Honeywell

Model 6/34 Minicomputer

SERIES 60 (LEVEL 6)

The Model 6/34 is a solid-state, general-purpose minicomputer that can provide extensive capabilities for system-builders in dedicated environments. The 6/34 central processor uses transistor-totransistor logic (TTL) technology and is state-ofthe-art, open-ended, powerful, and flexible. The 16-bit word size makes the most of combined economy and functionality.

The Model 6/34 includes a central processor mounted in a four-slot Megabus chassis, a memory controller with parity, an 8192-word MOS Memory-Pac (module), a basic or full control panel, multiply/divide hardware, a real-time clock, and a ROM bootstrap loader. The central processor and maximum memory of 32,768 words (in modules of 8192 words) each require only one circuit board. Up to four boards can be included in the Model 6/34. After the CP and memory boards are plugged in, two boards are still available for the attachment of peripheral devices and/or communications lines. Options include the Multiple Device Controller (MDC9101), the Multiline Communications Processor (MLC9103), the General Purpose DMA Interface (GIS9001), and the Mass Storage Controller (MSC9101) as well as the associated Device- and Communications-Pacs, all Level 6 peripherals and their connector cables, and the power supply, cabinetry, and accessories (see Figure 1).

Physical configuration is flexible, reflecting the variety of uses Level 6 can be put to. The overriding consideration during development has been to provide a low-cost, modular, building-block system with minimal space and power requirements. Functional elements plug into or attach to each other without difficulty, needing little time and skill for assembly, disassembly, and replacement.

FEATURES

- Firmware-driven processor:
 - Enables multiple vectored interrupts to 64 levels
 - Provides multiple vectored trap structure
 - Automatically saves and restores vital information in case of interrupts and traps

- Sophisticated addressing mechanism for:
 - Bit/byte/word/multiple word
 - Immediate addresses
 - PUSH/POP (auto post-increment/predecrement)
 - Base and program counter plus/minus displacement

• Megabus permitting interleaved transfers with a practical six-megabyte throughput rate, 300-nanosecond cycle time

- Direct memory access as standard input/output method
- Up to 32,768 words (in 8K-word Memory-Pacs) of memory; up to four Memory-Pacs per board
- Additional memory or additional/different interface requirements satisfied by simple, plug-in operation
- Automatic quality logic test (QLT) as part of bootstrap operation
- Exclusive "shoelace circuit" with LED display reports on connect status and QLT
- 18 registers provide for:
 - Eight modes of addressing, including PUSH/POP
 - Multiple accumulators
 - Indexing
 - System control
- Extensive use of firmware to support task dispatching and input/output control

Figure 1. Typical 6/34 System

• Optional attachment of Multiline Communications Processor, Multiple Device Controller, useradaptable General Purpose DMA Interface, or Mass Storage Controller

PROCESSOR COMPONENTS

The Model 6/34 includes, in addition to the central processor itself, the following components:

- Memory Controller with parity
- 8K-Word Memory-Pac
- Megabus
- Basic or Full Control Panel
- Four-Slot Chassis
- Power Supply
- Multiply/Divide
- Real-Time Clock
- ROM Bootstrap Loader

Memory

The 6/34 memory uses state-of-the-art semiconductor technology N-channel and 4096-bit dynamic RAM as the storage media. Its design emphasizes high reliability, low cost, modularity, and simplified field maintenance. Like other elements of Level 6, the memory is a bus-compatible subsystem which may communicate directly with and in the same fashion as any other element on the Megabus. TTL MSI circuitry minimizes power and space requirements for the extensive functionality provided. Self-contained on each Memory-Pac is bus support, refresh and initialization logic.

The parity memory offered includes logic for storing/retrieving two parity bits per word on each 8K-word Memory-Pac. Thus the actual word size in memory is 18 bits. Address parity accompanies the most significant eight bits on the address bus. When memory detects an error on these bits, it does not respond; the result is a bus timeout. Note also that each device controller/communications processor on the Megabus checks parity on information received from the Megabus and indicates an error by setting a parity error status bit.

