

see set_f ortran_common 
shortest_path command/active function 3-900 
sid 

see set_iacl_dir 
signal command 3-901 
sis 

see set_iacl_seg 
slave preaccess request 4-18 
sm 

see send_message 
smda 

see set_mdir _accoun t 
smdo 

see set_mdir _owner 
smdq 

see set_mdir_quota 
sml 

see set_max_length 
_ ........ 1~ 
i:)uua 

see set_mailin~address 
so 

see syn_output 
software 

iden tification 
generate_pnotice 3-410 

software porting 
tools 

linkage_editor 3-492 
sort_seg (ss) command 3-903 
sort_strings (sstr) command 3-912 

i-27 AG92-06B 



sorting 
arcnive components 

archive sort 3-64 
reorder-archive 3-792 

ASCII text 
.sort_seg 3-903 

stnngs 
sort_strings 3-912 

source program. . 
comment mampulatlon 

history _comment 3-432.9 
compiling 

reductions 3-752 
get library segment 3-415 
library fetCh 3-485 
manipUlating 

histQry _comment 3-432.9 
protectIon 

add pnotice command 3-14.2 
disp1av pnotice 3-265 
generate_pnotice 3-410 

space saving 
archive 3-57 
bind 3-85 
tape_archive 

spc . 
see stnp_component 

spe . 
see stnp_entry 

sr 
see start 

srb 

srh 

ss 

ssi 

ssp 

ssr 

st 

see set_rin!-brackets 

see search 

see sort_seg 
see sort_stnngs 

see set_severity_indicator 

see set_search_paths 

see set_search_rules 

see status 
stack frame 

Pascal files 
pascal file status 3-632.3 

releasing - -
release 3-790 

signalable fault 
~ve_history _registers 3-846 

tracIn~ 
defiug 3-201 
pascal_displ~ 3-631 
trace_stacK 3-1026 

start (sr) command 3-919 

12/87 

start up.ec 
exec com 3-320. 3-336 
see lOgin 

static linking 
see bind 

static section 
print_linkage_usage 3-665 

status (s1) command / active function 3-919 
status code 

print_error_message 3-662 
status messages 

change error mode 3-122 
display - pllio -error 3-264 
reprin t: error -3-795 

std 
see set_time_default 

stop_cobol_run (seT) command 3-926 
stop_run command 3-927 
storage 

area status 3-67 
creafe area 3-174 
list fortran storage 3-511 
set -system storage 3-884 
set=1iser _storage 3-896 

storage sy'stem 
alIocatIon 

~t_system_storage 3-884 
archIve segI]lent 

i-28 

archive 3-57 
attributes 

describe entry type 3-244.1 
list 3-492.4 -
status 3-919 

backup 
cppy _dump_tape 3-165 

entnes 
branches 3-98 
directories 3-255 
entries 3-316 
files 3-358 
links 3-492.3 
manipulating 

linkage editor 3-492 
master directories 3-556 
msfs j-596 
non branches 3-606 
nondirectories 3-607 
nonf iles 3-608 
nonlinks 3-609 
nonmaster directories 3-610 
nonmsfs r-611 
non null links 3-612 
nonobjeCt_files 3-613 
nonobJect msfs 3-614 
nonobJect:segp1ents 3-616 
nonsegments 3-616.1 
nonzero files 3-616.2 
nonzero-msfs 3-616.3 
!!~nZ~lr~~~~~l1~ 3-616.4 
IlUU 1 ll~ ,)-010 • .) 
object_files 3-616.6 

AG92-06B 



storage system (cont) 
obJect_msfs 3-616.7 
obJect_segplents 3-616.8 
segmen ts 3-848 
zero segments 3-1095 

hierarcnv 
do subtree 3-276.1 
lisf 3-492.4 
walk subtree 3-1074 

inf ormation 
comp' dir info 3-137 
list otr inr 0 3-509 
save dir info 3-845 
status 3-=919 

locating entries 
hunt 3-434 
hunt dec 3-436 
list fortran storage 3-511 
where 3-10/8 

logical volume 
attach Iv 3-78 
detach-Iv 3-247 
Iv attached 3-538 

quota-
get_dir_quota 3-412 
get guota 3-420 
monitor_quota 3-581 
move_quota 3-594 

string command/active function 3-928 
string sorting 

sort_strings 3-912 
strip command/active function 3-928 
strip component (spc) command/active function - ., n.,n 

