
MULTICS TECHNICAL BULLETIN MTB - 150

To: Distribution

From: R F Mabee

Date: 11/26/74

Subject: A Proposal for Processes to be Used in the Supervisor

Symmarv

This memo proposes that a facilIty to provide special
processes for use within the hardcore supervisor be made part of
the standard Multics system.

The introduction shows why a special class of processes
should be available to the supervisor, and how these processes
must differ from the standard processes. The next section
describes the actual Implementation at a rroderate level of
detail. The last section presents a scheme for using such a
process for the TTY Interrupt handler.

A glossary of jargon terms is provided, as Appendix V.

This facility has been implemented and tested in an
experimental version of the Multics system. Work is underway by
several people to make use of these processes to simplify certain
areas of the hardcore supervisor.

I n t cody t; t ion

Multlcs currently makes no use whatever of MultiprograMming
wIthin the supervIsor. This results In highly convoluted codIng
In many parts of the system where a module running In anyone
process tries to multiplex itself so part of its algorlthn seems
to be executed asynchronously. For example~ the TTY Device
Control Module (OeM) simulates a process for each terminal, with
its own scheduler and undocumented synchronizatIon facility. In
many other cases, something is done In-line that doesn't really
need to be done synchronously. For example, in the page fault
path the faulting process currently checks the paging device to
see if it is getting too full, and if so moves some pages to
disk. This causes an unnecessary delay for the faulting process,
and requires the page-moving algorithm to execute In a severely

Multics Project internal working documentation. Not to be
reproduced or distributed outside the Multics Project.

- 1 -

lil.,ited environment (fault-side, interrupts masked, can't wait
for 110 or locks). For another exanpl e, some I/O interrupt
handlers currently execute long prograMs (taking up to two CPU
seconds) in the sane severely 1 imited environment, requiring
compi icated (undocurlented) conventions for co-operation VJith the
processes that requested the I/O.

One can view the page-moving program or interrupt handler as
asp e cia 1 kin d 0 f pro c es s t hat has a b so 1 ute p rio r i t y (i t a h-, a y s
runs to completion) but must run in a limited environment. By
locks or by masking, the programs ensure a single ~equential flow
of control, as by:

check_paging device: procedure ();
set 1 oca 1 lock;
if should_run then run;
unlock local lock;
return;
end;

A program like this can be made into a real process. The
preceding fragment might become:

paging_device_process: procedure e);
w h i 1 e t rue do ;

end;

via i t for \·,akeup;
if should_run then run;
end;

and a call to check_paging_device \'Jould become a call to send a
\/akeup.

Ins ummary, th ere are th ree reason 5 why a program r'l'1ay need
one or more dedicated processes: first, the algorithm May require
a process per device, as In the TTY DeM; second, it nay he
inconvenient to perforM some cOMplex operation in the liMited
environMent in whIch one happens to discover that it neerls to he
done; and third, it may be inefficient to perfor~ the operatj~n
in the critical path in which one happens to discover that it
needs to he done. The iast point is meant to Include the case of
a prograM that requires more CPU time than one process can get,
in order to scale up its performance in a very large system.

These probleMs are shared by programs in all rIngs, both
IJser programs and system programs; hovJever, I shall attempt a
solution only for the hardcore supervisor (ring zero). Let us
assune that processes are readily available tn rlng zero for any
purpose, and examine some likely applications to get a feel for
the properties such processes must have. This choice of exaMples
dues affect the resulting design.

