
HONEYWELL BULL' SPECIFICATION NUMBER I DISTRIBUTION I SHEETS I REV
BILLERICA 60165904 CODE l/xx

CUSTOM AND TITLE:
SPECIAL PRODUCTS

ENGINEERING PRODUCT SPECIFICATION
PREPARED BY

R Lemay 16-BIT CUSTOM PROCESSOR

APPROVED BY

REVISION

1

AUTHORITY DATE SIGNATURE SHEETS AFFECTED

Ultimate 03MAR82 R. Lemay all

2 Ultimate 17MAY84 R. Lemay all

3 Honeywell Bull 04JAN88 R. Lemay see note

This revision is being issued:

1. to reflect a change in the documentation structure. Prior to
this revision, the specification data contained in this
document and ~he Technical Description were combined.

2. to announce "THE TRANSFER LANGUAGE COMPILER" (see Section
Four). .

3. to expose enhancements introduced in the redesign of the
product (see Appendix A).

HONEYWELL BULL CONFIDENTIAL AND PROPRIETARY

3

16-BIT CUSTOM PROCESSOR SPECIFICATION (60165904) PAGE i-I

SECTION 1

1.1 Purpose

1.2 Scope

1.3 Disclaimer

1.4 References

1.5 Acronyms

TABLE OF CONTENTS

INTRODUCTION

SECTION 2 THE FIRMWARE DICTIONARY

2.1 Naming.Conventions

2.2 Addressing and Sequencing

2.3 Glossary

2.4 External Control and Synchronization

2.5 Declarations

2.6 Micro-operations

SECTION 3 FLOWCHARTING CONVENTIONS

1-1

1-1

1-2

1-2

1-2

2-2

2-2

2-3

2-8

2-11

2-12

3.1 The Symbology 3-1

3.2 Addresses 3-1

3.3 Flow 3-2

3.3.1 Two-way Choice
3.3.2 Splatters

SECTION 4 TRANSFER LANGUAGE

4.1 Source File Format

4.1.1 Line Length
4.1.2 White Space
4.1.3 Valid/Invalid Characters
4.1.4 Comments

PAGE i-I

3-2
3-3

4-1

4-1
4-1
4-1
4-2

TABLE OF CONTENTS

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY

16-BXT CUSTOM PROCESSOR SPECIFICATION (60165904) PAGE i-2

4.2 Lexography

4.2.1 Case

4-2

4-2
4-2
4-2
4-2
4-2
4-2
4-3

4.2.2 Source File Length
4.2.3 Statement Terminator
4.2.4 Literal Text Block
4.2.5 Literal Text Block Restrictions
4.2.6 Literal Text Block "Compilation"
4.2.7 Reserved Words

4.3 Organization of Source File

4.3.1 Statement Types
4.3.2 Commentary

4-3

4-3
4-3
4-3 4.3.3 Pre-processor Directives

4.3.3.1 Include '<pathname>'
4.3.3.2 Skip <count>

4-3
4-3

4.3.4 Local Definitions 4-4

4.3.4.1 <identifier> EOU <predefined identifier> 4-4
4.3.4.2 <identifier> CONST <integer constant> 4-4
4.3.4.3 <label> EXTERN 4-4
4.3.4.4 <label> PUBLIC 4-4

4.3.5 Block Definitions 4-4

4.3.05.1 Block Definition 4-5
4.3.5.2 End 4-5
4.3.5.3 Preserves 4-5
4.3.5.4 Saves 4-5

4.3.6 Procedure 4-5

4.3.6.1
4.3.6.2
4.3.6.3
4.3.6.4
4.3.6.5
4.3.6.6

Operation Clause
Assignment Operation Clause
Control Operation Clause
Next Address Specifier Operation
Default Next Aadress
Procedure Labels

Clause

4-5
4-6
4-6
4-6
4-6
4-6

4.4 Expressions

4.4.1 Identifier

4-7

4-7
4-7
4-7
4-8

PAGE i-2

4.4.2 Integer Constant
4.4.3 Evaluation Range
4.4.4 Operators

-
4.4.4.1 Parenthesis
4.4.4.2 Unary Minus
4.4.4.3 Unary Tilde
4.4.4.4 Unary ++ and --
4.4.4.5 Unary Bracket Set
4.4.4.6 Unary ADDR()
4.4.4.7 Unary Select
4.4.4.8 Binary Operators + and -
4.4.4.9 Rotate B~nary Operators
4.4.4.10 Underscore Binary Operator
4.4.4.11 Boolean Binary Operators
4.4.4.12 Equal Binary Operator
4.4.4.13 Comma Binary Operator

4-8
4-8
4-8
4-8
4-8
4-9
4-9
4-9
4-9
4-10
4-10
4-10
4-11

TABLE OF CONTENTS

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY

16-BIT CUSTOM PROCESSOR SPECIFICATION (60165904)

4.5 Control Clauses

4.5.1 Stalls
4.5.2 Reads
4 . 5 . 3 Writes .
4.5.4 Ldsynd
4.5.5 Procedure Fetch
4.5.6 Nofau1t

4.6 Next-Address-Specifier Clauses

4.6.1 Goto

SECTION

5.1

5.2

5.3

4.6.2 Splatter
4.6.3 Call
4.6.4 Return
4.6.5 Conditional

5 THE FIRMWARE DEVELOPMENT FACILITY

FDF Interface

The Help Screen

The Command Set

5.3.1 Silo Commands
5.3.2 Run Controls
5.3.3 Register Displays
5.3.4 Ep~logue Controls
5.3.5 F~rmware Array Commands

5.4 Missing-Stall Catcher

PAGE i-3

4-11

4-11
4-11
4-11
4-11
4-12
4-12

4-12

4-12
4-12
4-12
4-13
4-13

5-2

5-3

5-4

5-4
5-5
5-6
5-7
5-8

5-9

PAGE i-3 TABLE OF CONTENTS

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY

16-BIT CUSTOM PROCESSOR SPECIFICATION (601~S6904) PAGE 1-1

INTRODUCTION

The "sixteen-bit" custom processor is a nine megahertz, twenty
four-bit wide, microprogrammable MEGABUS connected firmware engine
driven by a n~nety-six-b~t wide control store word and having a blank
identity.

1.1 PURPOSE

This specification imparts information which is necessary
who wish to microprogram the custom processor. Those who
personalization of the custom processor need be capable of
and testing microcode. For testing microcode, Custom and
Products offers a Firmware Development Fac~lity which
simplifies the task (see section 5).

1.2 SCOPE

for any
attempt
writing
Special
greatly

This document is intended for the prospective microprogrammer. It
describes the operation of the sixteen-bit custom processor at the
level of an experienced coder. Othersi such as test technicians,
might also find the information usefu but should refer to the
"TECHNICAL DESCRIPTION OF THE 16-BIT CUSTOM PROCESSOR" for a detailed
description of hardware and firmware operations.

In addition to this section, this document contains four other
sections.

Section 2 contains the firmware dictionary which constitutes the
formal specification.

Section .3 contains flowcharting conventions.

Section 4 contains a specification for the Transfer Language
Compiler. The Transfer Language allows firmware to be coded at tne
reg~ster-transfer level rather than the "micro-operation" level.

Section 5 contains a description of the Firmware Development
Facility which is available to minimize firmware checkout time.

PAGE 1-1 INTRODUCTION

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY

16-BIT CUSTOM PROCESSOR SPECIFICATION (601656904) PAGE 1-2

1.3 DISCLAIMER

The firmware dictionary of Section 2 serves as the specification
for the custom processor. The firmware dictionary shall govern in any
disagreement between it and other descriptive documents.

1.4 REFERENCES

In order to code firmware to execute on the CUP16, the following
additional documents may prove useful:

CUP16 logic block diagrams
for the mother board 60156205

for the daughter board 60156210

Other related documents are:

16-Bit Custom Processor Technical Description 60165905

CUP16 Test procedures 71220271

RTL6 assembly language manual LDA-021

ACRONYMS

See also Table 2-2

ACRONYM DEFINITION

C&SP Custom and Special Products
CUP CUstom Processor
LBD Logic Block Diagram (Schematic)
FDF Firmware Development Facility
PROM proarammable Read-Only Memory
RAM Ran om Access Memory
SCRAM Stop Code RAM

PAGE 1-2 INTRODUCTION

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY

16-BIT CUSTOM PROCESSOR SPECIFICATION (60165904) PAGE 2-1

CUSTOM PROCESSOR DICTIONARY

MODEL CUP-DICT-1984-05-17;
PARAMETERS;
ROMDEF MAIN, 96,16384,006F2000000000000000EOOO#,$$MCS ;\

I

I

; A;A ; A;B ; ; AS; ;AF;
0 3 7 11

;AD; I Opi SRI ; SD; 1 **1 RWI R; M I PSi ; DB;
16

;
32

Z;B I
48

;LD;
64

C; K 1 BII
80

19 23 27

D; 1 ; ; D; 2 ;
35

51

67

83

39 43

F;L ; I ** I ; BR; ; M;K
55 59

; . ;MG; 1 **1 CA'I ; T;C ;
71 75

; NA;
87 91

where ** = F/W Parity checks

FIGURE 2-1
FIRMWARE FIELD BI.T ALLOCATION

;

15

31

47

63

79

95

2.1 NAMING CONVENTIONS

Field, Micro, & Step names consist of alphanumeric
characters, hyphens, colons, & apostrophes. They must start with
an alphabetic character. Generally, the HYPHEN separates words, the
APOSTROPHE separates clauses, & the COLON means "equals" or
"receives". ("CLAUSE" here refers to descriptions of s~multaneous
&/or independent actions.)

A double colon is sometimes used to distinguish "partitioned"
transfers. A terminal apostrophe signifies logical inversion
("NOT").

PAGE 2-1 CUSTOM PROCESSOR DICTIONARY

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY

, "-","",.,-",","-"._----

' ..
16-BIT CUSTOM PROCESSOR SPECIFICATION (60165904) PAGE 2-2

TABLE 2-1
PROM CHIP ALLOCATION

ELSE BANK Part no. RLS2.0 RLS2.1 IF BANK Part no. RLS2.0 RLS2.1

bits 00-07 -setOlrv L12D bits 00-07 -set13rv LIOD
08-15 -set02rv D1lD 08-15 -set14rv D09D

16-23 -set03rv FllD 16-23 -set15rv F09D
24-31 -set04rv J12D 24-31 -set16rv J07D

32-39 -set05rv L07D 32-39 -set17rv L09D
40-47 -set06rv J09D 40-47 -set18rv JIOD

48-55 -set07rv L04D 48-55 -set19rv L06D
56-63 -set08rv J04D 56-63 -set20rv J06D

64-71 -set09rv M12M 64-71 -set21rv MIOM
72-79 -set10rv K12M 72-79 -set22rv KIOM

80-87 -setllrv M07M 80-87 -set23rv M05M
88-95 -set12rv N07M 88-95 -set24rv N05M

"-set" is a one letter and three digit PROM set number
distinguishing for instance, a disK cache from a l750A
processor, and

"rv" 1S the firmware revision number of the PROM set.

2.2 ADDRESSING AND SEQUENCING

Firmware steps in the CUP are identified by a "Control Store
Address" (CSA) & optionally a mnemonic label. In this discussion,
wherever reference is made to a CSA, it should be understood that the
associated label may be substituted, but any restrictions on CSA
value still apply. CSA's are l4-bit guantities. Values from 2000#
through 3FFF# are called the "If Bank", 0000# through lFFF# are
called the "Else bank".

Two CSA's are called "TWINS" if they differ by exactly 2000#.

A "SPLATTER BLOCK" is a group of 16 If-bank CSA's which differ
only in their LSD (e.g." 2340,2341,2342, ... (234F). An Else-bank CSA
is said to "correspond' to an If-Dank CSA 1f its twin is a member of
the same splatter block. Thus 0342 corresponds to 2349 or 2340 or
2342, etc.

A "SPLATTER VECTOR" is a 4-bit value used, in whole or in part,
to select a CSA within a splatter block. This selection is
performed by substituting the vector, through a specified mask, into
the LSD of the splatter block address.

Firmware sequencing in the CUP is never implicit nor
arithmetically defined --- every step specifies its successor or
ch01ce of successors.

(1) The succession may be unconditional. For example:

(2)

PAGE 2-2

GO-TO(CSA) where CSA = any address in either bank

The succession may involve a choice between an If-bank CSA
(CSAI) & a corresponding Else-bank CSA (CSAE), depending on
the value of one of 64 "Test Conditions" or their
complements --- for example:

IF-ACK(CSAI,CSAE)

branches to CSAI if "ACK" is true, else to CSAE.

CUSTOM PROCESSOR DICTIONARY

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY

· . 'a" --~ .. -................. -< .. -.- - "-.

16-BIT CUSTOM PROCESSOR SPECIFICATION (60165904) PAGE 2-3

(3) The succession may involve a choice among 2, 4, 8, or 16
members of a splatter block, depending on the number of
one-bits in the mask. The choice within the (sub)block is
determined by the value of a specified splatter vector.

For example:

BR-PO(F,CSAI)

perfo~m~ 16-way
conta1n1ng CSAI.

OR

BR-RAMAD(RAC,7,CSAI)

splatter to a member of the block

performs 8-way splatter (0,1,2, ... ,7), controlled by the 3
LSB of RAC.

OR

BR-RAMAD(RAC,E,CSAI)

performs 8-way splatter (0,2,4, ... ,E), controlled by the 3
MSB of RAC.

(4) Cases 2 & 3 may be combined. For example:

IF-FLAGT5 BR-FLAGS(F,CSAE)

branches to CSAE if FLAGT5 is false, otherwise uses flags
TO,Tl,T2,T3 to select an entry in the splatter block
corresponding to CSAE.

(5) The succession may involve an unconditional subroutine exit.
for example:

(6)

(7)

RETURN

exits to the CSA currently on "top" of the two-level return
stack. (At any time, any If-bank CSA may be "PUSH"ed onto
the stack.)

The succession may involve the election (by the subroutine)
of alternate exits. For example:
RETURN I (D)

exits to the CSA formed by the top stack entry (AND> FFFD#

The succession may involve a choice, based on a test
condition, between a subroutine exit (either normal or
alternate) and a continuation. For example:

IF-FLAGT6 RETURN{CSAE)

exits to the CSA at the top of the return stack only if
FLAGT6 is true, else it continues to CSAE.

2.3 GLOSSARY

Symbols &
given in Table 2-2.

PAGE 2-3

abbreviations used in descriptive comments are

CUSTOM PROCESSOR DICTIONARY

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY

' ..
16-BIT CUSTOM PROCESSOR SPECIFICATION (60165904) PAGE 2-4

TERM

&
()

, (COMMA)

I ••• ,

<=
<=SL=
<=SR=
(AND>
(GE>
(lOR>
(LT>
(NE>
<NOT>
<XOR>
ADRA

ADRB

ADRP

ADRS

ADRX

ALU -
ALUF

ALUR

ALUS
ALUY

APLONG

APWRAP

PAGE 2-4

TABLE 2-2
DICTIONARY SYMBOLS AND ABBREVIATIONS (PART 1)

I

BIT #'S

08-31

08-31

08-31

08-31

08-31

08-31
08-31

08-31

08-31

08-31

I

MEANING

AND
Bit position(s) or expression grouping e.g.

(3-6,9-11) denotes 3,4,5,6,9,10, & 11
Data concatenation or separator of items in

a sequence of items
Miss~ng items in implied sequence
Rece~ves
Receives, shifted left one bit position
Receives, shifted right one bit position
Logical product (of multi-bit operands)
Greater than or Bqual to
Inclusive OR (of multi-bit operands)
Less Than
Not Equal to
Complement (of multi-bit operand)
EXclusive OR (of multi-bit operands)
Address register A, loaded from Z-bus~ used
to supply address for most non-proceaural
data references

Address register B, loaded from Z-bus~ used
to supply addre~s for some non-proceaural
reads ~ most wr~tes

Address register P (actually a group of
several registers), loaded from the Z-bus
and used to supply address for procedural
reads. If APLONG ~s false, ADRP assumes a
5l2-byte frame size and can be loaded in
sections (see APLONG):

ADRPH (b~ts 08-22) ~s the frame number
which is changed infrequently.

