
MULTICS TECHNICAL BULLETIN

To: Distribution

From: EJ Wallman

Date: March 12, 1975

Subject: Interim File Recovery: Backup to Disk.

Contents

A. Background.
B. General Discussion.
C. Specific Proposal.
D. Summary Description of bk disk _
E. System Crash Recovery_
F. Disk Error Handling Strategy.

A.. Background_

MTB-172
Rev 4

Several Multics customers and potential customers have expressed
concern over the variously estimated times required to recover the
hierarchy after its loss. This concern has manifested itself in a
requirement in a current Multics contract for an Interim File Recovery
feature, The feature is to include two items; Disk Pack Copy (already
in implementation as a modification of BOS's SAVE command) and Backup
to Disk_ The Disk Pack Copy will serve to minimize the time necessary
for recovery of valid data from a damaged Disk Pack. The Backup to
Disk discussed here will serve to minimize the time necessary for the
update of the hierarchy after a RESTOR.

B. General Discussion.

Backup to Disk is an optional feature of the storage system backup
facility which must be specifically invoked at a site. It operates in
parallel with the normal tape backup. The disk pack prepared by this
feature is intended only for reloading and not for retrievals so that
there is no requirement for a search algorithm to find specified data
items.

Experience on System M at Phoenix has shown that a backup/catchup tape
will hold some 2000-2500 records (pages) of data at 800 bpi and will
take about 5-8 minutes to process on reload~ At 1600 bpi, a tape will
hold some 4000-5000 records and will take 10-12 minutes to process on
reload. Based on the above and the capacity of a d191 pack, it may
been seen that a reload of one [pack_capcity] of data will consume
somewhat over an hour of elapsed time. This elapsed time includes the

Page 1

Multics Project internal documentation. Not to be reproduced or
distributed outside the Multics Project.

MULTICS TECHNICAL BULLETIN MTB-172
Rev 4

time necessary for label inputting, reel mounting, and, since the
reloader uses only a single tape drive while in the ring_1 Initializer
environment, tape rewind time~

The BOS TEST command (which uses only one logical channel) takes 12-15
minutes to test an entire area. Allowing for the fact that a reload
must perform more functions than TEST, it appears that the time for
reloading each 20,000 records of backup data may be cut to 20-30
minutes. This improvement will come from the reduction in operator
time for tape handling and not from any inherent characteristics of
the disk over those of the tape. The MTS500 and the DSS191 have
roughly equal overall data transfer capabilities~ A certain advantage
will accrue to the disk since the 1/0 transactions will be up to 4072
words (4 pages minus DCWs) instead of 256 or 1024.

This backup-to-disk feature is intended to be released as a Special
only to that site at which we have the committment. Any additional
release must be considered on the merit of the Request for Special
asking for the release_

This proposal involves the use of the unstructured, removable disk
DIM, rdisk_, currently in developement (See MTB-162, "Multics
Removable Disk 1/0 Module). Ordinarily, such an early use of a DIM is
unjustified but is viewed as a calculated risk in this case because of
the Special nature of the release and the time constraints on the
committment. Moreover, backup-to-disk will serve as a test vehicle
for rdisk_.

c. Specific Proposal~

1. uk_arg_reader and bk_ss_ will be modified to accept and process a
n-disk"I"-nodisk" option pair. The default will be "-nodisk" so
as to preserve "normal" operation.

2. initialization of start_dump, catchup_dump, and reload will be
~oJif~eu to test the -disk option flag in bk_ss_ and to call
bk_disk_$init if the -disk option is taken w

tk_disk_$init will query the user with command_query_ for a
Volume ID (Label) and an optional "-init" control argument and
will then attach the pack with iox_$attach specifying rdisk_ (and
the -write option if dumping). If a non-zero error_code return
shows that the drive cannot be attached, bk_disk_$init will
notify the user with command_query_ and determine if the attach
should be retried (presumably after manual intervention has made
the drive available) or if the -disk option flag should be reset,
abandoning the disk output for this invocation.

Page 2

Multics Project internal documentation. Not to be reproduced or
distributed outside the Multics Project.