Memory Save and Autorestart, available as an option, ensures data retention for 65,536 bytes of memory for a two-hour period. Support circuit power runs are separated to minimize standby power drain. Electronics within the optional unit maintain battery charge, regulate outputs, and indicate holdup failures. Power failures generate an interrupt, after which user-save operations are performed. Following power failures, operations are automatically resumed, starting at memory location zero.

Megabus

The Megabus is the heart of the 6/34 and central to its performance. All elements of Level 6 – central processor, memory, device controllers, communications processor, and General Purpose DMA Interface – are attached to the Megabus and all transfers (memory, interrupts, and instructions) between them take place on it. Communication among these elements is asynchronous, permitting elements of different speeds to operate efficiently. Because of its versatility, only one Megabus is required for use on Level 6. In addition, the Level 6 Megabus offers an unusually high transfer rate: six million bytes (i.e., halfwords) per second (300 nanoseconds per 16-bit transfer cycle).

The Level 6 Megabus is based on TTL technology.

Etched wires join connectors, meaning fewer connections, lower costs, and higher reliability.

Sixty-four vectored-interrupt levels are provided, and an automatic interrupt identification feature causes an interrupting device to identify itself to the central processor. No private wires are provided for interrupts; an interrupt is handled as just one more type of message transmitted on the Megabus. Parity checking ensures the integrity of data transfers.

The Megabus transfers either words or bytes. Memory is used efficiently, and controller transfers can start or end on arbitrary byte boundaries. All transfers are direct memory access; each device controller maintains its own information about the location in memory to/from which data is to be transferred and accesses that location directly. Each unit on the Megabus contains all the control and timing it needs to use the Megabus, without dependence on a central control unit of any kind.

Control Panel

A choice of two types of control panels offers users flexibility, economy, and security of operation:

• Basic Panel – Offers security and economy in multisystem applications. Enables connection to the portable plug-in panel.

• Full Panel – Allows CP register and main memory contents to be entered and displayed. It controls, in a step-by-step fashion, the system initialization sequence by single-stepping a program, and stopping and starting program execution. Includes 6-digit hexadecimal (hex) display and 16-key hex pad.

A portable plug-in panel option (CPF9408) also provides security, economy, and flexibility of operation in multisystem environments. The panel is self-contained and full control, and can plug into any basic panel.

A vertical panel mounting option (CPF9407) is available for any rack-mountable system where physical space limitations exist. It replaces the standard inclined panel mounting and is designed for OEMs with their own cabinetry. If Honeywell cabinetry is desired, the panel can be ordered only with the following:

- CAB9004: 60-inch rack without ... panel or doors
- CAB9008: Rack panel ... for one side
- CAB9009: Rack door ... full rear
- CAB9010: Extension table wing

Cabinetry

A variety of cabinetry options are available; all provide easy access and require only front-to-rear airflow for cooling:

• Drawer unit 5.25 inches (13.33 cm) high for standard EIA rack mounting

• Cabinets 60.0 inches (152.40 cm) high for central processor, diskette, and other drawers

• Tabletop configurations, completely enclosed, completely portable, 5.5 inches (13.97 cm) high, 19.5 inches (49.53 cm) wide, 29.7 inches (75.43 cm) deep

OPTIONS

- PSS9001 Tabletop Memory Save and Autorestart for 8KW to 32KW Memory
- PSS9002 Rack-mountable Memory Save and Autorestart for 8KW to 32KW Memory

• CMC9001 – Memory Controller with parity plus 8K-Word Memory-Pac (CMM9001). Up to three more Memory-Pacs may be added

- CMM9001 8K-Word Memory-Pac
- CPF9407 Vertical Panel Mounting
- CPF9408 Portable Plug-in Panel

SIMPLIFIED MAINTENANCE

Level 6 provides simplified maintenance via:

