
SUBJECT

MULTICSPUI
REFERENCE MANUAL

Reference Manual for the Multics PIJI Language

SPECIAL INSTRUCTIONS

This manual furnishes expanded detail and examples ofMultics PIJI language
usage as defined in the Multics PLII Language Manual, Order No. AG94.

The reader should also refer to the four manuals that compose the Multics
Programmer's Manual (MPM) listed below.

Reference Guide
Commands and Active Functions
Subroutines
Subsystem Vlriters' Guide

SOFrWARESUPPORTED

Multics Software Release 4.0

ORDER NUMBER

AM83, Rev. 0

Order No~ AG91
Order No. AG92
Order No. AG93

June 1976

Honeywell

PREFACE

This manual is a combined tutorial and reference manual for Multics PL/I.
The manual is intended for a programmer who is experienced in the use of high
level languages, such as FORTRAN, COBOL, or ALGOL.

The sections of this manual are organized to reflect the main features of
the language. After the introductory section, three aspects of data values are
considered: values as abstractions, values in storage, and the conversion of
values from one storage type to another. The sections that cover this material
are:

II. Values
III. Value storage
IV. Value Conversion

Next, the overall syntax of a program is considered, ranging from small
constructs (such as the identifier) to intermediate constructs (the statements)
to large constructs (the blocks). Against this background, the declar~tion of
identifiers and the management of storage is described. The sections are:

V.
VI.
VII.

Program Structure
Declaration
Storage Management

Next, the features that are used to compute and store values are consider.ed.
The sections are:

VIII.
IX.
X.

Expressions
Operations
Value Assignment

Next, the features that are used to
statements are executed are described.

XI.
XII.
XIII.

Program Flow
Procedure Invocation
Condition Handling

determine the sequence
The sections are:

in which program

Next, the statements for input/output are described. The sections are:

XIV.
XV.

Stream Input/Output
Record Input/Output

Finally, the aspects of Multics that are of special interest to the PL/I
programmer are described. The section is:

XVI. PL/I in the Multics System

The manual has an appendix that gives the syntax of all of the statements of
PL/I, except the 'default' statement.

The information and specifications in this document are subject to change without notice. This
document contains information about Honeywell products or services that may not be available
outside the United States. Consult your Honeywell Marketing Representative.

€) 1976, Honeywell Information Systems Inc.

9/78

File No.: 1L23

AM83A

Related Manuals

Two related Honeywell publications are the PL/I Language Specification and
the Multics Programmers' Manual. The PL/I Language Specification is the
ultimate authority on Multics PL/I. For the programmer who is beginning a study
of PL/I, the manual may be difficult to use and understand because it is
designed to be a definition, not an explanation, of PL/I. To the programmer who
has learned Multics PL/I, however, the Language Specification is the source of
all necessary information about Multics PL/I.

The PL/I Language Specification describes the meaning of any given program,
but it does not explain how to write a program. Therefore, it is essential to
approach the manual with a well-formulated question, a question that is usually
in the form "what does the following PL/I construct mean: ••• ?" If it is
impossible to come up with such a question, then the appropriate section of this
manual should be used to get the rules, examples, or guidelines necessary to
formulate a question.

The Multics Programmers' Manual (MPM) is actually composed of six manuals:
the Reference Guide, Commands and Active Functions, Subroutines, the Subsystem
Writers' Guide, Peripheral Input/Output, and Communications Input/Output. For
convenience, these references will be as follows:

Document

Reference Guide
(Order No. AG91)

Commands and Active Functions
(Order No:-AG92)

Subroutines
(Order No. AG93)

Subsystem Writers' Guide
(Order No. AK92)

Perinhera 1 Tnput/Output
(Order No. AX49)

Communications Input/Output
(Order No. CC92)

Referred To In Text As

MPM Reference Guide

MPM Commands

MPM Subroutines

MPM Subsystem Writers' Guide

MPM Peripheral 110

MPM Communications I/O

The MPM Reference Guide contains general information about the Multics
command and programming environments. It also defines items used throughout the
rest of the MPM. In addition, it describes such subjects as the command
language, the storage system, and the input/output system.

The MPM Commands is organized into four sections. Section I contains a
list of the Multics command repertoire, arranged functionally. Section II
describes the active functions. Section III contains descriptions of standard
Multics commands, including the calling sequence and usage of each command.
Section IV describes the requests used to gain access to the system.

The MPM Subroutines is organized into three sections. Section I contains a
list of the subroutine repertoire, arranged functionally. Section II contains
descriptions of the standard Multics subroutines, including the declare
statement, the calling sequence, and usage of each. Section III contains the
descriptions of some of the I/O modules. Other I/O modules will be described in
the MPM Peripheral I/O and the MPM Communicatons I/O.

9/78 iii AM83A

The MPM Subsystem Writers' Guide is a reference of interest to compiler
writers and writers of sophisticated subsystems. It documents user-accessible
modules that allow the user to bypass standard Multics facilities. The
interfaces thus documented are a level deeper into the system than those
required by the majority of users.

The MPM Peripheral I/O manual contains descriptions of commands and
subroutines used to perform peripheral I/O. Included in this manual are
commands and subroutines that manipulate tapes and disks as 1/0 devices.

The MPM Communications I/O manual contains descriptions of commands and
subroutines used to perform communications I/O including information on terminal
types. Special purpose communications I/O, such as binary synchronous
communication, is also included~

The subroutines described in the MPM Subroutines and the MPM Subsystem
Writers' Guide can be called from PL/I programs to perform system-provided
application and supervisory functions. The I/O modules described in the MPM
Subroutines and the MPM I/O manuals can be invoked by calling the iox_
subroutine to interface directly with the Multics input/output system when
performing I/O operations. These I/O module descriptions may also be useful
when attaching PL/I files to a disk or tape dataset or other special devices.

9/78 iv AM83A

Section I

Section II

Section III

9/78

CONTENTS

Introduction .•.•.•
Language Features of PL/I ..

Data Description ••••.•
Program Structure •
Computation • . . •
Flow of Control • •
Input/Output •.•••

Applications of PLII • • • • •
Scientific Programming.
Business Programming •.
System Programming ••

Data • . • • . . •
Program Structure.
Efficiency . • ••

Program Validity•

Page

• 1-1
• 1-2
• 1-2

1-3
1-4
1-4

• 1-5
• 1-5

1-5
• 1-7

1-8
1-8
1-8

• 1-9
1-10

Examples of Invalid Programs.. • ••• 1-10
Interpretation of Invalid Programs •.

Suggestions for the Study of PL/I ••
Introductory Texts •••
Contents of this Manual • •

Values •••••.
Arithmetic Values •••
String Values ••••..••••
Address Values . • •

Statement Values •.
Locator Values.
File Values •.

Area Values ••.••
Aggregate Values . •
Classification of Values .

Value Storage • • • • • • •

• 1-12
• 1-12
• 1-12

1-13·

• 2-1
2-1

• 2-2
• 2-3
• 2-3

• • 2-4
• • 2-4

• 2-4
• 2-4

• • 2-5

• 3-1
• 3-1 Storage Units.

Storage Types ••
Arithmetic Storage •

• • • • • • 3-2

Arithmetic Data Types •
Mode Attribute . .
Scale Attribute •.••
Base Attribute . • •
Precision Attribute •.
Abbreviations and Defaults ••••••

Examples of Arithmetic Storage Units .•
Fixed Decimal Storage Units ••
Fixed Binary Storage Units • • .
Float Binary Storage Units • .
Float Decimal Storage Units.
Complex Storage Uni ts. . • .

• • 3-4
• • • 3-5

· • 3-5
• • 3-5

• 3-6
· 3-7
• 3-8
• 3-10
• 3-11

• •• 3-12
• 3-13

3-13
3-14

Guidelines for Using Arithmetic
Choice of Mode . . • . •
Choice of Scale and Base .

Data Types ••• 3-14
• 3-14
• 3-15

Choice of Precision ... • 3-15

v AM83A

I

I

*

I

I
I
I

I

9118

CONTENTS (cont)

Ord in ar y Str ing Storage. • • . .
Ordinary String Data Types •.

String-type Attribute ••
Variability Attribute ••.

Page

• 3-16
· • 3-16

· 3-16
• 3-11

Abbreviations and Defaults .••••••
Examples of Ordinary String Storage •

Character Storage Units ••••••

· . 3-11
· . 3-18

3-18
Bit Storage Units ••••• • 3-19

Guidelines for Using Ordinary String Data
Types. . • • • • • • • • 3-19

Pictured String Storage. • • 3-20
Pictured Data Types • • • • • • •• 3-20

Picture Attribute. • • • • • • • 3-21
Classification of Indicators. • 3-21
Classification of Pictures. • • • 3-22

Mode Attribute . • . . • • • • • • ••••• 3-23
Abbreviations and Defaults • • • • 3-23

Interpreting Pictured Storage . • • • • • • • • 3-23
Character-string Interpretation of Pictured
Storage • . • . • • • • • . • • • • • 3-24

Related Character Types • • • • • 3-24
Character-string Assignments.. • •.• 3-25
Character-string Fetches. • • • • • 3-26

Arithmetic Interpretation of Pictured
Storage • • • • • • • . •

Related Arithmetic Data Types
Arithmetic Assignments •••
Arithmetic Fetches ••••••

Fixed-point Pictures •••••••
No-suppression Digit Indicator •
Decimal-point Indicator ••••
Sign Indicators ••••••••
Dollar Indicator ••••••••
Zero-suppression Digit Indicators ••
Drifting-sign Digit Indicators ••
Drifting-dollar Digit Indicator •••
Insertion-character Indicators •••
Arithmetic Decimal-point Indicator ••
Scale-factor Indicator •••

Floating-point Pictures • • •
Floating-point Indicators ••
Scale-factor Indicator •

Complex Pictures •••••••••
Non-numeric Pictures ••••••

Non-numeric Indicators •••
Guidelines for Pictured Storage • •

Address Storage ••••••••

• 3-26
• • 3-26
· • 3-21

• 3-28
· 3-29

· • 3-30
• • 3-32
• • 3-33

• • • 3-34
· 3-35
• 3-36

· . 3-31
• 3-38
• 3-39

• • 3-40
• 3-41
· 3-41
• 3-42
• 3-42

• • 3-43
• 3-43
• 3-44

• . • 3-44
• 3-45 Address Attributes •.••••

Example of Address Storage. • • • + e = •• 3-46
Area Storage • • • • • • • •

'area' Attribute ••••
• • • • 3-46

• • • • • • 3-41
Default Rule •••••••••••
Example of Area Storage • • • • •

Aggregate Storage. • • • •
Structures ••••••••

Level Numbers~ e eo.

Structure Storage Types •••••• ~
Examples • • • • • • • .

Arrays ••••••••••••
'dimension' Attribute ••
Abbreviations and Defaults • •

vi

• • 3-48
• 3-48
• 3-49

3-49
· • • 3-49

• • 3-50
• 3-51
• 3-53

• • 3-54
• • 3-55

AH83A

Section IV

9/78

CONTENTS (cont)

Array Storage Types •.••••
Examples • • • • • • •

Guidelines for Aggregates •
Alignment •••••.••.••

Alignment Attribute • • •
Abbreviations and Defaults ••••••
Storage Layout Rules for Multics ••

Storage Layout for Scalars . • •
Storage Layout for Structures ••
Storage Layout for Arrays ••.

Value Conversion ..••
Contexts that Force Conversion •

General Contexts ..•..•
Assignment Statements •••
Assignment-Like Constructs
Arguments and Results.
Built-In Functions and Expressions.

Special Contexts ••••••.•••
Integer Targets ••••.•
Character-String Targets •
Bit-String Targets.
Locator Targets ..••

Data Type Conversion • . • • •
Arithmetic Targets. • • .. • •••

Examples of Arithmetic to Arithmetic
Conversion. . •• • ••.••

Examples of String to Arithmetic
Conversion •••..••••

Character-String Targets ••••••
Examples of Character-String to

Page

· • 3-56
3-57

• 3-60
· 3-61

• • 3-62
• • 3-63

• 3-66
• • • • 3-66

• • • 3-68
· 3-71

• 4-1
• •• 4-1

• • 4-2
• . 4-2

· 4-3
• • • 4-3

• • 4-4
4-4

· . . 4-5
• . . 4-5

· .4-6
• 4-6
• 4-7
• 4-7

• . 4-9

• 4-10·
• 4-10

Character-String Conversion • • • • • 4-12
Examples of Bit-String to Character-String

Conversion ••..••••••.•••••• 4-12
Examples of Arithmetic to Character-String

Conversion .•.••••.
Float Decimal Values ••••••.
Fixed Decimal Values ••
Float Binary Values
Fixed Binary Values
Complex Values. . •

Bit-String Targets ••••.
Examples of Bit-String to Bit-String

• 4-13
· 4-13

· •• 4-13
· 4-14

• . 4-15
• 4-15

· . 4-16

Conversion. • • . • • • • •• • • 4-16
Examples of Character-String to Bit-String

Conversion. . . . • • • . • • • .• •• 4-17
Examples of Arithmetic to Bit-String

Conversion ••••..•
Fixed Binary Values •..•••
fixed Decimal Values •.
Float Values ...
Complex Values ••••.

Locator Targets . • • • • •
Aggregate Type Conversion •••

Example of Aggregate Conversion •
Conditions for Conversions ••.••.

'size' and 'fixedoverflow' Condition ••
'overflow' and 'underflow' Conditions.
'conversion' Condition ••.•.••.•
'stringsize' Condition •••••.•.
Guidelines for Conversion Conditions ••

vii

4-17
· .• 4-17

II 1 '7
• • • • ...-- I f

· . . 4-18
• 4-18

· . 4-18
• 4-18

• . 4-19
• 4-20

· . 4-20
· • 4-21

• 4-21
· 4-22

· . 4-22

AM83A

Section V

I

I

Section VI

9/78

CONTENTS (cont)

Program Syntax ••.
Characters • • .
Lexemes ..••

Identifiers .
Keyword vs. Name
Guidelines for Identifiers •.

Literal Constants.
Punctuators •
Operators • • • •
Pictures ...•.
Isubs •
'%include' Macro ..

Macro Interpretation .
Macro Example.
Guidelines for Macros ..

Separators•...
Separation Rules •..••
Classification of Lexemes •

Statements . • . . •
Statement Prefix .••..

Condition Prefixes •.
Label Prefixes

Statement Body ..
Classification of Statements.

Dyor,....,N", C"+-"""',_~ ... __ _
J. I V 5 J ClUJ t.J vI U'4....,. v U 1 'C..:> • • •

Groups. . • •
Blocks. . • . • . . . • • . . • .
Summary of the Program Structures .

External Procedures and the Program ..

Declarations ••.•...•..•...
Establishment of Declarations •...

Page

· • 5-1
• . • 5-2

5-2
• 5-3
· 5-3
• 5-4
· 5-5

· . . 5-6
· 5-6
· 5-7
· 5-7

5-7
• . 5-8

• 5-8
· . 5-9

· 5-10
• 5-10
• 5-12
· 5-13
• 5-13
· 5-13

• • •. 5-13
• 5-14

· • 5-16
· . . 5-17

· 5-17
· 5-18

· . . 5-19
• 5-20

• 6-1
6-1

Example of the Establishment of Declarations.
Containment and Immediate Containment .

· 6-2
• 6-3

6-4 'declare' Statement .•.
Simple Declarations •.
Structure Declarations
Short Forms of Declarations ..

Abbreviations and Defaults ••
Combining Declarations .•.•
Factoring Declarations. • .

. • • • 6-4
• 6-5
· 6-6
· 6-6

. • . • • • 6-6

Guidelines for 'declare' Statements ••
• • 6-6

· 6-7
Label Prefixes .. • • 6-8

Label Constant Names .
Entry Constant Names . .
Format Constant Names.

• • • . . • • 6-8

Contextual and Implicit Declarations ••
Example of Contextual and
Implicit Declarations ..•.•••

Guidelines for Contextual and

• 6-8
· 6-9
• 6-10

· 6-10

Implicit Declarations. • • . • • 6-11
Special Facilities for Declaration. • ••• 6-11

'like' Attribute. . . • . • • • . • • 6-11
Form of the 'like' Attribute ••••••. 6-12
Interpretation of the 'like' Attribute •• 6-12
Examples of the 'like' Attribute.. • 6-13
Guidelines for the 'like' Attribute ... 6-13

'default' Statement. • . . . • • . • .• 6-13
Examples of the 'default' Statement ••• 6-i4
Guidelines for the 'default' Statement •. 6-15

Resolution of Name References •..•.•••••• 6-15

viii AM83A

Section VII

9/78

CONTENTS (cont)

Page

Example of the Resolution of Name References. • 6-16
Name-Sequence Set for a Declaration
Name-Sequence for a Name Reference.
Applicability of Declarations ..•••
Resolution Rules •••••

• 6-16
•••• 6-17

Attributes • • . • . • • •
Complete Attribute Sets

Variable Names • . • •
Constant Names • • • .
Built-in Function Names ••••••••
Condition Names •••••
Generic Names .••.••••••

Classification of Attributes ••

• 6-17
• • 6-18

• 6-20
• • 6-20

• 6-21
• • 6-22

• 6-23
• 6-23
• 6-23

• • 6-24

Storage Management. • • • • • • • • • 7-1
Preliminary Examples of Storage Management • • 7-2
Fundamentals of Storage Management • ••••• 7-3

Storage Regions • • . • • •• •• • • • • • 7-4
Region Diagrams • . . • • • • • • • • • • 7-5
Storage Management Operations • • • 7-6
Storage Management Example. • • • 7-6

Management Class. • • . • • • • • • • • • .·7-10
Form of the Management Class. • 7-10
Abbreviations and Defaults. • . • • • • • 7-11

Default Rules. • • • • • • 7-12
Usage Categories • 7-12

Variables .•••• • •• 7-13
Constants . • . • 7--13

Scopes. • • • • • 7-13
Internal Names. • . • • • • • 7-13
External Names. • • • • • • 7-14
Guidelines for the Scope. • • • • • • • • 7-14
Correspondence Between Names and Storage •••• 7-14

Storage Classes. . . . • • • • . • • • • • • 7-15
Automatic Variables • • • • • • • • • • 7-16

Variable Expressions in Attributes for
'automatic' Variables •••••.

Saving Variable Extents for 'automatic'
Variables • • • . • • • • • • • •

Static Variables •..••••••••
Variable Expressions in Attributes for

• 7-16

• 7-17
• • 7-17

'static' Variables ••••••••••••• 7-18
Controlled Variables .••.•.•..••••• 7-18

'allocate' and 'free' Statements for
'controlled' Variables. • . • . • • • 7-18

Stacking Controlled Variables . . • . • • • 7-18
Variable Expressions in Attributes for

'controlled' Variables ••..••••••• 7-19
Saving Variable Extents for 'controlled'
Variables • • • • •

Parameter Variables • • • • • . • • •
Variable Expressions in Attributes for

'parameter' Variables •.•.••
Based Variables . • • • • • • • • • •

Reference in the 'based' Attribute.
'allocate' and 'free' Statements
for 'based' Variables ••••...

Variable Expressions in Attributes
Saving of Variable Extents • •
'refer' Option •.•.•••
Equivalenced Based Variables

ix

• 7-20
• 7-20

• 7-20
• • 7-20
• • 7-22

• 7-22
• 7-23
• 7-23

. • • 7-24
• 7-25

AM83A

I

I

I

Section VIII

I

9/78

CONTENTS (cont)

Simple Based Variables •••••.
String Overlay Based Variables.
Partial Based Variables . • • • •

Defined Variables • • • • • • • • • . •
Variable Expressions in Attributes for

'defined' Variables •••.•••
Saving Variable Extents for 'defined'

Variables • • • • . • • • •
Uses of Defined Variables ••.••••

Simple Defining . . • • • •
String Overlay Defining • • .
Isub Defining . . • • • • •

Page

• 7-26
• • 7-27

• 7-28
• 7-29

• 7-29

• • 7-30
• • • 7-30

• 7-30
• 7-31
• 7-31

Guidelines for the Storage Class ••••••
Automatic Variables ..

· • 7-32
• 7-32

Static Variables . •
Controlled Variables .
Parameter Variables.
Based Variables ...
Defined Variables.

'initial' Attribute ••.
Initialization Syntax
Use of 'initial' Attribute ..••••
'options(constant)' Attribute .••••

Capacity of Storage .••.•••
~"""r...,tTo. T;...,.; n
..., v'V & U 0 '-L. til.&.. '" v. • • • • • • •

Significant Uses of Storage • • .
Conditions for Storage Management ••

'storage' Condition.
'area' Condition •.

Expressions • • . • • •
General Remarks on Expressions •

Nested Expressions •.•.••
Parenthesized Expressions ..•
Storage Types of Expressions.
Aggregate Expressions .
Ordering and Optimizing the Evaluation
of Expressions • . . • . •

Variable References ..•.•.•.••••
Variable Reference Types .••.•••

Major Name in a Variable Reference
Simple Variable References •.•••.

Form of Simple Variable References •
Interpretation of Simple Variable

References •.•.•..•...•

• 7-33
• • 7-33

• 7-34
7-34

• • 7-34
• 7-35
• 7-35

• • 7-36
• 7-37
• 7-38
· 7-38

• . 7-39
• 7-39
• 7-40

• • 7-4"0

• • 8-1
• 8-1
• 8-2

8-3
• 8-3
• 8-5

8-5
• 8-7

• • • 8-7
8-7

• • 8-8
• • 8-8

· . 8-9
Examples of Simple Variable References

Subscripted Variable References • . • • •
Form of Subscripted Variable References .•
Interpretation of Subscripted Variable

• 8-10
8-11

· 8-11

References •.••.••.•..• • • 8-11
Examples of Subscripted Variable

References. • • • • . • • • • • • • 8-13
Structure-Qualified Variable References •••• 8-15

Form of Structure-Qualified Variable
References ...••.••••.•.

Interpretation of Structure-Qualified
Variable References . . . • • • • • .

Examples of Structure-Qualified Variable
References .••••..•.•••.•

Locator-Qualified Variable References •
Form of a Locator-Qualified Variable

x

• 8-15

· 8-16

· 8-i7
• 8-20

AM83A

9/78

CONTENTS (cont)

Page

Reference • • • • • • • • • • • • 8-21
Associated Storage Types for Locator

Values. • • • • • • ••••
Interpretation of Locator-Qualified
Variable References • . • • • • • • •

Examples of Locator-Qualified Variable

• 8-21

· 8-22

References. • • • • • • • • 8-23
Shortened Forms of References • • • • •• • 8-25

Subscript-List Deletion. . . • • • •• • 8-25
Examples of Subscript List Deletion • • • 8-26
Guidelines for Subscript List Deletion •• 8-26

Name Deletion. . • • • • • • • • • • • 8-26
Examples of Name Deletion • • • • • • • • 8-27
Guidelines for Name Deletion. • • 8-28

Locator Qualifier Deletion • • • • 8-28
Guidelines for Locator-Qualifier

Deletion • • • • • • . • • • • • • 8-28
Cost of Variable References . · 8-29

Constant Literals •••••..•
Arithmetic Constant Literals. •• • •••

· 8-29
• 8-29
· 8-30 Form of Arithmetic Constant Literals.

Interpretation of Arithmetic Constant
Literals •••.•••••••••••••• 8-31

Examples of Arithmetic Constant Literals •• 8-31
Guidelines for Arithmetic Constant
Literals. • • . • • • • • • • • • 8-32

String Constant Literals. • • • • •• • •• 8-32
Form of String Cons~ant Literals • • • • 8-32
Interpretation of String Constant Literals. 8-33-
Examples of String Constant Literals .• 8-33
Escape Conventions for Characters. • • 8-34

Attributes for Constant Literals. • • 8-34
Constant References. • • • . . • • . • • • • 8-35

Statement Constant References • . . . • • • • • 8-35
Form of Statement Constant References •••• 8-35
Interpretation of Statement Constant

References •.••••.•••••••••• 8-36
Examples of Statement Constant References •• 8-36
External 'entry' Constant References. • 8-37

File Constant References. . • • • • • • 8-38
Form of File Constant References • •• • 8-38
Examples of File Constant References •. 8-38

Attributes for Constant Names • . . . •• . 8-39
Programmed Function References • • • • • • • • • • 8-39

Form of Programmed Function References.. • 8-39
Interpretation of Programmed Function
References . . • . • . • • . • • . • • • • • • 8-40

Examples of Programmed Function References ••• 8-40
Built-in Function References. • • • • • • • 8-42

Form of Built-in Function References. • 8-43
Interpretation of Built-in Function
References • • • • • • • • . • • • • • 8-43

Examples of Built-in Function References •••• 8-44
Differences Between Built-in and Programmed
Function References ..••••

Operator Expressions . . . • • • • • • . • . •
Form of Operator Expressions ..••••
Interpretation of Operator Expressions •.
Operator Priority Rules ..•.•
Examples of Operator Expressions ••..

xi

· . 8-45
· . 8-46

· 8-47
· 8-47

8-48
· . 8-49

AM83A

I
I

I

I

I

I

I

I

I

I
I

Section IX

9/78

CONTENTS (cont)

Page

Operations••.••• . • • • • • • • • • 9-1
General Remarks ••••••

Argument Evaluation • • •
Non-Standard Operations • •
Conventions for Examples.

Arithmetic Operations •••••
Conventions for Definitions

Arguments •.•••••
Common Data Attributes •

Elementary Operations • • •
Prefix Sign Operators.

• 9-2
• • 9-2

9-3
• • 9-3

• 9-3
• • 9-4
• • 9-4
· . 9-5
· . 9-5

· 9-6
• 9-6 Infix Sign Operators •

Multiplication Operator •.
Division Operator ••••
Exponentiation Operator ••

. • 9-7

'add', 'subtract', 'multiply',
and 'divide' Functions.

Comparison Operations . . • • • •
Relational Operators for Arithmetic

• • 9-8
· 9-9

• 9-10
• • 9-10

Values. • • • . . . • . • • 9-10
'min' and 'max' Functions. • • • •• • • 9-11

Truncating Functions. • • • • . • • •• • •. 9-12
'trunc', 'floor', and 'ceil' Functions •.• 9-12
'round' Function. • • • • • 9-13
'mod' Function. 9-14

Sign-Manipulation Functions . • . • • • • 9-16
tabs' Function. • • • • • • 9-16
'sign' Function. • • . • • 9-17

Complex Arithmetic Functions. . • • 9-17
'real' and 'imag' Functions for Arithmetic. 9-18
'complex' Function. • • • • 9-18
'conjg' Function. • . . • • 9-19

Mathematical Operations. . • . • • 9-19
Conventions for Definitions • • 9-19

Arguments. • • • 9-19
Results. • • . . • • • • . •• 9-20
Evaluation . . • • • • • • • 9-20

Functions Related to Exponentiation •••• 9-21
'exp' Function ..••.• • 9-21
'log' Function ..••• • 9-22
rlog10' and 'log2' Functions. . . 9-22
'sqrt' Function. . . • • • • • • • 9-23

Trigonometric Functions . . . • • 9-24
'sin', 'cos', and 'tan' Function • • . • • • 9-24
Ordinary 'acos' Function. • 9-24.1
Ordinary 'asin' Function. • 9-24.1
'sind', 'cosd', and 'tand' Functions • • 9-25
Ordinary 'atan' Function. . • 9-25
Ordinary 'atand' Function. • 9-26
Cartesian 'atan' Function. • 9-26
Cartesian 'atand' Function. . • 9-27

Hyperbolic Functions. • • • • • 9-28
'sinh', 'cosh', and 'tanh' Functions •• 9-28
'atanh' Function. . • . . • 9-29

Functions for Statistical Analysis. • 9-29
ierfi and ierfc i Functions. • 9-30

String Operations. • . • • . • • 9-30
Conventions for Definitions • . • 9-30

Arguments. • • • • • • • •• • 9-31
Concatenate Operations. . . • 9-32

Concatenate Operator • 9-32

xii AM83A

9/78

CONTENTS (cont)

Page

'copy' Function. · · · 9-32
Substring Operations. · · 9-33

'substr' Function. · · 9-33
'index' Function · · · 9 9 9-34
'before' Function. · · 9-34
'after' Function · · · 9-35
'decat' Function · · · · · · · · 9-36

Relational, Length, and Reverse Operations. · · 9-37
Relational Operators for String Values · 9-38
'length' Function. · · 9-40

I 'maxlength' Function · · 9-40
'reverse' Function · · 9-40. 1

I 'ltrim' Function · · · · · · · · 9-40. 1
'rtrim' Function · · · · · · · · 9-40. 1

Bit-String Operations · · 9-41
Logical Operators. · · 9-41

I 'bool' Function. · · 9-42
Character-String Operations · · · 9-43

I 'search' Function. · · 9-43
'verify' Function. · · · · 9-43
'translate' Function · · · · · · · 9-44

Character-Set Operations. • .9-45
'collate' Function · · · · 9-45

I 'collate9' Function. · 9-47
'low' Function . · · 9-47
'high' Function. · · · · 9-47

I 'high9' Function · · · · 9-48
String Functions Defined Elsewhere. · 9-48

Address and Area Operations. · · · · · · · · 9-48
General Address Functions · · · · · 9-49

Relational Operations for Address Values · · 9-49
'addr' Function. · · · · · 9-50
'null' Function. · · · · · · · · · . . . · · 9-51
'nullo' Function •••.•••••••••• 9~51

Implementation-Dependent Address Functions ••• 9-52 I
'baseptr' Function •••••••.••.•• 9-52
Nonstandard 'ptr' and 'addrel' Functions •• 9-52.1
'baseno' and 'reI' Functions ••••• 9-52.2
'stackframeptr' Function. • 9-52.2 I
'stackbaseptr' Function. • • • • 9-52.2
'codeptr' Function. • • • . 9-52.2
'environmentptr' Function. • • • 9-52.2

Area Function . • • 9-53
'empty' Function. •••• • 9-53

Array Operations • • . • 9-53
Extent Functions. • • • 9-53

'lbound' and 'hbound' Functions. • • 9-54
'dimension' Function. . • • 9-54

Special Array Functions • • . • . • 9-55
'sum' and 'prod' Function. . • 9-55
idoti Function. • • . • . . • • 9-56

Conversion Operations. • • • • • • 9-56
Fundamental Conversion Function • • 9-57

'convert' Function. • • • • • • 9-57
Conversion to Arithmetic Data Types • • 9-59

'real' Function for Conversion. • . 9-59
'complex' Function for Conversion. • • 9-60
'fixed' Function . . • 9-60
, float' Function . • . 9-61
'binary' Function. • • • 9-62
'decimal' Function. • 9-63

xiii AM83A

I
I
I

I
I

I

Section X

Section XI

9/78

CONTENTS (cont)

'precision' Function.
Conversion to String Data Types

'character' Function.
'bit' Function ••••

Conversion between Locative Data Types ••
Standard 'pointer' Function ••
'offset' Function ••••••.

Special Conversion Functions ••
'string' Function •••••
'unspec' Function •••
'valid' Function •••

Guidelines for Conversion Functions ••
System Variable Operations • • . . • • •

System Counter Functions •••.•••
'lineno' and 'pageno' Functions.
'clock' and 'vclock' Functions.
'time' and 'date' Functions •.

Storage Management Functions ••
'allocation' Function •••
'size' Function •.••.••
'currentsize' Function ••

Resource Reservation Function •
'stacY Function
'stacq' Function •••.

'on' Condition Functions.
'onloc' Function ••••••
'oncode' Function.
'onkey' Function.
'onfield' Function
'onchar' and 'onsource' Functions.
'onfile' Function.

Value Assignment •...•.
Examples of Assignment Statements •••

Arithmetic Assignment Statements.
String Assignment Statements .•
Address Assignment Statements • •
Area Assignment Statements .•.
Aggregate Assignment Statements

Form of Assignment Statements ••••.
Targets . . • • • . • . • . • • .

Interpretation of Assignment Statements ••
Special Restrictions ••••••

Overlapping String Targets •
Area Assignments • . . • • •

Order of Interpretation • . •
Pseudo-Variables • . • . • . • • •

'real' and 'imag t Pseudo-Variables.
'substr' as a Pseudo-Variable.
'string' Pseudo-Variable ••
'unspec' Pseudo-Variable ••••
'pageno' Pseudo-Variable. . • •

Page

• 9-64
• • 9-64

• 9-64
• • 9-65

• 9-66
• 9-66
• 9-66

• • 9-66
• 9-67
• 9-68

9-69
• • 9-69
• • 9-70
• • 9-71

• 9-71
• 9-71
• 9-71

• • 9-72
• • • 9-72

• 9-73
• 9-13
· 9-14

• • 9-74
9-74. 1

• 9-75
• • 9-76

9-76
• 9-77
• 9-77

• • • 9-78
• 9-19

'onchar' and 'onsource' Pseudo-Variables ••

10-1
10-1
10-1
10-2
10-2
10-3
10-3
10-4
10-4
10-5
10-5
10-5
10-7
10-1
10-9
10-9
10-10
10-11
10-12
10-12
10-13

Program Flow •••••••••
Sequential Execution • • . •
'if' Statement ••••••

Test in an 'if' Statement
Consequences in an 'if' Statement

Non-iterative 'do' Group as a
Consequence . • • • • • • • •

xiv

11-1
1 i-2
11-3
11-4
11-4

11-6

AM83A

Section XII

9/78

CONTENTS (cont)

'if' Statement as a Consequence ••
Dangling 'else' Clause.

'do' Group. . . • • . • • • •• . •••
Iterative 'do' without Index. • .•.
Iterative 'do' with Index . • • •• • •••

Single-Value Control .
'repeat' Control •••.....
FORTRAN Control ..•••
Index of a 'do' Group •.

Non-iterative 'do' •..•.
'goto' Statement ..•..••

'goto' with a Constant Reference •.
'goto' with a Non-Constant Reference.

'local' Attribute •.••••••
Restriction on the Destination

Block Execution ••••••••••
Guidelines for Flow of Control . • •

Avoidance of Unnecessary 'goto' Statements.
Layout Conventions .••

Procedure Invocation ...
Arguments and Parameters .

Argument Classification •
Examples of Argument Classification ••.
Examples of Connected and Unconnected

Arguments . • . . • . • • • . • . •
Argument Interpretation • • • • • • . • • •

Examples of Argument Interpretation.
Effect of an ,*, Extent ...•.•

Example of an '*, Extent ••..
Guidelines for Arguments •..••••

'call' Statement .•••..•••••.•
Agreement of Call with Entry Point ••
EXecution of 'call' Statements.

Interpret Entry Reference ••
Interpret Arguments.
Activate Procedure .••••••
Execute Procedure ••
Exit from Procedure •.

Examples of 'call' Statements
Function References .•.•••••

Agreement of Reference with Entry Point.
Interpretation of Function References • .

Exit from Procedure •..•..
Fetch Result ...•..•.••••••••

Example of a Function Reference •
Procedures • . . • • • .

'procedure' Statement.
Prefix •
Parameter List . •
'returns' Attribute. . •.•

Example of the 'returns' Attribute ••
'recursive' Keyword •.•••...••.

'entry' Statement •••.••••.••.•
Example of a Multiple-Entry Procedure ••

'return' Statement••••••
'end' Statement .••..

Entry References . . • • • .
Constant Entry References

Entry Points in the Same External Procedure.
Entry Points in Another External Procedure .

xv

Page

11-6
11-7
11-8
11-9
11-10 I
11-11
11-12
11-13
11-15
11-16
11-16
11-16
11-17
11-17
11-18
11-19
11-19
11-19
11-20

12-1
12-2
12-3
12-4

12-5
12-6
12-6
12-7
12-7
12-8
12-9
12-9
1", r.
I~-::t

12-10
12-10
12-10
12-11
12-11
12-12
12-14
12-14
12-15
12-15
12-16
12-16
12-17
12-17
12-18
12-19
12-19
12-20
12-20
12-21
12-21
12-22
12-22
12-22
12-23
12-23
12-23

AM83A

I

I

Section XIII

I

I

9/78

CONTENTS (cont)

Entry Points Outside the Program • • • •
'options' Attribute ••.••••••

Variable Entry References • • • • • • • • •
Example of an Entry Variable Reference •

Function Entry Reference •••••••••
Example of an Entry Function Reference •

Generic Entry Names • • • • • •
Example of a Generic Entry Name.

Recursive Procedure Execution ••••.•
Example of Recursion without Arguments
Example of Recursion with an Argument.
Example of Chained Recursion ••••
Recursive Program ••••••

General Recursion • •
Activation Indexes
Pointers . . • • •

Example of Pointers
Parent Designators • .

Acti vation Variable References. • • • • •
Statement Address Constant References

Setting the Parent Designator.
'procedure' Block •••••••
'begin' Block •••
'format' Statement. e ., • e .,

'on' Unit .•
'goto' Statement ••••

Condition Handling •.•.••••
Principal Features of Condition Handling ••
Conditions •••••.•••••

Language-Defined Conditions ••••••
Computational Conditions •
Storage Conditions ••••••••
Termination Conditions •
Input/Output Conditions ••

Programmer-Defined Conditions
Condition References ••••••.

Language-Defined Condition References •.
Programmer-Defined Condition References •

Declaration of Condition Names ••••••••••
Enabling and Disabling Conditions •••••

Condition Prefixes ..•••.•
Scope of a Condition Prefix •.•
Default Enabling and Disabling.
Example of Enabling and Disabling •

Establishing and Reverting 'on' Units ••
'on' Statement •..•••••••.
'revert' Statement ••••••••••

Occurrence and Signalling of Conditions.
Occurrence of Conditions ••••••.
'signal' Statement •.••••••..
Determining the Established 'on' Unit

'on' Unit. • • • • . • •. • •••
Default 'on' Units •..••
'on' Condition Built-in Functions

Example of Condition Handling. • ..•
Guidelines for Condition Handling ••••••

Debugging • • • . . • • . • • • •
Enabling Conditions for Debugging.
'on' Units for Debugging •..•

Controlling Exceptional Conditions ••

xvi

Page

12-24
12-24
12-25
12-25
12-26
12-26
12-27
12-27
12-28
12-29
12-31
12-32
12-33
12-34
12-35
12-36
12-36
12-37
12-38
12-39
12-39
12-39
12-40
12-40
12-41
12-42

13-1
13-1
13-2
13-2
13-2
13-3
13-4
13-4
13-5
13-6
13-6
13-6
13-7
13~7

13-7
13-8
13-9
13-10
13-10
13-11
13-12
13-12
13-12
13-13
13-14
13-14
13-15
13-15
1':> 1'7
IJ-I I

13-17
13-18
13-18
13-18
13-18

AM83A

Section XIV

9/78

CONTENTS (cont)

Controlling File Communication
Controlling Error Conditions

Input Data Validation • •
Computational Checks •.•
Resource Management • • •
Large Independent Systems •

General Conditions • •• . •. G

'error' Condition.
'finish' Condition •.

Stream Input/Output • • . .
Stream Data Sets • . • • •

Conditions ••

Control Characters in PL/I and Multics ••
Input Streams . •
Output Streams .•••
Pseudo-Streams .•••
Multics Files •.•••.

Stream Input/Output Files •.
File-State Blocks • •
File References . • •

File Attachment •.•••
Attaching a Swi tch. • •

Attach Description
Opening a Switch .••.
Opening a File •.•••

Stream Input/Output Operations
Opening and Closing Files •.

'open' Statement •••••••
'close' Statement .•
Default Files ..•••

Input/Output Statements.
'get' Statement .•••.•••
'put' Statement. •• . .•.•
'format' Statement. • . •..

Data-Directed Input/Output • • • .
Examples of Data-Directed Input/Output ••
Principles and Exceptions • • • • • • . • • • •
Guidelines for Data-Directed Input/Output •

List-Directed Input/Output . • • • • • •
Example of List-Directed Input/Output
Compound List Items • • • • . • • . •
Pseudo-Variable List Items •.••••
Principles and Exceptions • • . • • •
Guidelines for List-Directed Input/Output

Edit-Directed Input/Output •••••••••
Examples of Edit-Directed Input/Output •••
Data Format Items • • • •

String Format Items ••
String Input ••••.
String Output . • •

Fixed-Point Format Items
Fixed-Point Input • •
Fixed-Point Output ••••••.

Floating-Point Format Items.
Floating-Point Input ••
Floating-Point Output •

Complex Format Items . •
Complex Input • • . .
Complex Output .••.•

Picture Format Items • . •
Fixed-Point Pictures ••

xvii

Page

13-18
13-19
13-19
13-19
13-19
13-19
13-19
13-20
13-20

14-1
14-1
14-2
14-3 I
14-3
14-4
14-4
14-4
14-5
14-6
14-7
14-7
14-7
14-8
14-8
14-8
14-9
14-10
14-11
14-12
14-13
14-13
14-14
14=15
14-16
14-16
14-19
14-20
14-21
14-21
14-22
14-24
14-25
14-25
14-26
14-26
14-28
14-29
14-30
14-30
14-30
14-31
14-32
14-32
14-33
14-33
14-34
14-34
14-35
14-35 I
14-36

AM83A

SECTION I

INTRODUCTION

PL/I is a general-purpose, high-level programming language. It is designed
for use across the entire spectrum of computer applications, including
scientific, business, and system programming; and it is an alternative to
FORTRAN, COBOL, or assembly language. The complete PL/I language is a large and
complicated language that provides an experienced programmer with unusual power
and flexibility. On the other hand, subsets of PL/I can be selected for
specific application areas, and these subsets are easy to learn and use.

PL/I has a wide range of data types and data structures, and these allow
program data to be organized in a clear and convenient way. The program syntax
and the control statements of PL/I allow programs to be written in a modular,
structured, and easy-to-read style.

Multics PL/I is closely related to American National Standards Programming
Language PL/I. When this manual mentions Standard PL/I, the reference is to the
language described in ANSI X3.53-1976. A reference to any of the non-Standard
functions makes a program dependent on the data representation of Multics PL/I.
This mantial does not specify all differences between Multics PL/I and Standard
PL/I. For a complete description of the differences between Multics PL/I "and
Standard PL/I, see Appendix A of the PL/I Language Specification.

This manual covers all of Multics
explained by an example, and the rules
that are informal but complete.

PL/I. Each feature of the language is
of the language are given in definitions

Most of this section is devoted to a general description of PL/I. The
description begins with a listing of the main features of the language and
continues with a consideration of the applications of PL/I. After that, the
fundamental notions of program validity and correctness are defined. Finally,
several publications that are useful in the study of PL/I are cited.

9178 1-1 AM83A

LANGUAGE FEATURES OF PL/I

PL/I brings together in a single language some of the most successful
features of earlier programming languages. The design of the language was a
major undertaking; it took nearly ten years and involved many separate groups
and committees. The final result is a consensus rather than a unified approach
to programming. The strength of the language is in the great variety of its
features; its weakness is in the relation of these features to one another. A
description of the main features of the language follows.

Data Description

In PL/I, a variable is described in terms of the set of values
accommodate rather than in terms of the hardware storage it occupies.
the following declarations:

dcl x fixed decimal(7,2);
dcl y character(8);
dcl z pointer;

it can
Consider

Each of the three variables just declared occupies two words of Multics memory;
therefore, from the point of Vlew of the hardware, the variables are very
similar. However, from the point of view of PL/I, each variable is entirely
different from the others. The storage designated by 'x' accommodates a
fixed-point number with seven decimal digits, two of which occur after the
decimal point. The storage designated by ~y' accommodates a string of eight
ASCII characters. The storage designated by 'z' accommodates the address of a
variable.

The handling of data storage in the ~anner just described is fundamental to
the nature of high level languages. It makes programs less hardware dependent.
In addition, it allows the compiler to detect some errors in a program (such as
an attempt to take the square root of a program address) and to supply
conversions where they are required (as in the assignment of a fixed-point value
to a floating-point variable). The more information the data descriptions give,
the more efficiently a compiler can manipUlate the data.

PL/I is unusual because of the large number of different storage types that
are available in the language. A variable can be declared in any of the
following ways:

• An arithmetic variable can be declared to accom~odate a number with
fixed-point or floating-point scale and binary or decimal base. The
length of the nunber can range from one digit to many digits, and the
binary point or decimal point can be positioned anywhere in the
number. The number can be complex for use in scientific programming.
Therefore a programmer can choose the representation that suits his
needs.

• A string variable can be declared to accomnodate a sequence of ASCII
characters or a sequence of bits. It can be stored as a compact,
fixed-length string or a more flexible varying-length string. In
Hultics, a string can be very long; in fact, a book of considerable
size can be stored in a single character-string variable.

• A pictured variable can be used to acconnodate a value that can be
interpreted either as a number or a character st~ins, as circunstance3
require. ihe use of such variables can greatly sinplify the
formatting of input/output.

1-2 Ar·183

• An address variable or an area variable can be used in performing
operations that formerly could be performed only in assembly language.

• An array variable can be declared to accommodate a sequence of smaller
variables, all of the same type, that are designated by subscripts.

• A structure variable can be declared to accommodate a sequence of
smaller variables that are not necessarily of the same type and that
are designated by subnames.

Each different kind of data is called a storage~. The large number of
storage types in PL/I is the main cause of the size of the language. For each
storage type, both the range of values and the representation of values must be
defined. For arithmetic and string values, the representation of each value as
a character sequence must be defined, so that the value can be read in, pri~ted
out, or used as a constant in a program. Rules for conversion must be given Tor
any pair of storage types between which conversion is reasonable. The operators
and builtin functions must be defined to operate on many storage types directly,
without a preliminary conversion of operands.

A programmer who is learning PL/I needs a casual acquaintance with the full
range of storage types. Once the programmer begins to write a specific program,
however, he can concentrate on the storage types required by the program. For
example, a program can be written that reads in some numbers, performs some
computations, and then prints out numbers; such a program requires only
arithmetic storage types. Later, a second version might be written that
produces output suitable for immediate publication; this version would require
character string variables as well as numbers. Still later, the program might
be converted to operate on a permanent data base, and address variables and area
variables would be useful. An advantage of PL/I is that a program can become
more complicated without outgrowing the language.

Program Structure

A PL/I program is a set of one or more external procedures. Each external
procedure is co~piled separately; nevertheless, anv variable can be shared
between all the external procedures of a program by declaring it 'external'.
This arrangement makes it practical to develop a large program as a collection
of separate modules; then, when development is complete, the modules can be used
together.

Each external procedure can contain internal procedures. Internal
procedures can be nested, so that a given procedure can be programmed in ter~s
of smaller Drocedures. Each procedure can have its own variables, so that the
data as well as the program can be structured by means of nested procedures.
This feature of PL/I makes it suitable for top-down pro~ram design.

Storage management is closely related to the procedure structure of a
program. In most applications, storage management requires little attention
from the programmer. Uhen storage management is not specified for a variable,
the variable is automatically allocated and freed as control enters and leaves
the procedure in which it is declared. Occasionally it is necessary to declare
a variable 'static' so that it will remain throughout the f1ultics process.
Advanced features for storage management are available for use where programmed
storage management is necessary.

1-3 AM83

Computation

The co~putational power of PL/I is provided by the more than one hundred
built-in operations of the language. Each operation is designated either by an
operator, such as '+', or a built-in function name, such as 'lo~'. The
operations are:

• The arithmetic operations, which include the basic arithnetic
operators, the rel~tional operators, and built-in functions for
co~parison, truncation, si~n-~anipulation, and complex arit~rnetic

• The mathematical operations, which are built-in functions for
exponentiation, logarithms, trigonometry, and statistical analysis

• The string operations, which include operations for putting strin~s
together, taking them apart, conpari~g then, searching the~; and
orderinG ther:l

• The address and area operations, wIlich are used for adv'3.nced method:3
of storage Management and list processing

• The arrav operations, which are especially for the nanipulatio!1 of
array variables

• The conversion operations, which can be used to perforn any reasonable
conversion between storage types

• The special operations, which are used for details of input/output,
interrupt handling, and the determination of the time and date.

The interpretation of an operation depends on the storage types 9f its
operands; for example, the + operator is interpreted in one way for
fixed-point decimal operands, in a very different way for conplex floating-point
operands, and in yet another way for array operands. It is a fundamental
principle of PL/I that if there is a reasonable interpretation for an operator
with ~iven operands, then the operator is defined for those operands. Thus in
PL/I, as in mathenatics, a single operator can have nany meanings.

The computation of a value i3 specified by an expression. Another
fundamental principle of PL/I is that an expression can often be used almost
anywhere that makes sense. Thus an expression can be used to specify the nu~ber
of elements in an array, the increment of a 'do' loop, or an output value.

Flow of Control

Generally, the statements of a program are executed in the order in which
they appear; hO\/ever, this sequence can be modified by flow-of-control
statements, by procedure invocation, or by the occurrence of conditions. Each
of these methods for modifying the sequence of execution is considered brierly
here.

There are three statements that alter the flow of control of a program.
The 'if' statement causes conditional execution of a statement or a group of
statenents; the syntax of the statement allows the logic of a program to be laid
out in a clear and readable \Iay. The 'do' statement causes the repeated

control of
of control.

a group of statements; three different ~ethods are provided for the
the repetition. The 'goto' statement causes unconditional transfer

AI183

There are two methods for procedure invocation. A procedure can be invoked
by a 'call' statement or a function reference. The latter case is of great
importance, because it allows a procedure to be called in the midst of the
evaluation of an expression and to return a result that is used in the
evaluation of the expression.

PL/I has facilities for handling exceptional conditions. Examples of
conditions are division by zero, reading of an end-of-file, and use of an array
subscript that is out of range. In most cases, condition handling can be left
to the built-in mechanisms of PL/I. However, condition handling can be
programmed when necessary; for example, a program can be supplied for execution
when an end-of-file for a file is read. Furthermore, conditions can be disabled
to reduce cost; for example, the subscript range condition can be enabled during
debugging of a program but disabled for production.

Input/Output

There are two separate facilities for input/output in PL/I, stream and
record input/output. Each is surrounded by its own special purpose features, so
the language has many operations in this area.

The facilities for stream input/output are based largely on those of
FORTRAN. Stream input/output is intended for dealing with hard copy, such as
cards, listings, and print-outs, rather than permanent storage. Statements with
the 'list' option can be used for input/output with a minimum programming
effort. Statements with the 'edit' option can be used to layout and label
values in an elaborate way on the pages of a print-out.

The facilities for record input/output are based largely on those of COBOL.
Record input/output can be used for both hard copy input/output and for
communication with permanent storage. The statements for record input/output
are much simpler than those for stream input/output, so formatting is left to
other l~nguage features, such as pictured variables.

APPLICATIONS OF PL/I

The use of PL/I in the three major application areas, scientific, business,
and system programming is considered here.

Scientific Programming

Many of the features of PL/I are derived from two earlier languages for
scientific programming, FORTRAN and Algol; in fact, the development of PL/I
began with an effort to develop a new version of FORTRAN. Therefore, many of
the features of PL/I may be familiar to the programmer with a background in
scientific programming.

1-5 AM83

Most scientific programs can be written using a small subset of PL/I. Such
programs are more readable and compact than the corresponding FORTRAN programs
would be; and, in t1ultics, they are compiled into programs of comparable
efficiency. The following guidelines specify a scientific subset of PL/I:

1. Data. Use only the following data types for variables:

2.

fixed binary(n)
float binary(n)
complex float binary(n)
character(n)
bit(1)

This eliminates a large part of the language: decimal numbers,
fractional fixed-point numbers, picture variables, and all of the
noncomputational variables.

Aggregates. Use arrays but not structures.
declaration and resolution of structure names.

This eliminates the

3. Storage Management. Use only the following storage classes:

4.

5.

6.

automatic
static
parameter

Since the
really the
occasionally
management.

Expressions.
subscripted
PL/I.

Operations.

'parameter' attribute takes care of itself, the choice is
simple one between the default 'automatic' and the
useful 'static'. This eliminates all programmed storage

Use only scalar expressions, and use only simple or
references. This eliminates many unfamiliar features of

Use only the following operations:

arithmetic operations
mathematical operations
array operations

This eliminates more than half of the operations.

Condition Handling.
for the ' end fi le '
statement.

Allow conditions to be handled by default except
condition. This eliminates most uses of the 'on'

7. Input/Output. Use strea~ input/output for most input/output. Use the
'list' option for easy programming or the 'edit' option when the
format and layout is elaborate. Use record input/output only for
permanent storage of large arrays as Multics files.

The subset of PL/I just described is a language not much larger than FORTRAN IV.
The advantage of PL/I is that a particular
complexity without exceeding the limits of
not included in the subset are needed
reliability, capacity, or interactiveness
are available as part of full PL/I.

1-6

application program can grow in
the full PL/I language. If features
for increasing the efficiency,

of a program, the necessary features

AI183

Business Programming

PL/I is very different from COBOL, especially in its program structure,
computational forms, flow of control, and procedure invocation. Furthermore,
certain facilities of COBOL have no counterpart in PL/I; for example, the SORT
and MERGE verbs and the report writer. Therefore, PL/I is not easily accepted
as a programming language for business applications.

Nevertheless, PL/I was designed to accommodate business programming. It
includes generalizations of some of the most successful language features of
COBOL, notably picture clauses, structured records, and record input/output.
Furthermore, many of its facilities, unfamiliar though they may be, are
well-suited to data processing. The success of the method of programming called
structured programming has given new impetus to the use of PL/I for business
programming because PL/I is well-suited for structured programming and COBOL is
not.

Many of the features of PL/I are not required for business programming.
The following guidelines specify a business subset of PL/I:

1. Data. Use only the following data types for variables:

fixed bin(n)
fixed decimal(m,n)
character(n) varying
character(n) nonvarying
bit(1)
picture"'p"§'''

This eliminates complex and floating numbers and all of the
noncomputational variables.

2. Aggregates. Use both arrays and structures.

3. Storage Management. Use only the following storage classes:

automatic
static
parameter

Since the 'parameter' attribute takes care of itself, the choice is
really the simple one between the default 'automatic' and the
occasionally useful 'static'. This eliminates all programmed storage
management.

4. Operations. Use only the following operations:

arithmetic operations
concatenation operator and substring functions
system counter functions ('lineno', 'pageno', 'time', and ' date')

The arithmetic operations alone are sufficient except where the
manipulation of text is necessary.

5. Condition Handling. Allow conditions to be handled by default except
for the following:

endfile
end page
key
undefinedfile

This eliminates most uses of the 'on statement.

1-7 Al183

6. Inout/Output. Use record input/output for all input/output.
eliminates the complicated facilities for stream input/output.

This

This subset is intended to be a guide for the study of PL/I. It is not intended
to restrict the use of PL/I; for example, if a programmer already is familiar
with stream input/output he should certainly use it where it is convenient.

System Programming

The most impressive application of PL/I is system programming. PL/I
only widely available language that permits efficient system programming
high-level language context. Examples of the use of PL/I as a
programming language are close at hand: both the Multics system and the
PL/I compiler are written in PL/I.

is the
in a

system
~1ul tics

In the following paragraphs, the features of PL/I that are important for
system programming are described.

DATA

Any data structure can be described by an appropriate PL/I variable. A
table of data can thus be laid out in a natural and convenient way. The packing
of data within a table is completely under the control of the programmer;
consequently, he is able to define any pattern of bits. He is able to control
the size of critical data bases, and can describe such system-dependent data as
page tables, interrupt vectors, input/output channel control words, or machine
instructions in object programs.

PL/I based variables are valuable in system programming. They provide the
programmer with a completely dynamic storage allocation, a pOvlerful form of list
processing, and a mechanism for accessing a data base that occupies any given
storage location. Through the use of explicitly allocated based structure
variables, the PL/I programmer can dynamically create lists, rings, trees,
directed graphs, and so on, whose component nodes are based structure variables
containing pointers to other nodes.

PROGRAM STRUCTURE

The structure of a PL/I program closely parallels the modular structure of
large systems. A PL/I program can consist of several external procedures that
call each other, communicating information through argument lists and external
variables. An external variable is declared within each procedure that wishes
to use it, and all such declarations are equivalent. The variable exists within
the address space of the program but is not owned by any procedure of the
program.

The system designer can precisely define a module's interface by actually
writing PL/I declarations of external variables and procedure entries. By
app opriate uSe of libraries of these declarations and the %include macro, the
pro ect managers can ensure that all the modules use the same declarations of
the r shared data.

1-8 AM83

EFFICIENCY

The rlultics PL/I conpiler was desiG~ej to conpile PL/I programs int6
efficient code. In nearly all cases, storage types can be deter~ined by the
compiler. Therefore, ~ost references, co~versions, and operations can be
compiled as optimized in-line code with very little run-time testing.

The handling of string data is a good exa~ple of a language feature that is
designed for efficient inplenentation~ A PL/I character string value "is a
sequence of characters whose length is unlinited" and is determined during
program execution. In contrast, a string variable is allocated \iith a fixed
length. The language must reconcile this difference, and the use of string data
is somewhat more difficult than it would be if string variables had unlimited
length. However, the PL/I treatment of character strings allows the compiler to
produce efficient, noninterpretive object code for operations on character
strings, by using the string processing hardware.

The storage nanagement mechanisMs of the language can be i~plemented
efficiently. Static storage can be allocated before execution. Automatic
storage requires a stack, which can be implemented by ~eans of a base register
at minimal cost. Based storage requires a pair of space management routines
that are used when the program calls for allocation or freeing of storage; these
routines can avoid garbage collection by using threaded lists to keep track of
storage.

The parameter passing mechanism of PL/I ~as designed to permit comoilation
of reasonably efficient object code. The calling program always has a
declaration of the parameters of the called procedure, even when the called
procedure is in a separately compiled part of t~e program. Therefore arguments"
can be passed to parameters without any interpretive code.

A major cost of program execution is pro~edure invocation and the dynamic
binding of external procedures and external v3riables. However, these features
are essential to good program organization, anc they should not be avoided. The
PL/I compiler takes special measures to redtice the cost of procedure
invocations, and Hultics permits the pro6ra~~er to fully bind his program when
it is ready for production use.

1-9 AH83

I

I

PROGRAM VALIDITY

A valid program is one which makes sense according to the definition of
PL/I. A program is invalid if the definition of PL/I does not define the result
of executing the program. Validity has little to do with whether a program does
what the programmer wants it to do. A valid program can certainly yield
incorrect results; and, sometimes, an invalid program can yield correct results.
However, such an invalid program may not produce consistent results in future
versions of the implementation.

Examples of Invalid Programs

The simplest case of an invalid program occurs
violated. Consider the following example:

P: proc;
dcl sysprint file;
put list("Hello")
end;

the rules of syntax are

This example is not a valid program because the statement on the third line does
not end with a semicolon.

Most of the syntactic rules of PL/I are easy to learn; in fact, a knowledge
of syntax comes automatically from reading examples of valid programs.
Furthermore, when a question of syntax does arise, it can be answered in a
lurmal and almost mechanical way by the syntactic formulae that appear in the
PL/I Language Specification.

It is possible for a sequence of characters to be a syntactically valid
program but not a semantically valid program. Consider, for example, the
syntactically valid program:

Q: proc;
dcl sysprint file;
dcl x float;
put list(x**3);
end;

In this program, the variable designated by 'x' is not set (assigned a value)
before it is used (evaluated). The definition of PL/I says that the value of a
variable is undefined until it is set, either by explicit initialization or by
assignment. Therefore the value output by the 'put' statement is not defined
and it follows that the program is not valid.

The rules of PL/I could have been designed so that any syntactically valid
program would be completely valid. The undefined cases are not oversights;
they were deliberately included to allow more efficient and reasonable
interpretation of programs. Consider the example just given, the program 'Q'.
If PL/I initialized all variables (say to zero), then 'x' would have a value
when it was used in the 'put' statement and the program 'Q' would be valid. But
in most cases, when a variable is used before it is set, the program is
incorrect, regardless of whether the definition makes it valid or not. Thus
automatic initialization would be a wasted operation. Certainly the example
program seems to be incorrect~ because a program that always prints the same
value (such as zero) is not useful.

9/78 1-10 AM83A

A program can be invalid when it is used with improper input.
for example, the following syntactically valid program:

R: proc;
dcl (sysin,sysprint) file;
dcl x fixed dec(3);
get list(x);
put list(x**2);
end;

Consider,

This program is invalid unless it is used with input values whose magnitudes are
less than 1000. If a larger value is supplied as input, then the value will not
fit in storage and the value of 'x' is not defined.

Observe, once again, that PL/I could have been designed so that the program
just given would always be valid. The size of every value assigned to a
variable could be checked before assignment, and a specific action could be
taken if the value was too large. However, such a check would be costly; and
since most assignments are made within a program where values can be controlled,
it would be wasteful. Instead of checking every value, PL/I allows the
programmer to explicitly call for a check where it is needed. The example just
given can be made valid for all input values as follows:

R: proc;
dcl (sysin,sysprint) file;
dcl x fixed dec(3);

(size): get list(x);
put -list(x**2);
end;

The 'size' condition prefix on the input statement causes the value assigned to
x by that statement to be checked. If the value is too large, the system

prints an error message and aborts the program, and this is a well-defined
action.

The program just given takes a well-defined action for improper input, but
the action is drastic. The following program is designed to recover fro~
improper input:

R: proc;

(size):
L:

dcl (sysin,sysprint) file;
dcl size cond;
dcl x fixed dec(3);
on size

begin;
put list("try again: H);
put skip;
goto L;
end;

get list(x);
put list(x**2);
end;

This program responds to lmpro~er input by performing a programmed action;
specifically, it prints 'try again and calls for a new input value.

Each of the three versions of the program 'R' are useful under appropriate
circumstances. If the programmer can be sure that improper input will not be
used, the first version is best because it does not entail the extra cost of the
size check. If the programmer considers improper input to be a rare and
unimportant occurrence, then the second version is best because it is safe but
sinple. If the programmer considers improper input to be a normal occurrence in
the use of the program, the last version is best because it recovers.

1-11 Al183

Interpretation of Invalid Programs

The interpretation of an invalid program is not defined for PL/I; however,
something happens \lhen an invalid program is co~piled and executed. The
following cases apply:

• A program that is syntactically invalid is usually detected by the
co~piler. The compiler prints a diagnostic message and usually
declines to produce the object segment.

• Programs that are invalid for nonsyntactic reasons are often not
detected by the PL/I system, because the cost of checking for such
invalid programs is too great. For example, when a variable is used
before it is set, some particular value is used; and unless the value
happens to make something go wrong elsewhere, program execution
proceeds.

The detection of constructs that are invalid for nonsyntactic reasons is a major
part of the debugging of a program.

SUGGESTIONS FOR THE STUDY OF PL/I

The following paragraphs describe various publications that are designed
for the study of PL/I. The description begins with a list of three introductory
texts: continues with remarks on this manual~ and concludes with notes on
related Honeywell publications.

Introductory Texts

An
study.

1 .

introductory text on PL/I provides examples and a framework for further
Three useful texts are:

PL/I Programming Primer, by Gerald M. Weinberg, HcGraw Hill, 278
pages. This short book provides a smooth and efficient introduction
to PL/I. It keeps strictly to the subject of elementary PL/I, and can
be read in a short time. The use of a single programming problem
throughout most of the book provides continuity; and the example
pro3ram can later be run as a fiultics PL/I program.

1-12 AM83

2. PL/I for Scientific Programners, by C. T. Fike, Prentice-Hall, 241
pages. This book· is recomMended for the experienced FORTRAN
programmer. l10st chapters end with a section called "PL/I and
FORTRAN" and thus emphasize the relationship between the two
languages. The book is organized according to the features of the
language rather than having a narrative form; therefore, it cannot be
read as quickly as Weinberg's book.

3. An Introduction to Programming, by ~ichard Conway and David Gries,
Winthrop Publishers, Cacbridge~ Massachusetts, 460 pages. This book
is a co~plete course in high-level programming that is based on PL/I.
It is too long for a quick reading, but it provides good background
reading because its examples are all in PL/I. Included are
discussions of top-down program developcent, confirmation of program
correctness, recursive programming, scientific programming, and file
processing.

There are cany other introductory texts for PL/I, but most of them have the
disadvantage that they go into details of specific computer hardware and
specific operating systems, topics that do not contribute to the study of
Multics PL/I.

Contents of this Manual

A variety of tutorial techniques are used in this manual. Examples are
~iven in abundance and are often designed to cover all possible cases of a
feature. PrinCiples of design of PLII are given to provide a framework for the
detaiLs of the language. Guidelines for efficient and clear program~ing are
given when, as is often the case, the language allows nore than one yay of
progranning a particular operation. Finally, repetition is freely used to avoid·
the use of oross references and to emphasize the features of the language that
are most important.

tlany of the examples in this manual are complete programs. The use of
complete programs has several advantages. First, such examples provide a guide
for the details of programming style by showing how programs should be laid out
for readability, how abbreviations should be used, and, generally, how
statements should be put together to form a program. Further t an example that
is a complete program does not require a discussion of the context of the
example; it is, by definition, complete. Finally, the complete example programs
can be used by the reader to experiment with the execution of PL/I prosrams in
the Multics system.

1-13 AM33

*

However, most of the examples are not realistic applications of PL/I. A
realistic PL/I program, even a small one, requires several pages of background
and explanation, and such a discussion is beyond the scope of this manual. The
examples in this manual are designed to show how certain statements are
executed, not how they should be used to solve problems. Sometimes the absence
of realism is obvious, as with an example program that does nothing but read two
nu~bers and print out their sum. In other cases, the examples are complicated;
nevertheless, these examples are usually contrived in order to illustrate an
important feature of PL/I rather than to solve a real problem.

PL/I provides many ways to program the solution of any given problem.
Usually it is not sufficient to write a program that produces the correct
results; in addition, the program must be reasonably efficient and fairly
readable. The guidelines given in this manual are designed to assist
programmers in choosing among the many options offered on PL/I. When a reader
has guidelines that are better for his own purposes than those given in this
manual, he should ignore those given here.

In some places in this manual, guidelines are given under a special
heading, such as "Guidelines for Arithmetic Data Types"; in other places,
guidelines are mentioned as part of the definition of a feature. Usually, a
guideline is distinguished by the use of the word "should" instead of "must";
for example, "when a storage unit is used for an exact integer, it should be
'fixed binary'."

1-14 AMB3A

I

I
Section XV

I

I

9/78

CONTENTS (cont)

Floating-Point Pictures •
Character Pictures ••

Control Format Items ••
'x' Format Item ••••
'column' Format Item •••••
'skip' Format Item.
'line' Format Item
'page' Format Item

Format Lists .•.•••
Remote Format Items ••
Iterated Format Lists.
End-Around Repetitions •

Guidelines for Edit-Directed Input/Output •
String Option .••.
Special Features • • • • • • • • •

'read' Statement .••••.••
'write' Statement ••••.••

Conditions for Stream Input/Output
'conversion' Condition ••
'endfile' Condition
'endpage' Condition ••.••••
'name' Condition. • • . • • •• • •••
'transmit' Condition ••••••••••
'undefinedfile' Condition

Record Input/Output . • • • • • • • • •
Record Data Sets • • • . • • • • • •

Organization of Record Data Sets ••
Multics Files ..

Record Files • • • •
File-State Blocks
File References .

File Attachment ••••
Attaching a Switch ••

Attach Description .
Opening a Switch •.••
Opening a File •••••

Record Input/Output Operations • •
Opening and Closing Files.

'open' Statement •.•••.
File Descriptions •...

'close' Statement •••••••
Keyed Input/Output Operations .•

Keyed 'write' Statement ••
Keyed 'read' Statement ••.•••••
Keyed 'delete' Statement •••••••
Keyed 'rewrite' Statement .••••••
Example of Keyed Input/~utput •

Sequential Input/Output Operations
Sequential 'write' Statement ••
Sequential 'read' Statement .•
Sequential 'delete' Statement ••
Sequential 'rewrite' Statement ••
Example of Sequential Input/Output ••

Based Input/Output Operations.
Based Input • • . • • • • • • • • •

Examples of Based Input
Based Output .•••...•••.

Omission of the 'from'
'locate' Statement.

Special Features • • • • • •

xviii

Option.

Page

14-38
14-38
14-39
14-39
14-40
14-40
14-40
14-40
14-41
14-41
14-41
14-41
14-42
14-43
14-44
14-44
14-44
14-44.1
14-45
14-45
14-46
14-46
14-46
14-47

15-1
15-2
15-2
15-2
15-3
15-3
15-4
15-5
15-5
15-5
15-6
15-6
15-7
15-8
15-8
15-9
15-10
15-10
15-11
15-11
15-12
15-12
15-13
15-13
15-14
15-14
15-14
15-15
15-15
15-16
15-16
15-17
15-20
15-20
15-20
15-21

AM83A

Section XVI

Appendix A

9178

CONTENTS (cont)

Conditions for Record InputlOutput ••••.
'endfile' Condition ••
'key' Condition •••.••
'record' Condition ••••
'transmit' Condition ••••••••
'undefinedfile' Condition •

PLII in the Multics System ••
Storage System • . •

Names • • • • • •
Component Names •
Entry Point Names
Reference Names •

Multics PLII Compiler •••
Entry Names. • • •
Object Segment ••••••
Listing Segment •

Linking ••.••••
Search Mechanism. • •••
Hidden Dangers of Dynamic Linking
Binding . • • • • • • • •

Initialization and Allocation of Variables
Attaching Files .••••

110 Switch •••••••
Standard Switches.

io call Command • • •
I/TI Modules • • • • •

vfile 1/0 Module ••••••
tty 1/0 Module
syn- 1/0 Module • • • •
record stream 1/0 Module ••

Running A PL/I Program in Multics •.••
Entering an External Procedure ••
Compiling an External Procedure ••

pl1 Command •••••
Executing a Program • • •

Program Termination •••
Debugging a Program • • • • • • •

probe Command. • • . •••
trace Command. • •• • •••

Measuring a Program's Performances ••
Example of Running PL/I .•

Entering the Example.
Compiling the Example
Executing the Program • •
Program Listing • • . .

Source Listing • • .
Symbol Listing •••
Error Listing • •
Map Listing . • •

Guide to PLII Statements ••
Preliminary Remarks •.

Syntax Notation • • .
Basic Constructs . •
List of Items •••.
Choice of Items .•
Optional Items • • •
Recursive Diagrams •

Parts of a Statement.
Specific Conventions.

xix

Page

15-21 *
15-22
15-23
15-23
15-24
15-24

16-1
16-1
16-1
16-2
16-2
16-2
16-3
16-3
16-4
16-4
16-5
16-5
16-6
16-7

-16-8
16-9
16-10
16-10
16-10
16-11
16-11
16-1-1
16-12
16-12
16-13
16-14
16-14
16-14
16-15
16-16
16-16
16-17
16-18
16-18
16-19
16-19
16-20
16-21
16-21
16-22
16-22
16-23
16-23

• A-1
• • A-1

• A-1
• A-2
• A-2

•• A-3
• A-3
• A-4
• A-4

• • A-5

AM83A

I

I

I

SECTION II

VALUES

The most important feature of PL/I is the great variety of the values that
are provided. ~Jhen a PL/I program performs a calculation, whether business or
scientific, it does so in terms of arithmetic values. When a program accepts
input from the user or prints out a listing of results, it transmits string
values. When a program refers to the storage for its own data or to the code
for its own statements, it uses address values. When a program needs to control
storage management, it uses an area value. And, when a program needs to treat
several values as a single entity, it groups the values into an aggregate value.

In this section, each kind of value is described and the operations that
can be applied to the value are summarized. The values are described in an
abstract way, without consideration of the way in which they are stored in
memory. The purpose of this section is to indicate the computational power of
PL/I.

ARITHMETIC VALUES

Standard PL/I does not specify the range of the arithmetic values; instead,
it leaves this choice to each implementation of PL/I. Multics PL/I provides a
very large range, as follows:

• The greatest magnitude of a Multics PL/I value is about 10**186 (for
decimal floating point) or about 10**38 (for binary floating point).
These values far exceed any ~easurement encountered in business or
scientific applications.

• The smallest magnitude of a value is 10**-128 (for decimal floating
point) and about 10**-38 (for binary floating point). These values
are much samller than any measurement encountered in practice.

• The precision of arithmetic values is such that two values can differ
by as little as one part in 10**59 (for decimal floating point) or
about one part in 10**19 (for binary floating point). Thus PL/I can
supply a very good approximation to any given number.

The arithmetic values just described are called real values. PL/I also supplies
complex values. Each complex value is composed of a pair of real values, and
thus the range of complex values is determined by the range of the real values.

2-1 AM83

A nUDber can be expressed exactly as a PL/I arithDetic value only if it can
be expressed exactly in decimal positional notation. For example, 73/2 can be
expressed exactly as '36.5' and 13/320 can be expressed exactly as
'0.040621875'; so these are PL/I arithmetic values. On the other hand 113 and
the square root of two cannot be expressed exactly this way, and so must be
approximated. If a good approximation is acceptable, then 11ultics PL/I can
provide that approximation; otherwise, special techniques Dust be applied.

PL/I has many operations for the manipulation of arithmetic values. The
familiar arithmetic operators are present; in addition, several dozen built-in
functions for integer arithmetic, trigonometry, logarithms, and statistics are
provided.

STRING VALUES

A string value is a sequence of characters. Standard PL/I does not specify
the set of characters that can appear in a string; instead, the choice of
characters is left to each implementation of PL/I. The character set used in
t1ultics PL/I is the ASCII character set, given under "The 'collate' Function" in
Section IX, "Operations." It is composed of 128 characters, as follows:

• 52 characters that represent the letters of the alphabet in both
lowercase and uppercase

• 10 characters that represent the decimal digits

• 18 characters that represent most of the special symbols on a
typewriter keyboard

• 14 characters that represent special symbols not found on an ordinary
typewriter keyboard, many of which are useful in writing matheDatical
expressions or non-English text

• 1 character for the blank

• 33 characters that are nonprinting control characters including, for
example, horizontal tab, new line, neH page, and carriage return

Because this character set includes characters that control the layout of the
pages, a printed document of many pages can be composed, stored, and edited as a
single PL/I character string value.

The number of characters in a character string value is the length of the
value. The maximum length allowed in Multics is very large; it is limited only
by the capacity of a Multics segment.

Several operators and built-in functions are provided for the manipulation
of string values. String values can be concatenated and a substring of a given
string value can be extracted. The equality operators ('=' and 'A=') can be
applied to strings. A collating order is defined for the character set, so it
is possible to apply inequality operators (such as '<') to strings. Other
functions are available for use in such advanced applications as command
interpretation and compiler construction.

2-2 AM83

A special kind of string value is recognized; namely, a string value
composed only of the bits '0' and '1'. Such a string value is a bit-string
value. tdhen a bit-string value contains a single bit, it is a Boolean value;
and it represents "true" or "false" depending on \vhether the single bit is '1'
or '0'. By extension, a bit-string value of length greater than one can be
treated as a sequence of true/false indicators. The familiar Boolean operators
are provided for use with the bit-string values.

Any arithmetic value can be converted to a string value; the result is a
conventional representation of the arithmetic value. Conversely, a string can
be converted to an arithmetic value, but only if the string value is a valid
representation of an arithmetic value. ~hese conversions are essential because
a value must be expressed as an arithmetic value if an arithmetic operation is
applied to it, but must be expressed as a string value before it can appear in
the output stream. In addition to providing functions that perform these
conversions in a straightforward way, PL/I has pictured character-string
variables, which allow numeric values to be maintained as character-string
values in an automatic and user-controlled way.

ADDRESS VALUES

Every PL/I statement in a program has a unique address, and every data
storage unit also has a unique address. It is common in computing to think of
an address as an integer and thus endow it with arithmetic properties; but as a
value in PL/I, an address has no other property than its association with a
particular program statement or storage unit. For example, the "next" address
is not defined for any address, so addresses are not even ordered.

The manipulation of address values in PL/I is deliberately limited. An
address value can be assigned to a variable and can be produced by a reference
to a constant, a variable or a function. The operators '=' and 'A=' can be used
to determine whether or not two address values are identical. The only
conversion that can be applied to address values is that between a pointer value
and an offset value.

There are three kinds of address values: statement, locator, and file
values; and descriptions of these follow.

Statement Values

A statement value designates a statement in a program. The value is
classified as a label, entry, or format value according to the following rules:

• A label value designates a statement to which control can be
transferred by a 'goto' statement. Any statement except a
'procedure', 'entry', or 'format' statement can be designated by a
label value.

• An entry value designates a statement to which control can be
transferred by a 'call' statement or a function reference. There are
two such statements, the 'procedure' statement and the 'entry'
statement.

• A format value designates a statement that can supply a format list to
a stream input/output statement. There is one such statement, the
'format' statement.

2-3 Af183

Locator Values

A locator value designates a storage unit for program data. There are two
types of locator values, as follows:

• A pointer value is used by itself to access a storage unit.

• An offset value is used in conjunction with an area name to access a
storage unit.

The pointer value is similar to the absolute machine address used in assembly
language programming, and the offset value is similar to a relative or based
machine address. Conversion between a pointer value and an offset value can be
performed relative to a given area value.

File Values

In t1ultics PL/I, a file value designates a collection of stored values
called a file-state block. The values in the file-state block record the status
of a data set that is currently being used for input/output. The file value is
a more specialized kind of address value than either the program address value
or the locator value.

AREA VALUES

An area value is an ordered set of PL/I values. The entire set of values
can be assigned to an area variable, passed as a procedure argument, returned as
a procedure result, or transmitted as input or output. However, the principal
use of an area value is as part of a specialized mechanism for the efficient
management of storage. The most important operations on an area are the
allocation and freeing of storage for new values within the area, and the
details of these operations are not relevant to this description of values. The
area value plays a role in the definition of the 'offset' value, already
mentioned under "Locator Values".

AGGREGATE VALUES

An aggregate value is an ordered set of PL/I values. Because it is a set
of values, it provides a way of handling a collection of values as a single
computational entity. Because it is ordered, it has a first component, a second
component, and so on. And because it can contain any PL/I values, it can have
another aggregate as a component. Thus an aggregate value can be used to
collect values together and arrange them in a hierarchical manner, with
aggregates within aggregates.

There are two kinds of aggregate, the array and the structure. ~n array
must contain values that are all of the same kind, Hhereas a structure is not
restricted in this way. Aside from this, the two kinds of aggregate differ in
the way they are stored and referenced.

2-4 At183

Most of the operations of PL/I can be applied to aggregate values. Each
operation is not individually redefined for this purpose; instead, a general
rule is applied: the ~th component of the result of the operation is produced by
applying the operation to the ~th component of each of the given operands. Thus
the aggregate operation is defined in terms of the conventional, nonaggregate,
operation.

CLASSIFICATION OF VALUES

The previous paragraphs have traced a progression from the mathematical
values of computation to the specialized values required for efficient
programming. The arithmetic values are those universally accepted for use in
calculation. The string values are used for objects of universal importance
(printed pages); but their precise and restricted definition is characteristic
of computer programming rather than conventional usage. The address values are
meaningful only in relation to the program statements or stored data, and so are
creatures of computer programming. The area values represent a further descent
into the special techniques of efficient programming. The aggregate values
appear to swing back toward the world of mathematics; but their usage is
oriented toward programming rather than mathematics.

The following list is a hierarchy for the PL/I values described in this
section. Some useful supplementary terminology has been introduced.

scalar: any PL/I value that is not an aggregate
computational: a value of interest beyond programming

arithmetic: a number
string: a sequence of ASCII characters

character string: an unrestricted string
bit string: a string of zero's and one's
pictured character-string: a specially restricted string

non-computational: a value of interest only for prograMming
address: a value that designates a statement or a storage unit

statement: the address of a statement
label: the destination of a transfer
entry: a 'procedure' or 'entry' statement
format: a 'format' statement

data: the address of data
locator: the address of storage for a value

pointer: an "absolute" address
offset: a "relative" address based in an area

file: the address of a file-state block
area: values gathered together by storage management

aggregate: an ordered set of values
array: components must have the same data type
structure: components may differ in data type

2-5 A1183

I

I

I
I

I

I

I Appendix B

Table 3=1

Index

9118

Allocate
Assign
Begin.
Call
Close.
Declare.
Default.
Delete
Do
End.
Entry.
Format
Free
Get.
Goto
If
Locate
Null
On
Open
Procedure.
Put.
Read
Return
Revert
Rewrite.
Signal
Stop
Write.

New Features.

CONTENTS (cant)

'signed' and 'unsigned' Attributes
'9-bit' and 'll-bit' Decimal.

TABLES

Boundary and Length for Scalar Variables.

xx

Page

A-5
A-6
A-6
A-6
A-1
A-1
A-8
A-8
A-9
A-l0
A-l0
A-l1
A-12
A-13
A-14
A-15
A-15
A-16
A-16
A-l1
A-18
A-19
A-20
A-21
A-21
A-21
A-22
A-22
A-22

B-1
B-1
B-2

3-61

i-1

AM83A

SECTION III

VALUE STORAGE

A principal objective of the designers of PL/I was to provide a language in
which efficient use of the computer hardware was possible. Therefore, PL/I
allows a programmer to give a detailed description of the storage used for each
value that is generated during program execution. Since there are many ways to
store a value in computer memory, there are many types of value descriptions in
PL/I; in fact, the size and conplexity of PL/I is largely a consequence of the
many ways in which value storage can be described.

As this section continues, it gives a brief description of storage units,
which are conceptual models for the storage used to hold PL/I values during
program execution. After that, the section gives a long description of the
storage ~, which are used to describe the kinds of values accommodated by a
given storage unit. Most of the description of the storage types follows the
same outline as Section II, "Values," dealing with arithmetic, string, address,
area, and aggregate values; however, a new concept, alignment, is described at
the end of the section.

STORAGE UNITS

Whenever a program refers to a value in any way, that value resides in a
storage unit. A storage unit is a conceptual model for the storage of any PL/I
value used in executing a program. When a constant appears in a program, it
refers to a storage unit that contains an unchanging value. When a variable
name appears, it refers to a storage unit that is used to store a computed
result for later use. Even a function reference or an operator expression
designates a storage unit in which its result is stored, briefly, until that
value is used elsewhere. Relative to the actual implementation of Multics PL/I,
the storage unit is a simplification. In the implementation, a constant value
is not actually stored in the same way as a variable value but is instead a part
of the object code. Further, an intermediate result, generated during the
evaluation of an expression, is not stored in the same way as a program variable
but may reside in a high speed register.

Suppose that the variable names 'alpha' and 'beta' are used in a PL/I
program; then a portion of data storage can be diagrammed as follows:

alpha ~/ ______ ~I

beta I 7

3-1 AM83

This diagram contains two storage units. Each storage unit consists of a
designator, which is the name of a v~riable, and a box, which can hold a value.
Suppose, next, that the following assignnent statements are executed:

alpha = 3.8;

beta = -2*alpha;

Immediately after these assignnents, the storage units become:

alpha / +3·8 7
beta L -7.6 7

Each storage unit now has a contents as well as a designator and a box.

STORAGE TYPES

It is possible to design a programming language in which each storage unit
can hold any type of value. Some of the interactive languages for the solution
of simple problems by nonprogrammers are designed in this way. In such a
language, the same variable can accommodate any kind of number or, for that
matter, an array of 50 numbers; and if the language has string values or address
values, then the variable can also accommodate them. Such a language is easy to
learn, but its programs are executed much less efficiently than they could be.

A principal requirenent for the efficient RXRnution of a program is the
restriction of the kinds of values that can be assigned to a given storage unit.
In PL/I, this restriction is applied by associating a storage ~ with each
storage unit. The storage type gives three kinds of information, as follows:

• The data ~ describes the range and representation of storage for a
single datum, such as a number or a character string or a program
address.

• The aggregate ~ describes the way storage for a collection of
values is arranged in an array or a structure.

• The alignment ~ describes the way the storage is laid out in
hardware memory and thus determines the memory required and the ease
of access.

PL/I provides for efficiency in two ways. First, it requires a storage type so
that the range of the storage unit is known when the program is compiled.
Second, it provides many different storage types so the programmer can choose
the representation best suited to the problem.

Two introductory examples of the interpretation of storage types follow.
The examples depend on rules that are given later in this section, when the
various data types, aggregate types, and alignment types are described.

3-2 AM83

As the basis for the first example, consider the following 'declare'
statement:

dcl gamma fixed bin(8);

This statement gives the storage type for the variable named 'gamma'; it does so
by means of the scale attribute 'fixed' and the precision attribute '(8)'. The
statement uses various abbreviations and defaults for the storage type, and
without them the statement would be:

dcl gamma real fixed binary precision(8 1 0) aligned;

According to this declaration, the storage type for 'gamma' is as follows:

• The data iYQQ is 'real fixed binary precision(8,0)'. This means that
the contents of the storage unit named 'gamma' must be a number that
can be expressed as a signed eight-digit binary integer.

• The aggregate lYQQ is scalar since no aggregate type is explicitly
given in the 'declare' statement. This means that the storage unit
accommodates a single number, not an array or a structure of numbers.

• The alignment lYQQ is 'aligned'. In this case, a full word must be
allocated for the variable, so that access to the variable is
efficient.

The details of the data type for this example are discussed later in this
section under "Arithmetic Storage".

Suppose the following assignment statement is executed:

gamma = -15;

The following is a diagram of the storage unit for 'gamma as just declared:

fixed bin(8)
gamma / -15 7

The storage unit now has the storage lYQQ written above it as 1,.;ell as a
designator, a box, and a contents. Observe that the contents is a value that
satisfies the restriction imposed by the storage type.

As a second example of the declaration of the storage type, consider the
following:

dcl 01 customer aligned,
02 name char(18),
02 code(2) fixed dec(4);

This statement gives the storage type for the variable named 'custoner'; it does
so by means of attributes and level numbers. The storage type, by itself, is:

01 aligned; 02 char(18); 02 dim(2) dec(4)

Once again, the statement uses various abbreviations and defaults for the
storage type, and without them the statement would be:

dcl 01 customer aligned,
02 name character(18) nonvarying aligned,
02 code di~ension(2) real fixed decimal precision(4,0) aligned;

3-3 At183

According to this declaration, the variable 'customer' is a sequence of three
components, and its storage type is as follows:

• The data ~ is 'character(18) nonvarying' for the first component
and 'real fixed decimal precision(4,O)' for the last two components.
This means that the first component accommodates a string of 18
characters and the second and third components each accommodates a
signed four-digit decimal integer.

• The aggregate ~ is '01, 02, 02 dimension(2)'. This means that the
variable is a structure with two members, and the first member is a
scalar while the second is a one-dimensional array with two elements.

• The alignment ~ is 'aligned' for all three components. This means
that the variable should be laid out in memory to permit efficient
access rather than to save space. In Multics, the variable takes nine
words; if it had been 'unaligned', it could have been packed into
seven words.

The details for this storage type are given later in this section; the purpose
of the example is to provide an introduction, not a complete explanation.

The following is a diagram of the storage units for 'customer' as just
declared:

customer .name
char(18) aligned

/ 7

. code (1)
fixed decL1!l __ a,ligned

! ~ /

(2)
fixed dec(4) aligned

/ I
In this diagram, the aggregate type is shown by the way the three designators
are arranged. The hyphens are used like ditto marks, so that the designators
for the storage units are:

customer. name
customer.code(1)
custor.:ter.code(2)

For convenience of discussion, the storage for the entire variable is called a
storage unit. Thus one speaks of a structure storage unit that is made up of
three component storage units just as one speaks of a structure value made up of
three component values.

ARITHMETIC STORAGE

PL/I is designed primarily for operations on arithmetic values. ~l
differences of scaling and precision are ignored, there are eight different ways
to represent an arithmetic value in storage. The choice of one of these kinds
of storage and the choice of an appropriate precision is a choice between
convenience and efficiency. For example, it is more convenient to use decimal
numbers throughout, but scientific computations can be performed much r.:tore
efficiently in binary. For another example, it is more convenient to use a
large number of QlglLS for a varlaD~e, but lL is more efficient to determine
exactly how many digits are required and use no more. Ine selection of the type
of storage for an arithmetic variable is an important part of the engineering of
a PL/I program.

3-4 At183

This discussion begins by defining the arithMetic data types and their
corresponding storage units, continues with abbreviations and defaults that
allow data types to be written more concisely, gives examples of various
arithmetic storage units, and concludes with guidelines for the selection of a
data type for a given purpose.

Arithmetic Data Tynes

The complete data type for an arithmetic storage unit is given as a
sequence of four arithmetic attributes. These attributes are the mode, scale,
base, and precision, as described in the following paragraphs.

MODE ATTRIBUTE

The mode attribute is one of the following keywords:

real
complex

In scientific applications that make use of the theory of complex numbers, the
'complex' mode may be specified for a variable. In most other applications, the
'real' mode is specified.

A storage unit with the 'real' attribute accommodates a number that can be
represented as a signed sequence of digits in which a decimal or binary point
appears. This includes all numbers that are used in business applications,
system programming, and everyday calculation. It also includes most numbers
used in scientific applications.

A storage unit with the 'complex' attribute accommodates a number that can
be represented as a pair of real numbers, called the real part and the imaginary
part, respectivelY9 Both members of the pair have the same scale, base, and
precislon, as specified by the other attributes of the data type.

SCALE ATTRIBUTE

The scale attribute is one of the following keywords:

fixed
float

These attribute keywords refer to the decimal or binary point of the number. In
a 'fixed' storage unit, the point cannot move, whereas in a 'float' storage
unit, the point can be thought of as moving to accommodate a wider range of
values in a given number of digits.

3-5 AM83

A storage unit with the 'fixed' attribute accommodates a value that can be
represented as a signed sequence of digits in which a decimal or binary point
appears. The point can appear anywhere, but its position is determined Hhen the
storage unit is created and remains fixed throughout the existence of the
storage unit. For a given 'fixed' storage unit, the number of digits and the
position of the point are both specified by the precision attribute, which is
described a little later.

A storage unit with the 'float' attribute accommodates a value that can be
represented in one of the following forms:

ill * (2**~)

ill * (10**~)

(if the scale is 'binary')

(if the scale is 'decimal')

where ill is the mantissa and ~ is the exponent. The mantissa is a signed
sequence of digits in which a point appears. For 'binary' scale, the point
appears to the left of the first digit, so that the mantissa is a fraction. For
'decimal' scale, the deciMal point appears to the right of the last digit, so
that the mantissa is an integer.

The number of digits in the
attribute, which is described later.

-128 ~ ~ ~ +127

mantissa is determined by the precision
The exponent must lie in the range:

When a value is assigned to a 'decimal' storage unit, there is some freedom in
the choice of the mantissa and the exponent. For example, if the mantissa has
four decimal digits, then the value 1.4 can be represented in the following
ways:

+0014.*(10**-1)
+0140.*(10**-2)
+1400.*(10**-3)

However, a representation is never chosen that discards more low-order digits
than necessary, and 1.4 would not be represented as:

+0001.*(10**0)

Thus the variable exponent not only allows a wide range of values but also
allows the full use of each digit of the mantissa whenever necessary.

Hhen a value is assigned to a 'binary' storage unit, the ~antissa and
exponent are always chosen so that the first digit of the mantissa is a one;
that is, the mantissa is normalized.

The exponent can be thought of as expressing the number of places the
mantissa point should be moved to the right to give the true value of the
storage unit. That point of view is the source of the term "floating point" and
the keyword 'float'.

BASE ATTRIBUTE

The base attribute is

binary
decimal

one the following keywords:

3-6 AM83

The attribute keywords refer to the number system that is used in representing
the value.

A storage unit with the 'binary' attribute uses binary digits in
representing its value. Thus a 'fixed binary' storage unit that has three
significant digits followed by a binary point can accommodate the integers from
-7 to +7.

A storage unit with the 'decimal' attribute uses decimal digits in
representing its value. Thus a 'fixed decimal' storage unit that has three
significant digits followed by a decimal point can accommodate the integers from
-999 to +999.

PRECISION ATTRIBUTE

The complete precision attribute has one of the following forms:

precision(12.,.9.)

precision(12.)

where 12. and .9. are the number-of-digits and the scale-factor, respectively. The
first form is used when the scale is 'fixed' and the second form is used when
the scale is 'float'. The number-of-digits must be given as an unsigned integer
constant and the scale-factor must be given as an optionally-signed integer
constant. They cannot be given as general expressions because their values must
be known to the compiler.

The number-of-digits determines how many digits appear in the storage unit.
The number-of-digits must lie within a certain range, and that range depends on
the scale and base attributes that appear with the precision attribute. The
ranges are:

Scale and Base tHnimum tlaximum

fixed binary 71

float binary 63

fixed decimal 59

float decimal 59

This table shows, for example, that the storage type 'real fixed binary
precision(70,O)' is valid but 'real fixed decimal precision(70,O)' is not. The
ranges are not part of Standard PL/I; they are chosen for each implementation,
and the values shown here are those for Multics.

In a 'float' storage unit, the number-of-digits refers to the digits in the
mantissa and does not include digits used in the exponent. In the case of a
'float binary' storage unit, the number-of-digits establishes a minimum for the
number of mantissa digits. The purpose of this latitude is to permit efficient
use of floating-point binary hardware.

3-7 At183

The scale-factor determines the number of significant digits to the right
of the point in a 'fixed' storage unit. The scale-factor is restricted to the
following range:

fUnimum Haximum

fixed -128 +127

float (not applicable)

A fixed-point storage unit can have filler zeros.
position the point and are not counted in
number-of-digits. Suppose the precision attribute
three cases must be considered:

These zeros are used
the determination of
is 'precision(Q,g)';

to
the

then

• If P 2 q 2 0, then no filler zeros are required because the point is
adjacent to one of the significant digits. For example, the storage
type 'real fixed decimal precision(5,2)' acconmodates any value that
can be represented by a sign, three significant digits, a decimal
point, and two more significant digits. Thus the value -203.49 or the
value 1.2 can be accommodated.

• If p < q, then q-p filler zeros are assu~ed between the point and the
first significant digit. For example, the storage type 'real fixed
decimal precision(5,7)' accommodates any value that can be represented
by a sign, a decimal point, two filler zeros, and five significant
digits. Thus the fraction .0044244 is accommodated by this storage
type but .0144244 is not.

• If q < 0, then -q filler zeros are assur:led between Lhe last
significant digit and the point. For example, the storage type 'real
fixed decimal precision(5,-3)' accammodates any value that can be
represented by a sign, five significant digits, three filler zeros,
and a decimal point. Thus the integer 55955000 is accommodated by
this storage type, but the integer 55955300 is not (and must be
approximated).

In practice, most programs use only fixed variables whose precision attribute
satisfies p 2 q 2 0; therefore filler zeros are not often used.

ABBREVIATIONS AND DEFAULTS

A typical program uses many variables, and a data type must be given for
each variable; therefore, PL/I permits the use of many abbreviations and
defaults in the specification of data type attributes.

From the point of view of the PL/I compiler, any selection of abbreviations
and defaults can be used, and the selection can differ from one place in the
program to another. However, the inconsistent use of abbreviations and defaults
makes a program confusing, and a consistent policy should be adopted. This
manual provides one such policy: every abbreviation or default of PL/I should
be used except for those whose avoidance is explicitly recommended in this
manual.

3-8 Al183

The following abbreviations are defined for the keywords used in arithmetic
attributes:

Keyword

binary

decimal

precision

precision

complex

Abbreviation

bin

dec

prec (rarely used)

(omit the entire keyword preClSlon if it immedi
ately follows a mode, scale, or base attribute)

cplx (not recommended)

The abbreviation prec is rarely used because it is customary to write the
precision attri~ute immed~ately after sone other arithmetic attribute and omit
the entire preclslon keyword. For example, 'real fixed decimal
precision(5,2)' is abbreviated as 'real fixed dec(5,2)' so that all that is left
of the preclslon attribute is '(5,2)'. The abbreviation 'cplx' is not
recommended because it is difficult to remember and impossible to pronounce.

A default attribute is the attribute that is assumed by the PL/I compiler
when a required attribute is not given in the program. For example, if a
variable is declared 'fixed dec(5,2)', then the compiler treats the variable as
if it had been declared 'real fixed dec(5,2)'; it does so because the default
attribute for the mode is 'real'. The defaults for the arithmetic data type
are:

Omitted Item

mode attribute

scale attribute

base attribute

number-of-digits

scale-factor

Default

real

fixed

binary

17 (for 'fixed binary')
7 (for 'fixed decimal')

27 (for 'float binary')
10 (for 'float decimal')

o (for 'fixed' scale only)

The table just given shows that the default value for the number-of-digits
depends on the scale and base of the data type; thus there are four possible
default values. The default values for the number-of-digits are not part of
Standard PL/I, and the values given are those for ~1ultics. However, it is
understood that any implementation of PL/I should choose a default for 'fixed'
values that is appropriate for an index or subscript and a default for 'float'
values that is appropriate for most scientific calculations.

Although defaults are specified for the scale and base attributes, these
defaults may vary from one implementation of PL/I to another. Therefore, it is
recommended that both the scale and base attributes be given explicitly.

3-9 AM83

The abbreviations and defaults are designed to favor the Dost comDonly used
storage types, as shown in the following examples:

CODolete Data Type Recommended Form

real fixed binary precision(17,0) fixed bin

real fixed binary precision(30,0) fixed bin(30)

real fixed decimal precision(8,2) fixed dec(8,2)

real float binary precision(27) float bin

real float binary precision(60) float bin(60)

complex float binary precision(27) complex float bin

Examples of Arithmetic Storage Units

As an example of the use of an arithnetic storage unit, consider the
following program:

P: proc;
dcl alpha fixed dec(6,2);

alpha = -31.253;

end;

The storage unit for 'alpha' can be diagrammed as:

fixed dec(6,2)
alpha I -31.25 I

The data type is written above the box to indicate the restriction on the value
accommodated by the box. Since the scale-factor is two, the storage unit can
accommodate only two fractional digits; therefore, the value -31.253 is
approximated when it is assigned to the storage unit.

A diagram called a data frame is useful in describing the capacity of a
storage unit. A data frame is produced by combining the data type with the box;
the result is a diagram that suggests the structure of storage. When a data
frame is used for the variable 'alpha' just discussed, then the result is:

alpha
S99~9 ~ 1-10101 11/.L2J!iI

3-10 M183

In this diagram, each of the seven boxes holds a single character. The symbol
above ,each box determines the kind of character allowed: 's' allows a sign, '9'
allows a decimal digit, and other symbols are used for other restrictions. This
diagram makes it clear that the storage unit accommodates any value that can be
represented as a sign followed by four decimal digits followed by a decimal
point followed by two decimal digits. It also makes it clear that the last
digit of -31.253 must be dropped before assignment to the storage unit can
occur.

A data frame provides useful information about the data type as it is
applied to a storage unit. The diagram should be viewed as having three
components:

• The characters written in the boxes are the contents of the storage
unit. They are the only part of the storage unit that can change; but
they do not, by themselves, represent the value of the storage. In
the example above, the contents is '-003125' and this sequence of
characters would not, in itself, be interpreted as the value -31.25.

• The characters in line with the contents but not enclosed in boxes are
the interpretation of the storage unit. In the example above, the
interpretation is the decimal point'.'. The contents and the
interpretation together are a representation of the value of the
storage unit, and the representation is always a valid PL/I constant
expression. In the current example, the representation is '-0031.25'
and this is a valid signed constant and could be used in a program to
represent the value -31.25.

• The data frame without contents or interpretation is an indication of
the hardware storage required for the storage unit. In the current
example, the storage unit has one sign box (one byte in a decimal
number) and six decimal-digit boxes (each one byte); therefore the
storage unit requires seven bytes of memory in a Multics segment.

The data frames are not a part of the PL/I language itself; they are introduced
here as a useful way of describing a storage unit. Since a PL/I program cannot
depend on the way in which arithmetic values are represented, the purpose of the
data frames is not to show how the components of a value can be operated upon.

FIXED DECIMAL STORAGE UNITS

A 'fixed decimal' storage unit closely approaches everyday notation for a
number. The availability of these storage units make it possible to entirely
avoid fractional fixed-point binary arithmetic and thus eliminates one of the
major problems of computing. Four examples of 'real fixed decimal' storage
units follow, each with a different precision attribute. Each example gives the
declaration of a variable and then the storage unit that corresponds to the
declaration.

dcl ul fixed dec(8,2); ul
3999999 ~

/ 7 7 7 7 7 7 I.LL!
The complete data type for this storage unit is

,
real fixed deciMal

precision(8,2)' . The data type accommodates any number yvith magnitude less than
one million to the nearest one hundredth. It vlOuld be useful for a sum in
dollars and cents and, since it has a sign, it could be used for a credit or a
debit.

3-11 At183

dcl u2 fixed dec(6);

The complete data type for this
precision(6,0)'. It accommodates
million.

dcl u3 fixed dec(6,9);

u2
S 9 9 9 9 9 9

! I I I I I / I.
storage unit is

any integer with
'real fixed decimal
magnitude less than one

u3
S 9 999 9 9
~.OOO! I I I I I I

The complete data type for this storage unit is 'real fixed decimal
precision(6,9)'. The scale-factor is greater than the number-of-digits and
therefore filler zeros appear between the decimal point and the first
significant digit. The storage unit accommodates a fraction with magnitude less
than one thousandth to the nearest billionth.

s 9 9 9 9
dcl u4 fixed dec(4,-2); u4 / I 7 7 I 100.

The complete data type for this storage unit is 'real fixed decimal preC1Slon
(4,-2)'. The scale-factor is negative and therefore filler zeros appear between
the last significant digit and the decimal point. The storage unit accommodates
an integer with magnitude less than one million to the nearest hundred.

FIXED BINARY STORAGE UNITS

A 'fixed binary' storage unit can be declared with the same variety of
preclslons as were just illustrated for the 'fixed decimal' storage units. In
practice, however, a 'fixed binary' storage unit is rarely used with a
scale-factor other than zero. Two examples follow.

s 1 1 1
dcl v1 fixed bin(3); v1 ! I I 7 I.b

The complete data type for this storage unit is 'real fixed binary
precision(3,0)'. The '1' symbol over a box indicates that it must contain a
binary digit. The 'b' at the right end shows that the representation is binary.
The storage unit can accommodate, for example, the value -2; the representation
for that value is '-010.b'.

s 1 1
dcl v2 fixed bin; v2 ~--(17)--~.b

The complete data type is 'real fixed binary precision(17,0)'. The
parenthesized 17 means that there are seventeen digit positions in the storage
unit. The storage unit accom~odates any integer whose magnitude is less than
2**17 (which is 131072). It is the recomnended storage unit for most indexes
and subscripts of nonstring data.

3-12 Ai183

FLOAT BINARY STORAGE UNITS

A 'float binary' storage unit is compatible with the floating-point binary
hardware operations that are part of ~any computers. Scientific applications
use 'float binary' storage units for physical variables. As already stated in
the description of the scale attribute, a 'float binary' storage unit
accommodates a value of the form:

where m is
storage unit
range -128
accommodate
examples of

the mantissa and ~ is the exponent. The range of a 'float binary'
is determined primarily by the fact that its exponent lies in the
through +127. In Multics, any 'float binary' storage unit can

values whose magnitudes are in the range 10**-38 to 10**+38. Three
'float binary' storage units are given here.

dcl x1 float bin(8); x1
s 1 1 ~
~.~--(8+)--~e~b

The complete data type for this storage unit is 'real float binary
precision(8)'. The mantissa is a signed fraction with eight or more digits.
When the representation is written, the exponent is written as an
optionally-signed decimal integer, but in the hardware it is represented in
seven bits. The 'b' at the end of the representation applies only to the
mantissa. The storage unit can accommodate, for example, the value 4.5; the
representation used for that value is '+.10010000e3b'.

dcl x2 float bin; x2
s 1 1 ~
~.~--(27+)--~e~b

The complete data type for this storage unit is 'real float binary
precision(27)'. In Multics, the mantissa has 27 digits. This data type
(without an explicit precision attribute) is used for most scientific variables.

dcl x3 float bin(28); x3

The complete data
precision(28)'.

type for this storage unit is 'real float binary

FLOAT DECIMAL STORAGE UNITS

A 'float decimal' storage unit is used only under exceptional
circumstances. It can be used to get more precision than is available from
'float binary' since 59 decimal digits of precision is equivalent to about 196
binary digits of precision. It can also be used to avoid binary representation,
but the operations on 'float decimal' values are so much more expensive than
those on 'float binary' values that this course is seldom followed. A 'float
decimal' storage unit accommodates a value of the form:

where ill is the mantissa and £ is
can accommodate values whose
One example is given here.

the exponent. Any 'float decimal' storage unit
magnitudes are in the range 10**127 to 10**-69.

3-13 AM83

dcl y1 float dec(59); y1 CD--(59)--D.eCJ
The complete storage type for this storage unit is 'real float decimal
precision(59)'. The mantissa is a signed decimal integer with 59 digits. This
storage unit has greater precision and range than any other in PL/I. It
occupies 16 words of a Multics segment.

COt-1PLEX STORAGE UNITS

A 'complex' storage unit can have any scale, base, or precision attributes.
In practice, however, it is always used with the 'float binary' attributes.
Since a complex nunber is a pair of real numbers, a 'complex' storage unit is
formed by placing two ~real~ storage units together and marking the second as
the imaginary part by suffixing an 'i' to it. An example is:

dcl z1 complex float bin;

z1
s1 1~sl 1~
~.~--(27+)--~e~b~.~--(27+)--~e~bi

Everything through the first 'b' represents the real part of the storage unit
and the remainder is the imaginary part.

Guidelines for Using Arithmetic Data Types

The choice of data types for the numeric variables is a major part of the
design of a program. The first choice that has to be made is between the
arithmetic storage types, just described, and the pictured storage types,
described later in this section. The arithmetic storage types can be operated
on efficiently but require conversions when input/output is performed; they are
appropriate when calculations are relatively complicated, as in scientific
programming, or when the packing of data is important, as in system programming.
The pictured storage types are appropriate when a major consideration is the
format of input and output, as in business programming.

Once the general decision has been made, other details must be decided.
For an arithmetic storage unit, the mode, scale, base, and precision must be
selected. These selections effect the range of the input data accepted by the
program, the accuracy of the results developed by the program, the convenience
of writing and debugging the program, and the cost of executing the program.
The questions of range and accuracy depend on the mathematical analysis of the
algorithm being programmed. The questions of convenience and cost depend on the
human and mechanical factors of the programming system. Guidelines for the
choice of the attributes of an arithmetic storage unit are given here.

CHOICE OF MODE

The choice of mode is entirely a question of range. Within a given
scientific program, the requirement for a 'complex' mode attribute is determined
by the mathematical formulation of the given program. Except for scientific
applications, the mode is usually 'real'; and since the default mode is 'real',

never make explicit use of a mode attribute.

3-14 AH83

CHOICE OF SCALE AND BASE

The choice of the scale attribute is a choice between the efficiency of the
fixed-point operations and the wide range of floating-point arithmetic. The
choice of the base attribute is a choice between the efficiency of binary
operations and the convenient familiarity of decimal representation. The
following rules contribute to the selection of the scale and base for a
particular storage unit:

1.

2.

When a storage unit is used for an exact integer
reasonable range, it should be 'fixed binary'.
subscripts, indexes, and counters.

that remains in a
This rule applies to

When a storage unit is used for a noninteger quantity
approximated with care, it should be 'fixed decimal'.
dollars-and-cents quantity.

that must be
An example is a

3. When a storage unit is used for a quantity that is inherently
approximate, it should be 'float binary'; however, if an exceptional
requirement for precision exists, the storage unit should be 'float
decimal'. Most physical quantities, such as weight, length, speed,
and so on, should be 'float binary' or 'float decimal'.

In some business applications, it is convenient to use the 'decimal' base for
all storage units. This avoids the mixing of 'decimal' and 'binary' values;
but it may significantly increase a programs execution time.

CHOICE OF PRECISION

The precision attribute gives the number-of-digits for every arithmetic
storage unit and gives the scale-factor for 'fixed' storage units. The choice
of precision for 'float' variables is usually easy because there is no danger of
overflow and a detailed analysis of the accuracy of the calculation is often
impossible. The choice of precision for a 'fixed' variable is much more
difficult because of the danger of overflow and the possibility that significant
digits will be lost. Some form of analysis is usually required for the choice
of precision for a 'fixed' variable.

The defaults for the number-of-digits depend on a given implementation of
PL/I and can vary from one computer to another. Consider a 'fixed' variable
that is used as a counter. If an analysis has shown that the variable will
never require more than 10 binary digits, then it should be declared
'fixed(10)'. If, on the other hand, a less precise analysis has determined that
a "fairly large" capacity will suffice, then it should be declared 'fixed'. In
the first case, the programmer makes a specific assertion about the use of the
variable; in the second case, the programmer gives the compiler latitude to
select an efficient representation for the given hardware.

The arrays and strings of Multics PL/I are unusually large. An array can
have y~ to 2**24 elements and a string can have up to 2**24 bitso When arrays
and strings that are very large are used, it is necessary to use 'fixed(24)'
variables for subscripts rather than 'fixed' variables since the latter provide
only 17 binary digits.

When a large counter is required, the number of digits should be kept less
than 35 if possible. Although a 'fixed(35)' variable occupies only one word of
Multics memory, operations on the variable tend to get into double precision.
Thus 'fixed(30)' would be a better choice.

3-15 Al183

ORDINARY STRING STORAGE

A string storage unit is either ordinary or pictured. The differences
between the two kinds of string storage are more important than their
similarities, so they are described separately. Ordinary string storage,
described here, is primarily used for text of a general nature, such as column
headings, error messages, or complete documents. Pictured string storage,
described later, is primarily used for numeric values that are represented as
character strings.

Ordinary String Data Types

The complete data type for an ordinary string storage unit is given by a
sequence of two string attributes. These attributes are the string-type and the
variability, as described in the following paragraphs.

STRING-TYPE ATTRIBUTE

The string-type attribute has one of the following forms:

character(ml)

bit(ml)

where ml is the maximum-length of the string. The maximum length must be an
extent: that is, it must have the form:

~ refer (ref)

*
where ~ is an expression and ref is a reference. The first form is used in
most cases; it must yield a value that can be converted to a 'fixed binary(24)'
value. The second two forms are described in Sections VII and XII, "Storage
Management" and "Procedure Invocation", respectively.

A storage unit declared 'character(ml)' can accommodate
ASCII characters, where n is the value of ml at the time
allocated. Similarly, a storage unit declared 'bit(ml)'
sequence of n bits, where n is the value of ml at the time
allocated. A bit is one of the characters '0' or '1'.

a
the
can
the

sequence of n
storage unit is

accommodate a
storage unit is

The value of the maxi~um-length can range from zero to a very large number.
If it is zero, then the only value the storage unit can hold is the null string.
The maximum-length must be chosen so that the resulting storage unit fits into
the t1ultics segment in which it begins. If the string begins near the end of
the segment, this restriction is important; but that happens only when other
large storage units are in use. If the string begins at the beginning of a
segment and is 'nonvarying', then the maximun-length can be as large as 4*2**18
for a character string or 36*2**18 for a bit string.

3-16 A!183

VARIABILITY ATTRIBUTE

The variability attribute is one of the following keywords:

nonvarying
varying

An ordinary string storage unit with the 'nonvarying' attribute can accommodate
a string of only one length: the maximum length specified in the string-type
attribute. When a shorter string is assigned to a 'nonvarying' storage unit,
blanks or zeros (for a character or bit string, respectively) are added to the
right end of the string until it has the required maximum length. An ordinary
string unit with the 'varying' attribute can accommodate a string of any length
from zero up to and including the maximum length given in the string-type
attribute.

ABBREVIATIONS AND DEFAULTS

The following abbreviations are accepted for the keywords used in ordinary
string attributes:

Keyword Abbreviation

character char

nonvarying nonvar

varying var

The use of the abbreviation 'var' for 'varying' is not recommended.

The defaults for the string attributes are:

Omitted Item Default

variability attribute non varying

maximum-length

Some examples of the application of these rules are:

Complete Data Type Recommended Form

character(n+1) varying char(n+1) varying

character(1) nonvarying char(1)

bit(1) nonvarying bi t (1)

The last case is especially useful because a one-bit string is used as a Boolean
value in PL/I.

9178 3-17 AM83A

I

J

As an example of the use of an 8rdinary 3trin~ stQra~e unit, consider the
following program:

P: proc;
dcl beta char(15);

beta = "John Q. Seith";

end;

The storage unit for 'beta' can be dia~ram~ed as:

beta I if John. Smith " 7
Because the variable is 'nonvarying' by default, two blanks are added at the
right end of the assigned character string to nake it 15 characters long.

A data fra~e can be used for an orjinary string storage unit. For the
variable 'beta', just discussed, the resulting 1iagran is:

x x x x x x x x x x x x x x x
beta "fJ!o!h!nf !Q!.! !S7m/i!t/h! ! In

The diagram has 15 boxes, one for each char~cter in the stored string. The 'x'
over each box indicates that the box can hold any ASCII character.

CHARACTER STORAGE UNITS

Two exa~ples of 'character' sto~age units are given here; one is
'non varying and the other is 'varying .

x x
dcl sl char(80); sl "0--(30)--0"

The complete data type for this storage unit is 'character(80) nonvarying'. The
storage unit acconmodates a character string that is exactly eighty characters
long; it could be used, for example, to sto~a the contents of an eighty-column
card.

dcl s2 char(6) varying; 32
cnt x x x x x x

JCjJ"fS/a/n/&!w!2!"

The complete data type is 'character(6) varying'. The storage unit can
accommodate any character string that has fron zero to six characters. The
storage unit is shown with a value in it; that value is "Sam". The 'cnt' box
gives the current length of the string in the storase unit; the current length
is filled in each time a ne~ value is assigned to the storage unit. The last
three character positions in the storage unit contain characters which,
presumably, are left from previous values of the storage unit.

3-18 At183

BIT STORAGE UNITS

The 'bit' storage units
'character' storage units.
in rather specialized ways.

dcl t1 bit;

are defined in the same general way as the
In practice, however, 'bit' storage units are used

Two examples are given here.

t1
1

"D"b
The complete data type is 'bit(1) nonvarying'. The storage type is used when a
Boolean variable is required. It can have only two values, and these are
interpreted as follows:

"1"b means "true"

"onb means "false"

Such values are used in 'if' statements, loops, and other statements that
control program flow.

1 1 1 1 1
dcl t2 bit(5); t2 ,,! I I I I In b

The complete data type is 'bit(5) nonvarying'. The storage type could be used
to hold five flags, each of which represented the truth or falsity of some
position. Such bit strings are especially useful in programs for process
control.

Guidelines for Using Ordinary String Data Types

A 'character' storage unit can be used in a general way: it is useful for
holding a single character, for holding a proper name or a short phrase, or for
holding a document of considerable size. Further, both the 'varying' and the
'nonvarying' 'character' storage unit are useful. In contrast, a 'bit' storage
unit is specialized: it is usually just one bit in length and it is almost
always 'nonvarying'.

As the diagrams given in the examples suggest, the amount of storage
required for a string depends on the maximum-length, not on the current length.
Thus a 'character(1000) varying' storage unit occupies the same amount of
storage (251 words) regardless of whether it contains a string value of length
one or 1000.

A 'nonvarying' string is handled some~vhat more efficiently than a 'varying'
string. Specifically, a 'varying' string requires an extra t1ultics word to keep
the current-length counter in and the code for accessing the storage unit is
more complicated. Therefore, when efficiency is the only consideration, a
'nonvarying' string should be used.

Often the choice of the variability attribute is determined by the nature
of the data. For example, consider the storage for a textbook that is being
edited. An individual line night be kept in a 'nonvarying' string storage unit,
since lines are of constant length. On the other hand, an individual word drawn
from the text might be stored in a 'varying' storage unit.

3-19 At183

PICTURED STRING STORAGE

Pictured-string storage units offer an almost complete alternative to
arithmetic and ordinary storage units; that is, many useful programs are written
in a natural and convenient way using only pictured storage units. Pictured
storage is most often used in business applications, but it can be used very
effectively elsewhere.

The pictured storage unit eliminates the use of a special representation
for numbers inside the computer; it uses the same representation inside that
people use on the outside on cards and listings. The representation is a
sequence of characters arranged in a special way: decimal digits, a decimal
point, a properly placed sign, and so on. When pictured storage is used,
input/output does not involve a conversion between an encoded internal
representation and the external text; instead, it simply requires the
transmission of a character string.

A pictured storage unit is thought of as having two values. When it is
referenced in a context that requires a character string (as in an output
statement), then its value is a character string. \Yhen it is referenced in a
context that requires an arithmetic value (as in a calculation), then its value
is an arithmetic value.

The use of a character string to store a numeric value is less efficient
than the use of a specially encoded sequence of bits. However, some efficiency
can be achieved if the exact form of the character string in a given storage
unit is known to the compiler. The purpose of the "picture" that is given in
the declaration of a pictured storage unit ~~ to establish the exact form of the
string accommodated by the storage unit. As an example, consider the following
declaration:

dcl omega picture"s999";

This declaration asserts that the storage unit designated by 'omega will
accommodate a string of four characters. It also specifies that the first
character will be a sign and the remaining characters will be decimal digits.
This allows the compiler to conclude that the value of 'omega' can always be
interpreted either as a character-string value of data type 'char(4)' or as an
arithmetic value of data type 'real fixed decimal(3)'.

Pictured Data Types

The complete data type for a pictured storage unit is a picture attribute
followed by an optional mode attribute. These attributes are described in the
following paragraphs.

3-20 At183

PICTURE ~TTRIBUTE

The picture attribute has the form:

picture".p."

where .p. is the picture. The picture is a sequence of indicators, each
optionally preceded by a replicator. A replicator is a parenthesized, unsigned,
decimal integer constant. An example of a picture attribute is:

picture"(4)9v.99db"

in this example, the picture is:

(4)9v.99db

The replicator '(4)' means that the following indicator is treated as if it
appeared four times. Thus the equivalent picture attribute is:

picture"$$$$$9v.99db"

The picture contains five different indicators, as follows:

$ 9 v db

Each indicator has a special interpretation, and the order in which the
indicators are given is significant. A full description of the permitted
pictures and their interpretations is given later.

Classification of Indicators

A complete list of the indicators follows. The indicators are classified
under functional headings, and these same headings are used later in this
section when the individual indicators are fully defined.

Classification

no-suppression digit indicator
decimal-point indicator
sign indicators
dollar indicator
zero-suppression digit indicators
drifting-sign digit indicators
drifting-dollar digiti-ndicator
insertion-character indicator
arithmetic decimal-point indicator
fixed-point scale-factor indicator
floating-point indicators
floating-point scale-factor indicator
nonnumeric indicators

Indicators

9
v.
s + cr db
$
z * y
s +
$

I b
v
fen)
e k
fen)
9 a x

In the scale-factor indicators, rr is an optionally-signed decimal integer
constant. The following distinctions apply:

• The '9' indicator is a no-suppression digit indicator if it appears in
a numeric picture; otherwise, it is a nonnumeric indicator and the
interpretation is slightly different.

3-21 AM83

• The's' indicator is a sign indicator if it is the first s in a
fixed-point picture, a mantissa picture, or an exponent picture;
otherwise, it is a drifting-sign digit indicator. Parallel
cons idera tions apply to the classification of +, ' -', and ' $, .

• The 'fen)' indicator is a floating-point scale-factor indicator if it
appears in a picture with a floating-point indicator; otherwise, it
is a fixed-point scale-factor indicator.

Observe that eight of the indicators are digit indicators, as follows:

9 z * y s + $

where sone of these are digit indicators only in certain contexts, as just
noted.

Classification of Pictures

It is useful to classify pictures in the following way:

• A picture is non-numeric if it contains either of the following
indicators:

a x

Otherwise, the picture is nu~eric.

• A numeric picture is floating-point if it contains either of the
following indicators:

e k

Otherwise, the picture is fixed-point.

Examples are:

Picture Attribute

"99a999"
"999999"
"$9v.99cr"

"s9v.99999ges999"
"sv.999999ks99"
"s9v.999999"

Classification

nonnumeric
numeric
numeric

floating-point numeric
floating-point numeric
fixed-point numeric

3-22 At183

MODE ATTRIBUTE

The mode attribute is one of the following keywords:

real
complex

This attribute is the same as the mode attribute for arithmetic storage units.
It is used only with a picture attribute that is numeric (that is, that does not
have an 'a' or 'x' indicator). When the 'real' attribute is used, the picture
remains as it is given; when the 'complex' attribute is used, the picture is
doubled to provide for the real and imaginary parts of a complex value. For
example, the data type:

picture"s999" complex

describes a storage unit that has eight character positions, the first four of
which accommodate a signed, three-digit value for the real part and the second
four of which accommodate a signed, three-digit value for the complex part.

ABBREVIATIONS AND DEFAULTS

The following abbreviations are accepted for the keywords used in the
pictured string attributes:

Keyword Abbreviation

picture pic

complex cplx (not recommended)

A default convention for the numeric pictured string data type is:

Omitted Item Default

mode attribute real

Interpreting Pictured Storage

The interpretation of a storage unit determines the way in \vhich a value is
assigned to the storage unit and later fetched. The operations of assignment
and fetch do not include data type conversions that are necessary to adjust the
value of the storage unit to its context; the conversions are separate
operations, discussed in Section IV, "Value Conversion." The operations of
assignment and fetch are very simple for arithmetic storage units and
ordinary-string storage units, and require little comment. However, a pictured
storage unit has two interpretations, depending on the context in which it is
used: it can be interpreted as a character-string storage unit or an arithmetic
storage unit. Complications arise in keeping these two interpretations
consistent with one another.

3-23 AM83

CHARACTER-STRING INTERPRETATION OF PICTURED STORAGE

The character-string interpretation of a pictured storage unit requires a
definition of a related character-string data type. Once the related type is
determined, the arithmetic operations for assignment and fetching can be
defined.

Related Character Types

The related character ~ for a pictured storage unit is defined as:

character(i) nonvarying

where i is obtained by counting all the characters in the picture except for
those that appear in the following indicators:

v the arithmetic decimal-point indicator
k the nonprinting floating-point indicator
fen) the scale-factor indicator

These indicators are defined later; they are not counted because they contribute
only to the arithmetic interpretation of a pictured storage unit.

As an example of the determination of the related character type, consider
the picture attribute:

pic"s999v.99f(-12)"

This picture attribute has the related character type:

character(7) nonvarying

The length '7' is determined by counting the four characters
the indicator 'v' , counting the three characters ' . 99' ,
indicator 'f(-12)'.

, s999 ' , ignoring
and ignoring the

The following is an example of a nonnumeric picture attribute:

pic"aaxx9"

This picture attribute has the related character type:

character(5) nonvarying

The length '5' is determined by counting all the characters between the quote
characters.

At1B3

The data frame diagram for a pictured storage unit closely resembles that
for a nonvarying character string. For the first example of a picture attribute
just given, the data frame is:

s 9 9 9 v.9 9 f(-12)
pic "/ I I I I I 7 I"

For the second example of a picture attribute the data frame is:

a a x x 9
pic 11/ I I I I 7"

Observe that each data fraoe has a character position for each indicator that is
counted in the determination of the related character type for the picture.

Character-String Assignments

The character-string assignment operation occurs when any value is assigned
to a nonnumeric pictured storage unit. Before the character-string assignment
operation begins, the given value is converted to the related character-string
data type for the pictured storage unit. The conversion operation is not part
of the assignment operation, and is covered later, in Section IV, "Value
Conversion."

Because of the way the related character-string data type is determined,
the converted character-string value has exactly the number of characters that
are required by the picture. Each character in the converted character-string
value is checked against the corresponding indicator. If a character does not
satisfy the requirements of the indicator, the 'conversion' condition occurs.
The 'conversion' condition is described later, in Section IV, "Value
Conversion."

As
storage

an
.. ,-..; .(
Ul.l.l.. v,

example of the assignm~n~ of a character-string value to a pictured
suppose the variable x has beeD declared as follows:

dcl x pic"xx99999";

and suppose the following assignment statement is executed:

x = "0023.15";

The related character-string data type for the given picture is:

char(7)

The character string constant in the assignment statement already has exactly
this data type, so no preliminary conversion is necessary. The assignment
operation can begin. The picture is examined from left to right, and each
indicator is checked against the corresponding character. The 'conversion'
condition occurs on the fifth indicator; it is a '9', which specifies a digit
and the corresponding character is a period. Therefore the assignment cannot be
made.

3-25 AH83

Character-String Fetches

The character-string fetch operation occurs when the value of a nuneric
pictured storaGe unit is fetched in a context that requires a character-string
value or when the value of a nonnumeric pictured storage unit is fetched in any
context.

The character-string fetch operation provides a value whose data type is
the related character-string data type for the picture. It can never be invalid
or cause a condition to occur.

ARITHr1ETIC INTERPRETATIOlJ OF PICTURED STORAGE

The arithmetic interpretation of
definition of a related arithmetic
determined, the arithmetic operations
defined.

a pictured storage unit requires the
data type. Once the related type is
for assignment and fetching can be

Related Arithmetic Data Types

The related arithmetic data type for a given picture attribute has one of
the forms:

fixed decimal(Q,g)

float decimal(Q)

where Q and g are determined from the given picture attribute. The first form
is used for a fixed-point picture and the second, for a floating-point picture.

For a fixed-point picture, the related precision attribute is determined as
follows:

p is the number of digit indicators in the entire picture.

q is the number of digit indicators to the right of the 'v' indicator
minus the value given by the scale-factor indicator. If there is no
'v' indicator in the picture, it is assumed to be at the right end of
the picture. If there is no scale-factor indicator in the picture, it
is assumed to be 'f(O)'.

As an example, consider the picture attribute:

pic"s999v.99f(-2)"

This picture has the related arithmetic data type:

fixed decimal(5,4)

The value p=5 was obtained by ignoring the's' indicator, counting the three '9'
indicators, ignoring the 'v.' indicators, counting the two '9' indicators and
ignoring the scale-factor indicator. The value q=4 was obtained by counting the
two '9' indicators after the 'v' indicator and then subtracting the value given
by the scale-factor indicator, ' -2' •

3-26 At183

· For a floating-point picture, the related precision attribute is determined
as follows:

P is the number of digit indicators in the mantissa of the picture; that
is, before the 'e' or 'k' indicator.

