
Honeywell MUL TICS SYSTEM DUMP ANALYSIS
PROGRAM LOGIC MANUAL

SERES 60 (LEVEL 68)

RESTRICTED ,DISTRIBUTION

SUBJECT:

Guide to Analyzing System Failure and Malfunction

SPECIAL INSTRUCTIONS:

DATE:

This Program Logic Manual (PLM) describes certain internal modules
constituting the Multics System. It is intended as a reference' for only
those who are thoroughly familiar with the implementation details of the
Multics operating system; interfaces described herein should not be used by
application programmers or subsystem writers; such programmers and writers
are concerned with the external interfaces only., The external interfaces
are described in the Multics Programmers' Manual, Commands and Active
Functions (Order No. AG92), Subroutines (Order No. AG93), and Subsystem
Writers' Guide (Order No. AK92).

As Multics evolves, Honeywell will add, delete, and modify module
descriptions in subsequent PLM updates. Honeywell does not ensure that the
internal functions and internal module interfaces will remain compatible
with previous versions.

This PLM is one of a set, which when complete, will supersede the System
Programmers' Supplement ,to the t"iul tics Programmers' Manual
(Order No. AK96).

THE INFORMATION CONTAINED IN THIS DOCUMENT IS THE EXCLUSIVE
PROPERTY OF HONEYWELL INFORMATION SYSTEMS. DISTRIBUTION IS
LIMITED TO HONEYWELL EMPLOYEES AND CERTAIN USERS AUTHORIZED
TO RECEIVE COPIES. THIS DOCUMENT SHALL NOT BE REPRODUCED OR
ITS CONTENTS DISCLOSED TO OTHERS IN WHOLE OR IN PART.

June 1975

ORDER NUMBER:

AN53, Rev. 0

PREFACE

Multics Program Logic Manuals· (PLMs) are intended for use by
Multics system maintenance personnel, development personnel, and
others who are thoroughly familiar with Multics internal system
operation. They are not intended for application programmers or
subsystem writers.

The PLMs contain descriptions of modules that serve"as
internal interfaces and perform special system functions. These
documents do not describe external interfaces, which are us~d by
application and system programmers.

Since internal interfaces are added, deleted, and "modified
as design improvements are introduced, Honeywell does not ensure
that the internal functions and internal module interfaces will
remain compatible with previous versions. To help maintain
accurate PLM documentation, Honeywell publ1.shes a special status
bulletin containing a list of the PLMs currently available and
identifying updates to existing PLMs. This status bulletin is
distributed automatically to all holders of the System
Programmers' Supplement to the Multics Programmers' Manual (Order
No. AK96) and to others on request. To get on the mailing list
for this status bulletin, write to:

Large Systems Sales Support
Multics Project Office
Honeywell Information Systems Inc.
Post Office Box 6000 (MS A-85)
Phoenix, Arizona 85005

~ 1975, Honeywell Information Systems Ine. File No.: 2L13

AN53

This PLM is intended for use by those persons who wish to
analyze Multics crashes or various system anomalies. Since
problem analysis of this sort requires a working familiarity with
many parts of the Multics system, it is presumed that the reader
of this PLM has this familiarity.

The reader is warned at the outset that this manual is not
intended to be a complete decision tree over which one may travel
with a dump to arrive at the cause for the crash. Instead, it
lists those items most generally referenced when analyzing a dump
and gives some direction as to where to look next for the cause
of the problem.

The System Debuggers' Handbook, Order No. AN87, should be
consulted for the detailed formats of status words, control unit
data, fault codes, and other information read or shared by
hardware. Also included therein are some formats peculiar to the
Multics software environment, such as stack frame formats. No
attempt is made to duplicate any of that information in this
manual. That publication is a crucial tool. in any attempt at
crash analysis.

The following PLMs are referenced frequently in this manual.
cor convenience, their titles are shortened as follows:

System Tools.
Storage System
Supervisor Input/Output
System Initialization
Hultiprogramming and Schedu1ing
System Debuggers' Handbook.

Tools PLM
Storage System PLM
Supervisor I/O PLM
Initialization PLM
Multiprogramming PLM
Debuggers' Handbook PLM

Hultics requires the use of a Front-End Network Processor
(FNP) to handle two-way information transmission between an ION
data channel and remote terminals. The FNPs referenced in this
document may be either DATANET 355 Front-End Network Processors
or DATANET6600 Front-End Network Processors; their use with the
nultics system is completely interchangeable.

iii AN53

Section I

Section II

Section III

Section IV

Section V

Section VI

CONTENTS

Crash Procedures • •
Returnin~ to BOS • • •
Taking a Dump . . •
Dumping the Initializer Process
Processing an fdump . . .

Crash Analysis • . . . • . . • .
Examination of Registers
Layout of Machine Conditions . • . . .
Stack Header . . • . • . • •
Stack Frame •
Argument List .•••. . . .

Crashes with No Message

Crashes with A Message ..

Major System Data Bases .• " .•...
System Segment Table . .•...•

SST Header • • . . . • .
Core Map . . .• ...•.•.
Paging Device Map . • • . • .
Active Segment Table .
SST Analysis Tools . • . •

Active Process Table .
The APTE • . • . . • •

Fault Vector
Known Segment Table
Linkage Section
lock_seg
PDS . • • . • • • •

Data Structure . .
Trace Entry Types

Types of Crashes
Loops •..•
Page Control Crashes • .
Attempt to Terminate Initializer

Process• ..•.•.
Teletype DIM Problems •

iv

Page

1-1
1-1
1-3
1-6
1-7

2-1
2-1
2-3
2-4
2-5
2-7

3-1

4-1

5-1
5-1
5-1
5-3
5-7
5-8
5-10
5-10
5-12
5-16
5-16
5-17
5-21
5-22
5-24
5-26

6-1
6-1
6-2

6-3
6-4

AN53

Section VII

Section VIII

CONTENTS (cont)

Hardware Problems . . .
Bulk Store Problems
10M Problems
Disk Problems . . .
Memory Parity Errors

System Performance Degradation .

Command and Subroutine Descriptions
check_sst
copy_dump

copy_dump$set_fdump_num,
copy_dump$sfdn

copy_out
copy_salvager_output
dump_pdmap . .
extract
ol_dump
online_dump

od_cleanup
online_dump_355, od_355

patch_ring_zero
print_apt_entry
print_aste_ptp .
print_dump_tape
ring_zero_dump .
copy_dump_seg_
format_355_dump_line_

format_355_dump_line_$line
get_ast_name_
get_dump_ptrs_
od_pr in t_

od_print_$op_fmt_line
od_print_$op_finish.
od_print_$op_new_seg
od_print_$op_init
od_print_$op_new_page . . .

od stack_
online_355_dump_
print_dump_seg_name_

print_dump_seg_name_$hard
print_dump_seg_name_$get~ptr .

v

Paile

6-14
6-14
6-15
6-15
6-15

7-1

8-1
8-2
B-3

8-3
8-4
8-5
8-6
8~7
8-8
8-10
8-12
8-12
8-14
8-15
8-16
8-17
8-18
8-20
8-21
8-21
8-23
8-24
8-26
8-26
8-27
8-27
8-28
8-28
8-30
8-31
8-32
8-32
8-33

AN53

Figure 1-1.
Figure 2-1.
Figure 2-2.
Figure 5-1.
figure 5-2.
Figure 5-3.
Figure 5-4.
Figure 5-5.
Fip:ure 5-6.
Figure 5-1.
Figure 5-8.
Figure 5-9.
Figure 5-10.
Figure 5-11.
Figure 5-12.
Figure 6-1.
Figure 6-2.
Figure 6-3.

Figure 6-4.

Table 5-1.
Table 6-1.
Table 6-2.
Table 6-3.
Table 6-4.

CONTENTS (cont)

ILLUSTRATIONS

Format of DUMP Partition ~ • . . . • • • .
Format of Machine Conditions . . .
PL/I Descriptors ~
Layout of System Segment Table
Core Map Entry •
Paging Device Map Entry . ~
Active Segment Table Entry
tc_data
Ready List Format . 8 • •

Format of ITT Message . .
!"orma t of KSTE . . . -. .
Format of name in KST . . ~ . .
Association of Name with Link
Format of Lock Entry in lock_seg
Format of Lock Array Entry . . .
Format of 6600 FNP 10M Fault Word
Format of Coded Interrupt Word
Format of Transaction Control Word

for DIA
Format of tty_buf

TABLES

Wait Events
Trace Type
HSLA Trace Subtypes .
Errors from tty_free
Errors from tty_inter . . 0 • •

vi

Page

1-5
2-3
2-9
5-3
5-4
5-6
5-9
5-11
5-13
S-14
5-18
5-18
5-20

·5-21
5-23
6-1
6-10

6-10
6-11

1-15
6-8
6-9
6-12
6-13

AN53

SECTION I

CRASH PROCEDURES

This section covers the information necessary to understand
how Multics crashes (i.e., returns to BOS), how dumps are taken,
and how these dumps are processed.

,RETURNING TO BOS

There are six ways in which Multics can crash. The first,
and most common, way is for some type of fatal error to be
discovered by Multics. When this happens, a brief message that
describes the surface cause of the crash (e.g., LOCK NOT EQUAL
PROCESSID) is typed on the operator's console and then BOS is
reentered. To effect this reentry, syserr (which typed the
message on the operator's console) calls
privileged_mode_ut$bos_and_return. This program picks up the
interrupt pattern called scs$sys_trouble_pattern and executes a
SMIC instruction. The handler for this IIsystem trouble"
interrupt is the interrupt interceptor ii.

The first task performed by ii is to send system trouble
interrupts to any other processors that may be running. The
other processors take this interrupt and it is processed by ll.
However, ii sets a variable, trouble_processor, in its linkage
section so that when it handles the trouble interrupts on the
other processors, it recognizes this fact and does not get into a
loop sending trouble interrupts.

After the initial processor has informed the other
processors of the impending crash, it saves all the system
controller masks for system controllers for which it is control
processor. In addition, the trouble interrupt machine conditions
on the Processor Data Segment (PRDS) are copied into
trouble_save_data on the PRDS. Both of these save operations are
performed so that Multics may be restarted from BOS with a GO
command. Since this is generally not done in the case of a
crash, no more will be said about it at this time. As each
processor enters ii after receiving the trouble interrupt from

1-1 AN53

the initial processor, it saves the masks of system controller
for which it is control processor and copies the trouble
interrupt data to trouble_save_data on its PRDS.

Clearly only one processor can return to BOS and this
processor is the boot load CPU. All other processors execute a
DIS instruction in ii. Regardless of which processor is the
initial processor to enter ~i, it is the bootload CPU that
returns to BaS.

The method used to enter BOS is as follows: the boot load
CPU loops for a while to allow all pending I/Ooperations to
quiesce. Since this loop is inhibited, the lockup fault vector
is patched to ignore any lockup faults taken during this loop.
Once the loop is completed, the two instructions, an SCU and a
TRA instruction pair, as picked up from location 4 of the BaS
toehold (absolute location 4004) are patched into the DERAIL
fault vector. The previous contents of this fault vector are
saved· prior to doing so. Finally, a DERAIL instruction'is
executed. Since the derail fault vector was patched, the SCU is
done and BaS is entered in absolute mode via the TRA instruction.
'(See the Bootload Operating System (BaS) PLM, Order No. AN74, for
information about the BaS toehold and the steps taken by BaS when
entered at location 4004.) .

The second way that Multics can crash and enter BOS is for
an error to occur that cannot be reported by asyserr message on
the operator's console. These errors are the arrival of an
interrupt while the processor is using the PRDS as a stack, a
page fault while the processor is using the PRDS as a stack,
certain faults while the processor is using the PRDS as a stack,
or a spurious trouble interrupt. More information is provided
later about these errors. When any of the above errors occur,
control goes either immediately to the system trouble code of ii
that was just described, or it gets to this code by the forcing
of a sys_trouble interrupt. In either case, BaS is reentered as
described above.

Another way that BaS can be entered is by an execute fault.
An execute fault is caused by the depression of the EXECUTE FAULT
button on any processor maintenance panel. The handler for this
fault is, ii and the fault is treated in exactly the same way as a
system trouble interrupt. In addition, the fault data stored by
the execut~ fault is stored in the same place on the PRDS as the
system trouble interrupt data.

Another way that BaS can be entered is by the manual
execution of an XED instruction at location 4000 octal (the BOS
toehold). The two instructions in the toehold are executed by
placing an inhibited XED 4000 in the processor DATA switches
(octal pattern 004000717200). The processor is put in MEM step
mode and then the EXECUTE SWITCHES pushbutton is depressed once
and the STEP button is depressed several times. Then the
processor is taken out of HEM step mode and the STEP button is

1-2 AN53

depressed once more to cause the two instructions at location
4000, an SCU and TRA, to be executed.

It should be pointed out that of the last two ways mentioned
for entering BaS, the execute fault is the normal way used to
crash the system. This would be done for example when it is
noticed that Multics is in a loop. The execute fault method
ensures that all processors are stopped via system trou~le
interrupts before returning to BaS. The manual XED of location
4000 is used when running only one processor and when it is
desired to start Multics again with a BaS GO command after
perhaps doing some patching or dumping of Multics from BaS.

It is also possible to return to BaS in a restartable manner
during initialization, under control of patterns in the processor
DATA switches~ This causes the sending of a sys_trouble
interrupt to the boot load CPU from pmut$call_bos. For more
detai~s see the System Initialization PLM, Order No. AN70.

The final way that BaS can be entered is via an explicit
'call to hphcs_$call_bos, which may be invoked by the Initializer
bas command, or certain failures in administrative ring
initialization. Any sufficiently privileged process can'call
this entry from the user ring.

TAKING A DUMP

When BaS is entered at its toehold via any of the six ways
just described, it saves the state of the processor and all live
registers. In addition, it copies the first 40000 octal
locations of the low-order memory to the BaS partition on disk so
that most BaS commands can run without destroying the Multics
core image. It should be noted that some BaS commands will
destroy the Multics core image (i.e., use memory above location
40000). These BaS commands should not be run if it is desired to
preserve the Multics core image. These commands are LD355, SAVE,
RESTOR, TEST, and LOADDM. If it is necessary to run one of these
commands and yet still preserve the Multics core image, the BaS
commands CORE SAVE and CORE RESTOR can be used to save the
Multics core image on tape. See the BaS PLM for details.

There are two primary ways to dump Multics. The first way
is to use the BaS DUMP command as described in the BaS PLM. The
DUMP command dumps various segments of one or more processes to
either the line printer or tape. The BaS DMP355 command can be
used to dump the DATANET 6600 Front-End Network Processor (FNP)
on the printer or tape. This, of course, is a rather
time-consuming process and lengthens the time involved in
bringing the system up again after a crash. There are, however,
times when this must be done. Most typical is the case where
Multics crashes before the previous FDUMP command (see below) has
been processed. In this case, the most reasonable alternative
would be to take a dump on tape. This tape can be printed after

1-3 AN53

bringing
command.
VIII.

Multics back up by using
The print_dump_tape command

the print_dump_tape (pdt)
is described in Section

The more usual procedure for taking dumps is to use the BOS
FDU~·1P (Fast DUMP) command. FDUMP writes the t1ultics "core image"
out to the DUMP partition on disk. The dump is preceded by a
small directory that describes where to find various segments.
The term "core image" is used inexactly in this case. What
actually happens is that the FDUMP command scans the Active
Process Table (APT) (descFibed partially in Section V and more
completely in the Multiprogramming PLM, and dumps all processes
that are in the running state, have the dbr_Ioaded bit on in
their Active Process Table Entry (APTE), or have the stop_pending
bit on in their APTE. If FDUMP is called with the SHORT
argument, those processes with the dbr_Ioaded hit on in their
APTE (usually one per processor) are dumped in the normal fashion
(i.e., all write permit segments are dumped) and all other
processes have their descriptor segment, Process Data Segment
(PDS), and Known Segment Table (KST) dumped. If FDUMP is called
~ith the LONG argument, all processes are dumped in the normal
fashion.

