
MULTICS TECHNICAL BULLETIN MTB-253

To: Dlstrloution

Froml J. Berson

Date: 02/03/76

SubJectl Release 2 of the Muftics Sort/Me~ge

Attached Is information about Release 2 of the Multlcs
Sort/Merge, which Is scheduled for Multlcs Retease 4.0 In June
1976. There are four write-ups, including sort command, merge
command, sort_ subroutine, merge_ subroutine, In the usual form
for the Muftles Programmers· Manual, and one wrIte-up of
addItional interfaces to be documented In the PLM.

Comments and criticisms are solIcited, whether on tec~nicat

aspects or on the documentatIon. They may be sent to Joel Berson
at Honevwell Blilerica by mal. or phone; or vIa "mall Berson
MSORT" on eIther the HIT or PhoenIx Multics systems.

--------~------~~--~--~~-----------------------------------~~-

Muftlcs Project internal working documentatIon. Not to be
reproduced or dIstrIbuted outsloe the Multlcs ProJect.

Page 2 MTB-253

1.1 A Merge, or fIle collation, functIon has been added.

1.2 A subroutIne interface for bot~ the Sort and Merge has been
added.

1.3 Support for the SORT portIon of the ANSI COBOL Sort/Merge
Module, Level 2. h3S been added. (The COBOL MERGE functIon
Is not supported by this package).

1.4 Addltional data types for keys and multiple key fIelds are
supported. Release 1 supported only character strIng and a
sIngle key fIeld.

1.5 AddItIonal storage medIa and fIle organIzatIons are
supported for the input and otuput files. EssentIally any
fIle can be supported whIch can be read or wrItten
seQuentiallv via lox_ usIng any available I/O module.
Release 1 supported onlv seQuential input and output files
In the Muttles storage system (usIng wfl1e_).

1.6 The following ajdItlonal user exit points are providedl

Input_record exits

output_record exIt.

Permits the user to atter, delete, or
Insert records before they enter the
sortIng or mergIng process.

PermIts the user to alter, delete,
insert, or s~m~arlze records comlng
out of the sortIng or merglng process
before they a~e wrltten to the output
fIle.

1.7 SeQuence checking for output records has been added.

1.8 A fIle size argument has been added.

1.g Command arguments for measurement and testIng have been
aaded (-tlme, -merge_order, and -string_sIze».

Page 3

The keyword -sort_desc (-sd) must precede t~e pat~name of
the Sort DescrIpt10n (when the Sort DescrIptIon Is supolled
In a segment). In Retease 1, the pathname of the Sort
Description .ust be the first argument and Is not preceded
by a keyword.

I would like to raise the following Questions about
documentation of the Sort/Merge.

3.1 Should the Sort and the Merge be docu.ented In four separate
MPH write-ups, as attached; o~ should the Merge (command and
subroutine) be documented In two shorter write-ups whIch
then refer to the two Sort write-ups for detalls? There Is
much In common between the Sort and the Merge. On the other
hand~ not1ng differences applIcable to the Merge In the Sort
wrIte-ups may be somewhat complIcated and confusIng.

3.2 Should there be a separate Users' Guide for the Sort/Merge?
If so, what Information should go In the MPH and what In the
Users· GuIde? Some information not presently In the MPH
wrIte-ups which might go Into a Users· Guide lsi

text of error messages

descriptIon of the report produced by the SortlMerge
(varlous counts of records processed; data produced by
the -time argument)

1/0 usage; e.g. for PL/I 110, Fort~ant record_stream_t
syn_, etc.

Relationship between' fIle size, work space reQuireo,
optimization. etc.

3.3 Should the addItIonal command arguments described in the PLM
"rite-up be documented directlv 1n the MPH Commands
write-ups?

sort sort

~am~1 sort

The sort command provides a generalIzed fIle sortIng
capabIlIty. ~hlch Is specialIzed for executIon by user
supolled parameters. The basIc functIon of the Sort Is to
read one or more Input flies of records whIch· are not
ordered, sort those records according to the values of one
or more key fIelds. and wrIte a sIngle fIle of ordered (or
"ranked") records. The Sort has the fo'Iowing general
capabilIties'

Input and output files may be on any storage medium and In
any fIle organizatIon;

Verv large flies. such as multlsegment flies, can be sorted;

Multiple kev flelds and most PL/I st~lng and numeric data
types mav be specIfIed;

ExIts to user supplIed subroutines are permitted at several
poInts durIng t~e sortIng process.

In aOdition to arguments to the sort command, other
information Is necessary to specIalIze the Sort for a partIcular
execution. ThIs information, called the Sort DescriptIon, can be
supplIed either thro~gh the user·s termIna' or In a segment.

The descrIptIon given here of the sort command Is suffIcIent
for situations where the Sort Is free standIng; that Is, where
no user supplIed procedures are executed. (User supplIed
procedures are cal led "exit procedures".) AdditIonal Information
Is necessary for executing the sort command with exit procedures,
and Is contained In the description of the sort_ subroutIne In
the Multics Programmers· Manual, Subroutines, SectIon II.

INPUT AND OUTPUT

The user can specify the lnput and output flies. In thIs
environment, the Sort reads the Input flies and wrItes the output
fIle. Each Input or output fIle may be sto~ed on any medIum and
in any file organizatIon supported bV an 110 module through lox __
The 110 module may be one of the Muftlcs svstem 1/0 modules (such
as tape_onsl_) , or one supplied bV a specific InstallatIon, or
one written by a user. An Input or output fl,e Is specifIed
either by a pathname or by an attac~ description.

Alternatively, the user can supply eIther an Inout_fife
procedure or an output_flte procedure (or both). An input_fIle
procedure Is responsible for readIng input and releasIng records

Page 4

sort sort

to the Sort. An output_fl1e procedure Is responsible for
retrIevIng records (ranked bV the Sort) from the Sort and wrIting
output.

In all cases, records may be either fIxed length or varIable
length.

KEY FIELDS

The user can specify the key fields to be used In ranking
records. Key fields are described In the Keys statement of the
Sort Description. Up to 20 key fields may be specified. Any
PL/I string or numerIc data type - except complex or pIctured -
may be specIfied for a given key fIeld. RankIng may be
ascending. descending, or mixed. For a :naracter string fIeld,
the collatIng sequence Is that of the Muttlcs standard character
set.

Alternatlvely, the user can specify a user suppll~d compare
procedure, whIch Is then used to rank records.

The orIgInal order of records wIth eQual keys is preserved
(FIFO order). Original Input order Is defIned as followst

1. If two equal records come from dIfferent input flies, then
the record from the fi1e which Is sDecified earlIer In the
command lIne Is fIrst.

2. If two equal records come from the same Input fIle, then the
record whIch 1s earlier In the flle Is fIrst.

EXITS

The Sort provIdes exIts to user supplied procedures at
specifIc points durIng the sorting process. Ex!t procedures are
named in the ExIts statement of the Sort Descriotion. The
fol lowing exIt points are provIdedl

To obtain input records and release them one
by one to the sorting process.

To retrieve ranked records one by one from
the sorting process and output them.

To perform special processing for each Input
record, such as deleting, inserting, or
altering records to be lnput to the Sort.

Page 5

sort sort

output_record To oerform speclal processIng for each output
record, such as deleting. Inserting~ or
altering records to be output from the Sort;
or SummarIzing data by accumulating It Into a
summary record.

compare To compare two records; that is. to rank them
for the sorting process.

Page 6

sort

where'

sort

indIcates that the user is speclfying the
input flies. Up to 10 Input fltes may be
specIfied. Each Input fIle specificatIon
(each input_spec) may be supplied In one of
the followIng forms:

-Input_fIle pathname
-if pathname If an Input fflle is In the MuJtlcs

storage system and its fIle organization
is either seQuential or Inaexed, tnen It
may be specified by Its pathname. The
file may be either a sIngle segment or a
muttlsegment file. The star conventIon
can not be used.

An input fIle specifIed by a pathname
~111 be attached usIng the attach
descrIption "vflle_pathriame" •

-input_descriptIon •• a t tach_desc"
-ids Uattach_desc" If an input fl'e Is not In the Multics

storage system or its fIle organIzatIon
Is neither seQuentIal nor indexed, then
1t must be specified by an attach
descriptio~. The attach description
must be Quoted. The target 110 module
specifIed vIa the attach descriptIon
must support the seQuential_Input
openIng mode and the lox_ entry pclnt
read_record.

Pathnames and attach descrIptIons can be
intermixed in the input_specs argument.

If the user Is supplyIng an ~nDut_flle exIt
procedure, then the Input_specs argument must
be omitted and the Inp~t_flle exit procedure
must be named in the EKIts statement of the
Sort Description.

Page 7

sort sort

indicates that the user is specifying the
output fIle. Only one output fIle can be
specified. The output flte specificatIon
(ourout_spec) may be supplied In one of the
f 0' I 0" 1 n 9 f or m s a

-output_file pathname
-of pathname If the output fIle Is In the Muttlcs

-output_fIle -replace

storage system and Its fIle organIzatIon
Is seQuentIal, then It may be specifIed
by Its pathname. The fIle may be eIther
a sIngle segment or a multlsegment file.

The eQu a I s c on v en t ion ma y be
it is, It Is applIed to the
the fIrst Input file and the
fite must be specifIed by a
not by an attach description.

used. If
pat hname 0 f
fIrst input

pat "'name,

An output fife specIfied by a pathname
wIll be attached usIng the attach
descriotion ·vflle_ pathname-. Thus If
the fIle does not exIst, It wI" be
created. If It does exIst, It wIll be
overwritten.

-of -rp The output fIle Is to replace the fIrst

-outpuf_oescriptlon
-ods "attach_desc"

input fIle. That input fIle wIll be
overwritten during the merge phase of
the Sort. If -replace Is used, the
fIrst input flte ~ust be specIfied by a
pathname. not by an attach descrIptIon.

I. a t tach_d esc"
If the output fIle Is not In the Muftlcs
storage system or its fIle organIzatIon
Is not sequentIal, then It must be
specified bV an attach description. The
attach descrIption must be quoted. The
target 1/0 module soecified vis the
attach descrIption must support the
sequentla'_output openIng mode and the
lox_ entry poInt wr1te_record.

If the user Is supplying an output_fIfe exIt
procedure, then the output_spec argument must
be omItted and the output_file exIt procedure
must be named In the E~lts statement of the
Sort DescrIptIon.

Page 8

sort

-console_input
-cl

sort

must be chosen from the following:

indIcates that the Sort DescrIption is
read via the 1/0 swItch user_lrput
(which normaljv Is the user·s terminal).

-sort_desc Sd_path
-sd sd_path indIcates that the user Is soecifving

the pathname of the segment contairing
the Sort Description.

Either the -console_input or the -sort_oesc
argument - but not both - must be specifIed.
See the headIng Sort DescrIptIon below.

-temp_dlr td_path
-td td_path' indicates that the user is specifying

-the pathname of the dIrectory whIch wil'
contain the Sort·s work flies. The
eQuals conventIon can not be used.

If this argument Is omItted, work flies
will be contained in the user's process
dIrectory.

ThIs argument shoJld be used when the
process directory will not be large
enough to contain the work flies. The
{wdl actIve function may be used for
td_path to p1ace work fIles in the
user·s current workIng directory.

specifies that the total amount of data
to be sorted Is 1 mIl lIons of bytes.
The argument 1 must be a decimal number.
If the -fi Ie_sIze argument is omitted,
the default assumptIon is approxImately
one mIllIon bytes (1 = 1.0).

This argument Is intended for use when
some or al lof the lnput flies are not
In the storage sYitem (that 1S t are not
specifIed bv pathnames) or when an
Input_fi'e exit orocedure Is used. In
these cases the Sort cannot determine
the amount of Input data. (The Sort
does compute tne total amount of Input
data which Is In the storage system,
usIng segment bIt counts.) The

Page g

sort

NOTES

sort

-file_sIze argument may also be used
when all of the l~put flies are In the
storage system but records are to be
inserted or deleted through an
Input_record exit p~ocedure.

The -fIle_size a~gument Is used for
optimIzation of performance; the actual
amount of input data can be consIderably
larger without preventing the Sort from
completing. The maxImum amount of data
which can be so~ted is (in bytes)
approximately 60 million times the
sQuare root of 1.

Arguments can appear in any order, out a pathname or attach
description must immediatelv follow its kevword.

The temporary directory pathname (td_path) Is the name of a
directorv. The Sort Description pathname (sd_path) Is the name
of a segment.

Any pathname may be relative (to the user·s current .orking
directory) or absolute.

Page 10

sort sort

The Sort Description contains additional
specialize the Sort for a partIcular execJtlon.
supplied may be:

InformatIon to
The information

Keys -

Exits ...

Description of one or more key fields used for
ranking records.

SpecifIcatIon of Mhich exit points are to be used
and the names of the correspondIng user supplied
exit procedures.

A Sort Description Is reQuired. As a minimum, the user must
specify how records are to be ranked, either by describing key
fields In the Kevs statement or by naming a compare exIt
procedure In the ExIts statement. Other information In the Sort
Oescription is opptIona'.

The Sort Description may be supplIed as a segment or read
vla the 1/0 switch user_input (normal Iv the user·s terminal).

If the Sort Oescription Is supplied in a segment, Its
pathname Is specifIed In the -sort_desc argument.

If the Sort Oescription Is read via the user·s terminal.
the -console_input argument Is used. The Sort prints "Input:"
via the 110 swItCh user_output and walts for input. The user
then types the Sort Oescription. To termInate the Sort
Description, the user types a lIne consistIng of a oeriod (.....)
followed by a fIne feed. (This line Is not part of the Sort
DescriptIon.)

SYNTAX OF THE SORT DESCRIPTION

A Sort DescrIption conSists of a set of statements. Each
statement must begin with a function keyword. The functIon
keyword is followed by the function keyword delImiter colon
("I"). The statement itself conSists of one or more parameters,
separated by parameter delImiters. The parameter delImIters are
spaces, commas (","), or (In certaIn specific cases as specified

. below) parentheses (.. (•• and ")"). Each st:atement must end wIth
the statement delImIter semIcolon (";").

In the descriptIons below, certaIn notational conventIons
are us~d. A word enclosed between the less than and greater than
symbols CI<II and II>", Is a notational \tarlable. whiCh must be
replaced by an actual word or phrase of the Sort Description
language. A word not enclosed between < and> Is an actual word

Page 11

sort sort

of the Sort Description language. A ph~ase enclosed betMeen
brackets ("[" and "1·'. Is optIonal. A ph~ase enclosed between
braces ("{" and "}") and folJowed by an e.'1ps.ls (•••••••) Is
required, and may be repeated one or more times.

KEYS STATEMENT

The Keys statement specifies key fIelds used to rank the
recoras of the input flies. The format of the Keys statement lsI

keys: {<key_descriptIon>} ••• ;

The Keys statement consists of a se~les of one or more
<key_descrlption>s, The key descrIptions are specIfied In order,
the fIrst describing the malor key and the last describing the
most minor key. Up to 2G key descrIptions may be supotIed.

A key description is the specification of a single key
field. The format of a <key_descrIptIon> lsI

<datatype> «sIze» <position> (descendIng]

where'

1. <datatype>

2. <size>

Is the data type of the key fIeld. ThIs
element Is reQuIred. See the table below for
the encoding of <datatype>.

is the sIze of the key field, expressed in a
form which depends on the data type. This
element 15 required.

For string data typeS9 <size> Is the length
(characters or bIts) of the field. The
length Is the exact a~ount of space occupied
by the fIeld.