As an example, consider the picture attribute:

pic"s9v.999ges99"

This picture has the related arithmetic data type:

float decimal(5)

The value p=5 was obtained by ignoring the's' indicator, counting the '9'
indicator, ignoring the 'v.' indicator, counting the four '9' indicators, and
ignoring the 'e' indicator and everything after it.

Arithmetic Assignments

The arithmetic assignment operation occurs when any computational value is
assigned to a numeric pictured storage unit. Before the arithmetic assignment
operation begins, the given value is converted to the related arithmetic data
type for the pictured storage unit. During the conversion, a condition may
occur to report that the assigned value is out of range; also, the rightmost
digits may be truncated or rounded off if the related arithmetic data type
cannot accommodate them. The conversion operation is not part of the assignment
operation, and is covered later, in Section IV, "Value Conversion."

B€cause of the way the related arithmetic data type is determined, the
converted arithmetic value has exactly the number of digits that are required by
the picture. Other parts of the pictured value are determined by the indicators
in the picture, in accordance with the detailed definitions given later in this
section. The result of the assignment operation is a character sequence that is
placed in the pictured storage unit.

A simple example of the assignment of an arithmetic value to a pictured
storage unit follows. Suppose the variable 'x' has been declared as follows:

dcl X pic"$99s l
;

and suppose the following assignment statement is executed:

x = 3;

The related arithmetic data type for the given picture is:

fixed dec(2)

before the assignment operation can begin, the given value must be converted to
the related arithmetic data type; the result is:

3-27 AM83

The value is shown in the representation that is used to store a 'dec(2)' value.
Now the assignment operation can begin. The picture is examined from left to
right, and each indicator is processed as follows:

1. The first indicator is '$'. This indicator means that a dollar sign
must appear at this point in the character string. Therefore, the
first character is '$'.

2. The second indicator is '9'. This means that a decimal digit must
appear, and the first digit of the converted given value is used.
Therefore the second character is '0'.

3. The third indicator is '9'. This means, again, that a decimal digit
must appear, and the second digit of the converted given value is
used. Therefore the third character is '3'.

4. The fourth indicator is's'. This means that the sign
and the sign of the converted given value is used.
fourth character is '+'.

The resulting character sequence is:

$03+

must appear,
Therefore the

and this is the value that is placed in the pictured storage unit named 'x'.

Arithmetic Fetches

The arithmetic fetch operation occurs when the value of a numeric pictured
storage unit is fetched in a context that requires an arithmetic or bit-string
value. After the fetch is complete, some conversion of the arithmetic result
may be required; but this conversion is not part of the fetch operation.

The arithmetic fetch operation is the inverse of the assignment operation.
That is, if a given arithmetic value is assigned to a pictured storage unit,
then a subsequent fetch operation will obtain exactly the value that was
assigned.

A simple example of the fetching of an arithmetic value from a pictured
storage unit follows. The example is parallel to the example just given, in the
discussion of assignment. Suppose the variable 'x' has been declared as
follows:

dcl X pic"$99s";

and suppose that 'x' appears in a context that requires an arithmetic value,
such as the expression:

x+1

The related data type for the given picture is

fixed dec(2)

Let the current value of 'x' he the character sequence:

$03+

3-28 Al183

In order to fetch the arithmetic value of the storage unit, the picture is
examined from left to right, and each i~dicator is i~terpreted as follows:

1. The first indicator is '$'. This indicator makes no contribution to
the arithmetic interpretation and is ignored.

2. The second indicator is 'g'. This indicator contributes a digit to
the arithmetic interpretation. Therefore, the first digit of the
arithmetic interpretation is '0'.

3. The third indicator is 'g'. This indicator also contributes a digit
to the arithmetic interpretation, therefore, the second digit of the
arithmetic interpretation is '3'.

4. The fourth indicator is's'. This indicator contributes the sign for
the arithmetic interpretation. Therefore, the sign of the arithmetic
interpretation is '+'.

The resulting arithmetic value is:

which is the correct representation for a 'fixed dec(2)' value.

Fixed-Point Pictures

There are many kinds of fixed-point pictures. However, any fixed-point
picture can be constructed in three steps, as follows:

1. Start with a sequence of one or more 'g' indicators. (The 'g'
indicator is called the no-suppression digit indicator, and means that
a digit must appear in the corresponding position of the
character-string value.)

2. Optionally, insert any decimal-point~ sign: dollar~ or
insertion-character indicators. Certain restrictions on the way these
indicators are used must be observed; for example, a dollar indicator
must be at the beginning or end of the sequence, not between two 'g'
indicators.

3. Optionally, choose a zero-suppression, drifting-sign, or
drifting-dollar indicator and, proceeding from left to right, replace
one or more of the 'g' indicators in the picture. Restrictions on the
choice of the new indicator must be observed; for example, a drifting
dollar indicator can be used only if the leftmost 'g' is immediately
preceded by a dollar indicator.

These three steps could be carried out with pencil and paper as an exercise;
however, they are presented here as a convenient form of definition for the
fixed-point pictures. The various restrictions mentioned in Steps 2 and 3 are
given later, in the descriptions of each of the indicators.

3-29 AM83

An example of the construction of a picture according to the steps just
given is:

9999
$99v.99
$$$v.99

Here, a sequence of four '9' indicators was created by Step 1; than a dollar
indicator and a decimal-point indicator were inserted by Step 2; and finally a
drifting-dollar digit indicator was chosen to replace some leadins '9'
indicators (two of them). A second example is:

999
999
zzz

Here, the optional Step 2 was skipped and the 'z' zero-suppression indicator was
chosen to replace some leftmost '9' indicators (all three of them).

Once a valid fixed-point picture has been constructed, its interpretation
must be determined; that is, the assignment and fetch operations must be
defined. Most of the interpretation can be expressed in terms of the individual
indicators that appear in the picture. However, there is one rule that pertains
to the picture as a whole:

If a zero value is assigned to a fixed-point picture that
does not contain a '9' indicator, then the entire character
string becomes a sequence of ~ (blank) characters (if the
suppression was not by a '*' indicator) or a sequence of '*'
characters (if suppression was by the '*' indicator).

For example, if the picture attribute is:

pic"$zzv.zzs"

and the value is zero, then the character strins value is not

"$~~.~J6+"

which is the result of suppressing zeros, but rather is

"~J6~~~~J6"

which is the result of setting all characters to blanks.

NO-SUPPRESSION DIGIT INDICATOR

The most basic of all the indicators is the no-suppression digit indicator,
which is defined as follows:

9 means that a decimal digit must appear in the corresponding position
of the character-string value. In the arithmetic interpretation, the
corresponding digit is interpreted as a part of a decimal number.

The name "no-suppression digit indicator" means that this indicator specifies a
digit that is never supressed (replaced by a blank when it is zero).

3-30 AM83

An example of a pictured attribute that uses the no-suppression digit
indicator is:

Attribute Assigned Char TYQe and Value Arith TYQe and Value

pic"999" 180 char(3) "180" fixed dec(3) +1800
2 "002" +002.
13.99 "013" +013.
1000 (undefined) (undefined)
-22 (undefined) (undefined)

For this set of examples, it is assumed that some variable, say 'x', has been
declared with the given picture attribute:

dcl x pic"999";

For each line of the example, it is assumed that a value has been assigned to
'x'. For the first line, the assignment is:

x = 180;

Each line gives the data type and value for two contexts. The entry under "char
type and value" applies when the variable is referenced in a context that
requires a character-string value. The entry under "arith type and value"
applies for any other context; that is, when the variable is referenced in a
context that requires an arithmetic or bit-string value.

The assignment of '2' to the variable shows that leading zeros are
preserved in the character string value when '9' indicators are used. The last
three examples illustrate three ways in which a value can be arithmetically
modified by assignment to a pictured storage unit:

• When the assigned value has more accuracy than provided for by the
picture (as in the case of 13.99), the low-order digits are dropped
without rounding. Although the absence of rounding is not always
acceptable, this value modification is thought of as an approximation
rather than an error; and no exceptional condition occurs when such an
assignment is performed.

• When the assigned value is too big for the picture (as in the case of
1000), the value assigned to the storage unit is undefined. This
value modification is an error and the 'size' condition occurs.
Usually a 'size' condition terminates program execution, but recovery
from the error is described in Section XIII, "Condition Handling."

• When the assigned value is negative and the picture does not have a
sign indicator (as in the case of -22), then the value assigned to the
storage unit is undefined, and the 'size' condition should occur to
indicate an error. Although the program is in error, the error may
not be detected by the t1ultics PL/I compiler and the 'size' condition
may not occur.

3-31 At183

DECIMAL-POINT INDICATOR

The decimal-point indicator is made up of two characters, and is defined as
follO\/s:

v. means that if there is no scale-factor in the picture then the decimal
point appears at this position, both in the character-string and the
arithmetic value of the pictured storage unit.

The 'v. indicator can appear no more than once and, except for intervening
insertion-character indicators (described later), the indicator must be adjacent
to a digit indicator. For the rare case that there is a scale factor in the
picture, see the definition of the arithmetic decimal-point indicator, given
later.

An example of a picture that makes use of a decimal-point indicator is:

Attribute Assigned Char Type and Value Arith Ty]2e and Value

pic"999v.99" 500.98 char(6) "500.98" fixed dec(5,2) +500.98
16 "016.00" +016.00
0 "000.00" +000.00

6.839 "006.83" +006.83
1500.98 (undefined) (undefined)
-1 (Ilndefined) (undefined)

The last three assignments illustrate again the three kinds of arithmetic value
modification mentioned under "The No-Suppression Digit Indicator". Replicators
could have been used in the picture in any of the following ways:

pic"(3)9v. (2)9" pic"(3)9v.99" pic"999v.(2)9"

A second example of the use of the decimal-point indicator is:

Attribute Assigned Char Type and Value Arith Type and Value

pic"999v." 180 char(4) "180." fixed dec(5) +180.

Here the effect of 'v. is to make the decimal point in the character string
explicit; it could be omitted without changing the arith~etic value. Compare
this example to the first line in the examples for "The No-Suppression
Indicator".

Each of the two characters that make up the decimal-point indicator is,
~t~e~f, an indicator. The 'v' is the arithmetic decimal-point indicator and the

• 1S one of the insertion-character indicators. The separate use of 'v' and
'.' is rare, but their definitions are included, for conpleteness, later in this
section.

3-32

SIGn IilDICATORS

A ~icturc can contain a si~n indicator. The sign indicators are defined as
follows:

s means that a '+' or '-' nust appear in the corresponding character
position. In the arithmetic interpretation, the characters -+- and
'-' mean the value is positive or negative, respectively.

+ means that a '+' or a blank must appear in the corresponding character
position. In the arithmetic interpretation, the characters ~+' or
blank mean the value is positive or negative, respectively.

cr

means that a blank or a '-' must appear in the corresponding character
position. In the aritbmetic interpretation, the characters blank or
'-' mean the value is positive or negative, respectively.

means that two blanks or 'cr' must appear in
character positions. For the arithnetic
blanks or 'cr' mean the value is positive or

the corresponding two
interpretation, the two
negative, respectively.

db means that two blanks or 'db' must appear in the corresponding two
character positions. For the arithnetic interpretation, the two
blanks or 'db' means the value is positive or negative, respectively_
Despite the opposite mnemonic significance of 'cr' (credit) and 'db"
(debit), both are used to indicate negative arithmetic values •.

Only one sign indicator can occur in a fixed-point picture.
indicators

Anyone of the

s +

can occur before the first digit indicator in the picture; this leading position
is in accord with the common usage of signs. Anyone of the indicators

s + cr db

can occur after the last digit indicator; this is in accord with some business
usage.

Examples of the use of a sign indicator at the beginning of a picture are:

Attribute Assi~ned Char Tyoe and Value Arith TYQe and Value

82 char(4) "+082" fixed dec(3) +082.
0 "+000" +000.
-82 1f-082" -082.

pic"+999" 82 char(4) "+082 1t +082.
0 "+000" +000.
-82 "~082" -082.

pic"-999" 82 char(4) n~082" fixed dec(3) +082.
0 1f~000" +000.
-82 "-082" -082.

Two of these assignments are of particular interest. The assignment of a
negative value to a variable \/ith a '+' sign i~dicator gives a blank .for the
sign (second picture, third assignment); this is not a common handling of the
sign, and the use of the '+' indicator is not reco~mended. In contrast, the
assignment of a number to a variable wit~ the ' , indicator (third picture)
follows the familiar conventions for the sign, anj the use of the '-' is a
useful alternative to the's' indicator.

3-33 AM83

I

Examples of the use of a sign indicator at the end of a picture are:

Attribute

pic"99v.99s"

pic"99v.99+"

pic"99v.99-"

Assigned

5
-5

5
-5

5
-5

pic"99v.99cr" 5
-5

pic"99v.99db" 5
-5

Char Type and Value

char(6)

char(6)

char(6)

char(7)

char(7)

"05.00+"
"05.00-"

"05.00+"
"05.00l'S"

"05.00l'S"
"05.00-"

"05.00l'Sts"
"ne::: nn,..",,,

V..,I_VV"-""

"05.00l'Sts"
"05.00db"

Arith Type and Value

fixed dec(4,2) +05.00
-05.00

fixed dec(4,2) +05.00
-05.00

fixed dec(4,2) +05.00
-05.00

fixed dec(4,2) +05.00
=05.00

fixed dec(4,2) +05.00
-05.00

As before, the '+' indicator behaves contrary to familiar conventions. The 'crt
(credit) and 'db' (debit) indicators are designed especially for business
programming and behave in accordance with accounting conventions.

DOLLAR INDICATOR

A picture can contain a dollar indicator, which is defined as follows:

$ means that a '$' must appear
character string value. In
indicator is ignored.

in the corresponding position of the
the arithmetic interpretation, the

A dollar indicator can occur in either of two ways in a fixed-point pictur~.
First, it can appear anywhere before the first digit position. Second, it can
occur anywhere after the last digit position and before a 'crt, 'db', 's', '+',
or '_I indicator (if there is one).

9/78

Examples of the use of the dollar indicator are:

Attribute Assigned

pic"$999v.99" 20

pic"999v.$db -478

Char Type and Value

char(7)

char(7)

"$020.00"

"478.$db"

3-34

Arith Type and Value

fixed dec(5,2) +020.00

fixed dec(3) -478.

AM83A

ZERO-~UPPRESSION DIGIT INDICATORS

A fixed-point picture can contain zero-suDgression digit indicators, ~hich
are defined as follows:

z means that a decimal digit or a blan~ occurs in the corresponding
position of the string value. The blank occurs if the character would
be a leading zero; otherwise, a decimal digit occurs. In the
arithmetic interpretation, a blank that corresponds to the indicator
is interpreted as a zero.

•

y

means that a decimal digit or a '.' occurs in the
position. The definition is parallel to that for 'z'.

means that a deci~al digit or a blank occurs in the
position of the string value. The blank occurs if the
character would be zero (regardless of whether or not it
leading zero). In the arithmetic interpretation, a
corresponds to the indicator is interpreted as a zero.

corresponding

corresponding
corresponding

\-lould be a
blank that

A leading zero is a digit that is a zero, is not preceded by a nonzero
and (less obviously) is to the left of a decinal-point indicator, 'v.'
if a decimal-point indicator appears.

digit,
or 'v',

Each of these zero-suppression digit indicators can be used as an
alternative to a no-suppression digit indicator, '9', in a fixed-point picture.
The first two indicators are subject to the follo~ing restrictions:

• The 'z' indicators in a picture ~~st ~ot be preceded by any other kind
of digit indicator; si~ilarly, the '*' indicators Must not be preceded
by any other kind of digit indicator.

• If a 'z' indicatcr is used to the right of a 'v.' or 'v' indicator,
then all digit indicators in the ~ixed-point picture ~ust be 'z'
indicators. Sinilarly, if a '*' is used to the ri~ht of a 'v. or
'V'i then all di~it indicators Must ~e '.' indicators.

These restrictions can be illustrated by co~siderins the following picture:

pic"s99v.99"

The only valid pictures that have the sa~e pattern of digit indicators but use
'z' or '*' are:

pic"sz9v.99"
pic"szzv.99"
pic"szzv.zz"

pic"s*9v.99"
pic"sif*v.99"
pic"s**v.**"

3-35 Ai-183

I

Examples of the suppression of leading zeros by means of the 'z' indicator
are:

Attribute Assigned Char TYQe and Value Arith TYQe and Value

pic"-zzv.zz" -12.18 char(6) "-12.18" fixed dec(4,2) -12.18
-2. 18 "-~2.18" -02. 18
-0.18 "-~kS.18" -00. 18
-0.08 "-~l'5.08" -00.08
-0.00 "~~~~..sR5" +00.00

pic"-z9v.99" -0.'8 "-150.18" -00. 1 a
-0.00 "+~o.oo" +00.00

Observe that; in the last assignment for the first picture, all of the digits
are suppressed and therefore the entire string value is blank.

are:
Examples of the suppression of leading zeros by means of the ,*, indicator

Attribute

pictr$**v.**"

Assigned

56.20
0.03
o

Char TYQe and Value

char(6) "$56.20"
"$**.03"
fI******"

Arith Type and Value

fixed dec(4,2) +56.20
+00.03
+00.00

When ~ne value is not zero, as in the second example, the zeros following the
decimal indicator are not suppressed. When the value is zero, as in the third
example, all the zeros are suppressed and the entire string is filled with
asterisks.

Examples of the suppression of zeros by means of the 'y' indicator are:

Attribute Assigned Char TYQe and Value Arith T'yQe and Value

pic"99y99" 44444 char(5) "44444" fixed dec(5) +44444.
44044 "44~44" +44044.
5 "00M05" +00005.

pic t 'yyy99" 10000 char(5) n ansoo" +10000.

DRIFTING-SIGN DIGIT INDICATORS

A fixed-point picture can contain drifting-sign digit indicators, which are
defined as follows:

9/78

s has the same meaning as 'z', except that it indicates that the sign
('+' or '_I) must be moved to the right over a suppressed leading
zero.

+ has the same meaning as 'z', except that it indicates that the sign
C'.' or blank) must be moved to the right over a suppressed leading

has the same meaning as 'z', except that it indicates that the sign
(blank or '_I) must be moved to the right over a suppressed leading
zero.

3-36 AM83A

When a sequence of's' indicators appears in a picture, the leftmost one is
interpreted as a sign indicator and the remaining ones are interpreted as
drifting sign digit indicators. The same interpretation is applied to a
sequence of '+' or '-' indicators. Drifting-sign digit indicators are subject
to the same restrictions as the 'z' zero-suppression indicator.

Some examples of the use of drifting-sign digit indicators are:

Attribute Assigned Char TYQe and Value Arith TYQe and Value

pic"sss9v.99" -180.39 char(7) "-180.39" fixed dec(5,2) -180.39
-.39 "~~-0.39" -000.39

pic"----v.--ff -180.39 char(7) "-180.39" fixed dec(5,2) -100.39
-.39 "~~~-.39" -000.39
-.09 "~~~-.09" -000.09
-0 "~~~~~~~,, +000.00

The two attributes just given are similar to the following:

pic"szz9v.99"

pic"-zzzv.zz"

The only difference is in the placement of the character that represents the
sign. When drifting-sign digit indicators are used, the sign character occupies
the position of the rightmost suppressed leading zero. When the 'z' indicator
is used, the sign character remains at the position specified by the sign
indicator and (in these examples) is the first character.

DRIFTING-DOLLAR DIGIT INDICATOR

A fixed-point picture can contain drifting-dollar digit indicators, defined
as follows:

$ has the same meaning as 'z', except that it indicates that the dollar
character must be moved to the right over a suppressed leading zero.

When a sequence of '$' indicators appears in a picture, the leftmost one is
interpreted as a dollar indicator and the remalnlng ones are interpreted as
drifting-dollar digit indicators. Drifting-dollar digit indicators are subject
to the same restrictions as the 'z' zero suppression indicators.

Some examples of the use of drifting-dollar digit indicators are:

Attribute Assigned Char TYQe and Value Arith TYQe and Value

pic"$$$9v.99" 200 char(7) "$200.00" fixed dec(5,2) +200.00
.03 "~~$0.03" +000.03
0 "~~$O.OO" +000.00

pic"$$$$v.$$" 200 char(7) "$200.00" fixed dec(5,2) +200.00
.03 "~~~$.03" +000.03
0 "~~~~~~~,, +000.00

9/78 3-37 AMb3A

INSERTlmJ-CHARI\CTER I:JDICATOR3

A picture can contain insertion-character in~icators, which are defined as
follows:

neans that a period Must ap~car in the corresponding character
position unless zero suppression applies.

Means that a ~ !!lust appear in the corresponding character position
unless zero suppression applies.

/ means that a slash Must appear in the corresponding character position
unless zero suppr~ssion applies.

b neans that a blank nust a~pear in t~e co"espo~ding character position
unless zero suppre3sion applies. Observe that the indicator is the
letter 'b' but it inserts a blank character.

In the arithnetic interpretation of a pictured storage unit, all insertion
characters are ignored. There is no re3triction on the way insertion characters
are placed in a picture.

The definitions just given refer to the possibility that zero suppression
applies to an insertion character, and that possibility is now described. An
insertion character is suppressed ~/hen it in~ediately follows a suppressed digit
or another suppressed insertion character; ho~ever, no suppression occu~s to the
right of a 'v' indicator. The effect of supp~e3sion is the same as for a digit;
that is, the insertion character is replaced by a '*' or a blank: depending on
whether the indicator that caused the neighbo~in~ zero suppression was a '*' or
sone other indicator.

Some exaMples of pictures that contai~ insertion-character indicators
follow:

Attribute Assi~ned Char Tyoe and Value Arith Type and Value

pic"$9,999v.99" 1529.09 char(9) "$1,529.09" dec(6,2) +1529.09
529.09 "$0,529.09" +0529.Q9
.09 "$0,000.09" +0000.09
0 "$0,000.00" +0000.00

pic"$z,zzzv.zz" 1529.09 "$1,529.0g u +1529.09
529.09 "$~~529.09rt +0529.09
.09 "$~i'S~~l6.09" +0000.09
0 "t6i'S25~~i'S2)i'S~fI +0000.00

pic"$$,$$$v.$$" 1529·09 "$1,529.09" +1529.09
529.09 "~~$529.09n +0529.09
.09 "~~M~~$.09n +0000.09
0 "lS25z;~25252521~rr +0000.00

3-38 AH83

Each picture uses two insertion-character indicators: one comma and one period.
The examples have the following features:

• Since the only digit indicators in the first picture are '9'
indicators, no zero suppression occurs. Since no zero suppression
occurs, the insertion characters are never suppressed.

• In the second and third pictures, zero suppression occurs. When the
first digit is zero, it is suppressed and, as a result, the comma that
follows is also suppressed.

• The period insertion character is never suppressed because it appears
to the right of the 'v' indicator. The 'v' indicator stops zero
suppression and therefore also stops suppression of insertion
characters.

• When zero is assigned to the second or third picture, the entire
character string is suppressed; this occurs because all of the digit
indicators are zero-suppression indicators.

In this example, the period is discussed as an insertion character; earlier, in
the discussion of the decimal-point indicator 'v.', the period was considered to
be a part of a two-character indicator. These two views are consistent with one
another, as the discussion of the "Arithmetic Decimal-Point Indicator", given
later in this section, will show.

Since there is no restriction on the way insertion-character indicators are
placed in a picture, a considerable variety of effects can be achieved.
Examples are:

Attribute Assigned Char TYQe and Value Arith TYQe and Value

pic"99/99/99" 12075 char(8) "01/20/75" dec(6) +012075.
pic"99.99.99" 12075 char(8) "01.20.75" dec(6) +012075.

pic"9,999,999" 1234567 char(9) "1,234,567" dec(7) +1234567.
pic"9b999b999" 1234567 char(9) "11623416567" dec(7) +1234567.

The purpose of the insertion characters is to permit various special notations
for values. Insertion characters should be used conservatively, and tricks
should be avoided.

ARITHtIETIC DECH1AL-POINT INDICATOR

A fixed-point picture can contain an arithmetic decimal-Qoint indicator,
which is defined as follows:

v does not have a corresponding character position and
contribute a character to the character string
arithmetic interpretation, the indicator determines
the decimal point.

3-39

thus does
value. In

the position

not
the
of

Ar183

The 'v' indicator can occur no more than once in a picture and, except for
intervening insertion-character indicators, it must be adjacent to a digit
indicator. Usually the 'v' indicator is used in conjunction with the '.'
insertion-character indicator and the pair is thought of as a single indicator
as described earlier under "The Decimal-Point Indicator".

The 'v' indicator is used separately in order to cause the auto~atic
scaling of values that are assigned to a pictured storage unit. Examples are:

Attribute Assigned Char TYQe and Value Arith TYQe and Value

pic"999v99" 180.98 char(5) "18098" fixed dec(5,2) +180.98

pic"999.99" 180.98 char(6) "001.80" fixed dec(5,0) +00180.

pic"9.99v99" 180.98 char(6) "1.8098" fixed dec(5,2) +180.98

In each of these examples, the character string value represents a different
number than the arithmetic value.

SCALE-FACTOR INDICATOR

A fixed-point picture can end with a scale-factor indicator, uhich is
defined as follows:

f(rr) does not have the corresponding character positions and, therefore,
does not affect the related character type of a pictured storage unit.
In the arithmetic interpretation, it adds n to the scale factor
implied by the picture. The arithnetic value of a picture is 10**rr
times the apparent character string value of the picture.

Some examples of the use of the scale-factor indicator in a fixed-point picture
are:

Attribute ASSigned Char Type and Value Arith Type and Value

pic"99v.999f(0)" 23

pic"99v.999f(2)" 700

pic"99v.999f(-1)" .04

char(6) "23.000"

char(6) "07.000"

char(G) "00.400"

fixed dec(5,3) +23.000

fixed dec(5,1) +0700.0

fixed dec(S,4) +0.0400

An interesting feature of these examples is the fact that, for each of the three
examples, the same sequence of digits appear in the character-string value and
the arithnetic value. Once the related arithmetic data type has been correctly
determined, it places the decimal point in the arithmetic value.

3-4Q A~18 3

Floating-Point Pictures

A floating-point picture is composed of a sequence of four parts, as
follows:

1. The mantissa, which can be any fixed-point picture that does not have
a sign indicator after the digit indicators and does not have a dollar
indicator.

2. A floating-point indicator, with 'e' or 'k', as defined later.

3. The exponent, which is a severely restricted fixed-point picture that
begins with an optional sign indicator and has from one to three 'z'
or '9' digit indicators.

4. An optional scale-factor indicator.

The floating-point indicator distinguishes a floating-point picture; that is,
any picture that contains an 'e' or 'k' is necessarily a floating-point picture.

Host of the interpretation of a floating-point picture depends on the
interpretation of the fixed-point pictures that are used as its mantissa and
exponent. However, there are a few special rules:

• Unless the arithmetic
exponent is chosen
zero.

value of
so that

the assigned value is zero, the
th~' first digit of the mantissa is not

• Before an arithmetic value is assigned to a pictured storage unit that
does not have enough digits for an exact representation, the rightmost
digits are dropped by rounding. This contrasts \lith the truncation
without rounding that is used for a fixed-point picture, described
earlier under "The No-Suppression Indicator".

Examples of the application of these rules are:

Attribute Assigned Char Type and Value Arith Type and Value

pic"-9v.99ges99" char(10)
"-1.000e+02"
"-1.000e-02"
"+5.003e+00"

float dec(4)
-0001.e+2 -100

-.01 -0001.e-2
5.0025 +5003.e-3

FLOATING-POINT INDICATORS

A floating-point picture must contain one of the following indicators:

e

k

means ~nat an 'e' must appear in the corresponalng pOSl~lon of
character-string value. In the arithmetic interpretation,
separates the mantissa and the exponent.

does not have a corresponding character position and thus does
contribute a character to the character-string value. In
arithmetic interpretation, the indicator is equivalent to 'e'.

3-41

the
it

not
the

AM83

The following examples show the difference between the
floating-point indicators:

two kinds

Attribute Assigned Char TYQe and Value Arith TYQe and Value

pic"s9v.999ges99" 15 char(11) float dec(5)
"+1.5000e+01" +00015.eO

pic"s9v.9999ks99" 15 char(10) float dec(5)
"+1.5000+01" +00015.eO

SCALE-FACTOR INDICATOR

of

A floating-point picture can end with a scale-factor indicator, which is
defined as follows:

fen) does not have corresponding character pos~tions and therefore does not
affect the related character type of a pictured storage unit. The
arithmetic value of a picture is 10**n times the apparent value of the
character string value of the picture.

Some examples of the use of the scale-factor indicator in a floating-point
picture are:

Attribute Assigned Char TVQe and Value Arith TYQe and Value

pic"s9v.9ges99" 15 char (9) ii + -j • 50e+Oi ii float dec(3) +Oi5.eO

pic"s9v.9ges99f(4)" 15 char(9) "+1.50e-03" float dec(3) +015.eO

pic"s9v.9ges99f(-3)" 15 char(9) "+1.50e+04" float dec(3) +015.eO

Consider the second example. The arithmetic value '15' is assigned to the
storage unit. It must be multiplied by 10**-n to get the character string
representation; then when it is fetched as an arithmetic value and multiplied by
10**n its value is the same as it was originally.

COffiQlex Pictures

Pictured storage for a complex value is declared by combining any numeric
picture attribute with the 'complex' attribute. The effect of the 'complex'
attribute is to make the character-string value twice as long as the numeric
picture requires, and to thus provide for the real and imaginary parts. The
resulting character string is different from other PL/I representations of a
complex value because it does not have an 'i' at the end of the imaginary part.

3-42 AM83

An example of the declaration of a pictured complex storage unit is:

Attributes

pic"s9v.99ges99" complex

Non-numeric Pictures

Assigned Char Type and Value

3-2i char(20)
"+3.000e+00-2.000e+00"

Arith Type and Value

complex float dec(4)
+0003.eO-0002.eOi

The design of a nonnumeric picture is much simpler than that of a numeric
picture. The nonnumeric pictures are present so that a programmer can describe
a storage unit that is designed to hold a character string and to have only a
character-string interpretation. A nonnumeric picture is an alternative to the
use of the 'character' attribute.

NON-NUt1ERIC INDICATORS

A nonnumeric picture is made up of any number of nonnumeric indicators in
any order; however, at least one 'x' or 'a' indicator must appear. The
indicators are defined as follows:

x means any ASCII character can appear in the corresponding character
position.

a means that a letter (upper or lower case) or a blank must appear in
the corresponding character position.

9 means that a digit or a blank must appear in the corresponding
character position.

Observe that in a nuneric picture a '9' specifies a digit only, while here, in a
nonnumeric picture, '9' specifies a digit or a blank.

Some examples of nonnumeric pictures are:

Attribute Assi~ned Char Tyoe and Value Arith Type and Value

pic"xxxxx" "ab--3" "ab--3" (not applicable)

pic"aaxx9" "ab--3" "ab--3" (not applicable)
,,~~~~~" "~F5~J6~"
"7b--3" (conversion)

The last line shows that an attempt to assign a digit to a position controlled
by an a indicator causes the 'conversion' condition to occur. See Section
XIII, "Condition Handling," later in this manual.

3-43

Guidelines for Pictured Storage

Pictured storage is ideal for programming applications in which the format
and layout of input/output is important and calculations are relatively simple.
Business programs often fit this description. Simple programs for teaching or
one-shot execution also can make good use of pictured storage.

When a pictured variable is involved in complicated and repeated arithmetic
calculations, some significant extra costs can accrue. The fetch of the
arithmetic value of a pictured variable can be one or two orders of magnitude
more costly than the fetch of the value of a similar arithmetic variable. In
such a situation, there are four options:

• Accept the extra cost and keep the pictured variable. This is the
approach often adopted in business programming, where the cost of
input/output overshadows any computational costs.

• Keep the pictured variable, but introduce an arithmetic variable for
use in calculation. In this case, the pictured variable is used for
input/output, the arithmetic variable is used in calculations, and the
values are assigned back and forth between the two variables when
necessary. This approach is especially useful when input/output is
performed in terms of records, as described later in Section XV,
"Record Input/Output," rather than in terms of a stream.

• Drop the pictured variable, but use the picture format item in
conjunction with edit-directed input/output, as described later in
Section XIV, "Stream Input/Output." This approach is similar to the
previous one, except that the pictured variable is a system temporary
that is controlled by the PL/I processor rather than the program.

• Drop the use of the picture entirely. In this case, input is
controlled by some other mechanism of input/output, usually within the
extensive facilities for stream input/output. This approach is often
used in short scientific programs.

In a large program, all four of these approaches might appear as a result of the
separate consideration of each variable.

ADDRESS STORAGE

PL/I permits an address to be treated as a data value. Although these
values are not subject to calculation in the usual sense, they can be stored,
fetched, compared with one another and, ultimately, used as addresses.

3-44 AM83

Address values are discussed earlier, in Section II, "Values."
six types of address values, as follows:

There are

label

entry

The address of a statement that can be the destination of a
'goto' statement

The address of a statement that is an entry to a procedure

format The address of a 'foroat' statement

pointer The address of a storage unit, expressed as a full t1ultics
address

offset The address of a storage unit, expressed relative to the
beginning of an area

file The address of a file-state block, which, in turn, gives access
to a Multics file.

For each of
storage unit.

these types of address value, there is a corresponding type of
These storage units are described here.

A label, entry, or foroat address is a special kind of program address. It
designates not only a certain statement of a program but also a particular
activation of the block in which that statement appears. This feature is
significant only when a program is recursive; it is discussed later, in Section
XII, "Procedure Invocation."

Address Attributes

The data type of an address storage unit is specified by one of the
following keywords:

label
entry
format
pointer
offset
file

Sometimes other keywords are used in close association with the data type
attribute in the declaration of an address variable: however, those other
keywords are not a part of the storage type. For example, consider:

dcl L1 label local;
dcl L2 label;

Here, the storage tvoe of both 'L l' and 'L2' is just 'label' . The keyword
'local' is a usage attribute, and is not part of the storage type; its effect is
described in Section XI, "Program Flow." As a second example, consider:

dcl P1 entry(float);
dcl P2 entry(char(20) , dim(3) fixed) returns(char(20));

Here the storage type of both 'P1' and 'P2' is 'entry'. The remainder of the
declarations is, again, information about the usage of the address variables.

3-45 AM83

One of the address data attributes can be abbreviated, as follows:

keyword abbreviation

pOinter ptr

Example of Address Storage

As an example, consider the variable 'start' whose declaration is:

dcl start ptr;

The storage type of 'start' is

pointer

and its storage can be diagrammed as follows:

Dtr
start ~

The data frame is shown as a single box, without any division into parts. A
Multics pointer is divided into a segment number, a word offset, and so on; but
these details of structure are irrelevant fron the point of view of PL/I.

AREA STORAGE

Area storage is used in connection with the PL/I facilities for storage
management. In contrast to all other PL/I variables, a variable storage unit of
type 'area is not used directly to store data; instead, it is a reservoir of
storage that supplies stora~e for the allocation of other variables. The use of
area storage is an advanced and specialized feature of PL/I, and many
applications do not require area storage.

When an 'area' variable is defined, the program specifies only the number
of words occupied by the variable. In its initial form, the 'area' variable is
empty. As execution of the program proceeds, variables are allocated within the
~rea, are used, and are eventually freed. ~t some time after its last use, the
area variable itself is freed. The allocation and freeing of variables is

discussed in detail later, in Section VII, "Storage Management."

When a variable is allocated within an 'area' variable, some words of the
'area' variable are occupied by the allocated variable; then, when the variable
is freed, the words become available again. The PL/I processor automatically
keeps data that show which words are occupied at any time; this data is kept in
the area' variable itself, and thus uses up a portion of the storage occupied
by the 'area' variable. Thus an 'area' variable is more than just a block of
storage: it is a complete storage system that is embedded in a larger system.

3-46 AM83

An important feature of an 'area variable is that it defines its own
system of addresses; that is, the address of a variable that is allocated within
an area can be expressed as an offset relative to the first word of the area.
When the contents of one 'area' variable is copied into another 'area' variable,
the Multics addresses of the variables contained in the area change, but the
offset addresses relative to the area do not change. This feature of 'area'
variables is important wherever offset variables are used in forming linked
lists of data objects.

'area' Attribute

The data type of an area storage unit has the following form:

area(as)

where as is the area size. The area size must be an extent; that is, it must
have the form:

~ refer (ref)

*
where ~ is an expression and ref is a reference. The first form is used in
most cases; it must yield a value that can be converted to a 'fixed binary(19)'
value. The second two forms are described later, in Sections VII and XII,
"Storage t1anagement" and "Procedure Invocation," respectively.

The value of the area size at the time the area is allocated determines the
number of words that are allocated for the area. The size of an area cannot be
greater than the size of a t1ultics segment, 2**18 words. In general, an area is
not allocated at the beginning of a segment and it must be small enough to fit
in the portion of the segment that remains. An 'area' variable is allocated
just like any other variable; details are given later, in Section VII, llStorage
Management."

The capacity of an 'area' variable is always somewhat less than the area
size; this is because a portion of the storage allocated for the area variable
is used as the occupation record; that is, the data that show ~~hich words of the
area are in use and which are free. For example, consider the declaration:

dcl A1 area(1000);

According to this declaration, the 'area' variable 'A1' occupies exactly 1000
words of Multics storage. Suppose that many variables with the storage type

char(40) nonvarying

r.'mst be allocated in ' A 1 ' ~ This character variable
storage; however, it is not possible to allocate 100 such
because of the storage used by the occupation record.

3-47

occupies 10 words of
variables in 'A1'

At-183

Default Rule

The following default rule applies to the 'area attribute:

Omitted item Default

area size 1024

The use of this default is not recommended. The area size is an important
parameter, and should be carefully selected and explicitly given.

Example of Area Storage

As an example, consider the following declaration:

dcl tl area (2*n) ;

Suppose n=4096 when 'area' is allocated. Then the storage type of 'M' is:

area(8192)

The area variable occupies 8192 ttultics words. As program execution proceeds,
variables can be allocated, used, and freed within 'i1'. Suppose that, at a
particular time in program execution, three variables with the following storage
types are allocated to 'M':

fixed dec(5)
char(6)
float

At this time, 'M' can be diagrammed as follows:

tl

1///////////////////////////1/1/////////////////
///////1/// occupation record III/III/fill
//

173

213

S 9 9 999
I I ! ! I I !.

x X X X X X
"I I I 7 7 7 I"

I

I

The number given to the left of each storage unit in the area is the word offset
of the storage unit relative to the beginning of the area. ~ne tnree variables
shown in the diagram do not, of course, exhaust the capacity of the area, which
is 8192 words minus the words used for the occupation record.

3-48 At-183

AGGREGATE STORAGE

It is often useful to gather together a set of scalar variables, arrange
them in a sequence, and treat them as a single variable. Such a variable is an
aggrer,ate. There are two kinds of aggregate, the structure and the array, and
these types of variables are described here.

Once aggregates have been lntroduced, it is necessary to distinguish
between a variable that is contained in another, larger variable and one that is
not. A variable that is contained in an aggregate variable is a minor variable,
and is said to be a component of the aggregate. A variable that is not
contained in another variable is a major variable. Sometimes a major variable
is called a level-one variable; that terminology arose from the way structures
are declared. Many examples of major and minor variables are given in the
discussion that follows.

Structures

A structure variable is a sequence of members. The structure itself has a
name and, in addition, each of the members of the structure has its own name.
When a program operates on the entire structure, the structure name alone is
used as the reference. \Jhen a program operates on a member of the structure,
both the structure name and the member name, separated by a period, are used as
the reference. (Often the member name alone can be used, but that is just an
abbreviation of the complete reference.)

Each
structure
structure
variables
following

member of a structure can have any storage type. For example, a
could be declared that has an arithmetic scalar as its first member, a
of string variables as its second member, and an array of arithmetic

as its third member. An example of such a structure is given in the
discussion of "Level Numbers".

LEVEL NUt1BERS

The structure is the only part of the storage type that is not given by
attributes; instead, it is given in quite a different way, by level numbers.
The level number is written just before each name used in the declaration of a
structure, whereas the attributes are written after the name. The level number
of each member of a structure variable must be greater than the level number of
the structure itself; that is how the hierarchy is indicated. It is recommended
that a major variable have level number one, a member of a major variable have
level number two, a member of a member should have level number three, and so
on, to whatever depth is required.

For purpose of discussion, consider the following declaration of a
structure:

dcl 01 S1,
02 alpha dec(5),
02 beta,

03 x char(4),
03 y char(6),

02 gamma(3) float;

3-49 AM83

',lith the help of the level numbers, '01', '02', and '03', the PL/I processor can
recognize that this statement is the declaration of nine variables, as follows.
The first variable is desi~nated by:

S1 (designates the major structure variable)

The designators of the three members of 'S1' are:

S 1 . alpha
S1.beta
S1 . gamoa

(designates a minor scalar variable)
(designates a minor structure variable)
(designates a minor array variable)

The designators of the two oembers of 'S1.beta' are:

S1.beta.x
S1.beta.y

(designates a minor scalar variable)
(designates a minor scalar variable)

The designators of the three elements of 'S1.ganma' are:

S1.gamma(1)
S1.gamrla(2)
S1.gamma(3)

(designates a minor scalar variable)
(designates a minor scalar variable)
(designates a minor scalar variable)

Thi~ eX.::Il1'!ple sho1."~ how 8. memher of 8 st.ruct.ure Crln be rl ~Crllrlr; ;:j ~t.rll0.tllrp.; or
an array. (The use of an array here anticipates the description of arrays that
appears later in this section; hOHever, the array 'S1.gamma' is a simple one,
and its treatment should be obvious.)

Two points of programming style arise in connection Hith the declaration of
structures.

• First, although the PL/I processor relies upon level numbers to
determine the structure, a programmer relies upon the layout of the
declaration. Therefore, the indentation shown in the example
'declare' statement should be used.

• Second, although the PL/I processor does not require a leading zero on
a level number, the use of such a zero adds emphasis and distinguishes
the level number from a computational constant.

STRUCTURE STORAGE TYPES

The storage type of a structure is obtained from the declaration in three
steps:

1. Omit the name of the structure and the names of its members.

2. Normalize the level numbers.

3. Obtain the storage type of each memher; depending on whether the
member is a scalar, a structure, or an array.

3-50 AH83

The levels of a structure are normalized by reducing them until the structure as
a whole has level number one, the members of the structure each have level
number two, and so on.

they
, S 1 '

The members of a structure are arranged in storage in the order in which
appear in the declaration. Thus the order of the members of the structure

is:

S1.alpha
S1.beta
S 1 . gamma

Similarly, the order of the members of S1.beta is:

S1.beta.x
s1.beta.y

As an example of the determination of the storage type of a structure,
consider 'S1.beta' as declared in the preceding description of level numbers.
The declaration was given as:

02 beta,
03 x char(4),
03 y char(6)

Omission of the variable names gives:

02,
03 char(4),
03 char(6)

Normalization of the level numbers gives:

01 ,
02 char(4),
02 char(6)

This is the desired result: the storage type for 'S1.beta'.

EXAl1PLES

As a detailed example of storage for a structure, consider once again the
variable 'S1', which has been used throughout the discussion of structures. Its
declaration is:

dcl 01 S 1 ,
02 alpha fixed dec(5),
02 beta,

03 x char(4),
03 y char(6),

02 gamma(3) float bin;

3-51 Al183

This statement declares nine variables, and their storage types are as follows:

Designator

S1

S1.alpha

S1.beta

S1.beta.x

S1.beta.y

S1.gamma

S 1 . gamma (1)

S1.gamma(2)

S 1 . gamma (3)

Storage Type

01, 02 fixed dec(5),
02, 03 char (4) ,

03 char(6),
02 float bin

fixed dec(5)

01, 02 char(4),
02 char(6)

char(4)

char(6)

dim(3) float bin

float bin

float bin

float bin

The storage for 'S1' can be diagrammed as follows:

S1 . alpha

.beta.x

------- .y

. gamma (1)

(2)

(3)

S 9 9 9 9 9
I 7 7 7 777

x X X X
11/ 7 7 I I"

X X X X X X
"/ I I I 7 7 I"

S 1 1 ~
~.~--(27+)--~e~b

S 1 1 ~
~.~--(27+)--~e~b

S 1 1 ~
~.~--(27+)--~e~b

Thus '31' is made up of six scalar storage units. The arrangement of these
storage units on six separate lines does not imply that they occupy six words of
a l1ul tics segment. The mapping of storage uni ts into segr.lent words is done
according to rules that are given later in this section, when "Alignment" is
discussed. Because unused bits or bytes of storage are sometimes placed between
the storage required for the storage units, the rules are not simple.

3-52 Ai183

As a second example, consider the variable 'account', declared as follows:

dcl 01 account,
02 nane,

03 last char(30) var,
03 middle char(1),
03 first char(20) var,
03 title char(4) var,

02 number pic"9999",
02 address,

03 street char(30),
03 loc,

04 city char(20),
04 state char(2),
04 zip pic"99999",

02 balance pic"$,$$$,$$9v.99",
02 credit_limit pic"$,$$$,$$9v.99";

This example shows how a simple financial record for a Menber of an organization
can be handled. The following observations apply:

• The entire structure of 11 scalar components can be referred to by a
single name, 'account'. This reference is convenient when, for
example, the structure is written as a record in a permanent file.

• The entire name of the individual who has the account can be referred
to by a single designator, 'account. name' . This reference is
convenient when, for example, a list of account holders must be
prepared.

• The title (Mr., Mrs., etc.) and the last name can be accessed
individually by 'account.name.title' and 'account.name.last'. This
reference is convenient when, for exanple, the greeting of a letter
must be prepared.

These observations are intended to emphasize the fact that the components of a
structure can be handled collectively or separately, according to the
requirements of each operation. A complete description of references to
structures is given later, in Section VIII, "Expressions."

Arrays

An array variable is a sequence of elements. The variable has a single
name, and the individual elements are designated by giving the array name and a
list of one or more subscripts. When an array variable is referenced in a
program, general expressions can be given for the subscripts, and the specific
subscript values are then determined each time the reference is evaluated. In
this way, data addresses can be calculated during program execution, and a
single array reference can designate different elements at different times.

All elements of a given array have the same storage type. That storage
type can specify a scalar or structure variable, but not an array variable. In
other words, the storage type of an element of an array can specify any variable
except an array.

3-53 At183

An array variable is declared by means of a di~ension ~ttribute. The
dimension attribute should be inserted just after the naMe af the variable.
Consider the following declarations:

dcl [.11 float bin;

dcl 01 02,
02 a fixed bin,
02 b char (32) ;

These are declarations of a scalar variable and a structure variable,
respectively. The first can be changed into a declaration of an array of
scalars by the addition of an appropriate 'dimension' attribute, and the second
can be changed into an array of structures in the sane way; thus:

dcl m1 dimension(1:20) float bin;

dcl 01 m2 dimension(1:20),
02 a fixed bin,
02 b char(32);

The discussion of the 'dimension' attribute that follows gives the
interpretation of these declarations and also gives the abbreviations and
defaults that permit them to be written in shorter forms, namely:

dcl ~1(20) float bin;

dcl 01 m2(20),
02 Q fixed bin,
02 b char(32);

'dimension' ATTRIBUTE

The 'dimension' attribute has the following form:

dimension(bplist)

where bplist is the bound-pair list, and is a sequence of one or more
bound-pairs separated by commas. The number of bound-pairs is the
dimensionality of the attribute; it determines how many subscript positions are
associated with the array. For example, consider:

dcl A dimension(1:8,j-1:2*(n+1» float;

According to this declaration, 'A' has a dimensionality of two, and its
bound-pairs are '1:8' and 'j-1:2*(n+1)'.

The purpose of a bound-pair is to specify the range for a given subscript
position. Each bound-pair has the one of the forms:

*
where Ib and hb are the lower and high§..r. bognds. The second form is described
later in Section XII, "Procedure Invocation." The bound-pair specifies that the
subscript the following sequence _P _" .. __ •

VJ. V eLL UC';::' •

Ib, lb+l, lb+2, ... ,

3-54 AM83

Consider, again, the following example:

dcl A dimension(1:8,j-l:2*(n+l)) float;

The 'dimension' attribute specifies the following range of integers for the
first subscript position:

1, 2, 3, ... , 8

The second bound-pair of 'A' depends on variables, and such variables are
evaluated when the array variable is allocated or, if the variables are based,
whenever the array variable is referenced. Suppose the variables are j=4 and
n=2 at the time of allocation. Then the attribute specifies the following range
for the second subscript position: .

3, 4, 5, 6

It follows that the array named 'A' is made up of 8*4 = 32 elements.

Each bound in a dimension attribute must be an extent, which has one of the
following forms:

exp refer (ref)

where ~ is an expression and ref is a reference. The first form is used in
most cases; it must yield a value that can be converted to a 'fixed binary(24)' I
value. The second form is described later in Section VII, "Storage Management."

ABBREVIATIONS AND DEFAULTS

The keyword 'dimension' can be abbreviated in two ways, as follows:

Keyword

dimension

dimension

Abbreviation

dim

(omit the entire keyword 'dimension' if it
immediately follows the name of the
variable being declared.)

Since recommended practice is to write the 'dimension' attribute just after the
variable name, the keyword is usually omitted. For example, consider the
declaration:

dcl C dimension(1:12,-s:1,1:3*m-2) fixed;

9/78 3-55 AM83A

This declaration can be abbreviated as follows:

dcl C(1:12,-s:l,l:3*m-2) fixed;

there are some circumstances in which the declared nace is not given in t~~
declaration, and then either the abbreviation 'dim' Must be used or the
dimension must be the first attribute. Consider the following declaration:

dcl P entry(dim(O:5) fixed);

This declaration asserts that 'p' is the nane of a procedur~ that takes one
argument which ~ust be a one-dimensional array whose subscript runs fro~ zero to
five.

The lower bound can be omitted; in that case, its default value is one.
That is, if hb is any valid higher bound, then the bound-pair:

1 : hb

can be written as:

By neans of this default, the declaration of 'c' given in the preceding
paragraph can be shortened to:

dcl C(12,-s:1,3*m-2) fixed;

ARRAY STORAGE TYPES

The bound-pairs of the 'diMensio~' a~~ri~~te in a sto~a~e type are
nornalized. A nor~alized hound-p3ir is:

where .1b and hb are the lotler and upper bou!1.:'s ')f t~e Qr~;;i~al, " .. l!1:1orr.:alizej,
bound-pair. Observe that nor~alization of a b8~n~-~air causes t~e l~~er extent
to be ' l' tlhi Ie lea v in~ the d if fe rence be t :..Jeer! t:H~ lo'-/er 3.:1 d upper b'Jun ~ s
unchanged.

As exa~ples of the nor~alization of 'dine~sion' attributes, c0:13ider the
arrays 'D' and 'E', declared as follows:

dcl 0(5:n+1) float;

dcl E(2*i:2*i+3) float;

Suppose these arrays are allocated when n=7 anj i=-1.
attributes are:

Unnorl;)al i zed rJorr.1alized

din(5:8) din(1:4)

dil"1(-2:1) dir:l(1:4)

3-56

Then the dimension

The unnormalized bound-pair determines the designators of the eleMents of each
variable. The designators are:

D(5)

E(-2)

D(6)

E(-1)

D(7)

E(O)

D(8)

E(1)

The normalized bound-pair determines the storage type of each variable;
therefore, both 'D' and 'E' have the same storage type, namely:

dim(1:4) float

or, using the default for the lower bound:

dim(4) float

Other examples of normalization are given in the examples of array storage that
follow the next paragraph.

The elements of an array are arranged in storage in left major order.
Given the designators for two elements, the order in which they appear is
determined by the leftmost subscript for ~lhich the elements differ. Consider
the following declaration:

dcl B(1:10,O:1,1:3) float;

The order of the elements of 'B' in storage is:

B(1,0,1)
B(1,0,2)
B(1,0,3)
B(1,1,1)
B(1,1,2)
B(1,1,3)
B(2,0,1)
B(2,0,2)
B(2,0,3)
B(2,-1,1)

... (and so on for 50 more elements)

Observe that 'B(1,O,1)' precedes 'B(1,0,2)' because the first two subscripts are
the same and '1' comes before '2'. Observe that 'B(1,1,2)' precedes 'B(2,O,1)'
because the designators differ in their first subscript and '1' comes before
, 2' •

EXAMPLES

As a first example of storage for an array, consider the variable 'A1',
declared as follows:

dcl A1(0:2) fixed dec(5);

The storage type for 'A1' is:

dim(3) fixed dec(5)

3-57 AM83

The storage for 'A1' can be diagrammed as follows:

s 9 9 9 9 9
A1 (0) / Z Z Z Z Z 7

s q q q 9 q

(1) / Z Z Z Z Z I
S 9 9 9 9 9

(2) / Z Z Z Z Z 7
Here, as with structures, the components nay be separated by unused bits or
bytes of storage, and the amount of unused storage, if any, is determined by
rules given later in this section, when "Alignment" is discussed.

As a second consider the follm-ling
structures:

del 01 A2(100),
02 code(2) pic"999",
02 ident char(S);

The storage type for 'A2' is:

01 dim(100),
02 dim(2) pic"999",
02 char(S);

The storage for 'A2' can be diagrammed as follows:

A2 (1) . code (1)

(2)

.ident

(2) . code (1)

(2)

.ident

999
pic"/ 7 Z I"

999
pic"/ Z Z 7"

x X X X X
"/ Z Z I Z I"

999
pic"/ Z 7 7"

999
pic"/ Z Z 7"

X X X X X
"/ Z Z Z Z 7"

... (and so on for 98 more elements)

declaration of an array of

As a third example, suppose an application requires a variable that is
thought of as an array of arrays. Since an array of arrays is not permitted,
the problem must be restated. The usual solution is to express the variable as
a two-dimensional array, thus:

del A3(n,0:2) fixed dec(S);

Suppose n=2 when 'A3' is allocated. Then storage type

dim(2,3) fixed dec(5)

3-58 M183

The storage for 'A3' can be diagrammed as follows:

S 9 9 9 9 9
A3 (1 ,0) / Z Z Z Z Z 7

s 9 9 9 9 9
(1 , 1) / Z Z Z Z Z 7

s 9 9 9 9 9
(1 ,2) / Z Z Z Z Z 7

s 9 9 9 9 9
(2,0) I 7 7 7 7 7 I

/ / / / /

S 9 9 9 9 9
(2, 1) / Z Z Z Z Z 7

s 9 9 9 9 9
(2,2) / Z Z Z Z Z 7

Observe that the elements of 'A3' are arranged in left major order.

As a fourth example consider, once again, the problem of an array of
arrays. The use of a two-dimensional array is the usual solution, but there is
an alternative, as given by the following declaration:

dcl 01 A4(n),
02 x(0:2) fixed dec(5);

This declares an array of structures; each structure has a single member and
that member is an array of scalars. Suppose, again, n=2 when 'A4' is allocated.
Then the storage type is:

01 dirn(2),
02 dim(3) fixed dec(5)

The storage for 'A4' can be diagrammed as follows:

s 9 9 9 9 9
A4 (1) • x (0) / Z Z Z Z 7 7

s 9 9 9 9 9
(1) / Z Z 7 Z Z 7

S 9 9 9 9 9
(2) / Z Z Z Z Z 7

S 9 9 9 9 9
(2).x(0) / Z Z Z Z Z 7

(1)

(2)

s 9 9 9 9 9
/ Z Z Z Z Z 7
s 9 9 9 9 9

/ Z Z Z Z Z 7
Observe the similarity of the storage diagrams for 'A3' and 'A4'; only the
designators differ.

3-59 At183

As a fifth and final example, consider the variable 'list', declared as
follows:

dcl 01 list,
02 count fixed bin,
02 account(1000),

03 name,
04 last char(30) varying,
04 middle char(1),
04 first char(20) varying,
04 title char(4) varying,

03 number pic"9999",
03 address,

04 street char(30),
04 loc,

05 city char(20),
05 state char(2),
05 zip pic"99999",

03 balance pic"$,$$$,$$pv.99",
03 credit_balance pic"$,$$$,$$9v.99";

This example picks up from the last example, 'account', that \laS given under
"Structures". The variable 'list' provides for a maximun of 1000 accounts and
also provides a variable, 'list.count', to record the current number of
accounts. Thus this single variable can provide the complete permanent record
of the financial activity of the organization.

Guidelines for Aggregates

The choice between a structure and an array is based prinarily on the
following considerations:

• The data type of the members of a structure can differ
another, whereas the elements of an array must all have the
type.

from one
same data

• The selection of a member of a structure must be made when the
reference is written, whereas the selection of an element of an array
can be performed, by the evaluation of subscript expressions, when the
array reference is evaluated.

Often arrays and structures can be combined to provide a good organization for a
complicated data object.

The most important efficiency consideration for aggregates arises in
connection with the bounds in the declaration of an array variable. When an
array is declared with bounds that are all constants 1 references to the array
may be an order of magnitude less expensive than when bounds are variable. When
the programmer has a choice, he should use constant bounds.

3-60 A~183

\lhen an array with a variable bound appears as a me~ber of a structure, it
should appear as late in the structure as possible. The same guideline applies
to a 'character' or 'bit' string with a v~riable maximum len~th and to an 'area'
with a variable area size. Consider the following example:

dcl 01 mem,
02 name(maxcnt) char(30),
02 cnt fixed;

This declaration does not conform to the gU1Qe~lne just given: the array with a
variable bound comes first in the structure. A reference to 'name' uses the
base address of the structure; that creates no problem. However, a reference to
'cnt' uses the base address of the structure plus the number of words occupied
by 'name'. Because 'name' has a variable bound, the address of 'cnt' cannot be
calculated by the compiler; it must be calculated each time 'cnt' is referenced
during execution of the program. Now consider the following revision of the
declaration:

dcl 01 men,
02 cnt fixed bin,
02 name(maxcnt) char(30);

This declaration does conform to the guideline. A reference to 'cnt' uses the
base address of the structure and a reference to 'name uses the base address of
the structure plus the amount of storage (one word) occupied by 'cnt'. Thus the
addresses of both members of the structure can be calculated by the compiler.

ALIGNMENT

At the beginning of this section, it was observed that every variable has a
data type, an aggregate type, and an alignment type. The data type and the
aggregate type determine the values that can be accommodated by a storage unit.
In contrast, the alignment type affects the way a variable is laid out in
hardware storage; it has no effect on the types of values that can be
accommodated by the storage unit. The alignment type is given as a single
attribute, either 'aligned' or 'unaligned'.

As a simple example of alignment, consider the following declaration of an
array of structures:

dcl 01 cell(4096),
02 type fixed bin(2),
02 cdr fixed bin(14),
02 flags bit(3),
02 car fixed bin(14)j

Since no alignment attributes are given for the array, various alignments are
assumed for the array, for each element of the array, and for each member of
each element. The effect is that (for this particular example), each member
occupies one word of Multics storage, each element of the array occupies four
words, and the entire array occupies 4*4096 words. In this form, the array
occupies more storage than necessary; however, the contents of the array can be
accessed efficiently.

3-61 AM83

fJow consider a slightly different declaration of the same array:

dcl 01 cell(4096) unaligned,
02 type fixed bin(2),
02 cdr fixed bin(14),
02 flags bit(3),
02 car fixed bin(14);

This array has exactly the same capacity as before, but it is laid out in a
different way. According to the default rules, the 'unaligned' attribute given
for 'cell' applies not only to the array but also to the elements and the
members of the elements. As a result (for this example), the four meQbers of
each element are packed into a single word, so the entire array occupies just
4096 words. In this form, the array occupies much less storage, but references
to its components are slower.

In most cases, the alignment of variables can be ignored. PL/I has default
conventions for alignment that usually provide satisfactory results. However,
there are two circumstances under which alignment must be considered:

• When the amount of storage occupied by a variable must be controlled,
the alignment attribute is used. A change in alignment can cause a
change of more then an order of magnitude in the storage required for
a variable. In i1ultics, storage is r.1ore abundant than in a system
that does not have virtual memory, but for very large arrays
consideration of alignment can be important.

• When the layout of a variable with respect to the words, bytes, and
bits of storage must be controlled, the alignment attribute is used.
The proper use of alignment attributes can place a member of a
structure in any given field of a hardware word. Layout is important
when data is prepared for communication with facilities that are
outside of PL/I.

The following discussion gives the information necessary for the use of the
alignment attribute to control the amount and layout of storage for a variable.
The alignment attribute is first described in a way that is independent of the
t1ultics implementation of PL/I, and the abbreviations and defaults are given.
Then the specific rules for the layout of a variable in t1ultics storage are
given.

Alignment Attribute

The alignment attribute is one of the following keywords:

aligned
unaligned

When a variable is 'aligned', its storage is laid out in a way that facilitates
access; that is, extra storage is used, where necessary, to permit the use of
fast hardware operations to fetch or store the value of the variable. When a
variable is 'unaligned', its storage is laid out in a way that uses relatively
little storage.

3-62 AH83

One way to facilitate access is to line up variables with word boundaries
so that each variable occupies one or more full words; and that is the source of
the keyword 'aligned'. One way to minimize the use of storage is to start each
variable just where the last variable left off, so that, in some cases, a
variable crosses word boundaries; and that is the source of the keyword
'unaligned'. The exact effect of the alignment attribute depends on a
particular implementation of PL/I, and no more can be said of alignment in an
implementation-independent way than what is said in the previous paragraph.
Later in this section, specific rules for the layout of variables in storage are
given for Multics, and these rules include the effect of the alignment
attribute.

The a~lgnment attribute is given in a 'declare' statement in the same way
as other attributes; however, the alignment attribute for an array variable
serves a double purpose. Consider the following examples:

dcl x(100) bit(1) aligned;

dcl 01 A(3) unal,
02 m1 dec(S) unal,
02 m2 dec(S) unal;

The alignment attribute on the first line of each of these statements applies
both to an array and to each of its elements. Thus x 1S an 'aligned' array,
each of whose elements is an 'aligned' scalar variable; and 'A' is an
'unaligned' array, each of whose elements is an 'unaligned' structure.

Abbreviations and Defaults

The alignment attribute has just one abbreviation, but it has an elaborate
default convention that permits most alignments to be handled by default. The
abbreviation is:

Keyword Abbreviation

unaligned unal

Now consider the default convention. When the alignment of a v~riable is
not written explicitly in the declaration of the variable, then it is determined
in two steps, as follows:

1. If the variable is contained in an aggregate variable that has an
explicit ~lignment attribute, then the variable takes its alignment
attribute from the smallest containing aggregate that has an explicit
alignment attribute.

3-63 AM83

2. Otherwise, the variable takes its alignment from the following default
rules:

Storage Type

scalar
arithmetic
string
address
area

aggregate
structure
array

Default

aligned
unaligned
aligned
aligned

unaligned
(same as its elements)

The irregularity of the defaults in Step 2 reflects the intention of the
designers of PL/I to provide the best choice for each case. For example, the
use of 'aligned' arithmetic variables greatly increases the speed of
calculations, whereas 'unaligned' string variables can save storage without much
affect on the speed of access.

Some examples of this default convention follow. Consider the declaration:

dcl x fixed bin;

This declaration has no explicit alignment attribute, so one must be supplied.
Step 1 of the default rule does not apply because 'x' is not contained in an
aggregate. Step 2 supplies the default 'aligned'.

As a second example, consider the following declaration of a structure:

dcl 01 pair1 unal,
02 i fixed bin,
02 j fixed bin;

Step 1 of the default rule applies for both 'pair1.i' and 'pair1.j'. The result
is as if the programmer had written:

dcl 01 pair1 unal,
02 i fixed bin unal,
02 j fixed bin unal;

As a third example, suppose that 'pair2' is declared in a similar way, but
with no alignment attribute at all, as follows:

Step

dcl 01 pair2,
02 i fixed bin,
02 j fixed bin;

does not apply. Accordi~g to Step 2, an equivalent declaration is;

dcl 01 pair2 unal,
02 i fixed bin aligned,
02 j fixed bin aligned;

Compare this example to the preceding example. Because 'pair2' is a structure,
it is 'unaligned' by default; the two examples are the same in this respect.
But the numbers 'i' and 'j' are handled differently because the alignment
attribute of 'pair2' is not explicit and Step 2 applies rather than Step 1.

3-64 AH83

As a final example, consider the following declaration of a structure,
which is chosen to illustrate a wide variety of defaults:

dcl 01 S,
02 s1 bit(3),
02 s2(500) aligned,

03 a pic"s99v.99",
03 b char(2) unal,
03 c,

04 alpha char(60),
04 beta fixed dec(5) unal,

02 s3 fixed;

The application of Rule 1 supplies some of the required align~ent attributes,
with a result that is equivalent to the following declaration:

dcl 01 S,
02 s1 bit(3),
02 s2(500) aligned,

03 a pic"s99v.99" aligned,
03 b char(2) unal,
03 c aligned,

04 alpha char(60) aligned,
04 beta fixed dec(5) unal,

02 s3 fixed;

The application of Rule 2 completes the default alignments, with a result that
is equivalent to:

dcl 01 S unal,
02 s1 bit(3) unal,
02 s2(500) aligned,

03 a pic"s99v.99" aligned,
03 b char(60) unal,
03 c aligned,

04 alpha char(2) aligned,
04 beta fixed dec(5) unal,

02 s3 fixed aligned;

3-65 AH83

Storage Lavout Rules for tlul tics

Exact rules for the layout of a variable in the 36-bit, 4-byte words of
t1ultics memory are given here. The rules assu~e that the starting address of
the variable is given, and define the layout that starts at that result. Thus
the rules do not specify the relative positions of major variables in stora~e,
but only the layout of the storage within the variable. The rules are given for
scalar variables, then for structure variables, and finally for array variables.

STORAGE LAYOUT FOR SCALARS

To determine the storage layout for a given scalar variable at a given
address, proceed as follows:

1. Begin the layout at the given address.

2. Use Table 3-1 to determine the required boundary for the variable. If
the starting address is not at a boundary of the required type, then
layout filler storage up to the next boundary of the required type.

3. Use Table 3-1 to determine the minimum storage for the variable.
the specified amount of storage to the layout.

Add

4. If the layout does not end at a boundary of the required type (as
determined in Step 2), then layout supolementary storage up to the
next boundary of the required type.

Generally, filler storage is not used in any way; in contrast, supplementary
storage is used in conjunction with the minimum storage to permit a larger and
more convenient representation of the stored value.

3-66 AH83

Table 3-1

Boundary and Length for Scalar Variables

Required Boundary

aligned I unaligned
Data Type

I

I
real fixed binary(p,q)

1 ~ P ~ 35 word bit
36 ~ p ~ 71

I
even word bit

real fixed decimal(p,q) word byte

real float binary(p)
1 ~ P ~ 27 ';-lord bit
28 ~ p ~ 63 even word bit

real float decimal(p) word byte

cOr.J.plex fixed binary(p,q) even word bit

cOrJplex fixed decimal(p,q) I,-lord byte

complex float binary(p) even word I bit

complex float decimal(p) word byte

character (ml)
non varying word byte
varying word word

bit (!TIl)
non varying word bit
varying word Hard

picture"p" (with related word byte
data type "char(n) ')

label even word even word

entry even word even word

forrJat even word even Hard

pointer * even word bit

I I offset word word
I

file even word even word

area(as) even word even \/Ord

* Note: an aligned pointer uses two full words.

3-67

Hinimum
Storage

(p+ 1) bits
(p+1) bits

(p+1) bytes

(p+9) bits
(p+9) bits

(p+2) bytes

2*(p+1) bits

2*(p+1) bytes

2*(p+9) bits

2*(p+2) bytes

(ml) bytes
(ml+Jn bytes

(ml) bits
(ml+36) bits

(n) bytes

4 Hords

4 \/Ords

4 words

36 bits

4 words

4 Hords

(as) words

!

Al183

As the basis for an example of the layout of a scalar variable, consider
the following declaration:

dcl phi fixed bin;

According to the default rules, this declaration is equivalent to:

dcl phi real fixed binary(17) aligned;

Suppose the last allocated bit is bit 26 of word 103. Then the rules just given
prescribe the following layout for 'phi':

103

104 I
I

o

phi

27

1//////////////////
I phi (supplement) I

'V / / / / / / / /1
18 V////////

This layout is determined as follows:

1. The layout begins at bit 27 of word 103.

2. According to Table 3-1, the required boundary for the variable is
word. Since the starting address is not at a word boundary, the
layout begins with one byte of filler storage (fully shaded).

3. The layout continues with the 8inimu~ storage for the v~riable, 18
bits.

4. Since the required boundary is word, the layout concludes Hith 18 bits
of supple~entary storage (half shaded).

The storage available for 'phi' is a full word, the minimum plus the supplement,
and the full word is used to contain the v~lue of 'phi'. Since this eliminates
masking and shifting operations, it is an imoortant contribution to efficiency
of access.

STORAGE LAYOUT FOR STRUCTURES

To determine the storage layout for a given structure variable at a given
address, proceed as follows:

1. Begin the layout at the given address.

2. Determine the required boundary type for the structure as follows:

a. r1ake a list of the required boundaries for the 8embers of the
structure.

b. If the structure itself is 'aligned', then add the boundary word
to the list.

c. Find the boundary on the list that refers to the largest unit of
storage and take that to be the required boundary for the
st.ru.ct,11re ~

If the starting address is not a boundary of the required type, then
layout filler storage up to the next boundary of storage.

3-68 .lH183

3. Continue the layout of the structure by laying out storage for each of
its members.

4. If the required boundary is even Hord or word and the layout does not
end at a word boundary, then layout supplementary storage to the next
word boundary.

As the basis for an example of the layout of a structure variable, consider
the following declaration:

dcl 01 s,
02 alpha fixed dec(6,2),
02 beta bit(12),
02 gamma char(4);

According to the default rules, this declaration is equivalent to:

dcl 01 s unal,
02 alpha real fixed decimal(6,2) aligned,
02 beta bit(12) nonvarying unaligned,
02 gamma character(4) nonvarying unaligned;

Suppose the starting address for the structure's' is word 73. Then the rules
prescribe the following layout for s :

73

74

75

76

o 12 18 2

This layout is determined as follows:

1. The layout begins at bit 0 of word 73.

2. The list of required boundaries for the members of's' is:

?
..J'

word
bit
byte

the maximal boundary from this list is word. Since the layout begins
on a word boundary, no filler storage is required.

The layout continues with the layout of the three members of the
structure.
follows:

alpha

Each is laid out according to the rules for a scalar, as

The required boundary is word and the minimum storage is
seven bytes. The layout ends with one byte of supplementary
storage.

3-69 At183

beta The required boundary is bit and the ~lnl~U~ storaGe is 12
bits. ~o filler or supplementary storage is used.

samma ~he required boundary is byte and the nini~uM storaGe is 4
bytes. The layout begins with six bits of filler storage.
No suppleQentary storase is required at the end.

4. Since the layout of the last member ends in the middle of a word and
the required boundary for the structure is word, the layout of the
structure ends with two bytes of supplementary storage.

The order in which the members of a structure are arranged can have a major
effect on the amount of storage required for the layout of a structure. As an
example, consider:

del 01 A,
02 i bit,
02 cell,

03 ident char(2),
03 link ptr,

02 x bit;

The layout for 'A' requires seven full words, as follows:

0 9 18 27
,~//////////////////////////////////

i //////////////////////////////////
60

61

62

////////////////////////////////////1

63

64

65

66

///////////////////////////////////)
I ~////////////////// I ident //////////////////
////////////////////////////////////
////////////////////////////////////

link

link (cont'dl I
:~////////////////////////////////j/

~. A (supplementarv)

This wasteful layout arises from the fact that 'link' is an aligned 'pointer'
and specifies an even Hord boundary not only for its own storage, but also for
the structure 'A.cell' of which it is a member and for the structure 'A' which,
in turn, contains 'A.cell'.

Consider the following revision of the declaration of the structure 'A':

dcl 01 A,
02 cell,

03 link ptr,
03 ident char(2),

02 i bit,
02 x bit;

3-70 AM83

In most cases, this change in the ordering of the members of 'A' would have no
affect at all on the usage of the structure, but the result is a layout that
uses four words instead of seven:

9 18 27
60

link
61

62

63
i

There is still some wasted storage here (' ident " ' i " and ' x' could all fi t in
one word), but elimination of that waste would require a change in the level
structure of the variable.

Consider a different revision of the declaration of the structure 'A':

dcl 01 A unal,
02 i bit,
02 cell,

03 ident char(2),
03 link ptr,

02 x bit;

Because of the addition of the attribute 'unal' for 'A', the layout uses two
words instead of seven:

60

61
link

For this version, however, the interpretation of the value of the 'pointer'
value will take more time than for the 'aligned' value.

STORAGE LAYOUT FOR ARRAYS

To determine the storage layout for a given array variable at a given
address, proceed as follows:

1. Begin the layout at the given address.

2. The required boundary for the array is the same as for the elements of
the array. If the starting address is not a boundary of the required
type, then layout filler storage up to the next boundary of the
required type.

3. Continue the layout of the array by laying out storage for each of its
elements.

4. If the last element does not end at the required boundary for the
array, then layout supplementary storage to the next boundary of the
required type.

3-71 A!183

The alignment attribute of an array is especially important, since it is in
the layout of large arrays that the alignment can have a significant effect on
storage requirements. As a simple illustration, consider the following
declarations:

dcl pm1(50,50) bit;

dcl pm2(50,50) bit aligned;

The array 'pm1' requires 70 words, whereas 'pm2' requires 2500 words.

For a second example of the layout of an array, consider the following
declaration:

dcl 01 table(1000),
02 link ptr,
02 cont unal,

03 m bit,
03 n bit,
03 k(3) fixed(5),
03 cnt fixed(15);

The layout for 'table' is as follows:

22

23

24

25

26

27

o 9

link

30

31
n k 1 k cnt
11////I//I/IIII//I/IIIIII/IIIII//I~

table(2) (supplementary) I

... (and so on for 998 more elenents)

Observe that an element of 'table' has a required boundary of even word (because
a 'pointer' variable is a part of each element. However, according to the rules
for layin~ out a structure, an element of 'table' occupies only three words.
Thus there is a word of filler storage between one element and the next. In
accordance with Step 4 of the layout rules for an array, a word of filler
storage follows the three words of the last element. Thus the array occupies
4000 words.

3-72 AM83

SECTION IV

VALUE CONVERSION

In SOMe cases, a value cannot be placed in a storage unit as it is; instead, it
must be represented in a form specified by the storage type of the storage unit.
This adjustment of a value to a specified representation is the conversion of
the value. The conversion operation is not necessarily simple; it may require
that the given value be reinterpreted, approximated, truncated, or even rejected
as unsuitable.

There are many storage types in PL/I; and if conversion is allowed from any
type to any other type, many kinds of conversion are required. PL/I allows
conversion between any types of computational values, including some conversions
that are not entirely obvious, such as that of an arithmetic value into a
character-string value. On the other hand, PL/I does not allow most conversions
that involve non-computational values; in fact, the only conversion of this kind
allowed is that betwee~ the two types of locator values, 'pointer' and 'offset'.

The storage type consists of an aggregate type as well as a data type.
PL/I alloHs some conversions of aggregate type. For example, if a scalar value
is assigned to an array variable, the value is automatically promoted to an
array value before the assignment.

CONTEXTS THAT FORCE CONVERSION

In PL/I, if a conversion from one storage type to another is required
is not explicitly indicated, the conversion is implicitly performed.
implicit conversion makes a program look simpler than it really is,
concealing costly conversion operations, and it has both advantages
disadvantages. Certainly any means to shorten a program is welcome,
unpleasant surprises can occur when a programmer misunderstands the rules
implicit conversion.

4-1

but
This

by
and
but
for

AM83

The conversion of a value is forced w~8n it is assi3ned to a storag8 unit.
The storage unit to which a value is assigned is the target, and the storage
type of the target determines th8 kind of conversi~n performed. Sometimes the
target is a variable name that has been explicitly declared i~ the program; in
this case, its storage type is easily determined. In other cases, the target is
a temporary storage unit provided by PL/I; and, in this caS8, the storage type
is determined by special rules. In all cases the storage type of the target
depends on the context of the computation. The ways in which context forces
conversion are described at many places in this manual because they occur in
many features of the language. An informal review of these contexts is given in
the following paragraphs in order to show clearly the role of conversion in
PL/I.

General Contexts

There are a variety of contexts in which an expression is used in a general
way, and in these contexts, the storage type of the target is virtually
unrestricted. These contexts are discussed in the following paragraphs.

ASSIGNt1ENT ST ATEt1ENTS

The most fundamental context for conversion is the assignment statement.
For example, the statement:

x = y;

can imply any of the possible conversions of PL/I, depending on the storage type
of the variables 'x' and y. The conversion can be a simple matter, as in the
case:

dcl x fixed decimal(8,2);
dcl y fixed decimal(7,2);

x = y;

Here, the only difference is that the target has one more high-order digit than
the assigned value; and the conversion is always exact conversion. On the other
hand, the conversion can be quite complicated, as in the case:

dcl x(2,3) fixed decinal(8,2);
dcl y float binary(25);

x = y;

Here the scale attribute must be converted from 'float' to 'fixed', the base
attribute from 'binary' to 'decimal', the precision attribute from '(25)' to
'(8,2)', and, most remarkable, the aggregate type from scalar to that for a
two-dimensional array. Thus a small assignment statement can invoke a large
conversion effort. A description of the assignment statement is given in
Section X, "Value Assignment."

4-2 Ar183

ASSIGNMENT-LIKE CONSTRUCTS

In several important contexts, an assignment statement is implied in a more
or less obvious way. For example, the 'do' group:

is

do i = 1 to j;
Q(i) = R (i) ;
end;

equivalent to:

i = 1;
loop: if i< = j

then do;
Q(i) = R(i);
i = i + 1;
goto loop;
end;

Thus the example 'do' statement has within it the equivalent of an assignment
statement and, therefore, a conversion occurs if the storage type of 'i' is not
the same as that of 'j'. A full description is given in Section XI, "Program
Flow. "

There are a few other constructs that are closely related to the assignment
statement. An 'initial' attribute assigns a value to a variable when the
variable is allocated, as described in Section VII, "Storage t-1anagement." A
'refer' option, which is used in the declaration of some 'based' variables,
assigns a value to a member of a structure in which it appears when that
structure is allocated, as also described in Section VII, "Storage Management."
Finally a 'get' statement assigns an input value that is a character string to
an input variable, as described in Section XIV, "Stream Input/Output."

ARGUMENTS AND RESULTS

There
procedur'e.

are implied conversions in connection with
For example, consider the following procedure:

F3: procCa) returns(fixed binary(20));
dcl (a,b) float;
b = a**3;
return(b) ;
end;

Suppose this procedure is invoked by the function reference

F3(4.58)

the invocation of a

The argument of this function reference is the literal constant '4.58' whose
storage type is 'fixed decimal(3,2)', and so it must be converted before being
assigned to the parameter 'a' whose storage type is 'float'. Similarly, the
returned value 'b' is 'float'j and so it must be converted to 'float' before
being assigned to the temporary storage for the value of the function reference
whose storage type is 'fixed binary(20)'. Thus conversion occurs for both
argument and result in this case. A description is given in Section XII,
"Procedure Invocation."

4-3 At183

BUILT-IN FUNCTIONS AND EXPRESSIONS

Just as conversion may be required for the invocation of a
programmer-defined procedure, so also may conversion be required for a built-in
function reference. However, the built-in functions do not restrict an argument
to a single storage type but rather accept anyone of a specified set storage
types. Thus the built-in functions are designed to minimize the need for
conversion of values. Details are given in Sections VIII and IX, "Expressions"
and "Operations," respectively.

There are built-in functions whose purpose is the explicit conversion of a
value from one storage type to another. Consider the following program
fragment:

dcl s char(10);
dcl i fixed;

s = char(i,10);

Here the built-in function 'char' is used to convert the arithmetic value of 'i'
to a character string for assignment to's'. Full details on the built-in
conversion functions are given under "Conversion Operations" in Section IX,
"Operations."

Arithmetic operators are similar to built-in functions in their use of
conversion. Although the operator in an expression may require conversion of
its operands, the requirement is reduced in certain ways. For example, if both
of the variables of the expression 'a+b' are 'real fixed decimal', then both
values cu'e Lised wi thou t con vecsion, even though L.uey lUdy uu L. have L.ue ;:;dUle

'precision' attribute. Details are given in Sections VIII and IX, "Expressions"
and "Operations," respectively.

Special Contexts

There are many contexts in which the value of an expression is required for
a special purpose, and in these contexts the value is converted to a specific
storage type. For example, consider the assignment statement:

X(2*i+k) = 0;

In this statement the expression '2*i+k' appears in a context that
subscript; accordingly, its value is converted to a binary integer.
exanple, consider the output statement:

put list(alpha);

requires a
As a second

In this statement, the expression 'alpha' appears in a context that requires a
value that can be placed in the output stream; accordingly, it is converted to a
character string.

4-4 At183

The distinctive characteristic of a special context is that the storage
type of the target is implicit; that is, it is implied by the use to which the
given value is put rather than being given by means of a declaration. In order
to provide an overall view, the special contexts are listed here; they are
classified according to the storage types of the implied targets: integer,
character string, bit string, and locator.

INTEG~R TARGETS

When a special context requires that the value of a given expression be
converted to an integer, the target storage type is:

real fixed binarY(Q,O)

The number-of-digits, Q, is always sufficiently large to accommodate any value
that is valid in the given context. The integer contexts are as follows:

• The maximum-length expression in a 'character' or 'bit' attribute, as
described in Section III, "Value Storage"

• The area-size expression in an 'area
Section III, "Value Storage"

attribute, as described in

• Each of the array-bound expressions in a 'dimension' attribute, as
described in Section III, "Value Storage"

• The expression in a 'position' attribute, as described in Section VII,
"Storage Management"

• Each replication-factor expression in an 'initial' attribute, as
descri bed in Sect ion VII, "Storage ~1anagement"

• Each subscript expression in a subscripted variable reference, as
described in Section VIII, "Expressions"

• The expression in a 'pagesize or 'linesize'
statement for a 'stream' file, as described
Input/Output"

option in an
ill Section XIV,

'open
nStr8am

• The expression in a ' skip' or 'line' option in a ' get' or ' put'
statement, as described in Section XIV, "Stream Input/Output"

• Each expression in a format specification list, as described in
Section XIV, "Stream Input/Output"

• The expression in an 'ignore option in a 'read' statement, as
described in Section XV, "Record Input/Output"

• The arguments of some built-in functions (for example, the second and
third arguments of 'substr'), as described in Section IX, "Operations"

CHARACTER-STRING TARGETS

When, a special context requires that the value of a given expression be
converted to a character string, the target storage type is:

character(ml)

4-5 At183

The maximum-length, ml, is deterf.1ined from the storage type of the given
expression. The character-string contexts are as follows:

• The expression in a 'title' option, as described in Sections XIV and
XV, "Stream Input/Output" and IIRecord Input/Output," respectively

• Each expression that supplies an output value in a 'put' statement, as
described in Section XIV, "Stream Input/Output"

• The expression in a 'string' option in a 'get' statement, as described
in Section XIV, "Stream Input/Output"

• The expression in a 'key' or 'keyfrom' option, as described in Section
XV, "Record Input/Output"

BIT-STRING TARGETS

When a special context requires that the value of a given expression be
converted to a bit string, the target storage type is:

bit (ml)

The maximum length, ml, is determined from the storage type of the given
expression. There are two bit-string contexts, as follows:

• The test expression in an 'if' statement, as described in Section XI,
iiProgram Flow ii

• The test expression in a 'while' option in a 'do' statement as
described in Section XI, "Program Flow"

LOCATOR TARGETS

In one special context, the value of an expression must be converted to a
locator target. In this case, the target storage type is:

pointer

and the given expression must already be 'pointer' or 'offset'.
context is:

The locator

• The locator qualifier expression in a locator qualified reference, as
described in Section VIII, "Expressions"

4-6 At-183

DATA TYPE CONVERSION

Rules for all possible conversions of the data type of a scalar are given
in the following paragraphs. Arithmetic, character string, bit string, and
locator targets are considered.

Pictured strings are not discussed, either as targets or as the source of
the value to be considered. This omission reflects the fact that when a
pictured-string storage unit is accessed, it is always considered to have an
arithmetic or ordinary character-string value. Section III, "Value Storage,"
gives the relation between a pictured storage unit and its arithmetic or
character string value.

When a conversion is attempted that could be an error, an appropriate PL/I
condition occurs. The occurrence of such conditions are mentioned in the
following rules, but a discussion of their significance is deferred until later
in this section, under the heading "Conditions for Conversions".

Arithmetic Targets

The rules for converting a scalar computational value to a given arithmetic
data type follow. This is the most important kind of conversion because it
includes the conversion from one type of arithmetic value to another. The
conversion is performed in four steps, as follows:

1. Reinterpretation. An arithmetic value is obtained from the given
value as follows:

a. If the given value is arithmetic, then no reinterpretation is
required.

b. If the given value is a character-string, then it is
reinterpreted as an arithmetic value. The string must have one
of the following forms:

sign arithmetic-constant
sign arithmetic-constant sign arithmetic constant i
null-string

The first form represents a real value, the second a complex
value, and the third a zero real value. The initial sign can be
omitted if it is plus. Arithmetic constants are defined in
Section VIII, "Expressions". Blanks can occur in the character
string only before or after the entire value representation, not
within it. If the character string does not satisfy all of these
conditions, it cannot be interpreted as an arithmetic value and
the 'conversion' condition occurs.

c. If the given value is a bit string then it is reinterpreted as an
arithmetic value by treating the sequence or Dl~S as the Dlnary
representation of a positive integer, with the rightmost hit
taking the units position.

4-7 AM83

2. Representation. The value is represented according to the scale and
base attributes of the target data type, but \/ith the mode and
precision required by the value itself. The specific rules are as
follows:

a. The mode is 'complex' or 'real' depending on whether the value
does or does not have an imaginary part. If the value has only
an imaginary part, zero is assumed for the real part.

b. The scale and base are those of the target data type.

c. The precision (number of digits and scale factor) is whatever is
necessary to represent the given value. SODe values cannot be
represented exactly, and for such values low-order digits that do
not affect the final result (obtained after the "Approximation"
step) are omitted.

3. Approximation. If necessary, the value is approximated. The
operation depends on the mode, scale, and precision of the target data
type, as follows:

a. A 'fixed' value representation is adjusted to have the number of
fractional digits that is specified by the target precision.
This may require the addition of zeros at the right or the
truncation of low-order digits. No rounding occurs.

b. A 'float' value representation is adjusted to have the number of
mantissa digits that is specified by the target precision. This
may require the addition of zeros or the truncation of low-order
digits. Rounding occurs in the case of 'float' values.

c. A 'complex' value representation is adjusted to the target mode.
If the target mode is 'real', then this requires the truncation
of the imaginary part of the value representation.

4. Range Check. The magnitude of the value is checked to determine
whether or not it can be accommodated by the target data type. The
following cases apply:

a. A 'fixed' value representation is adjusted to have the high-order
digits that are specified by the target precision. This may
require the addition of zeros on the left or the truncation of
high-order digits. If truncation of nonzero high-order digits
occurs, then the 'size' or 'fixedoverflow' condition occurs.

b. A 'float' value representation has its exponent checked. If the
exponent is greater than 127, the 'overflow' condition occurs.
If the exponent is less than -128, the 'underflow' condition
occurs.

This concludes the rules for conversion to an arithmetic target. A good
way to learn such a set of rules is to extract from them those features that are
not obvious. What is "not obvious" depends on the reader, but for the rules
just given, the following items might be selected:

• Blanks can appear before or after but not within a character-string
representation of an arithmetic value.

4-8 Al183

• A character string that is all blanks is interpreted as the arithmetic
value zero.

• When an arithmetic value is approximated, rounding occurs if the
target is 'float'.

• When a complex value is converted to 'real', the imaginary part is
discarded without the occurrence of a condition to report a possible
error.

EXAt1PLES OF ARITHt1ETIC TO ARITHt1ETIC CONVERSION

As a first example, suppose the given value is the character string
"25. 97181 ~~~" and the target data type is ' real float decimal (5) , . The first
step in the conversion is the reinterpretation of the string value to yield an
arithmetic value, giving 25.97181. The second step is the representation of the
value according to the target scale and base attributes, which are 'float' and
'decimal', giving '+2597181e-5'. The third step is the approximation of the
value as specified by the target precision, which is '5', giving '+25972e-3'.
The fourth step is the range check which, in this case, determines that the
exponent is in the required range of -128 through +127. The final result of the
conversion, '+25972e-3' is a valid value representation for the given data type.

The following examples show the conversion of an arithmetic value for an
arithmetic target:

Given Value Tarp;;et Type Exact Representation Result Value

17.876 fixed dec(5) +17.876 +00017.
17.876 fixed dec (5, 1) +17.876 +0017.8
17.876 fixed dec(5,3) +17.876 +17.876
17.876 fixed dec(5,4) +17.876 (size)

131 fixed bin(12) +10000011.b +000010000011.b
131 fixed hin(1?_?) +10000011.b +OO10000011.00b -- ... " . - 7-;

131 fixed bin(12,5) +10000011.b (size)

-6.9 fixed bin(9,6) -110.1110011 ... b -110.111001b
-6.9 fixed bin(9) -110.1. .. b -000000110.b

5.638 float dec(5) +5638.e-3 +56380.e-4
5.638 float dec(3) +5638.e-3 +564.e-2

The first group of examples (for the given value 17.876) show the effect of
gradually increasing the scale factor of the target until, finally, there are
not enough integer digits and the 'size' condition occurs. The second group is
a similar sequence for a binary target. The third group shows the handling of a
value, -6.9, that cannot be expressed exactly in binary representation; the
" " in the exact representation means "digits that do not affect the final
result". The last group shows a 'decimal float' target; and includes the only
example in which rounding occurs when low-order digits are truncated.

4-9 AM83

EXAt1PLES OF STRING TO ARITHt1ETIC CONVERSIOn

The following examples illustrate the conversion of character-string or
bit-string values to arithmetic targets.

Given Value Target Type Reinterpretation Result Value

"-8.92161616"
"-168.92161616"
"161616"

fixed dec(5)
fixed dec(5)
fixed dec(5,2)
fixed dec(5,2)

-8.92
(conversion)
o

-00008.

+000.00
+000.00 ""

23i
23i

complex dec float(5)
dec float(5)

o

0+23i
0+23i

+00000.eO+23000.e-3i
+OOOOO.eO

"8.23e-2"
"8.23-2"
"8.23e-127"

fixed dec(5,2)
fixed dec(5,2)
float dec(3)

.0823
(conversion)
823e-129

+000.08

(underflow)

"101"b fixed dec (4, 1)
fixed dec(4,1)
fixed dec(4,1)

5
o
o

+005.0
+000.0
+000.0

""b
"OOOOOOO"b

The first group of examples shows ways in which blanks can and cannot be used in
a character string that is to be converted into an arithmetic value. The second
group shows how a complex value is filled out or truncated as the target
requires. The third group shows how the wrong format for a floating-point value
causes the 'conversion' condition to occur and also shows how the conversion of
a number that appears to be in range can cause the 'underflou' condition to
occur. The final group shows the conversion or bit-string values to arithmetic
values.

Character-String Targets

The conversion of a scalar computational value to a character-string value
is performed according to one of the following three rules:

1. Given Character-String. Suppose the given value is a character
string. Let the string type of the target be 'character(n)', where n
is the maximum length. Then the conversion is as follows:

2.

a. If the length of the given value is not greater than n and the
target is 'varying', then the given value (with its given length)
is the result.

b. If the length of the given value is not greater than n, as
before, but the target is 'nonvarying', then blanks are added at
the right end of the given string until it is n characters long.
The extended value is the result.

c. If the length of the given value is greater than n, then the
'stringsize' condition occurs.

Given Bit-String. Suppose the gi en value is a bit-string. It is
re~n~erpr~t~d . as a character-str ng value by interpreting each bit as
a 0 or 1 character. The resu ting character-string value is then
adjusted to the correct length by Rule 1, above.

4-10 AM83

3. Given Arithmetic Value. Suppose the given value is an arithmetic
value. Then the following steps are performed:

a. This step depends on scaling and base of the given value (not the
target). A new number-of-digits, ~, and scale-factor, gQ, must
be defined. If the given value is ' decimal (p, q) , , then no
conversion is required, and:

~ = Q
.Q.Q. = g

If the given value is 'fixed binary(p,q)', then the given value
is converted to 'fixed decimal(pc,qc)' where

pc = min(ceil(p/3.32)+1,59)
qc = ceil(q/3.32) (for q not negative)
qc = -ceil(-q/3.32) (for q negative)

If the given value is 'float binary(p)', then the given value is
converted to 'float decimal(pc)' where

pc = min(ceil(p/3.32),59)

Both of these conversions are performed according to the rules
for an arithmetic target given earlier in this section. At the
conclusion of this step, the given value necessarily has base
'decimal'. The mode of the value is not changed by this step.

b. Next, the value is expressed as a character string. Observe that
the representation is different from that used for the value when
it is in a storage unit.

(1) If the value is 'real flo~t:, it is expressed as follows: a
blank (for plus) or a -, followed by the first digit of
the mantissa, followed by the decimal point, followed by the
remaining digits of the mantissa, followed by 'e' followed
by a signed, three-digit exponent. Let ~ be the
number-of-digits specified by the precision of the given
value. Then the mantissa has ~ digits and the whole
character string has length ~+7.

(2) If the value is 'real fixed', the rules for its
representation as a character-string are complicated and are
best given by examples (see below). Let ~ and gQ be the
number-of-digits and scale factor specified by the precision
of the given value.

\Jhen ~ 2.. gQ 2.. 0 (the usual case), the character string has
length ~ + 3. Otherwise (i.e., gQ > ~ or gQ < 0), the
character string has length Q£ + 3 +k, where k is the number
of characters required to represent the absolute value of gQ
without leading zeros.

(3) If the value is 'complex', its representation is obtained by
writing the two parts as 'real' values according to rule (1)
or (2), just given, and then concatenating them. If the
i~aginary part is positive, the blank that indicates its
sign is changed to '+'. An 'i' is added just after the
imaginary part. Blanks that occur between the two parts are
removed and are placed at the right end of the
representation. Let lr and Ii be the lengths of the strings
representing the real and imaginary parts. Then the entire
character string has the length Ir+li+1.

c. The character string that re~ults from Step b is adjusted to the
correct length by Rule 1, above.

4-11 At183

This concludes the rules for conversion to a character-string target.
These rules are used chiefly in connection with data-directed and list-directed
output, where they determine the format of the values in the listing. The rules
are complicated, especially when the given value is binary. The folloHing table
will be useful in determining the precision of a binary value converted to a
decimal value under Step 3.a:

n. ceil{n/3.32} n. ceil{n/3.32)

1-3 1 37-39 12
4-6 2 40-43 13
7-9 3 44-46 14
10-13 4 47-49 15
14-16 5 50-53 16
17-19 6 54-56 17
20-23 7 57-59 18
24-26 8 60-63 19
27-29 9 64-66 20
30-33 10 67-69 21
34-36 11 70-73 22

This table includes the l.laximum number-of-digits for a t'1ul tics PL/I binary value
(71) .

EXAt1PLES OF CHARACTER-STRING TO CHARACTER-STRING CONVERSION

The following examples illustrate conversion of character-string values to
character-string targets.

Given Value

"ABC"
"ABC"
"J6ABC"
"ABCJ6J6"
""
"ABCDEFG"

Target Type

char(6) varying
char(6)
char(6)
char(6)
char(6)
char(6)

Result Value

"ABC"
"ABCJ6J6J6"
"J6ABCJ6J6"
"ABCJ6J6J6"
"J6J6J6~~16"
(stringsize)

When the 'varying attribute is present, the length of the given value is not
changed. When the 'varying' attribute is not present, 'nonvarying' is assumed
and the given value is extended to the l.laximum length. The examples show that
blanks that are already in the given string are treated as ordinary characters.
Ilhen the length of the given string exceeds the maximum length allowed by the
target, the 'stringsize' condition occurs.

EXAMPLES OF BIT-STRING TO CHARACTER-STRING CONVERSION

The following examples illustrate conversion of bit-string values to
character-string targets.

Given Value

"0100"b
"0100"b

Target Type

char(7) varying
char(7)

Result Value

"0100"
"0100)61616"

Observe that extension of the string occurs after its conversion to a character
string, so the added characters are blanks, not zeros.

4-12

EXAt1PLES OF ARITHI1ETIC TO CHARACTER-STRING CONVERSION

Many examples are required to adequately illustrate the conversion of
arithmetic values to character-string targets. Groups of exaMples will be given
for each of the following types of given arithmetic values:

float decimal
fixed decimal
float binary
fixed binary
complex

The conversions can be understood in two ways. In many cases, it is enough to
determine how many characters the character-string form of an arithmetic value
requires. In some cases it is necessary to know the exact representation that
is used. The examples illustrate both levels of knowledge.

Float Decimal Values

The following examples show the conversion of 'float decimal' values to
character-string targets.

Given Type

float dec(5)
float dec(5)
float dec(5)

Given Value

-81993.e6
+81993.e6
+81993.e6

Target Type

char(14)
char(14)
char(10)

In the first two examples,

p = 5
p+7 = 12
length = 14

(number-of-digits in given value)
(length of the representation)
(length required by the target)

Result Value

"-8. 1993e+01011£1"
"£18. 1993e+010£l£l"
(stringsize)

Observe that three digits are always provided for the exponent; this is part of
a design policy that assures that the representation _l TT _ T 'J'''''' +-_17"_

eLL way 0 varl..<:;;0
~.7
~""f columns,

regardless of the particular given value.

Fixed Decimal Values

The following examples illustrate conversion of 'fixed decimal' values to
character-string targets.

Given Type Given Value Target Type Result Value

fixed dec(4,2) -49.62 char(20) var "£1-49.62"
fixed dec(4,2) -00.02 char(20) var "£1£1-0.02"
fixed dec(4,2) +00.02 char(20) var "£1£1£10.02"

fixed dec(4,0) -8200. char(20) var "£1£1-8200"
fixed dec(4,0) +0000. char(20) var "£1£1£1£1£1£10"

4-13 AI183

Because the target is 'varying', the result string is not extended to 20
characters. Observe that the length of the result is always Q+3 (where Q is the
number-of-digits of the given value); that is, although leading zeros, the plus
sign, and a trailing decimal point are all suppressed, blanks are added at the
left to compensate for the suppressed characters. Thus it is easy to calculate
the length of the result.

When a value is 'fixed decimal(p,q)' and the scale factor is negative (q<O)
or the scale factor is greater than the number-of-digits (q>p), then the decimal
point is not adjacent to a variable digit of the value; instead it is adjacent
to a sequence of filler zeros, as the examples below show. Such fixed-point
values are given special treatnent, as follows:

Given Type

fixed dec(4,-2)
fixed dec(7,11)
fixed dec(7,11)

Given Value

+066700.
-.00008131885
-.00000009487

Target Type

char(20) varying
char(20) varying
char(20) varying

Result Value

II~~G67f+2 II
"-8131885f-11 "
"~~~-9487f-11 "

The slashed zeros are the filler zeros. In the representation of these values
no attempt is made to place the decimal in the representation of the value;
instead, each value is expressed as an integer with a scaling factor. The
scaling factor in the representation is the negative of the scaling factor in
the precision attribute.

Float Binary Values

The following examples illustrate conversion from 'float binary' values to
character-string targets. The target type 'char(20) varying' is assumed in each
case.

Given Type

float bin(27)
float bin(20)

Given Value

+.1011001
-.1000000

e7b
e-9b

Intermediate Value

+890000000.e-7
-9765625.e-10

Result Value

"~8.90000000e+001"
"-9.765625e-004"

The indicates zero digits that fill out the required precision of the
binary value. The "intermediate value" is the value after it has been converted
to a 'decimal' value but before it has been converted to a character string.
The data type for the intermediate value is calculated according to Rule 3.a.
The calculation is as follows:

First Example

p = 27
p/3.32 = 8.1
ceil(p/3.32) = 9

Second Example

p = 20
p/3.32 = 6.02
ceil(p/3.32) = 7

The intermediate data types for the two examples are 'float dec(9)' and 'float
dec(7)'.

4-14 Mi83

Fixed Binary Values

The following examples illustrate the conversion of 'fixed binary' values
into character-string targets. The target is assumed to be 'char(20) varying'.

Given Type

fixed bin(9,0)
fixed bin(9~0)

Given Value

-001010101.b
-111111111.b

Intermediate Value

-0085
-0511 .

Result Value

"£HSJzSJzS-85"
"~:nHS-511 "

The "intermediate value" is again the value after it has been converted to a
'decimal value' and before it has been converted to a character string. The
data type for the intermediate value is calculated as follows:

Number-of-digits

p = 9
p/3.32 = 2.7 ...
ceil(p/3.32) = 3
ceil(p/3.32)+1 = 4

Scale-factor

q = 0
q/3.32 = 0
ceil(p/3.32) = 0

Thus the intermediate type is 'fixed dec(4,0)'. The second example shows that
the formulae allowed one more digit (4 instead of 3) than were required by the
largest possible value of the given data type. The example in the next
paragraph shows the reason for this aspect of the design of PL/I.

The following is one more example of the conversion of a 'fixed binary'
value to a character-string target.

Given Type Given Value Intermediate Value Result Value

fixed bin (9, 1) -11111111.1b -255.5 "k'S-255.5 "

Here the data type of the intermediate
dec(4,1)'. The full four digits of precision
value '-127.5'. It thus becomes apparent that
needs four decimal digits, a nine-bit number
any case, the Rule 3.a always applies.

Complex Values

value is calculated to be 'fixed
are required to represent the
although a nine-bit integer never
may need four decimal digits. In

The following example illustrates the conversion of complex values into
character-string targets.

given type:
given value:
intermediate type:
intermediate value:
target type:
result value:

complex float bin(20)
-.10000000000000000000e-1b+.11100000000000000000e1bi
complex float dec(7)
-2500000e-6+1750000e-6i
char(32)
"-2.500000e-001+1.750000e+OOOik'Sk'SJzS"

4-15 At183

Bit-String Targets

The conversion of a scalar computational value to a bit-string value is
performed according to one of the following three rules:

1. Given Bit-String. The rules for adjusting the length of a bit-string
to suit the target are the same as for character-string to
character-string conversion with one exception: whereas a character
string is extended with blank characters, a bit string is extended
with zero-bits.

2. Given Character-String. Suppose the given value is a
character-string. If every character is a '0' or a '1' character,
then the character-string is reinterpreted as a bit-string by
interpreting each character as a bit. The resulting bit-string is
then converted to a bit-string of the required length by Rule 1,
above. If the character string contains a character other than '0' or
'1', the 'conversion' condition occurs.

3. Given Arithmetic Value. Suppose the given value is arithmetic.
First, the value QQ is computed according to the following table:

Attributes of Given

fixed binary(p,q)
fixed decimal(p,q)
float binary(p)
float decimal(p)

Value of 'pc'

min(71,max(p-q,0»)
min(71,max(ceil«p-q)*3.32),0)
min(71,p)
min(71 ,ceil(p*3.32)

If the value of QQ is zero, then the null bit string is immediately
adopted as the result of the conversion. Otherwise, the given value
is converted to an intermediate value of data type 'real fixed
binarY(QQ,O)'. The result of this conversion is a 'binary' integer
value. This value is reinterpreted as a bit-string by ignoring the
sign and treating each binary digit as a bit. The resulting bit
string is adjusted to the correct length by Rule 1, above.

EXAt1PLES OF BIT-STRING TO BIT-STRING COtlVERSION

The following examples illustrate the conversion of bit-string values to
bit-string targets.

Given Value Target Type Result Value

"11010"b biteS) varying "11010"b
"11010"b biteS) "11010000"b
""b bit(4) varying ""b
"lib bit(4) "OOOO"b
"11010"b bit(4) (stringsize)

The example~ show the difference between conversion to a varying or a
nonvarying target. The last example shows that the 'stringsize' condition

occurs when the given string is too long for the target.

4-16 AHS3

EXM1PLES OF CHARACTER-STRING TO BIT-STRING CONVERSION

The following examples illustrate the conversion of character-string values
to bit-string targets.

Given Value Target TYQe Result Value

"11010" bit(8) var "11010"b
"11010" biteS) "11010000"b

"" bit(4) var ""b
"" bit(4) "OOOO"b
"11010" bit(4) (stringsize)

"0120" bi t (10 (conversion)
"1011'S" bit(4) (conversion)

The first five examples parallel the exa~ples given for bit-string to bit-string
conversion in the previous paragraph. The last two exanples show that if a
character that is not '0' or '1' appears in the given string, then the
'conversion' condition occurs.

EXAMPLES OF ARITHMETIC TO BIT-STRING CONVERSION

Fixed Binary Values

The following examples illustrate conversion of 'fixed binary' values to
bit-string targets. In each example, the target is assumed to be 'bit(20)
varying'.

Given TYQe Given Value

fixed bin(5,O) -01011.b
fixed bin(5,3) +10.111b
fixed bin(5,-3) +10111000.b
fixed bin(5,6) +.010111b

The "intermediate value" is the value
binarY(QQ,O)' data type. In the
bit-string is assumed without resort
examples, the result bit-string is a
given value.

Fixed Decimal Values

QQ Intermediate Value Result Value

5 -01011.b "01011"b
2

_ 1,.., \... 111,..,").,.
"i-IV.U IV U

8 +10111000.b "10111000"b
0 (not required) n"b

after it has been converted to a 'fixed
last example, QQ is zero, so the null

to an intermediate value. In all the
representation of the integer digits of the

The following
bit-string targets.
varying' .

examples illustrate conversion of 'fixed decimal' values to
In each example, the target is assumed to be 'bit(20)

Given TYQe

fixed dec(5,2)
fixed dec(5,6)

Given Value

-034.95
+.081327

10
o

4-17

Intermediate Value

-0000100010.b
(not required)

Result Value

"0000100010"b
""b

AH83

The value of QQ for the first example is calculated from a formula in Rule 3,
above, as follows:

p = 5, q = 2
p-q = 3
(p-q)*3.32 = 3*3.32 = 9.96
ceil«p-q)*3.32) = ceil(9.96) = 10
max(ceil(p-q)*3.32,0) = max(10,0) = 10
min(71,nax(ceil(p-q)*3.32,0)) = min(71,10) = 10

Thus the data type of the intermediate value for the first exanple is 'fixed
bin(10,0)'. In the second example, QQ cooes out to be zero so that the null
bit-string is the result without resort to an intermediate value.

Float Values

The following
bit-string targets.
varying' .

Given Type

float bin(10)
float dec(2)

Complex Values

examples illustrate
In each example,

Given Value QQ

-.1101100100e+6b 10
+5ge-1 7

conversion of 'float' values to
the target is assumed to be 'bit(20)

Intermediate Value

-0000110110.b
+0000101.b

Result Value

"0000110110"b
"0000101"b

An example of a 'complex' given value is not included here because the effect of
the conversion of the value to an intermediate 'fixed bin(QQ,O)' is to discard
its imaginary part and treat it as a 'real' value.

Locator Targets

There are two kinds of locator values: pointer and offset.
between the two kinds of locator occurs without any restrictions
rules. For example, in the statement

cur->cell = alpha;

Conversion
or special

the variable 'cur' appears as a locator qualifier and must have a locator value.
If 'cur' is a 'pointer' variable, its value is used as is; but if it is an
'offset' variable, its value is automatically converted to a 'pointer' value.

AGGREGATE TYPE CONVERSION

All possible conversions of aggregate types are described in this section.
The target aggregate type is always known when a conversion is performed.
Conversion is allowed only in certain simple cases in which the aggregate type
of the given value is the aggregate type of a component of the target. In some
descriptions of PL/I, the conversion of an aggregate type is referred to by a
special word "promotion".

4-18 At183

The rules for converting a value to a given aggregate type follow. There
are only two cases for which aggregate type conversion can occur, as follows:

1. Scalars.
value of
aggregate.

A scalar can be converted into any aggregate by taking the
the scalar to be the value of each scalar component of the

2. Structures. A structure can be converted into an array whose elements
are structures of the same aggregate type as the given structure. The
value of the given structure is taken to be the value of each element
of the array.

When a given value differs from an aggregate target and cannot be converted by
the rules just given, the program is invalid.

When the aggregate type of the given value agrees with that of the target
(either from the beginning or after conversion), then each component of the
given aggregate must be converted to the data type of the corresponding
component of the target. The conversion of the components proceeds according to
the rules already given for type conversion. Each such conversion is a distinct
operation, and the conversions do not occur in any defined order.

Example of Aggregate Conversion

The following example illustrates the complete conversion of a value of one
aggregate type to a target of a different aggregate type.

given type:
given Jlalue:
target type:

result value:

01, 02 fixed dec(4), 02 char(10) var
+0132., "HENRY"
01 dimension(1:2), 02 fixed bin(10), 02 char(8)

+0010000100.b, "HENRY£SI6t6", +0010000100.b, "HENRYk1k1~"

There are three distinct actions associated with this conversion:

• The aggregate type is promoted from '01,02,02' (a structure with two
scalar components) to '01 dim(1:2),02,02' (an array of two structures
that each have two scalar components).

• A 'fixed dec(4)' value is converted to a 'fixed bin(10)' target.

• A 'char(10) var value is converted to a 'char(8)' target.

There is no assurance that these steps will occur in this or any other
particular order; thus if a condition occurs during the conversions it is not
possible to know exactly how far the conversion has progressed.

4-19 At183

CONDITIONS FOR CONVERSIONS

The conditions that can occur during the conversion of values are described
here. They are:

size
fixedoverflow
overflow
underflow
conversion
stringsize

A general discussion of conditions appears later, in Section XIII, "Condition
Handling"; only the relevance of the conditions to the conversion of values is
discussed here.

A program can establish an 'on' unit that is executed when a particular
condition occurs. If an appropriate 'on' unit is not established when a given
condition occurs, PL/I supplies a default 'on' unit. For some conditions, it is
not valid for an 'on' unit to return control to the point at which the condition
occurred; and such conditions usually abort execution of the program. For other
conditions, a plausible recovery action is taken when execution resunes at the
point at which the condition occurred.

'size' and 'fixedoverflow' Conditions

Two conditions can occur during the conversion of a value to a fixed-point
arithmetic value; they are as follows:

• The 'size' condition occurs when a value is converted to a fixed-point
value and the target precision does not specify enough digits to the
left of the point to accommodate the magnitude of the given value.

• The 'fixedoverflow' condition sometimes occurs when the
condition would otherwise occur.

'size

These conditions have the same purpose, but they are implenented in different
ways. If the 'size' condition is enabled, PL/I detects every case in which the
magnitude of a converted value exceeds the capacity of the target precision.
For example, an attempt to assign the value 12 to a 'fixed binary(3,0)' target
is detected, even though the implementation may have allowed more than three
bits for the value in hardware stora8e. The checking has a significant cost
because it often must be performed by compiled instructions rather than hardware
circuitry. In contrast, the 'fixedoverflow' condition occurs only when the
hardware detects a value which cannot fit in a hardware register.

It is invalid for an 'on' unit to return control to the point at which
either of these conditions occurred, and so there is no simple recovery method.
PL/I provides a default 'on' unit that writes a message on the 'error_output'
stream and then signals the 'error' condition. The effect of this default is to
abort the execution of the program, and this is usually the appropriate response
to a value that is too large.

4-20 A!183

'overflow' and 'underflow' Conditions

Two conditions are associated with the conversion of a value to a
floating-point arithmetic value; they are as follows:

The
,
overflow

,
condition \vhen the conversion produces • occurs a

floating-point value whose exponent is greater than 127.

• The
,
underflow

,
condition when the conversion produces occurs a

floating-point value Hhose exponent is less then -128.

Both of these conditions usually indicate a programming error; however, the
PL/I processor treats the two conditions in different ways.

The 'overflow' condition is handled as a fatal error, similarly to the
'size and 'fixedoverflow' conditions. An 'on unit cannot return control to
~he po~nt of occurrence, and the default 'on' unit writes a message and signals
error, thus aborting program execution. On the other hand, PL/I does not

treat the 'underflow' condition as a fatal error. Execution can resume at the
point of occurrence, and in that case PL/I sets the value in question to zero.
The default 'on' unit writes a message on the 'error_output' stream, but it then
returns control to the point of occurrence with a zero value.

'conversion' Condition

When a conversion calls upon a character string to supply an arithmetic or
bit-string value, the character string must have contents that allow such an
interpretation. When this requirement is not met, the 'conversion' condition
occurs. Some examples of character strings that cannot be converted to
arithmetic targets follow, together with their corrected forms:

Incorrect

"fifteen"
"+1629"
"20*3.14"
"-8.128422+02"

Corrected

"15"
"+29"
"62.8"
"-8.128422e+02"

The examples reflect the rules given earlier, in the definition of conversion
for an arithmetic target.

An 'on' unit that is established for the 'conversion' condition can examine
and modify the character string that caused the 'conversion' condition; and,
after taking suitable remedial action, the 'on' unit can return to the point of
occurrence. The facilities for this action are described in Section XIII,
"Condition Handling." It is rarely possible to make a useful correction to a
"bad" character string, and the PL/I default 'on' unit, which writes a message
on the 'error_output' stream and signals the 'error' condition, is usually the
appropriate action.

4-21 At183

'stringsize' Condition

\Jhen a character-string or bit-string value is converted for a target whose
length cannot accommodate the value, the 'stringsize' condition occurs. PL/I
permits recovery from this condition. If the 'on' unit invoked by the condition
returns to the point of occurrence, exactly enough characters or bits are
truncated from the right end of the string value to reduce its len~th to that of
the target. The default 'on' unit does not place a message on the
'error_output' stream; it returns directly to the point of occurrence with a
truncated string value.

Guidelines for Conversion Conditions

The simplest policy with respect to the conditions that occur during
conversion is to treat them all as fatal errors. PL/I partially supports
policy by providing default 'on' units for most of the conditions that
program execution. The two conditions that are not handled in this way
'underflow' and 'stringsize', and their cases must be discussed separately.

value
this

abort
are

Although PL/I does not abort program execution by default when an underflow
occurs, the underflow message on the 'error_output' should be viewed as an error
report. In most computations, an underflow is just as indicative of an error as
an overflow; both occur when a computation has not been properly planned. When
analysis of a computation shows that an underflow could occur, the underflow
should be forestalled by programmed tests that detect the development of
excessively s~all values.

Under certain circumstances, a more advanced approach to these conditions
may be required. Suppose a system for the interactive performance of
calculations is to be written as a PL/I program. In such a system, the user
enters commands and these commands are interpreted by the PL/I program. Suppose
the user gives a command whose interpretation causes an overflow to occur. The
proper response is not to abort the execution of the whole interpretive program
but rather to abort the command that the user entered. For this purpose, the
PL/I program could establish a special 'on unit for the 'overflow' condition.

4-22 AM83

SECTION V

PROGRAt1 SYNTAX

This manual gives an informal definition of the syntax of PL/I, and conveys much
of this definition by means of examples. In contrast, the t1ultics PL/I Language
Manual gives a complete and exact definition of the syntax, and expresses the
definition in a special notation called BNF.

The syntax has two purposes. First, it is used to determine whether or not
a given sequence of characters is syntactically valid. Some syntactically valid
programs turn out to be invalid on other grounds, but the syntax does narrow the
field in a reliable and effective way. Second, the syntax gives names to the
components of a program. That is, the syntax defines precisely which character
sequences are integers, which are expressions, and so on; therefore,these words
take on an exact meaning in the discussion of a PL/I program.

This section does not give a detailed syntax for PL/I; instead, it presents
the main syntactic features of PL/I. The details of syntax are given elsewhere
in this manual; for example, the syntax of expression is given in Section VIII,
"Expressions," and the syntax of the 'do' statement is given in Section XI,
"Program Flow." A detailed syntax for each PL/I statement is also given, in
reference form, in Appendix A, "A Guide to PL/I Statements."

This section presents four views of the syntax of a PL/I program. First,
it considers a program to be a sequence of characters, and describes the set of
allowed characters without discussing which sequences of characters are allowed.
Second, it considers a program to be a sequence of lexemes, and defines the
identifiers, constants, operators, and so on. Third, it considers a program to
be a sequence of statements, and describes the general syntax of statements
without entering into the details of individual statement syntax. Finally, it
considers the program structures of PL/I that are used to gather sequences of
statements together into single program components. The section concludes with
a discussion of the relation between the external procedure and a program.

5-1 Ar183

CHARACTERS

A program can be viewed simply as a sequence of characters. Any of the 128
characters of the ASCII character set can appear in a t1ultics PL/I program. A
simple classification of those characters as they are used by Hultics PL/I
follows:

letters: ABC Z abc z

digits: o 2 9

special characters: + * I = > < &

" $ %

spaces: blank tab newline newpage vertical-tab

strings only: (the remaining ASCII characters)

The last item in the classification, "strings only", is included because every
ASCII character, even if it has no other significance in ~1ultics PL/I, can
appear in a character-string constant.

The set of characters required for PL/I is relatively small; and all but
four or five of the characters are found on a standard typewriter. Therefore,
it is convenient to type and publish PL/I programs on conventional,
noncomputerized equipment.

LEXEfms

A program can be viewed as a sequence of lexemes. The division of a
program into lexemes corresponds to the division of ordinary text into words,
punctuation marks, and spaces. As an example of the division of PL/I text into
lexemes, consider the following assignment statement:

alpha= 5.66;

This statement is a sequence of five lexemes, as follows: the identifier
'alpha', the operator '=', the separator (blank), the literal constant
'5.66', and the punctuator ';'. A long string of terminology can be applied to
a single lexeme; for example, ' 5.66' is, in fact, a "fixed-point decimal real
arithmetic literal-constant".

In what follows, each kind of lexeme is described; there are eight kinds of
lexemes, as follows:

identifier
literal constant
punctuator
operator
picture
isub
%include
separator

After the lexemes are described; the seoaration rule for lexemes is given; it is
the rule that governs blanks, newlines, and so on, to keep the lexemes of a
program from running togeLner. lne discussion of lexemes concludes with a
detailed classification of the lexemes.

5-2 At183

Identifiers

An identifier is either a single letter or a letter followed by a sequence
of characters; each character of the sequence must be a letter, a digit, an
underscore, or a dollar sign. An identifier can be up to 256 characters long,
so its length is, practically speaking, unlimited.

Often identifiers use only letters and digits.
identifiers are:

alpha ALPHA ALPha alpha23 alpha23xyz

Examples of such

Upper and lower case characters are distinct, so all of the identifiers just
given are interpreted as different from one another.

An underscore character is used where, in English, a hyphen would be used.
The hyphen is not available in PL/I because it cannot be distinguished from a
minus sign. Examples of identifiers with underscore characters are:

Most Multics subroutine names end with an underscore character. Therefore, in
order to avoid confusion and possible identifier conflict, a programmer should
not introduce a name that ends with an underscore character.

A dollar sign should be used only in the name of a 'static external'
variable, and it should be used in the manner described later, in Section VII,
"Storage Management." An example of such an identifier is:

alpha$beta

This identifier refers to the variable 'beta' in the segment named 'alpha'.

KEYWORD VS. NAME

A particular occurrence of an identifier in a PL/I program is either a
keyword or a name. When an identifier is used as a keyword, it has a specific
meaning that is part of the definition of PL/I; for example, when the identifier
'goto' is used as a keyword, it always specifies a transfer of control. In
contrast, when an identifier is used as a name, its meaning depends on its
declaration in the program; for example, the identifier 'x' can be declared as a
'fixed dec(8)' variable, a 'label' constant, or any other kind of name.

In some programming languages, the identifiers that are used as keywords
are reserved for that purpose only. However, in PL/I there are so many keywords
that it would be a considerable disadvantage to reserve all of them, and so PL/I
does not have this restriction. Instead, the interpretation of an identifier
depends on its position in the syntax of a program. Suppose, for example, that
a statement begins with the identifier 'goto'. The statement certainly could be
a 'goto' statement; for example:

goto LAB;

5-3 AM83

In this case, the
statement that begins
example:

goto = 1;

identifier 'goto' is interpreted as a keyword. However, a
with 'goto' could be an assignment statern.entj for

In this case, the identifier is a name (and it must be properly declared). Thus
the identifier 'goto' can be either a keyword or a name, depending on the
context in which it appears.

It might be thought that there are cases in which it is difficult to
determine whether an identifier is being used as a keyword or a name. This is
not the case. In practice, an elementary knowled~e of PL/I is sufficient to
determine the interpretation of the identifiers in a program.

As an example of the interpretation of identifiers, consider the following
program, in which keywords are underlined and names are not:

P: proc;
dcl (sysin,sysprint) filej
dcl data float bin;
EQi data(data);
data = data**2j
.Illi...t. data(data)j
end;

(The underlining in this example is only for the purposes of discussion; in a
true PL/I program, an identifier is never underlined.) In this example, 'P',
'sysin', and 'sysprint' are used as names, 'data' is used both as a name and a
keyword, and the other identifiers are used as keywords.

GUIDELINES FOR IDENTIFIERS

A programmer can use as names whatever identifiers are convenient. The
choice of names does not affect the meaning of a program or its efficiency, but
it does affect the readability of the program. The larger the program, the more
important is the choice of name. The following suggestions apply:

• Hhere possible, use a long and descriptive name for a variable that is
only referenced a few times. It is not much trouble to write out so
few references, and the reader can understand the meaning of such a
name immediately. On the other hand, use a short, abbreviated name
for a variable that is referenced many times. In such a case, the
resulting compactness is worth the trouble of introducing an
abbreviation.

• When abbreviations are used, choose them according to some uniform
rules, so that similar variables have similar names.

5-4 AH83

• Avoid using common keywords as names. When names such as

goto declare dcl if then

and so on are used as names, a superficial but irritating confusion is
introduced. On the other hand, do use uncommon keywords as names
where that is convenient. There is certainly no harm in using 'dft'
to name a variable for the "debit final total" (or something of the
sort) even though 'dft' is a keyword.

• VIhere possible, avoid using troublesome letters in identifiers. For
example, the digits zero and one are troublesome because some output
devices do not clearly distinguish between zero and the letter '0' or
between one and the letter '1'.

Literal Constants

There is a literal constant lexeme for each type of arithmetic and string
value. The full syntax and interpretation of these lexemes are given later, in
Section VIII, "Expressions." The following is a representative set of examples
of arithmetic literal constants:

Arithmetic Constant

304
3.04
3.04e-5
3.04e-5i

0110001b
011.0001b
011.0001e-2b
011.0001e-2bi

Data Type

fixed dec (3)
fixed dec(3,2)
float dec(3)
complex float dec(3)

fixed bin(7)
fixed bin(7,4)
float bin(7)
complex float(7)

Observe that an arithmetic constant does not begin with a sign.
constant is required, it is written as two lexemes, a sign
arithmetic constant.

Hhen a negative
followed by an

The following is a representative set of examples of string literal
constants:

String; Constant

"abcd"
(3)"abcd"

""
"""Hello,"" he said."

"11101"b
(4)"01"b
"Ut.... -- -- u

Data Ty~

char(4)
char(12)
charCO)
char(17)

bit(5)
bit(8)
h~+-(()\
U..LV\Vj

Remark

means "abcdabcdabcd"
means the null character-string
"" counts as 11 in value

means "01010101"b
means the null bit=string

Any ASCII character can be used in a 'character' string constant, including such
nonprinting characters as tab, newline, and so on. A string constant is a
single lexeme, and is not considered to contain s~aller lexemes.

5-5 AH83

Punctuators

There are six punctuator lexemes; each is given, together with its purpose,
in the following table:

Punctuator

(period)

(comma)

(colon)

(semicolon)

(left
parenthesis)

(right
parenthesis)

Purpose

indicates the decimal or binary point;
separates names in a qualified reference

also,

separates items in a list of arguments, parameters,
subscripts, declarations, options, and so on

terminates a condition prefix or a label prefix,
separates the bounds of an array, and also appears
in the range option of a 'default' statement.

terminates a statement

indicates the beginning of a list, an expression, an
iteration factor, and so on

indicates the end of a list, an expression, an
iteration factor, and so on

These lexemes are used in most of the features of PL/I.

Operators

There are five kinds of operator lexemes; they are defined as follows:

Classification Operators

arithmetic + * I **
relational = = < "'<

logical &

string I I
I I

qualifier ->

t10st of the operators are defined in
exception is the qualifier operator,
"Expressions."

5-6

> "'>

Section
which

<= >=

IX, "Operations." The
is defined in Section

only
VIII,

A~183

Pictures

The picture lexeme is a specialized lexeme that is used to specify the
format of a character string. It begins and ends with a quote, but the
characters that appear between quotes are restricted. An exaMple of a picture
is:

"$9,999.99"

This picture specifies a character-string of length nine that consists of a
dollar sign, followed by a digit, followed by a comma, followed by three digits,
followed by a period, followed by two digits. In other words, it describes a
six-digit, dollars-and-cents figure.

A picture lexeme is used in only two contexts. It is used in a 'picture'
attribute in the declaration of a pictured variable; this usage is described
earlier, in Section III, "Value Storage." Second, it is used in a picture
format item in an edit-directed input/output statement; this usage is described
later, in Section XIV, "Stream Input/Output." In both cases, the picture itself
is interpreted in the same way.

The isub lexeme is a very specialized lexe~e that is used only in· the
'defined' attribute. It is composed of an unsigned integer followed by the
three letters 'sub'; for example, '5sub'. Consider the following declaration of
the array 'B':

declare B(2,4) defined A(2sub,3*lsub);

The first isub lexerne is '2sub' and means, "the value of the second subscript in
a reference to 'B'". The second isub lexe~e is 'lsub' and means, "the value of
the first subscript in a reference to 'B'". Thus, for example,. the stateoent:

B(i-l,j) = 1;

is interpreted as:

',&include' Hacro

A '%include' ~ is a sequence of three lexemes, and has the following
form:

%include psn

where Q2n is the partial segment name. The partial segment name can be either
an identifier or a character-string constant. The '%include' macro is discussed
here, under "Lexemes", because it begins with a lexeme that has a special form
(it begins with a percent character) and because its effect is to modify the
lexical content of a program.

