
Honeywell ASSEMBLY LANGUAGE

SERIES 60 (LEVEL 6) GCOS/BES2

SOFTWARE

Honeywell ASSEMBLY LANGUAGE

SERIES 60 (LEVEL 6) GCOS/BES2

SUBJECT:
Detailed Description of Series 60 (Level 6) GCOS/Basic Executive System 2 Assembly Language

SOFTWARE SUPPORTED:

DATE:

This publication supports Release 0200 of the Series 60 (Level 6) GCOS/Basic Executive System 2.
When a later release of the system occurs, see the Subject Directory of the latest Series 60 (Level 6)
GCOS/BES2 Software Overview and System Conventions manual (Order No. AU50) to ascertain
whether this revision of this manual supports that release.

July 1976

ORDER NUMBER:
AU43 , Rev. 0

PREFACE

This manual describes the GCOS/Basic Executive System 2 (GCOS/BES2)
assembly language, a machine-{)riented language for writing programs to
execute upon the Series 60 (Level 6) 6/30 Models. Unless stated otherwise
herein, the term BES will be used to refer to the GCOS/BES2 software; the
term Level 6 will indicate the specific models of Series 60 (Level 6) on which
the described software executes.

Where appropriate, the actions performed by the BES Assembler as it
processes elements of the assembly language are also discussed. Within this
document, the term "assembly language" includes both Assembler control
statements and assembly language instructions.

Section 1 introduces the Level 6 describing both data representation and
the hardware registers. Section 2 describes the basic elements of the BES
assembly language, and Section 3 describes the considerations the pro
grammer must make when writing his source program. Sections 4 and 5
describe, in detail, the Assembler control statements and assembly language
instructions, respectively. The macro facility is described in Section 6.
Appendix A provides programmer reference information. Appendix B
describes the hexadecimal numbering system. Appendix C contains a sample
assembly language program. Appendix D describes how to debug an
assembly language program. Appendix E contains a list of flags produced by
the assembler to notify the user of a source code error. Appendix F describes
error flags that may be issued by the Macro Preprocessor. Appendix G
contains a list of reserved symbolic names.

Descriptions and examples within this manual use the following
conventions:

{ } Indicates that one of the options enclosed in the braces must be
selected.

[] Indicates that one or none of the enclosed options need be selected; if
one of the options is underlined, it is selected as the default if you do
not select any of the options enclosed in the brackets.
Indicates either a logical sequence (e.g., A,B ...) or that the immedi
ately preceding type of value can be repeated (e.g., a ...).

a Indicates that the character must be replaced by any valid ASCII
character.

n Indicates that the character must be replaced by any valid numeric
(decimal) digit.

d Indicates that the character must be replaced with a binary digit.
h Indicates that the character must be replaced with a hexadecimal digit

(0 through 9, A through F).
c Indicates that the character must be replaced with a, n, or h, above.
6. Indicates that one or more spaces or horizontal tab characters are

required.
Uppercase letters, numbers, and any of the following special characters
must be coded exactly as shown:

() $
<
> /
= *
+

© 1976, Honeywell Information Systems Inc. File No.: 1S23

AU43

GCOS/BES2 Subject Directory

This subject directory is designed to assist the user in finding information about
specific topics related to GCOS/BES2. Topics are listed alphabetically; each topic is
accompanied by the order number of each manual in which the topic is described. At the
end of the Subject Directory, all GCOS/BES2 manuals are listed according to the
alphabetic/numeric sequence of their order numbers.

Subject Order No.

Allocate Disk File (Utility Set 1) AU47
Application Development (Overview) AU50
ASCII Character Set and Conversion Tables AU50
Assembling Programs .. AU48
Assembler Diagnostic Flags AU43
Assembly Source Language AU43
BASIC .. AU44
Bootstrap Generator " AU47
Bootstrapping and Loading '. AU46
Buffer Manager .. AU45
Building an Online Application . AU49
Card Loader .. AU46
Clock Manager . AU45
COBOL Compilation . AU48
COBOL Source Language AU42
COBOL Statements :................................. AU42
COBOL Compiler Diagnostic Messages AU42
COBOL Operating Procedures AU46
Command Processor .. AU48
Communications ... AU45
Compare Disk Volumes/Files/Members (Utility Set 3) AU47
Configuration Load Manager AU49
Console Messages (Error and Informational) ~ AU46
Control Panel '....................... AU46
Copy Disk Volume/File/Member (Utility Set 3) AU47
Cross-Reference Program AU48
Debugging (Offline) ... AU47
Debugging (Online) .. AU49
Delete Disk File/Member (Utility Set 1) AU47
Disk Conventions . AU50
Disk Loader '......... AU46
Dumps : AU47
Dump Edit .. . AU47
Editor AU48
Equipment Requirements AU50
Error Reporting by Online Applications AU46
Error Reporting by System Software , AU46
Executive Components AU45
File Manager AU45
File Naming Conventions : AU50
Floating-Point Simulator AU45
FORTRAN Compilation AU48
FORTRAN Compiler Diagnostic Messages AS32
FORTRAN Intrinsic Functions : ',' AS32
FORTRAN Source Language AS32
FORTRAN Statements and Procedures AS32
Glossary of System Terms AU50
Hexadecimal Numbering System AU43
Initialize Disk Volume/File (Utility Set 1) AU47
Input/Output Drivers AU45

iii AU43

Linker .. A U48
List Disk Volume/File Description (Utility Set 1) AU47
Loaders ... AU46
Macro Facility Usage ... AU43
Macro Preprocessor . AU48
Offline Applications .. AU45
Operating Procedures .. AU46
Operator Interface Manager AU45
Overlay Loader .. AU45
Paper Tape Loader .. AU46
Planning an Online Application . AU49
Print Disk File/Member (Utility Set 2) AU47
Program Development Tools AU48
Program Naming Conventions AU50
Program Patch . AU47
Punch Disk File/Member to Paper Tape (Utility Set 2) AU47
Rename Disk Volume/File/Member (Utility Set 1) AU47
Replace Memory Values (Utility Set 1) AU47
Scientific Branch Simulator AU45
Software Release Materials (Contents) AU50
System Conventions AU50
System Software and Documentation (Overview) AU50
Task Manager ... AU45
Trace Trap Handler . AU45
Transfer Input to Disk File/Member (Utility Set 2) AU47
Trap Handling (Offline) . AU46
Trap Handling (Online) AU45
Utility Programs .. AU47

The following publications constitute the GCOS/BES2 manual set. The Subject
Directory in the latest Series 60 (Level 6) GCOS/BES2 Software Overview and System
Conventions manual lists the current revision number and addenda (if any) for each
manual in the set.

Order No.

AS32
AU41
AU43
AU44
AU45
AU46
AU47
AU48
AU49

AU50

Manual Title

Series 60 (Level 6) GCOS/BES FORTRAN Reference Manual
Series 60 (Level 6) GCOS/BES2 COBOL Reference Manual
Series 60 (Level 6) GCOS/BES2 Assembly Language Reference Manual
Series 60 (Level 6) GCOS/BE~ 2 BASIC Reference Manual
Series 60 (Level 6) GCOS/BES2 Executive and Input/Output
Series 60 (Level 6) GCOS/BES2 Operator's Guide
Series 60 (Level 6) GCOS/BES2 Utility Programs
Series 60 (Level 6) GCOS/BES2 Program Development Tools
Series 60 (Level 6) GCOS/BES2 Planning and Building an Online
Application
Series 60 (Level 6) GCOS/BES2 Software Overview and System
Conventions

In addition to the GCOS/BES2 manual set, the following manual is required by
GCOS/BES users as a general hardware reference:

Order No.

AS22

Manual Title

Honeywell Level 6 Minicomputer Handbook

The following manual provides detailed information regarding programming for the
Multiline Communications Processor:

Order No. Manual Title

AT97 Series 60 (Level 6) MLCP Programmer's Reference Manual

iv AU43

CONTENTS
Page

Section 1. Introduction 1-1
Assembly Languages 1-1
Leve16 Data

Representations 1-1
Signed Integer Data 1-2
Unsigned Data 1-3
Floating-Point Data 1-4

Level 6 Hardware
Considerations 1-4

Hard ware Registers 1-4
Program Counter (P) Register 1-4
Address (Bn) Registers 1-4
General (Rn) Registers 1-5
Mode (Control (M 1) Register 1-5
System Status (S) Register 1-5
Indicator (0 Register 1-6
Scientific Information

Processor (SIP) Registers 1-6
Scientific Accumulator

(Sn) Registers 1-6
Scientific Indicator

(SO Register 1-6
SIP Mode (M 4) Register 1-7

SIP Trap Mask
(M5) Register 1-7

Software Simulation of
the Scientific Information
Processor 1-8

Section 2. Elements of BES
Assembly Language 2-1

Mnemonic Codes 2-1
Symbolic Names 2-1

Identifiers 2-2
Labels 2-2

User-Defined Labels 2-2
Reserved Labels 2-3

Constants 2-3
String Constants 2-4

ASCII String Constants 2-4
Hexadecimal String

Constants 2-4
Bit String Constants 2-5

Truncation/Padding
of String Constants 2-5

Arithmetic Constants 2-6
Integer Constants 2-6

Decimal Integer Constants 2-6
Hexadecimal Integer

Constants 2-6
Fixed-Point Constants 2-6
Floating-Point

Constants 2-7
Normalization 2-8

v

Page

Expressions 2-8
Evaluating Expressions 2-9
Location and Value
Expres~ons 2-9

Internal Value Expressions 2-9
Location Expressions 2-10

Internal Location
Expressions 2-1 0

External Location
Expressions 2-11

Common Location
Expressions 2-11

Address Expressions 2-12
References 2-13

Section 3. Programming Considerations ... 3-1
Assembly Language Source

Statement Formats 3-1
Order of Statements in Source

Program 3-2
Calling System Services 3-2
Calling External Procedures 3-2
Assembler-Related Utility

Program 3-3
BES Assembler 3-3

Scientific Instruction Processor (SIP)
Programming Considerations 3-3

Section 4. Assembler Control
Statements 4-1

Assembly-Controlling Statements 4-1
List-Controlling Statements 4-1
Data-Defining Statements 4-1
Storage-Allocation Statements 4-2
Symbol-Defining Statements 4-2
Program-Linking Statements 4-2
Conditional Assembly-Control

Statements .. ' 4-2
Assembler Control Statements 4-3

CALL 4-3
CLST 4-4
COMM 4-4
CTRL 4-4
DC 4-5
END 4-6
EQU 4-6
FAIL 4-7
IF 4-7
LIST 4-8
NLST 4-9
NULL 4-9
ORG 4-9
RESV 4-10
TEXT 4-10
TITLE 4-11
XDEF 4-11

AU43

Page Page

XLOC 4-12 Indirect B-Relative
XVAL 4-12 Addressing 5-1 5

Indexed Direct B-Relative
Section 5. Assembly Language Addressing 5 -16

Instructions 5-1 Indexed Indirect B-Relative
Arithmetic Operations 5-1 Addressing 5-16
Boolean Operations 5-1 Direct B-Relative Plus
Branch Operations 5-2 Displacement Addressing 5-1 7
Compare Operations 5-2 Indirect B-Relative Plus
Control Operations 5-2 Displacement Addressing 5-1 7
Input/Output Operations 5-2 B-Relative Push Addressing .. -.... 5-19
Load Operations 5-2 B-Relative Pop Addressing 5-19
Modify Operations 5-2 Indexed B-Relative Push
Scientific Instructions 5-3 Addressing 5-20
Shift Operations 5-3 Indexed B-Relative Pop
Store Operations 5-3 Addressing 5-20
Swap Operations 5-3 Short Displacement Addressing 5-22
Assembly Language Instruction Specialized Address Expression 5-22

Types 5-3 Interrupt Vector Addressing 5-23
Branch-on-Indicator (BI) Assembly Language Instructions 5-24

Instructions 5-3 ADD 5-24
Branch-on-Register (BR) ADV 5-24

Instructions 5-4 AND 5-25
Double Operand (DO) ANH 5-26

Instructions 5-4 B 5-26
Generic (GE) Instructions 5-5 BAG 5-27
Input/Output (IO) Instructions 5-5 BAGE 5-27
Shift (SHS and SHL) BAL 5-28

Instructions 5-5 BALE 5-28
Short-Value-Immediate (SO BBF 5-29

Instructions 5-6 BBT 5-29
Single Operand (SO) BCF 5-30

Instructions 5-6 BCT 5-30
Addressing Techniques 5-7 BDEC 5-31

Register Addressing 5-7 BE 5-31
Immediate Memory BEVN 5-32

Addressing (IMA) 5-7 BEZ 5-32
Direct Immediate Memory BG 5-33

Addressing 5-8 BGE 5-33
Indirect Immediate Memory BGEZ 5-33

Addressing 5-9 BGZ 5-34
Indexed Direct Immediate BINC 5-34

Memory Addressing 5-9 BIOF 5-35
Indexed Indirect Immediate BlOT 5-35

Memory Addressing 5-10 BL 5-36
Immediate Operand Addressing 5-10 BLE 5-36
P-Relative Addressing 5-12 BLEZ 5-37

Direct P-Relative BLZ 5-37
Addressing 5-12 BNE 5-37

Indirect P-Relative BNEZ 5-38
Addressing 5-13 BNOV 5-38

B-Relative Addressing 5-14 BODD 5-39
Direct B-Relative BOV 5-39

Addressing 5-14 BRK 5-40

vi AU43

Page Page

BSE 540 SAL 5-75
BSU 541 SAR 5-75
CAD 541 SAVE 5-76
CL 542 SBE 5-77
CLH 542 SBEU 5-77
CMB 543 SBEZ 5-78
CMH 543 SBG " 5-78
CMN 5-44 SBGE 5-79
CMR 5-45 SBGEZ 5-79
CMV 545 SBGZ 5-80
CMZ 546 SBL 5-80
CPL 5-47 SBLE 5-81
DAL 5-47 SBLEZ 5-81
DAR 5-48 SBLZ 5-82
DCL > ••••••••••••••••••• 5-48 SBNE 5-82
DCR 5-49 SBNEU 5-83
DEC 5-50 SBNEZ 5-83
DIV 5-50 SBNPE 5-84
DOL 5-51 SBNSE 5-84
DOR 5-52 SBPE 5-85
ENT 5-52 SBSE 5-85
HLT 5-53 SCL 5-86
INC 5-53 SCR 5-86
10 5-54 SCM ." 5-87
10H 5-55 SCZD 5-88
10LD 5-56 SCZQ 5-89
JMP 5-57 SDI 5-89
LAB 5-57 SDV 5-90
LB 5-58 SLD 5-91
LBC 5-58 SML 5-92
LBF 5-59 SNGD 5-93
LBS 5-60 SNGQ 5-93
LBT 5-61 SOL 5-94
LDB 5-61 SOR 5-94
LDH 5-62 SRM 5-95
LDI 5-63 SSB 5-95
LDR 5-63 SST 5-96
LDV 5-64 SSW 5-97
LEV 5-64 STB 5-98
LLH 5-66 STH 5-99
LNJ 5-67 STM 5-100
MCL 5-67 STR 5-100
MLV 5-67 STS 5-101
MTM 5-68 SUB 5-101
MUL 5-69 SWB 5-102
NEG 5-69 SWR 5-102
NOP 5-70 WDTF 5-103
OR 5-70 WDTN 5-103
ORH 5-71 XOH 5-103
RSTR 5-72 XOR ... " 5-104
RTCF 5-73
RTCN 5-73 Section 6. Macro Facility 6-1
RTT 5-73 Order of Statements Within a
SAD 5-74 Source Module 6-1

vii AU43

Page

Macro Routines 6-1
Creating a Macro Routine 6-2

MAC Macro Control Statement,
Without Parameters 6-2

Contents of Macro Routine 6-2
ENDM Macro Control

Statement 6-2
Specializing a Macro Routine by

Parameter Substitution 6-2
MAC Macro Control Statement,

Including Parameters 6-3
Protection Operators 6-4
Situating Macro Routines 6-5

LIBM Macro Control
Statement 6-6

Macro Calls .. 6-6
Nested Macro Call 6-8
Recursive Macro Call 6-8

Controlling Expansions 6-9
Macro Variables 6-9

SETA Macro Control
Statement 6-9

Apostrophes Within
SETA Statements 6-10

SETN Macro Control
Statement 6-10

Conditional Macro Control
Statements 6-11

FAIL Macro Control
Statement 6-12

GO TO Macro Control
Statement 6-12

IF Macro Control
Statement 6-1 2

NULL Macro Control
Statement 6-15

Macro Functions 6-16
Format of Macro

Functions 6-16
First Argument 6-16
Middle Argument 6-16
Last Argument 6-17

Length Attribute Macro
Function 6-1 7

Hexadecimal Conversion Macro
Function 6-1 7

Index Macro Function 6-18
Search Macro Function 6-19
Substring Macro Function 6-19
Vector Orientation Macro

Function 6-20

viii

Page

Verify Macro Function 6-21
Example Illustrating Macro

Facility 6-22
Programming Considerations 6-24

Initialized Values of
Macro Variables 6-24

Designating Numeric Values 6-25
Designating Alphanumeric Values ... 6-25

Appendix A. Programmer's Reference
Information A-I

Summary of Hard ware Registers A-I
Assembly Language Internal

Formats by Type A-4
Hexadecimal Representation of

Instructions A-5
Valid Address Expressions A-9

Appendix B. Hexadecimal Numbering
System B-1

Decimal-to-Hexadecima1
Conversion .. B-2

Hexadecima1-to-Decimal
Conversion .. B-2

Hexadecimal-to-ASCIl
Conversion B-4

Hexadecimal Addition B-6
Hexadecimal Subtraction B-7
Hexadecimal Multiplication B-7
Hexadecimal Division. B-8

Appendix C. Sample Assembly Language
Program C-1

Appendix D. Debugging Assembly
Language Programs D-1

Debugger D-1
Reading and Interpreting Memory

Dumps D-1

Appendix E. Source Code Error
Notification by
Assembler. E-1

Appendix F. Source Code Error
Notification by Macro
Preprocessor F-1

Appendix G. Reserved Symbolic
Names G-1

AU43

ILLUSTRATIONS

Figure

1-1.
5-1.

5-2.

5-3.

5-4.

5-5.

5-6.
5-7.
5-8.

5-9.
5-10.

5-11.

5-12.

5-13.

5-14.

5-15.
5-16.
5-17.

5-18.

5-19.
5-20.

5-21.
6-1.

A-I.
A-2.

D-1.

Page

Assembler Functions 1-1
Direct Immediate Memory

Addressing 5-8
Indirect Immediate Memory

Addressing 5-9
Indexed Direct Immediate

Memory Addressing 5-10
Indexed Indirect Immediate

Memory Addressing 5-11
Immediate Operand Addressing-

Scientific Instruction 5-12
Immediate Operand Addressing ... 5-12
Direct P-Relative Addressing 5-13
Indirect P-Relative

Addressing 5-13
Direct B-Relative Addressing 5-15
Indirect B-Relative

Addressing 5-15
Indexed Direct B-Relative

Addressing 5-16
Indexed Indirect B-Relaiive

Addressing 5-1 7
Direct B-Relative Plus

Displacement Addressing 5-18
Indirect B-Relative Plus

Displacement Addressing 5-18
B-Rela tive Push Addressing 5-19
B-Relative Pop Addressing 5-20
Indexed B-Relative Push

Addressing 5-21
Indexed B-Relative Pop

Addressing 5-21
Short Displacement Addressing ... 5-22
Specialized Address

Expressions 5-23
Interrupt Vector Addressing 5-23
Sample Unexpanded Source Module

and Assembler Listing of Resulting
Expanded Source Module 6-22

Level 6 Hard ware Registers A-I
Internal Formats of Assembly

Language Instructions A-4
ASCII/Hexadecimal Memory

Dump D-l

ix

TABLES

Table

2-1.

2-2.

A-I.

A-2.
A-3.

B-1.

B-2.

B-3.

B-4.

B-5.
B-6.

Page

Defining BES Symbolic
Names 2-3

Rules of Truncation/Padding
String Constants 2-5

Internal Representation of
Assembly Language
Instructions A-5

Address Sy llab les A-8
Summary of Valid Forms
of Address Expressions. A-9

Comparison of Binary ,
Decimal, and Hexadecimal
Symbols B-1

Storage and Printout of
the Value 32 B-2

Hexadecimal/Decimal
Conversion B-3

Hexadecimal/ ASCII
Conversion B-5

Hexadecimal Addition Table B-6
Hexadecimal Multiplication

Table B-7

AU43

SECTION I

INTRODUCTION

Computer programs can be written in high-level languages or machine-oriented
lower level languages. High-level languages are generally designed for specific
environments (e.g., COBOL is a business-oriented language, and FORTRAN is a
scientifically-oriented language). Low-level languages (i.e., assembly languages) support
a wide range of application environments.

ASSEMBLY LANGUAGES

Computer logic is designed to interpret only machine (i.e., object) code. Since
object code is composed of binary digits, it is difficult to interpret unless the binary
representation is translated into a more convenient, readable code. As a result,
assembly languages have been developed to simplify the problem of writing programs
in object code. These intermediate-level assembly languages consist of assembler
controlling statements and operational instructions.

As illustrated in Figure 1-1, an assembler interprets the assembly language (i.e.,
source code) program and translates it into object code, which the computer executes
to produce the desired results.

,-----..
I '
1'-.....A.
j ---- I

OBJECT I
CODE ,

- ---.,,~

ASSEMBLER

, ", ---
I '\ \- - -__--, _ ",

I SOURCE 1- I
I LISTING J' ,
I ... - I
I <.: /
L._.... ---

Figure 1-1. Assembler Functions

One of the primary differences between assembly languages and high-level languages
is that each assembly language instruction is equivalent to a single machine-level
instruction, whereas a single high-level language instruction can be translated into any
number of machine-level instructions. The advantage, then, is that the assembly
language gives you more control over the operations to be performed.

LEVEL 6 DATA REPRESENTATION

All data stored in main memory must be in predefined, system-recognizable
formats. All data elements are based on i 6-bit memory words. The format of each
word is defined from left to right, with the first bit numbered 0 and the last 15. The
leftmost bit (i.e., bit 0) is considered the most significant and the rightmost (i.e., bit
15) is the least significant, with each intervening bit less significant than the one to its
left.

INTRODUCTION 1-1 AU43

Because of this predefined format, it is possible to access data at any of the
following levels:

oBit - 1 bit
o Byte (half-word) - 8 bits
o Word - 16 bits
o Multiword - 32, 64 bits

Regardless of the size of the data item being accessed, addresses generated by the
operand(s) in an instruction point to the most significant bit of the item. For example,
to access a multiword data item in main memory, the address generated by the
Assembler (from the operand contained in the instruction) points to the first bit (Le.,
bit 0) in the first word of the item.

The system supports a maximum of 128K bytes (Le., 64K words) of addressable
memory, and each word can be accessed through a 16-bit address pointer.

Each four bits of data are represented by a single hexadecimal value in a listing or
printout, although the bits are stored in memory in binary form. The hexadecimal
equivalent of a binary value is derived by converting each successive four bits to the
hexadecimal value as follows:

0000 = 0
0001 = 1
0010 = 2
0011 = 3
0100 = 4
0101 = 5
0110 = 6
0111 =7

1000 = 8
1001 = 9
1010 = A
1011 = B
1100 = C
1101 = D
1110 = E
1111 =F

Thus, if a listing shows that a word at a given address contains the hexadecimal
value 8FD3, it means that the system contains the stored binary value
1000111111010011.

Data stored in memory can be in any of the following forms:

o Signed integer
o Unsigned integer
o Floating-point

A signed or unsigned integer byte can also be stored in a hardware general register.
A floating-point constant occupies two (short-precision) or four (long-precision)
memory words and may also be stored in the software-simulated scientific register.

Signed Integer Data
Signed integers stored in memory contain a sign (0 = +; 1 = -) in bit 0 and the data

in the remaining bits. Negative numbers appear in twos-complement form. Byte, word,
and double-word formats are permitted, as follows:

Bit: 0 7

IG}I DATA Byte

Bit: 0 15

Iml DATA Word

INTRODUCTION 1-2 AU43

Bit: o 15 16 31

1m I Double-word

If the first digit in the hexadecimal representation of a signed integer is 0 through 7,
the value is positive and is stored in memory exactly as it was coded; if the first digit is
8 through F, the value is negative and is stored in memory as the twos complement of
the coded inteter. For example, if the contents of a signed integer word appearing in
memory are BDAO, the decimal equivalent is -12640.

When a signed integer byte is loaded from memory into a hardware general register,
the seven data bits are placed into bits 9 through 15 of the register and the sign into bit
8. The sign is then extended through bit 0 of the register, as follows:

Bit: 0 7 8 9 15

~l 1 1 1 1 1 1 1: l} DATA
~O 0 0 0 0 0 0 q 0

The sign of the integer byte (i.e., the first bit of the 8-bit byte), which is contained in
bit 8 of the register, is extended through the first byte of the register.

