
HULTICS TECHNICAL BULLETIN HTB- 134

TOI Distribution

From: Gary C. Dixon

Date: November b, 1974

Subject: New library Tools: Design Principles

For the past several years, efforts have been unaerway to rewrite
ana generally clean up the cooe in the tools which are used to
maintain the Hultics System Libraries. A major phase of the
effo,..t ended with the insta'latlon of the upoate_seg commanc,
which installs segments in the Onlina Libraries. Now a second
major phase is coming to fruition. This MTB summarizes the work
which was aone as part of this second phase.

Since the work was begun before MTSs or th€ MeR board came Into
oeing, it has been proceeaing without having an approveo MeR. It
is ~y intention now to hold a Design Review of the basic designs
summarized below, and then to submit several MCRs reQuesting the
installation of the new or moalfl.ec library tools.

Phase Two of the clean up campaign aaaresses (at 'east) 7
different tools which are used in library maintenance. These
are: msl_info; ms'_global_format; ms'_short_format;
get_library_source; cleanup; lcref; and c~oss_referenc€.

RespectiveJy y these tools: printea brief information aoout
entries 1n the library on the user·s termInal; generated
detailed "library status information In a segment; generated
brief lIbrary status information In a segment; extractea source
segments from the library; actual Iy d~lete from the Online
libraries those segments which were replaced as part of an
instal 'atlon, but whIch could not be oeletea at installatIon time
because they might have betn in use in someone·s process;
cross-reference the use of include segments by library entries;
cross-reference the use of library entries by other Ilorary
entries. (1)

(1) ~ast tense is use a in some of the oescrlptions above to
inaicate a change in the operatIon of certaIn tools. For
example, we no longer have MSLs (Multlcs Segment Lists), so the
msl programs have been replaced by three new programs which
perform the same function In a different way. These programs are
oescribeo In a forthcoming MT3. When the Online LIbraries were

Multics Project internal worklng documentation. ~ot to be
reproduced or distributed outside the Hultlcs Prole~t.

- 1 -

MULTICS TECHNICAL BULLETIN MT B- 134

Each of these tools has one or both of the fol lowing design
flaws:

•

•

either thE tooi usea a speciai JlOrary data OdSe which
was Invariably out-of-sync with the actual library
contents (the MSL data base); or
both the logical ana physical organization of the
Multics System libraries Is coded lnto the tool ar.j
therefore the too. has to be modified whenever the
logical or physIcal organIzation changes in any way.

Therefore, the goals of the cjean up campaign are to:

++ elimInate the information from the MSLs which is
Qupflcatec elsewhere in the tibraries (e.g., status
Information for library entries, name of bound segment
containing a component, language type of a component)
ana to store the remalning information in a aata base
which 1's simpler to maintain, easier to check for
consistency, and which does not interact wIth the
lib r a r y i r) S t a I tat i on t 00 • s ; a n a

++ store the organization of the Hultics System Libraries
(the olrectorv structure, naming conventIo~s, and
knowleuge of the types of segments In particular
dir~ctories) in a single data baSe which can be used by
each tool, and which can be centratly updated when
reorganizations occur.

It has been fairly easy to meet the first goal stat~d aboVe,
bacause the only MSL information not containeo elsewhere in the
libraries (either as segment status information or as archive
component header information) is the 10 of the particular system
in w~ich a Hardcore or Salvager Library entry was last modified.
However~ there is a olrect relationship between the aate on whiCh
a library entry was .ast modified, and the date on which a
particular system was installed in the librarIes. Therefore, we
can replace the MSL data bases wIth a much simpler data base
consisting of a lIst of system IDs for Hardcore and Salvager
systems, ana the oate on which those systems were instal leo In
th~ Ilbrari~s. Then, by comparing the date modified of each
Hardcore or Salvager Library entry wIth thIs lIst, we can
oetermine In which system the entry was last mooified.