5-7 .f\t·133

•

I

MACRO INTERPRETATION

A 'jinclude' macro directs the compiler to obtain an include file; it is
the only construct in the language that is not merely translated by the compiler
for later execution. In response to an '%include' macro, the compiler takes the
following steps:

1. Form a segment name by dropping the quotes from the partial segment
name (if it is a character-string constant) and adding the suffix
'.incl.pI1'. Locate the Multics segment that is designated by this
name.

2. Compile the given program as if the '%include' macro were replaced by
a blank, followed by the contents of the segment located in Step 1,
followed by a blank.

This definition of the '%include' macro requires further explanation, as
follows:

•

•

•

When the compiler obeys a
the programmer's files.
modified.

'%include' macro, it does not modify any of
It behaves as if the given program were

The contents of an included segment
macro, and that macro is interpreted
given program.

can, itself,
just as if it

use a '%include'
appeared in the

A character-string constant is permitted for use as a partial segment
name because Multics segment names are not always identifiers. Thus,

%include "alpha. test";

can be used to designate the contents of the segment designated by
'alpha.test.incl.pll t •

• In Step 2, a blank is inserted before and after the included text to
keep the first and last lexeme from running into neighboring lexemes.

In order for the language translator to find
set_search_paths command is used with the pl1 search
description is found in the MPM Commands.

include files, the
list. This command

MACRO EXAMPLE

As an example of the expansion of a '%include' macro, suppose that the
Hultics segment named 'test.pll' exists and contains a complete procedure, as
follows:

9/78

P: proc;
dcl alpha float bin;
dcl beta(20) char(10);
%include xpool;

end;

5-8 AM83A

Each time this segment is compiled, the
'xpool.incl.pI1' and replaces the '%include'
segment. Suppose 'xpool.incl.pI1' exists
declarations:

dcl 01 x external static,
02 size fixed bin,
02 tab(1000) char(10);

dcl cnt fixed bin;

compiler finds the segment
macro by the contents of that
and contains the following

For the particular compilation under consideration, the affect is as if
'test.pI1' contained the folloyling material:

P: proc;
dcl alpha float bin;
dcl beta(20) char(10);
dcl 01 x external static,

02 size fixed bin,
02 tab(1000) char(10);

dcl cnt fixed bin;

end;

The actual contents of 'test.pI1' are not changed as the result of the
compilation.

GUIDELINES FOR MACROS

The '%include' macro is often used to assist in the organization of a large
program. Such a program is usually divided into several external procedures,
which are written and compiled separately and then brought togethe~ for
execution. The external procedures usually have certain text in common, such as
the declaration of variables and routines that are used throughout the program.
This common text can be handled as follows:

• Create a common segment, which is a segment whose name ends with
'incl.pI1' and whose contents is the common text.

• In each external procedure, write a '%include' macro that references
the common segment.

The important advantage of this approach is that just one copy of the common
text exists, and therefore changes are made in just one place.

This use of common segments can extend through several levels of program
organization. Suppose that a program is divided into subprograms and each
subprogram is a set of sub-subprograms. Each sub-subprogram can use a
')include' macro to reference a common segment for the subprogram. That common
segment can, in turn, use a '%include' macro to reference a common segment for
the entire program.

The application for the '%include' macro that has just been described is an
important one; however, it is not the only possible use. The segment designated
by a '%include' macro need not be a sequence of statements; it can be any
sequence of lexemes that make sense in the context in which they are used.

9/78 5-9 AMb3A

Separators

There are two kinds of separator lexemes: the space and the comment.
are defined as follows:

They

• A space lexeme is one of the following characters:

blank
tab
newline
newpage
vertical-tab

Although these characters have different effects, each of the~ usually
has the effect of leaving empty space in the listing of a program;
that is why they are called "spaces".

• A co~ment lexeme has the following forn:

/*£.§.*I

where cs is the comment string. The comment string is any sequence of
ASCII characters that does not contain '*/'. A comment is used to
insert a message that is directed to the human reader of a program but
that is ignored by the PL/I processor.

Separator lexemes are used interchangeably. That is, any sequence of one or
more separator lexemes is equivalent to any other seque~ce of one or nore
separator lexenes. The role of separator lexe~es in PL/I is given by the
separation rules, which are described in the following par~graphs.

Separation Rules

The subsequent sections of this manual give ~any infornal rules for the
syntax of PL/I. Each rule ultinately specifies that a given construct is a
certain sequence of lexemes. However, the definitions ~ake no nention of
separators. Instead, they assune that the follol-lin!; separation rules are
followed in all cases:

1. One or more separators can appear be~we~n any sequence of two lexe~es.
This rule peraits the use of spaces to ~ontrol layout and the addition
of comments to provide explanations; thus a pro gran can be ~ade
intelligible to a human reader.

2. One or [Jore separators Must appear bet\leen any sequence of two lexer!les
if the first is an identifier, literal constant, or isu~ and the
second is also an identifier, literal constant, or isub. This rule
requires the use of a separator where two lexenes night otherwise run
together to for~ a single lexane.

3. A separator must not appear within ~ lexe~e. This rule prevents a
lexece frOM being broken up into two lexernes.

5-10 A!t83

Consider an example of the application of these rules. One version of the
'allocate' statement is defined (in Section VII, "Storage Managemeht") as havinG
the following form:

allocate id

where id is an identifier.
following four constructs:

allocate beta_5;

allocate

allocate
beta_5;

This definition ~s satisfied by each of the

allocate beta_5 I*the stress variable*l;

All of these statements ~ean exactly the same thing to the PL/I processor, but
the first separation rule has been applied to produce differences that are
important to a human reader.

A violation of the separation rules is quite obvious to a human reader, and
that is why those rules can be given once here and then assumed to apply
throughout the rest of the manual. Consider the following construct:

allocatebeta_5;

This construct is not a valid PL/I statement. It arose from the definition of
the 'allocate' statement, but the second separation rule was violated, allowing
'allocate' and 'beta_5' to run together and form a single identifier.

As a second example of the violation of the separation rules, consider the
following construct:

allocate beta_5;

This construct is not a valid PL/I statement. Once again, it arose from the
definition of the 'allocate' statement, but the third separation rule was
violated, causing the keyword 'allocate' to be broken up into two identifiers.

5-11 AM83

Classification of Lexemes

The folloHing list gives a complete classification for the lexemes of PL/I.
It shows, for example, that there are two kinds of decimal real arithmetic
literal-constant lexemes; namely, fixed-point and floating-point. The complete
set of punctuators and operators and representative examples of other lexemes
are given at the right.

lexeme

identifier:

literal constant
arithmetic

real
decimal

fixed-point:
floating-point:

binary
fixed-point:
floating-point:

imaginary
decimal

fixed-point:
floating-point:

binary
fixed-point:
floating-point:

string
character-string:
bit-string:

punctuators:

operators
arithmetic:
relational:
logical:
string:
qualifier:

picture:

isub;

%include:

separator
space:

comment:

x declare rate_of_change table$sum2

59 13.
8.23e+3

6.8923
1e-5

.0030

1101b 101.b
101.0001e+2b

10011.101b
1111e-5b

.0001b

59i 18.i
8.23e+3i

6.8923i
1e-5i

.0030i

1101bi 101.bi
101.0001e+2bi

10011.101bi
1111e-5bi

Habc H iiSay iiiiNoiiii.ii (5)iiX ii

"110"b (36)"1"b ""b

+ * I **
= = < A< > A> <= >=

I I
I I

->

&

"s999v.99" "$$$$9v.99cr"

1sub 5sub

.0001bi

iiii

%include Table; %include "rd>x>sm";

(blank, tab, newline, neHpage, and
vertical-tab characters)

1* Ignore this message. *1

5-12 Ar183

STATEHENTS

A program can be viewed as a sequence of statements. The notion of the
statement is one of the important features of the high-level languages. A PL/I
programmer thinks of the statement as the executable unit of programming just as
an assembly language programmer thinks of the hardware instruction as the
executable unit of assembly language programming. Yet a single PL/I statement
generally corresponds to five or six hardware instructions -- sonetimes less,
often more. Therefore, from a programmer's point of view, the use of PL/I
instead of assembly language reduces the number of executable units in a program
by a large factor.

Statement Prefix

The following syntax rules apply to all PL/I statements:

• A statement is a prefix, followed by a statement body, followed by a
semicolon.

• The prefix of a statement consists of an optional sequence of
condition prefixes followed by an optional sequence of label prefixes.

• A condition prefix is a parenthesized list of condition prefix names
separated by commas and followed by a colon.

• A label prefix is an identifier followed by a colon.

CONDITION PREFIXES

The purpose of a condition prefix is to alter the set of conditions that
are enabled during the execution of a statement or a block. Hhen a condition is
enabled, the corresponding error checking is performed with the resulting
enhancement of the debugging process. When a condition is disabled, checking
for the corresponding error condition is not usually performed and the program
executes at less cost. Consider the statement:

(subscriptrange, nosize): z(i) = alpha;

The 'subscriptrange' condition prefix nane enables the corresponding condition
and, in effect, forces the processor to check to see if the value of 'i' is
outside the range of the bounds of the array 'z'; that policy is good for
debugging and bad for optimization. On the other hand, the 'nosize' condition
prefix name disables the size condition and frees the processor from the
responsibility for detecting a value of 'alpha' whose magnitude is too large for
an element of the array 'z'; that policy is bad for debugging but good for
optimization. Further details are given in Section XIII, "Condition Handling."

LABEL PREFIXES

The purpose of a label prefix is to declare a program address constant name
and to specify its value. Three cases apply:

• If a label prefix is in a 'procedure' or 'entry' statement, then the
identifier is declared as an 'entry constant'.

5-13 Ar183

• If the label prefix is in a 'format' statement, then the identifier is
declared as a 'format constant'.

• If the label prefix is in the prefix of any statement not mentioned in
the preceding cases, then the identifier is declared as a 'label
constant'.

The classification just given indicates that, although the terminology "label
prefix" is convenient, the identifier in a label prefix is not necessarily a
label constant. Further details are given in Section XI, "Program Flow."

Statement Body

There are about 25 different kinds of statements in tiultics PL/I; but the
statements make extensive use of a small repertoire of components and obey some
simple rules. The observations that follow are not recommended for study or
memorization; instead, they are intended to assist the reader in recognizing the
patterns that make the syntax of PL/I relatively easy to read.

• Keywords. Except for the assignment statement and the null statement,
every statement body begins with a keyword. The complete syntax for
each statement is given in Appendix A, and the entries in that
appendix are arranged in alphabetical order according to the initial
keyword.

• Options. The main part of most kinds of statement is a sequence of
options. An option is a keyword followed by something in parentheses.
An option specifies a subcommand within a statement~ and nan orten be
omitted from a statement without rendering the statement invalid
(hence the name "option"). For example, consider the statement:

put file(beta) skip(2) list(x,y);

This statement consists of a keyword 'put' and a sequence of three
options. When the first two options are omitted, the statement is:

put list(x,y);

In this statement, the missing options are treated in two different
ways. In the absence of the 'file' option, PL/I assumes
'file(sysprint)'; but in the absence of the 'skip' attribute, PL/I
does not perform the 'skip' action.

• Clauses. In a rather small number of cases, a clause is used instead
of an option. A clause is an option without the parentheses. In a
'do' statement, each clause is a keyword followed by an expression.
For example, consider:

do i = 1 to 20 by 2 while(u = v);

In this statement, 'to 20' and 'by 2' are clauses, but 'while(u=v)' is
an option. (A common error is to write the 'while' option as a clause,
without the parentheses.)

5-14 IH183

• Attributes. An attribute is a keyword that is soneti~es followed by
something in parentheses-. It thus reseobles an option; but it is used
to give the decla~ation of an identifier ~ather than to give a
SubCOMMand. Attributes appear in 'declare' statements and, in a
restricted way, in several other kinds of statements. For example,

declare x real fixed bi~ary precision(8,2);

This statement contains four attributes, the last of which has a
parenthesized list of two integers.

• Spaces. In a sequence of options that describe a single action (such
as the opening of one file or the allocation of one storage unit), the
options are separated by spaces rather than by commas. A similar rule
applies to the attributes that describe a single identifier.

• Commas. Several statements use corneas to express in one statement
what would otherwise require several statements; for example,

declare x decimal fixed(8), y float;

is equivalent to

declare x decimal fixed(8);
declare y float;

The punctuation used in such compound state~ents is always the comma
(never the space), and the comna can be thought of as a "little
semicolon" when it is used in this way. Although the use of one
statement for several does save some writing effort, it does not
change the cost of compiling or executing the statement; and there are
some disadvantages to the use of a compound statement. A compound
statement makes examination or editing of a program more diff1cult,
and since Hultics compiler diagnostics are keyed to co~plete
statements (not phrases within statements), a diagnostic for a
complicated statement may be ambiguous.

5-15 Ar183

I

Classification of Statements

A classification of all the Multics PL/I statements is given here. The
classification is accordJng to the principal function of each statement. There
is a section in this manual for each of the eight kinds of statement given in
the classification.

statement
declaration

declare
default

storage management
allocate
free

assignment
(no keyword)

program flow
begin
end
do
goto
if
(null statement)

Rroceuure inyocation
procedure
entry
end
call
returri
stop

condition nandling
on
revet't
signal

stream. input/output
open
elose
get
put
format

rS;CGl'J .:.nRut/,,:~.\t[;ut

open
clcse

wr'l tc:
delete
rewrite
locate

dcl x fixed dec(S,2) static initial(1);
dft (variable & range(c) character(1);

alloc alpha in(tab) sEt(ip);
free 0;

x(i-3) = y*(sin(theta)-omega);

begin;
end;
do k = 1 to n+5 while(m<O);
goto LAB;
if beta = -2 the~ q = r-s; else q = 0;

P; proa (}'~, 'j) :cet1.u'ns (fJ :)d t) ;
Q: entry(al,a2);

end;
call TCC(a-3·phi,H3);
return(r-2*z);
~t("\n' ---,..,

on endfile(sysin) goto EXIT2;
revert endpage(report);
signal ecrorj

open file(AWC) print linesize(80);
close tileltest2);
get f i 1 e (ww) e d i t, (x , Y) (p" z z z • 99 b b b b b") ;
put file(drup) page;

F: forma t (a (10) , p '1 b h b --~ 9 v . 99") ;

ope n f i 1 e (a) k e jed .5 ;~ que n t i a 1 up d ate ;
close file(insr),
(' P 11 d f 1. ! e \ " U ::; 1,; i r': ~, :) (tail) ;
Wt i. tt' f': ,J. e (:ec:: ~e:n'r'cm i x) from (y) ;
delete f: let empl: .. yee) key(ssno);
rewrite f.1.lf!;m) i<e.\T(a3,': from(beta);
loear-e Cit,f' set',p:~) nle(arc);

A single eX2.!:'lf:j e l' ~ ei:ich s ta temen t i.s g '.i ,'<1 d t :-;:' I' ~ gh 1. • The selection of. the
example is nE:c:es~al'ily arbitri'-:.r'y. f:vE'rJ I:,x~r!': ;,i": r:J< a null prefix except for
tho s est ate men t s tl J a t r e qui ~. e a!:'. 1 e as t (i i1 e :,~ Ii e ~. ~::';'; .' ix,

9/78 5-16 AM83A

PROGRAM STRUCTURES

There are three PL/I constructs that group a sequence of statements into a
single program structure: the group, the 'procedure' block, and the 'begin'
block. Each of these structures can be compared to the paragraph of
conventional text; however, they are more powerful than the conventional
paragraph. The additional power comes from the fact that anyone of these
program structures can, itself, be regarded as a single statement. Thus a group
or block can be included in the sequence of statements encompassed in a larger
group or block. This arrangement of one program structure within another is
called nesting.

Groups

There is just one kind of group, the 'do' group. A 'do' group has the
following form:

• A 'do' statement followed by

• A sequence of constructs, each of which is a statement, a group, or a
block, followed by

• An 'end' statement.

Groups and blocks cannot overlap but must be nested; that is, any 'do'
statement, 'procedure' statement, 'begin' statement, ' entry' statement, or ' end'
statement that is contained in a given 'do' group must be part of a complete
group or block that is contained in the given 'do' group.

The simplest application of a 'do' group does nothing more than gather a
sequence of statements into a single executable unit. Consider, for example,
the following 'if' statement:

if x = 0
then do;

y = 1;
z = 2;
end;

This statement sets the variables 'y' and 'z' only if 'x' is zero.
group is treated as a single construct governed by the 'if' statement.
'do' and 'end' statements are omitted, then the example becomes:

if x = 0
then y = 1;

z = 2;

The 'do'
If the

Now the meaning is different; the example consists of two statements, and the
assignment to 'z' occurs regardless of whether 'x' is zero or not. Therefore,
the layout of the revised example is misleading and it should be written as
folloHs:

if x = 0
then y = 1;

z = 2;

This layout makes it clear that only the assignment to 'y' is governed by the
'if' statement.

5-17 M183

In the more complicated applications of a 'do' group, it not only gathers a
sequence of statements into a single executable unit, but also executes the
statements repeatedly. Consider, for example, the following group:

do i = 1 to 20;
a(i) :: b(n+1-i);
end;

This statement performs the assignment statement 20 times. For each execution
of the group, the index variable, ' i " assumes the values ' 1 " ' 2', and so on up
to '20'. There are many variations in the repeating group, and these are
described later, in Section XI, "Program Flow."

Blocks

There are two kinds of blocks: the 'procedure' block and the 'begin' block.
They have the following form:

• A 'procedure' statement or 'begin' statement, depending on whether the
block is a 'procedure' or 'begin' block, followed by

• A sequence of constructs, each of which is a statenent, a group, or a
block, followed by

• An 'end' statement.

An 'entry' statement can appear in a 'procedure' block. Aside from this, any
'do' statement, 'procedure' statement, 'begin' statenent, 'entry' statement, or
'end' statenent that is contained in a given block must be part of a complete
group or block that is contained in the given block; that is, groups and blocks
must be nested.

The two kinds of block both define a scope for the declaration of
identifiers. Within a given scope, an identifier can have a meaning that is
entirely different from the meaning of the same identifier outside of the given
scope. Thus a programmer can write a procedure that is intended for use within
a large progran without concern for conflict between his use of identifiers and
that of other programmers. In addition, he can indicate by his use of scopes
the distinction between a variable that is used just in a small procedure and
one that is used throughout the procedure he is writing. The importance of
scopes is so great that 'procedure' blocks and 'begin' blocks are discussed
together here, even though they are quite different in the way they are
executed.

A 'procedure' block is executed as a closed subroutine; that is, it is
executed by means of a 'call' statement or a function reference, and not when
flow reaches it from the preceding statement. In contrast, a 'begin' block is
executed in-line; that is, it is executed when flow reaches it from the
preceding statement or by transfer of control to its 'begin' statement. (The
'begin' block in an 'on statement is handled in a special way.)

5-18 Ar183

Of the two kinds of block, the 'procedure' block is by far the more
important. A PL/I program is a collection of one or more procedures, and every
subroutine within a program is written as a 'procedure' block. Consider the
following example:

P: proc;
dcl (x,y,z) float bin;
dcl (sysin, sysprint) file;
get list(x,y);
call DIST(x,y,z);
put list(z);

DIST: proc(c1,c2,r);

end;

dcl (c1,c2,r) float bin;
dcl sqrt builtin;
r = sqrt(c1**2+c2**2);
end;

This example is a 'procedure' block and it is a complete program. It contains a
smaller 'procedure' block that is a subroutine, and that is invoked by the
'call' statement. A complete discussion of 'procedure' blocks is given later,
under "Procedure Invocation".

A 'begin' block is rarely used. It is sometimes essential in an 'on'
statement, as described later under "Condition Handling". Usually, however, a
need to gather statements together can be handled better by a 'do' group or a
'procedure' block. It is not unusual for a large program to be written without
the use of any 'begin' blocks.

Summary of the Program Structures

The following table shows various properties of the three kinds of program
structure:

Gathers statements into
a single executable unit.

Can iterate the
gathered statements.

Is executed/skipped when
reached by sequential
flow of control.

Can be called as a
closed subroutine.

Defines a scope for the
declaration of identifiers.

yes

yes

executed

no

no

5-19

'begin' Block Procedure

yes yes

no no

executed skipped

no yes

yes

At183

EXTERNAL PROCEDURES AND THE PROGRAf·1

Throughout most of this nanual, the terms "external procedure" and
"program" are used interchangeably. No harm comes from that, because a single
external procedure can be executed as a program. In the following paragraphs,
however, the distinction between the two terms is described in detail.

An external procedure is a procedure that is not contained in any larger
PL/I construct. It is called "external" precisely because it is not contained
inside any other PL/I construct. An external procedure can contain other
procedures; and these latter procedures are all internal procedures.

A program is a set of one or more external procedures that are executed in
concert. Each external procedure is written, edited, filed, and compiled
separately. It is possible to bind the external procedures into a single
Multics object segment, but this binding is not required; it is only necessary
that the object segments for the external procedures be available when the
program is executed.

Any program can be written as a single external procedure; and in that
case, the distinction between a program and an external procedure is not very
important. But there are good reasons to divide a program of medium or large
size into several external procedures. The reasons are:

• In a large project involving more than one programmer, it is important
to be able

_p _ ______ ~ ~ ___ """_.f_ _, "' ...
v J. a p L VOl a 111 ..:> c:; pal a v c:; .L:J •

• For programs of considerable size, compilation in parts is less
expensive than compilation of the whole; this is simply a fact of
compiler technology. Furthermore, when a program becomes very large,
it exceeds the capacity of the compiler and cannot be compiled as a
whole.

• To change a single statement of an external procedure the entire
external procedure must be recompiled. The smaller the external
procedures, the smaller the cost of making an isolated change.

The division of a program into external procedures can be carried to an
undesirable extreme. When the division results in variables being shared
between the two external procedures, these variables must be 'external'
variables or procedure parameters; and the implementation of such variables is
relatively expensive. In the absence of other guidance, external procedures
should be kept between 100 and 1000 lines in length.

5-20 AH83

SECTION VI

DECLARATIONS

The use of a name in a program is a name reference and each name reference
has a declaration. The declaration provides two items of information. First,
it gives a set of attributes and (in the case of a structure variable) level
numbers. Second, it associates the name reference with a particular block.
Later sections of this manual describe how declarations are used in the
interpretation of the different kinds of name references. This section
describes the mechanism that supplies the declarations.

Each occurrence of a name in a program either supplies a declaration or
uses a declaration. Consider the follo\ling fragment of a program:

dcl x float bin;

x = 5;

In this example, the first occurrence of 'x' supplies a declaration, and the
second occurrence of 'x' makes use of that declaration. If the declaration of

x were not supplied in this way, then the assignment statement could not be
interpreted.

\lith one exception, the declaration of a name reference is determined by
the PL/I compiler, once and for all, before a program is executed. The
exception is for a variable extent: a variable array bound, a variable maximum
string length, or a variable area size. To determine the declarations of the
name references in a program, the compiler makes repeated use of two operations:
the establishment of £ declaration and the resolution of £ name reference.

This section has three main parts. First, the constructs used for the
establishment of declarations are described. Next, the rules for the resolution
of names are presented. Finally, diagrams that show all possible declarations
of names are provided and a complete classification of the attributes is given.

ESTABLISHMENT OF DECLARATIONS

This discussion begins with au example; then it describes the progra~
constructs that are used in establishing declarations.

6-1 Ai183

Example of the Establishment of Declarations

The following program contains several examples of the establishment of
declarations:

P: proc;
dcl x float bin;
dcl (sysin,sysprint) file;

L2: get list(x);
call Q;
if x = a then goto L2; else return;

Q: proc;

end;

dcl L2 float bin;
L2 = x**2 - 3*x**2;
put skip list(x,L2);
end;

The program has two blocks, which can be conveniently be called the "outer
block" and the "inner block". The declarations explicitly established in the
program are as follows:

• In the outer block:

'x' with the attribute 'float bin'
'sysin' with the attribute 'file'
'sysprint' with the attribute 'file'
'L2' with the attribute 'label internal constant'
'Q' with the attributes 'entry internal constant'

• In the inner block:

'L2' with the attribute 'float bin'

• In an imaginary 'begin' block that encloses the entire program:

'P' with the attributes 'entry external constant'

More is said of the "imaginary" block later in this section.

Observe that two declarations are established for the identifier 'L2' and
that the identifier is used in two different ways. Such a double use is not
attractive when the uses are so close together; but in a large program, the
repeated use of a single identifier is difficult to avoid. When the subject of
resolution is discussed later in this section, the way in which PL/I decides
which declaration applies to a particular use of 'L2' is given.

6-2 AM83

Containment and Immediate Containment

The establishment of declarations depends on the definitions of containment
and immediate containment. These definitions follow:

• An occurrence of a program construct (such as a statement, a label
prefix, or a name) is contained in a block if it is part of the
'procedure' or 'begin' statement with which the block begins, part of
the 'end' statement with which the block ends, or part of any
statement in between. However, there are two exceptions. First, any
label prefixes in the 'procedure' or 'begin' statement that begins a
given block are not contained in the given block. Second, any label
prefixes in an 'entry' statement that is part of a given block but not
part of a smaller block are not contained in the given block.

• An occurrence of a program construct is immediately contained in a
given block if it is contained in the given block but not in any
smaller block.

In the establishment of declarations, these definitions are used to determine
which block immediately contains a given 'declare' statement or label prefix.

As an example of the application of these definitions, consider the
following program:

P: I proc;
dcl (sysin,sysprint) file;
dcl (x,y,z) float bin;
get list(x,y) ;
if x=O

then call Q1(x,y,z) ;
else call Q2(x,y,z);

put list(x,y,z) ;

Q 1 : I proc(a,b,c);
del (a,b,c) float h;n.

JJ":"':'.I. ,

... (Computation :fin

I
go to LAB;

Q2: entry(a,b,c); ... (Computation :fI2)

LAB: I begin;
dcl (g1,g2) float ... (Computation

I

end;

end;

end;

I
"..---

bin;
1F3) ...-V

I--

f..--"

........

contained in
the outer
procedure

contained in
the inner
procedure

contained in
the 'begin'
block

This program is composed of three blocks; they can be referred to as the "outer
procedure", the "inner procedure", and the "'begin' block". The three outlines
show which portions of the program are contained in each of the three blocks.

6-3 AM83

The following observations are typical of those necessary for the
establishment of declarations:

• The label prefix 'p:' is not contained in any of the three blocks, but
it is contained in an imaginary 'begin' block that is considered to
enclose the entire program.

• The first two 'declare' statements are immediately contained in the
outer procedure.

• The label prefixes 'Q1:' and 'Q2:' are immediately contained in the
outer procedure (and are not contained in the inner procedure); this
is true even though 'Q2:' occurs in the midst of the inner procedure.

• The third 'declare' statement and the label prefix 'LAB:' are
contajned in both the outer and inner procedures, but they are
immediately contained in the inner procedure only.

• The fourth 'declare' statement is contained in all three blocks;
it is immediately contained in the 'begin' block only.

but

The imaginary 'begin' block mentioned in connection with the declaration of
'P' is a definitional artifice, called the root block; that makes the rules for
the establishment of declarations simpler. The external procedures of a program
are thought of as being enclosed in an imaginary 'begin' block. All of the
entry constant names for the external procedures are declared in this 'begin'
block.

'declare Statement

The principal means for establishing a declaration is the 'declare'
statement. As the keyword 'declare' suggests, the statement is devoted to
supplying information. When a 'declare' statement is encountered in the course
of program execution, it produces no action.

A 'declare' statement gives one or more declarations. Each declaration
associates a set of attributes with a name. The declarations are established in
the block that immediately contains the 'declare' statement.

The 'declare' statement is available in several forms. In many cases, a
'declare' statement is a simple declaration of a scalar or array variable name.
When a structure variable is declared, a special form of the 'declare' statement
is required. In order to reduce the amount of writing required, declarations
can be combined and factored. These forms of the 'declare' statement are
discussed in the following paragraphs.

SIMPLE DECLARATIONS

The simplest form of a 'declare' statement
name, a sequence of attributes, and a semicolon.

is the keyword 'declare',
Two examples are:

a

declare alpha_p5 decimal float bin static;

declare x;

6-4 AM83

The effect of the first statement is to establish in the immediately containing
block a declaration of 'alpha_p5' with attributes 'decimal float static'. The
second statement establishes in the immediately containing block a declaration
of 'x' with no attributes. In both cases, the attributes not given in the
'declare' statement are filled in by PL/I according to default rules.

The following statement declares an array variable name:

declare beta dimension(3*n-1) float bin controlled;

When the 'dimension' attribute iMmediately follows the declared identifier, the
keyword 'dimension' can be ·omitted. Thus this statement is usually written as

declare beta(3*n+1) float bin controlled;

The effect of this statement is to establish in the immediately containing block
a declaration of 'beta' with the attributes 'dimension(3*n+1) float controlled'.
The expression '3*n+1' is not evaluated when the declaration is established
(before program execution); instead it is evaluated when storage for the array
is allocated (during program execution).

STRUCTURE DECLARATIONS

Most names can be declared by means of the simple form of declaration just
described. The only exception is the declaration of a structure variable name.
The declaration of a structure requires the declaration of several names: one
for the entire structure, others for its nembers, yet others for the members of
each of its members, and so on. Each name is declared in a declaration clause,
which consists of a level number, the name itself, and a sequence of attributes.
All of the names for a given structure must be in the same 'declare' statement,
and the declaration clauses are separated by conmas.

Consider, for example, the following declaration of the structure variable
"subscri ber ' :

declare 01 subscriber external,
02 name,

03 first char(15) varying,
03 initial_of_middle char(1),
03 last char(25) varying,

02 serial_number decimal(9);

This statement contains six declaration clauses. It establishes the following
declarations in the immediately containing block:

• 'subscriber', a structure with the attributes 'external' and with
members 'name' and 'serial_number'

• 'name', a structure with no attributes and with members 'first',
'initial_of_middle', and 'last'

• 'first', a scalar with attributes 'char(15) var

• 'initial_of_Diddle', a scalar with attribute 'char(1)'

• 'last', a scalar with attributes 'char(25) var'

• 'serial_number', a scalar with attributes 'decimal(9)'

6-5 At183

SHORT FORMS OF DECLARATIONS

A major portion of a PL/I program is devoted to 'declare' statements, so
PL/I has several features designed to shorten declare statements. The sole
purpose of these features is to reduce the size of a program and thus make it
easier to write and to read. The features do not have any effect on the cost of
executi~g the program.

Abbreviations and Defaults

A useful feature is the abbreviation of the keyword 'declare' to 'dcl'. A
second feature is the provision of many abbreviations and defaults for
attributes. The designers of PL/I selected the defaults to cover the most
commonly required attributes. It follows that when an identifier is used in
some ordinary way not many attributes need be written explicitly. For example,
in the 'declare' statement

dcl Q72 float bin static;

the programmer has omitted the defaults 'real binary precision(27) aligned
internal variable' because these are supplied by default. The defaults for the
storage type attributes are given in Section III, "Value Storage." Other
default rules are given in Section VII, "Storage t1anagement."

Co~bining Declarations

A sequence of 'declare' statements can be combined into a single 'declare'
statement. Consider the statements:

dcl x float bin;
dcl alpha fixed dec(10);
dcl Q3 float bin;

A single, equivalent statement is:

dcl x float, alpha fixed dec(10), Q3 float;

Factoring Declarations

Common attributes can be
combined 'declare' statement.
statement above is:

factored
Another

from individual
equivalent form

dcl (x,Q3) float bin, alpha fixed dec(10);

declarations in a
for the ' declare'

This feature is called factoring because it is similar to the mathematical
operation of factoring out a common multiplier from a sum.

6-6 At183

Factoring can be
indicates. Factoring
example, the statement:

applied
can be

more generally than the preceding example
applied repeatedly to the same statement. For

dcl x float static, y float static, z float;

can be written equivalently as:

dcl (x static, y static, z) float;

and then as:

dcl «x, y) static, z) float;

The result has two attributes in it instead of the original five.

Factoring can also be applied to the level numbers used in the declaration
of a structure name; the only difference is that level numbers are factored to
the left while attributes are factored, as before, to the right. For example,
the statement:

dcl 01 position,
02 x float,
02 y float,
02 z float;

can be written as:

dcl 01 position,
02 (x, y, z) float;

GUIDELINES FOR 'declare' STATEMENTS

A 'declare' statement can be placed anywhere in the block in which its
declaration is to be established, provided it is immediately contained in that
block. It is suggested, however, that all 'declare' statements be placed
immediately after the 'procedure' or 'begin' statement that begins the block.
If this convention is followed, a human reader always knows where to look for
the 'declare' statements and the 'declare' statements do not clutter up the
portion of the block which is devoted to executable statements.

The extensive use of the combination and factoring of 'declare' statements
can make a program difficult to read, debug, and edit. Furthermore, the Multics
PL/I compiler keys its diagnostics to statements, not to individual
declarations; therefore, a diagnostic message about a 'declare' statement with
several declarations can be ambiguous.

The use of the outline layout of the declaration of structures, as shown in
the examples in this section, is recommended. The leading zero in each level
number is not required in PL/I; it is a stylistic device carried over from COBOL
by some PL/I programmers. It has the advantage that it distinguishes the level
numbers, which do not partake in the computational activity of PL/I, from the
arithmetic constants.

6-7 AH83

Label Prefixes

A second means for establishing a declaration is the label prefix. A label
prefix is an identifier followed by a colon and it always occurs immediately
before a statement body or another label prefix. It is useful to have a common
term, "label prefix" for all uses of this construct; but, in fact, the
identifier in a label prefix can be a label constant nane, an entry constant
name or a format constant name.

LABEL COUSTANT NAHES

When a label prefix occurs before any statement except a 'procedure',
'entry', or 'format' statement, the identifier in the prefix is a label constant
name. An effect of the label prefix is to establish in the immediately
containing block a declaration of the identifier as 'label internal constant'.
Another, more fundamental effect, is to label the statement so that it can be
the destination of a transfer of control; that effect is described later, in
Section XI, "Program Flow."

A parenthesized, optionally-signed integer can be used in a label prefix as
a subscript to a label constant name. A given identifier can appear in several
label prefixes in a single block provided each appearance has a different
subscript. The effect of the set of label prefixes with the given identifier is
to establish a single declaration of the identifier as 'label internal constant
dimension(i1:i2)', where i1 is the smallest integer used as a subscript and i2
is the largest.

As an example of the use of label prefixes to declare label constant names,
consider the following procedure:

HES: proc(i);

LAB (14) :
LAB(-3):
LAB (1) :
EXIT:

dcl sysprint file;
dcl i fixed bin;
goto LAB(i);
put list("x is too big"); goto EXIT;
put list("z3 is negative"); goto EXIT;
put list("a exceeds x"); goto EXIT;
end;

The label declarations established in this procedure are:

• 'LAB', with attributes 'label internal constant dimension(-3,14)'

• 'EXIT', with attributes 'label internal constant'

ENTRY CONSTANT NAMES ,

When a label prefix occurs before a 'procedure' statement or an 'entry'
statement, the identifier in the prefix is an entry constant name. In the event
that the procedure has neither arguments nor a result, the effect of the label
prefix is to establish in the immediately containing block a declaration of an
identifier with the attributes 'entry internal constant' (if the immediately
containing block is not the root block) or 'entry external constant' (if the
immediately containing block is the root block). When the procedure has
arguments or a result, the attributes of the arguments or the result is included
in the declaration of the entry constant name.

6-8 AM83

As an example of the use of label prefixes to declare entry constant names,
consider the following procedure, which is assumed to be contained in some
larger block:

REP: proc(s,cnt) returns(char(1000) varying);
dcl s char(1000) varying;
dcl cnt fixed bin;
dcl i fixed bin;
i = cnt;
goto L 1 ;

REP2: entry(s) returns(char(1000) varying);
i = 1;

L 1 :
end;

The first two label prefixes establish the following declarations in the block
(not shown) that immediately contains this procedure:

• 'REP' with attributes 'entry(char(1000) varying, fixed)
returns(char(1000) var) internal constant'

• 'REP2' with attributes 'entry(char(1000) varying)
returns(char(1000) varying) internal constant'

The attributes for 'REP' were obtained by making two changes in the 'procedure'
statement and adding the attributes 'internal constant'. The changes are the
replacement of 'procedure' by 'entry' and the replacement of each parameter by
the declaration of the parameter. The attributes for 'REP2' were obtained by a
similar modification of the 'entry' statement. The declarations are established
in the containing block because a procedure block does not contain the label
prefixes of 'procedure' and 'entry' statements in the procedure block.

The example just given shows that the declaration of an entry constant name
can be long. Its purpose is to supply information needed to convert values
supplied as arguments and to accept the value produced as a result. More is
said of this later, in Section XII, "Procedure Invocation."

Suppose the procedure just given is not contained in some larger block (as
was previously assumed) but is itself an external procedure. This change has
two effects. First, the declarations established for both 'REP' and 'REP2' are
changed by replacing 'internal' by 'external'. Second, the declarations of
'REP' and 'REP2' are established in the imaginary 'begin' block that encloses
the program.

FORMAT CONSTANT NAMES

When a label prefix occurs before a 'format' statement, the identifier in
the prefix is a format constant name. An effect of the label prefix is to
establish in the immediately containing block a declaration of an identifier
with the attributes 'format internal constant'. The role of 'format' statements
in PL/I is rather limited and is described under "Stream Input/Output."

6-9 Ar183

Contextual and Implicit Declarations

A declaration that is established by a 'declare' statement or a label
prefix is called an explicit declaration. PL/I allows declarations to be
established in other ways, and these declarations are contextual or implicit. A
contextual declaration is one that is indicated by the way in which an
identifier is used; an implicit declaration is a last resort used when no other
basis for establishing a declaration can be found.

EXAMPLE OF CONTEXTUAL AND IMPLICIT DECLARATIONS

An example of a program that uses contextual and implicit declarations is:

A: proc;
do i = 0 to go;

end;

put file(sysprint) skip list(sind(i»;
end;

This program fails to give explicit declarations for 'sysprint', 'sind', and
'i'. The PL/I compiler assumes that declarations for these names should be
established in the outermost block of the external procedure (the only block in
this case) and supplies attributes as follows:

• 'sysprint' occurs in a 'file' option; since only a 'file' value can
occur in this context, the conpiler supplies the attributes 'file
constant' as a contextual declaration.

• 'sind' occurs as a function or array name; since 'sind' is the naMe of
a built-in function, the compiler supplies the attribute 'builtin' as
a contextual declaration.

• 'i' occurs in a context which does not unambiguously indicate its
declaration; therefore the cOMpiler supplies no attributes, and the
declaration is implicit. According to the default rules, a name with
no attributes is assumed to be 'real fixed binary (17,0)'.

It follows that the example program is equivalent to the following program,
in which all identifiers are explicitly declared:

A: proc;
dcl sysprint file;
dcl sind builtin;
dcl i fixed bin;
do i = 0 to go;

put file(sysprint) skip list(sind(i»;
end;

end;

6-10 AM83

GUIDELINES FOR CONTEXTUAL AND IMPLICIT DECLARATIONS

The example just given shows that contextual and iMplicit declarations make
a short PL/I program much shorter. However, in a larr,er, ~ore realistic
program, the use of contextual or implicit declarations can Mask errors in the
progran. Contextual and implicit declarations are implemented in Multics PL/I
and mentioned here because they are part of Standard PL/I. However, the t1ultics
PL/I compiler prints a warning message for each such declaration, and it is
recommended that every name in a Multics PL/I program be explicitly declared by
'declare' statement or a label prefix.

Special Facilities for Declaration

PL/I has two facilities that are designed to assist programmers in the
declaration of names: the 'like' attribute and the 'default' statement. The
'like' attribute is recommended for the rather special situations to which it
applies, and it is fully described here. In contrast, the 'default' statement
is not recommended, and only a few examples are given here rather than a full
definition.

'like' ATTRIBUTE

The 'like' attribute asserts that the members of a given structure have the
same declarations as the members of some other structure. For example, consider
the 'like' attribute in the following program:

P: proc;
dcl 01 alpha(1000) external static,

02 x float bin,
02 y char(16);

dcl 01 beta like alpha;

end;

The second 'declare' statement is equivalent to:

dcl 01 beta,
02 x float bin,
02 y char(16);

6-11 AM83

Form of the 'like' Attribute

The 'like' attribute has the following form:

like lr

where lr is the like reference.
of names separated by periods.
following restrictions:

The like reference must be a nane or a sequence
A use of the 'like' attribute must satisfy the

• The 'like' attribute can be used only in a 'declare' statement.

• The 'like' attribute can apply only to a structure name; that is, it
must appear in a declaration clause that begins with a level number.

• A structure declaration with a 'like' attribute must not be followed
by a member declaration. That is, if the declaration clause that
contains the 'like' attribute has level number Q, then the immediately
following declaration clause must not have a level number that is
greater than Q.

• It must be possible to resolve the like reference in a 'like'
attribute according to the rules for the resolution of name references
given later in this section.

• The structure designated by the like reference must not contain a
'like' attribute. That is, a 'like' attribute cannot be defined in
terms of some other 'like' attribute.

Interpretation of the 'like' Attribute

A 'like' attribute is interpreted by the compiler. First, the like
reference is resolved; the result is the declaration of a structure. The
designated declaration consists of a declaration clause for the structure name
itself followed by a sequence of declaration clauses for the members of the
structure, the members of the members of the structure, and so on. The compiler
copies the sequence of member dec~aration clauses into a position immediately
after the declaration clause that contains the given 'like' attribute; then it
deletes the 'like' attribute. The final result is a complete declaration of a
structure.

The designated declaration clauses are copied literally, before any
attributes are filled in by the various default mechanisms of PL/I. The level
numbers are adjusted, if necessary, to assure that the declaration clause for a
member has a higher number than that for the containing structure. Within a
given block, the result of interpreting one 'like' attribute is not used in
interpreting another 'like' attribute; such possibilities are ignored when a
like reference is resolved.

6-12 At183

Examples of the 'like' Attribute

The following program contains three examples of the use of the 'like'
attribute:

P: proc;
dcl 01 customer(1000) external controlled,

02 ident,
03 name(3) char(30),
03 number pic"999b99b9999",

02 balance dec(8,2);
dcl 01 current based like customer;
dcl 01 ident_Iist(20) like customer.ident;
dcl 01 ident_pair external static,

end;

02 old like customer.ident,
02 new like customer.ident;

The last three 'declare' statements are interpreted as follows:

dcl 01 current based,
02 ident,

03 name(3) char(30),
03 number pic"999b99b9999",

02 balance dec(8,2);
dcl 01 ident_Iist(20) ,

02 name(3) char(30),
02 number pic"999b99b9999";

dcl 01 ident_pair external static,
02 old,

03 name(3) char(30),
03 number pic"999b99b9999",

02 new,
03 name(3) char(30),
03 number pic"999b99b9999";

Guidelines for the 'like' Attribute

A 'like' attribute should not be used merely to save writing; it should be
used only when there is a close relationship between structure variables.

THE 'default' STATEMENT

A 'default' statement is a rule for adding attributes to the declaration of
a name, a constant literal, a parameter, or the returned result of a procedure.
The statement applies to every such declaration within its scope.

6-13 AM83

A 'default' statement is composed of a default test, which examines the
attributes already present in a given declaration, and a sequence of default
attributes that are added to the given declaration when the default test is
satisfied. A 'default' statement is fully interpreted by the compiler, and it
has no direct action when a program is executed.

The definition of the 'default' statement is not given in this manual; it
appears in the PL/I Language Hanual. A few examples are given here, however, in
order to provide a brief introduction to the statement.

Examples of the 'default' Statement

As an example of the use of a 'default' statement, suppose it is necessary
to use double precision for binary floating-point values in a certain block.
The following statement can be used to achieve the desired effect by introducing
a new default for the number-of-digits:

default (float & Adec & Aprec) prec(63);

This statement means "wherever a 'float' attribute is present and a 'decimal'
attribute is not present and a 'precision attribute is not present, insert the
'precision(63)' attribute".

The example just given requires sone discussion. Why not use 'bin' instead
of 'A dec '? And why U8e 'A prec ' at all? The answer is that a default test must
be written very carefully to cover all possible cases. Consider the following
statement:

dcl x float bin;

Even though the system defaults will eventually add 'binary' to this
declaration, they are applied after, not before, the 'default' statement is
applied. Therefore, the use of 'bin' in the default test instead of 'A dec '
would miss this declaration of 'x'. Next, consider:

dcl y float prec(30);

A 'default' statement adds an attribute rather than replacing an attribute. If
the 'A prec is omitted from the default test, then the 'default' statement
applies to this declaration of 'y' and the result is:

dcl float prec(30) prec(63);

This is an invalid 'declare' statement.

A 'default' statement can be used to exclude certain declarations; for
example:

default (complex) error;

6-14 At183

This statement means "wherever a 'complex' attribute is present, the program is
in error". When the default test is satisfied for this 'default' statement, the
co~piler prints a diagnostic message. This example suggests that the 'default'
statement could be used to enforce the use of a subset of PL/I. However, the
'default' statement is too limited to cover many such cases. For example, there
is no way to require that a 'fixed binary' value have a zero scale factor.

As a third example of a 'default' statement, consider the following:

default(A(range(i:n)lrange(I:N)
& A(constantlbuiltinlconditionlgeneric)
& A(characterlbitlpointerloffset:areallabel:entrylfile)
& A(fixedldecimal:precision))

float binary prec(27);

This statement is complicated because it must cover all possible cases; however,
it means that an arithmetic variable that does not begin with IJKLMN (upper or
lower case) is assumed to be 'float binary precision(27)' when attributes to the
contrary are not given. When used in conjunction with the system defaults, it
approximates the handling of variable names in FORTRAN.

Guidelines for the 'default' Statement

The examples
difficult to use.
as follows:

of the 'default' statement just given show
The problems with the 'default' statement can be

that it is
summarized

• It is too deep. The 'default' statement is applied after certain
special defaults are applied and before the standard system defaults
are applied; furthermore, the order in which several 'default'
statements are written can affect their results.

• It is too limited. The test in a 'default' statement is not powerful.
Many useful defaults cannot be programmed and others can be programmed
only in an indirect and complicated way.

• It is unnecessary. PL/I already has an elaborate set of standard
system defaults. A departure from those defaults introduces unwelcome
complications.

For these reasons, the use of the 'default' statement is not recommended.

RESOLUTION OF NAME REFERENCES

This discussion of the resolution of name references begins with an
example; then the specific definitions and rules for resolution are given.

6-15 AM83

Sxample of the Resolution of Name References

For examples of the resolution of names, consider once a~3in the followin~
progran, which was given at the beginning of this section:

P: proc;
dcl x float bin;
dcl (sysin,sysprint) file;

L2: get list (x);
call Q;
if x = 0 then goto L2; else return;

Q: proc;

end;

dcl L2 float bin;
L2 = x**2 - 3*x**2;
put skip list(x,L2);
end;

Consider the five instances of the name 'L2' in this program. One instance
is in a label prefix and another is in a 'declare' statement; these establish
declarations for 'L2'. Three instances of 'L2' remain, and these instances are
name references that are resolved as follows:

•

•

The rules
section.

The nane reference in the 'goto' statement is resolved to the
declaration of 'L2' that is established in the outer block; therefore,
this name reference is associated with the outer block and has
attributes 'label internal constant'.

The name references in the assignment statement and th8 put
statement are resolved to the declaration of 'L2' that is established
in the inner procedure; therefore, each of these name references is
associated with the inner block and has the attribute 'float'.

under which this resolution was performed are given later in this
First, however, some definitions must be given.

Name-Sequence Set for a Declaration

Each declaration has an associated set of name sequences. If the
declaration describes a structure variable, then the set contains the level-one
name of the structure and also contains each sequence of names that is formed by
starting with the level-one name and proceeding through contained level names.
If the declaration does not describe a structure variable, then the set contains
just one name-sequence and that name sequence is the declared name.

6-16 AM83

Four examples of declarations and their associated sets of name sequences
are given in the following table:

Declaration

dcl 01 Q(0:5) based,
02 R1 float bin;
02 R2 fixed dec(8,2);

dcl 01 S static external,
02 Wef(2,m-3),

03 P float bin,
03 Q,

04 rho(n) fixed dec(4),
04 phi fixed bin,

03 R float bin,
02 G(10,10,cnt) float bin;

dcl alpha(n+2) float bin static;

dcl sqrt builtin;

Name-Sequence for a Name Reference

Set of Name Sequences

Q
Q.Rl
Q.R2

S
S.Wef
S.Wef.P
S.Wef.Q
S.Wef.Q.rho
S.Wef.Q.phi
S.Wef.R
S.G

alpha

sqrt

Each nane reference has an associated name sequence. If the name reference
is a structure-qualified variable reference, then the associated name sequence
is the sequence of level names in the reference. In all other cases, the name
sequence is just the name itself.

Four examples of name references and their associated name sequences are
given in the folloHing table:

Name Reference

Q(3*n1+n2).R1

S.Hef(8,m-3).Q

alpha(2*i-beta)

sqrt

Name Sequence

Q.R1

S.Uef.Q

alpha

sqrt

The full definition of structure-qualified variable references is given later,
in Section VIII, "Expressions."

Applicability of Declarations

A declaration can be applicable to a given name reference in two ways, as
follows:

• The declaration is applicable if it has a name sequence
identical to the name sequence for the given name reference.
case, the name reference is fully-qualified with respect
declaration.

6-17

that is
In this
to the

At183

• The declaration is applicable if it has a name sequence that, after
the omission of one or more names, becomes identical to the name
sequence for the given name reference. If only this case applies,
then the name reference is partially-qualified with respect to the
declaration.

As a basis for some examples of applicability, consider the following
declaration of the structure 'omega':

dcl 01 omega controlled,
02 m,

03 S1 char(30),
03 S2 fixed bin,

02 gamma float bin;

A complete
follows:

list the references to which this declaration is applicable

Fully-Qualified

omega
omega.m
omega.m.S1
omega.m.S2
omega. gamma

Partially-Qualified

m
omega.S1
m.S1
S1
omega.S2
m.S2
S2
gamma

Resolution Rules

To resolve a given name reference, begin the search at the block that
contains the given reference and continue the search outward for each containing
block to find a block that has an established declaration that is applicable to
the given use of the name reference. There are three possibilities, as follows:

• No such block is found. In this case, the name reference is
undeclared. The use of an undeclared name reference is not
necessarily an error in Standard PL/I; a declaration is supplied
according to the rules for contextual and i~plicit declaration,
~entioned earlier in this section. However, the use of an undeclared
name reference is not recommended in Multics PL/I and the compiler
marks such a use with a warning.

• Exactly one such block is found. In this case, that is the desired
block and resolution proceeds as in the next paragraph.

• Hore than one such block is found. In this case, the desired block is
the smallest of the blocks, and resolution proceeds for that block
according to the next paragraph.

When the desired block has been found, there are three possible cases to be
considered, as follows:

• If the block contains exactly one applicable declaration, Ldlt;:;ll that
declaration is the declaration of the given name reference and
resolution is complete.

6-18 At183

• If the block contains more than one applicable declaration, but only
one for which the given name reference is fully-qualified, then that
one is the declaration of the name reference and the resolution is
complete.

• If the block contains more than one applicable declaration but the
preceding case does not apply, then the declaration is ambiguous and
the name reference is invalid.

As a basis for examples of name resolution, consider the following program:

P: proc;
dcl X float bin;
dcl Y float bin;

(Computation #1)
Q: proc;

end;

dcl 01 S,
02 Y float bin,
02 Z fixed dec(8,2);

dcl 01 R,
02 alpha char(16),
02 Z(100) float bin;

dcl alpha fixed bin;
(Computation #2)

end;

Now consider some of the references that could appear in Computation #1 or
Computation #2:

X

Y

alpha

Z(i)

In either Computation, this reference is a fully-qualified
reference to the 'X' declared by the first 'declare' statement in
the outer block.

In Computation #1, this reference is a fully-qualified reference to
the 'y' declared in the second 'declare' statement in the outer
block. In Computation #2, this reference is a partially-qualified
reference to the first member of'S' declared in the first
'declare' statement in the inner block.

In Computation #1, this reference is undeclared and, in Multics, is
contrary to recommended usage. In Computation #2, this reference
is a partially-qualified reference to the first member of 'R' and a
fully-qualified reference to the 'alpha' that is declared in the
last 'declare' statement in the inner block. The reference is
resolved to the second possibility, the 'alpha' declared in the
last 'declare' statement.

In Computation #1, this reference is undeclared. In Computation
#2, this reference is a partially-qualified reference to the second
member of both'S' and 'R'. Both'S' and 'R' are declared in the
inner block; therefore, the reference cannot be resolved and is
invalid.

Observe ~nat ~ne subscr1p~ in ~ne reference 'Z(i)' does not enter 1n~o the
resolution of the reference, even though 'R.Z' can have a subscript and 'S.Z'
cannot.

6-19 AM83

ATTRIBUTES

PL/I has more than 50 attributes, and many combinations of these can be
used in the declaration of a name. The following paragraphs present ttvo views
of attributes. First, five kinds of names are defined and the sets of
attributes allowed for the declaration of e8ch kind of name are given. Then a
complete classification of the attributes is presented.

Complete Attribute Sets

There are five main kinds of names, as follows:

variable names
constant names
built-in function names
condition names
generic names

The different kinds of names vary widely in their importance. The variable
names have a variety and flexibility that overshadows all other names. Constant
names and built-in function names appear in nost programs. Condition names also
occur in most programs, but they are used in a restricted context. Generic
names are extremely specialized and are rarely used.

The follma!ing paragraphs gi ve the comp' ete ;:tttri hute sets for p.8ch ki nd of
name. A set of attributes is a valid complete declaration for a name if and
only if it is included in one of these sets. As an example, consider one of the
complete attribute sets for a variable name:

real float binary precision(27) aligned automatic internal variable

Because of the default rules of the language, this attribute set can be
shortened to:

float

However, the following paragraphs do not mention such shortened forms. They
give only complete attribute sets, before any abbreviations or defaults have
been applied. In practice, once an appropriate attribute set has been
determined, it is a relatively routine job to apply abbreviations and defaults
to shorten it.

The complete attribute sets are given by means of diagrams.
use two special notations, as follows:

The diagrams

• Curly braces indicate a choice; they enclose two or more lines, any
one of which is chosen in making up a specific attribute set.

• Square brackets indicate an option; they enclose an item that can be
either included or omitted in making up a specific complete attribute
set.

Some of the identifiers ~Ll thG diagrams are underlined and some ~~o not. The
underlined identifiers are terms that are defined in the text that follows the
diagram. The nonunderlined identifiers are attribute keywords.

6-20 AH83

VARIABLE NAMES

A variable name designates storage for a value obtain~d from input or
calculation. The complete attribute sets for a variable name are:

dt [dimension(QQ., •••)J
{

aligned }

unaligned
sc [initial(K, •••)J variable

where dt is the data ~, QQ., ••• is a sequence of array-bound pairs separ,ated
by commas, sc is the scope snQ' class, and K, ... is a sequence of initial value
expressions separated by commas.

The data type is one of the following sets of attributes:

{

real }

complex {

fixed}

float {
binary }

decimal

pict ure"Q§." {real }
complex

{Character(ee l}
bite ee)

rOnV~rYing}
varYlng

label [local J

{

preciSiOn(Q,g)}

precision(Q)

entry(Q, •••) [optionsevariable)J - [returns(

format [localJ

pointer

offset [(§:.)]
file

area [< ee)J

structure [like KJ

Q)]

where Q is an unsigned decimal inteGer constant, g is an optionally signed
decimal integer constant, Q§. is a picture, ee is an expression whose value can
be converted to an integer value, Q is a descriptor, §:. is a reference that
yields an area' ~alue, and K is a like-reference.

6-21 M183

The scope and class is one of the following sets of attributes:

{

static }

controlled {

internal}

external

automatic

based(l.9.

parameter internal

defined(br [Positione i)]

\member' J }
where l.9. is a locator qualifier, br is a based reference, and i is an expression
whose value can be converted to an integer value.

Variable names are described in Section VIII, "Expressions."

CONSTANT NM1ES

A constant name designates a statement address or a file-state-block
address. The address is set by the compiler and does not change during program
execution. The complete attribute sets for a constant name are:

label internal [dimension(QQ)]

entry(~, ...) {internal} [optionsevariable8
external

fornat internal

file {::::::::} fd

[returns(~)]

constant

where QQ is a pair of array bounds, ~ is a descriptor for a paraMeter or a
result, and fd is the file description, defined as follows:

stream

I record
I

l

{

input

output

(input. l
\ output ~
I I
\ update)

print [enVironment (interaCtive)] }

(sequen~~a~ l
lsequentlal i
tdirect keyed)

environment(strinsvalue) I
I

J
Constant names are described in Section VIII, IIExpressions."

6-22 AM83

BUILT-IN FUNCTION NAt1ES

A built-in function name designates an operation that is applied to
arguMents to produce a result. Each built-in function name designates an
operation whose action is a fixed part of the definition of PL/I. The complete
attribute set for a built-in function name is:

internal builtin

Built-in function names are described in a general way in Section VIII,
"Expressions," and the individual built-in functions are defined in Section IX,
"Operations. '

CONDITION NAr1ES

A condition name designates an exceptional situation that can arise during
program execution; it is used in programming a response to the given situation.
The complete attribute set for a condition name is:

external condition

Condition names are described in Section XIII, "Condition Handling."

GENERIC NA~1ES

A generic name designates a set of rules for selecting a programmed entry
name from a set of programmed entry names. The compiler follows the rules and
replaces the generic name with one of the programmed entry names. The complete
attribute set for a generic name is:

internal generic(alt, ...

where 'alt, ... ' is a sequence of alternatives separated by commas. Generic
names are described in Section XII, "Procedure Invocation."

6-23 AM83

Classification of Attributes

It is useful to arrange the attributes in a single, hierarchical
classification and thus establish a complete terminology for the discussion of
attributes. The classification is as follows:

storage description
storage type

data type
computational

arithmetic
mode:
scale:

real complex
fixed float

base: binary deciMal
precision: precision(Q,Q)

string
string type: character (ee) bi t (ee) picture ".Q§."
variability: varying nonvarying

non-computational
address

statement: label entry format
data

locator: pointer offset
file: file

area: area(ee)
aggregate type

array: dimension(QQ, ...)
structure: structure member

alignment: aligned unaligned
management class

storage class
allocation: automatic static controlled based(lQ)
sharing: based(lQ) defined(r) position(i) parameter

scope: internal external
category: variable constant
initial: initial(x, ...)

usage description
label and format: local
entry: entry(Q, ...) returns(Q, ...) options(variable)
offset: offset(£)
file constant

operation: input output update
organization

stream:
record:

non-valued names

stream print environment(interactive)
record sequential direct keyed
environment (string value)

compile-time: like r generic(alt, ...)
intrinsic names: builtin condition

Definitions for the underlined identifiers, Q, Q, ee, and so on, are not given
here because they were given earlier, in the definitions of the complete
attribute sets. Further information about a given attribute or class of
attributes can be located through the index of this manual.

SECTION VII

STORAGE MANAGEMENT

Part of the cost of program execution is expended on the
called storage. When the storage requirement can be reduced,
program execution decreases. A programmer cannot do much to
occupied by a given program, but he can exercise some control
storage required for the data on which the program operates.
data storage is called storage management. Observe that
concerns storage itself, and not the values contained in that

computing resource
the cost of the
reduce the storage
over the amount of

The control of
storage management
storage.

Each variable name in a program must have storage allocated for its value
at some time before it is assigned a value and may have that storage freed at
some time after the last use of its value. Allocation and freeing are the
fundamental operations of storage management. There are several mechanisms that
cause these operations to occur, and the programmer chooses one mechanism for
each variable name by giving a storage class attribute when he declares the
variable name.

The requirement of a program for storage can be reduced by storage
management; the effect is achieved by using a given portion of storage for more
than one purpose and thus "recycling" the storage resource. However, storage
management has its own cost because it is, in itself, a form of data processing.
In some cases, the saving of storage does not justify the increase in processing
cost and program complexity. In Multics, small scale storage management is not
recommended. Programmed storage management is usually reserved for cases in
which a large saving in storage can be accomplished in a simple way.

Some of the principal innovations of both Hultics and PL/I are applied to
the problem of storage management. The Multics paging system is a
hardware-based mechanism for storage management that is automatic and quite
invisible to the programmer. The block structure of PL/I allows the programmer
to organize programs in a way that implies the desired storage management
without requiring explicitly programmed allocation and freeing of storage. In
addition, PL/I has built-in routines that facilitate storage management under
program control. Taken together, these features of t1ultics and PL/I allow the
programmer to use very powerful storage management techniques with a small
amount of programming effort.

This section has three main parts. The first part gives exa~ples and the
fundamentals of storage allocation. The second part defines the management
class, which consists of the usage, scope, storage class, and initial
attributes. The final part discusses the capacity of storage and the
exceptional conditions that apply to storage allocation.

7-1 AM83

PRELIMINARY EXAMPLES OF STORAGE MANAGEMENT

A few concrete examples are
discussion of storage management.
of storage management:

given here to prepare for the detailed
Consider, first, a program that has a minimum

P1: proc;
dcl (sysin,sysprint) file;
dcl (a,b,c) float bin static;
get list(a);
b = a+4;
c = b**2;
put list(b,c);
end;

Because the variable names a, 'b', and ' c' are declared ' static', their
storage is allocated throughout the process from the first reference to the
program 'P1' on. Since there are times when a variable is not in use (that is,
does not contain a useful value), storage is wasted.

One way of introducing storage management is to use 'controlled' variables.
Then statements can be inserted that allocate each variable just before its
first use and free it just after its last use, as in the following revision of
the given example:

P2: proc; 0
dcl (sysin,sysprint) file; 0
dcl (a,b,c) float bin controlled; 0
allocate a; 1
getlist(a); 1
allocate b; 2
b = a+4; 2
free a; 1
allocate c; 2
c = b**2; 2
put list(b,c); 2
free b ,c; 0
end;

The digit at the end of each line is not part of the program; it is added to
show how many 'float bin' variables are in storage after each statement.
Instead of using three variables all the time, the program never uses more than
two. On the other hand, the program has more statements, and these statements
add to the cost of executing the program. The version just given could not be
justified to save one or two 'float bin' variables; but it might be appropriate
if large arrays, for example, were involved.

7-2 AM83

An entirely different approach can be taken to reducing the storage
required for the given program. The programmer can recognize that the last use
of the variable 'a' occurs before the first use of the variable 'c'; this, of
course, is a special property of this particular calculation. The programmer
could then replace each occurrence of 'c' by 'a' throughout his program and omit
the declaration of 'c'; but this Hould confuse the logic of the progran (since
'a' and 'c' represent different mathematical quantities). A different approach
is to use a 'defined' variable, as follows:

P3: proc;
dcl (sysin,sysprint) file;
dcl (a,b) float static;
dcl c float bin defined(a);
get list(a);
b = a+4;
c = b**2;
put list(b,c);
end;

The 'defined' attribute causes 'c' to occupy the same storage as 'a', so the
program needs storage only for two 'float bin' variables. This storage
management technique has virtually no cost in terms of execution; however, it
requires an analysis of the program, and an error in that analysis can easily
lead to costs far in excess of the saving in storage.

Both of these examples of programmed storage management have weaknesses:
the first incurs a considerable processing cost for allocation and freeing and
the second is trick programming and is not recommended. Such techniques are
more appropriate when PL/I is used to program a computer with a small storage
capacity. There are occasions when programmed storage management is necessary
in t1ultics PL/I programs; but most Multics PL/I programs rely entirely on the
allocation and freeing performed by PL/I in response to the structure of the
program.

FUNDAMENTALS OF STORAGE MANAGEMENT

A Multics PL/I programmer does not deal directly with hardware storage;
instead, he works through several layers of special hardware and software whose
purpose is to simplify the use of storage. These levels begin at the hardware,
continue with the virtual memory, and conclude with the PL/I regions.

• On the hardware level, storage is a small working memory and a large
secondary memory. Such a configuration would be difficult to program,
since it requires an almost constant transmission of data and
instructions between the working storage and the secondary storage.
The Multics paging system controls this transmission and makes all
storage appear to be a homogeneous memory, called virtual memory.

• On the virtual memory level, storage is a set of segments. Each
segment is an addressable memory of 36-bit words and can be used like
the working storage of an ordinary processor. However, a segment is
very large (over 200,000 words) and, furthermore, the number of
segments is very large. Thus virtual memory is an idealization of the
actual hardware storage.

7-3 AM83

• On the PL/I language level, storage is thought of as a set of regions
that are napped in fairly sinple ways into the segments of virtual
memory. Each region has a clearly defined relation to the PL/I
program with which it is associated, and regions are created and
destroyed as an integral part of program execution. Thus PL/I storage
is a specialization of virtual memory.

Usually a PL/I programmer thinks entirely in terms of storage regions;
that is, he considers these regions to be the "real" data storage of a PL/I
program. A concern for the way in which regions are laid out in segments and
distributed between working and secondary storage is necessary only for
considerations of cost and debugging of invalid programs.

Storage Regions

Each storage region is a separate entity with a fixed but very large
capacity. A region is either internal or external. Each internal region is
associated with a particular block of a program. There are two kinds of
internal regions:

• A permanent internal region is used for variables with 'internal
static' or 'internal controlled' attributes. There is one such region
for each block in a program. The region is created at some time
before program execution begins and is not destroyed until after the
process ends.

• An activation internal region is used for variables with 'internal
automatic' attributes. There is one such region, called the stack
frame, for each activation of each block in a program. The region is
created when the block is activated and is destroyed when the block is
deactivated.

An external
particular block.

region is associated with an entire process rather than a
There is one external region:

• The ordinary external region is used for variables and constants that
have the attribute 'external' and that do not have special names.'(A
special name is an identifier that contains a '$'.) There is one such
region for an entire process. The region is created at some time
before program execution begins and is not destroyed until after the
process ends.

To summarize, the regions are classified according to the following
hierarchy:

region
internal

permanent: one per block
activation: one per activation of each block

external
ordinary: one per process

7-4 At183

Re'gion Diagrams

For purposes of discussion, it is useful to represent a region by a
diagram. Suppose the following statements are all of the declarations in the
third block of some given program:

begin;
dcl x fixed dec(8) static internal;
dcl 01 y static internal,

02 alpha(3) char(4),
02 beta float;

end;

The program in question has a set of regions associated with it. The diagram of
one of these regions is:

ermanent internal re~ion block

s 9 9 9 9 9 9 9 9
00610 x 1 I I I I I I I I I

x x x x
01834 y .alpha(1) "I I I I I"

x x x x
01835 .alpha(2) "I I I I In

X X X x
01836 .alpha(3) "I I I I In

01837 .beta
s 1 1 L3
~--(27)--~e b

This region is the permanent internal region for the third block of the program.
It contains five storage units, one for fhe scalar variable 'x' and four more
for a structure variable 'y'. The region continues downward, as suggested by
the absence of a bottom edge for the enclosing boundary, and has room for many
more storage units.

Each line of the region describes a storage unit. A line is made up of
four components: a representation of a pointer value, a name, an access path
composed of member names and subscripts, and a data fra~e.

7-5 AH83

Storage Management Operations

At any time during the execution of a program, each bit of storage in a
region is either allocated or free. Storage is allocated if a designation that
can be used in program execution is associated with it; otherwise, it is free.
Free storage is organized into a pool from which requests for storage are
satisfied.

The purpose of a storage management operation is to control the association
between a designator (most commonly, a variable name) and its storage. The
allocation operation for a variable name can be invoked either by the PL/I
processor or by a program statement; but in either case, the details of the
operation are determined by the attributes given in the declaration of the name.
The allocation operation proceeds as follows:

1. Each extent expression (array bound, maximum string length, or area
size) in the storage type attributes is evaluated and converted to an
integer value. This evaluation is performed each time the allocation
operation is performed.

2. The amount of storage required is determined from the given storage
~ attributes and their evaluated extents.

3. The region in which allocation must occur is determined from the given
storage class attributes. Storage is withdrawn froo the free storage
pool of that region and is associated with the given variable nane.

4. If the variable is an 'area' variable, it is initialized to emDty. If
the variable has an ;initial; attribute, it is initialized; any
expressions in the 'initial' attribute are evaluated each time the
allocation operation is performed.

The free operation takes storage back from a given storage designator and
returns it to the pool of free storage.

Storage i'1anagement Exar.wle

Consider the following program, which is made up of two external
procedures, 'P1' and 'P2':

P 1 : proc;
dcl P2 entry external constant;
dcl A dec(5,2) controlled external;
dcl B dec(5,2) static internal;

(CoP.1putation 1t1)
call P2;
... (Computation #2)
free A;
end;

7-6 At183

P2: proc;
dcl X fixed dec(5,2) static internal;

(Computation #3)
begin;
dcl A fixed dec(5,2) controlled external;
dcl B fixed dec(5,2) static internal;
dcl Y fixed dec(5,2) automatic internal;

(Computation ff4)
allocate Aj
. .. (Com put at ion iF 5)
end;

end;

The "Computations" in this program represent statements that do not introduce
new declarations or affect the block structure of the program. Some of the
attributes shown would normally be omitted by means of default conventions; to
omit them here would not serve the purposes of an introductory example.

The following discussion traces the execution of this program and describes
each allocation operation as it occurs. Before execution begins, a single
ordinary external region is created; for this program, it is initially empty.
Also before execution begins, a permanent internal region is created for each
block and each 'static internal' variable is allocated. Immediately before
execution of the program, the diagram for storage is:

ordinary external reglOn

permanent internal region. block 1 (named 'P1')

00505 B
S 9 9 9 :L:l-.

! I I I I.LL!

permanent internal region block 2 (named 'P2')

I I
14402

S 9 9 9 9 9
17777171

(((I I.L-LJ

Qermanent internal region. block 3 (contained in 'P2')

00626 B
S 9 9 9 :L:l-.

! I I I I.LL!

The first step in the execution of the program is the activation of the
block that is the external procedure 'P1'. As part of this activation, an
internal activation region is created; but because there is no automatic
variable in the block, no storage unit is allocated in the new region.

Execution continues with Computation #1. It is assumed that the only
allocation of the controlled variable 'A' is the one shown in 'P2'; therefore,
the only storage unit available for use so far is the static variable 'B'.
After the computation, the procedure 'P2' is called.

The first step in the execution of 'P2' is
internal activation region is created, but
variable in the block, so no storage unit is
Execution continues with Computation #3, which
'X'. After the computation, control flows into

7-7

the activation of the block; an
once again there is no automatic
allocated in the new region.
can use only the static variable
the 'begin' block.

At183

The execution of the 'begin' block begins with its activation. A~ain, an
internal activation region is created; but now there is an automatic variable,
'y', in the block and it is allocated as part of the activation. As Computation
#4 is about to be~in, the diagra~ for storage is:

ordinarv external reglOn

permanent internal region. block 1 (named 'P1')

00505 B
S 9 9 9 3..-.:l-,

1-!2!8!0!.LSW/

permanent internal re~ion. block 2 (named 'P2')

14402 x
S 9 9 ~ 3..-.:l-, 1+!0!1!!.LQfj)j

permanent internal region. block i (contained in 'P2')

00626 B
S 9 9 9 3..-.:l-,

I ! 7 ! !.LLJ

activation internal region. block 11naQed 'P1')

activation internal region. block 3 (contained in 'P2')

y
S 9 9 9 3..-.:l-,

I ! ! ! !.LLJ 02332

Computation #4 can use the static variable 'B' and the automatic variable 'y'.
Observe, however, that the 'B' that is accessible is the one in the third
permanent internal region, not the one in the first. Thus in this example, 'P2'
cannot use any value that was computed in 'P1'.

7-8 AH83

After Computation #4 is executed, a statement is executed that allocates a
storage unit for the controlled variable 'A' in the ordinary external region.
During Computation #5, a value is stored in 'A', and this, it is assumed, is a
useful result that 'P2' prepared for use by 'P1'. As execution of the 'begin'
block and 'P2' is completed, their regions are discarded; then control returns
to 'P1'. As Computation #2 is about to begin, the diagram for storage is:

ordinary external region

00771 A

permanent internal region. block 1 (named 'P1')

00505 B
3999 .L9-,

/-!2!8!0!.LQL3I

permanent internal region. block 2 (named 'P2')

14402 x

permanent internal region. block ~ (contained in 'P2')

00626 B

activation internal region. block 1 (naned 'P1')

Computation #2 can use the static variable 'B' allocated for block 1; in
addition, now that a storage unit has been allocated for 'A', this variable can
b~ used in the computation.

After Computation #2, a 'free' statement returns the storage for 'A' to the
free storage pool. In the storage diagram, the ordinary external region once
again is empty. The last step in execution of the program is the deactivation
of the block that is external procedure 'P1'; as part of .this step, the internal
activation region is discarded. At this time, the stora~e diagram looks just as
it did before program execution (see the first diagram of this series) except
that the stored values are filled in. When the process of which the program is
a part ends, the remaining regions are discarded, and no storage associated with
the program remains.

7-9 AI183

MANAGEMENT CLASS

According to Section VI, "Declarations," the declaration of a name is
usually divided into two parts. The first part is the storage ~, which
specifies the kind of values accommodated by the designated variable or
constant. The second part is the management class, which specifies various
information about the handling of storage including, but not restricted to, the
method of allocation. The storage type was defined earlier, in Section III,
"Value Storage." The manageMent class is described here.

The management class is composed of four kinds of attributes, as follows:

• The usage category
attribute describes
program.

attribute is 'variable' or 'constant'. The
the way in which the storage is used by the

• The scope attribute is either 'internal' or 'external'. The attribute
helps determine the region in which the storage is allocated and thus
affects the accessibility of the storage.

• The class attribute is 'automatic', 'static', 'controlled', 'based',
'defined', or 'parameter'. The attribute selects the mechanism that
invokes the allocation and freeing operations.

• The initial value attribute, when present, specifies a value that is
assigned to a variable when it is allocated.

Form of the Management Class

Details of the form of the nana~enent class are ~iven by the followins
diagraM:

automatic

static

controlled

based [< locref)]

defined [Position (i)]

paraneter

{

static }

controlled

internal

variable [initial(vI)]

external

{::::::::} constant

7-10 AMB3

In this diagram,

• locref is a reference to a locative value or a function that yields a
locative value.

• i is an expression whose value can be converted to an integer.

• . vI is a list of initial value expressions for the 'initial' attribute
and has the syntax given later in this section under "The
Initialization Attribute".

The 'initial' attribute must not be used with either the 'defined' or the
'parameter' attribute.

Abbreviations and Defaults

PL/I provides several abbreviations for the management class attributes, as
follows:

Attribute

internal
external
automatic
controlled
parameter
defined
initial

Abbreviation

int
ext
auto
ctl
parm
def
init

The default attributes for the category, scope and class are as follows:

Omitted
Attribute

category

Default

default is 'variable'

exception: default is 'constant' when the attribute
'entry' or 'file' is present in the storage type and
no attribute is present that cannot apply to a
constant.

default is 'internal'

exception: default is 'external' when the attribute
'entry' or 'file' is present in the storage type.

default is 'automatic'

exception: default is 'static' when both 'external'
and 'variable' attributes are present.

7-11 AM83

The following examples show the application of these defaults and
abbreviations to typical attribute sets:

Full Allocation Type

float automatic internal variable
float static external variable
file external constant

DEFAULT RULES

Shortest Form

float
float ext
file

The default rules for the management class each choose the most commonly
used attribute as the (nonexceptional) default: nost names declared in 'declare'
statements are indeed variables rather than constants; an 'internal' name is
used wherever possible because it is more economical; and 'automatic' variables
are the hallmark of programming in a block-structured language like PL/I.

The exceptions for category and scope are not obvious and require further
discussion. They reflect certain special patterns of PL/I programming and are
best explained in terms of two specific 'declare' statements:

dcl P2 entry external constant;
dcl sysin file external constant;

Declarations like these are the most common uses of the 'declare' statement for
entry or "file names. Therefore, tne default rules are adjusted so Lhat

these declarations can be given succinctly as

dcl P2 entry;
dcl sysin file;

The first statement is used when an external procedure (say, 'Pl') calls another
external procedure at an entry specified by 'P2'. Since 'P2' does not appear in
a label prefix in the procedure 'fl', it must be declared in that procedure by a
'declare' statement. The second statement is used to declare the name of a file
constant. Something like it must occur in every program that performs
input/output.

The exception for class is necessary because there is no 'automatic' class
for an 'external' variable. The exception uses 'static' as t~e default because
it is siQpler and more economical than 'controlled'.

USAGE CATEGORIES

The usage category attributes indicate the ways in which names are used.

7-12 AM83

Variables

A variable storage unit sequence, or variable for short, is used to store a
value that can change repeatedly throughout its existence and can be set
directly by, a program statement. A variable can be allocated and freed by the
PL/I processor or explicitly by program statements; but in every case, the
details of the operation are determined by the scope and class attributes that
are given in the declaration of the variable name.

A variable can be declared with any storage type allowed in the language.
A variable can accommodate a scalar value, in which case it is a single storage
unit, or it can accommodate an aggregate value, in which case it is a sequence
of storage units.

Constants

A constant storage unit sequence, or constant for short, is used to store a
value that is set by the PL/I processor and does not change. Only the value of
a constant can be used in a program; it is not possible to get the address of a
constant.

Computational constants are designated by literal constant references,
while noncomputational constants are designated by names. These program
constructs are described later, in Section VIII, "Expressions."

SCOPES

The scope attribute determines whether or not t\vO declarations of the same
name have the same meaning.

Internal Names

Each time a given name is declared in a different block with the 'internal'
attribute it has a different meaning. Each declaration can associate a
different set of attributes with the name. When storage is allocated for the
name, it will be different from that for other declarations of the name because
it will be allocated in a region uniquely associated with the block in which the
declaration is established.

7-13 AM83

External Names

Each time a given name is declared in a different block (but in the same
process) with the 'external' attribute it has the same meaning. Each
declaration must associate exactly the same set of attributes with the name
(after defaults and abbreviations have been filled in). Storage is allocated
for the name only once, and is shared by all 'external' declarations of the name
because it is allocated in a region associated with the program as a whole.

External variables can be allocated outside of the storage that is
controlled by the PL/I processor and can exist independently of the execution of
a program. Details are given later, in Section XVI, "PL/I in the Multics
System," under the heading "External Variables."

Guidelines for the Scope

The 'internal' attribute should be used except where there is a need to
share a variable or constant among several external procedures. External
storage is much more expensive to allocate and reference than internal storage.
The first reference to an external variable can consume as much processor time
as the execution of a typical small program.

When external names are used, special care must be taken. If the external
procedures of a large program are written at separate times or by different
people, the use of external names ~ust be coordinated. Otherwise j conflictin~
uses of the same external name will be discovered only when the complete program
is executed, if at all.

The high cost of external names can be reduced by subjecting the program to
the Multics bind command (see the tlultics Programmers Manual). This command
takes the separately compiled object segments of the external procedures and
produces a single object segment equivalent to them. In the resulting object
segment, the cost of references to external names may be reduced, particularly
if the named variables are bound in \fith the program. A disadvantage of using
the bind command is the extra cost incurred by the bind command itself. It is
best applied when a program has been accepted for production use.

Correspondence Between Names and Storage

It is a principle of PL/I that each allocated portion of storage is
designated by a name (that is, a declared identifier) in the program. Thus
there is a correspondence between names and storage. This is a useful
principle; but it does have some exceptions.

7-14 A!183

An allocated portion of storage is not designated by a name in the
following cases:

• Temporary storage units are not designated by names (or any other
program constructs). This is because temporaries are accessible to
the PL/I processor but not to program statements.

• Computational constants are designated by literal constant references,
not names. This is because the spelling of a literal constant is used
to indicate the value of the constant. (For example, the literal
constant '100' indicates that its value is one hundred.)

• Explicitly allocated based variables are designated by locative
values, not names. More is said of this later in this section.

A name does not designate an allocated portion of storage in the following
cases:

• A generic function name is used as
replaced by an entry constant
before program execution begins.

a kind of macro name, and is
name (which does designate storage)

• A built-in function name has an intrinsic meaning, and, in that
respect, resembles an operator such as '+' or '='; for example, when
'abs' is declared 'builtin', it refers to the absolute value operation
that is part of the definition of PL/I.

• A condition name is related to an entry variable name; but the storage
it uses is not directly accessible to program statements and is
managed in a specialized way.

• A constant name is evaluated during program execution.

• A controlled variable name does not designate storage unless it is
allocated.

Every name in a PL/I program has a scope. The scopes for the exceptional
names just mentioned are 'internal' for generic function references and built-in
function names and 'external' for condition names. These exceptional names are
discussed in later sections.

STORAGE CLASSES

The storage class attribute determines storage management. By writing a
single attribute for a variable name, the programmer selects from six very
different mechanisms for storage management. Some mechanisms are easy to learn
and use ('automatic', 'static', and 'controlled'). One is designed for the
special purpose of transmitting arguments to procedures ('parameter'). Those
remaining ('based' and 'defined') are for advanced programming applications and
can be ignored in an initial study of PL/I.

7-15 AM83

Auto~atic Variables

The attribute 'automatic' designates a storage management mechanisn that is
driven by the block structure of the program rather than program
variable whose name is declared 'automatic' is allocated as
activation of the block in which it is declared and is freed
deactivation of that block. Thus it is available for use during
activation of the given block.

statements. A
part of the

as part of the
a particular

The activation of a block occurs as control enters a block (either by
invocation of a procedure block or sequential flow into a 'begin' block); it is
performed before the first executable statement of the block is executed. The
deactivation occurs as control leaves the block (by execution of an 'end'
statement, a 'return' statement, or a 'goto' statement); it is perforMed before
execution of a statement that is not contained in the block.

An automatic variable always has 'internal' scope. It is allocated in the
activation internal region that is associated with the given activation of the
given block.

VARIABLE EXPRESSIONS IN ATTRIBUTES FOR 'automatic' VARIABLES

The attributes of an automatic variable can contain variable expressions;
these can be extent expressions (array bounds, maximum string length, or area
size) or initial value expressions. When an automatic variable is allocated as
part of block activation, these variable expressions must be evaluated. They
must depend only on variables that are set before the given block activation
begins.

This rule appears to be obvious, but the following program shows that it
does introduce a restriction on the use of automatic variables:

P 1 : proc;
dcl n fixed bin initial(5);
dcl A(n) float bin;

end;

(Since no storage class is given for 'n' and 'A', both are 'automatic'.)
Although it is quite clear what the programmer wants to have happen, this
program is invalid because the allocation of 'A' depends on a variable, 'n',
that was not set before block activation began. In contrast, consider the
program:

P2: proc;
dcl n fixed bin static initial(5);
dcl A(n) float bin;

end;

This program is valid because a 'static' variable is allocated and set before
block activation begins.

7-16 AH83

SAV!NG VARIABLE EXTENTS FOR 'automatic' VARIABLES

The storage type used for every reference to a variable must be consistent;
that is, it must be identical to the storage type used for the allocation of
that variable. This is a fundamental rule of PL/I; it asserts that storage
cannot be given more than one interpretation. There are exceptions to this
rule, but they apply only when the storage class is 'based' or 'defined', and
are relevant only in advanced applications of the language.

When 'based' or 'defined' variables are not used, the design of PL/I makes
it impossible for the programmer to break the rule of storage type consistency;
specifically, when storage is allocated for a variable, every part of the
storage type that can change during program execution is saved. Each reference
to the variable uses the saved information' and is therefore consistent with the
allocation of the variable.

The following program fragment shows the effect of this treatment of
storage types:

P 1 : proc;
dcl n fixed bin;
n = 4;

begin;
dcl S char(n+2);

n = 100;
S = "abcdef";

end;

end;

(Since no storage class is given for 'n' and'S', both of the designated
variables are 'automatic'.) At the time'S' is allocated, the storage type
given by the 'declare' statement is 'char(6)'; this storage type is used for the
allocation and is saved. Subsequent reference to '3', including both the
assignment to'S' and the automatic freeing of'S' at the deactivation of the
'begin' block, use the saved storage type. Thus the fact that the storage type
given by the 'declare' statement changes to become 'char(102)' has no effect on
the program and, specifically, does not cause a violation of the storage type
consistency rule.

The extents for an 'automatic' variable are saved in temporaries that are
allocated and freed in the same region and at the same time as the variable.
Because temporary storage is not accessible to program statements, the saved
extents cannot be inadvertently changed.

Static Variables

The attribute 'static' designates a storage management mechanism that ~akes
the allocated storage available throu~hout program execution. A variable whose
name is declared 'static' is allocated at some time before the first reference
to the variable is processed and is freed at some time after the last reference
is processed.

7-17 At183

An ordinary static variable can have 'internal' or 'external' scope and is
allocated in a permanent internal region or in the ordinary external region,
accordingly.

VARIABLE EXPRESSIONS IN ATTRIBUTES FOR 'static' VARIABLES

Every expression in an attribute in the declaration of a 'static' variable
must be a constant expression. In particular, the extents (array bounds,
maximum string length, or area size) and the initialization expressions must be
constants. Since the extents are constant, it is not necessary to save them.

Controlled Variables

The attribute 'controlled' designates a storage management mechanism that
is driven by program statements and is thus under program control. A variable
whose name is declared 'controlled' is allocated by the execution of an
'allocate' statement and freed by the execution of a 'free' statement. Thus the
variable is available for whatever portion of execution of the program the
programmer requires. A small control block permanently associated with the
'controlled' variable is used to locate its currently allocated storage.

A controlled variable can have 'internal' or 'external' scope and its
control block is allocated in a permanent internal region or in the ordinary
external region, accordingly.

THE 'allocate' AND 'free' STATEt1ENTS FOR 'controlled' VARIABLES

A controlled variable whose name is id is allocated by the statement

allocate id;

and is freed by the statement

free id;

The keyword '~llocat~' can b~ abbrevi~ted as,'all~c'. t10re than one identifier
can be ment10ned 1n an allocate or free statement; in that case, each
identifier is separated from the next by a comma.

STACKING CONTROLLED VARIABLES

A simple use of a controlled variable name is to allocate storage for a
variable, reference the storage as often as necessary, and then free the
storage. A more general use of a controlled variable name is to allocate
storage for a variable more than once before freeing its storage. When used in
this way, a controlled variable name designates a stack of variables, and has
the following properties:

• Each time the name is used in an 'allocate' statement, a neu variable
is allocated and earlier allocations remain undisturbed.

• Each time the name is used in a 'free' statement, the most recently
allocated variable designated by the name is freed and the less recent
allocations are undisturbed.

7-18 AM83

• Each time the name is used as a reference, the most recently allocated
variable designated by the name is accessed for the setting or
retrieving of a value.

A program that uses a name in a reference or a freeing when there is no variable
allocated for that name is invalid. This can occur when no allocation has
occurred or when the number of freeings already equals the number of
allocations.

As an example of the use of a controlled variable name to designate a stack
of variables, consider the following program:

P 1 : proc;
dcl x float bin controlled;
... (Computation 1)
allocate x;
x = 10;
... (Computation 2)
allocate x;
x = 20;
... (Computation 3)
free x;
... (Computation 4)
free x;
... (Computation 5)
end;

The "Computations" contain only references to 'x' that retrieve its valaes; all
allocations, freeings, and setting are shown explicitly. A reference to 'x' in
Computation 1 would be invalid because no variable has been allocated for 'x'.
References in Computations 2 and 3 yield 10 and 20. A reference in Computation I
4 yields 10 because the variable first allocated for 'x' becomes available after
the first 'free' statement; this is the point of the example. A reference to
'x' in Computation 5 is invalid because all variables associated with 'x' have
been freed. .

VARIABLE EXPRESSIONS IN ATTRIBUTES 'controlled' l:rftnTAT"lTD(""l
Vftn.l.ftDLD0

The execution of an 'allocate' statement causes the extent expressions
(array bounds, maximum string length, or area size) and the initial value
expressions in the declaration of the allocated variable name to be evaluated.
The expressions can depend on any variable that has a value immediately before
execution of the 'allocate' statement.

Sometimes a variable expression in an
variables than the 'allocate' statement
expression. Consider the program fragment:

9/78

P 1 : proc;
dcl n fixed bin;
dcl A(n+2) float bin controlled;
n = 1;

begin;
dcl n fixed bin;
n = 10;

allocate A;

end;

end;

7-19

attribute has
that causes

access to different
evaluation of the

AM83A

The 'allocate' st3tenent uses the storage type 'dim(3) float' for the ~llocation
of 'A', not 'dim(12) float' .. The exaMple er.pha3izcs the rule, true throughout
PL/I, that the resolution of a na~e depends on where it occurs in the ~ro~ra~,
not what it i~ used for.

SAVING VARIABLE EXTEIITS FOR 'controlled' VARIABLSS

The values of any variable extents in the storage type of a Icontrolled'
variable name are saved, as with 'autonatic' variable names. The value saved
and used for subsequent references is that cOMputed whe~ the variable is
allocated; it is saved in a temporary that is associated with the variable.
When ~ore than one variable is allocated for a given controlled variable name,
the saved extents ~ay not be the same; they are evaluated for each allocation of
the variable.

Para~eter Variables

The attribute 'parameter' designates a storage ~ana~ement schene that is an
integral part of the invocation of a procedure, by either a 'call' statenent or
a function reference. A variable name declared 'parameter' never has storage
allocated for it; instead l it is associated with stora~e that has previously
been allocated and that contains an argument for the procedure invocation. The
parameter name is associated with the argu~ent variable as part of the
activation of the procedure block, and the association is broken as part of the
deactivation of the block.

A parameter variable name always has 'internal' scope. Because a parameter
variable name is associated with a variable allocated for some other na~e, the
storage it references can be in any region.

VARIABLE EXPRESSIONS IN ATTRIBUTES FOR 'parameter' VARIABLES

Each extent expression (array bound, maxinuM string length, or area size)
must be either a constant expression or a single asterisk, '*'. Uhen an extent
expression is an asterisk, the corresponding extent of the associated ar~ument
variable is used. Full details of this mechanis~, whi~h is espeCially provided
for parameters, is given later in Section XII, "Procedure Invocation.»

A parameter variable never has storage allocated for it; therefore, it
cannot have an initial attribute and the treatment of variable expressions in
that attribute does not arise.

Based Variables

The attribute 'based' designates a storage Manage~ent mechanism that can be
driven by program statements. A variable whose name is declared 'based' can be
allocated by an 'allocate' statement and freed by a 'free' statement. 'Such a
variable is called an exolicitly allocated based variable.

7-?O AM83

A based variable always has 'internal' scope. An explicitly allocated
based variable is allocated either in a permanent internal region or in an area
variable; the choice depends on the 'allocate' statement.

Whenever a variable is allocated for a based variable name, the storage
type is supplied by the name but the name is not associated with the variable as
its designator. Instead, the allocation operation produces a locative value
that is assigned to a 'pointer' or 'offset' variable.

Whenever a variable is referenced with a based variable name, the storage
type is supplied by the based variable name, but the name does not locate the
variable in storage. Instead, the variable is designated by a locative value
that is obtained by a 'pointer' or 'offset' variable that is mentioned with the
based variable in the reference.

is:
A simple example of the use of a based variable and an associated pointer

P1: proc;
dcl A dec(5,2) based initial(O);
dcl p pointer;
dcl sysprint file;

allocate A set(p);

p->A = 5;

put list (p->A);

free p->A;
end;

In this example, the based variable name 'A' is used in the allocation of an
explicitly allocated based variable; but it is the value of the pOinter 'p' that
designates that variable, not the based variable name 'A'. wherever 'A' is
used, the pointer variable name 'p' is used with it.

As the 'put' statement is about to be executed, the diagram for storage is:

ordinary external region

permanent internal region, block 1 (named 'P1')

41137
S 9 9 9 ~

/+/0/0/5/./0/0/

activation internal region, block 1 (named 'P1')

00332 p
pointer

i 41137 i

Observe that the 'dec(5,2)' variable is not given the name 'A'; instead, it must
be designated by its locative value, represented as '41137'.

The purpose of the based variable is not as self-evident as that of the
other classes of variable. The discussion that follows gives the rules that
govern the use of based variable, and illustrates those rules.

9/78 7-21 AMB3A

I

REFERENCE IN 'based' ATTRIBUTE

The 'based' attribute can be followed by a parenthesized reference to a
locative value. This reference is adopted as the default locative reference tor
the variable name to which the attribute applies. If a locator qualifier is
o~itted fro~ a reference to the based variable, the parenthesized reference is
used as an assumed locative qualifier. Similarly, if the 'set' option is
o~itted froM an 'allocate' state~ent for the based variable, the parenthesized
reference is used as an assu~ed 'set' option.

The exa~ple of a based variable given earlier can be shortened by the use
of a parenthesized reference with the 'based' attribute. The revised program is
as follows:

P2: proc;
dcl A fixed dec(5,2) based(p) initial(O);
dcl p pointer;
dcl sysprint file;

allocate A;

A = 5;

put list(A);

free Aj
end;

Thus all ~entions of the pointer 'p' outsije of the declarations are eli~inated,
and the usage for 'A' closely resenbles that ~f 3. controlled vari~ble.

'allocate' AND 'free' STATEMENTS FOR 'basej' VARIABL~S

A based variable \lhose nane is id is alloca,':..cd by a statencnt of the forn

allocate id (set(locref)] [i:1 ~!"earef)]

and is freed by a statenent of the forn

free id Cine arearef)]

The square brackets indicate that the options can be onitted. 7he locref in the
'set' option Must be a reference to which a locative value can be assi~ned,
namely a 'pointer' or 'offset' variable. The arearef in the 'in' option nust be
a reference that designates an 'area' variable.

If id has been declared 'based(ref)', thc:1 the 'set.' o;:>~i~n can be o:1itted
and the PL/I processor assu~es 'set (ref)'. If the ref s"J.;:>;')~ied by the 'based'
attribute is not a reference to which a locative value ~a~ be assisned, ~ouever,
the assuned option will be invalid. When the 'allocate' st3.te~ent is executed,
the locative value that designates the allocated storage i3 assigned to the
variable supplied by the 'set' option or the 'based' att~:bute.

f a pro~!"anmer wants to allocate id in t~e
the' :i' option is o::iitted. If a prog~an::ler '.ol3.

va.!" i ale (.. I hie h can be i !1 any r e ~~ ion), the :;
the ~ !1' option. \"/hen id is freed, the 'in' op
used or its alloc~tion.

'7 ')')
! -~IL.:"

interna ger~a~e~t re~io~, then
3 to 31 'Jc3te :'d :n so~e "'area'
e area 3 soecified ~y ~ea!1S of
on n~st ~e t~e sa~a that was

VARIABLE EXPRESSIONS IN ATTRIBUTES

The execution of an 'allocate' statement causes the extent expressions
(array bounds, maximum string length, or area size) and the initial value
expressions in the declaration of the allocated variable name to be evaluated.
The expressions can depend on any variable that has a value immediately before
execution of the 'allocate' statement. In this respect, a based variable name
behaves exactly as a controlled variable name.

SAVING OF VARIABLE EXTENTS

The values of variable extents in the storage type of a based variable name
are not saved automatically by the PL/I processor; in this respect, based
variables differ from all others. The extents in the storage type are evaluated
for each reference; and in these cases any change in an extent results in
violation of the storage type consistency rule and an invalid program.

The following example is similar to a valid program fragment given earlier,
in the description of automatic variables:

P 1 : proc;
dcl n fixed bin;
dcl S char(n+2) based(beta);
dcl beta pointer;

n = 4;
allocate S;

n = 100;
S = "abcdef";

free S;
end;

This program is not valid. The reference to'S' in the assignment statement
causes the extent expression 'n+2' to be evaluated (since there is no stored
extent available). Thus, although the variable was allocated with storage type
'char(6)', it is referenced with storage type 'char(102)'. The string "abcdef"
is filled out with blanks to make a string of 102 characters, and that string is
assigned to'S', where storage for only six characters has been provided. The
result is the overwriting of variables allocated immediately after'S'. A
similar error occurs when the storage for'S' is freed. These errors are not
detected by the PL/I processor, and their effect may be an obscure malfunction
of the program.

7-23 AM83

The invalid program just given can be repaired by keeping the expression
for the oaximum length of'S' unchanged throughout the existence of the variable
for'S'. Toward this end, a new variable, 'n2' can be declared and used in the
extent expression while the value of 'n' is allowed to change as before. The
revised prograo is:

P2: proc;
dcl n fixed bin;
dcl n2 fixed bin;
dcl S char(n2+2) based(beta);
dcl beta pointer;

n = 4;
n2 = n;
allocate S;

n = 100;
S = "abcdef";

free S;
end;

This program is valid. It will evaluate the extent of the 'char' attribute
three times (for the allocation, the reference, and the freeing), but it will
obtain the value '6' each time.

'refer' OPTION

PL/I has a special feature, the 'refer' option, that makes possible the
systematic handling of variable extents of based variables. Using the 'refer'
option, the program fragment considered earlier can be written as follows:

P3: proc;
dcl n fixed bin;
dcl 01 Spair based(beta),

02 n2 fixed,
02 S char(n+2 refer(n2));

dcl beta pointer;

n = 4;
allocate Spair;

n = 100;
S = "abcdef";

free Spair;
end;

This revision of the original, invalid program has changed only the handling of
'S', replacing it with the structure 'Spair'; however, the change eliminates the
storage type inconsistency. The extent expression 'n+2 refer(n2)' is
interpreted as follows:

When 'Spair' is allocated, calculate the extent for 'Spair.S' (also
known as'S') from the expression 'n+2'; use that value for the
allocation of storage; and then save the value in 'Spair.n2' (also
known as, ;~2;). Furthermor~, whenever a reference to'S' is made,
refer to n2 j not the expresslon 'n+2', for the value of the extent.

Evidently, the 'refer' option has an important effect on the interpretation of
the program.

7-24 AM83

The 'refer' option is used to save the variable extents of a based variable
name in much the same way that the PL/I processor automatically saves variable
extents for all other storage classes. Any number of extents in a variable can
each be handled by a refer option. For example, a structure that would
otherwise be declared as

dcl 01 alpha(-2:r-2) based,
02 beta bit(J(m-1)) varying,
02 gamma(s1,s2) float bin;

can be declared as

dcl 01 X based,
02 (k1,k2,k3,k4) fixed bin,
02 alpha(-2:r-2 refer(k1)),

03 beta bit(J(m-1) refer(k2)) varying,
03 gamma(s1 refer(k3),s2 refer(k4)) float;

Such a variable is called a self-defining structure because it carries its own
extents within itself.

The parenthesized reference that follows the 'refer' keyword must designate
a scalar variable that is declared earlier in the same structure that contains
the 'refer' option. The referenced variable must, of course, be of suitable
data type to have the extent value assigned to it.

EQUIVALENCED BASED VARIABLES

All of the based variables thus far discussed have been explicitly
allocated based variables; that is, they are variables that were allocated using
a based variable name to supply the storage type; and the locative value that
designates the variable was produced as part of the allocation operation.

A second kind of based variable is the equivalenced based variable. Such a
variable does not have storage of its own, but rather is superimposed on or
equivalenced ~ a variable, the base variable, that was previously allocated.
The base variable can have any storage type; it can even be an explicitly
allocated based variable. However, the base variable must be connected; that
is, if it is an aggregate, then its components must occupy an uninterrupted
sequence of storage units.

The locative value that designates the base variable is obtained by the
'addr' built-in function; for example, the assignment statement

p = addr(A);

obtains the locative value that designates the variable designated by 'A' and
assigns that locative value to the pointer variable designated by 'p'.

There are three kinds of equivalenced based variables: simple based
variables, string overlay based variables, and partial based variables; each of
these is discussed in the following paragraphs.

7-25 At183

Simple Based Variables

The storage type of a simple based variable must agree exactly with the
storage type of the base variable.

As an example of the use of a simple based variable, consider the following
program:

P1 : proc;
dcl x fixed dec(S,2);
dcl y fixed dec(5,2) based;
dcl p pointer;
dcl (sysin,sysprint) file;
p ::: addr(x);
get list(x);
put list(2*p->y);
end;

This program inputs a number, doubles it, and prints it. The program would be
invalid if the storage type of 'y' differed from that of x.

Immediately after the 'get' statement has input the value '-23' from the
input stream, the diagram for storage is:

activation internal region. block

01423 x

00013 p

S 9 9 ~ ~ 1-10/27 I.LQLQJ

pointer
1 01423 7

As is always the case with a based variable, there is no mention of y in
storage; it is used only to supply a storage type for use in conjunction with
, p , •

As a second example of a simple based variable, consider the following
statements:

dcl 01 A(5),
02 X fixed bin,
02 Y char(6);

dcl 01 B based,
02 R fixed bin,
02 S char(6);

dcl p2 pointer;

Suppose that the following assignment statement is executed:

p2 = addr(A(3));

7-26 Ar183

Then the following references are valid:

p2->B

p2->B.R

p2->B.S

(means 'A(3)')

(means ' A (3) . X ')

(means ' A (3) . y ,)

Thus the 'pointer variable supplies the address of the leftmost name, 'B' in
this example, in a reference to a based variable. Further examples are given
later, in Section VIII, "Expressions," under "Locator-Qualified Variable
References".

String Overlay Based Variables

A string is not a truly indivisible value; it is made up of characters or
bits. In some applications, it is useful to impose more than one interpretation
on the storage for a sequence of characters or bits. String overlay based
variables are used for this purpose.

A string overlay based variable and its base variable must be either
'nonvarying unaligned' scalars or aggregates of 'nonvarying unaligned' scalars.
For a given string overlay, all variables must be 'character' or all variables
must be 'bit'. The aggregate type of the base variable need not match, and a
pictured character-string variable can be matched with an ordinary
character-string variable. Ynis relaxation of the rules for aggregate type and
pictured data type permits different interpretations of a given string variable.

As an example of a string overlay based variable, consider the following
statements:

dcl word(1024) bit(36);
dcl 01 float_num based,

02 sign bit(1) unal,
02 characteristic bit(8) unal,
02 mantissa bit(27) unal;

dcl pnum pointer;

Suppose the following assignment statement is executed:

pnum = addr(word(23»;

then the following references are valid:

pnum->float_num (means 'word(23)')

pnum->float_num.sign (means the first bit of 'word(23)')

pnum->float_num.characteristic (means the next 8 bits of 'word(23)')

pnum->float_num.mantissa (means the last 27 bits of 'word(23)')

Thus the based structure variable can be used to designate various substrings of
the string variable designated by 'word(23)'.

7-27 At183

The requirement that st~ings be 'nonvarying unaligned' is the way of
saying, in PL/I, that several strings nust be stored tOGether, without any
unused storage or any word or bit counts between them. Because the example
satisfies this restriction, a single bit string can be interpreted as a
structure made up of three bit strings.

Partial Based Variables

Sometimes it is necessary to examine a portion of a structure variable
without knowing all the details of the storage type of the variable. A partial
based variable is used for this purpose.

A partial based variable and its base variable must be structure variables
whose storage types agree through the first Q declaration clauses. For example,
consider the following statements:

dcl 01 alpha,
02 A fixed bin,
02 B,

03 B1 float bin,
03 B2 char(10),

02 C char(2000) varying;
dcl 01 beta based,

02 Q fixed bin,
02 R,

03 R1 float bin,
03 R2 char(i2),

02 S char(2000) varying;

Observe that the first four declaration clauses of the storage types of 'alpha'
and 'beta' are the same; that is, both storage types begin:

01, 02 fixed, 02, 03 float

Thus 'beta' can be used as a partial based variable name with 'alpha' as the
base variable name.

There are two restrictions on references to a partial based variable, as
follows:

• When the storage types of the based variable name and the base
variable name are compared from the beginning (the level-one
declaration clause) toward the end (the last declaration clause), the
storage types must agree through the declaration of all components
that are designated by the given reference.

• Furthermore, if one of the components designated by the reference is a
component of a level-two structure, then the declarations of the based
variable and the base variable must agree for all components of that
level-two structure.

7-28 AM83

Consider
discussion.

again the declarations of 'alpha' and 'beta' given earlier in this
Suppose the following assignment statement has been executed:

p = addr(alpha);

where 'p' is declared 'pointer'. In this situation, the only valid use of
'beta' is the following reference:

p->beta.Q (means 'alpha.A')

Thus it is possible to obtain the value of 'alpha.A' without matching the whole
storage type of 'alpha'.

Since the storage types of 'alpha' and 'beta' agree through 'alpha.B.B1',
it might seem valid to use 'beta' in the following reference:

p->beta.R.R1

However, this reference violates the second restriction on partial based
references. Specifically, the reference designates a component 'alpha.B.B1' of
a level-two struct~~e 'alpha.B' that has a component 'alpha.B.B2' for which the
storage type of 'alpha' and 'beta' do not agree.

One use for a partial based variable reference arises in handling input
from a file in which records have several different structures. If the file is
designed so that every record begins with an integer value that indicates the
structure of the remainder of the record, then this integer can be obtained by
means of a partial based variable reference. An example is given later, in
Section XV, "Record Input/Output" under "An Example of Based Input".

Defined Variables

The attribute 'defined' designates a storage management mechanism that
provides a new name for an existing variable rather than allocating a new
variable. The association between the defined variable name and the designated
variable is formed at the time of block activation and broken at block
deactivation.

A defined variable name always has 'internal' scope. Because a defined
name is associated with a variable allocated for some other na~e, the storage it
references can be in any region.

VARIABLE EXPRESSIONS IN ATTRIBUTES FOR 'defined' VARIABLES

The extent expressions (array bounds, maximum string length, or area size)
are evaluated as part of the activation of the block in which the defined
variable is declared. Therefore, the expressions can depend only on variables
that are defined before block activation begins.

A defined variable never has storage allocated for it; therefore, it cannot
have an initial attribute and the treatment of variable expressions in that
attribute does not arise.

7-29 AM83

SAVING VARIABLE EXTENTS FOR 'defined' VARIABLES

The values of the extent expression are saved in temporaries at the time
they are computed. The storage for these temporaries is allocated in the
activation region associated with the block activation, and the storage is freed
upon block activation. Because the extents are saved, it is not possible to
violate the storage consistency rule in the use of a defined variable.

USES OF DEFINED VARIABLES

The 'defined' attribute consists of the keyword 'defined' followed by a
parenthesized reference. The variable designated by the reference is called the
base variable because it is the base on wnlcn the aerlned varlaDle is
superimposed. There are three ways to use a defined variable: simple defining,
string overlay defining and isub defining.

Simple Defining

For most cases of simple defining, the base variable must have the same
storage type as the defined variable. Some examples follow; consider first:

dcl S char(20) varying static;
dal T char(?O) varying defined(S);

In this case, any reference to 'T' will be equivalent to a reference to'S'.
Consider next:

dcl 01 A,
02 Ben),

03 C float bin,
03 D float bin,

02 E char(6);
dcl X float defined(A.B(i-2).D);
dcl yen) float defined(A.B(*).D);
dcl 01 Z defined(A.B(j)),

02 Z1 float bin,
02 Z2 float bin;

In this case, 'X' is associated with the scalar designated by 'A.B(i-2).D'; the
variable 'i' is resolved where it appears (in the declaration) but is evaluated
each time a reference to 'X' is processed. The defined variable 'Y' is
associated with a cross-section of the array 'A.B', namely that formed of the
second member of each element of the array. The defined variable 'z' is
associated with a particular element of 'A.B'; once again, 'j' is evaluated for
each reference.

7-30 AI·183

String Overlay Defining

String overlay defining allo~ls a string variable to be defined onto the
storage of another string variable so that the defined variable occupies all or
part of the same storage allocated for the base variable. String overlay
defining can be performed for either bit strings or character strings, but the
two types cannot be mixed in any given use of string overlay defining.

The defined variable and the base variable must be 'nonvarying unaligned'
string scalars or aggregates of 'nonvarying unaligned' string scalars. The
aggregate type of the defined variable and the base variable need not match, and
a pictured character string variable can be treated as an ordinary 'nonvarying'
character string variable; these are the "loopholes" that make string overlay
defining useful.

Examples of string overlay defining are given in the following 'declare'
statements:

dcl A(5) char(2) unal;
dcl B char(8) def(A);
dcl 01 C def(A),

02 X char(5) unal,
02 Y char(5) unal;

The first statement declares 'A' as the name of an array variable that has five
elements, each composed of two characters. The second statement declares 'B' as
another name for the variable designated by 'A'; but it views the variable not
as an array but as a sequence of ten character positions, the first eight of
which are interpreted as a scalar character-string variable. The third
statement declares 'c' as yet another name for the variable designated by 'A';
but it interprets the character positions of 'A' as a structure composed of two
five-character members.

The 'position' attribute can be used to start the 'defined' variable at some
position other than the first character position of the based variable~ For
example, consider:

dcl D char(5) def(A) pos(6);

This statement declares a name for the last five character positions of the
variable designated by 'A'.

Isub Defining

For isub defining, the special lexemes ' 1 sub', , 2sub', , 3sub', and so on,
are used to make special use of the subscript values of the defined variable.
Consider the declarations:

dcl A(3,3) float bin;
dcl Q(3) float bin defined A(1sub,1sub);
dcl R(3,3) float bin defined A(4-1sub,2sub);

7-31 AM83

In this case, 'Q' is made up of the three elements of ' A' that lie on the
diagonal, and 'R' is made up of the rows of 'A' in reverse order. The two
arrays oap onto 'A' as follows:

Q(1) A(1,1)
Q(2) A(2,2)
Q(3) A(3,3)

R(1,1) A(3,1) R(1,2) A(3,2) R(1,3) A(3,3)
R(2, 1) A(2,1) R(2,2) A(2,2) R(2,3) A(2,3)
R(3,1) A(1,1) R(3,2) A(1,2) R(3,3) A(1,3)

Guidelines for the Storage Class

Suggested uses for each of the six storage classes are given here.

AUTOMATIC VARIABLES

An automatic variable should be used wherever practical; the fact that
'automatic' is the default storage class attribute makes this recommendation
easy to follow. An automatic variable is clearly associated with a block and is
allocated only while that block is activated; therefore, its intended role in a
program is more clear than that of any other class of variable. When a block is
considered as a building block of a larger program; the automatic variable nrlme~

declared in the block can be entirely ignored; their existence cannot be
perceived from outside the block.

A reference to an automatic variable that is immediately contained in the
block in which the variable name is declared is a local reference. Local
references are considerably less costly to process than other references. In
order to maximize the number of local references, an automatic variable should
always be declared in the smallest existing block that contains all references
to it; if this rule is followed, at least some of the references to the variable
are local references.

If the programmer allocated a particular variable (controlled or based) at
the beginning of execution of each block and freed it at the end of the block,
the storage management operations would incur a considerable expense. Although
an automatic variable is allocated and freed for each execution of its block, an
extra cost is not incurred; on the contrary, the special techniques used in the
implementation of PL/I (the use of a stack) make the cost of storage management
of an automatic variable negligible.

7-32 AM83

The use of variable expressions in the extents of a storage type of an
automatic variable increases the cost of the variable. Of course the extent
expressions must be evaluated and saved when the variable is allocated; but this
cost is obvious and is examined like any other computation cost. A more
important cost arises in certain cases in references to the variable. Consider
the declaration:

dcl 01 A,
02 B(n) float bin,
02 C fixed bin;

For each reference to 'C', the PL/I processor must not only find the location at
which the structure 'A' begins, but also must determine the size of 'B' so it
can be skipped over to reach 'C'. The size of 'B' is not known at compile time,
and therefore relatively inefficient code for the reference must be compiled. A
more efficient declaration of the same structure is:

dcl 01 A,
02 C fixed bin,
02 B(n) float bin;

When other considerations do not forbid, components with variable extents should
be placed as late in a structure as possible.

STATIC VARIABLES

A static variable is used when a variable must exist outside the activation
of the block in which the variable is declared. This requirement can arise in
the following ways:

• A variable that is shared between several external procedures
(compilable units) must be 'external' and must therefore be 'static'
or 'controlled'. An external 'static' variable is less costly than an
external 'controlled' variable and therefore should be used where
possible. Once again, Lne default conventions make this
recommendation easy to follow.

• When a variable is used to keep information throughout the various
invocations of a procedure, an 'internal static' variable should be
used. Such a variable can be used, for example, to count the number
of times a procedure is invoked in a process.

CONTROLLED VARIABLES

A controlled variable is used when the built-in storage
mechanism of the automatic or static storage class does not suit a
application. This requirement can arise in the following ways:

management
particular

• Uhen a stack of variables is needed, a controlled variable is a
convenient choice. Hhen a program is modified to be reentrant the
static variables can be replaced by controlled variables; then each
variable is allocated (pushed down) before each reentry and freed
(popped up) after the reentry.

• When an external variable must have variable extents, a controlled
external variable is a possible choice.

7-33 At183

• When storage is a critical resource, controlled variables can be used
to program a minimum use of storage.

PARAMETER VARIABLES

A parameter variable is used for the parameters of a procedure; there is no
choice about that. Sometimes, however, the programmer does have a choice
between transmitting a value to a procedure by a parameter or by a variable in a
block that contains the procedure. It is usually best to use a parameter. A
parameter that is by-reference can efficiently deliver a variable, whether it
is a scalar or a large aggregate; and it makes the procedure independent of its
environment.

BASED VARIABLES

A based variable is often used in a program that uses linked data
structures. In such a program, locative values are used as the links and based
variables are used for the structures connected by the links. The Multics
system itself and the Multics PL/I compiler, both of which are written in PL/I,
make extensive use of l~nked data structures and thus of based variables.

Only based variables can be allocated in an area variable; therefore based
variables must be used in order to take advantage of the offset values and other
special features that are available with area variables.

Based variables are also used in certain rather special ways. In some
applications, it is necessary to operate on an aggregate value without fully
knowing its storage type; in these cases, a based variable is used to examine
part of the value. In string-processing applications that often arise in
business programming, it is useful to interpret a given sequence of characters
in more than one way by superimposing different aggregates of string variables;
in these cases, based variables are used. These applications represent the
situations in which PL/I makes gains in efficiency at the cost of breaking its
rule of storage type consistency.

DEFINED VARIABLES

A defined variable is used to associate a new na~e with an existing
variable or part of an existing variable. In certain cases, as when isubs are
used with a defined array, the new name can be mapped onto the existing variable
in a special way. There are occasions on which a defined variable can do what a
based variable can do; and on these occasions the defined variable is usually
preferred because defined variables are easier to use and understand.

In practice, defined variables are not often used in 11ultics PL/I. They
are in competition with based variables, and the based variables are
considerably more general. They are also in competition with the paging
mechanism of PL/I, which 8reatly reduces the need for programming techniques
that save storage. In r1ultics PL/I programming, a defined variable should
seldom be introduced for the sale purpose of usi~g the same storage for two
purposes and thus saving storage.

7-34 AtlR3

'initial' ATTRIBUTE

The 'initial' attribute is used Hith the name of a scalar or array variable
in order to set the value of that variable when the variable is allocated.

Initialization Syntax

The syntax of the 'initial' attribute is given by the following diagram:

{

initial}

init
, ...

where ivi (initial value item) is defined as:

, ...

and \Jhere:

• ~ (replicator) is any expression whose value can be converted to an
integer.

• ref is any variable reference or function reference.

• const is a literal constant or is constant complex expression (a real,
a sign, and an imaginary).

• exp is any expression.

• ivi, ... is a sequence of one or more initial value items separated by
commas.

According to the syntax, there are two forms for an initial value item.
The first form is the one that provides a single initial value or, if a
replicator is used, a sequence of identical values. The syntax makes a special
provision for references and constants in order to exempt them from being
enclosed in parentheses. Consider the following attribute:

initial(-2.8-15i,(n-l)O)

The first item specifies a single initial value; the second item specifies a
sequence of zero values whose length depends on the value of 'n' when storage is
allocated for the variable to which the attribute applies. Consider next the
attribute:

initial(x,-v(i+2,j),(4)F(a-sin(theta,z)))

This attribute could be used to initialize a six-element array (although such
variety is unlikely for the initialization of a single array). The first item
is a varia,ble name, the second is a subscripted variable reference, and the
third is a function reference that is evaluated and has four copies of its value
entered in the list.

7-35 At183

The use of an asterisk, '*', as an initial value causes the corresponding
value to be left undefined; that is, it skips initialization. Consider the
following:

initial«S)(1,*)

If this attribute is applied to an array with ten elements, it will initialize
the odd-numbered elements to '1' and leave the others undefined.

The second form of initial value item allo\/s the use of a parenthesized
list of items as a sublist of a larger list. In this forn, the replicator is
required because the only reason for forming a sublist is to replicate it as a
whole. Consider, for example, the attribute:

initial«3)(-1,(2)0»)

After application of the first replicator, this attribute is equivalent to:

initial(-1,(2)O,-1,(2)0,-1,(2)O)

After expansion of the remaining replicators, this attribute is equivalent to:

initial(-1,0,0,-1,O,0,-1,0,0)

When the replicator is a variable expression, it cannot be expanded until its
values are actually required; for example:

initial«n)(-1,(m+3)0))

depends on the values of 'n' and 'm'.

Use of 'initial' Attribute

An 'initial' attribute cannot be used with a structure name. It follows
that the attribute can only be used with a variable name that designares a
scalar or an array of scalars. When the attribute is used with a scalar, it
must supply exactly one value; when it is used with an array, it must provide
one value for each element of the array. Each value must be suitable for
assignment to the variable it initializes.

As an example of several uses of the 'ini~ial' attribute, consider the
following declaration:

dcl 01 A,
02 B(m,n-2) float init«m)(1,(n-3)*),
02 C char(3) init("xxx"),
02 D,

03 E float init(O),
03 F pointer init(null()),

02 G float;

In this structure, the array 'A.B' has its first column initialized to '1' and
its remalnlng columns left undefined; the scalar variable 'C', 'E', and 'F' are
initialized to appropriate scalar values; and the scalar variable 'G' is not
initialized.

7-36 AM83

An 'initial' attribute is processed only as part of the storage allocation
operation. Since a variable name of storage class 'parameter' or 'defined' is
never subjected to the storage allocation (but rather is associated with
existing storage) it is incorrect to use an 'initial' attribute with such names.
A variable name of storage class 'based' can be used either to allocate storage,
in which case its 'initial' attribute is processed, or to be associated with
existing storage, in which case the 'initial' attribute is ignored.

In the definition of string literal constants, given later in Section VIII,
"Expressions," a replicator is allowed for a string constant. For example:

(3)"ab"

is equivalent to "ababab". The PL/I processor will interpret an initial value
replicator as a string replicator if it occurs in an appropriate context. For
example, the declaration

dcl S(3) char(2) init«3)"ab");

is invalid because the initial attribute is expanded to give the wrong result:

dcl 3(3) char(2) init("ababab");

To obtain the desired result, the programmer must write the string replicator
'(1)' and then precede that with an initial value replicator:

dcl 3(3) init«3)(1)"ab");

This problem is a flaw in the design of PL/I; it arises only in the
initialization of string variables, and the incorrect usage illustrated above is
detected by the compiler.

'options(constant)' Attribute

Multics PL/I assigns storage for internal static, initialed variables in
either the text section or static (linkage) section of the object segment,
depending on whether the variable is only referenced or referenced and set
(changed by assignment). Variables that are never set are allocated in the text
section for efficiency; the text section is pure, and so all users of the
program can share it. If the variable were placed into the impure static
section, then each user would get his own copy, and more storage would be used.
OccaSionally, an internal static, initialed variable may be passed by reference
to a function or subroutine. Since Multics PL/I cannot determine whether an
argument is input, output, or both, it is forced to assume that every argument
passed by reference can be changed or set. Some Multics system subroutines are
defined to take only input arguments, however. An example is the ioa_
subroutine.

The 'options(constant)' attribute has been added to PL/I to force
allocation of internal static, initialed values in the text section, even if
they are passed by reference. It is up to the programmer to ensure that no
subroutine or function attempts to set such a variable. Any attempt would most
likely fail, since Multics PL/I removes write permission from the object segment
after the compilation.

The 'options(constant)' attribute can be specified for variables declared
with the 'internal', 'static', and either the 'structure' or 'initial'
attributes. If 'options(constant)' is specified for a structure, then all
nonstructure members of the structure must have the 'initial' attribute.

It is an error to attempt to change the value of a variable declared with
'options(constant)' for the duration of a program.

9/78 7-37 AM83A

I

CAPACITY OF STORAGE

The capacity of data storage of Multics PL/I is very large, but it does
have limits. A program that exceeds the capacity of storage may be rejected by
the compiler, may cause the occurrence of certain conditions that indicate
storage overflow, may be interrupted by a i1ultics error message when storage
overflows or may (in the worst case) proceed without detecting the error.
Several different approaches can be taken to the capacity of storage, as
follows:

• The programmer can assume that his use of storage is far below the
capacity of storage and dismiss the further consideration of storage
capacity. This view is convenient and correct for all but large-scale
applications of Multics PL/I.

At the other extreme, the programmer can seek to determine exactly the
extent of his use of data storage and then compare this to an exact
statement of storage capacity.

• As a compromise, the programmer can take into account only the use of
data storage that consumes large quantities of storage and then
compare that accounting to an apprOXimate measure of storage capacity.
This view is often sufficient for large-scale applications.

Storage Limits

The following figures are the approximate maximums for data storage,
expressed in terms of 36-bit Multics words and given for different kinds of PL/I
variables:

• 65,000 words (one quarter of a maximum segment) for automatic
variables. This storage is called the stack.

• 500,000 words (approximately), for ordinary external static, internal
static, controlled, and explicitly allocated based variables. This
storage is called system storage.

Equivalenced based variables and defined variables use storage already allocated
for other variables and so do not enter into a calculation of storage consumed.

Aside from the limits just given, there is one other limit on data storage.
The storage for internal static variables is included as part of the object
segment that is produced by the compilation of an external procedure.
Therefore, the object text and the static internal variables cannot, taken
together, use more than 262,000 words (one segment). When the Multics bind
command is used to combine all of the object segments of a program into one
object segment, all of the the static internal variables must fit into 16,384
words. Note that storage of the 'internal static' class can be simulated by
allocating it in system storage and referencing it by an 'internal static'
pointer.

9/78 7-38 AM83A

Significant Uses of Storage

Because the limits of storage are so large, most uses of storage can be
neglected. A program would have to declare thousands of scalar arithmetic
variables, for example, before their use of storage would be significant. Only
those items of storage that require hundreds or thousands of words need be
considered, as follows:

• A variable with large extents is significant; included are an array
variable with large bounds, a string variable with a large maximum
length, and an area variable with a large size. Other variables are
no more than four words long. No constant is longer than 64 words
long (the maximum for a character-string constant).

• Any automatic, controlled, or based variable that is allocated
hundreds or thousands of times becomes significant. This case can
occur when an 'allocate' statement is part of a loop or when a
procedure with automatic variables is executed recursively.

To determine whether a program remains within the limits of data storage
capaCity, determine the words used by the significant items of the program and
compare the usage to the limits given for the different kinds of variables. The
number of words used by a variable is determined by rules given in Section III,
"Value Storage" under the heading "Storage Layout for Multics".

In practice, a large-scale program has a few very large arrays that are
used as tables, and these arrays are the only items that need be considered in
comparing the use of storage to the capacity of Multics PL/I.

CONDITIONS FOR STORAGE MANAGEMENT

As a result of the allocation operation, certain conditions can occur. The
purpose of such a condition is to report that there is no storage available for
use by the allocated variable. A program can include !on! statements to respond
to such a condition by performing a remedial action (such as freeing some
storage). If the program does not have 'on' statements for this purpose, the
PL/I processor outputs an error message and terminates program execution.
Details are given later, in Section XIII, "Condition Handling".

9178 7-39 AM83A

'storage' Condition

When the 'storage' condition occurs, one of the following cases applies:

• The stack storage is nearly filled. The stack storage is used for
activation regions. It can be exhausted either by allocation of a
very large automatic variable or by a runaway recursive execution of a
procedure.

• The system storage segment is nearly filled. System storage segment
is used for ordinary external static variables, internal static
variables, controlled variables and explicitly allocated based
variables. The remedial action is to free some of these variables.

In most programs, no provision is made for remedial action for these conditions;
that is, their occurrence is usually considered to be a programming error.

The 'storage' condition takes care of the classes of storage that can be
allocated dynamically: automatic, controlled, and based. A condition is
provided for these storage classes because they can cause storage overflow in
one execution of a program but not in another. Storage can be allocated for one
other class of storage: static. No condition is provided for that class because
if overflow of static storage occurs for any execution of a progr~m it will
occur for all executions of the program, and therefore the program is invalid;
furthermore: there is no way to free statia storage and thus no remedial aation
for overflow.

'area' Condition

The 'area' condition occurs when an attempt is made to allocate storage in
an area variable (that is, in an 'allocate' statement with an 'in' option) that
cannot supply the storage. Two cases apply:

• An 'allocate' statement attempts to allocate a based variable for
which there is no room in the area variable. A valid remedial action
is to free some or all of the storage in the area variable (usually
after copying the values into other storage or outputting them to a
file). After this action, it is valid to resume program execution at
the point of interruption.

• An assignment statement attempts to assign an area value to an area
variable that is too small. The remedial action is to transfer to
some other place in the program; it is not valid to return to the
pOint of interruption.

The 'area' condition can play an important role in large scale programs for the
manipulation of linked data structures.

9/78 7-40 AMcl3A

SECTION VIII

EXPRESSIONS

An expression is used in a program wherever a value is required. Some
expressions are very simple; for example, the variable reference 'x' and the
constant literal '25' are both expressions. Some expressions combine several
operators to calculate a value; for example, '2*alpha*(X-Y)' is an expression
that contains three operators. Some expressions invoke procedures; for example,
'F(x)' yields a value that is obtained by invoking a procedure at entry point
'F' with the argument 'x'.

The rules for the interpretation of expressions are complicated. One
source of complexity is the requirement that each expression have an associated
storage type; there are many storage types, and the rules for their use vary
from one kind of expression to another. Further complexity arises from the fact
that expressions can have aggregate values. Yet another complication arises in
the interpretation of references to 'based' and 'defined' variables.

