
Multics Technical Bulletin MTB-130

To: Distribution

From: Bernard S. Greenberg

Subject: On the Cardreaderless Unified Bootload Tape

Date: 10/18/74

On the Cardreaderless Unified Bootload Tape

I. Introduction

It has been noted for some time now that the successful
bootloading of Multics is dependent upon the proper functioning
of the installation card reader, which is rarely used at any
o the r tim e i n M u 1 tics 0 r B 0 S 0 pe rat ion. Fur the rmo re , it has bee n
noted that Multics is dependent upon an offl ine T&D program to
load Microprogrammed Peripheral Controller (MPC) fir~~are. What
is more, the amount of tape handling required to bring up
Multics, or even bring it down, seems ex6essive. Dialogue is
required with these three different operating systems, and
offl ine T&D. This MTB proposes a single bootload tape strategy
which addresses all of these problems, and attempts to put the
bootload tape house in order.

I I. "O ne Multics, One Tape"

The multiplicity of required tapes is more than a
tape-handling problem. The issue of synchronizing compatible
release of Multics, BOS, and the Salvager has created much
confusion due to hardware and software changes, e.g., new
directory formats, the 6100 cache, etc. Much interest has been
expressed in a scheme whereby all of these subsystems, which are,
in truth, parts of Multics, the Multics hard core being only one
of these parts, appear on one tape. The distribution of software
releases in toto on a single tape is attractive from operational
and marketing viewpoints, as well as allo""ing ready
identification of software cited in trouble reports.

Multics Project internal working documentation. Not to be
reproduced or distributed outside the Multics Project.

Page 2 MTB-130

Hence, we propose a single bootload tape, which will contain
BOS, Multics, a Salvager, a Firmware loader, possibly selected
hierarchy segments appropriate to a Multics release, and all data
objects required by these programs that do not reside in thp
Multics hierarchy.

This tape would be a self-loading, i.e., hardware bootable
tape. This impl ies that it is not a Multics Standard Tape. It
is folly to believe that all tapes handled in a Mu1tics
installation are Multics Standard T~pes. The author has
personally dealt with many non-Multics tapes on Multics, and has
had to suffer because of the lack of attention given to
nonstandard tape software because of this misbelief. In fact,
the insistence on BOS being a standard tape has led to the card
reader necessity, which we \/i11 discuss further below.

The format of the tape would be as follows: the tape
contains a series of objects, each preceded by a header, which
describes it. Each header begins on a new physical record. Each
object begins on a new physical record, and is generally of fixed
block size. The length, in words, of each object, is specified
in the header. The version, date of generation, type of object,
and other descriptive information are provided in the header.

Several objects are special. The program bootloaded by the
hardware clearly can have no header. It must dynamically
construct its own header for later reference, and be otherwise
special-cased. Virtual-memory operating systems, specifically,
Multics and the Salvager, follow their headers as other objects,
perhaps with an intervening end-of-file mark for ease in
searching; but other than that, they appear on the tape as they
do today. They are followed by a double file mark so that they
may be scanned over easily.

BOS is the
tape objects, as
responsible for
BOS will maintain
objects on the
system. Some of
on BOS disk, as

principal domain of the tape. BOS programs are
are Runcoms, DATANET images, etc. BOS is
the manipulation of the tape and its contents.
(in core and on BOS disk) a directory of all
tape, up to the first virtual memory operating

the objects in this directory will have copies
indicated by appropriate flags in the directory.

MTB-130 Page 3

The current types of objects being contemplated are:

1. Bootload program
2. BOS programs
3. DATANET images
4. F i rmwa re F i 1 es
5. Runcoms
6. CONFIG Decks
7. Virtual Memory Operating Systems
8. Reload tape images

Some of these will be discussed separately later on.

I II. Firmware, Zero-SIx-Dog, and HFED

The Microprogrammed Peripheral Controller (MPC) required by
Unit Record Peripheral equipment, MTSSOO tape subsystems and
OSS190/191 Mass Storage Subsystems require special programs known
as 'firmware' to be loaded into them at the time they are powered
up. Normally, these programs stay running as long as the MPC is
powered up. However, on certain rare occasions, and on powering
up the system, it is necessary to load this firmware. GeOS, the
other series 6000 operating system, has programs for doing this.
Multics has none. Thus, Multics relies on an offl ine T&D (test
and diagnostic) program, PRG06D (known affectionately as
'zero-six-dog', in field engineering jargon) to load firmware.
This program runs under the T&D IPAS6000" executive, and those
who must load firmware at Multics sites must either be field
engineers, or otherwise become conversant with "060" and the
PAS6000 executive. These programs have nothing. in common with
Multics or its subsystems, and their dialogues are lengthy and
arcane.

To deal with this need, the author has developed a
self-loading tape which loads firmware for Multics, holding a
minimal conversation, following BOS conventions. ThIs tape has
all the necessary firmware programs on it, and is very easy to
use. This tape has been in regular use by elSL Development
Operations for Some months now. While this development has been
met with much enthusiasm from those quarters, some doubts have
been raised by HFED (Honeywell Field Engineering Division)
because of the fact that this tape has firmware programs on it.

