
MULTICS TECHNICAL BULLETIN HTB-26u page 1

To: Distributlon

From: T. H. Van Vteck, W. S. Si'ver

Oate: February 2~, 1976

SubJect' InterIm versIon of mount and demou,t for disk volumes

Until the flJll scheme for user mou'ltlng ana demountIng of
hierarchy volumes (storage system disk logi:a' volumes) can be
impiementeo, an lnterlm scheme must Da ~sed. The full plan,
descrlbed in MTB-229, wilt invotve modIfications to Rep to know
about two new rasource types, code in ring 1 to allocate a1sk.
drives to user reQuests analogous to that 10W used for tape,
several new use~ commands, and new volume registration commands
and operator commands. The full details of the eventual
mecn~nlsm·s user, librarian, and operator interfaces will be
described in several forthcoming HTB·s.

The interim mechanism is much 51.pler. From the operatIonal
pOlnT 01 v&ew it appears to be a sl ight extension of the current
operator commands for system startup. Slnce Rep Is bypassed
com P • e tel V , the 1 n l t 1 a I f a c 1 • 1 t y w 1 I I I a: k a n V me chan 1 s m for
allowing a user to await the mounting of 3 ,ierarchv volume; 1f
a reQuested volume 1s not mounted, his call will fail
1mmediately. When the user requests the mo~~tlng of a volume via
telephone, or such mounting is scheduled, the operator must
select a free disk drive and mount the paCK, and then must type a
commana to the system indicating that the ~ojume Is mountea. He
then tel.s the ~ser, "try It now," and tAa user issues the mount
command.

The "vlrt ... a' mount" aescrlbeo 1~ MT8-229 wi' f be
Imptementea. Tnls change insures that correct access control
jjsclpjlne is ooevea by preventing a p~o:ess from accessing
segments on a volume unless the volume li pub'ic or the process
nas the volume ld in its KST. The user·s access to the hierarchy
volume wi" be checked 1n rlng 1 when the mount request 1s
issued, ana the virtud' mount wi" be jJne from ring 1 if the
user has access according to the volule registratlon data.
Reglstration aata wit. be checked for afl io'umes except the RPV;
durlng a cola ooot, tne operator wlll register other volumes
before using them. The registration data ~1'. not be the ful'
data Oase whlch wi I. eventual IV be implemented for Rep. One
ieyment per hierarchy volume wll' be maint311ed 1n a directory
under >svstem_contro'_l (the root hierarchy volume·s registration
$~gment wll' resiae in the root directorya. These segments will
conta4n enough informatlon to atlow rlng 1 to check that the

Mult~cs ProJact internal workIng documa~tatlon. Not to De
reproaucea or alstriouted outside the Muftles Project.

HULlles T~CHNICAL BULLETIN MTB-z&a page 2

hlerarchy volume Li correctly mountej: that is, Dubllc/private
switch, AIM information, ana a list of the phvsIcal volumes and
their unlQue 10·s. Everv prIvate volume mJst also have an Access
CQntrQt Segment (AGS)~ which will oe Il~ked to from the system
directorv. Ihls segment Is a (possibly ze·o length) segment In a
location speclfled bf the volume owner. Tne ACL of the ACS is
IntErpreted as specIfying access to the hierarchy volume
contents.

To get 3 hierarchy volume virtuatfv mO.Jntea to his process,
a u~er f~r~t cont3cls operations and as~s that the volume be
mounted. This r=Quest may be convevej via telephone or
sena_message, or it may be implicit In a scnedute establlshea by
the system aomlnlstrators.

When the operator decides to mount a ~olume as a result of
such a reQuest, he may choose a free disk drive If one Is
available, or he may use the fotlowing com.and to force a mounted
hlera~chv volume to oe demountedl

oemount_force <hvname>

This command rill I CdUSt one or more phvsl:~1 volumes in use DY
the stordge system to be shut down in a~ oroerty fashIon. All
active ~egments on tne volumes witt be oeactlvated, ana tne
I abe', V rOG, and free map for the \fO liJme ~ll I be updated. Users
~ho attempt to iJse segments on a VOlume whlcn has been demounted
wil t encounter a se9_fault_error condItion with the message
"Volume not mountea. M The supervIsor -II. also prInt a message
of the fo~m

g~ving the aisk drive name.

When the oper~tor has sufficient free disk drlves to mount
the reQuesteo hierarChy volume, he performs the physIcal mounting
Operdtlon for each pack. Special lnterrJlts generateo by the
jlSk un~ts becom!og reddy will be ignorej. The operator then
types the following commana for each phfslcaj volume he has
mounted:

aao_volume <pvname> <arlve-n3me>
Example: add_volume pack32 dsk7_u~

Th!~ commano directs the lnltlallzer to ca.1 ring 1, where the
fol towing steps are takenl

HULTICS TECHNICAL BULLETIN MTB-260 page 3

a) The combination <orlve-name> 1s lookej up In the disk_table,
ana that table antry Is checked to make sure it Is avallable
for storage system use ana currently t~ee.

b) The oisk_fabje Is dlso searched to Ini~re that <pvndme> is
not mounted on ~ome other drive.

c) The registration information for <pvname> 1s located. Each
per-hlerarehv-volume registration sagnent has additional
names of the form "pv.<pvname>" adjed to It for every
phvsicaj voJume In the hierarchy vJ.~me. If the physical
volume is not registered it cannot be mounted.

d) ~lng 1 ~ow cdl Is the harocore to read 3~d check the label of
the pack on <drive-name>. The physIcal and hierarchy volume

·names and 10·5 and the AIM attributes are checked to make
sure that the .aoel matches the registratIon data. If
everything matcnes the volume 1s accepted for paging and
enterea 1nto th~ PVT.