A programmer who is learning PLII can eliminate some of the complexity by
ignoring features that he does not need. He may be able to avoid fixed-point
arithmetic except for integer counters and subscripts; that simplifies the use
of built-in functions and operators. He may be able to avoid aggregate
expressions except, perhaps, for the assignment of one variable to another; that
simplifies the rules for determining the storage type of expressions. He may be
able to avoid 'based' and 'defined' variables; that eliminates the difficult
rules for equivalencing variable names. By thus selecting a subset of the
expressions, the programmer can skip over some of the more complicated rules.

In this section, the six kinds of expressions are listed and the features
they have in common are described. Then each kind of expression is described
separately and i~ detail.

GENERAL REMARKS ON EXPRESSIONS

An expression is one of the following six constructs:

variable reference
constant literal
constant reference
programmed function reference
built-in function reference
operator expression

8-1 AM83

Before these kinds of expressions can be discussed individually, some general
features of expressions must be discussed. The following paragraphs consider
the nesting and parenthesization of expressions, the determination of storage
types, the use of aggregate expressions, and the rules for ordering and
optimizing the evaluation of expressions. In the course of these general
remarks, several examples of expressions are discussed in detail.

Nested Expressions

In some cases, an expression can contain other expressions. Specifically,
an operator expression has expressions as its operands; a function reference has
expressions as its arguments; a subscripted variable reference has expressions
as its subscripts; and a locator-qualified variable reference has an expression
as its locator-qualifier. Such a use of one expression within another is called
nesting. There is no restriction on nesting, and an expression can contain an
expression that contains another expression that contains another expression and
so on, to any reasonable depth of nesting.

An example of nested expressions appears in the following program:

P: proc;
dcl (x,u) float;
dcl (i,j) fixed;
dcl A(10,10) float;
dcl sin builtin;

x = sin(u)*A(i+2,j);

end;

The right-hand-side of the assignment statement is constructed of eight
expressions, as follows:

• The entire expression is an operator expression, and it has
and 'A(i+2,j)' as its operands.

'sin(u)'

• The expression 'sin(u)' is a built-in function, and it has 'u' as its
argument.

• The expression 'A(i+2,j)' is a subscripted variable reference, and it
has 'i+2' and 'j' as its subscripts.

• The expression 'i+2' is an operator expression, and it has 'i' and '2'
as its operands.

• The expressions 'u' and 'i' and 'j' are simple variable references.

• The expression '2' is a constant literal.

Observe that the nesting in this example covers four levels: the product
contains a subscripted variable reference that contains a sum that contains a
simple variable reference.

8-2 AM83

Parenthesized Expressions

Any expression can be enclosed in parentheses. There are two situations in
which the use of parentheses is appropriate,as follows:

• A parenthesized expression is used to modify the order in which
operators are evaluated. For example, consider the expression:

2*(a+b)

The operator priority rules of PL/I, given later in this section,
specify that the '*' operation is performed before the '+' operation.
However, the parentheses in this expression cause the + operation to
be performed first.

• A parenthesized expression is sometimes used as an argument in a
function reference or a 'call' statement; specifically, it is used
when it is necessary to force an argument that would otherwise be
interpreted as by-reference to be interpreted as by-value. This is a
specialized use of a parenthesized expression; it is discussed in
Section XII, "Procedure Invocation."

The storage type and value of a parenthesized expression are the same as those
of the enclosed expression.

Storage Types of Expressions

The interpretation of an expression yields a value and storage type. The
value of an expression is determined each time the expression is evaluated
during program execution. In contrast, the storage type is determined once, by
the compiler, before the program is executed.

Storage types were defined earlier, in Section III, "Value Storage." The
storage type of an expression determines the way the value of an expression is
represented. Because Lne storage type is determined in advance, ~ne compiler
can provide exactly the required storage for the value and can generate
instructions that are appropriate for the value.

As a basis for the discussion of the storage types of expressions, consider
the following program:

P: proc;
dcl i fixed;
dcl (x,theta) float;
dcl B(20) float;
dcl cos builtin;

x = B(i-3)*cos(theta);

end;

8-3 At183

The right-hand-side of the assignment statement is made up of seven expressions.
The storage type of each expression is obtained as follows:

•

•

•

•

•

•

The storage type of the variable reference 'i' is 'real fixed
bin(17,O)'. It is obtained from the first 'declare' statement
according to the rules for a simple variable reference given later in
this section.

The storage type of the constant literal '3' is 'real fixed dec(1,O)'.
It is obtained from inspection of the constant literal itself
according to rules given later in this section. Those rules specify
that the constant literal is 'real' because it does not have an 'i' at
the end, 'fixed' because it does not have an exponent, 'decimal'
because it does not have a 'b' at the end, and 'precision(1,O)'
because it has one digit and that digit is not a fractional digit.

The storage type of the expression 'i-3' is real Ilxed bin(i8,O)'.
It is obtained from the rules for the '-' operator, which are given
later, in Section IX, "Operations." According to those rules, the
constant literal is first converted to a 'real fixed bin(4,O)' value;
this can be done during compilation. The number-of-digits of the
result is 18 in order to allow for the possibility of a carry from the
subtraction operation.

The storage type of the subscripted variable reference 'B(i-3)' is
'real float bin(27)'. It is obtained from the third 'declare'
statement according to the rules given later in this section. The
subscript in the reference cancels out the extent in the declaration,
so that the storage type of the reference is scalar.

Thp ~~nr~~p type of the variable referAnnA 'theta' is 'real float
bi~(27)~:o- It is obtained from the second 'declare' statement
according to the rules for a simple variable reference.

The storage type of the built-in function reference 'cos(theta)' is
'real float bin(27)'. It is obtained from the rules for the 'cos'
built-in function, which are given later, in Section IX, "Operations."
In this simple case, the storage type of the result is the same as the
storage type of the argument.

The storage type of the entire expression is 'real float bin(27)'. It
is obtained from the rules for the '*' operation, which are given
later, in Section IX, on "Operations." Observe that the storage type
of the result is, in this case, the same as the storage type of the
operands.

This example is typical in several respects. It shows that even a simple use of
fixed-point arithmetic has some tricky points. It shows the simplicity of
floating-point calculations, which often carry the single storage type 'real
float bin(27)' straight through the calculation. And it shows how an aggregate
is referenced to obtain a scalar value.

8-4 AM83

Aggregate Expressions

The main part of this section is devoted to defining the six kinds of PL/I
expressions. In the definition of each kind of expression, aggregate values are
mentioned. That aspect of the definition of expressions is summarized here:

• A variable reference or a programmed function reference can have any
storage type and therefore can have any aggregate type. This
generality permits aggregate values to be handled as single entities
when they are subjected to input/output, are copied from one variable
to another, or are operated upon by a procedure.

• A constant literal or a constant reference cannot (except for 'label'
constant references) have an aggregate type because PL/I does not
include a way of writing an aggregate constant. This omission
reflects a decision of the designers of PL/I rather than a fundamental
limitation of programming languages. It is quite easy to program
around this deficiency.

• Host built-in function references and operator expressions can have
aggregate types; in such a case, the aggregate type of the result is
derived from the aggregate types of the arguments or operands.
Operations on aggregates are performed on their respective components;
that is, an operation is applied to the lth component of each argument
to produce the lth component of the result.

The aggregate variable references and programmed function references can be
especially useful in writing a clear and efficient program. In contrast, the
aggregate built-in function references and operator expressions are less often
useful.

Ordering and Optimizing the Evaluation of Expressions

The definition of PL/I deliberately leaves undefined certain aspects of
expression evaluation. In fact, the only general rule for expression evaluation
is:

• When the value of an expression is required, it is evaluated at some
time after the last computation that could change the value of the
expression and at some time before the computation that requires its
value.

The vagueness of this rule permits the compiler to determine the details of the
evaluation of an expression and thus produce optimized code for the program.
For example:

• When the same expression appears in several places, the compiler can
evaluate it just once if the compiler can determine that the value of
the expression does not change between the given appearances.

• The subscripts of a variable reference can be evaluated in any order.
The same freedom applies to the arguments of a function reference or
the operands of an operator expression.

• An argument or operand can be ignored if it does not affect the result
of an operation. For example, the second operand of an "and"
operation can be ignored when the value of the first operand is
"false".

8-5 AM83

Thus there can be more than one way to evaluate a given expression. However,
the variations that are permitted are chosen so that, in most cases, they have
no effect on the results.

Some consideration must be given to the cases in which the undefined
aspects of expression evaluation do affect the results of program execution.
These cases arise because of side effects. A side effect is a change in the
value of a variable or in the environment of the program that is caused by the
evaluation of an expression. There are two kinds of side effects:

• The evaluation of a programmed function reference can invoke a
procedure that produces a side effect.

• The evaluation of an expression can cause a condition to occur that
signals an 'on' unit that produces a side effect.

It is easy to recognize the possibility of a side effect produced by a
programmed function reference. It is not so easy to fully appreciate the
possibilities of side effects from the occurrence of conditions. Such
condi tions as ' size', ' fixedoverflow', ' underflow', and ' overflow' can occur
almost anywhere in the evaluation of an expression. Thus the side effects
caused by an 'on unit are especially significant.

As an example of a program whose results are partially undefined, consider
the following:

P: proc;
dcl (x,y) float;
dcl (sysin,sysprint) file;
get list(x,y);
put list(F(x)+F(y));

F: procCa) returns(float);

end;

dcl a float;
put list(a);
return(a**2);
end;

The first 'put' statement in this program must evaluate the expression:

F(x)+F(y)

Each operand in this expression is a programmed function reference that has a
side effect. The side effect is the listing of the value of the argument of the
programmed function reference; that action changes the environment of the
program. Because the order in which the operands of '+' are evaluated is
undefined, the order in which the argument values are listed is undefined.
Therefore, the result of executing the program is partially undefined.
Nevertheless, the program is valid and it is also correct unless the programmer
cares about the order in which 'x' and yare listed.

The results of executing a program are not necessarily undefined just
because some part of the execution of the program is undefined. For example,
suppose the statement:

put list(a);

is removed from the program given in the previous para~raph. After this change,
the evaluations of the programmed function references have no side effects. The
execution of the program is still undefined because the order in which the
operands of '+' are evaluated is still undefined. However, the result of
executing the program is fully defined: the program lists a single value that is
the sum of the squares of 'x' and 'y'.

8-6 AM83

VARIABLE REFERENCES

The interpretation of a variable reference begins with the determination of
two items of information: the location of a variable in storage and the storage
type of the variable. For some variable references, this information is easy to
obtain; for others, it requires a careful interpretation of the reference.
Once this information has been obtained, the remainder of the interpretation of
the variable reference depends on whether the variable reference is used as an
expression or as the target of an assignment. If the variable reference is used
as an expression, then the value of the designated variable is retrieved and
becomes the value of the reference. If the variable reference is used as the
target of an assignment, then the assigned value is converted to the designated
type and is placed in the designated variable.

Variable Reference Types

There are four kinds of variable references, as follows:

simple
subscripted
structure-qualified
locator-qualified

This list is given in order of increasing complexity and decreasing frequency of
use. Thus, for example, a locator-qualified variable reference has a
complicated interpretation but is used only in special programming applications.

Each of the four kinds of variable reference is described in detail in this
section. Each description depends on the preceding descriptions; for example,
the description of subscripted references makes use of rules that are given in
the description of simple references.

MAJOR NAME IN A VARIABLE REFERENCE

A variable reference begins with a major ~ unless it is shortened or
locator-qualified. The major name designates a variable in storage that is not
part of a larger variable, and the remainder of the reference indicates the
portion of the variable that must be retrieved. Consider, first, a simple
variable reference:

Speed3

In this case, the major name is the entire variable reference, so the value of
the reference is the value of the entire variable. Consider, next, a
subscripted variable reference:

A(3)

In this case, the major name 'A' designates an
designates an element of that array variable.
structure-qualified variable reference:

alpha.Q(i,j-3)

array variable and '(3)'
Consider, finally, a

In this case, the major name 'alpha' designates a structure variable and
'.Q(i,j-3)' designates an element of a two-dimensional array that is a member of
the structure variable.

8-7 AM83

When a variable reference is shorten~d, the major name ~ay be missing. For
example, in certain contexts the structure-qualified variable reference given in
the preceding paragraph can be shortened to:

Q(i,j-3)

In this case, ' Q' is not the major name.
expanded to its original, complete form
'alpha' is the major name, as before.

Instead, the reference must be
before it can be interpreted; then

The interpretation of a locator-qualified variable reference is quite
different from the other three kinds of variable reference. In a
locator-qualified reference, the place of the major name is taken by a
locator-qualifier. The locator-qualifier, like the major nane, designates a
variable in storage; however, it can be any reference that yields a locative
value. Thus the designation is computed at the time the reference is
interpreted instead of being given, as a name, once and for all when the program
is written. This general facility is useful for list-processing applications of
PL/I.

Simple Variable References

A simple variable reference designates a major variable. The variable can
be either a scalar or an aggregate.

FORM OF SIMPLE VARIABLE REFERENCES

A simple variable reference has the following form:

where id must be an identifier that is declared as the name of a major variable
and tha~is not declared 'based'.

As an example of a simple variable reference, consider:

alpha

This name must have a declaration of the form:

dcl alpha

or the form:

dcl 01 alpha ... ,
02 •••
. .. ,

where the ' •.• ' symbols indicate portions of the declarations that are not
significant for this discussion.

8-8 AH83

INTERPRETATION OF SIMPLE VARIABLE REFERENCES

A simple variable ~eference that is used for retrieval is interpreted as
follows:

1. Name Resolution. Resolve the variable name. (The reSO~U~lon of names
is described earlier, in Section VI, "Declarations.") The result is
the declaration of the variable name.

2. Storage Type Determination. Obtain the storage type of the variable
name from its declaration. The result is the storage type for the
given referencee

3. Variable Location. Locate the variable designated by the variable
name.

4. Value Retrieval. Retrieve the value of the designated variable.

Most of the interpretation is performed by the compiler; only the last step,
value retrieval, is performed during program execution.

The location of the variable, mentioned in Step 3 of the interpretation,
depends not only on the name of the variablebu~ also on its storage class and
scope attributes, as follows:

• If the name is 'static external', then the variable is in the external
region.

• If the name is 'static internal', then the variable is in the
permanent internal region associated with the block in which the name
is declared.

• If the name is 'controlled external', then the variable is in the
external region. If more than one generation has been allocated for
the given name, then the most recently allocated generation is used.

• If the name is 'contcolled intecnal', then L.fle vaciable is in the
permanent internal region associated with the block in which the name
is declared. If more than one generation has been allocated for the
given name, then the most recently allocated generation is used.

• If the name is 'automatic internal', then the
activation internal region that corresponds to
name is declared. If the program is recursive,
than one activation internal region for a given
of one of these regions is made according to
XII, "Procedure Invocation."

variable is in the
the block in which the
then there can be more
block; the selection
rules given in Section

• If the name is declared 'parameter internal', then the variable is
reached by first locating a 'pointer' temporary that is designated by
the name and that is in the activation internal region that
corresponds to the block in which the name is declared. Then the
pointer is followed to the desired variable. Details are given in
Section XII, "Procedure Invocation."

• If the name is declared 'defined internal', then the variable is
located by rules that are given in Section VII, "Storage t1anagement."

Once the appropriate storage region has been located, the variable is uniquely
designated by the given name.

8-9 Ai'183

EXAMPLES OF SIMPLE VARIABLE REFERENCES

Examples of simple variable references are discussed here; they occur in
the following program:

P: proc;
dcl x dec(6,3);
dcl 01 y,

02 flags bit(6),
02 side(2) dec(5);

dcl (sysin,sysprint) file;
(assignments to variables occur here)

put list(x,y,flags,side);

end;

When execution of the program begins, the variables 'x' and 'y' are allocated;
then, when execution of the program is underway, values are assigned to the
variables. Suppose that before the example output statement is executed,
storage includes the region:

activation internal re ion

00113

02022

x
S 9 9 9 ~ 9 ~

!-!0!0!2!.! !6! !

y .flags "!17171/o/0/1!"b

S 9 9 9 9 9
1+/0701071727 .side(1)

(2)
S 9 9 9 9 9

!+707070707s7

Four variable references appear in the output state~ent in the example
program:

o 'x' is a true simple reference (that is, it is not a shortened form of
some other reference) and it yields:

storage type:
value:

real fixed dec(6,3)
-2.363

o Y is also a true si~ple reference, and it yields:

storage type:

value:

01, 02 bit(6) nonvarying,
02 dim(2) real fixed dec(S,O)

"111001"b, 12, S

o 'flags' is a shortened form of the structure-qualified reference
'y.flags' and is interpreted accordingly (as described under
"Structure.;.Qualified Variable References ll later in this section).

o 'side' is a shortened form
structure-qualified reference.

8-10

'y.side(*) , 'I''''~''; _L...
Wll...!..\.,.; 11 also a

A/183

Subscripted Variable References

A subscripted variable reference designates a portion of a major array
variable. The designated portion can be either a single element of the array,
in which case it is a scalar, or a cross section of the array, in which case it
is, itself, an array. The designated portion of the major variable is specified
by one or more subscripts.

FORM OF SUBSCRIPTED VARIABLE REFERENCES

A subscripted variable reference has the following form:

mn(sublist

where mn is the major ~ and sublist is the subscript list. The major name
must be an identifier that is declared as the name of a major variable and that
is not declared 'based'. The subscript list is a sequence of subscripts
separated by commas, and each subscript is either an expression or an '*' A
subscript expression must yield a value that can be converted to an integer. A
subscripted variable reference that has one or more '*' subscripts designates a
cross-section of an array.

As an example of a subscripted variable reference, consider:

PHI(i+ceil(.362*sqrt(x-1)),*,j-2)

In this example the major name is 'PHI' and there are three subscripts. The
first subscript is chosen to show that there is no special restriction on a
subscript expression. The major name must have a declaration of the form:

dcl PHI(dim, dim, dim) ••. ;

where each dim represents a dimension and
attributes.

represents a sequence of

INTERPRETATION OF SUBSCRIPTED VARIABLE REFERENCES

A subscripted variable reference that is used for retrieval of a value is
interpreted as follows:

1. Name Resolution. Resolve the major name in the given reference.
result is the declaration of the major name.

The

2. Storage Type Determination. Make a copy of the storage type of the
major name and delete from the 'dimension' attribute of the name each
dimension that corresponds to a subscript that is an expression. Do
not delete a dimension that corresoonds to a '*' subscriot. If all
dimensions are deleted, then delete the 'dimension' attribute. The
result is the storage type of the reference.

3. Subscript Evaluation. Evaluate each subscript expression in
reference and, if necessary, convert its value to an integer.
subscript value is outside the range of subscripts for which the
variable is allocated, the 'subscriptrange' condition occurs.
result of subscript evaluation is the fUlly-bound reference.

8-11

the
If a

array
The

AM83

4. Variable Location. Locate the variable designated by the major name;
do this just as for a simple variable reference. The designated
variable is the sequence of storage units that are selected by the
fully bound reference. A storage unit is selected if it matches the
beginning of the designator or the entire designator of the storage
unit. The match must be exact except that a '*' in the reference
matches any integer subscript in a storage unit designator.

5. Value Retrieval. Retrieve the value of the designated variable.

Most of the interpretation is performed by the compiler; only subscript
evaluation and value retrieval are performed during program execution.

The interpretation just given for a subscripted variable reference is
complete, but it requires the following remarks to clear up difficult points:

• The determination of the storage type by Step 2 and the retrieval of
the value by Step 4 are consistent with one another. That is, the
interpretation of the reference guarantees that the value retrieved is
always appropriate for the storage type of the reference.

• The 'subscriptrange' condition mentioned in Step 3 is part of the
mechanism provided by the language to detect errors or exceptions that
occur during program execution. The programmer can supply statements
to handle such a condition; more often, he allows the interpreter to
report it as an error and abort the program. There is a cost
associated with checking the value of a subscript, and the language
allows the programmer to conveniently enable this check during program
debugging and then disable it when the program enters production.
Details are given later, in Section XIII, iiCondition Handling.::

• In general, a subscripted variable reference selects a subset of the
elements of the array variable that is designated by the major name.
When a subscript is an expression (and is evaluated to produce an
integer), it participates in making the subset smaller. On the other
hand, when a subscript is a '*', it makes no contribution to the
selection and allows any subscript value to match its subscript
position.

Two special cases of the subscripted variable reference are of particular
interest:

• The most common use of a subscripted variable reference is that in
which the major name is declared to be an array of scalars and the
subscript list contains no '*'. In this case, the storage type of the
reference is scalar and the fully-bound reference designates a single
storage unit.

• When every subscript is a '*', the reference designates the entire
variable designated by the major name. Specifically, it follows from
Step 2 that no dimension is deleted from the storage type and it
follows from Step 4 that the fully-bound reference matches the
designator of every storage unit of the array variable.

8-12 AM83

EXAMPLES OF SUBSCRIPTED VARIABLE REFERENCES

Examples of subscripted variable references are discussed here; they occur
in the following program:

P: proc;
dcl A(3,2) dec(4);
dcl 01 part(0:1),

02 name char(6),
02 code dec(5);

dcl sysprint file;
dcl (i,j,m) fixed;
dcl x float;

(assignments to variables occur here)
put list(A(i+2,j-x**2),A(i+2,*),A(*,j-x**2),A(*,*));
put list(part(m),part(*));

end;

Suppose that before the example output statements are executed, storage includes
the region:

activation

00242

00244

00246

00250

00252

00254

03544

03546

03550

03552

internal re ion

A

part

S 999 9
(1 , 1) L+ZOZ2Z0Z17

S 9 999
(1 ,2) !..+ZOZ2Z0Z27

(2, 1)
S 9 9 9 ~

L+ZOZ2Z0Z:7

S 9 9 9 9
(2,2) I..+ZOZ2Z0Z47

(3, 1)
s ~ ct ~ g L+ZOZ2Z0Z:7
S 9 9 9 9

(3,2) L+ZOZ2Z0Z67
x x x x x x

(O).name "ftZxZ8ZQZ2!47"

.code

(l).name

.code

S 9 9 992 1..+loZo/5/9Z37
s 9 9 9 9 9

"!wZ6ZrZfZEZD7"

S 9 9 9 9 9
I..+Z8Z0Z0Z0Z77

8-13 AM83

Subscripted references to the same variable differ in an important way when
one reference has an expression for a subscript and the other has a '*' for the
same subscript. According to this view, four different references can be
written for the variable 'A', as follows:

• 'A(i+2,j-x**2)' has expressions as subscripts.
reference is interpreted when:

i = 0, j = 5, and x = 2

Then the fully-bound reference is 'A(2,1)'.
interpretation of the reference is:

storage type:
value:

real fixed dec(4,0)
203

Suppose that the

The result of the

• 'A(i+2,*)' is a one-dimensional cross-section of the two dimensional
array variable. Suppose the value of 1 1S as before; then the
fully-bound reference is 'A(2,*)'. The result of the interpretation
of the reference is:

storage type:
value:

dim(2) real fixed dec(4,0)
203,204

• 'A(*,j-x**2)' is also a one-dimensional cross-section of the two
dimensional array variable. Suppose the values of 'j' and 'x are as
before; then the fully-bound reference is 'A(*,1)'. The result of
the interpretation of the reference is:

(""1+-""'''''''''''''''''''''' ... "(.,.""''''. u u.ae "":J~v.
value:

,.l;,....,{?\ ,..,,,,..,.1 f";vo,.l ,.lon{11 n\
U~W\JI .~u~ ~~A~U U~~\"VJ

201, 203, 205

• 'A(*,*)' is a two-dimensional cross-section of the two dimensional
array variable; that is, it designates the entire array variable. The
result of the interpretation of the reference is:

storage type:
value:

dim(3,2) real fixed dec(4,0)
201, 202, 203, 204, 205, 206

The variable 'part' is an array of structures.
references for the variable, as follows:

There are two different

• 'part(m)' has an expression as its subscript. Suppose the reference
is evaluated when:

•

m = 0

Then the fully-bound reference is 'part(O)'.
interpretation of the reference is:

The result of the

storage type:

value:

01, 02 char(6) nonvarying,
02 real fixed dec(5,0)

"tx8Q24", 593

'part(*)' designates the entire
interpretation of the reference is:

variable. The

storage type:

value:

01 dim(1), 02 char(6) nonvarying,
02 real fixed dec(5,0)

"tx8Q24", 593, "w6rfED" , 80007

8-14

result of

AH83

Structure-Qualified Variable References

A structure-qualified variable reference designates a portion of a variable
that is a structure or an array of structures. The designated portion of the
variable can either be a scalar or another, smaller, aggregate; it is selected
by level names and, in some cases, subscripts.

FORM OF STRUCTURE-QUALIFIED VARIABLE REFERENCES

A structure-qualified variable reference has one of the following forms:

•.. (and so on)

where lref1, lref2, lref3, and so on, are level references. Each level
reference is a level name optionally followed by a parenthesized subscript list.
The subscript list is a sequence of subscripts separated by commas, and each
subscript is either an expression or an '*'. A subscript expression must yield
a value that can be converted to an integer.

The rightmost level reference is the member reference and the other level
references are containing references. The leftmost containing reference must
begin with a major name that designates an aggregate variable. The
structure-qualified reference as a whole must be consistent with the declaration
of the major name; that is, the first level reference must designate a
second-level component of the major variable, the second-level reference must
designate a third level component, and so on.

An example of a structure-qualified reference is:

base.first

In this example, there are two level references, each in the form of a simple
reference. The name 'base' is a containing reference and is the major name for
the structure-qualified reference as a whole. The name 'first' is the member
reference. The identifiers must be declared by a statement of the form:

dcl 01 base ••. ,

02 first ... ,
. .. ,

where the ' ... ' symbols indicate portions of the statement that are not of
interest here.

A second and more complicated example of a structure-qualified reference
is:

x(j,*).y3_test(2*m-3/i).par4

8-15 AM83

In this exa~ple, there are three level references: the first two, the containing
references, are in the form of subscripted references and the last one, the
member reference, is in the form of a simple reference. The name 'x' is the
major name for the reference and it must be declared as a level-one,
two-dimensional array of structures. The name 'Y3_test' must be declared as a
one-dimensional array of structures that is a member of 'x'. The identifier
'par4' must be declared as a member of 'y3_test'. In other words, the following
'declare' statement must apply:

dcl 01 x(dim , dim)
. .. ,
02 y3_testC dim) ... ,

. .. ,
03 par4 . .. ,

. .. ,

Observe that although the reference places constraints on the aggregate type of
the containing references, it places no constraint on the member reference
'par4'; so 'par4' could be a scalar, array, or structure.

INTERPRETATION OF STRUCTURE-QUALIFIED VARIABLE REFERENCES

A structure-qualified reference that is used for retrieval of a value is
interpreted as follows:

1. Name Resolution. Resolve the major name in the given reference.
result is the declaration of the major name.

The

2. Storage Type Determination. Perform the following steps:

a. Make a copy of the normalized storage type for the major name of
the given reference.

b. Edit the dimensions in the storage type as follows:

(1) Delete each dimension that is associated with a subscript
expression in the given reference.

(2) Keep each dimension that is associated with a '*' subscript
in a containing reference of the given reference, but move
it so that it occurs in the storage-type component that
corresponds to the member reference.

(3) Keep all other dimensions.

c. Edit the remainder of the storage type as follows:

(1) Keep the component of the storage type that corresponds to
the member reference.

(2) If the member reference designates a structure, keep
component of the storage type that corresponds
component of that structure.

(3) Delete the remaining components of the storage type.

8-16

each
to a

AM83

3.

The result is the storage type of the reference. It is understood
that, as the storage type is derived by the steps above, the necessary
refinements are supplied to keep the storage type in a valid,
normalized form. For example, when the last dimension In a
'dimension' attribute is deleted, the 'di~ension' attribute itself is
deleted.

Subscript Evaluation. Subscripts are
described for a subscripted variable
fully-bound reference.

evaluated just as already
reference. The result is the

4. Variable Location. Locate the variable designated by the given major
name; do this just as for a simple variable reference. The designated
variable is the sequence of storage units that are selected by the
fully bound reference. A storage unit is selected by the fully bound
reference. A storage unit is selected if it matches the beginning of
the designator or the entire designator of the storage unit. The
match must be exact except that a '*' in the reference matches any
integer subscript in a storage unit designator.

5. Value Retrieval. Retrieve the value of the designated variable.

Most of the interpretation is performed by the compiler; only subscript
evaluation and value retrieval are performed during program execution.

This interpretation, especially the determination of the storage type in
Step 2, is complicated. Rather than discuss it in the abstract, a detailed
discussion of an example reference is given in what follows.

EXAMPLES OF STRUCTURE-QUALIFIED VARIABLE REFERENCES

Examples of structure-qualified references are discussed here; they occur
in the following program:

P: proc;
dcl 01 Q(2) static external,

02 R 1 ,
03 Sl(4) float,
03 S2 char(4),

02 R2(0:1,3) dec(10);
dcl sysprint file;

(assignments to variables occur here)
put list(Q(*) .R1.S1 (i+3»;

end;

A diagram of the storage for 'Q' would be of inconvenient size. Instead, a
complete list of the designators for the storage units that make up the variable
is given:

9/78

Q(1) .R1.S1(1),
Q (1) • R 1 • S2 ,
Q (1) • R2 (0, 1) ,
Q(1).R2(1,1),
Q(2).R1.S1(1),
Q(2).R1.S2,
Q(2).R2(O,1),
Q (2) • R2 (1 , 1) ,

Q(1).Rl.S1(2), Q(1).Rl.S1(3),

Q(1).R2(O,2), Q(1).R2(0,3),
Q (1) • R2 (1 ,2) , Q (1) • R2 (1 ,3) ,
Q(2).R1.S1(2), Q(2).R1.S1(3),

Q(2) .R2(0,2),
Q(2).R2(1,2),

Q(2).R2(0,3),
Q(2).R2(1,3)

8-17

Q(1).Rl.Sl(4),

Q(2) .R1 .Sl (4),

AMd3A

I
I

The interpretation of a structure-qualified reference is now given in
detail. Suppose th~ reference:

Q(*) .Rl.S1(i+3)

is interpreted when i = -1. The steps in the interpretation are:

1. (Name Resolution.) The 'declare' statement in the example program is
associated with 'Q'.

2. (Storage Type Determination.) The fo~lowing steps are performed:

a. A copy of the normalized storage type is made, giving:

01 dime 2) ,
02,

03 dim(4) float,
03 char(4),

02 dim(2,3) dec(10)

Observe that the normalized for~ of the dimension '0:1' (declared
for 'R2') is '2~.

b. The dimension is edited. The di~ension associated with 'i+3' is
omitted, giving:

01 dim(2),
02~

03 float,
03 char(4),

02 dim(2,3) dec(10)

Then the dimension associated with the '*' subscript in the first
containing reference is moved to the storage type component
associated with the member reference, giving:

01 ,
02,

03 dim(2) float,
03 char(4),

02 dim(2,3) dec(10)

If this Q1mension were not novec, it would be deleted by Step 2c,
and that would be inconsistent ~ith the interpretation of a '*'
subscript.

c. The remainder of the storage type is edited. The component of
the storage type that corresponds to the member reference,
'S1(i+3)' is kept. Since 'S1' is not a structure, nothing else
is kept. The result is:

03 dim(2) float

A level number on a storage type that is not a structure is not
permitted, so the final result is:

dime 2) float

8-18 AH83

3. (Subscript Evaluation.) The subscript expression in the given
reference is evaluated. The fully-bound reference is:

Q(*) .R1.S1 (2)

4. (Value Retrieval.) An inspection of the 22 designators for the scalar
components of 'Q' shows that the fully-bound reference matches two,
namely:

Q(1) .R1.S1 (2)
Q(2) .R1.S1 (2)

The sequence of two scalar values associated with these designators is
retrieved and is the value of the given reference. Observe that the
storage type of this result is identical to the storage type obtained
in Step 2.

If the difference between two subscript expressions is ignored and if
shortened references are excluded, then there are 18 distinct references to the
variable designated by 'Q', as follows:

Q(*)
Q(*).R1
Q(*) .R1.S1 (*)
Q(*).R1.S1(j)
Q(*).R1.S2
Q(*).R2(*,*)
Q(*) .R2(* ,k)
Q(*).R2(j,*)
Q(*).R2(j,k)

Q(i)
Q(i).R1
Q(i) .R1.S1 (*)
Q(i) .R1.S1 (j)
Q(i) .R1.S2
Q(i).R2(*,*)
Q(i).R2(*,k)
Q(i).R2(j,*)
Q(i).R2(j,k)

One of these forms of reference, 'Q(*).R1.S1(j)', has just been considered
in detail. Several other forms are now considered:

• Q(i) .R1.S1 (j) (assume i = 1 and j = 3)

storage type: float

designator: Q(1) .R1.S1 (3)

(Out of the 18 forms of reference for 'Q', only three have scalar
values. This is one of them.)

• Q(i).R2(j,k) (assune i = 1, j = 0, k = 2)

storage type: dec(10)

designator: Q(1).R2(O,2)

(This is the second form that has a scalar value. The third is
'n(;' 01 <::!'), \
'IC(\~/ • .1\ I.UC- • J

9/7d 8-19 AMd3A

I

I

I

•

•

Q(*)

storage type: 01 dirn(2),
02,

03 dir.l(4) float,
03 char(4),

02 dim(2,3) dec(10)

designators: (The full sequence of 22 designators)

(This reference designates the entire variable associated

Q(i).Rl (assume i

storage type:

designators:

= 2)

01,
02 Sl(4) float,
02 S2 char(4)

Q(2).Rl.S1(1), Q(2).R1.S1(2),
Q(2).R1.S1{3), Q(2).Rl.S1{4)

Q(2) • R 1. S2

with "Q" •)

(This storage type is essentially the declaration of 'Rl'; only the
level numbers have been changed.)

• Q(*).Rl.S1(*)

•

•

storage type:

designators:

dim(2,4) float

Q(l).R1.S1(1), Q(1).Rl.Sl(2),
Q(1).Rl.Sl(3), Q(1).Rl.Sl(4),

Q(2).Rl.S1(1), Q(2).Rl.S1(2),
Q(2).R1.S1(3), Q(2).Rl.S1(4)

(Here, two separate dimensions combine to ~ake a two-dimensional
array.)

Q{i).R2(*,*) (assume i = 2)

storage type: di~(2t3) dec(10)

designators: Q(2).R2(0,1), Q(2)~R2(O,2), Q(2).R2(O,3).
Q(2).R2(l,1), Q(2).R2(1,2), Q(2).R2(1,3)

(Observe that the dimension of 'R2', which is '0:1', is normalized to
'2'; but this does not affect the subscripts used in the designators.)

Q(*).R2(j,*)

storage type:

designators:

(assu~e j = 0)

dim{2,3) dec(10)

Q{l).R2(O,1), Q(1).R2(0,2), Q(1).R2(0,3),
Q(2).R2(0,1), Q(2).R2{O,2), Q(2).R2(0,3)

(Here, the storage type is exactly the same as for the previous
example; but the sequence of designators, and therefore the value, is
different.)

Locator-Qualified Variable References

A locator-qualified variable reference oakes use of a ~pointer' or 'offset'
value to locate a variable. Once the variable is located, it can be accessed by
any of the means thus far described in this discussion of variable references.

8-20 AM83

FORM'OF A LOCATOR-QUALIFIED VARIABLE REFERENCE

A locator-qualified variable reference has the following form:

l.9. -> br

where l.9. is the locator qualifier and br is the based reference. The locator
qualifier must be a reference that yields a 'pointer' or 'offset' value. The
based reference must have the form of a simple variable reference, a subscripted
variable reference, or a structure-qualified variable reference; however, the
major name of the based reference must be declared 'based'.

A simple example of a locator-qualified reference is:

p->x

In this example, 'p' must be
declared 'based' • In an
expressed as lI'p' arrow 'X'II

interpreting the value of
type given by 'X'II.

declared 'pointer' or 'offset', and x must be
English reading of a program, the reference can be
or, more descriptively, as "the value obtained by
'p' as a pointer to a variable that has the storage

Other examples of locator-qualified references are:

F(x+2,3*m)->Y

q.alpha(j,k).r2->top(i+3).next

f->g->h

In the first example, the locator qualifier is a function reference or a
subscripted reference (depending on the declaration of 'F') that must be
declared 'pointer' or 'offset'. In the second example, both the locator
qualifier and the based reference are complicated structure-qualified
references. In the third example, the locator qualifier for the entire
reference is 'f~>g', and the locator qualifier for 'f->g' is 'f'. For a given
reference, it is always the rightmost arrow that separates the locator qualifier
from the based reference.

ASSOCIATED STORAGE TYPES FOR LOCATOR VALUES

Every locator value has an associated storage~. This storage type is
not the storage type of the locator value itself; that storage type is either
'pointer' or 'offset'. Instead, the associated storage type is the storage type
of the variable that is designated by the locator value.

The associated storage type is created when the locator value is created.
Two cases apply:

• A locator value is created as the result of the application of the
'addr' built-in function to a given variable reference. In this case,
the associated storage type is the storage type of the given variable
reference.

• A locator value is created when an 'allocate' statement is executed on
a given variable name; the statement causes a locator value to be
assigned (through a 'set' option) to a locator variable. In this
case, the associated storage type is the storage type of the given
variable name.

8-21 Al'183

The associated storage type accompanies a locator value wherever it goes: as
the value is assigned from one variable to another or as the value is returned
by a programmed function reference.

As an example of the handling of associated data types, consider the
following program:

P: proc;
dcl (p1,p2,p3,p4) pointer;
dcl a(10) float;
dcl 01 Q based,

02 R1 float,
02 R2 dec(5);

allocate Q set(p1);

p2 = addr(a);

p3 = addr(a(3));

p4 = p2;

end;

After the ~allocate~ statement, the ~pointer~ variable designated by ~p1~
contains a pointer value; and that value has the associated storage type ~01, 02
float, 02 dec(5)~. After the first assignment statement, 'p2' has a pointer
value whose associated storage type is 'dim(10) float'. After the second
assign~ent statement, 'p3' has a pointer value whose 8Rsociated storage type is
~float'. After the last assignment statement, ~p4' has a pointer value whose
associated storage type is 'dim(10) float~.

INTERPRETATION OF LOCATOR-QUALIFIED VARIABLE REFERENCES

A locator-qualified variable reference that is used for retrieval of a
value is interpreted as follows:

1. Name Resolution. Resolve the major name in the based reference of the
given reference. The result is the declaration of the major name.

2. Locator-Qualifier Evaluation. Evaluate the locator qualifier for the
given reference. The result is a pointer value or an offset value; if
it is an offset value, convert it to a pointer value. The result is
the base pointer value for the given reference.

3. Base-Variable Location. Use the base pointer value to locate a
position in storage. At that position, a variable begins whose
storage type is the same as the associated storage type of the base
pointer value. This variable is the base variable for the given
reference.

4. Based-Variable Overlay. Overlay a based variable on the base
variable. That is, define the set of designators that would have been
produced if the base variable had been allocated in accordance with
the declaration of the major name of the based reference.

8-22 AM83

•

5. Based Reference Interpretation. Interpret the based reference that
occurs in the given reference. That is, determine its storage type,
evaluate its subscripts, and evaluate it. The results are the storage
type and value for the entire locator-qualified reference.

6. Based-Variable vlithdrawal. Withdraw the based variable from the base
variable; that is, discard the designators that were defined in
Step 4.

Most of the interpretation is performed by the compiler; only locator-qualifier
evaluation (Step 2) and a portion of based reference interpretation (Step 5) are
performed during program execution.

According to Step 3 of the interpretation, the associated storage type of
the base pointer value must agree with the storage type of the major name in the
based reference of the given reference. The Multics implementation of PL/I (as
well as other implementations) does not check for a violation of this rule.
Because of a deficiency in the design of PL/I, the check cannot be made at
compile time. Because the cost would be unreasonably high, the check is not
made at execution time. Therefore, the programmer must detect his own errors in
this respect.

EXAMPLES OF LOCATOR-QUALIFIED VARIABLE REFERENCES

Examples of locator-qualified variable references are discussed here; they
occur in the following program:

P: proc;
dcl (n,k) fixed;
dcl 01 H(100) static,

02 flags bit(3),
02 iten(2),

03 text char(6),
03 count dec(5),

02 style dec(4);
dcl 01 i(n) based,

02 t char(6),
02 c dec(5);

dcl P1 pointer;
dcl sysprint file;

(assignments to variables occur here)
put list(P1->i(2*k-4));

end;

8-23 AM83

Just before the examples of retrieval are interpreted, suppose that storage
includes the regions:

ermanent internal re ram

1 1 1
17762 H (l).flags "/l/1/01"b

(••• and so on for the first 7 elements of 'H')

20144

20145

20147

20151

20153

20155

1 1 1
H (8) .flags "/l/1/01"b

x x x x x x
.item(l).text "/Q/n/a/i/l/s/"

S 9 9 999
.count /+10101114141

x x x x x x
(2).text "/a/C/C/i/d/e/"

.style

.count
S 9 9 9 ~ 9

1+1010701 101

S 9 9 9 ~
/-7010711 I

(••• and so on for the remaining 92 elements of 'H')

activation internal re ion

01771 P1 I 20145 I
ptr

The interpretation of a locator-qualified reference is now given in detail.
Consider the reference:

P1->i(2*k-4) (assume k = 3, n = 2)

The steps in the interpretation are:

1. (Name Resolution.) The declaration of the major name, 'i', in the base
reference is determined. It is given by the third 'declare' statement
in the example program.

2. (Locator-Qualifier Evaluation.) The locator qualifier is the
variable reference, 'Pl'; its value is the base pointer
'20145'. The associated storage type of the value must be the
that declared for 'i'. In fact, the only valid source for
value would be 'addr(H(8).item)'.

simple
value,

same as
such a

3. (Base-Variable Location.) The base pointer value is used to locate a
position in storage. Three variables begin at this position:
'H(8).item(1).text' (a scalar), 'H(8).item(1)' (a structure), and
'H(8).item' (an array). The last of these has the same storage type
as 'i', and it is therefore the base variable.

8-24 AM83

4. (Based-Variable Overlay.) The based variable is overlaid on the base
variable. New designators are defined, and a portion of the diagram
of storage is changed to read as follows:

20144

20145

20147

20151

20153

20155

i(i).t

H (8) .flags
1 1 1

"lololol"b
x x x x x x

.item(I).text u/O/n/ a/i/1/s/n

.c ------------ .count
S 9 9 999

1+101071/4/41

(2) • t (2).text "/a/clc/i/d/el"

.c ------------ .count
S 9 9 9 ~ 9

/+1010107 101

.style
S 9 9 9 ~

/-10/0711 I

Observe that the variable 'i' matches the base variable only because
n is '2' at the time this step is performed; if 'n' had any other

value, the reference would be invalid.

5. (Reference Evaluation.) The subscript in the based reference is
evaluated and the fully-bound reference is 'i(2)'. The result is:

storage type: 01,
02 char(6),
02 dec(5)

value: "aCCide", go

6. (Based-Variable Withdrawal.) The designators defined in Step 4 are
discarded, and the diagram returns to the form that appeared at the
beginning of this discussion.

Shortened Forms of References

The conventions for shortening variable references are described here, and
specific guidelines for their use are given. A reference should be shortened
only in order to make the program in which it occurs more clear to those who
must read it. A reference should not be shortened merely to reduce the number
of keystrokes required to type the program.

SUBSCRIPT-LIST DELETION

A subscripted reference can be shortened by deleting its subscript list,
provided that all subscripts are '*' subscripts. Similarly, a
structure-qualified reference can be shortened by deleting all of its subscript
lists provided all of its subscripts are '*' subscripts.

8-25 AM83

Examples of Subscript List Deletion

Examples of the shortening of a reference by deletion of subscript lists
are:

Reference Shortened Reference

a(*) a

b(*,*) b

c(*) .d.e(*,*) c.d.e

Observe that the third reference, 'c(*).d.e(*,*)', cannot be shortened to
'c(*).d.e' or 'c.d.e(*,*)'; if any subscript list is deleted, all Must be.

Guidelines for Subscript List Deletion

The deletion of a subscript list is not recommended. Any reference with a
'*' is necessarily a reference to an aggregate value. The PL/I facilities for
handling aggregates are expensive and should not be used casually. Indeed, the
presence of a subscript list composed of asterisks is a useful warning that an
aggregate value is being processed.

NAl'1E DELETION

A structure-qualified reference can be shortened by deleting one or more of
its containing references, provided that the deleted references are
unsubscripted names and provided that the deletion does not change the
declaration of the reference.

The declaration of a reference is changed if the unshortened reference is
governed by one declaration and the shortened reference is governed by another.
The declaration that governs the reference is determined by rules given earlier
in Section VI, "Declarations."

A subscript list can be moved within a reference. The purpose of this
convention is to allow deletion of a containing reference which, aside from its
subscript list, satisfies the conditions for deletion. For example, the
reference 'x(i+2).y' can be written as 'x.y(i+2)' and then, if the declaration
does not change, as 'y(i+2)'.

8-26 AH83

Examples of Name Deletion

The following prograo is used to illustrate the deletion of containing
names to produce shortened references:

P: proc;
dcl 01 vehicle,

02 serial dec(10),
02 cost dec(8,2);

begin;

end;

dcl 01 sale,
02 customer,

03 name char(30),
03 address char(60),

02 supplier,
03 name char(8),
03 cost(2) dec(10,2);

dcl cost dec(10,2);

(example references occur here)

end;

Observe that
declarations

name' is declared twice and 'cost' is declared three times. These
are all valid but they make certain shortened references invalid.

Assume that the declarations explicitly shown are the only declarations in the
program. Then the references that could be used in the inner block are
classified as follows:

Unshortened References

vehicle.serial

vehicle~cost

sale.customer

sale.customer.name

sale.customer.address

sale.supplier~name

sale.supplier.cost(i)

Valid Shortening

serial

customer

customer.name

customer.address
sale.address
address

supplier. name

supplier.cost(i)
sale.cost(i)

8-27

Invalid Shortening

cost

sale.name
name

sale.name
name

cost(i)

AM83

The interesting references are the "invalid shortenings".
for as follows:

• The references 'sale.name' and 'name' are invalid
ambiguous. Each is a partially-qualified
'sale.customer.name' and 'sale.supplier.name'.

They are accounted

because they are
reference to both

• The reference 'cost' is an invalid shortening of 'vehicle.cost'
because (in the inner block) it would be interpreted as a reference to
the 'cost' declared in the third 'declare' statement.

• The reference 'cost(i)' is an invalid shortening of
'sale.supplier.cost(i)' because (since subscripts are ignored in the
resolution of a reference) it would also be interpreted as a reference
to the 'cost' declared in the third 'declare' statement.

Guidelines for Name Deletion

The deletion of the leftmost reference of a structure-qualified variable
reference is not recommended, even if a careful analysis shows that the result
is correct. The leftmost level reference is much more important than the other
level references because it determines which major variable is being referenced.

The moving of a subscript list from one level reference to another within a
structure-qualified reference is not recommended. Although it has no effect on
the interpretation of the reference by the processor, it gives the human reader
the wrong storage type for the reference. The deletion of containing references
should be confined to those that are originally unsubscripted.

LOCATOR QUALIFIER DELETION

A locator-qualified reference can be shortened by deleting the locator
qualifier, provided that the major name of the based reference is declared with
the attribute:

based(x)

where X is the locator qualifier that occurs in the unshortened reference.

Guidelines for Locator-Qualifier Deletion

The deletion of a locator-qualifier is not recommended for most
applications. The use of based variables is an error-prone aspect of PL/I
programming, and the deletion of a locator-qualifier introduces additional
possibilities for errors.

8-28 AM83

Cost Gf Variable References

The relative complexity of the various kinds of variable references is a
bad guide to the cost of these references. A PL/I program is compiled, and the
cost of the interpretation of any construct, and references in particular, is
divided between compilation and execution. Whatever can be performed during
compilation becomes a negligible cost because it is performed only once for each
compilation of the program.

The cost of interpreting a reference consists of a cost that is
approximately the same for all variable references plus the cost of evaluating
any expressions (subscripts or a locator qualifier) that occur in the reference.
A long and complicated reference that contains only constant expressions, such
as:

alpha(3).beta.gamma(5,2)

costs no more to interpret than a simple variable reference. Generally
speaking, the organization of data into structures and the corresponding use of
structure-qualified variables do not, in themselves, increase the cost of
referencing the data.

CONSTANT LITERALS

A constant literal designates a computational constant value. The constant
literal gives, in the spelling of the construct itself, both the data type and
the value of the constant it designates. For example, the constant literal
'23.9' designates a constant whose storage type is 'real fixed decimal (3,1)'
and whose value is 23.9. The spelling of a constant literal is almost, but not
quite, the same as the stored value representation it designates. For example,
the constant literal '23.9' has the stored value representation '+23.9'.

A constant literal designates a constant that requires at most 64 words of
storage (for the longest possible character-string constant). Furthermore, the
value of a constant literal can always be determined at compilation time, and
various optimization techniques can be applied to reduce the cost of its
storage. For these reasons, the allocation and initialization of storage for
the value designated by a constant literal need not be described. It is
sufficient to show how, for a given constant literal, the storage type and value
of the literal can be determined.

Arithmetic Constant Literals

The language provides a full range of arithmetic constant literals,
including both 'fixed' and 'float' scaling, 'decimal' and 'binary' base, and
'real' and 'complex' mode.

8-29 AM83

FORM OF ARITHMETIC CONSTANT LITERALS

The form of the arithmetic constant literals is given by the following
rules:

1. An integer literal is a sequence of one or more digits.

2. A fixed literal is either an integer literal or is an integer literal
modified by the insertion of a decimal point before or after any
digit.

3. A float literal is a fixed literal (called the mantissa) followed by
an 'e' followed by a signed integer literal (called the exponent).

4. A decimal literal is any Ilxed or float literal. The exponent of a
float decimal is considered to be a power of ten.

5. A binary literal is a fixed or float literal followed by a 'b'.
Except for an exponent, the literal must contain only binary digits.
The exponent of a float binary literal is interpreted as a decimal
number; it is considered to be a power of two.

6. A real literal is any decimal or binary literal.

7. An imaginary literal is any decimal or binary literal followed by an
, i ' .

8. An arithmetic literal is any real or imaginary literal.

An arithmetic literal must not be more than 256 characters long.

The rules just given build on one another. An integer literal is used to
build a fixed literal, a fixed literal is used to build a float literal, and so
on. The following shows how the rules are used to build the literals
'11101110b' and 8.2300e-3i':

1. integer 11101110 82300

2. fixed 11101110 8.2300

3. float 8.2300e-3

4. decimal 8.2300e-3

5. binary 11101110b

6. real 11101110b 8.2300e-3

7. imaginary 8.2300e-3i

8. arithmetic i1101110b 8.2300e-3i

8-30 AI183

I~TERPRETATION OF ARITHMETIC CONSTANT LITERALS

The interpretation of an arithmetic constant literal must yield a storage
type and o. value. The storage ~ is determined as follows:

• The aggregate tVDe is always scalar.

• The mode is 'complex' if the reference ends with an 'i', and is 'real'
otherwise. Default statements can not change the mode of a constant. I
The scaling is 'float' if the reference has an 'e' followed by an
exponent and is 'fixed' otherwise.

• The base is 'binary' if the reference contains a 'b' and is 'decimal'
otherwise.

• The number-of-digits in the precision is obtained by counting all the
digi ts except those in exponents 'e' or 'f'. I

• The scale-factor in the precision is obtained by counting the digits
to the right of the point except for those in an exponent. If there
is no point, the scale factor is zero.

• If the arithmetic constant contains a 'p', default processing of that I
constant does not take place; 'p' is called the default suppression
character.

The value of the constant literal is the value represented by the spelling of
the literal.

EXAMPLES OF ARITHMETIC CONSTANT LITERALS

Examples of arithmetic constant literals follow. Each example is
accompanied by its storage type and its representation in storage.

Constant Literal Storage Type Representation

23.9 real fixed decimal(3,1) +23.9

0 real fixed decimal(1,0) +0.

000 real fixed decimal(3,0) +000.

110.011011101b real fixed binary(12,9) +110.011011101b

Ob real fixed binary(1,0) +O.b

5.6000000e3 real float decimal(8) +58000000.e-4

.1110010011101e-3b real float binary(13) +.1110010011101e-3b

568eOi complex float decimal(3) +000.eO+568.eOi

9.000e5i cOQplex float decimal(4) +0000.eO+9000.e2i

10101bi complex fixed binary(5,0) +00000.b+10101.bi

9/7b 8-31 AMb3A

I

I

1bpi complex fixed binary(10) +0.b+1.bi

1f2 real fixed deci~al(1-2) + 1 •

I~ote that the value of 1f2 is 100 although only one digit is stored
internally.

GUIDELINES FOR ARITHMETIC CONSTANT LITERALS

The storage type of an arithmetic constant literal should be chosen for
convenience and clarity. Use 'fixed' scale unless the magnitude of the values
requires an exponent for convenience of representation. Use 'decimal' base
except in the very rare case that the problem formulation depends on binary
arithmetic. Use 'complex' mode if the value has an imaginary part.

Consider, for example, the assignment of a constant to a variable. Suppose
that variable, 'x', is declared as follows:

dcl x float;

so that its storage type is 'float bin(27)'. In order to assign the value 24 to
this variable, it might be thought appropriate to use a 'float bin(27)' literal
constant and write:

x = 000000000000000000000011000eOb

However
write:

this statement is inconvenient and " ,....1 _ V'lI
\.All\""'..LCCl,l • it 1S

x = 24;

The necessary conversion from 'fixed dec(2)' to 'float bin(27)' is performed at
negligible cost during compilation; therefore no conversion is required when the
statement is executed.

String Constant Literals

The language provides constant literals for both character-string and
bit-string values. Special conventions permit the use of any ASCII character
within a character-string literal, and thus provide complete generality in
string manipulation.

FORM OF STRING CONSTANT LITERALS"

9/78

The form of the string constant literals is given by the following rules:

1. A character-string literal is an optional replication factor (defined
by Rule 3), followed by a double-quote character, followed by a
sequence of zero or more ASCII characters, followed by a double-quote
character. The character sequence between the double-quote characters
represents the value of the string; however, two double-quote
characters must appear in the sequence for each double-quote character
in the value.

2. A bit-string literal is an optional replication factor, followed by a
double-quote character, followed by a sequence of zero or more '0' and
'1' characters, followed by a double-quote character, followed by a
'b'. Bit-string constants may be expressed in terms of quartenary,
octal, or hexadecimal constants. If no number is specified after the
"b" or if 1 is specified, the characters are restricted to 0 and 1.

0-32 AHb3A

If 2 is specified, the character(s) are restricted to 0, 1, 2, and 3.
If 3 is specified, the character(s) are restricted to all digits
except 8 and 9. If 4 is specified, the character(s) are restricted to
'digit', a, b, c, d, e, and f. The number, if any, after the "b"
indicates how many bits each digit represents. For hexadecimal,
uppercase or lowercase may be used but they cannot be intermixed.

3. A reolication factor is a parenthesized integer literal whose value is
greater than zero. Suppose the value of the replication factor for a
given reference is n and that the sequence of characters between the
double-quote characters is s. Then an equivalent string literal is
obtained by replacing 2 with n copies of 2 and deleting the
replication factor.

A string literal must not be more than 256 characters long. If a string literal
has a replication factor, the restriction on length is applied to the equivalent
literal that does not have a replication factor. For example, '(254)"0"b' is
considered to be a literal of 257 characters and therefore is invalid.

INTERPRETATION OF STkING CONSTANT LITERALS

The interpretation of a string constant literal must yield a storage type
and a value. The storage iYQg is determined as follows:

• The aggregate type is always scalar.

• The literal is 'bit(n)' or 'character(n)' depending on whether a 'bY
occurs at the end or not. The n is the number of characters in the
sequence between the double-quote characters; a pair of double-quote
characters in the sequence counts as one character.

• The literal is always 'nonvarying'.

The value of the literal is the sequence between double-quote characters with
the provision, already noted, that two double-quote characters in the sequence
represent one double-quote character in the value.

EXAMPLES OF STRING CONSTANT LITEHALS

Examples of string constant literals follow:

Constant Literal Storage Type Value Representation

"Say nothing." character(12) nonvarying "Say nothing."

"Say ""Stop "" " character(12) nonvarying "Say "Stop " "
"" character(O) nonvarying ""

"100011"b bit(6) nonvarying "100011"b

"l"b bit(l) nonvarying "l"b

""b bit(O) nonvarying ""b

(2)"moshe " character(12) nonvarying "moshe moshe "

(12)"1"b bit(12) nonvarying "111111111111 "b

9/78 8-33 AMd3A

ESCAPE CONVENTIONS FOR CHARACTERS

For terminals that do not provide the full ASCII character set, escape
conventions must be used to type in certain characters when they are required in
a character-string constant literal~ These conventions are part of Multics and
are not peculiar to PL/I. They are mentioned only briefly here:

• For a character that is available on the ter~inal in use, type the key
or key combination for that character.

• For a character
multi-character
equivalent.

that is not
equivalent

available but
for the terminal

that
in

has
use,

a special
type the

For a character that is not available and. for
does· not know a special equivalent, type
followed by three digits which are an octal
ASCII code for the character.

~hich the prograwwsr
a backslash character

representation of the

The backslash and octal code combination is a universal escape convention that
applies throughout Multics; it is available for use under any circunstances.
The special multi-character equivalents are more concise, but they vary from one
terminal to another; they are given in the Multics Programmer's Manual.

As an example of the escape conventioris, suppose that a programmer is
typing in a program at a Model 33 Teletype and wants to enter the statement

mes = n{Start}" i

The Model 33 has one case of letters, 'A' through 'Z'~ and these letters are
used in Multics as if they were lower case. Therefore, the problem letters in
this example are the left brace, the capital'S', and the right brace. If the
programmer does not know the special escape conventions for the Model 33, he can
use the universal escape convention and type:

MES = "\173\123TART\17S";

On the other hand, if the programmer knows the special conventions for the
Model 33, he can type the statement More concisely as:

HES = "\(\START\)";

If the resulting input is later typed out on the Model 33 in "nedited" mode, the
statement will appear in the form just given regardless of how it was typed i~.

Attributes for Constant Literals

The complete attribute set for any constant li~eral is given by the
following diagram:

I {real } {fixed} {binary}
cOMplex float decimal

sf '-

const.ant

precision
{

« nd

nj

1

l
[Character!

lbit J
!l nonvarying

8-34

In this diagram,

• nd (number of digits) is an unsigned integer

• sf (scale ,factor) is an optionally signed integer

• Q (maximum length) is an unsigned integer

The attribute set for a constant literal is never written in a program; but it
must be determined as part of the interpretation of the program.

CONSTANT REFERENCES

A constant reference designates a constant statement address value or a
constant 'file' value. A constant reference can appear in two kinds of context.
The most common context is one that makes final use of the value of the constant
reference; for example, a 'label' constant reference ,in a 'goto' statement
provides the destination for transfer of control. The second context is one
that saves the value of the constant reference for later use; for example, the
assignment of the value of a 'label' constant reference to a 'label' variable or
the use of a 'label' constant reference as an argument in a function reference.

Observe that the range of constant references is limited. Except for
'label' constant references, they handle only scalar values. No provision is
made for constant references for 'pointer', 'offset', or 'area values.

Statement Constant References

A statement constant reference can appear wherever a statement address
value is required. The most common use of a statement constant reference is in
a context that makes final use of the value of the reference. For a 'label'
constant reference, this context is a 'goto' statement; for an 'entry' constant
reference, it is a 'call' statement or a function reference; and for a 'format'
statement, it is the 'r' format item that is used in connection with
edit-directed stream input/output.

FORM OF STATEMENT CONSTANT REFERENCES

A statement constant reference has one of the following forms:

where ~nn is the statement constant name and se is the subscript expressions.
The statement constant name must be an identifier that has the type attribute
'label', 'entry', or 'format'. The second form can be used only with a 'label'
constant name. The subscript expression must yield a value that can be
converted to an integer.

8-35 AM83

INTERPRETATION OF STATEMENT CONSTANT REFERENCES

The evaluation of a statement constant reference yields a 'label' value, an
'entry' value, or a 'format' value. Such a value contains a statement
designator and an activation index. The activation index has no significance
except in a program that uses general recursion; it is described later, at the
end of Section XII, IIProcedure Invocation."

The statement designator that is part of the value of a statement constant
reference is defined by the label prefix that declares the identifier in the
statement constant reference. For example, the statement constant reference
'alpha' designates a statement that (1) has the label prefix 'alpha:' and (2) is
contained in the smallest block that contains both the given reference and a
statement with the label prefix 'alpha:'.

EXAMPLES OF STATEMENT CONSTANT REFERENCES

As a simple example of the use of a statement constant reference, consider
the following program:

P 1 : proc;
LAB: call SR(x);

goto LAB;

end;

The occurrence of 'LAB:' at the beginning of the 'call' statement is the
defining label prefix for 'LAB'. By virtue of that prefix, 'LAB' is declared
'label internal' and is given the address of the 'call' statement as its value.
The occurrence of 'LAB' in the 'goto' statement is a 'label' constant reference.

As a more general example of the use of statement address constant
references, consider:

P2: proc;

M3:

L (1) :

L(-1):

L(2) :
A:

F:

(Computation 411)
call M3;
put edit(••.)(r(F));
proc;

· .. (Computation
go to L(i+2);
· .. (Computation
go to A· ,
· .. (Computation
goto A· ,

· .. (Computation
end;

formate ...) ;
end;

412)

413)

414)

415)

In the 'call' statement, 'M3' is an 'entry' constant reference; in the 'put'
statement, 'F' is a 'format' constant reference; and in the 'goto' statement,
'L(i+2)' is a 'label' constant reference.

8-36 AM83

The example program performs Computation #1, calls the procedure 'M3', and
executes the 'put' statement. When the procedure 'M3' is called, it performs
Computation #2 and then proceeds as follows:

• If i+2=1, it performs Computation #3 and Computation #5.

• If i+2=-1, it performs Computation #4 and Computation #5.

• If i+2=2, it performs Computation #5.

• If i+2=0, execution is undefined.

• If i+2 is not in the range -1 through 2, the 'subscriptrange'
condition occurs.

When the 'put' statement is executed, a reference is made to the 'format'
statement, and that statement supplies the format items for the output.

EXTERNAL 'entry' CONSTANT REFERENCES

There is one case in which a label prefix is not sufficient declaration for
a statement constant name; this case arises when an external 'entry' constant is
defined in one external procedure and is used in another external procedure. In
the defining procedure, the constant is declared by a label prefix as already
described. However, in other external procedures that refer to the 'entry'
constant, the constant name must be declared again; that is, the name must be
declared with the 'external' and 'entry' attributes by means of a 'declare'
statement.

As an example of the declaration of external 'entry' constant names,
consider the following program:

P 1 : proc;
del P2 entrvCfloat.dec(10)):
dcl P3 entry(float);

call P2(x,y);

call P3(z);

end;

P2: proc(R,S);
dcl R float;
dcl S dec(10);

P3: entry(Q);
dcl Q float;

end;

This program is made up of two external procedures. The declarations of 'P2'
and 'P3' in the second external procedure are provided by label prefixes.
Because these names are used in the first external procedure, they must be
declared in that procedure by means of 'declare' statements.

8-37

File Constant References

A file constant reference can appear wherever a file value is required.
The most common use of a file constant reference is in the context that makes
final use of the value of the reference; that is, a 'file' option in a statement
that performs input/output or opens or closes a file.

FORM OF FILE CONSTANT REFERENCES

A file constant reference has the following form:

where fcn is a file constant name. A file constant name is an identifier that
is declared with the attribute 'file'.

EXAMPLES OF FILE CONSTANT REFERENCES

As an example of the use of file constant references, consider the
following program:

P: proc;
dcl (alpha,beta) file;

open file(alpha) input stream;
open file(beta) output print stream;

get file(alpha) list(a,b,c);

put file(beta) list(x,y,z);

close file(alpha);
close file(beta);

end;

This program shows how the file constant references 'alpha' and 'beta' are used
to designate file-state blocks for an input data set and an output data set,
respectively.

8-38 M183

Attributes for Constant Names

The complete attribute set for naMed constants is given by the following
diagram:

internal label [dimension (I b : ub)]

{

internal}

external
entry [< parmdes,...)] returns(resdes)

constant

internal format

{:::::::~} file [filedes]

In this diagram,

• lb (lower bound) and ub (upper bound) are optionally-signed integers.

• parmdes is a parameter descriptor and resdes is a result descriptor;
these constructs are described later, in Section XII, "Procedure
Invocation."

• filedes is a file description; this construct is described later, in
Sections XIV and XV, "Strean Input/Output" and "Record Input/Output,"
respectively.

The attribute set for a 'label' or 'format' constant name is never written in a
program; ~nstead, it is deduced from a label prefix. The attribute set for an
entry constant name is written in a 'declare' statement only in an external
procedure that uses but does not define the entry constant; otherwise, it is
deduced from a label prefix. The attribute set for a file constant name is
always given in a ~declare' statement.

PROGRAMMED FUNCTION REFERENCES

A program~ed function reference invokes a PL/I procedure and then delivers
the result of the execution of the procedure as the value of the reference.
Through the use of a programmed function reference, a long and complicated
procedure can be executed in the midst of the evaluation of an expression.

Form of Programmed Function References

A programmed function reference has one of the following forms:

ref(arglist

ref(

8-39 AH83

I
I

where ref is the entry reference and arglist is the argument list. Usually, the
entry reference is an entry constant name; however, it can also be a generic
entry name or any reference that yields a scalar entry value. The argument list
is a sequence of arguments separated by commas, and each argument is an
expression. The second form is used when no arguments are required.

A generic entry name does not directly designate an 'entry' value; instead,
it is replaced by an entry constant name during the compilation of the program.
The declaration of the generic entry name gives a set of entry name constants.
For each entry name constant in the declaration, some attributes for each
argument of the designated procedure entry point are given. Thus when a
programmed function reference begins with a generic function name, the
interpretation of the generic entry name is determined by the storage types of
the arguments of the programmed function reference. For a description of the
individual programmed function references, see the PL/I Language Specification.
An example of the use of a generic entry name is given in Section XII,
"Procedure Invocation."

Interpretation of Programmed Function References

The interpretation of programmed function references is fully described
later, in Section XII, "Procedure Invocation." That interpretation can be
summarized in two steps, as follows:

1. Storage Type Determination. Obtain the storage type of the entry
reference of the given programmed function reference. This storage
type includes an 'entry' attribute and a 'return' attribute, and these
attributes provide information about the procedure entry point that is
designated by the entry reference. The 'entry' attribute gives a
storage type for each parameter of the designated procedure entry
point; this information is used in interpreting the argument. The
'returns' attribute gives the storage type of the value returned by
the designated entry point and thus gives the storage type of the
given programmed function reference.

2. Reference Evaluation. Determine the value of the programmed function
reference. This requires the evaluation of the entry reference; the
interpretation of the arguments; the activation, execution, and exit
from the procedure; and the retrieval of the result of the procedure.

Step 1 of this interpretation is performed by the compiler before the program is
executed. Step 2 is performed each time the programmed function reference is
evaluated during program execution.

Examples of Programmed Function References

As a simple example of the use of programmed function references, consider
the following program:

9/78

P: proc;
dcl (sysin,sysprint) file;
dcl (a,b,c) float;
get list(a,b);
c = F(a) + F(b):
Dut list(c):' ,

F~ ~roc(x) ~et~rns(float);

end;

dcl x float;
if x < 0

end;

then return(O);
else return(x)j

8-40 AH83A

In" this program, the procedure 'F' is especially simple; its result is either
zero or the given argument value depending on whether the argument is negative
or positive. The important point, however, is that the definition of 'F' is a
separate part of the program and can be examined and modified separately.

In order to execute the example program, it is necessary to interpret the
following operator expression:

F(a) + F(b)

In order to interpret this expression, it is necessary to know the storage type
of the two programmed function references that appear in it. Consider the way
in wnlcn the storage type of 'F(a)' is determined. First, the storage type of
the entry reference, 'F', is determined; it is:

entry(float) returns(float)

This storage type is obtained by applying the rules for the interpretation of an
'entry' constant reference to 'F'; those rules are given earlier in this
section. The storage type of 'F(a)' is obtained from the 'returns' attribute in
the storage type of 'F'; it is:

float

In the same way, it can be shown that the storage type of 'F(b)' is also
'float' •

A second example of a programmed function reference follows. This example
uses both a variable reference and a programmed function reference as the entry
reference of a programmed function reference. Such usage occurs only in large
and complicated programs, and a short example cannot be realistic; however, the
example is formally correct and is used to show how the storage type of a
complicated entry reference is determined.

P: proc;
dcl (sysin,sysprint) file;
dcl (m,n) fixed;
dcl x float;
dcl fv entry(fixed) returns(entry(float) returns(float») variable;
get list(m,n,x);
if m=O then fv = F1; else fv = F2;
put list(fv(n)(x));

F1: procCa) returns(entry(float) returns(float));
dcl a fixed;
if a=O then return(F3); else return(F4);
end;

F2: proc(b) returns(entry(float) returns(float));
dcl b fixed;
if b=O then return(F4); else return(F3);
end;

F3: proc(z1) returns(float);
dcl z1 float;
return(sin(z1»;
on~·
'-".&..1. ,

F4: proc (z2) returns (float);

end;

dcl z2 float;
return(sin(z2));
end;

8-41 At183

The central feature of the program is the interpretation of the programmed
function reference:

fv (n) (x)

By the time this reference is evaluated, one of the 'entry' constant references
'Fl' or 'F2' has been assigned to the 'entry' variable named 'fv'. Thus the
given reference is equivalent to one of the following:

Fl (n) (x)

F2(n)(x)

(for m = 0)

(for m i 0)

The evaluation of the programmed function reference 'Fl(n)' yields the 'entry'
value designated by either 'F3' or 'F4', depending on whether 'n' is zero or
not. Similarly, the evaluation of 'F2(n)' yields the 'entry' value designed by
either 'F4' or 'F3', depending on whether 'n' is zero or not. Thus, finally,
the given reference is equivalent to one of the following:

F3(x)

F4(x)

(for m and n both zero or both nonzero)

(for other values of m and n)

Clearly this example could be programmed in a simpler and more efficient way,
but it would not then illustrate the use of a nonconstant entry reference.

The storage type of 'fv(n)(x)' can be obtained before program execution
begins, as follows. First, the storage type of the variable 'fv' is determined
from the 'declare' statement to be:

entry(fixed) returns(entry(float) returns(float»)

This storage type means that the value of 'fv' is "an 'entry' value that
designates a procedure entry point that has a 'fixed' parameter and returns and
'entry' value; and the latter 'entry' value designates a procedure entry point
that has a 'float' parameter and returns a 'float' value". Next, the storage
type of the programmed function reference ('fv(n)' is determined from the
storage type of 'fv' to be:

entry(float) returns(float)

This storage type means that the value of 'fv(n)' is "an 'entry' value that
designates a procedure entry point that has a 'float' parameter and returns a
'float' value". Finally, the storage type of the entire reference is determined
from the storage type of 'fv(n)' to be:

float

This storage type means, of course, that the value of 'fv(n)(x)' is "a 'float'
value".

BUILT-IN FUNCTION REFERENCES

A built-in function reference performs a specific calculation on its
arguments and delivers the result as the value of the reference. For each
built-in function, the calculation performed is part of the definition of PL/I.
Although a built-in function reference resembles a programmed function reference
in some ways, there are important and fundamental differences between the two
kinds of reference. These differences are diRcuRsed here~ after the form and
interpretation of built-in function references are given.

8-42 AH83

A. specific definition for each of the built-in functions is given in
Section IX, "Operations." Each definition gives restrictions on the arguments
and gives rules for converting the arguments, determining the storage type of
the result, and calculating the value of the result. The section on
"Operations" is large, and the quickest way to find the definition of a
particular built-in func~ion is to look its name up in the index of this manual.

Form of Built-In Function References

A built-in function reference has one of the following forms:

bifname(arglist

bifname().

bifname

where bifname is the built-in function ~ and arglist is the argument list.
The built-in function name must be declared 'builtin' and must be one of the
following identifiers:

abs ceil dimension lineno onloc sqrt
acos character dim log onsource stac
add char divide log10 pageno stackbaseptr
addr clock dot log2 pointer stackframeptr
add reI codept~ empty low ptr stacq
after collate environmentptr ltrim precision string
allocation collate9 erf max prec substr

allocn complex erfc maxlength ,proc subtract
asin cplx exp min real sum
atan conjg fixed mod reI tan
atand convert float multiply reverse tand
atanh copy floor null round tanh
baseno cos hbound nullo rtrim time
baseptr cosd high offset search translate
before cosh high9 onchar sign trunc
binary currentsize imag oncode sin unspec

bin date index onfield sind valid
bit decat lbound onfile sinh vclock
bool decimal length onkey size verify

dec

The argument list is a sequeqce of expressions separated by commas. The second
and third forms of a built-in function reference are equivalent; either can be
used for a built-in function that requires no arguments.

Interoretation of Built-in Function References

A programmed function reference is interpreted in two steps, as follows:

1. Storage T~Qe Determination. Determine the target storage type for
each argument ~_A the storage type ~ the result. The rules for auy V.L

determining these storage types are given in the individual
definitions of the built-in functions; often th.ey depend on the
storage types of the arguments.

2. Reference Evaluation. Evaluate each argument and convert it to the
target storage type for the argument. Evaluate the reference as
specified in the definition of the built-in function.

Step 1 of this interpretation is performed by the compiler before the program is
executed. Step 2 is performed each time the built-in function reference is
evaluated during program execution.

9/78 8-43 AM83A

I

I
I

Examples of Built-in Function References

As an example of a built-in function reference that handles storage types
in a simple but quite typical way, consider the following use of the 'sin'
built-in function:

dcl (y,alpha) float;

y = sin(alpha);

The function reference under consideration is:

sin{alpha)

The built-in function name is 'sin' and the argu~ent list contains one argument,
'alpha' •

The storage type of the argument, 'alpha', of the built-in function
reference in the example is:

real float binary(21)

According to the definition of 'sin' in Section IX, "Operations," the target
storage type is:

real float binary(21)

Thus for this use of 'sin', the argument is not converted before the calculation
begins. Also according to the definition of 'sin', the result storage type is:

real float binary(21)

Thus the storage type of the result is the sa~e as that of the argu~ent.
the assignment statement is executed, the value of 'alpha' is fetched, the
is calculated, and the result is returned as the value of the reference.

When
sine

As an example of a more complicated built-in function reference, consider
the following use of the 'max' built-in function:

del x float;
dcl a float;
dcl b fixed(35)j

x = max{a,b,200);

Here, the assignment statement assigns the largest of the values designated by
'a', 'b', and '200' to the variable named 'x'. A precise understanding of the
assignment statement requires the determination of the storage type of the
result of the reference to 'max'.

The following table gives the argument storage types and the target storage
types for the built-in function reference:

Argument

a

b

200

Argument Storage Tvpe

real fixed binary(21)

real fixed binary(35)

real fixed decimal(3)

8-44

Target Storage Type

real float binary(21)

real float binary(35)

real float binary(10)

AM83

Observe that the target storage types differ only in the preclslon attribute;
the choice of 'float' over 'fixed' and of 'binary' over 'decimal' is a rule that
applies to many built-in functions. The storage type of the result is:

real float binary(35)

Observe that the number-of-digits is the maximum of those given in the target
storage types of the arguments.

As an example of a built-in function reference with aggregate arguments,
consider the following use of the 'max and 'min' built-in functions:

dcl 01 alpha(3),
02 a float,
02 b fixed;

dcl 01 top,
02 a float,
02 b fixed;

alpha = min(max(O,alpha) ,top);

Here, the assignment statement changes the value of 'alpha' where necessary so
that its components lie in the range:

o ~ alpha.a(i) ~ top.a
(for i = 1, 2, and 3)

o ~ alpha.b(i) ~ top.b

When a value is changed, it is changed as little as possible; for example, a
negative value is changed to zero.

The following table gives the argument storage types and the target storage
types for the built-in function references:

Argument

o

alpha

top

Argument Storage~YQe

real fixed dec(1)

01 dim (1 : 3) ,

01,

02 real float bin(27),
02 real fixed bin(17)

02 real float bin(27),
02 real fixed bin(17)

Target Storage Type

01 dim (1 : 3) ,
02 real float bin(4),
02 real fixed bin(4)

01 dim (1 : 3) ,
02 real float bin(27),
02 real fixed bin(17)

01 dim (1 : 3) ,
02 real float bin(27),
02 real fixed bin(17)

Observe that the scalar, '0', and the structure, 'top', are converted to the
aggregate type of 'alpha'.

Differences Between Built-in and Programmed Function References

The essential difference between built-in and programmed function
references is in the way the actions performed are defined. For a built-in
function reference, the action is defined as part of the PL/I language, and a
given built-in function name means the same thing wherever it is used. In
contrast, for a programmed function reference, the action is defined as part of
a program, and a given programmed function name can mean different things under
different circumstances.

8-45 M183

In addition to this essential difference, there are several other important
differences between built-in and programmed function references. These
differences are:

1. A built-in function reference must begin with a built-in function
name; therefore, the selection of the built-in function is made when
the program is written. In contrast, a programmed function reference
can, when necessary, begin with an entry variable reference or an
entry programmed function reference; therefore, the selection of the
programmed function can be made as part of each evaluation of the
programmed function reference, and can change from one evaluation to
the next.

2. A specific argument of a specific built-in function reference can have
any of several storage types without undergoing conversion of its
storage type. In contrast, unless a generic function name is used, an
argument of a programmed function reference must have a specific
storage type (except for variations in extents) in order to escape
conversion.

3. The result of a built-in function reference has a storage type that is
derived from the storage type of its arguments. In contrast, the
result of a programmed function reference is independent of the
storage types of its arguments (except, perhaps for extents) and is
determined by the definition of the function.

4. On a less important level, the parentheses around the argument list
can be omitted from a built-in function reference that has no
arguments. In contrast, the parentheses must be given with a
programmed function reference even if there are no arguments.

5. Finally, a built-in function reference is evaluated at a relatively
low cost. In contrast, the evaluation of a programmed function
reference is relatively expensive, even when the invoked procedure
consists of only a few simple statements.

This list shows that the difference between built-in and programmed function
references are more important than the similarities.

OPERATOR EXPRESSIONS

Like a built-in function reference, an operator expression performs a
specific calculation on its arguments and delivers the result as the value of
the expression. For each operator, the calculation performed is part of the
definition of PL/I. The only difference between operators and built-in function
references is a difference in form. An operator expression can be thought of as
a built-in operation that, because of its frequency of use, is represented by
means of a special notation, using an operator, rather than by means of the less
compact built-in function reference.

A specific definition of each of the operators is given in Section IX,
"Operations." Just as for built-in functions, each definition of an operator
gives restrictions on the arguments and gives rules for calculating the value of
the result. A quick way to find the definition of a particular operator is to
look the operator up in the index of this manual.

8-46 AM83

Form of Operator Expressions

An operator expression has one of the following forms:

where ~ and arg2 are the operands (also called arguments) of the operator,
inop is the infix operator, and ~ is the prefix operator. An infix operator
must be one of the following:

** * / +
I I
I I

= = < ~< > ~> <= >=

&

A prefix operator must be one of the following:

+ -

For both the infix operator and prefix operator a parenthesized and an
unparenthesized form is given. It is always correct to use the parenthesized
form of an operator expression. The unparenthesized form can be used when the
priority rules, described later in this discussion of operator expressions,
provide the interpretation that the programmer wants.

Interpretation of Operator Expressions

An operator expression is interpreted in the same two steps that apply to a
built-in function reference, as follows:

1. Storage Type Determination. Determine the target storage type for
each operand and the storage type of the result. The rules for
determining these storage types are given in the individual
definitions of the operators; often they depend on the storage types
of the operands.

2. Reference Evaluation. Evaluate each operand and convert it to the
target storage type for the operand. Evaluate the reference as
specified in the definition of the operator.

Step 1 of this interpretation is performed by the compiler before the program is
executed. Step 2 is performed each time the operator expression is evaluated
during program execution.

8-47 AM83

Operator Priority Rules

Two operators are on the same expression level if they appear in the same
expression and the only parentheses that appear between them are matched pairs.
When there are several operators on the same expression level, the following
table determines the order in which the operators are evaluated:

Priority

highest

lowest

Operators

** prefix + prefix-

* /
infix + infix-

I I
I I

&

Order within Priority

right to left

left to right

When two operators appear on the same expression level, the operator with higher
priority is evaluated first. If the operators have the same priority, then they
are evaluated in left to right or in right to left order, depending on the entry
in the third column of the table. These are the operator priority rules.

As an example of the application of the operator priority rules, consider
the following expression:

4*(a-(b/c)**2+d)

There are three expression levels in this expression. One of them has just one
operator, '*', and another also has just one operator, ' /' . However, the
remaining expression level contains three operators, '-', '**', and +. The
rules are applied as follows:

• The operator with the highest
operator is evaluated before
expression level.

priority is
the other

, ** ' ; therefore,
operators on the

this
same

• The remaining two operators, '-' and '+', both have the same priority.
According to the table, they are evaluated from left to right;
therefore, ' , is evaluated before +.

According to this analysis, the example is equivalent to the following
expression:

4*«a-«b/c)**2))+d)

This expression makes the required order of evaluation explicit.

8-48 AM83

In some cases, the results of the operator
with well-known conventions of mathematical
results do not correspond in any obvious way
examples of the latter are:

Given Eguivalent

albic (a/b)/c

a**b**c a**(b**c)

-a**b -(a**b)

a*-b a*(-b)

a=b=c (a=b)=c

priority rules are consistent
notation. In other cases, the
to familiar notation. Some

In each of these cases it is suggested that the given expression be avoided and
that, instead, the parenthesized equivalent be used. Parentheses should not be
omitted except where the interpretation will be obvious to everyone who must
read the program.

The operator priority rules do not fully determine the order in which
operators in an expression are evaluated; it applies only to operators that are
on the same expression level. Consider, for example:

In this expression there are three expression levels, and each contains only one
operator; therefore, the operator priority rules say nothing about this
example. From the fact that the '+' operators are contained in the operands of
the '*', it can be concluded that the '+' operators are evaluated first.
However, the order in which the two + operators are evaluated is not defined.

Examples of Operator Expressions

As an example of the use of operator expressions, consider the following
program fragment:

dcl (y,a,b,c,d) float;

y = a*(b-c)+d;

According to the priority rules, the right-hand side of the assignment statement
is equivalent to:

(a*(b-c))+d

The right-hand side is made up of three operator expressions.

According to the definition of the
storage type for all these operands is:

real float binary(27)

, * '

8-49

- , and + operators, the target

AM83

When the definitions of the operators are applied to this expression, it turns
out that the target storage type for every operand and the result storage type
for every operator is also:

real float binary(27)

This simplicity with respect to storage types is
floating-point calculations.

typical of scalar,

As a more complicated example of the case of operator expressions,
consider:

dcl i fixed;

, - i+1;

In this example, the assignment statement increases the value of 'i' by one.
The calculation is simple, but the determination of the storage type of the
right-hand-side expressions is not.

The following table gives the operand storage types and the target storage
types as determined by the definition of the '+' operator.

Operand Operand Storage Type Target Storage Type

i real fixed binary(17) real fixed binary(17)

real fixed decimal(1) real fixed binary(4)

The storage type of the result is:

real fixed binary(18)

Observe that
any value of

the precision of the target and result storage types accommodate
x that can arise.

8-50 AM83

SECTION IX

OPERATIONS

The operations of PL/I are invoked by the operators and the built-in
functions. It is the operations that determine the computational foundation of
PL/I. There are well over a hundred operations, and they are described here
under the following headings:

• Arithmetic Operations. These operations perform the fundamental
operations of arithmetic. They range from such elementary operations
as addition and subtraction to less well known operations such as the
modulus and the conjugate.

• Mathematical Operations. These are the transcendental functions of
applied mathematics, including the exponential and logarithmic
functions and the standard trigonometric functions.

• String Operations. These operations manipulate string values. They
range from the fundamental concatenate operator and 'substring'
function to advanced functions for text processing.

• Address and Area Operations.
values and area values.
programming applications.

These functions manipulate address
They are rarely used outside of advanced

• Array Operations. These operations are especially designed to operate
on array arguments.

• Conversion Operations. These operations are used to convert a value
of one storage type to another.

• Special Operations. These operations are intimately related to the
PL/I processor; they access system variables or depend on the details
of program execution.

The definitions given here show the result of a given operation applied to
given argument values. The definitions do not discuss the context of the
operation. The way in which operations fit into the context of a program is
described in Section VIII, "Expressions."

Following this introduction, this section gives general rules and
conventions that apply to all of the definitions of operations. The section
then continues through seven subsections, each of which begins by giving the
conventions that apply to that subsection. In many cases, a complete
understanding of a given operation requires familiarity with both the general
conventions and the conventions for the subsection in which the given operation
is defined.

9-1 AM83

GENERAL REt'IARKS

Remarks that apply to all of the definitions in this section are given
here. They apply to argument evaluation, nonstandard operations, and the
conventions for the presentation of examples.

Argument Evaluation

The evaluation of the arguments of an operator expression or a built-in
function reference is described in detail in Section VIII, "Expressions." Three
important points are stated briefly here:

• When an operator expression or a built-in function reference has
several arguments, the order in which the arguments are evaluated is
not defined. The processor may, for example, begin the evaluation of
the first argumen~ I perform the evaluation of the second argument, and
then complete the evaluation of the first argument.

• Except where the definition of an operation includes a restriction to
the contrary, one or more of the arguments can be an aggregate. If
the arguments of the operation have different aggregate types, then at
least one of the arguments must have an aggregate type that is a
suitable target for the conversion of the other arguments; before the
operation is performed, all the argUMents are converted to this
aggregate type according to the rules given earlier, in Section IV,
"Value Conversion." When the arguments all have the same aggregate
type (either by conversion or because they were given that way), the
operation is applied to corresponding scalar components of the
arguments just as it would be applied to scalar arguments. The result
has the same aggregate type as the arguments. Examples of operations
on aggregate arguments are given earlier, in Section VIII,
"Expressions."

• Standard PL/I allows conversion between any computational data types.
However, Multics, as a matter of policy, discourages implicit
conversion between the following general types of values:

arithmetic
character string
bit string

The Multics PL/I compiler prints a warning message whenever implicit
conversion between these general types is required by context.
Therefore, the definitions given in this section specify that a given
argument must be one of these three major types. When it is
necessary, for example, to use a character-string argument for an
operation that requires an arithmetic value, one of the functions
described under "Conversion Operations" in this section should be used
to perform the conversion explicitly.

9-2 AM83

Non-Standard Operations

The Multics implementation of PL/I includes certain operations that are not
part of Standard PL/I. The heading of the definition of each such operation
ends with an asterisk(*) and the function is referred to as non-standard in its
description. There are two kinds of nonstandard functions. The first kind is
an extension of PL/I and is designed to make programming easier; the "Hyperbolic
Functions" are examples. This kind of operation can be eliminated quite easily
in the event a program must be reduced to Standard PL/I. The second kind of
nonstandard function operation depends on the way Multics PL/I is implemented;
the "Implementation-Dependent Address Functions" are examples. A program that
uses these operations must be substantially revised to reduce it to the
Standard.

Conventions for Examples

Many examples are given in this section. In each example, the values of
the arguments and the result are given as constants whose data types are correct
for the example. Consider the following example of the plus-sign operator:

(006.) + (-2.00) = 0004.00

This example not only shows that the value of six plus minus two is four, but
also shows that a 'dec(3)' value plus a 'dec(3,2)' value yields a 'dec(6,2)'
result. Often the value of the result is obvious and the purpose of the example
is to show the storage type of the result.

Each example consists of an operator expression or a function reference,
followed by an equals sign, followed by a result. (The example given in the
previous paragraph has this form.) The equals sign means "yields the resu~t";
it is not used as a PL/I symbol.

For certain argument values! the evaluation of an ooerator expression or a
function reference causes a condition to occur; in that case, the condition
name, enclosed in parentheses, is given instead of the result. An example is:

(2.0000eO) 1 (O.OOOOeO) = (zerodivide)

This example shows that division by zero causes the 'zerodivide' condition to
occur.

In many of the examples that have arithmetic arguments, 'decimal' rather
than 'binary' arguments are shown. The 'decimal' base is used for these
examples because it is easier to understand. The use of 'decimal' base is not
an endorsement; in fact, 'decimal' values are rarely used in practice outside
of business programming.

ARITHMETIC OPERATIONS

The arithmetic operations manipulate arithmetic values. A single
operation, such as the '+' operator, can have many interpretations depending on
the storage types of its arguments. The arithmetic operations contrast with the
mathematical operations, discussed later, which perform transcendental
operations and always produce floating-point results.

9/78 9-3 AM83A

The rules for determining the data type of the result of an arithmetic operatIon
are sometimes complicated. Much of the cOMplexity arises in determining the
scale-factor of a 'fixed' result. In many programming applications, it is
possible to avoid 'fixed' data that has a nonzero scale factor; that is,
fixed-point data can be confined to integers. In these applications, the rules
become simpler.

Conventions for Definitions

The arith~etic operations defined here have some pOints in common, and
certain conventions and general rules apply to all of the definitions.

ARGUMENTS

As the first step in the interpretation of an operation, the storage types
are checked. Each arith~etic operation requires argu~ents that yield arith~etic
values; in some cases, an argument is further required to be either 'real' or
'complex'. These requirements are indicated by the use of the following
conventions:

X, Xl, X2 The value of the argu~ent must be arith~etic

R, Rl, R2 The value of the argument ~ust be 'real' arithoetic

Z, Z 1, Z2 The value of the arguMe~t nust be 'co~plex' arithoetic

For example, the definition of the 'trunc' function requires that it have the
form:

trunc(R)

Therefore, the use of ~n argument that does not yield a 'real' arithoetic value
is invalid.

Each definition gives the prec1s10n attrib~te of t~e result without rebard
for the capacity of a particular iMplem~~t~tion of ?L/I. For each
implementation of PL/I, the defined precision ,~st be linitej to the capacity of
the host computer. The defined precision is ~~jified to a Nultics precision 2S

follows:

Defined Hultics

fixed bin(p,q) fixed bin(min(rnax(p,l),11),min(~ax(q,-128},127»

float bin(p) float bin(~in(max(p,1),63)

fixed dec{p,q) fixed dec(min(Max{p,,),59),~i~(~ax{q,-128),121»

float dec{p), float dec(min(oax{p,1),59)

These rules simply require that the precisio~ of the res~lt of an operation lie
within the ranges for the nUMber-or-digits a~d scal~-factor that were given
earlier! in Section III, !!Value Storage."

COMMON DATA ATTRIBUTES

Hany of the definitions that fol101i1 refer to the common data attributes of
the arguments. These attributes are as follows:

• The mode attribute is 'complex' if the modes of the arguments differ;
otherwise, it is the common mode of all the arguments.

• The scale attribute is 'float' if the scales of the argument-s differ;
otherwise, it is the common scale of all the arguments.

• The base attribute is 'binary' if the bases of the arguments differ;
otherwise, it is the common base of all the arguments.

For example, suppose that an operation has two arguments with the following data
types:

real fixed dec(10)

real float bin(27)

Then the common data attributes are:

real float bin

Elementary Operations

There are five operators and four functions that are used to perform the
elementary operations of arithmetic. They are:

• The plus and minus operators. Each can be used either as a prefix
operator to supply the sign of an expression or as an infix operator
to add or subtract one expression from another.

• The multiplication, division, and exponentiation operators.
exponentiation operator accepts noninteger exponents.

The

• The 'add', 'subtract', 'multiply', and 'divide' functions, which are
used in fixed-point calculations when it is necessary to specify the
precision of the result.

These functions are of general interest.

9-5 AM83

PREFIX SIGN OPERATORS

Parenthesized operator expressions for the prefix sign operators have the
forms:

+ X
- X

The result is the unchanged value or the negated value, respectively, of X. The
storage type of the result is the same as that of X. Examples are:

+ (+0435.241) = +0435.241
- (+0435.241) = -0435.241

+ (-2.8192eO) = -2.8192eO
- (-2.8192eO) = +2.8192eO

+ (+1.3000eO-17.891eOi) = +1.3000eO-17.891eOi
(+1.3000eO-17.891eOi) = -1.3000eO+17.891eOi

INFIX SIGN OPERATORS

Parenthesized operator expressions for the infix sign operators have the
forms:

X1 + X2
X1 - X2

The result is the sum or difference, respectively, of the operands. Before the
operation is performed, the operands are converted to the comnon data
attributes, defined earlier. The result has the same data type as the converted
operands except:

• If the converted operands are 'float' with precisions '(pl)' and
'(p2)', then the result has the precision:

(max(p1,p2))

• If the converted operands are 'fixed' with preclslons '(p1,q1)' and
'(p2,q2)', then the result has the precision:

(max(p1-q1,p2-q2)+max(q1,q2)+1, max(ql,q2))

Observe that a 'fixed' result has a digit position for each digit
position in either operand and, further, an extra, high-order digit
position.

9-6 AM83

Examples are:

(2.000eO) + (2.0eO) = 4.000eO
(2.000eO) + (2) = 4.000eO
(2.000eO) + (00010.0b) = 100.00000000000eOb
(2.000eO) + (2+0i) = 4.000eO+0.000eOi

(5555) + (.333) = 05555.333
(5555) + (.00023) = 05555.00023

In the last example, each slashed zero is a filler zero; therefore, the second
argument has precision '(2,5)', not '(5,5)' ~

MULTIPLICATION OPERATOR

A parenthesized operator expression for the multiplication operator has the
form:

(X 1 * X2)

The result is the product of the operands. Before the operation is performed,
the operands are converted to the common data attributes defined earlier. The
result has the same data type as the converted operands except:

• If the converted operands are 'float' with precisions '(p1)' and
'(p2)', then the result has the precision:

(max (p 1 , P 2))

• If the converted operands are 'fixed' with preclslons '(p1,q1)' and
'(p2,q2)', then the result has the precision:

(p1+p2+1, q1+q2)

UDserve that a 'fixed' result has more digits than either operand;
thus multiplications tend to increase the precision of an expression.

Examples are:

(2.000eO) * (-3.0eO) = -6.000eO

(002.00) * (-003.00) = -0000006.0000

(002.00) * (-003.00) * (004.00) = -00000000024.000000

9-7 Al'183

DIVISION OPERATOR

A parenthesized operator expression for the division operator has the form:

X1 1 X2)

The result is the quotient of X1 by X2. If X2 is zero, then the 'zerodivide'
condition occurs, and any attempt to resume execution at the division operation
is invalid. Before the operation is performed, the operands are converted to
the common data attributes defined earlier. The result has the same data type
as the converted operand except:

• If the converted operands are 'float' with precision '(p1)' and
'(p2)', then the result has the precision:

(max(p1,p2))

• If the converted operands are 'fixed' with preclslons '(p1,q1)' and
'(p2,q2)', respectively, then the result has the precision:

N, N-p1+q1-q2)

where N
'binary' •

is the maximum number-of-digits, 59 for 'decimal' and 71 for
Observe that a 'fixed' result always is of maximum size.

The preclslon of a 'fixed' result is of maximum size because PL/I cannot make a
better choice on the basis of available information. In virtually all cases,
the programmer will have better information; for fixed-point division, he should
use the 'divide' function, which allows specification of the correct result
precision. Examples of the division operator are:

(6.000eO) 1 (-3.0eO) = -2.000eO

1/3

2+1/3
22+1/3

(59 digits)

= 02.333 ... 3 (60 digits)
= 22.333 ... 3 (60 digits)

= 2.333 ... 3 (59 digits)
= (size)

The fact that the small and useful expression '22+1/3' cannot be used without
producing an occurrence of the Slze condition shows the weakness of the
fixed-point divide operation. The expression could be written as:

22+divide(1,3,10,10) = 022.3333333333

9-8 AM83

EXPONENTIATION OPERATOR

A parenthesized operator expression for the exponentiation operator has the
form:

X 1 ** X2

The result is X1 to the power X2. For some values, the mathematical value of
the operator is indeterminate; for these values the PL/I operator is defined as
follo\-/s:

• When X1 is zero, the function is defined as follows:

if X2 is 'real' and X2>0 or
X2 is 'complex' and real(X2»0 and imag(X2)=0

then 0**X2 = 0;

otherwise, the error condition occurs.

• When X2 is zero and X1 is not zero, the function is defined as
follows:

X1**0 = 1

• When X1 is 'real' and negative, the function is defined as follows:

if X2 is a decimal integer constant (without a sign),

then (-X1)**X2 = «-1)**X2)*(X1**X2);

otherwise, the error condition occurs.

This restriction excludes a complex value for a 'real' result; but
observe that if X2 is supplied in any way other than a constant, the
'error' condition occurs (even if its value is a positive integer).

Before the operation is performed, the operands are converted to the common data
attributes defined earlier; however, for exponentiation the following exception
applies:

If the second argument, the exponent, has the original data type:

real fixed base(p2,0)

then the adjusted
attributes 'real'
first !operand.

data
and

type for the second operand retains the
'fixed' regardless of the attributes of the

This exception is perceptible only when a conversion error can
it can be ignored.

9-9

otherwise,

AM83

'add', 'subtract', 'multiplY', AND 'divide' FUNCTIONS

References to these functions have the forms:

add(X1,X2,P)
subtract(X1,X2,P)
multiply(X1,X2,P)
divide(X1,X2,P)

add(X1,X2,P,Q)
subtract(X1,X2,P,Q)
multiply(X1,X2,P,Q)
divide(X1,X2,P,Q)

where P and Q cannot be general expressions but must instead be given as decimal
integer constants (Q can be signed). These functions are equivalent to the
corresponding operators in all respects but one:

The precision of the result of each of these functions is given
explicitly by P (dumber of digits) and Q (scaling factor).

If the result is 'fixed' and Q is not given, then Q=O is assumed. If the result
is 'float' and Q is given, then the reference is invalid.

Comparison Operations

There are eight operators and two functions that are used to compare
arithmetic values. They are:

• The relational operators, including
operators. Only the application of
values is described here.

=, , <', and six similar
these operators to arithmetic

• The 'min' and 'max' functions, which yield the smallest or largest
member, respectively, of a given list of arithmetic values.

These functions are of general interest.

RELATIONAL OPERATORS FOR ARITHMETIC VALUES

A parenthesized expression for a relational operator has the form:

(Xl op X2

where the operator, op, is one of the following:

= is equal to)
< is less than)
> is greater than
<= is less than or equal to
>= is greater than or equal to
" is not equal to) =
"< is not less than)
"> is not greater than

9-10 AM83

The arguments must be 'real' unless the operator is '=' or
operators can apply to many types of values, as follows:

=. The relational

• If either operand yields an arithmetic value or a character string
declared with a numeric picture, then the expression is an arithmetic
comparison and is described here.

• If both operands yield string values and neither is declared with a
numeric picture, then the expression is a string comparison and is
described later in this section under "The Relational Operators for
String Values".

• If both operands yield address values, then the expression is an
address comparison and is described later in this section under "The
Relational Operators for Address Values".

The result of a comparison expression is "1"b or "O"b depending on whether
the comparison is true or fals~. The arguments are converted to the common data
attributes. The result has storage type 'bit(1) nonvarying'. Examples are:

+015.03 = +15.0300 = "1"b
+015.03 < +15.0300 = "O"b
+015.03 <= +15.0300 = "1"b

+15.030eO = +15.03 = "1"b
+15.030eO < +15.031 = "1"b
+15.030eO "'< +15.031 = "O"b

'min AND 'max FUNCTIONS

References to these functions have the forms:

min (R 1 , R2, ...)
max (R 1 , R2, ...)

where the arguments must be 'real' and where each function can have any number
of arguments, provided it has more than one argument. The result is the
minimum value or the maximum value, respectively, in the set of values given by
the arguments. The arguments must yield 'real' values; these values are
converted to the common data attributes defined earlier in this section. The
result has the storage type of the converted arguments except:

• If the converted arguments, R1, R2, and so on, are 'float' and have
precisions '(p1)', '(p2)', and so on, then the precision of the result
is:

max (p 1 , P 2, •..))

If the converted arguments~ Rl~ R2, and so on, are 'fixed' and have
precisions '(p1,q1)', '(p2,q2)', and so on, the precision of the
result is:

max(pi-q1,p2-q2, ...), max(q1,q2, •..))

9-11 At183

These expressions provide the precision that is necessary to accommodate any
argument without loss of digits. Examples are:

min(2.000eO,-000.5,11.1000000eO) = -5.00000000e-1
max(-3,99,99.05,OO.013) = 99.050

Truncating Functions

There are five functions that change a value by discarding digits from a
representation of the value. They are:

• The trunc', rIoor', and 'ceil' functions, which use three different
rules for discarding all fractional digits.

• The 'round' function, which discards any sequence of low order digits
by rounding.

• The 'mod' function, which, in one form of usage, discards any sequence
of high order digits.

These functions are of general interest.

, trunc'; , floor' AND' ceil' FUNCTIONS

References to these functions have the forms:

trunc(R)
floor(R)
ceil(R)

where the argument must be 'real'. The results of these functions are the
truncation, the floor, and the ceiling, respectively, of R. Each function
discards the fractional part of its argument to produce an integer-valued 'real'
result.

• If R is an integer:

trunc(R) = R

floor(R) = R

ceil(R) = R

• If R is not an integer:

trunc(R) is the result of discarding the fractional digits of R

floor(R) is the next integer below R

ceil(R) is the next integer above R

9-12 M183

The result has the storage type of the argument except that, for a 'fixed'
argument, the precision '(p,q)' becomes:

(max(p-q+1, 1) ,0)

That is, a fixed result is an integer with an added high-order digit. Examples
of the functions are:

B. trunc{R2 floor{R2 ceil{R)

1.782eO 1. OOOeO 1. OOOeO 2.000eO
001 0001 0001 0001
-9.56 -09. -10. -09.
-.0003 +0. -1. +0.

Observe that 'floor(-9.56)' makes use of the added high-order digit of the
result.

'round' FUNCTION

A reference to the function has the form:

round(X,Q)

where Q cannot be a general expression but must instead be given as an
optionally signed decimal integer. The result has the same mode as X and is a
rounding of the value of X. Rounding is defined as follows:

• \Jhen a value is rounded to n digits, the digits after the nth digit
are dropped and the nth digit is increased by one if the Cn+1)th digit
is '5' or greater (for decimal) or '1' (for binary).

When X is real', the result of the function is defined as follows:

• If X is 'float', Q must be greater than 0 and the mantissa is rounded
to Q digits.

If X is 'fixed', it is rounded to a value that has Q fractional
digits.

The result has the same storage type as X except that:

• If X is 'float', the precision of the result is '(Q)'.

If X is 'fixed' with precision '(p,q)', the precision of the result is

(p-q+1+Q,Q)

Thus a high-order digit is added in case the rounding propagates to a
new order of magnitude.

9-13 AM83

Examples for floating-point are:

round(-183.62ge6,4)
round(-183.62ge6,5)
round(-183.62ge6,6)
round(-111010.111e3b,7)

= -183.6e6
= -183.63e6
= -183.62ge6
= -111011.0e3b

Observe that neither the exponent of the value nor the point in the mantissa
affect the rounding.

Examples for fixed point are:

round(-183.629,2) = -0183.63
round(-183.629,-1) = -0180. (fixed dec(3,-1))
round(-183.629,-5) = +000000. (fixed dec(1,-5))

In these examples, a slashed zero is a filler zero. In the last example, the
formula for the precision gives:

(p-q+l+Q,Q) = (6-3+1-5,-5) = (-1,-5)

However, the number-of-digits must be greater than zero, so the precision is
'(1,-5)'. Observe that the position of the point does affect the rounding of
fixed values.

For 'complex' values, the function is defined by:

round(Rl+R2*li,Q) = round(R1,Q) + round(R2,Q)*li

For example:

round(21.56+06.21i,0) = 022.+006.i

'mod' FUNCTION

A reference to the function has the form:

mod(Rl,R2)

where the arguments must be 'real'. The result is 'real' and is Rl modulus R2,
that is:

• If R2 = 0, then mod(Rl,R2) = Rl - R2*floor(Rl/R2)

• If R2 = 0, then mod(Rl,R2) = Rl

9-14 AM83

Th€ arguments must yield 'real' values; these values are converted to the common
data attributes, defined earlier. The result has the storage type of the
converted arguments, except:

• If the converted arguments are 'float' with precisions '(p1)' and
'(p2)', respectively, then the result has the precision:

(max(p1,p2»

• If the converted arguments are fixed and have precisions '(p1,q1)' and
'(p2,q2)', respectively, then the result has precision:

(p2=q2+max(q1,q2),max(q1,q2»

Thus the result has as many integer digits as R2 and enough fractional
digits for either R1 or R2.

When both R1 and R2 are positive, the modulus is
conventional integer division of R1 by R2. For example:

mod(42,5) = 2

mod(129.2867,25.0) = 04.2867

mod(129.2867eO,25.0eO) = 004.2867eO

mod(182.00eO,3) = 002.00eO

The storage types for these examples are:

Converted Arguments

fixed dec(2,0), fixed dec(1,0)
fixed dec(7,4), fixed dec(3,1)
float dec(7), float dec(3)
float dec(5), float dec(5)

Result

fixed dec(1,0)
fixed dec(6,4)
float dec(7)
float dec(5)

the remainder of the

When R1 or R2 is negative, the notion of a remainder is not well-defined, so the
behavior of the function is less obvious. Consider the four possible
combinations of signs:

mod(42,5)
mod(42,-5)
mod(-42,5)
mod(-42,-5)

=
=
=
=

2
-3

3
-2

(floor(42/5 = 8»
(floor(42/-5 = -9»
(floor(-42/5 = -9»
(floor(-42/-5 = 8»

When R1 is positive and R2 = 10**n, the function discards digits from the left
end of a 'decimal' value until R1<R2. For example:

mod(231.34,100) = 031.34
mod(231.34,1) = 0.34
mod(231.34,.1) = .04

9-15 AM83

Similarly, for 'binary' values:

mod(111110.110b,1000b) = 0110.110b
mod(111110.110b,.lb) = .010b

Observe that the use of the 'mod' function for truncation does not work when Rl
is negative. That is,

mod(-231.34,1) = 0.66

Sign-Manipulation Functions

There are two functions that manipulate the sign of an arithmetic variable.
They are:

• The 'abs' function, which sets the sign of a real number to plus and
forms the modulus of a complex number.

• The 'sign' function, which yields a value that is +1 or -1 depending
on the sign of the argument.

These functions are of general interest.

'abs' FUNCTION

A reference to the function has the form:

abs(X)

The result is the absolute value of X. For a 'real' argument, the result has
the same storage type as the converted argument. Examples are:

abs(-13.284) = +13.284
abs(+0019.8) = +0019.8
abs(-3.0000e2) = +3.0000e2
abs(-63.000) = +63.000

For 'complex' values, the function is defined by:

abs(Rl+R2*li) = + sqrt(Rl**2 + R2**2)

The result has the same data type as the 'complex' argument except that the mode
is 'real' and, for a fixed argument, the precision '(p,q)' becomes '(p+l,q)'.

9-16 AM83

Consider the function reference:

abs(+8.00+9.00i) = +12.04

Observe that the result value in this example makes use of the added digit in
the result. Other examples are:

abs(-003.00+003.00i) = +0004.24
abs(+20.200eO+.80000eOi) = +20.216eO
abs(-63.000+00.000i) = +063.000

Compare the last example to the last example for 'real' arguments: the values
are the same but the number-of-digits is different.

'sign' FUNCTION

A reference to the function has the form:

signeR)

where the argument must be 'real'. The result is +1, +0, or -1 depending on I
whether R is positive, zero, or negative. The result is a 17-bit integer.
Examples are:

sign(-019.32)
sign(+8.23e2)
sign(+OOOO.O)

=
=
=

-1
+1 .
+0.

(as a 'real fixed bin(17)' value)
(as a 'real fixed bin(17)' value)
(as a 'real fixed bin(17)' value)

Observe that, if R is 'float':

R = sign(R)*abs(R)

However, if R is not 'float' the two sides of this equation agree in value but
not in data type.

Complex Arithmetic Functions

There are three functions that are used to manipulate the real and
imaginary parts of a 'complex' value. They are:

9/78

• The 'real' and 'imag' functions, which yield the real and imaginary
parts of a complex value as real numbers. These functions can also be
used as pseudo-variables, as described in Section X, "Value
Assignment."

• The 'complex' function, which yields a complex value from given real
parts.

• The 'conjg' function, which yields the conjugate of a given complex
value.

9-17 AM~3A

These functions are used only in computations in complex arithnctic.

"real" AND "imag FUNCTIONS FOR ARITHMETIC

References to these functions have the form:

real(Z)
imag(Z)

where the argument must be 'complex'. The result is the real part or imaginary
part, respectively, of Z. The result has the same storage type as the argument
except the result is 'real'. For example:

real(-23041.e-2+00519.e1i)
imag(-23041.e-2+00519.e1i)

= -23041.e-2
= +00519.e1

The use of these functions for conversion is described later in this section,
under "Conversion Operations".

The pseudo-variables named 'real' and 'iMag
Section Xt on "Value Assignment."

are described later, in

'complex' FUNCTION

A reference to this function has the form:

complex(Rl,R2)

uhere the arguments must be 'real". The result is a co~plex value whose real
part is the value of Rl and whose imaginary part is the value of R2. Before
interpretation of the function, R1 and R2 are converted to arithmetic values of
the common data attributes defined earlier. The result has the same storage
type as the converted arguments except that the result is 'complex'. For
example:

complex(-23041.e-2,+0051ge1) = -23041.e-2+00519.e1i
complex(-23041e-2,0) = -23041.e-2+00000.e01

complex(O,+00519.e1) = +00000.eO+00519.e1i

c~mplex(16,"1011"b) = 0 .•• 010000b+O •.• Ol011bl (71 digits each)
complex(16,"23041.e-2") = 0 .•• 016+0 ••. 2301 (59 digits each)

9-18 AM83

conjg' FUNCTION

A reference to the function has the form:

conjg(Z)

where the argument must be 'complex'. The result is the conjugate of Z, that
is:

conjg(R1+R2*1i) = R1-R2*1i

The result has the same storage type as the argument. For example:

conjg(-05.000+02.000i) = -05.000-02.000i
conjg(+2.312eO-.4231eOi) = +2.312eO+.4231eOi
conjg(+0002+0000i) = +0002+0000i

MATHEMATICAL OPERATIONS

The functions described here always produce floating-point results. These
functions contrast with the arithmetic functions, which produce fixed-point
results for some arguments and floating-point results for others.

These functions are called "mathematical" because they are usually required
only in mathematical, scientific, and engineering applications of PL/I. They
are all transcendental functions and cannot, therefore, be defined in terms of a
single expression using the basic arithmetic operations.

Conventions for Definitions

The functions defined here have many points in common. The data types of
arguments and results are handled in a uniform way, and the same methods are
applied to the calculation of the result value. Therefore, the following
general conventions can be applied to all of the definitions.

ARGUMENTS

All of the functions operate on 'float' arguments.
'fixed', then its value is converted to a 'float' target whose
is the same as that of the given argument. For example:

Argument

real fixed bin(30,5)
complex fixed dec(10,0)
complex fixed bin (70,0)

Target for Conversion

real float bin(30)
complex float dec(10)
complex float bin(63)

If an argument is
number-of-digits

The last example shows that the number-of-digits is not allowed to exceed the
maximums for 'float' values (63 for 'binary' and 59 for 'decimal').

9-19 AM83

For a two-argument function ('atan' and 'atand'), the arguments are
converted to a 'float' target with a common base. If the arguments have
different bases, then the target base is 'binary'.

Some of the mathematical built-in functions require 'real' arguments. The
following symbols are used in the definitions:

R, R1, R2, The mode of the operand must be 'real'.

X, X1, X2, The mode of the operand is not restricted.

If a 'complex' argument is
function reference is invalid.
is not assumed.

used where a 'real' argument is required, the
An implicit conversion from 'complex' to 'real'

RESULTS

The storage type of the result of a mathematical function is the same as
the storage type of its converted argument(s).

EVALUATION

The Multics implementation of the mathematical functions uses binary
arithmetic. If the argument is 'decimal(p)', then it is converted to
'binary(63)'. When the result of the function is obtained, it is converted back
to 'decimal(p)'. As a result of this policy, a decimal result cannot be
accurate to more than about 20 decimal digits.

Some functions are not defined for certain arguments. In such cases, the
definition of the function says that the 'error' condition occurs. The 'error'
condition is used for any error that does not have its own, more specialized,
condition. When the 'error' condition occurs, the execution of the program
cannot resume at the point of interruption, so some disruption is inevitable.
The details are given in Section XIII, "Condition Handling."

A function can have a 'complex' result if and only if its argument is
'complex'. Thus a 'real' argument that would produce a 'complex' result is an
error. Consider 'sqrt(X)'. If X is 'real' and X<O, then the 'error' condition
occurs; but if X is 'complex', the 'error' condition does not occur.

Some functions are potentially multi-valued. For such a function, there is
more than on~ result value that satisfies the mathematical definition of the
function. In each such case, PL/I imposes conditions on the result that provide
a unique value. For example, in the definition of 'sqrt', the following
condition is given:

For X 'real': sqrt(X) >= 0

Thus the negative square root is excluded and the result is uniquely defined.

9-20 AM83

The mathematical definitions of the functions as they apply to real
arguments are not given; it is assumed that the reader who uses these functions
is familiar with their definition. On the other hand, the definitions of the
functions as they apply to complex arguments are given. These definitions are
given because, although they are part of standard mathematics, they are not easy
to find. The definitions are expressed in terms of operations on 'real' values
and make use of valid PL/I expressions.

In some of the definitions, the mathematical constants 3.14159 ... and
2.71828 ... are referred to by the names Qi and ~,respectively. These names are
not built into the PL/I language. If a programmer needs these names, he must
declare and set them just as he would any other variable.

Functions Related to Exponentiation

There are five built-in functions that relate to the exponentiation
operation. They are:

• The 'exp'
2.71828 ..•

function, which raises
to a given power.

the mathematical constant

• The 'log' function, which is the inverse of the 'exp' function.

=

• The 'log10' and 'log2' functions, which are the inverses of 10**R and
2**R, respectively.

• The 'sqrt' function, which raises a given number to the 1/2 power.

These functions are fundamental to scientific and engineering applications.

exp FUNCTION

A reference to the function has the form:

exp(X)

The result is ~

natural logarithms.
raised to the power X, where ~ is the base of the system of

Examples are:

exp(1.0000eO)
exp(O.OOOOeO)
exp(-1.0000eO)

= 2.7183eO
= 1.0000eO
= .36788eO

For complex values, the function is defined by:

exp(R1+R2*1i) = exp(R1)*(cos(R2)+sin(R2)*1i)

Thus, for example:

exp(O.OOOOeO+.78540eOi) = .70711eO+.70711eOi

9-21 AM83

'log' FUNCTION

A reference to the function has the form:

log(X)

The result is the logarithm base-e, or natural logarithm, of X. The function is
the inverse of the 'exp' function. Examples are:

log(2.7183eO) =
log(1.0000eO) =
log(.36788eO) =

1.0000eO
O.OOOOeO

-1.0000eO

The argument is restricted as follows:

• If X is 'real', then X<O causes the error condition to occur because
the result is a complex value.

• If X is 'real' or 'complex', X=O causes the error condition to occur
because the result is not defined.

The result satisfies the conditions:

For X 'real': The requirement that the result must be 'real' is
sufficient to make the result unique.

For X 'complex': -pi < imag(log(X)) <= pi

For complex values, the function is defined by:

log(R1+R2-1i) = .5-log(R1**2+R2**2) + atan(R2,R1)*li

Thus, for example:

log(.70711eO+.70711eOi) = .45481e-5+.78540eOi

(observe that .70711 is approximately 1/sqrt(2) and .45481e-5 is close to zero.

'log10' AND 'log2' FUNCTIONS

References to these functions have the forms:

log10(R)
log2(R)

where the argument must be 'real'. The results are the logarithm base-10 and
logarithm base-2, respectively, of R. Examples are:

log10(1.0000e4) = 4.0000eO
log10(2.0000e4) = 4.3010eO
log2(64.000eO) = 6.0000eO

AM83

The following restriction applies to the "argument:

• For both 'log10' and" 'log2', if R<=O, then the error condition occurs
because a real result does not exist.

These functions can be used to determine how many digits are required for the
representation of a given integer in either decimal or binary representation.
For example:

ceil(log2(70» = ceil(6.1) = 7

which shows that 70 requires " seven digits for its binary represe~tation.

'sqrt' FUNCTION

A reference to the function has the form:

sqrt(X)

The result is a square root of X. Examples are:

sqrt(O.OOOOeO) = O.OOOOeO
sqrt(1.0000eO) = 1.0000eO
sqrt(2.0000eO) = 1.4142eO

The argument is restricted as follows:

If X is 'real', then X < 0 causes the 'error condition to occur
because the result is a complex value.

The result satisfies the conditions:

For X 'real': sqrt(X) >= a

For X 'complex': either real(sqrt(X» > a
or real(sqrt(X» = 0 and imag(sqrt(X» >= a

For complex values, the function is defined by:

sqrt(Rl+R2*1i) = sqrt«R3+R1)/2) + sqrt«R3-Rl)/2)*li

\o/here:

R3 = sqrt(Rl**2+R2**2)

Thus, for example:

sqrt(3.0000eO+4.0000eOi) = 2.0000eO+1.0000eOi

9-23

I

I

frigonometric Functions

There are 12 built-in functions for trigonometry. They are:

• The' sin', 'cos', and 'tan' functions, which assume tha t their
arguments are in radians.

• The 'sind', 'cosd', and 'tand' functions, which assume that their
arguments are in degrees.

•

The ordinary
argument, and
functions.

'atan' and 'atand' functions,
are the conventional inverses of

which each have one
the 'tan' and 'tand'

The ordinary 'acos' and 'asin' functions, which assume that their
arguments are in radians and are the conventional inverses of 'cos'
and 'sin' functions.

The Cartesian 'atan' and 'atand' functions, which each have two
arguments and have results that range over all four quadrants of the
coordinate system.

The functions are not the usual textbook selection; instead, the functions are
selected and designed for the needs of practical computing. For example, the
secant function is omitted because it is rarely used and can be expressed in
terms of the 'cos' built-in function. On the other hand, the Cartesian 'atan'
function, rarely mentioned in trigonometry texts, is included because it is
needed for calculation of complex value3 and certain other calculations.

'sin', 'cos', AND 'tan' FUNCTIO:,J

References to these functions have the forms:

sin(X)
cos(X)
tan(X)

The result is the sine, cosine, of tangent, respectively, of X. X is assumed to
be expressed in radians. Examples are:

sin(O.OOOOeO) =
cos(3.1416eG) =
tan(.78540eO) =

O.OOOOeO
-1.0000eO

1.0000eO

For complex values, the function is defined by:

sin(Rl+R2*li) = sin(Rl)*cosh(R2) + cos(R1)*sinil(R2)*ii
cos(Rl+R2*li) = cos(R1)*cosh(R2) - sin(R1)*sinh(rt2)*li
tan(R1+R2*li) = sin(Rl+R2*li)/cos(Rl+R2*li)

Thus, for example:

9/76

sin(0.0000eO+1.0000eOi) = 0.0000eO+1.1752eOi
cos(0.0000eO+1.0000eOi) = 1.5431eO+0.0000eOi
tan(0.0000eO+1.0000eOi) = 0.0000eO+.7615geOi

9-24

ORDINARY 'acos' FUNCTION

A reference to the function has the form:

acos(x)

It takes a single, real argument and the result is the arccosine, expressed
in radians, of x. Examples are:

acos(1.0000000eO) = O.OOOOOOOe+O
acos(O.OOOOOOOeO) = 1.5707963e+O
acos(-1.0000000eO) = 3.1415926e+O

The argument is restricted as follows:

x must be <=1 and >=-1

The result satisfies the conditions:

O~acos(x)~pi

ORDINARY 'asin' FUNCTION

A reference to the function has the form:

asin(x)

It takes a single, real argument and the result is the arcsine expressed in
radians of x. Examples are:

asin(1.0000000eO) = 1.5707963e+O
asin(O.OOOOOOOeO) = O.OOOOOOOe+O
asin(-1.0000000eO) = 1.5707963e+O

The argument is restricted as follows:

x must be <=1 and >=-1

The result satisfies the conditions:

-pi/2~asin(x)~pi/2

9/78 9-24.1 AMB3A

This page intentionally left blank.

9/7(3 AMt)3A

, sind', ' cosd " AND ' tand' FUNCTIONS

References to these functions have the forms:

sind(R)
cosd(R)
tand(R)

where the argument must be 'real'. The result is the sine, cosine, or tangent,
respectively, of R. R is assumed to be expressed in degrees. For example:

sind(O.OOOOeO) =
cosd(180.00eO) =
tand(45.000eO) =

ORDINARY 'atan' FUNCTION

O.OOOOeO
-1.0000eO

1.0000eO

A reference to the function has the form:

atan(X)

The result is the arctangent, expressed in radians, of X. Examples are:

atan(1.0000eO)
atan(O.OOOOeO)
atan(1.0000e10)

= .78540eO
= O.OOOOeO
= 1.5708eO

The argument is restricted as follows:

If X is 'complex', then X=+1i or X=-li causes the error condition to
occur because the result is not defined.

The result satisfies the conditions:

For X 'real': -pi/2 < atan(X) < pi/2
For X ' complex' : -pi/2 < real(atan(X)) < pi/2

For complex values, the function is defined in terms of the 'atanh' built-in
function:

atan(X) = -1i*atanheX*1i)

Thus, for example:

atan(0.0000eO-2.0000eOi) = 1.5708eO-.54931eOi

where this result is approximately:

pi/2 - (1/2)*log(3)*li

9-25 AM83

ORDINARY 'atand' FUNCTION

A reference to the function has the form:

atand(R)

where the argument must be 'real'. The result is the arctangent, expressed in
degrees, of X. Examples are:

atand(1.0000eO) = 45.000eO
atand(O.OOOOeO) = O.OOOOeO
atand(1.0000e10) = 90.000eO

The result satisfies the oondition:

-go < atand(R) < go

CARTESIAN 'atan' FUNCTION

A reference to the function has the form:

atan(R1,R2)

The arguments must be 'real'. This function can be used
angular coordinate, in radians, of a point in the X-Y plane.

Suppose a point is given with the coordinates:

y = R1
x = R2

to calculate
Specifically,

the

Then the result of the function reference 'atan(R1,R2)' is the angle
of a line that begins at the orlgln of the coordinate system and
passes through the given point. The angle is expressed in radians, is
measured counter-clockwise from the X axis, and is in the range:

-pi < atan(R1,R2) <= pi

Because this function puts the angle in the correct quadrant, it simplifies
calculations. Observe, however, that the arguments are written in y,x order;
this is contrary to conventional mathematical practice, which usually gives
coordinates in x,y order. Some examples of the function are:

atan(0.0000eO,1.0000eO) = O.OOOOeO
atan(1.0000eO,1.0000eO) = .78540eO (= (1/4)*pi)
atan(g.000Oe2,9.0000e2) = .78540eO (= (1/4)*pi)
atan(1.0000eO,0.0000eO) = 1.5708eO (= (1/2)*pi)
atan(1.0000eO,-1.0000eO) = 1.3562eO (= (3/4)*pi)
atan(0.OOOOeO,-1.0000eO) = 3.1416eO (= pi)
atan(-1.0000eO,-1.0000eO) = -2.3562eO (= -(3/4)*pi)

9-26 AM83

The ·arguments must be 'real'; furthermore:

R1 = 0 and R2 = 0 cause the 'error' condition to occur because the
function is not defined at the origin of the coordinate system.

The function can be defined in terms of the ordinary 'atan' built-in function as
follows:

atan (y,x) =

atan(y/x)
pi/2
atan(y/x)+pi
atan(y/x)-pi
-pi/2

for any y and x > 0
for y > 0 and x = 0
for y >= 0 and x < 0
for y < 0 and x < 0
for y < 0 and x = 0

The function can be used to obtain the argument of a complex value; that is:

Arg(X) = atan(imag(X),real(X))

Observe, again, that the order of arguments is the reverse of the usual order.

CARTESIAN 'atand' FUNCTION

A reference to the function has the form:

atand(R1,R2)

where the arguments must be 'real'. The function is used to compute the angular
coordinate, in degrees, of a point in the X-Y plane. The function is defined in
terms of the Cartesian 'atan' function, as follows:

atand(R1,R2) = (180/pi)*atan(R1,R2)

Examples are:

atand(O.OOOOeO,1.0000eO) =
atand(1.0000eO,1.0000eO) =
atand(1.0000eO,-1.0000eO) =
atand(O.OOOOeO,-1.0000eO) =
atand(-1.0000eO,-1.0000eO) =

O.OOOOeO
45.000eO
135.00eO
180.00eO
135.00eO

The following restriction applies to the argument:

R1 = 0 and R2 = 0 causes the error condition to occur.

9-27

Hyperbolic Functions

There are four built-in hyperbolic functions. They are:

• The' sinh', ' cosh', and ' tanh' functions

• The 'atanh' function, which is the inverse of the 'tanh' function

These functions are used primarily for calculations with complex numbers.

, sinh', ' cosh', AND ' tanh' FUNCTIONS

References to these functions have the forms:

sinh(X)
cosh(X)
tanh(X)

The result is the hyperbolic sine, hyperbolic cosine, or hyperbolic
respectively, of X. It is assumed that X is expressed in radians.
are:

sinh(1.0000eO) = 1.1752eO
cosh(1.0000eO) = 1.5431eO
tanh(l.OOOOeO) = .7615geO

For complex values, the function is defined by:

sinh(R1+R2*1i) = sinh(R1)*cos(R2) + cosh(R1)*sin(R2)*1i
cosh(R1+R2*1i) = cosh(R1)*cos(R2) + sinh(R1)*sin(R2)*1i
tanh(R1+R2*1i) = sinh(R1+R2*1i)/cosh(R1+R2*1i)

Thus, for example:

sinh(0.0000eO+.78540eOi) = 0.0000eO+.70711eO
cosh(0.0000eO+.78540eOi) = .70711eO+0.0000eO
tanh(0.0000eO+.78540eOi) = 0.0000eO+1.0000eO

(where .78540 is an approximation of pi/4.)