For arithmetIc data typeS7 size Is the
precision (binary or decimal dIgIts) of the
fIeld. Scale factor, if any, must not be
~rltten (it Is not reQuired by the Sort),
The space occ~p1ed 1s determined by the
precision In combination with the data type
and the alIgnment. (A'ignment Is specified
vIa <position>.) For an aligned bInary fIeld
(fixed or floatIng), the space occupied Is
increased If necessary to an integral number
of words.

Page 12

sort

3. <posItIon>

<w>

<w> «b»

4. aescendln~

dsc

sort

<size> must be a decimal integer. The unit
jepends on the data type. See the table
beJow for the semantIcs of <sIze>. (The
rutes used are the same as those usea by
~ultics Pl/I.)

Is the offset of the oeglnnlng of the key
field, relative to the beginnIng of the
record. Consider the record as being aligned
on a word boundary, as wi.t be the case for a
Multlcs Pl/I structu~e. ThIs element Is
requIred. There are two formats:

where <w> 1s the word offset. Words are
numbered from 0 for the fIrst wore of
the record. ThIs format specIfies to
the Sort that the key fIeld Is alIgned
on a word or (If <w> is even) on a
double word boundary_

where <w> Is the word portIon of the
offset and Is the bit portion of the
offset; that Is, the bIt offset wIthIn
the word. Bits are numbered from 0 to
35. ThIs format implIes that the key
fIeld Is not atlgned on a word boundary.
If the key fIeld is aligned on a word
boundary but the user specifies a bit
offset of 0 a~vway, the Sort w!ll
operate correctly although speed of
execution may be affected.

The formats for <position> and the values for
<.> and are consistent wlth those shown
In Muftles PL/I lIstIngs or used by debug.

specifIes descending order for ranking usIng
this key field. ThIs element may be omItted;
the default Is ascending order for t~ls key
fle.d.

Page 13

sort sort

OATATYPE ENCODING AND SEMANTICS OF SIZE

Encoding I Semantics of <sIze>
of I (Hh er e < s .i. z e >= n)

<datatype>1 UnIt Range Space OccupIed

---------~~~~~~~~~----------------------~~--------~---~~--------.

Charac ter s tr Ing
(Multlcs ASCII)

8It string

Fixed binary

Floating binary

FIxed decimal
(Ieaalng sIgn)

Floating· decimal

char

bIt

bIn

float bin

dec

f loat dec

9 bIt 1 - ~095 n characters
character

1 bit 1 - it 0<35 n bIts

1 bit 1 - 71 All gned:
1 ~ n ~ 35'

36 ~ n ..5. 71:
Unalignedl n

1 bit 1 - 63 All gned t
1 ~ n ~ 271

36 .5. n ~ 631
Unaligned: n

9 bIt 1 - 59 n + 1 dIgits
digit

9 bIt 1 - 59 n .. 2 dIgits
digit

one word
two word

+ 1 bIts

one word
two word

+ <3 bl t~

---------.-.....-----------......... .---.-----,~-------.-...~---------..-.-..--..-..~--~---.

In aodltlon to the forms sho~n for <datatyoe> in the table
above, the followIng variants are also perMittedl

The fol towIng alternate spetiings may be used:

charlcharacter binlblnarv decldeclmal

The word "fixed" may be used (or omitted). For example:

fixed blnlbln fix e d dec Ide c

The wordS mav be written In any seQuence. For examotel

float bln.bln float

Page 14

sort sort

EXAMPLES OF KEY DESCRIPTIONS

char(10), 0(18) Character string, Multlcs ASCII code, length
ten characters; starts at bIt 18 of word O.

char(8), 1, descendIng

character(4), 2, dsc

blt(lO)., 0(2)

bln(17), 2

Character strIng, MuJtlcs ASCII code, length
eight characters; starts at blt 0 of word 1;
ranking is descendIng.

Character strIng, Muitics ASCII COde, length
four characters; starts at bIt 0 of ~ord 2;
ranking Is descending.

alt string, tensth 16 bits; starts at bit 2
of word O.

Fixed bInary, precisIon 17; since
offset Is specified, Is aligned
occupies one word (eQuivalent to
2-).

no bIt
and tnus

Ubln(35),

bln(17), 2(18) Fixed bInary, precision 17; since a bIt
offset Is specIfied, Is unalIgned and
occupies 18 bIts; starts at bit 18 of word 2
(I.e., Is In the low order haJf of word 2).

bIn(1), 2(0) Fixed bInary, precisIon 1; unalIgned and thus
occupies 2 bits; starts at bit 0 of word 2.

bln(l}, 2 FIxed binary, precision 1; alIgned and thus
occupIes one word (equIvalent to "bln(351,
2-).

bIn(36)~ 2 FIxed binary, precISion 36; sInce no bIt
offset Is specIfied and precision is greater
than 35 and word offset is even, Is alIgned
and occupies two words (eQuIvalent to
db I n (71). 2-·).

dec(6), O(q) Fixed decimal, q bIt digit, precIsIon 6;
starts at bIt q of word 0 and occupies 7
digits including sign {that Is, through the
,end of word 1).

float dec(9)., 0(9) Floating decimal, 9 bIt digit, precision g;
starts at bit q of word 0 and occupies 11
digIts including exponent and sIgn (that is,
through the end of word 2).

Page 1S

sort sort

EXITS STATEMENT

An Exits statement specifIes the exit procedures to be used
during executIon of the Sort. The format of an ExIts statement
Is:

exIts' «exit_description» •••

The ExIts statement consists of a set of one or more
<exlt_descrlptlon>s. ExIt descriptions may be specifIed In any
order.

An exit description is the specification of one exit poInt
3nd the user sUPp.i~d exit procedure to be cal'ed at that exit
poInt. The format of an <exit_description> is:

wherel

2. user name

is the keyword namIng the exit poInt at which
the user supplied eKit procedure Is to be
called. ExIt names may be chosen from the
followIng listl

input_fi'e
output_file
input_record
output_record
compare

Is the name of the entry poInt of the user
suppjIed procedure. This parameter has the
same syntax and semantics as a comMand name.
That lsI

User_name can be either a segment name (e.g.,
segment) or a seg~ent name and an entry poInt
name (e.g., segment$entry_polnt). In t~ese
cases, the user·s current search rules are
applied to fInd the procedure. (If some
segment Is already k~own by the specIfIed
reference name, that segment Is used.)

User_name can also be a pathname; that 1St
can SPEcIfy a dIrectory hIerarchy location,
either relatIve (to the user·s c~rrent
workIng dIrectory) or absolute. In this
case, the search rules are not applied and
the pathname is used to flnd the proced~re.

Page 16

sort sort

(If some other segment Is atready known bV
the speclfied reference name, that segment Is
terminated first.)

WRITING EXIT PROCEDURES

The exit points to be used during an execution of the Sort
and the names of the correspondIng user suppjied exit procedures
are specifIed In the Exlts statement as described above. The
speclfications for writIng exit procedures (PL/I declare and call
statements) and the functional reQuirements imposed upon exit
procedures are given In the descriptIon of the sort_ subroutIne
in Section II of MPH SubroutInes.

Page 17

sort sort

sort -input_file sort.in -output_fIle =.out -console_input
Input.
keyl char(10'. 0;
•

In this examp'e, the arguments of the command stete that
there is one input fI'e, whose pathname Is sort. in; the output
file pathname Is sort.out; the Sort Oescription is input via the
user·s terminal; and by default the work files are contained in
the user·s process dIrectory.

The Sort Oescrlptlon states that there Is one key. a
character string of tength 10 characters, starting at word 0 bIt
o of the record. There are no exIts specified.

sort -temp_dlr >uad>pool -sort_desc sd

In thIs example the arguments of the command state that the
work flies are contained In the dlrectorv >udd>poot; and the
Sort DescrIptIon Is contained In the segment named sd.

Assume that the segment sd contains:

keys:
exitsl

fixed bIn(3S) 0, char{S) 1;
Input_fIte user$lnput,
output_fIle user$output;

The Sort Description states that there are t"O keys. The
maJor key is an alIgned fIxed bInary fIeld of precision 35,
contaIned In word 0 of the record. The minor key Is a character
string of length 8, contalned In words 1 and 2 of the record.

There are two exIts, an Input_fIle procedure exit and an
output_file procedure exit. The input_file exit procedure entry
oolnt Is named user$lnput; the output_file exIt procedure entry
poInt Is named use~$output. These exIts must be soeclfled
because the command did not specify either an Input fIle or an
output fIle.

sort -If sort_in -of -replace -td [wd1 -sd sort_desc

In this example the arguments of the command state t~at the
Input fIle Is named sort_in; the output file Is to replace the
Input file; work flies are contained In the user·s current
workIng directory; and tne Sort DescrIptIon Is contained In the
segment sort_desc.

Page 18

sort sort

sort -Input_description "tape_ansl_ vof_1 -name aM -if b \
-output _descr Ipt Ion ··vf 11 e_ c -eKtend·· -ci

In this example there are two input fltes. The first input
file Is specIfIed by an attach descriotion for the 110 module
tape_ansl_ with the attach argument u vo l_1 -name a". The second
input fIle is specifIed by the pathname b, and thus must be a
seQuentIal or Indexed file In the storage system. The output
fIle Is specIfIed by an attach descriptIon for the 1/0 module
vflle_ wIth the attach argument "b -extend-. For the 1/0 module
vflle_, this means that the patrname is c and the flte Is to be
extended; that Is, output records from the Sort wilt be written
at the end of the fIle c (If It already exIsts).

(A \ followed bv a lIne feed Is used to contInue the command
arguments onto the second lIne.)

The Sort DescriptIon (not shown) will be read vIa the user·s
terminal.

sort -ids ··record_stream_ -target vf il e_ a '• -of b -ci

In thIs example assume that the Input fIle is an
unstructured fite In the storage system, with the pathname a.
The input flle has been specified bv an attach description usIng
the 1/0 module record_stream_, which wIlt transform the record
110 operations reQuested by the Sort Into the appropriate stream
1/0 operatIons for the target file a.

sort -ids "svn_ user_swltchname" -of b -cl

In this example the input file is attached using the 1/0
module svn_ to the 1/0 swItch user_swltchname, which must be
attached and closed •
.t:!a.nu:. 1 mer ge

The merge command provides a genera1ized fIle merging
capabIlity, which Is specIalized for execution by user supplied
parameters. The basic function of the Merge Is to read one or
more input flies of records whlch are In order accordIng to the
values of one or more key flelds~ merge (col!ate) those records
according to the values of those key fleJas, and Mrlte a sIngle
f il e of ordered (or "ranked··) records. The Merge has the
fol lowIng general capabilitlesl

(END)

Page 1 q

merge merge

Input and output files may be on any storage medIum and In
::::lonv fi to l'\,...n~ni"'2+lnn! ' • r ,.,.... ...,.. ::;J'JI •• _ _ -- J'

Very large files, such as multlsegment flies, can be merged;

Multlple key fle1ds and most Pl/I string and numeric data
types may be specifIed;

ExIts to user supplied subroutInes are permitted at several
points during the merging process.

In addltlon to arguments to the merge command, other
Information Is necessary to speciatlze the Merge for a partIcular
execution. This Information, cal led the Merge Descrlptlon. can
be supplIed eIther through the user·s terminal or in a sesment.

The description given here of the merge command Is
sufficIent for situations "here the Merge 1s free standing; that
Is, where no user supplIed procedures are executed_ (User
supp lied procedur es ar e ca I I ed, •• ex 1 t proc edures··.) Add 1 tIona I
information Is necessary for executIng the merge command with
exIt procedures, and is contained In the descriotion of the
merge_ subroutIne In the Mu.tlcs Programmers· Manual,
Subroutlnes, Section II.

INPUT AND OUTPUT

The user specifles the input and outout flies. The Merge
reads tne input flies and wrItes the output fite. Each input or
output fl'e may be stored on any medium and In any fIle
organizatIon supported by an 1/0 modute th~ough lox__ The 1/0
module may be one of the Muttics system 1/0 modules (such as
tape_ansl_) , or one supplied by a specIfic Installation, or one
wrItten by a user. An input or output fIle Is specIfIed eIther
by a pathname or by an 'attach descrlptlon~

In all cases, records may be either fixed length or variable
length.

KEY FIELDS

The user can spacifv the key fletds to be usea In ranking
records. Key fields are described In the Keys statement of the
Merge Description. Up to 20 key fields may be specifIed. Any
PL/I string or numeric data type - except complex or plctured -
may be specifIed for a given key field. RankIng may be

(ENO)

Page 20

merge merge

ascending, descendlng9 or mixed. For a character strIng fIeld,
the collating sequence is that of the Mutflcs standard character
set. The records of each input flJe must be In order according
to those key fields.

Alternatlvely, the user can specify a user supplIed compare
procedure, which Is then used to rank ~ecords. The records of
each input file must be In order according to the algorltrm of
that proc edure.

The original order of records with eQuat keys Is preserved
(FIFO order). OrigInal input order Is defIned as follows:

1. If two equal records come from dIfferent input fltes, then
the record from the fIle which Is specIfIed ear.ler In the
command lIne Is fIrst.

2. If two eQual records come from the same Input file, then tne
record which Is earlier In the fIle Is first.

EXITS

The Merge provIdes exits to user s~polied procedures at
specifIc pOints durIng the merging process. ExIt procedures are
named in the Exits statement of the Merge Oescrlotion. The
followIng exlt points are provldedl

output_record To perform special processing for each output
record, such as del et lng, Insert Ing. or
altering records to be output from the Merge;
or summarizing data by accumulating it into a
summary record.

compare To compare two records; that Is, to rank them
for the merging process.

(END)

Page 21

merge

wherel

1. Input_specs

merge

indicates that the user Is specifying the
Input flies. Up to 10 input flies may be
~pecified. Each input fIle specificatIon
(each input_spec) may be supplied in one of
the following formsJ

-input_fite pathname
-If pathname If an lnput file ls In the Multlcs

storage system and Its fIle organization
Is either seQuentIal or Indexed, then It
may be speclfied bv its oathname. The
file may be eIther a single segment or a
multlsegment fIle. The star conventIon
can not -be used.

An lnput flle specified bv a pathrame
will be attached usIng the attach
description "vflle_ pathname".

-input_descriptIon "at tach_de sc II
-las "attach_desc" If an input fIle Is not in the Muftlcs

storage system or its flle organizatIon
1s neither sequential nor indexed, then
It must be specifIed by an attach
descriptIon. The attach description
must be Quoted. The target 1/0 module
specified via the attach description
must support the seQuentia._Input
opening mode and the iox_ entry point
read_record.

Pathnames and attach descrlptlons can be
intermixed in the input_specs argument.

indicates that the user is specifyIng the
output flte. Onty one output fIle can be
specIfIed. The output flte specIfIcation
(output_spec) may be sup.ied In one of the
follo~lng forms:

-output_flle pathname
-of pathname If the output flle Is in the Multlcs

(END)

Page 22

merge merge

storage system and Its fIle organIzation
1s sequentIal. then It may be specified
by its pathname. The fIle may be eIther
a sIngle segment or a muttlsegment fl'e.

The eQuals conventIon may be useo. If
It Is, It is applied to the pat~name of
the first Input fLte and the first irput
fIle must be specifIed by a patrname,
not by an attach descrIption.