To dump a process, the FDUMP command scans the descriptor
segment of that process and dumps each segment with the write
permit bit on in its Segment Descriptor Word (SDW). Since all
processes share at least the segments of ring 0, FDUMP only dumps
a segment once, even if all processes being dumped have 'an SDW
with the write permit bit on for that segment. Of course, not
all pages of each segment are in main memory, so FDUMP interprets
each Page Table Word (PTW) for a segment. If the fault bit is
off, FDUMP can dump that page of the segment from core. If the
fault bit is on, FDUMP interp~ets the secondary storage or Paging
Device address that is stored in the PTW and it reads the page
from that location and dumps it.

Figure 1-1 below depicts the layout of the DUMP partition
following execution of the BOS FDUMP and FD355 commands. Once
the FDUMP and/or FD355 commands are executed, standard crash
recovery procedures can be initiated (e.g., Emergency Shutdown
(ESD), Salvager, etc.) and the system bootloaded again. To
process the fdump (the image produced by the FDUMP command), the
command copy_dump (described in Section VIII) must be used. This
command uses the gate hphcs_ and therefore is generally executed
by Initializer.SysDaemon, to determine whether the DUMP partition

1-4 AN53

o

2000

segment map

DATANET 6600 Front-end
Network Processor
core image (optional)

segment image

segment image

FDUMP header

copies of
segments of
processes dumped

Figure 1-1. Format of DUMP Partition

1-5 AN53

contains a valid dump (dump.valid = "1"b--see include file
bos_dump.incl.pI1). If it does, the Multics fdump is copied into
one or more segments in the directory >dumps. These segments
have the name date.time.n.erf_no where date is in the form
MMDDYY, time is in the form HHMMSS, n is a number, starting at 0,
incremented by one each time an FDUMP is taken, and erf_no is the
error report form number as extracted from dump.erfno. If there
is a valid FNP dump (dump.valid_355 = "1"b), it is copied into a
segment in)dumps named date.time.O.erf_no.355. The error report
form number is maintained (incremented each time) by the BOS
FDUMP command. The number can be set to a new value (e.g., 1) at
any time by typing FDUMP n where n is the new error report form
(ERF) number (crash number).

DUMPING THE INITIALIZER PROCESS

Although the FDUMP command is the normal way to take a dump,
there - is one important circumstance when FDUMP should not"be
used. When the initializer process runs into trouble (e.g., will
.not respond to any commands) and the system must be crashed, the
crash should usually be brought about by an execute fault. Of
course, whatever process is running on the bootload processo~ is
the process that actually returns to BOS a~ described above. If
an FDUMP were to be taken, the initializer process would only be
dumped if it were running on any of the processors. Otherwise~
the only way to cause it to be dumped would be to use t~e LONG
argument to FDUMP. This dumps every process. It also produces a
massive dump if a number of processes exist in the system.

A better way to ensure that the initializer process is
dumped is to dump it using the BOS DUMP command. To do this, one
must switch the Descriptor Base Register (DBR) value used by BOS.
This value is set initially to the DBR value of the process that
returned to BOS. To find the DBR value of the initializer
process, one must use the BOS PATCH command. The DBR for any
process is stored in its APTE at the symbol apte.dbr (see include
file apte. incl. pl1). (A further description of an APTE is found
in Section V.)

The APTE for the initializer process is always the first
APTE in the APT. One may find the offset of the first APTE by
looking at the value assigned to the segdef apt in the data
segment tc_data. Given these listings or offsets, it is possible
to look at tc_data with the PATCH command and find the DBR value
for the initializer process. Then the DUMP command should be
used. Use the DBR command of DUMP to set the BOS DBR value to
the DBR of the initializer. Then take a dump of the initializer
process on the printer or tape.

1-6 AN53

PROCESSING AN FDUMP

If a crash occurs, the Multics and possibly the FNP core
images are in several segments in the directory)dumps. There
are two commands that can be used to print these dumps. One
command, online_dump, or od, is used to print the Multics dump.
The other command, online_dump_355, or od_355, is used to process
the FNP dump. These command descriptions can be found in Section
VIII.

Various useful subroutines used by the online dump facility
are also discussed in Section VIII.

If it is desired to merely examine portions of the fdump
from a terminal, the command ol_dump (see Section VIII) should be
used.

1-7 AN53

SECTION II

CRASH ANALYSIS

This section provides some basic knowledge necessary to
anyone analyzing a dump regardless of the cause for the crash.

EXAMINATION OF REGISTERS

The first block of information available in either an fdump
or a dump printed by the BOS DUMP command is the state of various
processor registers. The first register of interest is the
Procedure Segment Register (PSR). The PSR contains the segment
number of the procedure that actually returned to BOS. In all
but one case, this should be the segment number of ii. The ,only
case in which this is not true is when BOS is entered by 'a manual
transfer (XED of location 4000). In this case, the PSR is at
whatever it is when the processor is stopped to perform the
manual execution of the XED instruction. Listed along with PSR
is the instruction counter (,IC), the Ring Alarm Register (RALR),
the A and Q registers, the exponent register, the Interval Timer
register, and the index registers. In the case of entry to BOS
from ll, only the Interval Timer register has any real possible
interest.

Since Multics can enter BOS and be subsequently restarted
with a GO command, BOS saves all registers. It also saves all
interrupts that come in after Multics has entered BOS. These
interrupts are set again (via a SMIC instruction) if a GO command
is executed. The interrupts are printed in the dump in the form
of the word INTER followed by 12 octal digits. The first 32 bits
of the 12 o~tal digits correspond to the setting of interrupt
cells 0-31.

Following the interrupt word in the dump are the values in
each of the, eight pointer registers. When BOS is entered by ll,
pointer register 2 (bp) points to the actual machine conditions
that were stored when the cause of the crash actually happened.
For example, in the case of a crash with a message, pointer
register 2 points to the fault data stored by the system trouble
interrupt.

2-1 AN53

After the pointer registers, the contents of the PTW and SDW
associative memories are printed. This data is printed in an
interpreted format. Figure 1-10 (SDW Associative Memory Register
Format), Figure 1-11 (SDW Associative Memory Match Logic Register
Format), Figure 1-12 (PTW Associative Memory Register Format),
and Figure 1-13 (PTW Associative Memory Match Logic Register
Format) in the Debuggers' Handbook PLM contain the layout of the
associative memories as stored in memory. . Generally, the
associative memory contents are of little use except in debugging
hardware problems. One thing to check for if associative memory
problems are suspected is nonunique usage counts (i.e., two
associative memory slots having the same usage number). Another
possibility is for two slots to have the same contents (e.g., two
slots in the SDW associative memory pointing to the same
segment) .

Following the associative memory printout is an interpreted
description of what memories are attached to the boot load
processor and the size of each memory. The information is
printed in two columns. The first column contains the beginning
address, 0 mod 64, of a memory. The second .column contains the
size of that memory in 64-word blocks. There are eight entries
in each column, one for each processor port. Listed below is a
sample printout for a system with 128k on each of the first three
processor ports.

COREBLOCKS: FIRST
a

4000
10000

NO MEM
NO MEM
NO MEM
NO MEM
NO MEM

NUM
4000
4000
4000

Following the display of the memory layout is a printout of the
memory controller masks for the memory on each processor port. A
memory mask is stored as 72 bits. Bits 0-15 contain the settings
of bits 0-15 of the interrupt enable register for a memory. Bits
32-35 contain bits 0-3 of the port enable register for a memory.
Bits 36-51 contain the settings of bits 16-31 of the interrupt
enable register. Bits 68-71 contain bits 4-7 of the port enable
register.

The last set of registers that are stored are the four sets
of history registers. These history registers are stored for the
Operations Unit (OU), Control Unit (CU), Appending Unit (APU),
and De~imal Unit (DU) or EIS portion of the processor. See
Figure 1-34 (CU History Register Format), Figure 1-35 (OU History
Register Format), Figure 1-36 (APU History Register Format), and
"DU History Register Format" in Section I in the Debuggers'
Handbook PLM, for formats of these history registers.

2-2 AN53

The last set of information that is printed with the
registers is an interpretive layout of the descriptor segment.
Each SDW is printed in an expanded format. Along with the SDW is
printed the reference name(s) of the segment. For a directory,
this is a full pathname. Segments with null reference names only
have no names printed with the SDW. SDWs that are all zero
(directed fault zero or segment fault) are not printed.

LAYOUT OF MACHINE CONDITIONS

vlhenever any type of fault or interrupt occurs, the state of
the processor is saved. This involves saving all live registers
~nd the state of the Control Unit. In all cases, the fault data
is saved as shown in Figure 2-1 below. The format of the EIS
pointer and length data, as stored by the SPL instruction, is
found in Figure 1-26 (EIS Pointers and Lengths Format, Word 0),
Figure 1-27 (EIS Pointers and Lengths Format, Word 1), Figure
1-28 ~EIS Pointers and Lengths Format, Word 2), Figure 1-29 (EIS
Pointers and Lengths Format, Word 3), Figure 1-30 (EIS Pointers
and Lengths Format, Word 4), Figure 1-31 (EIS Pointers and
Lengths Format, Word 5), Figure 1-32 (EIS Pointers and Lengths
Format, Word 6), and Figure 1-33 (EIS ,Pointers and Lengths
Format, Word 7) in the Debuggers' Handbook PLM.

(mod 8 boundary)
01 , '

20

30

40

50

60

8 POINTER REGISTERS AS STORED BY
SPRI INSTRUCTION

REGISTERS AS STORED BY SREG INSTRUCTION

CONTROL UNIT/APU STATE AS STORED BY SCU INSTRUCTION

SOFTWARE FAULT DATA AS DESCRIBED
IN mc.incl.p11

Ers POINTERS AND LENGTH DATA AS STORED
BY SPL INSTRUCTION

Figure 2-1. Format of Machine Conditions

2-3 AN53

There are several items in the machine conditions that
should be inspected when hardware troubles are suspected. In
case of ring vioLations, the ring fields in the SCU data, PPR.PRR
(the ring of execution) and TPR.TRR (the ring of reference)
should be checked. Another value to examine is the RALR that is
stored by the SREG instruction. The value in the RALR should
never be greater than or equal to PPR.PRR. The appending unit
status bits (Figure 1-38 (scu Data Format, Word 0), Figure 1-39
(scu Data Format, Word 1), Figure 1-40 (scu Data Format, Word "2),
Figure 1-41 (scu Data Format, Word 3), Figure 1-42 (scu Data
Format, Word 4), Figure 1-43 (scu Data Format, Word 5),
Figure 1-44 (scu Data Format, Word 6), and Figure 1-45 (scu Data
Format, Word 1) in the Debuggers' Handbook PLM) are also of
interest when attempting to discover what cycle was being
executed by the appending unit when an APU produced failure or
fault occurred4 Another point of interest is that when a fault
is taken by the even instruction of an even/odd instruction pair,
words six and seven of the SCU data hold the two instructions.
In the case of a fault following some levels of indirection, the
even instruction (word six of the SCU data) may exist in an
altered form since some address modification may have been
performed before taking the fault. In the case of a fault taken
by the odd instruction of an even/odd instruction pair, word, six
of the SCU data contains the odd instruction although it may have
had some address modification done as just described. Word seven
may contain that instruction or a later instruction due to the
instruction fetch lookahead feature.

One final note on the addresses and instructions in fault
data: certain classes of faults (e.g., parity, store, some cases
of command) are detected by the CPU port logic while processing a
data request generated by some other unit of the processor. Due
to the internal overlap of the CPU, the instructions being
processed by the control unit may be several instructions after
the instruction that caused the store or other fault. Hence, SCU
data for these faults may not be· taken as deterministically
specifying the faulting reference.

STACK HEADER

Another data base that a person doing cI~ash analysis must be
familiar with is the stack. Ring 0 uses both the PDS and PRDS as
stacks, and each ring of each process has a stack. (The stack
assigned to ring 0 in this assignment is the PDS.) Every stack
has a header. The first sixteen words of the stack header are
essentially unused and are not discussed further. There are two
items in the stack header that are of interest to someone reading
a dump. The stack begin pointer points to the first valid stack
frame on the stack. On the user ring stacks, the first frame is
usually immediately after the stack header. On the PDS and PRDS
however, there are intervening data items. The other item of
general interest in the stack header is the stack end pointer.
It points to the location of the stack where the next frame may

2-4 AN53

be started. Figure 7-5 (Stack Header Layout) in the bebuggers'
Handbook PLM depicts the layout of the stack header. There are
three other important pointers in the stack header. The BAR mode
sp (stack header location 32 octal) is a place to store the stack
pointer register (PR6) before entering BAR mode. This is done
since BAR mode programs can validly destroy the word offset
portion of the stack pointer register. However, the stack
pointer is needed by the signaller, so it is stored here so that
it can be reloaded if a fault is taken by the BAR mode program.
The translator operator tv pointer is a pointer to a transfer
vector of language operator pointers. The PL/I operator pointers
(call, push, etc.) have their own locations in the stack header
but the transfer vector exists so the pointers to operators for
other translators (e.g., BASIC) can be found in a defined way.
The ALM segment operator_pointers_ contains the current transfer
vector. Finally, the unwinder pointer is provided so that an
unwinder program can be found in each ring.

STACK FRAME

The other element of a stack that one must be familiar with
is the stack frame. The first forty wor~s are reserved in,each
stack frame (see Figure 7-6 (Stack Frame Layout) in the
Debuggers' Handbook PLM). The first sixteen words can be used
for saving the active pointer registers when making a call to
another program. The ALM CALL macro saves its pointer registers
here and restores them upon return. Since PL/I in general does
not depend upon registers across a call, it does not save all the
pointer registers. Words sixteen through nineteen contain the
pointers that thread the stack frames together on a stack in a
forward and backward manner. One can start from the stack begin
pointer in the stack header and using the forward pointer in each
frame, it is possible to "trace" the stack. Similarly, starting
at any given stack frame, it is possible to trace forward or
backward using the forward or backward pointers in each stack
frame.

In general, the backward pointer of each stack frame is a
standard ITS pointer. In the case of some special frames, bits
24-29 are used for flags. Listed below are the flags:

bit 24 on if frame belongs to signal.
bit 25 on if this is a signal caller frame.
bit 26 if next frame is signaller

,
on s.

bit 27 on if this frame was made by the linker.
Used for trap before link and trap before
first reference.

bit 28 on~if this frame belongs to a program that is
pa t of the support environment (e.g. ,
signal_) .

bit 29 on if a condition is established in this
frame.

2-5 AN53

At location 24 octal is a pointer to the return point in the
program that created the stack frame if that program called out.
This pointer is used by the return operator to return to the
caller. At location 26 octal is the entry pointer. This is used
by the entry sequence code of PL/I. Upon entry to a PL/I
program, that program calls the entry operator of PL/I. The
entry point to the PL/I program is saved at this double word.
Location 32 octal contains a pointer to the operator segment for
most translators. However, ALM programs use this double word" as
a place to store the linkage section pointer. When an ALM
program does a call, the call operator reloads pointer register 4
(the linkage section pointer) from this location (it is saved
there by the ALM push operator). The reason it is "reloaded
before calling is in case the ALM program is calling a Version 1
PL/I program that is bound into the same segment as the ALM
program. In this case, the standard Version 1 entry sequence
that loads the linkage section pointer register is not invoked so
that the ALM program must ensure that :Lt is correct. When
Version 1 PL/I programs cease to exist, this will no longer be a
requirement.

Following the entry pointer is a pointer to the argument
list of the procedure that owns the stack frame. The form~t of
an argument list is discussed below. The" next two words at
locations 34 and 35 octal are reserved. At location 36 octal in
the stack frame are two 18-bit relative addresses. These
addresses are relative to the base of the stack frame. The first
relative address points to a series of 16-word on unit blocks in
the stack frame. Each on unit block contains a 32-character
condition name, a chain pOinter, and some flags. Listed below is
the PL/I declaration for an on unit block:

dcl 1 on_unit based aligned,
2 name ptr,
2 body ptr,
2 size fixed bin,
2 next bit (18) unaligned,
2 flags unaligned,

3 p11_snap bit (1) unaligned,
3 p11_system bit (1) unaligned,
3 pad bit (16) unaligned,

2 file ptr;

Details of this may be found in the Limite~ Command Environment
PLM, Order No. AN78. The second relative address is for
compatibility with older systems and is discussed no further in

2-6 AN53

stack header this document. At location 31 in the
entitled operator return offset.
consists of two 18-bit halves. The
translator ID. This is a number
compiled the· program that owns the

In fact, this
left-most 18 bits
that tells what
stack frame. The

are as follows:

o Version 2 PL/I
1 ALM
2 Version 1 PL/I
3 signal caller frame
4 signaller frame

is a word
word really
contain the
translator

various IDs

The right half of the word holds the address in the program
at which a called operator returns. This is useful in debugging,
for it describes the return address for certain calls to
p11_opera tors_. If a crash occurs' and the machine condi tions
show that some fault or interrupt was taken by p11_operators_, XO
contains the return address for the operator that took the fault
or interrupt. If the operator was forced to use XO, then the
operator return pointer in the stack frame contains the return
address. This cell is zeroed when an operator restores XO from
it. Hence, if this cell is nonzero, .it contains the return
address. If zero, XO contains the return address. Given this,
one can look at the program that called the operator to determine
why the fault occurred.