The handler for any external Interrupt could run in a

- 2 -

process of its OV/n, and the i nterrlJPt WOI! lrl merel y cause a
wa k e up. Uh ere i n t err u p t s are f11lJ 1 tip 1 ex e rl (a shy the I Ot,O e a c h
channel's hanciler could have a process. Such a pr()cess \\lOul ri I)e
started '''hen the I/O device (or \'Ihatever) vIas attached, and \"Iould
des t ro y its elf \'i hen the de vic e \va 5 de t a c h e d • its pro p, raM s h 0 1I i rl
be specified when it is created; if the pro~ra", is shared (e.g.
printer driver shared by all printer processes) then an orgwnent
to the program should specify which device to run. This leads to
the primitive

FORK (procedure, argument)

which creates a neVI process that starts \;lith the call

procedure (argument)

and the primitive

DESTROY_ME ()

which stops and obliterates the process which calls it. Cl~arly
the han d 1 e r nee d s to b 1 0 c k VI h I 1 e a\"I a itt n g the n ext i n t err u P t , so
a full set of IPe primitives should be available to it. The
program should be allowed to use the virtual memory (take page
faults) so it can run In a more norMal environMent, and avoid the
expense of wired cnde and data. The scheduler should provide as
fast response as the I/O device May require.

Another application is in resource Managers to ref'llOve pa~es
from core or from the paging device, to remove segMents frOM the
AST, to remove processes from the eligible list or fro~ the APT,
etc. Such processes must be created very early in
initial ization, when the function they help iMpleMent is not yet
usable by FORK. Thus page faults are not allowed in creoting,
schedul ing, or running a page control process.

These examples show processes that still run in a sOMewhat
limited environment: they must not use the facility that they are
implementing, and must be trusted by the supervisor because they
must execute entirely in ring zero. Finally, using processes in
any application has to be competitive in "cost" so that no
programmer has to choose between readability and efficiency.

An ordinary process of the sort currently created for each
user could meet most of these requirements, with suitable changes
to k e e pit i n r i n g z e r 0 • Howe ve r , i tis c un be r som e, and has
features which cannot even be initialized by the creating process
until systen initial ization is nearly cOMplete -- for exaMple, it
has a per-process directory (POIR) which clearly cannot be
created until page control, segment control, and the file system
are all in operation. A siMpler type of process f'l1IJst be
introduced for use inside the supervisor. Let us dub the new
type H-process and the old (ordi nary) type f'1-process, for thi s

- 3 -

discussion. As a design goal, I choose to make the H-process as
simple as is consistent with providing a norMal prograM-execution
environment. This should also miniMize the "cost" of the
H-process. The approach taken is to stripavJay all costly
features [nat don!t seem to be needed by all processes. By and
large, the H-process could regain a feature by explicitly
i nit i ali zing it.

First, an H-process can run only in ring zero; thus we can
eliminate the stack array used by the ring-crossing hardware.
The programs it can run are totall y pre-l inked; . the 1 i nker i s
unused and May he disabled. The address space could only he
extended for data segMents and only by explicit calls. Here is a
very definite rlesign choice: I choose to disallovi this extension
of the address space, in consequence of which I discard the KST.
Th i s mea ns that th e p races s can never take a segment frtu 1 t; i t
can't use the file system; It can arldress non-hardcore seg~ents
only through explicit calls on segment control. Now the PDIR
can't be touched, so discard it; it normally contains a segment
called PIT hy \"Ihich the systeM passes initial arguMents to a
M-process -- discard this too, using a few words in the PDS for
the (greatly reduced) initial conditions. At this point, only
two per-process segments are left, PDS and DSEG, without which
the ~~-process could not run at all. We have reduced the cost of
the H-process to four pages + two ASTErs; Appendi~ II descrihes a
way to reduce the cost to one page + one ASTE.

rJotice that I have removed features by removIng data bases.
The features that are left, such as inter-process
synchroni zat ion, paged memory, etc. seem to have very 1 i ttle
i ncrernental (per-process) cost, perhaps because thei r data bases
and code are global.

,\n H-process can take page faul ts, servi ce interrupts, and
cOMpete vlith M-processes in the scheduler's queues. The
restrictions on it are less severe than those on fault-side or
interrupt side prograMs which It ml~ht replace. It can totally
avoid taking pa~e faults (e.g. for a page control process) by
execut i n~ on1 yin wi red-dO\'Jn code, and can therefore be used as
deep in harrlcore as required. However, it Is poorly suiterl to
the outer layers of the supervisor since it can't rearltly llse the
file system, and therefore can't interface to user processes.
M-processes should be made available for outer-level applications
in the supervisor (including ring one), and for user
appl ications, hut that is outside the scope of this project.