If the first byte of the register contains the hexadecimal value FF, the integer in the
second byte is a negative value; if the first byte contains the hexadecimal value 00, the
value of the second byte is positive.

Unsigned Data
Unsigned data appears in memory in three possible formats:

Bit: o 7

DATA Byte

Bit: o 15

DATA Word

Bit: o 31

When an unsigned data byte is loaded from memory into a hardware general
register, the byte is placed into register bits 8 through 15, and register bits 0 through 7
are set to 0, as follows:

Bit: 0 7 8 15

f 0 0 0 0 0 0 01 DATA I

INTRODUCTION 1-3 AU43

Floating-Point Data
Floating-point data appears in memory either as a short-precision (32-bit) or

long-precision (64-bit) constant, as follows:

Bit: a 6 7 8

I c lsi M Short precision

Bit: a 678 63

C lsi Long precision

C
Represents the characteristic (excess 64 power-of-16 exponent) of the number. The
characteristic represents exponents with a range from -64 to +63. Since the
characteristic has no sign bit, the number 64 (decimal) is effectively added to each
exp"onent, thus allowing a characteristic range of 0 to 127 to represent exponents
with a range of -64 to +63.

S
Sign bit (0 = +; 1 = -) of the mantissa.

M
Magnitude of the mantissa.

A floating-point constant in memory may be loaded into the software-simulated
scientific register, described later in this section. If the floating-point constant had been
specified as long-precision, the low-order (rightmost) 32 bits are ignored during the
loading process.

LEVEL 6 HARDWARE CONSIDERATIONS

Hardware Registers
Level 6 provides hardware registers that can be loaded or read by various assembly

language instructions. Of these registers, one is the program counter, seven are address
registers, seven are general registers (of which three double as index registers), one is a
mode control register, one is a system status register, and one is an indicator register.

Program Counter (P) Register
The program counter, or P-register, contains the address of the currently executing

instruction. It is used by the Central Processor to generate the effective address of data
based upon various operands in the assembly language instruction set (see' "Addressing
Techniques" in Section 5). Its content can be modified only by the JMP and branch
instructions. If necessary, you can refer to the P-register for the address of the
instruction that caused the system to abort a program. For this purpose, the contents
of the P-register can be displayed at the control panel.

Address (Bn) Registers
The seven address registers can be used in the formulation of addresses by pointing

to any procedure, data, or location in main memory. Typically, the address registers
contain addresses, pointers, or base references for use in generating effective addresses
and referring to data through relative addresses (see "Addressing Techniques" in
Section 5).

INTRODUCTION 1-4 AU43

General (Rn) Registers
The seven general registers can be used as accumulators, and the first three (R I, R2,

R3) can be used as index registers (see "Addressing Techniques" in Section 5).

Mode (M 1) Register
The mode, or MI , register contains the trap enable control bits. Its contents can be

altered by the MTM assembly language instruction, and used by other instructions in
the assembly language instruction set. The bits in the mode control register have the
following meanings when set to binary I:

Bi t: 0 1 2 3 4 5 6 7

J

Overflow trap enabled for R7
Overflow trap enabled for R6

'---~ Overflow trap enabled for R5
L...-__ ~ Overflow trap enabled for R4

L..-___ Overflow trap enabled for R3
L..-____ Overflow trap enabled for R2

L..-_____ ~ Overflow trap enabled for R1

1-----i~~Trace trap enabled for JMP and branch instructions

Setting one or more overflow trap bits makes it possible to enter the Trace Trap
Handler by a trap-to-trap vector 6. See the Executive and Input/Output manual for a
detailed description of trap handlers.

System Status (S) Register
The S-register contains the status and security bits for the system. The contents,

which can be read by an executing program, have the following meanmg, depending on
which bits are set to binary I:

Bit:

INTRODUCTION

012568910 15

Interrupt priority level of the
executing program; 63 (all bits
set to 1) is the lowest level;
o (all bits set to 0) is the
highest; see the Executive
and Input/Output manual for
a detailed description of
I/O interrupts.

Processor identifier; set automatically
during system configuration.

L...-_ Indicates that the system is running in
privileged state.

1-5 AU43

Indicator (I) Register
The I-register contains overflow and program status indicators. When set to binary

1, the bits have the following meaning:

Bit: 0 7 8 9 10 11 12 13 14 15

Result of last
compare is:

Unequal signs
~-~Less than

'----~ Grea ter than
ndicates that device

accepted I/O command.
Bit-test indicator (see the
descriptions of the follow
ing instructions in Section
5 for the setting: LB, LBC,
LBF, LBS, LBT).

'-----1~ Carry occurred during
arithmetic operation.

'-----.... Overflow occurred during
arithmetic instruction.

Scientific Information Processor (SIP) Registers
The Level 6 Scientific Information Processor (SIP) is an optional hardware unit

containing three identical scientific accumulator registers, one scientific indicator
register, one SIP mode register, and one SIP trap mask register. The SIP performs
arithmetic operations on single- and double-precision floating-point data and also
provides a set of scientific branch instructions.

Scientific Accumulator (Snj Registers
The SIP provides three 64-bit scientific accumulator registers for use in either short

or long-precision floating-point operations. When these registers are used in short
precision operations, only the high-order (leftmost) 32 bits participate.

The forma t of the scientific accumulator registers is shown below.

Bit: 0 6 7 8 63
~---------------r~-------------------------'

S , __________ I C M

Magnitude of the mantissa.

Sign (0 = positive; 1 = negative) of
the mantissa.

'----.... Characteri sti c (excess 64 power-of-s i xteen
exponent) of the number.

Scientific Indicator (SI) Register
The 8-bit SI-register contains error and status indicators that can be tested with the

scientific branch instructions. When set to binary 1, the bits have the following
meanings:

INTRODUCTION 1-6 AU43

o 2 3 4 5 6 7

Result of last
scientific compare:

Less than

&....----____ - Grea ter than

'-----------.- Precision error (trap 22)

'--------------11- Significance error (trap 21)

Exponent underflow (trap 19)

Traps and trap handlers are discussed in the Executive and Input/Output manual.

SIP Mode (M4) Register
The SIP mode, or M4, register is an 8-bit control register residing in the SIP but

with a copy in the CPU. Both versions are set to 0 upon CPU initialization and both
may be modified with an MTM instruction (see Section 5). If only the SIP is initialized,
the CPU copy of the register is cleared, and the contents of both versions must be
reestablished with an MTM.

The format of the M4-register is as follows:

o

R/T: Round/Truncate Mode
o - Truncate
I - Round

2 3 4 5

SAl SA2

6 7

SA3

ML: Memory Length (Length of main memory data field to or from which data is
transferred via a scientific accumulator (SA))

o - Two words
I - Four words

AL: Accumulator Length (Length of scientific accumulator data field to or from
which data is transferred to/from main memory, a hardware register, or another
SIP register)

0- Two words
I - Four words

SIP Trap Mask (M5) Register
The SIP Trap Mask, or M5, register is an 8-bit control register residing in the SIP but

with a copy in the CPU. Both versions are set to 0 upon CPU initialization and both
may be modified with an MTM instruction (see Section 5). If only the SIP is initialized,
the CPU copy of the register is leared, and the contents of both versions must be
reestablished with an MTM.

INTRODUCTION 1-7 AU43

The format of the MS-register is as follows:

o 2 3 4 5 6 7

Precision error trap mask

Significance error trap mask

Exponent underflow trap mask

Software Simulation of the Scientific Information Processor
For Level 6 systems on which a Scientific Information Processor (SIP) is not

installed or available, BES provides a limited equivalent of the SIP functions through
software simulation. Two trap handlers, the Floating-Point Simulator, entered via trap
vector 3, and the Scientific Branch Simulator, entered via trap vector 5, are available.
These two simulators are described in the Executive and Input/Output manual.

The Floating-Point Simulator and Scientific Branch Simulator provide the same
functions as the SIP, with the following differences:

o Only one scientific accumulator register (S1) is supported.
o Only short-precision floating-point operations may be performed.
o General registers R4, R5, and R7 must be reserved for use by the simulators

while they are executing.
o Since, in the absence of an SIP, no SI-register is available, the simulators use the

G, L, and U bits of the I-register for scientific compares.
o Not all SIP instructions are simulated. See "Assembly Language Instructions" in

Section 5 to determine whether or not an individual instruction is available with
one of the simulators.

INTRODUCTION 1-8 AU43

SECTION 2

ELEMENTS OF
BES ASSEMBLY LANGUAGE

The principal elements of the BES assembly language are:

o Mnemonic codes
o Symbolic names
o Constants
o Expressions

These elements are combined to form a source program that consists of:

1. Machine instructions to be assembled, on a one-to-one basis, into their
corresponding object code representations.

2. Assembler control statements which are interpreted by the Assembler to control
the assembly process, allocate work and storage areas in memory, and to define
constant data used by the program.

MNEMONIC CODES

Assembler control statements, which direct the Assembler in the preparation of
object code, and assembly language instructions are specified by predefined mnemonic
names of one to five characters in length. These mnemonic (operation) codes are
described, in detail, in Sections 4 and 5.

SYMBOLIC NAMES

Locations, values, and other data pertinent to the determination of assembly
language instruction or Assembler control statement operand values can be referred to
by the use of reserved (predefined) and user-defined names.

Character strings can be assigned as names of memory locations, registers, values, or
other objects to be referred to in the development of object code. The manner in
which a symbolic name is defined depends on the attributes of the object referred to
by that name.

Regardless of the manner of definition and the type of object being referred to, the
symbolic name must conform to the following rules:

1. It must be from one to six characters long.
2. It must be composed of alphabetic characters (A,B, ... Z), digits (0,1, ... 9), and/or

the special characters $ and -(underscore).
3. The first character must be a $ or alphabetic character.

The following types of symbolic names can be used in Assembler control statements
and assembly language instructions:

o Identifiers - Reserved symbols designating the hardware registers and the
scientific register

o Labels - User-defined and reserved symbols designating locations in memory and
values

ELEMENTS OF BES
ASSEMBLY LANGUAGE 2-1 AU43

Identifiers
Identifiers are reserved symbolic names that refer to hardware registers or to the

software-simulated scientific register. In addition, names that are defined to be
equivalent to identifiers (through the EQU Assembler control statement) are treated as
identifiers.

The following identifiers refer to hardware registers:

o $Bl through $B7 - Address (base) registers
o $RI through $R7 - General registers
o $RI through $R3 - Index registers
o $M I through $M7 - Mode control registers
o $Sl through $S3 - Scientific accumulator registers

Labels
Labels are symbolic names that can be used to refer to locations and values. They

must be defined in a manner specific to the attributes of the location or value to which
they refer (i.e., each label is typed according to the location or value attributes, which
also establish the context in which they can be used). The types of labels and their
methods of definition are as follows:

o Internal location label - Refers to a location allocated within the assembled
program. It is defined by its occurrence in the label field of an instruction
(resulting in the allocation of memory to the program). The definition of labels
appearing in certain Assembler control statements that do not cause memory to
be allocated (e.g., EQU statement) depend on the statement and its operands.

o External location label - Refers to a location in another, independently
assembled program. It is defined by appearing in the operand list of an XLOC
statement.

o Common location label - Refers to a location allocated to FORTRAN
compatible common blocks. It is possible to specify that the object code
resulting from assembly language instructions is to be allocated to a common
block area rather than to the area allocated to the program by means of the
ORG statement. All labels that appear in instructions that result in the allocation
of common block locations are defined as common location labels. In addition,
labels specified in the COMM statement are defined as common location labels;
these labels can be used to refer to locations in the common block by indicating
their offset from the first word.

o Internal value label - Refers to a value defined within the program. It is assigned
by its occurrence in the label field of an EQU statement with an operand
expression (see "Expressions" in this section) that yields a scalar value.

o External value label - Refers to a value defined in another, independently
assembled program. It is defined by appearing in the operand list of an XVAL
statement.

o Complex label - Refers to the label of an EQU statement that has an address
expression (see "Expressions" in this section), or the label of another EQU
statement that has an address expression, in the operand field.

Table 2-1 summarizes the types of labels and how they are defined.

User-Defined Labels
User-defined labels can be either permanent or temporary. Permanent labels can be

defined only once in a program; they must conform to the rules listed under
"Symbolic Names" in this section.

The 26 temporary labels ($A, $B, ... , $Z) may be defined as often as necessary
within a single program. They may be referred to only in the operand of a hardware
instruction or of a define constant (DC) assembly control statement. You must be

ELEMENTS OF BES
ASSEMBLY LANGUAGE 2-2 AU43

careful, during programming, that you are referring to the desired definition of a
temporary label when the label has multiple definitions within a single program.

Temporary labels must be defined as internal location labels.

Reserved Labels
Reserved labels are predefined and cannot be redefined by the user. The following

reserved labels are available:

o $ - Refers to the location to be allocated as a result of the statement in which it
appears as a reference (i.e., the current location). It can be either an internal
location or common location label type.

o $AF - Refers to the address form of the system configuration. A value of I
indicates that the system configuration is the short-address form configuration; a
2 indicates a long-address form configuration. $AF is an internal value label.

o $IV - Refers to the address of the interrupt vector for the priority level at which
the application is currently executing. A description of interrupt vectors and
priority levels can be found in the Executive and Input/Output manual.

TABLE 2-1. DEFINING BES SYMBOLIC NAMES

Type

Internal location label

External location label

Common location label

Internal value label

External value label

Complex label

Same as operand

CONSTANTS

How Defined

Appears in label field of an assembly language instruction or
Assembler control statement (except EQU or COMM
statements) when the location counter type attribute (set
by the ORG statement) is internal.

Appears in the operand field of an XLOC statement.

Appears in the label field of a COMM statement; or appears
in label field of an assembly language instruction or
Assembler control statement (except EQU or COMM
statements) when the location counter type attribute (set
by the ORG statement) is common.

Appears in label field of an EQU statement that has an
expression that yields a scalar arithmetic value in the
operand field.

Appears in the operand field of an XV AL statement.

Appears in the label field of an EQU statement that
contains an address expression in the operand field; or
appears in the label field of an EQU statement that contains
a label identifying another EQU statement that contains an
address expression in the operand field.

Appears in the label field of an EQU statement that
contains an operand other than one of those listed above;
e.g., an identifier.

Arithmetic and nonarithmetic values can be expressed in decimal, hexadecimal,
character, or binary form, all of which are converted by the Assembler to the
appropriate machine code format. Depending on the context, such values may be
assigned as object code or be used by the Assembler in the computation of operand
locations or values.

The following types of constants are supported:

o String constants
o Arithmetic constants

ELEMENTS OF BES
ASSEMBLY LANGUAGE 2-3 AU43

String Constants
String constants can be expressed as ASCII, hexadecimal, or bit strings. Regardless

of how they are expressed, string constants have the following format:

[(n)] {!}'C[C ...].
[en)]

Specifies an optional decimal integer in the range from 1 to 255, which represents
the replication factor (number of times the coded string is to be repeated.

{!}
Specifies whether the string is expressed in ASCII (A; default if none of these values is
specified), hexadecimal (Z), or bit (B).

, c[c ...] ,
Identifies the character(s) in the string; to include an apostrophe, a double apostrophe
must be specified (i.e., " is interpreted as ').

String constants are left-justified.

ASCII String Constants
An ASCII string constant is written as the letter A (optionally) followed by a string

of any of the valid ASCII characters enclosed within apostrophes.
An ASCII string constant denotes the value formed by replacing all double

apostrophes by a single apostrophe and removing the delimiting apostrophes.
The value of an ASCII string constant cannot be more than 255 ASCII characters

(each of which is eight bits long).
The format of an ASCII string constant is as follows:

[(n)] [A]'a [a ...] ,

The following examples illustrate how to specify ASCII string constants:

1 . 'ASCII SAMPLE 1 '
2. A'ASCII SAMPLE2'
3. (4)A'DATAL::.'

The characters enclosed within the apostrophes can be any character shown in
Table B-4. The examples shown above result in the following values being stored in
memory, respectively:

1. ASCII SAMPLE1
2. ASCII SAMPLE2
3. DATAL::. DATAL::. DATAL::. DATAt6.

Hexadecimal String Constants
A hexadecimal string constant is written as the letter Z followed by a string of any

of the valid hexadecimal digits (i.e., 0 through F) enclosed within apostrophes.
A hexadecimal string constant denotes the value formed by replacing the characters

contained within the delimiting apostrophes with their binary values and removing the
delimiting apostrophes.

The value of a hexadecimal string constant cannot be more than 510 hexadecimal
digits (each of which is four bits long).

The format of a hexadecimal string constant is as follows:

[en)] Z'h[h ...]'

The following example illustrates how to specify a hexadecimal string constant:

ELEMENTS OF BES
ASSEMBLY LANGUAGE 2-4 AU43

Z'5449544C4520534l4D504C453l'

This example translates into TITLE~ SAMPLEl (see Appendix B).

Bit String Constants
A bit string constant is written as the letter B followed by a string of binary digits

(i.e., 0 and l) enclosed within apostrophes.
A bit string constant denotes the value formed by converting the 0 and I characters

contained within the delimiting apostrophes to 0 and I bits.
The value of a bit string constant cannot be more than 2040 binary digits (each of

which is one bit long).
The format of a bit string constant is as follows:

[en)] B'd[d ...]'

The following example illustrates how bit string constants are expressed:

B'OOOllOlO'

This bit string provides an 8-bit mask that can be used by an assembly language
instruction.

Truncation/Padding of String Constants
Various statements require a half-word (8-bit) value, whole-word (l6-bit) value, or a

value that is an integral number of words in length. In order to satisfy these
requirements, string constants are automatically truncated or padded.

If truncation is required, low-order (i.e., the rightmost) bits are discarded, and the
Assembler issues a diagnostic message.

If padding is required, low-order bits are appended to the value. ASCII string
constants are padded with spaces; hexadecimal and bit strings are padded with O's.

Table 2-2 describes how the Assembler handles the various situations that require
truncation or padding.

TABLE 2-2. RULES OF TRUNCATION/PADDING STRING CONSTANTS

H a string constant appears:

In a nontrivial arithmetic expression

As the only term of the operand of a
short value immediate (SI) instruction

As the only term of an operand of a
DC Assembler control statement

As the operand of a TEXT Assembler
control statement

In any context not listed above

It is converted to:

A whole-word value.

A half-word value.

A value having a length that is an integral
number of words; such string constants
are never truncated.

A string having an initial bit offset which
is a multiple of 4 (for hexadecimal string
constants) or a multiple of 8 (for ASCII
string constants) with slack bits inserted
between successive operands. A bit string
constant can begin at any bit position;
slack bits never precede a bit string
operand.

A whole-word value.

NOTES: 1. If two or more rules apply to the same string constant, the first takes
precedence.

ELEMENTS OF BES
ASSEMBLY LANGUAGE

2. Refer to specific statements identified in this table for additional
information.

2-5 AU43

Arithmetic Constants
An arithmetic constant specifies the value of a real number. An arithmetic constant

is either an integer constant, fixed-point constant, or a floating-point constant.

Integer Constants
Integer constants can be expressed as decimal or hexadecimal integers. They may be

preceded by a plus (+) or minus (-) sign, indicating a positive or negative value,
respectively, and must be within the range -32768 to +32767; if unsigned, an integer
constant is assumed to be positive.

Integer constants have the following format:

+

+ n[n ...]
X'h[h ...] ,

Specifies whether the value is positive (+; the default value) or negative(-).

n[n ...]
Is a decimal integer constant as defined below.

X'h[h ...] ,

Is a hexadecimal integer constant as described below.

Decimal Integer Constants
Decimal integer constants are expressed as character strings composed of the

decimal digits 0 through 9.
The following examples illustrate valid decimal integer constants:

1. 31764
2. +4652
3. -6781

Hexadecimal Integer Constants
A hexadecimal integer constant is written as the letter X followed by a character

string composed of the hexadecimal digits 0 through 9 and A through F enclosed
within apostrophes.

The following examples illustrate hexadecimal integer constants:

1. +X'2F'
2. X'7FFF'
3. -X'8000'

Using Table B-3, you can see that the decimal equivalent of the above examples is
+47, +32767, and -32768, respectively.

Fixed-Point Constants
A fixed-point constant is written as a decimal number with an associated scale

factor. When the resultant value is stored in memory, a fixed-point constant appears as
a signed integer word with negative values in twos complement form. The scale
factor (s) gives the location of the implied binary point in the stored constant. A
positive scale factor means that the point is situated s bits to the left of the rightmost
bit stored in memory. A negative scale factor means that the point is situated s bits to
the right of the rightmost bit stored in memory. Thus, a fixed-point value can be
considered to be written as the product formed by multiplying the decimal number by
2s.

ELEMENTS OF BES
ASSEMBLY LANGUAGE 2-6 AU43

Fixed-point constants have the following format:

[±]

Specifies the sign of the constant. The + sign may be omitted.

Specifies the integer part of the decimal number.

f
Specifies the fractional part of the decimal number.

[±]s

Specifies the value and sign of the scale factor.

The value of a fixed-point constant must fall within the range

2-s~IRI< 215- S

where R is the value of the decimal number.
The following examples illustrate how to specify fixed-point constants and show

the hexadecimal representations of the resultant values in memory.

Source Language

2.5B4
2.5B8

65536B-l5
65536B-7

-2.5B8
-65536B-l5

Floating-Point Constants

Stored Value

0028
0280
0002
0200
FD80
FFFE

BES assembly language provides a convenient method with which you can write a
decimal number and have the Assembler convert it into floating-point format. (See
Section 1 for a description of floating-point data.)

Two formats for writing floating-point constants are available:

Format I

[+]{ ~ .[f]}
- [1].f SHORT PRECISION

Format 2

SHORT PRECISION POWER-OF-IO

[±]

Specifies the sign of the constant. The + sign may be omitted if desired.

Specifies the integer part of a decimal number.

f
Specifies the fractional part of a decimal number.

E
Indicates that a short precision power-of-l a floating-point representation is desired.

ELEMENTS OF BES
ASSEMBLY LANGUAGE 2-7 AU43

[±]c

Expresses the power of 10 by which the coded decimal number should be
multiplied to produce the value wanted. The + sign may be omitted if desired.

NOTE: If the decimal point is omitted, the number is assumed to be an integer.

The absolute value of a floating-point constant must be greater than or equal to
T 2

60 (approximately 3.3753 x 10-8 °) and less than 2252 (approximately
4.7428 X 1080).

Normalization
Floating-point constants are stored as normalized hexadecimal floating-point

numbers with a 7-bit excess 64 power-of-16 characteristic and a 2S-bit signed
magnitude mantissa. A normalized floating-point number has a nonzero high-order
hexadecimal fraction digit. If one or more high-order fraction digits are zero, the
number is said to be unnormalized. Normalization consists of shifting the fraction left
until the high-order hexadecimal digit is nonzero and reducing the characteristic by the
number of hexadecimal digits shifted.

Examples
The following examples illustrate how to specify floating-point constants and show

the hexadecimal representations of the resultant values in memory. You can determine
sign, characteristic, and mantissa of the resulting floating-point numbers by dividing
the hexadecimal representations into parts according to the patterns described in
Section 1.

Source Language

0.5
0.SE12

6.66S039063E-2
-6.66S039063E-2

EXPRESSIONS

Stored Value

80800000
94746AS2
8011 1000
8111 1000

Expressions are combinations of symbolic names and constants used as operands
within Assembler control and assembly language (machine) instructions. Expressions
can represent locations (internal or external), values, and addresses. Components of an
expression can be joined by various functions and arithmetic operators, as follows:

Arithmetic Operator Meaning

+ Addition (or Unary +)
Subtraction (or Unary -)

* Multiplication
/ Division

Boolean Function Meaning

AND Conjunction
OR Inclusive Disjunction
XOR Exclusive Disjunction
NOT Negation

Shift Functions Meaning

ALS Arithmetic Left Shift
ARS Arithmetic Right Shift
LLS Logical Left Shift
LRS Logical Right Shift

ELEMENTS OF BES
ASSEMBLY LANGUAGE 2-8 AU43

Meaning Arithmetic Function

MOD Remainder after division

When a value is operated upon by an arithmetic operator or function or by an
arithmetic shift function the value is considered to be a 16-bit signed (twos
complement) binary integer. When a value is operated upon by a Boolean or logical
shift function the value is considered to be a 16-bit string. You must ensure that the
results of a Boolean or shift operation will be meaningful when subsequently
interpreted as an integer value by the Assembler.

To use a function within an expression you write the function name followed by its
operands, enclosed in parentheses and separated by a comma; e.g., AND
(TAGl,TAG2).

Evaluating Expressions
Within an expression you may use parentheses to eliminate ambiguities or to specify

the order of evaluation. Expressions within parentheses are evaluated first. Within
nested parentheses, evaluation proceeds from the least inclusive set to the most
inclusive. If parenthesized expressions are at the same level of inclusiveness or if
parentheses are not used, the following hierarchical order of evaluation applies:

1. All functions
2. Unary plus and minus
3. Multiplication and division
4. Addition and subtraction

Once the values resulting from these operations have been computed, evaluation
proceeds from left to right.