ADRPL (bits 23-31), the byte position in
the current frame, which is loaded by
every successful Dranch.

Two versions of ADRP are maintained:
One, "PCTR", available to F/W via the
D-bus, represents the current offset of
code Deing executed.
The other supplies ADRS, and thus the
address from which procedure is being
prefetched.

Selects Address register ADRA, ADRB, ADRP,
or ADRX for delivery to the MEGABUS, the
local memory and/or the D-bus. Selection

-is latched when the request is initiated
and held until request is ACK'd or NAK'd.

Register retaining the value of the MEGABUS
address bus during the most recently
accepted unsolicited MEGABUS cycle.

Arithmetic/Logic Unit
ALU Function-generator, capable of: Add,
Subtract, Inclusive-OR, AND, NAND,
Exclusive-OR, Exclusive-NOR

ALU operand R, chosen from: SP(A), D-BUS,
or ZERO

ALU operand S, chosen from: SP(A), SP(B),
Q, or ZERO

ALU output Y (available as Z-bus source)
equals either ALUF or SP(A)
If false, ADRP is load and carry is
partitioned 15/9 bits and proceaure
related page faults are not allowed

Selects 512 or 8192 page size

CUSTOM PROCESSOR DICTIONARY

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY

16-BIT CUSTOM PROCESSOR SPECIFICATION (60165904) PAGE 2-5

TABLE 2-2
DICTIONARY SYMBOLS AND ABBREVIATIONS (PART 2)

TERM

A RAM

BUFFER-BOUND
CACHE

CARRY

CMDPAR

CNFG

CS
CSA
CSAE

CSAI

CSTEAL

CYCLE

D-BUS

DOUBLE-ZERO

FCODE1

FIRMWARE

PAGE 2-5

BIT #'S

08-31

00-95
00-13
00-13

00-13

0-3

08-31

00-95

MEANING

Address-register RAM, containing physical
translations of 16 register values

see "FRAME-BOUND"
A memory which remembers data associated
with recent references. The cache is
connected to the Custom Processor via a
"private" interface. This private inter
face may instead connect a Local Memory.

carrI from MSB of ALU, as captured by
IND 1)
ALU ALUS ALUF CAR R Y
SIGN SIGN SIGN ADD R-S S-R

+ + + 0 1 1
+ + - 000
+ - + 101
+ - - 001
- + + 110
- + - 010
- - + 1 1 1
- - - 100

In addition to address and data parity, a
parity bit on the command leads
accompanies all MEGABUS transfers.
See CNFG.

An eight-bit register which controls CUP
behavior. All eight bits can be tested:
CMDPAR controls Command Parity on MEGABUS
CSTEAL controls CUP priority on MEGABUS
APLONG controls ADRP partit~oning *
APWRAP controls assumed page size
FCODE1 allows CUP to reinitiate QLTs
CNFGA,B,C determine three bits of

"Who are you" reply .
Control Store (FfW) output
Control Store Address
Control Store Address in Else-bank

(OOOO-lFFF)
Control Store Address in If-bank

(2000-3FFF)
A mechanism which allows the CUP to behave

as a low priority MEGABUS requestor even
when pulled into a high priority slot.
See CNFG.

Auxiliary counter for selecting block
withing Custom Decoder PROM (May not be
changea & used in same FW step)

Data DUS input to ALU &/or OUTR. Numerous
sources, including concatenation of
differently sourced bytes

=1 iff ALUF(08-31)=0 & IND(3)=1, as
captured by IND(4)

A mechanism which responds to special
MEGABUS cycle (functl0n code Ol) which
(re)initiates the QLT regardless of the
current Custom Processor state. See CNFG.

The CUP executes 96-bit instructions.
These instructions can be stored in
either a non-writable medium (PROMs) or a
writable medium (RAMs). 4K, 8~ or 16K of
PROMs may be installed. When RAMs are
employed, the array is always 16K words.

CUSTOM PROCESSOR DICTIONARY

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY

..

" ..
16-BIT CUSTOM PROCESSOR SPECIFICATION (60165904) PAGE 2-6

TERM

FLAGP

FLAGT

FRAME-BOUND

FWPROM

FWA
FWR
FWRAM

HEX-DECODER

IFF
IND

INRA

INRB

INRX

LSB
LSD

PAGE 2-6

TABLE 2-2
DICTIONARY SYMBOLS AND ABBREVIATIONS (PART 3)

BIT #'S

0-7

0-7

00-95

00-13
00-95
00-95

16-31

0-7

16-31 -

16-31

16-31

MEANING

Eight F/W controlled, F/W testable flags,
not cleared between instructions. Current
assignments include:

O-Passed CUP & MCA QLTS
I=Passed CUP QLT (If FLAGPO = 0)
2=Force bus errors (if FLAGPO = 0)
3=
4=
5=DSASTR inhibit
6=On-line mode
7=Trace mode

Eight F1W controlledft F/W testable flags,
cleare~ (micro "INT') at each $RNI. In
addition to general utility, uses are:

O=Local splatter
1=" "& shift end-effects
2= tI "

3=" "
4=
5=
6=SCRAM input, invert SCRAM output
7=

=1 iff Z-bus(08-22) (NE> D-bus(08-22) as
captured by IND(6)

A non-writable flrmware array (and also a
micro calling for firmware "execution to
emanate from PROMs)

Firmware Write Address register
Firmware Write (data) Reglster
A writable firmware array (and also a

micro calling for firmware execution to
emanate from RAMs)

Bit mask formed by setting to 1 the bit
whose position number is 16 + the numeric
value of RAMAD, & setting to 0 all other
bits

If and only if
Indicator register. Sam"Qles, on command,
values of 8 variables ror subsequent
testing and/or other use.

O=Overflow indicator
I=Carry indicator
2=Sign indicator
3=Zero indicator
4=Double-zero indicator
5=Odd indicator
6=Frame-bound indicator
7=StoQ-code indicator

Buffer ror receiving non-erocedural data
requested using ADRA, & Ior first half of
doubleword data

Buffer for receiving non-Qrocedural data
requested using ADRB, & ror second half of
doubleword data

Buffer for receiving inquiry identification
word during unsolicited MEGABUS cycles
(" interrupts")

Least Signlficant Bit{s)
Least Significant Diglt(S)

CUSTOM PROCESSOR DICTIONARY

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY

16-BIT CUSTOM PROCESSOR SPECIFICATION (60165904) PAGE 2-7

TERM

LOCAL
MEMORY

MCA

MSB
MSD
NN
NNNN
ODD
OPREG

OUTR

OVERFLOW

P6SYNC

P-BUS

PCTR

PROM

Q

PAGE 2-7

TABLE 2-2
DICTIONARY SYMBOLS AND ABBREVIATIONS (PART 4)

BIT #'5

0-7

16-31

0-7

23-31

08-31

MEANING

A dual-ported memory array which maY,be
connected to the Custom Processor v~a a
"private" interface. This same "private
interface may instead connect a cache.

Micro-Code Analyzer (or serial number):
when "IF-MCA" test says serial-number unit
is connected, then N-th byte of serial
number is obtained by emitting N to
Z-bus(24-31) in one step & executing
"Z:OPT" in the next step. When "OPT:Z"
strobe is issued, Z-bus bits which equal
"one" invoke corresIOnding actions on the
serial-number unit if present):

Z-BUSl08-1S) = FU Z-BUS 16) = Traffic-light on
Z-BUS 17) = Traffic-light off
Z-BUS 18-31) = RFU

Most Signi icant Bit{s)
Most Significant Dig~t(s)
2-hex-d~git (8 bit) literal constant
4-hex-digit {16 bit) literal constant
Z-bus ada (b~t 31=1) as captured by IND{S)
OP-code register loaded by micro LD-OP from
P-bus(0-7), to address custom decoder PROM

Output reg~ster, loaded from D-bus{16-31),
dr~ves data to MEGABUS and to Local
interface in all write transactions

Arithmetic condition, captured by IND{O);
w~ere like-signed operan9s give opposite
s~gned sum, or unegual-s~gned operands
g~ve difference wi~h sign oppos~te to
m~nuend's

ALUR ALUS ALUF OVERFLOW
SIGN SIGN SIGN ADD R-S S-R

+ + + 0 0 0
+ + - 1 0 0
+ - + 0 0 1
+ - - 0 1 0
- + + 0 1 o.
- + - 0 0 1
- - + 1 0 0
- - - 0 0 0

An indicator signifyinq that a MEGABUS cycle
has occurred s~nce FLAGP6 was" last set
(intended for testing)

Bus supplying next byte of procedure from
pre fetch buffer to RAA, RAB, RAC, splatter
logic, Opreg, and/or D-bus.

Counter which tracks byte offset of
procedure within current frame (see "ADRP")

A non-alterable medium in which (for
instance) a firmware array is stored.
"Quotient" register in R~U

CUSTOM PROCESSOR DICTIONARY

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY

16-BIT CUSTOM PROCESSOR SPECIFICATION (60165904) PAGE 2-8

TERM

RAA

RAB

RAC

RAD

RALU

RAMAn

RPSYNC

SCRAM

SD

SEMA4

SHIFTER

SHRG

SIGN
SP

SP(A)

SP(B)

STOP-CODE

SYNDROME

TIMER

UAR

UNLOCK

Z-BUS

ZERO

PAGE 2-8

TABLE 2-2
DICTIONARY SYMBOLS AND ABBREVIATIONS (PART 5)

BIT #'S

0-3

0-3

0-3

0-3

08-31

0-3

08-31

08-31

08-31

08-31

08-31

08-31

08-31

08-31

MEANING

Register loaded from P-bus(4-7) for use by
~AMAD. Typically retains 2nd nibble of each
~nstruct~on.

Register loaded from P-bus(0-3) for use by
~AMAD. Typically retains 3rd nibble of each
~nstruct~on.

Register loaded from P-bus(4-7) for use by
~AMAD. Typically retains 4th nibble of each
~nstruct~on.

Counter loaded from shifter(28-3l) for use
by RAMAD, & also as iterat10n control.
Incremented by "INC-RAD" & by "IF ... -RAD:F"

Register-file (see "SP") & ALU, constructed
of 6 AMD#2901 chips

ARAM address MUX (= RAA RAB, RAC or RAD)
also available to hex-decoder and/or to
splatter logic

An indicator signifying that a MEGABUS cycle
has occurred S1nce an interrupt from the
MEGABUS was received (intendea for testing)

Stop-Code RAM, 256 x 1, capable of
recognizing stop-codes in byte string
operations. Addressed by D-bus(16-231,
output available to be captured by IND(7)

Shift Distance (rotate left/right any
multiple of four bit positions)

An ind1cator which detects if a write-unlock
has occurred since my most recent read-unlk
Z-bus rotated by SD
to feed D-bus, &/or SHRG, &/or RAD

SHifter ReGister. On command, captures
"shifter" output for later use.

ALUF(08), as captured by IND(2} .
Scratchpad (RALU register file) containing
16 work locations, 0-15 (or O-F).

First addressed SP entry, available as
input to ALUF &/or directly to ALUY

Second addressed SP entry, available as
input to ALUF &/or as receiver from ALUF

Any of up to 7 byte values defined to
90ntrol termination of a byte string
~nstruct~on

Snapshot of status at latest DSASTR (or
use of micro "LD-SYND"). Bits represent:
-08=Master ·Clear 22=Data parity,left

09=Powering up 23=Data parity,right
10-13=CUP channel # 24=Proc UAR
14=0 25=Proc RED
15=Addr. parity bit 26=Proc parity
16=Timout - 27-28=0
17-20=0 29=FW parity,left
21=Data red 30=FW parity,midl

A loadable and readable ~;~~re~a~~r~hr~g~nts
firmware steps
Unavailable Resource, sensed by either
MEGABUS timeout (address unrecognized), or
procedure crossing frame boundary
An indicator whicn detects if an unlock has
occurred since my most recent NAK'd cycle
Bus supplied by ALUY &/or INRA or INRB,
feeds shifter address registers ARAM
=1 iff ALUF(08-31)=0, as captured by IND(3)

CUSTOM PROCESSOR DICTIONARY

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY

16-BIT CUSTOM PROCESSOR SPECIFICATION (60165904) PAGE 2-9

2.4 EXTERNAL REFERENCE CONTROL AND SYNCHRONIZATION

The initiation, monitoring, and consummation of external
references either v~a the MEGABUS or via the Local interface (to the
cache or Local Memory) - requires reasonable care in the use of
resources which may still be committed to a previous activity. The
CUP has been designed to provide this care automatically whenever
practical. However, there remain two kinds of situation in which the
~icrocoder must assume responsibility for defining the required
~nterlock:

1- the degree of interference to be protected against is a
function of the sequence of firmware steps executed.
(Automated protection for the worst-case sequence would
have had to sacrifice performance.)

2- the activity involved is infrequent, and was not deemed to
warrant the extra expense of making the interlock
automatic.

When an interlock is needed, it is provided by an action
referred to as a "STALL": the CUP ~nternal clock pauses near the end
of a specified step until a s~ecified condition is satisfied. (If the
condition was already satis"fied, the clock does not pause, and the
stall has no effect.) The CUP hardware provides four kinds of stall
conditions to be satisf~ed:

1- STALL:EMPTY (automated only) -- the clock stalls when the
step about to be entered will consume, examine, test, or
otherwise depend on the next byte in the procedure stream,
and the procedure pre fetch buffer is empty. The stall is
released as soon as the automatic pre fetch mechanism
supplies the needed byte of procedure.

2- STALL:ACK the clock stalls until/unless the most
recently initiated request has been either accepted or
rejectea. Such a stall is appropriate when the coder wishes
to test for possible rejection, to reload an address or

'data register committed to the previous transaction, or to
examine one of the other address registers.

3- STALL:INRA the clock stalls until/unless input data
register INRA has received whatever data it is due to get
as a result of the most recent request. (Note that no stall
occurs unless the most recent request was a read-request
with at least part of the data destined for INRA.) Such a
stall is ap~ropriate when a double-word read has been
initiated ana ~he coder wishes to consume the first of the
two words and/or test for- the possibility that, because of
an unavoidable boundary crossing in the memory, the
double-word request cannot be satisfied as such, so that
the second word must be read separately.

4- STALL:BUSY -- the clock stalls until/unless the CUP's
external (Local or MEGABUS) interfaces are quiescent (i.e. i the most recent activity has been concluded). Such a stal
is ap~rop~iate before using the last (or only) word
returnea ~n response to a read request, or before
initiating a request ("PREFETCH" or "WR-NON-MEM(TEST-P)")
whi9h does not automatically provide the requ~red stall
act~on.

PAGE 2-9 CUSTOM PROCESSOR DICTIONARY

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY

-..
16-BIT CUSTOM PROCESSOR SPECIFICATION (60165904) PAGE 2-10

Stalls, when required, must occur subsequent to the last
previous request init~ation and prior to the step which threatens to
use the committed resource. Exception: when the threat involves only
register reloading (which occurs at the end of the firmware step),
the stall can be concurrent with the threatened action.

Table 2-3 summarizes the circumstances requiring inclusion of
"STALL" micro's as a function of the current (most recently
initiated) extern~l activity, and the "threatened" action.

TABLE 2-3
DICTIONARY SYMBOLS AND ABBREVIATIONS

CURRENT REQUEST IN WR- ...
PROGRESS

THREATENED I using
ACTION ADR A

WRITE-NON-MEM(TEST-P) B
PREFETCH B
Z:INRB -
Z:Y-INRB -
Z:INRA -
Z:Y-INRA -
D:ADRS ADRS:A -
D:ADRS ADRS:B KB
D:ADRS ADRS:P KB
D:ADRS ADRS:ADRX KB

IF-ACK KB
IF-NOT-ACK KB

IF-DBLPL ?
IF-NOT-DBLPL ?

ADRA:Z CB
ADRB:Z -
OUTR:D CB

KEY:
no explicit stall needed

A prior STALL-INRA
B prior STALL:BUSY or ADRPL:Z

B
B
B

-
-
-
-

KB
-
KB
KB

KB
KB

?
?