• Automatically executed quality logic tests (QLTs) for the processor, memory, MDC, MLCP, and MSC boards permanently resident in their ROMs

• Use of LED indicators on each board to indicate the specific board failing a QLT

• A family of freestanding test and verification programs for the central and I/O subsystems that permit diagnosis to the appropriate level

• Easy replacement of failed system board or Pac by simply unplugging the failed unit and plugging in a replacement

SPECIFICATIONS

LEVEL 6 MEGABUS: Provides bidirectional asynchronous communications path between all boards

Cycle Time -300 nanoseconds Throughput - Up to three million words per second

Slots – Up to four

CENTRAL PROCESSOR: Interrupt-driven; processes bits, bytes, words, and multiwords; real-time clock; ROM bootstrap loader; basic/full control panel; multiply/divide hardware

- Addressing modes Direct (up to 32K words); indirect; base plus displacement; base plus displacement indirect; base plus index; base plus index indirect; base plus index push/pop; base push/pop; program counter plus displacement; program counter plus displacement indirect; indexed; direct register operand; and immediate operand
- Registers 18
- Interrupt Levels 64 (vectored), allowing interrupts to be set at the channel level
- Options Portable plug-in panel/Vertical panel mounting MEMORY: Provides up to 32K words of storage in 8K modules
- Type 4K, N-channel, MOS

Cycle Time – 650 nanoseconds

Size (16-bit words) - 8192 to 32,768

MULTIPLE DEVICE CONTROLLER (MDC9101): Controls up to four devices using Device-Pacs (i.e., adapters)

Type – Four levels of simultaneity Throughput $= 32500$ words per second
MASS STORAGE CONTROLLER (MSC9101): Controls
up to four disk units with total capacity from 2.5 to 44.8 million bytes
Type – One data transfer operation concurrent with mul- tiple seek operations
Throughput $-312,500$ bytes per second
GENERAL PURPOSE DMA INTERFACE (GIS9001): Pro- vides user interface point for attachment of user-designed
Type – Single level of simultaneity
Throughput – 500,000 words per second (memory-to-user device or opposite direction)
MULTILINE COMMUNICATIONS PROCESSOR
(MLC9101): Controls up to eight synchronous or asyn-
chronous full-duplex lines or up to four broad band full-
duplex lines
Type – Programmable
Interfaces – EIA RS232C, MIL 188C, Broad band CCITT V35 direct connect Bell 301/303
Throughput – Up to 20,000 characters per second

INSTRUCTION SET

The programmer-oriented instruction set facilitates the writing of compact, efficient programs and offers the right instruction for each function. The multiple word length capability makes it easy to handle data elements of varying size and the indexing techniques are completely integrated into the architecture.

Modify	Description	
INC	Increment	
DEC	Decrement	
NEG	Negate	
CPL	Complement	
CL	Clear	
CLH	Clear Halfword	
CMZ	Compare to Zero	
CAD	Add Carry Bit to Contents	
Control	Description	
STS	Store S-Register	
JMP	Jump	
ENT	Enter	
LEV	Change Level	
SAVE	Save Context	
RSTR	Restore Context	
Bit	Description	
LB	Load Bit	
LBF	Load Bit and Set False	
LBT	Load Bit and Set True	
LBC	Load Bit and Complement	
LBS	Load Bit and Swap	
Double Word	Description	
LDI	Load Double Integer	
SDI	Store Double Integer	

Store Double Integer

DOUBLE OPERAND INSTRUCTIONS

Word	Description
LDR	Load R-Register
STR	Store R-Register
SRM	Store R-Register through
	Mask
SWR	Swap R-Register
CMR	Compare Contents to
	R-Register
ADD	Add Contents to R-Register
SUB	Subtract from R-Register
MUL	Multiply R-Register
DIV	Divide R-Register by
	Contents of Location
OR	Inclusive OR with R-Register
XOR	Exclusive OR with R-Register
AND	AND Contents with
	R-Register
Byte	Description
LDH	Load Halfword into
	R-Register
STH	Store R-Register Halfword
CMH	Compare Halfword to
	R-Register
ORH	Halfword Inclusive OR
	with R-Register
ХОН	Halfword Exclusive OR
4 N 7T T	with K-Kegister
ANH	Logically AND Halfword with R-Register