The last reserved area in the stack frame is at location 40
octal. Here the registers are stored by an SREG instruction.
Again, PL/I does not generally save registers since it does not
depend upon their contents across a call. The ALM CALL macro
however saves the registers here in stack frame. A person
tracing a stack should be aware of course that certain programs
do not have stack frames. These programs are most typically ALM
programs that do not call the push operator. These programs
"borrow" the stack frame of' their caller and hence should not
write into it. Such programs cannot perform standard calls since
the call operator writes into the stack frame.

ARGUMENT LIST

Every standard Multics call must construct a standard
argument list. Pointer register 0 (ap) is set to point to the
argument list. The callee saves this argument pointer in his
stack frame as described previously. The argument list format is
described below. Figure 2-2 lists the types of argument
descriptors.

The argument list must begin in an even word boundary. The
pointers in the argument list need not be ITS pointers, however,
they must be pointers that can be indirected through. Hence,
packed (unaligned) pointers cannot be used.

2-7 AN53

The
directly.
for the
follows:

F

type

p

nd

i'th argument pointer points at the i'th argument
The i'th descriptor pointer points at the descriptor

i'th argument. The format for a descriptor is as

is a flag specifying that this is a new type
descriptor. It is a 1 if it is a PL/I Version 2
descriptor and 0 for the old format descriptors.

specifies the data type of the variable being
described. The PL/I documentation contains a
mapping of the actual codes used.

indicates, if 1, that the data item is packed.

is the number of dimensions of an 'array. The
array bounds follow the descriptor head in a
format described in the PL/I documentation.

size holds the size (in bits or characters) of string
data, the number of structure elements for
structure data, or the scale and precision (as
two, 12-bit fields) for ari~hmetic data.

2-8 AN53

Versio~ 1 Descriptors

Value

1
2
3
4
5
6
7
8
13
14
15
16
17-24
29-31
514
518
519
520
521
522

single precision real integer
double precision real integer
single precision real floating-point
double precision real floating-point
single precision complex integer (2 words)
double precision complex integer (4 words)
single precision complex floating-point (2 words)
double precision complex floating-point (4 words)
pointer data
offset data
label data
entry data
arrays of types 1-8
arrays of types 13-15
structure
area
bit string
character string
varying bit string
varying character string

(514, 518-522 are data types that are not Multics standard)

Figure 2-2. PL/I Descriptors

2-9 AN53

Value ~

523 array of structures
524 array of areas
525 ar~ay of bit strings
526 array of character strings
521 array of varying bit strings
528 array of varying character strings

(523-528 are data types that are not Mutlics standard)

Version 2 Descriptor

Value

1
2
3
4
5
6
1
8
9
10
1 1
12
13
14
15
16
11
18
19
20
21
22
23

real fixed binary short
real fixed binary long
real float binary short
real float binary long
complex fixed binary short
complex fixed binary long
complex float binary short
complex float binary long
real fixed decimal
real float decimal
complex fixed decimal
complex float decimal
pointer
offset
label
entry
structure
area
bit string
varying bit string
character string
varying character string
file

Figure 2-2 (cont). PL/I Descriptors

2-10 AN53

SECTION III

CRASHES WITH NO MESSAGE

This section describes a deterministic algorithm for
ascertaining the immediate reason for a system return to BaS with
no me~sage. It is the intent of this section and the next to
describe an appropriate course of action for determining 'the
immediate cause of a crash, when presented with a dump.

The first quantity to inspect is the PSR in the registers
printed by BOS, or online_dump. If the P$R contains the segment
number of any segment other than the interrupt interceptor (ii),
then the system did not return to BaS of its own volition, and a
manual transfer to BaS (XED 4000 or XED 4002) was made by the
operator. (Specifically, the PSR/lnstruction counter should
point to the instruction in ii following the derail instruction
that causes the return to BaS).

If the PSR/ICTC points to the correct place in ii, pointer
register 2, as printed by BaS or online_dump, points to the
machine conditions that caused the bootload processor to return
to BaS. If the fault/interrupt code in the second word of the
SCU data in these machine conditions is anything other than a
system trouble interrupt (octal 44 as it appears there), these
machine conditions represent one of the following cases:

1. An execute fault was taken by the boot load processor,
i.e., the operator pressed the EXECUTE FAULT pushbutton
on this processor. The fault/interrupt code is 37,
octal.

2. An interrupt was taken by the interrupt interceptor
(ii) while running on the PRDS. The value of sp
(pointer register 6) in these machine conditions is an
address on the PRDS, and the fault/interrupt code is
even (interrupt). A masking problem should be
suspected.

3. A fault is detected during initialization, before the
mechanism to handle that fault is set up.

3-1 AN53

If the fault/interrupt code in the SCU data pointed to by
pointer register 2 as given by BOS reflects the sys_trouble code,
some other module or processor caused this interrupt. All
modules that send a sys_trouble interrupt execute NOP
instructions (octal 000 000 011 000, but sometimes with direct
(03 or 07)' modifiers) immediately after sending this interrupt.
Hence, if the SCU even/odd instruction words (6 and 7) do not
have Nap instructions, one should assume that some processor
other than the boot load processor first sent a sys_trouble
interrupt. The machine conditions at prds$sys_trouble_data for
all running processes should be inspected to find one that was
interrupted out of Naps. (It is possible, however, for a
processor to be executing some Nap loop, such as certain locking
code at the time a sys_trouble interrupt is received from another
processor. If, in a multi-CPU dump, many such sets of
sys_trouble data are found, this should be suspected, and the set
of conditions that identifies NOP after a SMIC instruction
sending sys_trouble found.)

When the processor that started the sys_trouble broadcast
has been found, the program that sent the first sys_trouble
interrupt must be identified. This can be done by inspecting the
PSR in the machine conditions for this first sys_trouble
interrupt. If it is the segment number of the fault interceptor
(fim), some fault was encountered that required paged programs to
handle properly, while running on the PRDS. Pointer register 2
in these machine conditions points to the machine conditions
stored at the time of the fault. (If such a fault shotild happen
with the page table lock set while running on a temp-wired PDS,
the fim does not detect a problem but attempts to process the
fault, usually causing a page fault with the page table lock set,
with a resulting crash message, "PAGE: MYLOCK ERROR ON GLOBAL
LOCK". In later systems, the fim checks for this case and sends
sys_trouble.)

If the PSR identifies bound_page_control, or wired_fim in
earlier systems, a page fault was taken in an invalid
circumstance. Pointer register a in the system trouble machine
conditions points to the page fault machine conditions.

If the PSR identifies privileged_mode_ut (in bound_priv_1 in
later systems) an explicit call was made to pmut$call_bos. This
is always done in the case of fatal crashes with a message, in
which casesyserr makes this call. One should identify the owner
of the stack frame pointed to by sp (pointer register 6) in the
sys_trouble data. By owner, we mean the procedure indicated by
the return pointer (location 24 octal). (pmut does not push a
frame in this case.) If the owner is bound_error_wired (which
contains syserr) then a call was probably made to print out a

3-2 AN53

crash message. The arguments to syserr in a. precedin~ frame
should be inspected. In this case, either the message was
printed out by the operator's console, or some difficulty may
have been encountered in trying to print it out. Otherwise, it
may be assumen that privileged_mode_ut was called by some program
in the outer rings, and a stack trace should determine the
problem.

3-3 AN53

SECTION IV

CRASHES WITH A MESSAGE

When Multics crashes after printing a message on the
operator's console, that message is always printed by syserr.
After printing the message, syserr calls
priviieged_mode_ut$bos_and_return (in bound_priv_1), which sends
a system trouble interrupt to the current processor. The receipt

. of this system trouble interrupt sends similar interrupts to all
other processors in the system. When analyzing a dump, look at
the system trouble machine conditions on ~ROS of each processor.
One set of such machine conditions has a PSR equal to the segment
number of bound_priv_1. In addition, the. even and odd
instructions in the SCU data are both NOP instructions since
privileged_mode_ut executes NOPs waiting for the system. trouble
interrupt to go off.

Once the correct machine conditions have been found, pointer
register 6 (the stack pointer) contains a pointer to the syserr
stack frame. If the segment number in pointer register 6 is for
the PROS, the previous stack frame belongs to the caller of
syserr. If, however, the segment number is for the POS, syserr
uses a different convention. syserr makes its stack frame at
location 30000 octal on the POSe It does this so that possibly
valuable stack history is not overwritten by its stack frame.
This would happen if it laid its frame down right after the frame
of its caller. An examination of the stack frame at 30000 shows
that it has two frames following it. The first is for
wire_stack, a program that wires pages of the POS so that syserr
does not take a page fault running on the PDS. The second is for
syserr_real, the program that actually prints the message.
Further examination of the stack frame at 30000 shows that the
back pointer points to the stack frame of the caller of syserr.
This frame is usually quite far back on the stack with the
intervening area holding the stack history. To examine this
history, it is necessary to know the old forward pointer in the
stack frame of the syserr caller since the current forward
pointer points to 30000 now. The old forward pointer is saved in
location 26 octal of the frame of the caller of syserr. Given
this old forward pointer then, it is possible to examine the
stack history to see the last set of calls before the syserr
call.

4-1 AN53

SECTION V

MAJOR SYSTEM DATA BASES

This section describes those parts of the system data bases
that one might wish to examine after a crash.

SYSTEM SEGMENT TABLE

The System Segment Table (SST) is a variable size (via
configuration card) unpaged segment. It holds all the-page
tables in the system. In addition, it holds control blocks for
core management, for paging device management, and for active
segment management. Many of the data items in the SST contain
the addresses of other items. These addresses are expressed as
18-bit relative pointers to the SST. Figure 5-1 below gives the
general layout of the SST.

SST Header

The SST header consists of various oontrol variables and
meters. The meters are defined in the include files sst.incl.p12
and cnt.incl.p11. These meters are not discussed further in this
document. It would be useful to have a copy of this include file
in hand before reading further. The first item of interest in
the SST header is the page table lock, sst.ptl. This lock is set
when taking a page fault and remains set until page control has
completed processing the page fault (e.g., initiated a disk read
for the page). The page table lock is also used at other times
and it locks the header, core map, paging device map, and page
tables. It is also a lock on those parts of an ASTE needed by
page control. If any processor attempts to lock the page table
lock and it is already locked, that processor loops waiting for
the lock to be unlocked.

5-1 AN53

o
777777 ... 777777 ... 777777 ...

10

meters, page and segment
control constants and
variables

600

page-multilevel related
constants and variables

1000

core map

paging device map
(if any)

Active Segment Table (AST)
(inlcudes page tables)

Figure 5-1. Layout of System Segment Table (SST)

5-2 AN53

Following the page table lock is the AST lock (sst.astl).
This lock is generally used only by segment oontrol. Instead of
being a loop lock, the AST lock is a wait lock. This means that
if a process finds the AST lock locked, it gives up the processor
and informs the traffic controller that it wishes to WAIT on this
lock. When the process that locked the AST lock is finished, it
notifies all processes that are waiting on the lock. The
wait/notify mechanism and locking mechanism are described in the
Multiprogramming and Scheduling PLM, Order No. AN73. The SST
variable, sst.astl_event, contains the event upon which processes
contending for the AST lock should wait~

The next item of interest is the pointer to the beginning of
the AST, sst.astap. As described below, there is a page table
following each ASTE. The maximum size of a page table is 256
PTWs. Clearly it would be wasteful to allocate a maximum size
page table for every active segment. Consequently, the ASTEs are
broken up into pools where all the ASTEs in a pool have the same
numbe~ of PTWs. The current pool sizes are 4, 16, 64, and 256.
Each element in the array sst. level consists of a pointer to the

·used list (described below) of ASTEs of a pool, and the number of
ASTEs in the pool. There are also special ~ools for various
classes of supervisor and initialization segmen~s (see· the
Storage System PLM, Order No. AN61 and the Initialization PLM).

The next item of general interest in the SST header is the
set of control words for the core map. The variable sst.cmp is a
pointer to the start of the core map, and sst.usedp is a relative
pointer to the least-recently-used core map entry of the used
list (described briefly below and fully in the Storage System
PLM. Another variable of interest is sst.fsdctp, a pointer to
the ASTE for the FSDCT. There is also a pointer to the ASTE for
the root in sst.root_astep. There is room now in the header for
a block of meters. Following the meters is a block of
information used in management of the paging device. The
variable sst.pdmap is a pointer to the paging device map in the
SST, sst.pdhtp is a pointer to the paging device hash table, and
sst.pdusedp points to the least-recently-used entry of the paging
device used list.

Core Map'

Directly 'following the SST header is the core map. The core
map consists of a 4-word Core Map Entry (CME) for each 1024-word
core block that is configured. Even if a memory is not online,
if it is to be added dynamically, each page in the memory must be
represented by a CME. Figure 5-2 below depicts aCME.

5-3 AN53

forward thread backward thread

I
I
I

device address I
I

d· Id flags
I
I

PTW pointer astep
(Release 2.2 and later)

double-write device address

Figure 5-2. Core Map Entry

The first word contains the forward and backward threading
pointers. These pointers (actually, they are addresses relative
to the base of the SST) are used in the implementation of the
Least ·Recently Used (LRU) algorithm for core management. The
header variable, sst.usedp, points to the head of this circular
list and in fact points to the CME that represents the block of
core least recently used. The LRU algorithm is described fully
in the Storage System PLM. One important thing to be checked in
a dump analysis is that the CMEs are all threaded together
correctly. In Release 2.2 and later systems, CMEs for
out-of-service pages and RWS (read-write sequence) buffers are
Dot threaded in.

5-4 AN53

Each CME holds the device addres~ for the page that resides
in the core block represented by that CME. A device address
consists· of an 18-bit record number and a 4-bit device
identification. (The first bit of this device ID indicates the
paging device.) The one exception is when the page occupying the
core block associated with the CME is a new page and has not yet
been assigned a disk address. In this case, a null device
address is stored as the device address. Null device addresses
may also appear in PTWs. Null device addresses are coded ·for
debugging purposes to be able to tell which program created the
null address. Listed below are the null addresses (any address
greater than 777000 octal is considered to be a null address):

777777
777001
777002
777003
777004
777005
777006
777007
777010
777011
777012
777013
777014
777015

created by append
created by pc$truncate
created by pc$truncate
created by salv_check_map
created by salv_check_map
created by aalv_truncate
created when page is zero
created by pc$move_page_table
created by pc$move_page_table
created by get_aste
created by make_sdw
created by deactivate
created by move_file_map
created when page is bad on paging device

Listed below are the Multics device ID numbers:

1 Bulk Store
2 D191
3 E191
4 D190
5 E190
6 D181

If the paging device indicator is not on, then the device
address is a disk address. The only consistency check one can
make in this case is to look at the PTW pointed to by the PTW
pointer'in the CME and make sure that the core address in the PTW
corresponds to the core block represented by the CME. During a
read/write· sequence, the PTW pointer is replaced by a pointer to
a Paging Device Map Entry (PDME). A simple algorithm to do this
is:

Let x = ptw.add (18 bit 0 mod 64 core address)
Let y = sst.cmp (y is offset of core map in sst)
Then address of CME = Y + x/4

5-5 AN53

If this relationship is not tru~, then either a read/write
sequence is in progress (in which case the PTW pointer no longer
points to a PTW, but to a PDME), or there is an inconsistency in
the SST. It can easily be determined if a read/write sequence is
in progress since there is a flag in the CME (cme.rws as defined
in cmp.incl.pI1) that indicates this.

