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Symmarv 

This memo proposes that a facilIty to provide special 
processes for use within the hardcore supervisor be made part of 
the standard Multics system. 

The introduction shows why a special class of processes 
should be available to the supervisor, and how these processes 
must differ from the standard processes. The next section 
describes the actual Implementation at a rroderate level of 
detail. The last section presents a scheme for using such a 
process for the TTY Interrupt handler. 

A glossary of jargon terms is provided, as Appendix V. 

This facility has been implemented and tested in an 
experimental version of the Multics system. Work is underway by 
several people to make use of these processes to simplify certain 
areas of the hardcore supervisor. 

I n t cody t; t ion 

Multlcs currently makes no use whatever of MultiprograMming 
wIthin the supervIsor. This results In highly convoluted codIng 
In many parts of the system where a module running In anyone 
process tries to multiplex itself so part of its algorlthn seems 
to be executed asynchronously. For example~ the TTY Device 
Control Module (OeM) simulates a process for each terminal, with 
its own scheduler and undocumented synchronizatIon facility. In 
many other cases, something is done In-line that doesn't really 
need to be done synchronously. For example, in the page fault 
path the faulting process currently checks the paging device to 
see if it is getting too full, and if so moves some pages to 
disk. This causes an unnecessary delay for the faulting process, 
and requires the page-moving algorithm to execute In a severely 
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lil.,ited environment (fault-side, interrupts masked, can't wait 
for 110 or locks). For another exanpl e, some I/O interrupt 
handlers currently execute long prograMs (taking up to two CPU 
seconds) in the sane severely 1 imited environment, requiring 
compi icated (undocurlented) conventions for co-operation VJith the 
processes that requested the I/O. 

One can view the page-moving program or interrupt handler as 
asp e cia 1 kin d 0 f pro c es s t hat has a b so 1 ute p rio r i t y (i t a h-, a y s 
runs to completion) but must run in a limited environment. By 
locks or by masking, the programs ensure a single ~equential flow 
of control, as by: 

check_paging ..... device: procedure (); 
set 1 oca 1 lock; 
if should_run then run; 
unlock local lock; 
return; 
end; 

A program like this can be made into a real process. The 
preceding fragment might become: 

paging_device_process: procedure e); 
w h i 1 e t rue do ; 

end; 

via i t for \·,akeup; 
if should_run then run; 
end; 

and a call to check_paging_device \'Jould become a call to send a 
\/akeup. 

Ins ummary, th ere are th ree reason 5 why a program r'l'1ay need 
one or more dedicated processes: first, the algorithm May require 
a process per device, as In the TTY DeM; second, it nay he 
inconvenient to perforM some cOMplex operation in the liMited 
environMent in whIch one happens to discover that it neerls to he 
done; and third, it may be inefficient to perfor~ the operatj~n 
in the critical path in which one happens to discover that it 
needs to he done. The iast point is meant to Include the case of 
a prograM that requires more CPU time than one process can get, 
in order to scale up its performance in a very large system. 

These probleMs are shared by programs in all rIngs, both 
IJser programs and system programs; hovJever, I shall attempt a 
solution only for the hardcore supervisor (ring zero). Let us 
assune that processes are readily available tn rlng zero for any 
purpose, and examine some likely applications to get a feel for 
the properties such processes must have. This choice of exaMples 
dues affect the resulting design. 

The handler for any external Interrupt could run in a 
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process of its OV/n, and the i nterrlJPt WOI! lrl merel y cause a 
wa k e up. Uh ere i n t err u p t s are f11lJ 1 tip 1 ex e rl (a shy the I Ot,O e a c h 
channel's hanciler could have a process. Such a pr()cess \\lOul ri I)e 
started '''hen the I/O device (or \'Ihatever) vIas attached, and \"Iould 
des t ro y its elf \'i hen the de vic e \va 5 de t a c h e d • its pro p, raM s h 0 1I i rl 
be specified when it is created; if the pro~ra", is shared (e.g. 
printer driver shared by all printer processes) then an orgwnent 
to the program should specify which device to run. This leads to 
the primitive 

FORK (procedure, argument) 

which creates a neVI process that starts \;lith the call 

procedure (argument) 

and the primitive 

DESTROY_ME () 

which stops and obliterates the process which calls it. Cl~arly 
the han d 1 e r nee d s to b 1 0 c k VI h I 1 e a\"I a itt n g the n ext i n t err u P t , so 
a full set of IPe primitives should be available to it. The 
program should be allowed to use the virtual memory (take page 
faults) so it can run In a more norMal environMent, and avoid the 
expense of wired cnde and data. The scheduler should provide as 
fast response as the I/O device May require. 