An output fIle speclfl~d by a pathname
will be attached using the attach
descrIptIon d v flle_ pathname". Thus If
the flte does not exlst, It wIlt be
created. If It does exist, it will be
overwrltter •

-output_descrIption •• a t t ach_d esc··
-ods "attach_desc" If the output file Is not In the Muftles

storage system or its fIle organIzatIon
is not seQuentIal, then It must be
speclflec by an attach descrIption. The
attach description must be Quoted. The
target 1/0 module specifIed via the
attach description must support the
seQuential_outout opening mode and the
l~x_ entry pcint "rite_record.

3. control _srgs

-console_input
-ci

must be chosen from the fotlowIngl

indIcates that 'the Merge Oescription Is
read vIa the 1/0 swItch user_input
(whIch normallv Is the user·s termlnal).

-merge_desc md_path
-md md_path IndIcates that the user Is specifyIng

the pathname of the segment contaIning
the Merge DescriptIon.

Elther the -conso'e_lnput or the -merge_Qesc
argument - but not both - must be specifIed.
See the heading Merge Oescrlption below.

(END)

Page 23

mer ge merge

NOTES

Arguments can appear In any order, but a oathn~m. or attacn
description must ImmedIately follow Its kevword.

The Merge DescrIptIon pathname (md_path) Is the name of a
segment.

Any pathname may be relatIve (to the user·s current working
directory» or absolute.

(END)

Page 24

merge merse

The Merge DescrIptIon contains addItIonal InformatIon to
speclaiize the Merge for a partIcular execution. The information
supplied may be:

Keys -

Exits -

Description of one or more key flel~s used for
rank Ing records.

SpecifIcation of which exit points are to be used
and the names of the corresponding user supplied
exit procedures.

A Merge Description Is reQuirea. As a minimum, the user
must specify how records are to be ranked, eIther by descrIbIng
key fIelds In the Keys statement or by naming a compare exlt
procedure In the ExIts statement. Other InformatIon In the Merge
Description Is optIonal.

The Merge Description may be supplied as a segment or read
via the 1/0 s~ltch user_Input (normal'V the user·s terminal).

I f the Mer ge Oescr lpt ion is supp J led In a segment, 1 ts
pathname Is specifIed In the -merge_desc argument.

If the Merge Oescr-Iption Is read via the user's terminal,
the -console_input argument Is used. The Merge. prints ··Input:"
vla the I/O switCh user_output and walts for Input. The user
then types the Merge DescrIption. To terminate the Merse
DescriptIon, the user types a tine consIsting of a period (.....)
fo J 'owed by a line feeo. (This line is not part 0 f the Mer ge
DescrIptIon.)

SYNTAX OF THE MERGE DESCRIPTION

A Merge DescriptIon consists of a set of statements. Each
statement must begin wIth a function keyword. The function
keyword is followed by the functIon keyword delImiter colon
("I"). The statement Itself consists of one or more parameters,
separated by parameter delimIters. The parameter delimiters are
spaces, commas (,I,"), or (In certaln specific cases as specified
below) parentheses ("(" and ")"). Each st"3tement must end with
the statement delimiter semicolon (";").

In the descriptions below, certain notational conventIons
are used. A word encJosed between the less than and greater than
s y m b 0 j s (II < II a nd I' > ..) i san 0 tat 1 on a I v a rIa b , .e t W hie h m us t be

(END)

Page 25

merge merge

replaced by an actual word or phrase of the Merge Oescriptlon
A ~ord not anceosed betneen ~ and> Is an actuai wora

of the Merge Description language. A phrase enclosed between
brackets (nl" and "1") Is optional. A phrase enclosed between
braces ("C" and "}'.) and followed by an e t t ipsIs ,I') Is
reQuIred, and may be repeated one or more tImes.

KEYS STATEMENT

The Kevs statement specIfIes key flefds used to rank the
records of the input flies. The format of the Keys statement is:

keysl {<key_description>}' •••

The Keys statement consIsts of a ser-Ies 'of one or more
<key_descrlptlon>s. The key descrIptIons are specIfIed In order,
the fIrst describing the MaJor key and the last descrIbIng the
most minor key_ Up to 20 key descriptions .ay be supp'led.

A key descrIption Is the specIficatIon of a sIngle key
fIeld. The format of a <key_descrIptIon> 1st

<datatype> «sIze» <posItion> (descendIng)

wherel

1. <datatype>

<size>

is the data type of the key fIeld. This
element Is reQuired. See the table below for
the encoding of <datatype>.

Is the size of the key fIeld.
is reQuired.

This element

For string data types, <sIze> Is the tength
(characters or bits) of the fIeld. The
length is the exact a.ount of space occupied
by the field.

For arithmetic data types, <sIze> is the
precision (binary o~ decimal digIts) of the
field. Scale factor, If any, must not be
wrltten (It Is not required by the Merge).
The space occupIed 1s determIned by the
preCision in combInatIon wIth the data type
and the alignment. (Alignment is specified
vIa <position>.) For an aligned binary field
(fIxed or floatIng), the space occupied Is

(END)

Page 26

merge merge

3. <pos! t ion>

<w>

<w> «b»

4. descendIng
asc

increased If necessary to an integral number
of words.

<size> must be a declmaJ integer. The unIt
depends on the data type. See the tabte
betow for the semantics of <size>. (The
rules used are the same as those used' by
Mu'tics Pl/I.)

Is the offset of the Ileglnnlng of the key
field, relatIve to the beginning of the
record. Consider the record as being alIgned
on a Mlord boundary, as will be the case for a
~ultlcs PL/I structure. ThIs element 15
reQuIred. There are two formatsl

where <w> Is the word offset. Words
are numbered f~om 0 for the first ~ord
of tne record. ThIs format specifies to
the Merge that the keV field is aligned
on a word or (If <w> Is even) on a
double word boundary.

where <w> Is the word portion of the
offset and is the bIt portion of the
offset; that Is, the blt offset wIthIn
the word. ,Bits ar-e numbered from 0 to
35. ThIs format implIes that tt-e key
field is not aligned on a word boundary.
If the key fIeld is aligned on a word
boundary but the user specIfies a bIt
offset of 0 anyway, the Merge wIlt
operate co rrect J y a I though speed 0 f
execution may be affected.

The formats for <position> and the values for
<w> and are consistent wlth those shown
1n MuJtlcs Pl/I Ilstings or used by debug.

speclfles descending order for ranking using
thls kev field. ThIs element -ay be omitted;
the default Is ascending order for this key
fIeld.

(END)

Page 27

merge

DATATYPE ENCODING AND SEMANTICS OF SIZE

Encoding I Semantics of <size>
of I (where <s ize> = n)

merge

<datatype>1 UnIt Range Space Occuoled

---------~--~----~~--~~~----~~---~~-~-----------~--------

Char ac ter s tr Ing
(Muftlcs ASCII)

BIt strIng

FIxed bInary

Floating binary

FIx e d dec 1 m a I
(leading sign)

Floating decimal

char

bIt

bIn

float bin

dec

float dec

q bit 1 - 4095 n ~haracters
character

1 bit 1 - 4095 n bIts

1 bIt

1 bit

q bl t
digIt

q bIt
digit

1 - 71

1 - 63

1 - 59

1 - 59

A II gned I
1 ~ n ~ 35:

36 ~ n ~ 711
Una f 1 gned I n

Allgnedl
1 ~ n ~ 271

36 .i n ~ 63'
Unalignedl n

n + 1 digits

n + 2 dIgits

one wore
two worc

+ 1 bl ts

one wore
t .. o - - tlr(

+ 9 s

----------------.--~-~----~--~-----~-~---~~~~----.---- ---- _._-
In addItion to the forms shoMn for <datatype> In the table

above, the fot lowIng varIants are also perMItted:

The followIng alternate spellIngs may be usedl

charlcharacter bInI bInary decldeclmat

The word "fIxed" ~ay be used (or omItted). for example.

fixed bin H>ln f 1 xe d dec Ide c

The words may be written In any sequence. For examplel

(END)

Page 28

merge merge

ftoat blnlbln float

(END)

Page 29

merge merge

EXAMPLES OF KEY DESCRIPTIONS

char(10), 0{i8) Character strIng, Multles ASCII code, length
ten characters; starts at bIt 18 of word o.

char(8), 0, descending

charaeter(4), 0, dsc

0In(17), 2

Character string, Multles ASCII code, length
eight characters; starts at bit 0 of word 0;
ranking Is descendIng.

Character strIng, Muftlcs ASCII code, length
four characters; starts at bit 0 of word 0;
rankIng is descendIng.

alt string,length 16 bIts; starts at blt 2
of word O.

FIxed binary, precIsion 17; since
offset Is speCifIed, Is aligned
occupies one word (equivalent to
2").

no bIt
and thus

··bIn(35) •

bln(11), 2(18. Fixed bInary, precIsion 17; since a bIt
offset Is specified, Is unalIgned and
occupies 18 bits; starts at bIt 18 of word 2
(l.e., Is In the low order half of word. 2).

bln(1), 2(Q) Fixed binary, precision 1; unalIgned and thus
occupies 2 bIts; starts at bit 0 of word 2.

b1n(1), 2 FIxed bInary, precision 1; aligned and thus
occupies one word (eQuIvalent to "bin(3S),
2-) ..

bln(36), 2 Fl~ed bInary, precls10~ 36; sInce no bIt
offset Is specified and precIsion is greater
than 35 and word offset Is even. Is alIgned
and occupies two words (eQuIvalent to
ubin (71), 2'-).

declo), 0(9) FIxed decImal, q bIt dIgit, precisIon 6;
starts at bIt q of word 0 and occuoies 7
dIgIts Including sIgn (that Is, through the
end of word 1).

float dec(9), D(9) Floating decimal, 9 bIt digit, precIsIon g;
starts at bIt 9 of word 0 and occupies 11

(END)

Page 30

merge merge

dIgits including exponent and sign (that 1s t

through the end of word 2).

(ENot

Page 31

merge merse

EXITS STATEMENT

An Exits statement specIfies the exit procedures to be used
during execution of the Merge. The format of an ExIts statement
Is&

exitsl '{<exit_description>} ••• ;

The Exits statement consIsts of a set of one or more
<exlt_descrlption>s. ExIt descriptIons may be specIfied in any
order.

An exit description Is the specIficatIon of one exIt poInt
ana the user supplied exIt procedure to be called at that exit
point. The format of an <exIt_descriptIon> lsI

~here:

is the keyword namIng the exit poInt at whIch
the user supplied eKlt procedure Is to be
called. ExIt names may be chosen from the
followIng listl

output_record
compare

is the name of the entry poInt of the user
supplied procedure. ThIs parameter has the
same syntax and semantics as a command name.
That iSI

User_name can be either a segment name (e.g.,
segment) or a segment name and an entry pelnt
name (e.g., segment$entrv_pointl. In ttese
cases, the user·s current search rules are
applIed to fInd the procedure~ (If some
segment is atreadv known by the specified
reference name, t~at segment Is used.)

User_name can also ~e a pathname; that 1St

can specify a directo~y hierarchy locatIon,
eIther relatIve (to the user·s current
working directory) or absolute. In this
case. the search rules are not applied and

(END)

Page 32

merge merge

the pathname is used to find the procedvre.
(If some other segment is already known by
the specified reference name. that segment Is
terminated first.)

WRITING EXIT PROCEDURES

The exit points to be used during an executIon of the Merge
and the names of the corresponding user supplied exit procedures
are specified In the Exits statement as descrIbed above. Tne
specificatIons for writIng exIt procedures "(PL/I declare and call
statements) and the functional reQuireme~ts imposed upon exit
procedures are given In the descrIption of the merge_ subroutine
in Section II of MPM Subroutines.

(END)

Page 33

merge merge

merge -if merge.ln_1 -1f merge.ln_2 -output_file =.out -ci
Input.
keyl char(10), 0;
•

In this example, the arguments of the command state that
there are two input fltes, whose pathnames are merge.in_1 and
merge.in_2; the o~tput fIle pathname Is merge.out; and the
Merge Description 1s input via the user·s terminal.

The Merge Description states that there is one key, a
character string of length 10 characters, starting at word 0 bit
o of the record. There are no exits specified.

In this example, the arguments of the command state that the
input flies are named In_1 and In_2; the output fIle Is named
out_1; and the Merge Description Is contained in the segment
named mo.

Assume that the seg~ent md contaIns.

keysl
exits:

fIxed bln(3S) 0, char(8) 1;
output_record user$output;

The Merge DescrIption states trat the~e are two keys. The
maJor key is an aligned fixed binary field of precision 35,
contaIned In word 0 of the record. The minor key Is a character
string of length 8, contained In words 1 and 2 of the record.

There Is one exlt, an output_record procedure exIt; the
output_record exIt procedure entry poInt Is named user$output.

merge -Input_description "tape_ansl_ vo'_1 -name aU -If b \
-output_description "vfl'e_ c -extend" -cl

In this example, there are two input flies. The fIrst
fIle Is specified bV an attach description for the 1/0
tape_ansl_ with the attach argument "vol_1 -name a". The
Input file Is specified by the pathname b, and thus must
seQuentIal or indexed fIle in tre sto~age system. The
flle 1s specIfied by an attach descriptIon for the 1/0
vflle_ with the attach argument "e -extend". for the 1/0

(ENO)

Page 34

Input
module
second

be a
output
module
module

merge merge

vfile_, thIs means that the pathname Is c and the fIle Is to be
extended; that Is, output records from the Merge wIll be written
at the end of the file c (if It already exIsts).

(A \ folJowed bV a fIne feed Is used to continue the command
arguments onto the second lIne.)

The Mer 9 e 0 e sc rip t Ion (not s "'0 w n) wIt' be rea d fro m the
user·s termInal.

merge -IdS "record_stream_-target \/f 11 e_
-Ids Msyn_ user_swltchname- -of c

a" \
-console_inout

In this example, assume that tre fIrst Input file Is an
unstructured fIle In the storage svste., with the oathname a.
ThIs input fIle has been specIfIed by an atta~h description using
the 110 module record_stream_, which will transform' the record
1/0 operati~ns reQuested by the Merge into the appropriate stream
I/O operations for the target fIle a. The second input file Is
attached usIng the 1/0 module svn_ to the IIO swItch
user_swltchname, which must be attached and cJosed.
t1.am.e1 sort_

The sort_ subroutIne provides a generallzed fIle sortIng
capabilitv, whIch is specIalized for execution by user supplIed
parameters. The basic function of sort_ Is to read one or more
Input files of records which are not ordered, sort those records
accordIng to the values of one or more key fi~tds, and wrIte a
Single output fIle of ordered (or "ranked~) records. The sort_
subroutine has. the fotlowlng general capaoilitiesl

Input and output flies may be on any storage medIum ana In
any fIle organIzation;

Very large flies, such as multlsegment flies, can be sorted;

MultIple key flalos and most PL/I string and numerIc aata
types may be specIfied;

Exits to user supplied subroutines are permItted at several
poInts during the sortIng process.

The arguments to the sort_ subroutine Incluae one or more
poInters to additional information necessary to specialize sort_
for executIon. ThIs aadltlonal information Is cal ted the Sort
Description.

(END)

Page 35

sort_ sort_

INPUT AND OUTPUT

The user can specIfy the input and output fltes. In thIs
environment, the Sort reads the Input flies and wrItes the output
file. Each Input or output file may be stored on any mediu" and
In any fIle organization supported by an 110 module through lox __
The I/O module may be one of the Multics system IIO modules (such
as tape_ansl_) , or one supplied by a specific installation, or
one wrItten by a user. An Input or output fIle Is specifIed
either by a pathname or bV an attacr description.