Location and Value Expressions
The Assembler permits expressions to be used to specify values and locations. An

internal value expression denotes a computation to be performed by the Assembler and
produces an integer scalar value.

A location expression denotes a computation of an address that can be internal to
the referencing program, in a separately assembled program (i.e., external to the
referencing program), or in a common memory block.

Internal Value Expressions
An internal value expression, which produces an integer scalar value, is written as a

sum-of-products algebraic expression. The product portion consists of two or more
factors to be multiplied or divided as indicated by the * or / operators, preceding the
multiplier or divisor factor. In addition, each factor can be preceded by a unary plus
(+) or minus (-) operator.

Each factor of the product portion of the expression must be an internal value
expression enclosed within parentheses, an integer or string constant (see "Constants"
in this section), or an internal value label (see "Labels" it:J. this section).

The sum portion of the algebraic expression consists of two terms to be added or
subtracted as indicated by the + or - operator preceding the addend or subtrahend
term. In addition, each term can be preceded by a unary plus (+) or minus (-) operator.

Each sum of an internal value expression must take one of the following forms:

o An internal value expression plus or minus an integer or string constant, an
internal value label, an internal value expression enclosed within parentheses, or
a product of such terms

o The difference between two internal locations
o The difference between two common locations within the same common block

ELEMENTS OF BES
ASSEMBLY LANGUAGE 2-9 AU43

The following examples illustrate internal value expressions. In these examples,
labels of the form V ALc are internal value labels, labels of the form LOCc are internal
location labels, and labels of the form COMMc are common location labels.

Example 1:

X'34FO'+(V AL8-(V ALB/(X'E4'*2)))

In this example, the expression is evaluated as follows:

1. The product of X'E4'*2 is calculated.
2. The value associated with VALB is divided by the product of step 1, above.
3. The quotient of step 2, above, is subtracted from the value associated with

VAL8.
4. The difference calculated in step 3, above, is added to X'34FO'

Example 2:

B'11110110'+(COMMI-COMM2)/2*(54+VALF-(LOCA-LOCB))

The expression in example 2 is evaluated as follows:

1. The difference between LOCA and LOCB is calculated.
2. The difference between COMMI and COMM2 is calculated.
3. The sum of 54 and value associated with V ALF is calculated.
4. The result of step 1, above, is subtracted from the result of step 3.
5. The result of step 2, above, is divided by 2.
6. The quotient calculated in step 5 is multiplied by the result of step 4.
7. The bit string constant B'llll 0 11 0' is padded to occupy a full word and added

to the result of step 6.

Location Expressions
Location expressions are used to express computations to be used by the

Assembler. There are three types of location expressions:

o Internal location expressions - Refer only to values that are defined within the
referencing program.

o External location expressions - Refer to one memory address defined in an
external program and may refer to elements within the referencing program.

o Common location expressions - Refer to one or more locations within common
blocks and may refer to elements within the referencing program.

Each of the above types of location expressions produces a memory address.

Internal Location Expressions
Internal location expressions, which produce a memory address based upon a

computation using only internal values, must take one of the following forms:

o An internal location expression plus or minus an integer or string constant, an
internal value label, or an internal value expression enclosed within parentheses.

o An internal value expression plus an internal location label, an internal location
expression enclosed within parentheses, or a $ (which is valid only if the
Assembler's location counter type attribute is internal when the expression is
processed).

The following example illustrates internal location expressions. In this example,
labels of the form LOCe are internal location labels.

ELEMENTS OF BES
ASSEMBLY LANGUAGE 2-10 AU43

Example:

(LOC3-LOCD)+ X'30F2'+ LOCA

The expression in this example is evaluated as follows:

1. The address associated with LOCD is subtracted from the address associated
with LOC3 yielding an internal value.

2. X'30F2' is added to the result of step I yielding another internal value.
3. The address associated with LOCA is added to the result of step 2 yielding an

internal location as the final result.

Ex ternal Location Expressions
External location expressions, which produce a memory address based upon a

computation using external location labels and internal values, must take one of the
following forms:

o An external location expression plus or minus an integer or string constant, an
internal value label, or an internal value expression.

o An internal value expression plus an external location label or an external
location expression.

The following example illustrates an external location expression. In the example,
labels of the form XLOCc are external location labels and labels of the form V ALc are
internal value labels.

Example:

((VALl +VALA)+XLOC2)X'2A22'

This sample expression is evaluated as follows:

1. The values associated with VALl and VALA are added together.
2. The offset associated with XLOC2 is added to the result of step 1.
3. X'2A22' is added to the result of step 2.

Common Location Expressions
Common location expressions, which produce a memory address based upon a

computation using one or more locations within a common block and internal values,
must take one the following forms:

o A common location expression plus or minus an integer or string constant, an
internal value label, or an internal value expression.

o An internal value expression plus a common location label, a common location
expression, or a $ (which is valid only if the assembler's location counter type
attribute is common when the expression is processed).

A memory address referring to a common block is represented by the name of the
common block and an optional offset from the beginning of that common block.

The following example illustrates a common location expression. In the example
COMMc is a common location label and labels of the form V ALc are internal value
labels.

Example:

((COMMA+42)-(COMMA+80))-V AL2)*2+ X' 1 OOO'+COMMB

ELEMENTS OF BES
ASSEMBLY LANGUAGE 2-11 AU43

The expression in this example is evaluated as follows:

1. The difference between COMMA+42 and COMMA+80 is calculated.
2. The value associated with V AL2 is subtracted from the result of step 1.
3. The result of step 2 is multiplied by 2.
4. X'IOOO' is added to the result of the calculation in step 3.
S. The offset associated with COMMB is added to the result of step 4. This offset is

then associated with the name of the common block containing COMMB to
complete the evaluation of this expression.

Address Expressions
An address expression specifies the addressing form used in an instruction. It

contains special character identifiers that are assembled into corresponding object code
to control run-time address development processes such as indirection and indexing.

The various forms of address expressions permitted by the Assembler are described
in detail in Section S (see "Addressing Techniques").

Function
VALl
VAL2
VAL3
LOCI

AND

Examples
EQU
EQU
EQU
EQU $

DC <LOCl+AND(VALI3VAL2)
resolves to address 300 hexadecimal

OR
DC <LOC 1 +OR(VAL 1 V AL2)
resolves to address 30F hexadecimal

XOR
DC <LOCl+XOR(VALI,VAL2)
resolves to address 20F hexadecimal

NOT
VAL4 EQU NOT(VAL2)
resolves to value FEFO hexadecimal

ALS
VALS EQU ALS(V ALl ,VAL3)
resolves to value 800 hexadecimal)

ARS
VAL6 EQU ARS(VALl,VAL3)
resolves to value 20 hexadecimal

LLS
VAL7 EQU LLS(VAL2,12)
resolves to value FOOO hexadecimal

LRS
VAL8 EQU LRS(VAL2VAL3)
resolves to value 21 hexadecimal

MOD
VAL9 EQU MOD(VAL2,VALl)
resolves to value F hexadecimal

ELEMENTS OF BES
ASSEMBLY LANGUAGE 2-12

X'IOO'
X'IOF'
3
(at location 200 hexadecimal)

AU43

REFERENCES
References are the use of symbolic names as labels in assembly statements to refer

to locations or values.
The employment of references is dependent upon two conditions:

1. The resolution of labels by the two-pass BES Assembler.
2. The position of the referencing statement within the body of the program.

A simple rule may always be applied to determine the validity of a reference: the
reference to a label is legitimate if during the second assembly pass, at the point in the
program where the referencing statement is positioned, the value of the label being
referred to, has been defined.

References may be made either forward or backward. A forward reference is a
reference to a label that is defined after the referencing statement. A backward
reference is a reference to a label defined in a statement before the referencing
statement.

Further, forward or backward references may be categorized as either simple or
complex. A simple reference is a forward or backward reference to a label that is
directly defined by the referenced statement. A complex reference is a forward or
backward reference to a label defined by an equate (EQU) statement that in turn
makes at least one additional reference.

A
G

W
B

E

C
D
X

Example:
References

DC 13
DC 7
LDR $Rl,A (Valid simple backward reference)
LDB $Bl,X (Valid simple forward reference)
EQU E
EQU G
LDR $R2,E (Invalid complex forward reference (label E not defined at

this point))
LDR $R3,W (Invalid complex backward reference (label W can never be

defined in a two-pass assembly))
EQU D
LDR $R4,E (Valid complex backward reference (label E has been defined

at this point))
LDR $R5,C (Valid complex forward reference (label C has been defined

~iliefi~ta~emb~p~~)
EQU B
RESV 1
DC 3

Restrictions that apply to references are as follows:

1. All forward references to a label defined by a complex equate statement are
invalid.

2. A forward reference in an origin (ORG) or common (COMM) statement is
invalid.

3. A forward reference in the first operand of a reserve (RESV) or conditional
assembly control IFxx statement is invalid.

4. A complex reference involving one or more intermediary equate statements
making a forward reference is invalid.

ELEMENTS OF BES
ASSEMBLY LANGUAGE 2-13 AU43

SECTION 3

PROGRAMMING
CONSIDERATIONS

Before writing an assembly language source program, you should take into
consideration both features and constraints inherent in the design of the Assembler and
the system. This section describes the considerations that should be made, as well as
the various rules that must be followed, when coding your source program. These
include:

o Rules of formatting your source language statements
o Ordering of statements in an assembly language program
o Rules governing the calling of system services and external procedures
o Utility programs that supplement assembly language source programs

ASSEMBLY LANGUAGE SOURCE STATEMENT FORMATS

As mentioned in Section 2, the BES assembly language consists of Assembler
controlling statements and assembly language (operational) instructions. Assembly
language source code must be submitted to the Assembler in a recognizable format so
that it can be interpreted accurately. Therefore, when coding assembly language source
statements, you must conform to the following formatting conventions:

Column 1~

Lllabelll I opcode {.6.0perand { ~perand { ~perand [...] } } } [.6.comments]
linenum.6. .6.;;
linenum-Iabe1.6.

The semicolon (;) indicates to the Assembler that the next operand is contained in
the next sequential source line (i.e., the continuation statement), which has the
following format:

Column 1+

[linemun] [LI] { ~operandkperand[...] } } [.6.commen ts J

In addition to comments being included on individual assembly language source
statements, comment statements, which have the following format, can be included
in the source language program.

comments

The asterisk (*) indicates that the comment line is to be included in the listing
wherever it is included in the source language program. The slash (/) indicates that the
printer is to skip to the top of the next page of the listing before printing the
comment. Printing of lines can be overridden by the inclusion of a NLST Assembler
control statement in the source code (see Section 4).

In the above formats, label is any user-specified tag, linenum is any user-specified
line number, linenum-Iabel indicates a line number followed by a label with no

PROGRAMMING CONSIDERATIONS 3-1 AU43

intervening spaces, opcode and operand indicate the required assembly language fields
described in Sections 4 and 5, and blank (6) indicates that one or more blanks or
horizontal tab characters must be coded. Any number of blanks and/or horizontal tab
characters can follow a comma (,). A line number is an unsigned decimal integer of any
length. Line numbers are ignored by the Assembler.

Except for the order in which information must be supplied, the source language
format is free-form. However, it is suggested that you establish a fixed format for
coding source statements (e.g., always starting opcodes in the eleventh position and
operands in the twenty-first) so that you can read your listing more easily.

ORDER OF STATEMENTS IN SOURCE PROGRAM

With the following exceptions, Assembler control statements can be entered in any
order:

1. The TITLE statement must be the first statement in the source program.
2. The EQU statement must define complex type labels before they are referred to

within the source program.
3. The END statement must be the last statement in the source program.

However, to simplify the reading of listings, it is recommended that you group all of
the memory allocating Assembler control statements (e.g., DC, TEXT, RESV) at the
beginning of your program (immediately following the TITLE statement), except for
the conditional assembly-control Assembler control statements (i.e., IF, NULL, FAIL).

Assembly language instructions are coded in the order in which they are to execute.

CALLING SYSTEM SERVICES

System services (e.g., the Task Manager) can be requested by coding a request
sequence similar to the following:

SAVE <savloc,2 '639C'
LNJ $B5,<entry

In the above sequence, 'savloc' is the label of the context save area and "entry" is the
external label of the appropriate entry point of the system service routine.

The X'639C' operand results in saving the contents of the following hardware
registers: Rl, R2, R6, R7, I, B3, B4, B5. It may be necessary to save their contents
because the various system services use these· registers and may alter their contents.
Any but the I-register can be used to pass arguments to the requested system service,
and any register not used by the system service (i.e., R3, R4, R5, BI, B2, B6, B7) can
be made available for the service to return a value to the requesting program.

All system services execute a JMP $B5. For that reason, the LNJ instruction must
identify B5 as the register containing the return address.

For additional information about calling system services, see the Software OverView
and System Convention manual.

CALLING EXTERNAL PROCEDURES

Procedures that are assembled separately from the invoking procedure are
designated external procedures.

The individual elements of data passed to an external procedure are known as
arguments. The external procedure interprets these arguments as parameters; to the
external procedure, the order of the parameters is the same as the order of the,
arguments passed from the invoking procedure.

PROGRAMMING CONSIDERATIONS 3-2 AU43

Although the standard calling sequence does not allow reentrant code, an external
procedure can be reentrant (i.e., it can be used by more than one program
concurrently), provided the following rules are observed:

1. The only work space used by the external procedure comprises (1) the
parameters passed to it and (2) the hardware registers.

2. All the arguments to be passed in nested external procedure invocations are
constants.

In other words, an external procedure can be reentrant if the invoking program
provides the req uired work space and formally passes it to the external procedure.

External procedures can be requested by coding request sequences such as the
following:

LAB $B7,arglist
LNJ $B5,<entry

In the above sequence, 'entry' is the external label of the appropriate entry point of
the called (external) procedure, and 'arglist' is the argument list to be passed to the
called (external) procedure.

Alternatively, you could use a request such as the following:

CALL entry ,arg I ,arg2, ...

This request is similar to the preceding sequence except that the CALL Assembler
control statement automatically generates the argument list, loads its address into B7,
and sets the return address in B5. As a result, when the external procedure completes
its work, control is returned to the next sequential instruction or statement in the
calling program.

For additional information about calling external procedures, see the Software
Overview and System Conventions manual.

ASSEMBLER-RELATED UTILITY PROGRAM

A special Assembler-related utility program is available to assembly language
programmers. The cross-reference utility program, which is described in detail in the
Program Development Tools manual, provides a listing of all labels and symbols in the
source module. In addition, it flags labels that are undefined or defined more than
once.

The listing includes the label, the location at which it is defined and a list of all
locations that refer to that label. The list of labels is alphabetical; the locations that
refer to each label are listed in ascending sequence.

BES ASSEMBLER

The BES Assembler processes source statements written in BES assembly language,
translates the statements into object code, and produces a listing of the source program
together with its associated assembly information.

The Assembler accepts arguments that allow you to control its operation in various
ways. Detailed information about the Assembler and its arguments can be found in the
Program Development Tools manual.

Scientific Instruction Processor (SIP) Programming Considerations
Since the SIP and the Level 6 central processor operate asynchronously, you must

ensure that they do not come Into conflict by attempting to use a main memory

PROGRAMMING CONSIDERATIONS 3-3 AU43

operand concurrently. You can guarantee proper synchronization by obeying the
following rules:

1. If the source field of any of the following instructions refers to a main memory
location or R-register, do not modify that location or register until a scientific
branch instruction or another floating-point instruction is executed:

SAD
SCM
SCZD
SCZQ
SDV
SLD

SML
SNGD
SNGQ
SSB
SSW

2. If the result field of any of the following instructions refers to a main memory
location, do not modify that location until a scientific branch instruction or
another floating-point instruction is executed:

SNGD
SNGQ
SST
SSW

Descriptions of the above instructions can be found in Section 5 under "Assembly
Language Instructions."

PROGRAMMING CONSIDERATIONS 3-4 AU43

SECTION 4

ASSEMBLER CONTROL
STATEMENTS

Every assembly language program must contain, in addition to the assembly
language instructions, a set of instructions that tells the Assembler about the program.
These Assembler control statements, which are not assembled into the object text,
provide information to the Assembler for:

o Controlling the assembly of the program
o Controlling the listing of assembly language instructions and Assembler control

statements
o Defining constants to be used by the program
o Defining main memory storage and/or work areas
o Defining symbols
o Linking assembly language programs
o Conditioning the assembly of various parts of a program

Assembler control statements must be coded as described in Section 3 (see
"Assembly Language Source Statement Formats"), except that some explicitly
prohibit the use of labels. For that reason, each Assembler control statement described
in this section identifies labels where they are required or permitted; when not shown
under "Source Language Format," labels are not allowed.

ASSEMBLY-CONTROLLING STATEMENTS

Assembly-controlling statements tell the Assembler where the beginning and end of
each program are; they also set the Assembler's location counter.

The following statements are the assembly-controlling subset of Assembler control
statements:

o END
o ORG
o TITLE

These statements are described in detail later in this section.

LIST-CONTROLLING STATEMENTS

List-controlling statements control the listing of an assembly language source
program via a printer, disk, or console typewriter. The following statements are
available to provide this function~

o CLST
o LIST
o NLST

These statements are described in detail later in this section.

DATA-DEFINING STATEMENTS

Data-defining statements are required to define data used in the object text. The
Assembler assigns this data to memory locations at the exact point at which they are

ASSEMBLER CONTROL STATEMENTS 4-1 AU43

defined. The following statements are the data-defining subset of the Assembler
control statements:

o DC
o TEXT

These statements are described in detail later in this section.

STORAGE-ALLOCATION STATEMENTS

Storage-allocation statements direct the Assembler to make areas of memory
available for use as storage and/or work space. This subset of the Assembler control
statements consists of the following statements:

o COMM
o RESV

These statements are described in detail later in this section.

SYMBOL-DEFINING STATEMENTS

Symbol-defining statements assign specific meanings to given symbolic names; they
also may identify symbolic names defined outside the program but used within it. The
assembler control statements provided to support the symbol-defining function are:

o EQU
o XLOC
o XVAL

These statements are described in detail later in this section.

PROGRAM-LINKING STATEMENTS

Large programs are often written as several separately assembled smaller programs.
At execution time, it is necessary for these separately assembled programs to establish
communication links. The linking processes (see the Program Development Tools
manual) use information from the following program-linking statements to assign final
addresses and/or data values to be used by the separately assembled procedures (i.e.,
programs) common to a single assembly language program:

o CALL
o CTRL
o XDEF

The program-linking statements are described in detail later in this section.

CONDITIONAL ASSEMBLY -CONTROL STATEMENTS

Conditional assembly-control statements allow a comprehensive source program to
be written to cover many situations. Then, during assembly, they can direct the
Assembler to assemble or inhibit assembly of particular assembly language instructions
(and/or groups of assembly language instructions) when specific conditions occur. The
following statements provide the Assembler with information for conditional
assembly:

o FAIL
o IF
o NULL

ASSEMBLER CONTROL STATEMENTS 4-2 AU43

These statements are defined in detail later in this section.

ASSEMBLER CONTROL STATEMENTS

The remainder of this section lists and describes the Assembler control statements
in alphabetical order. The descriptions include the expanded name of the statement, its
source language format (including the label field, where it is permitted or required), a
detailed description of what the statement does, and a description of each of its
operands.

Information about the various symbolic names identified in the statements is
contained in Section 2.

CALL

Instruction:
Call external procedure

Source Language Format:
[label]L}.CALL6[obj-mod-name.] entry [,argl [, ... ,arg31]]

Description:
Initiates a transfer of control to a specified external subroutine.

The operands have the following meanings:

obj-mod-name.
If specified, it is the object text name of the external procedure; otherwise, it is
assumed to have the same name as the entry point (entry).

entry
Identifies the entry point in the procedure to which control is transferred.

arg I , ... arg3 I
If specified, provides addresses of arguments to be passed.

If the argument list is not included, the CALL statement is broken down by the
Assembler as follows:

CTRL
XLOC
LAB
LNJ

LINK obj-mod-name
entry
$B7,=1
$B5,<entry

If the argument list is included, the CALL statement is broken down as follows:

CTRL LINK obj-mod-name
XLOC entry
LAB $B7,$+$AF+3
LNJ $B5,<entry
B >$+n *$AF+ I
DC <arg I [,<arg2] ...

The XLOC statement shown in the breakdowns provides a temporary label that is
not entered into the Assembler's symbol table, and ceases to exist after the LNJ
instruction is executed. The term n, shown in the B-instruction in the second break
down is an internally computed constant equal to the number of arguments

ASSEMBLER CONTROL STATEMENTS 4-3

CALL

AU43

CALL / CLST / COM / CTRL

specified in the CALL statement; this makes it passible far the Assembler to. branch
araund the DC statement(s).

Additianal infarmatian abaut calling external pracedures can be faund in the
Saftware Overview and System Canventians manual.

CLST

Instructian:
Conditianal Listing

Saurce Language F arma t:

[label] 6CLST6int-val-expressian

Descriptian:
If the internal value expressian is ~ 0, the CLST statement daes nat appear in the
assembly listing. If the internal value expressian is < 0, the CLST statement appears in
the assembly listing with an errar flag (Z-canditianal assembly errar). The camment
field may be used to. pravide additianal infarmatian cancerning the errar. The label af
a CLST statement is nat entered into. the Assembler's symbal table.

COMM

Instructian:
Define camman black

Saurce Language Farmat:
[label] 6COMM6int-val-exp

Descriptian:
Allaws yau to. define a camman black campatible with FORTRAN camman areas.

The label field and aperands have the fallawing meanings:

label
If specified, the camman area is given that name; atherwise, it is unlabeled (i.e.,
blank) camman, and is given the symbalic name $COMM (by implicatian).

int-val-exp
Specifies the size (in wards) af the cam man area. The Linker (see the Pragram
Develapment Taals manual) assigns all camman blacks with the same name to. the
same memary area regardless af the memary lacatian in the saurce pragram at
which they are defined (i.e., the COMM statement daes nat alter the Assembler's
lacatian caunter.)

int-val-exp is an internal value expressian (see Sectian I), and must be defined priar
to. the accurrence af this COMM statement. It must nat cantain a farward
reference. Elements in a camman black can be referenced by the name af the
cornman black plus the element's displacement within the black.

CTRL

Instructian:
Pass cantral infarmatian to. Linker

ASSEMBLER CONTROL STATEMENTS 44 AU43

CfRLj DC

Source Language Format:

6CTRL6command-line

Description:
Provides a method of passing Linker commands from the source program to the Linker
(see the Program Development Tools manual for a description of the Linker).

The operand has the following meaning:

command -line
Specifies data to be passed verbatim to the Linker as part of the program's object
text (Le., it is not verified by the Assembler).

DC

Instruction:
Define constant(s)

Source Language Format:

('location-expression}
< ({~} temporary-label
[=] string-constant

[label] 6DC6 [=] arithmetic-constant [,. . .]

Description:

[=] internal-value-label
[=] external-value-label
[=] internal-value-expression
[=] complex-label

Defines data to be included in the object text. The Assembler interprets the constants,
converts them to the proper binary representation, and assigns them to successive
memory locations at the exact point at which the DC statement appears in the source
program.

The operands have the following meanings:

{

location-expression }

< {~} temporary-label

Causes a 1- or 2-word address pointer, as appropriate, to be allocated.

[=] string-constant
Is padded, if necessary, to make an integral number of words; the padded value is
allocated to memory.

[=] arithmetic-constant
Causes a 1- or 2-word real binary number to be al1ocated.

[=] internal-value-label
[=] external-value-label
[=] internal-value-expression

Causes a I-word binary integer to be allocated.

ASSEMBLER CONTROL STATEMENTS 4-5 AU43

DC lEND I EQU

[=] complex-label
Processed as described above for:

} location-expression l
< t{~} temporary-label!

external-value-label, or intemal-value-expression, depending on whether the label
has been equated to a direct immediate memory form of addressing or an internal
value immediate operand form of addressing. No other form of addressing can be
used.

Detailed descriptions of the various types of labels, constants, and expressions can be
founa in Section 2 (e.g., internal-value-label is described under "Labels," string
constant is described under "Constants," and location-expression is described under
"Expressions").

END

Instruction:
End of program

Source Language Format:
~END~program-name [Jnternal-Iocation-expression]

Description:
Identifies the end of the assembly language program. This Assembler control statement
must be the last statement in every assembly language source program.

The operands have the following meanings:

program-name
Must be the same program name specified in the source program's TITLE
statement.

intemal-Iocation-expression
If specified, it identifies the program's normal entry point. (See "Expressions" in
Section 2 for a description of internal location expressions.)