9-28

tangent,
Examples

'atanh' FUNCTION

A reference to this function has the for~:

atanh(X)

The result is the S£Q hyperbolic tangent, expressed in radians, of X.
are:

atanh(O.OOOOeO) = O.OOOOeO
atanh(.1615geO) = 1.0000eO

The argument is restricted as follows:

ExaMples

If X is 'real', then abs(X) >= 1 causes the 'error condition to occur
because the result is a complex value.

If X is 'complex', then X = +1 or X = -1 causes the 'error condition
to occur because the result is not defined.

The result satisfies the conditions:

For X 'real': (The requirement that the result must be -real' is
sufficient to cake the result unique.)

For X ' complex' : -pi/2 < imag(atanh(X» <= pi/2

For complex values, the function is defined in terms of the 'log' built-in·
function:

atanh(X) = log«1+X)/(1-X»/2

Functions for Statistical Analysis

There are two built-in functions that relate to statistical calculations.
They are:

• The 'erf' function, which is the ~ function

• The 'erfc' function, which is the co~olement of the error function.

9-29 AM83

I

'erf' AND 'erfc' fUNCTIONS

References to these functions have the form:

erf(R)
erfc(R)

where the argument must be 'real'. The results are the error function and the
&££Q£ function complement, respectively, of X. For example:---

erf(G.OOOeO) = O.OOOeO
erf(1.000eO) = .8427eO
erfc(O.OOOeO) = 1.000eO

The functions are defined by the equations:

R
erf(R) = (2/sqrt(pi»* ~ e**(-t**2)dt

erfc(R) = 1 - erf(R)

STRING OPERATIONS

The string operations manipl]l~te string-related values. A string-related
value is:

a string,
an integer that gives a position in a string, or
an integer that is the length of a string.

Each string operation converts its operands or arguments to string-related
values and then computes a result that is also a string-related value.

Conventions for Definitions

The string operations that are defined here have some points in common. In
particular, they are uniform in their handling of the storage types, both for
arguments and for results. Therefore, the following general conventions can be
adopted for use in the definitions.

9/78 9-30 AMd3A

ARGUMENTS

As the first step in the interpretation of an operation, the storage types
of the arguments are checked. In the case of string operations, there are not
many possibilities for the storage types, and so the requirements can be
indicated by using special symbols for the operands or arguments. For example:

(B 1 & B2

means that both operands of the "and" operator should be bit strings.

are:
The complete conventions for the symbols used for the string operations

B, B 1, B2, •••

C, C 1, C2, •••

S, S1, S2, •.•

I, J, K, •••

The value of the argument should have string-type
attribute 'bit' •

The value of the argument should have string-type
attribute

,
char

, .
The value of the argl3-ment should have string-type
attribute 'bit'

,
or char .

The value of the argument should be arithmetic. It is
converted to 'fixed bin(24,O)' unless it already has that
storage type.

Some remarks on the significance of these conventions are necessary:

• In some cases, two string operands must agree in their lengths. In
such cases, blank characters or zero bits are added at the right end
of the shorter string until its length is equal to that of the other
string.

• Arguments for which the symbol is I, J, K, .•• either give a position
in a string or the length of a string. The value 24 is used as the
number-of-digits for all such arguments because a 24-bit integer is
the smallest that can accommodate the length of the longest possible
string in Multics PL/I.

Concatenate Operations

The simplest operation on string values is concatenation.
purpose, PL/I has two built-in operations:

For this

• The concatenate operation, which yields a string that starts with the
first operand string and continues with the second.

• The 'copy' function, which concatenates a given string with itself a
given number of times.

These two operations nicely reflect the balance in the set of built-in
operations of PL/I. The concatenate operator is fundamental and cannot be
expressed in terms of simpler operations. In contrast, the 'copy' function
could easily be programmed by the user in terms of the concatenate operation,
but the programmed form would be much less efficient than the built-in 'copy'
function.

9-31 At183

CONCATENATE OPERATOR

A parenthesized operator expression for the operator has the form:

(S1 I I S2

The result is the concatenation of S1 and S2. For example:

"abc" I I "de") =
"abcde"\ I"") =
"abcde" \ 1"1111"

"abcde"
"abcde"
= "abcdel1l1"

If the values of the operands, S1 and S2, are both bit strings, the result is a
bit string:

"011"b\ \"1101"b) = "0111101"b

copy FUNCTION

A reference to the function has the form:

copy(S,I)

The result is the concatenation of I copies of S. For example:

copy("abc",2) = "abcabc"
copy("abc",O) = ""

If S has a bit-string value, the result is a bit-string value:

copy("110"b,2) = "110110"b
copy("110"b,O) = ""b

Substring Ooerations

There are five built-in operations for obtaining or locating a substring of
a given string. They are:

• The 'substr' function, which yields a substring of the given string
that begins at a given position and has a given length.

• The 'index' function, which yields the position in the given string of
an occurrence of another given string.

• The 'before' and 'after' functions, which yield a substring of the
given string that occurs before or after an occurrence of a second
given string.

• The 'decat' function, which is a generalization of the 'before' and
'after' functions.

The 'substr' and 'index' functions are fundamental to any string processing.
The remalnlng functions are used primarily in advanced string processing, such
as compiling and command-string processing.

9-32 At-183

'substr' FUNCTION

A reference to the function has one of the forms:

substr(S,I,J)
substr(S,I)

The result is the substring that begins with the Ith character and has length J.
For example:

substr("abcde",1,4) =
substr("abcde",3,1) =
substr("abcde",3,O) =

"abed"
"C ii

""

If J is not given, the substring of S begins with the Ith character and
continues to the end of S:

substr("abcde",1) = "abcde"
substr("abcde",3) = "cde"

Two kinds of errors are possible in the use of 'substr', and both cause the
'stringrange' condition to occur. First, it is an error to use a negative value
for J (the length of the substring). Thus:

substr("abcde",3,-2) = ? ('stringrange' condition)

Second, it is an error to attempt to refer to a character that is beyond the end
of the given string. Thus:

substr("abcde",3,4) = ? ('stringrange' condition)
substr("abcde",O,2) = ? ('stringrange' condition)

There is an exception to this rule: the character after the end of S can be
referred to provided it is not used in the substring; this can only happen if
the requested string has length O. Thus:

substr("abcde",6,O) = ""
substr(IIabcde",6) = ""

The pseudo-variable named 'substr' is described later, in Section X, "Value
Assignment."

9-33 AM83

'index' FUNCTION

A reference to the function has the for~:

index(S1,S2)

The result is a 'fixed bin(24,O)' value that is the position of the beginning of
the leftmost occurrence of S2 in S1. For example:

index("abcde","d") = 4
index("abcde","de") = 4
index("abcde","abcde") = 1
index("101110"b,"111"b) = 3

If S2 is not contained in S1, then the result is zero; thus:

index("abcde","bxd") = 0
index("","d") = 0
index("101110"b,"010"b) = 0

If S2 is the null string, the result is also zero; thus:

index("abcde","") = 0

The function can be used both to locate a substring and to determine whether a
substring is present. For some arguments, 'index' is related to 'substr', as
follows;

I = index(S,substr(S,I» for 0 < I <= length(S)

To illustrate this identity, suppose S is "abcde" and I is 2, then:

2 = index("abcde",substr(" a bcde",2»
2 = index("abcde","bcde")
2 = 2

'before' FUNCTION

A reference to the function has the form:

before(S1,S2)

The result is the substring of S1 that is before the leftmost occurrence of S2
in S1. For example:

before("abcde","bc") = "a"
before("abcde","abc") = ""
before("abcde","e") = "abcd"
before("abcde","abcde") = 1111

9-34 AM83

If necessary, a null string is assumed at the beginning of S2; therefore,
~othing is before a null string:

before ("abcde" ,"") = '"'

If there is no occurrence of S2 in S1, then an occurrence is assumed at the end
of S1; therefore, all of S1 is before S2:

before("abcde" ,"bxd") = "abcde"
before("","a") = 1111

If both arguments yield bit strings, then the result is a bit string:

before(I011101"b,"11"b) = "O"b

'after' FUNCTION

A reference to the function has the form:

after (S1,S2)

The result is the substring of S1 that is after the leftmost occurrence of S2 in
S1. For example:

after("abcde","bc") = "de"
after("abcde","abc") = "de"
after("abcde","e") = 1111

after(lIabcdel,"abcde ll) = ""

If necessary, a null string is assumed at the beginning of S1 (as with
'before'); therefore, all of S1 occurs after the null string:

after' (!! abede!! , !!!!) :: !! abede!!

If there is no occurrence of S2 in S1, an occurrence is assumed at the end of S1
(as with 'before'); therefore, none of S1 is after S2:

after("abcde","bxd") = ""

If both arguments yield bit strings, then the result is a bit string:

after(11110111"b,"O"b) = "111"b

The 'before' and 'after' functions are closely related. The expression

before(S1 ,S2): : after(S1 ,S2)
I

always yields a copy of S1 from which the leftmost substring that matches S2 has
been deleted; for example:

before(lIabcde",lcd"): :after("abcde","cd") = "abe"
before (" abcde" , "cx") : : after ("abcde" ,"cx") = "abcde"

9-35 AM83

'decat' FUNCTION

A reference to the function has the form:

decat(S1,S2,B)

The result is a string that is "deconcatenated" from S1 in a relatively
complicated way. The third argument, B, is converted to a bit string of length
three. The result string of the 'decat' function is thought of as a sequence of
three substrings, and each substring is controlled by one of the bits in the
value of B, as follows:

• If the first bit is one, then the first substring is 'before(S1,S2)'j
otherwise, it is the null string.

• If the second bit is one and S2 is contained in S1, then the second
substring is S2; otherwise, it is the null string.

• If the third bit is one, then the third substring is 'after(S1,S2)';
otherwise, it is the null string.

Thus, for example, for any S1 and S2:

decat(S1 ,S2," 101"b) = before(S1 ,S2): : after(S1 ,S2)
decat(S1,S2,"OOO"b) = ""
decat(S1,S2,"100"b) = before(S1,S2)

If S2 occurs in S1:

decat(S1 ,S2," 110"b) = before(S1 ,S2): : S2
decat(S1 ,S2," 111"b) = before(S1 ,S2): : S2: : after(S1 ,S2)

But if S2 does not occur in S1:

decat(S1 ,S2," 110"b) = before(S1,S2)
decat(S1 ,S2," 111"b) = before(S1 ,S2): : after(S1 ,S2)

Some specific examples are:

decat("abcde","d","OOO"b) = ""
decat("abcde","d","OO1"b) = "e"
decat("abcde","d","010"b) = "d"
decat("abcde","d","011"b) = "de"
decat("abcde","d","100"b) = "abc"
decat("abcde","d","101"b) = "abce"
decat("abcde","d","110"b) = "abcd"
decat("abcde","d","111"b) = "abcde"

The primary purpose of the 'decat' function is to provide eight functions under
a single name. A secondary purpose is to allow convenient selection of a
function at execution time; this is done by using a variable expression for B.

9-36 AH83

Relational. Length. and Reverse Operations

After the concatenation and substring operations have been considered, only
a few built-in operations remain that can apply to both character and bit
strings. They are:

•

•

•

The relational operators,
similar opera tors. . Only the
values is defined here.

which includes '=', '<', and six other
application of these operators to string

The 'length' function, which yields the current length of a given
string.

The 'maxlength' function, which yields the maximum length of a given
string.

• The 'reverse' function, which yields a string that contains the
characters or bits of the given string but in reverse order.

I

• The 'ltrim' and 'rtrim' functions, which trim unwanted characters, I
such as white space, from the left and right side, respectively, of
character strings.

The relational operators (as applied to strings) are primarily used in advanced
string processing, especially in sorting text data. The 'length' function is
fundamental to any string manipulation. The 'reverse' function is vsed in
advanced string processing.

RELATIONAL OPERATORS FOR STRING VALUES

A parenthesized expression for a relational operator has the form:

S1 Q,Q S2

where the relational operator, Q,Q, is one of the following:

= (is equal to)
< (is less than)
> (is greater than)
<= (is less than or equal to)
>= (is greater than or equal to)
'" (is not equal to) =
"'< (is not less than)
"'> (is not greater than)

9/78 9-37 AM83A

The relational operators can apply to many kinds of values, as follows:

• If both operands yield string values and neither is declared with a
numeric. picture attribute, then the expression is a string cO~Rarison
and is described here.

• If either operand yields an arithmetic value or a character string
declared with a numeric picture attribute, then the expression is an
algebraic comoarison and is described earlier in this section under
"Relational Operators for Arithnetic Values."

• If both operands yield address values, then the
address comparison and is described later in
"Relational Operators for Address Values."

expression is an
this section under

The result of a comparison expression is "l"b or "onb depending on whether
the comparison is true or false. When the operand values have the same length
and type, they can be equal only if they are identical. For example:·

("abcde" = "abcde") = "l"b
("abcde" = "abcdx") = "O"b
("abcde"

...
"abcdx") "l"b = =

("1101"b = "1101"b) = "l lt b

\Jhen the operand values have different lengths, characters or bits are added to
the right end of the shorter operand value. Blank characters are added to a
character string; zero bits are added to a bit string. For example:

"abcde" = "abc"
"11"b = "111"b) =

= ("abcde" = "abc~~") = "O"b
"110"b = "111"b) = "O"b

Because of the padding of a short operand value, operand values that are not
originally identical can satisfy the '=' operator; for exa~ple:

("abckHS" = "abc") = ("abckSkS" = "abc)SkS") = "l"b
("11"b = "110"b) = ("110"b = "110"b) = "l"b

9-38 At183

T,he result of a comparison expression whose operand includes '<' or '>'
depends on the collating seguence. The collating sequence is a character string
in which each possible character occurs exactly once. A character is less than
another character if the first occurs before the· second in the collating
sequence. Similarly, a character is greater than another if the first occurs
after the second. The collating sequence is an unalterable part of the
definition of Multics PL/I, but it can vary from one implementation of PL/I to
another.

The full collating sequence is given later in this section, under "The
'collate' Function". For the exaoples that are given here, an abbreviated
version of the collating sequence is sufficient:

••• (blank) ••• 0123456789 ••• abcdefghijklmnopqrstuvwxyz

Observe that, for example, 'c' is less than 'm' and, for another example, ·c- is
greater than the blank character.

Examples of "less than" and "greater than" comparison expressions are:

("c" < "m") = "1"b
("c" -< "rn") = "O"b
("c" <= "mit) = "l"b

When the operand values are of length greater than one and are not identical,
they are examined from left to right until a difference is found; the first
differing character position is the sole basis for the comparison. For example:

"abcde" < "abcxy"
"abcde" > "vwxyz"

= "d" < "x" = "1"b
= lIa" > "v" = "O"b

As already noted, operands
lengths agree; for example:

of different lengths are adjusted so that their

("abc" < "abcde"

("000" < "0000" =

= ("abc~HStl < "abcde")
= ('!~" < "d") = nl u b

"OOO~" < "0000")
rr~" < "0") = "l"b

When bit strings are compared, '0' is less than '1'; thus:

("O"b < "l"b) = "l"b
("101101"b > "101111"b) = ("onb > "l"b) = nO"b
("l"b < "100"b) = ("100"b < "100"b) = "onb

9-:9 AH83

I

'length' FU~CTION

A reference to the function has the form:

length(S)

The result is a 'fixed bin(24,0)' value that is the length of the string that is
the value of S. For example:

length("abcde") = 5
lengthen") = °
length("101010"b) = 6

Note that for a varying string the length is different from the maximum length.
Suppose the variable 'x' is declared by:

del x char(10) varying;

and has the value "abc". Then:

length(x) = 3

rather than 10.

'maxlength' FUNCTION*

A reference to the non-Standard function has the form:

maxlength(S)

The result is a 'fixed bin(24,0)' real value that is the maximum length Scan
attain. This built-in gives the same result as the 'length' built-in except in
cases where S is a varying bit-string or a varying character-string. For
example:

then,

9/78

del x char(20) varying;
x = "abc";

length(x) = 3
maxlength(x) = 20

9-40 AM83A

'reverse' FUNCTION

A reference to the function has the form:

reverse(S)

The result is a string which is the reverse of the value of S. For example:

reverse("abcde") = "edcba"
reverse("a") = "a"
reverse("") = ""
reverse("11101"b) = "10111"b

Some of the built-in operations perform a left-to-right search of a string.
when a right-to-left search is required, the 'reverse' function can be used to
adjust the given string. The following example finds the position of the first
occurrence of 'a' from the right end of the given string:

length("abacad") - index(reverse("abacad"),"a") + 1
= 6 - index("dacaba","a") +1
= 6 - 2 + 1
= 5

Note that this expression does not return zero if 'a' is not found in the
given string, unlike the 'index' built-in.

'ltrim' FUNCTION*

A reference to the non-Standard function has the form:

Itrim(S, C) or Itrim(S)

The result is a string (S) whose value is trimmed on the left of all characters
given in C. Characters are deleted until a character occurs that is not given
in C, then the function stops. For example:

ltrim("5729 this example", "0123456789") = " this example"

If C is not specified, the value of C is a blank character. For example:

ltrim(" abcdef ") = "abcdef "

'rtrim' FUNCTION*

A reference to the non-Standard function has the form:

rtrim(S, C) or rtrim(S)

The result is a string whose value is trimmed on the right of all characters
given in C. Characters are deleted until a character occurs that is not given
in C, then the function stops. For example:

rtrim("abc123 1f
, "321") = "abc lf

If C is not specified, the value of C is a blank character. For example:

rtrim(" abcdef If) =" abcdef"

9/78 9-40.1 AM83A

This page intentionally left blank.

9/78 Al'103A

Bit-String Ooerations

Certain built-in string operations can be applied only to bit strings;
they are:

The logical operators, which perform the "not", "and", and "inclusive
or" operations of Boolean logic.

• The 'bool' function, which is a generalization of the three logical.
operators and which can perform any of the 16 operations of Boolean
logic.

The logical operators are used in all prograrn~ing applications, especially when
the operands are one-bit strings produced by tests of data. The 'bool' function
.is used in occasional advanced applications, ·especially for masking of bit
strings.

LOGICAL OPERATORS

A parenthesized expression for a logical operator has one of the forms:

(B2)
(B 1 & B2
(B1 B2

(not)
(and)
(inclusive or)

The result is a bit-string value. When both operands are a bit string of length
one, the result is given by one of the following examples:

(..
"O"b) "l"b =

(
...

"l rf b) "O"b =
"O"b & "O"b) = "O"b ("O"b "O"b) = "O"b
"O"b & "l"b) = "O"b ("O"b "l rt b) = nl"b
"1"b & "O"b) = "O"b ("l"b "O"b) = "l"b
"l"b & "1"b) = "1"b ("l"b "l"b) = "1"b

\fhen operand strings are longer than one bit, the rules just given are applied
to the individual bits,as follows. For the "not" operation, the rule is
ap~lied to the first bit of the operand to produce the first bit of the result;
ani so on, for the other bit positions:

(... "1110001"b) = "0001110"b

For the "and" and "or" operations, the rules are applied to the first bit of the
first operand and the first bit of the second operand to produce the first bit
of the result; and so on for the other bit positions:

("1100"b & "1001"b
("1100"b l "1001"b

= "1000"b
= "1101"b

Uhen one operand is shorter than the other, zero bits are added to the right end
of the shorter operand; thus:

(' "1"b & "0011"b) = ("1000"b & "0011"b = .iOOOO"b

9-41 AN83

'bool' FUHCTION

A reference to the function has the form:

bool(Bl,B2,B3)

The result is a bit string that is produced by applying to B1 and B2 and
operation specified by B3. The third argument, B3, is converted to a bit string
of length four. Suppose the bits in B3 are b1, b2, b3, and b4. Then if B1 and
82 are both bit strings of length 1, all possible results are given by the
following examples:

bool(
bool(
bool(
bool(

"O"b,
"()"h ,
"l"b,
"l"b,

"O"b, B3
"1 "b, B3
"O"b, B3
"l"b, B3

= bl
= b2
= b3
= b4

I As a specific example, suppose B3 is "0001"b; then:

bool("O"b, "O"b, "OOOl"b
bool("O"b, "l"b, "Q001"b
bool("l"b, "O"b, "OOOl"b
bool("l"b, "l"b, "0001"b

= "O"b
= "O"b
= "O"b
= "l"b

Comparison of these equations with the definition of the '&' operator given
earlier suggests that they are the same; indeed:

bool(B1,B2,"0001"b) = (B1 & B2)

The following table gives all possible results of operations performed on B"' and
B2:

B4 Name Result

0000 clear all zeroes
0001 and B1 & B2
0010 Bl & "'B2
00 11 move B1 .1:31
0100 "'B1 & 82
0101 move B2 B2
0110 xor (B1&~B2) ("'B1&82)
0111 or B1 I B2 I

1111 "'clear all ones
1110 '" and "'(Bl&B2) ("'B1: B2) =
1101 "'(B1&'"'B2) = ('" B 1 : B2)
1100 invert B1 "'B1
1 a 11 "'("'B1&B2) = (B 1 : B2)
1010 invert B2 "'B2
1001 '" "'«B1& B2) I ("'B1&B2» (.... B 1 : B2) & (B 1 : '" B2) xor I =
1000 or '" (B 1 : B2) = ("'Bl&"'B2)

Thus the 'bool' function provides a general way of defining logical operations.

When Bl and B2 are bit
operated upon on a bit-by-bit

strings of
basis just

length greater than one, they are
as with the logical operators. For

bool("111"b,"101"b,"0001"b) = "101"b

9/70 9-42 AM83A

when one operand is shorter than the other, zero bits are added to the right end
of the shorter operand, just as with the logical operators; thus:

bool("l"b,"OOll"b,"OOOl"b) = bool("1000"b,"0011"b,"OOOl"b) = "OOOO"b

Character-string Operations

Three built-in operations can be applied only to character strings; they
are:

• The 'search' and 'verify' functions, which are used to find the
beginning and end of a generalized substring of a given string.

• The ' trans la te' func t ion,
systematic replacement of
characters.

'search' FUNCTION*

which is used to modify
certain characters by

A reference to the non-Standard function has the form:

search (C 1 , C2)

a string by the
certain other

The result is a 'fixed bin(24,O)'
leftmost occurrence of any character
character; for example:

value that is the
contained in C2.

position in Cl of the
Sometimes C2 is a single

search("+328.02",".") = 5
search("alpha,beta,gamma",",") = 6

In other cases, more than one chara~t~r is used in C2; thus:

search("a2*(beta-gamma)","+-*/()") = 3
search("18.2344e-2","e+-") = 8

When Cl does not contain any character in C2, the result is zero:

search("+328.02",";") = 0
search("abcde'!, "") = 0

This function works for non-ASCII characters as well as ASCII.

'verify' FUNCTION

A reference to the function has the form:

verify(Cl,C2)

The result is a 'fixed bin(24,O)' value that is the position of the first
character of Cl that does not occur in C2. For example:

verifY("alpha-beta","abcdefghijklmnopqrstuvwxyz") = 6
verify("1923.98e02","0123456789") = 5

When Cl contains only characters that are in C2, the result is zero:

verify("1923.98e02","+-0123456789.e") = 0

9/78 9-43 AM83A

I

I

The example just given suggests the reason for the name "verify"; the example
checks a given string (which appears to be a decimal constant) to "verify" that
it contains only allowed characters.

Although the function is used for "verification" as just described, it is
more often used to "search for the end" of a given substring. As such, it is a
complement to the 'search' function, which is used to "search for the beginning"
of a given substring. Suppose a procedure must be written to extract the
leftmost substring that is a sequence of digits. Before writing the procedure,
the programmer sketches it out as follows:

The given string might be:

"alpha*(238+beta)"

The 'search' function is used to locate the beginning of the desired substring:

search("alpha*(238+beta)","0123456789") = 8

Application of the 'substr' function gives:

substr("alpha*(238+beta)",8) = "238+beta)"

The 'verify' function is used to locate the end of the desired substring:

Application of the 'substr' function gives:

substr("238+beta)",1,3) = "238"

II = ~

which is the desired result.
well as ASCII.

This function works for non-ASCII characters as

'translate' FUNCTION

A reference to the function has one of the forms:

translate(Cl,C2,C3)
translate(Cl,C2)

The result is a modification of Cl in which each character in C3 is replaced in
Cl by the corresponding character in C2. For example:

9/78

translate("abcde","B","b") = "aBcde"
translate("abcde","ABCDEFG","abcdefg") = "ABCDE"
translate("28.923e-18","OOOOOOOOO","0123456789") = "OO.OOOe-OO"
translate("a","ABCD","aaaa") = "A"

9-44 AM83A

C2 and C3 should be strings of equal length; however, if C2 is shorter than C3,
blanks are added to the right end of C2:

translate("abcde","B","bcde")
= translate("abcde","B~~~","bcde") = "aB~~~"

Both C2 and C3 should be given (the second form is not recommended); however,
if C3 is not given, the collating sequence ~s assumed:

translate(C1,C2) = translate(Cl,C2,collate9(»

This function works for non-ASCII characters as well as ASCII.

Character-Set Operations

Three built-in string operations are relevant to the character set of
Multics PL/I. They are:

• The 'collate' function, which yields the string that gives the
collating sequence of Multics PL/I.

• The 'high' and 'low' functions, which yield a sequence of control
characters that have a special purpose in the preparation of output.

I

The 'collate9' and 'high9' functions, which assume the character-set I
contains all possible 9-bit bit patterns.

'collate' FUNCTION

A reference to the function has the form:

collate collate()

The result is a character string that gives the collating sequence for the
characters in the ASCII character set. If a given character occurs before a
second given character in the collating sequence, then the first character is
"less than" the second. In this way, the collating sequence defines the
relational operators as they apply to character strings.

The collating sequence is not the same in every implementation of PL/I; one
reason for this variation is that different implementations use different
character sets. Multics PL/I uses the ASCII character set, and the collating
sequence is the ASCII character set arranged according to the ASCII octal codes.
The character with code 000 is first, the character with code 001 is next, and
so on. It follows that the ASCII code for a character can be obtained by means
of the 'index' function. For example, to obtain the decimal equivalent of the
ASCII code for the character "a", write:

index(collate(),"a")-1 = 97 (octal code 141)

Similarly, to obtain the character whose decimal code is 97, write:

substr(collate(),97+1,1) = "a"

9/78 9-45 AM83A

There are 128 characters in the
length of the collating sequence is
parts, as fOllOWS:

ASCII character set and therefore the
128. The sequence can be described in four

1. The first part is 32 nonprinting control characters, as follows:

000 NUL (null character)
001

(unused)
006
007 BEL (alarm)
010 BS (backspace)
011 HT (horizontal tab)
012 NL (new line = carriage return and line feed)
013 VT (vertical tab)
014 NP (nevI page ~ "'::l"''''~::lO'Q - ··--0- return and for!:! feed)
015 CR (carriage return)
016 RRS (red ribbon shift)
017 BRS (black ribbon shift)
020

(unused)
036
037 EGH (enter graphic wade)

2. The second part is the blank character.

3. The third part is the 94 printing characters, as follows:

" Ii $ % &
,

() * / + , - .
0 1 2 3 4 5 6 7 8 9

< = > ? (2

A B C D E F G H I J K L H N 0 P Q R STU V W X y Z

[\] ...

a b c d e f g h i j k 1 m n 0 p q r s t u v w x y z

4. The fourth part is a .single nonprinting control character, as follows:

177 PAD (padding character)

If words are alphabetized by means of the relational operatcrs, then the
collating sequence determines the order of the words. The important features of
the collating sequence are:

• The blank character co~es before any printing character; therefore the
following ordering results:

plan
plane

• Any digit comes before any letter. The~efore the following ordering
results:

alpha
alpha2
alpha3
alphabet

9-46 At183

• Each case of letters (upper or lower) appears in the collating
sequence in uninterrupted alphabetical order. However, any uppercase
letter occurs before any lowercase letter. Therefore the following
ordering results:

Boston
Cambridge
alpha
beta

• The punctuation marks are scattered throughout the collating sequence.
Therefore they must be given special consideration in alphabetizing.

'collate9' FUNCTION*

A reference to the non-Standard function has the form:

collate9 collate9()

The result is a character set composed of the Multics Extended Character Set,
the first 128 characters of which are the ASCII character set. For information
on the Multics Extended Character Set, see the MPH Reference Guide. The
'collate9' function is analogous to the standard collate built-in function
except that the return value contains all possible 9-bit bit patterns rather
than just the 128 ASCII characters, therefore, making the length 512. For
example:

substr(collate9(),1,128) = collate()

'low' FUNCTION

A reference to the function has the form:

low(I)

The result is a character string composed of I "NUL" characters. The "NUL"
character is the first character in the collating sequence.

'high' FUNCTION

A reference to the function has the form:

high(I)

The result is a character string composed of I "PAD" characters. The "PAD"
character is the last character in the ASCII character set.

9/78 9-47 AMt)3A

I

'high9' FUNCTION*

A reference to the non-Standard function has the form:

high9(I)

The result is a character string composed of I characters all of whose bits are
one. This character is the last character in the Multics Extended Character
Set. The 'high9' function is analogous to the standard high built-in function
except that the return value contains all possible 9-bit bit patterns rather
than just the 128 ASCII characters. For example:

high9(1) = all bits are ones

string Functions Defined Elsewhere

The following built-in functions yield string values but are defined
elsewhere, as indicated, because they are specialized:

bit unspec
character valid See "Conversion Operations".
string

onchar onkey
onfield onloc See "System Variable Operations".
onfile onsource

date time See "System Variable Operations".

ADDRESS AND AREA OPERATIONS

The operations discussed here include operators for the comparison of
address values, functions that have addresses as their values, and a single
function that has an area as its value. All of these operations are
considerably removed from the field of routine programming; they are certainly
useful where they are needed and include some of the innovative features of
PL/I; but they are rarely required outside of the storage management techniques
that characterize advanced applications.

9178 9-48 AM83A

General Address Functions

There are five general functions and operations for the manipulation of
address values; they are "general" in the sense that they are independent of the
representation of address values in a particular implementation of PL/I. The
functions are:

• The two relational operators
comparison of address values

'= ' and ,~- , - , which can be used for the

• The 'addr' function, which yields a pointer value that is equivalent
to any given variable reference

• The 'null' and 'nullo' functions, which yield the special null
locative value for a pointer or an offset.

The relational operators for address values are useful whenever file values,
local values, and so on, must be manipulated; such applications occur In
intermediate and advanced applications. The other functions discussed here are
used primarily in advanced applications that use based variables, list
processing, and storage sharing.

RELATIONAL OPERATIONS FOR ADDRESS VALUES

A parenthesized operator expression with a relational operator has the
form:

(A 1 .QJ2. A2)

where Al and A2 must yield address values and the operator, .QJ2., is one of the
following:

= (is equal to)
= (is not equal +-,,\

VVj

Relational operators can also apply to
earlier under "Relational Operators for
Operators for String Values".

9/78 9-49

computational values,
Arithmetic Values" and

as described
"Relational

AMo3A

The result of the relational
whether the comparison is true or
address values, as follows:

expression is "1"b or "O"b, depending on
false. Recall that there are six types of

label: the destination of a 'goto' statement
entry: the destination of a 'call' or a function reference
format: the object of a remote format reference
Qointer: the "absolute" address of a storage unit
offset: the "relative" address of a storage unit
file: the address of a file-state block

with one exception, both arguments of an address relational operator must have
the same type. The exception is the combination of a pOinter value and an
offset value; in this case~ the offset v81ue is converted to a pointer value~

'addr' FUNCTION

A reference to the function has the form:

addr(U)

where U must be a reference to a connected variable. A variable is connected
unless it is an aggregate variable whose components are interleaved with the
components of some other variable. The result is a pointer value to the storage
unit that is designated by U. Suppose the following declaration applies:

dcl 01 A(2),
02 B float,
02 C dec(6,2);

Examples of the function follow:

addr(A)

addr(A(2»

addr(A(2) .C)

addr(A.C)

gives a pointer to storage for the entire array of
structures

gives a pointer to the second element of the array of
structures
gives a pointer to a scalar component of 'A'.

is invalid because 'A.C' designates an unconnected
variable

The variable 'A.C' is unconnected because it is made up of two scalar variables,
designated by 'A(1).C' and 'A(2).C', that are not adjacent in storage.
According to Section VII, "Storage Management," the components of A occur in
storage in the sequence:

A(1).B A(1).C A(2).B A(2).C

and thus 'A(2).B' is between the two components of 'A.C'.

9/78 9-50 AMS3A

If U is a major (level-one) 'controlled' variable reference that is not
currently allocated, then

addr(U) = null

and the reference is valid. If U is any other variable that is not currently
allocated, then the reference is invalid.

'null' FUNCTION

A reference to the function has one of the forms:

null null()

The result is the null value of data type 'pointer'.
variable. Then the statement:

Suppose P1 is a pOinter

P1 = null;

assigns the null value to
point to any storage unit.
as:

'P1' and thus gives P1 a defined value that does not
The variable can later be tested by a statement such

if P1=null then go to L2;

Observe that a pointer variable can be in one of the following states:

• If no value has been assigned to the variable, then the value of the
variable is undefined and any reference to that value is invalid.

• If the null value has been assigned to the variable, then the value
can be assigned to another variable or compared to another locative
value; but it cannot be used as a locator-qualifier because it does
not designate a storage unit.

• If a non-null value has been assigned to the variable, then the value
of the variable can be used for any purpose appropriate for a locative
value.

'nullo' FUNCTION*

A reference to the non-Standard function has the form:

nullo nullo()

The result is the 'offset' value null. An offset variable is set to null to
indicate that it does not point to any storage unit. The usage of !nullo! is
similar to that described under "The 'null' Function". The results of the null
and nullo built-in functions are considered equal, if compared.

9/78 9-51 AM~3A

I

Implementation-Dependent Address Functions

There are nine functions that manipulate a pointer value in a way that I
depends upon the Multics representation of pointers; these functions are not, of
course, part of Standard PL/I. The functions are:

• The 'baseptr' function, which generates a pointer to the first word of
a segment whose number is given

• The nonstandard 'ptr' function, which generates a pointer to the Nth
word of a given segment

• The 'addrel' function, which generates a pointer to the Nth word after
the word designated by a given pointer

• The 'baseno' and 'reI' function, which yield an integer that is the
segment number or the word-offset number for a given pointer

• The 'stackframeptr' function, which yields a pointer to the stack
frame of the current block

• The 'stackbaseptr' function, which yields a pointer to the base of the
current stack segment of the block

• The 'codeptr' function, which yields pointers for an entry, label, or
format value