When the operator has mounted all physical volumes he then issues
the fo.Jowlng comrnanj:

mount hvol <hvname>
Example] mount hvoJ student3

This commano ca~$e~ tne inltla'lzer prl:ess to call ring 1 to
cause the following steps to be performedl

e) The registratlon data for hlerarcny voJume <hvname> Is
'oeated.

f) For each physlca' volume recoroed in the regIstratIon of
<hvname>, the dIsk_table is checked to insure that the
ohvsicaJ votume is mounted. If t~= physical volume is
recordeo in tne disk_table as ~~~~ml~' steps c and d above
are performeo.

gt The n,erarchy volume <hvname> Is ente·ed In the hardcore LVT·
Dy a calf to inltlaJizer_9ate_$add_hv. If the registration
aata says the vo.~me is public, anf Jser process may then
use ,r without further ado.

For d private votume, the user must nJW cause th~ vIrtual
mountIng ot the hier3rchy volume for hIs p~o:ess. To do thIs, he
mdY invoke the rep-oriented command

mount h~ol <hvname>

in a later RGP imp.ement~Tlon~ manv other JPtlons and subcases of
the commana wil' Oe possib'e. But for t,e lnterim verslon, the

MULTICS TECHNICAL BULLETIN MTB-260 page '+

commano simoJv call 5 the two entrypoints

•••• • Id, ee)

in oroer. These entries will be cal ted with -their final standard
cal ling sequence, but the rcp_ gate wit I direct these ca. Is to
lnterim code whlch ooes not perform al. the actIons which the
f ina' verslon wi J I perform. The to •• owing steps are taken'

h) The ~eglst~atlon information for <hvname> 1s located.

1) The ACS for the hIerarchy volume is '~c3ted and the user's
effective acceSi to the hierarChy volJme Is aerivea. If the
user does not have RH access to the hIerarchy volume, an
error is returned.

)) Ring 1 caJls the hardcore to chec~ that the hierarchy vo1ume
is in the LVT. I f the volume 15 founj thIs cal' will also
enter hierarchy vo'~me ID into the pro:ess's KST, unless the
volume is a Juotlc volume.

The user process may then initiate segments on the hierarchy
vo'ume.

When the use~ hdS flnlshea with d non-pyblic volume, he may
issue t'he co mmano

aemount hvo' <n~name>

It wilt remove a ~ser·s KST item for a hie~a~chv volume and cause
faults to be set in the SOW·s of any active segments on the
hierarchy volume for the user process. ThIs operatIon can
decrement a counter in the LVT Mhlch ~as c~u'ted up bv the mount
operation, so that tne rlng-l progra~s can type

VGLUME STUOENT3 FREE

when the count becomes zero.

The current temporary mechanism for system startup wIll be
modit!ed as fo.lows;

a) fht: OSKA commanJ wi I j be rep' aced Of

mount commdnas Jescrlbea above.

b) The; uSKG commanj wi II be e I imlnated.

c) The automatic D~KG performed by certai' comm~nds such as
startup, sat~, dna reJoao wi" be cha~ged to be an automatIc

MULTICS TECHNICAL BULLETIN MT8-26Q page 5

"mount hvo' root M commana.

a) If the special volume name "auto" Is Jsea In a mount command
from the Inlt~aJlzer process, the dls~_tabte will be scanned
tor volumes wnlch are assumed to Da in posItion but whlch
have not yet been checkea. Each hle~~rchv volume thus found
wit1 ba mo~nteO as aescrlbed above. Insta'lations which
'eave M~ltl:s running unattended :a~ therefore place the
commana I·mo~'lt nvoJ auto" in their system_start_up.ec to
cause atl volumes which were 1n use at the last crash to be
rech~ckea ~na reaccepted automatlcal'te

e) Simple registration commanos will oe 3v31Ia~'e that can be
execytea in tne cold boot environme1t to register at least
the vo I umes wfn..ich are part of the ~HV. These commands wi' •
be consistent wIth the commands used by the volume
Ilbrarlan, altnough the librarian cowmands may have more
options.

f) The in 1 t la 'lze_di sk comman,j III i I I be
lnlt!aJize_votume. Only registered volumes
ini.tlajized.

renamed
can be

g) When the system mounts a volume auto.atlcaltv oecause the
disK_table shows that it was mou~ted at the time the system
craSheo, a reg~stratlon fl'. with defa~lt attributes wll' be
generateu if the volume appears to be unregistereo., Thus,
if the volume reg~stration data Is destroyed in a crash, 1t
!s reconstructed from the taole of correct.v mounted volumes
if tnat data has survlveo.

The regu'ar system startup procedure wilt thus differ from that
used 1n 28-D on.y by the detail that the Ststem accepts hierarchy
volumes other th3~ the RHV from ring 4 rather than ring 1. More
typing l~ requIred durIng a cola boot, sln:e the votumes must be
reglstered; ana more typIng 1s reQuirea after a dIsk reshuffle.
since mount comma,ds as we.1 as add_vo'Jme commands must be
typeJ.