EQU

Instruction:
Equate

Source Language Format:

labe~EQU~

location-expression
internal-value-expression
address-expression
complex -label
identifier
fixed-point-constant

ASSEMBLER CONTROL STATEMENTS 4-6 AU43

EQU / FAIL / IF

Description:
Assigns the value identified in the operand field, together with all of its associated
attributes, to the label.

The operands have the following meanings:

fixed-point-constant
location -expression
intemal-value-expression

The label is treated by the Assembler as the same type as the operand (see
"Expressions" in Section 2).

address-expression
complex-label

The label is treated as a complex type (see "Expressions" and "Labels" in
Section 2).

NOTES: 1. The address expression cannot be a hexadecimal string constant as defined
under "Immediate Memory Addressing" in Section 5.

2. Complex labels cannot contain external or common references.

identifier
The label is treated as an identifier that is equivalent to this one (see "Identifiers" in
Section 2).

FAIL

Instruction:
Identifies a statement that should never be assembled.

Source Language Format:
[label] 6FAIL

Description:
If the FAIL statement is assembled, an Assembler e'rror flag (Z-conditional assembly
error) is generated.
The FAIL statement is used in conditional assemblies to ensure that the prevailing
conditions are logically consistent.

If the statement is labeled, the label is not entered into the Assembler's symbol table;
as a result, it can be referred to only by a preceding IF statement.

IF

Instruction:
Conditional skip

Source Language Format:

[label] 6IF
{

aD

[N]

EV

ASSEMBLER CONTROL STATEMENTS

{~} I illnt -val-expression,in t -lac-label

4-7 AU43

IF / LIST

Description:
If the specified condition is met, the Assembler skips subsequent statements until the
label is encountered; otherwise, the next sequential instruction is processed.

The opcode is interpreted as follows:

IFP
Skip to int-Ioc-Iabel if int-val-expression is positive.

IFNP
Skip to int-Ioc-Iabel if int-val-expression is not positive.

IFN
Skip to int-Ioc-Iabel if int-val-expression is negative.

IFNN
Skip to int-Ioc-Iabel if int-val-expression is not negative.

IFZ
Skip to int-Ioc-Iabel if int-val-expression is zero,

IFNZ
Skip to int-Ioc-Iabel if int-val-expression is not zero.

IFOD
Skip to int-Ioc-Iabel if int-val-expression is odd.

IFEV
Skip to int-Ioc-Iabel if int-val-expression is even.

The operands have the following meanings:

int-val-expression
Internal value expression (see "Expressions" in Section 2); forward references are
not permitted.

int-Ioc-Iabel
Internal location label (see "Labels" in Section 2) identifying the location of the
next statement or instruction to be processed by the Assembler if the condition is
met.

If a label is specified, it is not entered in the Assembler's symbol table; as a result, it
can be referred to only by a preceding IF statement.

LIST

Instruction:
List following source statements

~ource Language Format:

~LIST

Description:
Causes subsequent assembly language instructions and Assembler control statements to
be included on the assembly listing. Listing of the statements continues until the end
of the program or until an NLST Assembler control statement is encountered.

ASSEMBLER CONTROL STATEMENTS 4-8 AU43

NLST / NUL / ORC

NLST

Instruction:
Inhibit listing of following source statements

Source Language Format:
~NLST

Description:
Prevents subsequent assembly language instructions and Assembler control statements
from being included in the assembly listing. Listing of the statements continues to be
inhibited until the end of the program or until a LIST Assembler control statement is
encountered.

This statement overrides the use of * or / comment source statements (see Section 3).

NULL

Instruction:
No effect; processing continues

Source Language Format:
[label] ~NULL

Description:
Has no effect on the assembly process.

This Assembler control statement is commonly used to define a label referred to by an
IF statement. Processing continues with the next sequential instruction.

If the statement is labeled, the label is not entered into the Assembler's symbol table;
as a result, it can be referred to only by an IF statement.

ORC

Instruction:
Origin

Source Language Format:

[label] ~ORG~ {~OmmOn-Ioca~ion-expres~ion}
mtemal-IocatIon-expresslon

Description:
Assigns the attributes and value of the operand to the location counter (i.e., if the
operand is a common location expression, the location counter type attribute is set to
common; if the operand is an internal location expression, the location counter type
attribute is internal). The initial value of the Assembler's location counter is internal
location O.

The label field and operands have the following meanings:

label
If specified, the label will be assigned the value contained in the location counter
before the new value is stored in the location counter.

ASSEMBLER CONTROL STATEMENTS 4-9 AU43

ORG / RESV / TEXT

common-Iocation~xpression

Sets the location counter type attribute to common and sets the location counter
value to the specified offset in the common block. Temporary labels cannot be
defined while the location counter has the common attribute.

internal-Iocation~xpression

Sets the location counter type attribute to internal and sets the location counter to
the specified value of the location expression (see Section 2 for a description of
common location and internal location expressions). Regardless of the type
attribute of the expression specified in the operand, it must not contain a forward
reference.

RESV

Instruction:
... t_

Reserve main memory space

Source Language Format:
[label] 6RESV 6in t -val-expa [,in t -val-expb]

Description:
Reserves space in main memory for use by the object text program (generated by the
Assembler) as work or storage space.

The label field and operands have the following meanings:

label
If specified, the reserved area is given that name.

int-val~xpa

This is an internal value expression (see Section 2) that specifies the size (in words)
of the reserved area. It must not contain a forward reference.

int-val~xpb

If specified, it is an internal value expression (see Section 2) specifying the initial
value to which each word in the reserved area is initialized when the object text
program is loaded. If this operand is not specified, the contents of the reserved area
are undefined. .

TEXT

Instruction:
Allocate space for text

Source Language Format:
[label] 6 TEXT 6string-constant [,string-constan t [, ...]]

Description:
Causes the Assembler to allocate the binary representation of the successive string
constants concatenated into the fewest number of words (i.e., packed). The Assembler
inserts "slack bits" (a's) between successive operands, as necessary, to ensure that each
ASCII string begins at a bit position that is a multiple of 8, and that each hexadecimal
string constant begins at a bit position that is a multiple of 4; if the last word occupied
by the concatenated string is not full, slack bits are added to fill it. (String constants
are described in Section 2.)

ASSEMBLER CONTROL STATEMENTS 4-10 AU43

TITLE / XDEF

TITLE

Instruction:
Start of program

Source Language Format:
6.TITLE6.program-name [,rev-number] [6.page-header]

Description:
Identifies the beginning of the assembly language source program. This statement is
required.

The operands have the following meanings:

program-name
Name by which the source program can be referred to. The name must conform to
the following rules:

1. One through six characters (A through Z, 0 through 9, $ or - (underscore).
2. First character must be one of the following:

a. $
b. A,B ... Z

rev-number
Optional operand identifying the revision number of the program. It must be an
ASCII string constant of one through eight characters in length.

page-header
Optional comment line that will appear at the top of each page in the assembly
listing (together with the revision number). Up to 20 characters are permitted.

XDEF

Instruction:
External label definition

Source Language Format:

6.XDEF6.
~ label t
l (label, {~t~~~:~} H [. . . 1

Description:
Identifies labels to be made available to external procedures. These labels can then be
referred to through XLOC and XVAL statements in the external procedures. The
occurrence of a label in an XDEF statement does not define that label for use
elsewhere within that program (the label is not entered into the Assembler's symbol
table).

The operands have the following meaI}ings:

label
Identifies a label, defined elsewhere in the source program, as an internal location
label or internal value label (see Section 2), that can be referred to by a separately
assembled program through an XLOC or XVAL statement.

ASSEMBLER CONTROL STATEMENTS 4-11 AU43

XDEF / XLOC / XV AL

(label {~nt-Ioc-exp})
, Int-val-exp

int-Ioc-exp and int-val-exp are internal location or internal value expressions,
respectively, which are evaluated by the Assembler, with the resulting value and
type being associated with the label. The label can be referred to by a separately
assembled program through an XLOC or XVAL statement.

Regardless of which form of the operands is used, the Assembler evaluates the label
and generates a type and value attribute to be associated with the label. The results of
the evaluation are passed to the Linker with the object text for use during the linking
process (see the Program Development Tools manual).

NOTES: 1. It is not necessary for all labels identified through the XDEF statement
to be referred to by an external program.

2. If a label is not identified to an external procedure by an XDEF
statement, the label can be defined at link time by the LDEF
command to the Linker.

XLOC

Instruction:
Define external locations to be referenced

Source Language Format:
6XLOC6labeia [)abelb] ...

Description:
Identifies labels associated with locations in programs assembled separately from this
program (i.e., external procedures), but used in this program.

The external program must identify the labels in an XDEF Assembler control
statement.

The operands have the following meanings:

label
Identifies the external location label(s) (see Section 2) used in this program.

XVAL

Instruction:
Define external values to be referenced

Source Language Format:
6XV AL6labeia [,labelb] ...

Description:
Identifies labels associated with values in programs assembled separately from this
program (i.e., external procedures), but used in this program.

The external program must identify the labels in the XDEF Assembler control
statement.

ASSEMBLER CONTROL STATEMENTS 4-12 AU43

The operands have the following meanings:

label
Identifies the external value label(s) (see Section 2) used in this program.

ASSEMBLER CONTROL STATEMENTS 4-13

XVAL

AU43

SECTION 5

ASSEMBLY LANGUAGE
INSTRUCTIONS

The BES assembly language instruction set provides the means by which you can
write your source programs. These assembly language instructions, which are assembled
ip.to object text, enable you to perform the following types of operations:

o Arithmetic
o Boolean
o Branching
o Comparison
o Controlling
o Input/Output
o Loading
o Modification
o Shifting
o Storing
o Swapping

The following paragraphs identify which of the assembly language inst11.!ctions are
included in each of the above operations. However, detailed information about each of
the instructions is contained in the alphabetical list of instructions later in this section .

. In addition to identifying the assembly language instructions by operation, they are
also listed by type (e.g., double operand). The various types can be distinguished not
only by their op codes, but by their formats; therefore, the valid format for each type
of instruction is included in the description of each type of instruction. However, the
detailed format of each instruction is not shown, since the format used must conform
to that described in Section 3.

ARITHMETIC OPERATIONS

The following assembly language instructions perform arithmetic operations (Add,
Subtract, Multiply, Divide):

ADD INC
ADV MLV
CAD MUL
DEC NEG
DIV SUB

BOOLEAN OPERATIONS

Boolean operations (Inclusive OR, Exclusive OR, AND) are provided through the
following assembly language instructions.

AND
ANH
CPL

OR
ORR

XOR
XOR

ASSEMBLY LANGUAGE INSTRUCTIONS 5-1 AU43

BRANCH OPERATIONS

The following instructions exist to support branching operations (Branch if ... ,
Branch unconditionally). This subset comprises following:

B
BAG
BAGE
BAL
BALE
BBF
BBT
BCF
BCT
BOEC
BE

BEVN
BEZ
BG
BGE
BGEZ
BGZ
BINC
BIOF
BlOT
BL
BLE

COMPARE OPERATIONS

BLEZ
BLZ
BNE
BNEZ
BNOV
BODO
BOV
BSE
BSU
Nap

The following assembly language instructions perform the comparison operation
(Compare X to Y):

CMB CMR
CMR CMV
CMN CMZ

CONTROL OPERATIONS

Control instructions affect the flow of an assembly language program. They provide
a means of entering trap handlers, starting and stopping hardware clocks, passing
control to system service routines or external procedures, and jumping. This subset
comprises the following:

BRK
ENT
RLT
JMP
LEV

LNJ
MCL
RTCF
RTCN
RTT

WOTF
WOTN

INPUT/OUTPUT OPERATIONS

The following assembly language instructions are provided to support the
input/output operations:

10 lOR IOLO

LOAD OPERATIONS

Load operations are provided through the following instructions:

LAB
LB
LBC
LBS

LBT
LOB
LOR
LOI

MODIFY OPERATIONS

LOR
LOV
LLR
RSTR

Modification (Clear Memory, Increment or Decrement the Contents of a Memory
Location) operations are provided by the following assembly language instructions:

CL CLR MTM

ASSEMBLY LANGUAGE INSTRUCTIONS 5-2 AU43

SCIENTIFIC INSTRUCTIONS

The following set of instructions executes on the (optional) Scientific Instruction
Processor (SIP). These instructions manipulate data in floating-point format and utilize
the scientific accumulator registers (Sn) and the scientific indicator register (S1)
provided by the SIP.

SAD SBLEZ SCZD
SBE SBLZ SCZQ
SBEU SBNE SDV
SBEZ SBNEU SLD
SBG SBNEZ SML
SBGE SBNPE SNGD
SBGEZ SBNSE SNGQ
SBGZ SBPE SSB
SBL SBSE SST
SBLE SCM SSW

SHIFT OPERATIONS

Shift operations are achieved through the following assembly language instructions:

DAL
DAR
OCL
OCR

DOL
DOR
SAL
SAR

STORE OPERATIONS

SCL
SCR
SOL
SOR

The following assembly language instructions are available to store the contents of
specific registers in main memory or other registers:

SAVE
SDI
SRM

STB
STH
STM

SWAP OPERATIONS

STR
STS

Swapping (i.e., exchanging) is supported through the following:

SWB SWR

ASSEMBLY LANGUAGE INSTRUCTION TYPES

In addition to identifying assembly language instructions by the operations they
perform, they can be classified by type:

o Branch-on-indicator (Bl)
o Branch-on-register (BR)
o Double operand (DO)
o Generic (GE)
o Input/output (10)
o Shift (SHS and SHL)
o Short-value-immediate (S1)
o Single operand (SO)

Branch-on-Indicator (BI) Instructions
Branch-on-indicator (Bl) instructions have the following source language format:

[label] .6.opcode.6.address-expression

A CCDUDT V T A lI.Tr'TT A~D ThTCTDTTf"'TT{)lI.TC A TT4.i

The opcode identifies the I-register bit to be tested for a specific condition.
The address-expression identifies the address of the next instruction to be executed

if the condition exists. It must specify one of the following addressing forms (see
"Addressing Techniques" in this section):

o Direct Immediate memory address
o Direct P-relative
o Short displacement

The BI instructions are included in the alphabetical list of assembly language
instructions later in this section.

Branch-on-Register (BR) Instructions
Branch-on-register (BR) instructions have the following source language format:

{
R-register} . [label] ~opcode~ . t t t ,ad dr-expression
ill eger-cons an

The opcode identifies the R-register condition that is to be tested for the existence
of a specific condition.

The first operand identifies the R-register to be tested. If an integer constant is
specified, the assembler assumes that the integer is an R-register identifier.

The second operand specifies one of the following addressing forms (see
"Addressing Techniques" in this section):

o Immediate memory address (direct form only)
o P-relative
o Short displacement

See the alphabetical list of instructions later in this section for detailed descriptions
of the BR instructions.

Double Operand (DO) Instructions
Double operand (DO) instructions have the following source language format:

[label]~opcode~ {!.~~~: } ,addr-expression [,mask]
S-register
integer-constant

The opcode identifies the operation to be performed and the type of register that is
required in the first operand.

The first operand identifies the register that contains one of the data elements to be
used in the operation, as well as the register that is to contain the result. All of the
registers, except for the S-register are hardware registers; the S-register is a
software-simulated scientific register provided by the Floating-Point Simulator (see the
Executive and Input/Output manual). If an integer constant is specified, the Assembler
assumes that it refers to a register that is of the type required by the opcode.

The second operand specifies an address expression that gives the location of the
other data element to be used in the operation. If an address expression is not
specified, the second operand must be a complex label equated to an address
expression. (See "Labels" in Section 2 for a description of complex labels, and
"Addressing Techniques" in this section for a description of address expressions.)

The third operand is valid only for the Store Register Masked (SRM) instruction.
The alphabetical list of assembly language instructions later in this section provides

detailed descriptions of each of the DO instructions.

ASSEMBLY LANGUAGE INSTRUCTIONS 54 AU43

Generic (GE) Instructions
Generic (GE) instructions, are identifiable by the fact that they contain no

operands, as follows:

[label] ~opcode~

All of the GE instructions perform controlling operations. The alphabetical list of
instructioriSJater in this section describes the GE instructions.

Input/Output (10) Instructions
Input/output (IO) instructions have the following source language format:

[label] ~opcode~address-expression ,address-expression [,address-expression]

The opcode identifies the instruction as one of the following types:

o Data and command I/O
o Address and range output

The address expression in the first operand identifies the location from which a data
word is transferred to the I/O bus, or the location to which a data word is transferred
from the I/O bus.

The second operand address expression identifies the channel number and function
code, or the location where this information can be found.

The third operand address expression is valid only for the input/output load (IOLD)
instruction. It identifies the location of the word that contains the range. When this
instruction is specified, the address expression in the first operand identifies the
location of a byte of data to be transferred to the I/O bus.

Address expressions are described under "Addressing Techniques" in this section.
The 10 instructions are described in the alphabetical list later in this section.

Shift (SHS and SHL) Instructions
Shift (SHS and SHL) instructions have the following source language format:

[label] LlopcodeLl {!::~~n:stant} ,int -val-expression

The opcode identifies the format, type and direction of the shift. The formats can
be:

o SHS - Shift short
o SHL - Shift long

The valid types are:

o Arithmetic
o Open
o Closed

The direction of the shift can be:

o Right
o Left

The fIrst operand identifies the register (or register pair for long-precision shifts)
containing the data to be shifted. For short-precision shifts, any R-register can be

ASSEMBLY LANGUAGE INSTRUCTIONS 5-5 AU43

specified; for long-precision shifts, the R-register specified must be $R3, $R5, or $R7,
with the preceding even-numbered register ($R2, $R4, or $R6, respectively) being
implied. Use of an integer constant implies that the R-register with that number is
specified.

The internal value expression (see Section I) in the second operand specifies the
number of bits to be shifted. For short-precision shifts, the count must be within the
range I through 15; if 0 is specified, the system uses the value found in bits 12 through
IS of $Rl. For long-precision shifts, the count must be within the range I through 31;
if 0 is specified, the value in bits II through IS of $RI is used.

Detailed descriptions of the SHS and SHL instructions are included in the
alphabetical list of instructions later in this section.

Short-Value-Immediate (SI) Instructions
Short-value-immediate (SI) instructions have the following source language format:

R
. t string-constant -re s er . I

integer-constant ~

[label]60pcode6 {. t g1 t t} ,[=] Internal-ValUe-label) In eger-cons an . . Int-val-expresslon
fixed-point-constant

The opcode identifies the operation to be performed.
The first operand specifies an R-register that contains one of the data elements to

be operated upon and receives the result of the operation. If an integer constant is
used, the corresponding R-register is assumed (i.e., X'S' implies R-register $R5).

The second operand is a I-byte (8-bit) value. If it is a string constant (see
Section 2), it is treated as a half-word string; if the length of the string is greater than 8
bits, low order (i.e., the rightmost) bits are truncated; if less than 8 bits, O's are
appended to the low order bit positions. If the second operand is not a string constant,
the value is considered to be numeric within the range -128 to + 127 .

Integer constants, string constants, internal value labels, internal value expressions,
and fixed point constants are described in Section 2. The SI instructions are described
in detail in the alphabetical list later in this section.

Single Operand (SO) Instructions
Single operand (SO) instructions have the following source language format:

[label] 60pcode6addr-expression ,

in teger-constan t
string-cons tan t
internal-value-label
external-value-label
int-val-expression
fixed-point-constant

The opcode identifies the operation to be performed.
The first operand address expression (see "Addressing Techniques" in this section)

identifies the location of the data element to be operated upon.
The second operand is valid only for the Save (SAVE) and Restore (RSTR)

instructions. It specifies the value of a one-word mask that indicates which registers are
to be saved and restored. Integer constants, string constants, internal value labels,
external value labels, internal value expressions, fixed point constants are described in
Section 2.

The SO instructions are described in the alphabetical list of assembly language
instructions later in this section.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-6 AU43

ADDRESSING TECHNIQUES

Many of the assembly language instructions require the use of address expressions in
their operand fields. Address expressions can take any of the following forms:

o Register addressing
o Immediate memory addressing
o Immedia te operand addressing
o P-relative addressing
o B-relative addressing
o Short displacement addressing
o Special addressing
o Interrupt vector addressing

Any of these addressing forms can be used to specify the location of data to be used
in an operation. Furthermore, the data can be referenced directly, indirectly, via
indexing, or by utilizing the push/pop feature.

Register Addressing
Register addressing is specified when a value or address is contained in a register.

This form of address expression is specified as follows:

= $Rn =$Bn =$Sn

=$Rn and =$Bn are mutually exclusive; i.e., some instructions permit the use of
=$ Rn and others allow =$ Bn (the descriptions of the various instructions identify
which is valid for that instruction). The =$Rn form is generally used in those
instructions that require some data to be contained in the register. The =$Bn form is
valid for -those instructions that expect to find an address in the register. The =$Sn
form addresses the scientific accumulator registers.

The following examples illustrate register addressing. In the examples, assume that
$B5 contains the address 3FFF, that $B3 contains the address 12A4, that $R5
contains the value 2012, and that $R7 contains the value OOED.

Example 1:

ADD X'7',=$R5

In this example, the contents of $R5 are added to the contents of $R7, and the result
(20FF) is stored in $R7. Since this instruction requires that the first operand specify
an R-register, the Assembler assumes that the integer constant refers to-$R7 and
generates code to executes the instruction accordingly.

Example 2:

LDB $B5,=$B3

In this example, the address stored in $B3 is loaded into $B5.

Immediate Memory Addressing (IMA)
Immediate memory addressing is specified when a value or address is contained in a

main memory location. This form of addressing allows you to reference a location
directly, indirectly, and through indexing (direct or indirect). Depending on how you

ASSEMBLY LANGUAGE INSTRUCTIONS 5-7 AU43

wish to reference the memory location, you can specify immediate memory addressing
as follows:

{

lOcation-expression}

< {~} temporary-label

{

lOcation-expression}

< {~} temporary-label

'. location-expression }
< l{ ~} temporary-label .$R

{

location-expression}

< {~} temporary-label .$R

- Direct IMA

- Indirect IMA

- Indexed Direct IMA

- Indexed Indirect IMA

When a source instruction indicating immediate memory addressing is assembled,
the actual address of the operand is assembled into the operand field. Therefore, any
internal, external, or common location expression is a valid operand. In contrast,
P-relative addressing (defined later in this section) creates object code in which the
displacement from the current instruction to the operand is assembled into the
operand field.

Direct Immediate Memory Addressing
Direct immediate memory addressing makes it possible for you to specify explicitly

the location of the data or address to be used in an operation.
The following example illustrates the use of this fonn of immediate memory

addressing. In the example, assume that INTLB 1 is an internal location label at
location 20F4 and that location contains the address OFOB, and that $B3 contains the
address 111 A.

Example:

LDB $B3,<INTLB1

In this example, the contents (OFOB) of location 20F4 (specified by INTLB 1) are
loaded into $B3, replacing its current contents.

Figure 5-1 illustrates how the instruction in the example is stored in memory and
how the data is found.

MEMORY

Figure 5-1. Direct Immediate Memory Addressing

ASSEMBLY LANGUAGE INSTRUCTIONS 5-8 AU43

Indirect Immediate l',{emory Addressing
This form of immediate memory addressing is available when you want to refer to a

location whose address is stored in another location.
The following example illustrates the use of this form of immediate memory

addressing. Assume that $C is a temporary label, whose next definition is at location
30A2 and that location contains the address 100C. Further, assume that location 100C
contains the value OF2C, and that $R6 contains the value 10D3.

Example:

ADD $R6,*<+$C

In this example, the system goes to the location specified at location 30A2 (identified
by +$C, the + indicating that a forward reference is involved), which is 100C. It then
adds the value found there (i.e., OF2C) to the contents of $R6, and stores the result
(lFFF) in $R6.

Figure 5-2 illustrates how the instruction appears in memory and how the data used
in the instruction is found.

MEMORY

ASSEMBLED INSTRUCTION
(ADD $R6,*<+$C)

Figure 5-2. Indirect Immediate Memory Addressing

Indexed Direct Immediate Memory Addressing
Indexed direct immediate memory addressing is available when you want to refer to

data or an address that has a known number of words beyond a specific location.
The following example illustrates the use of this form of immediate memory

addressing. Assume that TABLEl is an internal location label at location 2000, and
that word 3 in the table is the address of an error routine. Also, assume that $R3
contains the value 0003.

Example:

LDB $Bl ,<TABLEl.$R3

In this example, the system adds the contents of the index register ($R3) to the
address of TABLE 1 (Le., 2000). Then the contents of that location (i.e., the address of
the error routine) are loaded into $B 1.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-9 AU43

Figure 5-3 illustrates how the instruction appears in memory and how it locates the
effective address.

MEMORY

I
I

;d, '. V

~---~>+3WORDS

Figure 5-3. Indexed Direct Immediate Memory Addressing

Indexed Indirect Immediate Memory Addressing
This form of immediate memory addressing combines the feature of indirect

immediate memory addressing with indexing to generate the location of the data or
address to be used in an operation.