- 4 -

Oetai ls of proposed implementation

Multiprogramming is provided by pxss, using tc_data as the
principal data base. I t must be turneri on by exectJtion of
tc_init before it will function normaiiy; hovJever, r>xss~wait and
related entries are simulated during initial izatinn by loopin~ in
wtred_fir.l. tc_init is currently invoked very late in
initialization, so that page control (as a test case) cannot use
multiprogramming. I propose to call tc_init early in Collection
One, before page control is initialIzed. In this environment,
all segments are unpaged and in core. This state is called the
high-vJater mark because the core requi rement is at its rnaXirrllJM.

tc_init contains two steps: first, initialize all the
threaded 1 ists and other data in tc_data; second, create the
initializer process and all idle processes. The first step does
not involve any references to data or procedures not present in
Collection One, and therefore causes no problems. The second
step starts any extra CPU's, and creates a PRDS for each such
CPU, as \Jell as a POS and DSEG for each idle process. let us
assune that the extra CPU's are not started until late in
initialization (to avoid two-cpu bugs); the remaining problem is
the creation of two new segments for the single idle process.
Any additional processes whIch may be created (e.g. for page
control) will also require two new segments. The initial izer
process gets to keep the original PDS and OSEG.

Other conditions to be met in order for pxss to perform
properly: those faults and interrUPts used by pxss rrlust be set
up; a number of routines and data segments must be rloverl into
Collection One; FORK and DESTROY_ME subroutines must be provirled.
However, the only probleMS worth further discussion arise from
the requirement for a segment-creating primitive available to
process creation, which must be able to work even before paging
is available.

Segments (for PDS or DSEG) could be created unpaged
initially, like segments read in during Collection One; however,
update_sst_pll, wh i ch makes segments paged 1 ater on, \"lOU 1 d have
difficulty finding the new segments. Any time after init_sst is
run (which is very early) a paged segment can be created, taking
a free ASTE and free page frames from appropriate lists.
Existing page control entries could be used to create and wire
pages; this approach was taken in the first experiments.
HO\>'/ever, these entries (e.g. vlire_wait) ought not to be invoked
when page control is not yet in it i ali zed -- if, for exampl e, no
free page existed, they might reference the FSDCT before it is
addressable.

A new subroutine, GETSEG, will be written, to be used during
both initialization and normal operation. It vJill get an
unthreaded ASTE and (if during initialization) will assign page
frames. It vJill not wire the pages; that remains the caller's

- 5 -

responsibility.

I tis es s en t i al t hat the r e
Multics is at the high-water

be sufficient core
mark for sever~l

1 eft Volhen
tasks to be

created. This requirement is about four pages per task. Ine
high-\vater Mark is already very close to the 128K minimuM size of
f·1u 1 tics na In nemo ry, bu t tes t i ng can proceed us i ng a 256K sys tefTl.
Appendix I describes one way to reduce the high-water Mar~, by
removing segMents from Collection One.

Of course, wtrfni down more pa~es of core will of necessity
degrade systen performance. Most PDS's and DSEG's can be
unloaded by traffic_control, but at least some hardcore tasks
\'lon't allo\l/ that. It is useful to reduce the Memory requireMents
of H-processes to reduce the impact on systeM performance and on
the high-water mark; Appendix II describes a scheme for
shrinking the per-process segments. Each H-process also costs
two small ASTE's for its private segments, and one APTE,
amounting to 64 words of core. Since the AST and" APT can readily
be made larger, this cost is important only for applications
requiring hundreds of H-processes.

Sane increase in overhead of traffic control should be
expected, due to more frequent interactions by H-processes. This
loss of throughput can be countered by a better inlplementation of
the process-swItcher. The only other performance degradation to
be expected is an increase in response time when Interrupt-side
programs are Moved into supervisor tasks, and this would probably
not affect systeM throughput. On the other hand, systeM
throughput May be improved by moving certain housekeeping
functions out of critical paths and by makIng IJse of multiple
CPU's in bottleneck areas.