Another application is in resource Managers to ref'llOve pa~es 
from core or from the paging device, to remove segMents frOM the 
AST, to remove processes from the eligible list or fro~ the APT, 
etc. Such processes must be created very early in 
initial ization, when the function they help iMpleMent is not yet 
usable by FORK. Thus page faults are not allowed in creoting, 
schedul ing, or running a page control process. 

These examples show processes that still run in a sOMewhat 
limited environment: they must not use the facility that they are 
implementing, and must be trusted by the supervisor because they 
must execute entirely in ring zero. Finally, using processes in 
any application has to be competitive in "cost" so that no 
programmer has to choose between readability and efficiency. 

An ordinary process of the sort currently created for each 
user could meet most of these requirements, with suitable changes 
to k e e pit i n r i n g z e r 0 • Howe ve r , i tis c un be r som e, and has 
features which cannot even be initialized by the creating process 
until systen initial ization is nearly cOMplete -- for exaMple, it 
has a per-process directory (POIR) which clearly cannot be 
created until page control, segment control, and the file system 
are all in operation. A siMpler type of process f'l1IJst be 
introduced for use inside the supervisor. Let us dub the new 
type H-process and the old (ordi nary) type f'1-process, for thi s 
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discussion. As a design goal, I choose to make the H-process as 
simple as is consistent with providing a norMal prograM-execution 
environment. This should also miniMize the "cost" of the 
H-process. The approach taken is to stripavJay all costly 
features [nat don!t seem to be needed by all processes. By and 
large, the H-process could regain a feature by explicitly 
i nit i ali zing it. 

First, an H-process can run only in ring zero; thus we can 
eliminate the stack array used by the ring-crossing hardware. 
The programs it can run are totall y pre-l inked; . the 1 i nker i s 
unused and May he disabled. The address space could only he 
extended for data segMents and only by explicit calls. Here is a 
very definite rlesign choice: I choose to disallovi this extension 
of the address space, in consequence of which I discard the KST. 
Th i s mea ns that th e p races s can never take a segment frtu 1 t; i t 
can't use the file system; It can arldress non-hardcore seg~ents 
only through explicit calls on segment control. Now the PDIR 
can't be touched, so discard it; it normally contains a segment 
called PIT hy \"Ihich the systeM passes initial arguMents to a 
M-process -- discard this too, using a few words in the PDS for 
the (greatly reduced) initial conditions. At this point, only 
two per-process segments are left, PDS and DSEG, without which 
the ~~-process could not run at all. We have reduced the cost of 
the H-process to four pages + two ASTErs; Appendi~ II descrihes a 
way to reduce the cost to one page + one ASTE. 

rJotice that I have removed features by removIng data bases. 
The features that are left, such as inter-process 
synchroni zat ion, paged memory, etc. seem to have very 1 i ttle 
i ncrernental (per-process) cost, perhaps because thei r data bases 
and code are global. 

,\n H-process can take page faul ts, servi ce interrupts, and 
cOMpete vlith M-processes in the scheduler's queues. The 
restrictions on it are less severe than those on fault-side or 
interrupt side prograMs which It ml~ht replace. It can totally 
avoid taking pa~e faults (e.g. for a page control process) by 
execut i n~ on1 yin wi red-dO\'Jn code, and can therefore be used as 
deep in harrlcore as required. However, it Is poorly suiterl to 
the outer layers of the supervisor since it can't rearltly llse the 
file system, and therefore can't interface to user processes. 
M-processes should be made available for outer-level applications 
in the supervisor (including ring one), and for user 
appl ications, hut that is outside the scope of this project. 
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Oetai ls of proposed implementation 