HFED maintains a practice of maintaining "firmware tapes",
which contain all 6000 MPC firmware in a consistent released
state, carefully coordinated with well-documented hardware change
notices (FCOs) for the MPCs. Current practice maintains that
these tapes are to be 'the only source of firmware' at a site.
This is so that these tapes can be withdrawn and replaced with

Page 4 MTB-130

• 1 ate r rev i s ion s wh en the I at t era r ere I e as ed, and t h us res 01 ve
all ambiguities and questions about the revision level of
firmware being used at a site. In order for this to work, 6000
System software must not "embed" copies of firmware on tapes,
QISKS, etc. in fact, GeOS does precisely that, copying the
firmware tape onto disk.

The requirement of mounting a separate firmv.Jare tape (always
on a separate drive than the T&Q program tape) is one of the
highly undesirable features of PRG06D. In fact, the use of the
unloaded tape controller requires the operator or field engineer
to throw console switches on the MPC to inform it of what drive
will be used for the firmware tape in the middle of the
conversation with PRG06D.

Thus, we propose that we embed firmware programs on the
'unified ,Multics Tape', with a reasonably multicious program for
loading them. This program, probably about identical to the one
currently in use at CISL, would give identifying information
about firrTr#are versions to resolve ambiguity. Clearly, when new
firmware tapes are issued, a new version of the unified tape must
be created (see "Generation" below). The Multics firmware loader
program shoUld have the abil ity to read the standard firmware
tape, and copy files from it onto BOS disk.

Another advantage of keeping copies on disk is the ability
to load firmware and run ITRs and MDRs (test firmware) under
onl ine T&D. The new I/O interfacer has been designed with this
capabil ity in mind.

IV. Card Readers and CONFIG Decks

Other than use by the I/O Daemon, the card reader at a
Multics site is used only to bootload from the hardware, read a
card telling BOS where on disk to put itself, and load the CONFIG
deck. It seems eminently reasonable, considering the small
extent to which cards are used in Multics, that one should be
able to accomplish these functions without a card reader, and
thus, the incapacitation, or even nonexistence, of a card reader
would only be a minor loss. .

The reason that we cannot boot10ad BOS from the hardware is
that current BOS insists on being a Multics Standard Tape. We
have already attacked this problem.

The questions of where BOS ought put itself on disk and the
specification of the CONFIG deck are related. We propose to have
named CONFIG decks on the unified tape. A unifIed tape, as
received at a user site from Honeywell, would contain no such

MTB-130

decks. Via
"Generation"
and named.

Page 5

the customization procedures specified under
below, such decks are added to a customized tape,

One CONFIG deck is active and valid at a time. The command
"CONFIG STORE FOO" would cause the active deck to be saved on BOS
disk as a CONFIG deck named FOO. This is usually useful for
later writing out to a customized tape. The command CONFIG L FDa
would cause FOO to be read into BOS Common as the active CONFIG
deck. All other BOS CONFIG commands work as today, on the active
CONFIG deck.

The CONFIG deck can always be created by hand, via the
operator's console, if there is no deck on the tape already
loaded from cards as presently, or simply ignored for those BOS
commands for which it is not needed. The question of the
so-called "COLD DISK" card, which tells BOS where to place itself
will be considered in the next section.

V. Diskless BOS Operation

Many BOS commands, such as TAPED and PRINT do not need a
disk to operate. Others, such as Dave Kayden's disk formatter,
ma y no t wan t t oa s s ume a dis k to ope r at e • (Th i sis to sa y t hat
one may wish to format the BOS disk.) The firmware loader
clearly assumes no operational disk when it runs.

Hence, we have chosen to generalize BOS to diskless
operation. CONFIG decks can be loaded, edited, and generated
with no disks present. Once a PART BOS card and an appropriate
0191 (or whatever) card have been defined, the command "LOADSK"
may be issued to cause BOS to scan the 'unified tape', loading
objects onto disk. Until that time, BOS works without use of a
disk: modules are loaded from tape as needed.

The BOS listener ('SETUP'), the disk formatter, the CONFIG
deck editor (CONFIG), and the firmware loader can all operate
easily in this environment.

Until the LOADSK command is issued, there is no directory.
Each need for an object on the tape causes a scan ahead until
either the object is found, or an end of file (first virtual
memory operating system). At this point, the tape would be
rewound and searched unt i 1 it was where it had been. . The current
CISL firmware loader works this way, which optimizes tape motion.

The LOADSK command causes the tape to be rewound, and all of
the objects between the start of the tape and Multics scanned.
Those marked in the header as "load-me" are written to BOS disk:
the cards defining the BOS partition and its disk must be in the

Page 6 MTB-13D

CONFIG deck this time. Whether an object is loaded to disk or
not, a BOS directory entry is still made. Thus, modules may
STILL be loaded from tape, even after the LOADSK command has been
issued.