An Ii-process nay demand very fast response, which should he
controlled by a priority attribute used by pxss. Such an
improvement is not part of this proposal, since acceptable
performance can be achieved by using a dtfferent\~AtT entry that
guarantees fast response. Neverthel ess, 1 t has to be done
sometime. Some scheduling requirements may not be adequately
expressable by static priorities. This is an example of a
lir"itation in pxss that may prevent optimum"performancp.; such
prob 1 ei;lS become more comp 1 ex as more processes co-operate on
particular computations.

- fi -

Moying TTY DIM interrupt side processing into an H-process

Currentl y the [)atanet-355 front-end nrocessor returns statlJS
events by sending nul tics a particlJlar interruot. The hnnriler
for thi5 interrupti dn355~interrlJnt, exaMines a flloilhnx at
1 0 cat ion 14 0 0 to fin rl the s tat lJ 5 '.\10 r d , n e r for f11 i n g ani n vol ve d
inter-cOMputer ritual. For each status \'Jorri it calls ttv_inter.
Every three seconds pxss calls ttv_inter~noll, in cas~ therp
aren't enough interrupts to drive the pro~r~M. There is an
interlock between tty_inter and tty_rnter~nnl 1 sn hoth arp not
active at once.

It is possible to restructure this as follows: The hanrller
for the 355 interrupt, tty_vIi red~interruDt, merely senrl5 a
\'Iakeup. A ded i cated H-process, execut i ng dn35 5~ tty_proc~ss,
receives the wakeup, then perforMs the inter-computer ritual and
calls tty_inter as required. Every three seconrls pxss calls
tty_\·Jired$poll, which sends the saMe t"Jakeup and sets a flap.;. If
dn355Stty_process finds the flag set, it calls tty_inter~Pnll.
dn355Stty_process goes blocked when it runs out of work to rl0.

T his
and t\'IO
core. r~o

strategy
all o\'Ied.
they no
takes up
assip;ned

scheme permits dn355, tty_inter, their utility noriules,
data bases to be unl'li red, rel eas' np. abolJt ten Ddr.;es of
further change Is requirerl except to fix a lockin~
that onl y "Jorks \'Ihen i nterrunts and nage faul ts rtrp. 11Q.t
All other interru~t handlers get better re5~onse since
1 0 n ge r ha ve to 'va i t \"Jh i 1 e tty _ i n t err II n s • (tty _ i n t p r

to tHO seconds; to make matters \"Iorse, the ")55 is
the highest priority interrunt cell.)

On the other hand, each 355 interrunt might ~a~e in all ten
of the pa.~es \'/e just unh,t red, pl us two poges of stack. Thp extra
core is really available only when 355 traffic is light.
Furthermore, the TTY OIM \"Ii 11 respond more sloVJly to i nterruDts,
sin c e the s c h e d u 1 e rim po 5 e 5 a con s i rl era b 1 ~ del a y • T h i ~ i s a
serious problem since the TTY nlM is ootintzed for 105~-tyne
term ina 1 s t hat r e qui r e n r 0 g raM i n t e r v e n t ion to p;o f r 0111 VI r i tin P; to
reading; the ~rogram ignores characters tvnerl in before it
changes its internal state from writing to readin~ even if n()
external act ion \"Ias requ ired. The user ,·Il th a non-lock i np;
keyboarrl May begin typing before the TTY DIM begins listenin~,
even in the current system.

This probleM can be solved without rlelvin~ intn the 355
code: the \'/r i te nCtJ l' st created by tty_i ntercoltl rl chain into
the read DC\J list instead of terminating. This "/o(11d res'tlt in a
noticeable improvement even over the current system and nake TTY
process response relatively uniMportant.

The restructuring (but not the DC!I list chaining) hdS ~een
done and tested in an experimental systeM, using the i~nroverl
\JA IT' (see Append i x I II) . Res ponse time \las found to a"ero ge
• 2.±.. 2 seconds \"10 r se tha n tha t of the s tanda rd 5 ys ter'l. The

- 7 -

experiment should he performed again to refine this Measure~ent.