The following example illustrates the use of this form of immediate memory
addressing. In the example, assume that TABLI A is an internal location label at
location 20AA and that that location contains the address 30FF. Also assume that $RI
contains the value OFOO, that $R2 contains the value 401A, and that location 3FFF
contains the value 3D91.

Example:

ADD $R2,*<TABLIA.$RI

In this example, the contents of $RI (i.e., OFOO) are added to the contents of location
20AA (i.e., 30FF) to obtain the effective address of the data to be used in the
operation. Then, the data found at location 3FFF (OFOO + 30FF) is added to the
contents of $R2 as follows: 3D91 + 40lA = 7DAB. The result is then stored in $R2.

Figure 5-4 illustrates how the instruction appears in memory, and how the system
locates the data to be used in the operation.

Immediate Operand Addressing
Immediate operand addressing makes it possible to specify a literal value or address

as the address expression. Depending on the type of instruction, this form of
addressing must be specified in one of the following forms:

= {inten:tal-Value-e~pression}
loca tlon-expresslon

= {hex-string-constant l
floating-point-constant f

{

internal-Value-expreSSiOn}
= external-value-label

fixed-point-constant

ASSEMBLY LANGUAGE INSTRUCTIONS

(LDB, STB, SWB, CMB)

(SAD, SCM, SCZD, SDV, SLD,
SML, SNGD, SSB, SST, SSW)

(All others)

5-10 AU43

ASSEMBLED INSTRUCTION
(ADD $R2,*<TABL1A.$R1)

MEMORY LOCATION 3FFF
(EFFECTIVE ADDRESS)

01 ?
~ '- V ,;'

~- - - - - - ~+OFOOWORDS

Figure 5-4. Indexed Indirect Immediate Memory Addressing

The ·hex-string-constant form must specify a hexadecimal string constant that
provides the following information for the scientific instructions:

Bit: o 678

c M

c Characteristic (excess power-of-16 exponent) of the mantissa.
s Sign (0 = positive; 1 = negative) of the mantissa.
m Magnitude of the mantissa.

31

The following examples illustrate the use of the immediate operand addressing form
of addressing. Assume that $81 is the scientific accumulator register and that it
contains the value 84130000 (indicating a floating-point number with a value of
19.000000, that $R5 contains the value 300A, and that INTVAL is the label of an
internal value expression that is equated to 1 FF3.

Example 1:

SAD $Sl ,=Z'8280000A'

In this example, the floating-point value specified by the hexadecimal string constant
(i.e., 8.00001010 is added to the floating-point value stored in $Sl (i.e., 19.00000),
and the result is stored in $S 1.

Figure 5-5 illustrates how the above example is stored in memory and how it
determines the effective address.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-11 AU43

ASSEMBLED INSTRUCTION
(SAD $S1,= Z'8280000A')

MEMORY {\ r"~-9F-o"i"":80j OOOA])
--EFFECTIVE ADDRES~

Figure 5-5. Immediate Operand Addressing-Scientific Instruction

Example 2:

ADD $R5,=INTVAL

In this example, the value equated to the internal value label INTVAL (i.e., 1 FF3) is
added to the value contained in $R5 (i.e., 300A), and the result (4FFD) is stored in
$R5.

Figure 5-6 illustrates how the above ADD instruction is stored in memory and how
it finds the effective address.

ASSEMBLED INSTRUCTION
(ADD $R5,=INTVALI
~

EFFECTIVE ADDRESS

Figure 5-6. Immediate Operand Addressing

P-Relative Addressing
P-relative addressing is available for those situations in which you want to

reference data or an address by indicating its (Assembler-calculated) displacement from
the current location (i.e., the location of the currently executing instruction). This
form of addressing allows you to reference a location directly or indirectly. Depending
on which way you want to reference a location, you can specify P-relative addressing as
follows:

{

location-expreSSiOn}

{ ~}tempOrary-label

{

location-expression}

* t }tempOrary-Iabel

Direct P-Relative Addressing

- Direct P-Relative Addressing

- Indirect P-Relative Addressing

This form of addressing is available when you want to specify a location relative to
the contents of the P-register (i.e., the address of the currently executing instruction)
directly.

The following example illustrates this form of P-relative addressing. In the example,
assume that $R5 contains the value 3F 10, and that INTLOC is a location label at
location 1110, which contains the value lEla.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-12 AU43

Example:

SUB $ R5 ,INTLOC

In this example, the contents of the location identified by INTLOC (1 E 10) are
subtracted from the contents of $R5, and the result (2100) is stored $R5.

Figure 5-7 illustrates the above instruction in memory, and shows how it finds the
effective address.

LOCATION 1110
(EFFECTIVE ADDR~SS) ----

MEMORY { ~ ~-'-_~===!----'

1110-2000=-EFO WORDS (I.E., F110)

Figure 5-7. Direct P-Relative Addressing

Indirect P-Relative Addressing
Indirect P-relative addressing is similar to indirect immediate memory addressing.
The following example illustrates indirect P-relative addressing. In the example

assume that $E precedes the current instruction, and that location that it identifies
contains the address 3000; furthermore, assume that location 3000 contains the value
20AA, and that $Rl contains the value 4F44.

Example:

ADD $Rl ,*-$E

This instruction adds the contents of the location pointed to by location 3000 (i.e.,
20AA) to the value contained in $Rl, and stores the result (6FEE) in $Rl.

Figure 5-8 shows how the instruction described above is stored in memory and how
it locates the data to be used in the operation.

ASSEMBLED INSTRUCTION
LOCATION 2000 (ADD $R1,*-$E)

MEMORY

2000-2051=-51 (I.E., FFAF)

Figure 5-8. Indirect P-Relative Addressing

ASSEMBLY LANGUAGE INSTRUCTIONS 5-13 AU43

B-Relative Addressing
B-relative addressing is used when you want to reference through an address register

(i.e., $BI, $B2, ... $B7) a location that contains data or an address. This form of
addressing can be used to reference a location directly, indirectly, through indexing, as
a displacement, or through the push/pop feature.

The push/pop feature causes the system to automatically decrement the contents of
the specified address or index register before executing the instruction, or automati
cally increment its contents after execution, as specified in the address expression.

Depending on the features you want to use in .the address expression, B-relative
addressing can take any of the following forms:

$Bn - Direct B-rela tive addressing

*$Bn - Indirect B-relative addressing

{;
l t

$Bn.$R , - Indexed direct B-relative addressing

*$Bn.$RU} - Indexed indirect B-relative addressing

$Bn { int-val-expression.} - Direct B-relative plus displacement addressing
. external-val-label

*$Bn {int-val-expreSSiOn} - Indirect B-relative plus displacement addressing
. external-val-label

-$Bn

+$Bn

$Bn.-$R U}
$Bn.+$R m

- B-relative addressing with automatic
decrement before execution (Push)

-- B-relative addressing with automatic
increment after execution (Pop)

- Indexed direct B-relative addressing
with automatic decrement of index
register before execution (Push)

- Indexed direct B-relative addressing
with automatic increment of index
register after execution (Pop)

The first four forms of B-relative addressing are similar to their immediate memory
addressing counterparts, except that the location of the data or address to be used in
the operation is contained in an address register rather than being expressed as a
location expression or label.

The next two are similar to the P-relative forms of addressing. The last four utilize
the push/pop feature, as defined above. However, the last two forms require that you
identify $BI, $B2, or $B3 as the address register although use of +$RI, +$R2, or +$R3
causes the system to specify $BS, $B6, or $B7, respectively, when the instruction is
stored in memory. As a result, when reading a memory printout, you must remember
that although the stored instruction indicates that the $BS, $B6, or $B7 register was
specified, in reality $B I, $B2, or $B3, respectively, was coded and their contents used
in the generation of the effective address of the data or address used in the operation.

Direct B-Relative Addressing
This form of addressing is available when you want to use data or an address whose

location is contained in an address register.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-14 AU43

The following example illustrates direct B-relative addressing. In the example,
assume that $B7 contains the address 20F2, and that $B2 contains the address 4FFF.

Example:

LDB $B2,$B7

In this example, the contents of the address contained in $B7 are loaded into and
replace the contents of $B2.

Figure 5-9 shows how the instruction in the example is stored in memory and how
the "effective address is found.

MEMORY

ASSEMBLED INSTRUCTION
(LOB $B2,$B7)

Figure 5-9. Direct B-Relative Addressing

Indirect B-Relative Addressing
Like indirect immediate memory addressing, this form of addressing is used when

you want to use data or an address contained at a location whose address is pointed to
by an address register.

The following example illustrates indirect B-relative addressing. In the example, $B3
contains the address 1 OOF, address 100F contains address 302A, and address 302A
contains the address 3FFF; furthermore, $B1 contains the address 1110.

Example:

STB $B1 ,*$B3

In this example, the address 1110 is stored at location 302A, replacing the address that
was contained there (i.e., 3FFF).

Figure 5-10 illustrates how the sample instruction is stored in memory and how it
derives the effective address.

MEMORY

ASSEMBLED INSTRUCTION
(STB $B1 ,*$B3) LOCA TI ON 100F

LOCATION 302A
(EFFECTIVE ADDRESS)

Figure 5-10. Indirect B-Relative Addressing

ASSEMBLY LANGUAGE INSTRUCTIONS 5-15 AU43

Indexed Direct B-Relative Addressing
This form of addressing, like indexed direct immediate memory addressing, uses an

index register to compute the effective address of the data or address to be used in the
operation. The contents of the index register are added to the contents of the address
register to derive the location of the data or address to be included in the operation.

In the following example, which illustrates indexed 'direct B-relative addressing, $R3
contains the value Ilia, $RI contains the value 0002, $B5 contains the address 3FFD,
and memory location 3FFF contains the value 9999.

Example:

ADD $R3,$B5.$RI

In this example, the system adds the contents of $RI to the contents of $B5 to
compute the address of the data to be used in the operation. The result is 3FFF (i.e.,
3FFD + 2). The contents of location 3FFF are added to the contents of $R3, and the
result (AAA9) is stored in $R3.

Figure 5-11 illustrates how the above example appears in memory.

MEMORY

ASSEMBLED INSTRUCTION
AOD $R3, $B5.$R1

LOCATION 3FFF
LOCATION 3FFD (EFFECTIVE ADDRESS)

~

+ 2 WORDS

A
R1 I

I L--8---- -- --J

Figure 5-11. Indexed Direct B-Relative Addressing

Indexed Indirect B-Relative Addressing
This form of B-relative addressing is similar to indexed indirect immediate memory

addressing. The contents of the index register are added to the contents of the location
pointed to by the address register to obtain the effective address of the data to be used
in the operation.

The following example illustrates this form of addressing. In the example, assume
that $B5 contains the address 2022 and that that address contains the address 1000;
also, assume that $R2 contains the value 40FF, that $RI contains the value OOIA, and
that location 10 I A contains the value 100 I .

Example:

ADD $R2,*$B5.$RI

In this example, the contents of $RI (OOIA) are added to the contents of the location
pointed to by $B5 (l000). The contents of the resulting location (lOlA) are added to
the contents of $R2, and the result (5100) is stored in $R2.

Figure 5-12 illustrates how the sample instruction is stored in memory and how it
derives the effective address.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-16 AU43

MEMORY

ASSEMBLED INSTRUCTION
(ADD $R2,*$B5.$R1)

LOCATION 1000
LOCATION 101A
(EFFECTIVE ADDRESS)

~'------v------~~
+ 1A WORDS

R1 + L--B----- -- --___ J

Figure 5-12. Indexed Indirect B-Relative Addressing

Direct B-ftelative Plus Displacement Addressing
This form of addressing causes the system to compute the effective address by

adding a specific value to the contents of an address register.
The following example illustrates this form of addressing. In the example, assume

that XVAL2A is an external value label equated to the value OOOA, that $B5 contains
the address 2000, that memory location 200A contains the value 20ED and that $R6
contains the value 6DFE.

Example:

SUB $R6,$B5.XVAL2A

This instruction computes the effective address of the data to be used by ad-ding OOOA
to the contents of $B5 (2000). It then subtracts the contents (20ED) of the effectiw'
address (200A) from the contents of $R6, and stores the result (4D 11) in $R6.

Figure 5-13 shows how the above example is stored in memory and how it derives
the effective address of the data.

Indirect B-Relative Plus Displacement Addressing
This form of addressing adds a displacement value to the contents of the specified

address register. Then, the effective address is obtained by checking the contents of the
location whose address is derived through the preceding operation.

In the following example of this form of addressing, EXP lOis an internal value
expression equated to 0010, $B4 contains the address 30FF, location 310F contains
the address 10FE, location 10FE contains the value 400D, and $R7 contains the value
1013.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-17 AU43

MEMORY

- - - - ~ + A WOR DS

LOCATION 200A
(EFFECTIVE ADDRESS)

g~ f

Figure 5-13. Direct B-Relative Plus Displacement Addressing

Example:

ADD $R7,$B4.EXPlO

In this example, the displacement value 0010 is added to the contents of $B4 (i.e.,
0010 + 30FF), producing the address 3l0F. Then, applying the indirection operator,
the contents of the location 310F (i.e., 10FE) are used as a memory address. The value
found at location 10FE (i.e., 400) is added to the contents of $R 7. The result (5020) is
stored in $R7.

Figure 5-14 illustrates how this form of addressing generates an effective address
when stored in memory.

MEMORY

LOCATION 10FE
(EFFECTIVE ADDRESS)

--- - -~+10WORDS

Figure 5-14. Indirect B-Relative Plus Displacement Addressing

ASSEMBLY LANGUAGE INSTRUCTIONS 5-18 AU43

B-Relative Push Addressing
This form of B-relative addressing causes the contents of the· specified address

register to be decremented by one before the effective address is formed. The new
address in the register is the effective address of the location or data to be used in the
operation.

In the following example, $R5 contains the value 30FF, $B5 contains the address
4011, and memory location 4010 contains the value 0001.

Example:

ADD $R5,-$B5

In this example, the contents of location derived by subtracting one from the address
contai..ned in $B5 are added to the contents of $ R5, and the result (3100) is stored in
$R5. The next time $B5 is used, it will contain the address 4010.

Figure 5-15 illustrates how the sample instruction described above is stored in
memory and how it derives the effective address of the data to be used in the
operation.

I

MEMORY

ASSEMBLED INSTRUCTIONS
(ADD $R5,-$B5)

B5

BEFORE:

AFTER:

LOCATION 4010
(EFFECTIVE ADDRESS)

Figure 5-15. B-Relative Push Addressing

B-Relative Pop Addressing
This form of B-relative addressing causes the contents of the specified address

register to be incremented by one after the effective address is formed.
In the following example, $R3 contains the value 222A, $B2 contains the address

AOOO, and location AOOO contains the value 0005.

Example:

ADD $R3,+$B2

In this example, the contents of location AOOO are added to the contents of $R3, and
the result (222F) is stored in $R3.

The address stored in $B2 is then incremented by one. The next time $B2 is used in an
instruction, it will contain the address AOO 1 .

ASSEMBLY LANGUAGE INSTRUCTIONS 5-19 AU43

Figure 5-16 shows how the instruction above is stored in memory and how it
derives an effective address.

MEMORY

ASSEMBLED INSTRUCTION
(ADD $R3,+$B2)

B2

BEFORE:

AFTER:

LOCATION AOOO
(EFFECTIVE ADDRESS)

Figure 5-16. B-Relative Pop Addressing

Indexed B-Relative Push Addressing
This form of B-relative addressing decrements the contents of the specified index

register by I, then computes the effective address of the data or address to be used in
the operation as described under "Indexed Direct B-Relative Addressing," above.

In the following example, $RI contains the value 0003, $R2 contains the value
20FO, $B3 contains the address 20AO, and memory location 20A2 contains the value
DFOF.

Example:

ADD $R2,$B3.-$RI

In this example, the effective address of the data to be used in the operation is derived
by subtracting 1 from the contents of the index register, then adding the revised
contents to the address contained in $B3. Then, the contents of the effective address
are added to the contents of $R2 (i.e., 20FO + DFOF), and the result (FFFF) is stored
in $R2. The next time the index register $Rl is used, it will contain the value 0002.

When indexed B-relative push addressing is used, only address registers $B I, $B2, or
$B3 can be specified in the address expression. Figure 5-17 illustrates how the sample
instruction described above is stored in memory and how it derives the effective
address of the data to be used in the operation.

Indexed B-Relative Pop Addressing
This form of B-relative addressing computes the effective address of the location or

data to be used in the operation as described under "Indexed Direct B-Relative
Addressing," in this section. After computing the effective address, the contents of the
index register are incremented by 1.

In the following example of this form of B-relative addressing. $B3 contains the
address 1000, $R2 contains the value 20AO, $R6 contains the value 2FFF, and
location 30AO contains the value 0001.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-20 AU43

MEMORY

Example:

ASSEMBLED INSTRUCTION
(ADD $R2,$B3.-$R1)

I R1 L ..

LOCATION 20A2
LOCATION 20AO (EFFECTIVE ADDRESS) --- ---" LlJ DFOF I (

+ 2 WORDS

A
I

I

BEFOR-El OJ 1

AFTER, I 00021- - - - - - - - - J \
Figure 5-17 . Indexed B-Relative Push Addressing

ADD $R6,$B3,+$R2

In this example, the effective address of the data to be added to the contents of $R6 is
derived by adding the contents of the index register to the contents of $B3. The value
found at that location (30AO) is then added to the contents of $R6, and the result
(3000) is stored in $R6.

After the effective address is formed, the contents of the index register are
incremented by 1. The next time the index register is used, it will contain the
value 20A1.

When using B-relative pop addressing, only address registers $Bl, $B2, or $B3 can
be specified in the address expression. However, when stored in memory, the
instruction will indicate $B5, $B6, or $B7, respectively, although the contents of the
specified register are always used in the computation of the effective address.

Figure 5-18 illustrates how the sample instruction described above is stored in
memory and how it derives the effective address of the data to be used in the
operation.

MEMORY

ASSEMBLED INSTRUCTION
(ADD $R6,$B3.+$R2)

B3

LOCATION 1000
LOCATION 30AO
(EFFECTiVE ADDRESS)

CJ=1?
~--------- ~ .. ~~~--~~

I
I
L_

AFTER:

R2

+ 20AOWORDS

f
I

--------- __ 1

Figure 5-18. Indexed B-Relative Pop Addressing

ASSEMBLY LANGUAGE INSTRUCTIONS 5-21 AU43

Short Displacement Addressing
Short displacement addressing is available only for branch instructions. It is

specified as follows:

{

internal-lOCatiOn-eXpreSSion}

> {~} temporary-label

When this form of addressing is used, the referenced location must be within the
range -64 words to -1 word and +2 words to +63 words from the location of the
instruction specifying it (Le., it cannot reference itself or the Location following it).

The following example illustrates the use of short displacement addressing. In the
example, $R3 contains the value 3033 and $F is a temporary label at a location
preceding the instruction by 24 words.

Example:

BODO 3,>-$F

In this example, 3 is identified with $R3, and since its contents are an odd value,
control is transferred to the instruction located at the memory address identified by $F
(Le., $F preceding the instruction, illustrated in the example).

Figure 5-19 illustrates how the above example is stored in memory and how it
derives the effective address of the location to be branched to.

LABEL $F
ASSEMBLED INSTRUCTION
(BODD 3,>-$F)

-24
10

WORDS

Figure 5-19. Short Displacement Addressing

Specialized Address Expressions
The following address expression is available for specifying an embedded control

word in an I/O instruction. It can be used only in the second operand, and is specified
as follows:

>= {internal-value-expression}
ex ternal-value-Iabel

The following example illustrates the use of this address form. In the example, $B3
contains the address 2002, which is assumed to be the address of the output control
word, and it is to be output over channel 010. The value for sending the output control
word over channel 010 is 0405.

Example:

10 $B3,>=Z'0405'

In the example, the output control word is extracted from location 2002, as specified
by $ B3, and sent over the desired channel.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-22 AU43

Figure 5-20 illustrates how the example above is stored in memory and how it
derives the effective address of the data.

LOCATION 2002
(EFFECTIVE ADDRESS OF DATA)

MEMORY CONTROL WORD

83

Figure 5-20. Specialized Address Expressions

Interrupt Vector Addressing

Interrupt vector addressing provides a convenient method by which you can
examine the contents of the interrupt save area for the priority level at which your
program is currently executing. (Priority levels and interrupt save areas are described in
the Executive and Input/Output Manual.) Interrupt vector addressing is specified as
follows:

$IV. {internal-Value-expression}
external-value-label ,

In this form of addressing, $IV. points to the second word within the interrupt save
area, and the value provides a displacement from the second word to another word
within the interrupt save area. In the example below, the fifth word of the interrupt
save area is loaded into RI. (Note that to address "the second word of an interrupt save
area, you require a displacement of I, etc.)

Example:

LDR $Rl ,$IV,THREE
THREE EQU3

Figure 5-21 illustrates how the above example locates the desired memory word and
places it into Rl.

INTERRUPT
VECTORS

0080

008F

INSTRUCTION
LDR $R1,$IV.THREE

HARDWARE
DEDICATED
MEMORY

LEVEL 0

LEVEL 1

LEVEL 63

~

~

I'J

INTERRUPT
SAVE
AREA

WORD
0

1

2 M
r--

,~

Figure 5-21. htterrupt Vector Addressing

ASSEMBLY LANGUAGE INSTRUCTIONS 5-23

R1

J

AU43

ADD/ADV

ASSEMBL Y LANGUAGE INSTRUCTIONS

The remainder of this section lists (alphabetically) and describes the assembly
language instructions. The description of each instruction includes the name, type,
forma t, and explanation of operands.

When an operand specifies a symbolic name, constant, or expression (other than an
address expression), you can refer to Section 2 for a detailed description of those
elements. Address expressions are defmed in this section under "Addressing Tech
niques." Before using the following instructions you should fully understand the
assembly language elements described in Section 2 and in this section.

Although not shown in the source language format, all assembly language
instructions can be labeled.

ADD

Instruction:
Add Contents to R-register

Type:
DO

Source Language Format:

MDD~ {~~} address-expression

Description:
Adds the contents of the location or R-register identified in the address expression to
the contents of the R-register specified in the first operand. The result is saved in the
first operand R -register.

The address expression can take any of the forms described earlier in this section under
"Addressing Techniques," except for the following:

=$Bn} . t dd . =$ Sn regIs er a ressmg

Short displacement addressing
Specialized addressing

The contents of the I-register are affected as follows:

o If the result is more than 215 -1(32767) or less th8n _2 15 (-32768), the OV-bit is
set to I ; otherwise, it is set to O.

o If, during the summation, a carry occurs, the C-bit is set to I; otherwise, it is set
to O.

ADV

Instruction:
Add value to R-register

ASSEMBLY LANGUAGE INSTRUCTIONS 5-24 AU43

ADV / AND

Type:
SI

Source Language Format:

{ integer-constant }
} $Rn t _) string-constant

MDV ~ t ;'n' ~ ,[-]) internal-value-label
\ internal-value-expression

Description:
Adds the 8-bit value (with sign extended) specified in the second operand to the
contents of the R-register identified in the first operand. The result is saved in
R -register.

The contents of the I-register are affected as follows:

o If the result is more than 215 -1 (32767) or less than _2 15 (-32768), the OV-bit is
set to I; otherwise, it is set to O.

o If, during the summation, a carry occurs, tht C-bit is set to 1; otherwise, it is set
to O.

AND

Instruction:
AND contents with R-register

Type:
DO

Source Language Format:

MNDLl { ~~} ,address-expression

Description:
Logically AND's the contents of the R-register identified in the first operand with the
contents of the location or R-register specified in the address expression. The result is
saved in the fust operand R -register.

The address expression can take any of the forms described earlier in this section under
"Addressing Techniques," except for the following:

:~~~ } register addressing

Short displacement addressing
Specialized addressing

The following chart illustrates the result of logically ANDing bits:

First operand bit: 0 0 1 1

Second operand bit: 1 a 1 0

Result: a a 1 0

ASSEMBLY LANGUAGE INSTRUCTIONS 5-25 AU43

ANH/B

ANH

Instruction:

Logically AND half-word (byte) with R-register

Type:

DO

Source Language Format

MNI:It. {~~} address-expression

Description:
Logically AND's the contents of the R-register identified in the first operand with the
contents of the byte specified in the address expression.

Prior to the operation, the byte operand is internally expanded to word length by
extending the sign through the eight high-order bit positions. The byte selected to
participate in the operation is determined by the format of the address expression, as
follows:

o Register Addressing (=$Rn): The rightmost byte of the register is selected.
o Memory Addressing Without Indexing: Immediat~ Memory Addressing: The

leftmost byte of the word at the designated memory address is selected.
o Memory Addressing With Indexing: The memory address indicates a starting

point. The index register contains an arithmetic value to be added to the starting
point. The value specifies the number of bytes before or after the starting point
needed to reach the byte selected for the operation.