Tna fol.owi~g PL/I aeclaratlon aes:~lbes the structure of
the interim volume registration segment.

act 1 vojum~_re~istratlon a.igned,
2 verSion tixea bln,
i hvio bl t (30),
2 hvname cha;" (.52) t

2 ~ax_access_cldSS bit (72),
2 min_dccess_cl~ss O!t (72),
2 volume_o~ner char (32.,
2 f. a g5 t

j puoflc 01t (1) una',

MULTICS TECHNICAL BULLtTIN MTB-2bG page 6

3 pad oit (35) unal,
2 npv fixed oln,
'2 p v (.~ ref er n p v) ,

3 pvio bit (36).
3 moue' f iKeo bIn,
3 pvname char (32),
J location char (32),
3 mfg_serlal char (32),
3 date_reg~stered fixed bin (71);

All volume registration segments except th3t for the RHV wit'
reside in the alrectory >system_contr~I_1>hvol. The RHV·s
rey~strat~on segment will reside in the ro~t dIrectory, to insure
that it ~s accessible wh!le the system is :oming up, before It
has accepted the other ~o'umes of the RHV.

and
Each
w 11 ,

volume ragistration segment wit. be named hv.<hvname>
have additIonal names added tl It of the forms

hvia.<unique stri~g> dnO pv.<pvname> and p~ld.<unlQue string> for
each physical volume. This Is done so that master directory
control can assoclat~ volume Io·s wIth thei~ volu.e names, and to
insure tne uniqueness of ~olume names.

The ACS for each hierarchv volume is a 'ink In >scl>hvol
witn the name <hvname>.acs. The link target for at. publlc
volumes 1s a zero·Jength segment in the sa~e directory. with an
ACl of rw for •••• ¥.

SImilarly, the Master Directory Cont"'~1 file 010CF) for the
nierarchy votume wi •• be pointed to by a link with the na~e

<t\vndme>.mdcf.

ThiS sect!on ~lves brief descriptions of the neM operator
commands available in rings 1 and 4.

This command calls the rCP_.l~_ gate which is
accessible to volume tlbrarians 3nd to the Inltlallzer.

Format& avr oack <pvname> -hvol <hvname> -user <userld>

-hvol <hvname> This control argument Is required. When
avr Is called from ring 1 the only legal <hvname> Is
"root".

-user <userid> This control arg~ment Is required. When
avr is called from ring 1 the 011V 'egal <userld> Is
"system'·.

MULTICS TECHNICAL BULLETIN MT8-260 oage 7

This co •• and writes a Jabel and 3n empty volume mdP and
VTDe onto a alsk pack. It consults the volume
reglst~3tion for the volume to obta!n the hierarchy
vof~me !ntormatlon ana the physl:a' volume unique 10.
It a.so Checks the .abe. of the ~olume and will refuse
to label a volume If it appears to have a valid label
for a ~eglsteraa volume.

format: lnltia.ize_vol~me <pvname> <drive-name>

When t~ltlallze_volume Is callej from rIng 1 only
volumes of the RHV may be inltlajlzed.

-special If this control argument Is specified, the system
wItt ask the operator for raQuest lInes whIch may
specify average segment le,gth and oartition
aeflnltions. The valid requests arel

part NAME low nree Oefine a partltlo~ on the volume at the
low end.

part NAME hi~h nrec Define a partitlo~ ~n the vo'~me at the
high end.

avg fft.ff Declare the average segment size to be
ttff.ff records. (The default Is 4.1.)

lIst

ena

List the attributes of the volume.

ExIt wLthout joinl anything.

End of speciflcations;
volume.

InitIalize tne

Th!S eomm3nd is issued to l,form the system that a
vol~me .5 mounted and ready on a specIfied disk unit.

Fo~.atl adav <pvname> <arive-name>

mount

NO cont~ol arguments are allowed.

ThlS commana is issued to i~for~ the system that a
hierarchv volume is completelv ~oJnted.

MUlTICS TECHNICAL BULLETIN MTB-260 oage 8

Format: mount h~ol <hvname>

Thls coamand forces the demou,tlng of a hierarchy
volJrne.

Format: amt <hvname>

One or ~ora physical vojumes wIll be demounted.

This sectlon Jives a summary of the programs which must be
modlfied or written for release 4.0.

:. Mooiflcat!ons to Rep.

a) FlX rcp_oevlce_lnfo_ to accept devi=e names of the form
"JskX_Ql".

0) Install ne~ verSion of rcp_lnit_disk_sharin9_ which
resoects the flag pvt.storage_svstem.

c) Fix rcp_disk_ to read the label of 10 disks and refuse to
work on storag~ system packs exce~t for privlleged mount
requests.

2. User commanos.

mount
aemount

3. User suoroutlnei.

rCP_bmount
rco_$check_mo~nt

rCP_$demount

4. Operator and Llorarlan commanos. mOJ,t
oemount_force
aao_volume
del_volume
aua_volume_re~l~tration

ael_votume_re~~itration

change_volume_registration
tlst_volume_reglstratl0n

~. Operator and Llorarlan subroutines.

rcp_svs_$demount_force
rcp_.Lb_iset_volume_reglstration
rcp_.lo_,cOPi_vatume_reglstratlon

MUlTICS TECHNICAL BULLETIN MTB-260

system_startup_
rCP_vo'_data_oame
rcp_V'o'_data_ulJ
dlsk_tabte_
initializer=admln_

6. tiardcore

LVI manager
varIous checks that volume Is mo~otej o~ public

page q

MULTICS TECHNICAL BULLETIN r-1r S-2 62

To: D i.s t r i bu t i on

from: Robert S. Coren

Date: 02/25/76

Subject: New Strategy for Conversion of Terminal Input

Mrs 234 described a new method for processing terminal
output in ring zero making extensive use of EIS. The design
describpd has since been implemented in MIT system 27-6, and will
be part of Muttics Release 3.1. The new implementation shows
a p pro x i mat e t y a t h r e e f old imp .r 0 v em en tin the e f fie i en c y 0 f
tty_write, measured in terms of the virtual CPU time spent in
tty_write for each character sent to the 355; on MIT, about 1% of
to tal ti me c h a r 9 e dis now s pent i n t t y_ w r i t e , a s .c 0 m par edt 0

about 2.5% in pre-27-6 systems.