:J-7:JV 

strip_entry (spe) command/active function 3-931 
stty 

see set_tty 
subroutine calls 

displaying 
qisplay_entry_point_dcl 3-261 

tracIng 
trace 3-1014 
trace_meters 3-1024 

substitute arguments command/active function 
- 3-932 

substr command/active function 3-935 
subsystem 

debu~ng 
cleuug 3-201 
probe 3-680 

editing 
edm 3-289 

editors 
qedx 3-717 
teeo 3-971 

inf ormation 
comp' dir info 3-137 
list Qfr imo 3-509 
save_dir_info 3-845 

usage 
display _subsystem_usage 3-266 

12/87 

su bsystems 
eCiiting 

emacs 3-290 

subvstem 
FAST 

fast 3-356 

suffix command/active function 3-935 

suffixes 
strip 3-928 
strip component 3-930 
strip-entry 3-931 
suffiX 3-935 

svq 
see set_ volume_quota 

swf 
see switch_off 

switch_off (swf) command 3-936 
switch_on (swn) command 3-938 

switches 
copy switch 

switch off 3-936 
switch -on 3-938 

damaged switch 
SWItch off 3-936 
switch -on 3-938 

per-process static switch 
process switch off 3-707 
process-switch -on 3-708 
switch off 3-936 
swi tch -on 3-938 

saf ety SWItch 
switch off 3-936 
switch -on 3-938 

volume dUIllper switches 
switch off 3-936 
switch=on 3-938 

swn 
see swi tch_ on 

symbol J:able 
creatIng 

cobol 3-130 
fortran 3-394 
pascal 3-622 

. pH 3-637 
USIng 

cfebug 3-201 
symbolic debu2~ng 

~1Ol.."'"" '1_"n"-'-
prr~:f-63fV.L 

syn_output (so) command 3-940 

system 
attributes 

i-29 

sy.stem 3-940 
distributed software 

describe_psp 3-246 
faults 

exponent control 3-354 
information -

list_help 3-512.1 

AG92-()6B 



system (cont.) 
print motd 3-673 

libraries
get_library_~gment 3-415 
Tibrary descnp-tor 3-483 

loaabrary =f etch 3-485 

how man v users 3-432.30 
system 3":940 

privtleges 
print_proc_auth 3-673.1 

storage 
set_system_storage 3-884 
set_user_storage 3-896 

system command/active function 3-940 
system information 

system_type 3-940.3 
system load 

who 3-1082 
system p3~rameters 

non-Multics 
run 3-814 

system_type command/active function 3-940.3 
T 

ta 
see tape_archive 

tape con.trol language (TeL) 
tape_tn 3-951 
tape_out 3-965 

ta~ I/O 
backup 

copy _dump_tape 3-165 
contents 

list_tape_contents 3-528 
default arguments 

mtape_aelete defaults 3-596 
mtapeJet_deI'aults 3-597 

. mtape_set_defaults 3-598 
Input 

tape_in 3-951 
output 

tape_archive 3-940.3 
tape_out 3-965 

tape_archive (ta) command 3-940.3 
tape_in command 3-951 
tape_out command 3-965 
tc 

see truncate 
TCL 

see tape control language 
teco command 3-971 

error messages 
teco error 3-1006 

macro search 
teco_ssd 3-1007 

teco_error command 3-1006 
teco_ssd command 3-1007 

12/87 

telephone 
auto call channel 

dial_manager _call 3-248 
temporary segment 

pool 
list_temp_segments 3-531 

terminal 
input/ output 

io call 3-445 
terminal output 3-1007 

modes -
echo 4-3 
get_mode 3-419 
Tine length 3-489 
mooes 4-17 
noecho 4-17 
set tty 3-887 

multiP.Je terminals 
dial 4-2 
e:iial_manager_call 3-248 

testIng 
repeat_line 3-793 

terminal identification 
terminal_id 4-19 

terminal type 
Itst emacs ctls 3-510 
print_termInal_types 3-678 
set_qy 3-887 
termmal_type 4-19 

terminal ty~ file (TIP) 
cv _ttf 3-188 

terminal ty~ table (TIT) 
cv ttf 3-188 
difplay _ttt. 3-269 
pqnt_termlnal ty~ 3-678 
pnnt_ttt_path j~O 
set_ttt_path 3-887 

terminal_id (tid) preaccess request 4-19 
terminal_output (to) command 3-1007 
terminal_type (ttp) preaccess request 4-19 
terminate (tm) command 3-1008 
terminate_refname (tmr) command 3-1007 
terminate_segno (tms) command 3-1010 
terminate_single refname (tmsr) command 

