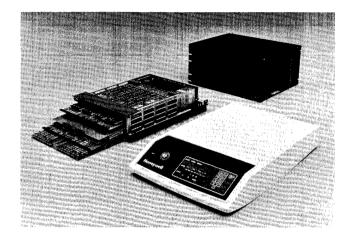
Honeywell

SERIES 60 (LEVEL 6)

Model 6/36 Minicomputer


The Model 6/36 is a solid-state, general-purpose minicomputer that can provide extensive system building capabilities and efficient, real-time handling of communications or control problems. The 6/36 central processor uses transistor-to-transistor logic (TTL) technology, and is state-of-theart, open-ended, powerful, and flexible. The 16-bit word size makes the most of combined economy and functionality.

The Model 6/36 includes a central processor mounted in a five-slot or ten-slot Megabus chassis that is expandable to 23 slots, a basic or full control panel, multiply/divide hardware, a real-time clock, and a ROM bootstrap loader. Options include a memory controller with either parity or EDAC (Error Detection and Correction) memory, 8192-word Memory-Pacs providing a maximum of 65,536 words, the Multiple Device Controller (MDC9101), the Multiline Communications Processor (MLC9103), the General Purpose DMA Interface (GIS9001), and the Mass Storage Controller (MSC9101) as well as the associated Deviceand Communications-Pacs, all Level 6 peripherals and their connector cables, a watchdog timer and the power supply, cabinetry and accessories (see Figure 1).

Physical configuration is flexible, reflecting the variety of uses Level 6 can be put to. The overriding consideration during development has been to provide a low-cost, modular, building-block system with minimal space and power requirements. Functional elements plug into or attach to each other without difficulty, needing little time and skill for assembly, disassembly and replacement.

FEATURES

- Firmware-driven processor:
 - Enables multiple vectored interrupts to 64 levels
 - Provides multiple vectored trap structure
 - Automatically saves and restores vital information in case of interrupts and traps
- Sophisticated addressing mechanism for:
 - Bit/byte/word/multiple word

- Immediate address
- PUSH/POP (auto post-increment/ pre-decrement)
- Base and program counter plus/minus displacement
- Megabus permitting interleaved transfers with a practical six-megabyte throughput rate, 300 nanosecond cycle time
- Direct memory access as standard input/output method
- Up to 65,536 words (in 8K-word Memory-Pacs) of memory; up to four Memory-Pacs per board
- Additional memory or additional/different interface requirements satisfied by simple, plug-in operation
- Automatic quality logic tests (QLT) as part of bootstrap operation
- Exclusive "shoelace circuit" with LED display reports on connect status and QLT
- 18 registers provide for:
 - Eight modes of addressing, including PUSH/POP
 - Multiple accumulators
 - Indexing
- Extensive use of firmware to support task dispatching and input/output control
- Optional attachment of Multiline Communications Processors, Multiple Device Controllers, useradaptable General Purpose DMA Interface, and Mass Storage Controllers

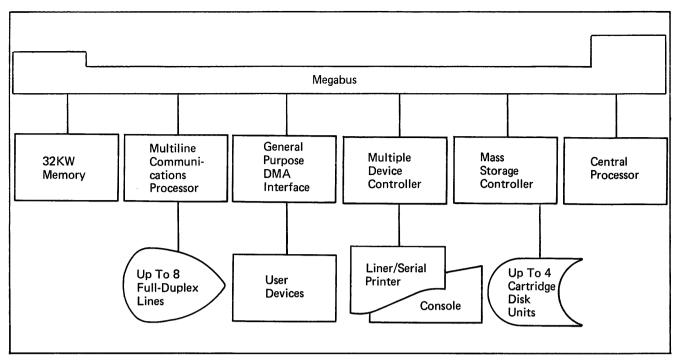


Figure 1. Typical 6/36 System

PROCESSOR COMPONENTS

The Model 6/36 includes, in addition to the central processor itself, the following components:

- Megabus
- Basic or Full Control Panel
- Five-Slot or Ten-Slot Chassis
- Power Supply
- Multiply/Divide
- Real-Time Clock
- ROM Bootstrap Loader

Memory

The two kinds of memory offered with the 6/36 – parity memory and EDAC memory – incorporate the reliability, low cost, and high density of MOS components.