The address expression can take any of the forms described earlier in this section under
"Addressing Techniques," except for the following:

:~~~} register addressing

Short displacement addressing
Specialized addressing

The following chart illustrates the result of logically ANDing bits:

First operand bit: 0
o I' ,

Second operand bit: ,
o I '

0

Result: 0 o ! ' 0

B

Instruction:
Branch unconditionally

Type:
BI

ASSEMBLY LANGUAGE INSTRUCTIONS 5-26 AU43

B/BAG/BAGE

Source Language Format:

{

direct-IMA }
tili~ direct-P-relative-address.

short-displacement-address

Description:
Branches unconditionally to the location specified in the operand.

If the J-bit in the MI-register contains a binary I, the trace procedure is entered via
trap vector 2. Upon completion, the trace procedure automatically branches to the
address specified by the operand. In this case, or if the J-bit contains a binary 0, the
instruction sequence starting at the location specified by the operand is executed.

BAG

Instruction
Branch if algebraically greater than

Type:
BI

Source Language Format:

{

direct -IMA }
~BAG~ direct-P-relative-address

short -displacemen t -address

Description:
Branches to the location specified in the operand if the result of the most recent
comparison indicates that the contents of the R-register were algebraically greater than
the contents of the memory location specified in the compare instruction.

Action if Branch Occurs:
If the J-bit in the Ml-register contains binary I, the trace procedure is entered via trap
vector 2. Upon completion, the trace procedure automatically branches to the address
specified by the operand. In this case, or if the J-bit contains a binary 0, the instruction
sequence starting at the location specified by the operand is executed.

BAGE

Instruction:
Branch if algebraically greater than or equal to

Type:
BI

ASSEMBLY LANGUAGE INSTRUCTIONS 5-27 AU43

BAGE/BAL

Source Language Format:

{

direct-IMA }
llBAGEll direct-P-relative-address

short-displacement-address

Description:
Branches to the location specified in the operand if the result of the most recent
comparison indicates that the contents of the R-register were either algebraically
greater than or equal to the contents of the memory location specified in the compare
instruction.

Action if Branch Occurs:
If the J -bit in the M I-register contains binary I, the trace procedure is entered via trap
vector 2. Upon completion, the trace procedure automatically branches to the address
specified by the operand. In this case, or if the J-bit contains a binary 0, the instruction
sequence starting at the location specified by the operand is executed.

BAL

Instruction:
Branch if algebraically less than

Type:
BI

Source Language Format:

{

direct-IMA }
llBAU direct-P-relative-address

short -displacemen t -address

Description:
Branches to the location specified in the operand if the result of the most recent
comparison indicates that the contents of the R-register were algebraically less than the
contents of the memory location specified in the compare instruction.

Action if Branch Oeurs:
If the J-bit in the M I-register contains a binary I, the trace procedure is entered via
trap vector 2. Upon completion, the trace procedure automatically branches to the
address specified by the operand. In this case, or if the J-bit contains a binary 0, the
instruction sequence starting at the location specified by the operand is executed.

BALE

Instruction:
Branch if algebraically less than or equal to

Type:
BI

ASSEMBLY LANGUAGE INSTRUCTIONS 5-28 AU43

BALE / BBF / BBT

Source Language Format:

{

direct-IMA }
LillALED. direct -P-relative-address

short -displacemen t -address

Description:
Branches to the location specified in the operand if the result of the most recent
comparison indicates that the contents of the R-register were algebraically less than or
equal to the contents of the memory location specified in the compare instruction.

Action if Branch Occurs:
If the J-bit in the Ml-register contains a binary I, the trace procedure is entered via
trap vector 2. Upon completion, the trace procedure automatically branches to the
address specified by the operand. In this case, or if the J-bit contains a binary 0, the
instruction sequence starting at the location specified by the operand is executed.

BBF

Instruction:
Branch if bit-test indicator false

Type:
BI

Source Language Format:

{

direct-IMA '}
D.BBF D. direct -P-relative-address

short -displacemen t -address

Descnption:
Branches to the location specified in the operand if the B-bit in the I -register is set to 0.

Action if Branch Occurs:
If the J-bit in the Ml-register contains a binary I, the trace procedure is entered via
trap vector 2. Upon completion, the trace procedure automatically branches to the
address specified by the operand. In this case, or if the J-bit contains a binary 0, the
instruction sequence starting at the location specified by the operand is executed.

BUT

Instruction:
Branch if bit-test indicator true

Type:
BI

ASSEMBLY LANGUAGE INSTRUCTIONS 5-29 AU43

BBT / BCF / BCT

Source Language Format:

{

direct -IMA }
b.BBTb. direct-P-relative-address

short-displacement-address

Description:
Branches to the location specified in the operand if the B-bit in the I-register is set to 1.

Action if Branch Occurs:
If the J-bit in the MI-register contains a binary 1, the trace procedure is entered via
trap vector 2. Upon completion, the trace procedure automatically branches to the
address specified by the operand. In this case, or if the J-bit contains a binary 0, the
instruction sequence starting at the location specified by the operand is executed.

BCF

Instruction:
Branch if no carry

Type:
BI

So urce Language Format:

{

direct-IMA }
b.BCF b.i direct -P-relative-address

short -displacemen t -address

Branches to the location specified in the operand if the C-bit in the I-register is set to 0.

Action if Branch Occurs:
If the J-bit in the MI-register contains a binary 1, the trace procedure is entered via
trap vector 2. Upon completion, the trace procedure automatically branches to the
address specified by the operand. In this case, or if the J-bit contains a binary 0, the
instruction sequence starting at the location specified by the operand is executed.

BCT

Instruction:
Branch if carry

Type:
BI

Source Language Format:

{

direct-IMA }
b.BCTb. direct-P-relative-address

sh ort -displace men t -address

ASSEMBLY LANGUAGE INSTRUCTIONS 5-30 AU43

BCT / BDEC / BE

Description:
Branches to the location specified in the operand if the C-bit in the I-register is set to 1.

Action if Branch Occurs:
If the J-bit in the Ml-register contains a binary 1, the trace procedure is entered via
trap vector 2. Upon completion, the trace procedure automatically branches to the
address specified by the operand. In this case, or if the J-bit contains a binary 0, the
instruction sequence starting at the location specified by the operand is executed.

BDEC

Instruction:
Branch and decrement

Type:
BR

Source Language Format:

~ direct -P-relative-address
(direct -IMA }

(short-displacement-address

Description:
Subtracts 1 from the contents of the R-register identifi~d in the first operand; then,
branches to the location specified in the second operand if the contents of the
R-register are greater than or equal to 0.

Action if Branch Occurs:
If the J-bit in the Ml-register contains a binary 1, the trace procedure is entered via
trap vector 2. Upon completion, the trace procedure automatically branches to the
address specified by the operand. In this case, or if the J-bit contains a binary 0, the
instruction sequence starting at the location specified by the operand is executed.

BE

Instruction:
Branch if equal

Type:
BI

Source Language Format:

{

direct-IMA }
lillE~ direct-P-relative-address

short -displacemen t -address

Description:
Branches to the location specified in the operand if the result of the most recent
comparison sets both the G- and L-bits of the I -register to 0.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-31 AU43

BE / BEVN / BEZ

Action if Branch Occurs:
If the J -bi t in the M I-register contains a binary I, the trace procedure is entered via
trap vector 2. Upon completion, the trace procedure automatically branches to the
address specified by the operand. In this case, or if the J-bit contains a binary 0, the
instruction sequence starting at the location specified by the operand is executed.

BEVN

Instruction:
Branch if R-register even

Type:
BR

Source Language Format:

till EVN6

Description:

{

$Rn l
;'n' .f {

direct-IMA }
, direct-P-relative-address

short -displacemen t -address

Branches to the location specified in the second operand if the R-register identified in
the first operand contains an even value.

Action if Branch Occurs:
If the J -bit in the M I-register contains a binary I, the trace procedure is entered via
trap vector 2. Upon completion, the trace procedure automatically branches to the
address specified by the operand. In this case, or if the J-bit contains a binary 0, the
instruction sequence starting at the location specified by the operand is executed.

BEZ

Instruction:
Branch if R -register equal to 0

Type:
BR

Source Language Format:

tillEZ6
{

$Rn} ;:'n'
Description:

{

direct -IMA }
, direct -P-relative-address

short -displacemen t -address

Branches to the location specified in the second operand if the R-register identified in
the first operand contains O.

Action if Branch Occurs:
If the J -bit in the M I-register contains a binary I, the trace procedure is entered via
trap vector 2. Upon completion, the trace procedure automatically branches to the
address specified by the operand. In this case, or if the J-bit contains a binary 0, the
instruction sequence starting at the location specified by the operand is executed.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-32 AU43

BG / BGE / BGEZ

BG

Instruction:
Branch if greater than

Type:
BI

Source Language Format:

{
direct-IMA }

~BG~ direct-P-relative-address
short -displacemen t -address

Description:
Branches to the location specified in the operand if the result of the most recent
comparison sets the G bit of the I -register to I.
Action if Branch Occurs:
If the J -bit in the M I-register contains a binary I, the trace procedure is entered via
trap vector 2. Upon completion, the trace procedure automatically branches to the
address specified by the operand. In this case, or if the J-bit contains a binary 0, the
instruction sequence starting at the location specified by the operand is executed.

BGE

Instruction:
Branch if greater than or equal to

Type:
BI

Source Language Format:

{

direct-IMA }
~BGE~ direct-P-relative-address

short-displacement-address

Description:
Branches to the location specified in the operand if the result of the most recent
comparison sets the L-bit of the I -register to 0.

Action if Branch Occurs:
If the J-bit in the MI-register contains a binary I, the trace procedure is entered via
trap vector 2. Upon completion, the trace procedure automatically branches to the
address specified by the operand. In this case, or if the J-bit contains a binary 0, the
instruction sequence starting at the location specified by the operand is executed.

BGEZ

Instruction:
Branch if R-register greater than or equal to °

ASSEMBLY LANGUAGE INSTRUCTIONS 5-33 AU43

BGEZ I BGZ I BINC

Type:
BR

Source Language Format:

{
$Rn}

llBGEZll ~'n'

Description:

{

direct-IMA }
,i direct-P-relative-address

short -displacemen t -address

Branches to the location specified in the second operand if the R- register identified in
the first operand contains a positive value or 0.

Action if Branch Occurs:
If the J -bit in the M I-register contains a binary I, the trace procedure is entered via
trap vector 2. Upon completion, the trace procedure automatically branches to the
address specified by the operand. In this case, or if the J-bit contains a binary 0, the
instruction sequence sta,rting at the location specified by the operand is executed.

BGZ

Instruction:
Branch if R-register greater than °
Type:
BR

Source Language Format:

llBGZll {
$Rn} ;'n'

Description:

{

direct-IMA }
, direct-P-relative-address

short -displacemen t -address

Branches to the location specified in the second operand if the R-register identified in
the first operand contains a positive value.

Action if Branch Occurs:
If the J-bit in the MI-register contains a binary I, the trace procedure is entered via
trap vector 2. Upon completion, the trace procedure automatically branches to the
address specified by the operand. In this case, or if the J-bit contains a binary 0, the
instruction sequence starting at the location specified by the operand is executed.

BINC

Instruction:
Branch and increment

Type:
BR

Source Language Format:

ASSEMBLY LANGUAGE INSTRUCTIONS 5-34 AU43

BINC / BIOF / BlOT

{
$Rn} {direct-IMA }

b.BINC~ X'n' ,direct-P-relative-address
n short -displacemen t -address

Description:
Adds 1 to the contents of the R-register identified in the first operand; then, branches
to the location specifiea in the second operand if the contents of the R-register is
not O.

Action if Branch Occurs:
If the J-bit in the Ml-register contains a binary 1, the trace procedure is entered via
trap vector 2. Upon completion, the trace procedure automatically branches to the
address specified by the operand. In this case, or if the J -bit contains a binary 0, the
instruction sequence starting at the location specified by the operand is executed.

BIOF

Instruction:
Branch if I/O indicator false

Type:
BI

Source Language Format:

{

direct-IMA }
~BIOF~ direct-P-relative-address

short-displacement-address

Description:
Branches to the location specified in the operand if the I-bit in the I-register is set to O.

Action if Branch Occurs:
If the J-bit in the MI-register contains a binary I, the trace procedure is entered via
trap vector 2. Upon completion, the trace procedure automatically branches to the
address specified by the operand. In this case, or if the J-bit contains a binary 0, the
instruction sequence starting at the location specified by the operand is executed.

BlOT

Instruction:
Branch if I/O indicator true

Type:
BI

Source Language Format:

{

direct-IMA }
~BIOT~ direct-P-relative-address

short-displacement-address

Description:
Branches to the location specified in the operand if the I-bit in the I-register is set to 1.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-35 AU43

BlOT / BL / BLE

Action if Branch Occurs:
If the J -bit in the M I-register contains a binary I, the trace procedure is entered via
trap vector 2. Upon completion, the trace procedure automatically branches to the
address specified by the operand. In this case, or if the J-bit contains a binary 0, the
instruction sequence starting at the location specified by the operand is executed.

BL

Instruction:
Branch if less than

Type:
BI

Source Language Format:

{

direct-IMA }
6BU direct-P-relative-address

short -displacemen t -address

Description:
Branches to the location specified in the operand if the result of the most recent
comparison sets the L-bit of the I -register to I.

Action if Branch Occurs:
If the J-bit in the M I-register contains a binary I, the trace procedure is entered via
trap vector 2. Upon completion, the trace procedure automatically branches to the
address specified by the operand. In this case, or if the J-bit contains a binary 0, the
instruction sequence starting at the location specified by the operand is executed.

BLE

Instruction:
Branch if less than or equal to

Type:
BI

Source Language Format:

{

direct-IMA }
6BLE6 direct-P-relative-address

short -displace men t -address

Description:
Branches to the location specified in the operand if the result of the most recent
comparison sets the G-bit of the I-register to 0.

Action if Branch Occurs:
If the J-bit in the Ml-register contains a binary I, the trace procedure is entered via
trap vector 2. Upon completion, the trace procedure automatically branches to the
address specified by the operand. In this case, or if the J.·bit contains a binary 0, the
instruction sequence starting at the location specified by the operand is executed.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-36 AU43

BLEZ / BLZ / BNE

BLEZ

Instruction:
Branch if R-register equal to or less than 0

Type:
BR

Source Language Format:

{
$Rn} {direct-IMA }

.6.BLEZ~ X'n', direct-P-relative-address
n short -displacemen t -address

Description:
Branches to the location specified in the second operand if the R-register identified in
the first operand contains a negative value or o.

Action if Branch Occurs:
If the J-bit in the Ml-register contains a binary I, the trace procedure is entered via
trap vector 2. Upon completion, the trace procedure automatically branches to the
address specified by the operand. In this case, or if the J -bit contains a binary 0, the
instruction sequence starting at the location specified by the operand is executed.

BLZ

Instruction:
Branch if R -register less than 0

Type:
BR

Source Language Format:

{
$Rn} {direct-IMA }

~BLZ~ X'n', direct-P-relative-address
n short-displacement-address

Description:
Branches to the location specified in the second operand if the R-register identified in
the first operand contains a negative value.

Action if Branch Occurs:
If the J-bit in the Ml-register contains a binary I, the trace procedure is entered via
trap vector 2. Upon completion, the trace procedure automatically branches to the
address specified by the operand. In this case, or if the J-bit contains a binary 0, the
instruction sequence starting at the location specified by the operand is executed.

BNE

Instruction:
Branch if not equal

ASSEMBLY LANGUAGE INSTRUCTIONS 5-37 AU43

BNE / BNEZ / BNOV

Type:
BI

Source Language Format:

{

direct-IMA }
llBNEll dire ct-P-relative-ad dress

short -displacemen t -address

Description:
Branches to the location specified in the operand if the result of the most recent
comparison sets either (but not both) the G-bit or the L-bit of the I-register to 1.

Action if Branch Occurs:
If the J-bit in the MI-register contains a binary 1, the trace procedure is entered via
trap vector 2. Upon completion, the trace procedure automatically branches to the
address specified by the operand. In this case, or if the J-bit contains a binary 0, the
instruction sequence starting at the location specified by the operand is executed.

BNEZ

Instruction:
Branch if R-register not equal to 0

Type:
BR

Source Language Format:

{
$Rn} {direct-IMA }

llBNEZll X'n' ,direct-P-relative-address
n short -displacemen t -address

Description:
Branches to the location specified in the second operand if the R-register identified in
the first operand contains a value other than o.

Action if Branch Occurs:
If the J -bit in the M I-register contains a binary 1, the trace procedure is entered via
trap vector 2. Upon completion, the trace procedure automatically branches to the
address specified by the operand. In this case, or if the J-bit contains a binary 0, the
instruction sequence starting at the location specified by the operand is executed.

BNOV

Instruction:
Branch if no R-register overflow

Type:
BI

Source Language Format:

ASSEMBLY LANGUAGE INSTRUCTIONS 5-38 AU43

BNOV/BODD/BOV

{

direct-IMA }
llBNOV II direct-P-relative-address

short -displacement-address

Description:
Branches to the location specified in the operand if the OV-bit in the I-register is set
to 0.

Action if Branch Occurs:
If the J -bit in the M I-register contains a binary I, the trace procedure is entered via
trap vector 2. Upon completion, the trace procedure automatically branches to the
address specified by the operand. In this case, or if the J-bit contains a binary 0, the
instruction sequence starting at the location specified by the operand is executed.

BODD

Instruction:
Branch if R -register odd

Type:
BR

Source Language Format:

{
$Rn} {direct-IMA }

llBODDll X'n' ,direct-P-relative-address
n short-displacement-address

Description:
Branches to the location specified in the second operand if the R-register identified in
the first operand contains an odd value.

Action if Branch Occurs:
If the J -bit in the M I-register contains a binary I, the trace procedure is entered via
trap vector 2. Upon completion, the trace procedure automatically branches to the
address specified by the operand. In this case, or if the J-bit contains a binary 0, the
instruction sequence starting at the location specified by the operand is executed.

BOV

Instruction:
Branch if R-register overflow

Type:
BI

Source Language Format:

{

direct -IMA }
llBOV II direct-P-relative-address

short-displacement-address

ASSEMBLY LANGUAGE INSTRUCTIONS 5-39 AU43

BOV / BRK / BSE

Description:
Branches to the location specified in the operand if the OV-bit in the I-register is set
to 1.

Action if Branch Occurs:
If the J-bit in the M I-register contains a binary I, the trace procedure is entered via
trap vector 2. Upon completion, the trace procedure automatically branches to the
address specified by the operand. In this case, or if the J-bit contains a binary 0, the
instruction sequence starting at the location specified by the operand is executed.

BRK

Instruction:
Break trap

Type:
GE

Source Language Format:
~BRK~

Description:
Enters the trace procedure by a trap to trap vector 2; this instruction is used for
debugging.

BSE

Instruction:
Branch if signs equal

Type:
BI

Source Language Format:

{

direct-IMA }
~SE~ direct -P-relative-address

short -displacement-address

Description:
Branches to the location specified in the operand if the result of the most recent
comparison indicates that the sign of the value in the R-register was equal to the sign of
the value in the memory location in the most recent compare instruction (i.e., the
U-bit in the I-register is set to 0.)

Action if Branch Occurs:
If the J-bit in the Ml-register contains a binary 1, the trace procedure is entered via
trap vector 2. Upon completion, the trace procedure automatically branches to the
address specified by the operand. In this case, or if the J-bit contains a binary 0, the
instruction sequence starting at the location specified by the operand is executed.

ASSEMBLY LANGUAGE INSTRUCTIONS 540 AU43

BSU / CAD

BSU

Instruction:
Branch if signs unlike

Type:
BI

Source Language Format:

{

direct-IMA }
LillSU,6 direct-P-relative-address

short-displacement-address

Description:
Branches to the location specified in the operand if the result of the most recent
comparison indicates that the sign of the value in the R-register was unequal to the sign
of the value in the memory location or R-register in the most recent compare
instruction (i.e., the U-bit in the I-register is set to 1.)

Action if Branch Occurs:
If the J -bit in the M I-register contains a binary 1, the trace procedure is entered via
trap vector 2. Upon completion, the trace procedure automatically branches to the
address specified by the operand. In this case, or if the J-bit contains a binary 0, the
instruction sequence starting at the location specified by the operand is executed.

CAD

Instruction:
Add carry bit to contents

Type:
SO

Source Language Format:
6CAD6address-expression

Description:
Adds the contents of the C-bit in the I-register to the contents of the.1ocation specified
in the address expression.

The address expression can take any of the forms described earlier in this section under
"Addressing Techniques," except for the following:

:~~~ } register addressing

Short displacement addressing
Specialized addressing

The contents of the I-register are affected as follows:

o If a carry occurs during the operation, the C-bit is set to 1; otherwise, it is set
to O.

o If the result is more than 16 bits long, the OV -bit is set to 1; otherwise, it is set
to O.

ASSEMBLY LANGUAGE INSTRUCTIONS 541 AU43

CL / CLH

CL

Instruction:
Clear

Type:
SO

Source Language Format:
~CL~address-expression

Description:
Stores zeros in the location or R-register specified in the address expression.

The address expression can take any of the forms described earlier in this section under
"Addressing Techniques," except for the following:

=$Bn} d· =$Sn register a dressmg

Short displacement addressing
Specialized addressing

CLH

Instruction:
Clear half-word

Type:
SO

Source Language Format:
~CLH~address-expression

Description:
Stores O's in the half-word (byte) location specified in the address expression.

o If the address expression specifies =Rn, O's are stored in the rightmost byte of
the register.

o If the operand specifies immediate memory addressing without indexing, or an
immediate operand format O's are stored in the leftmost byte of the word found
at the specified location.

o If the operand specifies immediate memory addressing with indexing, the index
register is aligned to count bytes relative to the leftmost byte of the word
specified. O's are stored in the byte thus addressed.

The address expression can take any of the forms described earlier in this section under
"Addressing Techniques," except for the following:

=$Bn register addressing
Short displacement addressing
Specialized addressing

ASSEMBLY LANGUAGE INSTRUCTIONS 542 AU43

CMB/CMH

CMB

Instruction:
Compare con tents to B-register

Type:
DO

Source Language Format:

l>CMBl> { ~~:} ,address-expression

Description:
Compares the contents of the B-register identified in the first operand to the contents
of the location or B-register specified in the address expression.

The address expression can take any of the forms described earlier in this section under
"Addressing Techniques," except for the following:

=$Rn} ... dd . =$ Sn regIs Ler a ressing

Short displacement addressing
Specialized addressing

The contents of the I-register are affected as follows:

o If the contents of the B-register are greater than the contents of the location, the
G-bit is set to I; otherwise, it is set to O.

o If the contents of the B-register are less than the contents of the location, the
L-bit is set to I; otherwise, it is set to O.

o The setting of the U-bit is undefined.

CMH

Instruction:
Compare half-word (byte) to R-register

Type:
DO

Source Language Format:

l>CMHl'. { ~~:. } ,address-expression

Description:
Compares the contents of the R-register identified in the first operand to the contents
of the byte specified in the address expression.

ASSEMBLY LANGUAGE INSTRUCTIONS 543 AU43

CMH/CMN

Prior to the operation, the byte operand is internally expanded to word length by
extending the sign through the eight high-order bit positions. The byte selected to
participate in the operation is determined by the format of the address expression, as
follows:

o Register Addressing (=$Rn): The rightmost byte of the register is selected.
o Memory Addressing Without Indexing: Immediate Memory Addressing: The

leftmost byte of the word at the designated memory address is selected.
o Memory Addressing With Indexing: The memory address indicates a starting

point. The index register contains an arithmetic value to be added to the starting
point. The value specifies the number of bytes before or after the starting point
needed to reach the byte selected for the operation.

The address expression can take any of the forms described earlier in this section under
"Addressing Techniques," except for the following:

:~ ~~} register addressing

Short displacement addressing
Specialized addressing

The contents of the I-register are affected as follows:

o If the contents of the R-register are greater than the contents of the created
temporary word, the G-bit is set to I; otherwise, it is set to O.

o If the contents of the R -register are less than the contents of the created
temporary word, the L-bit is set to I; otherwise, it is set to O.

o If the contents of the R-register and the contents of the created temporary word
do not have like signs, the U-bit is set to I; otherwise, it is set to O.

CMN

Instruction:
Compare address to null

Type:
SO

Source Language Format:
.6.CMN.6.address-expression

Description:
Compares the contents of the location or B-register specified by the address expression
to a null address (the address 0).

The contents of the I-register are affected as follows:

o The G-bit is set to 0 if the contents of the specified location or register are equal
to null; otherwise, it is set to 1.

o The L-bit is set to O.
o The U-bit is affected, but its value is undefined.

ASSEMBLY LANGUAGE INSTRUCTIONS 544 AU43

CMN/CMR/CMV

The address expression can take any of the forms described earlier in this section under
"Addressing Techniques," except for the following:

:~~: } register addressing

Short displacement addressing
Specialized addressing

CMR

Instruction:
Compare contents to R-register

Type:
DO

Source Language Format:

t.CMM {~~ } ,address-expression

Description:
Compares the contents of the R-register identified in the first operand to the contents
of the location or R-register specified in the address expression.

