
HoneY"'ell

SERIES 60 (LEVEL 6)

The Level 6 GCOS/BES2 BASIC Interpreter is a
simple, easy-to-Iearn, all-purpose programming
language.

The BASIC Interpreter provides an interactive!
conversational environment in which a user can
compose, edit, debug, and execute programs writ­
ten in the Level 6 BASIC language. In addition,
BES2 BASIC, with its program library and data
file facilities, provides for program execution in a
nonconversational, "production" mode of openi­
tion, which includes loading previously prepared
programs from a disk library file and reading and
writing sequential data files (also stored on disk)
during the execution of the programs.

FEATURES

• Complete source program maintenance
• Data file processing language features
• Data file interchange with Level 6 FORTRAN
programs
• Multiple statements per line
• Immediate statement execution for interactive
programming and debugging
• Multidimensional arrays
• Unrestricted subscript expressions

ADVANTAGES

• Mature, standardized language
• Easy-to-Iearn, easy-to-use
• Fast debugging
• Useful for general problem solving and elemen­
tary production applications
• Smooth, simple interface with other BES2
facilities

MODES OF OPERATION

The BES2 BASIC Interpreter can be used in three
generally distinct modes of operation:

• Interactive problem solving
• Production program building/checkout
• Production program execution

© 1976, Honeywell Information Systems Inc.

GCOS/BES2
BASI C Interpreter

Interactive problem solving is normally a short­
term activity in which the user composes a small,
"one-shot" program to solve a current, often urgent
problem. In accomplishing this, the interactive,
conversational facilities of BES2 BASIC are heavily
used: composing, editing, and storing prograIp
statement lines in memory, trial execution of
sequences of these lines, and immediate execution
of individual statements for experimental and de­
bugging purposes.

Production program building/checkout is a longer­
term activity involving the development of a larger,
permanent program to be executed usually at regu­
lar intervals in the future. In this mode of opera­
tion, a disk library is used for external storage and
retrieval of the source program being built, and
sample data files can be created to test the proper
execution of the program logic. The facilities
described for interactive problem solving are, of
course, also available in this mode.

Production program execution requires only mini­
mal user/operator involvement and interaction.
After loading the BES2 BASIC Interpreter and
requesting the desired program from the disk/
diskette library file (via the OLD command), the
operator begins execution by typing "RUN."
During execution, a program performs reads from
and writes to data files on disk/diskette volumes,
or accepts data input from the operator console
device.

PROGRAM EDITING FACILITIES

The BES2 BASIC Interpreter contains a full range
of elementary editing functions to create and
change a stored source program. To add or insert
a new line into an already existing stored program,
the user types the appropriate new line number
followed by one or more BASIC statements sepa­
rated by backslashes N. To replace an existing
line, the user types its line number, followed by
the new statement(s). To delete an existing line,
the user types its line number, followed by a car­
riage return. To correct errors while typing a line,

File No.: IS21

the user types the standard BES2 line deletion and
character df" .:Con characters.

BASIC PROGRAMMING EXAMPLES

The following four examples utilize different
techniques to solve for one of the two roots of
the equation:

X2 + 2X - 4 = 0

The root is:

ROOT = -B + J B2-4AC
2A

where A = 1, B = 2, C =-4

The BES2 BASIC Interpreter supplied the under­
scored responses:

1. Use of READ and DATA Statements for
Variables

? NEW

READY
? 10 READ A,B,C
1. 20 LET X=(-B+(B /\ 2-4*A*C) /\ 0.5)/2*A)
1. 30 DATA 1,2,-4
140 PRINT "ROOT IS",X
150 END
? RUN
ROOT IS

50 EXIT
READY

1.23607

2. Use of Data Constants

? NEW

READY
110 LET X=(-2+(2 /\ 2-4*1 *(-4)) /\ .5)/(2*1)
1.20 PRINT "ROOT IS",X
? 30 END
? RUN
ROOT IS

30 EXIT
READY

1.23607

3. Use of INPUT Statement

? NEW

READY
110 INPUT A,B,C
1.20 LET X=(-B+(B /\ 2-4*A*C) 1\ .5)/(2*A)

l40 PRINT "ROOT IS",X
? 50 END
? RUN
l1,2,-4
ROOT IS

50 EXIT
READY

1.23607

4. Use of Arithmetic Calculator Loop

? NEW

READY
!.. 10 INPUT I\\PRINT I\\GO TO 10
? RUN
l (-2+(2/\ 2-4*1 *(-4)) 1\ .5)/(2*1)

1.23607
?