If the paging device indicator bit is on, then the record
address is an address on the paging device. As described below,
there is a 4-word PDME for each record on the paging device. It
is possible to find the PDME associated with a particular CME by
taking the paging device record number, multiplying it by four,
and adding in the offset portion of the pointer in sst.pdmap. It
is important to note that this can be a negative offset. This is
true, for example, when Multics is only using the last 1000 pages
of a 2000 page paging device. Rather than having· 1000 empty
PDMEs for pages 0-999, the pointer in sst.pdmap is backed up so
that the first PDME in the Paging Device Map represents record
1000.- Once the PDME is located, several consistency checks can
be made on it. Figure 5-3 depicts the format of a PDME. The
PDME is defined in cmp.incl.pI1.

backward! thread
forward th read (cmep during rws)

I
I
I d·

disk address I Id flags
I
I
t

PTW pointer hash thread

page checksu m
(optional)

Figure 5-3. Paging Device Map Entry

5-6 AN53

One check to be made is to make sure that the PTW pointer
points to the same PTW as the CME. Another check is to see if
the device address is for a disk address. If not, there is an
error. Other checks are listed below.

Paging Device Map

The Paging Device Map directly follows the core map in the
SST. It has a very similar function in that it is used to manage
the 1024-word pages on the paging device in such a manner that
the least recently used page on the paging device is the one
selected for removal when a new page must be placed on the paging
device. This removal process is called a Read-Write Sequence
(RWS). It involves reading a page from the paging device and
writing it to its secondary storage (disk) address. It is
presumed that the reader is familiar with the use of the paging
device as described in the Storage System PLM. There are various
consistency checks that can be made on the Paging Device Map.
First, all PDMEs must be correctly forward and backward threaded.

'The thread starts with the PDME pointed to by sst.pdusedp. There
is one exception to this rule. When a RWS is in progress for a
page, its PDME has a zero forward pointer and its back pointer
contains the address of the associated CME. Both the CME and the
PDME should have the RWS flag on (cme.rws and pdme.rws in
cmp.incl.p11).

Another" consistency check one can make is to see if the
secondary storage address stored in the PDME is incorrect. One
can do this by applying the paging device hashing algorithm to
that secondary storage address to see if the PDME in question is
on the hash thread. As described in the Storage System PLM, when
the paging device hashing algorithm is applied to a disk address,
a PDME address is produced. If the disk address in question is
not stored in that PDME, the value in pdme.ht is the address of
another PDME to look at. Thus, there exists a thread of PDMEs
all of which hold disk addresses that produce the same value when
the paging device hashing algorithm is applied. To perform the
consistency check, take the 18-bit secondary storage record
address stored in the PDME, perform a logical AND with the value
stored in sst.pd_hash_mask (which is a function of the paging
device size), and divide the result by 2. The quotient gives the
offset from the base of the hash table (as pointed to by
sst.pdhtp) of a pair of hash table addresses. If the remainder
of the previous division is 0, use the upper address, otherwise
use the lower address. The selected address is either zero (no
secondary storage addresses have copies on the paging device) or
it is the address of the first PDME in a chain of one or more
PDMEs. By following the chain (pdme.ht), the secondary storage
address in question should be found or the consistency check has
failed. Of course, if the selected hash table address is zero,
the check has failed.

5-7 AN53

Another useful consistency ciheck is to c6nfirm the
correctness of the PDME, PTW, and CME association if the page is
in core or of the PDME and PTW association if the page is not in
core (as determined by the setting of the PDME flag pdme.incore).
If the page ~s not in core then look at the PTW pointed to by
pdme.ptwp (if pdme.ptwp is zero, the segment containing that page
is not active and hence has no active PTWs)e The device address
in the PTW must be for the paging device or there is an error.
To determine if it is the correct paging device address, multiply
the 18-bit paging device record number by 4 (the size of a PDME)
and add the offset portion of the pointer stored in sst.pdmap.
This should yield as a result the offset of the associated PDME
in the SST. If the page is in core, compute the CME address from
the PTW pointed by pdme.ptwp as described earlier. The device
address in the CME must be for the paging device and the address
of the associated PDME can be computed as just described.

For any PTW tha~ has ptw.df on, the PTW must, of necessity,
contain a core address. If ptw.df is off, it always contaihs a
device address for all systems earlier than Release 2.2. In the
case that this page is being read in (ptw.df = "D"b,
ptw.os = "1"b), there is always a CME associated with the PTW
which, in systems prior to Release 2.2, must be searched for.. In
Release 2.2 and later systems, a PTW for a page being read in
contains a core address, which allows quick location of the CME.
In all other cases, the PTW contains a device address.

Another quick consistency check is that all PDMEs that are
free (last three words are zero) must be at the head of the used
list. The used list is traced by following forward pointers.
The address of the first PDME is stored in sst.pdusedp. Also,
the number of free PDMEs in the used list plus the number of
PDt1Es that have an RWS active (stored in sst.pd_wtct) should
equal the value in sst.pd_free.

The last type of check that can be made is really more of a
heuristic one. The pdme.abort, pdme.truncated, and
pdme.notify_requested flags are rarely on and may be symptomatic
when looking for the reason for a crash. Also, the pdme.removing
flag should only be on when the associated paging device record
is being explicitly deleted by the operator.

Active Segment Table

The Active Segment Table (AST) described earlier contains a
number of Active Segment Table Entries (ASTE) and associated page
tables. The ASTE is eight words long and basically contains
copies of some pieces of directory information about a segment.
This information, which can change quite rapidly, may be updated
in the ASTE rather than paging in the directory to do the
updating each time. Figure 5-4 below shows the format of an
ASTE.

5-8 AN53

fp

trailer
ptr

current

o
threads

2

4

segment flags
length

6

quota

bp

par-astep

page
fault
count

used

(directories only)

flags

relative
branch
ptr

flags

brother
rel-astep

1

3

5

7

I

I

I inferior
: count
• .

son
. rel-astep

number
pages
in
core

flags

Figure 5-4. Active Segment Table Entry

5-9 AN53

There are not a large number of 60nsistency checks that one
can make on an ASTE. One thing that can be checked is the
consistency of the last word of the ASTE. The field aste.marker
(as defined in ast.incl.p11) must have the value 02 in it. Also,
aste.ptsi mu~t contain the page table size index. An index of 0
means a page table size of 4 PTWs. An index of 1 is a size of
16, 2 is a size of 64 and 3 is a size of 256. (These indices are
used for the array of page table sizes in sst.pts.) Another
useful check is to compare the value in aste.np (the number of
pages in core) with the PTWs associated with that ASTE. The
number of PTWs with the directed fault bit on (in core) should be
equal to the value in aste.np.

Another item of interest is that an ASTE with the flag
aste.gtms on is almost always an ASTE for a directory. Since the
Backup Facility uses this flag, this is not ,a foolproof
indicator. Of course, if aste.ic is. nonzero, then that ASTE is
guaranteed to be for a directory. Only a directory can have
inferior entries. Another check one might want to perform is to
see how the information in an ASTE compares with the branch
information in the directory (e.g., to compare secondary storage
addresses in the PTWs with those in the filemap for the segment).
To do this, one must find the ASTE for the containing dir~ctory
using aste.par_ring. Then the descri~tor segments that are
dumped must be searched for an SDW whose page table address is
equal to the address of the first PTW following the original ASTE
in question. If this SDW can be found (if that process wasn't
dumped, it can't be found), then the directory pathname is
printed in the dump and the branch information in that directory
can be found using the value in aste.rep in the original ASTE.

SST Analysis Tools

There are two commands, dump_pdmap and check_sst (described
in Section VIII), that perform many of the checks mentioned
above. A copy of the SST in an fdump should be extracted using
the extract command (described in Section VIII). Then the
commands should be run.

ACTIVE PROCESS TABLE

The Active Process Table (APT) is a variable size (via
configuration card) data base. It is contained in the unpaged
segment tc_data (for traffic controller data). It holds' the
control blocks called Active Process Table Entries (APTE) for
each process in the system as well as some interprocess
communication control blocks. Figure 5-5 below gives the general
layout of tc_data.

5-10 AN53

o segment tc_data
--

traffic control
constants
variables

array of
APTES

ITT
(lnterprocess Transmission

Tables)

DST
(Device Signal Table)

Figure 5-5. tc data

Active
Process
Table

5-11 AN53

The header contains a number of meters and variables needed
by the traffic controller. This information is given extensive
coverage in the Multiprogramming PLM and is not discussed further
other than to point out the variable tcm1.ready_q_head (defined
in tcm.incl.pI1). Using this variable (also segdefed at
tc_data$ready~q_head), it is possible to trace through the ready
list finding the APTEs for all processes that are running,
eligible to run, ready to run, or waiting. Figure 5-6 below
describes the ready list. All other APTEs in the APT that are
not threaded into the ready list are in the blocked state or
unused state.

The APTE

Generally, when analyzing a crash involving some type of
loop, the APT is examined. One usually looks for APTEs waiting
for strange events, APTEs in inconsistent states, etc. The
format of an APTE is defined in apte.incl.pI1. Generally.the
thing one looks at first in an APTE is the flags and state word.
The states are:

o Empty (not in use)
1 Running
2 Ready
3 ~Jai t ing
4 Blocked
5 Stopped

The flags are covered in the Multiprogramming PLM. In the
field apte.processid is stored the process ID· for that user.
Processids consist of two 18-bit items. The left item is the
offset in the APT of the user's APTE. The right most 18 bits
hold the last value of a number maintained by the answering
service that is incremented each time a user logs in and rolls
over at 262144. The next item of general interest in the APTE is
the word apte.ipc_pointers. The upper half of this word, if
nonzero, is the address of the first of one or more event
messages waiting for the process. Event messages are stored in
the ITT area of the APT. The format is shown in Figure 5-7
below.

Directly after the ipc thread is a word called
apte.ips.me~sage. This word holds 1-bit flags for each of the
system-defined ips signals. (These system events are stored in
sys_info$ips_mask_data.) There are three types of ips signals.
Bit 0 of apte.ips_message is used for the ips signal QUIT. Bit 1
is for CPUT (cpu timer runout). Bit 2 is for ALRM (real-time
timer runout).

5-12 AN53

(APTES for ready, non idle processes)

(APTES for idle processes)

Figure 5-6. Ready List Format

5-13 AN53

o

2

4

6

ring of
origin

thread

device
flag

Figure 5-1.

1

~ngp_ro_c_e_SS_I_D ______ ~
3

~t process 10

5

target ipc channel

7

message

Format of ITT Message

5-14 AN53

The next field of interest in the APTE is labeled
apte.asteps. This two-word field holds the relative offset in
the SST of the ASTE for the PDS of this process, the offset of
the ASTE for the descriptor segment of this process, and the
offset in pxss (the traffic controller) of the last call (a TSX7
instruction) to the getwork subroutine. The getwork subroutine
of pxss is called \Jhen a process must give up the processor it is
running on to some other process. By seeing what other
subroutine in pxss called the getwork subroutine, it is possible
to tell what event caused that process to give up the processor
(e.g., end of time quantum, process going blocked, page fault,
etc.).

Another item of interest in the APTE is the wait event
(apte.wait_event). Listed belo\1 in Table 5-1 is the current set
of wait events:

Table 5-1. Wait Events

000000000071
400000000000 (octal)
"dtm_"
"free"
"ioat"
777777777776 (octal)

777777777777(octal)
OOOOOOxxxxxx

Valid processid
xxxxxxxxxxxx

Meaning

ttydim waiting for per channel lock
waiting on AST lock.
Disk metering waiting on lock.
Waiting on system_free_seg lock.
Wait on ioat lock.
Online salvager waiting on lock in
salv_data.
Waiting on lock in the root.
If xxxxxx)sst.astap+1, then wait
event is offset in SST of PTW for
which 1/0 has been started.
Otherwise, the wait event is the
offset in the SST of a PDME for which
an RWS has been started.
Loop wait in ttydim.
Directory unique ID.

5-15 AN53

The last two items of general interest in an APTE are the
Descriptor Base Register (DBR) value in apte.dbr and the clock
reading in apte.state_change_time. This is the clock reading
taken at the last time a process changed its execution state (see
the Multiprogramming PLM). Hence, it may be an indicator of
trouble if it has been a long time (current time minus
apte.state_change_time) since a currently waiting or blocked
process ran.

FAULT VECTOR

While the fault vector is not a data base of general
interest, one would look at the fault vector if a trouble fault
occurred since a typical reason for a trouble fault is a bad
instruction pair in a fault or interrupt vector. The fault
vector actually consists of interrupt and fault vectors. It
begins at absolute location zero. There are 32-double word
interrupt vectors followed immediately by 32-double word fault
vectors. Each vector consists of an seu instruction indirect
through an ITS pointer and a TRA instruction indirect through an
ITS pointer. The ITS pointers come directly after the fault
vectors. They are ordered in the following way: ITS pointers
for TRA in interrupt vectors, ITS pointers for SCU in int~rrupt
vectors, ITS pointers for TRA in fault vectors, and ITS pointers
for SCU in fault vectors.

KNOWN SEGMENT TABLE

The Known Segment Table (KST) is described in detail in the
Storage System PLM and so is not described here. About the only
issue one would have in theKST when analyzing a crash is finding
out the names associated with a segment number when that segment
has been deactivated. In the case of active segments, the BOS
DUMP program and the online_dump program both print the names
associated with each SDW in the descriptor segment. To find out
the names associated with a given nonhardcore segment number
(hardcore segment names are not in the KST and hard core segments
are never deactivated anyway), one can use the following
algorithm to find the address of the Known Segment Table Entry
(KSTE) for the segment:

1. A~sume y is the segment number in question.
2. Let x = y-kst.hcscnt-1 (kst.inclop11)
3. Let i = x/kst.acount
4. Let j = mod(x,kst.acount)
5. Let kstarrayaddress = kstarrayaddress+j*4

Step 2 above subtracts the highest hardcore segment number
from the original segment number since hardcore segments are not
represented in the KST. step 3 divides the result of step 2 by
the size of a KST array (currently = 200 octal) to find out which
KST array holds the KSTE. Step 4 finds the number of the KSTE

5-16 AN53

within the KST array. The KST array address is found by indexing
into kst.kstap in step 5 with the result of step 3. Finally, the
KSTE is found by adding the KSTE number times the size of a KSTE
(4) to the address of the KST array in step 6. Given a KSTE
address now, use the name address in the KSTE to find the list of
names associated with the segment number. Figure 5-B below gives
the format of KSTE (see kste.incl.p11) while Figure 5-9 gives the
format of a name (see kst_util.incl.p11).

One should be aware that the reference names resulting from
this algorithm are only a heuristic help in identifying the
segment. The branch pointer in the KSTE, identifying a directory
entry, can be of help too.

LINKAGE SECTION

Quite often when analyzing a dump, it is necessary to
examine internal static or to find the name associated with" an
unsnapped link. In the user rings, all linkage information
usually exists in one combined linkage segment. In general, at
the base of the linkage segment is a Linkage Offset Table (LOT).
(The stack header contains a pointer to the LOT.) To find the
linkage section for a given segment number, that segment number
is used as an index into the LOT, which is an array of packed
pointers. The packed pointer, if nonzero, points to the base of
the linkage section for that segment. Usually this linkage
section is somewhere within a combined linkage segment. Once
this address is known, internal static can be located by using
the linkage section offset given to the internal static variable
by the translator or binder. Within the hardcore, there are two
combined linkage segments and a separate segment to hold the LOT.
One combined linkage segment, wired_sup_linkage, holds the
linkage segments for most wired segments while the other combined
linkage segment, active_sup_linkage, holds the linkage segments
of most paged segments. The exceptions to the wired and paged
segments having their linkage sections in wired_sup_linkage or
active_sup_linkage are due purely to reasons of antiquity. In
any case, the LOT entries for these special cases point to the
correct segment. (For example, the LOT entry for the fim points
to a segment called fim.link.)

The following discussion describes the procedure involved in
associating a segment name and entryname with an unsnapped link.
This is expanded upon in the Binding, Linking, and Namespace
Management PLM, Order No. ANB1. The reader should refer to
Figure 5-10 while reading this material. Assume you are
presented with machine conditions indicating a fault tag 2
(linkage fault). The TSR contains the segment number of the
linkage segment and the computed address holds the offset in the
linkage segment of the unsnapped link. The fault/interrupt code
in the SCU data is 61, octal. To find the names involves a
4-step process.