3-1011 
termination 

login session 
hangup 4-6 
logout 3-534. 4-16 
new _proc 3-601 

ref erence name 
terminate ref name 3-1007 
terminate=single_refname 3-1011 

segment 
terminate 3-1008 

text editor 

i-30 

rom 3=289 
emacs 3-290 
qedx 3-717 
teco 3-971 

AG92-o6B 



text formatting 
format document 3-360 
f ormat=string 3-392 
overlay 3-619 

tid 

runoff 3-822 
runoff_abs 3-843 

see terminal_id 

time 
CPU usage 

profile 3-708 
progress 3-715 
ready 3-749 
resource usage 3-802 
user 3-11)45 

process 
pause 3-634 

time command/active function 3-1012 
times command/active function 3-1012.1 

tm 
see terminate 

tmr 
see terminate_ref name 

tms 
see terminate_segno 

tmsr 
. see terminate_single_ref name 

tmt 
see trace_meters 

to 
see terminal_output 

tor 
see total_output_requests 

total output requests (tor) 
- command/active_function 3-1013 

trace command 3-1014 
trace_meters (tmt) command 3-1024 
trace_stack (ts) command 3-1026 
tracing 

page faults 
cumulative_page trace 3-185 
page trace 3-620-
trace- meters 3-1024 

refer~n~oo segment§ .. ~ __ 
pnnr sample reIs j-()/~ 
samj)fe_refs '3"-844 

stack Irame 
debug 3-201 
trace stack 3-1026 

subroutine calls 
trace 3-1014 
trace_meters 3-1024 

trade secret notice 
see copyright notice 

transaction (txn) command/ AF 3-1027 
operations 

abandon 3-1027 
abort 3-1029 

12/87 

transaction (txn) command! AF (cont.) 
begin 3-1029 
commit 3-1030 
execute 3-1030 
kill 3-1033 
rollback 3-1033 
status 3-1034 

translate command/active function 3-1037 
trunc command/active function 3-1038 
truncate (tc) command 3-1039 

15 
see trace_stack 

TIF 
see terminal type file 

ttp 
see terminal_type 

TTT 
see terminal type table 

tutorial command 3-1040 
txn 

see transaction 
u 

ul 
see unlink 

unassign_resource (ur) command 3-1040 

underline command/active function 3-1041 
unique command/active function 3-1042 

unique strin~ 
unique 3-1042 

unlink (uI) command 3-1043 

upper_case ~u..!'roJ.fase) command/active function 

ur 
see unassign_resource 

usage data 
logout 3-53~ 4-16 
profile 3-700 
progress 3-715 
ready 3-749 

i-31 

resource usage 3-802 
status 3-=919 
user 3-1045 

user 
allocation 

set_user_storage 3-896 
anonymous 

enter 4-4 
enterp 4-4 

information 
severity 3-899 
user 3-1045 

listing 
how man"y. users 3-432.24 
who -3-108"2 

parameters 
specifying 

AG92-D6B 



user (cont.) 
enter 4-4 
login 4-7 
login_args 3-532 

user command/active function 3-1045 
V 

v2apl 
see APL language 

validate info seg (vis) command/active function 
- j-1(J49 

validate_pictured_data active function 3-1051 
value 

conversion 
binary 3-84 
decimal 3-227 
hexadecimal 3-432.8 
octal 3-616.9 

value commands 
value defined 3-1050 
value-delete 3-1052 
value~et 3-1054 
value list 3-1057 
value=path 3-1061 
value set 3-1061 
value=set_path 3-1065 

value_defined command / active function 3-1050 
value_delete (vdI) command 3-1052 
value~et (vg) command/active function 3-1054 
value_list (vIs) command/active function 3-1057 
value_path (vp) command/active function 3-1061 
value_set (vs) command/active function 3-1061 
value_set_path (vsp) command 3-1065 
variables 

displaying contents 
pascaC_display 3-631 

heap 
tnformation 

list heap variables 3-512 
system managea 

delete external variables 3-236 
list external variables 3-511 
reset_external_ variables 3-796 

vdf 
see value_defined 

vdl 
see value_delete 

verify command/active function 3-1065 
vfa 

see vfile_adjust 
vfile_adjust (vfa) command 3-1065 
vfile find __ bad_nodes command/active function 

- - 3-1067 

vfile_status (vfs) command 3-1072 

12/87 

vfs 
see vfile_status 

vg 
see value_get 

video command 
window_call 3-1084 

virtual memory 
locations 

watch 3-1076 
vis 

see validate_info_seg 
vIs 

see value_list 
volume retrieval 

cancel retrieval request 3-116 
enter retrieval request 3-314 
list_retrieval_requests 3-527 

vp 
see value_path 

vpd see validate_pictured_data 

vs 
see value_set 

vsp 
see value_set_path 

w 
walk_subtree (ws) command 3-1074 
watch command 3-1076 
wd 

see workin~dir 
wdc 

see window_call 
wdoc 

see where_doc 
wh 

see where 
where (wh) command/active function 3-1078 
where_doc (wdoc) command 3-1080 
where search paths (wsp) command/active 