MULTICS TECHNICAL BULLETIN HTB-172
Rev 4

After the pack is successfully mounted, bk_disk_$init will use
iox_$open to open the "file" with direct_input for reload or
direct_update for the dumps and read the header sector of the
pac~ (iox_$read_record, key value "0") into a 64 word structured
area named bk_vol_header (probably most conveniently located in
bk_ss_), (NB: The header sector of the pack is initially defined
as sector 0 but, if the Resource Control Package requires a
standard volume label for all packs, it will have to move to the
first free sector following that label.)

64 words is chosen as being the "natural" data increment of the
disk~ Not all 64 words need be used, but such a selection is
consistent with the manner in which rdisk_ treats the pack as a
direct file, keyed on sector number. The structure of
bk_vol_header is as follows •• _

dcl 1 bk_ss$bk_vol_header,
2 vOlume_header_id char (128),
2 volume_id char (32),
2 unique_id bit (72),
2 first_clock fixed bin (71),
2 last_clock fixed bin (71),
2 fir-st_rec fixed bin (35) ,
2 next_rec fixed bin (35),
2 space_left fixed bin (35),
2 pad (15) fixed bin (35);

1* header from pack *1
1* backup pack identifier *1
1* pack serial number *1
1* set at initialization *1
1* time of initialization *1
1* time of last header update *1
1* sector no .of 1st data * I
1* sector no, of next data -I
1* sectors remaining *1
1* pad to sector boundary *1

bk_disk_$init will perform consistency checking in bk_vol_header
to assure that the header read from the pack is valid, that the
pack is conditioned for data, and that no valid data already on
the pack will be overwritten. The data patterns and form of
checking must include the volume_id, unique_id, and first_clock
values which will be matched with data safe-stored in the
hierarchy. An appropriate place for the safe-storage is
>ddd>backup>[volume_id]. For the dumps, >ddd>backup>[volume_id]
will be created if it does not exist or is unreadable. For
reload, the user will be queried if he desires to override the
error and create >ddd>backup>[volume_id] or to remount with a
different pack.

Yor the dumps, consistency checking will include a scan of the
pack, starting with first_rec, using the "This is the beginning
of a backup logical record" flag string and the word_count fields
of the backup logical record header to follow the thread of
entries on the pack. (See section 3. following for pack data
format.)

Page 3

Multics Project internal documentation~ Not to be reproduced or
distributed outside the Multics Project.

MULTIGJ IE~HNICAL BULLETIN MTB-172
Rev 4

This scan will avoid overwriting data in the case of a system
crash with backup awake and unable to write bk_vol_header back
out to the pack.

ror each entry found whose first preamble record sector number is
less than next_rec, backup_preamble_headertidtd must lie between
first_clock and last_clock. If backup_preamble_header.dtd is
earlier than first_clock, next_rec is in erro~ and will be reset
to the sector number of the first record of the entry and the
scan stopped. If backup_preamble_header.dtd is later than
last_clock, last_clock is in error and will be reset to the value
of backup_preamble_header., :ltd and the scan continued.

If entries are found whose first record sector number is greater
than next_rec, they are va<id only if backup_preamble_header.dtd
is later than last_clock. next_rec and last_clock will both be
updated for such entries and the scan continued.

If the bk vol header data is inconsistent or indicates the pack
is full, the user will be queried for reinitialization of the
pack or mounting of another packti In this context, "full" is
defined as having less than 10,000 sectors remaining as given in
spaue_leftti The rationale for this definition is that a pack
with only 625 pages remaining would probably have to be changed
during the first backup pass.