Multiprogramming is provided by pxss, using tc_data as the 
principal data base. I t must be turneri on by exectJtion of 
tc_init before it will function normaiiy; hovJever, r>xss~wait and 
related entries are simulated during initial izatinn by loopin~ in 
wtred_fir.l. tc_init is currently invoked very late in 
initialization, so that page control (as a test case) cannot use 
multiprogramming. I propose to call tc_init early in Collection 
One, before page control is initialIzed. In this environment, 
all segments are unpaged and in core. This state is called the 
high-vJater mark because the core requi rement is at its rnaXirrllJM. 

tc_init contains two steps: first, initialize all the 
threaded 1 ists and other data in tc_data; second, create the 
initializer process and all idle processes. The first step does 
not involve any references to data or procedures not present in 
Collection One, and therefore causes no problems. The second 
step starts any extra CPU's, and creates a PRDS for each such 
CPU, as \Jell as a POS and DSEG for each idle process. let us 
assune that the extra CPU's are not started until late in 
initialization (to avoid two-cpu bugs); the remaining problem is 
the creation of two new segments for the single idle process. 
Any additional processes whIch may be created (e.g. for page 
control) will also require two new segments. The initial izer 
process gets to keep the original PDS and OSEG. 

Other conditions to be met in order for pxss to perform 
properly: those faults and interrUPts used by pxss rrlust be set 
up; a number of routines and data segments must be rloverl into 
Collection One; FORK and DESTROY_ME subroutines must be provirled. 
However, the only probleMS worth further discussion arise from 
the requirement for a segment-creating primitive available to 
process creation, which must be able to work even before paging 
is available. 

Segments (for PDS or DSEG) could be created unpaged 
initially, like segments read in during Collection One; however, 
update_sst_pll, wh i ch makes segments paged 1 ater on, \"lOU 1 d have 
difficulty finding the new segments. Any time after init_sst is 
run (which is very early) a paged segment can be created, taking 
a free ASTE and free page frames from appropriate lists. 
Existing page control entries could be used to create and wire 
pages; this approach was taken in the first experiments. 
HO\>'/ever, these entries (e.g. vlire_wait) ought not to be invoked 
when page control is not yet in it i ali zed -- if, for exampl e, no 
free page existed, they might reference the FSDCT before it is 
addressable. 

A new subroutine, GETSEG, will be written, to be used during 
both initialization and normal operation. It vJill get an 
unthreaded ASTE and (if during initialization) will assign page 
frames. It vJill not wire the pages; that remains the caller's 
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responsibility. 

I tis es s en t i al t hat the r e 
Multics is at the high-water 

be sufficient core 
mark for sever~l 

1 eft Volhen 
tasks to be 

created. This requirement is about four pages per task. Ine 
high-\vater Mark is already very close to the 128K minimuM size of 
f·1u 1 tics na In nemo ry, bu t tes t i ng can proceed us i ng a 256K sys tefTl. 
Appendix I describes one way to reduce the high-water Mar~, by 
removing segMents from Collection One. 

Of course, wtrfni down more pa~es of core will of necessity 
degrade systen performance. Most PDS's and DSEG's can be 
unloaded by traffic_control, but at least some hardcore tasks 
\'lon't allo\l/ that. It is useful to reduce the Memory requireMents 
of H-processes to reduce the impact on systeM performance and on 
the high-water mark; Appendix II describes a scheme for 
shrinking the per-process segments. Each H-process also costs 
two small ASTE's for its private segments, and one APTE, 
amounting to 64 words of core. Since the AST and" APT can readily 
be made larger, this cost is important only for applications 
requiring hundreds of H-processes. 

Sane increase in overhead of traffic control should be 
expected, due to more frequent interactions by H-processes. This 
loss of throughput can be countered by a better inlplementation of 
the process-swItcher. The only other performance degradation to 
be expected is an increase in response time when Interrupt-side 
programs are Moved into supervisor tasks, and this would probably 
not affect systeM throughput. On the other hand, systeM 
throughput May be improved by moving certain housekeeping 
functions out of critical paths and by makIng IJse of multiple 
CPU's in bottleneck areas. 