AJternatively, the user can supply eIther an Input_flte
procedure or an output_fIle procedure (or 30th). An Inpu1_flte
procedure Is responsible for reading Input and releasing recoras
to the Sort. An output_fite procedure Is responsible for
retrlevlng records (ranked by the Sort) from the Sort and writIng
output.

In all cases, racords may be either fixed length or variable
length.

KEY FIELDS

The user can specify the key fIelds to be used In ranking
records. Key fIelds are described In the Keys statement - or 1n
the keys structure of the Sort Descriptlon. Up to 20 key
fIelds may be specIfied. Any PL/I strIng or numeric data type
except complex or pIctured - ~ay be specified fQr a given key
field. RankIng may Oe ascending, descendIng, or mixed. For a
character string key fIeld, the collating sequence Is that of the
Multlcs standard character set.

AlternatIvely, the user can supp'V a compare procedure,
whIch Is then used to rank records.

The orIgInal !nout order of records
preserved (FIFO order). Orlginal input
f 0 I 10 \<liS:

~J.th eQual keys Is
order is defIned as

1. If two equal records come from dIfferent Input flies, then
the record from the file which Is speclfled earlIer In the
lIst of Input f .lIes (In the input_specs subrout ine argument)
ls first.

2. If two equal records come from the same Inout fIle, then the
record which is earlIer in the fIle Is first.

(END)

Page 36

sort_ sort_

EXITS

The Sort provides exits to user s~pptled procedures at
specific points during the sortIng orocess. Exit procedures are
named In the ExIts statement - or In the exits and lo_exits
structures - of the Sort Description. The followIng exit points
are providedl

To obtaIn input records and release them one
by one to the sortIng process.

To retrieve ranked records one by one from
the sortIng process and output them.

Input_record To perform specIal processing for each input
record. such as deletIng, insertIng. or
altering records to be input to the Sort.

output_record To perform special processing for each output
record, such as deleting. inserting, or
a'tering records to oe output from the Sort;
or summarIzing data bv accumulating It Into a
summary record.

compare To compare two records; that is, to ran~ them
for the sorting process.

Oetalls of exit procedures are given below under the heading
Writing ExIt Procedures.

(ENO)

Page 37

sort sort_

dcl sort_ entry«·)Char(·), char'·), (.)ptr, char'·),
char'·), float bln(27t, fIxed bln(35»);

call sort_

wherez

1. input_specs

(input_specs, output_spec, sort_desct temp_dirt
user_out_sw, fIle_size, codet;

is an array containIng the specIfications of
the input fltes. Up to 10 Input flies may be
specified. The array extent soecifies the
nu~ber of Input flIes. (Input)

Input fIle J Is s~ecifled
element Input_specs(J), in
f 0' I 0 lit 1 ng f or liS I

in the array
one 0 f the

-input_fIle pathname
-if pathname If an Input file Is In the Multlcs

storage system and its fIle organIzatIon
Is either seQuentIal or indexed, then it
may be specIfIed by Its pathname. The
fIle may be eIthe~ a sIngle segment or a
multlsegment fIle. The star conventIon
can not be u se d •

An Input flte specIfIed by a pathname
will be attached using the attach
descrIption "vfIle_ pathname".

-input_description attach_desc
-ids attach_desc If an input fl'e Is not In the Muttlcs

storage system or its fIle organIzatIon
Is neIther seQuentIal nor indexed, then
1t must be specified by an attach
description. The target 1/0 module
specifIed via the attach descriotion
must support the seQuential_input
opening mode and the Iox_ ertry oolnt
read_record.

Pathnames and attach descriptions can be
intermIxed in the Input_specs array.

If the user Is supplying an Input_file exit
procedure, then input_specs(1), the fIrst

(END)

Page 38

sort_ sort_

input fIle specification, must be"" (the
array extenT should be 1) and the Input_fIle
exIt procedure must be named In the lo_exits
structure of the Sort Oescrlptlon.

Is the specIfication of
Only one output file
(Input)

the output fIle.
may be soecified.

The output fIle may be specifIed in one of
the fotlowing forms:

-output_fIle pathname
-of pathname If the output fIle Is In the Multlcs

-output_fIle -replace

storage system and Its fIle organIzation
Is sequentIal, then It may be specifIed
bV Its pathname. Tne fIle may be eIther
a single segment or a multlsegment fIle.

The equals conventIon can be
1t Is, it Is applied to the
the fIrst input fIle and the
fIle must be specifIed by a
not by an attach descrIptIon.

used. If
patt-name of
first Input

pati"'name,

An output fIle specIfied bv a pathname
wIll be attached usIng the attach
descript Ion '·vf! I e_ pathname". Thus 1. f
the fIle does not exlst, It wIll be
created. If It does exist., it wIll be
overwrl'tten.

-of -rp The output file Is to replace the fIrst

-output_descrIption
-ods attach_desc

input fIle. That Input fIle wII' be
overwritten during the merge prase of
the Sort. If -replace is used, the
fIr s t In pu t f 1 I e III us t be s p e c 1 fled by a
pathname., not by an attacr description.

attach_desc
If the output file Is not In the Multics
storage system or lts fIle organization
is not sequential, then It must be
specifiec bv an attach descrIption. The
target 1/0 module specIfied vIa the

(END)

sort_

3. sort _desc

sort_

attach de~cr~pt!on must support the
seQuent!al_output openlng mode
iox_ entry poInt write_record.

--~ dilU the

If the user Is supplying an outout_flle
procedurey then the output_spec argument
be "" and the output_fIle exit procedure
be named In the lo_exits structure of
Sort DescrIptIon.

exit
must
must

the

is an array of pointers
Description. See the
Gescriptlon below. (Input)

to the
headIng

Sort
Sort

is the pathname of the dIrectory whIch will
contain the Sort·s work flies. (Input.

If thIs argument Is ft_. then work fltes will
be contaIned In the user·s process directory.

ThIs argument should be used when the process
directory will not be large enough to contaIn
the work flies. The get_wdir_ functIon may
be used to obtain the name of the user·s
current working directory.

specIfies the destInation of both the summary
report and dIagnostIc messases for errors
detected in the arguments to sort_ or In the
Sort DescrIptIon. (Input)

ThIs argument may have the followIng values&

"-b f'l

swltchname

= wrIte the summary report and
diagnostiC messages vIa the 1/0
switch user_output.

= do not wrIte the summary report
and dIagnostIc messages. If any
errors are dIagnosed, sort_ wlfl
return wIth the status code
bao_arg but informatIon about
the number and nature of the
errors Is not avaIlable.

= write the summary report and
dIagnostic messages vIa the 1/0
swItch named swltchname. The

(END)

Page '+0

sort

7. code

NOTES

swItch must be attached and open
for strea. output.

Is the total amount of data to be sorted, In
millIons of bytes. If this argument is zero,
the default assumption Is approxImately one
mittion bytes (file_sIze = 1.0). (Input)

ThIs argument Is Intended for use when some
ora I I 0 f the 1 n pu t f 1 I es are not 1 nth e
storage system (that Is, are not specifIed by
oathnames) or when an input_fIle exit
procedure Is used~ In these cases the Sort
cannot determine the amount of input data.
(The Sort does compute the total amount of
input data which Is In the storage system,'
using segment bIt counts.) The flle_size
argument may also be used when ai' of tre
input fites are In the storage system but
records are to be Inserted or deleted ttrough
~n input_record exit p~ocedure.

The fi1e_size argu_ent Is used for
optimization of performance; the actual
amount of data can oeconslderabfv larger
without preventing the Sort from completing.
The maxImum amount of data whIch can be
sorted Is (In bytes) app~o~lmatejy 6Q mit lIon
tImes the square root of fIle_size.

Is a standard Muttics status code returnee oy
sort_. Possible vat~es are lIsted below
under the headIng Stat~s Codes. (Output)

The temporary directory pathname (temp_dlr argument) Is the
name of a dIrectory.

Any pathname may be retative (to the user·s current working
directory) or absolute.

STATUS CODES

The followIng status codes may be returned by sort_ (afl
codes are In error_tab1e_» I

(END)

Page 41

sort_

o

fatal_error

Normal return (no erro~s).

One or more arguments specIfIed to sort_,
including those In the Sort Description, was
Invalid or inconsIstent. The Sort wIll ~ave
previously written diagnostIc messages as
dlrected by the user_out_sw argument. The
sorting process Itself has not been started.

The Sort has encountered a fatal er~or durIng
the sortIng orocess. The Sort wIll rave
previously generated a specific error message
and sIgnalled the sub_error_ condItIon via
the sub_err_ subroutIne.

The cal. to sort_ is not In the sequence
reouired by tne Sort; that Is, sort_ has
been cat led after inltiation of the Sort but
before terminatIon of that invocation.

(END)

Page 42

sort sort

The Sort DescrIption contaIns additlonal Information to
specIalize the Sort for a partIcular execution. The Sort
DescrIptIon Is specified via the sort_desc argument to sort_.
The informatIon specified may be:

Keys - DescriptIon of one or more key fIelds used for
ranking records.

Exits - SpecificatIon of whIch exit poInts are to be used
ana the names of the corresponding user supplIed
exIt procedures.

A Sort Description Is reQuired. As a mlnImum~ the user must
specify how records are to be ranked, either by describing key
fields In the Keys statement or by ~aming a compare exIt
procedure In the ExIts statement. Other informatIon In the Sort
DescrIptIon Is optional.

The Sort DescriptIon may be supplIed to sort_ In eIther of
two forms, called source form and Internal form.

The source form of the Sort DescriptIon Is wrItten exactly
as soeclfled for the sort command (see the Multlcs Programmers·
Manual, Commands and Active FunctIons, SectIon III), and Is
stored as an ASCII segment; that Is, ~s an unstructured fIle In
the Muttlcs storage system. If source form Is used. then the
sort_desc argument to sort_ must have an array extent of 1 and
the one pointer ~ust be a pointer to the segment. (The segment
must contain only the Sort Description.) The source form Is
useful when the user .rItes the Sort Description and supplies It
to the procedure which cal Is sort_.

The internal form of the Sort DescrIption Is a set of one to
three structures. The sort_desc argument must have an array
extent of 3, and the three pointers are pointers to the t~ree

structures. Any of the structures can be omitted; In that case
the corresponding pointer must be null. The poInters must be
specified In the array in the following order:

addr(keys)
addr(exlts)
addr(lo_exlts}

where the three structures (keys, exIts, and
defIned below. The internal form Is useful when
cal lIng sort_ constructs the Sort Description.

(ENO)

Page 43

lo_exits) are
the proceoure

sort sort_

KEYS STRUCTURE

The keys structure Is used when the caller describes key
fIelds. The Sort·s standard compare routi~e will then be used to
rank records. If the caller describes kevs, then the compare
exit must not be specified.

If the caller does not describe keys, then the corresponding
pointer in the array sort_desc must be null and the compare exIt
must be specIfied In the exits structure. The user supplied
compare routine wIt I t~en be used to rank records.

The keys structure Is=

dc I 1 keys,
2 version fixed bin Inlt(1),
2 number fIxed bIn,
2 key_desc(user_kevs_number refer(keys.number)t,

3 datatyoe char(S),
3 slze fixed bin(24),
3 word_offset fIxed bIn(18),
3 bit_offset fixed bio(6),
3 desc char(3a;

wherel

1. version Is the versIon nu~ber of the structure (must
be 1).

2. number

4. datatype

5. s 1 ze

Is the number of key fields, establIshed by
the value of user_keys_number.

Is an array of key descriptIons. Each key
Jescriotion Is one ele.ent of the array. The
key descrIptions must be specifIed In order.
the ~aJor key first and the most mInor key
last.

is the data type of the key fIeld. See the
table beloM for the encoding of datatype.
The value must be left Justifled wIthIn
datatype.

is the sIze of the key fIeld, In unIts whIch
depend on the data type.

For string data types, size Is the exact
length (characters or/bIts) of the field.

(END)

Page 44

sort_

8. desc

sort_

For arIthmetIc data types. size is the
precIsIon (binary or decimal dIgIts) of the
fleld. The space occupIed is determIned by
precision In combInation wltn the data type.
The space occupIed Is not adjusted for an
alIgned fIeld. For example, for an aligned
tlxed bInary fIeld of one word, sIze must be
specIfied as 35; for an aligned floating
bInary fIeld of two words, size must be
specIfied as 63. See the table betow for the
semantIcs of size.

i s the VI or d por t I on of the 0 f f se t 0 f the
Deginning of the key fIeld, relatIve to the
begInnIng of the record. Consider the record
as being alIgned on a word boundary, as wi"
be the case for a Multlcs PL/I structure.
Words are numbered fro~ 0 for the first word
of the record.

Is the bit portIon of the offset of the key
field; that Is, the bit offset wlth!n the
word in which tne key field begIns. BIts are
numbered from 0 to 35. (If the fIeld Is
aligned on a word boundary, then bit_offset
Is 0.)

Indicates whether rankIng for thIs key fIeld
Is to be ascending or descending. Possible
values areS

•••• = use ascending rankIng.

"dsc" = use descending ranking.

(END)

Page 45

OATATYPE ENCODING AND SEMANTICS OF SIZE

Encoding
of

jatatype

S em an tIc S 0 f
(where sIze ::

Uni t Range

size
n)

Space Occupied

~~--~~---~---------~-~-~~~~--~----~~------- ,------
Character strIng

(Muftles ASCII)

BIt string

FIxed b1nary

F I oat 1ng bInary

Fixed decimal
(Ieadlng sIgn)

Floating decima'

char

bit

bIn

flbin

dec

fldec

9 bIt 1 - 4095 n characters
character

1 bIt 1 - 4095 n bIts

1 bi t

1 bIt

9 bIt
dJ.gIt

9 bi t
dIgit

(END)

Page 46

1 - 71 n + 1 bIts

1 - 63 n .. 9 bIts

1 - 59 n + 1 dIgits

1 - 59 n + 2 dIgIts

sort_ sort_

EXITS STRUCTURE

The exits structure lSI

del- 1 exlts9
1 version
2 compare

fIxed bIn inlt(1),
entry,

2 Input_record
2 output_record

entry,
entry;

wherel

1. versIon

2. compare

3. I nput _record

IO_EXITS STRUCTURE

Is the versIon number of the structure (must
be 1).

specifIes the entry point of a user suoplied
compare exit procedu~e. If the caller
describes key fields (supplIes a keys
structure), then this exit must not be
spec if led.

specifies the entry point of a user supplIed
input_record exIt procedure. This exIt can
be specIfIed whether or not the input_file
exit Is specified.

specifIes the entry point of a user supplied
output_record exIt procedure. This exit can
be specIfied Mhether o~ not the output_fIle
exit is speclfled~

The lo_exlts strUCTure 1st

dcl 1 10_exIts,
2 versIon

where:

2 Input_fIle
2 output_file

1. version

,fIxed bio 101t(1 ••
entry,
entry;

Is the version number of the structure (must
be 1).

(END)

Page 47

sort_

2. Input_f14e

3. output_ fIt e

ENTRY VARIABLES

sort_

specifIes the entry point of a user supplled
Input_fIle exIt procedure. iT the caller
names Input flies, then thIs exit must not be
specIfied.

specifies the entry point of a user supplIed
output_fIle exit procedure. If the caller
names the output fIlet then thIs exIt must
not be specified.

In the exIts and la_exits structures, each exIt poInt Is
specIfIed vIa an entry variable. The entrv varIable must be set
(eIther InitIalIzed or assIgned) by a user procedure, normarlv
the procedure whIch calls sort __ The entry variable can identify
either an internal entry point (that iS t an internal procedure)
or an externaj entry polot of the procedure whIch sets the entry
variable; or It can identLfy an external entry point of another
user procedure.