-
CB

CB

RD-MEM- RD-MEM-
WORD DBLW

A B A B

B B B B

- B B B
- B .B B

AB - AB AB
AB - AB AB

- KB - KA
KA - KA -
KA KB KA KA
KA KB KA KA

KA KB KA KA
KA KB KA KA

? ? A A
? ? A A

CA - CA -
- CB - CA

- - - -

AB prior STALL:INRA, STALL: BUSY, or ADRPL:Z
KA prior STALL: ACK, STALL:INRA, STALL: BUSY, or ADRPL:Z

¥roc. un-
etch known

ahead
P

B B

- B - B
- AB
- AB

KB KB
KB KB - KB
KB KB
? ?
? ?

? ?

? ?

- CB - CB
- CB

KB prior STALL:ACK, STALL: BUSY, or ADRPL:Z .
CA prior or concurrent STALL:ACK, STALL:INRA, STALL: BUSY, or ADRPL:Z
CB prior or concurrent STALL:ACK, STALL: BUSY, or ADRPL:Z
? situation should not arise

PAGE 2-10 CUSTOM PROCESSOR DICTIONARY

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY

-..
16-BIT -CUSTOM PROCESSOR SPECIFICATION (60165904) PAGE 2-11

2.5 DECLARATIONS

~~~i~~ ggg:~~igg~j~2~2{;4~~~~~7j3 ~ ~~~tf~ gg ~~~ j~~ g~ ~~~ :g~~~; 
PARITY EVEN~72~~~}3:g~;{~7I}1/i~j}19 \ Parity on 3rd 3rd of F/W word\ 

,~6j~,116/11,1~7/1, 68(4; 
ARGDEF AA Al2~/~}B# C/C# D/D# E/~#R~7~#~-select\ 
ARGDEF AB (04/4) ~ RALU B-se1ect\ 
ARGDEF AD A/t~/~~~!45{r# D/D# E/\#RK£b#~isposi~ion \A/A# C/C# 
ARGDEF AF 1115) \ RALU function 
ARGDEF AS 08/3,114/1) \ RALU source{S) \A/A# C/C# 
ARGDEF BI 82/1l \ Branch cond1t10n Invert 
ARGDEF BR 57/3 \ BRanch splatter type 
ARGDEF CK 8012 \ Clock speed 
ARGDEF CKM 14E/) \ Clock spee~ manua1\ 

VF{O HF/1 HL/2 vL/3; 
ARGDEF CY (172/) \ Restrict cycle usage 

E/E#; 
\Z/O; 
e/E# ; 
\ Z/O· 
\Z/O~ 
\Z/O~ 

\Z/O; 

(31/1,31/1,31/1,31 1,31/1,31/1,3i/1,31/4,133/5) Z/O; 
ARGDEF D1 < D-bus source bytes ° & 1\ 
ARGDEF D2 (138/8) D-bus source, byte 2 \Z/O; 
ARGDEF DB (29/2) \ D-bus source \Z/O; 
ARGDEF DL ~ 24-bit literal (17, sign-extended)\ 

(31{1,31/1,31/1,31/1,31/1,3l/1~31/1,31/4,l33/13) Z/O; 
ARGDEF DS (132L 1 \ Restrict ~CRAM-load source \Z/O; 
~~~¥~~ ~~EN~j§~~8/r~{~l~1 ~ g=g~~ ~g~E~;i:e!~~~~~dfor "PU~~(,~; 
PARITY EVEN,36,28/1,134/1;
PARITY EVEN,37,28/1,135/1;
PARITY EVEN,38,28/1,136/1;
PARITY EVEN,39,28/1,137/1;
PARITY EVEN,40,28/1,138/1;
PARITY EVEN,41,28/1,139/1;
PARITY EVEN,42,28/1,140/1;
PARITY EVEN,43,28/1 i 141/1;
PARITY EVEN,44,1421 ;
PARITY EVEN,45,143/1;
PARITY EVEN,46,144/1;
PARITY EVEN,47,145/1;
ARGDEF FL (50/6) \ FLags & indicators, etc.
ARGDEF FLM (14612,50/6) \ Special MEGABUS contro1\

LOCK{DA# UNLOCK/DB# NO-CACHE/CO#;
ARGDEF LDA 165/2,1 4/1) \ address-reg load \Z/O·
~~gg~~ ~g~ ~t~72t14~~~ekt~~}3 ~ ~~~g~t~~a~~sfo~g MEGABUSi \Z/O~
ARGDEF MGF 146/1,67/1,170/2,71/1) \ MEGA~US major function \Z/Oi
ARGDEF MGS 68L2) - \ addr-mux se1ecE \Z/O;
ARGDEF MGSO 1168/1) \ addr-mux select \Z/Oi
ARGDEF MGS1 169/1) \ addr-mux select \Z/O;
ARGDEF MK (08/4) \ Mask for splatters\

A/A# BjB# C/C# D/D# E/E# F/F#;
ARGDEF MLA l116/2,119/ 2) \ Interlock ADRA load \F/F#;
ARGDEF MLB 120/2,123/2) \ Interlock ADRB load \F/F#;
ARGDEF MLO 64/1)) Interlock OUTR load \F/F#·
ARGDEF MLP 71/1,117/2,120/1,122 1)\ Interlock ADRP load ~FL1F#;
ARGDEF MNM 67/1,170L2,50/4,119/4) , MEGABUS non-memory control\Z/Oi
ARGDEF MOP 71/1,54/2)) MeGABUS non-memory options\

CMN L4 REPLY/5 RUPT 4 TEST-A/1 TEST-B72 TEST-P/O;
ARGDEF MPP 67/2,169/2,71/1,126/1)\ Empty-stall for proc-peeks\X/2F#;
ARGDEF MRP 67/1) \ Interlock requests \F/F#;
ARGDEF MRQ 67/l~l70L2i71/1,119/4) \ Interlock reguests \F/F#i
ARGDEF MSA 117/~,126/) \ Inteslock ADRA select \F/F#;
ARGDEF MSB 121/1,124/3) \ Interlock ADRB select \F/F#;
ARGDEF MSP 116/2,122/3,126/1) \ Interlock ADRP select \F/F#;

\Z/O;

PAGE 2-11 CUSTOM PROCESSOR DICTIONARY

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY

16-BIT CUSTOM PROCESSOR SPECIFICATION (60165904) PAGE 2-12

PARITY EVEN,67il16f11;~
16 117 118

Load AORA X X
119 120 121 122 123 124 125 126

Load AORB
Load AORP
Sel AORA
Sel AORB

X
X

Sel AORP X X

X
X

X X
X
X

X

Request X X

bARITY 00D,69,168/2 \

X

X

X

X

X
X

X

X

X

X
X

X
X
X
X

PARITY EVEN,70,170/2 \
PARITY EVEN,73,146/2 \

Control PEEK=13# if PTAKE=O, ;
-15# if PTAKE=1 .

Control use of Local interface;
\ Next address lsPlatter-branch);
\ Next address Else);

BRCHFLD NAB ,ABS,113/1,83/9, 96/4
BRCHFLD NAE ,ABS,113/1,83/9,100/4
BRCHFLO NAG ,ABS, 82/1,83/9, 96/4
BRCHFLD NAI ,ABS6112/1683/9 i 104/4
PARITY EVEN,60,1 0/1,1 4/1, 08/1\
PARITY EVEN,61,101/1,105/1,109/1;
PARITY EVEN,62,102/1,106/1,110/1;

\ Next address Go-to);
\ Next address If);

Build real splatter mask;

PARITY EVEN,63,103/1 i 107/1,111/1;
PARITY EVEN,92,96/1, 00/1 \ Build LSD of NA;
PARITY EVEN,93,97/1,101/1;
PARITY EVEN,94,98/1,102/1;
PARITY EVEN,95~99/1,103/1;
ARGDEF OP !1~/1) \ Load OPREG
ARGDEF OPT 114/1~ \ Non-funct. memo for OPT:Z
ARGDEF OPTA 150/4 \ argument for OPT:Z
ARGDEF PE 127/1 \ Force F/W parity errors
ARGDEF PS 28/1) \ Push to stack
BRCHFLD PSA ,ABS,28/1,133/13 \ Address 2ushed to stack;
ARGDEF PSM (128L4) \ Non-runct. memo for map
ARGDEF RM (26/2) \ ARAM address source select~

RA{O RB/1 RC/2 RD/3;
ARGDEF RW (251) \ ARAM write control
ARGDEF SD (21/3,114/2) \ Shift distance~

R4L4 R8f8 R12{12 R16L16 R20/20
L4/20 L8/16 L12/2 L16{8 L20/4;

ARGDEF SR 120/1) \ Shift-out "ho d
ARGDEF TC 112/2,74/6) \ Test Condition
ARGDEF TCX 74/6l' \ Pseudo-Test Condition
ARGDEF ZB 48/2 \ Z-bus source

Imaginary bi s (beyond 95):
96-99 NA LSD control
100-103 NA LSD & mask control
104-111 Mask control
112-113 If/Else checking (=1/0)
114-115 °
116-126 external request control/checking
127 Force firmware parity errors
128-131 Ignore push mask info
132 Restrict Dbus source for SCRAM load
133-145 Dbus literal control

2.6 MICRO-OPERATIONS

MICRO ADRA:Z \ Load ADRA (= Z-bus\

MICRO ADRB:Z
(LDA/4,MLA/F);

\ Load ADRB (= Z-bus\

MICRO ADRPH:Z
(LDA/6 ,MLB/F) ;

Load ADRP(08-226 (=
&

Z-bus\

\ Z/O·
\Z/O;
\ W/O·
\Z/O~
\Z/O;

\Z/O;

\Z/O;

\ Z/O·
\Z/O;
\ Z/O'
\Z/O;

~ (LDO/8,LDA/2,MLP/F) OUTR (= D- us;
MICRO ADRPL:Z ~ Load ADRP(23-31~ (= Z-bus\.

(LDO/0,LDA/2,MLP/F) (can't load OUT at same tl.me);

PAGE 2-12 CUSTOM PROCESSOR DICTIONARY

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY

-.. .
16-BIT CUSTOM PROCESSOR SPECIFICATION (60165904) PAGE 2-13

MICRO ADRS:A \ ADRS (= ADRA\

ADRS:B
(MGS/2,MGSl/l,MSA/F);

\ ADRS (= ADRB\ MICRO

ADRS:P
(MGS/3 , MSB/F) ;

\ ADRS (= ADRP\ MICRO
*MGS/l,MSP/3F#);

MICRO ADRS:ADR \ ADRS (= ADRX\
(MGS/O, MGSl/l) ;

BR-PO(MK,NABl \ Splatter on P-bus(0-3)\ MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

BR-RAMAD RM,MK,NA~)\ Splatter on RAA, RAB, RAC, or RAD\
BR/2) ; IBR/ ,MPP/X);

BR-FLAGS MK,NAB) \ Splatter on FLAGT(0-3)\
BR/3) ;

MICRO
MICRO
MICRO
MICRO
MICRO
MICRO
MICRO
MICRO
MICRO

BR-OPERA D(MK,NAB) \ Splatter on Z-bus(31),RAD(I-3)\

1BR/ 4);
BR-ARITH MK,NAB) \ Splatter on \

BR/5) \ I-SGN I-ZRO,CARRY(08),Q(31 SRO)\;
BR-DECOD (MK~NAB) \ Splatter on custom decode of Pbus(0-7),\

(BR/b,CY/l)\ & Cycle counter\;

C(CKM) \ Manual clock gear shift override;
CO CK/O ;
Cl CK/I ;
C2 CK/2 ;
C3 CK/2 ;
C4 CK/3 ;
C5 CK/3 ;
C6 CK/3 ;
C7 CK/3 ;

MICRO D:ADRS \ D-bus (= ADRA, -B, or -P\
(DX/70004#, DS6 l);

MICRO D:RAA-D \ -bus (= 00, RAA, RAB, RAC, & RAD\
(DX/63000#)i

MICRO D:HEX(RM) \ D-bus (= 00, Hex-decoder\
(DX/6200l#);

MICRO D:INRX \oD-bus (= 00, Inqtiiry identification\
(DX/62200#);

MICRO D:LIT(DL) \ D-bus (= 17-bit literal \
(DB/O) \ sign-extended to 24 \;

MICRO D:PCTR \ D-bus (= 000,9-bit program counter\
(DX/620l0#);

MICRO D:PROC \ D-bus (= 0000, Next procedure byte\
(DX/20020#,MPP/X);

MICRO D:REG(RM) \ D-bus (= Selected ARAM loc\
MICRO D:REGO (DX/60008#'~S6~b~~/~l;ARAM lac zero\ -

(DX/70008#,DS61 RW/O);
MICRO D:SHRG \ -bus (= Saved shifter output\

(DX/78880#);
MICRO D:SYND \ D-bus (= Syndrome from latest DSASTR\

(DX/70002#)\ or LD-SYND micro USaqei
MICRO D:TIMER , D-bus (= Timer (08-31) \

(DX/60000#, rL6 04 #);
MICRO D:ZSH(SD) \ -bus (= Z-bus(rotated by SD)\

(DX/74440#, DS6 1);
MICRO D::OOSP \ -bus (= 00,SHRG(16-23),P-bus(O-7)\

(DX/62820#,MPP/X);
MICRO D::OOSS \ D-bus (= 00,SHRG(16-31)\

(DX/62880#);
MICRO D::OOSZ(SD± \ D-bus (=
MICRO D::00ZS(~g)/62840#,~S6~6us\<=

(DX/62480#,DS/I) \

PAGE 2-13

OOz~~~~ii~t~E~a By SDlf24-31);
OO,Z-bus[rotated by SD](16-23), \

SHRG(24-31);

CUSTOM PROCESSOR DICTIONARY

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY

____ ~~-"w....._o.- .,~ -

-
16-BIT CUSTOM PROCESSOR SPECIFICATION (60165904) PAGE 2-14

MICRO D: :OOZZ(SD) '" D-bus (- OO,Z-bus[rotated by SD](16-31)\
(DX/62440#, DS6 1);

MICRO D: :FFSP \ -bus (- FF,SHRG(16-23),P-bus(0-7)\
(DX/72820#,MPP/X);

MICRO D: :FFSS \ D-bus (= FF,SHRG(16-31)\
(DX/72880#);

MICRO D::FFSZ(Tg*/72840#,rlS6Dl~us\(= ~~b~~Y~bf~t~a)bi SD](24-31)-
MICRO D FFZS(SD) \ -bus (= FF,Z-ous[rotatea by SD

1
(16-23),\

:: (DX/72480#,OS61) \ SHRG 24-311;
MICRO D: :FFZZ(SD* \ -bus (= FF,Z-bus[rotated by SD (16-3)\

MICRO D: :KKP(Di? /72440#'~S6~6~s (= NNNN,P-bus(0-7)\
(DB/1,D2/20#,MPP/X);

MICRO D::KKS(Dl) \ D-bus (= NNNN,SHRG(24-31)\
(DB6 1 ,D2/80#);

MICRO D::KKZ(Dl,S 1 \ D-bus (= NNNN,Z-bus[rotated by SD](24-31)\
(DB/ ,D2/40#,DS/1);

MICRO D::SSK(D2b \ D-bus (= SHRG(08-23),NN\
MICRO D::SSP (B/2,D1/88~)6_bus (= SHRG(08-23),P-bus(0-7)\

bDX/68820#,MPP/X);
MICRO D::SSZ(SbbX/68840#,rlS61~us\(=z~g~~i~~t~f~d\bY SD)(24-31);

MICRO D::SZZ(S(bX/68440#,rlS61)us\(=z~g~~i~~t~~~d\bY SD1~16-31);
MICRO D::ZSS(SDb '" -bus (= Z-bus[rotated 0* sni~08-15),\
MICRO D::ZZK(sb,£~~4880#,~S6~6us\(= Z-bus[rotated gyR~b](o~~~~),NN\

(DB/2,D1/44#,DS/1); .
MICRO D::ZZP(SD) \ D-bus (= Z-bus[rotated by SD]108-23), \

(DX/64420#,DS/1,MPP/X); \ P-bus 0-7)-
MICRO D::ZZS(SD) '" D-bus (= Z-bus[rotated bY'SD) 08-2~),\

(DX/64480#,DS/1) \ SHRG(4-31);

MICRO ENPROM (FL/06#) \ With a delay of one firmware step, \\
\ execute firmware out of the PROM
\ arraYi