• The 'environmentptr' function, which yields the activation record
~~~ ~4-~~ .p~~ ~~ ~~4-~.. , ~k~' ~_ .p~ __ ~4- •• ~, •• ~ 
PV.LUlJCl LVI C1U Cl1lJlY, .LC1UC.L, VI lVl·UIC1lJ VC1.LUC • 

These functions should be used only under special circumstances. 
appropriate for systems programming that is closely related 
implementation of the Multics System itself. 

'baseptr' FUNCTION* 

A reference to this non-Standard function has the form: 

baseptr(N) 

where N must yield either: 

They are 
to . the 

an integer value of no more than 35 bits or a bit-string value of 
length 18 

The result is the pointer value defined by: 

ring number: current ring number 

segment number: N 

word offset: o 

bit offset: a 

Thus the resulting pointer designates the first word of the segment whose number 
is N. 

9/78 9-52 AMti3A 

I 



NONSTANDARD 'ptr' AND 'addrel' FUNCTIONS* 

References to these functions have the forms: 

pOinter(P,N) 
addrel(P,N) 

ptr(P,N) 

where P must yield a scalar 'pointer' value and N must yield either: 

an integer value of no more than 35 bits, or a bit-string value of 
length 18. 

The result is the pointer value defined by: 

ring number: 

segment number: 

word offset: 

bit offset: 

the ring number of P 

the segment number of P 

N, for the 'ptr' function 

W+N, for the 'addrel' function, where W is the word 
offset of P 

o 

Thus the result pointer designates the Nth word from the beginning of the 
segment into which P points (for the 'ptr' function) or the Nth word after the 
word to which P po~nts (for the 'addrel' function). 

There is another built-in function named 'ptr' in PL/I; it is described 
later, under "Conversion Operations" ,and is part of Standard PL/I. The two 
functions are distinguished by the data type of their second argument. For the 
standard function, the second argument is 'area'; for the nonstandard function, 
the second argument is arithmetic or 'bit'. 

9178 9-52.1 AM83A 



'baseno' AND 'reI' FUNCTIONS* 

References to these non-Standard functions have the forms: 

baseno(P) 
rel(P) 

where P must yield a scalar 'pointer' value. The result is a bit-string value 
of length 18 whose value is the bit-string representation of the segment number 
or the ~ offset, respectively, of P. 

'stackframeptr' FUNCTION* 

A reference to the non-Standard function has the form: 

stackframeptr stackframeptr() 

The result is a pointer value to the stack frame of the current block. 

'stackbaseptr' FUNCTION* 

A reference to the non-Standard function has the form: 

stackbaseptr stackbaseptr() 

The result is a pointer value to the base of the current stack segment of the 
block. 

'codeptr' FUNCTION* 

A reference to the non-Standard function has the form: 

codeptr(X) 

where X must yield an entry, label, or format value. The result R is a pointer 
value. If X is an entry value, then R is a pointer to the entry point 
identified by X. If X is a label value, then R is a pOinter to the 'statement' 
identified by X. If X is a format value, then R is a pointer to the 'format 
statement' identified by X. 

'environmentptr' FUNCTION* 

A reference to the non-Standard function has the form: 

environmentptr(X) 

where X must yield an entry, label, or format value. 
activation record pointer of X. 

9/78 9-52.2 

The result R is the 

AM83A 

I 

I 



Area Function 

There is one function for area values. It is: 

• The 'empty' function, which gives the value of an area in which no 
variable is currently allocated 

This function is used in advanced applications where special storage management 
techniques are used. 

'empty' FUNCTION 

A reference to the function has the form: 

empty empty() 

The result is the ~ value of data type 'area'. Suppose A is declared as an 
area variable; then the statement: 

A = empty; 

can be used to assign the empty value to 'A' and thus free all storage units 
currently allocated in 'A'. 

ARRAY OPERATIONS 

Each of the functions described here must have an array as its first 
operand, and it is in this sense that these are array functions. 

Extent Functions 

There are three functions that yield the values that describe a dimension 
of an array. They are: 

• The 'lbound' and 'hbound' functions, which yield the bounds of a given 
dimension of an array 

• The 'dimension' function, which yields the extent of a given dimension 
of an array 

These functions are useful for operations on an array whose bounds are given by 
variable expressions. They are essential for determining bounds or extents of 
an array that is a procedure parameter with '*' extents; this case is discussed 
later, in Section XII, "Procedure Invocation." 

9-53 AM83 



'lbound' AND 'hbound' FUNCTIONS 

References to these functions have the forms: 

lbound(A,N) 
hbound(A,N) 

where A must yield an array value and N must yield a scalar value that can be 
converted to a 17-bit integer. The result is a 24-bit integer whose value is 
the lower bound or ~ bound, respectively, of the Nth dimension of A. As a 
basis for examples, consider the program: 

P: proc; 
dcl a2(j,-1:k+2,0:3) float controlled; 

j = 6; 
k = 20; 
allocate a2; 
••• (Computation #1) 
end; 

As Computation #1 begins, the functions have the following values: 

lbound(a2,1) 
lbound(a2,2) 
lbound(a2,3) 

= 
= 
= 

1 
-1 

° 
hbound(a2,1) = 6 
hbound(a2,2) = 22 
hbound(a2,3) = 3 

If N does not designate a declared dimension of A, a reference to either of 
these functions is invalid. 

'dimension' FUNCTION 

A reference to the function has the form: 

dimension(A,N) dim(A,N) 

where A must yield an array value and N must yield a scalar value that can be 
converted to a 17-bit integer. The result is the extent of the Nth dimension of 
A. For any valid arguments, A and N: 

dim(A,N) = hbound(A,N) - lbound(A,N) + 1 

9-54 



Specia~ Array Functions 

There are three functions for special operations on arrays. 
corresponds to a well-known mathematical operation, as follows: 

Each 

• The 'sum' function, which performs the summation operation and is 
represented in mathematics by a capital sigma. 

• The 'prod' function, which performs the product operation and is 
represented in mathematics by a capital Qi. 

• The 'dot' function, which performs the dot product operation and is 
represented in mathematics by a dot written between two vector names. 

These functions are usually applied to 'float' values, and their use in that 
context is simple. However, they are also defined for 'fixed' values. 

sum' AND 'prod' FUNCTION 

References to the functions have the forms: 

sum(A) 
prod(A) 

where A must yield an array whose elements are arithmetic values. The result is 
a scalar value that is the sum or product of the elements of A. The data type 
of the result is the same as that of the argument, except for the precision of a 
fixed-point value. If A is 'fixed' with precision '(p,q)', then the precision 
of the result is: 

(71,q) 
(59,q) 

for 'binary' base 
for 'decimal' base 

As a basis for discussion, consider the program: 

P: proc; 
dcl a3(2,3) float dec(5); 
dcl a4(3) fixed dec(6,2); 

a3 = 5; 
a3(1,3) = 10; 
a4(1) = 6; 
a4(2) = .5; 
a4(3) = .04; 
... (Computation #1) 
end; 

As Computation #1 begins: 

sum(a3) = 00035eO 
sum(a4) = 0 ... 06.54 

prod(a3) = 31250eO 
prod(a4) = 0 ..• 0.12 

(59 digits) 

(59 digits) 

9-55 AM83 



'dot' FUNCTION 

A reference to the function has one of the forms: 

dot(A1,A2,P) 
dot(A1,A2,P,Q) 

where A1 and A2 must each yield a one-dimensional array whose elements are 
arithmetic values, and where P and Q cannot be general expressions but instead 
must be decimal integer constants (Q can be signed). The precision of the 
converted values of A1 and A2 is given by: 

Reference 

dot(A1,A2,P) 

dot(A1,A2,P,Q) 

Scaling 

fixed 

float 

fixed 

Precision 

(P,O) 

(P) 

(P,Q) 

The result is the dot product of A1 and A2; that is, 

where 

A1(m1)*A2(m2) + A1(m1+1)*A2(m2+1) + .•. + A1(m1+e)*A2(m2+e) 

m1 = lbound(Al,1) 
m2 = lbound(A2,1) 
e = dim(A1,1) 

The operands must satisfy the condition: 

dime A 1, 1) = dime A2, 1) 

CONVERSION OPERATIONS 

With the exception of the special conversion functions, every conversion 
function given here can be interpreted by determining the data type of the 
target and then referring to Section IV, "Value Conversion," for a description 
of the required conversion. Thus although many examples of conversion are shown 
here, the rules for conversion of values are not given here. 

The conversion functions of PL/I are both redundant and incomplete. There 
are three different ways to perform most, but not all, conversions; yet, for 
some important conversions, there is no way to perform the conversion that is 
acceptable to both Multics PL/I and Standard PL/I. This situation is discussed 
later in this section, under "Guidelines for Conversion Functions", and 
suggestions are given for the choice of a conversion function for various 
situations. 

9-56 AM83 



The designers of Multics PL/I took the view that a conversion between the 
three major types of computational value, 

arithmetic, 
character-string, and 
bit-string 

should be performed explicitly by means of a conversion function. Therefore, 
the compiler provides a warning message whenever such a conversion is performed 
implicitly. In compensation, to make explicit conversion easier, the designers 
added the nonstandard 'convert' function, whose interpretation is much simpler 
than that of the standard conversion functions. 

fundamental Conversion Function 

There is one function that can perform all of the conversions between 
scalar values that are possible in PL/I. It is: 

• The 'convert' function, which converts a given value to the data type 
of a given variable. 

A simple and safe policy for conversion is to use only the 'convert' function 
for all explicit conversion. A more advanced policy is described under 
"Guidelines for Conversion". 

'convert' FUNCTION* 

A reference to the non-Standard function has the form: 

convert(U,V) 

where U must be a reference to a scalar variable and V must yield a scalar 
value. rne result of the function reference is the value of V converted to the 
data type of U. The function can be used to establish any data type as the 
target for conversion, provided the conversion is valid in PL/I. The set of 
valid conversions is described earlier, in Section IV, "Value Conversion." 

9178 9-57 AMd3A 

I 



A specialized but important application of this function arises when a 
value of one major type must be assigned to a variable of a different major 
type. Suppose, for exa~ple, that the following declarations apply: 

dcl alpha float; 
dcl beta char(20); 

Within the scope of these declarations, the assignment statement: 

alpha = beta; 

is marked by a warning message by the Multics PL/I compiler because it requires 
an implicit conversion between major types. On the other hand. the assignment 
statement 

alpha = convert(alpha,beta}; 

is not marked because the conversion is explicit. Conversion between cajor 
types is usually considered to be important enough to merit an assignment 
statement of its own (rather than being performed with an expression); 
therefore, the usage just shown is common. 

In order to consider the function in a general way, suppose the following 
declarations apply: 

del fixdec62 fixed dec(6,2) based; 

del S ehar(12); 

• 
Within the scope of these declarations: 

eonvert(fixdec62,00028.3356) = 0028.33 
eonvert(fixdec62,55528.3356) = (size) 

convert(fixdec62,"-28") = 0028.00 

convert(fixdec62,"-1111.001b") = -0015.12 

convert(S,"123456789012") = "123456789012" 
convert(S,"1234567890123") = (stringsize) 

convert(S.100) = "~~~100~~~~~~" 
convert(S.-5.174ge-2) = "-5.174ge-002" 

The only purpose of the variable reference that is the first arguMent of 
'convert' is to supply a data type; the value of that variable is neither used 
nor set. The variable can be declared especially for use in 'convert' or it can 
be a variable that is used for other purposes as well. If the variable is 
especially declared, it should be 'based' so that no storage will be allocated 
for it. 

The '.' means that this function is not part of Standard PL/I. A use of 
this function does not perform an operation that cannot be performed in Standard 
PL/I, but a program that uses 'convert' must be slightly changed to make it 
Standard. More is said of this under "Guidelines for Conversion Functions". 

9-58 AH83 



Conversion to Arithmetic Data Types 

There are seven functions for conversion to an arithmetic data type, one 
for each of the attributes that are used in an arithmetic data type plus the 
'imag function. They are: 

• The 'real' and 'complex' functions for mode conversion 

• The 'fixed' and 'float' functions for scale conversion 

• The 'binary' and 'decimal' functions for base conversion 

• The 'precision function for precision conversion 

These functions can be used individually, but they should not be compounded, as 
in: 

x = float(binary(y)) 

because the result is difficult to predict and often is not what is desired. 

'real' FUNCTION FOR CONVERSION 

A reference to this function has the form: 

real(Z) 

where Z must be 'complex'. The result is a 'real' value that is the value of 
the real part of Z. Except for the change in the mode attribute, the storage 
type of the result is the same as the storage type of Z. If the imaginary part 
of the value of Z is zero, then the result has the same mathematical value as Z, 
and the function therefore performs a conversion from 'complex' to 'real' mode. 
For example: 

real(-6.0000e3+0.0000eOi) = -6.0000e3 

real(.111000111e8b+.000000000eObi) = .111000111e8b 

If the imaginary part is not zero, the function does not perform a pure 
conversion operation, but rather an operation of complex arithmetic, which takes 
the real part of a complex number. 

9-59 AM83 



'complex' FUNCTION FOR CONVERSION 

A reference to this function has the form: 

complex(R,O) 

where R must be 'real'. The result is a 'complex' value whose real part is the 
value of R and whose imaginary part is zero. The result has the same 
mathematical value as R, and the function (in this form) therefore performs a 
conversion from 'real' to 'complex'. Complex computations are usually performed 
with 'float' values; and for such values the storage type of the result is the 
same as the storage type of R except for the desired change of mode. Examples 
are: 

complex(-6.0000e3,O) = -6.0000e3+0.0000eOi 

complex(.111000111e8b,O) = .111000111e8b+.OOOOOOOOOeObi 

When the second argument of the 'complex' function is not zero, the function 
does not perform a pure conversion operations, but rather an operation of 
complex arithmetic as discussed earlier under "The 'complex' Function for 
Arithmetic". 

'fixed' FUNCTION 

A reference to thiR function has one of the forms: 

fixed(X) 
fixed(X,P) 
fixed(X,P,Q) 

where X must yield an arithmetic value and where P and Q cannot be general 
expressions but instead must be given as decimal integer constants (Q can be 
signed). The result is the value of X converted to a certain storage type. The 
storage type of the result is determined as follows: 

Reference 

fixed(X) 

fixed(X,P) 

fixed(X,P,Q) 

Data Type of X 

mode fixed base(p,q) 
mode float base(p) 
char(m) 
bit(m) 

9-60 

Data Type of Result 

mode fixed base(p,q) 
mode fixed base(p,O) 
real fixed dec(71,O) 
real fixed bin(63,O) 

as above, but with 
precision '(P,O)' 

as above, but with 
precision '(P,Q)' 

A!v183 



Examples are: 

fixed(-0435.241) 
fixed(-0435.241,5,2) 
fixed(-0435.421,4,2) 
fixed(-0435.421,4) 

= 
= 
= 
= 

-0435.241 
-435.24 
(size) 
-0435. 

fixedC+000111000.000b,9,3) = +111000.000b 

fixedC+000243.e2) = +024300. 

fixedC"-5.823e2") = -0 •.• 582. 
fixed("-5.823e2",7,2) = -00582.30 

fixedCI110b",4,1) = 006.0 
fixedC"110"b,4,1) = 110.0b 

(59 digits) 

fixedC-81143.e-2+68134.e-7i,3) = -811.+000.i 

'float' FUNCTION 

A reference to this function has one of the forms: 

float(X) 
float(X,P) 

where X must yield an arithmetic value and where P cannot be a general 
expression but instead must be given as a decimal integer constant. The result 
is the value of X converted to a certain storage type. The scaling attribute of 
the result is determined as follows: 

Reference Data TYQe of X Data TYQe of Result 

floatCX) mode fixed base(p,q) mode float base(p) 
mode float base(p) mode float base(p) 
char(m) real float dec(59) 
bit(m) real float bin(63) 

float(X,P) as above, but with 
precision ' (P) , 

Examples are: 

float(-89241e3) = -89241e3 
float(-89241e3,3) = -892e5 

float(.111000111000e4b,12) = +.111000111000e4b 

float (" f5f52002HHH5" ) = 0 .•• 200eO 
float("~~200~~~~lIi5) = 00200eO 

9-61 

(59 mantissa digits) 

AM83 



'binary' FUNCTION 

A reference to this function has one of the forms: 

binary(X) 
binary(X,P) 
binary(X,P,Q) 

bin(X) 
bin(X,P) 
bin(X,P,Q) 

where X must yield an arithmetic value and where P and Q cannot be general 
expressions but instead must be given as decimal integer constants (Q can be 
signed). The result is the value of X converted to a certain storage type that 
is determined as follows: 

Reference 

bin(X) 

Data Type of X 

mode fixed bin(p,q) 
mode fixed dec(p,q) 

Data Type of Result 

mode fixed bin(p,q) 
mode fixed bin(p1,q1) 

p1 = ceil(p*3.32)+1 
q1 = ceil(q*3.32) for q >= 0 
q1 = -ceil(-q*3.32) for q < 0 

mode float bin(p) 
mode float dec(p) 

char(m) 
bit(m) 

mode float bin(p) 
mode float bin(p1) 

p1 = ceil(p*3.32) 
real fixed bin(71,O) 
real fixed bin(71,O) 

bin(X,P) as above, but with precisions 
'(P,O)' for a 'fixed' result and 

bin(X,P,Q) 

Examples are: 

(this reference is not 
valid if X is 'float') 

'In" -p __ _ '.f='1 __ +-' .....",·,Id ... "l?-
\£) .I. Vi a .I..l.vav 1 C;u\,A.J..v 

as above, but with precision 
'(P,Q) , 

bin(-1110111.0111b) = -1110111.0111b 
bin(-1110111.0111b,8) = -01110111b 

bin(28.25) = 00011100.0100000b 

bin(-.11101110111e8b) = -.11101110111e8b 

bin("28.25",12,6) = 011100.010000b 

bin("111000111"b,12,2) = 0111000111.00b 

9-62 AM83 



'decimal' FUNCTION 

A reference to this function has one of the forms: 

decimal(X) 
decimal(X,P) 
decimal(X,P,Q) 

dec(X) 
dec(X,P) 
dec(X,P,Q) 

where X must yield an arithmetic value and where P and Q cannot be general 
expressions but instead must be given as decimal integer constants (Q can be 
signed). The result is the value of X converted to a certain storage type that 
is determined as follows: 

Reference 

dec(X) 

dec(X,P) 

Data Type of X 

mode fixed bin(p,q) 

mode fixed dec(p,q) 
mode float bin(p) 

mode float dec(p) 
char(m) 
bit(m) 

dec(X,P,Q) (this reference is not 
valid if X is 'float') 

Examples are: 

dec(-0435.241) = -0435.241 
dec(-0435.241,5,3) = (size) 

dec(1111.110000b) = 015.75 

dec(7.8100eO,7) = 7.810000eO 

dec("28.25",6,3) = 028.250 

dec("110.110b",4,3) = 6.750 

9-63 

Data Type of Result 

mode fixed dec(pl,q1) 
p1 = ceil(p/3.32) + 1 
q1 = ceil(q/3.32) for q >= 0 
q1 = -ceil(~q/3.32) for q < 0 

mode fixed dec(p,q) 
mode float dec(p1) 
--p1 = ceil(p/3.32) 
mode float dec(p) 
real fixed dec(59,0) 
real fixed dec(59,0) 

as above, but with precisions 
'(P,O)' for a 'fixed' result and 
'(P)' for a 'float' result 

as above, but with precision 
'(P,Q)' 

AI'183 



precision FUNCTION 

A reference to this function has one of the forms: 

precision(X,P) 
precision(X,P,Q) 

prec(X,P) 
prec(X,P,Q) 

where X must yield an arithmetic value and where P and Q cannot be general 
expressions but instead must be given as decimal integer constants (Q can be 
signed). The result is the value of X converted to a certain storage type that 
is determined as follows: 

Reference 

prec(X,P) 

prec(X,P,Q) 

Examples are: 

Data Type of X 

mode fixed base(p,q) 
mode float base(p) 
char(m) 
bit(m) 

(this reference is not 
valid if X is 'float') 

prec(18.7809,5,1) = 0018.7 

prec(18.7809,5) = 00018 

Data Type of Result 

mode fixed base(P,O) 
mode float base(P) 
real fixed dec(P,O) 
real fixed bin(P,O) 

as above, but with 
precision (P,Q) 

prec(-111000111.11b,10) ~ -0111000111b 

prec(-8.2315eO,7) = -8.231500eO 

Conversion to String Data Types 

There are two functions for conversion to string data types. They are: 

• The 'char' function, which converts a value to a character string. 

• The 'bit' function, which converts a value to a bit string. 

'character' FUNCTION 

A reference to this function has one of the forms: 

character(S) 
character(S,I) 

char(S) 
char(S,I) 

where S must yield an arithmetic value and I must be a scalar value that can be 
converted to a 24-bit integer. The result is a character string whose maximum 
length is determined as follows: 

Reference Data Type of Result 

char(S) char(*) nonvarying 

char(S,I) char(I) nonvarying 

9-64 At183 



The '*' means "exactly enough characters to represent the value of S after it 
has been converted to a 'character' value". Examples are: 

char("abcde") 
char( lf abcde",7) = 
char(labcde",3) = 

= "abcde" 
"abcdel'Sl'S" 
(stringsize) 

char("11011"b) 
char("11011"b,7) = 
char("11011"b,3) = 

= "11011" 
"11011l'Sl'S" 
(stringsize) 

char(+81993e6) 
char(+81993e6,14) 
char(+81993e6,10) 

= "l'S8.1993e+010" 
= "l'S8.1993e+Ol0l'Sl'S" 
= (stringsize) 

char(-0820) 
char(-0820,12) 
char(-0820,6) 

= "l'Sl'Sl'S-820" 
= "l'Sl'Sl'S-820l'Sl'Sl'Sl'Sl'S" 
= (stringsize) 

char(.1011001 ••• e7b,20) = "l'S8.91250000e+001l'Sl'Sl'Sl'S" 

In the last example, 
'float(27)'. 

" " represents enough zeros to make the argument 

'bit' FUNCTION 

A reference to this function has one of the forms: 

biteS) 
bit(S,I) 

where S must yield an arithmetic value and I must yield a scalar value that can 
be converted to a 24-bit integer. The result is a bit string whose maximum 
length is determined as follows: 

Reference 

biteS) 

bit(S,I) 

Data Type of Result 

bit(*) nonvarying 

bit(I) nonvarying 

The '*' means "exactly enough characters to represent the value of S after it 
has been converted to a 'bit' value". Examples are: 

bit("11011"b) = "11011"b 
bit("11011"b,7) = "1101100"b 
bit("11011"b,3) = (stringsize) 

bit("11011") = "11011"b 
bit ( !I 1 1 0 1 2!!) ::: (c 0 n v e r s ion) 

bit(.1101111e5b) = "11011"b 
bit(18.983eO) = "00000000000010010"b 

bit(-065.29) = "0001000001"b 
'bit(-065.29,14) = "00010000010000"b 

9-65 AM83 



Conversion between Locative Data Types 

There are two functions for conversion between the two locative data types. 
They are: 

• The standard 'pointer' functions, which converts an offset value to a 
pointer. 

• The 'offset' function, which converts a pointer value to an offset. 

These functions are used when locative values are used in connection with area 
values. 

STANDARD 'pointer' FUNCTION 

A reference to the function has the form: 

pointer(X,A) ptr(X,A) 

where X must yield a scalar offset value and A must yield a scalar area value. 
X must designate a storage unit that is currently allocated in the area A; and 
the result is a 'pointer' value that designates the same storage unit. Thus the 
function converts an 'offset' value to a 'pointer' value. This function has an 
'area' value as its second argument, and is distinguished from the nonstandard 
'pointer' function by that feature. 

'offset' FUNCTION 

A reference to the function has the form: 

offset(P,A) 

where P must yield a scalar pointer value and A must yield a scalar area value. 
P must designate a storage unit that is currently allocated in the area A; and 
the result is an 'offset' value that designates the same storage unit. Thus the 
function converts a 'pointer' value to an 'offset' value~ 

Special Conversion Functions 

There are three special functions for conversion. They are: 

• The 'string' function, which converts a packed aggregate of string 
values into a scalar string value. 

• The 'unspec' function, which converts any value into a bit string that 
represents its actual representation in memory. 

• The 'valid' function, which checks, after the fact, whether or not a 
given string can be assigned to a given pictured variable. 

These functions are used In 
special input/output. 

applications that use storage 

9-66 

sharing and 

AIv183 



'string' FUNCTION 

A reference to the function has the form: 

string(U) 

The function reference is interpreted as follows: 

• If U yields a scalar bit-string value, the result is U. 

• If U yields a scalar value of any other computational type, the value 
is converted to 'char(*)' and the converted value is the result. The 
'*' means "exactly enough characters to represent the value of U when 
it has been converted to a 'character' value". 

• If U yields an aggregate value whose components are unaligned, 
nonvarying, bit-string variables, the result is a scalar bit-string 
value that is the concatenation of all of the components of the value 
of U. 

• If U yields an aggregate value whose components are unaligned, 
nonvarying, character-string or numeric-pictured variables, the result 
is a scalar character-string value that is the concatenation of all of 
the components of the value of U. 

If none of these cases apply, then the reference is invalid. This is the only 
conversion function that can convert an aggregate value to a scalar value in an 
implementation-independent way. It is very useful in certain specialized 
applications. For example, consider the following program: 

dcl 01 member unaligned, 
02 name char(30), 
02 address char(30), 
02 citystate char(30); 

del smem char(90); 

smem = string(member); 

end; 

In this program name', 'address', and 'citystate' can be manipulated as 
individual character strings, but when it is useful to have them as a single 
string, they can be assigned to smem through the 'string' function. The 
assignment statement is equivalent to: 

smem = name: :address: :citystate; 

The 'string' function is closely related to string overlay defining which is 
discussed earlier, in Section VII, "Storage Management." 

The pseudo-variable named 'string' is described later, in Section X, "Value 
Assignment." 

9-67 AM83 



unspec FUNCTION 

A reference to the function has the form: 

unspec(U) 

where U must be a reference to a variable. The result is a bit-string value 
that is the Multics internal representation of the value of U, as described in 
Section VII, "Storage Management." Consider, for example, the program: 

P: proc; 
dcl 01 item unaligned, 

02 count fixed, 
02 code char(2), 
02 rate dec(2,'); 

count = 67; 
code = "CC"; 
rate = -0.5; 

end; 

After the three assignment statements, the values of the unspec function are: 

unspec(count) = "000000000001000011"b 
unspec(code) = "xx1000011xx1000011"b 
unspec(rate) = "xx0101101xx0110000xx0110101"b 

unspec(item) = "000000000001000011xx1000011xx1000011 
xx0101101xx0110000xx0110101"b 

The xx is used for the two high-order bits of each character code because 
these bits are reserved in Multics. This example uses a variable that is 
'unaligned', but (in contrast to the 'string' function) there is no restriction 
on the variable mentioned in the 'unspec' function. If this example were 
repeated without the 'unaligned' attribute, 'unspec(item)' would contain 108 
bits instead of 63 bits. 

One use of the 'unspec' function is as follows: The contents of a variable 
is converted to a bit-string by means of the 'unspec' function and the result is 
output as a record to some storage device; later, the string is input and is 
assigned back to a variable of exactly the same storage type by means of the 
'unspec' pseudo variable. This use is a valid and standard use of PL/I, because 
it produces the same result regardless of the particular internal representation 
of a given implementation. Other uses, which test or manipulate the value of 

unspec' are not valid in Standard PL/I because they are, of course, 
implementation-dependent. 

The pseudo-variable named unspec is described later, in Section X, "Value 
Assignment." 

9-68 A!'183 



'valid' FUNCTION 

A reference to the function has the form: 

valid(S) 

where S must be a scalar pictured variable. The result is "1"b or "O"b, 
depending on whether or not the value contained in S can be edited into the 
picture declared for S. The function is used in connection with storage sharing 
to check to see if an invalid value has been assigned to the pictured variable 
by way of an equivalenced variable that does not have a picture. For example, 
consider the program: 

P: proc; 
dcl S1 pic"9999"; 
dcl S2 char(4) based; 
dcl P pointer; 
P = addr(S1); 

P->S2 = "-500"; 
.•. (Computation #1) 
end; 

This program sneaks an invalid character-string value into the pictured numeric 
variable 'S1'; that is, an assignment is made to 'P->S2' when 'P' points to 
'S1'. If the assignment had been written as: 

S1 = "-500"; 

then the conversion condition would have occurred. The 'valid' function can 
be used to check for such invalid assignments. The value of the function as 
Computation #1 begins is: 

valid(S1) = "O"b 

This indicates that the value of 'S1', a sign and three decimal digits is not 
consistent with the picture, four decimal digits. 

Guidelines for Conversion Functions 

For many data type conversions, there are three ways to effect the 
conversion: 

• assignment to a variable of the desired storage type and related forms 
of implicit conversion 

• use of one of 
functions whose 
'fixed' 

the standard conversion functions; that is, the 
names coincide with data type attributes, such as 

• use of the nonstandard 'convert' function 

9-69 AM83 



Suggestions for a choice from among these possibilities are given here. 

If the target of the assignnent is arithmetic, then special care must be 
exercised because the compounding of some standard conversion functions produces 
results which are undesirable. Therefore: 

1. When a conversion can be effected by a single standard conversion 
function, that function should be used. 

2. When a conversion can be effected by a mode function compounded with a 
single scaling, base, or precision function, then those functions 
should be used. 

3. When neither Rule 1 nor Rule 2 applies: 

a. If it is unlikely that the program will be transported from 
Multics to some other PL/I implementation, the 'convert' function 
should be used. 

b. If transportation of the program is likely, the implicit 
conversion should be used. If Multics generates a warning 
message because of the implicit conversion, the message should be 
ignored. 

If the target of the assignment is character-string or bit-string, then the 
standard functions should be used in preference to the 'convert' function 
because they produce satisfactory results without departing from the standard. 

Some Multics programmers, who are not concerned about a departure from the 
standard, make consistent use of the 'convert' function to indicate all major 
conversions in a uniform way. In this case, the choice is a matter of 
programming style. 

SYSTEM VARIABLE OPERATIONS 

The PL/I interpreter maintains certain variables that cannot be accessed 
directly by a program. The purpose of most of the built-in functions described 
here is to provide a restricted form of access to these variables. 

For example, there is a system variable that contains an encodement of the 
time of day, and this value can be retrieved by the 'time' built-in function but 
cannot be set by an ordinary PL/I program. For another example, there is a 
system variable for each 'print' file that is open that contains the current 
page number of the file, and this value can be retrieved by the 'pageno' 
function and set by the pageno' pseudo-variable. 

Several functions included here do not access system variables, but those 
functions are highly specialized, nonstandard functions that do depend heavily 
on the implementation of PL/I. 

9-70 AM83 



System Counter Functions 

There are six functions that take their values from counters maintained by I 
the PL/I interpreter. They are: 

• The 'lineno' and 'pageno' functions, which yield the appropriate 
integer values for a given 'print' file. 

• The 'clock' and 'vclock' 
microseconds. 

functions, which yield appropriate values in I 

The 'time' and 'date' functions, which yield appropriate string 
values. 

These functions are of general interest. 

'lineno' AND 'pageno' FUNCTIONS 

References to these functions have the forms: 

lineno(F) 
pageno(F) 

where F must yield a scalar file value that has the 'print' attribute. The 
result is a 35-bit integer that is the current line number or ~ number, 
respectively, of the file F. The value is obtained from the file-state block 
designated by F. 

The pseudo-variable named 'pageno' is described later, in Section X, "Value 
Assignment." 

'clock' AND 'vclock' FUNCTIONS* 

References to these non-Standard functions have the forms: 

clock 
vclock 

clock() 
vclock() 

The result is a fixed-point, binary, real value of precision (71,0). For 
'clock' the result is the number of microseconds since 0000 hours January 1, 
1901 Greenwich mean time. For 'vclock' the result is the number of microseconds 
of virtual CPU time used by the calling process. 

'time' AND 'date' FUNCTIONS 

References to these functions have the forms: 

time 
date 

time() 
date() 

The result of the 'time' function is a character string of length 12 whose value 
is: 

2 characters for the hour 
2 characters for the minute 
2 characters for the second 
6 characters for the microseconds 

9/78 9-71 AM83A 

I 



The result of the 'date' function is a character string of length six whose 
value is: 

2 characters for the year 
2 characters for the month 
2 characters for the day 

For example: 

time = 220318130211 
date = 140103 

is interpreted as: 

10:03:18.130211 pm 
July 3, 1974 

Storage Management Functions 

I Three functions specifically designed for storage management are: 

I 

• The 'allocation' function, which yields the current number of 
allocations for a 'controlled' variable. 

• The 'size' function, which yields the number of Multics words 
necessary to allocate a given variable. 

• The 'currentsize' function, which yields the amount of storage 
presently occupied by the specified reference. 

These functions are used in advanced applications where special storage 
management techniques are required. 

'allocation' FUNCTION 

A reference to the function has the form: 

allocation(U) allocn(U) 

where U must be a major (level one) controlled variable reference. The result 
is a l1-bit integer that is the number of generations of U that are currently 
allocated. Consider the program: 

9/78 

P: proc; 
dcl a(100) char(20) controlled; 
••• (Computation 1) 
allocate a; 
••• (Computation 2) 
allocate a; 
••. (Computation 3) 
free a; 
free a: 
••. (Computation 4) 
end; 

9-72 AM83A 



The value of 'allocation(a)' is: 

0, 1, 2, and 0 

during computations 1, 2, 3, and 4, respectively. 

'size' FUNCTION* 

A reference to this non-Standard function has the form: 

size(U) 

where U must be a simple reference to a major (level-one) variable. The result 
is a 24-bit integer whose value is the number of words that would be necessary 
to allocate a storage unit for U at the time the 'size' function is evaluated. 
When U is declared with variable extent expressions, the value of this function 
depends on those expressions. For example, consider the following declarations: 

If i = 1O, 

dcl s char(2*i) controlled; 
dcl 01 x based 

02 n fixed 
02 a(i+1 refer(n» float; 

dcl i fixed; 

then: 

size (s) = 5 
size (x) = 12 
size (i) = 1 

'currentsize' FUNCTION* 

A reference to this non-Standard function has the form: 

currentsize(X) 

where X must be a single reference to a major (level-one) variable. 
The result is a fixed-point, binary, real number of precision (19,0) whose value 
is the number of 36-bit words occupied by the generation of storage obtained by 
evaluating the reference X. Note that when X is a reference to a based variable 
with a 'refer option', this function returns a value that depends on the 
reference contained in the 'refer option' not on the 'expression' preceding the 
'refer option'. For example: 

dcl p ptr; 
dcl 1 x based(p), 

2 n fixed, 
2 a(i+1 refer(n» float; 

dcl i fixed; 

If i = 10, and the statement 'allocate' x is executed; then: 

size(x) = 12 
currentsize(x) = 12 

Then if i is assigned the value 1: 

9/78 

size(x) = 3 
currentsize(x) = 12 

9-73 AM83A 

I 

I 



I 

I 

Resource Reservation Function 

Two functions dedicated to the problem of resource reservation are: 

• The 'stac' function, which places a bit string in a word if the word 
is zero, and does so in a single, indivisible operation. 

• The 'stacq' function, which tests and sets a word of storage in a 
single operation. 

These functions are used in advanced applications that require the coordination 
of Multics processes. 

'stac' FUNCTION* 

A reference to this non-Standard function has the form: 

stac(P,B) 

where P must yield a scalar pointer value and B must yield a scalar bit string 
of length 36. The following steps are performed: 

1. The word designated by the pointer P is tested. The test succeeds if 
all bits of the word are zero. 

2. If the test succeeded, the bit-string value B is assigned to the word 
designated by P. 

3. If the test succeeded, the value of the function is "1"b; otherwise, 
it is "onb. 

The critical feature of the function is: 

When this function is interpreted, steps 
indivisible operation of the hardware of 
interrupted. 

and 2 are performed by an 
Multics and cannot be 

The purpose of the function can be explained by describing a situation in which 
the function is not used and a serious error results. Suppose a certain word in 
storage, word x, is used to hold the reservation of a particular Multics 
resource, such as an input/output device, that can be used by only one process 
at a time. If the resource is in use, then it contains a nonzero bit-string 
that identifies the process that is using the resource; otherwise, the word 
contains a zero bit-string. Now suppose that both Process A and Process B seek 
to reserve the resource at nearly the same time. The following sequence of 
operations occur: 

9/78 

1. Process A tests word x and finds that it is zero. 
assign a value to word x when it is interrupted. 

It is about to 

2. Process B tests word x, finds that it is zero, and assigns a value to 
it indicating that Process B has claimed the associated resource. 
Some time later, Process B is interrupted. 

3. Process A resumes and assigns 
associated resource. 

9-74 

a value to word x claiming the 

AM83A 



As a result of this sequence, each process continues execution under the 
incorrect assumption that it has sole claim to the resource associated with word 
x. If the 'stac' function is used to set word x, this sequence cannot occur 
because there can be no interruption between the testing and setting of word x. 

'stacq' FUNCTION* 

A reference to this non-Standard function has the form: 

stacq(L, A, Q) 

where L must be an aligned, scalar bit-string variable of length 36 and A and Q 
must each be bit-strings of length 36 or less. The following steps are 
performed: 

1. Land Q are compared. 

2. If they are equal, the value of A is assigned to L and the value of 
the function is "1"b. 

3. If they are not equal, no assignment is performed and the value of the 
function is "O"b. 

The critical feature of this function is: 

When this 
indivisible 
interrupted. 

function is 
operation 

interpreted, all steps are performed by an 
of the hardware of Multics and cannot be 

The purpose of this 
'stacq' function simply 
test to succeed. 

9/78 

function is the sa~e as for the 'stac' function. The 
allows the word tested to be other than zero for the 

9-74.1 AMB3A 



This page intentionally left blank. 

9/78 AM83A 



on Condition Functions 

When the PL/I processor detects an exceptional condition, it invokes an 
on-unit. This action is, in effect, an invocation of a procedure that does not 
have parameters; instead, the necessary data is communicated through system 
variables. These system variables are accessed by the 'on'-condition built-in 
functions. 

For example, the exceptional condition 'key' occurs when an attempt is made 
to input a keyed record that does not exist. To support the processing of this 
condition, the key (a character string) for which no record could be found is 
placed in a system variable provided for the purpose. The on-unit that 
processes the condition can use the built-in function 'onkey' to retrieve the 
value of this system variable. 

Every system variable associated with a condition is, in fact, a stack of 
variables and thus resembles a 'controlled' variable. Each time a condition 
occurs and is signalled, a new variable is allocated on each associated stack 
and its value is set. Each time the handling of a condition is complete, the 
most recent variable on each associated stack is freed and its value is lost. 
PL/I provides stacks for condition parameters because condition handling can be 
recursive; that is, a condition can occur while a previous occurrence of the 
same condition is being handled. 

Before execution of a program begins, the PL/I processor allocates a 
variable for each of the system variables under discussion. This variable is 
set to a single blank character for the 'onchar', a zero for 'oncode', and a 
null string for other on-condition functions. When an 'on' condition is not 
currently being handled, the associated system variables yield the values just 
mentioned. 

The 'on' condition built-in functions are meaningful only in the context of 
the 'on' conditions themselves; these are discussed later, under "Condition 
Handling". The whole subject is relevant only to intermediate or advanced 
programming applications, where the user 
handling of conditions provided by PL/I. 

9-75 AM83 



'onloc' FUNCTION 

A reference to the function has the form: 

onloc onloc() 

The value of this function is set whenever any condition occurs. When the 
condition is signalled, a character-string value that designates the most 
recently entered procedure block is placed on the stack associated with the 
'onloc' function. Suppose, for example, the following program is executed: 

P: proc; 
dcl y float; 

INV: proc(X) returns(float); 
dcl X float; 
return( 1/X); 
end; 

Y = INV(O); 

end; 

When the division is performed, the 'zerodivide' condition occurs and is 
signalled; and the value of the function is: 

onloc = "INV" 

When no condition is being handled, the value of the function is: 

onloc = "" (the null string) 

'oncode' FUNCTION 

A reference to the function has the form: 

oncode oncode() 

The value of this function is set whenever any PL/I condition occurs. When the 
condition is signalled, a 35-bit integer that indicates the cause of the 
condition is placed on the stack associated with the 'oncode' function. Hhen no 
condition is being handled, the value of the function is: 

oncode = 0 

Because the run-time subroutines that support the execution of PL/I programs are 
subject to modification and improvement, the list of error code values is 
subject to change and is not published in this document. Even when these codes 
are published, a program whose logic depends on a value of 'oncode' may not run 
properly on other implementations of PL/I or on future versions of Multics PL/I. 
Generally, the only valid use of the value of 'oncode' is as part of an error 
message. 

9-76 



'onkey' FUNCTION 

A reference to the function has the forn: 

onkey onkey() 

The value of this function is set whenever a keyed input/output operation is in 
progress and one of the following conditions is signalled for that operation: 

end file key record transmit 

When one of these conditions is signalled, the key given in the input/output 
statement is placed on the stack associated with 'onkey'. Consider, for 
example, the statement: 

read file(alpha) key("beta"); 

Suppose that file 'alpha' contains no record whose key is 'beta'. Then the key 
condition occurs and: 

onkey = "beta" 

When no 'key' condition is being handled, the value of the function is: 

onkey = "" (the null string) 

'onfield' FUNCTION 

A reference to the function has the form: 

onfield onfield() 

The value of this function is set when the 'name' condition is signalled. The 
'name' condition occurs during data-directed stream input/output when a name is 
encountered that is not mentioned in the list in the input statement. When the 
condition is signalled, the character string just extracted from the input 
stream is placed on the 'onfield' stack. Suppose, for example, the statement: 

get file(sysin) data(alpha,beta,gamma); 

is executed when the input stream is: 

alpha=28.3,beta=61.4,gamma=19.2; 

then the 'name' condition is signalled and the value of the function is: 

onfield = "betta=61.4" 

When no 'name' condition is being handled, the value of the function is: 

on field = '"' (the null string) 

9-77 AM83 



'onchar' AND 'onsource FUNCTIONS 

References to these functions have the forms: 

onchar 
onsource 

onchar() 
onsource() 

The value of 'onsource' is the character string that is on the top of the stack 
associated with the 'onsource' function. The value of 'onchar' is a single 
character, the conversion character in the character string that is on the top 
of the stack associated with the onsource' function. 

The 'onsource' and 'onchar' functions are associated with the conversion 
condition. The 'conversion' condition occurs when an attempt is made to convert 
a character-string value to an arithmetic or pictured value and the attempt 
fails because the given character-string value has the wrong form. The 
conversion character is defined as follows: 

• If the given character-string can be corrected only by changing some 
characters, then the conversion charactAr is the leftmost character 
that must be changed in any correction of -~e given character-string. 

• If the given character-string can be corrected simply by adding some 
characters at the end, then the conversion character is the last 
character of the given character-string. 

When no conversion 
functions are: 

condition is being handled, the values of the 

onsource = "" 
onchar ="" 

As a basis for an example of these functions, consider the following 
assignment statement: 

x = float(y); 

Suppose that y is a character-string variable and its value is: 

"-12300z5" 

When the statement is executed and an attempt is made to evaluate the 'float' 
built-in function, the processor finds that the string "-12300z5" is not a valid 
representation of an arithmetic value. When the 'conversion' condition occurs: 

onsource = "-12300z5" 
onchar = liZ" 

Now suppose that the value of y is: 

"-12300e+" 

When the assignment statement is executed, the processor finds that 
is a valid beginning for a representation of an arithmetic value; 
it could be corrected by adding the character '5'. Therefore: 

onsource = 1l-12300e+1: 
onchar = "+" 

the string 
for example, 

i~Jf;8 3 



Finally, suppose that the value of y is: 

"-12300+5" 

Once again, the processor finds that the given character string is not a valid 
representation for an arithmetic value. A human reader might say that the e 
that separates the mantissa from the exponent is missing, so that the value of 
'onchar' should be '+'. However, the PL/I processor recognizes that the 
representation can be corrected by adding an 1 at the end to produce a 
representation of a 'complex' value. Therefore: 

onsource = "-12300+5" 
onchar = "5" 

The pseudo-variables onsource 
Section X, "Value Assignment." 

and 'onchar' are described later, in 

'onfile' FUNCTION 

A reference to this function has the form: 

onfile on file ( ) 

The value of this function is set whenever an input/output operation is in 
progress and one of the following conditions is signalled for the operation: 

conversion 
name 

endfile 
record 

endpage 
transmit 

key 
undefined file 

When one of these conditions is signalled, the file-name of the file on which 
PL/I is operating is placed on the stack associated with the 'onfile' function. 
For example, consider the statement: 

get file(alpha) list(X); 

If the hardware fails to correctly transmit the value of X, the 'transmit' 
condition is signalled and the value of the function is: 

onfile = "alpha" 

Observe that the value of 'onfile' is not a file value; it is a character string 
that is the identifier that designates the file value. When none of the 
conditions listed above is being handled, the value of the function is: 

onfile = "" (the null string) 

9-79 A~183 



SECTION X 

VALUE ASSIGNMENT 

The assignment statement sets the value of a variable. This appears to be 
a simple action; however, two complications arise. First, the assigned value 
can have a different storage type from the target variable, and therefore an 
assignment statement sometimes requires a complicated conversion from one 
storage type to another. A thorough understanding of the rules given earlier, 
in Section IV, "Value Conversion," is required. Second, the order in which the 
actions of assignment are performed can, in certain special cases, affect the 
outcome of the assignment. These problems are discussed later in this section. 

The description of assignment statements in this section begins with 
preliminary examples; these illustrate the rules in an informal way. Next, the 
form and interpretation of the assignment statement is defined in detail. 
Finally, the pseudo variables, which are special constructs associated with 
value assignment, are defined. 

EXAMPLES OF ASSIGNMENT STATEMENTS 

The following examples are given to illustrate the considerable variety of 
ways in which assignment statements can be used. Examples are given for each of 
the major data types: arithmetic, string, address, area, and array. 

Arithmetic Assignment Statements 

Most of the assignment statements in a typical program are short and 
simple. For example, consider: 

i = m+1; 

where both of the variable names are declared 'fixed'. This statement evaluates 
the right-hand-side expression 'm+1' and obtains an 18-bit integer. That value 
is converted to a 17-bit integer for assignment, and, if the high-order bit was 
one, the 'size' condition occurs. Finally, the converted value replaces the 
previous value of the target variable, 'i'. 

An assignment statement 
still be conceptually simple. 

can have a large right-hand-side expression and 
For example, consider: 

z = Cx-1)**2 - (a+3*b)*(x-1) + (a-3*(b/c)); 

where all the variable names are declared 'float'. This statement is programmed 
entirely in floating-point binary and does not require any conversion 
operations. It is typical of engineering and scientific applications. 

10-1 AM83 



String Assignment Statements 

The effect of a string assignment depends on ~Jhether or not the target 
variable is 'varying'. For example, consider: 

S1 = "abc"; 

where 'S1' is declared 'char(5) 
"abciSkS" (adding two blanks to the 
conversion to a 'char(5) nonvarying 

nonvarying'. This statement sets 'S1' to 
string) because that is the result of 
target. In contrast, consider: 

S2 = "abc"; 

where ' S2' is declared ' char (5) varying'. This sta temen t sets ' S2' to "abc". 
~f t~e a~si~ned value is longer than the maximum size of the target, the 
strlngslze condition occurs, as described earlier, In Section IV, "Value 

Conversion." 

A construct called a pseudo-variable can be used as 
assignment. A frequently used pseudo-variable is 'substr'. 
of a string variable to be changed .. For example, consider: 

substr(S,3,2) = "xx"; 

the target of an 
It allows a portion 

where 's' is declared 'char(8) nonvarying'. This statement sets the third and 
fourth characters of S to "xx" and leaves the other characters unchanged. 

The major ~ of computational values are arithmetic, 
and bit string. A conversion between major types is 
recommended, in Multics PL/I. For example, consider: 

x = "5"; 

character 
allowed, 

string, 
but not 

where 'X' is declared 'dec(6,2)'. This statement assigns the value '0005.00' to 
'X' (which is correct) in both Multics and Standard PL/I; but in Multics PL/I, 
the compiler marks the statement with a warning. This matter is discussed 
earlier, under "Conversion Operations" in Section IX, "Operations." 

Address Assignment Statements 

The assignment of address values is an advanced feature of PL/I. 
especially important in list-processing. For example, consider: 

P = P->cell.next; 

It is 

where 'P' is declared 'pointer' and 'cell' is a based structure whose member 
'next' is declared 'pointer'. A statement of this form can be used to advance 
from one element of a list to the next element provided, of course, that the 
list structure is suitably defined. 

10-2 A1183 



Area Assignment Statements 

An assignment statement can be used to copy the contents of one area 
variable into another. The effect is to copy the given area exactly as it 
appears, without any changes in the offsets or the current extent of the area. 
Consider the statement: 

A 1 = A2; 

where 'A1' and 'A2' are declared 'area(100)' and 'area(200)', respectively. If 
the current extent of the 'area' value of 'A2' is greater than 100 (the maximum 
value of the 'area variable 'A1'), then the 'area' condition occurs, as 
described earlier, in Section VII, IIStorage Hanagernent." 

Aggregate Assignment Statements 

Aggregate values can be assigned to aggregate variables. 
suppose two aggregate variables are declared as follows: 

dcl 01 A(2), 
02 X1 float, 
02 X2 fixed; 

dcl 01 B(3), 
02 alpha fixed, 
02 beta fixed; 

Then the following assignment statement ~an be used: 

A = B(l); 

For example, 

Observe that this statement requires the promotion of the value of the 
right-hand-side expression from the storage type: 

01, 02 fixed, 02 fixed 

to the storage type: 

01 dim(2), 02 float, 02 fixed 

The order in which the four scalar values are assigned to 'A', or the order in 
which conversions are performed, is not defined in PL/I. 

10-3 A~18 3 



FORM.OF ASSIGNMENT STATEMENTS 

The assignment statement has the following form: 

i, ... = ,£,; 

where i is a target and,£, is the right-hand-side expression. The form 'i, ... ' 
indicates that the statement can contain either a single target or a sequence of 
targets separated by commas. A target is either a variable reference or a 
pseudo-variable reference, and the right-hand-side expression is any expression. 
The pseudo-variables are built into PL/I, and they are: 

real(ref) 
imag(ref) 
substr(ref,.£.1,e2) 
string(ref) 
unspec(ref) 
pageno(ref) 
onchar() 
onsource() 

where ref is a variable reference appropriate to the pseudo-variable and .£.1 and 
e2 are expressions. The third argument, e2, of the 'substr' function can be 
omitted. The pseudo-variables are defined later in this section. 

Targets 

In most cases, the assignment statement has a single target, and that 
target is a variable reference. Thus: 

x = (a+b**n)/n; 

A(i-F(z),phi+2) = 0; 

name(i).last = "Jones"; 

g(alpha)->tab(k+3,m) = beta**3; 

The statements just given illustrate the use of all four kinds of variable 
reference as target: simple, subscripted, structure-qualified, and 
locator-qualified. Examples of assignments with pseudo-variables as targets 
are: 

substr(place,I-3,4) = "QQQQ"; 

real(Z) = 2.8934eO; 

Examples of assignment statements with multiple targets are: 

k1,k2,k3 = 0; 

gamma, g(alpha)->tab(j,rho) = phi; 

mark, sUbstr(part,4,3) = "mXT"; 

10-4 AM83 



INTERPRETATION OF ASSIGNMENT STATEMENTS 

An assignment statement is interpreted as follows: 

Evaluate Right-Rand-Side Expression. 
expression and save its value. 

Evaluate the right-hand-side 

2. Convert Value and Store Through Target. Process each target one by 
one, starting from the leftmost and (if there is more than one target) 
proceeding to the right. For each target, convert a copy of the value 
of the right-hand-side expression to the storage type of the target 
and then assign the converted value to the target. 

The assignment of the converted value depends on the nature of the target, as 
follows: 

• If the target is a variable reference, then the previous value of the 
designated variable is replaced by the assigned value. Since the 
assigned value has been converted to the same storage type as the 
target variable, the value fits exactly into the target variable. 

• If the target is a pseudo-variable, the contents of some variable 
changed; however, the variable is selected in an indirect way. 
effect of assignment to a given pseudo-variable is given in 
definition of that pseudo-variable, later in this section. 

Special Restrictions 

is 
The 
the 

Assignment statenents must satisfy several rather special restrictions. 
These restrictions, together with some explanation, are given here. 

OVERLAPPING STRING TARGETS 

Consider the following assignment statement: 

S = T; 

where both variables are declared 'char(500)'. The Multics implementation of 
PL/I copies a string value directly from the storage for 'T' into the storage 
for'S' without using any intermediate storage. This is an efficient 
implementation; however, it can be followed only if certain troublesome cases, 
called overlapping string targets, are excluded from the language. The 
restriction given here excludes those cases. 

10-5 AM83 



The restriction on overlapping string targets requires the definition of 
the special string target. A given target is a special string target if all of 
the following statements are true: 

• The given target is a v~riable reference or a reference to the 
'substr' pseudo-variable. 

• The given target occurs in a statement whose right-hand-side 
expression is either a scalar string reference or a reference to the 
'substr' built-in function. In the latter case, the first argument of 
the function is a scalar string variable reference. 

• The string type ('character' or 'bit') of the target and the 
right-hand-side expression must be the same, so that no conversion is 
necessary. 

When a special string target designates all or part of the storage that is 
designated by the right-hand-side expression of the same statement, it is an 
overlapping special string target. Such a target is invalid. 

This restriction is designed to 
assignment statements that are of a 
behind the restriction is as follows: 

permit the efficient 
relatively simple form. 

execution of 
The reasoning 

1. There are some efficient methods for executing an assignment statement 
that has a special string target, as already noted. 

2. Th~ efficient methods sometimes produce invalid results when they are 
applied to overlapping special string targets. 

3. It is not always possible for the PL/I compiler to distinguish between 
a special string target that is overlapping and one that is not. 

4. Therefore, in order to permit the use of the efficient methods, the 
overlapping special string targets are excluded fron PL/I. 

As an example, consider the program: 

P 1 : proc j 
dcl S char(100) val' init("ABCDEFG")j 
del T char(100) val' init(IIabcdefg")j 
substr(S,2,4) = substr(T,1,4); 

end; 

The assignment statement has a special string target that is not overlapping. 
It can be efficiently executed by assigning the first character of 'T' to the 
second character position of'S', the second character of 'T' to the third 
character position of'S', and so on. The result is "AabcdFG", which is 
correct. Suppose, however, that the following assignment is used instead: 

substr(T,2,4) = substr(T,1,4)j 

10-6 



This assign~ent statement has an overlapping 
invalid. To acco~plish the indicated assignment, 

special string target and is 
the programmer must write: 

T1 = substr(T,1,4); 
substr(T,2,4) = T1; 

where 'T1' is a suitably declared string variable name. 

AREA ASSIGNMENTS 

The application of an assignment statement to area values is restricted 
to a statement of the following form: 

Each of the targets is a reference to a scalar 'area' 
variable and the right-hand-side expression is a reference 
to a scalar area' variable or function. 

Thus an area value cannot be assigned as part of an aggregate value. 

Order of Interpretation 

A program must not depend on the order of the steps of the interpretation 
unless that order is explicitly stated in the definition of the language. 
Programs that depend on additional assumptions about ordering are invalid. The 
assignment statement is a construct in which this rule is especially important. 

When an assignment statement assigns a scalar value to a single target, and 
when the right-hand-side expression does not invoke a function that has side 
effects, then no problems of ordering can arise. Most assignMent statements are 
of this convenient kind; however, those that are not must be given special 
attention. 

Each expression in an assignment statement is evaluated according to the 
ordering rules for expressions, as given earlier in Section VIII, "Expressions." 
In addition, the interpretation of an assignment statement is subject to the 
following ordering rules: 

• The right-hand-side expression is evaluated before any value is 
assigned to a target. 

• When an assignment statement has more than one target, the assignment 
of a value to a given target occurs before any expression (such as a 
subscript) in a subsequent target is evaluated. 

Aside from these rules, the order of interpretation of an assignment statement 
is undefined. 

10-7 AM83 



The first of the ordering rules just given states that the generating 
expression is evaluated before a value is assigned to any target. That ordering 
can be important when an array value is assigned. Consider, for example, the 
statement: 

A = A(2)*B; 

where both 'A' and 'B' are declared 'dim(3) float'. 
rule just given, one might suppose that an equivalent to 
be: 

A(1) = A(2)*B(1); 
A(2) = A(2)*B(2); 
A(3) = A(2)*B(3); 

Except for the ordering 
this statement would 

This interpretation is not only incorrect but also undesirable, since it uses 
the old value of 'A(2)' as the multiplier for the first two elements of Band 
the new value for the last. Because of the ordering requirement, the correct 
interpretation uses the old value of 'A(2)' as the multiplier for all elements 
of B. 

The definition of the assignment statement does not place a restriction on 
the time at which the location of a target variable begins. That is, although 
the assignment of a value to the target cannot occur until the evaluation of the 
generating expression is complete, there is no such restriction on the location 
of the target variable. In this connection, consider the statement: 

A(i) = F(x); 

where 'F' is the following user-defined internal procedure: 

F: proc(w) returns(float); 
dcl w float; 

i = i+1; 

end; 

The location of the target in the given assignment statement depends on whether 
the subscript in 'A(i)' is evaluated before or after the assignment 'i=i+1' is 
executed. Therefore, the given assignment statement is ambiguous and is 
invalid. 

The two examples just given are typical, but they do not exhaust the set of 
interesting examples that could be given on the subject of ordering. The 
designers of PL/I specified ordering where they believed it was called for by 
common sense and conventional notation; and they left it out where it would have 
been an arbitrary rule. When the programmer is in doubt, he should assume that 
the ordering is unspecified; and then he should take some measure to provide a 
positive ordering, such as breaking a statement into a sequence of statements. 

10-8 AM83 



PSEUDO-VARIABLES 

Some of the built-in functions can be used as targets; in that context, 
they are called pseudo-variables, not built-in function references. A 
pseudo-variable can be defined, for valid arguments, in terms of its 
corresponding built-in function reference. For example, consider the assignment 
statement: 

real(Z) = real(Z); 

Provided that 'z' is a valid argument for the 'real' pseudo-variable and the 
'real' built-in function, this statement changes nothing. That is, the 
generating expression yields the real part of 'Z', and then the pseudo-variable 
puts that same value back as the real part of 'Z'. All of the pseudo-variables 
behave in a similar manner. 

A pseudo-variable can be used in only three contexts: as a target in an 
assignment statement (described in this section), as the target in a 'do' 
statement (as described later, in Section XI, "Program Flow"), and as a target 
in a list-directed or edit-directed 'get' statement (as described later, in 
Section XIV, "Stream Input/Output"). In each of these cases, a value is 
assigned to the pseudo~variable and the interpretation of the pseudo-variable 
then causes a value to be assigned to storage. 

A pseudo-variable name must be declared 'builtin'. Observe that a given 
name can be used as both a pseudo-variable name and a built-in function name in 
the same block; the context of each reference determines whether it is a 
pseudo-variable or a built-in function reference. 

A complete and independent definition for each pseudo-variable is given in 
what follows. Each definition gives the storage type to which the assigned 
value is converted, and then describes what the pseudo-variable does with that 
value. 

'real' and 'imag Pseudo-Variables 

As pseudo-variables, the references have the same forms as the built-in 
function references, namely: 

real(Z) 
imag(Z) 

The value assigned to the pseudo-variable is converted to the storage type of 
'z' except that the mode is 'real'; then the converted value is assigned to the 
real part or imaginary part, respectively, of 'Z'. For example, suppose the 
following declaration applies: 

dcl alpha complex float dec(5); 

and suppose 'alpha' has the value: 

+5.0000eO-7.5000eOi 

10-9 At-183 



Then the assignment statement: 

real(alpha) = -~.92; 

sets the given value to '-B.9200eO-7.5000eOi', while the assignment statement: 

imag(alpha) = 0; 

sets the given value to '+5.0000eO+O.OOOOeOi'. 

'substr' as a Pseudo-Variable 

As a pseudo-variable, the reference has the sa~e forms as the built-in 
function reference, namely: 

substr(S,I,J) substr(S,I) 

where 's' must be a string variable reference and 'I' and 'J' must be 
expressions whose values can be converted to 24-bit integers. The arguments can 
be aggregates; however, if 'I' or 'J' is an aggregate, then its aggregate type 
must be suitable for conversion to the aggregate type of'S'. 

Consider, first, the interpretation of the pseudo-variable when all 
arguments are scalars. The data type of the pseudo-variable has the string type 
of'S' ('character' or 'bit'), but has maximum length J and the attribute 
'nonvarying'. For example, consider: 

substr(alpha,3,5) = "abc"; 

where 'alpha' is declared 'char(10) varying'. Here the data type of the target 
is 'char(5) nonvarying'. The converted value, "abc~~", replaces that substring 
of 'alpha' that begins with the third character of 'alpha' and that is five 
characters long. If the assigned value had been more than five characters long, 
the 'stringsize' condition would have occurred. 

There are restrictions on the pseudo-variable. First, 'J' must be zero or 
positive and 'I' and 'J' must specify a substring that lies entirely within the 
limits of the current value of the variable designated by'S'. Thus in the 
example given above, the current value of 'alpha' must be at least seven 
characters long. When this restriction is not met, the 'stringrange' condition 
occurs. Second, if'S' is a 'varying' string, a value must be assigned to it 
before it appears in a 'substr' pseudo-variable; otherwise, the current length 
of S would be undefined. 

If any of the arguments of the pseudo-variable are aggregates, they are all 
converted to the aggregate type of'S', and this aggregate type becomes the 
aggregate type of the pseudo-variable itself. The value of the generating 
expression is, in turn, promoted to this aggregate type before assignment. 
After conversion, the independent components are individually assigned through 
the 'substr' pseudo-variable according to the rules for scala!~s. 

10-10 A~83 



'string' Pseudo-Variable 

As a pseudo-variable, the reference has the same form as the built-in 
function reference, namely: 

string(U) 

where 'u' must designate one of the following: 

• A scalar string variable that is 'nonvarying'. 

• An aggregate variable whose components are all string variables of one 
type (either 'character' or 'bit', but not a mixture of 'character' 
and 'bit') and are all 'nonvarying' and 'unaligned'. 

Such a variable is represented in storage as an uninterrupted sequence of 
characters or bits in a way that is independent of its aggregate type. Suppose 
the total number of characters or bits accommodated by the variable designated 
by 'u' is m. Then the pseudo-variable is interpreted as follows: 

• First, the value assigned to the pseudo-variable is converted to 
'bit(m)' or 'char(m)', depending on the type of 'U'. 

• Second, if 'u' is a scalar, the converted value is assigned to it 
directly; otherwise, the converted value is assigned in such a way 
that the concatenation of the components of the aggregate variable 'U' 
are identical to the given converted value. 

For example, consider the use of this pseudo-variable in the following program: 

P: proc; 
dcl 01 part unaligned, 

02 code, 
03 serial char(6), 
03 type char(2), 

02 descrip char(10); 

string(part) = "310-A6XXside"; 
string(code) = "680-A3; 

end; 

The effect of the two assignment statements on the value of 'part' is as 
follows: 

part.code.serial 
part.code.type 
part.descrip 

first assignment 

"310-A6" 
"XX" 
ii side~l!HSl!srS16ii 

:0-1; 

second assignment 

"680-A3" 
"l!Sl!S" 
ii side 1616161616i'5 ii 



unspec Pseudo-Variable 

As a pseudo-variable, the reference has the same form as the built-in 
function reference, namely: 

unspec(U) 

Suppose that the result of the built-in function reference 'unspec(U)' would 
yield a bit string of length ill. (The interpretation of that built-in function 
reference is given under "Conversion Operations" in Section IX, "Operations.") 
The pseudo-variable is interpreted as follows: 

• First. the value assigned to the pseudo-variable is converted to 
'bit(~) '. 

• Second, the converted value is assigned to 'u' in a way that the 
function reference 'unspec(U)' yields the given converted value. 

A key point is that, for any variable reference 'x', the assignment statement: 

unspec(x) = unspec(x); 

leaves the value of 'x' unchanged. It then follows that the statements: 

s = unspec (x) ; 
x = • •• , 
unspec(x) = s; 

save the value of x in s, change the value of 
value of x. 

x, and then restore the 

The unspec pseudo-variable is a way of interpreting the contents of raw 
storage (a sequence of bits) as a PL/I value. Together with the 'unspec' 
built-in function, it constitutes an escape from the machine-independence of 
PL/I and allows direct access to the storage of values in Multics words. 
Suppose, for example, it might be necessary to write a special PL/I procedure 
for converting a 'fixed' value to a 'float' value. In order to write such a 
procedure, it is necessary to prepare the mantissa and the exponent separately 
and then combine them into a single 'float' value by means of the 'unspec' 
pseudo-variable. 

pageno Pseudo-Variable 

As a pseudo-variable, the reference has the same form as the built-in 
function reference, namely: 

pageno(F) 

where 'F' must yield a scalar file value that has the 'print' attribute. The 
value assigned to the pseudo-variable is converted to a 35-bit integer. For 
example, suppose 'alpha' is declared as a file-na~e constant. Then the 
assignment statement: 

pageno(alpha) = 100; 

sets the page number counter for file 'alpha' to 100. 

10-12 JIJ183 



'onchar' and 'onsource' Pseudo-Variables 

As pseudo-variables, the references have the same forms as the built-in 
function references, namely: 

onsource 
onchar 

onsource() 
onchar() 

The value assigned to 'onsource' is converted (if necessary) to a 
character-string value and then replaces the value currently at the top of the 
stack that is associated with the 'onsource' built-in function. The value 
assigned to 'onchar' is converted (if necessary) to a 'char(1)' value and then 
replaces the conversion character (as defined below) in the character-string 
value currently at the top of the stack associated with the 'onsource' built-in 
function. 

The 'onsource' and 'onchar' pseudo-variables are associated with the 
'conversion' condition. The 'conversion' condition occurs when an attempt is 
made to convert a character-string value or pictured value to an arithmetic or 
bit-string value and the attempt fails because the given string has the wrong 
form. The conversion character is the leftmost character that must be changed 
as part of the correction of the given character-string value. A more detailed 
discussion of these matters is given earlier, under" 'on' Condition Functions" 
in Section IX, "Operations." 

As an example of the use of 'onchar' as both a pseudo-variable and a 
built-in function, consider the following program: 

P: proc; 
dcl (sysin,sysprint) file; 
dcl x float; 
dcl conv cond; 
dcl onchar builtin; 
on conv 

begin 
put skip list("error in input"); 
if onchar= "1" then onchar = "1"; 

else if onchar= "0" then onchar = "0"; 
else signal error; 

end; 
get list(x); 
put skip list(x**2); 
end; 

This program computes the square of a given number. The 'on' statement provides 
the program with a primitive form of error recovery: when the input value has I 
either of the characters '1' or '0', the program prints a warning message and 
assumes that the corresponding digit was intended. 

9/78 10-13 AM83A 



Suppose that the following input is supplip.d to this progran: 

l23el 

The conversion of this input (which is a character-string value) for assignnent 
to 'x' (which requires a 'float' value) proceeds as follows: 

1. The first attempt at conversion fails. The first character, which is 
the letter '1', is the conversion cha~acter. The 'conversion' 
condition is signalled. The 'on' unit prints a warnin~ and rep13ces 
the conversion character with the digit '1'. Then the PL/I processor 
again attempts the conversion. 

2. The second attempt also fails. The fifth character is also the letter 
'1' t and is handled in the sa~e yay as the first '1'. 

3. The third attempt at conversion succeeds because the ~iven string is 
"123el". 

Although this exaople shows how the 'onchar' pseudo-variable works, it is a 
simple kind of recovery. A oore sophisticated recovery ppocedure would use the 
'onsource built-in function to obtain the entire incorrect string, would 
analyze that string and make appropriate changes, and would use the 'onsource' 
pseudo-variable to replace the entire incorrect string with the corrected 
version. 

10-14 AH83 



SECTION XI 

PROGRAI1 FLOH 

As a program is executed, the PLII interpreter passes from one statement to 
another; this part of program execution is the flow of control. There are seven 
kinds of flow of control in PLII, as follows: 

• Sequential flow is the execution of statements in the order in which 

• 

they appear in the program. This kind of flow of control is used 
wherever some other kind is not explicitly called for. 

Conditional flow uses a test of 
whether or not a statement is 

current 
executed. 

data values to determine 
The 'if' statement is used 

for this purpose. A set of 'if' statements can be nested, one within 
the other, so it is possible to program a complicated case analysis 
using only 'if' statements. 

• Iterative flow uses various conventions to execute a group of 
statements repeatedly. The 'do' statement is used to control the 
iteration. An index can be associated with the iteration. 

• Transfer of control sends control to a specified statement. The 'goto' 
statement is used for this purpose. Because PLII has both arrays of 
'label' constants and unlimited 'label' variables, a rather general 
computation can be used to obtain the destination of the transfer. 

• Rlock eXP0utinn applies to a 'begin' block. A 'begin' block is used 
to declare variables in a restricted scope. 

• Procedure invocation executes a block of statements as a closed 
subroutine. The 'call' statement or the function reference is used 
for procedure invocation. Provision is made for the transmission of 
arguments by either value or address, and procedures can be invoked 
recursively. 

• Condition handling is used to process exceptional conditions that can 
occur during program execution, such as a division by zero or a 
transmission failure during input. The' on', ' revert' , and ' signal' 
statements are used for this purpose. 

The first five kinds of flow of control are described in this section. The last 
two kinds require separate treatment and are described in Sections XII and XIII, 
"Procedure Invocation" and "Condition Handling," respectively. 

11-1 AH83 



SEQUENTIAL·EXECUTION 

When execution is sequential, statements are executed in the order in which 
they appear. However, when control reaches the end of a procedure, there is no 
"next statement" in the sequence; so the PL/I interpreter acts as if the next 
statement is 

return; 

and thus returns to the point at which the procedure was invoked. 

The following constructs cause no action when they are encountered during 
sequential execution: 

'procedure' blocks 
'format' statements 
'declare' and 'default' statements 

Sone of these constructs ('procedure' blocks and 'format' statements) cause 
action only when they are invoked by a proper form of reference. The remaining 
constructs never cause an action; they are present only to supply declaration 
information. 

As an example of sequential execution, consider the following program: 

P: proc; 
dcl (sysin,sysprint) file; 
dcl (a,b,c) float; 

SQ: proc(x,y) returns(float); 
dcl (x,y,z) float; 
z = (x**2 + 5*y)/x; 
return(z); 
end; 

get list(a,b); 
c = 2*SQ(a,b); 
put skip list(a,b,c); 
end; 

Execution of the program is summarized as follows: 

1. The 'procedure' statement, the two 'declare' statements, and the 
internal 'procedure' block are executed in sequence. The sequential 
execution of these constructs causes no action. 

2. The input statenent is executed and gets values for 'a' and 'b' from 
the input stream. 

3. The assignment statement is executed. As part of its execution, it 
invokes the procedure 'SQ'; durin~ that invocation, the statements in 
that procedure are executed sequentially. 

4. The output statement is executed and prints the results. 

5. Because the end of the external procedure has been reached, PL/I 
assumes a 'return' stateQent and returns to the command that invoked 
the external procedure. 

11-2 At183 



'if' STATEMENT 

An 'if' statement has one of the following forms: 

if ~ then Ql else c2 

if ~ then Ql 

where ~ is the test and .Q.1 and c2 are the consequences. rne test is usually a 
relational expression, whose value is "1"b or "O"b (that is, true or false). 
Each consequence is usually a single statement. 

An 'if' statement that has an 'else' clause (the first form), is 
interpreted as follows: 

1. Evaluate the test. 

2. If the test value is true, then execute the first consequence; 
otherwise execute the second consequence. 

Consider, for example: 

if x >= 2*b 
then z = sqrt(x-2*b); 
else call err3(x); 

Here, the test is the relational expression 'x>2*b', the first consequence is 
the assignment 'z=sqrt(x-2*b);', and the second consequence is the statement 
'call err3(x);'. This 'if' statement executes the assignment statement if the 
argument of the square root is nonnegative; otherwise, it calls an error 
routine. 

An 'if' statement without an 'else' clause takes no action when the value 
of the test is false. Consider, for example: 

if i<O then i=O; 

Depending on whether 'i' is negative or not, this statement sets 'i' to zero or 
takes no further action. 

An 'if' statement without a 'then' clause is not part of the language. 
However, a specification that requires an omitted 'then' clause can easily be 
converted to one that requires an omitted 'else' clause; and the resulting 
uniformity is beneficial. For example, consider the specification: 

If 'x=O' is true, then do nothing; otherwise, execute the assignment 
statement 'y=1/x;'. 

This specification can be converted to a suitable form by negating the test and 
exchanging the consequences. The result is: 

If 'x
A

= 0' is true, then execute the assignment statement 'y=1/x;'; 
otherwise, do nothing. 

The specification can now be written in PL/I, as follows: 

if x
A

= 0 then y = 1/x; 

11- 3 Af183 



Test in an 'if' Statenent 

The test in an 'if' statenent can be any expression that yields a scalar 
bit-string value. Usually, the bit-string value is of length one, but any 
length is allowed. If any bit of the test value is one, then the test is true; 
otherwise, the test is false. 

The test can specify a lengthy computation; for example: 

if abs(x) = 0 
& sqrt(u**2+v**2)<f(r+1) 
& (sw1=5 : sw1=9) 

then call R1(z); 
else call R2(z); 

Here the test is a complicated bit-string expression; furthermore, the test 
contains the reference 'f(r+1)', which (it is assumed) is a reference to a 
user-defined function and which can require considerable computation in itself. 
When the computation is complete, however, the final result is simply "1"b or 
"O"b. 

Although the definition of the test in an 'if' statement pernits any 
expression that yields a bit-string value, an expression that does not yield a 
'bit(1) nonvarying' value should be avoided. A multiple-bit test can give 
unexpected results; for example, consider the following statements: 

if B then call R1; else call R2; 

if AB then call R2; else call R1; 

It is natural to expect these statements be equivalent to one another; however, 
they are equivalent only if the value of 'B' is a string of zeros only or of 
ones only, and that can be assured only if 'B' is 'bit(1) nonvarying'. Suppose, 
for example, that 'B' is declared 'bit(2)' and the assignment state~ent 

B = "01"b; 

has been executed. In the first statement, the test is true because it contains 
a one bit and therefore 'R1' is called. In the second statement, the value of 
the test is '"10"b' and so it is once again true and 'R2' is called. Thus the 
statements are not equivalent when 'B' is declared 'bit(2)'. 

Consequences in an 'if' Statement 

Each consequence in an 'if' statement must be an executable unit. The 
constructs that are executable units are: 

• The 'do' group; that is, a 'do' statement followed by a sequence of 
statements followed by an 'end' statement 

• The 'begin' block; that is, a 'begin' statement followed by a sequence 
of statements followed by an 'end' statement 

11-4 At183 



• The independent statement; that is, one of the following kinds of 
statement: 

storage management: 'allocate' and 'free' 

assignment: the assignment statement 

floH of control: 'if', 'goto', and the null statement 

procedure invocation: 'call' and 'return' 

condition handling: on', 'revert', and ' signal' 

input/output: , , ,-l'l ' open an,"" c-,-ose 

stream input/output: 'get' and 'put' 

record input/output: 'read', 'write', 'delete', 
'locate' 

, rewri te ' and 

The definition just given 
statement as a consequence. 

allows the use of 
Those not allowed are: 

nearly 

• Constructs that cause no action when 
flow of control; for example, a 
statement, or a 'declare' statement. 

encountered 
, proced ure ' 

any group, block, or 

through 
block, 

sequential 
a 'format' 

• Statements that are not complete in themselves but must be part of a 
larger construct; for example, the 'do' statement, which must be part 
of a 'do' group, or an 'entry' statement, which must be part of a 
'procedure' block. 

The broad definition of the consequence means that the use of a 'goto' 
statement to transfer around statements is unnecessary. For example, instead of 
writing: 

L3: 

if x=O & y<2 then goto L3; 
do i = 1 to n; 

A(i) = B(i)*C(i); 
Q(i) = 0; 
end; 

one should write: 

if A(X=O & y<2) then 
do i = 1 to n; 

A(i) = B(i)*C(i); 
Q(i) = 0; 
end; 

This form avoids the use of a label prefix; furthermore, its syntactic structure 
corresponds to the logical structure of the computation. 

Two of the constructs that can be used as consequences are of particular 
significance. They are the noniterative 'do' group and the 'if' statement 
itself; and they are given special attention in the following paragraphs. 

11-5 M183 



NONITERATIVE 'do' GROUP AS A CONSEQUENCE 

A noniterative 'do' statement is one that has no 'while' option or index. 
A noniterative 'do' group begins with a noniterative 'do' statement, and its 
sole purpose in the language is to gather together two or more statements so 
that they can be treated as a single consequence in an 'if' statement. 
Consider, first, the following two program fragments: 

if x=O then z=1; call Q(alpha); 

if x=O then do; z=1; call Q(alpha); end; 

These program fragments have different meanings. The first fragment is an 'if' 
statement followed by a 'call' statement; and the two statements are executed 
independently, one after another. The second fragment is an 'if' statement 
whose consequence is a noniterative Fdo' group; and the entire ~do; group is 
executed or not depending on whether the value of 'x' is zero or not. 

Another example of the use of a noniterative 'do' group is: 

if a = b 
then do; 

alpha = F(3,a-2) - F(3,2*b); 
beta = G(O); 
gamma = 4· , 
end; 

else do; 
alpha = F(3*(a-b)+1,2*(a-1)-b) - F(3,2*b); 
beta = ("!((",,_h'I?'. 

\o..A\\I...A.-V/'t-I, 

gamma = H(2*(a-b)+1l) ; 
end; 

Provided such statements are laid out on the page in a clear and uniform way, 
they are easy to read and understand. 

'if' STATEt1ENT AS A CONSEQUENCE 

As a case of particular interest, the consequence of an 'if' statement can, 
itself, be an 'if' statement; that is, 'if' statements can be nested. There is 
no limit to the depth of this nestin~, and it is not uncommon for nesting to 
have three levels. 

Suppose that the following case analysis is given as part of the 
specification of a program: 

Test EXQression for z 

x>O atan(y/x) 

X=O & y>O pi/2 

x=O & y=O (undefined) 

X=O & y<O -pi/2 

"lJl"/f"'\ p .,.,.,-('\ atan(y,'x)+pi A'V u: .J/- V 

x<O & y<O atan(y/x)-pi 

11- 6 At183 



This table gives five different expressions for 'z', depending on the values of 
'x' and 'y'; it also shows the range of values for which 'z' is not defined. 
The case analysis can be programmed without nesting as follows: 

if x>O then z = atan(y/x); 
if x=O & y>O then z = pi/2; 
if x=O & y=O then signal error; 
if x=O & y<O then z = -pi/2; 
if x<O & y>=O then z = atan(y/x)+pi; 
if x<O & y<O then z = atan(y/x)-pi; 

This version is readable but not efficient. There are 11 relational expressions 
in the program fragment, and everyone of them is evaluated every time the 
fragment is executed. 

An efficient programming of the case analysis given in the table is: 

if x>O 
then z = atan(y/x); 
else if x=O 

then if y>O 
then z = pi/2; 
else if y=O 

then signal error; 
else z = -pi/2; 

else if y>=O 
then z = atan(y/x)+pi; 
else z = atan(y/x)-pi; 

There are five relational expressions in this version (instead of 11); and, if 
the cases occurred with equal frequency, an average execution of the program 
fragment would require the evaluation of three relational expressions (instead 
of 11). 

Dangling 'else' Clause 

The omission of an 'else' clause in an 'if' statement that 
nest of 'if' statements can produce confusion. Consider 
statement: 

if x<O then if a<O then y=a/x; else y=O; 

is part of a 
the following 

Does the 'else' clause go with the entire statement (so that it is executed when 
'x<O' is false) or docs it go with the nested 'if' statement (so that it is 
executed when 'x<O' is true and 'a<O' is false). Because the answer to this 
question is not obvious, 'else y=O;' is called a "dangling 'else' clause". 

The rules of PL/I supply the answer: an 'else' clause is always associated 
with the smallest possible 'if' statement. Therefore, the 'else' clause in the 
example goes with the nested 'if' statement, and the correct layout for the 
stater.1ent is: 

if x<O 
then if a<O 

then y=a/x; 
else y=O; 

11-7 Al"183 



The problem with the dangling 'else' arises when a programmer wants the 'else' 
clause to be associated with the entire statement. The~ either of the following 
can occur: 

i. The programmer forgets the rules and writes: 

if x<O 
then if a<O 

then y=a/x; 
else y=O; 

This formatting is wrong, but, unfortunately, it looks reasonable. 

2. The programmer remembers the rules and writes: 

if x<O 
then do; 

if a<O then y=a/x; 
end; 

else y=O; 

This version is correct but it requires the introduction of a 'do' 
group. 

A general solution to this problem is to use an 'else' clause with every 
'if' statement in a nest of 'if' statements. When there is no action for the 
'else' clause to perform, a null ~tatement can be used as the consequence. A 
null statement is the single character , and its execution causes no action. 

\lith this approach in nind, the example can be written to make both 
interpretations clear. To obtain the first interpretation, write: 

if x<O 
then if a<O 

else; 

then y=a/x; 
else y=O; 

To obtain the second interpretation, write: 

'do' GROUP 

if x<O 
then if a<O 

then y=a/x; 
else; 

else y=O; 

There are three kinds of ~do' group: 

iterative 'do' without index 
iterative 'do' with index 
noniterative 'do' 

A 'do' group gathers together a sequence of statements for execution as a single 
unit. This gathering together is the only purpose of a noniterative 'do' group. 
An iterative 'do' group does more: it executes the statements that are gathered 
together 'repeatedly, and is used to program loops. Every 'do' group, iterative 
or not, eliminates at least one 'goto' statement from a program, and the result, 
in most cases, is an important contribution to the clarity of the program. 

11-8 AM83 



The general foro of a 'do' group is: 

do 
ss 
end; 

where ss is the body of the group. The body is a sequence of any number of 
statements. The notation 'do ... ;' is used to indicate that, at this point in 
the discussion, the details of the 'do' statement are being left out; details 
are given later, as each kind of 'do' group is described. Although label 
prefixes are not shown above, the 'end' statement can be preceded by one or more 
label prefixes, and can be the destination of a transfer of control. 

A transfer of control fron a 'goto' statement that is outside an iterative 
'do' group to a statement that is inside the group is not valid. The only way 
to enter an iterative 'do' group is by flowing into or transferring to the 'do' 
statement at the beginning of the group. 

Iterative 'do' without Index 

An iterative 'do' group without an index has the form 

do while (.t.) ; 

end; 

where .t. is the test and ss the body of the 'do' group. The test is defined in 
the same way as the test in an 'if' statement; that is, it must yield a scalar, 
bit-string value. The test is true if at least one bit is one and is false 
otherwise. The use of a test bit-strinG with length other than one is not 
recommended. ~Jhen this recommendation is followed, the value of the test is 
"1"b or "O"b. 

The iterative 'do' group without an index executes the body of the group 
repeatedly while the value of the test is true. The detailed interpretation is: 

1. Evaluate the test. 

2. If the test value is false execution is complete. Otherwise, 

3. Execute the statements of the body of the group; that is, start with 
the first statement of the body and continue until the 'end' statement 
is executed. 

4. Go to Step 1. 

The iterated 'do' group without index can be used to write the most 
primitive kind of loop: one that appears to go on forever. In practice, such 
loops are often required. Consider, for example, the program: 

P: proc; 
dcl (sysin,sysprint) file; 
dcl x float; 
do while (" 1 "b) ; 

get list(x); 

end; 

put skip list(sqrt(x)); 
end; 

11-9 M183 



This program turns Hultics into a calculator of square roots; it runs until the 
user interrupts it. The 'do' statement shown here is used wherever the 
programmer must design his own loop control rather than using one of the methods 
of control provided by PL/I. 

The iterative 'do' group without an index is well suited to control of the 
computation of a mathematical approximation. Suppose a qua~t~t~, 'y(x)', must 
be computed for a given value of 'x'. The function y 1S not given as a 
formulaj instead, the following user-defined functions are available for use in 
the program: 

initial_guess(x) which gives the first approximation for y(x) in 
terms of the given x 

better_guess(x,oldy) which gives the (i)th approximation for y(x) in 
terms of x and the (i-l)th approximation, oldy 

The follo\ling statements compute successive approximations to 'y' until two 
successive approximations differ by no more than one ten-thousandth of the value 
of the current approximation: 

oldy = initial_guess(x)j 
newy = better_guess(x,oldY)j 
do while(abs(newy-oldy) > .0001eO*abs(newy»; 

oldy = newy; 
newy = better_guess(x,oldY)j 
end; 

When this program fragment is written without the benefit of the 'do' group, it 
is: 

oldy = initial_guess(x)j 
newy = better_guess(x,oldy); 

LOOP: if A(abs(newy-oldy) > .0001eO*abs(newy» 

DONE: 

then goto DONE; 
oldy = newyj 
newy = better_guess(x,oldY)j 
goto LOOP; 

7his version requires two 'goto' statements 
prefixes. It makes details explicit but obscures 
prograMmer. 

Iterative 'do' with Index 

and 
the 

their accompanying label 
general intent of the 

An iterative 'do' group with an index has the form: 

do .i = cl; 

end; 

where .i is the index, cl is the control list, and ss is the body of the group. 
The index is usually a simple reference to a scalar, but other possibilities are 
described later. The control list is a sequence of controls separated by 
comnas. 

11-10 At183 



Execution of an iterative 'do' group with an index is divided into phases. 
The first control in the control sequence governs the first phase, the second 
control governs the second phase, and so on. Consider the following 'do' group: 

do i = 1 by 2 to 5, 13; 
A(i) = B(i); 
end; 

In this example, the control list consists of two controls. The first phase of 
execution is governed by the control '1 by 2 to 5' and executes the body of the 
group three times. The second phase is governed by the control '13' and 
executes the body once. The 'do' group is equivalent to 

A(1) = B(1); 
A(3) = B(3); 
A(5) = B(5); 
A(13) = B(13); 

There are three kinds of controls, as follows: 

The single-valued control 
The repeat control 
The FORTRAN control 

Detailed descriptions of these controls follow. The controls are quite 
different from one another, but they have the 'while' option in common, which 
allows a control phase to be cut short when the test in the option is false. 

SINGLE-VALUE CONTROL 

The single-value control has the form: 

.§. whi le UJ 

where.§. is an expression and 1 is the test. The expression must yield a value 
suitable for assignment to the index. The test is defined as in an 'if' 
statement. The 'while(l)' option can be omitted. 

A single-value control can be used to supply an index value for a single 
execution of a 'do' group. The detailed interpretation is: 

9/78 

1. Execute the assignment statement 

i = eo - -, 
2. If the 'while' option is present, evaluate the test. If the test 

value is false, then exit from this phase. 

3. Execute the statements of the body of the 'do' group; that is, start 
with the first statement and continue until the 'end' statement has 
been executed. 

4. Exit from this phase. 

11 -11 AM83A 

I 



The 'do' group in the following progran has three' controls, each a 
single-value control: 

P: proc; 
dcl sysprint file; 
dcl s char(20) var; 
do s = ~red", "yellow", "blue"; 

end; 

put skip list("The color is "::s::"."); 
end; 

The program prints: 

The color is red. 
The color is yellow. 
The color is blue. 

'repeat' CONTROL 

The 'repeat' control has the fore: 

g1 repeat e2 while(~) 

where g1 and e2 are expressions and ~ is the test. The expressions oust yield 
values suitable for assignment to the index. 7ha test is defined as in ~he 'if' 
statement. The 'while(~)' option can be o~itted. 

A 'repeat' control has one expression to supply the value for the first 
execution of the body of the group and a second ex?rassion for subsequent 
executions. The detailad interpretation is: 

1. If this is the first execution of this step (Step 1. in the current 
phase, then execute the assignment: 

Otherwise, execute the assignment: 

i = ~; 

2. If the 'while' option is present, evaluate the test. If the test is 
false, then exit from this phase. 

3. Execute the statements of the body of the 'do~ group; that is, start 
with the first statement and continue until the 'end' statement has 
been executed. 

4. Go to Step 1. 

The following program fragment prints all of the powers of two that are 
between 1 and 100: 

do i = , repeat 2*i while(i<100); 
put list(i}; 
end; 

"-'2 Att83 



7he 'do' group is equivalent to: 

i = 1; 
LOOP: if ~(i<100) then goto DONE; 

put list(i); 
i = 2* i; 
end; 

DONE: 

The 'repeat' control is especially useful for searching a linked list. 
Suppose the array that holds the list is declared as follows: 

dcl 01 cell(500), 
02 code char(6), 
02 customer char(30), 
02 link fixed(9); 

Suppose that when this array is in use: 

• 'cell(l)' is the first member of the list. 

• If 'cell(i)' is the (k)th member of the list, 
'cell(cell.link(i))' is the (k+1)th member of the list. 

then 

• If 'cell(i)' is the last member of the list, then 'cell.link(i)' is 
zero. 

Consider the following 'do' group: 

do i = 1 repeat cell.link(i) while(i A= 0); 
if cell.code(i) = given_code then goto FOUND; 
end; 

goto NOT_FOUND; 

These statements search the list for the first member that has a 'cell.code' 
that is identical to that contained in 'given'. 

FORTRAN CONTROL 

The FORTRAN control has one of the forms: 

~ by e2 to ~ while(~) 

~ to Q} by e2 while(~) 

where ~ is the initialization, e2 is the increment, ~ is the limit, and ~ is 
the test. The expressions are subject to the following restrictions, which 
reflect the uses to which the expressions are put: 

• The initialization must be suitable for assignment to the index. 

• The increment must be a suitable operand for the addition operation. 

• 
The test 
omitted. 
not both. 

The limit must be a suitable operand for the '<' operator. 

is defined as in the 'if' statement. The 'while(t)' option can be 
Either the 'by e2' clause or the 'to ~' clause can be omitted, but 

11-13 AM83 



A FORTRAN control is often used to supply a sequence of index values that 
is an arithmetic progression; indeed, in many cases, it is used to obtain the 
sequence of the first Q integers: 

1, 2, •.• , Q 

Although such uses are simple, the full interpretation of the control is 
complicated. The complexity results from the concern of the designers for 
efficiency; specifically, from the decision to evaluate the expressions 
associated with the index, the initialization, the increment, and the limit only 
once during a phase. 

The detailed interpretation of the FORTRAN control is: 

1. Prepare for execution of the loop by performing the following actions 
in any order: 

a. Determine the location of the storage unit designated by i (the 
index of the group). (In order to do this, any expressions in i, 
such as subscript expressions, must be evaluated). Save the 
location of the storage unit, and wherever i appears in these 
steps, use the saved location rather than re-evaluating the 
expressions in i. 

b. If the 'by e2' clause is present, evaluate e2 and save the value. 
Use the saved value wherever e2 appears in these steps. 

c. If the 'to Q}' clause is present, evaluate Q} and save the value. 
Use the saved value wherever Q} appears in these steps. 

2. If this is the first execution of this step (Step 2) in the current 
phase, then execute the statement: 

i = tl; 
Otherwise, execute one of the following: 

i = i + e2; (if the 'by e2' clause is present) 

i = i + 1 • , (if the 'by e2' clause is absent) 

3. If the 
, 
while 

, 
option is present, evaluate the test. If the test is 

false, then exit from this phase. 

4. If the 'to Q}' clause is present, test the value of i ag~inst Q} as 
follows: If the 'by e2' clause is not present and i>~', then exit 
from this phase. If e2 is positive and 'i>Q3', then exit from this 
phase. If e2 is negative and 'i<Q1', then exit from this phase. 

5. Execute the statements of the body of the 'do' group. Execute them in 
the normal way; do not use any of the information saved in Step 1. 
Start with the first statement and continue until the 'end' statement 
has been executed. 

6. Go to Step 2. 

A simple example of a 'do' group with a FORTRAN control is: 

do x = -90 by .25 to 90; 
put skip list(x, sind(x), cosd(x)); 
end; 

11-14 



This group prints the values of the sine and cosine functions from -90 degrees 
to +90 degrees in increments of .25. It is equivalent to the statements: 

x = -90; 
LOOP: if x>90 then goto DONE; 

DONE: 

put skip list(x, sind(x), cosd(x)); 
x = x+.25j 
goto LOOP; 

A short example that illustrates the consequences of Step 
interpretation is: 

a=Oj 
b=2; 
c=10; 
k= 1 ; 
do A(k) = a by b to Cj 

k = k+1 
b = -bj 
c = c-1; 
end; 

These statements are equivalent to: 

do A(1) = 0 by 2 to 10; 
k = k+ 1 ; 
b = -b; 
c = c-1; 
end; 

of the 

If the current values of the control parameters were used for each execution of 
the loop, the interpretation of this loop would be extremely co~plicated; to 
start with, it would require a knowledge of all of the elements of the array 
, A' • 

INDEX OF A 'do' GROUP 

There are two special restrictions on the index of a 'do' group, as 
follows: 

• The index must designate a scalar value. 

• The index must not designate an 'area' value. 

Aside from these restrictions, the index can be any construct that is a valid 
target for the assignment statements that are explicitly shown in the 
interpretation of the 'do' group. 

The following program illustrates the use of a pseudo-variable as the index 
of a 'do' group: 

P: proc; 
dcl sysprint file; 
dcl z complex float; 
do real(z) = 0 by .25 to 1; 

end; 

do imag(z) = 0 by .25 to 1; 
if z "= 0 then 

put skip list(z, 1/z); 
end; 

end; 

11-15 At183 



This program lists 'z' and 'liz' for 24 values of the complex variable 'z', The 
program shows that one 'do' group can be used within another. There is no 
restriction on the depth of the nesting that can be used. 

Non-iterative 'do' 

A noniterative 'do' group has the form: 

do; 

end; 

where £1, s2, and so on are the body of the group. The group is executed by 
executing the sequence of statements £1, s2, and so on, once. 

The effect of the noniterative 'do' group is to gather £1, s2, and so on 
into a single syntactic unit. The only use for this kind of 'do' group is as a 
consequence of an 'if' statement, as described earlier in this section. 

, goto' STATEt1ENT 

A 'goto' statement has the form: 

goto ref; 

where ref is any reference that yields a scalar 'label' value. When the 
statement is executed, the reference is evaluated and control transfers to the 
statement designated by the 'label' value. The statement to which control 
transfers is the destination of the transfer of control. If the destination is 
outside of the block that contains the 'goto' statement, then the transfer 
causes control to exit from that block; block exits are described later, in 
Section XII, "Procedure Invocation." If the program is recursive, additional 
rules are required to determine the destination; these are given later, again 
under "Procedure Invocation", and they apply only to certain advanced and 
unusual situations. 

'goto' with a Constant Reference 

When the reference in a 'goto' statement is a constant reference, the 
destination must be a statement in the same block or in a containing block. The 
reference is rather restricted by the fact that a 'label' constant must be 
either a scalar or a one-dimensional array. 

A 'goto' statement whose reference designates an element of a 'label' array 
constant is called a switch. An example of the use of a switch is: 

C ( 1 ) : 
C(2): 
C(5): 
DONE:, 

goto C(i+1); 
z = x**3 + y**3; 
z = x/(y**2-x); 
z = 1; 

goto DONE; 
goto DONE; 

11-16 AM83 



Because it is an array subscript, the value of 'i+l' is converted to an integer 
by dropping the fractional digits. Then the switch is interpreted as follows: 

Trunc(i+l) 

o or less 

2 

3 

4 

5 

6 or more 

Action 

the 'subscriptrange' condition occurs 

the assignment labeled 'C(1)' is executed 

the assignment labelled 'C(2)' is executed 

(undefined) 

(undefined) 

the assignment labelled 'C(5)' is executed 

the 'subscriptrange' condition occurs 

Observe that no condition occurs when an element is missing from within the 
array of labels. 

'goto' with a Non-Constant Reference 

The use of a variable reference or a function reference in a 'goto' 
statement is usually confined to advanced applications or entirely avoided. 

As an example of the use of a variable in a 'goto' statement, consider the 
procedure: 

IGL: proc(x,a,error) returns(float); 
dcl (x,a) float; 
dcl error label; 
dcl t float; 
t = x**2 + a**2; 
if t<O then goto error; 
return(log(x+t»; 
end; 

This procedure transfers to the statement designated by the variable 'error' 
when 't' is negative. The variable 'error' is a parameter, and its value is 
supplied by the reference to the procedure. An example of such a reference is: 

alpha = (beta + IGL(gamma,2,LAB»/delta; 

LAB: put skip list("IGL failed at alpha"); 
goto EXIT; 

'local' ATTRIBUTE 

The transfer of control performed by a 'goto' statement can be either local 
or non-local. A local transfer is one for which both the 'goto' statenent and 
its destination are immediately contained in the same block. A nonlocal 
transfer is any other transfer. A local transfer can be executed at 
considerably less cost than a non local transfer. 

11-17 At183 



The PL/I interpreter can perform a local transfer efficiently only when the 
transf~r can be recognized as such before execution. Three cases apply: 

• If the reference in the 'goto' statement is a constant reference, a 
local transfer can be recognized by examination of the program. 

• If the reference is a variable reference, a local transfer can be 
recognized only if the variable name is declared with the 'local' 
attribute. 

• If the reference is a function reference, a local transfer cannot be 
recognized before execution. 

As an example of the use of the 'local' attribute, consider the following 
program fragment: 

LAB1 : 
LAB2: 
DONE: 

dcl x local label; 

if z=o then x=LAB1; else x=LAB2; 

goto x; 
m = alpha + beta**2; goto DONE; 
m = alpha - beta**2; goto DONE; 

The use of the 'local' attribute is never essential. If the 'local' attribute 
were omitted from the declaration of x, these statements would still be 
correct; but the execution of the 'goto x;' would cost more. 

RESTRICTION ON THE DESTINATION 

The destination of a 'goto' statement must be a statement that is 
immediately contained in an active block. If the reference in the 'goto' 
statement is a constant reference, this restriction requires that the 
destination be in some block that contains the 'goto' statement, and the 
compiler checks for compliance. If the reference is a variable reference or a 
function reference, the matter is neither so simple nor so safe. 

The following program illustrates the probleo: 

P: proc; 
dcl x label; 

P 1 : proc; 

x = LAB; 

LAB: 
end; 

P2: proc; 

goto x· , 

end; 
call Pi; 
call P2; 
end; 

11-18 Al183 



This program executes the procedure 'P1' and then the procedure 'P2'. The first 
procedure assigns the label value designated by 'LAB' to the label variable 'x'. 
At the time of assignment, the statement designated by 'LAB' is an active block. 
Later, the second procedure attempts to execute 'goto x;'; but at that time the 
block that contains the statement designated by 'LAB' is no longer active. 
Therefore the transfer is not valid. 

There is no way to detect this invalid transfer in advance without 
understanding the logic of the program; therefore, the error is not detected by 
the compiler. 

BLOCK EXECUTION 

The principal purpose of a 'begin' block is to establish declarations. The 
recommended style of programming in Hultics PL/I is to write short 'procedure' 
blocks. Since the necessary declarations can be established in these 
'procedure' blocks, a 'begin' block is rarely needed; indeed, some programmers 
never use them. 

Control can enter a 'begin' block only by execution of the 'begin' 
statement that is the first statement of the block. The statement is executed 
either in sequence or by transfer of control to a label prefix in the statement. 
When the 'begin' stateQent is executed, it does not cause any action directly, 
but the entry to the 'begin' block causes the block to be activated. 

Control can exit from a 'begin' block by execution of the 'end' statement 
that is the last statement of the block. Alternatively, control can exit by 
execution of a 'goto' statement whose destination lies outside the block. In 
either case, exit from the block causes the block to be deactivated. 

The activation and deactivation of a block are described later, in Section 
XII, "Procedure Invocation." 

GUIDELINES FOR FLOW OF CONTROL 

When the PL/I facilities for programming flow of control are used 
effectively, they make the logic of a program seem sinple and thus allo\1 the 
programmer to concentrate on the details of the operations being performed. Two 
factors are important in PL/I programming: avoidance of unnecessary 'goto' 
statements and proper use of page layout. These factors are discussed here. 

Avoidance of Unnecessary 'goto' Statements 

A common source of unclear programming is the use of a 'goto' statement 
where 'do' groups or procedure calls could be used. The avoidance of these 
'goto' statements requires more work in the design of a program but reduces the 
work of debugging; the net result is an improvement of the program. 

11-19 A!183 



Some uses for the 'goto' statement are necessary in PL/I hecause they can 
be avoided only by obscure tricks. The use of a switch is sometimes essential 
and the use of a 'goto' statement to escape from a loop is connon. But every 
use of a 'goto' should be considered carefully and retained only if it fills a 
special need. There are not many reliable rules for good programming style; but 
avoidance of unnecessary 'goto' statements is one such rule. 

Layout Conventions 

A program is arranged in an attractive layout by means of blanks, tabs, and 
newlines. The PL/I interpreter ignores the layout of a program, and leaves this 
responsibility entirely in the hands of the programmer. The programmer 
therefore has two tasks: 

• He must choose conventions that provide for program layouts. 

• He must detect his own errors in his application of the layout 
conventions. 

There is some variation in the layout conventions used by PL/I programmers. The 
following rules are used for the example programs in this manual: 

1. 

2. 

3. 

Start each statement on a new line. 
getting lost. 

This keeps statements from 

If a statement, group, or block requires more than 
every additional line relative to the first line. 
to find the end of the statement, group, or block. 

one line, indent 
This makes it easy 

If ' if' statement with an 
, 
else 

, 
clause requires more than an one 

~ine, begin a new line for the ' then' clause and a new line for the , 
clause. Start the 

, 
else 

, 
clause in the column the else same as 

, then' clause. This makes it easy to match the clauses of an ' if' 
statement. 

4. Put every label prefix at the left margin, even when the statement of 
which it is a part is indented. This makes it easy to search for a 
particular label prefix. 

These rules have exceptions. For example, a consequence 
same line as the 'then' or 'else' that precedes it. 
closely related to the statement that precedes it, it can 
line; this is sometimes true of a 'goto' statement. 

11-20 

should begin on the 
If a statement is very 
appear on the same 

Ar183 



SECTION XII 

PROCEDURE INVOCATION 

Programs can be written quickly and accurately if the top-do\/n structured 
approach to programming is used. This approach is applied to a given problem as 
follo'\<IS: 

1. Call the problem the current task. 

2. Program the current task as a procedure. If the task is large and 
complicated, factor out a subtask; that is, select a coherent portion 
of the task, give it a name, and replace it by a 'call' statement or 
function reference to a procedure that will be written later. Place 
the factored subtask on the list of remaining tasks. Continue to 
factor out subtasks in this way until the current task can be written 
as a simple procedure that is about one page long. 

3. If there are any remaining tasks, let one of them be the current task 
and go to Step 2. Otherwise, the program for the given problem is 
complete. 

The availability of a complete and efficient facility for writing and invoked 
procedures is useful for top-down structured programming. Although the large 
number of procedure invocations introduced by the approach can increase the 
expense of executing a program, that expense is compensated for by the reduction 
in the cost of program development and maintenance. Further; the t1ultics 
implementation of PL/I includes special optimizations designed to reduce the 
cost of procedure invocation. From all of this, it follo\/s that procedure 
invocation is perhaps the most important feature of t1ultics PL/I. 

The subject of procedure invocation is presented here in an order that 
allows explanation and motivation of each topic. The discussion begins with the 
passing of arguments to parameters since all the features of procedure 
invocation depend on this operation. After that preliminary, the execution of 
'call' statements and the interpretation of function references are described. 
This provides a basis for the consideration of the special properties of 
procedures, including recursion and side effects. Next the use of variables and 
function references to supply the entry point of the invoked procedure is 
explained. Finally, the details of the syntax of a procedure are given. 

12-1 M183 



ARGUMEN~S AND PARAMETERS 

Whether a procedure is invoked by a 'call' statement or a function 
reference, an important part of the operation is the passing of arguments to 
parameters. As a simple example, consider the following program: 

P: proc; 
dcl a float; 
dcl b fixed; 

call Q1(a,b,a+6); 

Q1: proc(x,y,z); 
dcl (x,y,z) float; 

end; 
end; 

In this example, the 'call' statement invokes the procedure labeled 'Q1'. The 
'call' statement has a list of three arguments: 

(a,b,a+6) 

and the procedure has a corresponding list of parameters, one for each argument: 

(x,y,z) 

\Jhen the procedure 'Q1' is invoked, each argument is passed to its corresponding 
parameter. 

The argunents are passed in two ways, as follows: 

• If the argument is a variable reference and has a suitable storage 
type, then the variable designated by the argument is passed; that is, 
the corresponding parameter is set to designate the same variable as 
the argument just before procedure execution. Such an argument is a 
by-reference argument. The first argument in the program just given 
is a by-reference variable. 

• If the argument is suitable for assignment to the corresponding 
parameter but cannot be handled as a by-reference argument, then the 
value designated by the argument is passed; that is, a system 
temporary is allocated, the argunent value is assigne1 to the 
temporary, and the parameter is set to designate the temporary. Such 
an argument is a by-value argument. The second argument in the 
program is by-value because its stbrage type differs from that of its 
parameter. The third argument is by- value because it is not a 
variable reference. 

Observe that an argument that is passed by-reference can have its value changed 
during procedure execution, whereas a by-value argument merely supplies the 
initial value for a system temporary. 

The discussion of arguments and parameters given thus far is intended to be 
an introduction to the subject. In the following paragraphs, detailed rules and 
examples are given. First the classification of arguments as by-referenCe or 
by-value is defined; then the interpretation of the two kinds of arguments is 
given. The discussion continues with guidelines for argument usage and 
concludes with a note on argument validity. 

12-2 Ar183 



Argument Classification 

The rules for the classification of an argument as by-reference or by-value 
are given here. The classification is performed during program compilation. 
The ability to pass arguments by-reference can contribute to the efficiency of 
the object program. The existence of two kinds of arguments makes the rules 
more complicated; specifically, it accounts for the presence of Rules 3 and 4. 

An argument is by-reference if it satisfies all of the following rules: 

• A by-reference argument must be a variable reference. This 
restriction is present because a procedure can assign a value to a 
by-reference argument; and only a variable reference can be the target 
of an assignment statement. 

• A by-reference argument must have the same storage type as the 
corresponding parameter. This restriction is present because a 
by-reference argument and a parameter designate the same variable and 
(with exceptions that are not relevant here) every reference to a 
given variable must use the same storage type. 

• With one exception, a by-reference argument must 
constant extents. This restriction is present 
classification is done at compile time, when 
nonconstant extent is not known. 

be declared with 
because argument 

the value of a 

The exception to this restriction allows the use of a nonconstant 
extent in the declaration of an argument if the corresponding extent 
in the declaration of the parameter is '*'. The '*' parameter extent 
means that the extent is copied from the argument extent; therefore it 
necessarily has the same value and there is no need to examine the 
value of the argument extent. 

• A by-reference argument must not be a reference to an array that is 
declared as 'defined' and uses isub' s in its definition. This 
restriction is present because a reference to an isub-defined array 
requires a special encodement; the need for which cannot be detected 
at compile time. 

An argument is by-value if it does not satisfy some of the rules just given and 
does satisfy the following rule: 

• A by-value argument must have a storage type such that the argument 
value can be converted, where necessary, to the storage type of the 
corresponding parameter. This restriction is present because the 
value of a by-value argument is assigned to a temporary that has the 
storage type of the parameter. 

With one exception, an argument is valid if it can be classified as by-reference 
or by-value. The exception is: 

• A by-reference argument must not designate an unconnected aggregate if 
the array bounds of the declaration of the corresponding parameter are 
all constants. This restriction is present because of efficiency 
considerations and the compile-time classification of arguments. 

The term unconnected is defined in terms of the layout of storage described 
under "Arrays" in Section III, "Value Storage." An array is connected or 
unconnected, depending on whether its elements are adjacent in storage or not. 

12-3 AM83 



EXAt·1PLES OF ARGUl'1EHT CLASSIFICATION 

As the basis for detailed exa~ples of argument classification, consider the 
following program: 

P: proc; 
dcl 01 S(10) static external, 

02 acct decimal(8,2), 
02 err entry(float,fixed dec(10)) returns(float); 

dcl B char(n) controlled; 
dcl n fixed; 
dcl 01 T, 

02 acct dec fixed(8,3), 
02 err entry(float,fixed dec(10)) returns(float); 

dcl C char(30); 

n = 30; 
allocate B; 
call Q2(S(3),B); 

call Q2(T,C); 

Q2: proc(m1,m2); 

end; 

dcl 01 m 1 , 
02 balance dec fixed(8,2), 
02 erout entry; 

dcl m2 char(30); 

end; 

This example has two 'call' statements. The arguments in the first 'call' 
statement are classified as follows: 

• The argument 'S(3)' is by-reference. The declaration of'S' is 
considerably different from that of 'm1', but a careful examination 
shows that the declarations give the same storage type: 's' is an 
array of structures, but 'S(3)' is a structure of the same aggregate 
type as 'm1'; the attributes 'static external' are not part of the 
storage type; 'decimal(8,2)' and 'fixed dec(8,2)' are two ways to 
describe the same data type; and the only part of the declaration of 
'S.err' that is part of the storage type is the keyword 'entry'. 

• The argument 'B' is by-value. Although the storage types of 
'm2' are the same when the 'call' statement is 
Classification Rule 3 is not satisfied. 

The arguments in the second 'call' statement are classified as follows: 

'B' and 
executed, 

• The argument 'T' is by-value. The storage type of 'T' differs from 
that of 'm1' in just one place; the scale-factor of 'T.acct' is 
different from that of 'm1.balance'. 

• The argument 'c' ,is,by-reference. Its storage type is explicitly the 
same as that of m2 . 

This exa~ple illustrates the fact that a parameter can correspond to a 
"by-refer~nce" argument in one 'call' statement and to a nby-value" argument in 
another. 

12-4 AM83 



EXAt1PLES OF CON!J ECTED AND UIICO~HJ ECTED ARGUm'::NTS 

As the basis for exaMples of ar~u~ents that are connected or unconnected 
arrays, consider the following progran: 

P: proc; 
dcl A(12,12) float; 

call Q5(A(3,*»; 

Q5: proc(X); 
dcl X(12) flo8.t; 

end; 
.end; 

The argument 'A(3,*)' is valid. for the followin; reasons: 

• It is classified as by-reference. 

• It is a cross-section of an array but is nevertheless connected 
because .. A (3, 1 ) ~ , , A (3,2) , , and so on, are adjacent in storage. 
Therefore it is a valid by-reference argUMent for ~ para~eter that has 
a constant array bound. 

Suppose the 'call' statenent in the exa~pl~ just given is changed to: 

call Q5(A(*,8»; 

This 'call' stateMent is not a valid invocation of the procedure. The argument 
is not connected because it represents 'A(1,8)', 'A(2,8)', and so on, and the 
designated variables are not adjacent in storas~. T~ere are two ways to correct 
the call: 

• The argunent can be parenthesized, tr.us: 

call Q5«A(*,8»); 

For purposes of classification, the argu~ent is now a parenthesized 
expression, not 8. variable refere~c~. Therefore the argUMent is 
by-value and this restriction does not apply. The method cannot be 
used if the procedure 'QS' is programned to assign a value to 
'A(*,8)'; and it incurs the added expense of copying the array into a 
system temporary as part of the passing of the argument. 

• The array bound in the parameter can be changed to '*', thus: 

dcl X(*) float; 

The parameter no longer has a constant array bound; therefore, this 
restriction does not apply. The argunent re~ains by-reference, but it· 
is handled by the more general and more expensive method associated 
with an '*' array bound. 

The choice between these two methods does not arise often because variables that 
designate unconnected storage are unusual in typical programming applications. 

12-5 Art83 



I 

Argument Interpretation 

When a 'call' statement or function reference is executed, each argument is 
interpreted according to its classification, as follows: 

• If the argument is by-reference, then the corresponding parameter is 
set, just before each procedure execution, to designate the variable 
that is currently designated by the argument. The parameter 
designates that variable throughout the execution of the procedure. 
Just after procedure execution the association between the parameter 
and the variable is broken; but the variable itself continues to 
exist. 

• If the argument is by-value, then the interpreter allocates a system 
temporary that has the same storage type. as the parameter, evaluates 
the argument, assigns the argument value to the temporary, and sets 
the parameter to designate the temporary. These actions are all taken 
just before procedure execution. The parameter designates the 
temporary throughout the execution of the procedure. Just after 
procedure execution, the interpreter frees the temporary and its value 
is lost. 

The differences in the two interpretations lie entirely in the 'call' statement 
or function reference that invokes the procedure, and not in the interpretation 
of the procedure itself. 

EXAMPLES OF ARGUMENT INTERPRETATION 

As the basis for examples of the interpretation of arguments, consider the 
following program: 

P: proc; 
dcl alpha(10) float; 
dcl beta float bin(40); 
dcl (i,k) fixed; 

call Q3(alpha(i+2),beta,2*k+6): 

Q3: proc(d,xl,x2); 
dcl (d,xl,x2) float; 

end; 
end; 

The arguments in this example are interpreted as follows: 

9/78 

• The argument 'alpha(i+2)' is classified as by-reference. Just before 
procedure execution begins, the subscript expression is evaluated; 
suppose the current value of the expression is '3'. Then the 
interpreter locates the variable designated by 'alpha(3)' and sets the 
parameter 'd' to designate that variable. During procedure execution, 
the third element of 'alpha' can be referenced either as 'alpha(3)' or 
'dr. It may happen that the value of 'i' is changed during procedure 
execution; but that change does not cause !d! to designate some other 
element of the array 'alpha'. Just after procedure execution, the 
association between 'd' and 'alpha(3)' is broken and 'd' becomes 
undefined until the next time the procedure is invoked. 

12-6 AMB3A 



• The argument 'beta' is classified as by-value because its precision is 
different from that of the parameter 'x1'. Just before procedure 
execution, the interpreter allocates a system temporary of storage 
type 'float', evaluates the variable reference 'beta', and assigns the 
value to the system temporary. During procedure execution, the 
parameter 'd' designates the temporary, not the variable that is 
designated by 'beta'. If the value of 'beta' is changed during 
procedure execution, it does not affect the value of the temporary. 
Just after procedure execution, the temporary is freed. 

• The argument '2*k+6' is classified as by-value. It is treated in much 
the same way as 'beta'; however, for '2*k+6' it is more readily 
apparent that a change in the temporary does not change the argument, 
since a value cannot be assigned to an operator expression. 

Effect of an '*' Extent 

When an asterisk, '*', is written as an extent in the declaration of a 
parameter, it indicates that the extent for the parameter is to be copied from 
the storage type of the corresponding argument. (An extent is an array bound, a 
maximum string length, or an area size.) The value of the parameter extent is 
determined in this way each time the procedure is invoked, and therefore can 
change from one invocation to another. Under certain circumstances, when the 
aggregate type of the argument must be converted, there is no argument extent 
that corresponds to a '*' parameter array bound; then, the value '1' is assumed 
for the array bound. 

EXAI-1PLE OF ' *' EXTENT 

As an example of the use of an 
following program: 

P: proc; 
dcl A(s) I"loat controlled; 
dcl s fixed; 

allocate A; 
call Q4(A); 

call Q4(200); 

Q4: proc(X); 
dcl X(*) float; 

end; 
end; 

, * ' as an array bound, consider . the 

This program has two 'call' statements, and their arguments are passed as 
follows: 

• In the first call, the argument is by-reference. The details of the 
program are not shown, but suppose this 'call' statement is executed 
twice, with's' equal to 10 and 12, respectively. The first time, 'A' 
is allocated with ten elements and the declaration of the parameter 
becomes 'X(10) float'. The second time 'A' has twelve elements and 
the declaration is 'X(12) float'. 

12-7 At183 



• In the second call, the argu~ent is by-value. The argument ~ust be 
converted froQ a 'fixed dec(3)' scalar to a 'float' array. Since the 
array bound is given neither by the argument nor the parameter, it is 
assumed to be one. Therefore, the declaration of the parameter 
becoQes 'X(1) float'. 

Guidelines for Arguments 

The classification of arguments is perforQed automatically by the compiler, 
without an explicit indication in the prograQ. This convenient arrangement must 
be supervised carefully by the programmer, and he should be aware of the 
classification of each argument as he writes a 'call' statement. The effect of 
classification on both efficiency and correctness of a program is considered 
here. 

First consider efficiency. The cost of passing an argument becomes 
significant when the storage type of the argument has one or ~ore extents; such 
an argument designates a relatively complicated and potentially large variable. 
If the argument is by-reference, it is necessary only to set the parameter to 
designate the argument variable; this is an inexpensive operation, whose cost is 
independent of the extents of the variable. On the other hand, if the argument 
is by-value, a temporary must be allocated and the entire value copied into the 
teQPorary; and this can be expensive. A purpose of the '*' parameter extent is 
to allow the passing of arguments by-reference that would otherwise be passed 
by-value because their extents did not agree with those chosen for the 
parameter. 

Next consider correctness. A serious mistake is the assumption that an 
argument is by-reference when it is not; the assumption is easily made when the 
argument is a variable reference. Suppose the procedure 'Q4' in the most 
recently given example delivers a value by assigning it to the parameter, 'X'. 
This is correct because the argument 'A' is by-reference and will receive the 
delivered value. Suppose, however, that the programmer decides, at the last 
minute, to increase the precision of 'A' and therefore changes its declaration 
to: 

dcl A(s) float(40) controlled; 

Now the storage type of the argument is different from the parameter and the 
argument is classified as by-value. Instead of changing the value of 'A', the 
procedure changes the value of a system temporary, and the delivered value is 
lost. This mistake is serious because it is not detected by the compiler and is 
not apparent to a casual reader. 

12-8 AM83 



, ca 11' STATEilErJT 

A 'call' statement has one of the following forms: 

call ref( arglist ); 

call ref(); 

call ref; 

where ref is the entry reference and ar~list is the argument list. The entry 
reference must yield a scalar entry value. The argument list is a sequence of 
arguments separated by conmas, and each argument is an expression. As special 
cases, the argunent list can be empty, as shown in the second form, or the 
parenthesized argument list can be absent, as shown in the last form; these 
special cases are equivalent and are used when no argu~ents are required. 

Agreement of Call with Entry Point 

The entry reference of a 'call' statenent designates a procedure entry 
point. The forg of the 'call' statenent must agree with the form of the 
procedure entry point. Specifically, the 'call' statement must satisfy the 
follbwing restrictions: 

1. The number of arguments in the 'call' statement ~ust be equal to the 
nu~ber of paraneters at the designated procedure entry point. This 
restriction provides for the matching of arguments with parameters. 
If there are no ar~unents in the 'call' statement, then there must be 
no parameters at the designated procedure entry point. 

2. Each argument must be a valid by-reference argUMent or a valid 
by-value argument as defined earlier in the discussion of 
classification under "Arguments and Parameters". 

3. A 'returns' attribute must not appear at the designated procedure 
point. This restriction is present because a 'returns' attribute only 
makes sense if the procedure is i~voked by a function reference. 

Execution of 'call' Statements 

The execution of a 'call' statement is performed in five steps, as folIous: 

Interpret entry reference 
Interpret arguments 
Activate procedure 
Execute procedure 
Exit from procedure 

These steps are now considered in detail. 

12-9 AH83 



I 

INTERPRET ENTHY REFERENCE 

The first step in the execution of a 'call' statement is the interpretation 
of the entry reference, as follows: 

1. The entry reference is evaluated to yield an entry value. 

2. The entry value is used to locate a procedure entry pOint. In a PL/I 
procedure, the procedure entry point is either a 'procedure' statement 
or an 'entry' statement. The procedure that immediately contains the 
designated procedure entry point is the invoked procedure for this 
execution of the 'call' statement. 

In the simplest case, the invoked procedure is part of the current PL/I program. 
In other cases, it is a procedure that is written in some other programming 
system or it is a program that is written in PL/I but that is part of the 
Multics system, such as a subroutine described in the [1PM. In all cases, it is 
useful to think of the procedure as being written in PL/I and to rely upon the 
documentation of the procedure to specify the ways in which the procedure 
differs from a procedure that is part of the current PL/I program. 

INTERPRET ARGUMENTS 

The next step in the execution of a 'call' statement is the interpretation 
of arguments, which was described in detail under "Arguments and Parameters". 
Briefly: 

• Each by-reference argument is interpreted by evaluating any subscript 
expressions or locator-qualifier expressions that appear in" the 
argument. Then the designated variable is located and the parameter 
that corresponds to the argument is set to designate that variable. 

• Each by-value argument is evaluated. Then a system temporary is 
allocated that has the same storage type as the corresponding 
parameter, the value of the argument is assigned to the temporary, and 
the parameter is set to designate the temporary. 

The order in which the arguments are interpreted is not defined. After this 
step, each parameter designates either a variable or a temporary. 

ACTIVATE PROCEDURE 

The third step is the activation of the procedure. A new activation region 
is created for the procedure (in the language of Multics, a new stack frame is 
pushed onto the stack). Storage units are allocated in this activation region 
as follows: 

9/78 

• The variables of storage class 'automatic' declared in the invoked 
procedure are allocated. Since the 'automatic' is assumed when no 
storage class attribute is given, most variables of a typical program 
are handled in this way. 

12-10 AM83A 



• A system temporary for the return address is allocated. The return 
address is used to resume execution after the 'call' statement when 
execution of the invoked procedure is complete. 

• Other system temporaries necessary for maintaining the stack, handling 
'on' conditions, holding temporary results, and so on are allocated. 
These need not be considered in detail since the programmer does not 
refer to them directly. 

In order to reduce execution cost, the t1ultics implementation of PL/I 
avoids the creation of a block activation region for certain procedures. This 
optimization technique does not change the interpretation of a program, and it 
can be ignored by a programmer who remains within the framework of the PL/I 
language. However, when the programmer uses various Multics routines to examine 
stack frames directly, the effects of the technique are apparent. The compiler 
prints a message for each procedure that is compiled without an activation 
region, and provides information about the distribution of the storage units 
that would have occupied the missing activation region. 

EXECUTE PROCEDURE 

The fourth step is the execution of the procedure. Execution begins with 
the 'procedure' or 'entry' statement that is at the procedure entry point. The 
execution of this statement causes no action because its only purpose is to 
describe a procedure entry point; but it provides the starting point for 
sequential execution of statement of the procedure. 

Execution of the procedure continues until an exit statement is executed, 
as described in the next step. 

EXIT FROri PROCEDURE 

The last step in the execution of a 'call' statement is the execution of an 
exit statement. Each exit statement specifies an exit destination; that is, 
the statement that is executed once the execution of the 'call' statement is 
complete. There are three kinds of exit statement, as follows: 

• A 'return' statement is an exit statement for the given procedure if 
it is contained in that procedu~e but not in a smaller procedure. Its 
exit destination is the statement that appears next after the given 
'call' statement. 

• An 'end' statement is an exit statement for the given procedure if it 
is the last statement of that procedure. Its exit destination is also 
the statement that appears next after the given 'call' statement. 

• A 'goto' statement is an exit statement for the given procedure if it 
is part of the given procedure or of a more recently invoked procedure 
and its destination lies outside the given procedure. The exit 
destination is the destination of the 'goto' statement. 

12-11 AM83 



If the exit statement is 'return' statement, it must not have a returned result; 
that is, it must have the form: 

return; 

This restriction reflects the fact that a 'call' statement does not expect a 
returned value. 

As part of the execution of the exit statement, the following operations 
are perforned: 

• The invoked procedure is deactivated; that is, the variables and 
temporaries that are allocated in the activation region for the 
procedure are freed and the activation region is discarded. (In the 
language of Multics, the stack frame associated with the procedure is 
popped from the stack.) 

• Each system temporary allocated for a by-value argument is freed. 

After these operations, control is transferred to the statement designated by 
the exit destination. 

Examples of 'call' Statements 

As an example 
following program: 

P: proc; 

_ &" J,.. '- _ 

Ul. I..dH:: 

dcl alpha float; 

call RA(alpha+1); 

LAB: 

RA: proc(x); 
dcl x float; 

call RB(x); 

end; 
RB: proc(y); 

dcl y float; 

execution 

dcl A(20) float; 

goto LAB; 

end; 
end; 

of a , call' statement, consider the 

The external procedure 'P' is invoked from Multics, which executes the command 
'P', which is equivalent to the following PL/I statement: 

call P; 

12-12 



Execution of the co~mand proceeds as follows: 

1. Interpret Entry Reference to P. The 'P' in the 'call' statement 
designates the first statement of the program. 

2. Interpret Arguments for P. There are no arguments. 

3. Activate P. An activation region for the procedure named 'P' is 
pushed onto the stack, allocating the 'automatic' variable 'alpha' and 
the required temporaries. 

4. Execute P. Execution begins at the designated 'procedure' statement 
and proceeds until the first 'call' statement is reached. The 
execution of the 'call' statement proceeds as follows: 

a. Interpret Entry Reference to RA. 
statement designates the second 
program. 

The 'RA' 
'procedure' 

in the 'call' 
statement in the 

b. Interpret Arguments for RA. The argument 'alpha+1' is by-value. 

c. 

A system temporary of storage type 'float' is allocated, the 
value of the argument is assigned to it, and the parameter 'x' is 
set to designate the temporary. 

Activate RA. 
is created 
it. 

An activation region for the procedure 
and the required system temporaries are 

named ' RA ' 
allocated in 

d. Execute RA. Execution begins with the 'procedure' statement 
labeled 'RA' and proceeds until the second 'call' statement of 
the program is reached. The execution of the 'call' statement 
proceeds as follows: 

1) Interpret Entry Reference to RB. The 'RB' in the 'call' 
statement designates the third procedure statement in the 
program. 

2) 

3) 

Interpret Arguments for RB. The 
by-reference. The parameter ,'~' 
storage unit designated by x, 
temporary created in Step 2, above. 

argument 'x' is 
is set to designate the 
which is the system 

Activate RB. An activation region for the 
'RB' is created, and the array , A' 
temporaries are allocated in it. 

procedure 
and the 

named 
system 

4) Execute RB. Execution begins with the 'procedure' statement 
labeled 'RB' and proceeds until the 'goto' statement is 
reached. This statement is the exit statement for 'RB' 
because its destination is outside of 'RB'. It is also the 
exit statement for 'RA' because, even though it is not 
contained in 'RA' it is contained in a more recently invoked 
procedure. 

5) Exit from RB. The procedure 'RB' is deactivated by freeing 
'A' and its temporaries and discarding its activation 
region. Its argument is by-reference, so there is no 
argument temporary to free. This concludes execution of the 
statement 'call RB(x);'. 

e. Exit from RA. The procedure 'RA' is deactivated by freeing its 
temporaries and discarding its activation region. The storage 
temporary used for its argument is freed. This concludes 
execution of the statement 'call RA(alpha+1);'. 

12-13 At·183 



5~ Continue Execution of P. Execution of the external procedure 
continues, starting with the statement labeled 'LAB' and proceeds to 
the 'end' statement that is the last statement of the program is 
reached. This statement is the exit statement for 'P'. 

6. Exit from P. The procedure 'P' is deactivated by freeing 'alpha' and 
its temporaries and discarding the activation region. This concludes 
execution of the program. 

The most important feature of this example is the fact that the 'goto' statement 
serves as the exit statement for both the procedure named 'RB' and the procedure 
named 'RA'. 

FUNCTION REFERENCE~ 

A function reference has one of the following forms: 

ref( arglist 

ref( ) 

where ref is the entry reference and arglist is the argument list. The entry 
reference must yield a scalar entry value. The argument list is a sequence of 
arguments separated by commas, and each argument is an expression. The second 
form is used when no arguments are required. 

Agreement of Reference with Entry Point 

The entry reference of a function reference designates a procedure entry 
point. The form of the function reference must agree with the form of the 
procedure entry point as follows: 

1. The number of arguments in the function reference must be equal to the 
number of parameters at the designated procedure entry point. 

2. Each argument must be a valid by- reference argument or a valid 
by-value argument as defined earlier in the discussion of 
classification and validity under "Arguments and Parameters". 

3. A 'returns' attribute must appear at the designated procedure entry 
point. The attribute is necessary because it specifies the storage 
type of the result returned by the function and thus specifies the 
storage type of the function reference itself. 

Hhen a procedure is invoked by the interpretation of a function reference, it is 
sometimes called a function; however, that terminology is not used here. 

12-11~ A!183 



Interpretation of Function References 

The interpretation of a function reference has six steps, as follows: 

Interpret entry reference 
Interpret arguments 
Activate procedure 
Execute procedure 
Exit from procedure 
Fetch result 

The first four steps are the same as for the execution of a 'call' statement. 
The fifth step is different and the sixth step is new. These last two steps are 
now considered in detail. 

EXIT FROM PROCEDURE 

The fifth step in the interpretation of a function reference is the 
execution of an exit statement. There are only two kinds of exit statement for 
a function reference, as follows: 

• A 'return' statement is an exit statement for the given procedure if 
it is contained in that procedure but not in a smaller procedure. Its 
exit destination is that point in the program at which the value of 
the function reference is about to be used. 

• A 'goto' statement is an exit statement for the given procedure if it 
is part of the given procedure or of a more recently invoked procedure 
and its destination lies outside the given procedure. The exit 
destination is the destination of the 'goto' statement. In this case, 
the procedure does not return a value. 

If the exit statement is a 'return' statement, it must have a returned result; 
that is, it ~ust have the form: 

return (£) ; 

where ~ is an expression. The 'end' statement that is the last statement of the 
given procedure is not a valid exit statement and must not be executed. Both of 
these restrictions reflect the fact that a procedure that is invoked by a 
function reference must return a value unless it exits with a 'goto' statement. 

As part of the execution of the exit statement, the following operations 
are performed: 

• The invoked procedure is deactivated; that is, the variables and 
system temporaries that Here allocated in the activation region for 
the procedure are freed and the activation region is discarded. 

• Each system temporary that was allocated for a by-value argument is 
freed. 

12-15 At183 



• The result is returned. The expression in the 'return' state~ent is 
evaluated, and the value is assigned to the storage allocated by the 
caller for the returned resul t. ~1ore is said of the \..Jay a resul t is 
returned later in this section under "The 'returns' Attribute". 

After these operations, control is transferred to the point designated by the 
exit destination. 

FETCH RESULT 

As the last step in the interpretation of a function reference, the result 
is fetched from the temporary to which it was assigned by the preceding step. 
This value is the value of the function reference. 

Example of a Function Reference 

As an example of the interpretation of a function reference, consider the 
following program: 

P: proc; 
dcl (alpha,beta) float; 

alpha = 2*F1(beta)~ 

F1: proc(x) returns(float); 
del x I.lOat; 
dcl y fixed; 

return(y+1); 

end; 
end; 

The execution of the assignment statement begins with the interpretation of the 
function reference, as follows: 

1 . Interpret Entry Reference. The 'F l' in the function reference 
designates the second 'procedure' statement in the progra~. 

2. Interpret arguments. The 
parameter 'x' is set to 
'beta' . 

argument 'beta' is by-reference. The 
designate the storage unit designated by 

3. Activate Procedure. An activation region for the procedure named 'F1' 
is pushed onto the stack, allocating the 'automatic' variable 'y' and 
all required temporaries. 

4. Execute Procedure. Execution begins with the 'procedure' statement 
labeled 'Fl' and proceeds until the 'return' statement is reached. 

5. Exit from Procedure. The expression 'y+l' is evaluated; then the 
resulting value is converted to 'float' and returned to the caller. 
The procedure 'Fl' is deactivated by popping its activation region 
from the stack. 

12-16 AH83 



After the function reference is interpreted its result is multiplied by two and 
assigned to 'alpha'. 

PROCEDURES 

A procedure gathers a sequence of statements together for execution as if 
they were a single operation. A procedure is defined as: 

• A 'procedure' statement, followed by 

• A sequence of statements that is the body of the procedure and that 
may include some 'entry' statements and 'return' statements, followed 
by 

• An 'end' statement. 

Procedures, 'begin' blocks, and 'do' groups must be nested with respect to one 
another, as described earlier, in Section V, "Program Syntax." 

Many examples of procedures are given throughout this section, and 
therefore no additional examples are given here. Instead, the specialized 
statements used in procedures are described, beginning with the 'procedure' 
statement, continuing with the 'entry' statement, and concluding w"ith the 
'return' and 'end' statements. 

'procedure' Statement 

A 'procedure' statement has one of the following forms: 

2K procedure( flattribute •.• ] recursive 

~ procedure( ~attribute ... ] recursive 

~ procedure Uattribute .•. ] recursive I 
where QK is the prefix, 'procedure' can be abbreviated as 'proc', parlist is the 
parameter list, and the attribute may be the 'returns' attribute, either the I 
'reducible' or irreducible' attribute, or the 'option' attribute. The brackets 
indicate that the 'returns' attribute and the 'recursive' keyword are optional. 
The second and third forms are equivalent and are used for an entry point with 
no parameters. 

The execution of a 'procedure' statement causes no action; its purpose is 
to indicate the beginning of a procedure and to define an entry point to a 
procedure. Descriptions of the prefix, the parameter list, the 'returns' 
attribute, and the !recursive! keyword follows. 

9/78 12-17 AM83A 



P.REFIX 

The prefix of a 'procedure' statement is a sequence of any number of 
condition prefixes followed by a sequence of one or more label prefixes. Each 
condition prefix applies to the entire procedure that begins with the 
'procedure' statement; the" effects of these condition prefixes are described 
later, in Section XIII, "Condition Handling." Each label prefix is an 
identifier followed by a colon, and its effect is described here. 

An identifier in a label prefix in a 'p~ocedure' statement is a procedure 
name, and it is interpreted as follows: 

• A procedure name has the attributes 'internal entry constant' or 
'external entry constant', depending on whether it is at the beginning 
of a procedure that is contained in a larger procedure or not. 

• A 'procedure' statement begins a given procedure, but each label 
prefix that begins the 'procedure' statement is considered to be 
outside the procedure. Thus, the declaration of an 'internal' 
procedure name is established in the procedure or 'begin' block that 
immediately contains the given procedure; and the declaration of an 
'external' procedure name is established in an imaginary 'begin' block 
that encloses all of the external procedures of a program. 

• During execution of the program, a reference to the procedure name 
yield~ the 'entry' value that design~tes the 'procedure' statement. 

The prefix of a 'procedure' stateMent usually consists of just a single 
~label prefix, as in the following example: 

P3: proc (x) ; 

During the infornal discussion of progra~s. it is convenient to use the 
identifier in a label prefix both as a name fo~ a procedure and as a name for an 
entry point of the procedure. For example, it might be said of the statement 
'call P3(a+l);' that it "invokes the procedure 'P3'" or that it "invokes a 
procedure at entry point 'P3'". Strictly s?eaking, however, the statement 
"invokes a procedure at the entry point that is designated by the 'entry' value 
that is associated with the name 'P3'". 

The following 'procedure' statement has a prefix that consists of three 
label prefixes: 

ALPHA: 
Top_run: 
F13: proc{y); 

The three 'entry' constant names, , ALPHA", 'Top_run"', and 'F13', all deSignate 
the same entry point. The layout used in this example is recommended because it 
places each nane at the left margin and makes it easy for a reader to search for 
an entry nal'!!e. 

12-18 



PARAMETER LIST 

The parameter list is a sequence of parameters separated by commas, and 
each parameter is an identifier. Parameters should be declared; and, for 
clarity, the declarations of the paraneters should be the first statements of 
the procedure body. 

AA: proc(alpha,Max_Val); 
dcl alpha fixed dec(8); 
dcl Max_Val float; 

end; 

Vlith the following exceptions, a paraneter name is declared like any other 
variable name: 

• When an identifier appears in a parameter list, its scope, storage 
class, and category must be 'internal', 'parameter', and 'variable', 
respectively. Since these attributes are supplied by default, there 
is no need to write them in the declaration of a parameter. 

• The 'initial' attribute cannot be used. This exception is present 
because the 'initial' attribute is valid only for a variable that has 
its own storage, and a parameter is always set to designate previously 
allocated storage. 

• An extent (array bound, maximum string length, or area size) can be 
written only as an '*' or as a decimal integer constant. The use of 
the '*' extent is discussed earlier, under "Arguments and Parameter"; 
it indicates that the extent for the paraneter is to be copied from 
the storage type of the corresponding argunent. A decimal integer 
constant extent does not provide for anything that a '*' cannot do, 
but it permits more efficient compilation of references to the 
parameter, and should be used where the generality of an '*' extent is 
not required. 

These exceptions reflect the logical consequences of the way in which parameters 
are interpreted; they do not restrict the parameters. Indeed, an important 
feature of PL/I is that any value, scalar or aggregate, conputational or 
noncomputational, can be passed as an argument to a procedure or returned as a 
result. 

'returns' ATTRIBUTE 

Depending on whether the 'returns' attribute is present or absent, an entry 
point is invoked by a function reference or a 'call' statement. The 'returns' 
attribute has the following form: 

returns( g ) 

where ~ is the descriptor. The descriptor ~~v~~ the declaration of the storage 
type of the returned result; with the following exceptions, it is written 
exactly as the storage type of a variable is given in a 'declare' statement: 

• Any attributes that are not part of the storage type are omitted. 

• The names of members of a structure are omitted. 

• Each extent (array bound, maximum string length, or area size) must be 
either a '*' or a decimal integer constant. 

12-19 Al183 



The storage type given by the descriptor of the 'returns' attribute describes 
the system temporary to which the 'return' statement assigns its value. This 
temporary is associated with the function reference that invoked the procedure. 

Example of the 'returns' Attribute 

For a rather complicated example of a descriptor, consider the following 
procedure: 

A1: proc(X) returns(01 dim(*), 
02 float, 
02 fixed dec(8)); 

dcl 01 X(*), 
02 num float, 
02 m fixed dec(8); 

return(X+1); 
end; 

This procedure accepts an array of structures with any bounds as its parameter 
and it returns a result that has exactly the same storage type. It is chosen as 
an example because the declaration of 'X', given in a 'declare' statement, can 
be compared to the declaration of the result, given as a descriptor in the 
'returns' attribute. 

'recursive' KEYWORD 

The 'recursive keyword has the form: 

recursive 

This keyword applies to an entire procedure, not to a particul~r entry point; 
therefore, it is used only in a 'procedure' statement and is not called an 
attribute. Furtheroore, the keyword refers to the way in which a procedure is 
invoked and not to the action taken by the procedure. 

A procedure is recursive if, for some possible execution of the program in 
which it appears, it is invoked when a previous invocation is still active; 
examples are given later, under "Recursive Procedure Execution". In Standard 
PL/I, every recursive procedure must have the keyword 'recursive' in its 
'procedure' statement. In some implementations of PL/I, the addition of the 
keyword causes a change in the way the procedure is compiled; specifically the 
code becomes valid for recursion but less efficient. The Multics implementation 
of PL/I assumes that every procedure is recursive and thus does not depend on 
the 'recursive' keyword. The appropriate use of the 'recursive' keyword is 
recommended to t1ultics programmers because it oaintains compatibility with the 
Standard and gives useful information about the procedure to a reader. 

12-20 At183 



'entry' Statement 

An 'entry' statenent has one of the forms: 

N entry( Qarlist ) [returns ( rd )] 

QX entry( [returns ( rd )] 
N entry [returns< rd )] 

where N is the prefix, Qarlist is the Qarameter list, and rd is the result 
descriptor. An 'entry' statement is the same as a 'procedure' statement except 
for the following points: 

• The 'entry' statement does not appear at the beginning of a procedure; 
instead, it can occur at any point in the body of the procedure. It 
is used when more than one entry point is required for a procedure. 

• The prefix of an 'entry' statement must not contain a condition 
prefix. 

The last exception is present because the condition prefixes are given, once and 
for all, in the 'procedure' statement that begins the procedure. 

The execution of an 'entry' statement causes no action; its sole purpose is 
to define an entry point to a procedure. Thus when an 'entry' statement is 
encountered by sequential flow of control through the procedure, the 'entry' 
statement has no effect and control continues to the next statement. 

EXAMPLE OF A MULTIPLE-ENTRY PROCEDURE 

Two or more procedures can be usefully combined into a single procedure 
when they have statements or data in common. The following procedure has two 
entries, one for use with two arguments, and the other for use with one 
argument. 

P2A: proc(x,ypar); 
dcl (x,ypar) float; 
dcl y float; 
y = ypar; 
goto START; 

P1A: entry(x); 
y = 1; 

START: 
end; 

12-21 At-183 



This. procedure has two entries. The first entry has two arguments. The second 
entry has only one argument and provides the value '1' for the second argument. 
The handling of the parameters seems awkward, but the following simpler version 
is not valid. 

P2A: proc(x,y); 
dcl (x,y) float; 
goto START; 

P1A: entry(x); 
y = 1; 

START: 
end; 

This program is invalid because when it is invoked at its second entry, 'P1A', 
it uses the parameter 'y' which is not defined for that entry. 

'return' Statement 

The 'return' statement has one of the following forms: 

return( re ); 

return; 

where re is the return expression. The first form is a valid exit statement for 
a procedure that was invoked by a function reference; the second form, for a 
procedure that was invoked by a 'call' statement. 

'end' Statement 

The 'end' statement has the following form: 

end; 

The purposes of the 'end' statement are to indicate the end of a procedure (or a 
'begin' block or a group) and to serve as an exit statement for a procedure. An 
'end' statement is a valid exit statement for a procedure only if the procedure 
was invoked by a 'call' statement. 

ENTRY REFERENCES 

The entry reference of a 'call' statement or a function reference specifies 
the entry point for the invoked procedure. In addition, the entry reference 
must supply the storage type of each parameter and~ if it is present) the 
'returns' attribute. 

An entry reference is usually a constant reference to an entry point in the 
same external procedure. That case is handled in a simple way in PL/I, and the 
examples given thus far have all used that kind of entry reference. In what 
follows, the constant entry reference is given further consideration and then 
other kinds of entry references are introduced. 

12-22 A.H83 



Constant Entry References 

An entry reference can designate an entry point in the same external 
procedure, in a different external procedure, or outside the program. Each case 
requires special consideration when the entry reference is a constant reference. 

ENTRY POINTS IN THE SAME EXTERNAL PROCEDURE 

When a constant entry reference designates an entry point that is within 
the same procedure, the compiler can obtain the information it requires from the 
designated 'procedure' statement or 'entry' statement. Therefore, no additional 
declaration is required. This consideration applies to external entry names in 
the same procedure as well as internal entry names. 

ENTRY POINTS IN ANOTHER EXTERNAL PROCEDURE 

When a constant entry reference designates an entry point that is in 
another external procedure of the program, the compiler cannot obtain 
information dir?ctly about the parameters and the returned value because 
external procedures are compiled separately. Therefore, the programmer must 
refer to the invoked entry point, obtain the information, and declare the entry 
name in the procedure in which it is called by means of a 'declare' statement. 

The 'declare' statement 'for the 'entry' constant name must have the 
following attributes: 

• An 'entry' attribute with parameter descriptors. The keyword 'entry' 
is followed by a parenthesized list of descriptors, one for each of 
the parameters at the entry point. The descriptor is obtained from 
the declaration of the parameter by deleting attributes that are not 
part of the storage type and deleting any names of members of a 
structure. 

• The 'returns' attribute (if one appears at the invoked entry point). 

When an 'entry' name is declared in this way, its scope and category are assumed 
to be 'external constant'. 

12-23 Al'183 



As an example of the declaration of a constant na~e that desiGnates an 
entry point in another external procedure, consider the following progr'am: 

P: proc; 
dcl B3 entry(01 dim(*), 

02 float, 
02 float, 

fixed) 
returns(float); 

dcl (i, j) fixed; 

i = B3(0,j); 

end; 

B3: proc(a,b) returns(float) recursive; 
dcl 01 a(*), 

02 Q1 float, 
02 Q2 float; 

dcl b fixed; 

end; 

Because of the 'declare' statement in the first external procedure, 'p', the 
compiler can compile the procedure separately and yet produce the correct code 
for the statement 'i=B3(0,j);'. 

ENTRY POINTS OUTSIDE THE PROGRAM 

\/hen a constant entry reference designates an entry point of a procedure 
that is outside of the current program, the entry name must be declared by a 
'declare' statement. This situation arises when a program must call one of the 
standard Multics subroutines or a subroutine programmed in SODe language other 
than PL/I. The 'entry' attribute with parameter descriptors, the 'returns' 
attribute, and the 'recursive' keyword are obtained from the documentation of 
the procedure. The documentation may call for the 'options' attribute. 

'options' Attribute 

The 'options' attribute in Multics PL/I has the form: 

options (Q, ••• ) 

where Q is an option name. The most frequently used option name is 'variable'. 
The construct 'options(variable)' indicates that an entry point accepts a 
variable number of arguments or allows the attributes of an argument to change 
from one invocation to the next. The attribute never applies to a procedure 
written in accordance with this manual. It does apply to some of the standard 
Multics subroutines. 

12-24 AM83 



Variable Entry References 

lJhen an entry reference is a variable reference, the compiler cannot obtain 
information directly about parameters and 'returns' attribute because it cannot 
predict which entry point will be designated by the entry reference. Therefore, 
the programmer must include the required information in the declaration of the 
variable name. 

The declaration of an entry variable reference must include the following 
attributes: 

• An 'entry' attribute whose parameter descriptors agree with the 
parameter declarations of every entry point that will be designated by 
the entry reference. 

• A 'returns' attribute that is identical to that given (if any) for 
every entry point that will be designated by the entry reference. 

• The category attribute 'variable'. 

The category attribute must be given because the default is 'constant' when the 
data type is 'entry'. The scope, storage class, and 'initial' attributes can be 
chosen according to considerations that would govern the declaration of any kind 
of variable. 

During execution of the program, the evaluation of a variable entry 
reference must yield an 'entry' value that designates a valid entry point. 

EXAMPLE OF ENTRY VARIABLE REFERENCE 

As an example of the use of an entry variable reference, consider the 
following program: 

P: proc; 
dcl v entry(dim(10) float,fixed) 

returns(float) static variable; 
dcl vx entry variable; 
dcl A(10) float; 
dcl (m,p) fixed; 

if m=O then vx = F1; else vx = F2; 

v = vx; 

p = 3*v(A,3)+1; 

F1: proc(a1,b1) returns(float) recursive; 
dcl a1(10) float; 
dcl bi fixed; 

end; 
F2: proc(a2,b2) returns(float) recursive; 

dcl a2(10) float; 
dcl b2 fixed; 

end; 
end; 

12-25 AM83 



The pr9gram uses 'entry' variables as follows: 

• At the top of the program, 'v' is declared as an 'entry static 
variable' with an initial value. The remainder of the declaration is 
included not to describe the storage used for the variable but rather 
to allow the use of the variable as an entry reference. 

• lJext 'vx' is declared 'entry'. Since this variable is not used as an 
entry reference, parameter descriptors and 'returns' attribute are 
omitted from its declaration. 

• At some time during the program, the 'if' 
'entry' value designated by the constant name 

• Later, the value of 'vx' is assigned to 'v'. 

statement assigns the 
'F1' or 'F2' to 'vx'. 

• Each time the assignment to 'p' is encountered, the variable name v 
is used as an entry reference. The declaration of 'v' allows the 
compiler to determine whether the arguments are by-name or by-value 
and to determine the storage type of the returned result (and thus of 
the function reference 'v(A,3)' itself). 

Function Entry References 

When an entry reference is a function entry reference, the programmer must 
include parameter descriptors and 'returns' attribute in the 'returns' attribute 
of the function name. 

EXAMPLE OF AN ENTRY FUNCTION REFERENCE 

As an example of the use of an entry function reference, consider the 
following program: 

P: proc; 
dcl A(10) float; 
dcl (m,p) fixed; 

p = 3*E(m)(A,3)+1; 

E: procCa) returns(entry(dim(10) float,fixed) 
returns(float»; 

dcl a fixed; 
if a=O then return(F1); else return(F2); 
end; 

F1: proc(a1,b1) returns(float) recursive; 
dcl a1(10) float; 
dcl b1 fixed; 

end; 
F2: proc(a2,b2) returns(float) recursive; 

dcl a2(10) float; 
dcl b2 fixed; 

end; 
end; 

12-26 A!183 



Compare this program to the example given for variable entry references. In 
this program, the selection between 'F1' and 'F2' still depends on 'm', but it 
is carried out by a function reference, 'E(m)'. 

Generic Entry Names 

A generic entry name is used to designate one of a set of entry points. 
The programmer specifies, in the declaration of the generic entry name, how a 
single entry point is selected for a particular use of the name. The selection 
is done during compilation, and it is based on the attributes of the arguments 
that accompany a particular use of the name. 

EXAt1PLE OF A GENERIC ENTRY NAt1E 

As an example of the declaration and use of a generic entry name, consider 
the program: 

P: 

QV: 

QNV: 

proc; 
dcl 

dcl 
dcl 
dcl 

Q 

S 
T 
i 

generic(QV when(varying,*), 
QNV when(nonvarying,*)); 

char(6); 
char(100) varying; 
fixed; 

call Q(S,i); 

call Q(T,20); 

proc(a,b); 
dcl a char(*) varying; 
dcl b fixed; 

end: 
proc(m,n); 

end; 

dcl ill char(*); 
dcl n fixed; 

end; 

Presumably, 'QV' and 'QIJV' are two procedures that do nearly the same thing (so 
that it is logical to think of them as being the same procedure), but one is 
designed for the efficient handling of a 'varying' string and the other for a 
'nonvarying' string. During the compilation of this program, the two 'call' 
statements are replaced by: 

call QV(S,i); 

call QNV(T,20); 

Thus all references to 'Q' are eliminated. 

The full description of the 
Language t1anual. The facili ty is 
usefulness is limited. 

generic entry 
not described 

12-27 

name is given in the PL/I 
fully here because its 

Al183 



RECURSIVE PROCEDURE EXECUTION 

Sometimes a procedure is invoked when a previous invocation is still 
active. Such a procedure is recursive. Recursion can be direct or chained. 
Direct recursion results if the body of a given procedure contains a 'call' 
statement or function reference that invokes the given procedure. Chained 
recursion occurs when a procedure A invokes a procedure B that invokes a 
procedure C and so on until a procedure invokes procedure A. In either case, 
the keyword 'recursive should be used in the 'procedure' statement at the 
beginning of the procedure. 

In a software system that has a well-developed interrupt system, recursion 
can occur without being explicitly programmed. This kind of recursion 
frequently occurs in Multics. Suppose, for example, that a user starts printing 
a file, interrupts, and then starts printing another file. In ~Il~~ case, the 
program for printing a file is active on two levels, and is therefore recursive. 
As a less obvious example, suppose a user interrupts a file print-out to compile 
a program. Since the routine that was outputting a line for the file print-out 
may also be used by the compiler to output a message, recursion can occur in 
this case also. In both cases, the recursion is caused not by the programs 
themselves but rather by the user, who uses an interrupt to introduce a 
recursive call on a system routine. This possibility must be considered 
whenever a system routine is written. 

When a procedure is executed recursively, the procedure has more than one 
activation internal region. These are the storage regions that, in the t1ultics 
implementation of PL/I, are the stack frames. An activation region is used for 
'automatic' variables J rnr the extent values of 'defined' variables, for the 
pointers associated with 'parameter' variables, and for various system 
temporaries required for the evaluation of expressions, return from a procedure, 
and so on. A complete description of the role of activation regions is given 
earlier, in Section VII, "Storage t1anagement." 

The simultaneous existence of several activation regions for a recursive 
procedure raises the following question: 

When a name denoting storage in an activation region is interpreted, which 
activation region is chosen? 

For most cases of recursion, the following simple rule answers this 
question: 

A reference to an activation region for a given block uses the most 
recently, created activation region that exists for that block. 

The situations in which this rule may fail are described later in this 
section under the heading General Recursion. Before that point, several 
examples of recursion are given that use only the Simple rule above. 

12-28 At183 



EXAMPLE OF RECURSION WITHOU7 ARGUMENTS 

The following program uses surface recursion to print a symmetrical list of 
integers: 

Rl: proc; 

Seq: 

dcl (sysin,sysprint) file; 
del n fixed; 
get listen); 
call Seq; 
proc; 

end; 

dcl i fixed; 
i = n; 
put skip list(i); 
if n > 1 then 

do; 
n = n-1; 
call Seq; 
end; 

put skip list(i); 
end; 

When this program is executed and the input value is '3', the output is: 

3 
2 
1 
1 
2 
3 

Thus the program prints the integers from the given value down to '1' and then 
from '1' back up to the given value. 

This program uses neither statement address variables nor 'on' statements, 
so it is immediately recognized as 
short and simple and therefore 
detail, as follows: 

a case of surfaCe recursion. The program lS 
it is practical to describe its execution in 

1. Prepare for Program Execution. The external and static regions for 
the entire program are created. Two 'file' constant storage units are 
allocated in the external region. Then 'R1' is invoked. 

2. Start Execution of 'R1'. The activation region for 'R1' is created, 
and storage for 'n' is allocated in the region. The 'get' statement 
reads an input value (which is assumed to be '3') and assigns it to 
'n'. The 'call' statement invokes 'Seq', which is executed as 
follows: 

1. Start the First Execution of 'Seq'. An activation region is 
created for 'Seq' and storage for the automatic variable named 
'i' is allocated in it. The value of 'n' is assigned to 'i' and 
is printed as the first line of the output. Since 'n' is greater 
than one, the value of 'n' is reduced by one and then the 'call' 
statement invokes 'Seq', which is executed as follows: 

12-29 AM83 



1. Start the Second Execution of 'Seq'. A second activation 
region is created for 'Seq' and storage for the automatic 
variable named 'i' is allocated in it. (Now there are two 
variables named 'i', and the rule for surface recursion must 
be applied to select one of them.) The value of 'n' is 
assigned to 'i' in the most recently created activation 
region for 'Seq' and is printed as the second line of 
output. Since 'n' is still greater than one, the value of 
'n' is reduced by one and then the 'call' statement invokes 

2. 

'Seq', which is executed as follows: 

1. Start the Third Execution of 'Seq'. A third activation 
region is created for 'Seq' and 'i' is allocated in it. 
The value of 'n' is assigned to 'i' in the most 
recently created activation region for 'Seq' and is 
printed as the third line of the output. Since 'n' is 
not greater than one, the reduction of 'n' and the 
recursive call of 'Seq' are skipped. Now the recursive 
calls begin to "unwind". 

2. Complete the Third Execution of 'Seq'. The value of 
'i' in the most recently created activation region for 
'Seq' is printed as the fourth line of output. The 
third activation region for 'Seq' is discarded. 

Complete the Second Execution of 'Seq'. 
the nost recently created activation 
printed as the fifth line of output. 
recently created" refers only to those 
that still exist.) 7he second activation 
is discarded. 

The value of 'i' in 
region for 'Seq' is 

(Of course "most 
activation regions 
region for ' Seq' 

2. Complete the First Execution of 'Seq'. The value of 'i' in the 
ac~ivation region for 'Seq' is printed as the sixth line of 
output. The activation region for 'Seq' is discarded. 

Complete Execution of 'R1'. 
discarded. 

The activation region for , R 1 ' is 

In order to see how activation regions are handled during surface 
recursion, consider the following diagram of storage just before the start of 
the third execution of 'Seq': 

activation region. block 1 (named 'R1'). activation 1 

fixed 
n ! 1 7 

activation region. block 2 (named 'Seq'). activation 1 

fixed 
i ! 3 7 

activation region block 2 (named 'Seq') activation 2 

fixed 
i ! 2 7 

12-30 

I 

At-183 



At this point in program execution, there are two activation regions for 'Seq'. 
According to the rule for surface recursion, a reference to 'i' uses the one 
marked "activation 2". 

EXAMPLE OF RECURSION WITH AN ARGUMENT 

The preceding example program, named 'R1', can 
transmitting an argument to 'Seq'. The new version is: 

be simplified by 

R2: proc; 
dcl (sysin,sysprint) file; 
dcl n fixed; 
get listen); 
call Seq(n); 

Seq: proc(i); 

end; 

dcl i fixed; 
put skip list(i); 
if i > 1 then call Seq(i-1); 
put skip list(i); 
end; 

This program is "simplified" not only because it is shorter, but also because, 
for an experienced programmer, it shows more clearly how the procedure 'Seq' 
depends on the environment in which it is called. 

For each recursive invocation of 'Seq', the program uses two system 
temporaries to transmit the argument. The temporaries play different roles, as 
follows: 

• A 'fixed' temporary is used to hold the value of the argument 'i-1' in 
the second call. In Multics, the argument temporary is allocated in 
the activation region of the calling procedure; therefore, the 
(Q=1)th activation region contains the argument temporary for the nth 
invocation of 'Seq'. 

eA 'pointer' temporary is used to link the parameter to the argument. 
A reference to the parameter 'i' designates this parameter temporary, 
and the temporary, in turn, designates the storage unit for the 
argument. The parameter temporary is allocated in the activation 
region for the calling procedure; therefore, the (n-1)activation I 
region of 'Seq' contains the parameter temporary for the nth 
invocation of 'Seq'. 

Observe that no argument temporary is required for the 
because the argument 'n' is transmitted by-reference, 
temporary thus points directly to 'n'. 

first call of 'Seq' 
and the parameter 

9/78 12-31 AM83A 



In order to see how arguMents are handled during surface recursion, 
consider the following diagr~m just before the start of the third execution of' 
'Seq" : 

activation re;zion. block 1 (nar.ted ' R2 ' ) • activation 1 

fixed 
n I 3 7"'! 

activation re~ion. block 2 (named 'SeQ'). activation 1 

*fixed 
i L , 

n 
, 

in block 1 I activation 1 I 

fixed 
(temp) I 2 I~ 

activation re2ion. block 2 {named 'Sea'}. activation 2 

*fixed 
i L '( tern12)' in block 21 activation 1 I 

fixed 
(temp) L 1 7 

The storage unit for the parameter, 'i', is given the data type '-fixed' to show 
that it holds a pointer to a 'fixed' storage unit. Because 'i' is a parameter, 
a reference to 'i' is interpreted as a reference to the storage unit desi~nated 
by the pOinter. The arrows in the diagram show how each parameter designates 
and argument storage unit. The storage unit designated '(temp)' is a system 
temporary used for the value of 'i-1' in the second 'call' statement in the 
program. 

EXAMPLE OF CHAINED RECURSION 

For an example of chained recursion, consider one again the program 'Rl' 
that was given as the first example of recursion. A program that produces the 
same output is: 

R3: proc; 
dcl (sysin,sysprint) file; 
dcl n fixed; 
get list{n); 
call Seq; 

Seq: proc; 

Test: proc; 

end; 

del i fixed; 
i = n; 
put skip list(i); 
call Test; 
put skip list(i); 
end; 

if n > 1 then 

end; 

do; 
... 1. 

11 - U- I , 

call Seq; 
end; 

12-32 Af183 



There is no direct recursion in this version of the program: 'Seq' does 
not contain a calIon itself and 'Test' does not contain a calIon itself. 
However, 'Seq' calls 'Test' , and 'Test' calls 'Seq', so recursion does 
occur. 

RECURSIVE PROGRAll 

The following program contains a recursive procedure, 'CmIP', that is 
a rudimentary translator of expressions: 

P: proc; 
dcl sysprint file; 
call COHP("«(a-b)/c)*(d+(e+f)))",1,0); 
put skip; 

CaMP: proc(S,i,n) recursive; 
dcl S char(*); 
dcl i fixed; 
dcl n pic"999"; 
dcl a char(9) var initial(""); 
dcl c char(1); 
dcl k fixed; 
do k = i+1 by 1 

c = substr(S,k,1); 
if c = "(II 

then do; 
call COf1P (S, k, n) ; 
a = a::"T":ln; 
end; 

else if c = II)" 
then do; 

n = n+ 1 ; 
put skip list("T"1 Inl 1"="1 :a: :";"); 
i = k; 
return; 
end; 

else a = a I I c ; 
end; 

end; 
end; 

The program is set up for a test run of the 'COMP' procedure. 
procedure invokes 'COMP' on an expression that is given as a character 
namely: 

«(a-b)/c)*(d+(e+f))) 

The output of the recursive execution of 'COMP' is: 

T001=a-b; 
T002=T001/c; 
T003=e+f; 
T004=d+T003; 
T005=T002*T004; 

The main 
string; 

Thus each operator in the given expression is compiled into a PL/I statement. 

12-33 Al183 



~he following assertions about variables help to explain the execution of 
the procedure: 

S contains the parenthesized expression that is to be translated into a 
sequence of assignment statements. Its value does not change 
throughout the program. In fact, for each invocation of 'COt1P', 's' 
designates the same storage unit; namely the temporary that is 
allocated for the argument of the first invocation. 

i designates the '(' that begins the parenthesized expression within'S' 
that is to be translated by a particular invocation. 

n contains the number of the most recently used name in the series 
'T001 " 'T002', and so on. 

a contains the character string that represents the assignment stateQent 
that is being formed by the current invocation of the procedure. The 
variable is 'automatic'; otherwise the procedure would not work. For 
example, the initial invocation of the procedure proceeds as follows: 

set 'a' to "" 
invoke 'CO~1P' to compile "«a-b)/c)" 
set 'a' to "T002" 
in voke ' COt1P' to compile 11 (d+ (e+f) ) " 
set 'a' to "T002*T004" 

Clearly the intermediate values of 'a' would be lost if 'a' were not 
allocated for each new invocation. 

c contains the current character in the scan of the given expression. 
The variable is 'automatic', but need not have been because there is 
no recursive call between its setting and its last use. 

k designates the current character for a given execution of the body of 
the 'do' group; it controls the scan of the parenthesized expression. 
It is set to 'i+1' in order to skip the initial '('. 

In order to study the procedure, simulate an invocation until the recursive call 
is reached. Instead of following that call, assume that it returns the correct 
result and complete the simulation of the current invocation. 

General Recursion 

A recursive program uses 
statements are true: 

general recursion if any of the following 

• The program obtains the 'pointer' value that designates an 'automatic' 
variable during one activation of a block and then use that 'pointer' 
value to locate the 'automatic' variable during a later activation of 
the same block. 

• The program obtains a statement address value ('entry', 'format', or 
'label' value) during one activation of a block and then uses the 
value to locate a statement during a later activation of the same 
block. 

• The pro gran establishes an 'on' unit during one activation of a block 
and then signals the 'on' unit during a later activation of the same 
block. 

AH83 



In these statements, the phrase "activation of a block" refers either to the 
invocation of a procedure or the execution of a 'begin' block. 

At certain points in the execution of a recursive program, a name must be 
interpreted as a reference to a storage unit in an activation region. However, 
the interpretation of a name given in Section VI, "Declarations" yields only the 
declaration of the name and the block in which its declaration is established. 
An additional rule is required to select one of the several activation regions 
for the given block. The general rule is complicated, and depends on extensions 
to the interpretation of several features of PL/I. 

Rules for the interpretation of general recursion are given here. The 
rules introduce extra steps into the execution of a program. These steps are 
essential if the program uses general recursion; otherwise, they have no effect 
on the final outcome. Thus the rules can be applied to all programs or just to 
those that use general recursion. In fact, the Multics implementation of PL/I 
does not determine the recursive properties of a program but rather applies 
these rules to all programs. In contrast, a programmer who is studying a given 
proGram should probably ignore these rules unless the program uses general 
recursion. 

General recursion requires special treatment of certain address values. 
The discussion that follows begins with the description of the activation index, 
which is used in an address value to designate an activation region. The 
discussion continues with a few paragraphs that explain the use of a 'pointer' 
value that has an activation index. The remainder of the discussion is devoted 
to statement address values: the parent index is introduced, rules for the use 
and setting of parent indexes are given, and several examples are included. 

ACTIVATION INDEXES 

A particular activation region may be conceptually designated by adding an 
activation index to the designation for the block. Consider, for example, the 
value described by "'X' in block 4, activation 2". Depending on the declaration 
of 'X', this address value is interpreted as follows: 

• If 'X' is an 'automatic' variable name, then the value is a 'pointer' 
value that designates the storage unit naMed 'X' in the second 
activation of block 4. 

• If 'X' is a statement name, it designates the statement named 'X' 
immediately contained in block 4 and, further, it specifies the 
interpretation of that statement within the second activation of block 
4. 

The way in which these values are generated and used is described later in this 
discussion of general recursion. 

12-35 AM83 



In an implementation of PL/I it is certainly not necessary to represent an 
address value as "'LAB' in block 4, activation 2"; such a representation is 
convenient for discussion but not for implementation. All that is necessary is 
a representation that conveys the essential information. In the Multics 
implementation of PL/I, Hultics pointers are used. A tlultics pointer plays the 
role of a hardware address, and it can designate any location in t1ultics 
storage. The following representations are used: 

• A 'pointer' value is represented by a tlultics pointer that designates 
a storage unit. 

• A statement address value is represented by a pair of Multics 
pointers. The first pointer designates the beginning of the code for 
a statement. The second pointer, the activation pointer, designates 
the beginning of a stack frame. 

Thus, for reasons of efficiency, these values are given quite different 
representa tions in riul tics. 

POINTERS 

A 'pointer' value that points to storage in an activation region can be 
formed by the application of the 'addr' function to a reference to an 
'automatic' variable. The argument of the 'addr' function is interpreted to 
locate a specific variable in a specific activation region; then that 
information is expressed as a 'pointer' value. The storage may later be 
accessed through the 'pointer' value even though the activation region may no 
longer be accessible in other ways. The following example illustrates this 
case. 

Example of Pointers 

As an example of the formation and use of a 'pointer' value when general 
recursion is present, consider the following program: 

Q1 : proc; 
dcl sysprint file; 
dcl n fixed static initial(1); 
del i fixed; 
dcl ib based(ip); 
dcl ip pointer static; 
i = n; 
if n = 
put skip 
n = n+ 1 ; 
if n < 3 
end; 

then ip = addr(i); 
list(i,ib); 

then call Q1; 

The output of this program is: 

1 
2 
3 

Each number on each line of this output represents the value of a variable named 
'i'. However, the first number in a line is taken from the variable that is 
allocated in the most recently created activation region, whereas the second 
number is taken from the variable that is allocated in the first (and least 
recently created) activation region. 

12-36 AH83 



The program is invoked three times, the first tine by a Nultics command and 
the second and third time by itself, recursively. During the first, second, and 
third invocations, the value of 'n' is '1', '2', and '3', respectively; and 
during each invocation, the current value of 'n' is assigned to a variable named 
'i' that is allocated in the first, second, or third activation region. The 
important feature of the program is the statement: 

if n = 1 then ip = addr(i); 

The assignment to 'ip' is performed only during the first execution of the 
program and therefore the value of 'ip' designates the same allocation of 'i' 
throughout the program, namely "'i' in block 1 (named Q2), activation 1". 

Suppose the 'if' statement is changed to the following: 

if n < 3 then ip = addr(i); 

Then the output of the program is: 

1 
2 
3 

1 
2 
2 

Suppose, on the other hand, that the 'if' statement is changed to the following: 

if n = 2 then ip = addr(i); 

Then the program is invalid because a reference is 
first invocation) before a value is assigned 
invocation). 

PARENT DESIGNATORS 

made to 
to 'ip 

'ip (during the 
(during the second 

Each activation region must contain a parent designator called the static link. 
The parent designator in an activation region for a given block designates the 
most recent activation regions for the block that immediately contains the given 
block. The parent designator in an activation region for an external procedure 
has no purpose and can be ignored. A parent designator is used in interpreting 
a program but is not directly accessible from the program. 

The parent designators are used in the definition of a current activation 
region for each block that contains the most recently activated block. The 
definition is as follows: 

• The current activation region for the most recently activated block is 
the most recently created activation region. 

• The current activation region for a block that immediately contains a 
given block is the activation region designated by the parent 
designator of the given block. 

12-37 At183 



As an example of the use of this definition, let the most recently activated 
block of a program be called B1; let the block that immediately contains B1 be 
called B2; let the block that immediately contains B2 be called B3; and let B3 
be an external procedure. Then the current activation region for each of these 
blocks is determined as follows: 

• The most recently created activation region for B1 is the current 
activation region for that block. 

• Suppose that the parent designator in the current activation region 
for B1 designates the third activation region for B2; then the latter 
is the current activation region for B2. 

• Suppose that the parent designator in the current activation region 
for B2 designates the first- activation region for B3; then the latter 
is the current activation region for B3. 

Thus the parent designators form a sequence of activation regions that begins 
with the most recently activated block and ends at the containing external 
procedure. 

Observe that the blocks for which current activation regions are defined 
are exactly those blocks whose declared names can be referenced in the most 
recently activated block. The purpose of defining the current activation re~ion 
is to resolve ambiguities that arise in the interpretation of certain references 
to those names. Such ambiguities arise in two cases: the interpretation of 
activation variable references and the evaluation of statement address constant 
names. Discussion of these cases follows. 

Activation Variable References 

Certain variables designate storage units that are allocated in an 
activation region. There are three such cases: 

• An 'automatic' variable reference designates a variable that is 
allocated in an activation region. 

• A 'defined' variable reference mayor may not designate a variable 
that is allocated in an activation region; however, each extent (array 
bound, maximum string length, or area size) for the vari~ble is 
contained in a system temporary that is allocated in an activation 
region. 

• A 'parameter' variable reference designates a parameter pointer that 
is contained in a system temporary that is allocated in an activation 
region. 

Except in the case of a 'parameter' variable reference, the designated stor ge 
is allocated in an activation region that is associated with the block in wh ch 
the variable name is declared. If there is more than one such activat on 
region, then the choice is resolved by selecting the current activation reg on 
for the block. 

12-38 AM83 



Statement Address Constant References 

The evaluation of a given statement address constant reference yields an 
'entry' value, a 'format' value, or a 'label' value. Earlier in this 
discussion, it was noted that such values must include an activation index. 
That activation index is chosen so that it designates the current activation 
region for the block in which the name in the given reference is declared. 

SETTING THE PARENT DESIGNATOR 

An activation region is created when a 'procedure' block, a 'begin' block, 
an on unit, or a 'format' statement is executed. For general recursion, the 
activation region must include a parent designator. Each of the four cases is 
described in the following paragraphs. 

'procedure' Block 

Part of the invocation of a procedure is the evaluation of an 'entry' 
reference. The resulting 'entry' value includes an activation region 
designator, and it is this designator that is used as the parent designator in 
the activation region that is created for the execution of the procedure. 

The rtultics implementation of PL/I optimizes by avoiding the creation of a 
block activation region for certain procedures; however, the interpretation of 
the program is not changed. A programmer must be aware of this practice only 
when he uses Multics to eiamine stack frames directly. The compiler prints a 
message for each procedure that is compiled without an activation region. 

As an example of procedure invocation in the presence of general recursion, 
consider the following program: 

Q2: proc; 
dcl sysprint file; 
dcl n fixed static init(O); 
dcl i fixed; 
dcl ev entry variable static internal; 
n = n+1; 
i = n; 
if n = 1 then ev = S; 
put skip list(i); 
call ev; 
if n < 3 then call Q2; 

S: proc; 

end; 

put list(i); 
end; 

The output of this program is: 

1 
2 
3 

12-39 AM83 



Each line of the output is produced by outputting the value of 'i' twice; once 
by a statement in the Main procedure and once by a statement in '3'. The first 
value of 'i' is always from the most recent activation region for 'Q2', whereas 
the second value of 'i' is from the first (le~st recent) activation of 'Q2'. 

The followdng 
interesting: 

aspects of the progran just given are particularly 

• A value is assigned to the 'entry' variable only once; namely, during 

• 

the first activation of 'Q2'. Therefore, the value of 'ev' is 
equivalent to ",S' in block 1 (named Q2), activation 1". 

The procedure 
'Q2' . Each 

's' is invoked three times, once in each activation of 
time, the 'entry' value has the activation index 

"activation 1", 
the activation 
activation 1". 

region 
noted. Therefore, the 

for 's' is al\vays 
parent designator in 

equivalent to "block 1, 

• Each time 'i' is evaluated within'S', the reference is to the current 
activation region for 'Q2'. That activation region is specified by 
the parent pointer in the activation region for'S', as just 
described, and is always activation 1. 

'begin' Block 

When a 'begin' block that is not an 'on unit is executed, the parent 
designator in the activation region that is created for the execution of the 
block is set to designate the most recent activation region of the block that 
immediately contains the given 'begin' block. 

'format' Statement 

The invocation of a 'format' statement is similar to the invocation of a 
'procedure' block, but a 'format' statement is used in a very restricted way, as 
described ~n Section XIV, "Stream Input/Output." Part of the invocation of a 
'format' statement is the evaluation of a 'format' reference. The resulting 
'format' value includes an activation region designator, and that designator is 
used as the parent designator in the activation region that is created for the 
execution of the procedure. 

In order to reduce execution cost, the ttultics implementation of PL/I 
avoids the creation of a block activation region for a 'format' statement. This 
optimization technique does not change the interpretation of a program, and it 
can be ignored by a programmer who remains within the framework of the PL/I 
language. 

12-40 AH83 



As an example of the invocation of a 'format' statement, consider the 
following pro~ram: 

Q3: proc; 
dcl sysprint file; 
dcl n fixed static init(O); 
dcl i fixed; 
dcl fv format variable static; 
n = n+ 1 ; 
i = n; 
if n = 1 then fv = F; 
put skip edit(2,2)(r(F),r(fv)); 
if n < 3 then call Q3; 

F: format(e(12,i)); 
end; 

The output of this program is: 

2.0e+000 
2.00e+000 
2.000e+000 

2.0e+000 
2.0e+000 
2.0e+000 

Each line of the output is produced by outputting the value '2' twice. Each 
output value is edited by the format statement 'F', but the format statement is 
invoked in two different ways and therefore the parameter 'i' (which determines 
the number of digits after the decimal point) is evaluated in different 
activations. Specifically, 

• The reference 'reF)' always causes the format statement to be 
evaluated within the most recent activation of 'Q3' so the value of 
, i' is' 1 " , 2 " an d ' 3 ' . 

• The reference 'r(fv)' causes the format statement to be evaluated 
within the activation specified in the 'format' variable. Observe 
that the format variable is set only in the first activation of 'Q3'. 
Therefore all the invocations of the 'format' statement use the first 
activation region of 'Q3' and 'i' is '1'. 

'on Unit 

~lhen an 'on' statement is executed, it establishes (but does not execute) 
an 'on' unit for a given condition. As part of this action, the designation of 
the 'on' unit is associated with the given condition and saved. For the 
purposes of general recursion, the designation of the most recently created 
activation region for the block that immediately contains the 'on' statement is 
also associated with the condition and saved. 

When a condition is signalled for which the program has established an 'on' 
unit, the most recently established 'on' unit is executed. As part of that 
execution~ an activation region for the 'on' unit is created (regardless of 
whether the 'on' unit is a 'begin' block or a single statement). The parent 
pointer in that activation region is the activation region designator that was 
saved when the 'on' unit was established. 

12-41 Ar183 



As an example of the invocation of an 'on' unit, consider the following 
program: 

Q4: proc; 
dcl (sysin,sysprint) file; 
dcl n fixed static init(O); 
dcl i fixed; 
dcl k fixed; 
dcl conv cond; 
n = n+ 1 ; 
i = nj 
if i = 1 then on conv put skip list("***",i); 
get list(k); 
put list(i); 
if i < 3 then call Q4; 
end; 

Suppose the input for this program is: 

6 5 four 

Then the output of the program is: 

1 
2 
*** 
3 

Since the on condition is established during the first invoca~lon of 'Q4', its 
associated activation index is "activation 1". During the third activation of 
'Q4', the unacceptable input item, 'four', is encountered, and the 'conversion' 
condition is signalled. The 'on' condition is invoked, but the parent 
designator in its activation region is equivalent to IIblock 1 (Q4), activation 
1". For that reason, the 'on' unit prints out a '1'. 

'goto' STATEt1ENT 

Part of the execution of a 'goto' statement is the evaluation of a 'label' 
reference. The resulting 'label' value includes an activation region 
designator. The 'goto' statement causes exits fron any block activations that 
are more recent than the block activation that is associated wit~ the activation 
region designated by the 'label' value; then execution resu~es at the designated 
statement. 

As an example of the interpretation of a 'goto' statement in the presence of 
general recursion, consider the following program: 

Q5: prOCj 

~VTrT1. 
~...J i\.L ..L • 

dcl sysprint file; 
dcl n fixed static init(O); 
dcl i fixed; 
dcl Iv label variable static; 
n = n+ 1 ; 
i :: n; 
if i = 1 then Iv = EXIT; 
if i < 3 then call Q5j 
put skip list(i); 
gato lv; 
en! ; 

1?-42 At183 



The output of this program is: 

3 

The 'label' variable 'lv' is set during the first invocation of the procedure to 
a value equivalent to "'EXIT' in block 1 (named Q5), activation 1". During 
activation 3 of the procedure, the 'goto' statement is executed for the first 
time. The effect is an exit from activations 3 and 2 of 'Q5' and a transfer to 
the statement labeled 'EXIT'. 

As a rather different example of the interpretation of a 'goto' statement, 
consider the following program: 

Q6: proc; 

3: 

EXIT: 

dcl sysprint file; 
dcl n fixed static init(O); 
dcl i fixed; 
dcl ev entry variable static int; 
n = n+ 1 ; 
i = n; 
if n = 1 then ev = 3; 
if n < 3 then call Q6; 
put skip list(i); 
call ev; 
proc; 

end; 

goto EXIT; 
end; 

Once again the output of this program is a single line: 

3 

The statement address constant reference, 'EXIT', in the 'goto' statement is 
evaluated during the third activation of the procedure 'Q6' in which 'EXIT' is 
declared. However, its value is not "'EXIT' in block 1 (named Q6), activation 
3!! • Ins tead, when ' 3' is invoked (for' the fir's t and .La;:) 1.- t iIne) , 1.-Ile par'en t 
designator in its activation region is "block 1 (named Q6), activation 1". 
Therefore, the current activation region of 'Q6' during the execution of '3' is 
the first activation region and the value of 'EXIT' is "'EXIT' in block 1, 
activation 1". Just as in the previous example, the 'goto' statement causes an 
exit from activation 3 and 2 of 'Q5' and a transfer to the statement labeled 
'EXIT' in activation 1. 

12-43 M183 



SECTIOH XIII 

CONDITION HANDLI~G 

Sometines a program instructs the processor to perform an action that 
cannot be performed. In this situation, it is said that an exceptional 
condition, or simply a condition, has occurred. In some cases, the occurrence 
of a condition is an error, as with an attempt to divide by zero. In other 
cases, the occurrence of a condition communicates the state of an external file, 
as with an attempt to read beyond the last record of a file. In all cases, some 
action must be specified as an alternative to the action that cannot be 
performed. 

The PL/I processor can handle exceptional conditions by itself; in that 
case, it will, for most conditions, print an error message and abort the 
program. However, the PL/I language permits the programmer to supply a 
programmed response, called an 'on' unit, to the condition. In fact, the 
facilities for handling conditions are quite elaborate. These facilities are 
the subject of this section. 

PRINCIPAL FEATURES OF CONDITION HANDLING 

To handle a condition, the programmer first declares the condition by means 
of a 'declare' statement. Next, he enables the detection of the condition by 
means of a condition prefix unless the condition is already enabled. Finally, 
he establishes an ~on~ unit for the condition by means of an 'on' statement. If 
the condition is signalled after the execution of the 'on' statement, the 
established 'on unit established by the 'on statement is executed. 

As an example 6f condition handling, consider the following program: 

P: 

loop: 

exit: 

proc; 
dcl endfile cond; 
dcl (sysin,sysprint) file; 
dcl x float; 
on endfile(sysin) goto exit; 
get list(x); 
put list(x,x**2); 
goto loop; 
pnrl' 
~ .. - ; 

This program illustrates the handling of the 'endfile' condition for the system 
input stream. First, the program declares 'endfile' as a condition name. The 
'endfile' condition is always enabled, so the program does not enable it. Then 
the program establishes an 'on' unit for the condition reference 
'endf,ile(sysin)'. When the 'get' statement encounters an end-of-file, the 
'endfile' condition is signalled for 'sysin' and the established 'on' unit for 
that condition reference is executed. In this program, the established 'on' 
unit transfers control to the end of the program. 

13-1 A!183 



CmJDITIOlJS 

The condition handling facility of PL/I can be applied to two kinds of 
conditions, namely: 

Language-defined conditions 
Progranmer-defined conditions 

The language-defined conditions are defined as part of the PL/I lang~age and 
detected by the PL/I processor during its execution of a program. The 
programmer-defined conditions are defined by the programmer and signalled by the 
program. 

Language-Defined Conditions 

The language-defined conditions are divided into four categories, as 
follows: 

Computational 
Storage 
Termination 
Input/Output 

The following paragraphs define each category and then give a brief description 
of each condition in the category. The description ends with a reference to the 
section of this manual in which a complete description can be found. 

COtIPUTATIONAL CONDITIONS 

The computational conditions occur when errors are detected during the 
conversion of values or the evaluation of expressions. The computational 
conditions are the only conditions that can be enabled and disabled. A 
description of the enabling and disabling of conditions is given later in this 
section. 

The condition reference for a computational condition is the condition name 
or its abbreviation. The computational conditions are summarized in the 
follO\ving list. 

Condition 
Reference 

conversion 
conv 

fixedoverflO\-J 
fofl 

overflow 
of1 

size 

Description 

occurs when an invalid character string or pictured value 
is converted to an arithmetic or bit-string value, as 
described in Section IV "Value Conversion." 

occurs when the result of a binary fixed-point computation 
exceeds 71 digits, as described in Section IV, "Value 
Conversion." 

occurs when the result of a floating-point computation is 
too large to be represented, as described in Section IV, 
"Value Conversion." 

occurs when a value is assigned to a fixed-point target 
and the precision cannot accommodate the magnitude of the 
number, as described in Section IV, "Value Conversion." 

13-2 AH83 



stringrange 
strg 

stringsize 
strz 

subscriptrange 
subrg 

underflow 
ufl 

zerodivide 
zdiv 

STORAGE CONDITIONS 

occurs when a designated substring is not completely 
contained in the string argument of a 'substr' function 
reference or pseudo-variable, as described in Section IX, 
"Operations." 

occurs when a character-string or bit-string is converted 
for a target whose length cannot accommodate the value, as 
described in Section IV, "Value Conversion." 

occurs when the value of a subscript exceeds the bounds of 
the dimension to which it corresponds as described in 
Section VIII, "Expressions." 

occurs when the result of a floating-point 
is too small to be represented, as described 
IV, "Value Conversion." 

computation 
in Section 

occurs when the divisor of a division operator is zero, as 
described in Section VIII, "Expressions." 

The storage conditions occur when the capacity of PL/I storage is exceeded. 
In some cases, an 'on' unit can free storage and thus recover fro~ a storage 
condition. If a storage condition is signalled and the established 'on' unit 
does not free sufficient storage, the condition is signalled again. 

The condition reference for a storage condition is the condition name. The 
storage conditions are summarized in the following list. 

Condition 
Reference 

area 

storage 

TERMINATION CONDITIONS 

Description 

occurs when an attempt is made to allocate storage in an 
area variable that cannot supply the storage, as described 
in Section VII, "Storage Management." 

occurs when the Multics stack segment is about to overflow 
or when the "system storage" in which 'controlled' and 
'based' variables are allocated is full, as described in 
Section VII, "Storage Management." 

The termination conditions occur when execution of a program is complete. 

The condition reference for a termination condition is the condition name. 
The termination conditions are summarized in the following list. 

Condition 
Reference 

finish 

error 

Description 

occurs when the process is terminated, as described later 
in this section. 

occurs as a result of a fatal error in program execution, 
as described later in this section. 

13-3 AH83 



INPUT/OUTPUT CONDITIONS 

The input/output conditions occur ~lhen an input/output operation requires 
special attention. Some of the input/output conditions indicate errors, but 
other conditions communicate a valid change in the status of the data set. 

The condition reference for an input/output condition consists of the 
condition nane followed by a parenthesized file reference. The input/output 
conditions are summarized in the following list. 

Condition 
Reference Description 

endfile(fr) occurs when an input statement attempts to read past the 
end-of-file on the referenced file, as described in the 
Sections XIV and XV, "Stream Input/Output" and "Record 
Input/Output," respectively. 

endpage(fr) occurs when a 'put' statement attempts to output a line 
that does not fit on the current page, as described in 
Section XIV, "Stream Input/Output." 

key(fr) occurs when a 'key' option specifies a key that does not 
exist in the referenced file or when a 'keyfrom' option 
specifies a key that already exists in referenced file, 
as described in Section XV, "Record Input/Output." 

name(fr) occurs when an assignment is read from the referenced 
stream and the variable name does not Match any of the 
variable names in the data list of the controlling 'get' 
statement, as described in Section XIV, "Stream 
Input/Output." 

record(fr) occurs when a 'read' statement reads a record from the 
referenced file that is not equal in size to the 
variable given in the 'into' option, as described in 
Section XV, "Record Input/Output." 

transrnit(fr) occurs when the data cannot be reliably transmitted 
between the referenced file and storage, as described in 
Section XIV and XV, "Stream I::1put/Output" and "Record 
Input/Output," respectively. 

undefinedfile(fr) occurs when an attempt to open the referenced file is 
unsuccessful, as described in Sections XIV and XV, 
"Stream Input/Output" and "Record Input/Output," 
respectively. 

13-4 



Programmer-Defined Conditions 

The condition handling facility of PL/I can be used to define new 
conditions that are designed for the particular needs of a given programming 
application. By defining new conditions, a software syste~ written in PL/I, 
such as 11ultics, can provide its sub-systems with the capability of handling 
conditions. 

The Multics operating systen, which is written in PL/I, makes use of 
programmer-defined conditions. For example, the Multics system defines the 
condition program_interrupt to allow commands to respond to interruptions from 
the terminal. This condition is signalled in the following way: 

• When the user presses the interrupt button on his terminal, the quit 
condition is signalled. 

• The r1ultics handler for the quit condition prints 'QUIT', aborts any 
pending terminal input/output activity, restores the mode of user-io 
and the standard I/O attachments to the default settings, saves the 
current stack history, and establishes a new command level. 

• If the user then types the command 'pi' on his terminal, the 
program_interrupt condition is signalled. 

If the interrupted command has established an 
program_interrupt condition, that 'on' unit is executed; 
unit provided by the Multics system is executed. 

'on unit 
otherwise, 

for 
the 

the 
'on 

The text editor edm is a ~1ultics command that makes use of the 
program_interrupt condition. The 'on' unit provided by edm for this condition 
concludes the interrupted activity and calls for a requ€st from the user's 
terminal. Thus, a user can terminate an edm printout by pressing the interrupt 
button on his terminal and then typing 'pi'. The edm system, in response to 
this action, terminates the printing, types 'Edit', and waits for the user 
request. 

13-5 AM83 



COIJDITIOn REFEREIJCES 

In the discussion of conditions, a condition reference was given far each 
condition. The condition reference is used in the 'on' statement, the 'revert' 
statement, and the 'signal' statement to designate a condition. There are two 
kinds of condition references corresponding to the two kinds of conditions. 

Language-Defined Condition References 

A language-defined condition reference must have one of the following 
forms: 

where lcn is a language-defined condition name and fr is the file reference. 
The language-defined condi tion name must be ---cieclared "Ji th t~' condi tion' 
attribute. For the first forn the language-defined condition name must be one 
of the following identifiers: 

area 
conversion 
conv 
error 
finish 

fixedoverflow 
fofl 
overflow 
ofl 
size 

storage 
stringrange 
strg 
stringsize 
str-z 

subscript range 
subrg 
underflow 
ufl 
zer'odi vide 
zdiv 

For the second form, the language-defined condition name must be one of the 
following identifiers: 

endfile 
endpage 

key 
name 

record 
transmit 

undefinedfile 
undf 

The file reference must be a reference that yields a scalar file value. 

Programmer-Defined Condition References 

A programmer-defined condition reference must have one of the following 
forms: 

conditione QQ1l conde QQ1l 

condition QQ1l cond QQ1l 

where QQn is the programmer-defined condition name. The programmer-defined 
condition name must be declared with the 'condition' attribute and must not be 
one of the identifiers listed as language-defined condition names in the 
preceding definition of language-defined condition references. The four forms 
of programmer-defined condition reference are equivalent to one another. 

13-6 AH83 



DECUARATION OF CONDITION NAMES 

Each condition name used in a program should be declared, as follows: 

dcl cn cond; 

where cn is the condition name. The condition name can be either a 
language-defined condition name or a programmer-defined condition name. 

The only attribute that can be used with the 'condition' attribute is the 
scope attribute. In Multics, every condition name must have 'external' scope. 
Since this is the default scope for condition names, the scope attribute is 
omitted from the 'declare' statement. 

ENABLING AND DISABLING CONDITIONS 

The language-defined computational conditions can be enabled and disabled. 
\lhen a condition that is enabled occurs, it is signalled and handled. When a 
condition that is disabled occurs, it mayor may not be signalled. 

The occurrence of a language-defined condition is detected either by the 
computer hardware or by additional code compiled into the program to test for 
the occurrence of the condition. When a condition that requires additional code 
for its detection is disabled, the resulting program requires less storage and 
executes more efficiently than a program for which the condition is enabled. 
However, if a disabled condition occurs in such a program, the program is 
invalid and the results of its continued execution are undefined. 

Condition Prefixes 

Condition prefixes 
computational conditions. 
(if any) of a statement. 

CQl21l, ••• ) 

are used to enable or disable language-defined 
The condition prefix Must precede the label prefixes 

The form of the condition prefix list is as follows: 

where Ql21l, ••• is a sequence of condition prefix names separated by commas. The 
possible condition prefix names are enabling prefix names and disabling prefix 
names. An enabling prefix name is any of the computational condition names or 
their abbreviations. A disabling prefix name is the characters 'no' followed by 
an enabling prefix name. The complete list of condition prefix names is: 

13-7 AM83 



Enabling Prefix Names Disabling Prefix Names 
Name Abbr. Name Abbr. 

conversion cony noconversion noconv 
fixedoverflow fofl nofixedoverflow nofofl 
overflo\.T ofl nooverflow noofl 
size nosize 
stringrange strg nostringrange nostrg 
stringsize strz nostringsize nostrz 
subscriptrange subrg nosubscriptrange nosubrg 
underflow ufl nounderflow noufl 
zerodivide zdiv nozerodivide nozdiv 

A condition prefix can begin any PL/I statement except the 'declare', 'default', 
or 'entry' statements. 

Scope of a Condition Prefix 

A condition prefix applies to the statement to which it is attached. For 
most statements, the scope of the condition prefix is the entire statement; 
however, there are important exceptions, as follows: 

Statement 

'procedure' , 
'begin' 

, if' 

, do' 

'on 

'format' 

The condition prefix applies to all statements in the block 
that begins with the 'procedure' or 'begin' statenent 
except those statements that lie within the scope of 
another condition prefix for the same condition. 

The condition prefix applies only to the test, which lies 
between the keywords 'if' and 'then'; it does not apply to 
the consequences. 

The condition prefix applies only to the 'do' statement; 
it does not apply to the remaining statements of the 'do' 
group. 

The condition prefix applies only to 
reference; it does not apply to the 'on' 
the condition reference. 

the condition 
unit that follows 

The condition prefix applies only to calculations performed 
in the evaluation of the format specification list; it does 
not apply to associated 'get' or 'put' statements or to any 
other 'format' statements. 

As an example of the deteroination of the scope of 3 condition prefix, 
consider the following statement: 

if a(i,j) = 1 
then a(i,j) = b(k,m); 
else a(i,j) = c(p,n); 

13-8 AI183 



To enable the 'subscriptrange' condition for the entire 'if' statenent, it is 
necessary to apply the condition prefix to both the test and the consequences, 
as follows: 

(subrg) : 
if a(i,j) = 1 

then 
(subrg): a(i,j) = b(k,m); 

else 
(subrg): a(i,j) = c(p,n); 

A different way of enabling the condition for the entire 'if' statement is to 
enclose the statement in a 'begin' block and then to apply the condition prefix 
to the block, as follows: 

(subrg) : 
begin; 

if a(i,j) = 1 
then a(i,j) = b(k,m); 
else a(i,j) = c(p,n); 
end; 

In practice, a condition prefix is usually applied to a procedure block and thus 
the condition is enabled or disabled for the entire procedure. 

Default Enabling and Disabling 

If a statement does not lie within the scope of a condition prefix for a 
given condition, then the stateQent is interpreted under the default enabling or 
disabling for the given condition, as follows: 

Enabled by Default 

conversion 
fixedoverflow 
overflow 
underflow 
zerodivide 

Disabled by Default 

size 
stringrange 
stringsize 
subscript range 

These defaults are dictated by considerations of efficiency. The conditions 
that are detected by the hardware are enabled by default and the conditions that 
require additional instructions in the compiled program for their detection are 
disabled by default. 

13-9 AH83 



Example of Enabling and Disabling 

As an exanple of enabling and disabling, consider the following program: 

(subrg): 
P: proc; 

dcl (a,b,c)(SO,100) fixed; 
dcl (i,j) fixed; 

b(i,j) = a(i,j)**2; 
(nosubrg): 

c(i,j) = b(i,j)**2; 
(nosubrg,size): 

c(j,i) = c(i,j)**2; 

end; 

The 'subscriptrange' condition, which is disabled by default, is enabled for 
most of this program because of the '(subrg):' condition prefix on the 
'procedure' statement. Hpwever, 'subscriptrange: is disabled for the two 
assignments to the array 'ci'. Furthermore, the size condition, which is 
disabled by default, is enabled for the last assignment statement. 

ESTABLISHING AND REVERTING 'on UNITS 

A programmer has a choice between permitting the system to handle a 
signalled condition or writing a statement to handle the condition in a special 
way. The construct supplied by the programmer to handle the condition is an 
'on' unit. An 'on' unit is established for a condition by the execution of an 
'on' statement. Hhen the condition is signalled, the established 'on' unit is 
executed. 

In some cases, a single 'on' unit can be established to apply to all 
signals of a given condition. In other cases, the handling of the condition 
depends on the statement in which the condition occurs. In the second case, 
several 'on' units are established for a condition by the execution of several 
'on statements. 

The establishment of an 'on' unit is associated with the current block 
activation. For a given block activation, at most one 'on' unit can be 
established at any time for each evaluated condition reference. Thus, for 
example, -if an 'on' statement is executed for 'endfile(sysin)' and an 'on' unit 
for 'endfile(sysin)' is already established for the current block, the 
previously established on' unit is removed from the set of established on 
units for the block before the current 'on' unit is added to the set. The 
execution of a 'revert' statenent removes an established 'on' unit from the set. 

The rules for determining the established 'on unit for a signalled 
condition are given later in this section in "Occurrence and Signalling". 

13-10 AM83 



'on' Statement 

An 'on' statement has one of the following forms: 

on cr-list ou; 

on cr-list snap ~, 

where cr-list is a list of condition references separated by commas and where QQ 
the 'on' unit. The 'on' unit must be one of the following: 

• A 'begin' block; that is, a 'begin' statement, followed by a sequence 
of statements, followed by an 'end' statement. 

• A restricted independent statement; 
statements: 

that is, one of the following 

storage management: 

flow of control: 

procedure invocation: 

condition handling: 

input/output: 

stream input/output: 

record input/output: 

• the keyword 'system' 

'allocate' and 'free' 

'goto' and the null statement 

'call' 

'signal' 

'open' and 'close' 

'put' and 'get' 

, read', ' wri te' , 
'locate' 

'delete' , 'rewrite' and 

An 'on' unit can contain a 'return' statement only if the 'return' statement is 
contained in a 'procedure' block that is contained in the 'on' unit. 

When an 'on' statement is executed, all of the conditions in cr-list are I 
evaluated and the 'on' unit for each evaluated condition reference is 
established. Each evaluated condition reference and a designator for the 'on' 
unit are added to the set of established 'on' units for the current block 
activation. The 'on' unit in the 'on' statement is not executed until the 
condition is signalled. If the 'on' unit consists of the keyword 'system', the 
default 'on' unit is established. 

The 'snap' option specifies that debugging information is to be provided 
when the condition is signalled. In Multics PL/I, the action taken depends on I 
the type of process. In an interactive process, 'snap' causes a call to be made 
to the probe command, just prior to the execution of the 'on' unit. In an 
absentee process, ~snap~ causes a call to be made to the trace_stack command. 

9/78 13-11 AM83A 



'revert' Statement 

The 'revert' statenent has the following form: 

revert.Q£., ••. ; 

where cr is a condition reference. 

\1hen a 'revert' statement is executed, the condition reference is evaluated 
and the 'on' unit for that evaluated condition referenQe is re~oved fro~ the set 
of established 'on' units for the current block activation. 

OCCURRENCE AND SIGNALLING OF CONDITIONS 

A condition occurs as a result of the interpretation of the progran by the 
PL/I processor. If a condition occurs yhenit is enabled, the condition is 
signalled and the established 'on' unit is executed. If a condition occurs when 
it is disabled, the program is invalid and the results of its continued 
execution are undefined. 

If a 'signal' statement for a condition is executed when the condition is 
enabled, the condition is signalled and the established 'on' unit executed. If 
the 'signal' statement is executed when the condition is disabled, no action is 
taken and control passes to the next statement. 

Occurrence of Conditions 

As an exanple of the occurrence of a co~jition, consider the following 
program: 

P: proc; 
dcl (a,b,c) fixed; 
3. = 1; 
b = 5 -.5 it a; 
o = a / b; 
end; 

The 'zerodivide' condition occurs when the third assi3nnent statenent'is 
interpreted by the PL/I processor. 7he 'zerodivije' condition is enabled by 
default, so the condition is sit;nalled. !'o 'on' unit is established for the 
condition, so the default 'on' unit is executed and the pr03ran halts with an 
error oessage. 

13-12 



7he detailed description in this nanual for each condition states when the 
condition can occur. Some conditions, however, are signalled fron support 
subroutines when an error is detected or a limitation is exceeded. In these 
cases, the condition is signalled, even if it is disabled in the PL/I progra~, 
because the signal originates from a support subroutine in which the condition 
is enabled. The following conditions belong to this category; 

area 
error 
fixedoverflow 
overflow 
size 
storage 
stringsize 
zerodivide 

These conditions are described as conditions that can occur at anytime during 
the execution of the progran. 

As an example of a condition that occurs at an unexpected tioe, consider 
the following progra~: 

P: proc; 
del n fixed(35) init(200000000); 
dcl x fixed; 
del sysprint file; 
x = n; 
put list(x); 
end; 

The assignment of 'n' to 'x' is invalid since the value of 'n' cannot be 
represented in the precision of x. The 'size' condition occurs on this 
assignment. Because the 'size condition, is disabled by default in the 
procedure 'P', the condition is not signalled. However, the 'size' condition is 
enabled in the run-time conversion "routines and is signalled when the 'put' 
statement is executed. 

'signal' Statement 

The 'signal' statement has the following fo~~: 

signal ~ 

where £r is a condition reference. 

Execution of the 'signal' statement signals the condition if it is enabled. 
If the condition is disabled, no action is taken. 

13-13 AM83 



I 
Determining the Established 'on' Unit 

As described earlier in this section under ttEstablishing and Reverting 'on' 
Units", each block activation has associated with it a set of established 'on' 
units. The set of established 'on' units for a block contains at most one 
established 'on' unit for an evaluated condition reference. When a condition is 
signalled, the established 'on' unit for that condition is determined in the 
following way: 

1. Let the most recently activated block be the current block. 

2. Examine the set of established 'on' units 
an established 'on' unit for the signalled 
take that as the established 'on' unit. 

for the current block. If 
condition is encountered, 

3. If the current block is not the outer block, let the next most 
recently established block be the current block, and return to step 2. 
Otherwise, the program does not provide an 'on' unit, so take the 
default 'on' unit as the established 'on' unit. 

Thus, the set of 
recently activated 
blocks. 

established 'on' units is searched, starting with the most 
block and proceeding back through the previously activated 

'on' UNIT 

An 'on' unit specifies the action taken when a condition is signalled. The 
execution of an 'on' unit is similar to the execution of a procedure block. The 
'on' unit is activated when the condition is signalled and, if control passes to 
the end of the 'on' unit, control is returned to the point at which the 
condition was signalled. 

Some PL/I conditions are fatal conditions, namely: 

area (if caused by assignment) 
error 
fixedoverflow 
overflow 
size 
storage (if no additional storage is available) 
stringrange 
subscript range 
zerodivide 

If an 'on' unit for any of these fatal conditions returns to the paint at which 
the condition was signalled, the program is invalid and the results of its 
continued execution are undefined. 

If an 'on' unit executed as a result of the signalling of a condition 
during the evaluation of an expression returns to the point at which the signal 
was detected, the 'on' unit must not allocate, free, or assign a value to any 
generation of storage accessible at the point where the condition was detected. 

If an 'on' unit is executed as a result of the signalling of a condition 
dut'ing the execution of a statement, l..ne' on' ural.. must not access the value of 
the variable changed by the execution of the statement. 

9/78 13-14 AM83A 



Default 'on Units 

If no 'on' unit is established by the program for a condition at the time 
the condition is signalled, the system default for the 'on' unit is invoked. 

In Multics, the following default 'on units are defined for the listed 
conditions: 

Condition 

name 
underflow 

stringsize 

error 

finish 

(other 
language-defined 
conditions) 

Default 'on' Unit 

Writes an error message on the 'error_output' 
stream and returns control to the point at which 
the condition was detected. 

Returns control to the point at 
condition was detected. 

which the 

Writes an error message on the 'error_output' 
stream and halts. 

Closes any open files and returns to the point at 
which the condition was detected. 

Writes an error message on the 'error_output' 
stream and signals the 'error' condition. 

(programmer-defined Writes an error message on the 'error_output' 
conditions) stream and halts. 

'on' Condition Built-In Functions 

Seven built-in functions are associated with the condition handling 
capability of PL/I. The 'on' condition built-in functions are used to access 
system variables whose values are set by the system when a condition is 
signalled. These functions allow the programmer to obtain information for usa 
in the 'on' unit that handles the condition. Some of the 'on' condition 
built-in functions can be used as pseudovariables and, thus, the 'on' unit that 
handles the condition can also change some system variables. 

Each 'on condition built-in function is associated with a stack. When a 
condition that sets the value of an on condition built-in function is 
signalled, the old value of the function is pushed down on the stack and the new 
value is placed on the stack. tIhen control returns to the block activation in 
which the condition was signalled or to any of the dynamic predecessors of the 
signalling block, the value is removed from the stack. The stack provides for 
the possibility that the execution of an 'on unit for a condition causes a 
condition to occur. 

13-15 A!183 



The 'on' condition built-in functions are given in the following list. For 
each function, the value of the system variable is given. Also listed are the 
names of all the conditions whose occurrence alter the stack. 

Built-In 
Function System Variable Value 

onloc name of the most currently 
entered procedure block 

oncode error code value 

onchar leftmost character for which 
the conversion failed 

onfield character string just extracted 
from the data stream 

onfile file name 

onkey key value 

onsource string being converted 

Associated 
Conditions 

all 

all 

conversion 

name 

conversion, name, 
endfile, transmit, 
record, key, endpage, 
undefinedfile 

endfile, transmit, 
record, key 

conversion 

The occurrence of the 'endpage' condition, for example, provides a value for the 
, 0 nco n d i t jon hili 1 t - i n fu n c t ion s ' 0 n 1 0 c ' ~ , 0 nco de', an d ' 0 n f i 1 e ' . 

If the condition is signalled by the execution of a 'signal' statement, the 
system variables have the values given in the following list: 

Built-in 
Function System Variable Value 

on char blank 

onfield null string 

onfile null string 

onkey null string 

onsource null string 

Associated 
Condition 

conversion 

name 

conversion, name, 
endfile, transmit, 
record, key, endpage, 
undefinedfile 

key, endfile, 
transoit, record 

conversion 
.:-

The 'onkey' built-in function is assigned a value by the 'signal' statement for 
the conditions 'endfile', 'transmit', and 'record' only if the file referenced 
has the keyed attribute. 

A detailed description of the 'on' condition built-in functions is given 
earlier, in Section IX "Operations." 'I'he 'onchar' and 'onsource' functions can 
also be used as pseudo-variables. This use is described earlier, in Section X, 
"Vrlll)e AS3i~nmp.nt." 

13-16 M183 



EXAMPLE OF CONDITION HANDLING 

As an example of condition handling, consider the following program: 

P: proc; 
on cony 

begin; 
... (print warning message) 
onsource() = "0"; 
end; 

call Qj 

Q: proc; 
dcl x float; 
call R(x); 
put skip; 
put list(x,sin(x)); 
on con v 

begin; 
... (print warning message) 
onsource() = "1"; 
end; 

call R(x); 
revert conv; 
put list(x,1/x); 
call R(x); 
put skip list(x,x**2); 
end; 

R: proc(y); 

end; 

dcl y float; 
get list(y); 
end; 

The program 'P' establishes an 'on' unit for the 'conversion' condition that 
prints a warning message and replaces the input string by the string "0". After 
some processing, the program 'P' calls 'Q'. The procedure 'Q' calls the 
procedure 'R' for input three tiQes. The 'on unit established by 'p' is 
suitable for the first and third call on 'R', but for the second call on 'R' a 
special 'on' unit is required. 

The procedure 'R' represents a general-purpose input program, which would, 
in practice, be more complex. The procedure 'R' does not provide any handling 
for the 'conversion' condition because it cannot know the context of its call. 
The handling of the 'conversion' condition is entirely independent of the 
procedure in which it is signalled. 

GUIDELINES FOR CONDITION HANDLING 

The condition handling facility of PL/I is used both in debugging a program 
and in controlling the exceptional conditions that can occur during program 
execution. Guidelines for both applications are given here. 

13-17 At183 



Debugging 

During the debugging of a prograM, conditions that are normally disabled 
can be enabled and special 'on' units can be established. 

ENABLING CONDITIONS FOR DEBUGGING 

Four PL/I conditions provide additional error checking, namely; 'size', 
'stringsize', 'stringrange', and 'subscriptrange'. These conditions are 
normally disabled, since their detection requires the generation of additional 
code in the object pr03ran to perform the testing. For debugging, these 
conditions should be enabled by preceding each external procedure with the 
prefix: 

(size, strz, strg, subrg): 

Hhen the program goes into production, the prefix should be removed. 

'on' UNITS FOR DEBUGGING 

A useful debugging technique is the establishment of 'on' units to provide 
additional information about the state of the program when a condition is 
signalled. 

Sometimes the same 'on' unit is established for every condition; namely, 
one that calls a debugging routine or produces standard information. Sometimes 
a different 'on' unit is established for each condition to produce debugging 
information specific to the condition. Sometimes, several 'on' units are 
established for the same condition, so the information produced depends upon the 
point at which the condition is signalled. 

Controlling Exceptional Conditions 

The condition handling facility of PL/I is used to control exceptional 
conditions. The file communication conditions are expected to occur and, 
consequently, on units are usually established to handle these conditions. 
The error conditions, on the other hand, occur unexpectedly and the handling of 
these conditions is usually done by the default 'on' units provided by the 
system. 

CONTROLLING FILE cormuNICATIOtJ CONDITIONS 

The 'on unit established to handle a condition that communicates the 
status of an external file is part of the normal flow of a program. An example 
is a program that reads a file and uses an 'on' unit for the 'endfile' condition 
to transfer to the appropriate point in the program when the file is exhausted. 
A second example is a program that writes a report and uses an 'on' unit for the 
'endpage' condition to write a footing and heading on the report. A final 
example is a program that accesses a keyed file and uses an 'on' unit for the 
'key' condition to print a message and look in another file when the key is not 
found. 

13-18 AH83 



CONTROLLING ERROR CONDITIONS 

Most programs do not establish 'on' units for the error conditions and if 
the condition is signalled, the default 'on' unit is executed. The default 'on' 
unit for most conditions prints an error message and terminates the execution of 
the program. In some cases, an alternative to the termination of the program 
can be defined. The following paragraphs consider these cases. 

Input Data Validation 

A program that reads input data often establishes an 'on' unit for the 
'conversion' condition so that a bad input datum does not terminate the program. 
This 'on' unit can either report the bad input datum and read another or can 
attempt to correct the bad input. 

Computational Checks 

A program that is involved with computation often provides 'on 
the 'overflow' and 'underflow' conditions to change the course of an 
so that processing can continue. 

Resource Management 

units for 
algorithm 

A program that includes a system of storage management based on areas often 
provides an 'on' unit for the 'area' condition. 

Large Independent Systems 

A large independent system or programming environment must handle all the 
language-defined conditions in order to maintain control over the processing. 
Moreover, such a system often makes use of programmer-defined conditions so that 
its users have the option of handling application-related conditions. 

GENERAL CONDITIONS 

The termination conditions are described in detail in this section since 
these conditions are related to the condition handling facility of PL/I and not 
to any particular PL/I language construct. 

13-19 M183 



'error' Condition 

The 'error condition is signalled by the default 'on' units for several 
conditions, by the mathematical built-in functions, by the exponentiation 
operator, and by some run-time support routines. 

The 'error condition indicates a fatal error. If an 'on' unit for this 
condition attempts to return to the point at which the condition was signalled, 
the program is invalid and the results of its continued execution are undefined. 

The default on unit for the 'error' condition writes a comment on the 
'error_output' stream and returns to command level. If the 'start' command is 
typed on the console after the default 'on' unit for an 'error' condition is 
executed, control returns to the point at which the condition was signalled. 
However, the program is invalid in this case. 

'finish' Condition 

In Multics PL/I, the 'finish'condition is signaled just before process 
termination. 

The default 'on' unit for the 'finish' condition closes any open files and 
returns to the point at which the condition was signalled. If process 
termination resulted fron the partial destruction of the process or exhaustion 
of process resources, the "finish" condition is sometines not signalled. 

13-20 At183 



SECTION 14 

STREAM INPUT/OUTPUT 

In PL/I, the object from which input values are taken or to which output 
values are transmitted is called a data set. There are two kinds of data sets, 
stream and record, and PL/I has a complete input/output facility for each kind 
of data set. The facilities for stream input/output are oriented toward 
external media, such as line printers and card readers, and include elaborate 
features to assist the programmer in achieving a suitable format. In contrast, 
the facilities for record input/output are both more general and more primitive. 
This section describes the facilities for stream input/output, and the next 
section describes those for record input/output. 

This section begins with a description of the two kinds of data that are 
involved in stream input/output: the stream, which is the actual subject of the 
input or output, and the file-state block, which shows the status of the 
operations on a stream. Next, the section describes the attachment of a PL/I 
data set to a Multics file. The section then gives a summary of the various 
operations that are performed as part of stream input/output. Once this 
foundation is established, the section proceeds to a definition of the 
statements that are used for stream input/output: first, the statements that 
open and close files, and then the statements that perform the actual input or 
output. Next, the section describes three different options for specifying the 
details of the format of stream input/output: data-directed, list-directed, and 
edit-directed. As the section nears its conclusion, a special feature of stream 
input/output, the string option, is presented. Finally, the section describes 
the conditions that occur in connection with stream input/output. 

STREAM DATA SETS 

The stream input/output statements operate on stream data sets or, more 
concisely, streams. A stream is a sequence of data characters and control 
characters. PL/I does not specify exactly what characters can be used as data 
characters, since this depends on the particular computer system and the 
input/output devices being used; however, any implementation of PL/I might be 
expected to have the letters, the digits, the common punctuation marks, and the 
blank among its data characters. There are two PL/I control characters, the 
linemark and the pagemark, and these represent the division between two lines or 
two pages, respectively. 

A stream data set can be viewed as a character string that can be accessed 
only in special ways. During input, the characters of the stream are read in 
strict sequence, from left to right, and there is no way to return to a 
character that has already been read. During output, the characters of the 
stream are added at the right end of the stream, and there is no way to change a 
character that has already been written. The character string appears to flow 
past the PL/I interpreter and, for this reason, the data set is called a 
'stream'. 

9/78 14-1 AM83A 



The strea~ is a generalization of the various media that are used for 
comnunication between the user and the computer. It cannot handle diagraMs or 
pictures, but it does capture the essence of the printed page or the punched 
card without introducing physical details of fornat, record boundaries, and so 
on. Furthermore, the processing of the strean is a good nodel for the behavior 
of hardware devices that are used for cow~unication with the user. The 
single-pass, no-back-up property reflects the characteristics of line printers, 
card readers, and remote terminals. 

The role of the stream is to make PL/I programs independent of the devices 
used for input and output. For example, a progra~ can call for a sequence of 
one hundred arithmetic values without either telling a card reader to read 
another card or prompting an interactive terminal to supply another nu~ber. The 
program can call for input without knowing whether the input will come directly 
from a peripheral device, will be buffered, or will be waiting in permanent 
storage from so~e earlier input activity. Finally, by neans that are discussed 
in this section, the program can deal with transnission errors and the 
end-of-file condition without reference to the specifics of the device that 
caused the condition to occur. Similar advantages apply to the process of 
strean output. 

Control Characters in PL/I and Multics 

PL/I assumes that the PL/I control characters, linemark and pagenark," are 
reserved for use in a stream and cannot be represented in a character-string 
value. In support of this assumption, PL/I provides statement options that are 
used to detect a linemark during input and generate a linshlark or a ·pa~emark 
during output. For exaMple, to start a new page in the output stream, a program 
does not transnit a pagemark character; instead, it includes a 'page' option in 
the output statement, and the 'page' option causes a pagenark to be added to the 
output stream. This view of the control characters reflects the opinion that 
the starting of a new line or a new page is a rather special event in the 
composition of a printed document. 

In Multics, the stream data set is a sequence of ASCII characters. The 
ASCII 'new line' and 'new page' characters are used for linemark and pagenark, 
and most of the remaining ASCII characters are used for the ?L/I data 
characters. 

A difference in principle exists between the design of the PL/I stream data 
set on one hand, and the tfultics use of the ASCII character set on the other. 
PL/I views control characters as inseparably associated with the processes of 
input/output. Multics does not normally restrict any characters in this way and 
views input/output as just one of many operations to which a character-string is 
subject. Indeed, the definition of the PL/I character-string value, given in 
Section II, "Values," allows the use of any ASCII character in a 
character-string value. This difference in principle cannot be eliminated t but 
a practical solution can be achieved by asserti~g that 

It is an error to use a stream input/output statement to 
attenpt to transmit an ASCII carriage return, new line, 
backspace, tab, or new page character between the stream and 
PL/I storage. 

This restriction leaves latitude for other uses of the restricted control 
characters; specifically, it allows for the inclusion of these control 
characters in the string values transmitted by record input/output statements. 

14-2 AH83 



Input Streams 

When a pagemark occurs in the input stream, it 
character; thus an input stream is treated as a si~gle 
number of lines. When the stream data set is opened, 
associated with it and set to the first character. As 
this stream pointer proceeds from one data character to 
however many characters are read or skipped. When the 
the end of the stream, the 'endfile' condition occurs. 

is treated as a data 
page divided into any 

a stream pOinter is 
the file is processed, 
the next, advancing by 
stream pointer reaches 

For statements in which PL/I controls the editing of the input stream (that 
is, data-directed and list-directed input statements), the linemark has the 
effect of ending an item of input, and acts much as a blank does. This 
interpretation is in accord with the conventions of ordinary printed text, where 
an end-of-line can be used to separate two words. 

For statements in which the programmer controls the editing of the input 
stream (that is, the edit-directed input statement), the linemark is ignored 
unless a specific reference to the line format is made. For example, if an 
input statement calls for three characters when the stream pointer selects the 
last character in a line, the resulting input will be the last character on the 
line and the first two characters on the next line; and no trace of the 
linemark will be input. On the other hand, an input statement can request that 
the stream pointer be moved to a certain column of a line or to the beginning of 
the next line. 

* 

There is no way to use stream input statements to program the operation 
"input the next line from the stream." When data-directed or list-directed 
input is used, the linemark is not distinguished from a blank. When 
edit-directed input is used, the programmer can skip the next line, but can 
perform input only by giving, in advance, the number of characters to be read. 
The operation in question ££Q be performed by means of record input,· as 
described under "Special Features" in this section. I 

Output Streams 

When an output stream is opened, it is empty unless special arrangements 
are made to the contrary. As output is performed, characters are added at the 
right end of the stream. An output stream is usually intended for use to 
produce a printout. A 'print' output stream can contain both linemarks and 
pagemarks, and it thus exercises the full potential of the stream data set. A 
'print' stream should (within the PL/I framework) be used only for printout; 
that is, the stream should not be used later as a PL/I input stream. 

Generally speaking, PL/I allows a programmer to control the format of the 
output and intervenes only when the programmer neglects this activity. 
Specifically, the maximum length of a line and the maximum number of lines on a 
page are established when a stream data set is opened for output. If a program 
attempts to write beyond the end of a line, PL/I automatically inserts a 
linemark and forces the beginning of a new line. Similarly, if a program 
attempts to write beyond the end of a page, the 'endpage' condition occurs. The 
programmer can establish an 'on' unit for 'endpage' to start a new page and 
provide a suitable heading, or else he can allow PL/I to start a new page as the 
default response to the 'endpage' condition. 

9/78 14-3 AM83A 



It is possible to use a stream data set as permanent storage. That is, a 
sequence of values can be written as output to a stream data set, left until 
they are needed, and then read as input from the same data set. However, this 
use of a stream data set is not recommended. It is difficult to imagine a case 
in which a record data set would not be a more efficient, simple, and accurate 
means for permanent storage. 

Pseudo-Streams 

A character-string storage unit can be used as if it were a stream, and in 
this role, it is called a pseudo-stream. For an input statement, characters are 
taken from the string variable just as if it were an input stream. For an 
output statement, the value of the string variable is first initialized to null 
and then characters are added to its value just as if it were an output 5trea~. 
Under these circumstances, no actual input or output occurs,' but the large and 
complicated editing facility of the stream input/output statements can be 
applied to the editing of character strings. 

A pseudo-stream cannot contain either a linemark or a pagemark, and thus is 
viewed as a single line of data characters. This restriction is consistent with 
the PL/I requirements that control characters can only be used in (true) stream 
data sets. 

Hultics Files 

The Multics imolementation for a stream data set is an unstructured file. 
An unstructured file is a sequence of ASCII characters. 

STREAM INPUT/OUTPUT FILES 

A connection must be established between a stateMent that performs 
input/output and the Hultics data set on which the operation is to be performed. 
A detailed analysis of this connection follows: 

o 7hc connection begins with an input/output statement. 

o Every input/output stateMent has a file option, either explicitly 
given or obtained by default. 

o A file option has as its argunent a file reference. 

o The evaluation of a file reference yields a file value. 

o A file value is a pointer-like object that designates a file-state 
block. 

o A file-state block is a structure-like set of values that includes a 
Multics data set designator. 

o A data set designator does, indeed, designate a Hultics file and is 
thus the last part of the connection. 

he PL/I data sets have already been discussed in this section, 
nput/output statements will be discussed later. For the present, the 
s the file-state block and the file reference that designates it. 

14-4 

and the 
subject 



File-State Blocks 

Transmission of. values between PL/I and a Multics file requires bookkeeping 
data. This data is stored in a file-state block. Hhen a file is open, the 
file-state block contains the designator of a Multics file and other information 
about input/output in progress. After the file is closed, the only information 
in the file-state block that is meaningful is that supplied by the attributes, 
if any, in the declaration of the file constant name. Although a file-state 
block resembles a structure, its values cannot be accessed directly by a PL/I 
program; instead, it is used and naintained by the PL/I processor. 

The following values in the file-state block are relevant to stream 
input/output: 

• The status indicator, which shows whether the file is open or 
'closed'; that is, whether or not a data set is currently attached to 
the file 

• The Multics data set designator, which is used to establish the actual 
connection between the file-state block and a Multics file 

• The file name, which is the file constant name (an identifier) 
expressed as a character-string value 

• The file attributes associated with the current use of the file-state 
block. These are discussed later; one of them shows whether the file 
is an input file or an output file 

• For an input file, the stream pointer, which points to the character 
which will be read next 

• For an output file, the line size and ~ size, which give maximums 
for the number of characters per line and the number of lines per 
page, respectively 

• For an output file, the column position, the line number, and the ~ 
number, which have values i, j, and k if the next character output 
will be the i+1-th character in the jth line on the kth page 

It is customary to use the word "file" as an abbreviation for the term 
"file-state block", and SOr.1e other liberties are taken to attain brevity. For 
example, one might say "advance the stream pointer associated with the file 
'test2' through the input stream," instead of saying "advance the stream pointer 
contained in the file-state block associated with the file value designated by 
the file-constant 'test2' through the stream data set associated with the same 
file-state block." No confusion arises if one remembers that a remark about the 
actual data refers to a data set, while a remark about the control of the 
transmission process refers to a PL/I file-state block. 

14-5 AM83 



File References 

A file-state block is designated by a file value; and the file value is 
supplied to an input/output statement by a file constant, a file variable, or a 
file-valued function. For example, the input statement: 

get file(test2) list(a,b,c); 

uses the file constant 'test2' to refer to a file-state block which, in turn, 
refers to a data set. 

A file constant should be declared with the following attributes: 

rexternall 

LinternalJ 
file [constant] 

When the scope attribute is 'external', it can be omitted. The 'constant' 
attribute can always be omitted; however, some programmers prefer to write 
'file constant' in a declaration in order to avoid confusion with a file 
variable. 

Every file constant name must have an associated file description. It is 
recommended that this file description be given when the file is opened, as 
described later in this section, under "The 'open' StateMent". However, PL/I 
does allow the programmer to write any portion of the file description 
attt'ibutes in the declaration of J... 1_ _ &t ~ , _ _ _ • __ L.. __ L.. -.- __ _ 

1.,IH::: .1 .L.Lt:: t;uu;::; l"cllll" 11d.!11t::. 

For each declaration of a file constant, a file-state block exists in 
static storage. The only exception is the declaration of a given identifier as 
'external file constant' in several places; in this case, the declarations refer 
to the same file-state block, as required by the proper interpretation of the 
'external' attribute. A given file constant and its associated file-state block 
can be used for more than one data set in the course of a PL/I program 
execution. For example, a file-state block can be opened for input from a 
stream data set, closed, opened for output to a record data set, and closed 
again. 

A file variable 
variable or function. 

or file function is declared similarly to an arithmetic 
The only differences are: 

• The data type is 'file'. 

• The default scope 'external' applies to a file variable, whereas the 
default scope for most other data types is 'internal'. 

• The attribute 'variable' must be used explicitly for a file 
because PL/I will otherwise assume the identifier is 
constant' • 

14-6 

variable 
a ' file 

AM83 



FILE 'ATTACHMENT 

The Multics IIO system uses a software construct, the IIO switch, to 
control the source or destination of an inputloutput operation. A PL/I 
file-state block is attached to a Multics file through a named switch. The 
switch name and the file name are the same for an external file. For an 
internal file, a unique name is generated for the switch. 

Two operations, attachment and opening, are associated with IIO switches. 
When an IIO switch is attached, the source or target and the IIO module that 
performs the inputloutput are established. When an IIO switch is opened, a 
particular mode of processing is established. 

Attaching a Switch 

An IIO switch can be attached either at command level by the 'io_call' 
command or within a PL/I program by the execution of an inputloutput statement. 
If the switch is not attached when the 'open' statement for the associated file 
is executed, the information in the 'title' option (given explicitly or by 
default) is used to attach the switch. An IIO switch attached by the execution 
of an 'open' statement for a file is detached when the 'close' statement for the 
file is executed. If an IIO switch is already attached, neither the 'open' nor 
the corresponding 'close' statement has any effect on the switch's attachment. 

ATTACH DESCRIPTION 

The 'title' option contains the attach description. The attach description 
specifies an IIO module to perform the input or output operation and the file or 
device to be used as the source or destination for these operations. For stream 
inputloutput the following IIO modules can be used: 

IiO Ivlodule 

vfile_ 
tty_ 
syn_ 
record_stream 

for storage-resident files 
for terminal attachment 
for synonym attachment 
for conversion between stream 
and record files 

The form of the attach description depends upon the IIO module. Each of the 
above IIO modules is described later, in Section XVI, "PL/I in the Multics 
System." For an example of an attach description, consider the following open 
statement: 

open file (str 1) ti tIe ("vfile_ alpha") input; 

The attach description in the 'title' option specifies that the 1/0 module 
'vfile_' is to be used to perform input from the system-resident file in the 
segment ' alpha' • 

14-7 AH83 



If no 'title' attribute is given, a default attach description is formed, 
as follows: 

syn_ user_input (for 'sysin') 

syn_ user_output (for 
, 
sysprint') 

vfile - fn (for file fn) 

where fn is the file name other than sysin 
, 
sysprint' . or 

Opening a Switch 

An I/O switch can be opened either at command level by the 'io_call' 
command or within a PLiI program by the execution of an input/output statement 
that references the file associated with the switch. If the switch is not open 
when the 'open' statement is executed for the file, the information in the file 
description is used to open the switch. If the file description is omitted or 
is incomplete, a default assumption is used. If the file is opened by an 
input/output statement other than the 'open' statement, the file description is 
derived from the type of statement. The file description attributes specify the 
opening mode of the switch. 

Opening a File 

A PL/I file-~tatA hlock: or file: is opened by the execution of the first 
input/output statement referencing the file. The file name, title, and file 
description are passed to the Multics I/O System to open the file. If any of 
these options is not explicitly given, a default assumption is derived from the 
input/output statement. 

The Multics I/O system uses the title to attach the switch if it is not 
already attached and the file description to open the switch if it is not 
already open. Then the Multics I/O system returns a data set designator. This 
data set designator makes the connection between the PL/I data set and the 
Multics file. The data set designator is stored in the file-state block for use 
when an input/output operation is performed on that file. 

STREAM INPUT/OUTPUT OPERATIONS 

The summary of stream input/output operations that follows includes 
terminology, shows how stream data sets are manipulated, and gives a general 
view of the stream input/output facility. It also serves as an introduction for 
the subsequent pages of this section. 

14-8 AM83 



\~hen a file is .Ql2.ened for input the designated Hul tics file is attached and 
preparations are made for reading from the first character onward. When a file 
is ooened for output, the previous contents of the designated ~1ultics file are 
discarded and the file is prepared for the appropriate output format. A stream 
file can be opened for input or for output, but not for a cOMbination of input 
and output. 

Input operations proceed through the file reading or skipping characters in 
strict sequential order. Output operations write characters, always adding them 
at the right end of the stream. Thus the actual transmission of data is simple. 
The complexity of stream input/output arises from the variety of ways in which 
the 'get' statement edits the characters that are read from the input stream and 
the equally numerous ways in which the ~put' statement edits the characters that 
are added to the output stream. 

Within stream input/output, there are three separate disciplines of 
input/output. The first two disciplines, data-directed and list-directed, are 
closely related and are both quite automatic; that is, PL/I makes most of the 
decisions about the representation of values and the layout of a page. The 
third discipline, edit-directed, allows the programmer to specify the details of 
representation and layout. Within this last discipline there is yet a further 
choice of methods; the programmer can choose between format items, which are 
derived from FORTRAN, or pictures, which are derived from COBOL. Clearly, the 
choice of an input/output discipline can be difficult, and advice on the choice 
will be given. 

Many conditions can occur as the direct or indirect· result of stream 
input/output. Certain conditions always imply that an error has occurred; other 
conditions are used to control the logic of the input/output process and do not 
necessarily indicate an error. Some conditions are uniquely associated with 
input/output; other conditions arise from common operations, such as the 
assignment of a value to a variable, which happen to be used during 
input/output. 

This concludes 
remainder 0~ this 
operations. 

the summary of stream input/output operations. The 
section is devoted to the detailed consideration of these 

OPENING AND CLOSING FILES 

When a file is opened, the file-state block is marked "open" and the data 
set designator, control parameters, and indexes are set in the block. When a 
file is closed, the file is marked "closed" and only information provided by the 
file declaration is meaningful. 

A file is opened when the first input/output statement referencing the file 
is executed. The purpose of the 'open' statement is to provide the title and 
file description for the file opening. However, both these options can be 
omitted from the 'open' statement, and, in that case, a default assumption is 
made. If an 'open' statement is not given for a file, the attributes for the 
file opening are derived from the first input/output statement executed. If a 
file is already open when an open' statement is executed, the 'open' statement 
is completely ignored. 

14-9 AM83 



open Statement 

When an open statement is used to open a streaQ for input, it gives a 
file value, a title for the stream data set, and a file description. Consider 
the statement: 

open file(test2) title("vfile_ alpha)beta)gamma") input; 

In this statement, the file value is given by the constant 'test2', the title is 
the Multics attach description 'vfile_ alpha)beta)gamma', and the file 
description is 'input'. This statement is interpreted as follows: 

• The title is used to provide the attach description for the 1/0 switch 
if the switch is not already attached. 

• The associated Multics file is checked to make sure that it does not 
have any attributes that conflict with 'stream' and 'input'. 

• The column position associated with the file is set to '0', and the 
stream pointer is set to point to the first character of the stream 
file. 

• The file is marked open. 

If any of these steps cannot be performed, then the 'undefinedfile' condition 
occurs. If the file designated by 'test2' is already open when the statement is 
executed, then the 'open' statement is ignored. 

When an open statement is used to open a stream for print output, the 
maximums for the length of a line and a page can also be given. Consider the 
statement: 

open file(report) title("vfile alpha)beta)gam!TIa") print output 
linesize(80) pagesize(50); 

The statement is interpreted as follows: 

• The property ~ size associated with the file is set to the value 
given by the pagesize option, namely 50. 

• The property line size is set to the value given by the linesize 
option, namely 80. 

• The title is used to provide an attach description as in the previous 
'open' statement. 

• The data set is deleted and a new data set conforming to the file 
description 'stream print output' is created. 

• The indexes line number and ~ number are set to '1' and the index 
column position is set to '0'. 

• The file is marked open'. 

14-10 AM83 



As in the previous example, the 'undefinedfile(report)' condition occurs if any 
of these steps cannot be performed, and the 'open' statement is ignored if 
'report' is already open. 

If the title option is omitted from an open statement, the file name is 
used in forming a title. The statement 

open file(report) print; 

is equivalent to 

open file(report) title(IIvfile_ report") stream print output 
linesize(132) pagesize(60); 

This example also shows that the default maximum for the length of a line is 132 
characters, the default maximum for the number of lines on a page is 60, and 
'print' implies an output stream. 

There are not many file descriptions 
important ones were used in the example of the 
are 

{

input 

print 

for stream input/output. The 
open statements, above; ~~~ey 

The 'print' attribute should not be used in opening an output stream that, at a 
later time, will be used as an input stream. When an output stream is directed 
at ap interactive terminal, the 'environment(interactive)' attribute should be 
used. Altogether, the file descriptions for a stream data set are: 

input 

output 

print [output] 

output environment f( in teracti ve)l l print [output] en"vironment (i:teractive) J 

When the 'environment(interactive)' attribute is used, each 'put' statement that 
operates on the file adds a linemark to the end of its normal output. 

'close' Statement 

The 'close' statement has a simple form, as indicated by the following 
example: 

close file(test2); 

This statement marks the file-state block 'test2' closed. If the program is 
interrupted before a file has been closed, its contents are undefined. 
Therefore, every 'open' statement should be matched by a 'close' statement; and, 
further, the 'close' statement should be executed as soon as possible after the 
completion of input/output operations on the file. 

14-11 AM83 



Default Files 

It is possible to write a PL/I program without declaring a single file 
constant or using a single 'open' statement. In that case, input is taken from 
the standard input stream, 'user_input', and output goes to the standard output 
stream, 'user_output'. Consider first the case of a stream input statement that 
does not have a file option; for example, 

get list(a,b,c); 

The default mechanism of PL/I comes into pla~ wit~ full force here. Before 
execution of the program begins, PL/I inserts an open statement and adds a 
file option to the 'get' statement, giving 

open file(sysin) title(IIsyn_ user_input") input; 
get file(sysin) list(a,b,c); 

If the statement does not lie within the scope of a declaration of sysin', PL/I 
supplies the following declaration in the largest enclosing block: 

dcl sysin external file constant; 

The omission of an 'open' statement is common. On ~he other hand, 'sysin' and 
'sysprint' should always be declared because the Multics PL/I compiler gives a 
warning message for any undeclared name. 

The default interpretation just described is applied to 
statement in a program that does not have a 'file' option. Because 
declared 'extern81' all such statements refer to the same file-state 
when the interpretation of several 'get' statements leads 
declarations of 'sysin'. Because an 'open' statement only performs 
when the designated file is not already open, the file sysin' is 
once. 

every 'get' 
'sysin' is 
block, even 
to several 

an action 
only opened 

Consider next a stream output statement that does not have a file option; 
for example, 

put list(x,y,z); 

This statement is treated like the input statement, except that 'sysprint' is 
used as the default file constant. The statement is expanded to be: 

open file(sysprint) title(IIsyn_ user_output") print; 
put file(sysprint) list(x,y,z); 

14-12 Al'183 



INPUT/OUTPUT STATEMENTS 

There is one statement for stream input, the 'get' statement, and one 
statement for stream output, the 'put' statement. Each statement is a keyword 
followed by a sequence of options. Most of the options are simple. They 
specify the file on which the statement will operate, the nUMber of lines to be 
skipped before reading or writing begins, and so on; and these simple options 
are described here. The final option in a 'get' or 'put' statement is the 
transmission option and it is not simple. It specifies the transmission of data 
according to the rules of data-directed, list-directed, or edit-directed 
input/output. The transmission option is described later in this section. 

In addition to the 'get' and 'put' statements, there is a third stream 
input/output statement, the 'format' statement. This statement plays a 
specialized role, and is used only in connection with an edit-directed 
transmission option. 

'get' Statement 

Stream input is performed by the 'get' statement. A full example of such a 
statement follows: 

get file(test2) copy(ech09) skip(n+2) list(a,b,c); 

There are four options in this example. The options are interpreted as follows: 

• 'file(test2)' is the file option. It designates a file-state block 
and, through the file-state block, the stream data set from which 
input is to be taken. If the option is omitted, 'file(sysin)' is 
assumed. 

• 'copy(ech09)' is the £QQY option. When this option appears, every 
character skipped or read from the input stream is written in the 
output stream designated by this option. If a 'copy' is given without 
an argument, 'copy(syspr-int)' is assumed. 

• 'skip(n+2)' is the skip option. It specifies that, before any input 
is performed, characters will be skipped unt~l the beginning of the 
(n+2)th line after the current line. If 'skip' is used without a 
count, 'skip(1)' is assumed. 

• 'list(a,b,c)' is the transmission option. In this case it is 
list-directed and specifies that the next three values in the stream 
will be read in and assigned to the three targets, a,b,c given in 
the list. If the option is omitted, no values are input. 

The example just given shows the important input options. The following 
points round out the description of the 'get' statement: 

• The skip and transmission options cannot both be omitted, since the 
statement would then do nothing; but options can be omitted in any 
other way. In fact, the use of all options, as in this example, is 
rare. 

14-13 AM83 



• The options can be arranged in any order, but the 
example is recommended because it is the order 
are performed. The source and copy files 
transmission, then the skip is performed, and 
from the streaQ occur. 

order used in this 
in which the actions 
are prepared for 
only then does input 

• It is possible to simulate input by using the option 'string(~)' 
instead of the file option, where ~ is a character-string expression. 
The value of ~ is treated just as if it were the current input stream . 

. More is said of this later, under "The String Option". 

, ...... 

'put' Statement 

Stream output is performed by the 'put' statement. A full example of such 
a statement follows: 

put file(report) page line(5) list(x,y,z); 

There are four options in this example. The options are interpreted as follows: 

• 'file(report)' is the file option. It designates the stream data set 
to which the output will be transmitted. If the option is omitted, 
'file(sysprint)' is assumed. 

• 'page' specifies that a pagemark will be written in the output stream. 

• 'line(5)' specifies that sufficient linemarks will be written so that 
subsequent output will begin the fifth line of a page. If a new page 
must be started, the subsequent output begins on the first line of the 
new page. 

• 'list(x,y,z)' is the transmission option. In this case it is 
list-directed and specifies the values that are to be written out. If 
the option is omitted, no values are output. 

The example just given does not illustrate the following features of the 
'put' statement: 

• A 'skip(n)' option can be used in a 'put' statement. It specifies 
that subsequent output should begin the nth line after the current 
line. If 'skip' is used without an argument, 'skip(1)' is assumed. 
If the skip option is used, neither the page nor line option can be 
used. 

• The skip, page, line, and transmission options cannot all be omitted, 
since the statement would do nothing; but options can be omitted in 
any other way. 

• The options can be arranged in any order, but the order used in the 
example is recommended because it is the order in which actions are 
performed: The destination file is located, then the ~ and line 
options are performed (in that order), and only then does output to 
the stream occur. If a skip option is used, it should be written just 
after the file option so that it takes the place of any page or line 
option. 

• It is possible to simulate output by using 'string(i)' where i is a 
suitable target for assignment of a character string value. The 
string of characters that would otherwise be placed in the output 
-~---- ~- ---~---~ ~- ~ ;;;; I. 1"1;;; CUll J..O::> ClO::>O::>J..l5ul;;;U I"V ~. 

14-14 AM83 



'format"Statement 

The 'format' statement is the keyword 'format' followed by a parenthesized 
format list. The statement must begin with at least one label prefix. Consider 
the statement 

F5: format(a( 10) ,p"bbb--9v.99"); 

This statement has the label prefix 'F5:' and the format list is made up of the 
items 'a(10)' and 'p"bbb--9v.99"'. 

The purpose of a format statement is to supply a format list for an 
edit-directed 'get' or 'put' statement that appears elsewhere in the program. 
Specifically, such a 'get' or 'put' statement may contain a remote format item, 
such as 

r(F5) 

The remote format item is interpreted by interpreting the items in the format 
list associated with 'F5'; namely, 

a(10), p"bbb--9v.99" 

Thus the 'format' statement is used in order to supply a format list for some 
other stream input/output statement. The interpretation of the format list 
itself will be given later, in the discussion of edit-directed input/output. 

A 'format' statement is similar in some respects to a procedure. The 
identifier 'F5' is a format constant name, not a label constant name. It is 
used to invoke the 'format' statement only in a remote format item, and it 
cannot be used as the destination of a transfer of control. When control 
reaches a format statement as a result of the sequential execution of the 
preceding statements, the format statement is skipped, just as a procedure is 
skipped under the same circumstances. 

The value of a format constant is similar in many respects to an entry 
value. ~ne format value can be assigned to a format variable, can be the result 
of a reference to a format variable or a function, and can be compared to 
another format value by means of the operators '=' and '~='. A variable or 
function that has a format value is declared similarly to an arithmetic variable 
or function; its data type is 'format', and the attribute 'variable' is always 
assumed to apply. 

As an example of the use of a format variable, and as a further example of 
the format statement, consider the following program fragment: 

dcl X format; 
Q : forma t ( a ( 1 0) , f ( 1 1 , 2) ) ; 

X = Q; 

get edit(x, y)(r(X)); 

14-15 AM83 



The remote format item has the format variable 'X' as its argument. Since the 
value of 'X' is the format constant 'Q', the remote format item is equivalent to 
'r(Q)'. Furthermore, since the format constant 'Q' is associated with the 
format list '(a(10), f(11,2))', the 'get' statement is equivalent to 

get edit(x, y)(a(10), f(11,2)); 

The interpretation for this kind of input statement is given later; the purpose 
here has been to show how format constants, variables, and statements can be 
used to supply a format list to such a statement. 

DATA-DIRECTED INPUT/OUTPUT 

When data-directed input is used, the input stream contains a variable name 
for each input value; so the target for an input value is provided by the data 
rather than by the program. Furthermore, once a data-directed statement has 
initiated input, the process continues until a semicolon is encountered in the 
input stream; so input is terminated by the data rather than the program. For 
these reasons, the term "data-directed" is applied to this input/output 
facility. 

Examples of Data-Directed Input/Output 

As an example of data-directed input/output, consider the following pr'ogram 
to calculate the range of an artillery piece fired on level ground: 

RANGE: proc; 
dcl (sysin,sysprint) file; 
dcl (vO, theta, range) float(15), 
dcl g float(15) init(32.174); 
do "/h i I e ( " 1 "b) ; 

end; 

get data(vO, theta); 
if vO=O then return; 
range = «vO**2)*sind(2*theta))/g; 
put skip data(vO, theta, range); 
put skips 
end; 

This program appears to be an infinite loop (since the condition 'while("1"b)' 
is always satisfied). Each time around the loop, the program reads the muzzle 
velocity (vO) and the angle of elevation (theta), performs an end test, 
calculates the distance to impact (range), and outputs results. The program is 
designed to stop on a misfire; that is, it returns when vO=O. 

The input statement in this program is the data-directed 'get' statement 

get data(vO,theta); 

Each time this statement is executed, the input stream is read through the next 
semicolon in the stream. Suppose the program is being used to calculate four 
trajectories. Then the input stream Qight be: 

vO=1000 
vO=1000 
vO="j 000 
vO=1280 
vO=O 

theta=35; 
theta=40; 
theta=45; 
theta=45; 
theta=45; 

14-16 AH83 



In this example, each line ends with a semicolon and therefore represents the 
two values required for an execution of the 'get' statement and the calculation 
of a trajectory. The zero value of 'vO' stops the program, but the last value 
of 'theta' is added for completeness and has no effect whatever. 

A value not mentioned in the input stream is not changed; furthermore, the 
order in which values are mentioned has no significance. Therefore, the same 
trajectories can be specified as follows: 

theta=35 
theta=40; 
theta=45; 
vO=1280; 
vO=O; 

vO=1000; 

The stream assignments can be separated from one another by any sequence of 
blanks, tab characters, and new lines; and thus the input data can be 
attractively formatted (as above) and can be broken into several lines when it 
does not fit on one line. 

It is the semicolon and not any other character that delimits the input 
stream read by a given 'get' statement. Thus the example can be written in yet 
another way, this time as a compact single line: 

theta=35 vO=1000;theta=40;theta=45;vO=1280;vO=O; 

This format is less attractive but, as a practical matter, it might well be used 
when the input is being typed in at an interactive terminal. 

Why are the variables 'vO' and 'theta' mentioned in the 'get' statement? 
Since the input stream specifies a variable for each input value, a mention of 
variables in the 'get' statement appears to be redundant and it is. The 
effect of the mention of variables in the 'get data' statement is to restrict 
the input stream to those variables only. Thus, for example, if the input 
stream given above included 'g=1000', PL/I would reject the input and cause the 
'name' condition to occur because the 'get data' statement does not mention 'g'. 
:his restriction allows the programmer to maintain control over the effects of 
data-directed input and also allows PL/I to execute data-directed input more 
efficiently. 

The output statement in the RANGE program is the data-directed 'put' 
statement 

put skip data(vO, theta, range); 

If the input stream is the one discussed above, the program executes this 'put' 
statement four times and produces the following addition to the output stream: 

vO= 1.0000e+003 
vO= 1.0000e+003 
vO= 1.0000e+003 
vO= 1.2800e+003 

theta= 3.5000e+001 
theta= 4.0000e+001 
theta= 4.5000e+001 
theta= 4.5000e+001 

14-17 

range= 2.9207e+004; 
range= 3.060ge+004; 
range= 3.1081e+004; 
range= 5.0923e+004; 

AM83 



The preceding output is directed to the 'sysprint' file, which is declared 
'print'. For a file with the 'print' attribute, PL/I assumes the tab stops of 
the printer are set at 11, 21, 31, and so on. Each stream assignment (except the 
first) is preceded by a tab character, and each stream assignment is followed by 
a blank. In the example above, the three stream assignments are 15, 18, and 18 
characters in length so they begin in columns 1, 21, and 41. 

When a value is output, it is first converted to a character string and 
then output in that form; this conversion is discussed in Section IV, "Value 
Conversion." In the RANGE program, all of the values have the same data type, 
namely 'float(15)'. The conversion of such a value to a character string 
proceeds as follows: the value is converted from 'binary' to 'decimal' with an 
equivalent precision; in this case, the target data type is 'dec float(5)'. 
Then the decimal value is converted to a character string in a straightforward 
way to give a string of 12 characters. 

In a second example, the following program illustrates the remarkable 
flexibility of data-directed input: 

UPD: proc; 
dcl (sysin,sysprint) file; 
dcl K char(10); 
dcl 01 1-1, 

02 name char(30) var, 
02 address, 

03 street char(30) var, 
03 CSZ, 

04 city char(20) var, 
04 state char(2), 
U 4 zip pic Ii 99999 il , 

02 expire, 
03 month pic"99", 
03 year pic"99", 

02 account pic"$$$9.99"; 
dcl members file; 
open file(members) keyed update; 
do while("1"b); 

get data(K); 
if K="" then do; 

close file(members); 
return; 
end; 

read file(members) key(K) into(M); 
put data(M); 
get data(M); 
rewrite file(members) key(K) from(M); 
end; 

end; 

This program uses record input/output and therefore anticipates the reader's 
progress through the manual; however, the program is easily explained. 

14-18 AM83 



The program assumes that a record data set exists that describes the 
membership of an organization, giving the status of annual dues for each member. 
Each record is accessed by means of a character string, the key, and has a value 
that can be stored in the structure 'M' in the program. The main part of the 
program is a loop. Each time through the loop, the program gets a key from the 
user, stops if the key is an empty character string, uses the key to read the 
value of a record from the file into the structure 'M', prints a copy of the 
value, gets modifications of the value from the user, and writes the modified 
value on the record. 

The interesting part of the program is the statement 'get data(M);'. 
statement allows the user to enter modifications to any components of (M). 
example, the input stream might be as follows: 

K= "CRIEM06301"; 
month= 3 year= 74; 
K= "HAREM06733"; 
zip= 02139; 

This 
For 

Two records are changed. For the member whose key is 'CRIEM06301', the date of 
membership expiration is changed to March, 1974. For the member whose key is 
'MAREM06733', the zip code is changed to read '02139'. 

Principles and Exceptions 

The underlying principle of data-directed input is as follows: when a 
stream assignment is read by a 'get data' assignment, it is treated as if it 
were an assignment statement that appeared exactly where the 'get data' 
statement appears. For practical reasons, the following exceptions apply: 

• The assignment must not require computation. If the target variable 
has subscripts, they must be signed or unsigned integers. The value 
on the right must be a value that could appear in a storage unit just 
as it is; for example, ' 4+5' is not allowed, but ' 4+5i' is. 

• The variable name must designate a scalar storage unit. The variable 
name must appear explicitly in the 'data' list or else it must 
designate a component of an aggregate variable whose name appears in 
the 'data' list. 

• Stream assignments are not separated by semicolons (except where 
semicolon is used to terminate input). Instead, a sequence of blanks, 
tab characters, linemarks, and commas can be used. Blanks, tabs, and 
linemarks can also be used adjacent to the - sign. 

14-19 AM83 



The underlying principle of data-directed output is as follows: if a 'put 
data' is executed for a given list of variables and produces a certain output 
stream, then the execution of a 'get data' with the same list of variables on an 
identical input stream will assign to the variables their original values. It 
is not suggested that one would actually perform this operation; it is a way to 
store values in a stream, but far inferior to the facilities of record 
input/output. However, this principle does provide an understanding of the 
design of data-directed output. For example, a 'put data' statement adds a 
semicolon to the end of its stream output so the stream would be delimited if it 
were used for data-directed input. Exceptions to this principle of 
reversibility are: 

• If the output file has the 'print' attribute, the quote marks are 
removed from the value of a character string. This allows character 
values to be used for identification of output but, at the same time, 
interferes with their being read back as input character strings. 

• For all output files, a 'binary' arithmetic value is converted to base 
'decimal'. This may result in the loss of some precision, so that 
when the value is converted back during input it will not be quite the 
same 'binary' arithmetic value. 

Guidelines for Data-Directed Input/Output 

Data-directed input/output is best suited for temporary applications; 
either in a program written quickly and used only a few times, or as temporary 
diagnostic output In a program being tested. The latter application of 
data-directed input/output is a useful debugging aid. Appropriate 'put' 
statements can be inserted to produce dumps of specific data without regard to 
the format of the output. If each such statement is marked with a comment 
indicating its role, such as '/*dump*/', the statements can be systematically 
removed when debugging is complete. 

Data-directed input/output is the most device-independent for~ of 
input/output. PL/I arranges stream assignments in a way that is readable and 
that is usually neatly aligned in columns. Since each value is paired with an 
identifying variable, no reasonable arrangement of the data can interfere with 
the proper identification of the values. 

Data-directed input/output is well protected against user errors. 
user places a variable in the input stream that does not appear in the 
option, the 'nane' condition occurs; and an array subscript that is 
bounds is similarly treated. There is a fairly good chance that a value 
either arrive at its intended variable or will be rejected as invalid. 

If the 
'data' 
out of 

will 

These advantages are balanced by disadvantages. Data-directed input/output 
is the least efficient of the modes of input/output since the assignment of 
input data must be determined entirely at execution time. The preparation of 
input data requires more keystrokes, since each value must be preceded by its 
variable nane. Output data can become cluttered by the repeated occurrences of 
just a few variables. For all of these reasons, data-directed input/output is 
usually more appropriate for small-scale, simple transmission of data. 

14-20 AM83 



LIST-DIRECTED INPUT/OUTPUT 

When list-directed input is used, the variable that is the target of an 
input value is given in a list that is part of the 'get' statement; so this list 
determines where the input values go. For this reason, the term "list-directed" 
is applied to this input/output facility. 

Example of List-Directed Input/Output 

The program to calculate the range of an artillery piece is used here as an 
example of list-directed input/output. That program was given under 
"Data-Directed Input/Output", and only the two input/output statements need be 
changed, as follows: 

RANGE2: 

get list(vO, theta); 

put skip list(vO, theta, range); 

end; 

List-directed input/output is quite similar to data-directed input/output, and 
the program above is testimony to this fact. RANGE2 differs from RANGE only in 
the use of the keyword 'list' instead of 'data' in the input/output statements. 
Suppose this program is being used to calculate four trajectories, just as RANGE 
was. Then the input stream would be: 

1000 35 
1000 40 
1000 45 
1280 45 
o 45 

This input is the bare mlnlmum and looks more like computer input prepared in 
bulk, on punched cards, for example. The input is nicely formatted, but PL/I is 
not influenced uy that. ~L, by wistake, the streaw pointer is just after the 
'1000' on the first line, the whole run of the program will be invalid; indeed, 
it will not stop until a zero is encountered somewhere beyond ~ne portion of the 
stream shown above or until some input/output condition stops it. 

It is possible to ignore a target in the 'get' statement by leaving a value 
blank. In order to do so, however, commas must be used to separate the values, 
as follows: 

1000, 

, 
1280, 

0, 

35, 
40, 
45, 

14-21 AM83 



Again, the format is for the benefit of the user, not PL/I. The stream could be 
entered as 

1000,35, ,40, ,45, 1280, ,0" 

with exactly the same effect. The use of a comma as a separator is optional in 
list-directed input, but it is suggested that commas be used throughout when one 
or more targets are ignored. 

If the input stream is the one just discussed, the program produces the 
following addition to the output stream: 

1.0000e+003 
1.0000e+003 
1.0000e+003 
1.2800e+003 

3.5000e+001 
4.0000e+001 
4.5000e+001 
4.5000e+001 

2.9207e+004 
3.060ge+004 
3.1081e+004 
5.09238+004 

This output will be labeled if the following statement is inserted before the 
loop: 

put skip list("J6velocityJ6J6J6", "J6elevationJ6J6", "J6rangeJ616J6J6J6J6"); 

Note that each heading is padded with blanks so it is just as wide as the value 
it labels; this assures that it will line up whatever tab stops are used. The 
blank at the beginning of each heading corresponds to the sign position of the 
numbers. The statement prints the line: 

velocity elevation range 

at the beginning of the output. 

Compound List Items 

In its simplest case, a 'get list' statement has a list of designators of 
scalar values, and these are paired, one-for-one, with the values in the input 
stream. The 'get list' statement in the RANGE2 program was of this sort: its 
list was composed of two scalar names, 'vO' and 'theta'. However, list-directed 
input is not restricted to this simple case; instead, an item can be any 
variable name, scalar or aggregate, or it can be a parenthesized iterated list 
of items. Such items are interpreted by expanding them from a single item into 
a sequence of items; and they are therefore called compound items. 

An item that is an array variable name represents the elements of the array 
listed in row-major order. Suppose the following declaration is in effect: 

dcl A(3:4,3) float; 

Then the statement 

get list(A); 

is interpreted as 

get list(A(3,1), A(3,2), A(3,3), A(4,1), A(4,2), A(4,3)); 

and therefore reads six values from the input stream. 

14-22 AM83 



An item that is a structure variable name represents the members of the 
struetur'e listed in the order in which they are declared. If a member of the 
structure is not a scalar, then the member is expanded, in turn, into a list of 
its components. Suppose the following declaration is in effect: 

dcl 01 specs, 
02 side(2), 

03 h float, 
03 w float, 

02 area float; 

Then the statement: 

get list(specs); 

is interpreted as: 

get list(specs.side(1).h, specs.side(1).w, 
specs.side(2).h, specs.side(2).w, specs.area); 

and therefore reads five values from the input stream. The item in this example 
is a "level one" structure; but any component of an aggregate can be referred 
to. For example, 'get list(specs.side)' is interpreted as above but with 
specs.area' omitted. 

An item that is a parenthesized iterated list represents a list of 
subscripted items. For example, the statement: 

get list«x(i), y(i) do i = 2 to 4)); 

is interpreted as: 

get list(x(2), y(2), x(3), y(3), x(4), y(4)); 

and therefore reads six values from the input stream. The form of the iterated 
list is based on the 'do' statement, and can use any of the multiple do clauses 
defined in Section XI, "Program Flow." The following example illustrates the 
options allowed: 

get list«busy(k) do k = 1, 5, 6 repeat 2*k while(k<25), 
23 to 15 by -2)); 

This statement uses the following sequence of subscripts: 

1, 5, 6, 12, 24, 23, 21, 19, 17, 15 

Therefore it reads ten values from the input stream into the array 'busy'. 

All of the compound items have now been informally described; but without 
further examples, certain useful techniques might be overlooked by the reader. 
For example, an item in a parenthesized iterated list can itself be a compound 
item. The statement: 

get list«Q(i,*) do i = 1 to 3)); 

reads in values for the first three rows of the array 'Q'. In this example, 
'Q(i,*)' is a compound item representing the values in a row of the array 'Q'. 

14-23 AH83 



An item in a parenthesized iterated list can be another parenthesized 
iterated list, as shown in the following statement: 

get list(X, «A(j,k) do k = 1 to 2), B(j) do j = 3 to 4), Y); 

This statement is interpreted as: 

get list(X, A(3,1), A(3,2), B(3), A(4,1), A(4,2), B(4), Y); 

and therefore reads eight values from the input stream. 

Any appropriate expressions can be used in the clauses of the multiple do. 
For example, the statement: 

get list(x, (y(m) do m = m1 to rad*u(j-1))); 

can be used, but of course its interpretation cannot be determined until, as the 
result of the execution of earlier statements, values have been assigned to 
'm1', 'rad', 'j', and 'u(j-1)'. Even values previously input by the same 'get' 
statement can be used to control the statement; for example, the statement: 

get listen, (w(i) do i = 1 to n)); 

reads a value into 'n' from the input stream and then uses that value to 
determine how many values are read into the array 'w'. 

The list of a 'put list' statement can use the compound items that have 
been described for the 'get list' statement. Ea~h compound item in a 'put list' 
statement is interpreted as a sequence of items in exactly the way it would be 
interpreted in a 'get list' statement. 

Each output value in a 'put list' statement can be given by an expression 
of unlimited complexity. Just as a 'get list' allows the use of anything that 
could appear on the left side of an assignment statement, so a 'put' statement 
allows use of anything that could appear on the right side of an assignment 
statement. 

Pseudo-Variable List Items 

Since an item in a 'get list' statement can be any target, it can be a 
pseudo variable. For example, the statement 

get list(real(X),imag(X)); 

reads two values from the input stream 
imaginary parts of 'X', respectively. 
variable 'X' must be 'complex'. 

14-24 

and assigns 
The values 

them 
must 

as the real and 
be 'real' and the 

AM83 



Principles and Exceptions 

The principle of list-directed input is as follows: the variable names in 
the list in the 'get' statement are processed from left to right; and, for each 
variable, an assignment statement is executed that consists of the variable 
name, an '=' sign, and the next item from the input stream. In practice, 
list-directed input is both more powerful and less powerful than an ordinary 
assignment statement, as indicated by the following exceptions: 

• IJhen a variable designates an aggregate, a sufficient number of 
(scalar) values are taken from the input stream to provide a complete 
value for the variable, as described under "Compound Items", above. 
~nere is no corresponding feature of an ordinary assignment statement 
because there is no way to write an aggregate constant. For example, 
one cannot write 'A = 89,-99,17;' to assign an array value to 'A'. 

• Items read from the data stream must be values as they stand, without 
further computation. 

• The reference that appears in a 'get list' list must have an 
arithmetic or string data type since only values of these types can 
appear in the input stream. 

The principle of list-directed output is the same as that for data-directed 
output; whatever is output by a given statement can be input by a statement with 
the same list. As with data-directed input/output, the exceptions to this 
principle occur when character strings are output under the 'print' attribute 
and when a 'binary' value is converted to 'decimal' for output. 

Guidelines for List-Directed Input/Output 

List-directed input/output is more efficient than either data-directed or 
edit-directed input/output because it does not require the execution-time 
interpretation of variable names (as does data-directed input/output) or 
execution-time editing (as does edit-directed input/output). On grounds of 
efficiency alone, then, it is preferred; but its limited and rigid format is a 
disadvantage, especially for output. 

For list-directed output, the programmer cannot choose a format freely; he 
must take into account the tab stops provided on the printer, for example. 
Further, automatic conversion of arithmetic values to character strings uses 
moderately complicated rules and can produce some surprises. Thus, it is often 
easier to use edit-directed output from the outset and be assured of full 
control over the output format. 

The use of list-directed input is more attractive, since the insensitivity 
to format is an advantage. If a large volume of input is required, it can be 
typed or punched value after value, line after line, using exactly the precision 
and scaling that appear in the raw data. 

14-25 AM83 



EDIT-DIRECTED INPUT/OUTPUT 

When edit-directed input/output 
instructions for the editing of the 

is used, the statement includes 
transmitted values. The edit-directed 

statement includes a list of data items, just as a list-directed statement does, 
but also has a list of format items that control the editing of each value, 
either checking the format of input or supplying the format for output. For 
this reason, the term "edit-directed" is applied to this input/output facility. 

Examples of Edit-Directed Input/Output 

Edit-directed input/output will be introduced through discussion of several 
versions of a single program. The program inputs a number~ divides it by two~ 
and outputs both the given number and the computed result. It is known that the 
input is supplied as a signed, three-digit number. The first version of the 
program is: 

P 1 : proc; 
dcl (sysin,sysprint) file; 
dcl (x,y) float; 
get edit(x)(a(4)); 
y = x/2; 
put edit(x,y)(skip,a,x(3),a); 
end; 

This program uses the most fundamental of all format items, the 'a' (for 
"alphanumeric") format item. This format item specifies the reading of 
characters from the input stream without any checking or conversion whatever. 

The 'get' statement is interpreted as "read the next four characters from 
the input stream and assign them (as a character-string value) to 'x',,. It 
performs a very simple input operation. A conversion of data type does occur, 
but it is part of the assignment of the character string input to 'x', and it is 
not controlled by the 'get' statement. Suppose the input stream currently 
begins with '-709'; then '-709' is expressed as a 'real binary float(27)' value 
and assigned to 'x'. The computation part of the program assigns '-354.5' to 
, y' • 

The 'put' statement is interpreted as ilskip to the beginning of a new line; 
output the value of 'x' as a character string; ~u~put three blanks; and output 
'y' as a character string". Since the values of x and 'y' are not character 
strings, these values are converted to character strings before output. The 
output is the line: 

-7.09000000e+002~~~-3.54500000e+002 

The first character of this line is in column 1 of the output medium. 

The 'put' statement in this example requires further explanation. While 
the interpretation given for the statement is accurate, it may not be obvious 
how that interpretation was obtained. The two lists in an edit-directed 
statement are processed in parallel. That is, the sequence of processing is 
determined by the data list, but a reference is made to the format list for each 
item in the data list. When the next item in the format list is a data format 
item, such a~ a, it tells how the data value is to be processed, and the 
reference is complete. However~ when the next item in the format list is a 
control format item, such as 'skip" or "x(3)", it does not tell how to process 
the data item~ and the control format item is executed and a new reference is 
made to the format list. 

14-26 Af183 



The program just given exercises a minimum of control over its input; it 
merely 'requires four characters that can be converted into an arithmetic value. 
Even though it was stated earlier that the input would be supplied as a signed, 
three-digit integer, this program accepts '~~+6' or '.003' or even the very 
large number '7e30'. The program shows a similar indifference to the format of 
the output, and leaves this format entirely to the built-in rules for conversion 
of an arithmetic value to a character-string value. 

The following version of the program uses pictured character-string 
variables to exercise the proper control of input and output: 

P2: proc; 
dcl (sysin,sysprint) file; 
dcl in picture"s999"; 
dcl out picture"-999.v9"; 
get edit(in)(a(4)); 
out = in/2; 
put edit(in,out)(skip,a,x(3),a); 
end; 

The variable name 'in lS declared 'picture"s999"', and is thus restricted to 
precisely the signed, three-digit integer supplied as input when the program is 
properly used. Similarly, the variable name 'out' is declared 
'picture"s999v.99'" to provide a good format for the computed result. If the 
string '-7.9' is supplied, the 'conversion' condition occurs because this value 
cannot be assigned to 'in'; and thus the error is detected. When the input is 
'-709', the program runs to completion and outputs the line: 

-709~~~-354.5 

which is much more readable than the output from the first version. 

The program just discussed controls input/output well, but uses pictured 
character-string values for it~ computation instead of the floating point 
variables used in the first version. This mode of computation causes a 
considerable loss of efficiency, especially if the computation is not so 
trivial. A third program combines well-controlled input/output with efficient 
computation: 

P3: proc; 
dcl (sysin,sysprint) file; 
dcl in picture"s999"; 
dcl out picture"-999.v9"; 
dcl (x,y) float; 

.get edit(in)(a(4)); 
x = in; 
y = x/2; 
out = y; 
put edit(in,out)(skip,a,x(3),a); 
end; 

14-27 AH83 



The version of the program just given uses the pictured variable names 'in' and 
'out' in a rather specialized way; 'in' is an intermediary between the input 
stream and the computation-oriented variable 'x', and 'out' is an intermediary 
between 'y' and the output stream. PL/I has a special facility, the picture 
format item, for this situation, as the following, final, version of the program 
shows: 

p4: proc; 
dcl (sysin,sysprint) file; 
dcl (x,y) float; 
get edit(x)(p"s999"); 
y = -x/2; 
put edit(x,y)(skip,p"s999",x(3),p"-999.v9"); 
end; 

This program means exactly the same thing as 'P3' did, and therefore needs no 
interpretation. Observe that it is identical to 'P1' except for the use of the 
picture format items instead of the 'a' format items. 

The preceding examples have ranged from the simplest of the data format 
items, the character-string format item, to the most powerful, the picture 
format item. The examples have also shown two representatives, 'skip' and x, 
of the control format items. Finally, the examples have shown how the data list 
refers to the format list for the specification of format. The remainder of 
this discussion covers this ground again, supplying a complete description of 
the,PL/I edit-directed input/output facility. 

Data Format Items 

In an edit-directed statement, each data item must have a corresponding 
data format item. Each data format item describes a field; that is, a sequence 
of characters either read from the input stream or added to the end of the 
output stream. Usually, the format item gives the width of the field; that is, 
the number of characters, including blanks, contained in the field. In 
addition, the format describes the way the value is represented in the field; 
that is, it gives the format of the value. 

The format imposed on the input stream mayor may not be very precise. For 
example, the format item 'p"s999'" means, quite precisely, that "the next four 
characters of the input stream must be a signed integer with three digits". On 
the other hand, 'f(10)' means, less precisely, that "the next ten characters of 
the input stream must contain a fixed-point value representation, signed or 
unsigned, with or without a decimal point, filling the whole field or shafing it 
with leading or trailing blanks or both". 

For output, the role of the format item is to supply the format of the 
output value representation. Again, the format mayor may not be very precise. 
For example, 'e(20,8,9)' means "output four blanks and a floating point value 
representation that has a signed, nine-digit mantissa with eight digits to the 
right of the decimal point". On the other hand, the format item 'a' means 
"output however many characters are necessary to represent the given value". 

14-28 AH83 



The occurrence of linemarks and pagemarks in the stream are ignored during 
the processing of a data format item. During input, the field length may exceed 
the number of character positions that remain on the current line of the input 
stream; in this case, additional character positions in the subsequent lines are 
used. During output, the field length may require character positions beyond 
the number allowed by "linesize". In this case, new lines are created to supply 
additional character positions. If the new lines would exceed the number of 
lines allowed on the page by "pagesize", the "endpage" condition occurs and 
(when the condition has been processed) a new line is begun. Thus if the 
programmer wishes to ignore all or part of the layout of the output stream, he 
can do so and PL/I will process the layout automatically. 

There is a format item for each of the main types of computational data. 
They are as follows: 

character string 
bit string 
fixed point 
floating point 
complex 
picture 

Format Item 

a(w) 
b(w) 
f eli, fw, dm) 
e(li,fw,ms) 
c(part,part) 
P"K" 

In these format items, li (the width), fw (the fraction width), dm (the decimal 
multiplier), and ms (the mantissa significance) can each be any expression whose 
value can be converted to an integer. Except for the decimal multiplier, dm, 
the integer value must be positive or zero. Each part can be any format item 
for a real value. The K in the last format item represents a picture, as 
described earlier, in Section III, "Value Storage." Often it is not necessary 
to give all the arguments, as the following examples will show. 

STRING FORMAT ITEMS 

The stream representation of a string value is processed by the string 
format items. For character strings, the allowed forms are: 

a(li) used for both input and output 
a used for output only 

For bit strings, the allowed forms are: 

b (li) used for both input and output 
b used for output only 

The processing of the character-string and bit-string format items are parallel 
in every respect. 

14-29 AM83 



String Input 

Examples of these format items for input follow: 

Input Format Inbound 
Stream Item Value Comment 

2.5~ a(4) "2.5~" The next four characters are read, 
~~~~ a(4) "~~~~,, whatever they are. 
~+3.0-2.3i a (10) "~+3.0-2.3i" The next ten characters are read.