- 8 -

goals to continue using this fixed data layout for the pns and
PROCESS-INFO, but it may later prove too inflexible. An
H-process should be .able to grow by adding to itself some of the
features normally associated only with an M-process. In order to
avoid reserving large blocks of data in all processes' stacks for
features that only some use, we could reserve a relatively small
block of pointers, accessed by name, that would point to the data
items allocated in whatever segment is most appropriate. The
Network software already uses such a scheme -- its only cell in
the POS contains an index into a system-wide table.

The DSEG is currently a paged segment of which only about
256 words are used for hardcore segments. Clearly it can he Mad~
an unpaged segment If core control Is made ahle to handle such;
alternatively, page size could he rerluced to 25G. But closer
examination of the DSEG suggests an even more fascinating
solution: the only SOW's for which our hardcore DSEG differs
fro~ the template are those for the PDS, PROS, the nSEG itself,
and several abs-segs. This suggests that we can save core (at
the expense of simplicity) by fabricating the nSEG whenever the
process is to be run. The SOW for the POS can he saved in th~
APTE; the PRDS SOW is already being patched every time an LDB~ is
done; the DSEG SOW would not be changed since it would always
po i nt to the scra tch DSEG it 1 i es in; and the ahs-seg sr)\'] , scan
be saved in the PDS. This can be thought of as sharing the
current idle process DSEG with other H-processes.

Combining these tricks can reduce the per-process memory
requirenents by almost 75% for the hardcore-only tasks.

Both of these changes have been made and tes terl in an
experinental system.

- 11 -

1\ p pe n d i x I I I
t1i scell aneous changes requi red hy thi s system

A. Descriptor SegMent creation.

A DSEG is normally created by plrn$hc, which in the current
system copies the hardcore-segment-nlJrnber portion of Nhatever
DSEG It is running with. (template dseg is still hein~
initialized but is never used.) plm has to be movpd into
Collection One, modified to run before pa~ing is available, and
modified to use the SLT to determine which SDW's to copy.

If plm$hc is invoked early in Collection One, it prorluces a
DSEG vii th the segments unpaged. A rout i ne, set_sdw_i n_all_dsegs,
has to be provided, to be called by update_sst_pll \..,rhenever it
changes an SDW in the initia'izer's DSEG with the intention that
it affect all address spaces. segment_loader, initialize_dims,
and delete_segs can use set_sdvJ_i n_all_dsegs too.

One field in a DBR value contains a segment numher for an
array of stack ·segments, for use in automatic ring crossings.
For tun ate 1 y an H - pro c e s s do e s n 't nee d t h t 5 fie 1 d • Its val lJ e i 5
not determined until all segments are loaded, at which tiMe
init_sys_var fills it in for the initializer; init_sys_var has to
be changed to set it in the APTE and tn the register.

These changes have been made and testerl.

B. pns creation.

huild_template_pds copies a stack header and a stack fra"'1e
into tcnplate_pds; in so doinr, it Mp.sses un the Initializer's
stack. This module Is eliminated, since the hearler can he merged
with the template by those programs that create new posts.
build_ter.1plate_pds very cutely initializes the stack such that a
II ret urn" \'1 ill t ran s fer co n t r 0 1 to i n i t_ pro c , the nor mal ~1- pro c e s 5
starting point. However, pxss has to observe that it is running
a process for the first time in orner to do the proper return.
The requirement that an H-process start in an arhitrary procenure
forces a change: pxss executes "call stack O~fi rst prne
(stack_OSfirst_arg)1I in the special case instead of i'i'return"-:- It
t urn S 0 LJ t t hat i nit _ p r oc e 5 so r r e c e i ve s co n t r 0 1 i nth i 5 \'J d Y \'/ hen
it starts the boatload CPU, since to PX5S the lnitializer process
looks like it has never run before.

boot5trap2 can't initialize the pointer to signdl_ in the
stack header (although the comment says it rioes) so
initialize_faults$fault_init_tVlo rioes It later. By Moving
signal_ into Collection One, thIs can be cleanerl Up.