MICRO ENBRAM (FL/07#)

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

FLAGPO:O
(FL/30#);

FLAGPO:1
(FL/38#);

FLAGP1:0
(FL/31#)i

FLAGP1:1
(FL/39#)i

FLAGP2:0
(FL/32#)i

FLAGP2:1
(FL/3A#);

FLAGP3:0
(FL/33#);

FLAGP3:1
(FL/3B#);

FLAGP4:0
(FL/34#);

FLAGP4:1
(FL/3C#);

FLAGP5:0
(FL/35#);

FLAGP5:1
(FL/3D#);

FLAGP6:0
(FL/36#);

FLAGP6:1
(FL/3E#);

FLAGP7:0
(FL/37#);

FLAGP7:1
(FL/3F#)i

PAGE 2-14

\ 'With a delay of one firmware step, \\
\ execute firmware out of the RAM

\ p~~~a!iag #0 (= 0\

\ Perm flag #0 (= 1\

\ Perm flag #1 (= 0\

\ Perm flag.#1 (= 1\

\ Perm flag #2 (= 0\

\ Perm flag #2 (= 1\

\ Perm flag #3 (= 0\

\ Perm flag #3 (= 1\

\ Perm flag #4 (= 0\

\ Perm flag #4 (= 1\

\ Perm flag #5 (= 0\

\ Perm flag #5 (= 1\

\ Perm flag #6 (= 0\

\ Perm flag #6 (= 1\

\ Perm flag #7 (= 0\

\ Perm flag #7 (= 1\

CUSTOM PROCESSOR DICTIONARY

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY

"_~·'-"~~"""",""""R".' -,,,.-" .. - .. -'-:... - .. '-.~-.-;. ,." . L·~·"""~ .• "" _'-.,~,," .• '.: .. "' _ . __ •• ____ '1 ___ :..:.:'----"_-'-__

16-BXT CUSTOM PROCESSOR SPECIFICATION (60165904) PAGE 2-15

MICRO FLAGTO:O \ Temp flag #0 (= 0\
(FL/20#);

MICRO FLAGTO:1 \ Temp flag #0 (- 1\
(FL/28#);

MICRO FLAGT1:0 \ Temp flag #1 (= 0\
(FL/21#);

MICRO FLAGT1:1 \ Temp flag #1 (- 1\
(FL/29#);

\ flag #2 0\ MICRO FLAGT2: 0 Temp (=

(FL/22#);
\ Temp flag #2 (= 1\ MICRO FLAGT2:1

(FL/2A#);
\ Temp flag #3 0\ MICRO FLAGT3:0 (=

(FL/23#);
\ flag #3 (= 1\ MICRO FLAGT3:1 Temp

(FL/2B#);
\ flag #4 (= 0\ MICRO FLAGT4:0 Temp

(FL/24#)i
MICRO FLAGT4:1 \ Temp flag #4 (= 1\

(FL/2C#);
MICRO FLAGT5:0 \ Temp flag #5 (= 0\

(FL/2S#);
MICRO FLAGTS:1 \ Temp flag #5 (= 1\

(FL/2D#);
MICRO FLAGT6:0 \ Temp flag #6 (= 0\

(FL/26#);
MICRO FLAGT6:1 \ Temp flag #6 (= 1\

(FL/2E#);
MICRO FLAGT7:0 \ Temp flag #7 (= 0\

(FL/27#);
MICRO FLAGT7:1 \ Temp flag #7 (= 1\

(FL/2F#);

MICRO F:ADD1 \ ALUF = ALUR + ALUS + 1\

MICRO F:ADDC
(AF/O) ;

\ ALUF ALUR + ALUS + Carry\

MICRO F:ADDC'
(AF/1);

\ ALUF ALUR + ALUS + (l-Carry) \
MICRO F:ADD

(AF/2);
\ ALUF + ALUS\ ALUR

MICRO F:S-R
(AF/3);

\ ALUF ALUS - ALUR\
(AF/4) .

MICRO F:S-R-C' I \ ALUF ALUS - ALUR - (I-Carry) \
(AF/S);

MICRO F:S-R-C \ ALUF ALUS - ALUR - Carry\
(AF/6);

MICRO F:S-R-1 \ ALUF ALUS - ALUR - 1\
(AF /7) ;

,

MICRO F:R-S \ ALUF ALUR ALUS\
(AF/8);

MICRO F: R-S-C' . \ ALUF ALUR - ALUS - (l-Carry)\

MICRO F:R-S-C
(AF/9);

\ ALUF ALUR - ALUS - Carry\

MICRO F:R-S-l
(AF/A#);

\ ALUF ALUR - ALUS - 1\

MICRO F:OR
(AF/B#);

\ ALUF ALUR <lOR> ALUS\

MICRO F:SR
(AF/F#);

\ ALUF ALUR (AND> ALUS\

MICRO F:SR'
(AF/I0#)i

\ ALUF ALUS <AND> (NOT> ALUR\

MICRO F:XOR
(AF/17#);

\ ALUF ALUR (XOR> ALUS\

MICRO F:XNOR
(AF/IB#);

\ ALUF ALUR (XOR> (NOT> ALUS\
(AF/IF#);

PAGE 2-15 CUSTOM PROCESSOR DICTIONARY

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY

16-BIT CUSTOM PROCESSOR SPECIFICATION (60165904) PAGE 2-16

MICRO F'B:O(AB) \ SP(B~' ALUF, ALUY (z
(AS/4,AF/10#,AD/6 ;

MICRO F'B:DEC(AB) \ SP(B , ALUF, ALUY (-
(AS/6,AF/7,AD/6);

MICRO F'B:INC(AB) \ SP(B), ALUF, ALUY (-
(AS/6,AF/O,AD/6);

MICRO F'Q:O \ Q, ALUF, ALUY (= 0\
(AS/4,AF/10#,AD/Ot ;

MICRO F'Q:DEC (AS/4,AF/7,~D96)~ UF, ALUY (= Q -

MICRO F'Q:INC (AS/4,AF/0,~D96)~LUF, ALUY <= Q +

0\

SP(B) - 1\

SP{B) + 1\

1\

1\

MICRO FRAMIT \\ performs actions associated with loading \
(FL/01) the firmware RAM as a function of \

\ CYCLE(4,2,l):
CYCLE = 1,1,1 loads FWR 80-95)
CYCLE 1,1,0 loads FWR 64-79
CYCLE = 1,0,1 loads FWR 48-63
CYCLE = 1,0,0 loads FWR 32-47
CYCLE 0,1,1 loads FWR 16-31
CYCLE 0,1,0 loads FWR 00-15
CYCLE = 0,0,1 loads FWA
CYCLE 0,0,0 writes (FWR) at FWAi

MICRO GO-TO(NAG)
(BR/O);

\ Unconditional NA\

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

M.ICRO

MICRO

MICRO

MICRO

MICRO

IF-ACK(NAI,NAE) \ Branch iff MEGABUS cycle was acknowledged\
(TC/A4#,BI/O) \ Requires prl.or "STALL:ACK";

IF-NOT-ACK(NAI,NAE) \ in new designs, use IF-NAK \
(TC/A4#,BI/l) \ Requires prl.or "STALL:ACK";

IF-APLO~G(NAI~NAE) \ Branch iff ADRP is configured \
(TCL9Df,BI/O,MGS/1) \ non-partitioned \;

IF-NOT-APLONG(NAI,NAE)
(TC/9D#,BI/1,MGS/1)·

IF-AP:512bNAI~NAE) \ Branch iff page size is configured \
IF-NOT-A~:~f~!N~j~gA~~S/2) \ equal to 512 bytes \;

IF-BREA*lT~~f~NA~t/1\MB~~~6h iff Interrupt, \
TC/A7#,BI/O) \ Tick, or Trace-mode;

IF-NOT-B EAK(NAI,NAE)
(TC/A7#,BI/1);

IF-CACHBINAI,NAE) ~ Branch iff Cache or Local Memory present \
TC/A2#,BI/O) \ and on-line;

IF-NOT-C CH~(NAI,NAE)
(TC/A2#,BI/1);

IF-CNFG-C(NAI~NAE) \ Branch iff Configuration bit C \
(TCL9Df,BI/O,MGS/0);

IF-NOT-CNFG-C(NAI,NAE)
(TC/9D#,BI/1,MGS/O) .

IF-CNFG-B(NAI~NAE) \ Branch iff Configuration bit B \
(TCL9Ef,BI/O,MGS/O);

IF-NOT-CNFG-B~NAI,NAE~

IF-CNFGiI?~i¥,N~~<1\MB~~g6h iff Configuration bit A \
(TC/9F#,BI/O,MGS/O)i

IF-NOT-CNFG-A~NAI,NAE~

IF-CMDP(RTCb/A9FlftN'ABEI/)1\,MBrS/anOc)i ANn iff Command Parity enabled \
(T 19E ,BI/O,MGS/2)i

IF-NOT-CMDPAR~NAI,NAE~

IF-CYCLt~f~i¥6N~~i1\MB~~~6h iff CYCLE(O) 1 \
IF-NOT-CfCifu~{~A¥,~~EyY/l)i

(TC/90#,BI/1,CY/l);
IF-CYCLB4fNAliNAEi \ Branch iff CYCLE(l) 1 \
IF-NOT-Cfcifu~(~A¥,~~EyY/l)i

(TC/91#,BI/1,CY/l)i

PAGE 2-16 CUSTOM PROCESSOR DICTIONARY

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY

16-BIT CUSTOM PROCESSOR SPECIFICATION (60165904) PAGE 2-17

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

IF-CYCLE2(NAI~NAE) \ Branch iff CYCLE(2) 1 \
(TC/9~#,BI/O,CY/1)i

IF-NOT-CYCLE2(NAI,NAE)
(TC/92#,BI/l,CY/1)i

IF-CYCLEl(NAI~NAE) \ Branch iff CYCLE(3) = 1 \
(TC/9~#,BI/O,CY/1)i

IF-NOT-CYCLEl(NAI,NAE)
(TC/93#,BI/l,CY/l)i

IF-CYCLE:F(NAI~NAE) \ Branch iff CYCLE(0-3) = F \
(TCI94i,BI/O,CY/l)i

IF-NOT-CYCLE:F(NAliNAE)
(TC/94#,BII ,CY/1)i

IF-CSTEAL(NAI~NAE) \ Branch iff cycle steal mode \
(TCI9Ei,BI/O,MGS/l) \ is configured \i

IF-NOT-CSTEAL(NAIiNAE~

IF-DBLP (lTCNA/9IE'N#A'EB~/l\MBSr/anlc)i L B ~ n iff Double-pull succeeded \

IF-NOT-D l~(t~!ii~~~~i
(TC/A3#,B 11);

IF-FALSE~NAI8NAE~ \ Branch never \

IF-NOT-FAl§~(g!i,~~~~;
(TC/BO#,BI/1);

IF-FCODE1(NAI~NAE) \ Branch iff Func code 01 is allowed to \
(TC/9Fi,BI/O,MGS/l) \ start the OLT \;

IF-NOT-PCODE1~NAI,NAE~

IF-FLAGt6r~Xi~N~~<1\MB~~~6~ iff Temp flag ° \
(TC/Bts#,BI/O);

IF-NOT-FLAG~O(NAI,NAE)
(TC/BB#,BI/1);

IF-FLAGT1(NAI~NAE) \ Branch iff Temp flag 1 \
(TC/B~#,BI/O);

IF-NOT-FLAG~l(NAI,NAE)
(TC/B9#,BI/1);

IF-FLAGT2(NAI,NAE)\ Branch iff Temp flag 2 \
(TC/BA#,BI/O);

IF-NOT-FLAG~2(NAI,NAE)
(TC/BAt,BI/1);

IF-FLAGT3(NAI,NAE) \ Branch iff Temp flag 3 \
(TC/BB#,BI/O);

IF-NOT-FLAG~3(NAI,NAE)
(TC/BB#,BI/l);

IF-FLAGT4(NAI,NAE) \ Branch iff Temp flag 4 \
(TC/BC#,BI/O);

IF-NOT-FLAG~4(NAI,NAE)
(TC/BC#,BI/l);

IF-FLAGT5(NAI,NAE) ~ Branch iff Temp flag 5 \
(TC/BD#,BI/O);

IF-NOT-FLAG~5(NAI,NAE)
(TC/BD#,BI/l);

IF-FLAGT6(NAI,NAE) \ Branch iff Temp flag 6 \
(TC/BE#,BI/O)i

IF-NOT-FLAG~6(NAI,NAE)
(TC/BE#,BI/1)i

IF-FLAGT7(NAI,NAE) \ Branch iff Temp flag 7 \
(TC/BF#,BI/O)i

IF-NOT-FLAG~7(NAI,NAE)
(TC/BF#,BI/l)i

PAGE 2-17 CUSTOM PROCESSOR DICTIONARY

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY

16-BIT CUSTOM PROCESSOR SPECIFICATION (60165904) PAGE 2-18

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

IF-FLAGPO(NAlh~AE) ~ ~ranch iff Perm flag 0 \
(TC/Ats::,BI/O),

IF-NOT-FLAGPO(NAI,NAE)
(TC/A81,BI/I);

IF-FLAGPI(NAIhNAE) \ Branch iff Perm flag 1 \
(TC/A~#,BI/O);

IF-NOT-FLAGPI(NAI,NAE)
(TC/A91,BI/I);

IF-FLAGP2(NAI,NAE) \ Branch iff Perm flag 2 \
(TC/AA#,BI/O);

IF-NOT-FLAGP2(NAI,NAE)
(TC/AAI,BI/I);

IF-FLAGP3(NAI,NAE) \ Branch iff Perm flag 3 \
(TC/AB#,BI/O);

IF-NOT-FLAGP3(NAI,NAE)
(TC/ABI,BI/I);

IF-FLAGP4(NAI~NAE) \ Branch iff Perm flag 4 .\
(TC/Ac#,BI/O);

IF-NOT-FLAGP4(NAI,NAE)
(TC/ACI,BI/I);

IF-FLAGP5(NAI,NAE) \ Branch iff Perm flag 5 \
(TC/AD#,BI/O);

IF-NOT-FLAGP5(NAI,NAE)
(TC/ADI,BI/I);

IF-FLAGP6fNAI,NAEi \ Branch iff Perm flag 6 \

IF-NOT-FtA~~~~~A¥,~~t~
(TC/AEI,BI/I);

IF-FLAGP7(NAI,NAE) \ Branch iff Perm flag 7 \
(TC/AF#,BI/O);

IF-NOT-FLAGP7~NAI,NAE)

IF-I-BU~r~~~FNA~~/I~;same as "IF-I-FB" \

IF-NOT-li~Bft~!±~~~g~;
IF-I-CR~r~~~h~A~)/I~;Branch iff Carry indicator \

(TC/ts9#,BI/O);
IF-NOT-I-CRY(NAI,NAE)

(TC/89#,BI/l);
IF-I-FB{NAI,NAE) \ Branch iff Frame-bound indicator \

(TC/8E#,BI/O);
IF-NOT-I-FB(NAI,NAE) lTC/8E#,BI/I);
IF-I-LE NAlhNAE) \ Branch iff Sign or Double-zero indicator \

TC/ts4#'BI/O~;
IF-NOT- -LE(NAI,NAE

i TC/ 84 #,BI/1 ;
IF-I-LE (NAI,NAE) \ Branch iff Sign or Zero indicator \

(TC/B6#,B!/O);
IF-NOT-!-LEI(NAI,NAE)

(TC/B6#,BI/I);
IF-I-ODD{NAlhNAE) \ Branch iff Odd indicator \

(TC6tsD#,BI/O);
IF-NOT-I-OD (NAI,NAE)

(TC/8D#,BI/I);
IF-I-OVF{NAlhNAE) \ Branch iff Overflow indicator \

(TC/ts8#,BI/O);
IF-NOT-I-OV~(NAI,NAE)

(TC/88#,BI/I);
IF-RINT{NAI,NAE) \ Branch iff Resume Interrupt occurred \

(TC/9B#,BI/O) \ after CUP's most recent MEGABUS cycle;
IF-NOT-R!NT(NAI,NAE)

(TC/9B#,BI/I);
IF-I-SCR{NAlhNAE) \ Branch iff Stop-code indicator \

(TC/tsF#,BI/O);
IF-NOT-I-SCR(NAI,NAE)