- Junction 3-1080.2 
who command/active function 3-1082 
window_call (wdc) command 3-1084 
working directory 

change def aurt wdir 3-121 
change - wdir 3=123 
defaulC wdir 3-230 
print default wdir 3-661 
print-wdir 3=680 
workrn~dir 3-1094 

workinLdir (wd) command/active function 
3-1094 

i-32 AG92-06B 



ws 
see walk_subtree 

wsp 
see where_search_paths 

y 

year command/active function 3-1094 

12/87 

z 
zero-length segments 

zero_segments 3-1095 
zero_segments (zsegs) command/active function 

3-1095 
zsegs 

see zero_segments 

i-33 AG92-Q6B 



w 
Z 
...J 

<;J 
Z 
o 
...J 
c( 

.... 
:> 
c 

HONEYWELL BULL 
Technical Publications Remarks Form 

MULTICS 
TITLE 

COMMANDS AND ACTIVE FUNCTIONS 
ADDENDUMB 

ERRORS IN PUBLICATION 

SUGGESTIONS FOR IMPROVEMENT TO PUBliCATION 

Your commems wiii be invesrigared by appropriate tecnnicai personnel 

and action will be take.n as required. Receipt of all forms will be 

acknowledged; however, if you require a detailed reply, check here. 0 

PLEASE FILL IN COMPLETE 
ADDRESS BELOW. 

FROM: NAME ______________________________________________ _ 

TITLE ______________________________________________ _ 

COMPANY __________________________________________ ___ 

ADDRESS __________________________________________ ___ 

ORDER NO. AG92-06B 

DATED I NOVEMBER 1987 

DATE _____ _ 



w 
z 
::J 
CJ z 
9 
« 
I
::J 
() 

! 
I 
I 
I 
I 
~ 
I 
I 
I 
I 
I 
I w 

z 
PLEASE FOLD AND TAPE- II ~z 
NOTE: U.S. Postal Service will not deliver stapled forms 

--~-----=-=--=--=-I 1-=-=---1 -i' °o~u.. 
NO POSTAGE 
NECESSARY 
IF MAILED 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 39531 WALTHAM, MA 

POSTAGE WILL BE PAID BY ADDRESSEE 

Honeywell Bull Inc. 
200 Smith Street MS486 
P.O. Box 9199 
Waltham, Massachusetts, 02254-9832 

IN THE 
UNITED STATES 

III,,, "1,1,, 1,1,1,1"1,, 11,1" 1"1,,, II" ,1,1.1,1.1 
w z 
:J 
(!) 
z 

--------------------------------------------------------------------------------------------------------. 9 

Hon~ell Bull 

I ..:( 
I 9 
I f2 
I 
I 
I 
I 
r 



Honevwell Bull __________ A ________________ _ 

Corporate Headquarters: 
3800 West 80th St., Minneapolis, MN 55431 

U.S,A,: 200 Smith Street, MS 486, Waltham, MA 02154 
Mexico: Hamburgo No. 64, Col. Juarez Delegacion Cuauhtemoc, 06600 Mexico, D.F. 

U.K.: Great West Rd., Brentford, Middlesex TW8 9DH, England Italy: 32 Via Pirelii, 20124 Milano 
Canada: 155 Gordon Baker Road, North York, Ontario M2H 3P9 New Zealand: 14/16 Liverpool Street, Auckland 1 

Asia: 4/F, Shui on Centre, 6-8 Harbour Rd., Wanchai, Hong Kong Australia: 124 Walker Street, North Sydney, N.S.W. 2060 