An Ii-process nay demand very fast response, which should he 
controlled by a priority attribute used by pxss. Such an 
improvement is not part of this proposal, since acceptable 
performance can be achieved by using a dtfferent\~AtT entry that 
guarantees fast response. Neverthel ess, 1 t has to be done 
sometime. Some scheduling requirements may not be adequately 
expressable by static priorities. This is an example of a 
lir"itation in pxss that may prevent optimum"performancp.; such 
prob 1 ei;lS become more comp 1 ex as more processes co-operate on 
particular computations. 
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Moying TTY DIM interrupt side processing into an H-process 

Currentl y the [)atanet-355 front-end nrocessor returns statlJS 
events by sending nul tics a particlJlar interruot. The hnnriler 
for thi5 interrupti dn355~interrlJnt, exaMines a flloilhnx at 
1 0 cat ion 14 0 0 to fin rl the s tat lJ 5 '.\10 r d , n e r for f11 i n g ani n vol ve d 
inter-cOMputer ritual. For each status \'Jorri it calls ttv_inter. 
Every three seconds pxss calls ttv_inter~noll, in cas~ therp 
aren't enough interrupts to drive the pro~r~M. There is an 
interlock between tty_inter and tty_rnter~nnl 1 sn hoth arp not 
active at once. 

It is possible to restructure this as follows: The hanrller 
for the 355 interrupt, tty_vIi red~interruDt, merely senrl5 a 
\'Iakeup. A ded i cated H-process, execut i ng dn35 5~ tty_proc~ss, 
receives the wakeup, then perforMs the inter-computer ritual and 
calls tty_inter as required. Every three seconrls pxss calls 
tty_\·Jired$poll, which sends the saMe t"Jakeup and sets a flap.;. If 
dn355Stty_process finds the flag set, it calls tty_inter~Pnll. 
dn355Stty_process goes blocked when it runs out of work to rl0. 

T his 
and t\'IO 
core. r~o 

strategy 
all o\'Ied. 
they no 
takes up 
assip;ned 

scheme permits dn355, tty_inter, their utility noriules, 
data bases to be unl'li red, rel eas' np. abolJt ten Ddr.;es of 
further change Is requirerl except to fix a lockin~ 
that onl y "Jorks \'Ihen i nterrunts and nage faul ts rtrp. 11Q.t 
All other interru~t handlers get better re5~onse since 
1 0 n ge r ha ve to 'va i t \"Jh i 1 e tty _ i n t err II n s • ( tty _ i n t p r 

to tHO seconds; to make matters \"Iorse, the ")55 is 
the highest priority interrunt cell.) 

On the other hand, each 355 interrunt might ~a~e in all ten 
of the pa.~es \'/e just unh,t red, pl us two poges of stack. Thp extra 
core is really available only when 355 traffic is light. 
Furthermore, the TTY OIM \"Ii 11 respond more sloVJly to i nterruDts, 
sin c e the s c h e d u 1 e rim po 5 e 5 a con s i rl era b 1 ~ del a y • T h i ~ i s a 
serious problem since the TTY nlM is ootintzed for 105~-tyne 
term ina 1 s t hat r e qui r e n r 0 g raM i n t e r v e n t ion to p;o f r 0111 VI r i tin P; to 
reading; the ~rogram ignores characters tvnerl in before it 
changes its internal state from writing to readin~ even if n() 
external act ion \"Ias requ ired. The user ,·Il th a non-lock i np; 
keyboarrl May begin typing before the TTY DIM begins listenin~, 
even in the current system. 

This probleM can be solved without rlelvin~ intn the 355 
code: the \'/r i te nCtJ l' st created by tty_i ntercoltl rl chain into 
the read DC\J list instead of terminating. This "/o(11d res'tlt in a 
noticeable improvement even over the current system and nake TTY 
process response relatively uniMportant. 

The restructuring (but not the DC!I list chaining) hdS ~een 
done and tested in an experimental systeM, using the i~nroverl 
\JA IT' (see Append i x I II) . Res ponse time \las found to a"ero ge 
• 2.±.. 2 seconds \"10 r se tha n tha t of the s tanda rd 5 ys ter'l. The 
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experiment should he performed again to refine this Measure~ent. 
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goals to continue using this fixed data layout for the pns and 
PROCESS-INFO, but it may later prove too inflexible. An 
H-process should be .able to grow by adding to itself some of the 
features normally associated only with an M-process. In order to 
avoid reserving large blocks of data in all processes' stacks for 
features that only some use, we could reserve a relatively small 
block of pointers, accessed by name, that would point to the data 
items allocated in whatever segment is most appropriate. The 
Network software already uses such a scheme -- its only cell in 
the POS contains an index into a system-wide table. 