The current implementation of the ring-zero input-processing
module, tty_read, has essentially the same problems as those
described in MTa 234 for the old tty_write: characters are
processed one at a time, even in "rawl" mode: translation,
canonicalization, and escape processing are handLed
simultaneously and driven by a single table; fixed tables in ring
zero are used, pointers to which are constructed on every catl.
In addition, canonicalization is mishandled in some cases, as
indicated in ;.,T8 251; and the "prescan" function, which is
intended to examine input for case-shift characters and to update
the current column position for use by tty_write, is invoked at
the wrong time and is therefore unreliable.

This MTS proposes a redesign of tty_read along the same
lines as the recentlY-completed redesign of tty_write.
Character-by-character processing is abandoned in favor of
separate phases using PLII builtin functions and AlM subroutines
coded with EIS; canonicalization is reimplemented so as to
con for m t 0 the rut e s set f or t h i n M T 8 2 5 1; the .. pre S can" fun c t i on
is removed from tty_read altogether, and its equivalent added to
the 355 software (as described in a separate MTS). A version of
tty_read implementing this design is intended for Multics Release

Multics Project working documentation. Not to be reproduced or
distributed outside the Multics project.

-1-

MULTI CS TECHNICAL f3ULLETIN MTB-262

4.0.

One incompatible change that is being proposed is to discard
all "invisible" characters (i. e., control characters that do not
involve carriage or paper motion) whenever the channel is in
"can" or "erkl lt mode. The motivation for this proposal arises
from these characters' invisibility: they do not show up on most
terminals, and their retention violates the princ iple of
canonicalization, that the contents of a line of input depend on
its physical appearance. In other words, there is no way to
distinguish visually between a#b and a<ETX>#b: what does the #
erase? What column position does the ETX occupy:

The ahility to input such characters directly (;. e., rather
than by using octal escape sequences) seems to be of limited
utility. The one exception might be the desire to use such a
character as a kill or erase character: there are systems in
existence which use CAN (octal 030, input by typing <Cll>x), as a
kill character. User-replaceable kitl and erase characters are
planned for the future; it would not be too difficult to arrange
not to throwaway control characters which were being used for a
Multi cs-defined purpose. For the present, a user employing
special characters for erase and kilt must process them in the
user ring, and accordingly would not be in "can" or "erk l" mode.

In addition, since the elimination of control characters would
be a translation function (see below), user-substitutable
translation tables (also a planned future improvement) would
allow a user to admit selected control characters at will. In any
case, all possible 9-bit patterns can be input as octal escapes.

One implication of this change is that the special meaning
of the ESC character (octal 033) is eliminated for input. This
character has been used primarily to insert ribbon-shift
characters; this can be done by using the octal escape sequences
\016 and \017.

The obligation of tty_read, when called through hcs_1 is to
return in a caller-supplied buffer either 1) as many characters
as the caller specified; 2) all characters up to and including
the first "break" character present in ring-zero buffers for the
specified channel; or 3) all characters remaining in the buffers

-2-

MUlTICS TECHNICAL BULLETIN MTB-262

for the specified channel, whichever is fewest. The "break"
character is by default a newline character: there is currently
no way to change this, but future modifications,may permit it.

Certain transformations may be performed on the characters
typed by the user, such as reduction to canonical form, removal
of "erased" and "killed" characters, and the interpretation of
escape sequences. The application of these transformations
depends on both the modes associated with the channel and the
contents of certain tables which are available to tty_read.

The functions of tty_read may be divided into the following
phases:

1. ~OQ~iog raw input data
ring-zero buffers:

2. Iz:ao~la..ti.QD to ASCII

from tty_buf, and freeing the

3. '~QQQi~~li~~~iQQ of the contents of column positions

Clearly, these five phases are not always necessary. Phases 3, 4,
and 5 depend on flcan", "erkl",and "esc" modes, respectively; in
"rawi" mode, on ly phase 1 1 s requi red.

for convenience and to ensure consistency, conversion (the
generic term used here for the relevant subset of phases 2
through 5) is done on all characters up to and including the
first break character in the input buffers, whether or not the
break character is found within the limit specified by the
caller. This avoids the possibility of terminating conversion in
the middle of an escape sequence or of a line that is
subsequently ki lled, and also allows tor the possible shrinkage
of the input string (through the deletion of extraneous white
space and the condensation of escape sequences, for example) •
.. Ext r a .. c ha r act e r s t h usc 0 n v e r ted (i. e ., tho set hat c a nn a t b e
returned because the caller has not provided sufficient space)
are saved 1n reallocated buffers in tty_buf; these buffers are
marked with a "converted" f lag· and chained to the b~~.sj of the
channel's input chain so that they can be picked UP by the next
call to tty_read. In two exceptional cases, conversion cannot
proceed to the first break character: the first is, obviously,
when no break character is present; the other is when the size of

-3-

MULTICS TECHNICAL BULLETIN

tty_read's internal automatic buffers is exceeded.
that witl be explained later in this document, both
are pxpected to be very rare.