42781,1088, Printed in U.S.A. AG92-06 


	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	1-01
	1-02
	1-03
	1-04.0
	1-04.1
	1-04.2
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	3-0001
	3-0002
	3-0003
	3-0004.0
	3-0004.1
	3-0005
	3-0006
	3-0007
	3-0008
	3-0009
	3-0010
	3-0011
	3-0012
	3-0013
	3-0014.1
	3-0014.2
	3-0014.3
	3-0014
	3-0015
	3-0016
	3-0017
	3-0018
	3-0019
	3-0020
	3-0021
	3-0022
	3-0023
	3-0024
	3-0025
	3-0026
	3-0027
	3-0028
	3-0029
	3-0030
	3-0031
	3-0032
	3-0033
	3-0034.0
	3-0034.1
	3-0035
	3-0036.0
	3-0036.1
	3-0037
	3-0038
	3-0039
	3-0040
	3-0041
	3-0042
	3-0043
	3-0044
	3-0045
	3-0046
	3-0047
	3-0048
	3-0049
	3-0050
	3-0051
	3-0052
	3-0053
	3-0054
	3-0055
	3-0056
	3-0057
	3-0058
	3-0059
	3-0060
	3-0061
	3-0062
	3-0063
	3-0064
	3-0065
	3-0066
	3-0067
	3-0068
	3-0069
	3-0070
	3-0071
	3-0072
	3-0073
	3-0074
	3-0075
	3-0076
	3-0077
	3-0078
	3-0079
	3-0080
	3-0081
	3-0082
	3-0083
	3-0084
	3-0085
	3-0086
	3-0087
	3-0088
	3-0089
	3-0090
	3-0091
	3-0092
	3-0093
	3-0094
	3-0095
	3-0096
	3-0097
	3-0098.0
	3-0098.1
	3-0098.2
	3-0099
	3-0100
	3-0101
	3-0102
	3-0103
	3-0104
	3-0105
	3-0106.0
	3-0106.1
	3-0106.2
	3-0107
	3-0108
	3-0109
	3-0110
	3-0111
	3-0112
	3-0113
	3-0114
	3-0115
	3-0116
	3-0117
	3-0118.0
	3-0118.1
	3-0118.2
	3-0119
	3-0120
	3-0121
	3-0122
	3-0123
	3-0124.0
	3-0124.1
	3-0124.2
	3-0125
	3-0126
	3-0127
	3-0128
	3-0129
	3-0130
	3-0131
	3-0132
	3-0133
	3-0134
	3-0135
	3-0136
	3-0137
	3-0138
	3-0139
	3-0140
	3-0141
	3-0142
	3-0143
	3-0144
	3-0145
	3-0146
	3-0147
	3-0148
	3-0149.0
	3-0149.1
	3-0149.2
	3-0150.0
	3-0150.1
	3-0150.2
	3-0151
	3-0152
	3-0153.0
	3-0153.1
	3-0154.0
	3-0154.1
	3-0154.2
	3-0155
	3-0156
	3-0157
	3-0158
	3-0159
	3-0160
	3-0161
	3-0162
	3-0163
	3-0164
	3-0165
	3-0166.0
	3-0166.1
	3-0166.2
	3-0167.0
	3-0167.1
	3-0168
	3-0169
	3-0170
	3-0171
	3-0172
	3-0173
	3-0174
	3-0175
	3-0176
	3-0177
	3-0178
	3-0179
	3-0180.0
	3-0180.1
	3-0180.2
	3-0181
	3-0182
	3-0183
	3-0184
	3-0185
	3-0186
	3-0187
	3-0188
	3-0189
	3-0190
	3-0191
	3-0192
	3-0193
	3-0194
	3-0195
	3-0196
	3-0197
	3-0198
	3-0199
	3-0200
	3-0201
	3-0202
	3-0203
	3-0204
	3-0205
	3-0206
	3-0207
	3-0208
	3-0209
	3-0210
	3-0211
	3-0212
	3-0213
	3-0214
	3-0215
	3-0216
	3-0217
	3-0218
	3-0219
	3-0220
	3-0221
	3-0222
	3-0223
	3-0224
	3-0225
	3-0226
	3-0227
	3-0228
	3-0229
	3-0230
	3-0231
	3-0232.0
	3-0232.1
	3-0233
	3-0234
	3-0235
	3-0236
	3-0237
	3-0238
	3-0239
	3-0240
	3-0241
	3-0242
	3-0243
	3-0244.0
	3-0244.1
	3-0245
	3-0246
	3-0247
	3-0248
	3-0249
	3-0250.0
	3-0250.1
	3-0251
	3-0252
	3-0253
	3-0254
	3-0255
	3-0256.0
	3-0256.1
	3-0256.2
	3-0257
	3-0258
	3-0259
	3-0260
	3-0261
	3-0262
	3-0263
	3-0264
	3-0265
	3-0266
	3-0267
	3-0268
	3-0269
	3-0270
	3-0271
	3-0272
	3-0273
	3-0274
	3-0275