The DSEG is currently a paged segment of which only about 
256 words are used for hardcore segments. Clearly it can he Mad~ 
an unpaged segment If core control Is made ahle to handle such; 
alternatively, page size could he rerluced to 25G. But closer 
examination of the DSEG suggests an even more fascinating 
solution: the only SOW's for which our hardcore DSEG differs 
fro~ the template are those for the PDS, PROS, the nSEG itself, 
and several abs-segs. This suggests that we can save core (at 
the expense of simplicity) by fabricating the nSEG whenever the 
process is to be run. The SOW for the POS can he saved in th~ 
APTE; the PRDS SOW is already being patched every time an LDB~ is 
done; the DSEG SOW would not be changed since it would always 
po i nt to the scra tch DSEG it 1 i es in; and the ahs-seg sr)\'] , scan 
be saved in the PDS. This can be thought of as sharing the 
current idle process DSEG with other H-processes. 

Combining these tricks can reduce the per-process memory 
requirenents by almost 75% for the hardcore-only tasks. 

Both of these changes have been made and tes terl in an 
experinental system. 
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1\ p pe n d i x I I I 
t1i scell aneous changes requi red hy thi s system 

A. Descriptor SegMent creation. 

A DSEG is normally created by plrn$hc, which in the current 
system copies the hardcore-segment-nlJrnber portion of Nhatever 
DSEG It is running with. (template dseg is still hein~ 
initialized but is never used.) plm has to be movpd into 
Collection One, modified to run before pa~ing is available, and 
modified to use the SLT to determine which SDW's to copy. 

If plm$hc is invoked early in Collection One, it prorluces a 
DSEG vii th the segments unpaged. A rout i ne, set_sdw_i n_all_dsegs, 
has to be provided, to be called by update_sst_pll \..,rhenever it 
changes an SDW in the initia'izer's DSEG with the intention that 
it affect all address spaces. segment_loader, initialize_dims, 
and delete_segs can use set_sdvJ_i n_all_dsegs too. 

One field in a DBR value contains a segment numher for an 
array of stack ·segments, for use in automatic ring crossings. 
For tun ate 1 y an H - pro c e s s do e s n 't nee d t h t 5 fie 1 d • Its val lJ e i 5 
not determined until all segments are loaded, at which tiMe 
init_sys_var fills it in for the initializer; init_sys_var has to 
be changed to set it in the APTE and tn the register. 

These changes have been made and testerl. 

B. pns creation. 

huild_template_pds copies a stack header and a stack fra"'1e 
into tcnplate_pds; in so doinr, it Mp.sses un the Initializer's 
stack. This module Is eliminated, since the hearler can he merged 
with the template by those programs that create new posts. 
build_ter.1plate_pds very cutely initializes the stack such that a 
II ret urn" \'1 ill t ran s fer co n t r 0 1 to i n i t_ pro c , the nor mal ~1- pro c e s 5 
starting point. However, pxss has to observe that it is running 
a process for the first time in orner to do the proper return. 
The requirement that an H-process start in an arhitrary procenure 
forces a change: pxss executes "call stack O~fi rst prne 
(stack_OSfirst_arg)1I in the special case instead of i'i'return"-:- It 
t urn S 0 LJ t t hat i nit _ p r oc e 5 so r r e c e i ve s co n t r 0 1 i nth i 5 \'J d Y \'/ hen 
it starts the boatload CPU, since to PX5S the lnitializer process 
looks like it has never run before. 

boot5trap2 can't initialize the pointer to signdl_ in the 
stack header (although the comment says it rioes) so 
initialize_faults$fault_init_tVlo rioes It later. By Moving 
signal_ into Collection One, thIs can be cleanerl Up. 