010 b(3) "010"b Only , 0 ' and ' 1 ' are accepted.
~1~ b(3) "1"b The blanks are deleted.
~~~ b(3) ""b The string can be empty. 
000 b(3) "OOO"b Three zeroes are three bits. 

012 b(3) (conv) Only bits, leading blanks, and 
"01"b b(5) (conv) trailing blanks can appear. 

String Output 

During output, a string value is left adjusted; that is, if the string 
value does not fill the field, it is placed as far to the left as possible and 
the remainder of the field is filled with blanks. This contrasts with the 
output of arithmetic values, which are right adjusted. When ~ is omitted from a 
string format item, the width of the output field is determined by the length of 
the output string value. This is the only case in which the field width is not 
given explicitly in a format item. ExampleS of the uSe of these format items 
for output follow: 

Outbound Format Output 
Value Item Stream Comment 

"ABC" a(5) ABC~~ Blanks are supplied at the right. 
II~~ABC" a(5) ~~ABC Given blanks remain in the string. 
"" a(5) ~~~~kS A null string is accepted. 
"ABC" a ABC The value determines the width. 

"1"b b(5) 1kS~~~ Blanks are supplied at the right. 
""b b(5) ~kS~~~ No bits in a null bit string. 
"OO"b b 00 The value determines the width. 

"~~ABCkS~" a(5) (stringsize) Seven characters do not fit in the field. 
"012" b(3) (conv) Only bits are allowed for 'b(3)' . 

FIXED-POINT FORMAT ITEMS 

The stream representation of a fixed-point value is processed by a 
fixed-point format item, which can have any of the follo1tling forms: 

used for input or output 
used primarily for output 
used for special applications 

The value of w (width) determines the size of the field~ The value of fw 
,IraC{'lon width) deternlilles the number of fractional digits .1.J.J the 
representation. The value of dm (decimal multiplier) determines a multiplier 
for the transmitted value. 

14-30 At183 



Fixed-Point Input 

Usually the form 'f(li)' is used 
decimal-multiplier arguments are omitted. 

for input and the fraction-width and 
Input is performed as follows: 

• A character string of li characters is read from the input stream. The 
string must contain an optionally-signed, real, fixed-point constant 
or else must be entirely blank. 

• The input string is assigned to an intermediate variable of data type 
'real decimal fixed(p,q)'. If (1) the input constant is 'decimal', 
(2) the input constant has a precision and scale-factor within the 
maximums of Multics PL/I, and (3) fw and dm are omitted from the 
format item, then the precision attribute (p,q) is taken directly from 
the input constant. 

• The value of the intermediate variable is assigned to the target given 
in the data list. 

In the steps just given, two assignments are made; one from the stream to an 
intermediate variable and a second from the intermediate variable to the target 
variable. These assignments are performed as if they arose from an assignment 
statement; that is, the necessary conversion is performed and, if the assignment 
or the conversion cannot be performed for some reason, the appropriate condition 
occurs. The intermediate variable exists only long enough to convey the value 
to the target, and is not used in any other way. 

Examples of the processing of a five-character input field by a fixed-point 
format item follow. 

Input Format Intermediate 
Stream Item Value Comment 

-7.2~ f(5) -7.2 The position of the value 
~7.2~ f(5) +7.2 representation in the field 
~~7.2 f(5) +7.2 does not affect its 
7.2vv D',-\ +7.2 interpretation. 1 I. J) 

~~~~~ f(5) +0. If the field is blank, its value is o. 
f(O) +0. If li=O there is no input, but value is O.

72e-1 f(S) (conv) If the input is not a valid fixed-poir;t
-7~.2 f(5) (conv) value representation, the

,
conversion

7.2db f(S) (conv) condition is signalled.

72~~~ f(5,2) +.72 fw::2 gives two fractional digits, and
72~~~ f(5) +72. fw=O (default) gives none.
7.2~~ f(5,2) +7.2 But vlhen a decimal point is in the
7.2~~ f(S) +7.2 stream, fvl is ignored.

7.2~~ f(5,2,-3) +.0072 dm=-3 multiplies input by 10**-3 = .001
7.2~~ f(5,2,3) +7200. dm=3 multiplies input by 10**3 = 1000
72~~~ f(5,2,3) +720. fw=2 gives two fractional digits,

then dm=3 multiplies by 1000.

The last two groups of examples show the use of a nonzero fraction width or
decimal multiplier. Such format items should be used only when there is a clear
justification for accepting input values that are not "true" values; this might
occur, for example, when input is being prepared by an automatic device that can
only produce a sequence of digits (but no decimal point or scale factor) on its
output medium.

14-31 AM83

When fw is omitted, it is assumed to be zero; therefore, a value
representation without a decimal point is treated as an integer, which is the
everyday convention. When dm is omitted, it is also assumed to be zero;
therefore, the value is multiplied by 10**0 = 1. Thus the defaults are chosen
so they leave the transmitted value unchanged.

Fixed-Point Output

Usually, the form 'f(~)' or 'f(~,fw)' is used for output, and the
multiplier is omitted. When the form 'f(~)' is used, it is assumed that fw = O.
An intermediate variable is used with output in the same way as was previously
described for input. The data type of the intermediate variable is 'real
decimal fixed(Q,g)'. The scale factor, g, is fw and the significance, Q, is as
large as wallows. That is. p is obtained by reducing w by one if necessary to
all~w for ~ minus sign and (~hen fw is not zero) by on~ --more to allow for a
decimal point; however, Q cannot exceed the maximum Multics precision, 59. The
outbound value is converted to an attractive, right-adjusted value
representation in the output stream, as shown in the follovling examples:

Outbound
Value

-3.
-3.
-3·
+3.

+17.46
+17.46
+17.46
+17.46

+0.
+0.

+17.46
+17.46
+17.46

Format
Item

f(5,2)
f(5)
f(5,3)
f(5,3)

&>Ir- ,.,\
1. \ ::; , c.)

f(5,1)
f(5)
f(5,-1)

f(5,2)
f(5)

f(5,3,-1)
f(5,0,2)
f(5,0,-1)

Output
Stream

-3.00
F.SF.SF.S-3
(size)
3.000

Comment

1=2 provides two fractional digits, and
1=0 (default) provides none.
'-3.000' does not fit in the field.
'3.000' (without sign) does fit.

17.46 ~=2 fits the exact value (in this case),
F.S17.5 1=1 rounds to one fractional digit, and
£SF.SF.S17 d=O rounds to an integer.
(error) <1 must be nonnegative)

£SO.OO
F.SF.SF.SF.SO

1.746
161746
F.SF.SF.SF.S2

There are many ways
to print zero.

dm=-1 multiplies value by 10**-1 = .1
dm=2 multiplies value by 10**2 = 100
then fw = 0 causes rounding.

The last group shows the use of a nonzero decimal multiplier with output. The
use of this feature should be restricted to the applications that are similar to
its use with input; that is, it should be used to change the "true" stored value
of a number to some scaled output form for a specialized application.

FLOATING-POINT FORMAT ITEMS

The stream representation of a floating-point value is processed by the
floating-point format item, which can have any of the following forms:

e(w)
e (~, fw)
e(~,fw,ms)

used for input or output
used primarily for output
used only for output

The value of w (the width) determines the size of the field. The value of fw
(fraction width) determines the nUMber of fractional digits in the mantissa of
the representation. The value of ms (mantissa significance) determines the
nunber of digits in the entire mantissa.

14-32 AM83

Floating-Point Input

Usually the form 'e(~)' is used for input and the fraction-width and
mantissa-significance arguments are omitted. Input is performed as follows:

• A character string of ~ characters is read from the input stream. The
string must contain (1) an ootionallv-signed. real constant that is
either fixed-point or floating-point or~ (2) a' sequence of blanks,
which is interpreted as zero.

• The string is assigned to an intermediate variable of data type 'real
decimal float(Q)~, where Q is the precision of the input constant.

• The value of the intermediate variable
corresponding target in the data list.

is assigned to the

The role of the intermediate variable used here is the same as that used with
the fixed-point format item. It exists only to convey the input to the target
with the required conversions.

Examples of the processing of a seven-character input field by a
floating-point format item follow:

Input Format Inbound
Stream Item Value Comment

1.3e7t6t6 e(7) +1.3e+7 A floating-point or fixed point value
t6-50+4t6 e(7) -50.e+4 representation is accepted at any
t6t6t6t65t6t6 e(7) +5.0e+0 position in the input field.

t6t6t6t6t6t6t6 e(7) +O.Oe+O If the field is blank, its value is O.
e(O) +O.Oe+O If ~ = 0, no input occurs, but value is O.

1.3e7.0 e(7) (conv) If the input is not valid, the
=50-}-fSfSfS ~(7\ (nAnn\ conversion condition occurs. \.11 \. v~.;. ... 10 J

t6t6t613e7 e(7,2) +. 13e7 fw = 2 gives two fractional digits, and
t6t6t613e7 e(7) +13.e7 fw = 0 (default) gives none.
t6t61.3e7 e(7,2) + 1 .3e7 But when a decimal point is in the
t6t61.3e7 e(7) + 1 .3e7 mantissa, fw is ignored

The last four examples show the use of a nonzero fraction width, fw. When an
input constant does not contain a decimal point, fw supplies the position for an
assumed decimal point. As in the case of the fixed-point format item, such
floating-point format items should be used only when there is a clear
justification for accepting input values that are not "true" values.

Floating-Point Output

For output, the data type of the intermediate variable is 'real decimal
float(Q)', where Q is the precision derived from the data type of the value
supplied by the data item. All three forms of the 'e' format are commonly used.
Omitted arguments are interpreted as follows:

means
means

e (~, fw, fw+ 1)
e(~,Q-1 ,Q)

14-33 AM83

Thus, when the mantissa significance is not specified in the format item, it is
calculated so that the mantissa has a one-digit integer part. When neither fw
nor ms is given, the precision of the output value itself, Q, is used. The
outbound value is converted to an attractive representation in the output
stream, as shown in the following examples:

Outbound Format Output
Value Item Stream Comment

7.5 e(11,2,4) l675.00e-001 When both Q and ..§. are given, the
7.5 e(11,0,4) l6RS7500e-003 decimal can be adjusted.
7.5 e(11,3,3) RSO.750e+001 Note leading zero when Q=..§..
7.5 e(11,4,4) 0.7500e+001 Fits because there is no sign

7.5 e(11,3) RS7.500e+000 ~lhen ..§. is not given, the
-7.5 _f11 ..,\ -7.500e+OOO mantissa has ~ • 1 ,4; rr; +-C'" co,", there C I. I I , .) J UT I U.La.L""':>, o.JV

750 e(11,3) RS7.500e+002 is one integer digit
0 e(11,3) RSO.OOOe+OOO Zero has a zero exponent.

+7.5e+0 e (11) RSRSRS7.5e+000 \lhen Q and ..§. are not given, the
+7.500e+0 e (11) RS7.500e+000 precision is taken from the value

itself.

COMPLEX FORMAT ITEMS

The stream representation of a complex value is processed by the complex
format item, which can have either of the following forms:

c(part)
c(part1,part2)

used for input or output
used for input or output

The part, part1, or part2 can be any format item for a real value; that is, one
of the following:

fixed-point format item
floating-point format item
picture format item

This format item always describes two values in the stream: the real and
imaginary parts of the complex value. If only one part is given, it is used
twice. Although imaginary values are usually followed by 'i' in PL/I, this is
not the case when the complex format item is used.

Complex Input

Examples of the use of this format item follow:

Input
Stream

RSRS3RS-2.3
RS3RSRSRS-2.3RS
+2.32e-3-6.80e-3

Format
Item

c(f(3),f(5»
. c(f(5»
c(e(8») .

cef(5))

c(f(5))

Inbound
Value Comment

+3.-2.3i The field is treated as
+3.-2.3i two fields.
+2.32e-3-6.80e-3i

+3.+0.i A blank part is a O.

(conv) 'i' is not allowed.

14-34 AH83

Complex Output

Examples of the use of the complex format item to process output follow:

Outbound
Value

Format
item

+3.0+2.3i c(f(5,2»
+2.32e-3-6.80e-3i .c(e(11,2),e(11,2,2»

+CI.Oe+0-3.0e+2i

+3.0-2.3i
+3.0+2.31

PICTURE FORMAT ITEMS

c(f(8,2»

c(f(4,2»
c(f(4,2»

Output
Stream

i53.00~2.30
~D2.32e-002~-O.68e-002

2SDZSR;0.OOiS-300~OO

(size)
3·002·30

The strea~ represe~tation of any computational value (except 'complex') can
be processed by an appropriate picture format item, which has the form

p"X"

where X is any of the pictures described under "?ictured String Storage" in
Section III, "Value Storage."

·,:hen input is perfor'med under control of the picture fo!""'mat item, the
follo~i~g steps are performed:

• The length of the character string described by the picture is
deter~ined, and a string of that le~gth is read frOM the input strean
an:! 2.ssigned to an intermediate variable of data type 'pi:::!ture"x"'.

o The value of the intermediate variable is assigned to the target
variable.

Both of· the assignments performed during the picture-format input require
fu~th~r comment. The first assignment changes the data type of the input
stri~g, but ~ever changes the string itself. Suppose the input strea~ supplies
the characters '-709' and the format ite~ is 'p"s399"'; then the input value is
, "-7'J9': . and has the data type ' character' . After assignr.e:lt to the
internediate variable, the value is still '-709', but it now has the data type
'picture"s999'!'. Thus the string has been checked for conformity with the
~icture and has been given the interpretation as~ociated with the picture.

inc seco~d assignMent entails the conversion of the value of the
inte~~ediate pictured variable to the dat3 type of the target value. Since the
data tY)8 of the tareet can, in various cases, ::,e any PL/I data type, there are
many ;~ssijle conversions.

·,ihen output is perforned under control of 3. picture forr.1at iten, the
fol10~ing steps are performed:

• The value supplied by the source ex~re3sion in
assi;ned to an intermediate variable of data type
K is the picture given in the pictu~e for~at iten.

the data list is
'piqtureIlK"', where

• The ~alue of the intermediate va~iable, which is already a character.
string, is added to the output strean t:ithout being chan5ed.

14-35 At·t83

I

Just as with input, two assignments are Qade; one from the source expression in
the data list to the intermediate variable, and a second from the intermediate
variable to the output stream. If an assignment cannot be performed, the
appropriate PL/I condition occurs.

The pictures are classified into three groups: fixed-point, floating-point,
and character. A fixed-point picture describes a character string that has the
form of an optionally-signed, fixed-point constant. A floating-point picture
describes a character string that has the form of an optionally-signed
floating-point constant. A character picture describes a character string that
might not be suitable for interpretation as an arithmetic value but could be
useful as an identifier of some kind. Examples of picture format items from
each classification are now given. The commentary given with the examples is an
informal summary of the definitions given for pictures in Section III, "Value
Storage."

Fixed-Point Pictures

The fixed-point picture format item is considered here, and many examples
are given. For each '9' in a picture, a digit appears in the corresponding
character position of the stream; for an's', a sign ('+' or '-' but not a
blank); and for a '-', a blank or a '-' (but not a '+').

Stream Format Internal Comment

-823 p"s999" -823. A signed, three-digit
+823 p"s999" +823. integer with
~823 p"-999" +823. various signs.
-823 p"-999" -823

The examples above should be read in both directions. For example, the first
line should be read first as the transmission of the characters '-823' from the
input stream to a target, and then read a second time as the transmission of the
value of an internal source with value '-823.' to the output stream. This
approach will be used for subsequent examples of the picture format item.

A 'z' matches a digit; but if the digit would be a leading ~, it is
suppressed (replaced by blank) on output and mayor may not be suppressed (at
the option of the user who prepares the data) on input. A sequence as 'sss' is
like 'szz' except that the sign "drifts" to the right when leading zeroes are
suppressed. The sequence' 'represents a "drifting" minus sign in the same
way.