The address expression can take any of the forms described earlier in this section under
"Addressing Techniques," except for the following:

=$Bn} . dd . =$ Sn regIster a ressing

Short displacement addressing
Specialized addressing

The contents of the I-register are affected as follows:

o If the contents of the R-register are greater than the contents of the location, the
G-bit is set to l; otherwise, it is set to O.

o If the contents of the R-register are less than the contents of the location, .the
L-bit is set to l; otherwise, it is set to O.

o If the content of bit 0 of the R-register is not equal to the content of bit 0 of the
location, the U-bit is set to l; otherwise, it is set to O.

CMV

Instruction:
Compare value to R-register

Type:
SI

Source Language Format:

ASSEMBLY LANGUAGE INSTRUCTIONS 545 AU43

CMV/CMZ

!
integer-constant I

$Rn string-constant
6CMV6 {x'n' } ,[=] ~nteger-value-Iabel .

n Integer-value-expreSSIon
fixed -poin t -constant

Description:
Compares the 8-bit value (with sign extended) specified in the second operand to the
contents of the R-register identified in the first operand.

Except for the string constant form all values are assumed to be numeric.

The contents of the I-register are affected as follows:

o If the contents of the R-register are greater than the value (with sign extended),
the G-bit is set to I; otherwise, it is set to O.

o If the contents of the R-register are less than the value (with sign extended), the
L-bit is set to I ; otherwise, it is set to O.

o If the sign of the R-register and the sign of the value are not equal, the U-bit is
set to I; otherwise, it is set to O.

CMZ

Instruction:
Compare to 0

Type:
SO

Source Language Fonnat:
6CMZ6address-expression

Description:
Compares the contents of the location or R-register specified in the address expression
to O.

The address expression can take any of the forms described earlier in this section under
"Addressing Techniques," except for the following:

:~~~} register addressing

Short displacement addressing
Specialized addressing

The $Bn.$RI, $Bn.$R2, or $Bn.$R3 form of addressing can be used by this instruction
to cause a trap for the purpose of sizing main memory provided the generated effective
address is less than or equal to 64K.

The contents of the I-register are affected as follows:

o If the contents of the specified location do not equal 0, the G-bit is set to 1;
otherwise, it is set to O.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-46 AU43

CMZ / CPL / DAL

o The L-bit is set to O.
o If the first bit of the specified 19cation equals I, the U-bit is set to I; otherwise,

it is set to O.

CPL

Instruction:
Complement

Type:
SO

Source Language Format:
.6CPL.6address-expression

Description:
One's complements the contents of the location or R-register specified in the address
expression.

The address expression can take any of the forms described earlier in this section under
"Addressing Techniques," except for the following:

=$Bn}. dd . =$ Sn regIster a ressmg

Short displacement addressing
Specialized addressing

DAL

Instruction:
Double-shift arithmetic-left

Type:
SHL

Source Language Format:

$R{ n
®AIh X' U}'

Description:

,intemal-value-expression

Left shifts the contents of the even-odd R-register pair (i.e., R2 and R3, R4 and RS,
R6 and R7) identified in the first operand the number of bit positions specified by the
internal value expression in the second operand. The bit positions vacated by the shift
are filled with binary O's.

ASSEMBLY LANGUAGE INSTRUCTIONS 547 AU43

DAL / DAR / DCL

The internal value expression must be ~ 0 and ~ 31.
If the internal value expression equals 0, the contents are shifted left the number of bit
positions derived by using the value in bits 11 through 15 of general register R 1.

The contents of the I-register are affected as follows:

o If the contents of bit 0 in the even-numbered R-register changes, the OV-bit is
set to 1; otherwise, it is set to O.

DAR

Instruction:
Double-shift arithmetic-right

Type:
SHS

Source Language Format:

lillAM X' {~}, ,intemal-value-expression

In
Description:
Shifts the contents of the even-odd R-register pair (i.e., R2 and R3, R4 and R5, R6 and
R7) identified in the first operand right the number of bit positions specified by the
internal value expression in the second operand. The bit positions vacated by the shift
are filled with the sign value originally contained in bit O.

The internal value expression must be ~ 0 and ~ 31.
The contents of the I-register are affected as follows:

o C-bit contains the last binary digit shifted out of the odd-numbered R-register.

DCL

Instruction:
Double-shift closed-left

Type:
SHS

ASSEMBLY LANGUAGE INSTRUCTIONS 5-48 AU43

DCL/DCR

Source Language Format:

$RU}

~U x' {~}, ,intemal-value-expression

U}
Description:
Shifts the contents of the even-odd R-register pair (i.e., R2 and R3, R4 and R5, R6 and
R7) identified in the first operand left the number of bit positions specified by the
internal value expression in the second operand. The bits shifted out of the
even-numbered R-register are placed in the bit positions of the odd-numbered
R-register vacated as the bits are shifting left.

The internal value expression must be ~ 0 and ~ 15.
If the internal value expression equals 0, the contents are shifted left the number
derived by using the value in bits 11 through 15 of general register Rl.

DCR

Instruction:
Double-shift closed-right

Type
SHS

Source Language Format:

{ $RU}
lillCM X' {~}, ,intemal-value-expression

{n
Description:
Shifts the contents of the even-odd R-register pair (i.e., R2 and R3 R4 and R5, R6 and
R7) identified in the first operand right the number of bit positions specified by the
internal value expression in the second operand. The bits shifted out of the
odd-numbered R-register are placed in the bit positions of the even-numbered
R-register vacated as the bits are shifting right.

ASSEMBLY LANGUAGE INSTRUCTIONS 549 AU43

DCR / DEC / DIV

The internal value expression must be ~ 0 and ~ 15.
If the internal value expression equals 0, the contents are shifted right the number
derived by using the value in bits 11 through 15 of general register Rl.

DEC

Instruction:
Decrement

Type:
SO

Source Language Format:
~DEC~address-expression

Description:
Decrements by 1 the contents of the location or R-register specified in the address
expression, then copies bit 0 of the addressed word or register into I(B).

This instruction operates in read modify write (RMW) mode, which prevents any other
processor in a multiprocessor environment from accessing the location being modified
until the modification is completed.

The address expression can take any of the forms described earlier in this section under
"Addressing Techniques," except for the following:

:~~~} register addressing

Short displacement addressing
Specialized addressing

The contents of the I-register are affected as follows:

o If the decrementation causes a carry to occur, the C-bit is set to 1; otherwise, it
is set to O.

o If the value being decremented was - 32768 (_2 15), I(OY) is set to 1; otherwise, I
(OY) is cleared to O.

o I (B) is set as described above.

DIV

Instruction:
Divide R-register by contents of location

Type:
DO

Source Language Format

{
$Rn t

~DIV ~ ;'n' j ,address-expression

ASSEMBLY LANGUAGE INSTRUCTIONS 5-50 AU43

DIV / DOL

Description:
Divides the contents of the R-register identified in the first operand by the contents of
the location or R-register specified in the address expression. The result is saved in the
first operand R-register (except for the remainder, which is ignored).

If R7 is identified as the first operand R-register, the double integer operand contained
in R6 and R 7 is divided by the single integer operand identified by the address
expression. The result is saved in R7 and the remainder is saved in R6.

The address expression can take any of the forms described earlier in this section under
"Addressing Techniques," except for the following:

=$ Bn register addressing
=$Sn
Short displacement addressing
Specialized addressing

The contents of the I-register are affected as follows:

1. I(OV) is set to 1 if
a. The divisor = 0
b. The quotient is greater than 215 -1 (32767) or less than _21 5 (-32768)
Otherwise I(OY) is cleared to O.

Divide operations that cause I(OY) to be set terminate with all operands
unchanged.

2. I(C) is set to 1 if the remainder is not 0, or cleared to 0 if the remainder is O.
I(C) is unchanged when the first operand is $R7. If the divisor = 0 or if the
dividend is _21 5 times the divisor, I(C) is undefined.

DOL

Instruction:
Double-shift open-left

Type:
SHL

Source Language Format:

$R{n
LillOU X' {~}. ,internal-value-expression

{H
Description:
Shifts the contents of the even-odd R-register pair (i.e., R2 and R3, R4 and RS, R6 and
R 7) identified in the first operand left the number of bit positions specified by the
internal value expression in the operand. The bit positions vacated by the shift are
filled with binary O's.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-51 AU43

DOLjDORjENT

The internal value expression must be ~ 0 and ~ 31 .
If the internal value expression equals 0, the contents are shifted left the number
derived by using the value in bits 11 through 15 of general register Rl.

The contents of the I.-register are affected as follows:

o C-bit contains the last binary digit shifted out of the even-numbered R-register.

DOR

Instruction
Double-Shift open-right

Type:
SHL

Source Language Format:

$R{H
tJ)OM X' {~}, ,internal-value-expression

H}
Description:
Shifts the contents of the even-odd R-register pair (i.e,. R2 and R3, R4 and R5, R6 and
R 7) identified in the first operand right the number of bit positions specified by the
internal value expression in the operand. The bit positions vacated by the shift are
filled with binary O's.

The internal value expression must be ~ 0 and ~ 31.
If the internal value expression equals 0, the contents are shifted right the number
derived by using the value in bits 11 through 15 of general register RI.

The contents of the I-register are affected as follows:

o C-bit contains the last binary digit shifted out of the odd-numbered R-register.

ENT

Instruction:
Enter

Type:
SO

ASSEMBLY LANGUAGE INSTRUCTIONS 5-52 AU43

ENT / HLT / INC

Source Language Format:

~ENT~ l{immed~ate-memo~-addreSS}
B-rela ttve-addressmg

Description:
Jumps to the memory location specified by the operand; also, sets the P-bit in the
S-register to 0 (i.e., sets the bit to indicate slave mode).

If the J-bit in the Ml-register contains a binary 1, the trace procedure is entered via
trap vector 2. Upon completion, or if the J-bit contains a binary 0, execution
commences at the specified location.

HLT

Ipstruction:
Halt

Type:
GE

Source Language Format:
L1HLT~

Description:
Stops program execution. HLT state is indicated on the control panel. All interrupts
will be honored.

The P-bit in the S-register must be set to 1 (i.e., the central processor must be in the
privileged state) for this instruction to be executed. If not, the unprivileged use of a
privileged operation is signified by a trap to trap vector 13.

INC

Instruction:
Increment

Type:
SO

Source Language Format:
L}INC~address-expression

Description:
Copies bit 0 of the contents of the location or R-register specified in the address
expression into I(B), then increments by 1 the contents of the location or register.

This instruction operates in read modify write (RMW) mode, which prevents any other
processor in a multiprocessor environment from accessing the location being modified
until the modification is completed.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-53 AU43

INC / 10

The address expression can take any of the forms described earlier in this section under
"Addressing Techniques," except for the following:

=$Bn} . dd . =$Sn regIster a ressIng

Short displacement addressing
Specialized addressing

The contents of the I-register are affected as follows:

10

o If the incrementation causes a carry to occur, the C-bit is set to I; otherwise, it is
set to O.

o If the value being incremented was 32767, I(OV} is set to I; otherwise, it is
cleared to O.

Instruction:
Input/Output (word)

Type:
10

Source Language Format:
~IO&ddress-expression,address-expression

Description:
l. If the function code (F) is odd (indicating output): sends the command word

(CH,F) specified by the second operand and the word specified by the first
operand to the addressed 10 channel.

2. If the function code (F) is even (indicating input): sends the command word
(CH,F) specified by the second operand to the addressed channel. If the channel
accepts the command, receives a word response from the channel and stores it in
the word location or R-register specified by the first operand. If the channel
does not accept the command, the contents of the location or register remain
unchanged.

In both cases above, if the 10 channel accepts the command, the I-bit in the indicator
register is set to binary I.

For the first operand, the address expression can take any of the forms described
earlier in this section under "Addressing Techniques," except for the following:

:~~~ } register addressing

Short displacement addressing
Specialized addressing

For the second operand, the address expression can take any of the forms described
earlier in this section under "Addressing Techniques," except for the following:

=$Bn} register addressing
=$Sn
Short displacement addressing

ASSEMBLY LANGUAGE INSTRUCTIONS 5-54 AU43

The channel number and function code are contained in the R-register or memory
word specified by the second operand. The channel number and function code occupy
16 bits formatted as follows:

Bit: 0 910 15

CH F

CH is the channel number and F is the function code. The channel number is odd for
output (memory-to-device) transfer and even for input (device-to-memory) transfer.
The function code is controller-specific, subject to these constraints:

1. If F is odd, data (specified by the first operand) is transferred from the CPU to
the controller.

2. If F is even, data is transferred from the controller to the CPU, which stores the
data in the R-register or memory word specified by the first operand.

The following shows how the required channel number and function code are used.
Assume that the status of a read operation on channel 201 6is to be stored into the
word labeled STATUS. Also assume that the controller uses the standard function code
1816 for "input status register." The 10 instruction to accomplish this could be coded
as shown below:

10 STATUS>=Z'08l8'

or it could be coded as:

10 STATUS>=X'20'*64+X'18'

For detailed information on the bus, refer to the Handbook.

The contents of the I-register are affected as follows:

o If the controller accepted the command, the I-bit is set to 1; otherwise, it is
cleared to O.

10H

Instruction:
Input/ output half-word

Type:
10

Source Language Format:
.6.10 H.6.address-expression ,address-expression

Description:
This instruction is identical to the 10 instruction, except that the first operand
specifies a half-word as follows:

ASSEMBLY LANGUAGE INSTRUCTIONS 5-55

10/IOH

AU43

IOH / IOLD

o If it specifies =$R, the rightmost byte of the specified R-register is sent (i.e.,
function code is odd) to the bus.

o If it specifies memory addressing without indexing, or an immediate operand
addressing format, the leftmost byte of the word found at the specified location
is sent (i.e:, function code is odd) to the bus.

o If it specifies memory addressing with indexing, the index register is aligned to
count bytes relative to the leftmost byte of the word specified. The byte thus
addressed is sent (i.e., function code is odd) to the bus.

For each of the above cases, if the function code is even, the first operand specifies the
byte in which the response from the bus is to be stored.

See the description of the 10 instruction for details regarding the coding of the
operands.

IOLD

Instruction:
Input/output load

Type:
10

Source Language Format:
610 LD6address-expression ,address-expression ,address-expression

Description:
Sends the controller the effective address (specified by the first operand), the channel
number and function code (specified in the second operand), and the range (i.e.,
number of bytes to be transferred) value (specified in the third operand) over the
channel specified in the second operand to the bus. The address and range value are
used to load the controller address and range registers.

For the first operand, the address expression can take any of the forms described
earlier in this section under"Addressing Techniques" except for the following:

=$Bn}
=$Rn register addressing
=$Sn
Short displacement addressing
Specialized addressing
Immediate operand addressing

For the second operand, the address expression can take any of the forms described
earlier in this section under "Addressing Techniques," except for the following:

=$Bn}
=$Rn register addressing
=$Sn
Short displacement addressing
Specialized addressing
Immediate operand addressing

The second operand of this instruction must specify the function code 09 1 6.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-56 AU43

IOLD / JMP / LAB

For the third operand, the address expression can take any of the forms described
earlier in this section under "Addressing Techniques" except for the following:

=$Bn} . dd . =$ Sn regIster a ressing

Short displacement addressing
Specialized addressing

The following shows how the required channel number and function code are used.
Assume that 128 bytes are to be read from the device on channel 2016 into the buffer
labeled BUFFER. The IOLD instruction to output this information to the controller
could be coded as shown below:

IOLD BUFFER,>=Z'0809',=128

For detailed information about the bus, see the Handbook.

The contents of the I-register are affected as follows:

o If the channel accepted the command, the I-bit is set to 1; otherwise, it is set
to O.

JMP

Instruction:
Jump

Type:
SO

Source Language Format:

~MP!:l { immed~ate-memo~y-address }
B-reiabve-addressing

Description:
Jumps to the location specified in the operand.

If the J -bit in the M I-register contains a binary I, the trace procedure is entered via
trap vector 2. Upon completion, or if the J-bit contains a binary 0, execution
commences at the specified location.

LAB

Instruction:
Load effective address into B-register

Type:
DO

Source Language Format:

{
$Bn }

!:lLAB!:l ;'n' ,address-expression

ASSEMBLY LANGUAGE INSTRUCTIONS 5-57 AU43

LAB / LB / LBC

Description:
Loads the effective address generated by the address expression into the B-register
identified in the first operand.

The address expression can take any of the forms described earlier in this section under
"Addressing Techniques," except for the following:

o Register addressing
o Short displacement addressing
o Specialized addressing

LB

Instruction:
Load bit

Type:
SO

Source Language Format:

~LB~address-expression

Description:

integer-constant
string-constan t
internal-value-Iabel
external-value-label
internal-value-expression
fixed-point-constant

I. If the first operand specifies indexing, the index register is aligned to count bits
relative to bit 0 of the specified word. The bit thus addressed is loaded into the
B-bit of the I-register.

2. If the first operand does not specify indexing, the value (mask) in the second
operand identifies which bites) are to be checked (e.g., Z'8000' indicates that the
first bit of the word found at the specified location is to be checked); then, if
(any of) the specified bites) contain a binary I, the B-bit of the I-register is set to
I; otherwise, it is set to O.

The address expression can take any of the forms described earlier in this section under
"Addressing Techniques," except for the following:

:~~; } register addressing

Short displacement addressing
Specialized addressing

LBC

Instruction:
Load bit and complement

Type:
SO

ASSEMBLY LANGUAGE INSTRUCTIONS 5-58 AU43

LBC / LBF

Source Language Format:

~LBC~address-expression

integer-constant
string-constan t
internal-value-label
external-value-Iabel
internal-value-expression
fixed-point-constant

Description:
I. If the first operand specifies indexing, the index register is is aligned to count

bits relative to bit 0 of the specified word. The bit thus addressed is loaded into
the B-bit of the I -register.
Upon completion of the operation, the addressed bit is set to the one's
complement of its value.

2. If the first operand does not specify indexing, the value (mask) in the second
operand identifies which bites) are to be checked (e.g., Z'8000' indicates that the
first bit of the word found at the specified location of R-register is to be
checked); then, if (any of) the specified bites) contains a binary 1, the B-bit of
I-register is set to I; otherwise it is set to O.

This instruction operates in read modify write (RMW) mode, which prevents any other
procpssor in a multiprocessor environment from accessing the location being modified
until the modification is completed.

The arldress expression can take any of the forms described earlier in this section under
"Addressing Techniques," except for the following:

:~~~ } register addressing

Short displacement addressing
Specialized addressing

LBF

Instruction:
Load bit and set false

Type:
SO

Source Language Format:

~LBF ~address-expression

Description:

in teger-constan t
string-constant
in ternal-val ue-Iabel
external-value-label
internal-value-expression
fixed-point-constant

I. If the first operand specifies indexing, the index register is aligned to count bits
relative to bit 0 of the specified word. ThE" bit thus addressed is loaded into the
B-bit of the I-register.
Upon completion of the operation, the addressed bit is set to O.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-59 AU43

LBT / LBF

2. If the first operand does not specify indexing, the value (mask) in the second
operand identifies which bites) are to be checked (e.g., Z'8000' indicates that the
first bit of the word found at the specified . location or R-register is to be
checked); then, if (any of) the specified bites) contains a binary I, the B-bit of
the I -register is set to I; otherwise, it is set to O.

This instruction operates in read modify write (RMW) mode, which prevents any other
processor in a multiprocessor environment from accessing the location being modified
until the modification is completed.

The address expression can take any of the forms described earlier in this section under
"Addressing Techniques," except for the following:

:~ ~~} register addressing

Short displacement addressing
Specialized addressing
Immediate operand addressing

LBT

Instruction:
Load bit and set true

Type:
SO

Source Language Format:

6LBT 6address-expression ,

Description:

integer-constant
string-cons tan t
internal-value-label
external-value-label
internal-value-expression
fixed-point-constant

1. If the first operand specifies indexing, the index register is aligned to count bits
relative to bit 0 of the specified word. The bit thus addressed is loaded into the
B-bit of the I-register.
Upon completion of the operation, the addressed bit is set to I.

2. If the first operand does not specify indexing, the value (mask) in the second
operand identifies which bites) are to be checked (e.g., Z'8000' indicates that the
first bit of the word found at the specified location of R-register is to be
checked); then, if (any of) the specified bites) contains a binary 1, the B-bit of
the I-register is set to 1; otherwise, it is set to O.
Upon completion of the operation, the bites) checked in accordance with the
mask is (are) set to 1.

This instruction operates in read modify write (RMW) mode, which prevents any other
processor in a multiprocessor environment from accessing the location being modified
until the modification is completed.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-60 AU43

LBT / LBS / LDB

The address expression can take any of the forms described earlier in this section under
"Addressing Techniques," except for the following:

:~~~} register addressing

Short displacement addressing
Specialized addressing

LBS

Instruction:
Load bit and swap

Type:
SO

Source Language Format:

~LBS~address-expression

Description:

integer-constant
string-constant
internal-value-label
external-value-label
internal-value-expression
fixed-point-constant

1. If the first operand specifies indexing, the index register is aligned to count bits
relative to bit 0 of the specified word. The bit thus addressed is interchanged
with the B-bit of the I -register.

2. If the first operand does not specify indexing, the value (mask) in the second
operand identifies which bites) are to be checked (e.g., Z'8000' indicates that the
first bit of the word found at the specified location or R-register is to be
checked); then, if (any of) the specified bites) contains a binaxy 1, the B-bit of
the I-register is set to 1; otherwise, it is set to O.

The address expression can take any of the forms described earlier in this section under
"Addressing Techniques," except for the following:

:~ ~~ } register addressing

Short displacement addressing
Specialized addressing

LDB

Instruction:
Load B-register

Type:
DO

ASSEMBLY LANGUAGE INSTRUCTIONS 5-61 AU43

LDB / LDH

Source Language Format:

{
$Bn}

~LDB~ ;'n' ,address-expression

Description:
Loads the contents of the location or B-register specified by the address expression
into the B-register identified in the first operand.

The address expression can take any of the forms described earlier in this section under
"Addressing Techniques," except for the following:

=$Rn} . t dd . =$ Sn regIS er a ressmg

Short displacement addressing
Specialized addressing

Immediate operand addres'sing with an internal value expression

LDH

Instruction:
Load half-word (byte) into R-register

Type:
DO

Source Language Format:

L'>LDII.L'> { ~~~ } ,address-expression

Description:
Loads the contents of the location specified in the address expression, as described
below, into the R-register identified in the first operand:

o If the address expression specifies =$Rn the rightmost byte (sign extended) of
that R-register is loaded into the R-register specified by the first operand.

o If the address expression specifies memory addressing without indexing, or an
immediate operand addressing format, the leftmost byte (sign extended) of th~
word found at the specified location is loaded into the R-register.

o If the address expression specifies memory addressing with indexing, the index
register is aligned to count bytes relative to the leftmost byte of the word
specified. The byte thus addressed is loaded (sign extended) into the R-register.

In all cases, the selected byte is loaded into the rightmost byte of the R-register, with
the sign extended to the left.

The address expression can take any of the forms described earlier in this section under
"Addressing Techniques," except for the following:

=$Bn} register addressing
=$Sn
Short displacement addressing
Specialized addressing

ASSEMBLY LANGUAGE INSTRUCTIONS 5-62 AU43

LDI/LDR

LDI

Instruction:
Load double-word integer

Type:
SO

Source Language Format:
.6LD I.6address-expression

Description:
Loads the contents of the location specified by the address expression into register R6
and the contents of the next location into register R 7.

The address expression can take any of the forms described earlier in this section under
"Addressing Techniques," except for the following:

:i~: } register addressing

Short displacement addressing
Specialized addressing

If =$Rn is used, only =$R3 (loads the contents of R2 and R3 into R6 and R7,
respectively) or =$R5 (loads the contents of R4 and R5 into R6 and R7, respectively)
may be used.

LDR

Instruction:
Load R-register

Type:
DO

Source Language Format:

L'lLD R1I {r:. } ,address-expression

Description:
Loads the contents of the location or R-register identified in the address expression
into the R-register identified in the first operand.

The address expression can take any of the forms described earlier in this section under
"Addressing Techniques," except for the following:

:i~~ } register addressing

Short displacement addressing
Specialized addressing

ASSEMBLY LANGUAGE INSTRUCTIONS 5-63 AU43

LDY / LEY

LDY

Instruction:
Load value

Type:
SI

Source Language Format:

Description:

~
integer-constant)
string-constant ~
internal-value-label j

} internal-value-expression
~fixed-point-constant

Loads the 8-bit value identified in the second operand into the right half-word of the
R-register specified in the first operand. The contents of bit 8 are extended through the
left half-word of the R -register.

Except for the string constant form of the second operand, all values are assumed to be
numeric.