	3-0276.0
	3-0276.1
	3-0276.2
	3-0277
	3-0278
	3-0279
	3-0280
	3-0281
	3-0282
	3-0283
	3-0284
	3-0285
	3-0286.0
	3-0286.1
	3-0286.2
	3-0287
	3-0288
	3-0289
	3-0290
	3-0291
	3-0292
	3-0293
	3-0294
	3-0295
	3-0296
	3-0297
	3-0298.0
	3-0298.1
	3-0298.2
	3-0299
	3-030
	3-0300
	3-0301
	3-0302
	3-0303
	3-0304
	3-0305
	3-0306
	3-0307
	3-0309
	3-0310
	3-0311
	3-0312
	3-0313
	3-0314
	3-0315
	3-0316.0
	3-0316.1
	3-0316.2
	3-0317
	3-0318
	3-0319
	3-0320
	3-0321
	3-0322
	3-0323
	3-0324
	3-0325
	3-0326
	3-0327
	3-0328
	3-0329
	3-0330
	3-0331
	3-0332
	3-0333
	3-0334
	3-0335
	3-0336
	3-0337
	3-0338
	3-0339
	3-0340
	3-0341
	3-0342
	3-0343
	3-0344
	3-0345
	3-0346
	3-0347
	3-0348
	3-0349
	3-0350.0
	3-0350.1
	3-0350.2
	3-0350.3
	3-0350.4
	3-0350.5
	3-0350.6
	3-0351
	3-0352
	3-0353
	3-0354
	3-0355
	3-0356
	3-0357
	3-0358
	3-0359
	3-0360
	3-0361
	3-0362
	3-0363
	3-0364
	3-0365
	3-0366
	3-0367
	3-0368
	3-0369
	3-0370
	3-0371
	3-0372
	3-0373
	3-0374
	3-0375
	3-0376
	3-0377
	3-0378
	3-0379
	3-0380
	3-0381
	3-0382
	3-0383
	3-0384
	3-0385
	3-0386
	3-0387
	3-0388
	3-0389
	3-0390
	3-0391
	3-0392
	3-0393
	3-0394
	3-0395
	3-0396.0
	3-0396.1
	3-0397
	3-0398
	3-0399
	3-0400.0
	3-0400.1
	3-0400.2
	3-0401
	3-0402
	3-0403
	3-0404
	3-0405
	3-0406
	3-0407
	3-0408.0
	3-0408.1
	3-0408.2
	3-0409
	3-0410
	3-0411
	3-0412
	3-0413
	3-0414
	3-0415
	3-0416
	3-0417
	3-0418
	3-0419
	3-0420
	3-0421
	3-0422
	3-0423
	3-0424
	3-0425
	3-0426
	3-0427
	3-0428
	3-0429
	3-0430
	3-0431
	3-0432.00
	3-0432.01
	3-0432.02
	3-0432.03
	3-0432.04
	3-0432.05
	3-0432.06
	3-0432.07
	3-0432.08
	3-0432.09
	3-0432.10
	3-0432.11
	3-0432.12
	3-0432.13
	3-0432.14
	3-0432.15
	3-0432.16
	3-0432.17
	3-0432.18
	3-0432.19
	3-0432.20
	3-0432.21
	3-0432.22
	3-0432.23
	3-0432.24
	3-0432.25
	3-0432.26
	3-0432.27
	3-0432.28
	3-0432.29
	3-0432.30
	3-0433
	3-0434
	3-0435
	3-0436
	3-0437
	3-0438
	3-0439
	3-0440
	3-0441
	3-0442
	3-0443
	3-0444.0
	3-0444.1
	3-0444.2
	3-0445
	3-0446
	3-0447
	3-0448
	3-0449
	3-0450
	3-0451
	3-0452
	3-0453
	3-0454.0
	3-0454.2
	3-0455.1
	3-0455
	3-0456
	3-0457
	3-0458
	3-0459
	3-0460
	3-0461
	3-0462
	3-0463
	3-0464
	3-0465
	3-0466.0
	3-0466.1
	3-0466.2
	3-0467
	3-0468
	3-0469
	3-0470
	3-0471
	3-0472
	3-0473
	3-0474
	3-0475
	3-0476
	3-0477
	3-0478
	3-0479
	3-0480
	3-0481
	3-0482
	3-0483
	3-0484
	3-0485
	3-0486
	3-0487
	3-0488
	3-0489
	3-0490
	3-0491
	3-0492.0
	3-0492.1
	3-0492.2
	3-0492.3
	3-0492.4
	3-0493
	3-0494
	3-0495
	3-0496
	3-0497
	3-0498
	3-0499
	3-0500
	3-0501
	3-0502
	3-0503
	3-0504.0
	3-0504.1
	3-0504.2
	3-0505
	3-0506
	3-0507
	3-0508
	3-0509
	3-0510
	3-0511
	3-0512.0
	3-0512.1
	3-0512.2
	3-0513
	3-0514
	3-0515
	3-0516
	3-0517
	3-0518
	3-0519
	3-0520
	3-0521
	3-0522
	3-0523
	3-0524
	3-0525
	3-0526
	3-0527
	3-0528
	3-0529
	3-0530.0
	3-0530.1