If none of the exits declared in eIther the exIts or
lo_exits structure is to be used, then that structure can be
omitted and the correspondIng pointer In the array sort_desc must
be nul.. If the structure Is included but an exit specified in
it Is not to be used, then the corresponding entry variable must
be set to sort_$noe)lt, which Is declaredl

dc I sort _$noe xl t en try ex terna I;

An exit poInt may not be attered after the call to sort __
Any change to the entry variable thereafte~ wI" have no effect.
However, certaIn entry points can be dIsabled, as specIfied in
the descriPtions of the individual exit procedures below_

(ENO)

Page 48

sort

A user suppllea e~lt procedure Is cal ted by the Sort to
perform a specifIed functIon. The user procedure must perform
that functIon, and then must return to the Sort. The user exIt
procedure may perform additional functions desired by the user.

Certain exit procedures replace the correspondIng standard
routine of the Sort. Other exit procedures supplement the normal
functions of the Sort. ThIs Is specIfied for each indIvldual
exit procedure bet ow.

The followIng exit points are providedl

input_flte
output_fIle
compare
input_record
output_recoro

All exIt poInts may be active during the same Invocation of
the Sort.

The entry point names of all user supplIed exit procedures
are defined by the user. SpecIfIc names are shown below orly for
convenIence in dIscussIon.

(END)

Page 49

sort sort_

INPUT_fILE EXIT PROCEDURE

An Input_fIle exit orocedure replaces the standard inDut
readIng functIon of the Sort. The Sort catls the Input_file e~it
procedure only once during an executIon of the Sort.

An Input_file exIt procedure must oerform the follow1ng
functIon: for each record whIch Is Input by the user to the
sorting process, the Input_fIle exit procedure must make one call
to the entry sort_$release (descrIbed tater). After the
Input_fIle exIt procedure has reJeased the last Input record to
the Sort, It must return to the Sort.

Usage

dcl cooe fixed bIn(35) parameter;

where code is a standard Multlcs status code (In error_table_)
which must be returned by the Input_fIle exit procedure. If the
value Is not 0, then the Sort normal'v prints the correspondIng
message and returns to its ca. fer with the status code
fatal_error. (Output)

(END)

Page 50

sort_ sort_

OUTPUT_FILE EXIT PROCEOURE

An output_file exit procedure reolaces the standard output
writing function of the Sort. The Sort calls the output_fIle
exit procedure onlv once durIng an execution of the Sort.

An output_fIle exit procedure must perform the tol lo~lng
functionsl For each record which Is to be retrIeved In ranked
order from the Sort, the output_fIle exit p~ocedure must make one
cal I to the 'entry poInt sort_$return (descrIbed later). If
sort_$return Is cal led but there are no more recoras to be
retrIeved from the sortIng process, then sort_$return returns
with the status code end_ol_lnfo. The output_file exIt orocedure
then must return to the Sort. If the user desires, the
output_f 1. e exl t procedure may terminate ~etr leva r at any t !me
prIor to receIving the end_of_lnfo status, but It must stIli
return to the Sort. (The entry sort_$~eturn may return status
codes other than end_of_Info In case of er~o"'.)

Usage

output_fIle: proc(code);

del code fixed bln(3S) parameter;

standard Mulflcs status code (in error_table_)
returned by the output_flJe procedure. If the

then the Sort normally prints the correspondIng
returns to its caller with the status code

(Output)

where code 1s a
which must be
vatue Is not 0,
message and
fatal_error.

(END)

Page 51

sort sort_

COMPARE EXIT PROCEDURE

A compare exit procedYre replaces the standard record
comparIson procedure of the Sort. The Sort calls the compare
exIt proceaure each time the sorting process Is ready to rank two
records; that is, to determine whICh of the two is fIrst In the
sorted order.

A compare exit procedure must oerform the followIng
function' The compare exit procedure receIves as arguments a
polnter to each of the two records. The compare exit procedure
must determine which of the two records is first - or that they
are eQua' In rank - and must return a correspondIng return value
to the Sort. The compare exIt procedure Is Invoked as a
function.

Usage

dcl (rec_ptr_1
rec_ptr_2

dcl resut t

• • •

ptr~

ptr) parameter;
fIxed bln(1);

return(result);
end compare;

where l

3. resuJ t

is a poInter to a douole word alIgned buffer
contaInIng the fIrst record of the paIr to be
compared. ThIs record is always the flrst of
the two accordIng to the orIginal Input
order. (Inpu t)

. Is a poInter to a douole word aligned buffer
contalnig the second record of the paIr to be
compared. (Input)

Is the result of the comparison. (Output)

PossIble values arel

o = the two records rank equal.

(END)

Page 52

sort

-1 = the record poInted to by rec_ptr_1 ranks
fIrst.

+1 = the record pOinted to by rec_ptr_2 ranks
fIrst.

If a compare exit procedure reQul~es the length of either
record, It Is avaIlable 1n the word preceding that record In the
form:

dcl rec_len fixed bin(21) alIgned;

A compare exit procedure cannot alte~ eIther the content or
the length of eIther record.

(END)

Page 53

sort_ sort_

INPUT_RECORD EXIT PROCEDURE

An Input_record exit procedure may be
Sort·s standard input_file procedu~e or

used whetrer the
a user supotled

supplements that
input_record exit

Input_file exit procedure Is used, and
I n put _ f 1 I e pr 0 c e s s • The So r t c a I 1st he
procedure:

1. Each time the input_fite process releases a record to the
Sort, and before that record Is e~terea Into the sorting
process;

2. Once more after the last input record has been released to
the Sort (end of Input);

3. AdditIonally, each tIme the input_record exit procedure
returns wIth an action of Insert.

The Sort gIves the Input_record exIt procedure access to the
current record, the record about to be entered Into the sortIng
process.

An input_record exIt procedure need not perform any
processing. If it does not, then the Sort wIlt accept the
current record into the sorting process.

An Input_record exit procedure
functIons, whIch are accomplished
returned when the input_record exit
Sortl

may perform the follOwing
via the values of arguments
procedure returns to the

Accept the current record. This Is accomplished by setting
action = o.

De'ete the current record. This Is accomplished by setting
action': 1.

Insert one or more records before the current record. (At
the last call to the Input_record eKlt procedure~ records
may be inserted at the end of Input.. This is accomplished
by settIng rec_ptr to poInt to the record to be inserted,
setting rec_Jen appropriately, and settIng actIon = 3.

Alter the current record, before It Is entered Into the
sorting process. This Is accomplIshed by alterIng the
record pointed to by rec_ptr or setting rec_ptr to poInt to
another record, settIng ree_.en appropriately, and setting
ac t 1 on = o.

(END)

Page S4

sort sort_

Close the exit point so that the input_record exIt oroceoure
wijl not be called again during this execution of the Sort.
This is accomplished by setting close_exit_sw = "1".

The input_record exit procedure must return to the Sort each
time it is caJled.

Usage

dcl (rec_ptr
rec_len
action
ctose_exlt_sw

ptr,
fixed bln(21).j
fIxed bIn,
bit(1)) parameter;

.-,herel

3. action

points to a double word aligned buffer
containing the current record. The
input_record exit procedure may alter the
contents of the record or may change the
pointer to poInt to another record. For the
actions of accept and insert, the Sort will
use the value of rec_ptr returned to It by
the input_record exIt orocedure.
(Input/Output)

At the last cal t to the input_record exIt
procedure (end of inp~t), there Is no current
record and rec_ptr = null ft.

is the length of the current record In bytes.
The input_record exit procedure may change
the length of the record. For the actions of
accept and Insert. the Sort wIll use the
value of ree_'en retu~ned to it by the
input_record exit proced~re. (Input/Output)

indicates the action to be taken upon return
to the Sort. (Input/Output)

Arguments referred to be'ow are the values
returned to the Sort by the Input_record exIt
procedure.

(END)

Page 55

sort_

Possible values of action arel

a = accept the current ~ecord. The record
pointed to bv ~ec_ptr, whose 'en~t~ Is
given by rec_len, is entered Into the
sortIng process.

Each time the Input_record exIt procedure
1s called, the Sort sets action to thIs
value.

1 = delete the current record. The current
record 1s not entered into the sortIng
process.

3 = Insert a record. The record pointed to
by rec_ptr, whose length Is given by
rec_len, is entered Into the sorting
process. The Sort calls the input_record
exit procedure again, so that the current
record May be accepted or deleted or an
additional record -av be Inserted. At
thIs next call to the input_record exit
procedure, the current record remains the
same.

At the last cal I to the Input_record exit
procedure (end of Input), If the input_record
axit procedure Inserts records then they are
appended at the end of input. Any other
value for action means do not append any
records, and the input_record exit wilt not
oe taken again.

indicates whether the exit is to be closed
hereaf ter. (Input/Output)

Possible values area

"0" = keep thIs exit ooen. Each tIme the
Input_record procedure 1s called, the
Sort sets close_exlt_sw to thIs value.

"1" = close this exIt. The Sort wI' I not
cal. the Input_record exIt procedure
agaIn during thIs executIon of the Sort
(even If the action Is insert).

(END)

Page 56

sort_

OUTPUT_RECORD EXIT PROCEDURE

An output_record exit procedure may be
Sort·s standard output_file procedure or
output_file exit procedure is used, and
output_file process. The Sort calls the
procedurel

sort_

used whether the
a user supolied

supplements that
output_record exit

1. Each time It has determined the next record In ranked order
from the merging process;

2. Once more after the last record has been obtained from the
merging process (end of output);

3. Additionally, each tIme the output_record exit proceOure
returns with an action of insert.

The Sort gives the output_record exit procedure access to
two recordsl

1. Th~ output recorj, about to be written to the output fIle.
(If an outout_flle exit procedure has been specifIed by the
user. this Is the record about to be returned to that exit
procedure.)

2. The next record, the record leaving the merging process.

An outPut_record exit procedure need not
processIng. If it does not, then the output record
for the output fIle.

perform any
is accepted

An output_record exit procedure may oerform the folloM1ng
functions, which are accomplished vIa the ~a.ues of arguments
returned when the input_record exit procedure returns to the
Sortl

Accept the o~tput record. This Is accomplished by setting
action:: o.

Oelete the output record. This Is accomplished by setting
act Ion = 1.

Delete the record leavIng the merge. Thls is accomplished
by setting action = 2.

Insert one or more records after the output record. (At the
first call to the output_record exlt procedure, records may
be Inserted at the beginning of output. At the last call to

(END)

Page 57

sort_

the output_record exIt procedure, records may be lnsertea at
the end of output.. This Is accomp~lshed by settIng
rec_ptr_2 to poInt to the record to be Inserted. settIng
rec_.en_2 approprlatelv, and settIng actIon: 3.

Alter the output record, before it Is wrItten to the output
fIle. ThIs Is accomplIshed by alte~lng the record pointed
to by rec_ptr_1 or setting rec_ptr_1 to point to another
record, setting rec_len_1 appropriately, and settIng action
= C to accept (or action = J to Insert).

Summarize data Into the fIrst record of a sequence of
records wIth equal keys, and delete the succeeding records
of the sequence. This may be accomplished as follows: At
the first call to the output_record e)(lt procedure, set
eaua J key checkIng on (eQuaJ_kev_sw = '·1"). At subSEquent
calls to the output_record exIt procedure, if the output
record and the record leavIng the merge have eQual keys
(equal~key = 0), then accumUlate data into the output record
and delete the record leavIng the .erge (action: 2). If
the two records have unequal keys (equa._key ~ 0), then
accept the output record (actIon = 0).

Summarize data Into the last record of a sequence with equal
keys, and delete t~e precedIng records of the sequence.
This may be accollplished as fo.lowsl At the fIrst call to
the output_record exit procedure, set equal key checkIng on.
At subsequent cal.s, If the two records have equal keys then
accumulate data lnto a work area and delete the output
record (action = 1). If the two reco~ds have uneQual keys,
then alter the output record using the accumulated data and
accept that recoro (action = 0).

SeQuence check the outout flle. This Is accomplIshed bV
settIng seQ_check_sw = "1". If the output rcord will not
collate properly wIth the output file, or does not have its
keys In the posItIon specIfied to the Sort, then set
seo_check_sw = "0".

Close the
procedure
the Sort.
"1" •

ex1t point so trat the outout_record exIt
wi' I not be called again durIng this execution of
This Is accomplished bV settIng cfose_exlt_sw =

The outout_record exIt procedure Must return to the Sort
each time 1t Is called.

(END)

Page 58

sort_ sort_

Usage

output_recordl proc(rec_ptr_19 ree_len_1t rec_ptr_2, rec_ten_2t
actIon, equal_kev, equal_key_sw,
seQ_check_sM, close_exlt_sw);

de I (rec_ptr_1
rec_len_1
recJ)tr_z
rec_f en_2
act ion
equal_key
eQual_key_sw
seq_check_sw
close_exlt_sw

ptr,
fIxed bin(21),
ptr,
fixed bln(21),
fIxed bIn,
fIxed bin(1) t

bit(1),
bit(1),
bitel)) parameter;

wherel

poInts to a double word aligned buffer
containing the o~tput record. The
output_record exit procedure may alter the
contents of this record or may change the
pointer to pOint to another record. The Sort
uses the value of rec_ptr_1 returned to it by
the output_record exit procedure as specIfied
below in the descriptIon of the action
argument. (Input /Outpu t)

At the fIrst call to the output_record exit
procedure (beginning of oUtput)9 there, Is no
output record and rec_otr_1 = null().

Is the fength of the output record in bytes.
The output_record exit procedure may change
the length of this record. The Sort uses the
value of rec_.eo_1 return~d to It bV the
ou1put_record exit procedure as soeclfled
below in the description of the actIon
argument. (Input/Output)

points to a double word aligned buffer
containIng the record leavIng the merge. The
output_record exit procedure may not alter
the contents of this record. For all actIons
except Insert~ the Sort wIll Ignore the value
of rec_ptr_2 returned to It by the
output_record exit procedure. If the actIon
Is insert, then the output_record exit

(END)

Page 59

50 r t_

5. action

sort_

procedure must ch~nge ~ec_ptr_2 to polnt to
the record to be Inse~te~. (Input/Output)

At the last cal I to the output_record exlt
procedure (end of outp~t •• there Is no record
leavIng the merse and rec_ptr_2 = null C).

is the length of the record leaving the
merge. The output_record exit procedure may
not change the length of thIs record. For
all actlQns except insert, the Sort will
ignore the value of rec_len_2 returned to it
bV the output_record exit procedure. If the
action is Insert, then the output_record exIt
procedure must set rec_.en_2 to the 'en~th of
the record to be Inse~ted. (Input/Output)

indicates the action to be taken upon return
to the Sort. (Input/Output.

Possible values of actIon are:

o = accept the output record. The output
record Is written to the output fite.
The Sort uses the returned values of
rec_ptr_l and rec_'en_l to IdentIfy the
record to be wrItten. At the next catl
to the output_record exit procedure~ the
record leaving the merge becomes the new
output record. and a new record leavIng
the merge has been obtained.

Each tIme the output_record exit
oroceoure Is catted, the Sort sets actIon
to thIs value.

1 = delete the output ~ecord. No record Is
~rltten to the output fIle. The Sort
ignores the returned values of rec_ptr_1
~nd rec_len_i_ At the next call to the
output_record exIt p~ocedure. the record
Jeaving the merge becomes the new output
record, and a neN record leavIng the
merge has been obtaIned.