The ,jst of system IDs is implemented as an array of system 10
aatt pairs, sorteo by aate (and therefore bv system IO too). New

re-organlzed, get_library_source was extended to allow extraction
of object segments from the Onllne Libraries ana was therefore
renamed get_'ibrary_segment.

- 2 -

MULTICS TECHNICAL BULLETIN' MTB- 134

commanas add an entry to the bottom of the list each time a
Hardcore or SalVdger system is updated Into the libraries. and
replace or detete entries which are in error. When given a cate
last modified for a library entry, a new subroutine retu~ns the
appropriate system ID.

Note that the lIst is easy to maintain and to check for
consistency, ana that it does not Inter~ct with the Hardcore
upaater. but is ~pcateo Insteao (via commano) by the installer at
the end of the Hardcore or Salvager installation process.

Having replaced the MSl with the system IO list, it has also been
necessary to replace the msl tools whiCh reported on the
Information stored in the HSLs. msl_Info wil. Oe replaced by
library_info (cooing is in progress), anO ms._short_format and
msl_global_format have been replaced by library_map. These new
toofs wilt be described In a forthcoming MrS.

One of the biggest problems confronting the library maintenance
tools is the organization of the libraries themselves. For
various reasons, the system is dIvided into different logical
librarIes, ana these libraries are!n turn dlviaea Into
sub-libraries (or directories). Thus, we have the stanoard
.ibrary. unbundled library, tools library, author-maintained
tl'brary, Installatlon-maintaineo • ibrary, network lIbrary, ••••
And we have, within each 'ibrary, source directories, obJect
directories, bind lIst directories. execution alrectorles (those
seen by the user), bound component airectories, Info dIrectories,
include olrectories, ••••

Even more of a problem than the ever proliferating number of
logical libraries Is the mapping of these logical entities onto
the physical directories of the Muftlcs Storage System. Ada to
these the different naming conventions used In different
librarIes, the differing search procedures, the restrictions on
the types of entries placed in tlbrarles, etc and you have an
almost unmanageable set of rules for maintaining ana accessing
entries in the libraries. Implementing reasonably efficient
search procedures whIch can treat all of the libraries in a
fairly uniform manner 1s an extremely dIfficult task.
Imp Ie ment .ing such procedures in ~~ 0 f the many Ii brary
maintenance toots woulo be impossible.

The evidence in the paragraph above I ej directly to the
conclusions: that the lIbraries must have the simplest
organlzation po 5S 1 b I e while providing reasonable storagE and
access e f f i ci enc y; that a I I I ibrari€:s shou'd have the same
orga'lizatlon. if possible; ana that the proceou~es for
maintaining and accessing entries In the: Ilbraries should be

- 3 -

MULTICS TECHNICAL BULLETIN MT B- 134

common to all lIbrary maintenance tools, ana shoula oe centrally
located 1n a single external moaulE which can be easily modlflea.

Acting on these conclusions, in 1971 we began the process of
reorganizing the librarIes, starting wIth the Online Libraries
(the largest). The new library organization was chosen for Its
efficIent storage of entries, its ease and efficiency of access
to entries, and its simplicity. (2)

It is our goal (though a distant one) to promulgate this new
organization throughout ai' of the Multics System LibrarIes. The
biggest barrier to a uniform library organizatIon are the
Harocore ana Salvager LibrarIes, which are currently organizea in
a manner to optimize the installation of large groups of
modifications (new systems) at one time, rather than to promote
ease ana efficiency of access to entries ana s~rnplicity of
or ga "'\ i za t i on.

ThUS, there arE current.y two dIfferent organizations useJ in the
H~jtics System Libraries, and we are likely to retaIn these two
organizations for the foreseeable future.

Havi~g oeciOed to centralize the knowle~ge of library
orga~ization Into a slng'e module, wa first had to decide what
knowledgt was needed. The list below outlines the information
whic~ is currently being st~reo, or is known to be nee~ea in the
near future for proposed ext€nsions to library mal~tenance

comm3nds.