These changes have been Made and tested. 
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C. Con t r 01 f 1 a gs • 

Assorted flags have to be added to the APTE: 
• hardcore_process, .use_hardcore_dser" and .a1vJays_loaded. If 
.use_hardcore_dseg then the .dbr cell is really an SOI-! for the 
POSe Other flags have to be added to \'Ji red_hardcore_data: 
$page_faul t_,""orks, $segment_fau1 t_\~orks, and $ i ni t_se~s_gone. 

O. Certain deficiencies in the scheduler. 

One 1 ittle known property of the current scheduler is that a 
process cannot lose its absolute priority (eligibility) unless it 
either takes a timer-runout/pre-eMPt interrupt while running in 
an outer ring or explicitly calls BLOCK. Since part of BLOCK is 
outside of ring zero and therefore not available to an H-process, 
and since interrupts are masked while running in ring zero, an 
Ii-process will keep its eligibility even if it uses \\/AIT, the 
normal ring-zero synchronization method, and will attain the 
highest possible priority. (If ~ process loops in ring zero, 
i t vJi 11 tie up the CPU fo rever. ) 

Allowing loss of el igibi1ity by pre-emption in ring zero has 
other implications, requiring that eligibility be given up by 
\'JA I T becaus e of assumpt ions embedded ina 11 ha rdcore 1 oc king 
strategies, etc. I performed some experiments in this direction, 
concluding that even if I could find all the ramifications of 
such a change, including re-tuning the system, the chan~e would 
have to be made and defended separately. This area remains open 
to anyone wth a particular Interest in performance effects. 

For the H-process running the TTY OeM, WAIT was an 
unsatisfactory synchronizatiori primitive, as it left the process 
loa d e dan del i g i b 1 e i n de fin i tel y • I co u 1 d h a ve i n t rod u c e d a 
sl ightly different version, HAIT_and_do_\"Ihat_l_want, but instead 
I adapted a different fundaMental mechanism originated by Davirl 
Reed, that has been advocated as a primitive capable of 
implementing both WAIT and BLOCK. Reed will soon publ ish an RFC 
describing his model, so I shall merely describe the 
implementation. 

A shared memory cell is used to pass the information as to 
whether or not an event has occurred. This cell is provided by 
the caller of WAIT' or NOTIFY', which is not inconvenient when a 
shared data base exists anyway, and which avoids the allocation 
problems of WAIT and BLOCK. The cell changes to a new state (in 
fact it is incremented) every time the event occurs (every time 
NOTIFY' is called). \·JAIT' is given both the cell and the state 
it had \"Jhen the call er fi rst dec i den to \lI/a it; it returns \~Jhenever 
the cell contains some newer state. A list of processes w~iting 
in this \"Jay is needed, so NOTIFY' can a\"/aken them. .Ln!!lY 
implementation, the cell must be wired (since it is examined 
under the APT lock) and at the same address in every nrocess 
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usinr; it (since the address is used as a readily-availnble IJniqlfp. 
identifer). 

NOTIFY' always awards hi~h ~riortty to an awakenerl nrocess 
to improve response to interactions. Since the averose delay for 
the process to becor-1e eligible in the nor!"l1al \,/ay is three seconds 
(unless sYstem load is very light), I had to r1nke NOTIFY' a\"/arrl 
eli g i b i 1 i t y a s VI ell • The pro c e 5 s \ ,Ii 1 1 run ass 00 n as the 
lowest-priority running process leaves ring zero and gets 
pre-empted. 

For best response, the pre-emnt should be allowed even in 
ring zero. t10st of the probleMs vlith pre-emption in ring zero 
can be avoided if the pre-empt doesn't take a'tlay eligihillty, hut 
merely causes the highest-priority process to regain the epn. 
T his s c hem e s h 0 ul d he t r i ed as its ho u 1 d rna k e TT Y n r oc e 5 s 
response arlequate for emulat~on of interruPt-side hehavior. 