These changes have been Made and tested.

- 12 -

C. Con t r 01 f 1 a gs •

Assorted flags have to be added to the APTE:
• hardcore_process, .use_hardcore_dser" and .a1vJays_loaded. If
.use_hardcore_dseg then the .dbr cell is really an SOI-! for the
POSe Other flags have to be added to \'Ji red_hardcore_data:
$page_faul t_,""orks, $segment_fau1 t_\~orks, and $ i ni t_se~s_gone.

O. Certain deficiencies in the scheduler.

One 1 ittle known property of the current scheduler is that a
process cannot lose its absolute priority (eligibility) unless it
either takes a timer-runout/pre-eMPt interrupt while running in
an outer ring or explicitly calls BLOCK. Since part of BLOCK is
outside of ring zero and therefore not available to an H-process,
and since interrupts are masked while running in ring zero, an
Ii-process will keep its eligibility even if it uses \\/AIT, the
normal ring-zero synchronization method, and will attain the
highest possible priority. (If ~ process loops in ring zero,
i t vJi 11 tie up the CPU fo rever.)

Allowing loss of el igibi1ity by pre-emption in ring zero has
other implications, requiring that eligibility be given up by
\'JA I T becaus e of assumpt ions embedded ina 11 ha rdcore 1 oc king
strategies, etc. I performed some experiments in this direction,
concluding that even if I could find all the ramifications of
such a change, including re-tuning the system, the chan~e would
have to be made and defended separately. This area remains open
to anyone wth a particular Interest in performance effects.

For the H-process running the TTY OeM, WAIT was an
unsatisfactory synchronizatiori primitive, as it left the process
loa d e dan del i g i b 1 e i n de fin i tel y • I co u 1 d h a ve i n t rod u c e d a
sl ightly different version, HAIT_and_do_\"Ihat_l_want, but instead
I adapted a different fundaMental mechanism originated by Davirl
Reed, that has been advocated as a primitive capable of
implementing both WAIT and BLOCK. Reed will soon publ ish an RFC
describing his model, so I shall merely describe the
implementation.

A shared memory cell is used to pass the information as to
whether or not an event has occurred. This cell is provided by
the caller of WAIT' or NOTIFY', which is not inconvenient when a
shared data base exists anyway, and which avoids the allocation
problems of WAIT and BLOCK. The cell changes to a new state (in
fact it is incremented) every time the event occurs (every time
NOTIFY' is called). \·JAIT' is given both the cell and the state
it had \"Jhen the call er fi rst dec i den to \lI/a it; it returns \~Jhenever
the cell contains some newer state. A list of processes w~iting
in this \"Jay is needed, so NOTIFY' can a\"/aken them. .Ln!!lY
implementation, the cell must be wired (since it is examined
under the APT lock) and at the same address in every nrocess

- 13 -

usinr; it (since the address is used as a readily-availnble IJniqlfp.
identifer).

NOTIFY' always awards hi~h ~riortty to an awakenerl nrocess
to improve response to interactions. Since the averose delay for
the process to becor-1e eligible in the nor!"l1al \,/ay is three seconds
(unless sYstem load is very light), I had to r1nke NOTIFY' a\"/arrl
eli g i b i 1 i t y a s VI ell • The pro c e 5 s \ ,Ii 1 1 run ass 00 n as the
lowest-priority running process leaves ring zero and gets
pre-empted.

For best response, the pre-emnt should be allowed even in
ring zero. t10st of the probleMs vlith pre-emption in ring zero
can be avoided if the pre-empt doesn't take a'tlay eligihillty, hut
merely causes the highest-priority process to regain the epn.
T his s c hem e s h 0 ul d he t r i ed as its ho u 1 d rna k e TT Y n r oc e 5 s
response arlequate for emulat~on of interruPt-side hehavior.

The response tine should be determined by a priority
pa raMeter assoc i ated \~Ji th the process rather than by \a,h i ch l·.JA I T
the process calls. Future appl ications of H-processes wi 11 Mt=tke
s II c h a fen t u rei n p x s S 1"'10 r e r:t e sir a h 1 e •

The \lAIT' prinitives have been testerl in an eXI')p.ril"l1ental
systen.