2 = delete the reco~d leavlng the merge.
(This actIon Should be used for
summarIzation Into the output record.)

(END)

Page 60

sort sort_

No record Is written to the output file.
At the next catl to the output_record
exIt procedure, the output record remaIns
the same, and a new record leaving the
merge has been obtained. The Sort uses
the returned values of rec_otr_1 and
rec_len_1 to identify the output record
for that next cal I to the output_record
ex 1 t proc edur e.

3 = Insert a record after the output record.
The output record is written to the
output flte. The Sort uses the returned
~atues of rec_ptr_1 and rec_len_1 to
identIfy the record to be wrItten. The
Sort calls the output_record exIt
procedure again, so that the inserted
record may be accepted or an addItional
record may be Inserted. At thIs next
cal. to the output_record exIt procedure,
the Inserted record becomes the new
output record, and the record leaving the
merge remaIns the same. The Sort uses
the returned va'ues of rec_ptr_2 and
rec_len_2 to IdentIfy the inserted
record.

At the fast call to the output_record exIt
procedure (end of output), If the
output_record exit p~ocedure Inserts records
then they are appended at the end of output.
Any other value for action means do not
append any records, and the output_record
exit will not be taken again.

indicates whether the output record and the
record leaving the merge have equal keys.
(Input)

Possible va.ues area

o = the two records rank equal.

11 = the two records do not rank eQua t • At
the firs t and last ca I Is to the
output _record exIt procedure (beginning
of input and end of input), only one
record Is present and the Sort sets

(END)

Page 61

sort_

eQual_kev to thIs value.

If the user supplIed key descrIptIons. then
the value of eQuat_key Is determined only by
those key fields; the original input order
of the two records is ~~1 used to resolve key
equalIty. If tne use~ supplied a compare
exit procedure, then the Sort uses the result
of that compare exit procedure to set the
value of eQual_key. (In el ther case, I f the
two records rank equal then rec_ptr_1 poInts
to the record whIch is first according to the
origInal Input order of the two records.)

indIcates whether or not equal key checkIng
Is to be performed. (Input/Output)

possIble values arel

"On = do not check for equal keys. At the
first call to the output_record exIt
procedure (begInning of output), the
Sort sets eQuat_key_sw to this value.

"1" = check for equal keys before the next
exit call to the output_record

procedure.

SInce equal key checkIng takes time, the user
shou I d set eQua I_kev _SM = "1:~ on I y when
reQuired for actIons such as sUMMarization.

IndIcates whether or not sequence checkIng Is
to be performed. (Inp~t/Output)

Possible values area

"0" = do not sequence check.

"1" = sequence check. At the fIrst
the output_record exIt
(begInning of output), the
seq_check_sw to thIs value.

cal' to
procedure

Sort sets

SeQuence checking means comparIng the outout
record to the record o~evlously written to
the output fIle. (If the user specifIed an
output_fIle exit procedu~e, the output record

(END)

Page 62

Is compared to the record prevIously returned
to tha t exl t proc edure.) SeQuence ch Eck 1 ng
Is performed after the output_record exit
procedure returns to the Sort, and only If a
record Is to be wrItten to the output fIle
(that Is, only If the actIon Is accept or
in~ert). If the user supptied key
descriptions, then the 50rt·s key comparIson
rout lne 1 s used. I f the user suop 11 ed a
compare exit orocedu~e, then that exit
procedure Is called.

If the output record Is out of seQuen~e wIth
the prevIous record, then the status, code
fatal~error Is returned to the caller of
so r t _ ; see t he en t ry s 0 r t _ abo ve • (I f' the
user specifIed an outp~t_flle exit procedure,
then the status code data_Seq_error Is
returned to that exit procedure; see the
entry sort_$return bet ow.)

AI. records written to the
including Inserted records, can
checked.

output fl)e,
be sequence

indicates whether the exit ,is to be closed
hereafter. (Input/Output)

Possible values areS

"0" = keep thIs exit open. Each tIme the
output_record exIt procedure is called,
the Sort sets close_exlt_sw to this
value.

'·1'· = close this exit. The Sort wIll not
call the output_record exit procedure
agaIn durins this execution of the Sort
(even 1f the actlo~ Is insert).

(END)

Page 63

sort_

RECORD POINTERS

SInce the Sort aligns each record In a buffer on a doubte
word boundary, If an exit procedure applles a based declaration
of the record to the polnter(s) then correct alignment Is
ensured.

ORIGINAL INPUT ORDER (FIFO)

For the compare and output_record exIt procedures, rec_otr_l
always poInts to the record whose orlglnal input order was prior
to the record pointed to by rec_ptr_z. If a compare exit
procedure returns wIth an equal ranking for the two records, then
this orIginal input order Is preserved. OrIgInal Input order has
been defined earlIer under the heading Kev Fields.

(ENOl

Page 64

The entry Ksort_$retease" Is used each tIme the caller
releases a record to the sortIng process. Cal Is to
sort_$reJease are made from a user sOpplled Input_file procedure.
The caller specIfies the location and length of the record. The
Sort accepts the record and stores It In Its own work area.

dcl sort_$release entry(ptr, fIxed bln(21), fIxed bln(35»;

wherel

2. rec_len

3. code

Is a poInter to a
contaInIng the record.

byteallgnea
(Input)

Is the length of the recora in
(Input)

bu f fer

by tes.

Is a standard Hultlcs status cOde returned by
the Sort. PossIble values are listed below
under the heading Status Codes. (Output)

The Sort aligns each record on a double word boundary In a
work area.

The foltoMing status codes may be returned by the
sort_$release entry point (alf codes are in error_tabte_)I

o

out_of_seQuence

Normal return (no error).

The call to sort_$re.ease is
seQuence requIred ~y the
sort_$retease has been cal ted

(END)

Page 65

not
Sort;

before

In the
e.g ••

sort _.

sort_

fatal_error

short_record

sort_

The Sort has encounte~d a fatal error during
the sortIng process. The Sort wIll ~ave
previously generated a specIfIc error message
and signal'ed the sUb_error_ condItlon vIa
the sub_err_ subroutine.

This input record is longer than the
supported. The record Is ignored
Sort, and the caller nay contInue to
records to the Sort.

maximum
by the

release

ThIs Input record Is shorter than the minImum
requIred to contain the key fields. The
record is Ignored by the Sort, and the caller
may contInue to release records to the Sort.

(END)

Page &6

The sort_$return entry Is used each time the caller
retrieves a record, in ranked order, from tne Sort. Calls to
sort_$return are made from a user supplied output_fIle procedure.
Upon return from sort_$return, the caller Is gIven the locatIon
and 1ength of the record.

If sort_$return 1s called but there are no more recordS to
be retrieved, then sort_$return returns to the caller with the
status code end_ot_lnfo.

del sort_$return entry(ptr, fIxed bln(21), fIxed bin{3S»;

wherel

2. ree_len

3. code

is a pointer to a douole word aligned buffer
contaIning the record. (Output)

is the length of the record in
(Output)

by tes.

Is a stanaard Hulties status code returned by
the Sort. Possible values are lIsted below
under the heading Status Codes. (Output)

The Sort aligns each record on a double word boundary In a
work area. Thus if the caller applIes a based declaration of the
recoro to the pointer then correct alignment is ensured.

The following status codes may be returneo by the
sort_$return entry point (a" codes are In error_tabte_):

o Normal return (not end of informatIon, no
error).

(END)

Page 67

sort_

There are no more
from the Sort.
data indication.
the ca I I er.

records to be retrieved
ThIs Is the normal end of

No ~ecord Is returned to

The call to sort_$~eturn Is not In the
sequence requIred by the Sort; e.g.,
sort_ireturn has been called before
sort_"release.

The Sort has ancounte~ed a fatal error during
the sorting process. The Sort wl1 I have
previously generated a specific error message
and signalled the sUb_error_ condItion via
the sub_err_ subroutine.

Eno of data has been reached, but the number
of records previously returned is less than
the number of records released to the Sort.
No record Is returned to the caller.

The number of records returned (including
this record) Is now larger than the number of
records re'eased to the Sort. The current
record is returned to the caller, and the
caller may contInue to retrIeve records fro~
the Sort.

A ranking error has occurred In the records
returned to the caller (as determined by the
key f lei ds of the ~ecord). The current
record Is returned to the caller, and the
caller may contInue to request records from
the Sort.

The merge_ subroutine provIdes a generalIzed file merging
capabilIty, which is speclallzed for execution by user supplied
oarameters. The basIc functlon of merge_ Is to read one or more
input rItes of records Hhich are in order accordIng to the values
of one or more key fIelds, merge (coil ate) those records
according to the values of those key fIelds, and wrIte a sIngle
output flte of ordered (or "ranked") records. The merge_
subroutIne has the followIng general capabIlltiesl

Input and output flies may be on any storage medium and In
any fIle organlzatlon;

(ENO)

Page 68

Very large files, such as mu.tlsegme~t flies, can be merged;

Multiple key fields and most Pl/I string and numeric data
types may be specified;

ExIts to user supplIed subroutines are permitted at several
points during the merging process.

The arguments to the merge_ subroutine Include one or more
pointers to additional information necessary to specIalIze merge_
for executlon. ThIs addItional information is called the Merge
Descrlption.

INPUT AND OUTPUT

The user specifies the Input and output fltese The Merge
reads the input files and writes the output file. Each input or
output file may be stored on any medium and In any fIle
organization supported by an 1/0 modu'e through iox_e The 110
module may be one of the MuJtlcs system 1/0 modules (such as
tape_ansi_)~ or one supplIed by a specific Installation, or one
written by a user. An Input or output file Is specified eIther
by a pathname or by an attach description.

In all cases, records may be eIther fIxed length or variable
length.

KEY FIELOS

The user can specify the key fields to be used 1n ranklng
records. Key fields are described In the Kevs statement - or In
the keys structure of the Merge Descriptlon. Up to 20 key
fieldS may be specifIed. Any Pl/I string or numeric data tyoe
except complex or pictured - may be specified for a given key
field. RankIng may be ascendIng, descendIng, or mIxed. For a
character string key fIeld, the collating sequence 1s that of the
Mulflcs standard character set. The records of each input file
must be In order according to those key fields.

Atternatlvelv, the user can suppty a compare procedure,
which is then used to rank records. The ~ecords of each Input
file must be In order according to the algorithm of that
procedure.

The origInal input
preserved (FIFO order).

order of records with eQual keys Is
Orlg1nal input order Is defined as

(END)

Page 6q

fallows:

1. If two eQual records come from dlfferent input flies. then
the record fro. the fIle which Is speclfIed earlier In the
jist of input flies (in the input_specs subroutine argument)
Is first.

z. If two eQual records come from the saae Input fIle, then the
record whIch Is earlIer In the file is fIrst.

EXITS

The Merge provIdes exits to user supplIed procedures at
specIfic points during the merging process. Exit procedures are
named In the Exits statement - or In the eKlts structure - of the
Merge Description. The fo.lowlng exit points are providedl

9utput_record To perform special processing for each output
record, such as deleting, insertIng, or
31terlng records to be output from the Merge;
or summarIzIng data bv accumulating it Into a
summar y record.

compare To compare two records; that Is, to rank them
for the mergIng process.

Oetalls of exIt procedUres are gIven oelow under the heading
Writing Exit Procedures.

(END)

Page 70

del merge_ entrv(.)char(4), char(·), (·)ptr,
c~ar(4), fIxed bIn(3S));

cal J merge_

where'

1. input_specs

(Input_specs, output_spec, merge_desc,
user_out_sM, code';

Is an array contaIning the specifIcatIons of
the Input flies. Up to 10 Input fIfes may be
specIfIed. The arrav extent specIfIes the
number of Input flies. (Input)

Input fIle I Is specIfIed
element input_specs()), in
foil o"lng forms:

In the array
one of the

-lnput_f llie pathnalle
-If pathname If an Input file Is In the Multles

storage system and Its fIle organizatIon
is either seQuentIal or indexed, then It
may be specIfIed by Its pathname. The
file may be elthe~ a sIngle segment or a
mu. t lsegment file. The star conventIon
can not be used.

An Input fIle soeelfled by a oathrame
wIll be attached using the attach
description "vflle_ pathname".

-Input_descrIption attach_desc
-Ids attach_desc If an input fIle is not In the Multlcs

storage system or its fIle organizatIon
is nelther seQue~tlal nor indexed. then
1 t must be ·soec! f led by an attach
descrIption. The target 1/0 module
specified via the attach description
must support the seQuential_Input
openIng mode and the lox_ entry poInt
read_record.

Pathnames and attach descrIptions can be
IntermIxed In the input_specs array.

Is the
Only

specifIcatIon of
one output file

(END)

Page 71

the output file.
may be speelflea.

3.

(Input)

The output file may be specified In one of
the followIng formsl

-output_file pathname
-of pathname If the output file Is In the Multlcs

storage system a~d Its fIle organIzatIon
is sequential. then It may be specIfIed
by Its patrname. The file may be either
a sIngle segment or a multlsegment file.

The eQuals conventIon can be used. If
it Is, it Is applIed to the pathname of
~he fIrst input fIle and the first input
fIle must be specIfIed by a pattname,
not by an attach descriptIon.

An output file specifIed by a pathname
will be attached usIng the attach
descrlptior "\lflle_ pathname". Thus If
the f 1 led 0 e s no t ex 1 s t ,It '" 1 I , be
created. If It does exist, It wIll be
overMrltten.

-output_description attach_desc
-oas attach_desc If the output flte Is not in the Multlcs

storage system or Its file organIzation
1. s not seQuent 1 a I , then 1 t mu st be
specIfIed by an attach descrIptIon. The
target 1/0 module specifIed vIc the
attach description must support the
seQuential_output openIng mode and the
Iox_ entry point MrIte_record.

Is an array of pointers
Jescr ipt 1 on. See the
Oescrlption below. (Input)

to the
heading

Merge
Merge

specifies the destination of both the summary
report ana dIagnostIc messages for errors
detected in the arguments to merge_ or In the
Merge Description. (Input)

ThIs argument may have the following valuesl

(END)

Page 72

5. code

NOTES

•••

"-b fl.

= wrIte the summary reoort and
diagnostIc messages vIa t~e 110
swItch user_output.

= do not wrIte the summary report
and dIagnostic messages. If any
errors are diagnosed, merge_
wIll return with t~e status code
bao_arg 3ut information about
the number and nature of the
errors Is not avaIlable.

SMitchname = write the summary report and
diagnostIc messages via the 1/0
switch named switchname. The
switch must be attachea and open
for stream output.

is a standard Multlcs status code returned by
~erge_. PossIble values are lIsted below
~nder the heading Status Codes. (Output)

Any pathname may be relatIve ,to the user's current working
directory) or absolute.

STATUS CODES

The fa' lowIng status codes may be returned by merge_ (all
codes are in error_tabfe_)I

a Normal return (no errors ••

One or more arguments specified to merge_,
IncludIng those in the Merge Oescriptlor, was
invalid or inconsistent. The Merge will r.ave
previously written diagnostic messages as
directed bV the user_out_sw argument. The
merging process Itself has not been started.

a fatal error
The Merge wi I I

spec! f Ie error
the sub_error_

The Merge has encountered
during the mergIng process.
have prevIously generated a
message and signal led
condItion vIa the sub_err_ subroutine.

(END)

Page 73

out_of_sequence The call to merse_ Is not in the sequence
reQu lr ed bv t he Merge; that Is. merge_ has
been called after initiation of the Her~e but
before termination of that invocation.