MTS-262

For reasons
these cases

Reference is made in the course of this document to entries
in the subroutine tty_ut'il_, which is described in MTS 234. A new
entry, tty_util_$tct, has been added: it performs the same
function as tty_util_$find_char, except that it checks neither
for c ha r act e r s wit h t' he;' r h i g h- 0 r d e r bit son nor for c om bin a t ion s
of white-space characters.

The remainder of this document consists of the following:

1. A few remarks on the management of
buffer space:

internal

2. A more detailed description of the five conversion phases
mentioned above;

3. A description of the modifications required to the data
structures described in MTS 234;

4. Module descriptions of the new column canonicalizdtion
routine, tty_canon <which replaces the old tty_con), and
the new ~ntry tty_uti l_$tct.

familiarity with the material in MTBs
throughout.

234 and 251 is assumed

During conversion, intermediate forms of the input string
result from each conversion phase; for the storage of these
intermediate strings, two buffers are maintained in tty_read's
automatic storage. Clearly this sets an upper limjt on the
allowable length of the input string. The normal limiting
factor, of course, is the presence of a break character, and
input lines longer than 100 characters are rare; a further
limitation is imposed by the 355 software, which takes a channel
out of receive mode if more than 600 characters are input without
a break character. The input string can grow during
canonicalization through the replacement of carriage returns by
multiple backspaces, but this occurrence too is rare. All in all,
a buffer size of 720 is very unlikely to be exceeded.

-4-

MUlTICS TECHNICAL BULLETIN MTB-262

Consequently, no more than 720 characters are copied into
the internal buffer from tty_buf. If the canonicalization, phase
attempts to increase the length of the string past 720, tty_read
will start again from the beginning with a limit of 480
characters to be copied. ihis limit is entirely safe, since
canonicali2ation cannot increase the length of the string by more
than 50X. Because of the remote possibility that this restart may
be necessary, buffers in tty_buf from which input characters have
been copied cannot be freed until after the canonicalization
phase is completed.

Since conversion is, if possible, carried out on all
characters up to and including the first break character, the
final converted string may be larger than the buffer provided by
the calter .. If this is the case, enough characters to fill the
caller's buffer are returned; the remainder of the converted
characters, as indicated above, are saved in buffers in tty_buf
1 n each 0 fw hi c h a •• C onv e r ted" f tag i ss e t.. I n add i t .j on, ; f one
of these buffers contains a break character (the last one
generally will)., a "break" flag is set in that buffer. These
buffers are added to the head of the chain of unconverted input
buffers (the "read chain~'), and the input pointer in th~ control
block associat~d with the channel is set to point to the first
"converted" buffer.

IN "rawi" MODE

The cop yin g phase in "r a w i rim 0 d e is very simple.. Char act e r s
are copied from tty_but, starting at the head of the read chain,
directly into the caller's buffer, until either the caller's
buffer is fitled or the read chain is exhausted. Any buffer from
which all the characters are thus copied is freed.

NOT IN",. aWl" MODE

If there are any "converted" butfers at the head of the read
chain, characters are copied from these buffers directly into the
caller's buffer until either the caller's buffer is full, a break
character has been copied, or the chain of converted buffers is
exhausted. (In general, the last converted buffer contains a
break character, and non-last converted buffers do not.> Any
converted buffer from which all the characters are copied is

-5-

MULTI CS TECHNICAL BULLETIN MTB-262

freed.

If there are no converted buffers, or the converted buffer
chain is exhausted without enc6untering a break character or
filling the caller's buffer, characters are copied from the
unconverted read chain (if present) into the first of tty_read's
automatic buffers, until either a break character is encountered,
the read chain is exhausted, or the internal buffer is filled.
Buffers are not freed at this time,_ tor the reason given above
under "Space Management .• "

Because the 355 does not normally send input to the 6180
until a break character 1S typed, the read chain almost always
ends with a break character. (Consequently, the converted chain
usually does, too.) It might not if there was a Quit on a channel
not in "hndlQuit" mode (in "hndlQuit" mode the read chain is
discarded on a Quit), or if the channel exceeded the 355
software's 600-character limit.

If any characters were copied from unconverted bufters,
conversion of the contents of tty_read's automatic buffer begins.

If a translation table exists for the terminal type
associated with the channel, it is used in a call to
tty_util_$mvt to copy the characters from one internal buffer to
the other, simultaneously translating it to ASCII. Translation is
required for 18M-type terminals using either EBCDIC or
Correspondence character codes; it is also used to translate
capital letters to lowercase for uppercase-only terminals such as
aTe let y p e Mod e l 3 3 • (E sea p e d let t e r s w ill bee han g e d ba c k t 0

uppercase by the escape-processing phase.)

The translation phase does not have to deal with case-shift
characters. under the new design, the 355 is responsible for
r e cog n ; z ; n g cas e 5 h i f t s, and for t urn i n g 0 nth e 1 00 (8) bit ina t t
uppercase characters (characters on shifting terminals are only
six bits). All that is necessary on the 6180 side is a
t ran S l at ion tab let hat inc l u de s c h a r act e r s wit h the "100" bit on

-6--

MULTICS TECHNICAL BULLETIN MTB-262

and translates case-shift characters to ASCII NUL characters.