LANGUAGE SUMMARY

A BES2 BASIC program consists of a set of state­
ments, normally terminated by an END statement.
Each line (containing one or more statements) in a
stored program in memory must be numbered.
Unnumbered statements are executed immediately.
Table 1 lists the major constituents of the BES2
BASIC language. The angular and square brackets
in the table represent variables and optional
elements, respectively.

LET and GOTO are the assignment and control
transfer statements, respectively. GOSUB is a sub­
routine call, and the RETURN statement defines
the return point from the subroutine which was
called. IF ... THEN allows a single relational
operator between expressions, and control passes
to the statement number following the THEN if
the relation is true. NEXT is used to terminate the
range of the FOR statement and must use exactly
the same variable as in the FOR statement. If the
thi~d expression in a FOR statement is omitted, it
is assumed to be 1. The expression in the ON
statement is evaluated and truncated to an integer.
For expression =1, control is transferred to the first
statement number in the list; for expression =2,
control is transferred to the second statement num­
ber in the list, etc.

READ assigns to the listed variables the values
obtained from a DATA statement. The latter is
used to specify all the values needed for the vari­
ables. For output, the user can specify variable
names or literals; the literals are enclosed within
quotation marks. Thus, if X is 625, the statement

PRINT "THE SQUARE ROOT OF" X,
"IS" SQR (X)

causes the following to be printed:

THE SQUARE ROOT OF 625 IS 25.

For normal printing purposes, the output line is
divided into five zones of 13 spaces each. The user
can change the width of these zones, however,
through the use of commas and semicolons. A
PRINT statement without anything following
signals a new line.

The program terminates with the END statement;
STOP returns BASIC to the command mode.

DIM is used to specify numeric variable subscripts
whose values are not equal to 10, and to specify
the size of string variables when the default size is
not desired. DATA specifies numeric and string
values to be accessed by READ statements.

RESTORE returns the current pointer to the first
value of the first DATA statement in the program.
An INPUT statement types a question mark and
the program waits for the user to type in the data
items requested in the INPUT list.

Functions are defined by the DEF statement; the
function name consists of the letters FN followed
by a single letter. Any expression which fits on one
line can be used to define a function. The expres­
sion may even include other functions.

RANDOMIZE gets a new "seed" from the real­
time clock for use by the RND random number
function. OPTION STRINGSIZE specifies a default
size for all character strings, when the default
desired is not the standard 18.

REM statements are nonexecutable and are used
to enter comments and explanations in the pro­
gram listing.

FILES specifies all data files which are to be proc­
essed in the program, and implicitly assigns a
numeric designator to each, for use in the other
data file statements.

SCRATCH# logically clears the specified data file,
and opens it for output. WRITE# puts the speci­
fied data values out onto the data file. READ#
brings in input items from the data file and assigns
them to the variables listed. RESTORE# reposi-

tions the data pointer to the first item in the data
file and opens it for input. IF END# specifies the
processinQ" pa~h to be taken when an end-of-file
conditiOl. IS reached on the input data file.

Statements, control commands, built-in functions,
and diagnostics are summarized in Tables 1-4.
These and other language and programming con­
siderations are described in detail in the BES2
BASIC Reference Manual, Order No. AU44.

SYSTEM REQUIREMENTS

Minimum equipment required:

• Level 6 central processor with 16K words of
memory
• Dual diskette unit
• KSR teleprinter or compatible console

Optional equipment:

• 16K additional words of memory
• Additional dual diskette unit
• Cartridge disk units

Related software:

• Runs under the BES2 operating environment,
with 16K words of memory

Specifications may change as design improvements are introduced.

Table 1. BASIC Language Summary

[LET] <variable> L<variable>] ... ~ <expression>

. . >{THEN}<. > I F <expression> <relation> <expression GOTO line number

GOTO <line number>

GOSUB <line number>

RETURN

FOR <unsubscripted variable> = <expression> TO <expression> STEP <expression>

NEXT <unsubscripted variable>

ON <expression> GOTO <line number> , <line number> ...

STOP

END

DATA <numeric/string constant>, <expression> ...

READ <numeric/string variable> L<numeric/string variable>] ...

RESTORE

INPUT <numeric/string variable> L<numeric/string variable>] ...

PRINT <numeric/string expression>, <numeric/string constant> ...

DIM <variable> «integer> L<integer>] ...). ..

DEF FN<letter> «unsubscripted variable» ~ <expression>

RANDOMIZE

OPTION STRINGSIZE <integer>

R EM <any string of characters>

FILES <file name> [;<file name>] ...