Pack initialization consists of overwriting the pack header (and
>ddd>backup>[volume_id]) with the volume_id as input by the user,
aD unique_id newly obtained from unique_chars_, first_clock and
ia~t_clock both to current clock_, first_rec and next_rec both to
[header sectorJ+1, and space_left to [pack_capacity]
[header_space]. [pack_capacity] is currently 311600 for d191.
Older secondary storage devices are not supported by ioi and
rdisk_ ti [header_space] is currently 1, but may be more if a
standard pack label becomes required.

i;l~r reload, bk_disk_$ini t will not scan the pack bu twill
initialze an internal static variable, next_reload_rec, with the
value of first_rec~

3. bk_ou tput will be modi fied to check the -disk option flag in
bk_ss_ and, if the option is taken, to call bk_disk_$write after
Lile segment is successfully written to the tape.

tk_disk_$write will test the space required against the space
remaining in space_left. If the space is insufficient,
bk_vol_header will be updated with a new value of last_clock and
written out to the header sector of the pack. After the header

Page 4

Multics Project internal documentation. Not to be reproduced or
distributed outside the Multics Project.

MULTICS TECHNICAL BULLETIN HTB-172
Rev 4

sector is overwritten, bk_disk_$write will set the "-init" option
flag and call bk_disk$init for the mounting of a fresh pack~ All
packs after the first will be initialized.

when sufficient space is available, bk_disk_$write will write the
preamble and the buffered segment data to 'the pack using
iox_$rewrite_recordand key values derived from next_rec4 After
the segment is successfully written, bk_disk$write will update
next_rec and space_left and will write a trailer record
containing the string "NEXT BACKUP RECORD" and the value of
next_rec into sector <next_rec>.

The format of the pack is as follows6 ••

I
I

volume header : Initiall~ sector O.
I

~-----------------------------~
backup header & preamble 1 n sectors as required.

segment p sectors as required.

~------------------------------+
I

etc~ to end of pack

4'4 uackup_map_ wili be modified to extract the vOlume_id from
ok vol header and place it in the map with (or in place of, for a
reload} the tape reel label information.

~. uackup_loa~ wil~ be modified to query the -disk option flag in
bk_ss_ and to call bk_disk_$read instead of bk_input if the
option is taken_ Note that this call to an entry point in >tools
precludes the use of the disk for reloading of system libraries
and leads to the limitation to reloads from backup and catchup
prepared packs only.

bk_disk_$read ,will use iox_$read_record to read the backup header
and preamble whose first record is given by the value of
next_reload_rec as set by bk_disk_$init and will then apply the
consistency criteria given for the pack scan in section 3 for the
duceptance of the data6 If the data is acceptable it will be
read in and next_reload_rec and bk_vol_header will be updated as
n~o~ssary. Reading will then proceed with the new value of
next_reload_rec_

Page 5

llultics Project internal documentation. Not to be reproduced or
distributed outside the Multics Project4

MULTICS TECHNICAL BULLETIN MTB-112
Rev 4

If the data is not acceptable and next_reload_rec is less than
bk_vol_header.next_rec, the user will be advised of a data format
error ~nd queried concerning retry, search for next header, or
quit. If the data is not acceptable and next_reload_rec is equal
to or greater than bk_vol_header.next_rec, the user will be
advised of the end of readable data and queried concerning
additional packs to be reloaded. bk_vol_header will be rewritten
to the header sector of the pack before the change pack order is
issued in case it was updated during the reload.

6. end_dump will be modified to query the -disk option flag in
l1k_ss_ and, if the option is taken, to "close out" the pack and
to demount it. with a call to bk_disk_$release.

1. backup_cleanup will be modified to query the -disk option flag
and to call bk_disk_$release if the flag is set.

D. Summary Description of bk_disk_ •.

Tne following are the declarations, usages, and functions of the
bk_disk_ entries~

Functions

Called by start_dump,
initialization and by
t"ull.

catchup_dump, and reload during
bk_disk_$write when current pack is

1. Check for current attachment; issue iox $order changepack if

2. a.
b.

3. a.

b.·
4.

true ..
Attach drive with iox_$attach.
If unattachable, query caller for retry or reset -disk
option.
Read header sector into bk_vol_header (iox_$read_record, key
"0").
Verify bk_vol_header against >ddd>backup>[volume_id].
If reload command, set next_reload_rec to first_rea and
return.

Page 6

Multics Project internal documentation. Not to be reproduced or
distributed outside the Multics Project.