5-17 AN53

o
;
I

thread
I
I
-.l

thread word (zero if in use)

rei namep 'flags

parent rei branch
segment number ptr

segment unique 10

Figure 5-8. Format of KSTE

1 2

character count

[n I a I m I e [~~J

Figure 5-9. Format of name in KST

5-18 AN53

Step 1 is to find the linkage section header for the linkage
section. This can be done in two ways. The most common way is
to add the value labeled "header relp" in the link to the address
of the link. This value is a negative number that is the
negative of' the link's offset from the linkage section header.
The other way to find the linkage section header is to index into
the LOT using the value of the PSR in the machine conditions.
This is a packed pointer pointing to the linkage section header.
The item of interest in the header is an ITS pointer to 'the
definitions section of the object segment that took the linkage
fault. This pointer occupies the first two words of the linkage
section header.

Step 2 is to add the 18-bit "expression relp" in the link to
the offset portion of the definitions pointer. This produces a
pointer to an expression word.

Step 3 is to add the 18-bit "type pair relp" of the
expression word to the offset portion of the definitions pOinter.
This produces a pointer to a double word type pair block.

The last step is to add the 18-bit "segname relp" to the
offset portion of the definitions pointer to produce a pointer to
an ACC segname string. Also add the 18-bi't "offsetname relp" to
the offset portion of the definitions pointer to produce a
pointer to an ACC entryname string. ACC strings consist of a
9-hit length field followed by 9-bit ASCII characters.

As a final aid in understanding this, listed below is a PL/I
program fragment that encodes the algorithm just described.

1* Assume linkp points, to unsnapped link II
headerp = addrel (linkp, linkp->link.header_relp);

I*point to link sect hdr*1
defp = headerp->header.def_pointer;

I*copy definition section pointer*1
expp = addrel (defp, linkp->link.exp_word_relp);

I*point to expression word*1
typrp = addrel (defp, expp->exp_word.type_pr_relp);

I'point to type pair block*1
I*point to ACC segname*1

entryp = addrel (defp, typrp->ty_pr.entryname_relp);
I*point to ACC entryname*1

5-19 AN53

linkage
section

definitions
ptr

link

7777 ...

1502

offset
--..... expression

~--------~----~----~ internal

o

3 r

expression
word

segment
name

entry name

Figure 5-10. Association of Name with Link

5-20 AN53

definitions
section

!,.OCK SEG

One dat~ base to examine when analyzing crashes related to
locking problems (deadly embrace, idle loop) is lock_seg. This
segment is a wrap-around history queue of all attempts to lock
wait type locks in ring O. The segment consists of an index into
the wrap-around queue and a 127-entry queue. The index is in·the
eighth word of the segment (the first seven are zero) and is the
index of the oldest entry in the wrap-around queue. Indexing is
from 0 - 126. Figure 5-11 shows the format of one eight-word
entry in the array_

'0

·lr----------add---re-U--o-f~IO-C-k----------~
2

lock uid
(wait evend

3

locking process
10

4 6 7
I

I
clUer address err _code: flags lock count

I
I

Figure 5-11. Format of Lock Entry in lock_seg

The wait event is one of those listed previously (a
directory unique ID, "ioat" , etc.). The error code is the
rightmost 18 bits of any error_table_ code that lock returned to
its caller.· The call type occupies bits 21-26 of the word and is
the type of entry into lock. (These can be determined by
examining the listing of lock.pI1.) The fail switch occupies bit
35 of the word and is on if a lock try failed. The last word
holds the value of sst.total_locks_set at the time the entry was
made. The value in sst.total_locks_set is the total number of
locks being waited on by all processes in the system. It is
checked· for zero when the system is shut down and a warning is
printed on the operator's console if it is nonzero. This is done
to indicate that perhaps a directory lock still remains locked,
and so the salvager should be run.

5-21 AN53

Another important data base is the PDS. This per-process
segment is used as a ring 0 stack and has a number of per-process
items in the header that are useful in dump analysis. All of the
data items ar~ defined by segdefs and are referenced by name in
this discussion. Of course, various sets of machine conditions
are stored on the PDS. These have already been discussed. For
most faults handled by the fim, the history registers are stored
in pds$history_reg_data and the associative memories are stored
in pds$am_data. This information should be examined if a fault
occurs and it looks like a hardware error may be involved. (In
some releases, these may be on the PRDS, however.)

The PDS holds the process ID in pds$processid. Given this,
the APTE can be located as described previously (pds$apt_ptr also
locates the APTE directly). The PDS also holds the process group
ID (e.g., Jones.Project_id.a) in the variable
pds$process_group_id so that the name of the user may' be
associated with the PDS being examined. Another useful variable
is pds$lock_id. This is the unique 36-bit value used in locking
outer ring locks. It is also kept in the APTE for the process so
that if an outer ring lock is locked, a call can be made to ,ring
o to look at all the APTEs to discover if the process associated
with the lock ID still exists. If it does not exist, then that
~uter ring lock may be zeroed.

When investigating locking problems, pds$lock_array should
be examined. This is a 20-entry array that contains information
about each ring 0 wait-type lock currently locked by that
process. Each eight-word lock array entry holds a pointer to the
lock, the 36-bit wait event associated with the lock (e.g.,
unique ID for a directory), the fixed binary (35) type of data
base being locked (directory = 1), a pointer to the caller of
lock, a fixed bin (2) number that if 0 means the locked data base
(a directory) is being read and if 1 means it is being written,
and a fixed bin (2) modify switch that if 1 means the locked data
base (a directory) was modified while locked. Figure 5-12 shows
the format of a lock array entry.

The main use of the lock array besides debugging is to
provide a record of any directories that were locked and modified
by a process. If the process attempts to crawl out of ring 0,
the program verify_lock can determine whether or not to call the
online salvager. The online salvager uses the lock array to
discover what directories to salvage. If no directories in the
lock array have the modify switch on, then verify_lock does not
call the online salvager.

5-22 AN53

o 2 3

I address of lock uid (event) I lock type

4 6 7

I caller address dir_type code modify switch

Figure 5-12. Format of Lock Array Entry

Also . ~f general interest in performing dump analysis is the
trace table (pds$trace) that is maintained by the system trace
facility. The system trace facility was originally put in the
system to both "trace" page faults in a process as well as to
provide data to the post purging mechanisms of the system. Since
the original implementation, the trace has been extended to
include many events, other than page faults, that occur in a
process. A complete list of traced events occurs below with the
corresponding trace type code.

The actual trace data is stored in a wrap-around buffer in
the PDS at the segdefed location pds$trace. The data is stored
into t~e trace buffer by the primitive page$enter_data (part of
the machine language kernel of page control for efficiency
reasons) for nonpage fault entries and by the subroutine
page$enter for page fault entries.

5-23 AN53

The buffer ~s managed by several indices enabling the system
(and the user) to determine the beginning and end of a quantum.
A bound of the trace buffer is kept in the header of the buffer
enabling correct wrap-around handling. The actual buffer must be
wired down (it is referenced at page fault time) and hence must
be limited in ·size. In fact, the size of the buffer is a
function of other variables in the PDSand the buffer is
assembled so that it fills out the remainder of the first page of
the PDS not needed by other wired variables in the PDS.

Data Structure

The following declarations describe the structure of the
trace buffer.

declare 1 pds$trace aligned ext like trace_data;

dcl 1 trace_data aligned,
2 next usable fixed bin (16) unal,
2 pad1-bit (19) unal,
2 first_unusable fixed bin (16) unal,
2 pad2 bit (19) unal,
2 time fixed bin (71),
2 first_used_in_quantum fixed bin (16) unal,
2 pad3 bit (19) unal,
2 pad4 (3) fixed bin (35),
2 entry (0:1 refer (trace_data.first_unusable -1»,

3 code_word,
4 astep bit (18) unal,
4 ring_number bit (3) unal,
4 segment_number bit (15) unal,

3 trace_word,
4 type bit (6) unal,
4 page_number bit (12) unal,
4 time fixed bit (17) unal;

The following descriptions refer to the items declared above:

is an index into the trace array
(trace_data. entry) to the next entry
that is 'used by page$ehter or
page$enter_data. This value may be
zero but can never equal
first_unusable.

first_unusable is the number of entries in the trace
array. Since the trace array is
indexed from 0, first_unusable cannot
be used as a valid index into the
array. This item should be used when
implementing a wrap-around technique
for looking at the data.

5-24 AN53

time

astep

ring number

segment_number

type

is the system clock reading at the
time the most recent trace data was
entered. It is used to determine the
(real) time difference between trace
entries.

is an index to the first entry in the
list for the quantum in ~hich it
occurs. The variable only gets set
if post purging is being done and
usually points to the first entry
after a rescheduling ent~y.

is used by the post purging (and
process swapping) software to help
locate the PTW associated with the
page fault that caused this trace
entry. This is only set if
type = "OOOOOO"b, i.e., for page
fault entries.

is the validation level at the time
of reference that caused the traced
page fault, i.e., scu.trr. This is
only valid for page fault entries.

is the segment number of the segment
refer~nced at the time of the fault
that caused the trace entry.

is the coded type of the trace
entries. The following type's are
currently defined:

Binary Decimal
~ Value, Value

page fault 000000 0
seg fault start 000010 2
seg fault end 000011 3
link fault start 000100 4
link fault end 000101 5
bound fault start 000110 6
bound fault end 000111 7
*signaller 001000 8
restart fault 001001 9
reschedule 001010 10
*user marker 001011 11

is the page number of the page
faulted upon. This value is only
filled in for page fault entries.

5-25 AN53

time is the real (wall-clock) time that
elapsed between this and the previous
entry. The time is in units of 64
microseconds. If the time difference
is too large (about 2**24
microseconds or 15 seconds) a value
of 0 is placed in the entry.

For the starred trace types above, the code word should be
declared as follows:

3 code_word char (4) aligned,

The trace data can be looked at (and modified in a limited
way) from the user ring. To read the data the following code
should be used:

~eclare hcs_$get_page_trace entry (ptr);

call hcs_$get_page_trace (addr (trace_data));

is declared as above. (Output)

The primitive returns the entire trace structure and the
caller must provide enough storage. Although the caller cannot
know initially how much storage is required, he can depend on it
being less than 1024 words. (On subsequent calls the size of the
structure is known.)

An interface exists to allow the user to place an entry in
the trace structure as a marker to delineate events. This
primitive is used as follows:

declare hcs_$trace_marker entry (char (4) aligned);

call hcs_$trace_marker (message);

where message is a user-specified character string that is placed
in the trace structure.

Trace Entry Types

The following is a list of defined entry types and a
description of the events they represent.

page fault

seg fault start

means that a page fault occurred on
the indicated page of the indicated
segment. This entry is filled in for
all page faults that occur in the
process.

indicates the start of handling a
segment fault. The code word of the

5-26 AN53

seg fault end

link fault start

link fault end

bound fault start

bounds fault end

signaller

restart fault

reschedule

trace entry is filled in with the
segment number of the segment faulted
on.

indicates the end of handling a
segment fault. The code word is
filled in with the segment number of
the segment faulted on.

indicates the start of handling a
linkage fault on the start of
processing or an hcs_$make_ptr call.
For linkage faults the code word
contains the segment number of the
procedure causing the fault. For
make_ptr entries the code word is set
to O.

indicates the end of handling a
linkage fault or the end of
processing an hcs_$make_ptr call.
For linkage faults the code word is
filled in wi-th a packed pointer' value
equal to the snapped link. For
make_ptr calls the code word is set
to O.

indicates the start of processing of
a bounds fault. The code word is
filled in with the segment number of
the segment faulted on.

indicates the epd of processing for a
bounds fault. The code word is
filled in with the segment number of
the segment faulted on.

indicates the occurrence of an event
signalled by the supervisor. The
first four characters of the
condition name of the signalled event
are placed in the code word.

indicates an atte~pt to restart or
continue a signalled event.

indicates that the process was
rescheduled. It indicates the time
the process's quantum expired.

5-21 AN53

user marker is one generated by the user with the
hcs_$trace_marker primitive. The
code word is specified (and
interpreted) by the user but is
generally a character string four
characters long.

5-28 AN53

SECTION VI

TYPES OF CRASHES

This section describes some heuristics one might use when
faced with various types of crashes. It is impossible to provide
a complete list since much of dump reading involves an intuitive
process that is not easily defined.

LOOPS

The type of crash termed as a loop generally covers two
cases. The first is an "idle loopll where all processors are just
idling even though there is work to be done. One can recognize
when a processor is running an idle process because an idle
process displays a pattern that alternates in the A and Q
registers. The pattern is an octal 111111000000 in the A
register and an octal 000000111111 in the Q. In later releases,
a "rotating chain" pattern may be observed. This pattern is
flipped periodically (whenever an interrupt occurs) so that if
the processor display is set up to show the AQ, the idle loop
situation is easily verified. The other type of loop is a loop
within ring O. This, of course, ties up the processor so that no
useful work can be done. In both cases, an execute fault is the
usual way to crash the system so that a dump can be taken.

In the case of a ring 0 loop, little can be said here to
allow one to discover the cause of the loop. What must be done
is to see what program was running at the time of the execute
fault, 'see what the value of the stack pointer was (pOinter
register 6 in the execute fault machine conditions), and using
this information examine the stack history and see what the
program was doing when it was stopped.

In the case of an idle loop, the execute fault data is
probably of little use. What one should look at first is the APT
to discover why no process is running. Of interest are the wait
events of those processes in wait state. If the wait events are
unique IDs (uid) of directories, one must find the directory
associated with the unique ID. There are three ways to find this
out. The first is to scan the lock array in the PDS of one of
the processes waiting on that event. If the uid is found, then

6-1 AN53

that lock array entry contains a pointer~ to the lock and given
the pointer, one can of course find the lock to get the process
ID of the process that did the locking. The second way is to
scan lock_seg looking for an entry with a ,~ait event equal to the
uid. If such· an entry is found, the lock pointer in the entry
can be used to examine the lock. The final method is to search
the KST. There is a hashing algorithm to produce the address of
the KSTE for a segment given its uid. However, the algorithm is
difficult to do by hand and so the best alternative is to scan
the KST looking for a KSTE containing the uid (last word of the
four word KSTE). There is sufficient information in the KSTE to
find the lock and to extract the process ID of the process that
locked that lock. Once the process ID has been learned, the APTE
for that process as well as the PDS can be examined. Hopefully,
the PDS contains enough history in its stack to allow one to
determine the reason why that process did not unlock the lock.
In a crash of this sort, a normal FDUMP that dumps only the
running processes is not sufficient since the running processes
are idle processes. Hence, one should use the SHORT optioh to
dump the descriptor segment, PDS, and KST of all processes.

PAGE CONTROL CRASHES

In general, when there is a page control problem a syserr
message is printed although there are a few cases where pa~e
control loops (TRA *) when an error condition is encquntered.
This causes a lockup fault that results in a crash with no
message. A common syserr message is "Fatal error in page_fault
at location nil where n is the octal location within
bound_page_control where some error was noticed. A listing
provides further information as to the cause of the crash.

There are several conventions one should be aware of when
analyzing page control problems. The first is the coding
conventions used in that portion of page control that is written
in ALM. Subroutines are not called using the normal
call/push/return sequences due to the overhead involved.
Instead, all "calls" are done via a TSX7 instruction and all
subroutines within the ALM portion of page control share the same
stack frame. In addition, page$done calls pxss to perform a
NOTIFY when a page has been read in and so pxss also shares this
stack frame. The stack frame is defined by
pxss_page_stack.incl.alm. There is a small save stack for use by
page control and one for use by pxss. These stacks are used to
push and pop values of x7. The stack variable "stackp" is a
tally word that points to the next place to store a value of x7
on the page control x7 save stack, save_stack. Hence, when
reading a dump, the value in stackp is the upper bound on what x7
values are valid in save_stack. The value in the word of
save_stack just before the word pointed .to by stackp is the
address of the last subroutine that was "ealled" via a TSX7. The
same conventions are true of the pxss x7 save stack,
pxss_save_stack, and its stack pointer, pxss_stackp.