A. the logIcal structure of the Ilbraries, incluaing
library names, directory names, ana the relationship
between the varIous oirectorles of a given library.

B. the mapping of this logicaa structure onto the physical
directories of the Multles Storage System.

C. the conventions for separating the various types of
library entries among the directories of a given
library (e.g., sourCE segments go in the source
airectory, Info segments go in the info oirectory of 3

library, etc).
O. the conventions for storing the varIous types of

library entries In the library ~irectorles, and tor
naming those stored entries (e.g., the source for bound
segments is stored In a source archive, the archive Is
nameo bouno_seg_narne_.s.archlve, an~ has adoitional

(2) The new JIb r a r y 0 r 9 anI z a t Ion 1 s des c rib e dIn H S B- 8 7 , II P I an
for Muftles System LIbrary Conversion ana for ShIfting Library
11 a i n ten a n c e tot he 6 1 8 G ...

- 4 -

MULTICS TECHNICAL BULLETIN HTB- 134

names for each of the source components it contains).
E. the conventions tor accessing library ~ntries in

lIbraries with differing organizations.
F. the attrIbutes of new entries pSaceo in d Jlbrary

(e.g., ACL, ring brackets, AIM controls, etc).
G. the type of information which should be returned, by

aefau.t, for the entrles of various libraries (e.g., in
the Online Libraries, ring brackets are important;
they are not in the Hordcore LIbraries).

H. the conventions for moalfylng an~ deleting library
en t r i e s asp art 0 f the nor m a , ins t a I I a t ion pr 0 c e S S a

The next step was to aecl~e in what form to store this highly
variao set of information. While some of the information is
slmp'e in naturE and can easily be tabularlzed in some data
structure, much of the in1ormation is too comp'ex to be Jescrlbed
by a~y data base generation language, or eVEn to be stored in a
general data base structure. Therefore, the information was
split into two Parts: that which coula be tabularlzej In a oata
base; and that which had to be ~ncoded Into a program. A new
data base and program were then created, along with a simple
compiler for the oata base. The aata base is known as the
lior3ry descriptor, and the program is called the library search
program.

Currently, the library aescriptor contains:

1. a definition of the roots of the lIbrary, the parts of
the Ilbrary which remain constant across modifications
made to the .ibrary, and from which a searcn can oegln
for library entrIes.

2. the names by which each library root can be referencea.
3. the relationship between a libra~y and its

sub-lIbrarIes, as expressed by common name components
(e.g., the libraries stanaara.source, standard.obJect,
and standard. lists share a name component, and are
therefore related; similarly, standard.sourc€,
unbunoleO.source, tools.source, ana auth_maint.source
share a name component and are relateo).

4. the path name of the physicaJ directory (3) which is
the realization of the logical library root in the
Muftles Storage System.

(3) An archive may aJso be a library root, with its components·
bei~g the library entries. For example, the bind_maps.archive of
the Haracore ana Salvager libraries is a .ibrary root whIch
contains, as archIve components, the bind listings for the
Hardcore Library bound segments.

- 5 -

MJLTICS TECHNICAL BULLETIN MTB- 134

5. an ~ntry variable which aefines the entry point in th~

I ibrary search program to be cal I ed to search for
entries in the library root.

Future plans call for associating the
information with each library root:

followin<J adoitiona'

6. the ACL, ring brackets, and AIM controls which are usej
by default when instat 11ng new entries In the liorary

7 •
root.
a list of suffixes which define, through
conventions, ,the types of entries which
instal leo in the Ilorary root (e.g. t a source
root can contain only ··.s.archiv€, ~.pll,

·.fortran, +.bcpt, ¥.eCt •••).

naming
may be
liorary

of • a 1m,

8. an entry variable which aeflnes the entry polnt in a
f ibrary i,stallation program to be called to install an
entry in r he Ilorary root.