	3-0530.2
	3-0531
	3-0532
	3-0533
	3-0534
	3-0535
	3-0536
	3-0537
	3-0538
	3-0539
	3-0540
	3-0541
	3-0542
	3-0543
	3-0544
	3-0545
	3-0546
	3-0547
	3-0548
	3-0549
	3-0550
	3-0551
	3-0552
	3-0553
	3-0554
	3-0555
	3-0556
	3-0557
	3-0558
	3-0559
	3-0560.0
	3-0560.1
	3-0560.2
	3-0561
	3-0562
	3-0563
	3-0564
	3-0565
	3-0566
	3-0567
	3-0568
	3-0569
	3-0570
	3-0571
	3-0572
	3-0573
	3-0574.0
	3-0574.1
	3-0574.2
	3-0575
	3-0576
	3-0577
	3-0578
	3-0579
	3-0580
	3-0581
	3-0582
	3-0583
	3-0584
	3-0585
	3-0586
	3-0587
	3-0588
	3-0589
	3-0590
	3-0591
	3-0592
	3-0593
	3-0594
	3-0595
	3-0596
	3-0597
	3-0598
	3-0599
	3-0600
	3-0601
	3-0602
	3-0603
	3-0604
	3-0605
	3-0606
	3-0607
	3-0608
	3-0609
	3-0610
	3-0611
	3-0612
	3-0613
	3-0614
	3-0615
	3-0616.00
	3-0616.01
	3-0616.02
	3-0616.03
	3-0616.04
	3-0616.05
	3-0616.06
	3-0616.07
	3-0616.08
	3-0616.09
	3-0616.10
	3-0616.11
	3-0616.12
	3-0617
	3-0618
	3-0619
	3-0620
	3-0621
	3-0622
	3-0623
	3-0624
	3-0625
	3-0626
	3-0627
	3-0628
	3-0629
	3-0630
	3-0631
	3-0632.0
	3-0632.1
	3-0632.2
	3-0632.3
	3-0632.4
	3-0632.5
	3-0632.6
	3-0633
	3-0634
	3-0635
	3-0636
	3-0637
	3-0638
	3-0639
	3-0640
	3-0641
	3-0642
	3-0643
	3-0644
	3-0645
	3-0646
	3-0647
	3-0648
	3-0649
	3-0650
	3-0651
	3-0652
	3-0653
	3-0654
	3-0655
	3-0656
	3-0657
	3-0658
	3-0659
	3-0660
	3-0661
	3-0662
	3-0663
	3-0664.0
	3-0664.1
	3-0664.2
	3-0665
	3-0666
	3-0667
	3-0668
	3-0669
	3-0670
	3-0671
	3-0672
	3-0673.0
	3-0673.1
	3-0674.0
	3-0674.1
	3-0674.2
	3-0675
	3-0676
	3-0677
	3-0678
	3-0679
	3-0680
	3-0681
	3-0682.0
	3-0682.1
	3-0682.2
	3-0683
	3-0684
	3-0685
	3-0686
	3-0687
	3-0688
	3-0689
	3-0690
	3-0691
	3-0692
	3-0693
	3-0694
	3-0695
	3-0696
	3-0697
	3-0698
	3-0699
	3-0700
	3-0701
	3-0702
	3-0703
	3-0704
	3-0705
	3-0706
	3-0707
	3-0708
	3-0709
	3-0710
	3-0711
	3-0712
	3-0713
	3-0714
	3-0715
	3-0716
	3-0717
	3-0718
	3-0719
	3-0720
	3-0721
	3-0722
	3-0723
	3-0724
	3-0725
	3-0726
	3-0727
	3-0728
	3-0729
	3-0730
	3-0731
	3-0732
	3-0733
	3-0734
	3-0735
	3-0736
	3-0737
	3-0738
	3-0739
	3-0740.0
	3-0740.1
	3-0740.2
	3-0741
	3-0742
	3-0743
	3-0744
	3-0745.0
	3-0745.1
	3-0745.2
	3-0746
	3-0747
	3-0748.0
	3-0748.1
	3-0749
	3-0750
	3-0751
	3-0752
	3-0753
	3-0754
	3-0755
	3-0756
	3-0757
	3-0758
	3-0759
	3-0760
	3-0761
	3-0762
	3-0763
	3-0764
	3-0765
	3-0766
	3-0767
	3-0768
	3-0769
	3-0770
	3-0771
	3-0772
	3-0773
	3-0774
	3-0775
	3-0776
	3-0777
	3-0778
	3-0779
	3-0780
	3-0781
	3-0782
	3-0783
	3-0784
	3-0785
	3-0786
	3-0787
	3-0788
	3-0789
	3-0790
	3-0791
	3-0792.0
	3-0792.1
	3-0792.2
	3-0793
	3-0794
	3-0795
	3-0796
	3-0797
	3-0798
	3-0799
	3-0800
	3-0801
	3-0802
	3-0803
	3-0804
	3-0805
	3-0806
	3-0807
	3-0808
	3-0809
	3-0810
	3-0811
	3-0812.1
	3-0812.2
	3-0812
	3-0813
	3-0814
	3-0815
	3-0816
	3-0817
	3-0818
	3-0819