(TC/8F#,BI/I);

PAGE 2-18 CUSTOM PROCESSOR DICTIONARY

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY

16-BIT CUSTOM PROCESSOR SPECIFICATION (60165904) PAGE 2-19 -

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

IF-I-SGN(NAI8NAE~ \ Branch iff Sign indicator \

IF-NOT-li§~'(~lf,~~~~;
(TC/BA#,BI/l);

IF-I-ZRO(NAI8NAE~ \ Branch iff Zero indicator \

IF-NOT-li!~6(~lf,~~~~;
(TC/BB#,BI/l);

IF-I-Z'Z(NAI~NAE) \ Branch iff Double-zero indicator \
(TC/tsC#,BIjO);

IF-NOT-I-Z'Z(NAI,NAE)
(TC/BC#,BI/l);

IF-NAK(NAI~NAE) \ Branch
(Tc/B6#,BI/0)

IF-NOT-NAK(NAI,NAE)
(TC/B6#,BI/l)

IF-OPT(NAI~NAE) ~ Branch
(Tc/AOi,BI/I) \

iff MEGABUS cycle was refused \
\ Requires pr10r "STALL:ACK";
\ Better to use IF-ACK \
\ Requires prior "STALL:ACK";
iff event s1gnalled by \
Option board;

IF-NOT-OPT(NAI,NAE6
IF-P2PG*T~~~~~~A~t/»~ranch iff either FLAGP2 OR PAGE-X \

TC/B4#,BI 0) \ indicators are set;
IF-NOT-P PGX(NAIfNAE)

(TC/B4#,B /1);
IF-P6SYNC(NAI~NAE) \ Branch iff FLAGP6 resynchronizer flop \

(TC/B~#,Bl/0) \ is set (for test use only);
IF-NOT-P6SYNC~NAI,NAE)

IF-PAGE{i1'ii~Ni~{1~;Branch iff ADRP incremented through \
(TC/B~# Bl/0) \ a page boundarY)i

IF-NOT-PAGE'X{NAI,NAE)
(TC/B3#,BI/l);

IF-PWRVLD(NAI~NAE) \ Branch iff AC input power source OK \
(TC/B/# Bl/0) \ For will-writing);

IF-NOT-PWRVLD(NAI,NAE)
(TC/B7#, BI/l) i

IF-RAD:JJN~I~NAE) \ Branch iff RAD = F, then RAD <= RAD + 1 \
TC/tsl#,BI/O);

IF-NOT- :F(NAI,NAE)
(TC/BI#,BI/l);

IF-RPSYNC(~AI~NAE) \ Branch iff RUPT resynchronizer flop \
(TC/9ts#,Bl/0) \ is set (for test use only);

IF-NOT-RPSY~C~NAI,~AE)

IF-RUPT{~E~r~Af~~~~~Z Branch iff Interrupt, \
(TC/A5#,BI/6) \ then clear Interrupt;

IF-NOT-ROPT'CLR(NAI,NAE)
(TC/A5#,BI/l);

IF-RUPT(NA!,NAE) ~ Branch iff Interrupt\
(TC/A6 #, BI/O) ;

IF-NOT-ROPT(NAI,NA~)
(TC/A6#,BI/l)i

IF-SEMA4lNAI~NAE) \ Branch iff a write-unlock bus cycle has \
TC/~9#,BI/0) \ occurred since my last read-unlock;

IF-NOT-S MA4(NAI,NAE)
(TC/99#,BI/l);

IF-TIMERfNAI~NAE) \ Branch iff TIMER expired the clear \
TC/~5#,BI/0) \ indicator;

IF-NOT-T MER(NAI,NAE)
(TC/95#,BI/l);

IF-UNLOCK(~AI~NAE) \ Branch iff unlock bus cycle has occurred \
(TC/9~#,Bl/0) \ since my last cycle that was NAK'd;

IF-NOT-UNLOCK(NAI,~AE)
(TC/99#,BI/l);

PAGE 2-19 CUSTOM PROCESSOR DICTIONARY

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY

16-BIT CUSTOM PROCESSOR SPECIFICATION (60165904) PAGE 2-20

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

IF-YELO~NAI'NAE) \ Branch iff Memory Yellow, then clear \

IF-NOT- ELO{NAI,NAE
TC/A1#'BI/O~ \ Yellow. Requires prior "STALL:BUSY";

(TC/A1#,BI/1 ;
IF-Z08(NAI,NAE) \ Branch iff Z-bus(08)\

(TC/87#,BI/O)i
IF-NOT-Z08(NAI,NAE)

(TC/87#,BI/1);
IF-Z16(NAI,NAE) \ Branch iff Z-bus(16) \

(TC/82#,BI/O)i
IF-NOT-Z16(NAI,NAE)

(TC/8 2 #, BI/1) ;
IF-Z24(NAI~NAE) \ Branch iff Z-bus(24) \

(Tc..;/83#,BI/O);
IF-NOT-Z24 (NAI,NAE)

(TC/83#,BI/1);

MICRO INC-CYCLE \ Increment Cycle counter in mid-step \
(FL/03#, CY/O) ;

MICRO INC-RAD \ RAD (= RAD+1 \
(FL/13#);

MICRO IND-AR
(FL/1S#)

\ Arithmetic indicators saved: \
\ INDO (- ALU overflow

IND1 (- ALU carry out
IND2 (= ALU sign bit (ALUF08)
IND3 (= ALU zero-ness (all 24 bits)
IND4 (= ALU zero-ness & previous 13 value
INDS (= Z-bus bit 31i

MICRO IND-BB'SC(FL/16#) \ same as "IND-FB'SC"·
MICRO IND-FB'SC \ Frame-bound & Stop-code indicators saved:\

(FL/16#) \ IND6 (= D-bus(OB-22) (NE> Z-bus(08-22)
IND7 (= SCRAM output (XOR> FLAGT6;

MICRO INT > RAA (= P-bus(4-7) in mid-step, \
(FL/10~,MPP X) \ clear Temp flags & RAD;

MICRO LD-CNFG
(MGF/13,MGS/O)

\ FCODE1 (= BUSZ 30 \i
\ Load Configuration Register \
\ CMDPAR (= BUSZ~28~ \
\" ACTREN (= BUSZ 31 'i .

MICRO LD-CYCLE(AA) ~ CYCLE (= A-address f1eld of SP \
(FL/02#,CY/O);

MICRO LD-OP \ OPREG (= P-bus(O-7) in mid-step \
(OP /1) ;

MICRO LD-RAB'C ~ RAB,RAC (= P-bus(O-7) in mid-step \
FL 11#,MPP X ;

MICRO LD-RAB'C~IN6 ~AB,RAC (= P-bus(O-7) in mid-step & \
(FL/17#,MPP X)\ save arithmetic indicatorsi

MICRO LD-RAD(SO) RAD (= Z-bus(rotated by SD) \
(FL/12#)i .. .

MICRO LD-SCRAM < SCRAM(D-bus(16-23» (= FLAGT6 \
(FL/14#,CKM 3,DS/O) \ ILLEGAL when D-bus (= Z-bus;

MICRO LD-SYND SYNbROME (= Status sample \
(TCX/31#)i

MICRO MCA:Z \\ Strobe MeA functions selected \
(TCX/05#) by Z-bus bits;

MICRO NO-FAULT
(TCX/35#)

MICRO OUTR:D
(LDO/8) ;

MICRO PARITY-ERROR
(PE/l);

PAGE 2-20

\\ Suppress errors from \
Z:INRA, Z:INRB, D:PROC;

\ Load OUTR (= D-bus \

\ Force errors in all thirds of F/W word \

CUSTOM PROCESSOR DICTIONARY

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY

16-BIT CUSTOM PROCESSOR SPECIFICATION (60165904) PAGE 2-21

MICRO PREFETCH(MCA,MCA) \ Start new procedure fetch \
(MGF/18#,MGS/1,MSA/F,MSB/F);

MICRO PTAKE(MCA,MCA) \ Consume procedure byte \
(MGF/1F#,MGS/1,MGSO/l,MGS1/1,MSA7F,MSB/F);

MICRO PUSH(PSA,PSM) \ Push "RETURN CSA" onto stack \
(PS/1,DB/0);

MICRO RD-MEM-DBLW(FLM,MCA) \
(MRQ/9F#,MGF/19#) \

Wait for quiet interface ~
Read 2 memory words to INRA&B \
Needs "ADRS:A" or "ADRS:B'"

MICRO RD-MEM-WORD(FLM,MCA) ~
(MRQ/8F#,MGF/18#) \

~

Wait for quiet interface ~'
Read 1 memory word to INRA/.B \
Argument "LOCK" or "UNLOCK" optional \
needs "ADRS:A" or "ADRS:B'"
Wait for quiet interface \' MICRO RD-NON-MEM \

(MRQ/8F#,FLM/D8#) \ Read 1 non-memory word to INRA(B\
Needs "ADRS:A" or "ADRS:B" to
specify channel, function-code;

MICRO REG:Z(RM)
(RW/l);

~
\ ARAM(RM) (= Z-bus\

Pop subroutine stack\ MICRO

MICRO
RETURN(NAB~ \
RETURN'(~~~~B~K/F)Z

(BK/7);
Pop subroutine stack (Alternate return)\

MICRO R-I-P (MRP/O) \ Request In Progress warning:
Don't try to change ADRS selection
nor ADR- nor OUTR (if in use) till

MICRO R:A'S:Q(AA~
MICRO R:A'S:B(~ ~g~;

(AS/2 .
MICRO R:O'S:Q '

. AAS/4) .
MICRO R:O'S:B(B~ ,

~ /6')'
MICRO R:O'S:A(~ ,

MICRO R:D'S:A(~~/8);
MICRO R:D'S:Q (A /A);

MICRO R:D'S:O
(AS/C) ;

(AS/E) ;

MICRO SHRG:Z(SD~
(R/1);

MICRO STALL:ACK

MICRO
. £MGF/1);

STALL:BU Y

MICRO
~MGF/3);

STALL: IN A
(MGF/2);

MICRO SYSCLR

MICRO
(MGF/13,MGS§1~;

TIMER:Z (FL/O #

\ ALUR <= SP(A), ALUS <= Q \

\ ALUR <=
\ ALUR (=

\ ALUR (=

\ ALUR <=

\ ALUR (=

\ ALUR <=

SP (A) ,

000000,

000000,

000000,

D-bus,

D-bus,

ALUS <= SP(B)

ALUS <= Q \
ALUS (= SP(B)

ALUS (= SP(A)

ALUS (= SP(A)

ALUS <= Q \

\

\
\
\

\ ALUR <= D-bus, ALUS (= 000000 \

\ SHRG <= Z-bus(rotated by SD) \

\ Stall until/unless Ack'd or Nak'd

\ Stall until/unless Interface quiet

\ Stall until/unless INRA full \

\ Generate a system-wide clear \

\ Timer (= Z-bus(08-31);

STALL;

\
\

PAGE 2-21 CUSTOM PROCESSOR DICTIONARY

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY

· 16-BIT CUSTOM PROCESSOR SPECIFICATION (60165904) PAGE 2-22

MICRO WR-LM-CNFG
- (MRQ/CF# , FLM/9C)

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

MICRO

WR-MEM-BYTE
(MR8/AF # ,ML /0)

WR-MEM-WORD(FLM)
(MRQ/BF#
,MLOIO)

WR-NON-MEM(MOP)
(MNM/56F#
,MLOIO)

Y:F'Q:F
(AD/O);

Y:F
Y:A 'B:F(h~~~~;

(AD/4 ~ .
Y:F'B:F(AB) ,

(AD/6) .
Y :-F ' BQ: FQSR (AB)

Y:F'B:Fs~~'l) ~
Y:F'BQ:FbsL{A~)

(AD/C);
Y:F'B:FSL(A:B)

(AD/E) ;

MICRO Z:INRA

MICRO Z:INRB

MICRO Z:MCA

(ZB/2);

(ZB/3);

(ZB/l)
MICRO Z:OPT

MICRO Z:Y
(ZB/l)
(ZB/O) .

MICRO Z:Y-INRA '
(ZB/2) .

MICRO Z:Y-INRB '
(ZB/3);

PAGE 2-22

\\ Wait for quiet interface \
Via the local interface, ,

\ write OUTR into Local Memory Conf Reg \
\ Needs "ADRS:A" or "ADRS:B" \
\\ Wait for quiet interface \ -

Write half of OUTR to memory \
\ Needs "ADRS:A" or "ADRS:B"·
\ Wait for quiet interface \'
\ Write OUTR to memor~ \
\ Argument "LOCK" or UNLOCK" optional \
\ needs "ADRS:A" or "ADRS:B"·
\ Wait for quiet interface \'
\, Send OUTR to channel addressed by ADRS \

Argument = RUPT or
REPLY or
TEST-A or
TEST-B or
TEST-P '\

\ Needs "ADRS:A" or "ADRS:B" \
, (or "ADRS:P" with TEST- argument);

\ ALUY (= ALUF, Q (= ALUF \

\ALUY (= ALUF \

\ ALUY (= SP(A),SP(B) (= ALUF \

\ ALUY (= ALUF, SP(B) (= ALUF \

\ ALUY (= ALUF, SP(B),Q (=SR= FLAGTl,ALUF,Q \

\ ALUY (= ALUF, SP(B) (=SR= FLAGTl,ALUF \

\ ALUY (= ALUF, SP(B),Q (=SL= ALUF,Q,FLAGTI \

\ ALUY (= ALUF, SP(B) <=SL= ALUF,Q(08) \

\ Z-bus (= Unspec'd(08-l5),INRA(16-3l) \

\ Z-bus (= Unspec'd{08-l5),INRB(16-3l) \

~ Z-bus (=

~ Z-bus (=
, Z-bus (=

Microcode Analyzer or \
serial number;

Option board or FDF or \
serial number;

ALUY(OB-3l) \
\Z-bus (= ALUY(OB-15),INRA(16-3l) \

\ Z-bus (= ALUY(OB-15),INRB(16-3l) \

CUSTOM PROCESSOR DICTIONARY

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY

owner Dick Lemay
name memoblnk.prn

at (0 0 cc)
window (0 0 0)
imagesize (0 0)
imagespace (0 0 0 0)
jobheader on
copies 1
pagecollation on
paper letter
jamresistance on
language impress

System Version 3.3 Rev B IPIII, Serial #87:9:79
Page images processed: 1
Pages printed: 1

Paper size (width, height):
2560, 3328

Document length:
584 bytes

-..

. ,
Special Processor Engineering

16-BIT CUSTOM PROCESSOR SPECIFICATION (60165904) PAGE)-1

FLOW CHARTING CONVENTIONS

Firmware flowcharts are meant to record a design and to instruct
others who may require the knowledge so that they may either advance
the art or to maintain the product. The conventions listed below are
mainly aimed at consistency so as to provide a means of communicating
techn~cal matters with a minimum of ambiguity.

3.1 THE SYMBOLOGY

A rectangle represents a firmware step. A firmware step is
sometimes called a firmware "box". The micros (to be) coded into the
firmware box are written in the rectangle. Sometimes the actual
micros are not recorded but a higher level syntax is used instead.
Section 4 is a specification of the higher level language for the
l6-bit Custom Processor.

An example of a firmware step in flowchart form is shown in
Figure 3-1.

3.2 ADDRESSES

WR-lB(A)
Fl (- Fl + Q

FIGURE 3-1
A FIRST EXAMPLE"

The addresses of the firmware steps being documented are
annotated in a convenient place but always outside of the rectangle.
Because firmware is best debugged by flowchart, it is wise to record
the absolute address of each firmware step. It is usually handy to
show the symbolic addresses as well particularly if s~olic
addresses are not used indiscriminateiy {denote the beginning of
routines and other major branch destinat~ons only). An example· is
shown in Figure 3-2.

PAGE 3-1

$FRET
0837

080C

'WR-1B(A)
F1 (- F1+Q

STALL
OUTR (- H

FIGURE 3-2
SIMPLE ADDRESS ANNOTATION

FLOWCHARTING CONVENTIONS

HONEYWELL BULL CONFIDENTIAL AND PROPRIETARY

· 16-BIT CUSTOM PROCESSOR SPECIFICATION (60165904) PAGE 3-2

3.3 FLOW

Firmware steps perform tests in order to control microprogram
flow. The simplest test mechanism which the hardware provides allows
a two-way choice and the most complex allows a 257-way choice.