(END)

Page 7'+

The Merge DescriptIon contains addItional information to
specialize the Her1e for a particular execution. The Merge
Description Is specified via the merge_des: argument to merge_.
The information specIfied may be:

Keys -

Exits -

Description of one or more key fields used for
ranking records.

SpecificatIon of whIch exit poInts are to be used
and the names of the correspondIng user supplIed
exit procedures.

A Merge Description Is required. As a mInimum. the user
must specify how records are to be ranked, either bV descrIbIng
key f let ds In the Keys statement or bV namIng a compare e,xl t
orocdure In 'the Ex 1 ts st atement. at her 1 n format Ion In the Merge
Description Is optIonal.

The Merge Description may be supplied to merge_ In either of
two forms. called source form and Internal form.

The source form of the Merge DescrIption Is written eXactly
as specified for the merge command {see the Multlcs Programmers·
Hanual, Commands and Active FunctIons, Section IIIl, and Is
stored as an ASCII segment; that Is, as an unstructured fIle In
the Multlcs storage system. If source for. Is used, then the
merge_desc argument to merge_ must have an array extent of 1 and
the one pointer must be a pointer to the segment. (The segment
must contaIn only the Merge DescrIption.) The source form Is
useful when the user wrItes the Merge DescrIption and supplIes It
to the procedure which cal's merge_.

The Internal form of the Merge DescriptIon Is a set of one
or two structures. The merge_desc argu.ent must have an array
extent of 29 and the two poInters are pointers to the two
structures. Any of the structures can be omItted; In that case
the corresponding p01nter must be null. The pointers must be
specIfIed In the array in the fo"owlng ordera

addrCkevs)
addr(exlts)

where the two structures (keys and ExIts) a~e defIned belo~. The
Internal form Is useful when tne procedure c!lllnq merge_
constructs the Merge DescrIptIon.

(END)

Page 75

KEYS STRUCTURE

The keys structure Is used when the ca'.er describes key
fielas. The Merge·s standard compare routIne wIll then be used
to rank records. If the caller descrIbes keys, then the compare
exit must not be specIfied.

If the caller does not descrIbe keys, then the corresponding
poInter In the array merge_desc must be nul I and the compare exit
must be specIfied in the exits structu~e. The user supplied
compare routine will then be used to rank records.

The keys structure lsI

dcl 1 keys,
2 version fIxed bin Init(11,
2 number fixed bln,
2 key_desc(user_kevs_number refer(kevs.number»,

3 datatype char(S',
3 sIze fIxed bln(24',
3 word_offset fixed bln(18),
3 bit_offset fixed bin(6),
3 desc char(3);

wherel

1. versIon is the version number of the structure (must
be it.

2. number

4. datatvpe

5. sIze

Is the number of key fields. establIshed by
the value of user_keys_number.

Is an array of key descriPtions. Each key
description Is one eleMent of the array. The
key descriptIons must be specifIed In order,
the major key fIrst and the most mInor key
I as t.

Is the data type of the key fIeld. See the
table below for the encoding of datatvpe.
The value must be left lustified wIthin
datatvpe.

Is the size of the key fIeld, In unlts whIch
depend on the data type.

For string data tvpes, size Is the exact
length (characters or bIts) of the fIeld.

(END)

Page 76

8. desc

Fpr arithmetic data tvpes, sIze 1s the
preciSion (binary or decimal digIts) of the
fIeld. The space occupied Is oetermlned by
precision in combInation with the data type.
The space occupIed Is not adjusted for an
aligned fIeld. For example, for an aligned
flxed binary field of one word, size must be
specified as 35; for an aligned floating
binary field of two words, size must be
specifIed as 63. See the tab1e below for the
semantics of size.

is the word portIon of the offset of the
beginning of the key field, relative to the
beginning of the record. Cons~der the record
as beIng a 11gned on a wot'd boundary, as wi1 ,
De the case for a Multlcs PL/I structure.
Words are numbered from 0 for the fIrst word
of the record.

Is the bIt portion of the offset of the key
fIeld; that 1s t the bit offset wIthIn the
word in which the key field begins. BIts are
numbered from 0 to 35. (If the fIeld Is
aligned on a word boundary, then bit_offset
Is 0.)

indicates whether ranking for this key fIeld
Is to be ascendIng or descendIng. Possible
\lat ues arel

, ... ; use ascending ranking.

"dsc" = use descending rankIng.

(END)

Page 77

OATATYPE ENCODING AND SEMANTICS OF SIZE

S em an t 1 C S 0 f s lz e
(.. here sIze = n)

EncodIng
of

datatype UnIt Range Soace Occupied

--~--------~---------~---~~~~~-~--------

Character strIng char q bi t 1 - 4095 n cnarac ters
(Muftles ASCII) character

Bit string bit 1 bIt 1 - 41)95 n bIts

Flxed bInary bIn 1 bl t 1 - 71 n ... 1 bits

Floating binary f1bin 1 bIt 1 - 63 n ... q bits

Fixed dec 1 m a I dec 9 bi t 1 - 59 n + 1 dIgits
(leading sign) digit

Floating decImal floec 9 bIt 1 - 59 n + 2 dIgits
dIgit

------~------..-.--~-.-.~~.-.-.--..-.---.----- -.. ~.-.-.-..-.-

(END)

Page 78

EXITS STRUCTURE

The exIts structure Is.

dcl 1 exIts,
1 version
2 compare
2 reserved

fIxed bin in1t(1),
entry, ,

2 output_record
entry inIt(merge_Snoexlt),
entry;

where:

1. version

2. compare

3. reserved

ENTRY VARIABLES

Is the version number of the structure (must
be 1).

specIfies the entry point of a user supplIed
com par e ex 1 t pr 0 c ed u r e. I f the c a , , e r
descrIbes key fIelds (supplies a keys
structure), then this exit must not be
specifIed.

Is reserved for future use.

specifIes the ertrv pOint of a user supolled
output_record exit procedure.

In the exIts structure, each exit point Is specifIed vIa an
entry varIable. The entry variable must be set (eIther
inItialized or assigned) by a user procedure, normally the
procedure which cal Is merge_a The entry ~arlable can identify
either an internal entry poInt (that Is, an internal procedure)
or an external entry polnt of the procedure which sets the entry
variable; or it can Identify an external entry poInt of another
user procedure.

If none of the exIts declared In the exits structure Is to
be used. then that structure can be omitted and the
correspondIng pointer 1n the array merge_jesc must be nul I. If
the structure Is included but an exit specified In It Is not to
be used, then the corresponding entry varIable must be set to
merge_$noexlt. whlch is declared'

del merge_$noexlt entry external;

(ENO)

Page 79

An exIt poInt may not be altered afte~ the ca" to merge __
Any change to the entry variable thereafte~ wlll have no effect.
However, certaIn entry poInts can be disabled, as specIfied In
the aescriptlons of the individual exit p~ocedures below.

(END)

Page 80

A user supplied exit procedure Is called by the Mer~e to
perform a specified function. The user orocedure must perform
that function, and then must return to the Merge. The user exit
procedure may perform additIonal functIons desirea bv the user.

Certain exIt procedures replace the corresponding standard
routine of the Merge. Other exit procedures supplement the
normat functIons of the Merge. This Is specIfIed for each
indIvIdual exIt procedure below.

The following exit points are provldejl

output_record
compare

AI. exit poInts may be active during the same invocation of
the Merge.

The entry point names of all user supplied exit proced~res

are defined by the user. SpecIfic names a~e shoMn below cn'Y for
convenIence in dIscussIon.

(END)

Page 81

COMPARE EXIT PROCEDURE

A compare exit procedure replaces the standard record
comparIson procedure of the Merge. The Me~ge cal's the compare
exIt procedure each time the merging process is ready to rank two
records; that Is, to determlne whIch of the two is fIrst In the
merged order.

A compare exit procedure must pe~form tre following
function: The compare exit procedure ~ecelves as arguments a
pointer to each of the two records. The compare exit procedure
must determine which of the two records Is fIrst - or that they
are eQual In rank - dnd must return a corresponding return value
to the Merge. The compare exit procedure Is Invoked as a
function.

Usage

de I (rec_ptr_1
rec_ptr_2

dc i resu it

• • •

ptr,
ptr) parameter;
fIxed bin(l);

return(resutt);
end compare;

where:

3. result

Is a pointer to a double word alIgned buffer
containing the first record of the pair to be
comoared. This record Is always the first of
the two accordlrg to the origInal input
order. (Input)

15 a poInter to a double word alIgned buffer
containig the second ~ecord of the paIr to be
compared. (Input.

Is the result of the comparIson. (Outout)

Possible values are:

o = the two records ~ank equal.

(END)

Page 82

-1 = the record poInted to bV rec_ptr_1 ranks
first.

+1 = the record poInted to by rec_ptr_2 ranks
first.

If a compare exit procedure requires the length of either
record, it Is available in the word preceding that record In the
forml

dcl ree_len fIxed bln(21) aligned;

A compare exit procedure cannot alter eIther the content or
the length of either record.

(END)

Page 83

OUTPUT_RECORD EXIT PROCEDURE

An output_record exIt procedure supplements the standard
output wrIting functlon of the Merge. The Merge calls the
output_record exIt procedurel

1. Each time it has determined the next ~ecord in ranked order
from the mergIng process;

2. Once more after the last record has been obtained from the
mergIng process (end of output);

3. Aadltlonally, each tlee the outPut_~ecord exit procedure
returns with an actIon of insert.

The Merge gIves the output_record exit procedure access to
two records:

1. The output record, about to be written to the outout flee.

2. The next record, the record leavIng the merging process.

An output_record exit procedure need not perform any
processIng. If It does not, then the output record Is accepted
for the output flte.

An output_record exIt procedure may pe~form the following
functions, which are accomplIshed vIa the values of arguments
returnea when the output_record exit procedure returns to the
Mer ge I

Accept the output record. This Is accomplIshed by setting
actIon = O.

Oe.ete the output record. ThIs is acco~p'lshed by setting
action = 1.

Delete the recora leaving the merge. ThIs Is accomplIshed
by settlng actIon = 2.

Insert one or more records after the output record. (At the
fIrst cal I to the output_record exit procedure, records may
be inserted at the beginning of output. At the last cal. to
the output_record exit procedure, re:ords may be inserted at
the end of output.) This Is accomplished by setting
rec_ptr_2 to point to the record to be Inserted, settIng
rec_.en_2 approoriately, and setting action = 3.

(END)

Page 84

Alter the output record, before it Is wrItten to the output
fIle. This is accomplished by altering the record pointed
to by rec,J>tr _1 or sa tt Ing r ec_ptr _1 to poInt to ano ther
record, settlng rec_len_l approprIately, and setting action
= 0 to accept (or actlon = 3 to lnsert).

SummarIze data Into the first record of a seQuence of
records wIth equal keys, and delete the succeedIng records
of the sequence. This m~y be accomplished .as follo~s: At
the first call to the output_record exit procedure, set
equal key checking on (eQual_key_sw = diU). At subsequent
cal.s to the output_record exit procedure, If the outout
record and the record leavIng the merge have equal keys
(equal_key = 0), then accumulate data Into the output record
and delete the record leavlg the merge (actIon = 2). If the
two records have unequal keys (equal_key ~ 0), then accept
the output record (actIon = Ol.

Summarize data into the last record of a sequence with eQual
keys, and d~lete the preceding records of the seQuence.
ThIs may be accomplished as fo.'ows: At the fIrst cal' to
the output_record exIt procedure, set equal key checking on.
At sUbsequent calls, If the two records have equal keys then
accumulate dat) Into a work area and delete the output
record (actIon: 1). If the two records have unequal keys,
then alter the output record using the accumulated data and
accept that record (actIon = 0).

SeQuence check the output fIle. This is accomplished by
settIng seQ_check_sw = "1". If the output record wIll not
co. late properly with the output fIle, or does not have Its
keys In the posItion specifIed to the Merge, then set
seQ_check_sw = "0".

Close the
procedure
the Her ge.

exIt poInt so that the output_record exIt
wll I not be cat'ed agaIn during this execution of
ThIs Is accomplIshed by setting close_exlt_sw =

The output_record exit procedure must return to the Merge
each tIme It Is cal 'ed.

Usage

output_record' proc(rec_ptr_l, rec_len_i, rec_ptr_2, rec_len_2,
actIon, equal_key, eQua._key_sw,
seQ_check_sw, close_exlt_sw);

(END)

Page 85

dc I (rec_ptr_1
rec_Ien_l
rec_ptr_2
rec_len_2

ptr,
fixed bln(21),
ptr.
fIxed bln(21),
fixed bIn,

wherel

ac t ion
eQual_kev
eQual_key_s",
seQ_check_~ ..
cfose_exit_sM

t lxed bin(1) t

01t(1)7
blt(1),
bIt (1)). par am e t e,.. ;

oolnts to a double word aligned buffer
containing the output record. The
output_record exIt procedure may alter the
contents of this record or may change the
poInter to poInt to another record. The
Merge uses the value of rec_ptr_1 returned to
It bV the output_record exIt procedure as
specified beJo" In the descrIptIon of the
actIon argument. (Input/Output)

At tne fIrst call to the output_record exIt
procedure (beginning of output), there Is no
output record and rec_pt~_1 = null').

Is the length of the o~tput record In bytes.
The output_record exit procedure may change
the length of tris record. The merge uses
the value of rec_.en_1 returned to It bV the
output_record exit procedure as specIfied
below in the descriptIon of the actIon
argument. (Input/Outp~t)

poInts to a doub'e word allgnea buffer
containing the record leavIng the merge. The
output_record exit procedure may not alter
the contents of thIs ~ecord. For at. actions
except Insert, the Merge will ignore the
value of rec_ptr_2 returned to It bv the
output_record exit procedure. If the action
1s insert, then the output_record exIt
procedure must change rec_ptr_2 to ooint to
the record to be Inserted. (Input/Output)

At the last cal' to the output_record exit
procedure (end of output), there Is no record
leaving the mer~e and rec_ptr_2 = nul1().

(END)

Page 86

5. actIon

Is the length of the record leaving the
merge. The output_record exIt procedure may
not change the length of this record. For
a t t ac t Ion s e xc ep tIn s e r t t the Mer 9 e .,. 1 I I
ignore the ~alue of rec_.en_2 returned to It
by the output_record exit procedure. If the
action Is Insert, then the output_record exit
orocedure must set rec_len_2 to the lensth of
the record to be Inse~ted. (Input/Output)

indicates the action to be taken upon return
to the Merge. (Input/Output)

PossIble values of action arel

o = accept the output I"ecord. I The output
record Is "rltten to the output fIle.
The Merge uses the returned values of
rec_ptr_1 and rec_len_1 to IdentIfv the
record to be written. At the next call
to the output_record exit procedure, the
record 'eaving the merge becomes the new
output record~ and a new record leavIng
the merge has been obtained.

Each time the output_record
procedure Is called, the Merge
action to this value.

exit
sets

1 = del e t e the ou t put r e cor d • Nor e cord 1 s
wrItten to the output fIle. The Merge
ignores the returned values of rec_ptr_l
and rec_len_i. At the next call to the
output_record exIt p~ocedure, the record
leaving the merge becomes the new output
record, and a ne~ record leaving the
merge has been obtalned.