6-2 AN53

Also of interest in the stack frame are save areas for four
sets of index registers. The index registers saved in
notify_regs are stored when the done_ subroutine of page_fault
calls pxss to do a NOTIF¥ when a page read is complete. Index
registers are also saved in notify_regs when meter_disk is called
e~en if no disk metering is going on.) The registers stored in
bulk_reg are stored there when bulk_stare_control calls page$done
after a bulk store read (or write in some cases) has completed.
The registers stored in page_reg_bs are stored when
bulk_stare_control is entered. The final items of general
interest in the stack frame are the variables did (the device
ID), devadd (the device address), and ptp_astep, which holds the
address of the PTW for a page being read (upper half) and the
address of the ASTE for the page being read (lower· half). This
cell is also used by the RWS code~

Certain conventions have been established for the use of
index registers by page control. The following register
assignments are used when running in all parts of page control
written in ALM except for bulk_stare_control:

xO
x1
x2, pr2
x3
x4
x5
x6
x7
pr3

temporary (may be used at any time)
pointer to PDME and temporary
pointer to PTW
pointer to ASTE
pointer to CME, also used in PDME hashing code.
temporary
temporary
us~d for subroutine calls
pointer to the base of the SST segment

The register conventi6ns for bUlk_stare_control are not of
general interest and are documented in the listing.

ATTEMPT TO tERMINATE INITIALIZER PROCESS

Whenever a process takes a fatal error (e.g., runs off its
,stack), it is terminated by the signaller. The signaller
accomplishes this by referencing through a painter with a segment
number of -2 and a word offset that identifies the reason for the
termination. A word offset of -4 means that the signaller or
restart_fault faulted while processing a fault. A word offset of
-8 means the user's stack is in an inconsistent state. Other
values can be found in the listing of terminate_proc, which is
the program called by the fim when an attempt is made to
reference through a pointer with a segment number of -2. If
terminate_proc is called to terminate the initializer process, it
crashes the system. If this happens, examine the fault data on
the PDS of the initializer. The computed address in the fault
data is the word offset of the pointer with the -2 segment
number. This is an indication of why the initializer was
terminated. The other way to discover this is to find the stack
frame of terminate_proc. It takes one argument that is either a

6-3 AN53

standard error_table_ error code or the negative word offset from
the fault caused by the attempt to reference through the pointer
described above. Quite often, the initializer is terminated due
to an overflow of its stack caused by recursive faults. In this
case, the fir~t set of fault conditions on the ring 4 initializer
stack is for the original fault that caused the problems. These
fault conditions can be located by tracing the stack in a forward
direction (starting at the stack location pointed to by the stack
begin pointer in the stack header), looking for a frame with a
return pointer for the program return_to_ring_O_.

It is unfortunate that the data from the fault that resulted
from the use of the pointer to segment -2 overwrites
pds$fim_data. Thus, the machine conditions for the original
fault cannot be found there. With luck, a heuristic search of
the PDS for old stack frames owned by fim or return~to_ring_O_,
or data that appears to be fault data may be of use. The 30000
stack-words skipped by syserr when crashing help facilitate ~his
search. It may also -prove use ful to inspect pds$signal_da ta as
well.

Once the original cause for the termination of the
initializer process has been determined, ·there remains the'task
of discovering why the fault occurred in the first place. Since
it would be impossible to list all the possible causes, the
initializer's data bases are described so that they may be
checked for consistency in a dump. It is assumed that the reader
has previously read the material in the System Administration
PLM, Order No. AN12.

TELETYPE DIM PROBLEMS

Teletype DIM (ttydim) problems usually fall in one of two
classes. Either the FNP crashes or the ttydim within the Multics
Processor notices a problem and crashes. In the former case, a
syserr message of the form "Emergency Interrupt from 355 A" or
"dn355: mailbox timeout, please dump the 355." indicates that the
FNP has crashed. In the case of the ttydim, the most common
errors are of the form "tty_free error n" or "tty_inter error nIt
where n is an error number. It is not the intent of this
material to describe the internal structure of the FNP software
or the ttydim software since it is described in the Supervisor
Input/Output PLM, Order No. AN65. What is given here are a few
hints to offer some direction to the crash analyzer.

6-4 AN53

When an FNP fdump is printed (using od_355), the dump is
broken up into three sections. The first section gives the cause
for the crash and the registers at the time of the crash.
Registers are listed as Ie (instruction counter), IR (indicator
register), A (A register), Q (Q register), X1 (index register 1),
X2 (index register 2), X3 (index register 3), Eft (interrupt
enable register) and ET (elapsed timer register). Possible crash
c~uses are:

power off
power on
mem parity
ill opcode
overflow
ill mem op
divide chk
ill pr~ in
unexp int
iom ch fIt
console

memory parity error
illegal (invalid) operation code

illegal (invalid) memory operation

illegal (invalid) program interrupt
unexpected interrupt
iom channel fault

Many of these faults are self-explanatory. The fault "ill
mem opu refers to the fact that one of the" following conditions
has occurred:

1. The memory controller on the FNP timed out (hardware
error) .

2. There was an invalid command to the memory controller
(hardware error).

3. Out of bounds address.

4. Attempt to alter storage in a protected
(protection not used by Multics currently).

5. A character address of seven.

region

The fault "ill prg in" refers to a hardware error in which
the processor attempts to answer an interrupt when there was no
interrupt present or a valid interrupt occurred but the interrupt
sublevel word for that interrupt was all zeros. The error "unexp
int" means that an interrupt from an unconfigured device
occurred. The message "iom ch fIt" indicates that an iom channel
fault occurred. The fault word can be found in locations 420-437
of the FNP. The location selected is 420 (8) + iom channel
number (0-17). Figure 6-1 below depicts the format of the fault
status word. Finally, the message "console" indicates that an
ABORT command was typed on the control console for the FNP (see
the Supervisor liD PLM).

6-5 AN53

The next section of the dump is the formatted contents of
the internal trace table. This table contains the last fifty or
so events printed in ascending chronological order. Each trace
entry consists of a type and the value of the elapsed timer at
the time the trace entry was made. The elapsed timer increments
every millisecond. Listed below in Table 6-1 are the items
printed for each trace type.

The final section consists of the FNP dump itself. The dump
is formatted eight words per line. Preceding the octal dump of
the eight words is the absolute location being dumped, the module
(if any) being dumped, and the relative location being dumped
within that module. The Supervisor I/O PLM describes the
internal logic of the software within the FNP.

As far as ttydim problems within the Multics P~ocessor go,
the two problems most commonly found are syserr crashes of the
form '-'tty_free error n" or "tty inter error n". Tables 6-3 ~nd
6-4 list the meanings of these errors. A brief statement should
be made at this point about the layout of the buffer pool. The
unpaged segment tty_buf is used to hold several data bases
necessary to the ttydim. Figure 6-4 depicts the format of
tty_buf. The include file tty. incl. p11 describes, among oother
things, the header area of tty_buf. The bleft variable contains
the number of free buffers remaining in the buffer pool and the
free variable contains the address of the first free buffer. All
free buffers are threaded together in a forward direction. only by
an address in the first 18 bits of each buffer. This address is
relative to the base of tty_buf. All free buffers are marked by
a 36-bit pattern of alternating binary 1's and O's in the last
word of the 16-word buffer. When a buffer is allocated, this
36-bit pattern is changed to alternating binary O's and 1's. The
program tty_free makes certain checks whenever a buffer is
allocated or freed. Table 6-3 lists the possible errors that can
be found.

The other common form of ttydim crashes is a message of the
form "tty inter error n". Table 6-4 lists all the error codes
from the program tty_inter.

6-6 AN53

DetEl Commands lnterrupt' Commands

000 None 000 None
001 Load 001 Unconditional
010 Store 010 Conditional or
011 Add 011 Conditional or
100 Subtract 100 Conditional or
101 Add 101 Conditional or
110 Or 110 Conditional or
111 Fault 111 Fault

Filu1t Types

0000 None
0100 All other Memory Illegal actions
1000 Memory Parity
1100 Illegal command to rOM
1101 rOM bus channel parity error
1110 rOM adder parity error
1111 10M priority break

TRO
PTRO
Data Neg.
Zero
Overflow

Figure 6-1. format of 6600 FNP 10M Fault Word

6-1 AN53

Trace Type

(liD Interrupt)

2 (Idle)

3 (HSLA Activity)
4 (DIA Activity)

. 7 (LSLA Activity)

10 (System Crash)

Table 6-1. Trace Types

Instruction counter at time of interrupt and
a coded word indicating what deVice
interrupted (see Figure 6-2).
Interrupt enable mask at time processor went
idle.
See Table 6-2.
Subtype and varying data. For subtype 1, the
data is the transaction control word (see
Figure 6-3). For subtype 2, the data is
either a Multics Processor address and line
number, or an error code and transaction
control word. This is seen only when the FNP
is crashing due to a bad opcode in a mailbox.
The data consists of a subtype (1 only), a
Terminal Information Block (TIB) address, the
value of the flag worq in the TIB, the value
of the line status word in the TIB, the value
of the LSLA status character which occasioned
the trace entry, and the value of the flag
word in the RMX table entry for the terminal.
The data consists of a coded word, the
rightmost 15 bits of which are the
instruction counter at the time of crash, and
the value of the indicator register at the
time of the crash.

6-8 AN53

Table 6-2. HSLA Trace Subtypes

Sybtype (8) HSItA SubroutiDf) Q.ell

1 ' nsintp Software Com Region
(SFCM) address and coded
interrupt word '(see
Figure 6-2).

2 hscnct SFCM address.
4 snpcw1 SFCM, HSLA pew.
5 sttprc SFCM, HSLA status word.
6 ccwint SFCM, CCW, and right half

of HSLA PCW.
7 sttchk SFCM and value of status

word in TIB.
10 . dcwprc SFCM and value of status

word in TIB.
12 diadun SFCM and DIA action (see

Figure 6-3).
1,3 . nsstop SFCM
14 ~pchn SFCM
15 . conect SFCM and CCW.
16 conect SFCM

(delayed stop)
21 dcwprc SFCM and value 'Of status

(terminate) word in TIB.
22 ckio SFCM and flag word of

SFCM.
, 100 dcwmic SFCM, word 2 of LPW, and

DCW.
101 dcwccd SFCM, word 2 of LPW, and

DCW.
103 dowxfr SFCM, word 2 of LPW, and

DCW.
104 dcwcom SFCM, word 2 of LPW, and

DCW.
105 dcwlit SFCM, word 2 of LPW, and

DC\tl.

6-9 AN53

a b I I c

o 3 4 10 11 12

where:

a is 4 bits representing the iom channel number.

b is a 7-bit device number, coded for specific devices,
i.e., hslas and lslas.

c is a 6-bit module number, indicatiqg which module should
handle this interrupt.

Figure 6-2. Format of Coded Interrupt Word

DIA Action Flags

Bit Number
o
1
2
3
4
5
6

l'1eaning
Performed list service.
Read data.
\lrote da ta.
Sent special.
Read mailbox.
Processed a get status command.
Processed a connect.

Fbrmat of Line Number

Bits
-8-

9-11
12-17

Figure 6-3.

Heaning
O=LSLA line, 1=HSLA line
LSLA number (0-5) or HSLA number (0-2)
HSLA subchannel (0-31) or LSLA slot (0-52)

Format of Transaction Control Word for DIA

6-10 AN53

17

header and meters

fixed control blocks, 8 words each -
one per configured channel

common region, copi~ from tty _ctl
,pointed to be corig in header

free buffer pool, contains:
allocated data buffers
big control blocks for dialed

lines
DeW blocks
status queue buffers

Format of tty_buf

6-11 AN53

Error Number (8~
1
2

3

4
5

6

7

10

1 1

12

13

Table 6-3. Errors from tty_free

Cause
Out of buffer's.
Free buffer does not have the free
pattern in it.
Thread in a buffer is not 0 mod 16
(buffer size).
Buffer being freed is not 0 mod 16.
Buffer being freed has the free
pattern in it (already free).
The thread in one buffer of a chain
being freed is not 0 mod 16.
A buffer in a chain being freed "has
the free pattern in it (already
free) .
The thread in a free buffer is not
o mod 16.
The address 6f a buffer being freed
is not in the buffer pool area in
tty_buf.
The address of the first buffer in
a ohain being freed is n6t in the
buffer pool area in tty_buf.
The address in the transfer dcw of
one buffer in a chain being freed
is O.

6-12 AN53

Table 6-4. Errors from'tty_inter

Error Number Cause
1 Global lock (tty_buf.slock) not

locked prior to causin~ time out.
2 Global lock not locked prior' to

clearing it.
3 Per tty lock (fctl.lock) not locked

prior to clearing it.
4 FNP still processing read dcws when

request made to free the read
buffer chain.

5 FNP still processing write dcws
when request made to free the write
buffer chain.

6 Transfer dcw in read buffer does
not point correctly to another read
buffer.

9 There is an extra read block in the
read chain.

10 Attempt to put more than eight ,dcws
in a dcw block.

11 Global lock prior to clearing it in
order to process a status word.

12 Apparent bad ,fixed control block
(fctl).

6-13 AN53

HARDWARE PROBLEM~

This section cannot hope to describe all possible hardware
problems but is instead offered as a first step to be taken by
the person performing system problem analysis prior to consultin~
with engineering support personnel.

Bulk Store Problems

Bulk store problems usually can be designated as hardware
status errors, data errors, or lack of response to a connect. In
the last case, the message "page: bulk stor'e timeout" is printed
and the operation is retried. If it fails three times, a fatal
read or write error is reported. In the case of a hardware
status error, a message is printed of the form:

"bulk store err, status = x x x"
"csb status = y, addr = n"

The first line of the message prints the bulk store st~tus,
next address of data transfer, tally iesidue, and hardware
indicators (the first three words of the status block). The
second line of the message prints the status bits in the Current
Status Block (CSB), followed by the bulk store address that was
accessed. In Release 2.2 and later systems, only one wo~d of DCB
status is given.

Another type of bulk store error is a checksum error. If
the proper option is specified on a DEBG configuration card, the
bulk store software performs checksum calcuation and checking for
every bulk store operation. If an error is detected, a message
of the form "bulk store cksm err,addr = x, core = y" is printed
where x is the bulk store address and y is the 24-bit absolute
memory address.

The final type of bulk store error to be described is the
nonfatal Error Detection and Correction (EDAC) error. This is a
1-bit error detected and corrected by the bulk store. All such
errors are counted by the bulk store software and are reported by
the metering program file_system_meters that is described in the
Tools PLM. Further information is kept by the bulk store
software on which Core Storage Module (CSM) is getting the EDAC
errors. Currently, this information is attainable only by
dumping the words (one per CSM) starting at the symbol
mbx.edac_buckets as defined in the include file
bUlk_store_mailbox.incl.alm. There is one word (EDAC corrected
error counter) for each 256k CSM of bulk store.

6-14 AN53

lOt-'! Problems

No attempt is made to try to list possible 10M problems.
Instead, all that is presented is the format of the various
control words used by the 10M and the format of an 10M status
~ord and 10M system fault word. More information may be found in
the Supervisor I/O PLM.

Disk Problems

Disk errors are reported by a syserr message in the
following format:

"dnnn error:
If

II dnnn_con trol :

ch=c, cmd=cm, stat=s"
area=a, sect=sc, cyl=cy, hd=h, addr=ad"
detailed status=xxxxxxxxx"

If the major status is "device attention," the message
"dnnn_control:device attention -- please check disk unit" is
printed following the area, sector, etc., information. In the
rest of the message, c is 10M channel number, cm is 10M command~
s is 10M status, a is area or logical drive number, scis sector,
cy is cylinder, h is head, and ad is the Multics address. In
each message, dnnn is actually d190, d191, etc. depending on
which type of disk got the error. The last line of the message
prints nine bits of detailed status. Information about these
nine bits may be found in the documentation for each type of disk
sub~ystem. Figure 5-1 (DSS181 Extended Status), Figure 5-2
(DSS190A Extended Status), and Figure 5-3 (DSS190B Extended
Status) in the Debuggers' Handbook PLM describe the meanings of
the various major status and substatus bits to be found in a disk
status word. More information about the disk software data
bases, etc. may be found in the Supervisor I/O PLM.