- ll~ -

Appendix 1'1
Calling sequences of new routines

A. FORK

Usage:

declnre create_supervisor_task entry (char (*), entry (r>ointer),
nointer, hit (36), bit ()h»;

call create_supervisor_task (group_in, F, arg_Dointer,
return_ornc_in, return_corle);

2) F

3) a r foLpo i n t e r

is process group naMe of n~w process.
(Input)

is starting orocedure of ne\'J process.
(Input)

is passed to F in the ne,'/ Dr0cess. (InD'It)

identifies the net" process. (Output)

is zero if no error occurrerl. (OutPllt)

This interface is Intended to reMain chan~~able so that
aJditional features can be put in, such as an indication that the
tricks described in Appendix II are to be used.

This entry creates an H-process and starts it rlJnnin~. The
call to F in the new process is equivalent to:

call F (a r g_po i n t e r) ;

F Must not be an internal procedure. The rlata pointed tn by
ar?;_pointer must not lie in a per-process segMent (slIch ;:)s the
stack) •

declare create_supervisor_task~r1ake_process entry (1 like sd\'/,
ch a r (*), bit (3 G), po i n t e r, bit (3 f))) ;

ca 11 create_superv i sor _tas k~r1ake_proces s (OO'5_Sdl\/, ~roun_i d,
return_oroc_io, return_aot_otr, return_code);

is an SO\'! describing the pns to be used by
the ne\~1 process. (I nput)

as above. (Input)

as above, except right half Must be set by
caller. (Input/Output)

- 15 -

points to the newly created APT entry.
(Output)

as above. 'n _ '\
\ \.J U L PU L J

This entry provides a process in the stopperl state.
used in creating the idle process.

It is

This entry does not yet exist as it is not needp.d.

c. GETSEG

Usage:

declare get_segment entry (pointer, fixed binary,
1 like sdw aligned, bit (3G));

call get_segment (template, length, return_srtv/, return_code);

1) temp 1 ate

2) length

is a pointer containing a segMent nUMber
which can be used to look up segment
attributes in the SLT. (Input)

is the number of words which must be createrl.
(I npu t)

is an SDW which describes thIs segment.
(Output)

i5 zero Iff the operatIon slJccep.rieri.
(Output)

For exaMple, a PDS for a new process May he created hy:

D. \JA IT' and NOT I FY'

declare pxsss\'Jait_on_counter entry (fixed binary, fixed binary,
fixed binarv (71»);

call pxss$vJai t_on_counter (event_cell, last_state, timeout);

i 5 the shared s tatp. cell.. (I nput)

is a saved copy of the event ceil. (Input)

- If) -

3) timeout is an upper bound on \\fait tiMe. (Input)

Notes

tiMeout is not presently impleMenter!; it is a placeholder.
This entry is normally used as follows:

L: last_state = event_cell;
if should_run then run;
else call pxss$v"ait_on_counter (event_cell, last_state,

')en);
goto L:

Entry: pxss$step_counter

declare pxss$step_counter entry (fixed binary);
call pxss$step_counter (event_cell);

as above. (Input/Output)

This entry is used to record the occurrence of an ~vent.

- 17 -

Appendix V
Jargon explained

PDS stands for Process Data Segment. It contains data
olocks [nat onCe were in three distinct per-procesa segments
(pds, pdf, and process_info). Some of the data must reMain in
core, so the first page is wired as long as the process is
eligible. The data items are referenced through links (e.g.
declare pds$apt_Pt~ external;) so they must have the ~ame virtual
address in all processes, al though the data is per-proce-ss. Thi s
is accomplished by using the same segment number in each process
for the per-process segment, and by having the same data layout
within each segment. The PDS also serves as execution stack for
ring zero for both call-side and fault-side proirams. So that
the ring-crossing hardware will work, the POS is also reachable
by another segment number which is the first in a group of eight
reserved for stacks.