If the channel is in "can" or "erkl" mode, a further
translation is done uSing a general table which translates
"invi sible" characters (see above) to NUL (all zero) characters.
NUL characters are subsequently discarded by the canonicalization
phase.

Col u m n - p 0 sit ion can on i cat i z at jon t a k esc are 0 f j t s elf un l e s s
the input string contains leftward carriage motion, i. e.,
backspace and/or carriage return characte'rs.' In addition,
backspaces and carriage returns at the left margin or immediately
preceding a newline are discarded. In other cases,
canonicatization must be performed in accordance with the rules
given in MT8 251.

The canonicalization phase therefore begins by searching the
internal buffer (using the PL/I "search" builtin) for a
left-motion character (carriage return or backspace). If the
first character is a left-motion character, the buffer pointer is
advanced by one character, the string length is decremented by
one, and the new string is searched as before. If a left-motion
character is found, a verify builtin is used to discover if the
rest of the line consists of white space (backspaces, carriage
returns, spaces, horizontal tabs, or NULs) followed by a newline.
If this is the case, the string length is reduced to the result
of the search, and the newline is copied to the new end of the
string. If a left--motion character is discovered in any other
position, tty_canon is calted to perform column canonicalization.

The subroutine tty_canon is a revised version of the old
tty_con, and uses the same basic algorithm: store each printing
graphic from the input string in an array along with its correct
cotumn position; sort the array by column position, and by
character within each column position; restore the characters to
the input string location in the resulting order, inserting
backspaces and spaces as appropriate. Tabs must be treated as a
slightly special case of printing graphic, so that tabs which are
in no way overstruck are preserved but others are replaced by
spaces.

-7-

MULTICS TECHNICAL BULLETIN MTB-262

A module description of tty_canon appears at the end of this
docum~nt; the calling sequence has been modified so that the
module could theoretically be called with an arbitrary string in
oth~r envi ronments than that of the ring-zero typewri ter DIM. The
resulting calling sequence is still not ideal, as it contains
arguments that are both input and output; this approach is
retained for reasons of efficiency. Eventually, an essentially
equivalent module can be implemented in the user ring. I

The structure used for the elements of the sorting array
makes th~ sort very easy, thus:

dcl 1 column_array (max_size) aligned,
2 column fixed bin (17) unaligned,
2 erase bit (1) unaligned,
? kill bit (1) unaligned,
2 vertical bit (1) unaligned,
2 pad bit (5) unaligned,
2 not_tab bit (1) unaligned,
2 char char (1) unaligned;

The "erase" bit inrlicates an erase character; the uki ll" bit
inrlicates a ki II character: the "vertical" bit indicates a
non-newline char~cter requiring vertical carriage motion (i. e.,
vertical tab or form-feed); the "not_tab" bit is on for any
character except a horizontal tab. It can be seen that by
treating each element of the array as a single value for the
purpose of sorting, the characters automatically come out in
column order and in character order in each column, except that:
1) an erase character wi II always be the last character in its
column 00s1t10n; 2) a ki tl character wi tl be last in its column
position unless overstruck with an erase character; 3) a
horizontal tab will always be the first character in its column
position; and 4) a vertical-motion character will follow all
characters other than an erase or kill character. Since during
the initial scan, a vertical-motion character causes both the
"current" column and the "starting" column to be Set to the next
highest multiple of 1000 (the "starting" column is the column
assigned to the left margin, initially 0), a vertical-motion
character cannot share a column position unless 1000 or more
column positions are actually typed. A newLine is assigned a
column position of 2**17 - 1 so that it wilt atways sort to the
end of the line.

Kill processing is not done by tty_canon; kilt characters
are sorted to the end of the column pOSition to make things
easier for the ki tt-processing phase of tty_read. Erase
characters are only interesting to tty_canon if they are

-8-

MULTICS TECHNICAL BULLETIN MTB-262

overstruck; since an overstruck erase character sorts to the end
of its cotumn position, the rescan step, when it, finds an erase
character that is not first in its column position, deletes it
and all preceding characters with the same column position.

Since a tab sorts to the beginning of its starting column
position, it is sufficient to check'whether the graphic following
the tab has a column position less than the next tab stop; if it
does, the tab is dropped, and spaces are inserted as they are
whenever there is gap between two graphics. Otherwise the tab is
inserted in the final string.

NUL characters are not stored in the column_array; thus
tty_canon completes the elimination of "invisible" characters.

The maximum length of the input string is passed as an
argument to tty_canon; if the final string exceeds this length,
only max_length characters are returned, and a status tode of
error_table_$tong_record is returned.

Upon ret urn fro rri t t y_ can on, i f the s tat usc 0 d e i s z e r 0 ,

tty_read frees the ring-zero buffers from which characters were
copied, as explained above; otherwise it resets its internal
buffer size limit to 480 and starts again from the copying phas~.

If the canonicalization phase completes without calling
tty_canon, the string may still contain NUL characters; therefore
jf tty_canon has not been called, tty_read indexes the string for
NUL characters, and copies the characters preceding and following
each NUL into the other internal buffer, decrementing the string
length by one for each NUL it finds.

Erase and kill processing is really done in two passes, ki II
and then erase. The string resulting from the canonicalization
phase is indexed from the right for a kill character; if one is
found, and the immediately preceding character is not a
non-overstruck escape character, the pointer to the beginning of
the string is incremented to point to the character following the
ki II character, and the length of the string is dec remented
accordingly. If the kill character is preceded by an escape
character that is Q~l preceded by a backspace, the pointer and
the length are not changed, and the remainder of the string (if

-9-

MULTI CS TECHNICAL BULLETIN MTB-262

~ny) is scanned for further kill characters.