Memory Parity Errors

Multics tries to recover from parity errors in almost all
cases. If a parity error occurs while "running" on the PRDS
however, (using the PRDS as a stack) Multics crashes. Parity
errors are reported on the operator's console after first reading
the locations of the instruction and operand to see which
location (if any) had the parity error. The results are printed
in a message as follows:

"parity fault in process-group-id."
" xxxx"
II xxxx"
"abs tsr loc: n, contents; c"
habs psr loc: n, contents; cIt

Where process-group-id is
Greenberg.Multics.a), the

the
eight

6-15

Person_id.Project_id (e.g.,
x's are the eight words of scu

AN53

data, n is the absolute 24-bit address of the instruction or the
operand, and c is the contents of that 24-bit address. If no
parity error occurred on the retry of the instruction fetch, the
message "no parity error repeating psr memory access" is printed.
If no parity error occurred on the retry of the operand fetch,
the message "no parity error repeating tsr memory access" is
printed. If both messages are printed, thls is a good indication
that the parity error occurred on the processor/memory interface
rather than in the actual memory. In addltion, if the parity
error occurred in the user ring, the pathname of the user ring
program is printed along with the instructlon that got the parity
error, and the instruction after. This is done so that if the
parity errors occurred on the instruction fetch, one can see
which bits are bad by comparing the instructions printed from the
user program and the instruction printed. Further information
about scanning a memory for parity errors using the system
controller maintenance panel may be found in the Multics
Operator's Handbook, Order No. AM81.

6-16 AN53

SECTION VII

SYSTEM PERFORMANCE DEGRADATION

This section is intended to give some direction to the
reader who is trying to discover why Multics is running, but is
running with very poor response. As is the case with crashes,
the possible causes for poor system performance are myriad but it
is often possible to discover what is wpong (if not why) using
on~ or more ·of the Multics metering tools. All of these· tools
are described either within this PLM, the System Metering PLM.
Order No. AN52, or within the Tools PLM. A generally useful tool
is total_time_meters (ttm). This metering command indicates how
the processor(s) is being allocated in terms of what percentage
of total processor time is being used for interrupt processing,
the time for page fault processing,etc. Hence, if some device
is generating excessive interrupts, this time will show up in the
output produced by ttm. If ttm shows that an excessive paging
percentage is probably what is causing the performarice
degradation, then the metering command page_multilevel_meters
(pmlm) should be used to check to see what percentage of page
faults is being satisfied by a page on the paging device. If
this number is abnormally low, the paging device map is probably
inconsistent. If the speed of the paging device or disks is
suspect, the device_meters (dvm) command should be invoked. This
command indicates if excessive device errors are occurring, if
the paging device or disks are being overloaded, or if the paging
device or disks are running abnormally slow.

If ttm shows that most of the system is being tied up in the
process of interrupts, the interrupt_meters (intm) command should
be used to see what 10M channel appears to be tying up the
system. If ttm shows that the system is spending much of its
time in an idle condition, this is probably an indication of a
poorly tuned system. The print_tuning_parameters (ptp) command
prints out all the generally setable tuning parameters. If
max_eligible is too low, this can cause excessive idling
(similarly, when it is too high, it can cause excessive
thrashing).

7-1 AN53

If the working set factor is too large, the system idles and
again the converse is true. If the double write switch is on,
this means that all pages are being written to disk as well as
the paging device which will, of course, slow down the system.

If the output of ttm is not conclusive, one can try running
the system_performance_graph (spg) tool to get a graph of system
performance in an attempt to pick up patterns over a period of
time. If this leads to the conclusion that one user has managed
to "steal'i much of the system, try running the
traffic_control_queve (tcq) command several times. This shows up
any user who is getting an inordinately high percentage of the
available processor time. The command print_apt_entry (pae) (see
Section VIII) may be used to print the APT entry of that user for
further examination.

If much of the system time seems to be spent in overhead
activities, the file_system_meters (fsm) command indicates if
that 'overhead is due to the thrashing caused by too many p~ges
being wired or incorrect allocation of AST entries (as indicated

,by the AST grace time). If this proves fruitless, run the
meter_gate (mg) command to see if some ring 0 gate entry appears
to be using a vast portion of the proces~or time. If there are
still no indicators, perhaps a processor itself is running
incorrectly. The set_processor_required (sprq) command can be
used to force execution on only a particular processor. Then,
execution of the instr_speed command shows if that proqessor is
running below normal performance levels. ~t should be noted
parenthetically that the EIS tester program, et, and the test_cpu
program can be used to discover if a processor is in fact working
gorrectly if not slowly. (See Hardware Diagnostic Aids, Order
No. AR91, for the use of these programs.)

There are several other tools availabl~ to the investigator
of system problems. If the paging device map is suspected of
being in an inconsistent state, it can be oopied out of ring 0
using the copy_out (cpo) command (see Section VIII) and then the
dump_pdmap command can be used to confirm or deny these
suspicions. Another command, check_sst, can be used to perform
consistency checks on the core map, and the various AST pools.
The command ring_zero_~ump (rzd) (see Section VIII) can be used
to dump various data bases in octal format for quick examination.
If a patch to a ring 0 database will restol~e the system to proper
operation, the patch_ring_zero (prz) command (see Section VIII)
can be used as long as the user process has access to the hphcs_
gate.

One last note should be made here about another type of
system problem. When Multics crashes and the Salvager is run,
some key system directories may be partially destroyed so that it
is impossible to bring Multics up again. If the system can be
brought up to command level in the initializer process, the
command comp_dir_info (described in the Tools PLM) can be used to
see what is missing from certain critical directories. This, of

1-2 AN53

course, presumes that the command save~dir_info (described in the
Tools PLM) is run regularly on these critical directories. If a
directory has been changed, then the command rebuild_dir
(described in the Tools PLM) m&y be used to reconstruct the.
directory, preventing a large amount of system down time for a
restore or a reload.

7-3 AN53

SECTION VIII

COMMAND AND SUBROUTINE DESCRIPTIONS

This section contains the command and subroutine
descriptions needed to analyze dumps. Some of these commands and
subro~tines have been referenced in previous sections.

The command and
alphabetically in two
subroutine descriptions.

subroutine
groups.

8-1

descriptions are
Command descriptions

arranged
precede·

AN53

The check_sst command performs a large number of consistency
checks on page control data bases in a copy of the System Segment
Table (SST). Such a copy may be obtained from an fdump (seethe
extract command) or ring 0 (.see the copy_out command).

The Core Map, Paging Device Map, and Active Segment Table
(AST) are scanned, and inconsistencies reported. In addition,
some meters on page and segment usage gleaned from these scans
are printed out.

Usage

check_sst path

where path is the pathname of the copy of the SST segment to be
analyzed.

Notes

Copies of the SST copied out of ring 0 are likely to be
inconsistent unless special care is taken to minimize page faults
and other system paging activity while such a copy is made.

The check_sst command makes its own copy of the SST
provided. In it, it sets pad fields in CMEs and PDMEs, and
ptw.processed bits as a form of marking. The presence of these
bits in printouts of these data items should be understood as
originating in this manner.

8-2 AN53

The copy_dump command is used to copy an fdump image taken
by BOS out of the dump partition into segments in the Multics
hierarchy. The main entry point copies dumps into segments· in
the directory)dumps.

Usage

There are no arguments

Entry: capy_dump$set_fdump_num, copy_dump$sfdn

This entry paint is used to set the error report form (ERF)
number for the next fdump to be taken.

Usage

copy_dump$set_fdu~p_num erfno

where erfno is the ERF number for the next fdump to be taken.

This command does not allow a particular dump to be copied
twice. It also does not allow the ERF number to be set if the
dump currently in the dump partition has not been copied.

8-3 AN53

The copy_out command copies a segment from the supervisor
ring into a user-ring segment.

Usage

copy_out segname -path-

where:

1 • segname

2. newname

Notes

is the SLT name or the octal number of the
segment to be copied~

is the pathname of the copy created
segname.

from

If path is not specified the segment is copied into the
working directory with the entryname segname. However, if an
octal number is given, the correct SLT name, if one exists, for
the segment is used.

If path already exists, it is truncated pr~or to the copy.
The ring_zero_peek_ subroutine is used to copy the segment out.

8-4 AN53

The copy_salvager_output command is used to copy the segment
>online_salvager_output into a user-ring segment.

Usage

copy_salvager_output path

where path is the pathname of the user-ring segment into which
the copy of >online_salvager_output is placed. The segment is
created if it does not already exist. If the segment already
exists, its previous contents are destroyed.

Notes

The privileged entry point phcs_$ring_O_peek is used t~ copy
the data.

The number of words copied is calculated from the bitcount
of >online_salvager_output. Upon successful completion of the
command the same bit oount is placed on the user-ring segment.

8-5 AN53

The dump_pdmap command is used to check a copy of the System
Segment Table (SST) segment for consistency. Its primary concern
is with the paging device map but other checks are also made.

Usage

where:

1 • path is the pathname of a copy of the SST to
examine.

2. control _arg can be one of the following:

-long, -lg prints out each Paging Device Map
(PDME) as it is scanned.

~ntry

-brief, -bf prints only summary information (default).

Most of the output is self explanatory. The user should try
to get as consistent a copy of the SST as possible, since any
inconsistencies found are reported. The copy_out command can be
used to get a copy of the SST from a currently running system.

8-6 AN53

extract extract

Name: extract

The extract command is used to extr~ct a segment from an
fdump and leaves a copy of the segment in the working directory.

Usage

extract erfno segname

where:

1 • erfno

2. segname

is the error report form number of the fdump
from which the segment is to be extracted.

is the name or octal number of the segment to be
extracted.

Only the first process in a fdump is searched. The created
segment has the name segname.erfno, where segname and erfno are
the command arguments.

8-7 AN53

The ol_dump command can be used to look at selected parts of
an online dump created by the BaS FDUMP command and copied into
the Mul tics hierarchy by the copy_fdump command. The command' is
designed to aid system programmers in the task of crash analysis.
The command assumes all dumps of interest are found in the
directory)dumps.

ol_dump -erfno-

where erfno is an optional error report form number given in
deciimal. If erfno is not specified, the ol_dump command enters
its request loop described below. If an erfno is given, the
ol_dump command searches the directory)dumps for a copy of the
dump and if it finds the dump, it initializes itself to be, able
to process the given dump. If the dump i~ not found, the user is
,told and the request loop is entered.

Request Loop

Once the ol_~ump command has processed the erfno argument it
enters a loop reading requests from user_input. The requests
allow the user to look at selected regions of the dump currently
under analysis or to ch60se another dump (erfno) for analysis.
The following requests are implemented (letters in parentheses
are abbreviations):

Request

erf .no

quit (q)

command (c)

Function

selects another dump
whose erfno is
immediate analysis.

returns.

(the
TIQ)

one
for

passes the rest of the request
line onto the current command
processor ,J

list (1) lists the dumps in)dumps by
showing the name of the first
component of the dump. The
names of dumps tell when the
dump was taken and what the
erfno is.

8-8 AN53

help. (?)

dump (seg, d)

dbr value

art (pt) name

name (n) segno

proc (p) No

queue (tcq)

stack (s) name offset

lists the requests
aI_dump command.

of the

prints selected words of the
specified segment. The format
of the request is:

dump name first count mode

where name may be an SLT name
or segment number, first and
count are octal and mode is a
one character output mode. The
output modes are just those
used by the debug command. If
no mode is given octal is
assumed. If no count is given,
1 is assumed.

switches to another process (in
the same dump) by specifying
the dbr yalue for the new
process.

prints out the AST entry and
page table for the given
segment. Name may be an SLT
name or a segment number.

prints out the SLT name for the
given segment number.

prints out some APT data for
the process specified. If proc
-all is typed, all processes
are dumped.

prints out the
priority queue
priority.

scheduler's
in order of

traces the queue stack from the
offset specified. If offset is
not queue, the stack is traced
from the base.

If the request line is none of the above, the entire line is
passed directly to the current command processor.

8-9 AN53

The online_.dump command is used to crea te a printable idump
from an fdump created by BOS. The fdump must have previ~usly
been copied into the hierarchy by the copy_dump command. ,The
printable dump image is output through the ios s~broufine.
Optional control arguments may specify the segments that are to
be dumped, that the online_dump is to be restarted, and the
device and DIM to which output is attacheds

Usage

online_dump erfno -control_args-

where:

1 •

2.

erfno is the error report form number
that is used to access the seg~ents
of the dump image.

are optional and can be chosen from
the following:

-dim dimname is the name of the ios_ DIM through
which the stream od_output is to be
directed. The default is prtdim,
unless a different DIM has been
specified earlier in the process.

-dev devname is the name of the device or ios
stream to be attached to od_output.
The default is prta, unless a
different device has been specified
earlier in the process.

-restart procno segno is the process number and segment
number (both octal) at which the
dump is to be restarted. The
process number is the position of a
dumped process relative to other
dumped processes.

8-10 AN53

-segs,

Notes

indicates that input is read from
the following lines that specify
which segments are to be dumped by
the online_dump command. Any
number of segments may be specified
on each line. When the word "quit"
is reached, the online_dump command
ceases reading input and begins the
dump.

If the -restart control argument is present then the
online_dump command skips over the machine registers and all
segments of the dump until process number "procno" is read and a
segment number greater than or equal to "segno" is found. From
that point, the dump proceeds normally subject to the -segs
control argument, if present.

If the -segs control argument is present, the segment
identifications are interpreted in the following manner. If the
seg_id is "regs" then the machine registers are dumped.
Otherwise the seg_id is assumed to be the ootal segment'number of
a segment to be dumped.

If the seg_id is not an octal number, then the seg_id 1s
checked against the first name of each segment given in the
Segm~nt Loading Table (SLT) present in the dump.

If the seg_id is not found in the SLT then the user is
warned that the segment cannot be found.

In a~ditiont the user is warned if the SLl or certain other
segments that are used to interpret tbe qump cannot be found.

Examples

If the printing of the entire dump image of erfno 45 was
being done on a line printer and was interrupted at segment 100
of process 1 then the following Qommand line would enable the
rest of the dump to be printed:

online_dump 45 -restart 1 100

8-11 AN53

If the· user wished to merely inspect the registers at his
console:

online_dump 45 -dim syn -dev user_io -segs
regs
quit

The following exec_com causes the dumping of certain
segments upon every execution, and the specification of others as
needed:

& ec to extract useful info from a dump and dprint the dumped
& segments.
& command_line of
&attach
&input_line off
od &1 -dev dump_output.&1 -dim file ~segs
regs dseg fault_vector iom_mailbox

kst_seg lock_seg str_seg
201 204 &2 &3 &3 quit
dp -dl -h "ERFNO &1" dump_output.&1
&quit

Entry: od_cleanup

This entry point may be called when printing of a dump is to
be suspended so that the currently attached device may be
detached.

Usage

There are no arguments.

This command is used to format a
Front-End Network Processor (FNP)
created by the BOS FD355 command and
hierarchy.

8-12

dump of a
core image
copied into

DAl'ANET 6600
that has been

the Multics

AN53

Usage

where:

1 • erfno is the same as the online_dump command
above.

2. control _args can be chosen from the following:

-dim'dimname is the same as the online -..:dump command
above.

-de v devname is the same as the online _dump command
above.

8-13 AN53

The patch_ring_zero command is used to change specified
locations of ring O. It requires access to hphcs_ by the user.

Usage

patch_ring_zero segment offset values

where:

1 • segment

2. offset

3. values

is the octal segment number or segment name of a
ring 0 segment.

is the relative offset (in octal) of the first
of n consecutive words to be changed.

are the values for the specified
ring O.

location~ in

The call to the patch_ring_zero command first prints out the
changes that are performed and then asks the user if the changes
are correct. The user must respond with "yes" for the changes to
be made. The user may patch read-only segments in ring 0 without
explictly changing the access, as this is done by the command
itself.

Example

120 001761101001 to 000000000000

121 011376143210 to 000000000000

Type "yes" if patches are correct: yes

8-14 AN53

The print_apt entry commana QumpS, in octal, the contents of
the specified user7 s Active Process Table (APT) entry. The
command searches the Answer Table to find the process ID of the
specified user and extracts the APT entry specified by the
process ID.

Usage

print_apt_entry user_name

where user_name is either the name of the user or the name of the
teletype channel assigned to the user, e.g., ttyxxx (or caaxxx)
where xxx specifies some channel number.

8-15 AN53

The print_aste_ptp command prints out the Active Segment
Table Entry (ASTE) and page table of the specified segment. If
any pages are in core, the device address :Ls extracted from the
appropriate Core Map Entry (CME) and printed out as well.