PRDS stands for Processor Data Segment. There is one PRDS
for each CPU in the system. It contains a fairly small data
block and an execUtion stack for those faults and interrupts that
Must not cause further faults, e.g. page faults and If 0
interrupts. The entire PRDS is wired down.

DSEG stands for DescriPtor Segment. This is used by the
hard\'Iare to map segMent numbers into segments; it defines the
address space. I t may be thought of as a set- of hardware
registers. The first page of the DSEG Is teMP-wired whenever the
process is loaded.

The nachine instruction LOBR Is used to switch the CPtJ tn a
new DSEG descrlhed by a given DBR (DescriPtor Base Re~ister)
value.

SD~~ stands for Segment Oescr i Ptor \~ord. Each entry in the
DSEG is an SOW for one segment. The SOW merely points to the
page table for the segment, or specifies that a segment fault is
to be caused.

An abs-seg is a reserved hardcore segment nUMber for which a
null SOW is present most of the time. Supervisor prograMs
fabricate an SOU, stick It in the DSEG, reference the segment for
a while, then clear the OSEG slot. This is useful in getting
around such problems as addressing directories not known in this
address space.

ASTE stands for Active Segment Table Entry. The p~imary
content of the ASTE is a page table. The AST Is therefore the
data block containing all page tables, and is part of the wired
segment sst.

APTE stands for Active Process Table Entry.
forty-eight words long, and contains all the

- 18 -

The APTF. i s
data about a

particular process needed by traffic control. The APT is
therefore the data block containing an APTE for each process, and
is allocated in the wired segment tc_data.

pxss stands for Process Exchange Switch Stack, combining the
names of two older traffic control modules. Currently pxss
contains the bulk of traffic control.

EligIble processes are those to It/hich enough core has been
committed for them to run. Eligibility can be revoked after one
cpu second if the process Is running outside ring zero; otherwise
i t can 0 n 1 y bel 0 s t b y an ex P 1 i cit ca 1 1 to B L 0 C K • Eli g i b i 1 i t y
entitles the holder to absolute pre-emptive priority over any
process "'hich subsequently becoriles el igible.

To load a process, the first pages of PDS and DSEG are read
into core and temp-wired. A process will be loaded (hy pxss) as
soon as possible after it Is a\'/arded eligibility, and IJnloarled
when it loses el Igibi 1 i ty.

KST stands for Known Segment Tab 1 e. It is pri mari 1 y used at
segment-fault time to find a segMent that must be Made active.
Hardcore segments are not in the KST as they are always active.

POIR stands for Process Directory.
directory in which an M-process may
segments.

This is
create

a per-process
its teMporary

PIT stands for Process Initial ization Table. It is not used
by hardcore. The outer ring programs of an M-process can find
their process-creation parameters in this segMent.

OST stands for Device Signal Table. This is a data block
used by some I/O interfaces, and is currently al located in
tc_data immediately after the ITT, although it has nothing to do
with traffic control.

ITT stands for Interprocess Transmission Table. It is a
message queue used to pass informatIon wi th interprocess ,',akeups.
It is currently allocated in tc_data hetween the APT and the DST.

M-process is a new term, from r~PM process. I t des i I;nates
the type of proce~s Multics has traditionally supplied for each
user: cumbersome and expensive, but able to use all of the
features of the Multics environment. An M-process always has an
unshared address space, implemented with an unsharerl KST and
DSEG. It always has a distinct PDIR in which to store its ~any
per-process segments.

H-process is a new term, from hardcore-only process. It
designates a process which can reference only hardcore segments,
using a mostly-shared address space. Since even M-processes
already have identical address spaces for most ring zero

- 19 -

segments, and the system is coded to take advantage of this, the
H-process does not create any unusual programMing restrictions.

An idle process is a fiction of traffic control. There is
one per CPU, and it is run \"iheneVef there is nothing useful for
that CPU to do. It is not supposed to take page falJl ts because
that might cause it to become unrunnahle. An idle process has an
unshared POS and DSEG, and in the current implementation May be
considered an H-process.

- 20 -