The 6/36 memory uses state-of-the-art semiconductor technology, N-channel, and 4096-bit dynamic RAM as the storage media. Its design emphasizes high reliability, low cost, modularity, and simplified field maintenance. Like other elements of Level 6, the memory is a bus-compatible subsystem that communicates directly with and in the same fashion as any other element on the Megabus. TTL MSI circuitry minimizes power and space requirements for the extensive functionality provided. Self-contained on each Memory-Pac is bus support, refresh and initialization logic.

The parity memory offered includes logic for storing/retrieving two parity bits per word on each 8K-word Memory-Pac. Thus the actual word size in memory is 18 bits.

The EDAC memory includes six additional bits (EDAC code) per word, which are derived from the data bits. When the 22-bit word is read, memory attempts to correct any internally caused data error, reporting the results over two dedicated leads on the Megabus. Each lead sets a specific status bit depending on whether the error has been corrected or not. The EDAC memory is particularly desirable for large systems, where extended reliability is required.

With either kind of memory, address parity accompanies the most significant eight bits on the address bus. When memory detects an error on these bits, it does not respond; the result is a bus timeout. Note also that each device controller/communication processor on the Megabus checks parity on information received from the Megabus and indicates an error by setting a parity error status bit.

Memory Save and Autorestart, available as an option, ensures data retention for 131,072 bytes of memory for a two-hour period. Support circuit power runs are separated to minimize standby power drain. Electronics within the optional unit maintain battery charge, regulate outputs, and indi-

cate holdup failures. Power failures generate an interrupt, after which user-save operations are performed. Following power failures, operations are automatically resumed, starting at memory location zero.

The Watchdog Timer option enables interruption of central processor operations at preset time intervals.

Megabus

The Megabus is the heart of the 6/36 and central to its performance. All elements of Level 6 — central processor, memory, multiple device controllers, communications processors, General Purpose DMA Interfaces, and mass storage controllers — are attached to the Megabus and all transfers (memory, interrupts, and instructions) between them take place on it. Communication among these elements is asynchronous, permitting elements of different speeds to operate efficiently. Because of its versatility, only one Megabus is required for use on Level 6. In addition, the Level 6 Megabus offers an unusually high transfer rate: six million bytes (i.e., halfwords) per second (300 nanoseconds per 16-bit transfer cycle).

The Level 6 Megabus is based on TTL technology. Etched wires join connectors, meaning fewer connections, lower costs, and higher reliability.

Sixty-four vectored-interrupt levels are provided, and an automatic interrupt identification feature causes an interrupting device to identify itself to the central processor. No private wires are provided for interrupts; an interrupt is handled as just one more type of message transmitted on the Megabus. Parity checking ensures the integrity of data transfers.

The Megabus transfers either words or bytes. Memory is used efficiently, and controller transfers can start or end on arbitrary byte boundaries. All transfers are direct memory access; each device controller maintains its own information about the location in memory to/from which data is to be transferred and accesses that location directly. Each unit on the Megabus contains all the control and timing it needs to use the Megabus, without dependence on a central control unit of any kind.

Control Panel

A choice of two types of control panels offers users flexibility, economy, and security of operation:

- Basic Panel Offers security and economy in multisystem applications. Enables connection to the portable plug-in panel.
- Full Panel Allows the CP register and main memory contents to be entered and displayed. It controls, in a step-by-step fashion, the system initialization sequence by single-stepping a program, and stopping and starting program execution. Includes 6-digit hexadecimal (hex) display and 16-key hex pad.

A portable plug-in panel option (CPF9408) also provides security, economy, and flexibility of operation in multisystem environments. The panel is self-contained and full control, and can plug into any basic panel.

A vertical panel mounting option (CPF9407) is available for any rack-mountable system where physical space limitations exist. The panel replaces the standard inclined panel mounting and is designed for OEMs with their own cabinetry. If Honeywell cabinetry is desired, the panel can be ordered only with the following:

CAB9004: 60-inch rack without ... panel or doors

CAB9008: Rack panel ... for one side

CAB9009: Rack door ... full rear CAB9010: Extension table wing

CABINETRY

A variety of cabinetry options are available; all provide easy access and require only front-to-rear airflow for cooling.