Stream Format Internal Comment

t5~68 zzz9 +0068. Zero suppression
~~R55 zzz9 +0005. and drifting signs
~~~~ zzzz +0000. for input or output 
~+68 sss9 +0068. 
~~-5 ---9 -0005. 

Observe that a blank field can appear in the stream~ but only when there is no 
'9' in the picture. 

9/78 14-36 AM83A 



In ordinary applications of the picture format item, the decimal point is 
indicated in the picture by two characters, ~v.', which matches the in the 
stream. 

Stream 

-53.60 
1111-.60 
lHS829. 

Form-at 

sssv.99 
sssv.99 
----9v. 

Internal 

-053·60 
-000.60 
+00829. 

COr.lClent 

Ordinary deci~al 
points for input 
or output. 

When 'v' and are not adjacent in the picture, the trans~itted value is 
changed. The 'v' indicates the position of the decimal point in the internal 
representation of the value, and the '.' indicates the position of the decimal 
point in the stream representation. Details are given in Section III, "Value 
Storage." 

A parenthesized integer can be ~sed in a picture to indicate repetition of 
the following picture character. For example, 

p"s(7)9" means 
p"(5)sv.(2)9" means 

p"s9999999" 
p"sssssv.99" 

The parenthesized integer must be a constant; that is, it cannot be written as 
an expression and computed when the program is executed. 

When one of the assignments in the interpretation of a picture format item 
would lose a digit at the left end of the value, the 'size' condition occurs. 
But when an assignment would lose a digit at the right end of the value, that 
digit is truncated, without warning, and no condition occurs. Suppose the 
target of input or the source of output has the data type 'dec(6,2)'. The 
following examples show various instances of digit-loss: 

Stream Format dec~6222 Comment 

-9.2362 p"-9.9999" (size) Input error. 
-9.2362 p"-9v.999" -0009.23 Input approximation. 

(size) p"s999" +8264.00 Output error. 
+82 p"s99" +0082.99 Output approximation. 

AM83 



I 

The most remarkable aspect of the picture is its handling of commercial 
symbols. A '$' can be used and can "drift" to the right as a sign can do. 
Commas can be used and a comma is suppressed when an adjacent leading zero is 
suppressed. The suffixes 'cr' and 'db' are allowed. 

Stream 

$129.88 
~R5$6.50 
$2,619 
R5R5~$81 
$9.28cr 

Format 

$999v.99 
$$$9v.99 
$$,$$$ 
$$,$$9 
$9v.99cr 

Internal 

+129.88 
+006.50 
+2619. 
+0081 . 
-9.28 

Comment 

Commercial symbols 
for input 
and output. 

These examples of the fixed-point picture format items do not exhaust all 
the possibilities, but the omitted possibilities are less frequently used. For 
a complete description of fixed-point pictures, see Section III, "Value 
Storage." 

Floating-Point Pictures 

The mantissa of the floating-point picture can be any fixed-point picture 
that does not contain the commercial symbols, '$', 'cr', and 'db'. The exponent 
picture can have's' or '-' as its sign or the sign can be omitted; and up to 
three digits can be used, with 'z' for leading digits if desired. If an 'e' is 
not wanted between the mantissa and the exponent, 'k' is used in the picture 
instead of 'e' and nothing appears in the stream. 

Stream Format Value 

+3.93ge+002 p"s9v.99ges999" +393.9 
R53.93ge+02 p"-9v.99ges99" +393.9 
k$3.939+02 p"-9v.999ks99" +393.9 
R53939-02 p"-9999ks99" +39.39 

Character Pictures 

A character picture can be any sequence of the characters 'x' (matches any 
character) , 'a' (ma tches any let ter, upper or lower case, or blank), or '9' 
(matches any digit or blank). The picture must not be all nines, since it would 
be a fixed-point picture in that case. 

Stream Format Value Comment 

3/may/74 p"9xaaax99" "3/maY/74" Character string, 
29AXQ6 p"99aaax" "29AXQ6" input and 
R5R5~R5k$k$ p"99aaax" "k$~R5R5R5R5" output 

A i 9 i can match a blank only in a character picture. 

9/78 14-38 AM83A 



Gontrol Format Items 

In an edit-directed statement, provision must be made for those positions 
of the str~am that appear between the value representations. Specifically, the 
contribution to layout made by the blanks, linemarks, and pagemarks must be 
taken into account. The control format items are provided for this purpose. 
Two examples of control format items were given in the example program, namely 
'skip' (start a new line) and 'x(3)' (skip three character positions). 

An output stream with the attribute 'print' can be viewed as divided into 
pages and lines and character positions. Any other stream, whether for input or 
output. is divided only into lines and character Dositions within the lines. A 
cha~acter string that is used as a substitut~ for a stream (by means of the 
'string' option of a stream input/output statement) is a single line that is 
divided only into character positions. 

When an input stream is open, it has a stream pointer associated with it. 
The stream pointer indicates the next character position that will be read (or 
skipped) by the next input operation. In contrast, an output stream is created 
as output is performed; that is, character positions as well as the characters 
themselves are added to the end of the stream. But it is legitimate and very 
useful to speak as if the output were created in advance as a sequence of blank 
character positions arranged in lines and pages. This convention allows the use 
of a stream pointer with an output stream and permits language such as "advance 
the stream pointer to the first character position in the third line after the 
current line". 

There are five control format items, as follows: 

x e.g) 
column(e) 
skip(§.)
line(§.) 
page 

skip §. character positions 
skip to column §. of a line 
skip §. lines 
skip to line §. of a page 
skip to the next page 

The §. in each of these format items can be any expression whose value can be 
converted to an integer. In all cases, the value of §. must be positive or (for 
'x' and 'skip' only) zero. 

x FORMAT ITEf-1 

The 'x' format item has the form 

Let n be the value of the expression §. for a given execution; then the item 
moves the stream pointer forward by n character positions, proceeding from line 
to line or page to page if necessary. If n=O, then the item does nothing. 

14-39 M183 



'column' FORMAT ITEM 

The 'column' format item has the forms: 

column(e) 
col(~) -

Let n be the value of the expression ~ for a given execution; then the item 
advances the stream pointer to the next character position that is in column n; 
that is, to a character position that is the nth character position of a line. 
This interpretation implies that if the stream pointer is beyond the nth column 
the operation is applied to the next line. If n exceeds the length of the line 
(so the specified character position does not exist), the stream pointer is set 
to the beginning of the next line. 

'skip' FORMAT ITEM 

The 'skip' format item has the form: 

skip(~) 

Let n be the value of the expression ~ for a given execution; then the item 
moves the stream pointer to the first character position of the nth line after 
the current line. If n = 0, then the stream pointer is set back to the 
beginning of the current line and the stream is prepared for overprinting of the 
current line; but this case is allowed only for an 'output print' stream. 

'line' FORMAT ITEM 

The 'line' format item has the form: 

line(~) 

Let n be the value of the expression ~ for a given execution; then the item 
moves the stream pointer to the next character position that is the first 
character position of the nth line of a page. If the stream pointer is already 
at such a character position, the stream pointer is not moved. If the stream 
pointer is already past the target position, or if the target position is beyond 
the end of the page, the stream pointer is advanced to the beginning of the next 
page. 

page FORMAT ITEM 

The page' format item has the form: 

page 

The item moves the stream pointer forward to the first character position of the 
next page. 

A control format item can be used only where its use would be reasonable. 
Any control format item can be applied to an output stream with the 'print' 
attribute because it has lines and pages. The 'line' and 'page' items cannot be 
applied to a stream that is not a 'print' output stream because such a stream is 
not divided into pages. The 'skip', 'line', and 'page' items cannot be aoolied 
when the ~string~ option is used because a pseudo-stream is not divided into 
pages or lines~ 

14-40 AM83 



A control format item is executed only when PLI I is "on the \vay" to a da t3. 
format item; that is, when PL/I is prepared to output a value and is reading 
through the format list toward the next format data item. 

Format Lists 

In its simplest form, 
by commas. However, there 
format list; namely, the 
"end-around" repetition. 
paragraphs. 

REMOTE FORMAT ITEMS 

a format list is a sequence of format items separated 
are three facilities for enhancing the form of a 
remote format item, the iterated format item, and the 
These facilities are discussed in the following 

The remote format item has the form: 

r(ref) use a remote format list 

The ref must be a reference that has a scalar format value; that is, a value 
that designates a 'format' statement. Let 'fx' be the format list in the 
designated 'format' statement. When 'r(refY is executed, the scanning of the 
format list in which the remote format item appears is suspended and format 
items are taken from 'fx' until the end of 'fx' is reached. 

ITERATED FORMAT LISTS 

The iterated format list can have any of the following forms: 

int item constant iteration of an item 
int (fl) constant iteration of a format list 
(~) item computed iteration of an item 
e.g) (fl) computed iteration of a format list 

In these forms, int is an unsigned integer, item is a data, control, or remote 
format item, fl is a format list, and ~ is any expression whose value can be 
converted to an integer. Suppose the value of int or ~ (whichever is present) 
is n. Then the iterated format list is interpreted as a sequence of format 
items composed of n repetitions of item or fl (whichever is present). If n is 
zero, the iterated format list is ignored. 

END-AROUND REPETITIONS 

The "end-around" repetition is a simple feature of the edit-directed 
statements. An outermost format list in an edit-directed statement is repeated 
when the end of the list has been reached. An outermost list is the format list 
paired with a data list in the statement. The effect of this convention is that 
the format list can never "run out" before the corresponding data list does. 

14-41 AM83 



The progran fragment that follows shows the use of the compound format 
items: 

F 5 : form at ( a ( i 0), 2 ( p II b b b - - 9 v . 99 11 
) ) ; 

i = 5; 
put( ... )(page, (i-2)(skip, r(F5), col(20), a)); 

The format list in the 'put' statement is equivalent to the following format 
list: 

page, 
skip, .£ilQl, p"bbb--9v.99", p"bbb--9v.99", col(20), .§;., 
skip, .£ilQl, p"bbb--9v.99", p"bbb--9v.99", col(20), .§;., 
skip, .£ilQl, p"bbb--9v.99", p"bbb--9v.99", col(20), .§;., 

page, 
skip, .£ilQl, p"bbb--9v.99", p"bbb--9v.99", col(20), .§;., 
... and so on, ad infinitum. 

In this format list, the data format items have been underlined to distinguish 
them from control format items. It is the data format item that is matched with 
each item in the data list, so the portion of the format list shown would 
accommodate 16 items from the data list. 

The edit-directed statement uses the same form of data list as the 
list-directed statement; and the interpretation of that list to produce a simple 
list of data items was given in the discussion of list-directed input/output. 
Now, immediately above, the interpretation of a format list to produce a simple 
list of format items has been given. On the basis of these interpretations, the 
items of any data list can be matched to the items of the corresponding format 
list. 

Guidelines for Edit-Directed Input/Output 

Edit-directed input/output is preferred whenever the programmer wants to 
assume control over the format of input or output. It provides a wide variety 
of facilities for specifying format; and even within edit-directed techniques 
there is a range of control over details. At one extreme, the programmer can 
use the fixed-point format item and require, in a rather indefinite way, that an 
optionally-signed constant appear in certain columns of a line. At the other 
extreme the programmer can use a picture and control the contents of a line on a 
character-by-character basis. 

The format list associated with an edit-directed statement can easily 
become complicated and unintelligible. It is important that a layout diagram be 
made of the document being read or written, and that the format-list be based on 
this diagram. The 'format' statement can be used to structure a complicated 
format list just as the procedure is used to structure a complicated program. 

14-42 At-183 



The three disciplines of stream input/output can be mixed. For example, 
certain codes at the beginning of an input stream could be read by an 
edit-~irected 'get' statement, and then a specified number of values could be 
read by a simple list-directed statement. However, care must be taken when 
switching back to edit-directed input. Since edit-directed input works on a 
strict column by column basis, a serious error can occur if the effect of the 
preceding non-edit-directed statement is not correctly determined. 

STRING OPTION 

In order to interpret the input/output statements, PL/I must have a large 
and complicated collection of string manipulation operations. In particular, 
the process of applying a format list to the input stream to produce values or 
of applying a format list to a value list to produce an output stream is a 
complicated operation. Accordingly, PL/I has a facility to make this string 
manipulation available independent of the perforcance of input/output. 

A 'get' statement can have an option of the form 'string(~)' instead of the 
usual file option, where ~ is any character-string expression.. In this case, 
the statement will take its input from the value of ~ as if that value were a 
complete stream data set. Similarly, a 'put.' statement can have an option of 
the form 'string(~)' instead of the file option, where ~ is any target that can 
accept a character-string value. In this case, the statement will assign its 
entire output to ~ as if that target were a stream data set. 

Linemarks and pagemarks cannot be used when the 'string' option is used. 
If a 'get' statement with a 'string' option "runs off the end" of the pseudo 
stream, the 'error' condition occurs rather than the 'endfile' condition. Thus 
the extensiqn of input/output statements to the use of the 'string' option 
applies only to the editing process itself and not to those aspects that are 
oriented toward input/output. 

A useful application of the string option arises in connection with a 
troublesome property of stream input: the input of characters cannot be 
controlled by anything that appears later in the stream. Consider an exanple of 
this problem. Suppose 80-character card-images are being read and they can 
occur in either of two formats depending on whether an '*' or a blank appears in 
colu~n 80. This problem can be solved by using the following state~ents: 

get edit(temp)(a(80»; 
if substr(temp,80,1) = "*" 

then get string(temp) edit(C1, C2, C3)(p"$$$$$v.99db", X(7»; 
else get string(temp) edit(C1, C2, C3)(p"$$$$$v.99-", X(8»; 

If a card ends with '*' this sequence of stateMents is equivalent to: 

get edit(C1, C2, C3)(p~$$$$$v.99db~); 

and otherwise the sequence is equivalent to 

get edit(C1, C2, C3)(p"$$$$$v.99-"); 

The use of the string option allows the program to "look ahead" in the input 
strea~ and select a format appropriate to the co~ing values. 

14-43 Ati83 



I 

I 

SPECIAL FEATURES 

In Multics PL/I the sequential 'read' and 'write' statements can be used 
with stream data sets to provide special "line at a time" processing. In this 
special processing mode, - each line (a group of characters terminated by a 
linemark) is treated as a record on input and each record written has a linemark 
appended. 

One very important point is that the PL/I rules for implicit opening have 
not changed. Therefore, a user wishing to use the 'read' or 'write' statements 
must explicitly open the stream using the 'open' statement as described in 
"Opening and Closing Files" earlier in this section. 

'read' Statement 

Special stream input is performed by the 'read' statement when the file 
that is read is a 'stream input' file. For example: 

read file(test2) into(my_string); 

The file 'test2' must be opened for 'stream input' by the 'open' statement. The 
'read' statement must include an 'into' option specifying a scalar 
character-string variable and cannot contain a 'key' option. 

The example statement assigns all characters up to, but not including, the 
next linemark or the end of file to 'my_string'. If no characters remain 
between the 'stream pointer' and the end of file, the 'endfile(test2)' condition 
is signalled. The 'stream pointer' is then placed past the linemark, if any. 
If the assignment of the characters in the input stream to 'my_string' 'would 
cause the 'stringsize' condition to be signalled, the 'record(test2)' condition 
is signalled instead. It is recommended that the 'into' option specify a 
varying character string for ease of use. 

'write' Statement 

Special stream output is performed by the 'write' statement when the file 
written to is a istream output' file. For example: 

write file(report) from(source_string); 

The file 'report' must be opened for 'stream output' by the 'open' statement. 
The 'write' statement must include a 'from' option specifying a scalar 
character-string variable and cannot contain a 'keyfrom' option. 

This 'write' statement appends the characters of 'some_string' and a single 
linemark to the output stream 'report'. 

If the length of 'some_string' is greater than the 'column position' plus 
'line size' the 'record(report)i condition is signalled. Upon return from the 
'on' unit~ the number of characters written are the first 'line size' minus 
'column position' lus one character. Finally, the 'line number' is incremented 
by one and if it s equal to the 'page size' plus one, the 'endpage(report)' 
condition is signa led. 

9/78 14-44 AM83A 



CONDITIONS FOR STREAM INPUT/OUTPUT 

In the following discussion, the conditions that occur during stream 
input/output are described. They are: 

conversion 
endfile(ref) 
endpage(ref) 
name(ref) 
transmit(ref) 
undefinedfile(ref) 

where ref is a reference that yields a file value. The general rules for the 
use of the conditions are given earlier, in Section XIII, "Condition Handling." 
unly some remarks about their application to input/output will be given here. 

Each condition is defined separately for each file value, and thus for each 
file state block. The identifier 'endpage' by itself is not a valid condition; 
but if 'record3' is a file constant name, then 'endpage(record3)' is a valid 
condition. Consider the statement 

on endpage(record3) put file(record3) page line(3); 

When this statement is executed, it establishes the 'put' statement as the 'QQ' 
unit for the condition 'endpage(record3)'. When the end of a page in the output 
stream associated with 'record3' is reached, the 'endpage' is signalled and the 
'on'-unit is executed. When the block that contains the 'on' statement is 
deactivated, the 'on' unit is reverted, and no longer responds to a signal. 

When a condition is signalled, the PL/I processor takes either of two 
actions, as follows: 

• If an 'on' unit is established for the condition, then that 'on' unit 
is executed. If the execution of the 'on' unit runs to completion, 
then control goes back to the point in the program at which the 
condition occurred, and execution is resumed ~il a reasonable way 
(depending on the particular needs of the statement involved). 

• If no 'on' unit is established for the condition, then the default 
'on' unit is executed. The default 'on' unit for each condition is 
described earlier, in Section XIII, "Condition Handling." 

A stream input/output statement can evaluate expressions, and during that 
process a 'fixedoverflow', 'overflow', 'underflow', or 'zerodivide' condition 
may occur. Further, a stream input statement assigns values to targets, and 
during that process a 'size', 'stringrange', 'stringsize', or 'subscriptrange' 
condition may occur. 

9/78 14-44.1 AM83A 



This page intentionally left blank. 

9/78 AM83A 



The PL/I processor saves certain useful values before signalling a 
condition. For each kind of value saved, there is a stack and a built-in 
function. Just before the condition is signalled, the value is placed on the 
top of the stack, and after completion of the established 'on' unit it is 
removed. ~he built-in function is used to access the value during the execution 
of the 'on unit. 

For example, just before any of the conditions mentioned in this section is 
signalled, the file name, expressed as a character-string value, is placed at 
the top of the stack controlled by the 'onfile()' built-in function. During the 
execution of the established 'on' unit for the condition, the file-name 
character-string can be accessed by using the reference 'onfile()'. When 
execution of the on unit is complete, the file name character string is 
removed from the stack. 

conversion Condition 

The 'conversion' condition occurs when an attempt is made to convert an 
invalid character string or pictured value to an arithmetic or bit-string value. 
Just before the condition is signalled, three values are -saved in the stacks 
controlled by the condition built-in functions. The character string being 
converted is placed at the top of the stack controlled by 'onsource()'. The 
leftmost character in the string at which conversion failed, which is sometimes 
the source of the error, is placed at the top of the stack by 'onchar()'. The 
file name is saved as described in the preceding paragraph. 

The 'onsource()' and 'onchar()' functions can be used as pseudo variables, 
and the 'on' unit can assign new variables to them; in this way, it is possible 
to "correct" a character string that is causing trouble. When a normal return 
from the 'on' unit occurs, The PL/I processor resumes its attempt to convert the 
offending character string. If the program has supplied a new and valid value 
by means of 'onsource()' or 'onchar()' then the conversion succeeds, and 
execution continues; otherwise, the conversion error occurs again. 

'endfile' Condition 

The 'endfile' condition occurs when an input statement attempts to read 
beyond the end of a data set. After an established 'on' unit is executed, the 
PL/I processor resumes with the statement after the input statement in which the 
condition occurred. If a later attempt is made to read the data set, the 
condition will occur again. The file name is saved in the stack controlled by 
'onfile()' • 

14-45 AM83 



~endpage~ Condition 

The 'endpage' condition occurs when an output statement completes the nth 
line of a page (by writing a linemark) and n is equal to the "page size" 
associated with the output file. The condition can be caused in either of two 
ways, and the action taken by the PL/I processor on return from an established 
~on' unit varies accordingly. If the condition was caused by an attempt to 
write a data value in the output stream, the output of the data is completed 
when execution resumes. But if the condition was caused by the interpretation 
of a 'skip~ option or format item or a ~line~ option or format item, then the 
option or format item is ignbred; it is assumed that the 'on' unit starts a new 
page and eliminates the need for the blank lines. 

When the 'endpage' condition is signalled, the line number associated with 
the file has already been increased by one and is therefore equal to the page 
size plus one. Normally, the 'on' unit will include a 'page' option or format 
item and will thereby set the line number back to 1. 

Just before the 'endpage' condition is signalled, the file name is saved in 
the stack controlled by the 'onfile()'. If there is no established 'on~ unit 
for the condition, the PL/I processor does not treat the condition as an error; 
instead, a pagemark is added to the output stream, the line number is set to 1, 
and execution of the program continues. 

name Condition 

The ~name~ condition occurs only during data-directed input. Specifically, 
the condition occurs when a stream assignment is read whose variable name does 
not match a variable name in the data list of the controlling 'get' statement or 
a name of a component of a variable that is named in the data list. If the 
'string' option is not specified, then before the condition is signalled, the 
offending assignment from the stream is placed at the top of the stack 
controlled by ~onfield()~, and the variable is therefore available as a 
character-string value for inspection with the 'on~ unit. The file name is 
placed at the top of the stack controlled by 'onfile()~. After an established 
'on~ unit is executed, the PL/I processor returns to the data-directed input as 
if the processing of the offending stream assignment were complete. 

~transmit~ Condition 

The 'transmit' condition occurs when data cannot be transmitted reliably 
between a data set and PL/I storage. Just before the condition is signalled, 
the file name is placed at the top of the stack controlled by ~onfile()'. After 
an established ~on~ unit is executed, the PL/I processor resumes with the 
statement that follows the input/output statement that caused the condition; but 
the value of the data transmitted by the statement is undefined. 

The condition is usually caused by factors beyond the programmer's control, 
such as a hardware failure, so the recovery procedure cannot be initiated until 
the hardware is repaired. 

14-46 At-183 



·undefinedfile' Condition 

The 'undefinedfile' condition occurs when an open statement attempts 
unsuccessfully to open a file. The condition can occur, when, for example, an 
attempt is made to open a record data set for stream input, or when, for another 
example, the 'title' option specifies an invalid attachment or a nonexistent 
file. Just before the condition is signalled, the file name is placed at the 
top of the stack controlled by 'onfile()'. After the established 'on' unit is 
~xecu~ed, the program resumes execution at the statement following the offending 

open statement. 

14-47 AM83 



SECTION XV 

RECORD INPUT/OUTPUT 

The record input/output facility of PL/I is independent of the stream 
input/output facility described in the preceding section; that is, it has its 
own data sets, statements, and programming techniques. The record input/output 
facility is oriented toward communication with permanent storage. The role of 
such storage is to accept values from PL/I at one time and then return them, 
unchanged, at a later time; therefore, each value is transmitted just as it is 
found in PL/I storage. In contrast, stream input/output is oriented toward user 
communication and has many ways of converting between internal values and 
external representations of those values. 

The orientation of record input/output toward communication with permanent 
storage does not prevent its being used for communication with the user. Since 
PL/I has a capacity for conversion of values and string manipulation that is 
independent of any input/output operations, it is possible and even convenient 
to prepare user-oriented character strings before an output operation is 
initiated. Once such a character string has been prepared, it can be 
transmitted as a record to a printer or a terminal. The same considerations 
apply to input. Thus record input/output can handle user communication as well 
as permanent computer storage. 

This section begins with a description of the two kinds of data that are 
involved in record input/output: the record data set, which is the actual 
subject of the input or output, and the file-state block~ which shows the status 
of the operations on the record data set. The section then describes the 
attachment of a PL/I data set to a Multics file. In order to make this section 
complete and independent, the description of the file-state block and file 
attachment repeats some material already given in Section XIV, "Stream 
Input/Output." The section continues by giving a summary of the operations that 
are performed as a part of record input/output. Once this foundation has been 
established, the section proceeds to a definition of the statements that are 
used for record input/output: first, the statements that open and close files 
and then the statements that perform the actual input/output operations. Next, 
the section describes based input/output, which is an advanced and specialized 
feature of record input/output. As the section nears completion, the use of 
record input/output for user communication is illustrated. Finally, the section 
describes the conditions that occur in connection with record input/output. 

15-1 AM83 



RECORD DATA SETS 

A record data set is a collection of records. Each record is a single PL/I 
value; that is, it is a copy of a value that once existed in PL/I storage. The 
record can be a single scalar value; indeed, it can be a "bit(1)" value and thus 
represent only one bit. On the other hand, the record can be an aggregate value 
such as a large and complicated structure or an array of many elements. Some of 
the costs of transmitting and storing a record are the same for records of all 
~izes; therefore, large records are preferred. For example, if a programmer has 
a choice between treating an array as a single record or treating each element 
of the array as a record, then he should choose the first alternative. 

The word "record" is used here to 
collection of information gathered 

mean a 
together 

logical 
because 

record; that is, a 
it belongs together. 

Hardware storage devices do have physical records; that is, units that reflect 
the architecture of the storage device. The relation of the PL/I logical record 
to the physical record is similar to the relation of the PL/I variable to the 
hardware computer word. In both cases, PL/I provides an elaborate and effective 
mechanism to allow a programmer to choose units that correspond to the logical 
requirements of the data and to ignore the boundaries that are built into the 
hardware. 

Organization Of Record Data Sets 

A record data set can be keyed, sequential, or keyed sequential. In a 
keyed data set, each record has a unique key associated with it that can be used 
to access the record directly without scanning through the file. In Multics, 
the key is a character-string value of length up to 256 characters. In a 
sequential data set, the records are arranged in an order that does not change 
and that can be used to pass from one record to the next when the file is being 
processed. In a keyed sequential data set, a record can be accessed either by 
its key or by its sequential position. The organization of a data set 
determines the kinds of operations that can be performed on it. 

When a file is being operated on, it has two indicators associated with it. 
The current record indicator designates the record that has been most recently 
operated on. The next record indicator designates the record that will be read 
if the next operation is a sequential read operation; it is defined only for a 
sequential file. Unless otherwise stated, whenever the current record indicator 
is reset, the next record indicator is adjusted to designate the next record in 
sequence. Under certain circumstances, an indicator is set to null (and does 
not point to any record); for example, when current record indicator is set to 
designate the last record of a file, the next record indicator becomes null. 

Multics Files 

There are a variety of ways to implement a recor~ data set, each reflecting 
different hardware requirements and software techniques. Multics has two 
implementations for a record data set, the sequeqtial and the indexed files. 

A sequential Multics file can be used for an unkeyed sequential PL/I data 
set. Its records are arranged in the order in which they are created, and a 
record can be rewritten only if the new value has the same storage type as the 
old value.' A sequential file is either in virtual memory or on a magnetic tape. 

15-2 AM83 



An indexed Multics file can be used for any keyed PL/I data set, sequential 
or not. Its records are arranged in order of ascending keys. That is, if the 
key kl precedes the key k2 in a file, then the relation kl < k2 (as defined for 
PL/I character strings) must be true. A record can be rewritten in any way; 
that is, the storage type of the new record need not conform to that of the old 
record. An indexed Multics file is always stored in virtual memory. 

RECORD FILES 

A connection must be established between a statement that performs 
input/output and the Multics file on which the operation is to be performed. An 
analysis of this connection follows: 

• The connection begins with the file option that appears in an 
input/output statement. 

• The file option has as its argument a file reference, and the 
evaluation of the file reference yields a file value. 

• The file value designates a file-state block, which is a set of values 
that are used by the PL/I processor in carrying out input/output 
operations. 

• The file-state block contains a data set designator that points to a 
Multics file and thus completes the connection between input/output 
statement and file. 

The main components in the connection just described are the 
and the file reference; these components are described 
paragraphs. 

file-state block 
in the following 

First, however, a problem of terminology must be resolved. In PL/I, the 
source of input and the destination of output is called a data set; but in 
l1ultics, it is called a file. This difference is observed when it is necessary 
to distinguish between the PL/I view of input/output, as in "a keyed sequential 
data set", and the Multics view, as in "an indexed Multics file". The word 
"file" is also used as a PL/I term, and in that usage, it refers to the 
combination of the file-state block and the data set; thus, the phrase "open a 
file" actually refers to the setting of a certain file-state block to control 
input/output with a certain data set. 

File-State Blocks 

Transmission of values between the PL/I processor and a Multics file 
requires bookkeeping data. This data is stored in a portion of system storage 
called a file-state block. \'lhen a file is open, the file-state block contains 
the designator of a Multics file and other information about input/output in 
progress. After the file is closed, the only information in the file-state 
block that is meaningful is that supplied by the attributes, if any; in the 
declaration of the file constant name. A file-state block cannot be accessed 
directly, but its values are changed when input/output is performed on the data 
set with which it is associated. 

15-3 AM83 



The following values in a file-state block are relevant to record 
input/output: 

• The status indicator. This value shows whether the file-state block 
is open or closed. 

• The data set designator. This value points to the Multics file that 
is associated with the file-state block. 

• The file name. This value is a character string that is the 
identifier that is the name of the constant file value that designates 
the file-state block. 

• The file attributes. These attributes are those associated with the 
current use of the file-state block. 

• The current record and next record indicators. These values point to 
the current position of input/output operations within the given data 
set. 

In addition to the items just listed, there are other items, such as buffers, 
that are not of immediate interest tD a programmer. 

File References 

A file-state block is designated by a file value, and the file value is 
supplied by a file reference in a 'file' option. The file reference can be a 
reference to a constant, a variable, or a function. 

A file constant reference is a name that has been declared with the 
following attributes: 

[

external] file 

internal 
[ constant] 

The default rules provide that the scope attribute can be omitted if it is 
'external'. The 'constant' attribute can be omitted in any case, as indicated 
by the square brackets. 

Everv file constant name must have an associated file description. It is 
recommended that this file description be given when the file is opened, as 
described later in this section, under "The 'open' Statement". However, PL/I 
does allow the programmer to write any portion of the file desription attributes 
in the declaration of the file constant name. 

Each declaration of a file constant name associates the name with its own 
file-state block in static system storage. The only exception is the 
declaration of a given name in several different blocks as 'external file 
constant'; in this case, the declarations all refer to a single file-state 
block, as is required by the interpretation of the 'external' attribute. A 
given file constant name and its associated file-state block can be used for 
more than one data set 1n the course of a process by any number of PL/I 
programs. For example, a file-state block can be opened for input from a stream 
data set, closed, opened for updating a record data set, closed again, and so 
on. 

15-4 AM83 



A file variable reference or a file function reference 
variable reference or a function reference of any other type. 
exceptional features of file variable names are: 

is similar to a 
However, two 

• The default scope of a 'file' variable name is 'external', whereas the 
default scope for most other variable names is 'internal'. 

• The attribute 'variable' must be used explicitly for a file variable 
name because the default for a name of type 'fil~' is 'constant'. 

FILE ATTACHMENT 

The Multics I/O system uses a software construct, the I/O switch, to 
control the source or destination of an input/output operation. A PL/I 
file-state block is attached to a Nultics file through a named switch. The 
switch name and the file na~e are the same for an external file. For an 
internal file, a unique name is generated for the switch. 

Two operations, attachment and opening, are associated with I/O switches. 
When an I/O switch is attached, the source or target and the I/O module that 
performs the input/output are established. When an I/O switch is opened, a 
particular mode of processing is established. 

Attaching a Switch 

An I/O switch can be attached either at ~o~Qand level by the 'io call' 
command or within a PL/I program by the execution of an input/output statement. 
If the switch is not attached when the 'open' statement f0r the associated file 
is executed, the information in the 'title' option is used to attach the switch. 
An I/O switch attached by the execution of an 'open' statement for a file is 
detached when the 'close' stateMent for the file is executed. If an I/O switch 
is already attached, neither the 'open' nor t~e corresponding 'close' statement 
has any effect on the switch's attachment. 

ATTACH DESCRIPTION 

7he 'title' option contains the attach des~ription. The attach description 
specifies an I/O module to perform the input ~r output o?eration and the file or 
device to be used as the source or destinatio~ far these operations. For record 
input/output the following I/O modules can be ~sed: 

I/O Hodule 

vfile_ 
syn_ 
record_streaQ 

tape_ansi_ 
tape_ibm_ 

for storage-resident files 
for synonym attachne~t 
for conversion betwee~ 
record and stream f~les 
for tape files 
for tape files 

15-5 At-183 



The form of the attach description depends upon the I/O module. For complete 
details on the attach description of a particular I/O module, see the MPM 
Subroutines or MPM Peripheral I/O. The principal features of the I/O modules, 
vfile_, syn_, and record stream are described later, in Section XVI, "PL/I in 
the Multics System." As an example of an attach description, consider the 
followir.g 'oPen' statement: 

open file(recl) title("vfile_ beta") sequential output; 

The attach description in the 'title' option specifies that the I/O module 
vfile_ is to be used to perform output to the system-resident file in the 
segment 'beta'. 

If no ~title~ attribute is given, a default attach description is formed, 
as follows: 

where fn is the file name. 

Opening a Switch 

An I/O switch can be opened either at command level by the io_call command 
or within a PL/I program by the execution of an input/output statement for the 
file associated with the switch. If the switch is not open when an 'open' 
statement is executed for the file, the information in the file description is 
used to open the switch. 

The file description attributes specify the 
switch's opening mode must be compatible with its 
are compatible with the vfile_ I/O module. For 
modes compatible with other I/O modules, see 
Guide for a table glvlng a list of all opening 
For individual descriptions of 1/0 modules, 
Peripheral I/O or MPM Communications I/O. 

Opening a File 

opening mode of the switch. A 
attachment. All opening modes 
information concerning opening 

Section V of the MPM Reference 
modes supported by I/O modules. 
see MPM Subroutines or MPM 

A PL/I file-state block, or file, is opened by the execution of the first 
input/output statement referencing the file. The file name, title, and file 
description are passed to the Multics I/O System to open the file. If any of 
these options is not explicitly given, a default assumption is derived from the 
input/output statement. 

The Multics I/O system uses the title to attach the switch if it is not 
already attached and the file description to open the switch if it is not 
already open. Then the Multics I/O system returns a data set designator. This 
data set designator makes the connection between the PL/I data set and the 
Multics file. The data set designator is stored in the file-state block for use 
when an input/output operation is performed on that filA. 

9/78 15-6 AM83A 



RECORD INPUT/OUTPUT OPERATIONS 

A summary of record input/output operations is given here. It introduces 
terminology, shows how data sets are manipulated, and gives a general view of 
the record input/output facility. 

When a data set is opened for output, the contents of the data set are 
discarded and the data set is ready to accommodate the writing of new records. 
\lhen a data set is opened for input, the contents are retained and the data set 
is made available for reading of its records. When a data set is opened for 
update, the contents are retained and the data set is made available for 
reading, writing, deleting, or rewriting of records. When a sequential data set 
is opened for 'input' or 'update', the next record indicator is set to designate 
the first record of the data set. The contents of a data set remain accessible 
to PL/I in this way until the data set is closed. 

A given input/output operation uses either the keyed or the sequential 
properties of a data set, but not both; and this distinction is useful in the 
description of record input/output. A keyed operation uses the key supplied by 
an input/output statement to find the record to be operated on. A sequential 
operation uses the current record or next record indicators for this purpose. 

When a record is created and assigned a value it is said to have been 
written. A keyed write operation places the new record and its key in its 
proper sequential position to maintain the ascending sequence of keys. An 
unkeyed write operation places the new record at the end of the data set. In 
either case, the value is copied into the record exactly as it appears in the 
referenced variable in PL/I storage. 

A keyed read operation begins by locating the record that has the specified 
key and designating it as the current record. A sequential read operation 
begins by designating the next record as the current record (and thus advancing 
by one record). In either case, the value of the current record is then copied 
into the designated unit of PL/I storage. If the storage type of the record and 
the storage unit are not identical, the operation is invalid. 

A keyed delete operation begins by locating the record that has the 
specified key and designating it as the current record. A sequential delete 
operation begins by finding the current record. In either case, the current 
record is then discarded, with the result that there no longer is a current 
record; that is, the current record indicator is set to null. 

A rewrite operation replaces an existing record with a new record. If the 
data set is an unkeyed 'sequential' data set, then the new record must have 
exactly the same storage type as the old record. For a keyed 'indexed 
sequential' data set, there is no such restriction. 

The based input/output operations are a relatively specialized facility. 
When based input is performed, PL/I automatically allocates storage with storage 
type identical to the record; and thus a record can be input even when its 
storage type cannot be predicted by the programmer. 

15-7 AM83 



A broad spectrum of errors can occur during record input/output. An 
a~tempt to modify a record in a data set that was opened for output is a 
programming error. The input of a record whose structural attributes do not 
agree with the designated PL/I storage unit may be an input-data error. 
Inaccurate transmission of a value between a data set and PL/I storage is a 
system error. And finally, an attempt to read beyond the end of a sequential 
data set may not be an error at all but rather a convenient way of ending an 
input loop. PL/I detects these conditions when they occur and the programmer 
can provide an "on" unit to respond to each condition with suitable actions. 

OPENING AND CLOSING FILES 

When a file is opened, the file-state block is marked "open" and the data 
set designator, control parameters, and indexes are set in the block. When a 
file is closed, the file is marked "closed" and only information provided by the 
file declaration is meaningful. 

A file is opened when the first input/output statement referencing the file 
is executed. The purpose of the 'open' statement is to provide the title and 
file description for the file opening. However, both these options can be 
omitted from the 'open' statement, and, in that case, a default assumption is 
made. If an 'open' statement is not given for a file, the attributes for the 
file opening are derived from the first input/output statement executed. If a 
file is already open when an open statement is executed, the 'open' statement 
is completely ignored. 

open Statement 

An open statement gives a file value, a title for a Multics file, and a 
file description. Consider the statement 

open file(subscriber) title("vfile_ grp>reg") keyed sequential update; 

In this statement, the file value is given by the file constant name 
'subscriber', the title is the Multics attach decription 'vfile_ grp>reg', and 
the file description is 'keyed sequential update'. The statement is interpreted 
as follows: 

• If the associated I/O switch is not attached, the attach description 
in the 'title' option is used to perform the attachment. 

• If the associated I/O switch is not open, the file description is used 
to establish its opening mode. If the switch is already open, its 
opening mode is checked to see if it is compatible with the file 
description. For this statement, the Multics file must be indexed and 
must be available for both reading and writing. 

• The current record indicator and the next record indicator are set to 
the first record of the data set. 

• Finally, the file-state block is marked open'. 

15-8 AM83 



When a data set is opened for 'output', the effect is to create a new data 
set unless the 'title' option specifies an '-extend' attachment. For example, 
the statement 

open file(subscriber) title(IIvfile_ grp>reg") keyed sequential output; 

has quite a different effect than the previous example. This statement deletes 
the data set designated by 'vfile_ grp>ref' and creates a new, empty data set 
whose organization conforms to the file description. 

The 'title' option can be omitted from an 'open' statement. If the 'title' 
option is omitted, a default attach description is formed. The default attach 
description specifies the input/output module 'vfile_' and the system resident 
file designated by the file name. For example, the statement 

open file(subscriber) keyed direct output; 

is equivalent to 

open file(subscriber) title(IIvfile_ subscriber") keyed direct output; 

FILE DESCRIPTIONS 

The following diagram gives every complete file description that can be 
used to open a data set for record input/output: 

{ 
~:~~~n~~~~ct } { ~~~~~t} [environment(string value) ] record 
keyed sequential update 

A specific file description consists of one of the three lines in the first pair 
of braces, followed by one of the three lines in the second pair of braces, 
followed by an optional 'environment(stringvalue)', followed by the 'record' 
attribute. The latter is enclosed in brackets to show that it can be omitted. 
There are other rules for shortening a file description, but they are 
complicated and their use is not recommended. 

During the time a data set is open under a given file description, the 
attributes in that file description determine which input/output operations are 
permitted. The attributes with which the file description begins determine 
whether the operations can be keyed, sequential, or both, as follows: 

keyed direct permits keyed operations only 

sequential permits sequential operations only 

keyed sequential permits both keyed and sequential operations 

15-9 AH83 



The attribute with which the file description continues deternines the kind of 
statement that can be used to perform input/output, as follows: 

output 

input 

update 

permits the use of a 'write' or 'locate' statement only 

permits the use of a 'read' statement only 

permits the use of a 'write', 'read' , ' delete', or 
'rewrite' statement only; however, a 'write' statement is 
permitted only if the file description includes the 
'keyed' attribute 

observe that 'update' permits almost any input/output statement; however, it 
does not permit the use of a 'locate' statement (which is rarely used in any 
case) or the use of a 'write' statement for a data set that is opened as unkeyed 
'sequential' . 

The 'environment(stringvalue)' attribute is used to read into or write from 
a varying string. On reading, the length of the record determines the length of 
the varying string, and on writing, the length of the varying string determines 
the length of the record. The length field of the varying string and unused 
space in the string are not written and, in this way, space is conserved in the 
file. 

'close' Statement 

The close statement has a simple form, as indicated by the following 
example: 

close file(subscriber); 

This statement marks the file-state block 'subscriber' closed. In addition, it 
clears and frees any buffers which have been allocated and set by previous based 
input/output operations. These buffers are discussed under "Based 
Input/Output", later in this section. 

KEYED INPUT/OUTPUT OPERATIONS 

When an input/output statement contains a 'key' or a 'keyfrom' option, it 
performs keyed input/output. The file on which such a statement operates can 
usually be either 'direct' or 'sequential', but it must be 'keyed' in any case. 

15-10 AM83 



Keyed 'write' Statement 

Consider the statement: 

write file(employee) keyfrom(ssno) from(item(3»); 

The file 'employee' must be a 'keyed output' or 'keyed update' file. The 
statement attempts to create a new record in the file 'employee' under the key 
given by the value of the character-string variable named 'ssna'. If the file 
is 'keyed sequential output'~ the key given by 'ssno' must be greater than any 
key already in the file (so the record goes at the end of the file); otherwise, 
the 'key' condition occurs. The created record becomes the current record and 
its value is the current value of 'item(3)'. However, the operation fails and 
the 'key(employee)' condition occurs if there is already a record in 'employee' 
under the key given by 'ssno'. 

There are two ways to create a keyed sequential data set. The efficient 
way is to write the records in the order of ascending keys; and to achieve this, 
the programmer opens the data set as 'keyed sequential output'. The less 
restricted way is to write ~he records in any order and let Multics sort them 
out; and to do this, the programmer opens the data set as 'direct output'. 

Keyed 'read' Statement 

The 'read' statement with the 'key' option is used for keyed input from a 
file. Consider the statement: 

read file(employee) key(ssno) into(rec.main); 

The file 'employee' must be a 'keyed input' or 'keyed update' file. The 
statement attempts to find a record in the file 'employee' that has the key 
given by 'ssno'. If such a record is found, it becomes the current record and 
is read into the PL/I storage designated by 'rec.main'. The operation fails and 
the 'key(employee)' condition occurs if there is no record in 'employee' under 
the key given by 'ssno'. 

The key associated with a record is a data field in the file outside the 
record, although it can, of course, be duplicated within the record. 

Input and output values must be matched exactly. Suppose the following 
statements are executed in sequence: 

write file(employee) keyfrom(ssno) from(item(3)); 

read file(employee) key(ssno) into(rec.main); 

If 'item(3)' and 'rec.main' have exactly the same structural attributes, these 
statements are equivalent to: 

write file(employee) keyfrom(ssno) from(item(3»; 

rec.main = item(3); 

15-11 AM83 



The appearance of an assignment statement is natural, since a value is being 
transmitted, by way of a record, from one variable to another. However, the 
equivalence just given breaks down when the structural attributes of 'item(3)' 
and 'rec.main' are not exactly the same. When data types do not match, PL/I 
does not convert the value, and when aggregate types do not match PL/I does not 
attempt to promote. Instead, any disagreement of structural attributes is an 
error. 

Keyed 'delete' Statement 

The 'delete' statement with the 'key' option is used for the keyed deletion 
of an existing record from a file. Consider the statement: 

delete file(employee) 

The file 'employee' must be a 'keyed update' file. This statement attempts to 
delete a record from the file 'employee' under the key given by 'ssno'. The key 
is deleted from the file as well as the record, so the key is unused in this 
file after the delete operation. The 'key(employee)' condition occurs if there 
is no record in 'employee' with the key given by 'ssno'. If the file opening is 
sequential, the current record indicator and next record indicator are both set 
to the record following the deleted record. 

Keyed 'rewrite' Statement 

The 'rewrite' statement with the ~key' option is used to write a new 
version of an existing record in a keyed file. Consider the statement: 

rewrite file(employee) key(ssno) from(correction); 

The file must be a 'keyed update' file. This statement attempts to output a 
record to the file 'employee' and enter it under the key given by 'ssno'. The 
new value of the record is taken from the variable 'correction', and the old. 
value of the record is destroyed. The 'key(employee)' condition occurs if there 
is no record in 'employee' under the key given by 'ssno'. 

Since the 'write' statement uses the 'keyfrom' option to specify the key, 
the programmer may be tempted to use a 'keyfrom' option in the 'rewrite' 
statement; but this is a syntactic error. In PL/I, the 'key' option is used 
when a statement attempts to find a given key in a file (as in the 'read', 
'delete', and 'rewrite' statements), and the 'keyfrom' option is used when a 
statement attempts to introduce a given key into the file (as in the 'write' 
statement). 

15-12 At183 



Example of Keyed Input/Output 

Suppose a simple list of subscribers to a monthly magazine is stored as a 
keyed sequential file. Each record gives the name and address of a subscriber 
and the date of expiration of his subscription. The key for each record is a 
12-character string which is made up of the zip code and other identifying 
information. The problem is to extend the date of expiration of subscribers as 
their subscriptions are renewed. The program is as follows: 

RENEW: proc; 
dcl sysin file; 
dcl given file; 
dcl skey char(12) var; 
dcl 01 subs, 

02 name char(30) var, 
02 address char(60) var, 
02 expire, 

03 month dec(2), 
03 year dec(2); 

open file(given) direct update; 
do while ("1"b); 

get list(skey); 
if skey = "END" 

then do; close file(given); return; end; 
read file(given) key(skey) into(subs); 
year = year+ 1 ; 
rewrite file(given) key(skey) from(subs); 
end; 

end; 

An example of input for the program is: 

"94305HARSA82" 
"02139STEIS95" 
"20742MARTB61" 
"ENDII 

This procedure reads keys from the input stream 'sysin' and adds 1 to the year 
of expiration for the corresponding record. The fact that the subscription file 
is declared to be 'direct' does not imply that the data set is not sequential; 
it only means that this use of the data set will not depend on whether or not it 
is sequential. Indeed, a later example in this section uses this same file for 
sequential input/output. 

SEQUENTIAL INPUT/OUTPUT OPERATIONS 

When an input/output statement does not contain a 'key' or a 'keyfrom' 
option; it performs ~equenti~l input/outputo The file on which such a statement 
operates must have the 'sequential' attribute. 

15-13 Al-183 



Sequential 'write' Statement 

Consider the statement: 

write file(subscriber) from(cust); 

The file 'subscriber' must be an unkeyed 'sequential output' file. The 
statement creates a new record at the end of the file, and the current value of 
'cust' is assigned to the record. 

Sequential 'read' Statement 

The 'read' statement without the 'key' option is used for sequential input 
from a file. Consider the statements: 

read file(subscriber) into(cust); 

and 

read file(employee) keyto(ssno) into(cust); 

The file 'subscriber' must be a 'sequential input' or 'sequential update' file 
(keyed or not), and the file 'employee' must be a 'keyed sequential input' or 
'keyed sequential update' file. The indicator associated with the file is moved 
to the next record; that is, the current record indicator in the file-state 
block is given the value of the next record indicator, which is then advanced 
one record. Then the value of the new current record is assigned to 'cust' in 
PL/I storage. The :keyto(ssno)~ option causes the key associated with the 
current record to be assigned to 'ssno' in PL/I storage. 

The 'read' statement can also be used to skip over records in a sequential 
file. Consider the statement: 

read file(subscriber) ignore(3); 

The file 'subscriber' must be a 'sequential input' or 'sequential update' file 
(keyed or not). If the next record indicator designates the ith record of the 
file, then 'ignore(3)' moves the indicator to the (i+3)th record. The current 
record indicator is then given the same value as the next record indicator. 
Thus a subsequent sequential read, rewrite, or delete will reference this 
record. If the end of the file is reached before the operation is complete, the 
current record indicator is set to the null record and the 'endfile(subscriber)' 
condition is signalled. The argument of the 'ignore' option must be greater 
than zero. 

Sequential 'delete' Statement 

The 'delete' statement without the 'key' option is used for deletion of the 
current record of the file. Consider the statement: 

delete file(subscriber); 

The file 'subscriber' must be a 'sequential update' file (keyed or not). The 
statement causes the current record to be deleted. The current record indicator 
and next record indicator are both set to the following record. 

15-14 AM83 



Sequential 'rewrite' Statement 

The 'rewrite' statement without the 'key' option is used to write a new 
version of an existing record in a sequential file. Consider the statement: 

rewrite file(subscriber) from(renewal); 

The file must be 'sequential update' (keyed or not). The statement replaces the 
contents of the current record with the value of 'renewal' in PL/I storage' and 
the old value of the record is destroyed. If the file is not 'keyed', the~ the 
replacement value must have the same storage type as the former value of the 
record. 

Example of Sequential Input/Output 

Once again a list of subscribers to a monthly magazine is stored as a keyed 
sequential file. The problem is to read through the file sequentially, checking 
each record in turn to see if the subscription has run out. Those records that 
represent expired subscriptions are copied into another keyed sequential file. 
The program is as follows: 

TARDY: proc; 
dcl given file; 
dcl tardy file; 
dcl skey char(12); 
dcl 01 subs, 

02 name char(30) var, 
02 address char(60) var, 
02 expire, 

03 month dec(2), 
03 year dec(2); 

open file(given) keyed sequential input; 
open file(tardy) keyed sequential output; 
on endfile(given) goto EXIT; 
do while("1"b); 

read file(given) keyto(skey) into(subs); 
if 12*year+month < 12*74+3 
then write file(tardy) keyfrom(skey) from(subs); 
end; 

EXIT: close file(tardy); 
close file(given); 
end; 

The program tests for subscriptions that expired before March 74. Its most 
interesting point, however, is the use of 'keyed sequential' output. These 
attributes require that 'tardy' be written in order of ascending keys; and this 
requirement is satisfied, since the program is copying from a file, glven', 
that is 'keyed sequential' and necessarily satisfies the requirement. The 
program would still be valid if 'tardy' were declared 'keyed direct', but the 
useful fact that the records will be written in order of ascending keys would 
not be made explicit and PL/I might not perform the output as efficiently as 
possible. Therefore the declaration 'keyed sequential' is best. 

15-15 AM83 



BASED INPUT/OUTPUT OPERATIONS 

Based input/output is a rather advanced and difficult technique of PL/I 
programming. Fortunately, based output is not important in Hultics PL/I and 
need be given no more than passing mention at the end of this discussion. 
However, based input is useful, especially in commercial programming. 

Consider a programming application in which the following vicious circle 
arises: 

The records of a given input file are in several different structural 
forms, and therefore a particular record cannot be read into PL/I storage 
until the storage type of its values have been determined. However, the 
records indication of the 
storage type of a particular record is a code that is contained within the 
record. In short, the record cannot be read until its form is' known and 
its form cannot be known until the record has been read. 

The based input statement breaks this circle by reading a record into system 
storage and thus using a special technique not otherwise available to the user. 

Based Input 

A based input statement can be obtained by writing a 'read' statement with 
a 'set' option instead of an 'into' option. Three forms are possible, as the 
following examples show: 

read file(log) key(itemno) set(ptr); 

read file(log) set(ptr); 

read file(log) keyto(itemno) set(ptr); 

The argument of the 'set' option must be a target for a 'pointer' value. In 
each of these statements, the record is located just as it would be for the 
statement with an 'into' option; the first statement is a keyed operation, the 
second and third are sequential operations. When the record has been located, 
PL/I allocates enough storage from system storage to hold the value of the 
record, copies the record into the storage, and sets 'ptr' to point to the 
beginning of the allocated storage. 

It is useful to think of the input process as follows: PL/I examines the 
record, allocates storage with exactly the same structural attributes as the 
record, and then reads the record into that storage. This could not be done 
with an ordinary 'read' statement (with an 'into' option); there is no way that 
a program can examine a record before reading it in, and an ordinary 'read' 
statement must specify the attributes of the target before the input is 
performed. 

Once the record has been input by means of a based input statement, it is 
interpreted by using the pointer value to associate a based variable with the 
value of the record. Many techniques for the use of based variables can be 
used; but the most important ones are given in the following examples. 

15-16 AM83 



EXAMPLES OF BASED INPUT 

In the first example, a file that contains the daily transactions of a 
repair shop must be read. There are different kinds of transactions, and 
therefore different kinds of structures are required to represent them. The 
transactions covered are as follows; 

2 

3 

Purpose 

Order a replacement part, giving the part number and the source of 
supply. 

Bill a customer, giving name, address, and amount due. 

Record an internal charge, giving a cost center and a cost. 

A program is required to read through the file accumulating the credits. A Code 
1 transaction is ignored, but each Code 2 or Code 3 transaction contributes its 
'amount_due' or 'cost' to the accumulated credits. When the file has been 
completely read, the accumulated total is printed. 

If based input were not available, the file could be designed with two 
records for each transaction. The first record of any pair would give the 
transaction code and the second would be a structure describing the transaction. 
The program would read the code, choose the appropriate target for the second 
record, and then read the second record. The disadvantage of this approach is 
that it uses twice as many records as necessary, and in many cases, would nearly 
double the cost of both the storage and the processing. 

Since based input is available, the file can be written with one record for 
each transaction. Each record is a structure whose first member is the 
transaction code and whose remaining members are appropriate to the kind of 
transaction described. When a record has been read, the code is examined 
(without looking at the rest of the record) and is used to select a statement 
that will use an appropriate based variable to interpret the value of the 
record. The program is as follows: 

SUM: proc; 
dcl total pic"$$$$$$.v99"; 
dcl trans file; 
dcl sysprint file; 
dcl P pointer; 
dcl 01 order based(P), 

02 code dec(1), 
02 part_number char(12), 
02 supplier dec(3); 

dcl 01 bill based(P), 
02 code dec(1), 
02 customer, 

03 name char(20) var, 
03 address char(40) var, 

02 amount_due pic"$$$$.v99"; 
dcl 01 charge based(P), 

02 code dec(1), 
02 cost_center char(3), 
02 cost pic"$$$$.v99"; 

on endfile(trans) goto EXIT; 
open file(trans) sequential input; 
total = 0; 

15-17 AH83 



LOOP: 

L ( 1 ) : 
L(2): 

L (3) : 

EXIT: 

read file(trans) set(P); 
goto L(order.code); 
go to LOOP; 
total = total + amount_due; 
goto LOOP; 
total = total + cost; 
goto LOOP; 
put skip list("total billing:" total); 
close file(trans); 
end; 

This program is easy to read, but it is not so easy to write. The application 
of based variables to the input value must be programmed carefully because 
errors may not be detected. 

The declarations of the structures ' order', 'bill', and ' charge' are as 
might be expected from the definition of the problem. The association of the 
pointer 'P' with each of the three structures saves writing later. For example, 
'order.code' means 'P->order.code' because 'order' is declared 'based(P)'. 

The based input statement at 'LOOP:' reads the value of a 
system storage and sets 'P' to the beginning of the value. 
statement is: 

goto L(order.code); 

record into 
The important 

This statement evaluates the transaction code by overlaying the structure 
'order' on the input value and then obtaining the value of 'order.code'. The 
value of 'order.code" must be 1, 2, or 3 and the appropriate transfer to 'L(i)', 
'L(2)', or 'L(3)' is performed. 

Once the code has been examined, the correct choice for a based variable 
can be made. For example, at 'L(2)', it is known that the record represents a 
bill for a customer, and therefore reference can be made to 'amount_due'. The 
fully-qualified equivalent of this reference is 'P->bill.amount_due', and it 
means: treat the value pointed to by 'p' as if it were like the structure 
'bill' and get the value of 'amount_due' from that structure. 

15-18 AM83 



In this second example, a program generates a two-dimensional array and 
writes it out as a one-record file. Later, another program reads the array and 
processes it. It is assumed that the programs are used repeatedly in this 
sequence, and that the array may have different extents from one application to 
the next; therefore, the extents cannot be given as constants. For these 
programs, self-describing structures are used; that is, each array is 
incorporated in a structure that contains integers that represent the bounds of 
the array. The self-describing structure is designed in a special way so that 
not only the programmer knows where the extents are stored, but the PL/I 
processor also knows. The program that outputs the array is, in part, as 
follows: 

BUILD: procj 
dcl (m,n) fixed; 
dcl 01 S based(p), 

02 extents, 
03 e1 fixed, 
03 e2 fixed, 

02 A(m refer(e1):n refer(e2)); 
dcl p ptr; 
dcl X file; 

(set m and n to the desired values) ••• 

allocate S; 

..• (set the m*n values of the array) 

open file(X) sequential output; 
write file(X) fromeS); 
close file(X); 
end; 

The interesting action in this program is the 'allocate' statement. This 
statement allocates the structure'S' in system storage using the current values 
of 'm' and 'n' as the bounds for the array. At the same time, the "allocate" 
statement assigns the bounds to 'el' and 'e2', so that an explicit record of the 
bounds of the array is made. These are useful when the array is read in by the 
second program that follows: 

USE: proc; 
dcl (m, n) fixed; 
dcl P pointer; 
dcl 01 S based(P), 

02 extents, 
03 e1 fixed, 
03 e2 fixed, 

02 A(m refer(e1), n refer(e2)); 
dcl X file; 
open file(X) sequential input; 
read file(X) set(P); 
close file(X); 

.•• (make use of A) 

end; 

15-19 AM83 



Because the array is self-describing and uses 'refer' options in the proper way, 
PL/:J: "understands" that the extents of the array are given by 'e1' and 'e2'. 
Incidentally, the variables 'm' and 'n' are not used at all in 'USE'; they are 
given to cover the allocation of the array 'A', but the array is not allocated 
in this program. PLII allocates storage according to the requirements of the 
input record, not the declaration of'S'; but then a reference to 'A' is 
interpreted as if that storage had been allocated by 'allocate S;'. 

Based Output 

An ordinary output statement transfers a given value to a portion of system 
storage called an output buffer; then the actual output is performed under 
control of the operating system from that output buffer. There are certain 
techniques that permit a programmer to gain access to 
these are described in the following paragraphs. These 
used only when the need is clearly evident. 

the output 
techniques 

buffer, ... "'~ 
o.11U 

OMISSION OF THE 'from' OPTION 

It is possible to perform output directly from the input buffer; 
under certain circumstances, the 'from' option can be omitted from a 
statement, .as follows: 

rewrite file(employee) key(ssno); 

or 

rewrite file(subscriber); 

should be 

that is, 
'rewrite' 

Such a statement is allowed only if the last input operation on 'employee' or 
'subscriber', respectively, was a based 'read' operation. In that case, the 
'rewrite' statement takes its output value from the input buffer associated with 
the file by the preceding 'read' statement. Thus it is possible to read the 
value of a record into a buffer, modify it in that buffer, and write the value 
out from the same buffer. 

'locate' STATEMENT 

A second facility for programmer control of buffers is the 'locate' 
statement. The 'locate' statement is related to the 'write' statement as the 
based 'read' statement is related to an ordinary 'read'. Consider the 
statement: 

locate buf set(ptr) file(employee) keyfrom(ssno); 

The 'buf' must be a 'based' variable, and if it is declared 'based(ptr)' then 
the 'set' option can be omitted. If the file is not keyed, the 'keyfrom' option 
must be omitted. The effect of this locate statement can be described in terms 
of replacement by two other statements. The 'locate' statement itself can be 
replaced by a statement to allocate 'buf', as follows: 

allocate buf set(ptr); 

15-20 AM83 



Then, at a later point in the program, just before the next output operation on 
the file 'employee' or just before the closing of the file 'employee', the 
actions implied by the following statement are carried out: 

write file(employee) keyfrom(ssno) from(buf); 

Thus the 'locate' statement sets QQ an output buffer but the contents of the 
buffer are not written out until the last possible moment. 

SPECIAL FEATURES 

The record I/O operations of PL/I are designed to be used with record data 
sets in which the record lengths are known ahead of time (e.g., are constant 
length) or in which the records are self defining (e.g., contain the record 
length in the first word of each record). The following paragraph describes a I 
Multics PL/I feature that permits record I/O operations to be used with data 
sets containing records of arbitrary length. 

Environment (stringvalue) 

This attribute is used in the declaration of a file constant or in an open 
statement to modify the normal interpretation of record I/O for varying strings. 
When a file state block has this attribute, a 'write from' statement whose 
source variable is a varying string writes out a record containing just the 
current value of the varying string, not a complete image of its storage. 
Similarly, a 'read into' state~ent whose target is a varying string sets the 
current value of the target to be equal to the contents of the record. The 
operation will be successful as long as the record length does not exceed the 
length of the string. Here is an example: 

dcl x char(200) varying, 
y char(100) varying; 

'J - "abc"; 
rewrite file(f) key("alpha") from (x); 
read file(f) key("alpha") into (y); 

If the file f has the 'environment (stringvalue)' option, the 'rewrite' 
statement places a three character record in the file, and the 'read' statement 
sets the value of y to be 'abc'. If it does not have this attribute, the 
'rewrite' statement places a 200-character record into the file, and the 'read' 
statement raises the record condition, because the length of y's storage is 100 
characters. 

CONDITIONS FOR RECORD INPUT/OUTPUT 

In this discussion, the conditions that occur during record input/output 
are described. They are: 

endfile(ref) 
key(ref)--
record(ref) 
transmit(ref) 
undefinedfile(ref) 

where ref is a reference that yields a file value. The general rules for the 
use of conditions are given earlier, in Section XIII, "Condition Handling"; only 
a summary is given here. 

9/78 15-21 AM83A 

* 



As indicated above, each condition is defined separately for each file 
constant, and thus for each file-state block, whether it is open or not. The 
identifier 'endfile' is not a valid condition; but if 'subscriber' is declared 
'file', then 'endfile(subscriber)' is valid. 

As an example of condition handling, consider the statement: 

on endfile(subscriber) goto EXIT; 

When this statement is executed, it establishes the 'on' unit 'goto EXIT;' for 
the condition 'endfile(subscriber)'. If the 'endfile(subscriber)' condition is 
signalled, the 'on' unit itself is executed. When the block that contains the 
'on' statement is deactivated, the 'on' unit is reverted and no longer responds 
to a signal. 

When a condition occurs, PL/I takes either of two actions, as follows: 

• If an 'on' unit is established for the condition, then that 'on' unit 
is executed. If the execution of the 'on' unit runs to completion, 
control goes back to the point in the program at which the 
interruption occurred, and execution is resumed in a reasonable way 
(depending on the particular needs of the condition). 

• If no 'on' unit is established for the condition, then the default 
'on' unit is executed. The default 'on' unit for each condition is 
described earlier, in Section XIII, "Condition Handling." 

PL/I saves certain values before signalling a condition. For each kind of 
value saved, there is a stack and a built-in function. Just before the 
condition is signalled, the value is placed on the top of the stack, and after 
completion of the established 'on' unit, it is removed. The built-in function 
is used to access the value during the execution of the 'on' unit. 

When a record input/output operation causes a condition to be signalled, 
the following values are saved in the manner just described. First, the file 
name, expressed as a character-string value, is saved in the stack associated 
with the 'onfile()' built-in function. Second, if the file being operated on 
has been opened with the attribute 'keyed', then the current ~ is saved in the 
stack associated with the 'onkey()' built-in function. 

'endfile' Condition 

Suppose the file 'subscriber' is positioned so that its current record is 
the last record in the file, and suppose a sequential 'read' statement is 
executed. Since there is no next record, PL/I signals 'endfile(subscriber)'. 
If an 'on' unit is established for 'endfile(subscriber)', then it is executed; 
and if the 'on' unit runs to completion, execution of the program resumes with 
the statement after the 'read' statement that caused the condition to occur. 

Sometimes the number of records in a file is known in advance, and that 
number can be used to control the loop that reads the records. In such a case, 
an 'endfile' condition indicates an error in the preparation of the input file. 
The programmer may choose to provide an lonl unit for recovery from such an 
error or he may decide to accept the diagnostic message and program abort that 
the system supplies by default. 

9/78 15-22 AMB3A 



An occurrence of an 'endfile' condition is not necessarily an error; 
indeed, it is an excellent way to terminate a loop that processes the records of 
a file. Several of the example programs given in this section use a statement 
such as the following: 

on endfile(subscriber) goto EXIT; 

to exit from a loop that is reading the records of an input file. Such 
programming is especially elegant. A programmer writes a loop that would go on 
reading records forever if there were no end to the file. Then quite 
separately, the programmer writes an 'on' statement that determines the action 
to be taken when the end of the file is reached. This separation of activities 
makes the program easier to write and easier to understand. 

'key' Condition 

The 'key(subscriber)' condition occurs when a wrong assumption is made 
about the keys in the file 'subscriber'. That is, it occurs when a keyed 
'write' statement has a 'keyfrom' option which supplies a key which is already 
in the file; and it occurs when a keyed 'read', 'delete', or 'rewrite' statement 
has a 'key' option that supplies a key that is not already in the file. If an 
'on' unit is established for the condition 'key(subscriber)' it is executed; and 
if it runs to completion, then execution continues with the statement after the 
input/output statement in which the condition occurred. 

This condition has an important role in signalling errors in the use of a 
keyed file. It can also be used to support a legitimate inquiry about the use 
of a key in a file. For example, suppose a file of employees is keyed by social 
security numbers. Then a given number can be checked to see if its owner is an 
employee. First, the statement 

on key(employee) emp = "O"b; 

is executed. Then the following statements are used to branch according to 
whether or not the number was in the file: 

emp = "l"b; 
read file(employee) key(given_ssno) into(info); 
if emp then goto EMPLOYEE; else goto NOT_EMPLOYEE; 

'record' Condition 

The 'record(subscriber)' condition occurs when the value of a record from 
the file 'subscriber' does not fit into the storage provided by the 'into' 
option of a 'read' statement. A value fits if the number of bits it requires is 
exactly the number of machine-level bytes allocated in storage. This condition 
is implementation dependent; however, the following assertion is true for any 
implementation of PL/I: 

If the irecord i condltlon occurs, tnen the input value does not have the 
same storage type as the target given by the 'into' option of the 'read' 
statement. 

Such a condition indicates an error in the program or the input file. After an 
established 'on' unit is executed, PL/I completes its execution of the 'read' 
statement by aSSigning the value of the record to the target, truncating it or 
padding it with zero-valued bits to make it fit the target. 

9/78 15-23 AM83A 



Although it is an error to input a value that does not have the same 
storage type as the target, this condition only occurs when the number of bytes 
required by the value of the record differs from the number of bytes in the 
target. Thus, certain errors go undetected. 

'transmit' Condition 

The 'transmit(subscriber)' condition occurs when data cannot be reliably 
transmitted between the file 'subscriber' and the PL/I storage referenced in the 
statement that attempted the input or output. After an established 'on' unit is 
executed, the program resumes at the point following the input/output statement 
that caused the condition; but the value of the data transmitted by the 
statement is undefined. 

The condition is usually caused by factors beyond the programmer's control, 
such as hardware failure, so the recovery procedure usually cannot be initiated 
until the hardware is repaired. 

'undefinedfile' Condition 

The 'undefinedfile(subscriber)' condition occurs when an 'open' statement 
attempts unsuccessfully to open the file 'subscriber'. The condition can occur 
when, for example, an attempt is made to open an unkeyed data set for 'keyed' 
i n p u L 0 (' 0 u t p u L, 0 C' w hen , f 0 C' 

illegal attachment. After an 
resumes at the point following 
a series of 'open' clauses in 
'open' statement. 

9/78 

anOLner example, Lne ~tiLle~ opLion 8pecifie8 an 
established 'on' unit is executed, the program 

the 'open' clause. This point may be the next of 
an 'open' statement or the statement after the 

15-24 AM83A 



An occurrence of an 'endfile' condition is not necessarily an error; 
indeed, it is an excellent way to terminate a loop that processes the records of 
a file. Several of the example programs given in this section use a statement 
such as the following: 

on endfile(subscriber) goto EXIT; 

to exit from a loop that is reading the records of an input file. Such 
programming is especially elegant. A programmer writes a loop that would go on 
reading records forever if there were no end to the file. Then quite 
separately, the programmer writes an 'on' statement that determines the action 
to be taken when the end of the file is reached. This separation of activities 
makes the program easier to write and easier to understand. 

'key' Condition 

The 'key(subscriber)' condition occurs when a wrong assumption is made 
about the keys in the file 'subscriber'. That is, it occurs when a keyed 
'write' statement has a 'keyfrom' option which supplies a key which is already 
in the file; and it occurs when a keyed ' read', ' delete', or ' rewri te' statement 
has a 'key' option that supplies a key that is not already in the file. If an 
'on' unit is established for the condition 'key(subscriber)' it is executed; and 
if it runs to completion, then execution continues with the statement after the 
input/output statement in which the condition occurred. 

This condition has an important role in signalling errors in the use of a 
keyed file. It can also be used to support a legitimate inquiry about the use 
of a key in a file. For example, suppose a file of employees is keyed by social 
security numbers. Then a given number can be checked to see if its owner is an 
employee. First, the statement 

on key(employee) emp = "O"b; 

is executed. Then the following statements are used to branch according to 
whether or not the number was in the file: 

emp = "1"b; 
read file(employee) key(given_ssno) into(info); 
if emp then goto EMPLOYEE; else goto NOT_EMPLOYEE; 

'record' Condition 

The 'record(subscriber)' condition occurs when the value of a record from 
the file 'subscriber' does not fit into the storage provided by the 'into' 
option of a 'read' statement. A value fits if the number of bits it requires is 
exactly the number of machine-level bytes allocated in storage. This condition 
is implementation dependent; however, the following assertion is true for any 
implementation of PL/I: 

If the 'record' condition occurs, then the input value does not have the 
same storage type as the target given by the 'into' option of the 'read' 
statement. 

Such a condition indicates an error in the program or the input file. After an 
established 'on unit is executed, PL/I completes its execution of the 'read' 
statement by assigning the value of the record to the target, truncating it or 
padding it with zero-valued bits to make it fit the target. 

15-25 A~183 



Although it is an error to input a value that does not have the same 
storage type as the target, this condition only occurs when the number of bytes 
required by the value of the record differs from the number of bytes in the 
target. Thus, certain errors go undetected. 

'transmit' Condition 

The 'transmit(subscriber)' condition occurs when data cannot be reliably 
transmitted between the file 'subscriber' and the PL/I storage referenced in the 
statement that attempted the input or output. After an established 'on' unit is 
executed, the program resumes at the point following the input/output statement 
that caused the condition; but the value of the data transmitted by the 
statement is undefined. 

The condition is usually caused by factors beyond the programmer's control, 
such as hardware failure, so the recovery procedure usually cannot be initiated 
until the hardware is repaired. 

'undefinedfile' Condition 

The 'undefinedfile(subscriber)' condition occurs when an open statement 
attempts unsuccessfully to open the file 'subscriber'. The condition can occur 
when, for example, an attempt is made to open an unkeyed data set for 'keyed' 
input or output, or when, for another example, the 'title# option specifies an 
illegal attachment. After an established 'on' unit is executed, the program 
resumes at the point following the 'open' clause. This point may be the next of 
a series of 'open' clauses in an 'open' statement or the statenent after the 
'open statement. 

15-26 AM83 



SECTION XVI 

PL/I IN THE MULTICS SYSTEM 

Both the PL/I compiler and the programs it compiles execute in the Multics 
system. To compile and execute PL/I programs, the user must understand the 
fundamentals of 11ultics. This section discusses those aspects of Multics that 
are of particular interest to a PL/I programmer. Other manuals describe Multics 
in greater detail; the Multics Users' Guide provides an introduction to Multics 
and the Multics Programmers' Manual gives a detailed description. 

This section has three parts. The first part is a brief description of the 
Multics storage system. Tne second part describes the facilities of Multics 
that are used for compiling and executing PL/I programs, including the PL/I 
compiler itself, the mechanism for linking external procedures, the relation of 
a program to a Multics process, and the attachment of files. The third part 
gives the procedure for running a PL/I program in Multics and includes a 
complete example. 

STORAGE SYSTEM SEGMENTS 

The basic unit of information in the Multics storage system is the segment. 
The Multics storage system consists of two kinds of segments, namely: directory 
segments and non-directory segments. A directory segment contains a list of 
segment names and segment attributes. A nondirectory segment, or simply 
segment, contains data or code. 

Each segment has one or more absolute pathnames. An absolute pathname is a 
sequence of segment names starting from the root directory and proceeding 
through directory segments to the designated segment. A more convenient way to 
reference a segment is by its relative pathname. The relative pathname is a 
sequence of segment names starting from the user's current location in the 
storage system to the designated segment. The user's current location in the 
storage system is called the current working-directory. A working-directory, 
usually based on the user's name and project, is established by the system at 
log-in. For example, suppose a user logs in, as follows: 

login Noman 
password 

16-1 AM83 



As ,part of the log-in procedure, the system establishes a working-directory for 
the user Noman. The pathname for a typical working-directory might be: 

)udd)ProjGiant)Noman 

If the user then creates a segment 'alpha', the following pathnames apply: 

absolute pathname )udd)ProjGiant)Noman)alpha 

relative pathname alpha 

A complete discussion of the log-in procedure and the naming conventions can be 
found in the Multics User's Guide. 

Component Names 

A segment name can consist of a sequence of one or more component ~. 
The character'.' is used to separate one component name from another. For 
example, consider the following segment name: 

alpha.beta.gamma 

This segment name has three components, namely: 'alpha', 'beta', and 'gamma'. 
The Multics PL/I compiler requires that the name of the segment to be compiled 
end with the component' .p11'. The procedure 'RANGE', for example, is entered 
as a source segment named 'RANGE.pI1'. 

Entry Point Names 

A location within a segment that is known externally by a symbolic name is 
called an entry point name. Such a location can be referenced by specifying the 
segment name and the entry point name in the following way: 

where sn is the segment name and ~ is the entry point name. Uhen the segment 
name and the entry point name are the same, the reference can be abbreviated to 
simply the entry point name. For example, the entry point name 'z' in the 
segment 'y' is referred to as 'y$z'. The entry point name 'z' in the segment 
'z' is referred to as 'z$z' or, in the abbreviated form, as 'z'. 

Reference Names 

The name that a process uses to refer to an external variable or procedure 
is called a reference name. Binding between a reference name and the object it 
references is determined by the binder or the dynamic linking facility. 

16-2 AM83 



MULTICS PL/I COMPILER 

The Multics PL/I compiler produces an object segment and an optional 
listing segment. The names of these segments are derived from the name of the 
source segment. sQ, as follows: 

Segment Name 

source sn.o11 

object sn 

listing sn.list 

where §.11 is the segment name specified by the user. 

Entrr Names 

The segment 
entry point name. 

name for an object segment is not necessarily the same as the 
Consider the following procedure: 

0: Droc: 

x: entry; 

y: entry; 

end; 

This procedure has three entry point names: 'p', 'x', and 'y'. If the procedure 
is entered as a source segment named 'p.p11', the object segment is named p. 
The entry point names within the segment 'p' are as follows: 

p$p 
D$X 
p$v 

The first name can be abbreviated, according to the rules for entry point names, 
to simply P. The other names, however, must be referred to as 'p$x' and 
, p$y' . 

To avoid confusion between entry point names and segment names, the 
programmer can name each source segment with the name of its major entry. If a 
procedure has multiple entry point names, the object segment can be given 
additional names by the use of the addname command. In this way, references 
that include the character '$' can be avoided. 

For example, in the procedure 'p' just given, the object segment 
have the names 'x' and 'y' added to it. 

16-3 

p can 

A1'183 



Object Segment 

If no fatal errors are encountered in a compilation, the PL/I a compiler 
produces a standard Multics object segment, which consists of the following 
sections: 

Section 

text 

definitions 

link 

symbol 

Description 

the binary machine language program 

the set of character string names of entry points to 
this segment and of any procedures called by this 
segment. 

the prototype linkage section, to be copied into the 
linkage/static segment when the procedure is rlrst 
referenced. PL/I internal static variables are 
allocated in this section. 

the relocation bits for the text and linkage 
sections. This section is also used for the symbol 
table, if one is requested. 

A complete description of a standard Multics object segment, including an 
alternative object segment layout that has a separate static section, is given 
in the Multics Programmers' Manual. 

The print_Iink_info command can be used to obtain information about a given 
,...,h;ont ~ocrmont ...., - v - _.... - - 0 ... • ... _ ............ 

Listing Segment 

The listing segment contains the output listing produced by the PL/I 
compiler. This output listing is divided into five sections, as follows: 

Section 

source 

symbol 

error 

map 

list 

Description 

a line-numbered copy of the source segment 

a table of the names declared in the program, the 
storage requirements, and a list of external names 

a list of error messages 

an object code map, which gives for each statement 
the location of the beginning of the instruction 
sequence in the object program 

a listing of the object program in an assembly-like 
language 

By specifying control arguments in the pl1 command, the user can request one or 
more sections of the compiler output listing. If no control arguments are 
specified, no listing is produced. 

16-4 AM83 



LINKING 

A PL/I program is defined as a set of external procedures and their 
operating environment. If a program contains more than one external procedure, 
cross references between the procedures must be resolved. Similarly, references 
to external variables must be resolved. In Hultics this is normally done by a 
mechanism known as dynamic linking. For each external object referenced in a 
procedure the procedure's linkage section contains a link. This is a specially 
formatted double word that is used as a pointer value by the procedure's object 
code. The first time the link is referenced during the program's execution, a 
fault occurs. This fault causes a system routine called the linker to be 
invoked. The linker determines the pointer value that denotes the external 
object and replaces the link with this value. All sebsequent references to the 
link get the correct pointer value without intervention of the linker. 

The dynamic linking facility eliminates the need for 
operation that links together all the procedures of a program. 
development this facility has many advantages. For example: 

a preliminary 
During program 

• A program can avoid the problems associated with the use of an 
obsolete version of a procedure. As soon as an error is detected and 
corrected, the new version is available to all users. 

• A program can be tested before all the procedures it uses are 
available. Since the execution of the program can proceed until a 
missing procedure is invoked, useful debugging runs can be made. 

• A program can include references to large special-purpose procedures 
that are called only under unusual circumstances without incurring 
unnecessary overhead. 

• The target of a link can be temporarily changed, by the initiate 
command, to test a new procedure. 

The following paragraphs give more information about dynamic linking and 
briefly describe an alternative facility known as binding. For full details on 
both topics consult the Multics Programmers' Manual, Reference Guide. 

Search Mechanism 

This section explains how the linker finds the target of a link. 

For an ordinary external variable, the linker uses a system maintained 
table to find a location in a system storage pool. The location of a particular 
variable is assigned the first time a link to that variable is snapped. The 
table and storage pool are part of the user's process. 

For other external objects, the linker uses a two step method. First, it 
finds the object segment that is supposed to contain the link~s target, then it 
searches definitions in the object segment for the appropriate name. Normally 
the name resolves to a procedure entry point, but for external variable names of 
the form 'a$b', the name resolves to a data location within the object segment 
or within its static storage. For example, the name iox_$user_input, resolves 
to a ptr in the static storage associated with the system routine iox_. Object 
segments containing such external variables are created by means other than the 
PL/I compiler. 

16-5 AM83 



To find the segment containing the target of a link, the linker uses the 
reference name component of the external name and a set of search rules. The 
nopmal'search rules are as follows: 

1) Search the list of initiated reference names and segments. The first 
time a link is snapped to a segment with a particular name, the name 
is placed on this list. Subsegment links to this name resolve to the 
associated segment. In the course of a process, several names may be 
initiated for the same segment. 

2) Search the referencing directory for a segment whose name is the same 
as the reference name. 

3) Search the working directory in the same fashion. At all times the 
system denotes some directory as the working directory for the user's 
process. The user can change the working directory by use of the 
change_wdir command. 

4) In the same fashion, search a set of library directories. 

The search stops as soon as a segment with the required name is found. If 
that segment does not contain the correct entry point, an error is signalled. 

The set_search_directory and set search rules commands may be used to 
establish different search rules. See the Multics Programmer's Manual, 
Commands, for details. 

Hidden Dangers of Dynamic Linking 

The programmer who is unaware of the fundamental workings of the dynamic 
linking mechanism may experience unexpected difficulties when he attempts to 
execute programs in Multics. Most problems are caused by the fact that the 
system maintains the association between a segment name and its address 
throughout the life of the process. For example, if a programmer executes 
procedure A, which calls a library procedure X, and he then changes to a new 
working directory and executes procedure B which calls an external procedure X 
located in his new working directory, the system will establish a link to the 
original segment. 

The sa~e persistence of meaning occurs for external variables, and this is 
a more common source of trouble. Suppose, for example, that the programmer 
executes a program usin~ external file F declared as: 

dcl F file stream input; 

and then executes a program in which F is declared as: 

dcl F file record update; 

He will get an error message to the effect that the file's attributes conflict 
with its usage. This is because the first program's use of F established it as 
a 'stream input' file. 

16-6 M183 



The general problem here is that the user's program really consists of all 
PL/I procedures invoked in the process. Therefore, an external name can only be 
used for one purpose throughout the life of the process. 

A general way to get around problems of this sort, is to use the new_proc 
command before running a new program that may conflict with the old. 

Binding 

wnen a program that conslsts of several external procedures is ready for 
production, a bound segment can be created for the program by the use of the 
Multics bind command. This command packs a group of separately compiled 
procedures into a single object segment in which links within the segment are 
permanently linked and multiple outward references to the same target are 
condensed into a single outbound link. 

The creation and maintenance of the bound segment involves an additional 
step, but the execution of the program as a bound segment is efficient. In 
fact, the use of a bound segment has most of the advantages of compiling 
procedures together but avoids the problems of a large compilation. For 
example, if one of the procedures that make up a bound segment is found to 
contain an error, the procedure can be recompiled. Then, the procedures can be 
rebound using the corrected version of that compiled procedure. 

16-7 AM83 



INITIALIZATION AND ALLOCATION OF VARIABLES 

The initialization and allocation of variables, file openings, and segment 
linking are related to the duration of a process, as follows: 

• An 'internal static' variable declared with the 'initial' attribute is 
initialized the first time the linker snaps a link to its object 
segment. When the procedure is first invoked, the variable has the 
initial value. During this or subsequent invocations, the value of 
the variable may be explicitly changed: however, the value of the 
variable is not restored to its initial value at each subsequent 
procedure invocation. The value of such a variable is known 
throughout the life of a process. 

• An external static variable is allocated as described under "Linking." 
If declared with the 'initial' attribute it is initialized when 
allocated. During this or subsequent procedure invocations, the value 
of the variable may be explicitly changed; however, the value of the 
variable is not restored to its initial value at each subsequent 
procedure invocation. The value of such a variable is known 
throughout the life of a process. 

• A 'controlled' variable is allocated in system storage and remains 
allocated unless explicitly freed by the execution of a 'free' 
statement. A controlled variable has an associated control block that 
is allocated as though it were a static variable. 

• A 'based' variable can be allocated in system storage or in an area or 
can be equivalenced to an already allocated variable. Such variables 
can be allocated in permanent or per-process temporary areas. If the 
variable is allocated in a permanent area, it is available from 
process to process. However, the value of a pointer, file, entry, or 
label variable is valid only for the life of the process in which it 
is set. 

• A file opened in a process remains open for the duration of the 
process unless it is explicitly closed by the execution of a 'close' 
statement. 

16-8 AM83 



ATTACHING FILES 

The attachment of a PL/I file to a Multics file during program execution 
was described earlier in Sections XIV and XV, "Stream Input/Output" and "Record 
Input/Output," respectively. This attachment can also be performed at command 
level by the io_call command. If an 1/0 switch is attached at command level, 
any attachment specified within the program for the associated file is ignored. 
Command level attachment a~~ows a program to be device independent. A 
programmer can run the same program under different inputloutput environments by 
using different variations on the io_call command. 

Consider, for example, the following program: 

test: proc; 
dcl (a,b) file; 

open file(a) title("vfile_ alpha") stream input; 
open file(b) keyed sequential output; 

end; 

If the liD switches 'a' and 'b' are not attached when the program is executed, 
the attach description 'vfile_ alpha' is used to attach switch 'a' and the 
attach description 'vfile_ b' to attach switch 'b'. Input is then read from the 
storage system file 'alpha' and output is written to the storage system file 
'b'. The user can specify a different source and target for these files by 
attaching the switches at command level. Consider the following sequence of 
commands: 

io_call 
io_call 
test 
io_call 
io_call 

attach a 
attach b 

detach a 
detach b 

syn_ user_input 
vfile_ x 

As a result of the attachments made by the ~v_call commands, when the program is 
executed, input is read from the standard input switch and output is written in 
the storage system file 'x'. 

Note that if an liD switch is attached at command level, it must also be 
detached at command level. Furthermore, it is an error to detach an liD switch 
if the corresponding file-state block has not been closed. If there is any 
doubt about the status of a file-state block, the file_status command can be 
executed. 

The following paragraphs describe the liD switch, the io_call command, and 
the liD modules that can be specified. 

9/78 16-9 AM83A 

I 



I/O Switch 

An I/O switch contains the following items: 

• The switch name. This value is a character string that identifies the 
switch. The switch name is the same as the PL/I file name. 

• The control block pointer. This value is a pointer to the control 
block maintained by the I/O system. 

• The attach description. This value is a character string· that gives 
the I/O module and source or target for the input/output .operations. 
The for~ of the attach description depends upon the I/O module. 

• The opening mode. This value is a character string that describes the 
type of processing to be done. 

When the switch is in the detached state, the attach description is an empty 
string. Similarly, when the switch is in the closed state, the open description 
is an empty string. A switch can be open only if it is attached. 

STANDARD SWITCHES 

As part of the standard initialization of a Multics process, the switch 
~user i/o' is attached to the user's ter~inal. The following switches are 
attached as synonyms for 'user_i/o~: 

user_input 
user _output. 
error_output 

The attachment of the above three switches can be changed. 

io call Command 

The io_call command performs an operation ~n a desi~nated I/O switch. The 
operations attach and detach are described here. A co~plete description of this 
command is given in the i'1ultics Prograrnners' Ha!'lUal. 

To attach an I/O switch the following for~ is USed: 

where sn is the S\.ri tchna~e and ad is the at t:i·::!:" descript ion. 

16-10 



The attach description for each of the most commonly used 1/0 modules is 
given later in this section. 

To detach an 1/0 switch the following form is used: 

where sn is the switchname. 

The current attachment of all the 1/0 switches in a process can be obtained 
by the print_attach_table (pat) command. 

1/0 Modules 

Some 1/0 modules that are relevant to PLII stream and record inputloutput 
are described in the following paragraphs. Detailed descriptions of these and 
other 1/0 modules including modules for tape 1/0 can be found in the Multics 
Programmers' Manual. 

vfile_ 1/0 MODULE 

The vfile 1/0 module performs input from or output to a storage system 
file. The attach description for this 1/0 module has one of the following 
forms: 

vfile_ QQ -extend 

where QQ is the pathname of the segment. 

The -extend control argument indicates ~nat in an opening for output', 
information is to be added to the file; that is, the file is to be extended. 
When the file is opened for 'output', the pointer to the file is positioned to 
the end of the file. 

If the -extend control argument is not specified and the file is opened for 
output, any existing information in the file is destroyed. 

tty_ 1/0 MODULE 

The tty_ 1/0 module performs input from or output to a terminal device. 
The attach description for this module has the form: 

where dn is a character string that identifies the device. 

16-11 AM83 



syn_ 1/0 MODULE 

The 
switch. 

syn_ 1/0 module is used to attach a switch as a synonYM for another 
The attach description for this module has the following form: 

where sn is the name of the 1/0 switch whose attachment is to be used. 

The 1/0 switch sn can itself be attached as a synonym for another switch. 
However, the 1/0 switch that is the final destination of the synonym attachment 
must be attached when the switch for which it is a synonym is opened. 

The file description for any file-state block attached in this way must be 
compatible with the 1/0 module and file designated for the attached switch. 

record_stream_ 1/0 MODULE 

The record stream 1/0 module attaches a source switch to a target switch 
so that record operations on the source switch are converted to stream 
operations on the target switch or stream operations on the source switch are 
converted to record operations on the target switch. The attach description for 
this module has one of the following forms: 

record_stream_ tsn -length n 

record_stream_ -target ad 

record_stream_ -nnl -target ad 

record_stream_ -length n -target ad 

where tsn is the target switch name, n is the length, and ad is an attach 
description. 

The -nnl control argument is used for record to stream conversion. If this 
control argument is not specified for record to stream conversion, a record is 
taken from the source switch, a newline character is appended, and the resulting 
string is given to the target switch. If the -nnl control argument is 
specified, the record is taken from the source switch and given to the target 
switch without modification. 

The -length n control argument is used for stream to record conversion. If 
this control argument is not specified for stream to record conversion, a string 
of bytes ending with a newline character is taken from the source switch, the 
newline character is removed, and the resulting string is given to the target 
switch. If the -length n control argument is specified, a record is formed by 
taking n bytes from the source switch and giving these bytes to the target 
switch. 

The target switch can be specified either by name or by attach description. 
If the target switch is specified by attach description, a unique name is 
created fo~ the switch. 

16-12 AM83 



.:.::e record_str8ao_ I/O module makes it possible for record input/output 
state~en~s to process an unstructured file and for stream input/output 
sta~c2ents to procpss sone structured files. 

As an example of the use of the record_stream_ I/O module, consider the 
followi~g prograo: 

~: proc; 
dcl (a,b) file; 
dcl calc entry(char(80»; 
dcl endfile condition; 
dcl alpha char(80); . 
on endfile(a) goto exit; 
open file(a) sequential input; 
open file(b' sequential output; 

loop: read file(a) into(alpha)j 
call calc(alpha); 
write file(b) from(alpha); 
goto loop; 

exit: close file(a,b); 
end; 

If the record_stream_ I/O module is specified for the 1/0 switches 'a' and 'b', 
the record input/output of the program 'p' can be directed to a terminal. 
Consider the following sequence of commands: 

io - call attach a record - stream user_input 
io - call attach b record - stream - user_output 
p 

io call detach a -io call detach b -
The source switch 'a' is attached to the target switch 'user_input' and the 
source switch 'b' is attached to the target switch 'user_output'. Input is 
taken from the user's terminal and output is directed to the user's terminal. 
The characters in the above command sequence indicate the input/output 
produced by the execution of 'p' on the user's terminal. 

RUNNIN'J A PL/I PROGRA~1 IN HULTICS 

A PL/I progran often consists of some 
previously-compiled external procedures. 
following activities: 

new external procedures and some 
Running such a program involves the 

• Each new procedure is entered as an ASCII source segment. 

• Each new procedure is compiled into an object segment using the 
Multics PL/I compiler. 

• The progr2M is executed by typing the entry nane of a procedure as a 
NU1&lCS command. wnen a separately compiled external procedure is 
called by another procedure, it is linked dyna~ically. 

• If the program does not execute properly, a Multics debugging tool is 
used to locate the source of the error. 

• When the program is debugged, the program s performance can be 
measured and, in some cases, improved. 

The following paragraphs discuss these activities. 

16-13 AM83 



Entering an External Procedure 

To enter the source for an external procedure, the programmer uses an 
editor to create an ASCII source segment. Several general-purpose editors are 
available in Multics for the creation and editing of ASCII segments. The most 
commonly used editors are edm and qedx. 

The standard Multics text editor, edm, is easy to learn and use. The qedx 
editor is more powerful than edm but harder to learn. In addition to the 
capabilities for interactive text modification, the qedx editor has a macro 
facility that can be used to construct editing programs for the systematic 
modification of text. 

The Multics Introductory Users' Guide illustrates the use of the edm editor 
to enter a source segment. The qedx editor is illustrated later in this section 
for the same purpose. A detailed description of both of these editors can be 
found in the MPM Commands. 

Compiling an External Procedure 

To compile an external procedure, the user invokes the PL/I compiler by 
typing the pll command. The first argumen~ of the pll command identifies the 
source segment to be compiled. If the compilation is successful, an object 
segment is usually produced. 

pll COMMAND 

The pll command has the following form: 

pll path {-control_args} 

where: 

1. path 
is the pathname of the PL/I source segment. 

2. control_args 
are one or more control arguments, separated by blanks. 
arguments are optional. 

For a detailed description of the pll command, see the MPM Commands. 

9118 16-14 

These 

AM83A 



The following list gives the control arguments and abbreviations that can 
be specified in the second form. For each control argument a brief description 
is given. 

Control Argument 

-check 
-ck 

-optimize 
-ot 

-brief 
-bf 

-source 
-sc 

-symbols 
-sb 

-map 

-list 
-Is 

-table 
-tb 

-brief_table 
-bftb 

-profile 
-pf 

-severityi 
-svi 

Executing a Program 

Meaning 

perform a syntactic and semantic check of the 
program, and omit the code generation. 

optimize the efficiency of the object segment. 

produce the short form of the error message on 
'user_output' • 

produce the source section of the compiler output 
listing in the listing segment. 

produce the source and symbols sections in the 
listing segment. 

produce the source, symbols, error, and 
sections in the listing segment. 

map 

produce the complete compiler output listing (all 
five sections) in the listing segment. 

generate a full symbol table for use by symbolic 
debugging routines. 

generate a partial symbol table. 

generate additional code to meter the execution of 
individual statements. 

suppress error messages whose severity level is 
less than i (1 ~ i ~ 4). 

To execute a program, the user invokes a procedure by typing its entry name 
as a Multics command. The Multics command, in this case, has one of the 
following forms: 

where Q designates the object segment and entry point as described earlier and ~ 
is an argument. The form '~ •.• ', in the second form, indicates that one or 
more arguments 1 separated by blanks, can be given. 

A procedure that does not have any arguments is executed by typing the 
first form, as follows: 

RANGE 

t1ultics treats the external entry name as a command to locate and begin the 
execution of the segment RANGE containing the entry name RANGE$RANGE. 

16-15 AM83 



A procedure that 
using the second form. 

has only parameters declared 'char(*)' can be executed, 
For example, consider the following external procedure: 

p: proc(x,y); 
dcl (x,y) char(*); 

end; 

The procedure 'p' is executed as a Multics command, as follows: 

p alpha 

The Multics system interprets this line as the command 'p' with the arguments 
'alpha' and '1'. This command provides arguments in the same way as the 
following call statement within a PL/I program: 

call p("alpha","1"); 

When a procedure is invoked in this way, no check on the number of arguments is 
performed. If the correct number of arguments is not given, the results of the 
procedure's execution are undefined. To check the number of arguments, the cu_ 
command, described in the Hultics Programmer's Manual, can be used. 

PROGRAM TERMINATION 

If a program executes correctly, it usually returns to command level when 
the processing is complete. If a program contains errors, its termination is 
unpredictable. Sometlmes, the program completes processing but produces 
incorrect results. Sometimes, the user presses the interrupt key on his 
terminal to suspend its execution. Sometimes, the system suspends the program's 
execution due to the occurrence of an exceptional condition and returns to 
command level. 

When a program is suspended, the user can terminate its execution by typing 
the command release, can continue its execution by typing the command start or 
can invoke another procedure. When a program is suspended during debugging, the 
user can invoke one of the Multics debugging tools to locate the source, 
provided that its suspension was not due to the occurrence of a fatal error. 

Debugging a Program 

To debug a program, the user can select one of the debugging tools provided 
by the Multics system. Two useful tools for debugging PL/I programs are the 
commands probe and trace. An introduction to these debugging aids is given in 
the following paragraphs. A detailed description can be found in the Multics 
Programmers' Manual. 

16-16 Al'183 



probe C011:·IA[~D 

The probe comMand· invokes a debugging system that allows the user to 
interactively examine the state of his prograM. The probe comMand can be used 
for the following purposes: 

• to look at or modify the value of a variable 

• to set a breakpoint 

• to examine the stack of block activations 

• to invoke external subroutines and functions 

The.probe system operates in response to user requests. The user can, for 
exanple, isolate a program bug by setting breakpoints at strategic points within 
his program. When the execution of a program halts at a breakpoint, the user 
can examine the values of key variables. The execution of the program can 
continue in this way, from breakpoint to breakpoint, until the source.of the 
problem is discovered. 

The probe system requires a symbol table and statement map for symbolic 
debugging. These are produced when the table control argument is spec~fied in 
the pI1 command. 

16-17 A~183 



trace CUMMA~D 

The trace command invokes a tool for monitoring all calls to a specified 
set of external procedures. The trace command is useful for both debugging a 
program and measuring its performance. The trace command can be used for the 
following purposes: 

• to print arguments on entry or exit 

• to stop on entry or exit 

• to specify the times when the trace occurs 

• to execute a Multics command line on entry or exit 

• to meter time spent in a procedure 

The user can, for example, request that the arguments for a procedure be printed 
on entry to a procedure and, in this way, a trace of the calls on a procedure 
with the value of each of its arguments is produced. 

Measuring a Program's Performance 

The cost of executing each statement of a program can be determined by 
sPecifying the -profile control argument of the p11 command. The information 
produced is of interest to both the beginning programmer and the expert. For 
the beginning programmer, it is a guide to the economics of programming and 
restores the view of hardware cost that a high-level language otherwise 
obscures. For the expert programmer, it is an indication of the points in a 
program that are unreasonably expensive and that require refinement. 

To measure the performance of a program, the user specifies the -profile 
control argument in the pl1 command that compiles the external procedures of the 
program. When the -profile control argument is specified, additional code is 
generated to calculate statistics about the execution of each statement. After 
the program has been executed, the segment that contains the accumulated 
statistics can be examined by executing the profile command. For a further 
description of the -profile control argument and the profile command, see the 
MPH Commands. 

9/78 16-18 AM83A 



For each statement in each line of the PL/I external procedure, a line is 
printed that gives the number of times the statement was executed, the number of 
instructions executed, and the support subroutines called as a result of the 
statement's execution. For example, consider the following lines from a profile 
listing: 

LINE 

8 
10 
12 

STM COUNT 

5 

COST 

7 
10 + 2 
50 + 15 

PROGRAM 

(stream io put_end) 
(stream=io put_Iist_al put_end) 

The profile listing indicates that the statement on line 8 was executed once; 
this statement requires seven machine language instructions and does not require 
any support subroutines. The statement on line 10 was executed once; this 
statement requires ten machine language instructions and two support 
subroutines, namely stream_io and put_end. The statement on line 12 was 
executed five times; this statement requires ten machine language instructions 
and three support subroutines per execution. 

EXAMPLE OF RUNNING PL/I 

The external procedure 'RANGE', introduced earlier in Section XIV, "Stream 
Input/Uutput," is used here as an example of running a PL/I program. in the 
Multics system. A script showing the entry, compilation, and execution of the 
program 'RANGE' is given in the following paragraphs. 

The program 'RANGE' computes the range of an artillery piece fired on 
ground level. For each trajectory, 'vO' is the initial velocity, 'theta' is 
the angle of elevation, and the result, 'range', is the horizontal distance to 
impact. 

Entering the Example 

To enter the text of the PL/I source program at a terminal, the user calls 
one of the text editors available in the Multics system. For this example, qedx 
is used. The exclamation point is used to indicate lines typed by the user. 
The script begins as follows: 

9/78 

qx 
a 
RANGE: proc(); 

\f 

dcl (va, theta, range) float(15), 
g float(15) init(32.174); 

dcl sind builtin; 
do while("1"b); 

get data(vO, theta); 
if vO=O then return; 
range = «vO**2)*sind(2*theta»/g; 
put skip data(vO, theta, range); 
put skip; 
end; 

end RANGE; 

w RANGE.pI1 
q 

r 1335 1.083 10.048 311 

16-19 AM83A 

I 

I 



The log-in sequence is omitted from the script above. As t~e scri~t 
begins, the user types the com~and qx to invoke the qedx text editor. The 
append request, a, is given to the editor and the editor aw~its input. The user 
types the text of the program followed by \f to terminate the input. Finally, 
the user types the command w to urite the text as a Hulties file named 
, RANGE. pI 1 ' . 

The user is finished -wi th the text edi tor, and he passes control back to 
the Multics command level by means of the quit request, q. The syste~ responds 
with a ready message. 

Compiling the Example 

To compile the external procedure, the user invokes the PL/I cOMpiler by 
the Multics command pll. The segment just created is specified as the source 
and the control argument 'map' is specified to produce a listing seg~ent. The 
script continues as follows: 

pll RANGE -r.laP 
PL/I 

WARNING 15 
The undeclared identifier "sysprint" has been contextually declared 
as a file constant. It will acquire default attributes. 

(.'''OUTil1'' '7C:: 
nnHn~nu .J 
"sysin" 
r 1340 5.101 11.135 264 

Diagnostic remarks are printed on the te~::.i~al by the co~piler. 
case, a warning was issued, but the default interpretation is the 
interpretation. The programmer might elect to add: 

In this 
intended 

dcl (sysprint, sysin) file; 

to the program to eliminate the warning; b~t the program can be run as is. 
diagnostic messages are explicit, English-language messages; therefore, no 
of error messages is included in this manual. 

The PL/I compiler produces an object seg~ent that can be called from 
programmer's terminal or from another external procedure. 

16-20 

The 
list 

AM83 



Executing the Program 

After the procedure is successfully compiled, it can be called at the 
Multics com~and level. The script continues with the execution of the procedure 
as follows: 

RANGE 
vO=1000 theta=35; 

vO= 1.0000e+003 
vO=1000 theta=40; 

vO= 1.0000e+003 
vO=1000 theta=45; 

theta= 3.5000e+001 

theta= 4.0000e+001 

vO= 1.2800e+003 theta= 4.5000e+001 
vO=O theta=45; 
r1344 3.899 41.302 622 

range=2.9207e+004; 

range= 3.060ge+004; 

range= 5.0923e+004; 

In order to execute the program, the user simply types the name of one of its 
external entries (there is only one in this case, 'RANGE'). The user then 
calculates four trajectories, supplying 'vO' and 'theta' each time and getting 
'vO', 'theta', and 'range' back •. The program is designed so that when the user 
enters a zero value for 'vO' the program terminates. At this point, the user 
proceeds to other computing activities or logs out. 

Program Listing 

In the script above, the pl1 command was given with the control argument 
-map. The result is the preparation of a listing segment that contains the 
source, symbol, error and map sections. The symbol section is an excellent 
guide to the declaration of identifiers in PL/I, and the beginning programmer 
should request it and study it for several of his programs. It shows how PL/I 
supplies missing attributes and it shows how identifiers are declared by context 
or implication as well as by 'declare' statements. The map section gives the 
address information usually expected from a storage map, 

The listing is printed in a 132 characters/line format, which does not fit 
on this page, so it is compressed horizontally here. Otherwise, the listing for 
'RANGE' is unchanged. 

16-21 AM83 



SOURCE LISTING 

The source listing gives the version of the compiler used for the 
compilation, the time and date of the compilation, and any options specified. 
Then a line-numbered listing of the source program is given. The source listing 
for the example 'RANGE' is as follows: 

COMPILATION LISTING OF SEGMENT RANGE 
Compiled by Multics PLII Compiler of November 24, 1975. 
Compiled on 03/09/76 0927.3 est Tue 

Options map 

1 RANGE: proc(); 
2 dcl (vO, theta, range) float(15), 
3 g float(15) init(32.174); 
4 do while (" 1 lib) : 
5 get data(~6, theta); 
6 if vO=O then return; 
7 range = (vO**2*sind(2*theta))/g; 
8 put skip data(vO, theta, range); 
9 put skip; 

10 end; 
11 end RANGE; 

Symbol Listing 

The symbol listing gives the names declared in the external procedure, the 
storage requirements, and the external names. The symbol listing for the 
example 'RANGE' is as follows: 

NAMES DECLARED IN THIS COMPILATION. 

IDENTIFIER OFFSET LOC STORAGE CLASS DATA TYPE 

NAMES DECLARED BY DECLARE STATEMENT. 
g 000103 automatic float bin(15) 
range 000102 automatic float bin( 15) 
theta 000101 automatic float bin(15) 
vO 000100 automatic float bin(15) 

NAME DECLARED BY EXPLICIT CONTEXT. 
RANGE 000037 constant entry 

NAMES DECLARED BY CONTEXT OR IMPLICATION. 
sind builtin function 
sysin 000016 constant file 
sysprint 000014 constant file 

STORAGE REQUIREMENTS FOR THIS PROGRAM. 

Object Text Link Symbol Defs Static 
Start 0 0 260 304 171 270 
Length 530 171 24 210 66 2 

ATTRIBUTES AND REFERENCES 

initial dcl 2 set ref 2 7 2 
dcl 2 set ref 7 8 
dcl 2 set ref 5 7 8 
dcl 2 set ref 5 6 7 8 

external dcl 1 ref 1 

internal ref 7 
set ref 0 5 
set ref 0 8 9 

External procedure RANGE uses 150 words of automatic storage 

16-22 AM83 



THE FOLLOWING EXTERNAL OPERATORS ARE USED BY THIS PROGRAM. 
return ext_entry get_end put_end stream_io 

NO EXTERNAL ENTRIES ARE CALLED BY THIS PROGRAM. 

THE FOLLOWING EXTERNAL VARIABLES ARE USED BY THIS PROGRAM. 
sysin sysin.fsb sysprint sysprint.fbs 

Offsets and locations of variables and the starting positions agd ~engths 
under "STORAGE REQUIREMENTS" are given in octal. Thus the variable vo is 
stored at decimal location 64 of the procedure's stack frame. 

Error Listing 

The error listing gives the error diagnostics. The error report of the 
example 'RANGE' is as follows: 

'i'lARNING 75 
The undeclared identifier "sysprint" has been contextually declared as a file 
constant. It will acquire default attributes. 

WARNING 75 
The undeclared identifier "sysin" has been contextually declared as a file 
constant. It will acquire default attributes. 

Map Listing 

The map listing gives the starting locations in the object code for each 
statement of the source language. The map for the example 'RANGE' is as 
follows: 

LINE LOC 
1 000036 
7 000117 

LINE LOC 
2 000056 
8 000131 

LINE LOC 
4 000060 
9 000156 

LINE LOC 
5 000104 

10 000167 

LINE LOC 
6 000115 

11 000170 

The locations are given in octal. Thus the decimal location of the 
statement on line 2 is word 46 of the object segment, word zero being the first 
word in the object segment. 

16-23 Al'183 



APPENDIX A 

GUIDE TO PL/I STATEMENTS 

A brief description of each of the PL/I statements is given in this 
appendix. The emphasis is on the syntax of the statements rather than on the 
interpretation. The entries are arranged in alphabetical order according to the 
initial keyword of each statement. 

PRELIMINARY REMARKS 

The statement descriptions given in this appendix have three parts: the 
syntax diagram, the supplementary rules, and the brief interpretation. The 
syntax diagram is enclosed in a box and uses the special notation described 
later. In the description of the 'signal' statement that appears in this 
appendix, the following syntax diagram is given: 

signal cd 

This diagram defines the 'signal' statement as "the identifier 'signal', 
followed by a cd, followed by a ';'" The supplementary rules provide 
information about the statement that is not given in the diagram. For the 
'signal' statement, th~ supplementary rules are just the clause: 

where cd must be a condi tion designator-' 

This clause defines the syntactic variable, cd, so that the diagram can now be 
interpreted as "the identifier 'signal', followed by a condition designator, 
followed by a ';'11. The brief interpretation discusses the action taken by the 
statement and refers the reader to the appropriate section(s) of this manual for 
a complete definition. For the 'signal' statement, the brief interpretation is: 

The statement signals the condition designated by cd. 
XIII, "Condition Handling." 

Syntax Notation 

See Section 

The following paragraphs are a complete description of the notation that is 
used in the syntax diagrams. Many examples are given. 

A-1 AM83 



BASIC CONSTRUCTS 

In a syntax diagram, an underlined identifier is a syntax variable; it 
represents a set of constructs that is defined somewhere else, either in another 
diagram or in the text. Certain other parts of a diagram, described in the 
following paragraphs, are used for special purposes, such as indicating a list 
of items. All the remaining characters in the syntax diagram are literal 
constructs. Thus in the diagram already given for the 'signal' statement, the 
underlined identifier 'cd' is a syntax variable and 'signal' and ';' are taken 
literally. 

The syntax variables and literal constructs of a diagram are separated from 
one another by blanks. According to the "Separation Rules" given in Section V, 
"Program Syntax," these blanks can be replaced by newlines, tabs, and comments; 
and; in some places~ blanks can be inserted or omitted. Thus, for example, a 
'signal' statement can be written as: 

signal 
fixedoverflow; 

This statement was obtained by replacing the first blank as a newline and 
omitting the blank between the condition designator and the semicolon. 

LIST OF ITEI'1S 

in a syntax diagram, the characters, are not interpreted literally; 
instead, they indicate a list of items separated from one another by commas. 
Similarly, the characters' ... ' indicate a list of items separated by blanks. 
The items in the list are specified by the construct that precedes the , ... 
or 

As an example, consider the syntax diagram for the assignment statement, 
VJhich is: 

target, ... = ~ ; 

This rule is a short way of specifying one of the following forms: 

target = e . - , 
target , target = ~ ; 

target, target, target, = ~ 

(etc.) 

A-2 AH83 



This notation does not imply that the targets must be identical; for example, a 
valid assignment statement is: 

S3(2),X,alpha = M; 

This statement has three different targets. 

As a second example, consider the syntax diagram for the 'free' statement, 
which is: 

free {ref1 in(ref2)} , ... 
Here, each item in the list has the form: 

ref'1 in(ref2) 

This example shows that the construct that precedes the 
sequence of constructs enclosed in curly braces. 

CHOICE OF ITEMS 

, ... can be a 

In a syntax diagram, a vertical list of items enclosed in curly braces 
indicates a choice among those items. As an example, consider the syntax 
diagram for the 'goto' statement: 

{ 
goto } ref 

go to 

This rule is a short way of specifying the following forms: 

goto ref; 

go to ref; 

OPTIONAL ITEHS 

In a syntax diagram, a construct enclosed in square brackets is optional. 
As an example, consider the syntax diagram for the 'if' statement: 

if Q then ex 1 [ else ex2 ] 

This rule is a short way of specifying the following forms: 

if Q then ex1 else ex2 

if Q then ex1 

Not all optional features of statements are marked as such in the syntax 
diagrams; too many brackets obscure the syntax diagram. However, a construct 
that is optional is always mentioned in the supplementary rules that follow a 
syntax diagram. This treatment is accorded primarily to the PL/I constructs 
called options. 

A-3 AH83 



RECURSIVE DIAGRAMS 

Occasionally, a diagram 
contains that syntax variable. 
for declaration: 

that defines a certain syntax variable also 
As an example, consider the following definition 

{ 
id } [ level] -
(declaration, ... ) 

In this diagram, the choice of the 
recursion and produces something like: 

alpha fixed external 

[ attribute ... ] 

first alternative in the braces avoids 

However, the choice of the second alternative introduces a parenthesized list of 
declarations; for example: 

(sysin,sysout) file 

or even: 

(x, (y,z) float, beta) controlled 

Parts of a Statement 

A statement is composed of a prefix, followed by statement body, followed 
by a semicolon. A prefix is composed of a sequence of any number (possibly 
zero) of condition prefixes followed by a sequence of any number (possibly zero) 
of label prefixes. For some statements ('declare' and 'default'), a condition 
prefix must not be used. For some statements ('procedure', ' entry', and 
'format') a label prefix must be used. 

A condition prefix has the form: 

( id, ... 

where each id is an identifier indicating the enabling or disabling of a 
condition. A label prefix has the form: 

where id is an identifier and int is an optionally-signed decimal integer. 

The parts of a 
Syntax." The role of 
"Condition Handling." 
"Program Flo\-l." 

statement are described fully in Section V, "Program 
the condition prefix is defined in Section XIII, 
The role of the label prefix is defined in Section XI, 

A-4 



Soecific Conventions 

Every ref8rence or expression nentioned in the state~ent descriptions must 
yield a scalar value unless an exception is explicitly noted. 

The following syntactic variables are usedthroURhout this appendix with 
the given meaning: 

~, ~, e2, and so on, represents an arbitrary expression 

ref, refl, ref2, and so on, represents an arbitrary reference to a 
constant, variable, or function. 

id represents an arbitrary identifier 

target represents an arbitrary variable reference or pseudo-variable 

Other syntactic variables are used for specific statenents, and their meanings 
are given in the supplementary rules that follow the diagraM in which they are 
used. 

ALLOCATE 

{
allocate} .{ l' d 

in(refl) 
alloc 

set(ref2) } , ... 

where id must be a 'controlled' or 'based' variable name, ref1 must yield an 
area variable, and ref2 must yield a locator variable. The options are selected 
as follows: 

• If id is 'contrOlled', then both options must be omitted. 

• Suppose id is 'based'. If id is declared 'based(g)', then the 'set' 
option can be omitted and 'set(g)' is assumed; otherwise, the 'set' 
option must be given. 

• If id is a 'based' variable intended for allocation in system storage 
rather than in an area variable, then the 'in' option ~ust be omitted. 

• Suppose id is a 'based' variable intended for allocation in an area. 
It" ref2 is declared ' offsetC§)', then the 'in' option can be omitted 
and 'in(~)' is assumed; otherwise, the 'in' option must be given. 

The options can be given in any order, but the order shown above is recommended. 

The statement allocates storage. If id is 'controlled', storage is 
allocated in system storage and is stacked on any previous allocations of ide 
If id is 'based' J storage is allocated either in system storage or the area 
given by the 'in' option; then the locator variable given in the 'set' option is 
set to designate the allocated storage. 

A-5 AH83 



I 

I 

ASSIGN 

..-, -------------.-r 
I 

target, •.. = e 

I , , 
-,----------------------, 

The expression e is evaluated and its value is assigned to the storage 
specified by each target. The expression e can be any kind of PLII expression, 
scalar or aggregate. A target can be a varIable reference or a pseudo-variable. 
Each target must designate a storage unit that can accommodate the value of ~ 
after the value has been subjected to an allowed conversion of its storage type. 
See Section X, "Value Assignment." 

BEGIN 

begin [options (non_quick)] 

--I , 

The statement is the first statement of a 'begin' block. A 'begin' block 
has two purposes: it groups together the statements contained in the block and 
it delimits the scope of the names declared in the block. The 
'options(non quick)' attribute may be used with the 'begin' statement. See 
Sections V and XI, "Program Syntax" and "Program Flow," respectively. 

CALL 

call ref(!, ..• ) 

-r , 

where, if there are no arguments, the parenthesized argument list, '( !, ... )', 
can be omitted or written as 'C)'. 

The statement invokes a procedure. The ref is evaluated to give an entry 
value. A procedure block is entered at the 'procedure' statement or 'entry' 
statement designated by the value of ref and the procedure is executed for the 
given argument list. The argument list must contain one argument for each 
parameter in the statement at which the procedure is entered. The procedure 
must not return a value for an invocation by a 'call' statement. See Section 
XII, "Procedure Invocation." 

9/78 A-6 AM83A 



CLOSE 

close file(ref) , ... 
--r 

I 

The statement closes one or more files. Each ref specifies a file value, 
and the corresponding file is closed if it is not already closed. See Sections 
XIV and XV, "Stream Input/Output" and "Record Input/Output," respectively. 

DECLARE 

{
deClare} declaration, ••• 
dcl 

where: 

declaration is defined as 

level 
( id 

l ( declaration, 

and where level is an unsigned decimal integer. 
preceded by-a-condition prefix. 

The statement must not be 

The statement declares one or more identifiers. An identifier is declared 
by associating with it a set of attributes and, in the case of a component of a 
structure, a level number. See Section VI, "Declarations." 

9/78 A-7 AM83A 



I 

DEFAULT 

The 'default' statement allows a programmer to extend and modify the 
defaults that are built into PL/I for the declaration of identifiers; in 
addition, it allows the programmer to specify declarations that he wishes to 
have flagged as errors even though they are otherwise valid in PL/I. The 
'default' statement is not recommended for use in an individual program; rather, 
its application lies in the establishment and maintenance of special standards 
for all programs written for a given project or at a given computing 
installation. The 'default' statement is not described here, but a full 
description appears in the PL/I Language Specification. 

DELETE 

delete file(ref) key(~) 

The options are selected as follows: 

o The 'key' option must be omitted if the file is not 'keyed'. 

o The 'key' option cannot be omitted if the file is 'direct'. 

The options can be given in any order, but the order shown above is recommended. 

The statement deletes a record from a data set. The record is specified by 
the file value given by the 'file' option and the character-string value given 
by the 'key' option (if present). See Section XV, "Record Input/Output." 

9/78 A-8 AM83A 



I:: ;While(~) ) 

multiple-do 

where: 

multiple-do is defined as 

do target = repeat ~ \vhile(~) ) 

e8 while(~) 

, ... 
while(~) 

by tl to 

The options and clauses are selected as follows: 

• The option ' while (~)' can be omi t ted. In that case, 'while (" 1 "b)' is 
assumed. 

• The 'by tl' clause can be omitted. In this case, 'by l' is assumed. 

• The 'to e8' clause can be omitted, provided that the 'by' clause is 
not omitted. In this case, the end test associated with the 'to' 
clause is not performed. 

The 'by' clause and the 'to' clause can be interchanged. 

The first of the three forms, 'do;', is the first statement of a 
noniterative g£QQQ. The statements contained in the group are executed exactly 
once. 

The second of the three forms, ' do while <'~..1) : " is the firs t statement of 
an unindexed iterative g£QQQ. Execution of the group begins with a while test. 
The expression e1 is evaluated and must yield a bit-string value. If all of the 
bits are zero bits, then execution is complete; otherwise, the statements in the 
group are executed and another execution of the group begins (with another while 
test). 

The third of the three forms, 'do target = , is the first statement 
of an indexed iterative grOUD. The statement provides an index, specified by 
target, that is used to control the repeated execution of the statements in the 
group. As the second syntax diagram shows, there are three ways to control the 
index; their interpretation is not given here. See Section XI, "Program Flow." 

A-9 AM83 



end [id] 

This statement is the last statement of a group, a 'begin' block, or a 
procedure. The optional identifier id is a closure label; its use is not 
recommended. See Sections V, XI, and XII, IIProgram Syntax", "Program Flow", and 
"Procedure Invocation," respectively. 

entry( id, ... ) [returns( dec1 )] 

where: 

• The statement must be immediately contained in a procedure. 

• The statement must begin with at least one label prefix; however, no 
label prefix can have a subscript. 

• If there are no parameters, the parameter list '( id, ... )' can 
either be omitted or written as 'C)'. 

• Each identifier in the parameter list must be a level-one variable 
name declared in the immediately containing procedure. 

• The number of parameters in the parameter list must equal the number 
of arguments in the argument list of the 'call' statement or function 
reference that invoked this entry. 

• The 'returns' attribute must be omitted or must appear depending on 
whether the entry is invoked by a 'call' statement or a function 
reference. 

• dec1 is the declaration of the value that is returned by the procedure 
when it is invoked at this entry. 

The statement provides an additional entry to a procedure. The entry can 
differ from other entries in its position within the procedure, in its parameter 
list, and in its 'return' attribute. Thus, one procedure can be invoked in 
several different ways if 'entry' statements appear in the procedure. 

A-10 AM83 



FORMAT' 

format (format-list) 

where the statement must be preceded by at least one label-prefix and~ 

format-list is defined as 

n format-item 

I 
format-item 

[ ~ ~ )] {(fOrmat-list 

, ... 

where n is an unsigned integer and the format-items are as follows: 

a(w) 
b(w) 
f(li,fw,dm) 
e(,li,fw,ms) 
c(part1,part2) 
P"K" 
x(e) 
column(.§.) 
skip(.§.) 
line(.§.) 
page 

transmit a character string value representation 
transmit a bit string value representation 
trans~it a fixed-point value representation 
transmit a floating-point value representation 
transmit a complex value representation 
transmit a pictured value representation 
skip.§. character positions 
skip to column.§. of a line 
skip .§. lines 
skip to line.§. of a page 
skip to the next page 

In these format items, li (width) is the number of characters in an input or 
output field, fw (fraction width) is the number of fractional digits in the 
value representation, d~ (decimal multiplier) is a power of ten, ms (mantissa 
significance) is the number of digits in the mantissa of a floating-point value 
representation, part1 and part2 can each be any 'f', 'e', or 'p' format item, K 
must be a PL/I picture, .§. is an arithmetic expression, and ref is a 
format-valued reference. Some of the arguments of format-items can be omitted 
and default values are then assumed. 

The statement supplies a format-list for use in an edit-directed stream 
input/output statement. The format-list provides a format item for each value 
transmitted and also provides format items to skip spaces, lines, and pages 
between value representations. See Section XIV, "Stream Input/Output." 

A-11 AH83 



free , ... 

The option is selected as follows: 

• The 'in' option must be omitted if the storage being freed is a 
controlled variable. 

• The 'in' option must be omitted if the storage being freed is a based 
variable that is allocated in system storage: 

• The 'in' option can be omitted in any case in Multics PL/I; but 
Standard PL/I requires the option for a based variable allocated in an 
area. 

The statement frees the controlled or based variable designated by ref1. 
See Section VII, "Storage Management." 

A-12 



get 

where: 

{

fileCref1) 

string(e2) 

copy(ref2) 

copy(ref2) 

input-option is defined as 

(

dataC data-ref, 

list( get-item, 

edit {C get-item, 

get-item is defined as 

skip(U) } 
input-option 

) ( format-list )} .. .I 

{ 

target 

( get-item, multiQle-do )} 

and where: 

• The get-item for a 'data' option is restricted to a simple or 
unsubscripted structure-qualified variable reference. 

• The format-list is defined under the 'format' statement in this 
appendix. 

• The multiple-do is defined under the 'do' statement in this appendix. 

The options are selected as follows: 

• The 'file' and 'string' options can be omitted. 
'file(sysin)' is assumed. 

In this case, 

• The 'copy' option can be omitted. In this case, no copy of the input 
is made. 

• The parenthesized argument '(ref2)' in the copy 
omitted. In this case, 'copy(sysprint)' is assumed. 

option can be 

• Either the 'skip' option or the input option (but not both) can be 
omitted. In this case; the corresponding skip or input is not 
performed. 

A-13 Al'183 



• The parenthesized argument '(gl)' in the 'skip' option can be omitted. 
In this case, ' skip ( 1 )' is assumed. 

• The list of input items '( data-ref, ... )' can be omitted from the 
'data' input option. In this case, a list of input items including 
every level-one variable accessible from the 'get' state~ent is 
assumed. This variation is expensive, and should not be used without 
due consideration of the cost. 

The options can be given in any order, but the order shown above is recommended. 

The statement reads value 
assigns their values to 
Input/Output." 

{
go to} ref 
go to 

representations from a 
program variables. See 

stream 
Section 

data 
XIV, 

set and 
"Stream 

The statement transfers control to the statement specified by the value of 
ref. See Section XI, "Prograo Flow." 

A-14 AH83 



if ~ then ex1 [else eX2] 

where ex1 and ex2 are executable units. An executable unit is defined as: 

a &£QYQ (a 'do' statement, other statements, and an 'end') 
a begin-block (a 'begin' statement, other statements, and an 'end') 
an independent statement (any statement which acts alone). 

An independent statement is any statement except the following: 

declarative statements: 'declare' and 'default' 
dependent statements: 'format' ,'do' ,'begin' ,'procedure' ,'entry','end'. 

The 'else ex2' clause can be omitted, giving a statement of the form: 

if ~ then ex1 

The statement evaluates ~ to produce a bit-string value. If the bit-string 
value contains a '1' anywhere (and therefore represents "true"), then ex1 is 
executed and ex2 is skipped. If the bit-string contains only '0' bits, then exl 
is skipped and ex2 is executed. If the 'else' clause is omitted, then no. action 
is performed when the bit-stri~g.contains only '0' bits. 

LOCATE 

locate id set(refl) file(ref2) keyfrom(~) 

The options can be omitted as follows: 

• The ' set' option can be 
(elsewhere) as 'based(g)', 
case, 'set(g)' is assul7led. 

o~itted provided that id is ·declared 
where g is a locator qualifier. In this 

• The 'file' option cannot be OMitted. 

• The 'keyfrom' option nust be ol7litted if the file designated by ref1 
does not have the 'keyed' attribute. 

The options can be given in any or-der, but the order shown above is recommended. 

The statement allocates storage for the based variable id and sets the 
locator variable specified by refl. The allocated storage serves as a. buffer, 
and values can be assigned to it by subsequent state~ents. Then, ~hen the next 
output statement is encountered (or the file is closed), the ontents of the 
buffer are output. Output is directed to the file desisnated y ref2 using the 
key given by §. (if the 'keyfro::1' option occurs). See Se~t 0:1 XV, "Record 
Input/Output." 

.A-15 At183 



I 

I 

I 

NULL 

The statement does nothing. It can be used where an executable-unit is 
called for, as in the 'if' and 'on' statements. See SectIons XI and XIII, 
"Program Flowh and "Condition Handling", respectively. 

(")u 
vu 

---'I 

on cr-list [snap] 'on' unit 

where cr-list is a 
'on' unit IS: 

a begin block 
a sta"t'emenr--

list of 

the keyword 'system' 

I 
I 
I 

condition references separated by commas and 

If the 'on' unit is a 'begin' block, then a 'return' statement can appear only 
if it is within a procedure within the 'begin' block. If the 'on' unit is a 
statement, then it must not be any of the following: 

declarative statements: 
dependent statements: 
other excluded statements: 

'declare' and 'default'. 
'format','do','begin','procedure','entry','end'. 
'on','revert','if','return'. 

If an 'on' statement begins with a condition prefix, that prefix applies only to 
the evaluation of the condition name. If the 'on' unit is a 'begin' block or a 
statement, it can have its own condition prefixes, but it cannot have a label 
prefix. 

The statement establishes the 'on' unit as the action which will be taken 
when any conditions in cr-list are signalled. If 'snap' appears~ the Multics 
probe command is called if the program is running interactively. If the program 
is running in absentee, the trace stack command is called. Therefore, either 
probe or trace stack is called Just before the 'on' unit is invoked. If 
'system' is used-as the 'on' unit, the PLII default 'on' unit for the condition 
is invoked. See Section XIII, "Condition Handling." 

9178 A-16 AM83A 



OPEN 

open {file(ref1) title(e1) linesize(e2) pagesize(e3) fd} , ... 

where: 

where fd (the file description) is defined as: 

{

input 
stream 

output [print] [environment (interac ti ve) 1 } 

record 
{

' sequential t ~nput1 
keyed sequential tout put environment(stringvalue) 

keyed direct update 

The options and attributes are selected as follows: 

9/78 

• The 'file' option cannot be omitted. 

• The 'title' option can be omitted. In this case, 'title(vfile fn)' 
is assumed, where fn is the file name specified by the 'file' option. 

• The 'linesize' and 'pagesize' options must be omitted unless the file 
description includes 'output print'. 

• The 'linesize' option can be omitted when the file description 
includes 'output print'. In this case, 'linesize(132)' is assumed for 
most devices (including the printer) but the line size is 
device-dependent for a terminal that uses the tty_ 1/0 module. 

• The 'pagesize' option can be omitted when the file description 
includes 'output print'. In this case, 'pagesize(60)' is assumed for 
most devices (including the printer) but the page size is infinity for 
a terminal that uses the tty_ 1/0 module. 

• The 'stream' and 'record' attributes can be omitted because they can 
be deduced from other attributes given in the file description. 

• The 'output' attribute can be omitted if the file description contains 
the 'print' attribute. 

• The 'environment' attribute can be abbreviated to 'env'. 

• The 'keyed' attribute can be omitted if the file description includes 
the 'direct' attribute. 

A-17 AM83A 



I 

The statement supplies information to control the transmission of data 
between a data set and program storage. The information is stored in a 
file-state block designated by the file value supplied by ref1 in the 'file' 
option. The data set to be used is designated by the character-string value 
supplied by el in the 'title' option. The format of a printed page of output is 
specified by-rntegers supplied by e2 and'e3. The intended use of the data set 
is specified by the file description. -See Sections XIV and XV, on "Stream 
Input/Output" and "Record Input/Output," respectively. 

PROCEDURE 

procedure 
id, ••• ) [attribute •.• ][recursive] 

proc 

where: 

• The statement is the first statement of a procedure block. 

• The statement must begin with at least one label prefix; however, no 
label prefix can have a subscript. 

• If there are no parameters, the parameters list '( id, ••• )' can 
either be omitted or written as 'C)'. 

• Each identifier in the parameter list must be a level-one variable 
declared immediately within the procedure. 

• The number of parameters in the parameter list must equal the number 
of arguments in the argument list of the 'call' statement or function 
reference that invoked this entry. 

• The 'returns' attribute must be omitted or must appear according to 
how the procedure is invoked by a 'call' statement or a function 
reference. If the 'reducible' attribute is given, 'irreducible' 
cannot be given. 

The 'option' attribute may not specify the keyword 'constant'. It may 
specify 'support' only if the 'procedure' statement heads an 'external 
procedure'. It also may specify the word 'non quick'. If the 
'options(main)' attribute appears in an 'external procedure' statement 
and it is the first procedure invoked in a run unit, then the 
'external procedure' is considered the 'main procedure'. 

• dec1 is the declaration of the value which is returned by the 
procedure when it is invoked at this entry. 

• The 'recursive' keyword must be used in Standard PL/I if the procedure 
is recursive. This keyword is ignored by Multics PL/I, which assumes 
that all procedures are recursive. 

The order in which the attribute and 'recursive' keyword are given above is 
recommended, but the reverse order is permitted. 

The statement provides the principal entry to a procedure. 
'entry' statements can be used to provide additional entries to 
procedure. See Section XII~ "Procedure Invocation." 

9/78 A-18 

One or more 
the same 

AM83A 



put jfilecrefll {::::ce~~nece2l} I 
lstringC targetl 

output-option 

where: 

output-option is defined as 

put-item, 

put-item, 

I
dataC 

listC 

edit {c put-item, ) ( format-list )} . ..1 
put-item is defined as 

{

§.3. 

C put-item, multiple-do l} 

and where: 

• The expression, §.3., in a put-item for a 'data' option is restricted to 
a variable reference. 

• The format-list is defined under the 'format' statement in this 
appendix. 

• The multiple-do is defined under the 'do' statement in this appendix. 

The options are selected as follows: 

• The 'file' and 'string' options can be omitted. In this case, 'file 
(sysprint)' is assumed. 

• The 'skip' option, 'page' option, 'line' option, and output-option can 
be omitted in any way provided one of them remains. In these cases, 
the corresponding output operation will not occur. 

• The parenthesized argument '(~)' in the 'skip' option can be omitted. 
In this case, ' skip ( 1 )' is assumed. 

• The list of output items '( put-item, .•. )' can be omitted from the 
'data' output option. In this case, a list of output items including 
every level on variable accessible from the 'put' statement is 
assumed. 

A-19 Al183 



The options can be given in any order, but the order shown in the syntax diagram 
is recommended. 

The statement takes values from program storage (or computes values) and 
writes their representations into a stream data set. See Section XIV, "Stream 
Input/Output." 

read file(ref1) 
{

key (e 1 ) } 

keyto(target) I 
into(ref2) I 
set(ref3) 

ignore(e2) 

The options are selected as follows: 

• The 'key' option must be omitted if the file is not 'keyed' or if the 
'ignore' option is used. 

• The 'key' option cannot be omitted if the file is 'direct'. 

• The 'key to' option must be 
sequential' or if the 'ignore 

omitted if the 
option is used. 

file is not 'keyed 

The options can be given in any order, but the order shown above is recommended. 

The statement reads a record from a data set or skips records in a 
sequential data set. The data set is specified by the file value given in the 
'file' option. The 'key' option gives a character-string value used to locate a 
record. The 'key to' option gives a storage unit suitable for a character-string 
value representing a key. The 'into' option provides storage for an input 
value. The 'set' option provides storage for a pointer to a system buffer into 
which (if this option is used) the record will be read. The 'ignore' option 
gives the number of records to be skipped as an integer value. See Section XV, 
"Record Input/Output." 

A-20 Mi83 



RETURN 

---------------, 
I 

return e ) ] 

The parenthesized expression must appear if the statement returns to a function 
reference, and must be omitted if the statement returns to a procedure call. 

The statement terminates execution of a procedure and returns control to 
the function reference or 'call' statement that invoked it. If this is a return I 
from a 'main procedure', then this is the same as a 'stop' statement. See 
Section XII, "Procedure Invocation." 

REVERT 

revert ~, 

where cr must be a condition reference. 

The statement reverts each condition name provided it was established by an 
'on' statement in the current block. See Section XIII, "Condition Handling." 

REWRITE 

~ ~-~----~~.--~-~~~ --~-~~----..... 
I 

rewrite file(ref1) key(~) from(ref2) 

The options are selected as follows: 

• The 'key' option must be omitted if the file is not 'keyed'. 

• The 'key' option cannot be omitted if the file is 'direct'. 

The options can be given in any order, but the order shown above is recommended. 

The statement replaces a record in a data set. The record to be replaced 
is specified by the file value given by the 'file' option and the 
character-string value given by the 'key' option. The new value for the record 
is supplied by the reference in the 'from' option. See Section XV 1 "Record 
Input/Output." 

9/78 A-21 AM83A 



SIGNAL 

signal cr 

where cr must be a condition reference. 

The statement signals the condition designated by cr. See Section XIII, 
"Condition Handling." 

STOP 

stop 

This statement terminates the program if executed within a run unit. If it 
is not executed within a run unit, control is returned to the Multics command 
processor in such a way that the remainder of the command line is executed. 

WRITE 

write file(refl) keyfrom(~) from(ref2) 

The options are selected as follows: 

• The 'key' option must be omitted if the file is not 'keyed'. 

• The 'key' option cannot be omitted if the file is 'direct'. 

The options can be given in any order, but the order shown above is recommended. 

The statement adds a record to a data set. The destination of the record 
is specified by the file value given by the 'file' option and the 
character-string value given by the 'keyfrom' option (if present). The value 
for the record is supplied by the reference in the 'from' option. See Section 
XV, "Record Input/Output." 

9/78 A-22 AM83A 



APPENDIX B 

NEW FEATURES 

This appendix has been added to the manual to describe two new features 
that will be installed for MR7.0. They are: unsigned binary and 4-bit decimal. 
For the next revision of the manual, these features will be incorporated into 
text and all related topics will reflect their addition. At the present, 
however, the text of the main part of the manual has not been changed. 

'signed' AND 'unsigned' ATTRIBUTES 

The 'signed' and 'unsigned' attributes are both nonstandard and both only 
apply to arithmetic values. They influence the representation of values in 
storage. Real arithmetic data may be stored in variables with or without a sign 
and storage sharing requires that the variables sharing storage are either 
'signed' or 'unsigned', as well as data types and alignment. 

The 'signed' attribute has the following constraints: 

• 'signed' arithmetic variables always contain storage to represent the 
sign of their value 

• 'signed' is assumed if 'unsigned' is not specified 

• 'signed' may be specified for 'fixed' or 'float' variables 

The 'unsigned' attribute has the following keyword and abbreviation: 

Keyword Abbreviation 

unsigned uns 

and has the following constraints: 

9/78 

• 'unsigned', unaligned arithmetic variables do not contain storage to 
represent the sign of their value 

• 'unsigned' must be specified; it is not assumed 

• 'unsigned' variables may only contain nonnegative values 

• 'unsigned' variables may only be specified for 'real', 'fixed', 
'binary' variables 

• the 'size' condition occurs when a negative value is assigned to a 
variable whose declaration contains the 'unsigned' attribute 

B-1 AM83A 



'9-bit' AND '4-bit' DECIMAL 

In Multics PLII, decimal data may be stored in one of two ways: as '9-bit' 
decimal or as '4-bit' decimal. Aligned decimal data, which is the default, is 
stored as '9-bit' decimal with each digit occupying nine bits. Unaligned 
decimal data is stored as '4-bit' decimal with each pair of digits occupying 
nine bits. For a more complete description of standard data types, see 
"Standard Data Type Formats" in Appendix D of the MPM Reference Guide. In that 
discussion, descriptor types 9 through 12 apply to PLII '9-bit' decimal and 
descriptor types 44 through 46 apply to PLII '4-bit' decimal. Also, for a more 
detailed discussion of data descriptors, see "Subroutine Calling Sequences" in 
Section II of the MPM Subsystem Writers' Guide. 

9/78 B-2 AM83A 



HISCELLANEOUS 

$ indicator 
drifting 3-37 
leftmost 3-34 

%include macros 5-7 

& operator 9-41 

* operator 9-9 

+ indicator 
drifting 3-36 
leftmost 3-33 

+ operator 
infix 9-6 

+ operator prefix 9-6 

indicator 3-38 

- indicator 
drifting 3-36 
leftmost 3-33 

- operator 
infix 9-6 

- operator prefix 9-6 

-brief option 16-15 

-brief_table option 16-15 

-check option 16-15 

-extend option 16-11 

-length option 16-12 

-list option 16-15 

-map option 16-15 

-nnl option 16-12 

-optimize option 16-15 

-profile option 16-15, 16-18 

-source option 16-15 

INDEX 

i-1 

-symbols option 16-15 

-table option 16-15, 16-17 

. indicator 3-38 

I in comment 5-10 

I indicator 3-38 

I operator 9-8 

II operator 9-32 

9 indicator 
nonnumeric 3-43 
numeric 3-30 

< operator 
for arithmetic values 9-10 
for string values 9-37 

<= operator 
for arithmetic values 9-10 
for string values 9-37 

= operator 
for address values 9-48 
for arithmetic values 9-10 
for string values 9-37 

> operator 
for arithmetic values 9-10 
for string values 9-37 

>= operator 
for arithmetic values 9-10 
for string values 9-37 

A 

a format item 14-29 

a indicator 3-43 

abbreviations and defaults 
alignment attributes 3-63 
area attribute 3-48 
arithmetic attributes 3-8 
definition of default 3-9 
dimension attribute 3-55 

AM83 



abbreviations and defaults (cont) 
guidelines for use 3-8 
line length 14-11 
management class attributes 7-11 
ordinary string attributes 3-17 
page length 14-11 
picture attributes 3-23 
shortened variable references 8-25 

abbreviations and defaults files 
14-12 

abs function 9-16 

absolute pathname 16-1 

activation indexes 12-35 

activation internal regions 7-4 

activation pointer 12-36 

activation regions 
for procedure activation 12-10 
in recursion 12-28 

activation variable reference 12-38 

add function 9-10 

addr function 

addrel function 9-52 

addresses 
assignment of 10-2 
attributes 3-45 

9-49 

implicit locator targets 4-6 
operations 9-48 
values 2-3 

after function 9-35 

aggregate 
assignment of 10-3 
expressions 8-5 

aggregates 
aggregate type 3-49 

role of 3-2 
guidelines for 
operations on 
values 2-4 

use 3-60 
9-2 

algebraic comparison operators 

aligned attribute 3-62 

alignment types 
attributes 3-61 
role of 3-2 

allocate statement 
for based variables 7-22 
for controlled variables 7-18 
syntax diagram A-5 

allocation function 9-72 

9-10 

i-2 

allocation of storage 7-1 

ambiguous declaration 6-19 

and operator 9-41 

applicability of declarations 6-17 

approximation of arithmetic values 
for conversion 4-8 

area 
assignment of 10-3, 10-7 
attributes 3-47 
condition 7-40 
initialization of 7-6 
operations 9-48 
size 3-47 
storage 3-46 
values 2-4 

area function 9-53 

argument evaluation 
in operations 9-2 

arguments 12-2 
by-reference 12-3 
by-value 12-3 
classification of 12-3 
connected and unconnected 12-5 
guidelines for 12-8 
interpretation of 12-6, 12-10 
passing of 12-2 

arithmetic 
assignment 10-1 
constant literals 8-29 
constants 

as lexemes 5-5 
data types 3-5 
guidelines for data 3-14 
operations 9-3 
storage 3-4 
values 2-1 

arithmetic decimal-point indicator 
3-39 

array 
values 2-4 

arrays 3-53 
dimension attribute 3-54 
operations 9-53 
storage 3-57 
storage layout 3-71 
storage types 3-56 

ASCII characters 2-2, 3-16 
new line 14-2 
rlew page i 4-2 

assignment statements 10-1 
area assignments 10-7 
form of 10-4 
guidelines for 10-8 
interpretation of 10-5 

AM83 



assignment statements (cont) 
order of interpretation 10-7 
overlapping string targets 10-5 
pseudo-variables 10-9 
restrictions 10-5 
special string target 10-6 
syntax diagram A-6 

associated storage types 8-21 

asterisk extent 12-7 

atan function 
Cartesian 9-26 
ordinary 9-25 

atand function 
Cartesian 9-27 
ordinary 9-26 

atanh function 9-29 

attach description 
for record files 
for stream files 

16-10 
15-5 
14-7 

attaching files 16-9 

attributes 6-20 
classification of 6-24 
complete sets 6-20 

for built-in function names 6-23 
for condition names 6-23 
for constant literals 8-34 
for constant names 6-22, 8-39 
for generic names 6-23 
for variable names 6-21 

automatic variables 7-16 
attribute 7-10 
guidelines for 7-32 

B 

b format item 14-29 

b indicator 3-38 

base attribute 
guidelines for choice 

base attributes 3-6 

base variable 7-25 

based input 15-16 

based output 15-20 

based variables 7-20 
attribute 7-10 
guidelines for 7-34 

baseno function 9-52 

baseptr function 9-51 

of 3-15 

i-3 

before function 9-34 

begin block 
as executable unit 11-4, 11-19 
as program structure 5-18 
in general recursion 12-40 

begin statement 
syntax diagram A-6 

binary 
attribute 
function 

bind command 

3-6 
9-62 

7-14, 16-7 

binding 16-7 

bit 3-16 
attribute 3-16 
function 9-65 
operations 9-41 

bit values 2-3 

block 
activation of 11-19 
as program structure 
exit from 11 -1 6 

BNF snytax 5-1 

body 
of do group 11-9 

body of statement 5-14 

books on PL/I 1-12 

bool function 9-42 

Boolean values 2-3 

bounds of array 3-54 

box of storage unit 3-2 

break character 5-3 

5-18 

built-in function names 8-43 
attributes for 6-23 

built-in function references 8-42 

by-reference arguments 12-3 

by-value arguments 12-3 

C 

c format item 14-34 

call statement 12-9 
execution of 12-9 
syntax diagram A-6 

AM83 



capacity of storage 7-37 

ceil function 9-12 

chained recursion 12-28 

character 
attribute 3-16 
function 9-64 
operations 9-45 
values 2-2 

characters 2-2, 3-16 
classification of 5-2 
escape conventions 8-34 

classification 
of arguments 12-3 
of attributes 6-24 
of characters 5-2 
of conditions 13-2 
of lexemes 5-12 
of operators 5-6 
of picture indicators 3-21 
of pictures 3-22 
of statements 5-16 
of values 2-5 

clause 
declaration 6-5 

clauses 
general form 5-14 

close statement 
for record files 15-10 
for streams 14-11 

close statements 
syntax diagram A-7 

collate function 9-45 

collating sequence 9-39, 9-46 

column format item 14-40 

column position 14-5 
initialization of 14-10 

combined declarations 6-6 

command level 
attachment 16-9 

comments 
as lexemes 5-10 

common data attributes 9-5 

comparison operations 9~37 
for value addresses 9-48 

comparison operators 
for arithmetic values 9-10 

compiler 16-3 

i-4 

compiling an external procedure 16-14 

complete attribute sets 6-20 

complex 
attribute 
function 

3-5, 3-23 
9-18, 9-60 

complex arithmetic function 

complex format items 14-34 

complexvalues 2-1 

component names 16-2 

components of aggregate 3-49 

compound list items 14-22 
array variable names 14-22 
iterated list 14-23 

9-17 

structure variable names 14-23 

computational conditions 13-2 

computational values 2-5 

concatenate operator 9-32 

condition 
at tr ibute 13-6 

condition names 
attributes for 6-23 

condition prefix 13-7 
purpose of 5-13 
scope of 13-8 

conditions 13-1 
built-in functions 13-15 
classification of 13-2 
declarations of 13-7 
default enabling 13-9 
enabling and disabling 13-7 
fatal 13-13 
for conversion 4-20 
for storage management 7-39 
for stream input/output 14-44 
guidelines for 13-17 
language-defined 13-2 

computational 13-2 
input/output 13-4 
storage 13-3 
termination 13-3 

occurrence of 13-12 
principal features 13-1 
programmer-defined 13-5 
references 13-6 
signalling of 13-12 

conjg function 9-19 

consequences of if statement 11-4 

constant literals 8-29 
attributes for 8-34 
for arithmetic values 8-29 

AM83 



constant literals (cont) 
for string values 8-32 

constant names 
attributes for 6-22 

constant reference 
as destination of goto 11-16 

constant references 8-35 
to external entries 8-37 
to files 8-38 
to record files 15-4 
to statement addresses 8-35 
to stream files 14-6 

constant storage 7-13 
attribute 7-10 

containing references 8-15 

containment 
definition of 6-3 

contents 
of storage unit 3-2 

contextual declaration 6-10 

control block pointer 16-10 

control characters for streams 14-2 

control format items 14-39 

control list in do statement 11-10 

controlled variables 7-18 
attribute 7-10 
guidelines for 7-33 
stacking of 7-18 

conversion condition 4-21, 14-45 
for arithmetic target 4-7 
for bit-string target 4-16 

conversion of values 4-1 
guidelines for functions 9-69 

conditions for 4-20 
contexts 4-1 

arguments and results 4-3 
assignment statements 4-2 
assignment-like contexts 4-3 
bit-string targets 4-6 
built-ins and expressions 4-4 
character-string targets 4-5 
integer targets 4-5 
locator targets 4-6 

operations for 9-56 
targets 4-2 
to aggregate targets 4-18 
to arithmetic targets 4-7, 9-59 
to bit-string targets 4-16, 9-64 
to character-string targets 4-10, 

9-64 
to locator targets 4-18, 9-66 

convert function 9-57 

i-5 

copy function 9-32 

copy option 
in get statement 14-13 

cos function 9-24 

cosd function 9-25 

cosh function 9-28 

cr indicator 3-33 

credit indicator 3-33 

cross-section of array 8-11 

current record indicator 15-2, 15-4 
initialization of 15-8 

D 

dangling else clause 11-7 

data 
description of 1-2, 3-1 
storage 3-1 
values 2-1 

data address values 2-5 

data format items 14-28 

data frame 
of storage unit 3-10 

data set designator 14-5, 

data sets 
record 15-2 
stream 14-1 

data types 
addresses 3-45 
areas 3-47 
arithmetic 3-5 
complete attribute sets 
conversion of 4-1 
ordinary strings 3-16 
pictured strings 3-20 
role of 3-2 

data-directed input/output 

date function 9-71 

db indicator 3-33 

debit indicator 3-33 

decat function 9-36 

decimal 
attribute 3-6 
function 9-63 

15-4 

6-21 

14-16 

AM83 



decimal-point indicator 3-32 

declaration 6-1 
~bbreviations and defaults 
ambiguous 6-19 
applicability 6-17 
clause of 6-5 
combined declarations 6-6 
contextual 6-10 
establishment of fi-1 
factored declaration 6-6 
implicit 6-10 

6-6 

of built-in function names 
of condition names 6-23, 
of constant names 6-22 

6-23 
14-7 

of entry names 6-8. 
of format names 6=9 
of generic names 6-23 
of label names 6-8 
resolution of names 6-15 
short forms of 6-6 
structure declarations 6-5 

declarations 
of variable names 
simple declarations 

6-21 
6-4 

declare statement 6-4 
guidelines for 6-7 
sequential execution of 11-2 
syntax diagram A-7 

default statement 6-13 
sequential execution of 11-2 

default statements 
syntax diagram A-8 

defined variables 7-29 
attribute 7-10 
guidelines for 7-34 

delete statement 
for keyed input/output 15-12 

direct recursion 12-28 

directory segment 16-1 

disabling conditions 13-7 

divide function 9-10 

division operator 9-8 

do control 
FORTRAN 11-13 
index of 11-15 
repeat 11-12 
single value 11-11 

do group i i-8 
as consequence of if 11-6 
as executable unit 11-4 
as program structure 5-17 
body of 11-9 
index of 11-15 
iterative with index 11-10 
iterative without index 11-9 
noniterative 11-16 

do statement 
syntax diagram A-9 

dollar indicator 3-34 

dollar sign 5-3 

dot function 9-56 

double precision 3-7 

drifting-dollar indicator 3-37 

drifting-sign indicator 3-36 

dynamic linking 16-5 

for sequential input/output 15-14 E 

delete statements 
syntax diagram A-8 

descriptors 
for returned result 12-19 

designator of storage unit 3-2 

destination of goto statement 11-18 

digit indicator 3-22 

digits 5-2 

dimension attribute 3-54 

dimension function 9-54 

dimensionality of array 3-54 

direct attribute 15-9 

e (mathematical quantity) 9-21 

e format item 14-32 

e indicator 3-41 

edit-directed input/output 14-26 

editors 16-14 

edm editor 16-14 

elementary arithmetic operations 9-5 

elements of arrays 3-53 

else clause 11-3, 11-7 

empty function 9-53 

enabling conditions 13-7 

i-6 AH83 



enabling conditions (cont) 
for debugging 13-18 

end statement 12-22 
as procedure exit 12-11 
syntax diagram A-10 

end-round repetitions 14-41 

endfile condition 
for record input/output 
for stream input/output 

endpage condition 14-46 

15-24 
14-45 

entering an external procedure 16-14 

entry 
attribute 3-45 
constant names 8-35 

declaration of 8-37 

entry name versus segment name 16-3 

entry names 
gener ic 12-27 

entry points 
in another external procedure 12-23 
in same external procedure 12-23 
outside the program 12-24 

entry reference 12-22 
constant 12-23 
interpretation of 12-10 

entry references 
function 12-26 
variable 12-25 

entry statement 12-21 
syntax diagram A-10 

environment attribute 14-11, 15-9 

equivalenced based variables 7-25 

erf function 9-30 

erfc function 9-30 

error condition 13-20 

error function 9-30 

escape conventions 
for characters 8-34 

established on unit 13-13 

establishing on units 13-10 

establishment of declarations 6-1 

executable procedure segment 16-4 
name 16-3 

executable unit 11-4 

i-7 

executing a program 16-15 

exit from block 11-16 

exp function 9-21 

exponent 
of float value 3-6 

exponentiation operator 9-9 

expressions 8-1 
aggregate 8-5 
infix 8-47 
nested 8-2 
operator expression 8-46 
parenthesized 8-3 
prefix 8-47 
priority of operators 8-48 

extent 12-7 

extent functions 9-53 

extents 
evaluation of 7-6 
for areas 3-47 
for arrays 3-55 . 
for automatic variables 7-16 
for based variables 7-23 
for controlled variables 7-19 
for defined variables 7-29 
for parameter variables 7-20 
for static variables 7-18 
for strings 3-16 

external entry constant names 
declaration of 8-37 

external procedures 5=20 
binding 16-7 
compiling 16-14 
entering 16-14 
linking 16-5 

external regions 7-4 

external scope 7-14 
attribute 7-10 

F 

f format item 14-30 

f indicator 
fixed-point 3-40 
floating-point 3-42 

factored declarations 6-6 

false value 2-3 

fatal conditions 13-13 

field in stream 14-28 

AH83 



file 
a t t rib ute 3 _I~ 5 
constant references 8-38 
references 

in condition references 
to record files 15-4 

values 2-4 

file descriptions 
for record files 15-9 
for streams 14-11 

file name 14-5, 15-4 

file option 

14-5 

in close statement 14--11, 15-10 
in delete statement 15-12, 15-14 
in get statement 14-13 
in locate statement 15-20 
in open statement 14-10, 15-8 
in put statement 14-14 
in read statement 15-11, 15-14, 

15-16 
in rewrite statement 15-12, 15-15 
in write statement 15-11, 15-14 

file-state blocks 
for record files 15-3 
for streams 14-5 

files 
attachment 16-9 

record files 15-5 
streams 14-7 

opening 
for streams 14-8 
record files 15-6 

references 
for stream input/output 14-6 

filler storage 3-66 

filler zeros 3-8 

finish condition 13-20 

fixed 
attribute 
function 

3-5 
9-60 

fixed-point format items 14-30 

fixed-point picture attributes 3-22 

fixedoverflow condition 
for arithmetic target 4-8 
for conversion 4-20 

float 
attribute 
function 

3-5 
9-61 

floating-point format items 

floating-point indicator 3-41 

floating-point picture attributes 
3-22 

i-8 

floating-point values 3-6 

floor function 9-12 

flow of control 
guidelines for 
summary of 1-4 

format 
attribute 3-45 

11-1 
11-19 

format constant names 8-35 

format lists 14-41 

format statement 14-15 
in general recursion 12-40 
sequential execution of 11-2 
syntax diagram A-11 

FORTRAN control for do 11-13 

free statement 
for based variables 7-22 
for controlled variables 7-18 
syntax diagram A-12 

from option 
in rewrite statement 15-12, 15-15 
in write statement 15-11, 15-14 
omission of 15-20 

fully-qualified reference 6-17 

function references 
interpretation of 
result 12-16 

12-14 
12-15 

G 

general 
recursion 12-34 

generic entry names 12-27 

generic names 
attributes for 6-23 

get statement 14-13 
syntax diagram A-13 

goto statement 11-16 
as procedure exit 12-11, 12-15 
destination of 11-16 
in general recursion 
local attribute for 

goto statements 
syntax diagram 

guidelines 

A-14 

12-42 
11-17 

for %include macros 5-9 
for abbreviations and defaults 3-8 
for aggregates 3-60 
for arguments 12-8 
for arithmetic constants 8-32 

AM83 



guidelines (cont) 
for arithmetic data 3-14 
for assignment statements 10-8 
for built-in functions 8-45 
for condition han~ling 13-17 
for conditions 

for conversion 4-22 
for contextual declarations 6-11 
for conversion functions 9-69 
for data-directed input/output 

14-20 
for declare statements 6-7 
for default statements 6-15 
for edit-directed input/output 

14-42 
for flow of control 11-19 
for identifiers 5-4 
for implicit declarations 6-11 
for like attribute 6-13 
for list-directed input/output 

14-25 
for names 16-3 
for pictured strings 3-44 
for programmed functions 8-45 
for programs 5-20 
for storage class 7-32 
for string data 3-19 
for structures 3-50 
for studying PL/I 1-12 
for subscript list deletion 8-26 
for variable references 8-29 

guidelines for 
scope attributes 7-14 

H 

hbound function 9-54 

high function 9-47 

hyperbolic functions 9-28 

I 

identifiers 
as lexemes 5-3 
guidelines for 5-4 

if statement 11-3 
consequences of 11-4 
dangling else in 11-7 
syntax diagram· A-15 
test is 11-4 
within if statement 11-6 

imag 
function 9-18 
pseudo-variable 10-9 

imaginary outer block 6-4 

imaginary part 3-5, 10-9 

i-9 

immediate containment 
definition of 6-3 

implementation-dependent address 
functions 9-51 

implicit declaration 6-10 

implicit targets 4-4 

in option 7-22 

include macros 5-7 

inclusive-or operator 9-41 

increment of do group 11-13 

independent statement 
as executable unit 11-5 

index function 9-34 

index of do group 11-10 

indexed sequential Hultics file 15-3 

indicator 3-35 

infix operators 8-47 

infix sign operators 9-6 

initial attribute 7-10, 7-35 
evaluation of 7-6 

initialization of do group 11-13 

input at t'r i bute 
for record files 15-9 
for streams 14-11 

input/output 
conditions 
summary of 

13-4 
1-5 

insertion-character indicator 3-38 

integers 
implicit integer targets 4-5 

interactive streams 
description of 14-11 

internal regions 7-4 

internal scope 7-13 
attribute 7-10 

into option 
in read statement 15-11, 15-14 

io call command 16-10 

isub defined variables 7-31 

isubs 
as lexemes 5-7 

AH83 



isubs (cont) 
restriction of 12-3 

iterated format lists 14-41 

iterative do group 
with index 11-10 
without index 11-9 

K 

k indicator 3-41 

key condition 15-25 

key option 
in delete statement 15-12 
in read statement 15-11, 15-16 
in rewrite statement 15-12 

keyed attribute 15-9 

keyed record input/output 15-10 

keyfrom option 
in locate statement 
in write statement 

key to option 

15-20 
15-11 

in read statement 15-16 

keywords 
in statements 
versus names 

label 

5-14 
5-3 

L 

attribute 3-45 

label constant names 8-35 

label prefix 
for do statement 
for end statement 
purpose of 5-13 
to declare a name 

11-9 
11-9 

6-8 

language-defined conditions 
references 13-6 

layout conventions 11-20 

lbound function 9-54 

left-adjusted string 14-30 

13-2 

left-major order of arrays 3-51 

length function 9-40 

length of string 2-2, 3-16, 9-40 

letters 5-2 

i-10 

level numbers 3-49 

level references 8-15 

level-one variable 3-49 

lexemes 5-2 
Sinclude mac ros 
classification of 
identifiers 5-3 
isubs 5-1 
literal constants 
operators 5-6 
pictures 5-1 
punctuators 5-6 
separators 5-10 

5-1 
5-12 

5-5 

like attribute 6-11 

limit of do group 11-13 

line format item 14-40 

line number 14-5 

line option 
in put statement 14-14 

lin e size 14-5 

linemark 14-~ 

lineno function 9-11 

linking 16-5 

list option 
in get statement 
in put statement 

14-13 
14-14 

list-directed input/output 14-21 

listing segment 16-4 
name 16-3 

literal constants 
as lexemes 5-5 

local attribute 11-17 

local transfer of control 

locate statement 
syntax diagram 

15-20 
A-15 

location of variables 8-9 

locator 
attributes 3-45 
values 2-4 

locator qualifiers 8-21 

11-17 

locator-qualified variable reference 
locator-qualified deletion 8-28 

locator-qualified variable references 
8-20 

AH83 



locator-qualifiers 
deletion of 8-28 

log function 9-22 

10g10 function 9-22 

10g2 function 9-22 

logical operators 9-41 

low function 9-47 

M 

major names 8-7 

major types 10-2 

major variable 3-49 

management class 7-10 

mantissa of float value 3-6, 3-7 

manuals on PL/I 1-12 

mathematical operations 9-19 

max function 9-11 

maximum length of string 3-16 

member references 8-15 

members of structures 3-49 

min function 9-11 

mod function 9-14 

mode attributes 3-5 
for pictured storage 3-23 
guidelines for choice of 3-14 

modules 16-11 
for record files 15-5 
for stream files 14-7 
record stream 16-12 
syn 16-12 
tty- 16-11 
vfile 16-11 

multi-valued functions 9-20 

Hul tics files 14=1~, 15-2 

multiplication operator 9-7 

multiply function 9-10 

N 

name 
segment 16-1 

name condition 14-46 

name-sequence 
for declaration 6-16 
for name reference 6-17 

names 
componen t 16-2 
correspondence with storage 7-14 
deletion of 8-26 
guidelines for 
offset 16-2 
segment 

16-3 

for compiler 16-3 
special names 7-4 
versus keywords 5-3 

natural logarithms 9-21 

nested expressions 8-2 

nesting 
of blocks and groups 5-17 
of do statements 11-16 
of if statement 11-6 

next record indicator 15-2, 15-4 
initialization of 15-8 

no-suppression digit indicator 3-30 

noncomputational values 2-5 

noniterative do group 11-6, 11-16 

nonlocal transfer of control 11-17 

nonnumeric indicator 

nonnumeric picture attributes 3-22 

nonstandard operations 9-3 

nonvarying 
attribute 3-17 

normalized bounds of an array 3-56 

normalized structure levels 3-51 

not operator 9-41 

null function 9-50 

null record 15-2 

null statement 
in if statement 
syntax diagram 

11-8 
A-16 

nullo function 9-50 

number system 3-7 

number-of-digits in precision 3-7 

i-11 AM83 



numeric picture attributes 3-22 

o 

object segment 16-4 

occupation record 3-47 

occurrence of conditions 13-12 

offset 
attribute 3-45 
function 9-66 
values 2-4 

offset names 16-2 

on statement 14-11 
syntax diagram A-16 

on unit 
defaults 13-15 

on units 13-13 
establishing and reverting 13-10 
for debugging 13-18 
for file communication 13-18 
in general recursion 12-41 
restrictions 13-13 

onchar 
function 9-78 
pseudo-variable 10-13 

oncode function 9-76 

onfield function 9-77 

onfile function 9-79 
use of 15-24 

onkey function 9-77 
use of 15-24 

onloc function 9-76 

onsource 
function 9-78 
pseudo-variable 10-13 

open statement 
for record files 15-8 
for stream files 14-10 
syntax diagram A-17 

opening mode 16-10 

operands 8-47 

operations 9-1 
conventions for 9-3 

mathematical operations 
string operations 9-30 

conventions for arithmetic 
operations 9-4 

general rules 9-2 

i-12 

operations (cont) 
kinds of 

address 9-48 
area 9-48 
arithmetic 9-3 
array 9-53 
conversion 9-56 
mathematical 9-19 
strings 9-30 
system variable 9-70 

nonstandard 9-3 
summary of 1-4 

operator 9-7 

operator expressions 8-46 

operators 
as lexernes 5-6 
classification of 5-6 

optimization of expression evaluation 
8-5 

options 
general form 5-14 

options attribute 12-24 

or operator 9-41 

order of expression evaluation 8-5 

ordinary external regions 7-4 

output attribute 
for record files 15-9 
for streams 14-11 

output listing 16-4 

overflow condition 
for arithmetic target 4-8 
for conversion 4-21 

overlapping string targets 10-5 

p 

p format item 14-35 

padding for strings 3-17, 9-31 

page format item 14-40 

page option 
in put statement 14-14 

page size 14-5 

pagemark 14-1 

pageno 
function 9-71 
pseudo-variable 10-12 

AM83 



parameter variables 7-20 
attribute 7-10 
guidelines for 7-34 

parameters 12-19 
asterisk extent 12-7 
restrictions on 12-19 

parent designator 12-2, 12-37 

parenthesized expressions 8-3 

parenthesized iterated list 14-23 

partial based variables 7-28 

partial segment names 5-7 

partially-qualified reference 6-18 

passing arguments 12-2 

pathname 
absolute 
relative 

16-1 
16-1 

performance measuring 16-18 

permanent internal regions 7-4 

phase of iterative do 11-11 

picture 
attribute- 3-21 

complex 3-42 
fixed-point 3-26, 3-29 
floating-point 3-22, 3-27, 3-41 
nonnumeric 3-22, 3-43 
numeric 3-22 

attributes 
fixed-point 3-22 

classification of pictures 3-22 
guidelines for 3-44 
indicators 3-21 

arithmetic decimal point 3-39 
decimal-point 3-32 
digit 3-22 
dollar 3-34 
drifting-dollar 3-37 
drifting-sign 3-36 
floating-point 3-41 
insertion characters 3-38 
no-suppression digit 3-30 
nonnumeric 3-43 
scale-factor 

fixed-point 3-40 
floating-point 3-42 

sign 3-33 
zero-suppression 3-35 

lexemes 5-7 
storage 3-20 

arithmetic assignments 3-27 
arithmetic fetches 3-28 
character-string assignments 3-25 
character-string fetches 3-26 
interpretation of 3-23 

values 2-3 
arithmetic 3-26 

i-13 

picture (cont) 
values 

character strings 3-24 

picture format item 14-35 
character 14-38 
fixed-point 14-36 
floating-point 14-38 
use of 3-44 

pl1 command 16-14 

pointer 
attribute 3-45 
function 

nonstandard 9-52 
standard 9-66 

in recursion 12-36 
values 2-4 

position attribute 7-10, 7-31 

power operator 9-9 

precedence for operators 8-48 

precision 
attribute 3-7 
guidelines for choice of 3-15 

precision function 9-64 

prefix of statement 5-13 
condition prefix 13-7 
procedure statement 12-18 

prefix operators 8-47 

prefix sign operators 9-6 

print attribute 14-11 

print_attach_table command 16-11 

priority for operators 8-48 

probe command 16-17 

procedure block 
as program structure 5-18 
external 5-20 
in general recursion 12-39 

procedure statement 12-17 
prefix of 12-18 
syntax diagram A-18 

procedures 12-1, 12-17 
activation 12-10 
deactivation of 12-12 
execution 12-11 
exit from 12-11, 12-15 
recursive 12-20, 12-28 

prod function 9-55 

produce block 
sequential execution of 11-2 

AlvJ83 



produce statement 
sequential execution of 11-2 

product operator 9-7 

profile command 16-18 

program 5-20 
debugging 16-16 
execution 16-15 
guidelines for 5-20 
layout conventions 11-20 
monitoring 16-18 
structure of 1-3, 5-17 
syntax 5-1 
termination 16-16 
validity 1-10 

program flow 11-1 

programmed function references 8-39 

programmer-defined conditions 13-5 
references 13-6 

program_interrupt condition 14-5 

promotion of aggregates 4-18 

pseudo-variable 
in de statement 11=15 

pseudo-variables 
in input/output statements 14-24 
interpretation of 10-9 
list of 10-4 

punctuators 
as lexemes 5-6 

put statement 14-14 
syntax diagram A-19 

Q 

qedx editor 16-14 

quit condition 13-5 

R 

r format item 14-15 

read statement 
for keyed input/output 15-11 
for sequential input/output 15-14 
syntax diagram A-~O 

real 
attribute 3-5, 3-23 
function 9-18, 9-59 
pseudo-variable 10-9 
values 2-1 

real part 3-5, 10-9 

record condition 15-25 

record input/output 15-1 
attachment to Multics files 15-5 
based 15-16 
closing files 15-8 
conditions for 15-23 
data sets 15-2 
files 15-3 
keyed 15-10 
opening files 15-8 
operations 15-7 
sequential 15-13 

record stream I/O module 16-12 

recursion 12-28 
activation indexes in 12-35 
activation variable reference 12-38 
begin block 12-40 
chained 12-32 
format statement 12-40 
general 12-34 
goto statement 12-42 
on units 12-41 
parent designators 12-2, 12-37 
pointers in 12-36 
procedure block 12-39 
statement address constant 

reference 12-39 
surface 12-34 
with arguments 12-31 
without arguments 12-29 

recursive keyword 12-20 

recursive procedures 12-20 

refer option 7-24 

reference 
built-in function reference 8-42 
destination of goto 11-16 

restriction 11-18 
locator-qualified 8-20 
programmed function reference 8-39 
shortened references 8-25 
simple 8-8 
structure-qualified 8-15 
subscripted 8-11 
to variable 8-7 

references 
constant 8-35 

reI function 9-52 

related arithmetic types 3-26 

related character types 3-24 

relational operators 9-37 
for address values 9-48 
for arithmetic values 9-10 

relative pathname 16-1 

i-14 AM83 



release command 16-16 

remote format item 14-15 

remote format items 14-41 

repeat control for do 11-12 

replicators 
in initial attribute 7-35 
in picture 3-21 
in string constants 8-32 

resolution of names 6-15 
rules for 6-13 

resource reservation function 9-73 

return statement 12-22 
as procedure exit 12-11, 12-15 
assumed 11-2 
syntax diagram A-21 

returns attribute 12-19 

reverse function 9-40 

revert statement 
syntax diagram 

14-12 
A-21 

reverting on units 13-10 

rewrite statement 
for keyed input/output 15-12 
for sequential input/output 15-15 
syntax diagram A-21 

right-hand-side expression 10-4 

root block 6-4 

round function 9-13 

rounding 
for conversion 4-8 
for pictured strings 3-31 

s indicator 
drifting 
leftmost 

scalars 

3-36 
3-33 

s 

storage layout 3-67 
values 2-5 

scale attributes 3-5 
guidelines for choice of 3-15 

scale-factor in precision 3-8 

scale-factor indicator 
fixed-point 3-40 
floating-point 3-42 

i-15 

scope 
guidelines for 7-14 
of condition prefix 

scope attributes 6-22 

scope of block 5-18 

scopes 7-13 

search function 

segment 16-i 
directory 16-1 

9-43 

13-8 

executable procedure 16-4 
listing 16-4 
object 16-4 

self-describing structures 15-19 

separation rules 5-10 

separator lexemes 5-10 

sequential attribute 15-9 

sequential execution 11-2 

sequential Multics files 15-2 

set option 7-22 
in locate statement 15-20 
in read statement 15-16 

side effects 8-6 

sign function 9-17 

sign indicator 3-33 

sign operators 9-6 

sign-manipulation functions 

signal statement 14-13 
syntax diagram A-22 

9-16 

signalling of conditions 13-13 

significant digits 3-8 

simple based variables 7-26 

simple declarations 6-4 

simple defined variables 7-30 

simple variable references 8-8 

sin function 9-24 

sind function 9-25 

single precision 3-7 

single-value control for do 11-11 

AM83 



size condition 
for arithmetic target 4-8 
for conversion 4-20 
for pictured strings 3-31 

size function 9-73 

skip format item 14-40 

skip option 
in get statement 14-13 

snap keyword 13-11 

source segment 
name 16-3 

spaces 5-2 
as lexemes 5-10 

special array functions 9-55 

special characters 5-2 

special conversion functions 9-66 

special names 7-4 

special string target 10-6 

sqrt function 9-23 

stac function 9-74 

stack frame 12-10 
in recursion 12-28 

stacking controlled variables 7-18 

start command 16-16 

statement 
address values 2-3 
classification of 5-16 
parts of 

options 5-14 
attributes 5=15 
body 5-14 
clauses 5-14 
keywords 5-14 
prefix 5-13 

statement address constant references 
12-39 

static variables 7-17 
attribute 7-10 
guidelines for 7-33 

statistical analysis functions 9-29 

status indicator 14-5, 15-4 

storage 3-1 

storage class attributes 
guidelines for 7-32 

6-22 

i-16 

storage classes 7-15 

storage condition 7-39 

storage conditons 13-3 

storage layout 3-66 

storage limits 7-38 

storage management 7-1 
conditions for 7-39 
functions 9-72 
fundamental principles 7-3 
operations 7-6 

storage regions 7-4 
capacity of 7-38 
diagrams 7-5 

storage system 16-1 

storage types 3-2 
addresses 3-44 
aggregates 3-49 
areas 3-46 
arithmetic 3-4 
conversion of 4-1 
of expressions 8-3 
ordinary strings 3-16 
pictured strings 3-20 

storage unit 
box 3-2 
contents 3-2 

storage units 3-1 
data frame 3-10 
designator 3-2 
examples of 3-10, 3-18 
interpretation of 3-11 
storage type 3-3 

stream attribute 14-10 

stream input/output 14-1 
attachment to Multics files 
closing files 14-9 
conditions for 14-44 
data sets 14-1 
data-directed 14-16 
edit-directed 14-26 
files 14-4 
list-directed 14-21 
opening files 14-9 
operations 14-8 
statements 14-13 
string option 14-43 

stream pointer 14-5 
initialization of 14-10 

streams 
input 
output 
pseudo 

14-3 
14-3 
14-4 

AM83 



string 
function 9-67 
pseudo-variable 10-11 

string format items 14-29 

string option 14-43 
in get statement 14-14 

string options 
in put statement 14-14 

string overlay based variables 7-27 

string overlay defined variables 7-31 

string-type attributes 3-16 

strings 
assignment of 10-2 
attributes 3-16, 3-21 
constant literals 8-32 
constants 

as lexemes 5-5 
implicit string targets 4-5 
operations 9-30 
ordinary 3-16 
padding 3-17 
pictured 3-20 
values 2-2 

stringsize condition 
for conversion 4-22 
for string target 4-10 

structure 
storage types 3-50 

structure declarations 6-5 

structure-qualified variable reference 
name deletion 8-26 

structure-qualified variable 
references 8-15 

structures 3-49 
storage 3-51 
storage layout 3-68 
values 2-4 

subscripted variable reference 
subscript-list deletion 8-25 

subscripted variable references 8-11 

subscriptrange condition 8-11 
in goto statement 11-17 

subscripts 8-11 
deletion of 8-25 

subsets of PL/I 
for business programming 1-7 
for scientific programming 1-5 
for system programming 1-8 

substr 
function 9-33 
pseudo-variable 10-10 

subtract function 9-10 

sum function 9-55 

sunh function 9-28 

supplementary storage 3-66 

switch 
attachment 

for record files 
for stream files 

I/O 16-10 
name 16-10 
opening 

for record files 
for stream files 

standard 16-10 

switch goto statement 

15-5 
14-7 

15-6 
14-8 

11 -1 6 

syntactic validity 5-1 

syntax 
general rules 5-1 
of statements A-1 

notation A-1 

syntax of statement 
parts statement A-4 

syntax of statements 
conven tions A-5 

syn_ I/O module 16-12 

sysin stream file 14-12 

sysprint stream file 14-12 

system counter functions 9-71 

system keyword 13-11 

system variable 13-16 

system variable operations 

T 

tan function 9-24 

tand function 9-25 

tanh function 9-28 

targets 
for assignment 
for conversion 
implicit 4-4 

10-4 
4-2 

termination conditions 13-3 

9-70 

i-17 AM83 



test 
11-4 in if statement 

in while option 
11-13 

11 -9, 11 -11, 11 -1 2 , 

texts on PL/I 1-12 

then clause 11-3 

time function 9-71 

title option 
for record files 15~8 
for streams 14-10 

trace command 16-18 

transfer of control 11-9 

translate function 9-44 

transmission option 
in get statement 14-13 
in put statement 14-14 

transmit condition 
for record input/output 15~26 
for stream input/output 14-46 

trigonometric functions 9-24 

true value 2-3 

trunc function 9-12 

truncation functions 9-12 

truncation of arithmetic values 
for conversion 4-8 

tty_ I/O module 16-11 

u 

unaligned attribute 3-62 

unconnected aggregates 
restriction of 12-3 

undefined expression evaluation 8-6 

undefined file condition 
for record input/output 
for stream input/output 

underflow condition 
for conversion 4-21 

14-10 
15-26 
14-47 

for arithmetic target 4-8 

un spec 
function 9---68 
pseudo-variable 10-12 

unstructured Multics files 14-4 

update attribute 
for record files 15-9 

usage categories 7-12 

user io switch 16-10 

v 

v indicator 3-39 

v. indicatot 3-32 

valid function 

validity of programs 1-10 

values 
address 2-3 
aggregate 2-4 
area 2-4 
arithmetic 2-1 
array 2-4 
assignment of 10-1 
classification of 2-5 
conversion of 4-1 
kinds of values 2-1 
storage for 3-1 
string 2-2 
structure 2-4 

variabiliti attributes 3-17 

variable names 
attributes for 6-21 

variable references 8-7 
locator qualified 8-20 
shortened references 8-25 
simple 8-8 
structure-qualified 8-15 
subscripted 8-11 

variable storage 7-13 
attribute 7-10 

variables 3-1 

varying 
attribute 3-17 

verify function 9-43 

vfile I/O module 16-11 

w 

while option 
.L1I fORTRAN control 11-13 
in repeat control 11-12 
in single-value control 11-11 
without index 11-9 

working-directory 16-1 

i-18 AM83 



write statement 
for keyed input/output 15-11 
for sequential input/output 15-14 
syntax diagram A-22 

x 

x format item 14-39 

x indicator 3-43 

y 

y indicator 3-35 

z 

z indicator 3-35 

zero-suppression indicator 3-35 

i-19 AM83 



I 
I 
I 
I 
I 
I 

,J 

....J 

<.:J 
Z 
o 
....J 
<{ 

i
:J 
u 

HONEYWEll INFORMATION SYSTEMS 
Technical Publications Remarks Form 

SERIES 60 (LEVEL 68) MULTICS PLjI 
TITLE REFERENCE MANUAL 

ADDENDUM A 

ERRORS IN PUBLICATION 

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION 

ORDER No.1 AM83A, REV. 0 

DATED I SEPTEMBER 1978 

~\. Your comments .. • .. ill be promptly investigated by appropriate technical personnel and action will be taken U Ly' as required. If you require a written reply. check here and furnish complete mailing address below. 

FROM: NAME __________________________________________ ~ DATE ______________ __ 

TITlE __________________________________________ ___ 

COMPANY ________________________________________ __ 

ADDRE~ ________________________________________ __ 



PLEASE FOLD AND TAPE -
NOTE: U. S. Postal Service will not deliver stapled forms 

J ' 
I 
I 
I 
I 
I 

( 
<:) 
z 
o 
.J 
« 
I
::> 
u 

I 
I 
I 
! 
I 
I 
I 
I 

~-------------------------------------------------------------------+ 

ATTENTION: PUBLICATIONS. MS 486 

Business Reply Mail 
Postage Stamp Not Necessary if Mailed in the United States 

Postage Wilt Be Paid By: 

HONEYWELL INFORMATION SYSTEMS 
200 SMITH STREET 
WALTHAM, MA 02154 

FIRST CLASS 
PERMIT NO. 39531 
WALTHAM,MA 
02154 

I 
I 
I 
J 
I 
J 
I 
I 
I 
I 
I 
I 

-( 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

------------------------------------------------------------------------------------------------------------- ~ 

Honevweii ., 

I 
I 
I 
J 
I 
I 
t 
I 
J 
I 
I 

i 
I 
I 

C 



MULTICS PL/I REFERENCE MANUAL 
ADDENDUM A 

SUBJECT 

Additions and Changes to the Reference Manual for M ultics PUI 

SPECIAL INSTRUCTIONS 

This is the first addendum to the Multics PUI Reference Manual, Revision 0, dated June 1976. 

Insert the attached pages according to the collating instructions on the back ofthis cover. Throughout the manual, change 
bars in the margins indicate technical additions and changes; asterisks denote deletions. These changes wiil be incor
porated in the next revision of the manual. The index has not been updated but all single quote items have been merged with 
the regular index. Also, the items in Section 13, which appeared as being in Section 14, have been corrected. The changed 
items in this addendum are: 

begin statement 
on statement 

procedure statement 
translate, search, verify built-ins 

The new items are: 
acos, asin built-ins maxlength built-in 
clock, vclock built-ins octal, hexadecimal constants 
collate9, high9 built-ins options(constant) 
currentsize built-in stacq built-in 
fixed, scaled constants read statement 
ltrim, rtrim built-ins write statement 

The following items are documented in this addendum but will not be available until MR7.0. They are: 

4-bit decimal stackbaseptr 
codeptr stackframeptr 
environmentptr 
nonvar keyword 
options(main) 

st.op statement 
unsigned binary 

Work will begin in January on a revision to this manual. This will be the first complete revision since the manual was 
originally published, so we are interested in getting information about the things you feel the book does or does not do and 
an explanation of what these things are. All of your comments will be reviewed and, depending on the time available, as 
many as possible will be incorporated in the manual. Those that are not done at this time will be kept for future revisions or 
addenda. If it is decided that a suggestion cannot be used, we will write a response to that suggestion explaining why it was 
not used. 

A questionnaire precedes the standard user remark form on the last page of ihis addendum. 

Note: 

Insert this cover after the manual cover to indicate the updating of this document with Addendum A. 

SOFrW ARE SUPPORTED 

Multics Software Release 7.0 

ORDER NUMBER 

AM83A, Rev. 0 

36668 
2.25C83 
Printed in U.S.A. 

September 1978 

Honeywell 



COLLATING INSTRUCTIONS 

To update this manual, remove old pages and insert new pages as follows: 

Remove 

title page, preface 

table'of contents 

1-1 , 1-2 

1-9, 1-10 

1-13, 1-14 

3-17, 3-18 

3-33 through 3-38 

3-55, 3-56 

5-7 through 5-10 

5-15, 5-16 

7-19 through 7-22 

1-37 through 1-40 

8-11 through 8-20 

8-31 through 8-34 

8-39, 8-40 

8-43, 8-44 

9-3, 9-4 

9-17, 9-18 

9-23, 9-24 

9-29, 9-30 

9-31 through 9-52 

9-51, 9-58 

o 71 ~"' ... ~ •• ,y'" 0 711 ;1-' I I"lllVU51J ;1-' .... 

~ 1918, Honeywell Information Systems Inc. 

9118 

Insert 

title page, preface 

v through xx 

1-1 , 1-2 

1-9, 1-10 

1-13, 1-14 

3-17, 3-18 

3-33 through 3-38 

3-55, 3-56 

5-7 t.hrol)gh 5-10 

5-15, 5-16 

7-19 through 1-22 

1-37 through 7-40 

8-11 through 8-20 

8-31 through 8-34 

8-39, 8-40 

8-43, 8-44 

9-3, 9-4 

9-17, 9-18 

9-23, 9-24 
9-24.1, blank 

9-29, 9-30 

9-37 through 9-40 
9-40.1, blank 
9-41 through 9-52 
9-52.1, 9-52.2 

9-57, 9-58 

9-71 through 9=74 
9-14.1, blank 

File No.: 1L23 

AM83A 



Remove 

9-57, 9-58 

9-71 through 9-74 

10-13. 10-14 

11-11, 11-12 

12-5, 12-6 

12-9, 12-10 

12-17, 12-18 

12-31, 12-32 

13-11 through 13-14 

14-1 through 14-4 

14-35 through 14-38 

14-43, 14-44 

15-5, 15-6 

15-21 through 15-26 

16-9, 16-10 

16-13, 16-14 

16-17 through 16-20 

A-5 through A-8 

A-15 through A-18 

A-21, A-22 

i-1 through i-19 

9/78 

Insert 

9-57, 9-58 

9-71 through 9-74 
9-74.1, blank 

10-13, 10-14 

11-11, 11-12 

12-5, 12-6 

12-9, 12-10 

12-17, 12-18 

12-31, 12-32 

13-11 through 13-14 

14-1 through 14-4 

14-35 through 14-38 

14-43, 14-44 
14-44.1, blank 

15-5, 15-6 

15-21 through 15-24 

16-9, 16-10 

16-13, 16-14 

16-17 through 16-20 

A-5 through A-8 

A-15 through A-18 

A-21, A-22 

B-1, B-2 

i-1 through i-19 

questionnaire 

AM83A 



HonevweU information Systems 
In the U.S.A.: 200 Smitfl Street, MS 486. WaIth8m. Massachusetts 02154 
In Canada: 2025 Sheppard Avenue East. WIIIowd •• Ontario M2J 1W5 

In the U.K.: Gre~ West Road. Brentford. Middesex TW8 90H 
In Australia: 124 Walker Street, North Sydney. N.S.W. 2060 

In Mexico: Avenida Nuevo Leon 250, Mexico 11, D.F. 

27537, 5e5S0, Printed in U.S.A. AMS3-00 


	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	018
	019
	02-01
	02-02
	02-03
	02-04
	02-05
	020
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	03-30
	03-31
	03-32
	03-33
	03-34
	03-35
	03-36
	03-37
	03-38
	03-39
	03-40
	03-41
	03-42
	03-43
	03-44
	03-45
	03-46
	03-47
	03-48
	03-49
	03-50
	03-51
	03-52
	03-53
	03-54
	03-55
	03-56
	03-57
	03-58
	03-59
	03-60
	03-61
	03-62
	03-63
	03-64
	03-65
	03-66
	03-67
	03-68
	03-69
	03-70
	03-71
	03-72
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	07-25
	07-26
	07-27
	07-28
	07-29
	07-30
	07-31
	07-32
	07-33
	07-34
	07-35
	07-36
	07-37
	07-38
	07-39
	07-40
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	08-24
	08-25
	08-26
	08-27
	08-28
	08-29
	08-30
	08-31
	08-32
	08-33
	08-34
	08-35
	08-36
	08-37
	08-38
	08-39
	08-40
	08-41
	08-42
	08-43
	08-44
	08-45
	08-46
	08-47
	08-48
	08-49
	08-50
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	09-24.0
	09-24.1
	09-24.2
	09-25
	09-26
	09-27
	09-28
	09-29
	09-30
	09-31
	09-32
	09-33
	09-34
	09-35
	09-36
	09-37
	09-38
	09-39
	09-40.0
	09-40.1
	09-40.2
	09-41
	09-42
	09-43
	09-44
	09-45
	09-46
	09-47
	09-48
	09-49
	09-50
	09-51
	09-52.0
	09-52.1
	09-52.2
	09-53
	09-54
	09-55
	09-56
	09-57
	09-58
	09-59
	09-60
	09-61
	09-62
	09-63
	09-64
	09-65
	09-66
	09-67
	09-68
	09-69
	09-70
	09-71
	09-72
	09-73
	09-74.0
	09-74.1
	09-74.2
	09-75
	09-76
	09-77
	09-78
	09-79
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	12-17
	12-18
	12-19
	12-20
	12-21
	12-22
	12-23
	12-24
	12-25
	12-26
	12-27
	12-28
	12-29
	12-30
	12-31
	12-32
	12-33
	12-34
	12-35
	12-36
	12-37
	12-38
	12-39
	12-40
	12-41
	12-42
	12-43
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	13-11
	13-12
	13-13
	13-14
	13-15
	13-16
	13-17
	13-18
	13-19
	13-20
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	14-09
	14-10
	14-11
	14-12
	14-13
	14-14
	14-15
	14-16
	14-17
	14-18
	14-19
	14-20
	14-21
	14-22
	14-23
	14-24
	14-25
	14-26
	14-27
	14-28
	14-29
	14-30
	14-31
	14-32
	14-33
	14-34
	14-35
	14-36
	14-37
	14-38
	14-39
	14-40
	14-41
	14-42
	14-43
	14-44.0
	14-44.1
	14-44.2
	14-45
	14-46
	14-47
	15-01
	15-02
	15-03
	15-04
	15-05
	15-06
	15-07
	15-08
	15-09
	15-10
	15-11
	15-12
	15-13
	15-14
	15-15
	15-16
	15-17
	15-18
	15-19
	15-20
	15-21
	15-22
	15-23
	15-24
	15-25
	15-26
	16-01
	16-02
	16-03
	16-04
	16-05
	16-06
	16-07
	16-08
	16-09
	16-10
	16-11
	16-12
	16-13
	16-14
	16-15
	16-16
	16-17
	16-18
	16-19
	16-20
	16-21
	16-22
	16-23
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	B-01
	B-02
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	I-09
	I-10
	I-11
	I-12
	I-13
	I-14
	I-15
	I-16
	I-17
	I-18
	I-19
	replyA
	replyB
	x-01
	x-02
	x-03
	xBack