3.3.1 TWO-WAY CHOICE

The test condition is written inside the bottom of the rectangle
and the two choices are drawn as rectangles below, one at the left
and one at the right. The test condition ~s distinguished from other
micro because it is written with a question mark suffix. The right
rectangle contains those micros to be executed if the test condit~on
is TR E and the left rectangle contains those micros to be executed
if the test condition is false. In the example shown in Figure 3-3
the zero indicator is tested; if the zero ~ndicator is ON, F4 wili
receive F1 plus seven whereas if the zero indicator is OFF, a stall
is performed and OUTR receives the content of the H register.

$FRET
0837

oeoc STALL
OUTR (-

WR-IBiA~ F1 (- F
IZ?

Q

F4 <- Fl + 7
H

FIGURE 3-3
SIMPLE SEQUENCE CONTROL

280C

Permitted alternatives to the representation shown in Figure 3-3
are shown in Figures 3-4 and 3-5. Although there is no functional
difference, such alternatives are useful where complex flow is being
documented; e.g., when multiple columns of firmware are drawn on one
page.

$FRET
837 WR-IB~A)

Fl!- 1 + Q
IZ?

280C F4 (- Fl + 7 STALL 80C
OUTR (- H

FIGURE 3-4
SIMPLE SEQUENCE CONTROL - ALTERNATIVES

PAGE 3-2 FLOWCHARTING CONVENTIONS

HONEYWELL BULL CONFIDENTIAL AND PROPRIETARY

_ 16-BIT CUSTOM PROCESSOR SPECIFICATION (60165904) PAGE 3-3

IZ?