MULTICS TECHNICAL BULLETIN MTB-172
Rev 4

5. If pack is full (space_left i 10000), call for fresh pack.
6. a. Chase entry thread on pack from first_reC to next_rec,

verifying that backup_preamble_header.dtd lies between
first_clock and last_clock.

b. Chase entry thread beyond next_rec while
backup_preamble_header.dtd is greater than last_clock,
updating next_rec and last_clock, to the end of readable
data.

7., Update >ddd>backup>[volume_id] and write bk_vol_header back
to the header sector to retain the results of the scan.

Entry

ucl bk_disk_$write entry (ptr, fixed bin, ptr, fixed bin);

Functions

1 • a.

b.,

2.

3 e'

4.

Called by bk_output.

Check space required using word counts in pream_ptr ->
preamble ..
If not enough space, update volume header and call
bk_disk_$init for a fresh pack.
Write preamble and segment to pack using iox_$rewite_record
and keys from next_rec.
Update space_left and next_rec for space used.
Write a single sector trailer record into next_rec
containing the string "NEXT BACKUP RECORD", the value of
next_rec, and the current value of clock_.

dcl bk_disk_$read entry (ptr, fixed bin, ptr, fixed bin, fixed
bin (35»;

[sage

call bk_disk_$read (pream_ptr, pream_Ien,
error_code);

Called by backup_load.

Page 7

seg_ptr,

Multic~ Project internal documentation. Not to be reproduced or
Jistrlbuted outside the Multics Project.

MULTICS TECHNICAL BULLETIN MTB-172
Rev 4

f"unctions

1. Duplicates the functions of bk_input, substituting the disk
pack for the tape reel and, in addition, applies the data
acceptance criteria used by bk_disk_$init in scanning the
pack.

Usage

Called by end_dump and backup_cleanup.

Functions

E.

1. a. Queries disk option flag in bk_ss_, returning if the option
is not taken-if

b. Makes a final update to bk_vol_header and
>ddd>backup>[volume_id] and writes bk_vol_header back out to
the header sector on the volume_

c. Releases the channel with iox_$detach~

System Crash Recovery.

A system crash with backup asleep between passes has no effect on the
consistency of the data on the disk pack since bk_disk is able to
write a trailer record behind the last valid segment dumped~ A
trailer record is not possible on the tape because of the prohibition
against backspacing and overwriting such a trailer with the next
header.

A system crash with backup awake and writing causes the segment being
dumped to be incomplete on either disk or tape. Normal practice calls
for the writing of several EOFs on the backup tape before it is
demounted so that reload will detect bad format (unexpected EOF) and
will refuse to reload the incomplete segment. When reading from the
disk, the data consistency check will refuse to reload the incomplete
segment because it is not followed by either the next header or a disk
trailer record ..

Page 8

M~ltics Project internal documentation. Not to be reproduced or
distributed outside the Multics Project,

MULTICS TECHNICAL BULLETIN

Disk Error Handling Strategy.

MTB-172
Rev 4

Disk error handling must be considered differently during reading and
writing.

In general, disk read errors will be handled similarly to tape reading
errors# The read will be retried by rdisk_ according to its own
strategy~ If the read cannot be done, the reload of the segment being
processed will be abandoned with a suitable entry made to the error
file~ If the full preamble or segment pages are being read, reload
will skip immediately to the next header record and proceed with the
next segment. If the first sector of a preamble header is being read,
reload will proceed with 64-word reads searching for the next preamble
header.

If an unrecoverable write error occurs, bk_disk_$write will abandon
the space used so far for the segment being dumped, update next rec
for the space abandoned, and will overwrite the first 64-word sector
of the preamble with the string "BAD SPACE HEADER" and the sector
count of the bad space abandoned. It will then make a fresh attempt
to write out the preamble and segment at the new value of next_rec.
If the write error occurs during the writing of the first 64-word
sector of the preamble, bk_disk_$write will overwrite the sector with
the "BAD SPACE HEADER" and a sector count of zero and then attempt to
write a header into the next 64-word sector# When reload detects the
zero sector count or the unreadable 64-word sector, it will begin its
search for a valid preamble header thus bypassing the bad space.

Page 9

Multics Project internal documentation. Not to be reproduced or
distributed outside the Multics Project.