The response tine should be determined by a priority 
pa raMeter assoc i ated \~Ji th the process rather than by \a,h i ch l·.JA I T 
the process calls. Future appl ications of H-processes wi 11 Mt=tke 
s II c h a fen t u rei n p x s S 1"'10 r e r:t e sir a h 1 e • 

The \lAIT' prinitives have been testerl in an eXI')p.ril"l1ental 
systen. 
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Appendix 1'1 
Calling sequences of new routines 

A. FORK 

Usage: 

declnre create_supervisor_task entry (char (*), entry (r>ointer), 
nointer, hit (36), bit ()h»; 

call create_supervisor_task (group_in, F, arg_Dointer, 
return_ornc_in, return_corle); 

2) F 

3) a r foLpo i n t e r 

is process group naMe of n~w process. 
(Input) 

is starting orocedure of ne\'J process. 
(Input) 

is passed to F in the ne,'/ Dr0cess. (InD'It) 

identifies the net" process. (Output) 

is zero if no error occurrerl. (OutPllt) 

This interface is Intended to reMain chan~~able so that 
aJditional features can be put in, such as an indication that the 
tricks described in Appendix II are to be used. 

This entry creates an H-process and starts it rlJnnin~. The 
call to F in the new process is equivalent to: 

call F (a r g_po i n t e r ) ; 

F Must not be an internal procedure. The rlata pointed tn by 
ar?;_pointer must not lie in a per-process segMent (slIch ;:)s the 
stack) • 

declare create_supervisor_task~r1ake_process entry (1 like sd\'/, 
ch a r (*), bit (3 G ), po i n t e r, bit (3 f) ) ) ; 

ca 11 create_superv i sor _tas k~r1ake_proces s (OO'5_Sdl\/, ~roun_i d, 
return_oroc_io, return_aot_otr, return_code); 

is an SO\'! describing the pns to be used by 
the ne\~1 process. (I nput) 

as above. (Input) 

as above, except right half Must be set by 
caller. (Input/Output) 
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points to the newly created APT entry. 
(Output) 

as above. 'n ...... _ ...... '\ 
\ \.J U L PU L J 

This entry provides a process in the stopperl state. 
used in creating the idle process. 

It is 

This entry does not yet exist as it is not needp.d. 

c. GETSEG 

Usage: 

declare get_segment entry (pointer, fixed binary, 
1 like sdw aligned, bit (3G)); 

call get_segment (template, length, return_srtv/, return_code); 

1) temp 1 ate 

2) length 

is a pointer containing a segMent nUMber 
which can be used to look up segment 
attributes in the SLT. (Input) 

is the number of words which must be createrl. 
( I npu t) 

is an SDW which describes thIs segment. 
(Output) 

i5 zero Iff the operatIon slJccep.rieri. 
(Output) 

For exaMple, a PDS for a new process May he created hy: 

D. \JA IT' and NOT I FY' 

declare pxsss\'Jait_on_counter entry (fixed binary, fixed binary, 
fixed binarv (71»); 

call pxss$vJai t_on_counter (event_cell, last_state, timeout); 

i 5 the shared s tatp. cell.. (I nput) 

is a saved copy of the event ceil. (Input) 
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3) timeout is an upper bound on \\fait tiMe. (Input) 

Notes 

tiMeout is not presently impleMenter!; it is a placeholder. 
This entry is normally used as follows: 

L: last_state = event_cell; 
if should_run then run; 
else call pxss$v"ait_on_counter (event_cell, last_state, 

')en); 
goto L: 

Entry: pxss$step_counter 

declare pxss$step_counter entry (fixed binary); 
call pxss$step_counter (event_cell); 

as above. (Input/Output) 

This entry is used to record the occurrence of an ~vent. 
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Appendix V 
Jargon explained 

PDS stands for Process Data Segment. It contains data 
olocks [nat onCe were in three distinct per-procesa segments 
(pds, pdf, and process_info). Some of the data must reMain in 
core, so the first page is wired as long as the process is 
eligible. The data items are referenced through links (e.g. 
declare pds$apt_Pt~ external;) so they must have the ~ame virtual 
address in all processes, al though the data is per-proce-ss. Thi s 
is accomplished by using the same segment number in each process 
for the per-process segment, and by having the same data layout 
within each segment. The PDS also serves as execution stack for 
ring zero for both call-side and fault-side proirams. So that 
the ring-crossing hardware will work, the POS is also reachable 
by another segment number which is the first in a group of eight 
reserved for stacks. 