Usage

where segment is either the pathname or the segment number of the
segment whose ASTE is to be printed. If the argument is an octal
number, it is taken to be the segment number of the segment to be
printed. If the argument is a pathname, the specified segment is

,printed. If the segment cannot be found, the ring 0 segments are
searched to see if the segment name given specifies a ring 0
segment.

8-16 AN53

The print_dump_tape
produced by BOS. These
records.

Usa~e

print_dump_tape

command is used to print dump tapes
tapes are written as unblocked BCD

print_dump_tape -control_args-

where the' control' arguments are optional and' can be the
following:

printer

-file pathname

is the number of the dump tape to be
printed. If this control argument is
not specified, ,,*** dump tape * •• " is
used in the mount message.

is the name of the printer to be used.
This name must begin with "prt". If
this control argument is not specified,
uprtb34" is used.

is used to direct the output into a file
instead of printing it online.

is used to start printing the tape at
the specified page number.

The following I/O streams are used:

input tape stream

output stream (usually to a printer but
possibly to a file)

8-17 AN53

ring_zero_dump

The ring_zero_dump command prints the locations of the
specified ring ° or user-ring segment in full word octal format.
This command does not require access to phcs~ for those segments
accessible through the ring_zero_peek_ subroutine.

Usage

where:

1 • segname

2.

-first

-count

Examples

Notes

is either an octal segment number or the ·name
of a ring ° segment. To specify a segment
name that consists entirely of octal digits
the name must be preceded by the -name (-nm)
control argument.

can be one of the following:

is the octal location of the first word to
dump. If the first and count arguments are
omitted, the entire segment is dumped
starting with location zero.

is the octal number of words to dump.
count is omitted, count is set to one.
the count argument is supplied, the
argument must also be supplied.

If
When

first

If the specified segment is not found in ring 0, the
expand_path_ subroutine (described in MPM ~Subroutine, Order
No. AG93) is used for an additional search.

The -first control argument is verified to be a legitimate
address.

8-18 AN53

ring_zero_dump ring_zero_dump

When the combination of the -first and -count control
arguments specify an address beyond the last page of the se~ment,
the segment is dumped only through the last page.

8-19 AN53

The copy_dump_seg_ subroutine is called by the online_dump
command to copy a segment from the dump j.mage into a separate
segment so that it can be randomly accessed at a later time.

Usage

declare copy_dump_seg_ entry (fixed bin, fixed bin, (0:9)
p~r, (0:9), fixed bin, ptr, fixed bin);

call copy_dump_seg_ (segno, cur_proc_index,
len_array, outptr, outlen);

ptr_array,

where:

1 • segno

2.

ptr_array

4.

5. outptr

6. outlen

is the segment number that is looked for
in the dump image. (Input)

is the index in the array ptr_array of
segment 0 of the process for which segno
is to be found. (Input)

is the array of pointers
segments of the dump image.

to successive
(Input)

is the array of
image segments.

current
(Input)

lengths of the

is a pointer to the segment into which the
copy is to be made. (Input)

is the number of words copied. If the
segment could not be found, the value is
o. (Output)

The segment poinb€d to by outptr is truncated before the
copy is made.

8-20 AN53

The format_355_dump_line_ subroutine is an ALM procedure
that is called by the online_355~dump_ subroutine to produce an
octal representation of one or more FNPwords. In addition,
there is another entry point, format_355_dump_line_.$line, which
produces an octal represent ion of one or more FNP words as well
as an octal representation of two fixed binary numbers that are
absolute and relative location counters. Thes~ are printed on a
dump line by the online_355_dump_ subroutine.

This entry point is called to convert one or more FNP words
to their octal representation.

Usage

declare format_355_dump_line_ entry (ptr, fixed bin, ptr);

call format_355_dump_line_ (input, count, output);

where:

1 • input

2. count

3. output

points to the first of the
dumped. This pointer must
18-bit aligned item. (Input)

FNP words to be
be pointing to an

is the number of FNP words to convert to octal.
(Input)

points to the area in which to place octal
representation of 355 words. This point~r must
be pointing to a 9-bit aligned item. (Input)

This entry point is called to convert one or more FNP words
to their octal representation. In addition, it converts two
fixed bin numbers to octal. These numbers are absolute and
relative location counters.

8-21 AN53

Usage

declare format_355_dump_line_$line entry (ptr, fixed bin,
ptr, ptr, fixed bin, ptr, fixed bin);

call format_355_dump_line_$line (input, count, output, absp,
absloc, relp, relloc);

where:

1 • input same as above. (Input)

2. count same as above. (Input)

3. output same as above. (Input)

4. absp is a pointer to the area in which to place
octal representation of absolute location
counter (argument 5) . (Input)

5. absloc is the absolute location currently being
printed in dump. (Input)

6. relp is a pointer to the area in which to place
octal rep'resenta tion of relative location
counter (argument 1) · (Input)

1. relloc is the relative location currently being
printed in dump. (Input)

8-22 AN53

The get_ast_name_ subroutine is called by the online_dump
command to obtain the pathname of a segment from copies of the
SST and SST name table segments.

The get_ast_name_ subroutine assumes that the SST name table
supplied was validly filled (by either ,Multics or BOS). The
get_ast_name_ subroutine tries to fit the full primary_name
pathname of the specified segment in the supplied return string.
If it canho~ fit,' components of the pathname ,are removed
(recognizable as "»,, in the output string) towards the left-hand
end of the pathname. The get_ast_name_ subroutine never
truncates a pathname, and thus, the entryname always appears
intact. If the get_ast_name_ subroutine cannot obtain the
pathname, the message "CANNOT GET PATHNAME" is returned.

Usage

declare get_ast_name_ entry (ptr, ptr, ptr, char(*));

call get_ast_name_ (astep, sstp, sstnp, retstr);

where:

1 • astep

2. sstp

3 · sstnp

is a pointer to the Active Segment Table Entry
(ASTE) of the segment whose pathname is desired.
The ASTE must be in the segment pointed to by sstp.
(Input)

is a pointer to the copy of the SST segment to be
used to determine the pathname. sstp must point to
the base of a segment. (Input)

is a pointer to the copy of the SST name
segment to be used to determine the pathname.
must point to the base of a segment. (Input)

table
sstnp

4. retstr is the pathname of the segment whose ASTE is pointed
to by astep. (Output)

8-23 AN53

The get_dump_ptrs_ subroutine returns pointers to the
component segments of a fdump, given the ASCII representation of
the error report form number for the fdump.

Usage

declare get_dump_ptrs_ entry (char(*), (0:9) ptr, (0:9)
fixed bin, fixed bin, char(32) aligned);

call get_dump_ptrs_ (erfno, ptr_array, len_array, nsegs,
primary_name);

where:

1 •

2.

3.

4.

5.

erfno

ptr_array

nsegs

primary_name

is the ASCII representation of
report form number of the fdump.

the error
(Input)

is filled in with pointers to the component
segments of the fdump. (Output)

is an array of the current lengths
component segments of the fdump.

of the
(Output)

is the number of segments that make up the
fdump, i.e., the number of pointers
returned. If this number is 0, there was
some trouble initiating the specified fdump
segments. (Output)

is the entryname of the first segment of
the fdump. (Output)

The format of standard fdump names is as follows:

mmddyy.hhmm.i.erfno

where:

mmddyy is the date of the fdump.

hhmm is the time of the fdump.

8-24 AN53

i

erfno

is an integer from 0 to 9 indicating which
fdump segment it is.

is the error report form number of the fdump.

8-25 AN53

The od_print_ subroutine provides a page and line formatting
capability for the online_dump command.

This entry point provides a general .formatting capability
for the online_dump command equivalent to that of the ioa_
subroutine (described in the HPM Subroutines, Order No. AG93).

Usage

call od_print_ (nlines, fmt_string, argl, .•• , argn);

where:

1 • nlines

2.

3. arKi

is an integer value (fixed bin) denoting the
number of lines to be generated during
formatting. (Input)

is the control string (char(*»
produce the desired output.
control characters are identical to
the ioa_ subroutine. (Input)

used to
Formatting
those of

are the arguments required by the fmt_string
argument. (Input)

This entry point is called to format and print eight words
in octal with their associated location field.

8-26 AN53

Usage

declare od_print_$op_fmt_line entry (fixed bin, fixed bin,
(0:7) fixed bin);

where:

1 • abs - loc is the absolute location the data occupied.
(Input)

2. loc is the integer value to be printed as the
offset for the line. (Input)

3. arr is the array of words to be printed. (Input)

This entry point is called when dumping is finished to
transfer the last buffer of formatted characters to the I/O
swi tch. (See "Notes" below.)

declare od_print_$op_finish entry;

call od_print_$op_finish;

There are no arguments.

This entry point is used to inform the od_print_ subroutine
that a new segment is being printed. This is done so that a new
page may be started with the new segment number included in the
page header.

Usage"

declare od_print_$op_new_seg entry (fixed bin);

call od_print_$op_new_seg (segno);

where segno is the number of the segment to be printed next.
(Input)

8-27 AN53

This entry point is called to initialize the od_print_
subroutine and provide certain constant information for the page
header.

Usage

declare od_print_$op_init entry (fixed "bin, fixed bin(71»;

where:

1 • erfno

2. time

is the error report form number associated
with the dump. (Input)

is the time at which the dump was cr~ated.
(Input)

This entry point may be called when the next line of output
should appear on a new page.

Usage

There are no arguments.

Notes

Formatted data is internally buffered so that the I/O switch
is called less often.

In order to
formatted data as
characters, (000)8.

speed up the online dumper's operation,
passed to the I/O switch contains ASCII NUL

8-28 AN53

The si~e of the formatted string may not exceed 256
characters.

A new page header is printed before the currently requested
line is printed, if the n~mber of lines ctirrently formatted on
the page, plus the number of lines for the current request,
exceeds the number of lines per page.

8-29 AN53

The od_stack_ subroutine is used by the online_dump command
to format and print stack segments. Its primary purpose is to
break the stack into frames and to number them in sequence.

Usage

declare od_stack_ entry (ptr, fixed blri, ptr,ptr, ptr);

call dd_stack_ (stkp, stklen, sltp, namp, sstp, sstnp);

where:

1 • stkp

2. stklen

sltp

4. namp

5. sstp

6. sstnp

Notes

is a pointer to the stack segment. (Input)

is the length of the stack in works. (Input)

is a pointer to a Segment Loading Table (SLT) to
be used to determine names of hardcore segments.
(Input)

is a pointer to
determine the
(Input)

a name_seg to be· used to
names of hardcore segments.

is a pointer to an image of the SST segment from
the fdump. With the pointer sstnp, i~ is used
to determine the names of nonhardcore segments.
(Input)

is a pointer to an image of the SST name table
segment in the fdump. (Input)

The frames are numbered with the lowest number being at the
head of the stack. If in some frame stack_frame.next_sp is equal
to stack_header. stack_end_ptr , then that frame is numbered zero.
If that is not the case for any frame, then the stack header is
given number zero. The stack trace continues beyond
stack_end~ptr so long as the back pointers are good.

If any stack frames have been jumped over by syserr in its
attempt to preserve the stack history, then these frames are also
broken out and numbered XX.

8-30 AN53

The online_355_dump_ subroutine is called by the od_355
command (see the online_dump command). It is passed a pointer to
an FNP fdump. It processes the dump prbducing an octal memory
dump, a print out of the FNP registers, and an interpretation of
the FNP software trace table. This data is written using the
ios_ subroutine on the stream od_output, which must be attached
before calling the online_355_dump_ subrout~ne.

Usage

declare online_355_dump_ entry (ptr);

call online_355_dump_ (dumpp);

where dumpp points to a FNP fdump. (Input)

The dump output begins with register values, trace table and
memory contents. Memory is dumped eight words per line.
Included on the line are the absolute location, module name,
relative location in that module, and memory contents. Duplicate
lines are not printed; instead an asterisk is put at the
beginning of the next line.

8-31 AN53

The print_dump_seg_name_ subroutine is called to print the
Segment Descriptor Word (SDW), pathname, and reference names for
a segment. It is used by the online segmerit dumper.

Usage

declare print_dump_seg_name_ entry
bin(71), ptr, ptr);

(fixed bin,

call print_dump_seg_name_ (segno, sdw, sstp, sstnp);

fixed

where:

1 . segno

2. sdw

3. sstp

4. sstnp

is the segment number to be used. (Input)

is the SDW that is to be printed. (Input)

is a pointer to an image of the System Segment
Table (SST) segment from the fdump. With the
pointer sstnp, sstp is used to determine the names
of nonhardcore segments. (Input)

is a pointer to an image of the SST name table
segment in the fdump. (Input)

If sstp or sstnp is null or if the SST name table pointed to
by sstnp is not valid, only the SDW breakout is printed.

This entry point is called to print the SDW and name of a
hardcore segment. The name printed is the first name given the
segment in the Segment Loading Table (SLT) Name Table.

8-32 AN53

Usage

declare print_dump_seg_name_$hard entry (fixed bin, fixed
bin(11), ptr, ptr);

where:

1 • segno is the segment number to be used. (Input)

2. sdw is the SDW that is to be printed. (Input)

3. sltp is a pointer to the SLT to be used to find the
segment's name. (Input)

4. namep is a pointer to the SLT names segment to be used
to find the segment's name. (Input)

If sltp or namep is null or segno is outside the limits
found in the SLT, only the SDW breakout is printed.

This entry point retuins a pointer to an online copy of a
segment to be examined by the online_dump command or one of its
associated subroutines. It is useful because copies of
nonwritable (i.e., procedure) segments are generally not dumped
by BOS and are not present in the dump itself.

Usage

declare print_dump_seg_name_$get_ptr entry (fixed bin, ptr,
ptr) ;

call print_dump_seg_name_$get_ptr
segptr) ;

(segno, sstp, sstnp,

where:

1 • segno

2. sstp

is the segment number that was
some procedure segment in a
(Input)

is the same
entry point.

as for
(Input)

8-33

the

associated with
dumped process.

AN53

3. sstnp

4. segptr

is the same
entry point.

as for
(Input)

p r in t _.d um p~s e g_n ame_

the

is a pointer to a copy of the procedure to be
examined. (Output)

8-34 AN53

, ,
I
I
I
I

! I
w
z
::i
(,!)
z
a
..J
«
I
::J
u

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

SERIES 60 (LEVEL 68)
TITLE MULTICS SYSTEM DUMP ANALYSIS

PROGRAM LOGIC MANUAL

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

ORDER NO. (AN 53, REV. 0

DATED pUNE 1975

r\. Your comments will be promptly investigated by appropriate technical personnel and action will be taken D Ly' as required. If you require a written reply. check here and furnish complete mailing address below.

FROM: NAME __ __ DATE ______________ __

TITLE __ ___

COMPANV ______________________________________ ___

ADDRE~, ___ ___

PLEASE FOLD AND TAPE-

w
z
:J
C)
z
o
-l
«
I
:::>
u

I ..
I
I
I

NOTE: U. S. Postal Service will not deliver stapled forms

I w
I z
I :J

ATTENTION: PUBLICATIONS, MS 486

I ~

----------------+~

Business Reply Mail
Postage Stamp Not Necessary if Mailed in the United States

Postage Will Be Paid By:

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

FIRST CLASS
PERMIT NO. 39531
WALTHAM,MA
02154

o
-l
o
LL

w
z
:J
C)
z

~---------....---- .,c g

Honeywell

I «
o : ~.

I
I
I
I
I .
J
I
I
I
I
I
I ,.,

Honeywell
Honeywell Information Systems

In the U.S.A.: 200 Smith Street. MS 486. Waltham. Massachusetts 02154
In Canada: 2025 Sheppard Avenue East. Willowdale. Ontario M2J 1W5

In Mexico: Avenida Nuevo Leon 250. Mexico 11. D.F.

18102, .75C577, Printed in U.S.A. AN53, Rev. 0

	001
	002
	003
	004
	005
	006
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	3-01
	3-02
	3-03
	3-04
	4-01
	4-02
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	7-01
	7-02
	7-03
	7-04
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	8-21
	8-22
	8-23
	8-24
	8-25
	8-26
	8-27
	8-28
	8-29
	8-30
	8-31
	8-32
	8-33
	8-34
	replyA
	replyB
	xBack