I
~--------/ \----------~

IZ? IZ

LABEL LABEL

FIGURE 3-5
SIMPLE SEQUENCE CONTROL- OTHER ALTERNATIVES

3.3.2 SPLATTERS

A splatter is a mechanism for determining the value of multiple
~~~~r~~tion~~r Tk~st~gr:f.t~rSPI~t~~~a~~yaaI~~~;difocg~n~~~df~ro~~yt:~a 
the multiple elements being examinea can usually be masked. Figure 
3-6 shows a conditional splatter on two FLAGS if the ZERO indicator 
is false. The test condition (if any) is written inside the bottom of 
the rectangle. A splatter ~s visuallI signified by a hash mark 
crossing the flowpath line, by the sp atter name and parenthesized 
mask value written adjacen~ to the hash mark, and bI connecting the 
top line of the rectangles representing the multip e destinat~ons. 
The leftmost splatter destination is annotated with the base address 
of the splatter and the other destinations need only be annotated 
with the varying portion of the destination address. If as 
frequently happens, the splatter destinations can not all be drawn 
nearby, it is helpful to repeat the splatter name and mask value. 

IZ 
, 

/ \ - ~ FLAGS ( 6) 

200 2200 ---2 ---4 ---6 

_ FIGURE 3-6 
A CONDITIONAL FOUR-WAY SPLATTER 

PAGE 3-3 FLOWCHARTING CONVENTIONS 

HONEYWELL BULL CONFIDENTIAL AND PROPRIETARY 



16-BIT CUSTOM PROCESSOR SPECIFICATION (601656904) 

THE TRANSFER LANGUAGE 
AND 

THE TRANSFER LANGUAGE COMPILER 

PAGE 4-1 

This section describes the Transfer Language which allows 
microcode to be written at a "higher level" than t.hat permitted by 
the dictionary of section 2. This section also specifies the compiler 
which "converts" the high level source statements into the micros of 
section 2; i.e., the comp~ler does not directly generate object code. 

4.1. SOURCE FILE FORMAT 

4.1.1 LINE LENGTH 

The source file shall be free-form text consisting of lines of 
ASCII characters no longer than 82 characters (including line 
d~l~miter). The compiler may, but need not, enforce the line-length 
l~~t. 

4.1.2 WHITE SPACE 

The line· delimiter, space horizontal tab character and formfeed 
character shall be consieered. "white-space" and are syntactically 
equivalent. White-space is only necessary where the juxtaposition or 
two tokens (ke~ores, identif~ersf operators, etc.) woule cause the 
compiler to misinterpret the two ~okens as a single token of some 
other type. Example: . 

GOTOX cannot be interpreted as GOTO X because without the white
space between GOTO and X, the compiler must consider GOTOX as a 
s~ngle token. 

4.1.3 VALID/INVALID CHARACTERS 

The following characters (expressed in 'C' notation) are never 
valid ANYWHERE in a source file: 

'\0' through ~\010' 
'\013' 

'\016' through '\037' 
'\177' through '\377' 

The following character is valid only inside a literal block: 

'\\' 
The following characters are valid only inside of 

other type of ae1imited text (such as the INCLUDE 
<pathname}): 

, %' '.' 

'?' ,-, '{' '}' 

a comment or 
statement's 

PAGE 4-1 TRANSFER LANGUAGE AND COMPILER 

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY 



16-BIT CUSTOM PROCESSOR SPECIFICATION (601656904) PAGE 4-2 

4.1.4 COMMENTS 

A comment consists of any text not including semicolon or any of 
the characters mentioned in sections 1.3 and 1.4a beginning with the 
delimiter /* and ending with the delimiter */. A comment, therefore 
may span multiple lines. 

Comments may not be nested. 

A comment is treated syntactically as white-space. 

4.2 LEXOGRAPHY 

4.2.1 CASE 

Upper-case and 
and constants are 
any output file. 

lower-case letters in reserved words, identifiers 
equivalent and will be converted to upper-case in 

4.2.2 SOURCE FILE LENGTH 

A source file 
statements. 

consists of zero or more comments and/or, 

4.2.3 STATEMENT TERMINATOR 

A statement is terminated by the semicolon character, I;', which 
may not be used for any other purpose. Especially, tne semicolon 
character may not be used inside a comment, due to problems with the 
RTL assembler. 

4.2.4 LITERAL TEXT BLOCK 

Any text beginning with the double-quote character, '"', up to 
the next double-quote character is considered literal text and must 
conform exactly ~o the rules describing the syntax of RTL assembly 
language. This rule does not apply inside of a comment. 

4.2.5 LITERAL TEXT BLOCK RESTRICTIONS 

Literal text may be imbedded in a statement, or form a block 
which could be outside of any other block. 

4.2.6 LITERAL TEXT BLOCK "COMPILATION" 

Literal text is copied as-is (except that the delimiting quotes 
are removed) to the compiler's RTL assembly language output file. 
Thereforei a literal block is opaque to the compiler. This means that 
any labe s defined within the literal block are unknown to the 
compiler and that the compiler will be unable to detect duplicate 
usage of anI firmware address assigned within the literal block. The 
compiler wil also be unable to detect a conflict between any 
micro-ops used within the literal block and any micro-ops which the 
compiler generates in the process mf applying a production rule. 

4.2.7 RESERVED WORDS 

The list of reserved words is shown in Table 4-1. These reserved 
words are a part of the language and may not be used for identifiers 
or block names. 

PAGE 4-2 TRANSFER LANGUAGE AND COMPILER 

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY 



16-BIT CUSTOM PROCESSOR SPECIFICATION (6016569b4) 

ACK BEGIN 
ADDR BUSY 

GOTO HEX 
HOF 

NOFAULT 

TEST 
TRUE 

TABLE 4-1 
RESERVED WORDS 

CALL 
CASE 
CLK 
CMND 
CONST 

IF 
INCLUDE 

PREFETCH 
PREFETCHN 
PRESERVES 
PTAKE 
PTAKEN 
PUSH 

WT2B 
WT2BN 
WTB 
WTLK 
WTULK 

4.3. SOURCE FILE ORGANIZATION 

4.3.1 STATEMENT TYPES 

END 
EQU 
ELSE 
ENDSW 

RD2B 
RD2BN 
RD4B 
RD4BN 
RDlO 
RDLK 
RDULK 
REPLY 
RETURN 
RUPT 

PAGE 4-3 

FALSE 

LDSYND 

SAVES 
SELECT 
SKIP 
STALL 
SWITCH 

The source file consists of four types of statements, any of 
which may be optionally omitted: 

o Pre-processor directives 

o Definitions 

o Block-defining statements 

o Procedure 

4.3.2 COMMENTARY 

Commentary 
file, subject 
sect~on two. 

and literal text may appear anywhere within the source 
only to the lexographic restrictions indicated in 

4.3.3 PRE-PROCESSOR DIRECTIVES 

Pre-processor directives must each 
in the source file and must begin 
pre-processor understands two direct~ve; 

4.3~3.l INCLUDE '<pathname>'; 

be contained on a single line 
in column 1 of the line. The 
INCLUDE and SKIP. 

Open the file specified by <pathname) and insert the text of that 
file in place of the pre-processor directive as if it were part of 
the source file. Note: INCLUDEd files may not contain the INCLUDE 
directive. 

4.3.3.2 SKIP <count>; 

Where <count> is defined to be an integer or the keyword HOF. 
This statement is copied directly to the output file, causing <count> 
lines (or head-of-form) to be skipped when assembled under RTL. 

PAGE 4-3 TRANSFER LANGUAGE AND COMPILER 

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY 



"0' 
16-BIT CUSTOM PROCESSOR SPECIFICATION (601656904) PAGE 4-4 

4.3.4 LOCAL DEFINITIONS 

Four definition statements are provided; EQU, CONST, EXTERN and 
PUBLIC. 

If a definition statement is within a block (see 4.3.5) it is a 
"local" definition. Local definitions take effect at the place 
within the block where the definition appears and persist until the 
end of the block. A definition which is not contained within a block 
is a "global" definition. Global definitions take effect at the place 
in the source file where the definition appears and persist until the 
end of the source file is encountered. {Actually, the situation is 
more complex "end of the source fl.le" means the end of the 
top-level source file, not the end of some included file which 
happened to contain a global definition.) 

An <identifier> which is defined in a global definition 
statement may not be re-defined elsewhere. A local definition can 
however, override a global definition within the scope of the block 
in whicn it appears. 

4.3.4.1 <identifier> EQU <predefined identifier>; 

This definition causes the compiler to treat <identifier> as a 
synonym for the specified pre-defined identifier (e.g.: ADRA) or a 
reserved word (e.g.: BEGIN). 

4.3.4.2 <identifier> CONST <integer constant>; 

This definition causes the compiler to treat <identifier> as a 
synonym for some integer constant, allowing symbolic names for "magic 
nUmbers" . 

4.3.4.3 <label> EXTERN; 

This definition specifies that the <label> is defined in some 
other source module. It compiles to the RTL statement "XLOC". 

4.3.4.4 <label> PUBLIC; 

This definition serves two purposes. First, it compiles to the 
RTL "XDEF" statement (which allows the label to be referenced bV 
"EXTERN" statements in other source files. Additionally, the <label) 
is made globally known within a structured file. (Normally~ labels 
within blocks in a structured source file -- see section 3.~ -- are 
only known within the scope of the block in which they appear. The 
PUBLIC definition statement overrides the scope limitation normally 
imposed.) The <label> must be some label defl.ned within the block. 
There may be any number of PUBLIC statements within a ·block. 

4.3.5 BLOCK DEFINITIONS 

Block-defining statements impose scope rules on definitions and 
labels and indicate whether or not the contents of hardware registers 
are destroyed by.the code contained within or called from the block. 
There are four block-defining statements: BEGIN, END, PRESERVES and 
SAVES. The BEGIN statement aefines the start of a block; the END 
statement marks its end. The PRESERVES statement asks the compiler to 
verify that the specified register(s) are never the target of an 
assignment or increment operation and to issue a warning message if 
they are. The SAVES statement asserts (the compiler neea not verify 
the assertion) that the code within this block restores the original 
contents of specified register(s). This statement allows the compiler 
to verify register preservatl.on for subroutines which save and 
restore registers whl.ch the subroutine uses as working variables and 
therefore cannot declare as preserved. 

PAGE 4-4 TRANSFER LANGUAGE AND COMPILER 

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY 



-., 
16-BIT CUSTOM PROCESSOR SPECIFICATION (601656904) PAGE 4-5 

If any block-defining statement appears within a source file, the 
file is said to be "structured". If no block-defininw statements are 
specified, the file is said to be "unstructured. No procedure 
statements may appear outside the scope of a block in a structured 
file. Blocks are not "nested" i they cor-respond more closely to 'c' 
functions than to Pascal procedures. If a block does not contain a 
PRESERVES or a SAVES statement, it will be assumed that no registers 
are preserved. 

4.3.5.1 BEGIN 

The BEGIN statement has the form: 

[<block name>] BEGIN; 

where <block name> is an identifier which the programmer has 
chosen to name the block. It is optional. If it is used, it must be 
unique in the source file. 

4.3.5.2 END 

The END statement has the form: 

[<block name>] END; 

where the <block name> must l if specified, match the <block 
name> of the most recently-def~ned unmatched BEGIN. The compiler 
shall verify that all BEGINs have corresponding ENDs. 

4.3.5.3 PRESERVES 

The PRESERVES statement has the form: 

PRESERVES <register_name> [, <register_name>] ... ; 

where <register name> may be any of the hardware register names 
or any user-defined synonym thereof. 

4.3.5.4 SAVES 

The SAVES statement has the form: 

SAVES <register_name> [, <register_name>] ... 

where <register name> may be any 
or any user-defined synonym thereof. 

4.3.6 PROCEDURE 

of the hardware register names 

All statements other than pre-processor directives, 
block-defining statements and definitions are considered procedure. 

4.3.6.1 OPERATION CLAUSE 

Procedure statements consist of one or more operation clauses. 
Operation clauses are separated by commas, since the comma operator 
is defined (see section 4.4.6.14) as the simultaneity oper~tor. 

Operation clauses may appear within a statement in any order. 

An operation clause may be any of the following: 

<assignment> 
<control> 
<next address specifier> 

PAGE 4-5 TRANSFER LANGUAGE AND COMPILER 

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY 



" .. . 
16-BIT CUSTOM PROCESSOR SPECIFICATION (601656904) PACE 4-6 

4.3.6.2 ASSIGNMENT OPERATION CLAUSE 

An <assignment> clause's syntax is: 

{ <identifier> I ( <identifier list> ) } = <expression> 

An <identifier list> is defined as: 

<identifier> [ , <identifier> ] ... 

4.3.6.3 CONTROL OPERATION CLAUSE 

A <control> clause includes such things as loading syndrome, 
supressing error detection and bus operations. See paragraph 4.5 for 
details. 

4.3.6.4 NEXT ADDRESS SPECIFIER OPERATION CLAUSE 

A <next address specifier> clause may be: 

<goto> 
<splatter> 
<conditional> 
<call> 
<return> 

See paragraph 4.6 for details. 

The syntax of the next address specifier is: 

( <integer constant» or 

( • A ) 

For those address specifiers which are integer constants, the 
compiler shall report multiple use of the same firmware address as an 
error. 

A procedure statement must be prefixed by an address s~ecifier. 
If a procedure statement is labeled, the address speciIier must 
immediately follow the label. 

4.3.6.5 DEFAULT NEXT ADDRESS 

If a procedure statement does not contain a <next address 
specifier> clause, the compiler shall assume a <goto> clause which 
specifies as its target the address of the next statement in the 
source file. It is an error for the last statement of a block (or the 
filet if it is "unstructured) not to contain a <next address 
spec~fier> clause. 

4.3.6.6 PROCEDURE LABELS 

A procedure statement may be oQtionally prefixed by a label. A 
label ~s any valid <identifier> preIixed by a dollar-sign, '$'. See 
paragraph 4.~.2 for the definit10n of an ~identifier>. Some labels 
may be formed automatically by the compiler. The compiler need not 
detect that the program contains a label that auplicates an 
automatically-generated one. It will be up to the user to ensure that 
such duplicat~on does not occur, providea that the compiler's method 
for generating labels is documented. 

A label may be specified as the target of a <next 
addressspecifier> operation, the operand of an EXTERN or a PUBLIC 
statement or as the operand of a PUSH or ADDR operator. 

PAGE 4-6 TRANSFER LANGUAGE AND COMPILER 

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY 



· 16-BIT CUSTOM'PROCESSOR SPECIFICATION (601656904) PAGE 4-7 

Any identifier which is used in a procedure statement clause must 
have already been defined or else be a reserved word or pre-defined 
identifier. Labels, however, need not be defined before they are 
referenced. 

4.4. EXPRESSIONS 

An expression consists of identifiers, reserved words, constants 
and operators. 

4.4.1 IDENTIFIER 

An identifier may consist of from one to sixteen characters. 

An identifier must begin with a letter. 

An identifier may contain (after its initial letter) any 
combination of characters from the set 

'A' through 'z' 
'a' through 'z' 
'0' through '9' 

hyphen 

The identifiers shown in Table 4-2 have been pre-defined and may 
not be used as either block names or user-defined 1dentifiers. 

ABCD ADRA 
D DECODE 
F4 F5 
Fll Fl2 
H I 
IS ISCR 
INRX MCA 
P3 P4 
Q R 
RDR SCRAM 
T4 T5 

4.4.2 INTEGER CONSTANT 

ADRB 
F 
F6 
Fl3 
IC 
IV 
OP 
P5 
RO 
SYND 
T6 

TABLE 4-2 
IDENTIFIERS 

ADRPH 
FO 
F7 
Fl4 
IFB 
IZ 
OPT 
P6 
RAR 
TO 
T7 

An <integer constant) may be either: 

ADRPL ADRX CYCLE 
F1 F2 F3 
F8 F9 FlO 
Fl5 FLAGS FQ 
ILE ILEl IO 
IZZ INRA INRB 
PO Pl P2 
P7 PB PCTR 
RAMAD RBR RCR 
Tl T2 T3 
Y Z ZSH 

o A decimal constant, consisting of one or more decimal 
digits. 

o A hexadecimal constant, consisting of one or more 
characters from the set of: 

o 1 2 3 4 567 8 9 ABC D E F 
abc d e f 

followed by the sharp-sign, '#', which indicates the radix. 

4.4.3 EVALUATION RANGE 

Expressions must evaluate within the range from 00000000# through 
OOOOFFFF# or the range OOFFOOOO# through OOFFFFFF#. The compiler 
shall detect out-of-range expressions as an error. 

PAGE 4-7 TRANSFER LANGUAGE AND COMPILER 

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY 



' .. . 
16-BIT CUSTOM 'PROCESSOR SPECIFICATION (601656904) 

4.4.4 OPERATORS 

The following operators have been defined, in 
precedence: 

(unary) -
++ 

An6R () SELECT ( ) 
(binop) + 

« » <@ @> 
& 

I 

4.4.4.1 PARENTHESIS 

right-to-left 
right-to-left 
right-to-left 
right-to-left 
left-to-right 
left-to-right 
left-to-right 
left-to-right 
left-to-right 
right-to-left 
right-to-left 
right-to-left 

evaluation 
evaluation 
evaluation 
evaluation 
evaluation 
evaluation 
evaluation 
evaluation 
evaluation 
evaluation 
evaluation 
evaluation 

PAGE 4-8 

order of 

Parenthesis may be used to override operator precedence, subject 
to the restrictions imposed by the hardware target. Parenthesis also 
surround the argument list of the ADDRI PUSH and SELECT functions. 
Expressions [if any are allowed 1 whicn are arguments of these 
functions are evaluated in right-to-left order before the function 
itself. 

4.4.4.2 UNARY MINUS 

The unary 
Example: 

minus operation performs arithmetic negation. 

-1234 

4.4.4.3 UNARY TILDE 

The una+y tilde t '-', ope+ator performs bit-wise.negationi i.e.: 
the operand ~s exclus~ve-ORed w~th all ones. Example: . 

-mask14 

The unary tilde operator also performs logical negation; i.e.: 
TRUE becomes FALSE and v~ce-versa. Example: 

I-ZRO 

4.4.4.4 UNARY ++ and --

The unary operators "++" and "--" reQresent 
decrement; respectively. These operators prerix the 
which is Deing ~ncremented or decremented. Examples: 

++RDR /* Increment RDR */ 
--Fl /* The same as F1 = F1 - 1 */ 

4.4.4.5 UNARY BRACKET SET 

increment and 
sub-expression 

The bracket set 
Example: 

( [ ] ) is used to represent "as addressed by". 

PAGE 4-8 

F2 = R[RAR]i /* Set F2 to the ARAM value at 
the location specified by the 
RAR register. */ 

TRANSFER LANGUAGE AND COMPILER 

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY 



· 16-BIT CUSTOM-PROCESSOR SPECIFICATION (601656904) PAGE 4-9 

4.4.4.6 UNARY ADOR( ) 

The ADOR function evaluates to the firmware address of its 
operand (which must be a label. Example: 

F3 - ADDR($STEP12) /* Put the firmware address of 
$STEP12 into register F3. */ 

4.4.4.7 UNARY SELECT 

The SELECT function evaluates to the 24-bit value which is formed 
by the concatenation of bits 0 through 7 (the high-order byte) of its 
f~rst operand with bits 8 through 15 of its second operand and bits 
16 through 23 of its third operana. Valid operands for this function 
are a byte-sized literal, H, ZSH and PB. Example: 

SELECT(H, ZSH, ZSH) /* Combine the high-order byte of the H 
register with the middle- and low
oraer bytes of the shifted Z bus */ 

The variable ZSH specifies the Z-bus shifter output. ZSH is set 
by an assignment of the form: 

ZSH :0= Z <@ nn, 

or 

ZSH = Z @> nn, 

where "nn" specifies the rotate distance (always a multiple 
of four). See sect~on 4.???? for a descript~on of the rotate 
operator. The use of ZSH is restricted in that (1) there must be a 
ZSH assignment clause within any statement that includes a reference 
to ZSH ana (2) the ZSH assignment clause must preceed any use of ZSH. 

4.4.4.8 BINARY OPERATORS + and -

The binary operators '+' and '-' stand for addition and 
subtraction, respectively. Note: because hyphen may appear in an 
identifier, the binary minus operator must always be surrounded by 
spaces. Examples: 

F2 + F1 
F3 - F1 - 1 

/* Add F2 to F1 */ 
1* Subtract F1 from F3 and 

subtract 1 from the result */ 

4.4.4.9 ROTATE BINARY OPERATORS 

The 1eft- and right-rotate' binary operators ( <@ 
respectively) perform b~t-wise rotates by a specified number 
Note: the rotate operators must specify a rotation distance 
a multiple of four. Example: 

F3 = F3 <@ 16; /* Rotate F3 left 16 bits and 
put in F3 */ 

and (a>, 
of bits. 
which is 

The left- and right-shift operators «< and », respectively) 
perform bit-wise shifts of a distance of one bit. The second operand 
of the shift operator specifies the "filII! bit. The shift operations 
are ALU-based operations whose first operand may be F (the ALU 
output), an arithmetic / logical expressl0n FQ (F concatenated with 
the Q register) or an arithmetic / logical expression concatenated 
with Q. The flll bit actually comes from flag TO, so specifying a 
fill nit also causes TO to be set or cleared (except for the second 
example, below, where the fill bit specification MUST be Q). If 
altering TO is not desired, TO may be specified as the fill blt, in 
which case TO is unchanged. 

PAGE 4-9 TRANSFER LANGUAGE AND COMPILER 

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY 



· 16-BIT CUSTOM·PROCESSOR SPECIFICATION (601656904) PAGE 4-10 

Examples: 

F3 - (F3 + F4) » 0; /* Add F3 to F4, shift right 1 bit, 
zero filling the left-most 
bit and put result into F3 */ 

F3 - (F2 & F3) «0; /* For left shifts of Fl the only 
valid fill bit specifier is O. */ 

F3_0 = (F1 F3)_O« TO; /* For this shift, the fill bit 
can be specified, but in this 
case, we did not want to 
disturb TO. */ 

F1_0 = (F1 , F2)_O »1; /* Right-shift long with I-bit 
