
MULTICS TECHNICAL BULLETIN MTB-25b

To: Distribution

From: M. D. MacLaren

Date: 02/11/76

Subject: The Implementation of Indexed Files in Multics

This note summarizes the technical properties of indexed files in
the Multics storage system as implemented in the 1/0 module
vfile_. It also mentions some possible improvements under
consideration for future implementation. For detailed
information on the storage system, the liD system, and vfile_,
see the publications:

Multics Programmers' Manual, Reference Guide, Honeywell
Order Number AG91, and

Multics Programmers' Manual, Suhroutines, Honeywell
Order Number AG93.

An indexed file is kept as a multi-segment file with one or more
index segments and one or more distinct record segments. Each
segment may contain up to 256bk 36-bit words. Because the file
is in the virtual memory, the implementation of vfile_ does not
involve explicit liD requests (liD is done by the system's page
control). However, all use of vfile_ is through a device
independent liD interface with operations such as seek_key
(locates a record), read_record, delete_record, etc.

Space for records is managed dynamically as records are written,
rewritten, and deleted. A chained list of free blocks is kept,
and allocations is by first fit with a roving pOinter. Merging
of adjacent free blocks is done with boundary tags (Knuth, vol.
1, p 442, Algorithm C). The space overhead is one word per
allocated record. The minimum size of an allocated block is
currently fixed at eight words. The end of a segment is treated
specially so that the last non-zero word of the segment
immediately follows the last allocated record.

To date we have no evidence that searching for a free block is a
performance problem for anyone (This is, of course, very
dependent on the particular application.) However as a result of
some simulation studies, we are considering using a separate free
list for each range of block sizes (2**m, 2**(m+1)-1], each list
with its own roving pointer. This scheme is now used for PL/I.
areas in Multics and for general system dynamic allocation.
Given a request for a block of size b, the first list searched is

Multics Project internal working documentation. Not to be
reproduced or distributed outside the Multics Project.

Page 2 MTB-258

the one such that b is in [2 w*m, 2**(m+1)-1J.

The index is kept as a B-tree. (R. Bayer and E. McCreight, Acta
Informatica 1, pp. 173-1b9, 1972; and Knuth, vol. 3, Sec 6.2.4).
Each node occupies one page (1024 words). Keys are variable
length 8~length~256 characters (9-bit). For consistency with the
PL/I (and Multics) rules for character string comparison,
trailing blanks are ignored. The layout of a node is as follows:

Descriptors are two words, each key is a string of from 8 to 256
9-bit bytes, other items are one word each. The record and
branch pointers are actually number pairs (component segment
number in file, offset in segment). The key position and key
length (each a half-word) locate the key string within the node.
The variables last_branch and last_key together define the free
space shown in the figure. The variable scattered_space gives
the scattered free space available in the keys section (resulting
from deletion of entrie~). The programs for insertion and
deletion of an entry (branch, descriptor, and key) are roughly as
follows:

Deletion add size of entry to
If total available
underflow procedure
Else compact
branches/descriptors,
last_branch -1, and
scattered space.

total available space
space > 1/2 page, use

the array of
setting last_branch =
add size of key to

MTB-258

Insertion

Page 3

If size of entry <= contiguous free space, do
a simple insertion
Else 1f size of entry <= total available
sp~ce, comp~ct the keys section and then do a
simple insertion
Else use the overflow procedure.

The overflow procedure splits the node only if neither the left
or right brother node has sufficient space available to correct
the overflow by shifting some entries to the brother. The number
of entries shifted is chosen to make the space used in each node
as close to equal as possible. The underflow procedure is the
usual one for B-trees. The node is balanced (by shifting
entries) with its right brother if it has a right brother;
otherwise the left brother is used.

Variable length keys introduce an effect not present with fixed
length keys. Shifting entries between brother nodes (which also
involves one entry in the parent) may cause the parent to
overflow or underflow. Thus, it is possible for an underflow to
cause the parent node to overflow! Fortunately, this does not
further complicate the program.

The lID system distinguishes a special case of "keyed sequential
output" for file creation or extension. For vfile_ t this means
the records are output in key order, i.e. are always appended to
the file. In this mode it does not shift entries on overflow of
nodes. Instead it splits with only one entry in the right half.
This means that nodes on the right edge may contain only one
entry, but all other nodes are proper and are almost full.
Writing a file in the normal mode but with records in key order
also results in very full nodes but takes much longer because of
repeated shifts to balance the same pair of nodes.

It may happen that, while vfile is modifying a file, its
execution is interrupted and not resumed (e,g. the system may
crash). This may leave the file in a state where new operations
on the file cannot be performed, e.g. a node may have been split
but the new entry not yet made in its parent node. The program
vfile_ has been coded so that the next time the file is used, the
interrupted operation is automatically completed.

Actually, the whole program for the operation is reexecuted but
with a flag set to indicate that it is reexecuting. This causes
certain nonrepeatable blocks of code to be skipped until the
point of interrupt is reached. A counter is used to determine
that point. This method seems fairly easy to use (given a well
structured program) and the overhead is moderate; in our case,
less than 10% cpu time and less that 1-1/3 pages of space in the
file. One of the pages is used for compacting a node by copying,
which is the fastest. way to do it in Multics.

Page 4 MTB-258

The following are under consideration for future works:

1. Multiple keys. A popular feature for keyed files. The
keys could be stored with the records as well as in the
index so that all index entries could be located from
anyone entry.

2. Duplicate keys. Another popular feature, This would
allow the creation of several index entries (i.e.
records) with the same key. A seek would find the
first one, subsequent ones would be obtained
sequentially_

3. Individual record locks. For synchronizing parallel
update operations on a file.

4. Omitting the branch pointers in leaf nodes. To save
space and hence fit more entries in a given size index.
(All branch pointers in a leaf are null.)

5. Leaving the record pointers out of non-leaf nodes. (at
the cost of extra information in the leafs, where the
record painters would be placed). The aim of this is
to permit more entries in non-leaf nodes, hence, a
smaller tree height.

b. Special case treatment of zero length and/or very short
records and of short fixed length keys.

7. A special form of the file in which branch pointers are
implicit (the locations of all sons are predetermined).
Also, the record ptrs might be in a separate array with
their locations computed in analogy with the node
locations. This appears to be the most compact
imaginable form of B-tree. Apparently, it can be
implemented so as to gracefully decay into the normal
form as random insertions and deletions are made.