Furthermore, objects may be loaded for execution or loaded
to disk from tapes on other drives, including special tapes
containing only one or two objects. It is even reasonable to
load segments off 7-punch cards.

VI. Runcoms and Default Actions

Runcoms are a type of object on the unified tape. Once the
old Runcom editor is reinstalled (it has recently been removed)
one can edit Runcoms. The current facll ities to create and
destroy Runcoms are adequate.

One envisions the unified tape being hardware bootloaded,
and immediately loading MTSSOD firmware automatically. GCOS uses
a technique where tape firmware with some known validity is
loaded as part of the startup deck, and later versions of
firmware may be loaded after this. This is a reasonable pol icy,
as it allows full use of tape for the whole startup operation.
(One can read tape forward, but not rewind or backspace without
firmware.)

Upon coming to command level after automatically loading
tape fi rmware, one might say I CONFI G L 'STn', loadi ng an
-already-saved CONFIG deck describing perhaps one of several
standard configurations at a site. One might then make
configuration changes, if one desired, and then type "MULTGO" or
whatever, ,invoking a Runcom of that name whIch might look as
fo 11 o\(/s :

F ~.~ LOAD D 191
FWLOAD URMPC 3 PR3 CRZ CPZ
TEST PART BOS WRITE
LOADSK
LD3SS
BOOT
SALV

Note that RUNCOM must be capable of operating at most one
level deep entirely in core: a buffer in SETUP will be required.

One could even customize a series of Runcoms with CONFIG L
commands within them, reducing the bootloading ff Multics to the
typing of a single line.

MTB- 130 Page 7

VII" Generation

The unified tape, as distributed, will be generated, by
means of a header file and segments in on=line libraries by a new
program similar to the MST generator. The images of virtual
memory operating systems will be copied from tapes generated in
the current fashion, and firmware obtained from HFEO firmware
tapes. This will require changes to the standard and nonstandard
tape dims to support a mode of attachment and detachment which
leaves the actual tape attached to the process and not rewound.
Thus, Multics standard and non-standard formats may be intermixed
on the same physical tape. This allows the current Multics
initialization software to be used unmodified. Perhaps it ought
know not to rewind the tape if BOS passes it a flag not to do so,
allowing the tape to remain positioned in front of the Salvager.

A tape, when received by a site, contains no Runcoms or
CONFIG decks. A site booting such a tape must load their CONFIG
deck via the console or from cards. This CONFIG deck is
necessary to load other firmware than tape, or perform a LOAnSK.
At this point, the CONFIG deck may be saved to disk, anq other
CONFIG decks and RUNCOMs loaded, perhaps from cards, to disk.

At this point, a program, perhaps known as EOITAP, would be
invoked. It will prepare a file which is essentially a map of
the current BOS directory, sorted to place all CONFIGdecks
before all firmware, which precedes all else. The order of
modules on the original tape will not be changed. One may edit
this map, deleting objects, and adding names of objects to be
loaded from (other) tapes and/or cards. Firmware tapes may also
be read here.

A new unified tape will then be written, with the modules
specified, and the virtual memory operating systems of the
original tape. Thus, a customized tape capable of generating
further tapes is produced. Note that any tape may be loaded in
any hardware environment, as long as adequate firmware exists on
the tape. The CONFIG deck information on a tape in no way limits
the generality of a tape, nor restricts its ability to
self-dupl icate.

The issue of whether or not the replacement of the virtual
memory operating systems on a tape should be a1 lowed is an open
question: it involves integrity issues, but is probably a good
idea.

VI I I. Booting and Segments

The "Multics System Tape" exists as a special object on the
unified tape. Other than not starting at the beginning of a

Page 8 MTB-130

reel, it is a Multics Standard Tape in appearance. The first
record wi 11 be read by BOS as today, and it wi 11 load i tse1 f as
todayo The Salvager operates similarly. Both systems are found
by BOS via tape scans, finding 'operating system' type objects.
The Salvager should follow Multics, to allow running it after
Multics without rewinding. This requires some cleverness and
heuristics by BOS to validate the position of the tape after
running either.

It seems reasonable to include objects which look like
portions of reload tapes, to load hierarchy segments associated
with a particular Multics release, e.g., a metering program
changed because of a hardcore change. Such tape fragments could
be reloaded by Multics via the proposed tape dim attach and
detach calls.

Another strategY which has been suggested here is to move
all non-hardcore segments associated with a particular release
into Collection 3 of the MST, perhaps making it quite 1arge_ On
a cold boot, Collection 3 would be loaded in its entirety. On a
warm boot, it would not be loaded at all. This idea has some
historical precedent. In other cases, it would be loaded
explicitly by Multics command. In this case; BOS will tell
Multics it is being loaded on a unified tape.

IX. Acknowledgements

The author wishes to thank Noel Morris, Steve Webber and
Dave Vinograd for helping this idea along and suggesting much of
its current form.