PRDS stands for Processor Data Segment. There is one PRDS 
for each CPU in the system. It contains a fairly small data 
block and an execUtion stack for those faults and interrupts that 
Must not cause further faults, e.g. page faults and If 0 
interrupts. The entire PRDS is wired down. 

DSEG stands for DescriPtor Segment. This is used by the 
hard\'Iare to map segMent numbers into segments; it defines the 
address space. I t may be thought of as a set- of hardware 
registers. The first page of the DSEG Is teMP-wired whenever the 
process is loaded. 

The nachine instruction LOBR Is used to switch the CPtJ tn a 
new DSEG descrlhed by a given DBR (DescriPtor Base Re~ister) 
value. 

SD~~ stands for Segment Oescr i Ptor \~ord. Each entry in the 
DSEG is an SOW for one segment. The SOW merely points to the 
page table for the segment, or specifies that a segment fault is 
to be caused. 

An abs-seg is a reserved hardcore segment nUMber for which a 
null SOW is present most of the time. Supervisor prograMs 
fabricate an SOU, stick It in the DSEG, reference the segment for 
a while, then clear the OSEG slot. This is useful in getting 
around such problems as addressing directories not known in this 
address space. 

ASTE stands for Active Segment Table Entry. The p~imary 
content of the ASTE is a page table. The AST Is therefore the 
data block containing all page tables, and is part of the wired 
segment sst. 

APTE stands for Active Process Table Entry. 
forty-eight words long, and contains all the 
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particular process needed by traffic control. The APT is 
therefore the data block containing an APTE for each process, and 
is allocated in the wired segment tc_data. 

pxss stands for Process Exchange Switch Stack, combining the 
names of two older traffic control modules. Currently pxss 
contains the bulk of traffic control. 

EligIble processes are those to It/hich enough core has been 
committed for them to run. Eligibility can be revoked after one 
cpu second if the process Is running outside ring zero; otherwise 
i t can 0 n 1 y bel 0 s t b y an ex P 1 i cit ca 1 1 to B L 0 C K • Eli g i b i 1 i t y 
entitles the holder to absolute pre-emptive priority over any 
process "'hich subsequently becoriles el igible. 

To load a process, the first pages of PDS and DSEG are read 
into core and temp-wired. A process will be loaded (hy pxss) as 
soon as possible after it Is a\'/arded eligibility, and IJnloarled 
when it loses el Igibi 1 i ty. 

KST stands for Known Segment Tab 1 e. It is pri mari 1 y used at 
segment-fault time to find a segMent that must be Made active. 
Hardcore segments are not in the KST as they are always active. 

POIR stands for Process Directory. 
directory in which an M-process may 
segments. 

This is 
create 

a per-process 
its teMporary 

PIT stands for Process Initial ization Table. It is not used 
by hardcore. The outer ring programs of an M-process can find 
their process-creation parameters in this segMent. 

OST stands for Device Signal Table. This is a data block 
used by some I/O interfaces, and is currently al located in 
tc_data immediately after the ITT, although it has nothing to do 
with traffic control. 

ITT stands for Interprocess Transmission Table. It is a 
message queue used to pass informatIon wi th interprocess ,',akeups. 
It is currently allocated in tc_data hetween the APT and the DST. 

M-process is a new term, from r~PM process. I t des i I;nates 
the type of proce~s Multics has traditionally supplied for each 
user: cumbersome and expensive, but able to use all of the 
features of the Multics environment. An M-process always has an 
unshared address space, implemented with an unsharerl KST and 
DSEG. It always has a distinct PDIR in which to store its ~any 
per-process segments. 

H-process is a new term, from hardcore-only process. It 
designates a process which can reference only hardcore segments, 
using a mostly-shared address space. Since even M-processes 
already have identical address spaces for most ring zero 
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segments, and the system is coded to take advantage of this, the 
H-process does not create any unusual programMing restrictions. 

An idle process is a fiction of traffic control. There is 
one per CPU, and it is run \"iheneVef there is nothing useful for 
that CPU to do. It is not supposed to take page falJl ts because 
that might cause it to become unrunnahle. An idle process has an 
unshared POS and DSEG, and in the current implementation May be 
considered an H-process. 
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