SCRATCH# <integer expression>

WR ITE# <integer expression> , <numeric/string expression> , <numeric/string constant> ...

READ#<integer expression>, <numeric/string variable> L<numeric/string variable>] ...

RESTORE# <integer expression>

, . . > {THEN} < . > I F EN D# <Integer expression GOTO line number

Table 2. Control Commands

OLD <program name>

NEW [<program name>]

NAME [<program name>l

CLEAR

RUN [<line number>]

LIST

Loads named program from disk library
into current program area in memory,
and clears data area.

Clears current program and data area in
memory, and sets current program name
as specified.

Changes current program name as
specified.

Clears data area only in memory.

Starts execution of current program,
beginning at lowest·numbered line or at
line number specified.

Lists entire current program on
teletypewriter.

LIST <line number>

LIST <line number> ,<line number>

SAVE [<program name>]

RESAVE [<program name>]

QUIT

Lists current program beginning at line
number specified.

Lists current program beginning at first
line number specified and ending with
last line number specified.

Writes current program on disk library,
using program name specified.

Replaces named program on the disk
library with current program.

Exits from BASIC Interpreter environ·
ment, returning control to BES2 Command
Processor.

Table 3. Built-in BASIC Functions

Function
Reference Mathematical equivalent

Function
Reference Mathematical equivalent

SIN(X}

COS(X)

TAN(X)

ATN(X)

EXP(X)

lOG(X)

ABS(X)

sin (x)

The trigonometric sine of the argument x.

cos (x)

The trigonometric cosine of the argument x.

tan (x)

The tangent of the argument x.

tan- l (x)

The arctangent of the argument x.

ex
The exponential function.

loge (x)
The logarithm to the base e of the argument x.

x
The absolute value or magnitude of the
argument x.

INT(X)

SGN(X)

SOR(X)

RND

The largest integer less than or equal to the
argument x.
INT (+1.5) ~ 1
INT (-1.5) ~ -2

The sign of the.argument x.
X<O, SGN(X) ~-1
X=O, SGN(x) = 0
X>O, SGN(X) ~ 1

JX, where x ;;;, 0
The positive square root of the argument x,
where the argument must be greater than or
equal to zero.

A random number with a value between 0
and 1.

NOTE: The argument x is expressed in radians.

AF

AS

C?

CO

DA

DF

DL

DP

DV

DZ

FD

FI

FN

FO

GS

Ie

ID

IV

LG

LI

LO

MA

Table 4. Diagnostic Error Codes

No data files attached but FILES statement found MO Memory overflow

Array subscript out of bounds M, Missing or misplaced comma

Unexpected character (c) found M~ Missing or misplaced equals sign

Close data output file problem M) Missing or misplaced right parenthesis

Attempt to READ more data than available (in M(Missing or misplaced left parenthesis
DATA statement or data file) NO Numerical overflow
Data file numeric designator error: not integer, not NU Numerical underflow
in range, or not defined NX NEXT statement has no matching FOR
Statement terminator error ON Nonpositive expression in ON statement, or missing GOTO
Two decimal points in number

OS OPTION STR INGSIZE format error
Dummy variable in DEF statement subscripted

PD Illegal item delimiter in PRINT statement
Division by zero

RF READ#format error: missing comma after file
Invalid delimiter in FOR statement number
Data file input problem: output file only or hard·

RT RETURN statement found outside of subroutine
ware problem

SF SCRATCH# format error
Characters FN misplaced in DEF statement

SL String length specified over 60 characters
Data file output problem: cannot open or hardware
problem SN Statement number error (range 1 to 9999)

GOSUBs nested more than eight deep SO String overflow

Incorrect condition in IF statement SO Negative square root function argument

Illegal statement or variable name TH THEN or GOTO left out of IF statement

Illegal index variable in FOR statement TX Missing or misplaced quotation marks

Negative logarithmic function argument UF Undefined function

Library input file not attached or not present UM Unitary minus error

Library output file not attached or not present
US Undefined statement number

Mixed assignment: string assigned to or compared
UV Undefined variable

with numeric variable WF WR ITE# format error

Honeywell
Honeywell Information Systems

In the U.SA. 200 Smith Street. MS 486. Waltham. Massachusetts 02154
In Canada 2025 Sheppard Avenue East. WiUowdale. Ontario M2J 1 W5

In MexIco: Avenida Nuevo Leon 250. MexIco 11. OF

16371,5876, Printed in U.S.A. AW70, Rev. 0