The string resulting from the kill pass is now indexed for
an erase character. If one is found anywhere but at the
heninninq of the string, the characters before and after the
erased character(s) must be copied to the other internal buffer.
The basic mechanism is to copy the characters to the teft of the
erased characters, decrement the count of total input characters
by the number of erased characters plus one for the erase itselfl
and resume the scan starting with the character after the erase
character. (If the erase character is preceded by an escape
character not preceded by a backspace, the escape and erase
characters are copied along with the preceding characters.) When
the end of the string is reached, provided any copying has been
done, all characters to the right of the last erase character are
copied.

The number of characters to be erased (i. e.I not copied) is
determined as follows: if the character preceding the erase is
"white space" (space or horizontal tab) the source string is
searched backward for a non-white character, and all characters
to the ·right of it are erased; if the character preceding the
erase is a printing graphic, then the source string is searched
backward until two non-backspace characters are found in
succession, whereupon alt characters from the one t~ the left of
the leftmost backspace on are erased. Note that the character
immediately preceding the erase character cannot be a backspace,
s ; n C e all a v e r s t r u c k er a sec h a r act e r s are pro c es sed b y t t y._ c a non.

If the second or subsequent scan turns up an erase character
as the first character in the string (as would happen if two
erase characters were typed in succession), the determination of
the number of erased characters is made in the same fashion as
that described above, except that the characters at the end of
the t~£~el string are examined; the erasing is carried out by
decrementing the target pointer so that the erased characters
will be overwritten, and decrementing the overall length
<lccordingly.

This phase, which is implemented in a similar manner to the
formatting phase of tty_write (as described in MTG 234), actually
deals not only with escape sequences, but with the elimination of
white space before break characters and of characters designated
as being "thrown away" for the current terminal type .. It uses
test character and translate (tct) instructions under control of

-10-

MULTIes TECHNICAL BULLETIN MTB-262

a table containing zero entries for ordinary characters, and
indicators identifying four types of " i n t ere s tin g "c h a r act e r s:
break character, escape character, form-feed, and ftthrow-away"
character.

T hi s p has e use s tty _ u t 'j 1_ $ t c t, w h '. c h s can s for "i n t ere s tin g"
characters and returns a talty of characters skipped Over, the
indicator value for the character stopped at, and an updated
pointer to the character stopped at. 1f the tally is non-zero,
tty_read copies the skipped characters into whichever internal
b u f f er do e s not con t a i nth e sou r c est .r i n g ; the nit e x ami ne s the
indicator. For a break character, it scans the copied characters
(if any) from the right for the last printing graphic; the break
character is copied immediately to the right of it. If any
intervening white space was found, the length of the final string
is decremented by the number of white-space characters. Finally,
a flag is set to indicate that a break was found.

If the scan finds a form-feed, and the terminal has a
non-zero page length, the form-feed is thrown away, on the
assumption that the user typed it for the purpose of starting a
new page. Other wi se it is stored as a norma l charact ere The
interrupt handler, dn355, is ,responsible for adjust ing the
current tine count on the page when a form-feed or newline is
input.

If the indicator shows an escape character, tty_read must
find out if it is in fact the start of an escape sequence. If the
channel is not in "esc" mode, or if the character immediately
preceding or either of the two characters immediately following
the escape character is a backspace, the escape is copied as a
normal character and the scan continues. (The backspace test is
to ensure that neither the escape nor the column position to its
immediate right is overstruck.) If the following character is an
escape, erase, or ki II character, it is copied to the target
string; if it is an octal digit, the character whose value is
represented by the one to three non-overstruck octal digits
follDwing the escape character is inserted in the target string;
if the escape is followed by zero or more white-space characters
followed by a newline, all characters from the break thrOugh the
newline are skipped (the newline is not treated as a break in
this case); otherwise the character following the escape is
looked up in the input_escapes string in the appropriate
special_chars structure (described under "Data Structures" later
in this document). If it is found, the corresponding character
from the input_results string is inserted in the target string.
If the character is not found, then there is no escape sequence,
and the escape character is copied as above. If an escape
sequence is identified, the pointer used for the next call to

-11-

MULTICS TECHNICAL BULLETIN

tty_ut i l_$tct
sequence.

i s updat ed

MTB-262

to point past the end of the escape

If the indicator shows that the character is to be thrown
away, it is not counted in the length of the final string, and
the scan continues starting with the foLLowing character. Note
that "invisible" characters (see above) have already been thrown
away by the time this phase is reached. The present default
tables do not incLude any other characters to be thrown away;
however, a user-supplied table might specify some other character
which the user wishes the typewriter DIM to discard rather than
returning it to the user ring.

If the first call to tty_util_$tct returns an indicator of zero
and uSeS u~ the entire source string, no characters' at all are
copied by this phase.