	3-0820
	3-0821
	3-0822
	3-0823
	3-0824
	3-0825
	3-0826
	3-0835
	3-0836
	3-0837
	3-0838
	3-0839
	3-0840
	3-0841
	3-0842
	3-0843
	3-0844
	3-0845
	3-0846
	3-0847
	3-0848.0
	3-0848.1
	3-0848.2
	3-0849
	3-0850
	3-0851
	3-0852
	3-0853
	3-0854
	3-0855
	3-0856
	3-0857
	3-0858
	3-0859
	3-0860
	3-0861
	3-0862
	3-0863
	3-0864.0
	3-0864.1
	3-0864.2
	3-0865
	3-0866
	3-0867
	3-0868
	3-0869
	3-0870
	3-0871
	3-0872
	3-0873
	3-0874
	3-0875
	3-0876.0
	3-0876.1
	3-0876.2
	3-0877
	3-0878
	3-0879
	3-0880
	3-0881
	3-0882
	3-0883
	3-0884
	3-0885
	3-0886
	3-0887
	3-0888
	3-0889
	3-0890
	3-0891
	3-0892
	3-0893
	3-0894
	3-0895
	3-0896
	3-0897
	3-0898
	3-0899
	3-0900
	3-0901
	3-0902
	3-0903
	3-0904
	3-0905
	3-0906
	3-0907
	3-0908
	3-0909
	3-0910
	3-0911
	3-0912
	3-0913
	3-0914
	3-0915
	3-0916
	3-0917
	3-0918
	3-0919
	3-0920
	3-0921.0
	3-0921.1
	3-0922.0
	3-0922.1
	3-0923
	3-0924
	3-0925
	3-0926
	3-0927
	3-0928
	3-0929
	3-0930
	3-0931
	3-0932
	3-0933
	3-0934
	3-0935
	3-0936
	3-0937
	3-0938
	3-0939
	3-0940.0
	3-0940.1
	3-0940.2
	3-0940.3
	3-0940.4
	3-0941
	3-0942
	3-0943
	3-0944
	3-0945
	3-0946
	3-0947
	3-0948
	3-0949
	3-0950.0
	3-0950.1
	3-0950.2
	3-0951
	3-0952
	3-0953
	3-0954
	3-0955
	3-0956
	3-0957
	3-0958
	3-0959
	3-0960
	3-0961
	3-0962
	3-0963
	3-0964
	3-0965
	3-0966
	3-0967
	3-0968
	3-0969
	3-0970
	3-0971
	3-0972
	3-0973
	3-0974
	3-0975
	3-0976
	3-0977
	3-0978
	3-0979
	3-0980
	3-0981
	3-0982
	3-0983
	3-0984
	3-0985
	3-0986
	3-0987
	3-0988
	3-0989
	3-0990
	3-0991
	3-0992
	3-0993
	3-0994
	3-0995
	3-0996
	3-0997
	3-0998
	3-0999
	3-1000
	3-1001
	3-1002
	3-1003
	3-1004
	3-1005
	3-1006
	3-1007
	3-1008
	3-1009
	3-1010
	3-1011
	3-1012.0
	3-1012.1
	3-1012.2
	3-1013
	3-1014
	3-1015
	3-1016
	3-1017
	3-1018
	3-1019
	3-1020
	3-1021
	3-1022
	3-1023
	3-1024
	3-1025
	3-1026
	3-1027
	3-1028
	3-1029
	3-1030
	3-1031
	3-1032
	3-1033
	3-1034
	3-1035
	3-1036
	3-1037
	3-1038
	3-1039
	3-1040
	3-1041
	3-1042
	3-1043
	3-1044
	3-1045
	3-1046.0
	3-1046.1
	3-1046.2
	3-1047
	3-1048
	3-1049
	3-1050
	3-1051
	3-1052
	3-1053
	3-1054
	3-1055
	3-1056
	3-1057
	3-1058
	3-1059
	3-1060
	3-1061
	3-1062
	3-1063
	3-1064
	3-1065
	3-1066
	3-1067
	3-1068
	3-1069
	3-1070
	3-1071
	3-1072
	3-1073
	3-1074
	3-1075
	3-1076
	3-1077
	3-1078
	3-1079
	3-1080.0
	3-1080.1
	3-1080.2
	3-1081
	3-1082
	3-1083
	3-1084
	3-1085
	3-1086
	3-1087
	3-1088
	3-1089
	3-1090
	3-1091
	3-1092
	3-1093
	3-1094
	3-1095
	3-1096
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14.0
	4-14.1
	4-15
	4-16
	4-17
	4-18
	4-19
	_001
	_002
	_003
	_004
	_005
	_006
	_007
	_008
	i-01
	i-02
	i-03
	i-04
	i-05
	i-06
	i-07
	i-08
	i-09
	i-10
	i-11
	i-12
	i-13
	i-14
	i-15
	i-16
	i-17
	i-18
	i-19
	i-20
	i-21
	i-22
	i-23
	i-24
	i-25
	i-26
	i-27
	i-28
	i-29
	i-30
	i-31
	i-32
	i-33
	replyA
	replyB
	xBack