I~ 3~oitlon. the library oeseriptor aefines the default liorary
names and search names which are to be usea with each of the
libr3ry maintenance commands. These oefault values mUit be
specified in the library descriptor, because thEY deoenj upon the
names of thE librarl~s defined in the descriPtor, and on the
naming conventions usee for entries In the .lor~ry. For each
library maintenance command which uses the Ilbra~y aescriptor,
t~e following informatlon is stored:

g. a switch Inoicatlng whether or not tha command is
supportea bV the library descriptor and library search
program.

1G. an array of default I ibrary namES (whicn may be empty).
11. an array of aefautt search names (names used to search

for library entries; this array may also be empty).

A simple data base language was developea to define the contents
of 0 Ilorary uescriptor. Definitions written in this language
3-e stor~a in liordry Jescriptor source segments, which have a
nom~ suffix of • fa; they are compiled into an AL1 data segment
oy the Ilbrary_oescriptor_compller (Idc). a
r2~u:tlon_compifEr-generatea compiler.

AI I references to librdry descriptors are maae through 3

s~broutine called lib_descriptor_, wnich is responsiDIE for
maintaIning a constant user interface to the information acrOS5
changes in the i~ternal structure of the catd.

- b -

MULTICS TECHNICAL BULLETIN' MT B- 134

The library search program contains one entry point for each
class of library root. LIbrary roots are ciassified accoraing to
the following criterIa:

a. the kind of entries storEd in the library root (e.g ••
source ~ntries, or info entries, or executable entries,
etc) •

D. the type of entries stored In the library root (e.g.,
Jinks, segments, ~irectorles, archives, MSFs).

c. the naming convention US€O in the library root, and the
associated procedure for searching for library entrIes.

u. the way in which moaificatlons are instal Jed into the
root. and the mechanism for flagging obsolete entries
awaiting aeletion.

e. the type of status informatIon which shoul~ be returned
byaefault for the various types of library entriES in
the root.

f. the depth In the library hierarchy (of directories,
archlv~s and HSFs) at which searChing for a library
entry below the root should be oiscontinuad.

Each entry point in the library search program performs the
sear:hing functions for the variouS 'iorary maint~nance commands
accor~ing to the criteria appropriate to one library root class.
The searching criteria are codea in normal PL/I code.

The result of th~ search is an Information tree contal~lng the
s tat .J S 0 f a J I f 0 un d lib r a rye n t r i eSt p Ius the s tat U s 0 f t h ~
parent, grandparent, ••• of each found 'library entry uo to ar.·j
incl~alng status for the library root containing the fauna entry.
The tree represents the physica I (as opposed to I ogica') I i.brary
structure containing the founa librarv entries. The status
Information delineates each noce of the tree as a link, segment,
Oirectory, archive, archive component, MSF, or MSF component, anj
incluaes enough other status informatIon to perform tha
appropriate library maintenance function on founa entries without
further information.

E~try points are provided in the Ilb_descriptor_ subroutine to
perform the type of searching appropriate to thB particular
library maintenance function being performea. This maIntenance
f~nctlon information Is passea to the lIbrary search program,
whiCh must tailor its searChing criteria according to the liorary
maintenance function.

8y using the library oescrlptor Qn~ library search program, we
have not only centralizea the library organization into a single

- 7 -

MULTICS TECHNICAL BULLETIN HTB-134

mo~u'e, but have also enableo a sub-system maintainer to replace
tnis moaule with one aescribing his sub-system libraries. He
then has a complete set of lIbrary maintenance tools which wil I
op~r3tE on his sub-system lIbrary in th~ same way as On trH~

M~ltic5 System Libraries. This generalizati~n of th~ library
tools beyond the Multlcs System Libraries Is a pleasant sloe
€ff~ct of centralIZing th~ library-aepenaent information.

- 13 -