If the total number of characters in the now fully-converted
string plus the number of previously-converted characters already
copied into the caller's buffer is less than or equal to the
number of characters requested by the caller, and the converted
string ends in a break character, all the converted characters
are copied into the caller's buffer, and tty_read returns. If
the total number of converted characters exceeds the number
requested by the caller, the caller's maximum is copied into the
caller's buffer, and the remainder are placed in "converted"
buffers in tty_buf as described above, to be picked up by a
futu~e call. If the total number of converted characters is less
than the number requested by the caller, and the converted string
does not end in a break character <either because a break
character was escaped, or because the internal buffer size limit
was reached), all available characters are copied to the caller's
buffer and, if a read chain is stilL present, the next bLock of
characters (up to the next break) is copied from the read chain
and converted as above: any excess characters resulting from the
latter conversion are saved in "converted" buffers as above.

This section describes the modifications necessary to the
data structures described in MTS 234 to make them useable for
;nput conversion as well. Translation tables used by
tty_util_$mvt and tty_util_$tct are similar to those used by
tty~write, and, like them, are kept in ring zero by terminal
type; future modifications wi II allow a user to specify his own

-12-

MUlTICS TECHNICAL 8UllETIN MTB-262

version of one or more of these tables.

The default table has been expanded and rearranged slightly,
and the names of some of the items have been changed. The new
format is shown below:

d~l 1 device_defaults aligned based,

shifter

2 flags unal,
3 shifter bit (1) una!,
3 upper_case_only bi t (1) una l,
3 pad bit (7) unal,

2 delay_char char (1) unal,
2 upper_case char (1) unal,
2 lower_case char (1) unal,
2 delay_offset (4) fixed bin (18),
2 outPut_tct_offset fixed bin (18),
2 output_mvt_offset fiXed bin (18),
2 special_offset fixed bin (18),
2 input_tct_offset fixed bin (18),
2 input_mvt_offset fixed bin (18),
2 break_char char (1) unal,
2 pad bit (27) una!;

is "1"b if the terminal requires case
shift characters.

is "1"b if the term; nal handl es only
cap ita l let t e r s.

is the ASCII f~rm of the character used
for carriage movement delays.

\

;s the uppercase shift character.

is the lowercase shift character.

is an array of offsets of the
delay_tables (described in MTB 234) to
be used for this terminal type at 110,
150, 300, and 1200 bps respectivel~.

is the relative offset {in
the default table

-13-

of
by

MULTICS TECHNICAL BULLETIN MTB-262

special_offset

tty_util_$find_char for identifying
"special" characters during output
processing.

is the relative offset of the table used
by tty_util_$mvt for translation during
output procesSing, or a if translation
is not required for the particular
terminal type.

is the relative offset of the
version of the special_chars
described below.

default
table

is the relative offset of the default
table used by tty_util_$tct for
identifying "special" characters during
input processing.

is the relative offset of the table used
by tty_util_$mvt for translation during
input processing, or 0 if translation is
not required for the particular terminal
type.

is the break character for this dev;ce.

The special characters table is as described in MT8 234,
except that the following items have been added at the end of the
structure:

2 input_escape_teogth fixed bin,
2 input_escapes char (1.refer <input_escape_length>:

una l i gn ed,
2 i n put _ res u l t s c h a r (1 ref e r (i n put _ esc ape _ len g t h)

una l i gn ed;

input_escape_length is the number of characters in each of

input_escapes

the strings input_escapes and
input_results.

is a string of characters each of which
forms an escape sequence when preceded

-14-

MULTICS TECHNICAL BULLETIN MTB-262

by an escape character.

is a string of characters each of which
is to replace the escape sequence
consisting of an escape character and
the character occupying the
corresponding position in input_escapes
(above).

This entry uses a tct (test character and translate>
ins t rue t ion t 0 sea r c hag i v ens t r i n g for "i n t ere s tin g " c h a r act e r.s
in the same manner as tty_util_$find_char.

where

declaretty_util_Stct entry (ptr);

argptr is a pointer to the structure described
below. (Input)

dcl 1 tct_arg_structure based aligned,
2 stringp ptr,
2 stringl fixed bin,
2 tally fixed bin,
2 tablep ptr,
2 indicator fixed bin,
2 workspace (3) fixed bin;

All members of the structure have the same meaning as for
tty_util_$find_char, except for the following:

stringp is a pointer to the string to be tested;
it is updated to point to the first
"interesting" character in the string ..

-15-

MULTICS TECHNICAL BULLETIN MT B-2 62

indicator

tJ ~ m.~ : tty _ can 0 n

(Input/Output)

is the result of the search. It may have
the following values: (Output)

a no special characters

1 break character

2 escape character

3 character to be thrown away

This subroutine is used to reduce a character string (which
is expected to consist of one typed line image) to canonical
form, i. e.I sort the characters by column position and by ASCII
value within each column position.

declare tty_canon entry (ptr, fixed bin (24), fixed bin (24),
char (1) aligned, char (1) aligned,
fixed bin (35»;

caLL tty_canon (string_ptr, length l max_length,
erase_char, kill_char, code);

length

max_length

is a pointer to the string to be
reduced; the result string replaces the
input string. (Input)

i s the len g t h of the string. I t is
adjusted to reflect the l e n9 t h of the
result string. (Input/Output)

i s the maximum allowablE' length of the
result string. (Input)

is the character which is to be
interpreted as an erase character, or
blank if no erase processing is to be
done. (Input)

-16-

MULTICS TECHNICAL BULLETIN MTB-262

k i l t char

code

is the character wh i c h i s to be
interpreted as a kilt ch arac ter, or
blank i f no kill character i s to be
recogni zed. (Input)

is a standard system status code. If the
canonicalization' of the string requires
a result string whose length exceeds
max_length, code is set to
error_table_$lon9_record; otherwise it
is set to zero. (Output)

-17-