Mode and Base Register	Description
MTM	Modify or Test M-Register
STM	Store M-Register
LDB	Load B-Register
STB	Store B-Register
СМВ	Compare Contents to B-Register
CMN	Compare to Null
SWB	Swap B-Register
LAB	Load Effective Address into B-Register
LNJ	Load B-Register and Jump

Load Logical Halfword into R-Register

LLH

BRANCH INSTRUCTIONS

Branch on Register	Description
BLZ	Branch If R-Register Less Than Zero
BGEZ	Branch If R-Register Equal to or Less Than Zero
BEZ	Branch If R-Register Equal to Zero
BNEZ	Branch If R-Register Not Equal to Zero
BGZ	Branch If R-Register Greater Than Zero
BLEZ	Branch If R-Register Equal to or Less Than Zero
BODD	Branch If R-Register Odd

SINGLE OPERAND INSTRUCTIONS

BEVN	Branch If R-Register Even	DCL	Double Shift Closed Left
BINC	Branch and Increment	SOR	Single Shift Open Right
BDEC	Branch and Decrement	SCR	Single Shift Closed Right
Derest en La Parten	Description	SAR	Single Shift Arithmetic Right
Branch on Indicator	Description	DCR	Double Shift Closed Right
В	Branch		
NOP	No Operation	Shift Long	Description
BE	Branch If Equal	DOL	Double Shift Open Left
BNE	Branch If Not Equal	DAL	Double Shift Arithmetic Left
BAL	Branch If Algebraically	DOR	Double Shift Open Right
	Less Than	DAR	Double Shift Arithmetic Right
BAGE	Branch If Algebraically		
DAC	Greater I nan or Equal to	GENE	RICINSTRUCTIONS
BAG	Branch II Algebraically Greater Than	Instruction	Description
BALE	Branch If Algebraically	HLT	Halt
	Less Than or Equal to	MCL	Call Monitor via Trap
BL	Branch If Less Than	RTT	Return from Trap
BGE	Branch If Greater Than	RTCN	Real-Time Clock On
	or Equal to	RTCF	Real-Time Clock Off
BG	Branch If Greater Than	BRK	Break Trap
BLE	Branch If Less Than or Equal to	SHORT VALUE IMMEDIATE INSTRUCTIONS	
BSU	Branch If Signs Unlike	Instruction	Description
BSE	Branch If Signs Equal	LDV	Load Value
BCT	Branch If Carry	CMV	Compare Value to R-Register
BCF	Branch If No Carry	ADV	Add Value to R-Register
BBT	Branch If Bit Test Indicator True	MLV	Multiply by Value
BBF	Branch If Bit Test Indicator False	INPUT/OUTPUT INSTRUCTIONS	
BIOT	Branch If I/O Indicator	Instruction	Description
	True	10	Input/Output Word
BIOF	Branch If I/O Indicator	IOH	Input/Output Halfword
D O V	False	IOLD	Input/Output Load
BOV	Branch If R-Register Overflow		
BNOV	Branch If No R-Register Overflow		

SHIFT INSTRUCTIONS

Shift Short	Description	
SOL	Single Shift Open Left	
SCL	Single Shift Closed Left	
SAL	Single Shift Arithmetic Left	Specifications may change as design improvements are introduced.

Honeywell

Honeywell Information Systems In the U.S.A.: 200 Smith Street, MS 486, Waltham, Massachusetts 02154 In Canada: 2025 Sheppard Avenue East, Willowdale, Ontario M2J 1W5 In Mexico: Avenida Nuevo Leon 250, Mexico 11, D.F.

16409, 5976, Printed in U.S.A.