fill */ 

4.4.4.10 UNDERSCORE BINARY OPERATOR 

The underscore ( ) is the concatenation operator. It is used in 
the case where a quantity must be constructea by concatenating two 
other quantites in ALU operations. A more powerful concatenation 
operator is the SELECT funct~on; see section ???,. Example: 

as: 

F5 0 - FO «1; /* Shift F concatenated with 0 left one bit 
- (I-filled) and put result ~n F5 and O. The 

F value must have been specified by some 
other clause within the statement. */ 

The concatenation operator may also be used for such constructs 

RBR RCR, 
RAR-RBR RCR RDR (although ABCD is preferred), 
Y INRA - -

and 

y INRB 

4.4.4.11 BOOLEAN BINARY OPERATORS 

Bit-wise (Boolean) AND, Exclusive-OR, _and OR, operations are 
defined by means of the operators '&' "and", respectively. 
Other operations, such as AND-NOT and Exciusive NOR may be created by 
using the AND or XOR operators along with the unary negation ( ) 
operator applied to the second operand. Examples: 

Z = F3 F2; /* exclusive OR F3 and F2 and put result 
on Z bus */ 

F2 = F2 & -F1; /* AND F2 and NOT FI and put result in 
F2 */ 

4.4.4.12 EQUAL BINARY OPERATOR 

The assignment operator is the equal-sign. It is included in the 
list of operators so that its precedence can De represented. 

PAGE 4-10 TRANSFER LANGUAGE AND COMPILER 

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY 



" .. 
16-BIT CUSTOM PROCESSOR SPECIFICATION (601656904) PAGE 4-11 

4.4.4.13 COMMA BINARY OPERATOR 

The comma operator specifies 
within a single step. Examples: 

simultaneous operations performed 

Z - F5, Fl - F5 + FI; /* Z gets F5 while FI gets F5 + Fl */ 
(Z, Fl) - F2 + 003F#; /* both Z and FI get F2 + 003F# */ 
(I, Z) - ++F2; /* The arithmetic indicators, the Z 

bus and F2 all get F2 + 1 */ 

Note: comma also appears within the argument list of some 
keywords. When it ~s encountered in an argument list it is 
not treated as an operator. 

4.5. CONTROL CLAUSES 

4.5.1 STALLS 
The STALL operation is specified by the syntax: 

STALL«event» 

where <event> can be anyone of ACK, BUSY or INRA. 

4.5.2 READS 

There are seven READ operations, all of which are formed: 

(read-op>«addr reg» 

where <addr reg> may be either ADRA or ADRB and (read-op> 
may be: 

RD2B -- read two bytes of memory 
RD2BN -- read two bytes of memory, no-cache 
RD4B -- read four bytes of memory 
RD4BN -- read four bytes of memory no-cache 
RDIO -- read I/O 
RDLK -- read and lock 
RDULK -- read and unlock 

4.5.3 WRITES 

There are nine WRITE operations: 

(write-op>«addr reg» 

where <addr reg> is as defined in the read operations, while 
(write-op> may be: " 

CMND command 
REPLY reply (SHBC) 
RUPT cause ~nterrupt 
TEST -- wrapped write 
WT2B -- write two bytes to memory 
WT2BN -- w+ite two bytes to memory, no-cache 
WTB -- wr~te one bIte to memory 
WTLK -- write and ock 
WTULK write and unlock 

4 . 5 . 4 LDSYND 

The . LDSYND clause causes the syndrome register to be loaded from 
the current status information. 

PAGE 4-11 TRANSFER LANGUAGE AND COMPILER 

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY 
I 



' .. 
16-BIT CUSTOM PROCESSOR SPECIFICATION (601656904) PAGE 4-12 

4.5.5 PROCEDURE FETCH 

There are four procedural fetch control operations: 

PTAKE take one byte of procedure 
PTAKEN take one byte; no cache 
PREFETCH -- load procedure buffer 
PREFETCHN -- load procedure buffer; no cache 

4.5.6 NOFAULT 

The NOFAULT clause causes hardware error condition signals (e.g.: 
data parity) to be ignored during the current step. 

4.6. NEXT ADDRESS SPECIFIER CLAUSES 

Eleven next address specifier clauses take as their target 
operand either some label whose scope includes the statement 
containing the address specifier clause or an integer constant which 
is a valid firmware adaress. The compiler shall report as an error 
any label which is not resolvable or any integer constant not in the 
range 0 through [TBD]. The practice of using integer constants as 
the target of next address specirier clauses is strongly discouraged. 

4.6.1 GOTO 

The GOTO operation specifies an un-conditional jump to another 
firmware step. Its syntax is: 

GOTO <target> 

where <target> was defined in section 6.1. 

4.6.2 SPLATTER 

The splatter operation specifies a "computedgoto" or multi-way 
jump to one firmware address of a group of addresses. Its syntax is: 

SWITCH «selector», 
CASE <int>: <target>, 
CASE <int>:' (target> 
rCASE <int>: <target>,] 

ENDSW 

where <selector> can be PO, RAMAD, FLAGS, OP, I, or DECODE and 
<int> may be 0 through 15 (in any convenient integer notation) which 
specifies the low-oraer digit of the target address. It is an error 
to have any <int> ,more than once in a single <splatter operation>. 

4.6.3 CALL 

The CALL operation. specifies a subroutine call. It is a "macro" 
statement, a combination of a PUSH operation and a GOTO operation. 
Its syntax is: 

CALL (target> 

The CALL statment expands to a PUSH of the address of the next 
successive source statement and a GOTO to the (target> that is the 
CALL's operand. 

PAGE 4-12 TRANSFER LANGUAGE AND COMPILER 

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY 



'" 

16-BIT CUSTOM PROCESSOR SPECIFICATION (601656904) PAGE 4-13 

IF «test 

IF «test 

IF «test 

IF «test 

IF «test 

condition» 

condition» 

condition» 

condition» 

condition» 

Its 
may 
are 

Note that in forms 1 and 4, the <target> in the ELSE clause does 
not necessarilly have to be in the ELSE-bank of firmware addresses; 
so long as the IF target and the ELSE target are in opposite banks 
the compiler can invert the test condition to achieve alignment with 
hardware requirements. 

In forms It 2 and 3 if the ELSE portion of the conditional 
operation is om~tted, the address of the next source statement is the 
destination when the tested condition is FALSE. In forms 4, 5 and 6, 
the address of the next source statement is the destination when the 
tested condition is TRUE. Forms 4, 5 and 6 should be avoided unless 
inversion of the 'test condition makes the condition expression 
unreadable. 

PAGE 4-13 TRANSFER LANGUAGE AND COMPILER 

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY 



16-BIT CUSTOM PROCESSOR SPECIFICATION (60165904) PAGE 5-1 

THE FIRMWARE DEVELOPMENT FACILITY 

This section contains a description of the Firmware Development 
Facility available for use with the 16-Bit Custom Processor. The 
section is divided into three parts: 

o A general overview 

o The menu 

o A description of each menu item 

o A description of the optional Missing-Stall Catcher . 
The Firmware Development Facility (FDF) is an equipment which 

allows checkout of firmware, coded and assembled under RTL. The FDF 
consists of: 

0 A separate five-card cage with an independent. po~er supply 

0 A processo! board with a Z80 processor 

0 A SILO board with a 4096 location SILO 

0 A 16384-by-96 location control-store-PROM substitute 

0 A terminal/keyboard unit (e.g. , 7300) 

o Appropriate interconnecting cables 

Utilizing the FDF in a develo~ment environment, the firmware is 
tested and finalized. It is then burnt II into PROMs. A set of PROMs 
are installed in each Custom Processor. The FDF equipment listed 
above is not required in an end-user site. The result1ng CUP product 
'conne9ts directly to the Megabus system bus and requires no cables of 
any k1nd. 

5.1 FDF Interfaces 

Figure 5-1 is a diagram of the interconnections among the 
elements which comprise a f1rmware checkout "test bed". 

PAGE 5-1 THE FIRMWARE DEVELOPMENT FACILITY 

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY 



·16-BIT CUSTOM PROCESSOR SPECIFICATION (60165904) PAGE 5-2 

FDF INTERCONNECT DIAGRAM 

F 16K-BY-96-BIT CONTROL STORE 
FDF D 

F 

B 
POWER A 

C Z80 PROCESSOR BOARD 
K 
P 

SOURCE L 
A 
N 
E 4K-BY-44-BIT SILO BOARD 

16-BIT CUSTOM PROCESSOR 

S 

I 

I 

I 

I 

<----. 

e TO 
<--/--> :3 7300 

d 
< 

a 

< <_-.I 

:~ 
Y CACHE OR LOCAL MEMORY (OPTIONAL) I 
S 
T 

SYSTEM E 
M 

B 
BUS 1l U 1l 

S 

B 
POWER A 

C 
K 

1l 1l 

SOURCE P 
L 
A 
N 
E 

a: Cables 1 t
i
2 l b: Cable 

c: Cable 
d: Cables 
e: Cable 

PAGE 5-2 

OTHER PROCESSOR (OPTIONAL) 

SYSTEM CONTROLLER(S) 

-

SYSTEM MAIN MEMORY(S} 

I 

I 

I 

CUSTOM 
PROCESSOR 

FIRMWARE 
CHECKOUT 

SYSTEM 
CONFIGURATION 

FIGURE-· 5-1 

CUP to SILO ~04910202-001, 04910203-001) 
SILO to Z80 04910230-001) 
Z80 to MEMOR J60128806-0013 
CUP to MEMORY 04910204-001 
Z80 to TERMIN (60156745-0 1) for RS232 

(60156675-001) for RS422 

THE FIRMWARE DEVELOPMENT FACILITY 

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY 



." 

16-BIT CUSTOM PROCESSOR SPECIFICATION (60165904) PAGE 5-3 

5.2 THE HELP SCREEN 
A question mark and carriage return causes a help screen to be 

displayed as shown in Figure 5-2. The help screen prov1des a summary 
of FDF features. 

COMMAND =-------FWPROM 
FWRAM 
Ca 

Ja \ 
B 
Ba 
Ba:H 
Ba:D 
Ba:E xs+ xs
:z,z, ... 
* J. ~ 
mGOn 
n* 
n*S 
E 
" 

PAGE 5-3 

FUNCTION =-------- -n 
select PROMs east west 
select RAM north, south 
RAM word ~ a nSCAa 
pack hexaaecimal nSCDd 
label fields A 
jump to CSA == a AA 
disglay all brkpts AB 
g~ltr~p~~A~=C~A - a ~~ 
disable silo ~ CSA = a F 
enable silo @ CSA = a Fn 
external sto~ enable H 
define epilog I 
modify epilog . Mn 

scan r1ghti left OP 
insert, de ete PB 

rpt n command m times PC 
invoke epilog n OR 
store ep1log n 
execute current epilog Rn 
print current display =d 

FIGURE 5-2 
THE FDF HELP SCREEN 

silo (latest offset) 
silo offset - n 
next,prev silo entry 
next,Qrev silo block 
scan from -n for addr-a 
scan from -n for data=d 
ADRA, ADRB, ADRP, ADRX 
ADRA 
ADRB 
ADRP 
ADRX 
FO through FF 
one of above alterable 
H register alterable 
INRA, INRB{ INRX, SYND 
not support:ed 
RAA{ B, C, & D 
next: procedure byte 
progr~ counter (PCTR) 
Q reg1ster 
REGO through REGF 
REGn 
latest alterable (= d 

THE FIRMWARE DEVELOPMENT FACILITY 

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY 



16-BZT CUSTOM PROCESSOR. SPECIFICATION (6016590~) PAGE 5-4 

5.3 THE COMMAND SET 

The command set for the Firmware Development Facility can be 
divided into five groups as described in the following paragraphs. 

5.3.1 SILO COMMANDS 

When execution terminates~ the silo provides a history of the last 
4000 steps executed. Commanas which apply to the SILO are shown in 
Table 5-1. 

COMMAND 

? 

-n 

TABLE 5-1 
FDF COMMAND SET 

SILO COMMANDS 

CAUSES TO BE DISPLAYED 

Summary of commands (help screen) 

Silo location: 
-n yyyy=zzzzzz 

where n = silo offset from stop point, in decimal 
yyyy = firmware address 

zzzzzz - content of zbus at that address 

- Current offset in silo 

nSCAxxxx Scan SILO for a firmware address - xxxx. 
Start scanning at an offset of -nnn (default = 4000). 
Display each match until either: 

an ofrset of zero is reached (THE END is displayed) or 
23 matches have occurred (hitting the space bar will 
disp1~y the next set of matches; hitting any other 
key w~ll execute that command.) 

nSCDxxxxx Scan SILO for a data = xxxxxx. 
Start scanning at an offset of -nnn (default = 4000). 
Display each match until either: 

an ofrset of zero is reached ("THE END" is displayed) 
or 23 matches have occurred (hitting the space bar 
will display the next set of matches; hitt~ng any 
other key w~ll execute that command.) 

nNEXT Next nnn locations in SILO 
nnn cannot exceed 4000; default = 1. 
If offset of 0 is reacned, "THE END" is displayed. 

NBLK Next 23 locations in SILO 
If offset of 0 is ·reached, "THE END" is displayed. 

PBLK Previous 23 locations in SILO 
If offset of 4000 is reached, "THE END" is displayed. 

nPREV Previous nnn locations in SILO 
nnn cannot exceed 4000; default = 1. 
If offset of 4000 is reached, ·"THE END" is displayed. 

RIGHT ARROW same as NEXT 

DOWN ARROW same as NBLK 

UP ARROW same as PBLK 

LEFT ARROW same as PREV 

PAGE 5-4 THE FIRMWARE DEVELOPMENT FACILITY 

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY 



' .. 
16-BIT CUSTOM PROCESSOR SPECIFICATION (60165904) PAGE 5-5 

5.3.2 RUN CONTROLS 

Commands which determine what the history memory should capture 
and what should cause execution to terminate are shown 1n Table 5-2. 

COMMAND 

B 

Byyyy 

Byyyy:z 

FWRAM 

FWPROM 

INIT 

Jxxxx 

nRUNB 

RUNN 

nSTEP 

STOP 

XS+ 

XS-

XSD 

PAGE 5-5 

CAUSES ACTIONS 

TABLE 5-2 
FDF COMMAND SET 
"RUN" CONTROLS 

Display all active breakpoints 

Delete Breakpoint at firmware address yyyy 
Install Breakpoint at firmware address yyyy where: 

z = D: Disable capturing of history in SILO 
z = E: Enable capturing of history in SILO 
z ~ H: Address Halt 

NOTES: 
1 - Address is specified by last 14 bits of yyyy. 
2 - Breakpoints are armed only if command 

RUNB or RUNL is used. 

CUP uses firmware in external RAM [Default] 
State appears on line 25 

CUP uses firmware in PROMs (mounted on CUP boards) 
State appears on line 25 

Clears the CUP to the initialized state; i.e., ready to 
enter location zero at the next clock which may be 
provided by depressing the RUNN, RUNB, or STEP keys. 

Transfer firmwarecontr01 to address xxxx 

Place CUP in RUN mode, prepared to stop after the 
nnn-th occurrence of a breakpoint halt. Defaul,t nnn=1. 
(Note: one stop for each of two addresses counts as 
two stops.) The contents of the EPILOG-preselected 
action will then be executed. 

Place the CUP in RUN mode, and continue in that mode 
until "STOP" or "INIT" is depressed. 

Cause the CUP to execute nnn firmware steps 
('default =-1). ' 

Put the CUP in STOP mode. 
NOTE: The only FDF functions allowed when not in STOP 
mode are "STOP" and "INIT". 

Enable the CUP to stop when the external signal fed 
into the FDF goes from the low state to the high state. 

Enable the CUP to stop when the external signal fed 
into the FDF goes from the high state to the low state. 

Disable external stop. 

THE FIRMWARE DEVELOPMENT FACILITY 

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY 



· 16-BIT CUSTOM PROCESSOR SPECIFICATION (60165904) PAGE 5-6 

5.3.3 REGISTER DISPLAYS 

Table 5-3 shows which Custom Processor registers can be displayed 
and which can be altered. 

COMMAND 

A 

AA 

AB 
AP 

AX 
F 

Fn 

G 

PB 

PC 

Q 

R 

Rn 

RA 

RB 

RC -

RD 

S 

... xxxxxx 

PAGE 5-6 

TABLE 5-3 
FDF COMMAND SET 

REGISTER DISPLAYS 

CAUSES TO BE DISPLAYED 

ADRA-xxxxxx ADRB-xxxxxx ADRP-xxxxxx ADRX-xxxxxx 

ADRA-xxxxxx 

ADRB=xxxxxx 

ADRP-xxxxxx 

ADRX-xxxxxx 

FO through FF on two lines: 
FO-xxxxxx l-xxxxxx 2=xxxxxx 
F8-xxxxxx 9-xxxxxx lO=xxxxxx 

F register tnn where n = 0 through F 
Fn-xxxxxx 

RAA=x RAB=x RAC-x RAD=X 

Procedure byte (right justified): 
PB==OOOOxx 

PCTR (right justified): 
PC=OOOxxx 

Q register: 
Q=xxxxxx 

ARAMO through ARAMF on two lines: 
RO=xxxxxx l=xxxxxx 2=xxxxxx .. . 
R8=xxxxxx 9=xxxxxx A=xxxxxx .. . 

ARAM specified by nn where nn may range from F: 
Rn=xxxxxx 

ARAM location addressed by RAA: 
RAA=n>xxxxxx (where n is the value of RAA) 

-

ARAM location addressed by RAB: 
RAB=n> xxxxxx (where n is the value of RAB) 
ARAM location addressed by RAC: 
RAC=n>xxxxxx (where n is the value of RAC) 
ARAM location addressed by RAD: 
RAD=n> xxxxxx (where n is the value of RAD) 
SHRG register: 
S=xxxxxx 

Alter most-recently-displayed "alterable" register 
to equal xxxxxx. 

THE FIRMWARE DEVELOPMENT FACILITY 

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY 



" .. . 
16-BIT CUSTOM PROCESSOR SPECIFICATION (60165904) PAGE 5-7 

5.3.4 EPILOGUE CONTROLS 

The epilogue mechanism is invoked each time the FDF terminates 
execution of the Custom Processor. Table 5-4 defines the command set 
which applies to the epilogue mechanism. 

COMMAND 

* 

n* 

n*S 

I 
\ 

nGOTOm 

CLER 

E 

" 

PAGE 5-7 

TABLE 5-4 
FDF COMMAND SET 

EPILOGUE CONTROLS 

CAUSES ACTIONS 

Define "EPILOG" a list of preselected commands which 
will be executed when any STOP is encountered. 
Format: 

:COMMAND,COMMAND,COMMAND,etc. 
No blanks allowed between a comma and the next command. 
80 characters_maximum. 
see also \,1, ,and keys. 

Display EPILOG and allow corrections. 
see also \, I, ,and keys. 

Retrieve EPILOG #n (n = 2 through 6) 

Save current as EPILOG #n (n - 2 through 6) 

Skip next character of EPILOG 

Skip previous character of EPILOG 

Insert blank into EPILOG 

Delete character of EPILOG 

Repeat previous m EPILOG commands n times 
(m,n = 1 througn 9) 

Clear display screen (only) 

Execute (current) EPILOG 

Transmit present FDF screen display to hard-copy 
printer, if attached. 

THE FIRMWARE DEVELOPMENT FACILITY 

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY 



',. 

16-BIT CUSTOM PROCESSOR SPECIFICATION (60165904) PAGE 5-8 

5.3.5 FIRMWARE ARRAY COMMANDS 
The FDF's 16K by 96-bit firmware array contains 

debugged. Table 5-5 lists the commands which allow 
to be displayed and altered. 

the firmware to be 
the firmware array 

COMMAND 

COMMAND 

Cxxxx\ 
Cxxxx 
Cxxxx. 

\ 
LEFT ARROW 

RIGHT ARROW 

UP ARROW 

DOWN ARROW 

LOAD 

PAGE 5-8 

TABLE 5-5 
FDF COMMAND SET 

FIRMWARE ARRAY COMMANDS 

CAUSES TO BE DISPLAYED 

MEANING (TO DISPLAY AND CHANGE WRITABLE FIRMWARE ARRAY) 
Display location xxxx, by fields, with headings 
Display location xxxx, by fields 

Display location xxxx, packed format, ready to modify 

Revert to field format, with headings 
Move cursor to previous field, ready to modify 

Move cursor to next field, ready to modify 

Revert to packed format, ready to modify 
Move to previous location 

Move to next location 

Prepare RAM for loading of firmware. 
After loading actuate "INIT" to clear the CUP. 
Line 25 will display "LOAD" until "INIT" is depressed. 

THE FIRMWARE DEVELOPMENT FACILITY 

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY 



16-BIT CUSTOM PROCESSOR SPECIFICATION (60165904) PAGE 5-9 

5.4 MISSING STALL CATCHER 

The Missing Stall Catcher is an additional debugging tool which 
detects the aosence of a reguired stall micro. The M~ssing Stall 
Catcher is installed "in ser~es with" the FDF. It intercepts and 
monitors the cache/megabus related activity and insures that each 
transaction contains the prescribe expl~cit or implicit stall 
invocation(s). The monitoring activity proceeds as the target firmware 
load is executing. Thus, all traversed firmware paths are scrutized 
for missing stalls. 

PAGE 5-9 THE FIRMWARE DEVELOPMENT FACILITY 

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY 

~-----~---~---



.,. 

16-BIT CUSTOM PROCESSOR SPECIFICATION (601656904) PAGE A-I 

ENHANCEMENTS 

The redesign of the 16-Bit Custom Processor provides the 
following additional features: 

1. A readable 10-bit Channel Number. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

PAGE A-1 

A configurable crcle stealer so that the Custom Processor 
can behave as a ow priority bus requestor even when 
"plugged into" a high prior1ty MEGABUS slot. 
Backward compatible Firmware visibility; i.e., an existing 
set of PROMs (of any incarnation) will work. 

A bidirectional "local" interface so that both reads and 
writes may use the "backdoor"; Le., not require MEGABUS 
cycles. 

A semi-alterable Configuration Register which determines 
certain operational characteristics of the 16-Bit Custom 
Processor as shown in Table A-I. 

A "timeslicing" mechanism which can be programmed to 
interrupt after 2, 4, 8, or 16 milliseconds have elapsed. 

Recognition of a MEGABUS cycle "Function Code 01" directed 
at the CUP channel numberL which is interpreted as a local 
CLEAR and intiates the QL~ sequence. 

A mechanism which interrupts processing when a power failure 
is detected. . 

An optional 16k bank of writeable firmware space. 

A multiprocessor feature which only retries NAKed lock 
requests after detecting that an unlock cycle has occurred. 

ENHANCEMENTS 

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY 



.-

]' iF' , ,I --------------

.,. . 
16-BIT CUSTOM PROCESSOR SPECIFICATION (601656904) PAGE A-2 

CONFIGURATION BITS 
(read only) 

CSTEAL 
(read only) 

CMDPAR 
(read/write) 

APLONG 
(read only) 

AP'5l2 
(read only) 

FCODEI 
(read/write) 

PAGE A-2 

TABLE A-I 
CONFIGURATION REGISTER 

Three bits (C B and A) which determine the 
value of the three-least significant bits of 
the +"eply to the "who-are-you" (function code 
26) ~nqu~ry. 

Determines how the Custom Processor will 
behave when requesting the MEGABUS. 
When Cycle STEAL is false, the CUP is awarded 
MEGABUS cycles as a funct~on of its position 
in the bus. 
When Cycle STEAL is true, the CUP is awarded 
MEGABUS,cycles only when no other are 
request~ng. 

Determines whether or not the CUP will 
generate and check parity on the MEGABUS 
command lines. 
Determines whether ADRP operates as a full 
24-bit register or as a 9-bitL15-bit 
partitioned register. When APLONG is false, 
ADRP does not ~ncrement beyond bit 23 
ADRP(23-3l) may be loaded without disturbing 
ADRP(08-22) ana the APWRAP feature is enabled. 
Determines whether the procedure-page-cross 
detector assumes a page size of 512 or 
8192 bytes. 

Enables the restart feature. When FCODE1 is 
true, a MEGABUS command directed at the CUP 
channel number, having a function code of 01, 
and having data bit 0 c 1 causes the CUP to 
cancel all real or imagined stalls or waits 
and causes it to initiate its QLT sequence. 

ENHANCEMENTS 

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY 