- Drawer units 5.25 inches (13.33 cm) and 10.50 inches (26.67 cm) high for standard EIA rack mounting
- Cabinets 60.0 inches (152.40 cm) high for central processor, diskette, and other drawers
- Tabletop configurations, completely enclosed, completely portable, 5.5 inches (13.97 cm) high, 19.5 inches (49.53 cm) wide, 29.7 inches (75.43 cm) deep

OPTIONS

- PSS9001 Tabletop Memory Save and Autorestart for 8KW to 65KW Memory
- PSS9002 Rack-mountable Memory Save and Autorestart for 8KW to 65KW Memory
- CMC9001 Memory Controller with parity plus 8K-word Memory-Pac (CMM9001). Up to three more Memory-Pacs may be added.
- CMM9001 8K-word Memory-Pac with Parity
- CMC9002 EDAC Memory Controller plus 8K-

word EDAC Memory-Pac (CMM9002). Up to three more Memory-Pacs may be added.

- CMM9002 8K-word EDAC Memory-Pac
- CPF9401 Watchdog Timer
- CPF9408 Portable Plug-in Panel
- CPF9407 Vertical Panel Mounting

SIMPLIFIED MAINTENANCE

Level 6 provides simplified maintenance via:

- Automatically executed quality logic tests (QLTs) for the processor, memory, MDC, MLCP, and MSC boards permanently resident in their ROMs
- Use of LED indicators on each board to indicate the specific board failing a QLT
- A family of freestanding test and verification programs for the central and I/O subsystems that permit diagnosis to the appropriate level
- Easy replacement of failed system board or Pac by simply unplugging the failed unit and plugging in a replacement

SPECIFICATIONS

LEVEL 6 MEGABUS: Provides bidirectional asynchronous communications path between all boards

Cycle Time – 300 nanoseconds

Throughput — Up to three million words per second Slots — Up to 23

CENTRAL PROCESSOR: Interrupt-driven; processes bits, bytes, words, and multiwords; real-time clock; ROM bootstrap loader; basic/full control panel; multiply/divide hardware

Addressing modes — Direct (up to 64K words); indirect; base plus displacement; base plus displacement indirect; base plus index; base plus index indirect; base plus index push/pop; base push/pop; program counter plus displacement; program counter plus displacement; program counter plus displacement; indirect; indexed; direct register operand; and immediate operand Registers — 18

Interrupt Levels -64 (vectored), allowing interrupts to be set at the channel level

Options — Watchdog timer; Portable plug-in panel; Vertical panel mounting

MEMORY: Provides up to 64K words of storage in 8K modules

Type – 4K, N-channel, MOS Cycle Time – 650 nanoseconds

Size (16-bit words) - 8,192 to 65,536

Options – Memory Save and Autorestart; EDAC (Error

Detection and Correction)
MULTIPLE DEVICE CONTROLLER (MDC9101):

Controls up to four devices using Device-Pacs (i.e., adapters)

Type – Four levels of simultaneity Throughput – 32,500 words per second

MASS STORAGE CONTROLLER (MSC9101): Controls up to four disk units with total capacity from 2.5 to 44.8 million bytes

Type – One data transfer operation concurrent with multiple seek operations

Throughput -312,500 bytes per second

GENERAL PURPOSE DMA INTERFACE (GIS9001):

Provides user interface point for attachment of user-designed adapters

Type – Single level of simultaneity

Throughput – 500,000 words per second (memory-to-user device or opposite direction)

MULTILINE COMMUNICATIONS PROCESSOR

(MLC9101): Controls up to eight synchronous or asynchronous full-duplex lines or up to four broad band full-duplex lines

Type - Programmable

Interfaces — EIA RS232C, MIL 188C, Broad band CCITT V35, direct connect, Bell 301/303

Throughput – Up to 20,000 characters per second

INSTRUCTION SET

The programmer-oriented instruction set facilitates the writing of compact, efficient programs and offers the right instruction for each function. The multiple word length capability makes it easy to handle data elements of varying size, and the indexing techniques are completely integrated into the architecture.

SINGLE OPERAND INSTRUCTIONS

Modifica Description		
Modify	Description	
INC	Increment	
DEC	Decrement	
NEG	Negate	
CPL	Complement	
CL	Clear	
CLH	Clear Halfword	
CMZ	Compare to Zero	
CAD	Add Carry Bit to Contents	
Control	Description	
STS	Store S-Register	
JMP	Jump	
ENT	Enter	
LEV	Change Level	
SAVE	Save Context	
RSTR	Restore Context	
Bit	Description	
LB	Load Bit	
LBF	Load Bit and Set False	
LBT	Load Bit and Set True	
LBC	Load Bit and Complement	
LBS	Load Bit and Swap	
Double Word	Description	
LDI	Load Double Integer	
SDI	Store Double Integer	