2 = delete the record leaving the rrerge.
(This action shoutd be used for
summarization into the output record.)
No record Is written to the output file.
At the next call to the output_record
exit procedure, the output record remains
the same, and a new record leaving the
merge has been obtained. The Merge uses
the returned values of rec_ptr_l and
rec_len_l to Identlfy the output record

(END)

Page 87

fQr that next caJ I to the output_record
ex It proc edure.

3 = insert a record after the output record.
The output record Is written to the
output fIle. The Merge uses the returned
values of rec_otr_l and rec_len_1 to
identify the record to be wrItten. The
Merge calls the output_record exit
procedure again, so that the inserted
record may be accepted or an addItional
record may be inserted. At thIs next
cal' to the output_record exit procedure,
the inserted record becomes the new
output record, and the record leaving the
merge remains the same. The Merge uses
the returned values of rec_pt_2 and
rec_len_2 to identify the Inserted
record.

At the last cal I to the output_record exit
procedure (end of output., 1 f the
output_record exIt procedure inserts records
then they are appended at the end of output.
Anv other value for action means do not
append any records, and the output_record
exit will not be taken agaIn.

indicates whether the output record and the
record leaving the merge have equal keys.
(Input)

Possible values arel

o = The two records rank eQuate

11 = the two records do not rank eQual. At
the fIrst and fast calls to the
output_record exit procedure. (begInnIng
of output and end of output). only one
record Is present and the Merge sets
eQual_key to thIs value.

If the user supplIed key descriptions, then
the value of equal_key Is determIned only bV
t hose key fIe Ids; the or 19ina I Inpu t order
of the two records is ~Q1 used to resolve key
eQualitv_ If the use~ supplIed a compare

(END)

Page 88

exIt procedure, then the Merge uses the
result of that compare exIt procedure to set
the value of equal_kev. (In elther case, If
the tMO records rank equal then rec_ptr_1
polnts to the record wnlch Is first accordIng
to the orlginal Inp~t order of the two
records.)

Indlc~tes Mhether or not equal key checking
Is to be performed. (Input/Output)

Possible values are:

"0" = 00 not check for eQual keys. At the
first call to the output_record exit
procedure (beginnIng of output), the
Merge sets eQua._key_sw to this value.

"iH = check for equal keys before the
calJ to the output_record
procedure.

next
exIt

Since equal key checking takes time, the user
should set equal_key_sw = "1" only when
requIred for actions such as summarizatIon.

indIcates whether or not sequence checking Is
to be performed. (Input/Output)

PossIble values are:

"0·· -= don ot seQ u en c e c he c k •

d 1 " - sequence check. At the fIrst call to
the output_record exIt procedure
(beginning of output), the Merge sets
seQ_check_sw to thIs value.

Sequence checking means comparIng the outout
record to the record previously wrItten to
the output 11 Ie. Sequence checkLrg 1s
performed after the output_record exIt
procedure returns to the Me~get and onl~ If a
record Is to be wrItten to the output fIle
(that 1St only if the actIon is accept or
insert). If the user supplIeo key
descriptions. then the Merge·s key comparison
routine Is used. If the user supolieo a

(END)

Page 89

compare ex! t procedure, then that ex! t
procedure 15 called.

If the output record Is out of seQuence with
the prevIous record, then the status code
fatal_error Is returned to tne caller of
rnerge_; see the entry merge_ above.

,l\I' records wrl tten to the
IncludIng lnserted records, can
checked.

ou t pu t f I Ie,
be seQuence

indIcates whether the exIt 1s to be closed
hereafter. (Input/Outp~t)

PossIble values arel

°0" = keep thIs exIt open. Each tIme the
output_record eKIt procedure Is cal'ed,
the Merge sets close_exlt_sw to this
value.

··1 II = c los e t hIs ex 1 t. T he Mer 9 e w 1 I I not
cal. the output_record Exit proceoure
again during thIs executIon of the
Merge (even 11 the actIon Is Insert).

(END)

Page q 0

RECORD POINTERS

SInce the Merge allgns each record In a buffer on a double
word boundary, if an exit procedure appties a based declaration
of the record to the pointer(s) then correct alignment Is
ensured.

ORIGINAL INPUT ORDER (FIFO)

For the compare and output_record exit procedures, rec_otr_1
alwavs poInts to the record whose orIgInal. input order was prior
to the record poInted to by rec_ptr _2. I f a compare ex 1 t
procedure returns wIth an equal ranking for the two records, then
thIs origInal input order Is preserved. D~lglnal input order has
been defIned earlier under the headIng Kev Fields.
!::lU,i1 sort

The sort command Is described In the Multlcs Programmers·
Manual, Commands and Active Functions, SectIon III. This
description includes only additional optIonal control arguments
which are not descrIbed in MPH Commands.

where'

-time

can be chosen from the followIng (In aOdltlon
to those control arguments specIfied In MPH
Commands) I

prints timIng information for the Sortl
System load (hmuJ
Merge order
Str ing s1 ze

and for each phase of the Sortl
Elapsed time
Real cpu time
VIrtual cpu time
Page faults
Paging device faults
Comparisons executed

(TImes are given In seconds.)

(END)

Page q 1

Sort/Merge PLM

-debug

Sort IMer se PLH

specifies that the merge order is to be
m. The argument m. must baa decimal
Integer. This a~gument Is meanIngful
only if al' input flies are In the
Storage System, so that tl1e total Input
file size can be obtained by the Sort.

specIfies that the strIng size (as
produced durIng the presort) Is to be S
bytes. The argument ~ must be a decImal
integer, and must be less than the
system maximum segment size. The actual
size of any string may differ somewhat
from ~t since the length of the last
record inserted Into the string may not
exactly match the space available.

Merge order and string size cannot both be
specified.

specifies that temporary flies will be left
initiated (but truncated to z~ro length)
after completlor. of the Sort. This argument
is intended for ~se with performance
measurement and analys1s tools which print
reference names, such as sample_refs.

If this argument Is oMitted, temporary files
witl be deleted after completio~ of the Sort.

If -debug Is specified, deletIon of temporary
files must be done explicltly by the user.
Some temporary flies are 1n the process
directory; the work flies are in the
directory specified by the -temp_dlr
argument. The na~es of aJI temoorary files
are generated uniQuely for each invocation of
the Sort, and always conta1n the string
I·sor t _ It.

(END)

Page qz

Sort/Merge PlM Sort/Mer~e PLM

t.iaJD~1 merge

The merge command Is descrIbed In the Mu'tics Programmers'
Manual, Commands and ActIve FunctIons, Section III. This
description Includes only addltlorat optIonal control arguments
whIch are not descrIbed In MPH Commands.

where I

-time

-debug

can be chosen from the fol lowing (In \addition
to those control arguments specifIed In MPH
Commands) I

prints timing information for the Merge t
System load (hmu)

and for each phase of the Merge:
Elapsed time
Real cpu tIme
Virtual CPU time
Page fautts
PagIng devIce faults
ComparIsons executed

(Times are given in seconds.)

specl f 1 es that temporary f 11 es w 1" be
teft Initiated (but truncated to zero
length) after completion of the Merge.
This argument Is intended for use with
performance measurement and analysis
tools which prlnt reference names, such
as sample_refs.

If this argument Is omltted 9 temporary
flies will be deleted after completIon
of the Mer gee

If -debug Is specifIed, deletion of
temporary flies must be done explicItlv
by the user. At' temoorarv flies are in
the process dIrectory. The names of atl
temporary files are generated uniQuely
for each invocation of the Herge, and
always contain the string "sort_Me

(END)

Page 93

Sort/Merge PLM Sort IMer se PLM

liamjll sort

The sort_ subroutine Is descrloed In the Muftlcs
Programmers· Manual, SubroutInes, Section II. ThIs description
includes only addItIonal entry poInts which are not described In
MPM SubroutInes.

The sort_$lnltlate entry poInt Is used when the Sort Is
"orlven·· by Its caller. The Sort Is saId to be "drIven If the
caller supplles a procedure whIch calls (or directly performs)
the Inout fIle processIng and outout fIle processing procedures.
Such a driver must have the following general forml

call sort_'lnltlate(arguments);

call sort_£commence(code);

where:

sort_$inltlate Is the procedure of the Sort whlch
be c a I J ed fIr s t (1 t •• 1 nIt 1 ate s II
Sort).

must
the

Is an Input_fIle procedure. as specIfIed
in the descrlotlon of the sort_
subroutIne In HPM SubroutInes. Instead
of callIng an lno~t_fl'e procedure, the
drIver may perform tne necessary
functIons directly.

Is the orocedure of the Sort whIch must
be called when the Input_fIle procedure
has completed releasIng records to the
sort Ing process (1 t "commences" the
merging process.. See the entry
sort_Scommence below.

Is an output_fIle procedure, as
specified in the description of the
sort_ subroutine In MPH SubroutInes.

Page 94

Sort/Merge PlM

Sort IMer se PLM

Instead of callIng an output_fIle
procedure, the d~lver may perform the
necessary functIons directiv.

Is the procedure of the Sort whIch must
be cal'ed when the output_fIle orocedure
has completed ret~levlng recoros from
the Sort (It "te~mlnates" the sorting
process). See the entry sort_$terminate
be' ow.

The entry poInts sort_~lnltlate, sort_$commence, and
sort_$terminate are specIfically desIgned to be used by COBOL
object programs. Thev support the ANSI COBOL Sort/Merge Mod~le,
l~vel 2 (the SORT, RELEASE, and RETURN statements)~

NormallV. when called as a command (sort) or as a subroutine
(sort_l~ the Sort Itself contains the drlve~ to perform the five
calls listed ~bove.

dcl sort_$lnltlate entry(char(.), otr, ptr,
char(·), ftoat bln(27), fixed bln(35»;

call sort_$lnitiateftemp_dlr, keys_pt~, exIts_ptr,
user_out_sw, fIle_sIze, COde);

wherel

Is the pathname of the directory which wil.
contaIn the Sor~s work 1Iles. If thIs
argument Is , then work 1 lies wIll be
contained In the user·s process directory.

ThIs argument s~ould be used when the process
directory wilt not be targe enough to contain
the Mork flies. The get_dlr_ funct!or may be
used to obtaIn the name of the user·s current
workIng directory. (Input)

is a pointer to the keys structure, which
describes the key fields to be used for
rankIng records. This structure Is Idertica'
to that specIfIed unde~ the heaoing Keys
structure In the description of the sort_
subroutIne In MPH Subroutines, Section II.
If the user 1s suppiving a compare exit

Page 95

Sort/Merge PLM Sort/Merge PLM

procedure, then kevs=ptr must be null and the
compare procedure must be specIfied In the
axits structure. (Input)

Is a poInter to the eKlts structure, whIch
specIfIes which exIt poInts are to be used
and gIves the entry point names of the
corresponding user supplIed exit procedures.
This structure Is IdentIcal to that specIfIed
under the heading ExIts Structure In the
descriptIon of the sort_ subroutine In MPH
Sub~outlnes, Section II. If no exIts are to
be used, then exlts_ptr must be null. If the
compare exIt is specIfIed, then keys must not
be described. (Input)

specIfIes the destInation of both the Sort·s
summary report and dIagnostIc messages for
errors detected In the arguments to
sort_$lnltlate. (Input)

ThIs

••••

argument may have the follo"1n9 valuesl

= wrIte the summary report and
dIagnostIc messages vIa the I/O
swItch user_output.

= do not wrIte the summary report
and dIagnostic messages. If any
errors are dIagnosed,
sort_$lnltlate wIll return wIth
the status code bad_arg but
InformatIon about the number and
nature of the errors Is not
available.

swltchname : wrIte the summary report and
dIagnostIc ~essages vIa the I/O
switch na.ed swltchname. ThIs
switch must be attached and open
for strea. output.

1s the total amount of data to be sorted, In
millIons of bytes. If thIs argument Is zero,
the default assumptIon is approximately one
mIllion bytes (flte_size = 1.0). (Input)

The f 11 e_s 1 ze
optlmization of

Page 96

argument is
performance;

used
the

for
actual

Sort/Merge PLM

6. code

Sort/Mer~e PLM

---- ------
a.ount of data can be considerably larger
without preventing the Sort from completing.
The maxImum amount of data which can be
sorted is (In bytes) app~oxlmately 60 mIl lIon
times the sQuare root of file_size.

Is a standard Multles status cOde returned by
sort_$lnltlate. Possible vaJues are listed
below under the heading Status Codes.
(Output)

Entry variables In the exIts st~ucture should be set
(either lnltlal-lzed or assigned) by the pr:>cedure whIch calls the
sort_initiate entry point.

In order that the Sort can be terminated properly In case of
an abnormal exIt, the cleanup procedu~e of the caller of
sort_Slnltlate must include a call to the entry point
sort_$termlnate.

The fot'owing status codes may be returned by sort_$lnltlate
(all codes are In error_table_)&

o

fatal..-error

Normal return (no errors).

One or more argu.ents specIfIed to
sort_'lnitlate, Including the keys and exits
structures, was Invalid or inconsistent. The
Sort wIll have previouslv wrItten dIagnostic
messages as directed bV the user_out_sw
argument. The sortIng p~ocess 1tself has not
been startea.

The Sort has encountered a fatal error. The
Sort witl have prevIously generated a
specIfic error message and sIgnalled the
sub_error_ condition via the sub_err_
sub r 0 utI n e •

Page q7

Sort/Merge PLM Sort/Merge PLM

------,-----.----

The call to sort_Slnitlate Is not In the
seQuence required GV the Sort; e.g.,
sort_$lnltlate has been called after
inItiation of the Sort but before normal
t ermlnat Ion 0 f that lnvocat Ion v Ia a ca II to
sort_~termlnate.

Page 98

Sort/Merge PLH Sort IMer ge PLM

The sort_$commence entry poInt must be called after the
driver of the Sort has completed its Input_f11e procedure. See
the entry poInt sort_Slnitlate above. The call to sort_$commence
informs the Sort that end of input has been reached. Upon return
from sort_$commence, the driver can oegin Its outout_flle
procedure.

dcl sort_$commence entry(flxed bln(35).;

caJI sort_$commence(code};

where code Is a standard Muftlcs status code returned by
sort_$commence. Possible values are listed below under the
heading Status Codes. (Output)

The follo-lng status codes may be returned by sort_$commence
(a" codes are In error_table_1J

o

fatal_error

Norma. return (no errors) •

The Sort has encountered a fatal error during
the sorting process. The Sort will nave
prevIously generated a specIfic error message
and sIgna' led t~e sUb_error_ condition via
the sub_err_ subroutine.

The ca II to sort _Scorn.en ce 1 s not 1 n the
sequence required 3V the Sort; e.g.,
sort_$commence has been called before
sort_$lnltlate.

Page 99

Sort/Merge PLM Sor'/Merge PLH

The sort_'termlnate entry poln' mus' be called after 'he
driver of the Sort hdS cONpaeted its output_fIle procedure. See
the entry polnt sort_Slnltlate above. The cal. to
sort_$terminate Infor.s the Sort that the current execution of
the Sort Is complete. Upon return from sor'_$terminate, the
caller can Initiate another execution of the Sort.

dcl sort_$termlnate entry(flxed bln(3S);

call sort_Stermlnate(code);

where code Is a standard Multtlcs system status code returned by
sort_$termlnate. Posslbl e values are I isted below under the
heading Status Codes. (Output)

The fotlowlng status codes may be
sort_$termlnate (al t codes are in error_taGte_) I

re turned by

out_of_seQuence

Normal return (no errors).

The call to sort_!terMlnate is not In the
sequence required oy the Sort; e.g.t
sort_$termlnate has been called before
sort_Slnitlate.

(END)

Page 100