DOUBLE OPERAND INSTRUCTIONS

BRANCH INSTRUCTIONS

Word	Description	Branch on Register	Description
LDR	Load R-Register	BLZ	Branch If R-Register Less
STR	Store R-Register		Than Zero
Word	Description	BGEZ	Branch If R-Register Equal to or Less Than Zero
SRM	Store R-Register	Branch on Register	Description
CIVID	through Mask	BEZ	Branch If R-Register Equal
SWR	Swap R-Register	DEZ	to Zero
CMR	Compare Contents to R-Register	BNEZ	Branch If R-Register Not
4DD	Add Contents to	DIVIDE	Equal to Zero
ADD	R-Register	BGZ	Branch If R-Register Greater
SUB	Subtract from R-Register	D02	Than Zero
MUL	Multiply R-Register	BLEZ	Branch If R-Register Equal
DIV	Divide R-Register by		to or Less Than Zero
DIV	Contents of Location	BODD	Branch If R-Register Odd
OR	Inclusive OR with R-Register	BEVN	Branch If R-Register Even
XOR	Exclusive OR with R-Register	BINC	Branch and Increment
AND	AND Contents with	BDEC	Branch and Decrement
AND	R-Register	Branch on Indicator	Description
Byte	Description		Description
LDH	Load Halfword into	B NOP	Branch No Operation
LDH	R-Register	BE	Branch If Equal
STH	Store R-Register Halfword	BNE	Branch If Not Equal
CMH	Compare Halfword to	BAL	Branch If Algebraically
CMII	R-Register	BAL	Less Than
ORH	Halfword Inclusive OR	BAGE	Branch If Algebraically
OMI	with R-Register	BAGE	Greater Than or Equal to
XOH	Halfword Exclusive OR	BAG	Branch If Algebraically
AOH	with R-Register	DAG	Greater Than
ANH	Logically AND Halfword	BALE	Branch If Algebraically Less
71(11)	with R-Register	DALL	Than or Equal to
LLH	Load Logical Halfword	BL	Branch If Less Than
DETI	into R-Register	BGE	Branch If Greater Than
		DGE	or Equal to
Mode and Base	Description	BG	Branch If Greater Than
Register		BLE	Branch If Less Than
MTM	Modify or Test M-Register	DED	or Equal to
STM	Store M-Register	BSU	Branch If Signs Unlike
LDB	Load B-Register	BSE	Branch If Signs Equal
STB	Store B-Register	BCT	Branch If Carry
CMB	Compare Contents to	BCF	Branch If No Carry
Oldb	B-Register	BBT	Branch If Bit Test
CMN	Compare to Null	201	Indicator True
SWB	Swap B-Register	BBF	Branch If Bit Test
LAB	Load Effective Address	ישנ	Indicator False
LAD	into B-Register	BIOT	Branch If I/O Indicator True
LNJ	Load B-Register and Jump	BIOF	Branch If I/O Indicator False
LINJ	Load D-Register and Jump	DIOI	Dianell II I, O indicator I also

Branch on Indicator	Description	
BOV	Branch If R-Register	
	Overflow	
BNOV	Branch If No R-Register	
	Overflow	

SHIFT INSTRUCTIONS

Shift Short	Description
SOL	Single Shift Open Left
SCL	Single Shift Closed Left
SAL	Single Shift Arithmetic Left
DCL	Double Shift Closed Left
SOR	Single Shift Open Right
SCR	Single Shift Closed Right
SAR	Single Shift Arithmetic Right
DCR	Double Shift Closed Right
Shift Long	Description
DOL	Double Shift Open Left
DAL	Double Shift Arithmetic Left
DOR	Double Shift Open Right
DAR	Double Shift Arithmetic Right

GENERIC INSTRUCTIONS

Instruction	Description
HLT	Halt
MCL	Call Monitor via Trap
RTT	Return from Trap

RTCN	Real-Time Clock On
RTCF	Real-Time Clock Off
WDTN	Watchdog Timer On ^a
WDTF	Watchdog Timer Off ^a
BRK	Break Trap

SHORT VALUE IMMEDIATE INSTRUCTIONS

Instruction	Description	
LDV	Load Value	
CMV	Compare Value to R-Register	
ADV	Add Value to R-Register	
MLV	Multiply by Value	

INPUT/OUTPUT INSTRUCTIONS

Instruction	Description	
IO	Input/Output Word	
IOH	Input/Output Halfword	
IOLD	Input/Output Load	

Specifications may change as design improvements are introduced.

Honeywell

^aOptional.