LEY

Instruction:
Level Change

Type:
SO

Source Language Format:
.6LEV.6address-expression

Description:
Sets or resets level activity bits according to the contents of the location indicated by
the address expression.

The following bit configurations in the indicated location produce the actir\1"1C'
described below.

Bit: o 1 2 3 4 5 6 7 8 9 10 15

I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I Leve
l Number I

Schedule Interrupt Level, Scan and Dispatch
The level activity bit for the designated level will be set. The level activity bits will be
scanned and the highest active level ascertained. The context of the current level will
be saved (unless the current level is the highest active level). The context of the highest
active level will be restored (again, unless the current level is the highest active level).

ASSEMBLY LANGUAGE INSTRUCTIONS 5-64 AU43

Bit: o 2 3 4 5 6 7 8 9 10 15

Number I

Schedule Interrupt Level, Defer Interrupt
The level activity bit for the designated level will be set. Execution will continue at the
current level.

Inhibit
The level activity bit for priority level 3 will be set. The interrupt vector for priority
level 3 will be set equal to the interrupt vector for the current level. Execution of the
current task continues at priority level 3. The use of level 3 as the inhibit level is a
software convention.

Schedule Interrupt Level, Suspend, Scan and Dispatch
The level activity bit for the designated level will be set. The level activity bit for the
current level will be reset. The level activity bits will be scanned and the highest level
ascertained. The context of the current level will be saved. The context of the highest
active level will be restored.

Suspend, Inhibit
The level activity bit for the current level will be reset. The level activity bit for
priority level 3 will be set. The interrupt vector for priority level 3 will be set equal to
the interrupt vector for the current level. Execution of the task continues at priority
level 3. The use of level 3 as the inhibit level is a software convention.

Enable
Enable is used to end execution at priority level 3. The level activity bit for priority
level 63 will be set. The level activity bit for priority level 3 will be reset. The level
activity bits will be scanned and the highest active level ascertained. The context of the

ASSEMBLY LANGUAGE INSTRUCTIONS 5-65

LEV

AU43

LEV / LLH

current level is saved (unless the level where the inhibit originated is now the highest
active level). The context of the highest active level will be restored (again, unless the
level where the inhibit originated is now the highest active level).

The address expression can take any of the forms described earlier in this section under
"Addressing Techniques," except for the followfng:

=$Bn} . =$ Sn regIster addressing

Short displacement addressing
Specialized addressing

The P-bit in the S-register must be set to I (i.e., the central processor must be in the
privileged state) for this instruction to be executed. If the P-bit is not set to I, the
unprivileged use of a privileged operation is signified by a trap to trap vector 13. (Traps
and trap handling are described in the Executive and Input/Output manual.)

The contents of the S-register are affected as follows:

oBits 10 through 15 of the S-register will be set to indicate the priority level at
which processing continues after execution of the LEV instruction.

LLH

Instruction:
Load logical half-word (byte) into R-register

Type:
DO

Source Language Format:

{
$Rn}

~LL~ ~'n' ,address-expression

Description:
Loads the contents of the location specified in the address expression, as described
below, into the R-register identified in the first operand.

o If the address expression specifies =$Rn the rightmost byte of that R-register is
loaded into the R-register specified by the first operand.

o If the address expression specifies memory addressing without indexing, or an
immediate operand addressing format, the leftmost byte of the word found at
the specified location is loaded into the R-register.

o If the address expression specifies memory addressing with indexing, the index
register is aligned to count bytes relative to the leftmost byte of the word
specified. The byte thus addressed is loaded into the R-register.

In all cases, the selected byte is loaded into the rightmost byte of the R-register, with
O's loaded into the leftmost byte.

The address expression can take any of the forms described earlier in this section under
"Addressing Techniques," except for the following:

ASSEMBLY LANGUAGE INSTRUCTIONS 5-66 AU43

LLH / LNJ / MCL / MLV

=$Bn} . t dd . =$ S regIs er a ressIng

Short displacement addressing
Specialized addressing

LNJ

Instruction:
Load B-register and jump

Type:
DO

Source Language Format:

{
$Bn}

~LNJ~ ;'n' {

P-relative-address }
, immediate-memory-address

B-relative-address

Description:
Loads the address of the next sequential instruction into the B-register identified in the
first operand, and jumps to the location specified in the second operand.

If the J -bit in the M I-register contains a binary I, the trace procedure is entered via
trap vector 2. Upon completion, the trace procedure automatically branches to the
address specified by the operand. In this case, or if' the J -bit contains a binary 0, the
instruction sequence starting at the location specified by the second operand is
executed. The last instruction in the subroutine should be:

JMP $Bn

MCL

Instruction:
Call monitor via trap

Type:
GE

Source Language Format:
~MCL~

Description:
Calls monitor by a trap to trap vector 1.

MLV

Instruction:
Multiply by value

Type:
SI

ASSEMBLY LANGUAGE INSTRUCTIONS 5-67 AU43

MLV /MTM

Source Language Format:

I
integer-constant I

$Rn string-constant
6ML V ~ {x'n' } ,[=] ~ternal-value-Iabel .

n mternal-value-expresslon
fixed-point-constant

Description:
Multiplies the contents of the R-register identified in the first operand by the 8-bit
value (with sign extended) specified in the second operand. The result is saved in the
first operand R-register.

If R7 is identified as the first operand R-register, the result (double-precision format) is
saved in R6 and R 7, with the most significant part in R6 and the least significant in
R7.

The contents of the I-register are affected as follows:

o If the result is more than 215 -I (32767) or less than _2 15 (-32768) (except if R7
is specified), the OV-bit is set to I; otherwise; it is set to O.

MTM

Instruction:
Modify or test M-register

Type:
DO

Source Language Format:

l'MTML1 {~~~ } ,address-expression

Description:
Modifies or tests the contents of the M-register identified in the first operand with the
contents (mask) of the location or R-register specified by the address expression.

The mask is treated as two 8-bit fields; then, depending on the content of
corresponding bits in the two fields (i.e., bit I in the first field and bit I in the second;
bit 2 in the first field and bit 2 in the second; etc.), the corresponding bit in the
M-register (i.e , if bit I in the two mask fields, then bit I in the M-register) is altered as
described below:

o If bit n in the first mask field is I, the corresponding bit in the M-register is
loaded with the contents of the corresponding bit from the second mask field
(i.e., M-register is modified).

o If bit n in the first mask field is 0 and the same bit in the second mask field is I,
the corresponding bit in the M-register is inclusively ORed with the contents of
the B-bit in the I-register. If the result of the ~Ring is 1, the B-bit is set to I;
otherwise, it is set to 0 (Le., M-register is tested).

ASSEMBLY LANGUAGE INSTRUCTIONS 5-68 AU43

MTM / MUL / NEG

o If bit n in the first mask field is 0 and the same bit in the second mask field is 0,
the corresponding bit in the M-register is neither modified nor tested.

NOTE: The assembly language instructions LEV, SAVE, and STM store the
contents of the M-register in a form suitable for reloading by MTM.

The address expression can take any of the forms described earlier in this section under
"Addressing Techniques," except for the following:

=$Bn) . t dd . _$ S (' regIS er a ressing
- n J
Short displacement addressing
Specialized addressing

MUL

Instruction:
Multiply R-register

Type:
DO

Source Language Format:

{
$Rn} ;'n' ,address-expression

Description:
Multiplies the contents of the R-register identified in the first operand by the contents
of the location or R-register specified in the address expression. The result is saved in
the first operand R -register.

If R7 is identified as the first operand R-register, the result (double-precision format) is
saved in R6 and R 7, with the most significant part in R6 and the ·least significant
in R7.

The contents of the I-register are affected as follows:

o If the product is more than 215 -1 (32767) or less than _2 15 (-32768) (except if
R7 is specified), the OV-bit is set to 1; otherwise, it is set to O.

The address expression can take any of the forms described earlier in this section under
"Addressing Techniques," except for the following:

~~~~} register addressing 

Short displacement addressing 
Specialized addressing 

NEG 

Instruction: 
Negate 

ASSEMBLY LANGUAGE INSTRUCTIONS 5-69 AU43 



NEG / NOP / OR 

Type: 
SO 

Source Language Format: 
~NEG~address-expression 

Description: 
Two's complements the contents of the location or R-register specified in the address 
expression. 

The contents of the I-register are affected as follows: 

o If a carry occurs during the operation, the C-bit is set to I; otherwise, it is set 
to O. 

o If the value complemented was -32768, the OV-bit is set to I; otherwise, it is set 
to O. 

The address expression can take any of the forms described earlier in this section under 
"Addressing Techniques," except for the following: 

:~~~ } register addressing 

Short displacement addressing 
Specialized addressing 

NOP 

Instruction: 
No operation 

Type: 
BI 

Source Language Format: 

{

direct-IMA } 
~NOP~ direct-P-relative-address 

short-displacement-address 

Description: 
Performs no operation. 

If the J-bit in the MI-register contains a binary I, the trace procedure is entered via 
trap vector 2. Upon completion of the trace procedure or if the J-bit contains a binary 
0, processing continues with the next seq uential instruction in the program. 

OR 

Instruction: 
Inclusive OR with R-register 

Type: 
DO 

ASSEMBLY LANGUAGE INSTRUCTIONS 5-70 AU43 



OR/ORR 

Source Language Format: 

'$Rn} 
L'.OM {;'n' ,address-expression 

Description: 
Inclusively ORs the contents of the R-register identified in the first operand with the 
contents of the location or R-register specified in the address expression. The result is 
saved in the first operand R-register: 
The following chart illustrates the result of inclusively DRing bits: 

First operand bit: a a 1 1 

Second operand bit: 1 a 1 a 
Result: 1 a 1 1 

The address expression can take any of the forms described earlier i.11 this section under 
"Addressing Techniques," except for the following: 

=$Bn} . t dd . =$ Sn regIs er a ressIng 

Short displacement addressing 
Specialized addressing 

ORR 

Instruction: 
Half-word (byte) inclusive OR with R-register 

Type: 
DO 

Source Language Format: 

L'.ORlfL"> {~~ } ,address-expression 

Description: 
Inclusively OR's the contents of the R-register identified in the first operand with the 
contents of the byte specified in the address expression. 

Prior to the operation, the byte operand is internally expanded to word length by 
extending the sign through the eight high-order bit positions. The byte selected to 
participate in the operation is determined by the format of the address expression, as 
follows: 

o Register Addressing (=$Rn): The rightmost byte of the register is selected. 
o Memory Addressing Withhout Indexing: Immediate Memory Addressing: The 

leftmost byte of the word at the designated memory address is selected. 

ASSEMBLY LANGUAGE INSTRUCTIONS 5-71 AU43 



ORH/ RSTR 

o Memory Addressing With Indexing: The memory address indicates a starting 
point. The index register contains an arithmetic value to be added to the starting 
point. The value specifies the number of bytes before or after the starting point 
needed to reach the byte selected for the operation. 

The following chart illustrates the result of inclusively ORing bits: 

First operand bit: 0 0 1 1 

Second operand bit: 1 0 1 0 

Result: 1 0 1 1 

The address expression can take any of the forms described earlier in this section under 
"Addressing Techniques," except for the following: 

=$Bn} . =$Sn regIster addressing 

Short displacement addressing 
Specialized addressing 

RSTR 

Instruction: 
Restore context 

Type: 
SO 

Source Language Format: 

{ 

immediate-memOry-address} 
6RSTM B-relative-address , 

P-relative-address 

Description: 

in teger-constan t 
string-constan t 
internal-value-Iabel 
external-value-Iabel 
in ternal-value-expression 
fixed-point-constant 

Restores the registers specified in the second operand mask starting from the location 
specified in the address expression. 

The second operand is a mask that specifies which registers are to be restored. If the 
mask is all zeros, the contents of RI are used as the mask. 

Depending on which bits in the specified mask are set to 1, the registers that can be 
restored are as follows: 

Bit: 0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 M IR1 IR21R31 R41R51R61R71 I IB1 IB21 B31B41B51 ~ IB71 

ASSEMBLY LANGUAGE INSTRUCTIONS 5·72 AU43 



RSTR / RTCF / RTCN / RTT 

This mask should be the same as the one used to save the registers (see the SAVE 
instruction). 

RTCF 

Instruction: 
Real-time clock off 

Type: 
GE 

Source Language Format: 
.6RTCF.6 

Description: 
Disables real-time clock interrupts. 

The P-bit in the S-register must be set to I (i.e., the central processor must be in the 
privileged state) for this instruction to be executed. If not, the unprivileged use of a 
privileged operation is signified by a trap to trap vector 13. 

RTCN 

Instruction: 
Real-time clock on 

Type: 
GE 

Source Language Format: 

.6RTCN.6 

Description: 
Enables real-time clock interrupts, which will occur only when the real-time clock 
interrupt level is higher than the priority interrupt level specified in the S-register. 

The P-bit in the S-register must be set to I (i.e., the central processor must be in the 
privileged state) for this instruction to be executed. If not, the unprivileged use of a 
privileged operation is signified by a trap to trap vector 13. 

For a detailed description of traps and trap handling procedures (Le., trap handlers), 
refer to the Executive and Input/Output manual. 

For a detailed description of interrupts, refer to the Handbook. 

RTT 

Instruction: 
Return from trap 

Type: 
GE 

ASSEMBLY LANGUAGE INSTRUCTIONS 5-73 AU43 



RTT / SAD 

Source Language Format: 
.6.RTT.6. 

Description: 
Restores the registers that were saved in the trap save area when the trap was entered; 
restores the central processor to the nonprivileged state if entering the trap caused the 
state to change from nonprivileged to privileged; returns the trap save area block to the 
trap save area memory pool; returns control to the next instruction to be executed 
(determined by the event that caused the trap and/or by the trap handler). 

SAD 

Instruction: 
Scientific add 

Type: 
DO 

Source Language Format; 

ll.SADll. {~~~,} ,address-expression 

Description: 
Adds the floating-point or integer value in the location, scientific accumulator, or 
R-register identified in the second operand to the contents of the scientific 
accumulator specified in the first operand. The result is saved in the scientific 
accum ulator. 
This instruction uses the optional Scientific Instruction Processor (SIP). A Floating
Point Simulator is available to allow this instruction to be executed on systems that do 
not include an SIP. Information on the Floating-Point Simulator is available in the 
Executive and Input/Output manual. 
The address expression can take any of the forms described earlier in this section under 
"Addressing Techniques," except for the following: 

=$Bn register addressing 
Short displacement addressing 
Specialized addressing 

If register addressing is used, the value forms are: 

=$Sn 

=$Sn 

If =$R7 is specified, the 32-bit value contained in the 
register pair formed by R6 and R7 becomes the operand. 

If immediate operand addressing is used, you must provide a floating-point constant or 
hexadecimal string constant in suitable floating-point format. 

ASSEMBLY LANGUAGE INSTRUCTIONS 5-74 AU43 



SAD / SAL / SAR 

If the second operand is =$R4, =$R5, =$R6, or =$R 7, the integer value contained in 
the specific R-register is internally converted to floating-point format before it is added 
to the S-register by the first operand. 

Scientific Indicator Settings: 

EU: set to 1 on exponent underflow; otherwise, set to O. 
PE: set to 1 if nonzero bits are lost during right shift; otherwise, set to O. 

SAL 

Instruction: 
Single-shift arithmetic-left 

Type: 
SHS 

Source Language Format: 

'$R " 
lISAU ~ X'n~ ~ ,intemal-value-expression 

\n J 

Description: 
Shifts the contents of the R-register identified in the first operand left the number of 
bit positions specified in the internal value expression. The bit positions vacated by the 
shift are filled with binary O's. 

The con tents of the I -register are affected as follows: 

o If the contents of bit 0 in the R-register change, the OV -bit is set to 1; otherwise, 
it is set to O. 

The internal value expression must be ~ 0 and ~ 15. 
If the internal value expression equals 0, the contents are shifted left the number 
derived by using the value in bits 12 through 15 of general register Rl. 

SAR 

Instruction: 
Single-Shift arithmetic-right 

Type: 
SHS 

Source Language Format: 

{ 

$Rn' 
lISARL'. ;.n.} ,intemal-value-expression 

ASSEMBLY LANGUAGE INSTRUCTIONS 5-75 AU43 



SARI SAVE 

Description: 
Shifts the contents of the R-register identified in the first operand right the number of 
bit positions specified in the internal value expression. The bit positions vacated by the 
shift are filled with the sign value originally contained in bit O. 

The contents of the I-register are affected as follows: 

o C-bit contains the last binary digit shifted out of the R-register. 

The internal value expression must be ~ 0 and ~ 15. 
If the internal value expression equals 0, the contents are shifted right the number 
derived by using the value in bits 12 through 15 of general register Rl. 

SAVE 

Instruction: 
Save context 

Type: 
SO 

Source Language Format: 

{ 

immediate-memOry-address} 
I::1SAVEI::1 B-relative-address , 

P-relative-address 

Description: 

integer-constant 
string-constant 
internal-value-label 
ex ternal-value-Iabel 
internal-value-expression 
tixed-noint-constant 

Saves the registers specified in the second operand starting at the location specified in 
the address expression. 

The second operand is a mask that specifies which registers are to be saved. Each bit in 
the mask represents a particular register which can be saved, as shown below: 

Bit: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

l M \R1 \R2\R3\R4\R5\R6\ R7\ \61\62\63\641651661671 

If a mask bit is set to 1, the corresponding register is saved. If a mask bit is 0, the 
corresponding register is not saved. If the mask is all D's, the contents of Rl are used as 
the mask. 

The registers are saved in reverse order. For example, if the second operand specified 
Z'CAOl' (which, when translated into binary is 1100 101000000001), indicating that 
registers Ml, Rl, R4, R6, and B7 are to be saved, the context save area will contain the 
registers starting with B 7 and ending with M 1. 

ASSEMBLY LANGUAGE INSTRUCTIONS 5-76 AU43 



SBE / SBEU 

SBE 

Instruction: 
Scientific branch on equal 

Type: 
BI 

Source Language Format: 

{

direct-IMA } 
.6.SBE.6. direct -P-relative-address 

short -displace men t -address 

Description: 
Branches to the location specified in the operand if the result of the most recent 
scientific comparison sets both the SL- and SG-bits of the SI-register to O. 

Action if Branch Occurs: 
If the J -bit in the M I-register contains a binary 1, the trace procedure is entered via 
trap vector 2. Upon completion, the trace procedure automatically branches to the 
address specified by the operand. In this case, or if the J -bit contains a binary Q, the 
instruction sequence starting at the location specified by the operand is executed. 

If the ,scientific Information Processor (SIP) is not installed on this system, the 
Scientific Branch Simulator is entered via trap vector 5. 

SBEU 

Instruction: 
Scientific branch on exponent underflow 

Type: 
BI 

Source Language Format: 

{

direct-IMA } 
.6.SBEU.6. . direct-P-relative-address 

short-displacement-address 

Description: 
Branches to the location specified in the operand if the result of the most recent 
scientific comparison sets the EU-bit in the SI-register to 1. 

Action if Branch Occurs: 
If the J-bit in the Ml-register contains a binary I, the trace procedure is entered via 
trap vector 2. Upon completion, the trace procedure automatically branches to the 
address specified by the operand. In this case, or if the J-bit contains a binary 0, the 
instruction sequence starting at the location specified by the operand is executed. If 
the Scientific Information Processor (SIP) is not installed on this system, the Scientific 
Branch Simulator is entered via trap vector 5. 

ASSEMBLY LANGUAGE INSTRUCTIONS 5-77 AU43 



SBEZ / SBG 

SBEZ 

Instruction: 
Branch if scientific accumulator equal to 0 

Type: 
BR 

Source Language Format; 

, $sn} 
~SBEZ~ t;'n' 

Description: 

{

direct-IMA } 
, direct-P-relative-address 

short -displacemen t -address 

Branches to the location specified in the second operand if the scientific accumulator 
identified in the first operand contains a floating-point value algebraically equal to O. 

Action if Branch Occurs: 
If the J-bit in the Ml-register contains a binary 1, the trace procedure is entered via 
trap vector 2. Upon completion, the trace procedure automatically branches to the 
address specified by the operand. In this case, or if the J-bit contains a binary 0, the 
instruction sequence starting at the location specified by the operand is executed. 

If the Scientific Information Processor (SIP) is not installed on this system, the 
Scientific Branch Simulator is entered via trap vector 5. $SI is the only scientific 
accumulator register supported by the simulator. 

SBG 

Instruction: 
Scientific branch on greater than 

Type: 
BI 

Source Language Format: 

{

direct-IMA } 
~SBG~ direct-P-relative-address 

short -displacemen t -address 

Description; 
Branches to the location specified in the operand if the result of the most recent 
scientific comparison sets the SG-bit in the SI-register to 1. 

Action if Branch Occurs: 
If the J-bit in the Ml-register contains a binary I, the trace procedure is entered via 
trap vector 2. Upon completion, the trace procedure automatically branches to the 
address specified by the operand. In this case, or if the J-bit contains a binary 0, the 
instruction sequence starting' at the location specified by the operand is executed. 

ASSEMBLY LANGUAGE INSTRUCTIONS 5-78 AU43 



SBG / SBGE / SBGEZ 

If the Scientific Information Processor (SIP) is not installed on this system, the 
Scientific Branch Simulator is entered via trap vector 5. 

SBGE 

Instruction: 
Scientific branch on greater than or equal 

Type: 
BI 

Source Language Format: 

{

direct-IMA } 
~SBGE~ direct-P-relative-address 

short -displacement -address 

Description: 
Branches to the location specified in the operand if the result of the most recent 
scientific comparison sets the Sl-bit of the SI-register to O. 

Action if Branch Occurs: 
If the J -bit in the M I-register contains a binary I, the trace procedure is entered via 
trap vector 2. Upon completion, the trace procedure automatically branches to the 
address specified by the operand. In this case, or if the· J-bit contains a binary 0, the 
instruction sequence starting at the location specified by the operand is executed. 

If the Scientific Information Processor (SIP) is not installed on this system, the 
Scientific Branch Simulator is enterd via trap vector 5. 

SBGEZ 

Instruction: 
Branch if scientific accumulator equal to or greater than 0 

Type: 
BR 

Source Language Format: 

{
$sn} 

~SBGEZ~ ;'n' { 

direct-IMA } 
, direct-P-relative-address 

short -displacemen t -address 

Description: 
Branches to the location specified in the second operand if the scientific accumulator 
identified in the first operand contains a nonnegative floating-point value. 

Action if Branch Occurs: 
If the J-bit in the Ml-register contains a binary I, the trace procedure is entered via 
trap vector 2. (Upon completion, the trace procedure automatically branches to the 

ASSEMBLY LANGUAGE INSTRUCTIONS 5-79 AU43 



SBGEl / SBGl / SBL 

address specified by the operand. In this case, or if the J-bit contains a binary 0, the 
instruction sequence starting at the location specified by the operand is executed. 

If the ScientifiG Information Processor (SIP) is not installed on this system, the 
Scientific Branch Simulator is entered via trap vector 5. $S 1 is the only scientific 
accumulator register supported by the simulator. 

SBGl 

Instruction: 
Branch if scientific accumulator greater than ° 
Type: 
BR 

Source Language Format: 

{$sn} 
~SBGZ~ ;'n' { 

direct-IMA } 
, direct-P-relative-address 

short -displacemen t -address 

Description: 
Branches to the location specified in the second operand if the scientific accumulator 
identified in the first operand contains a positive floating-point value. 

Action if Branch Occurs: 
If the J-bit in the MI-register contains a binary I, the trace procedure is entered via 
trap vector 2. Upon completion, the trace procedure automatically branches to the 
address specified by the operand. In this case, or if the J-bit contains a binary 0, the 
instruction sequence starting at the location specified by the operand is executed. 

If the Scientific Information Processor (SIP) is not installed on this system, the 
Scientific Branch Simulator is entered via trap vector 5. $Sl is the only scientific 
accumulator register supported by the simulator. 

SBL 

Instruction: 
Scientific branch if less than 

Type: 
BI 

Source Language Format: 

{

direct -IMA } 
~SBL~ direct -P-relative-address 

short -displacemen t -address 

Description: 
Branches to the location specified in the operand if the result of the most recent 
scientific comparison sets the S I-bit of the SI-register to I. 

ASSEMBLY LANGUAGE INSTRUCTIONS 5-80 AU43 



SBL / SBLE / SBLEZ 

Action if Branch Occurs: 
If the J -bit in the M I-register contains a binary 1, the trace procedure automatically 
branches to the address specified by the operand. In this case, or if the J-bit contains a 
binary 0, the instructions sequence starting at the location specified by the operand is 
executed. 

If the Scientific Information Processor (SIP) is not installed on this system, the 
Scientific Branch Simulator is entered via trap vector 5. 

SBLE 

Instruction: 
Scientific branch on less than or equal 

Type: 
BI 

Source Language Format: 

{

direct-IMA ) 
~SBLELl direct-P-relative-address ( 

short -displacement -address' 

Description: 
Branches to the location specified in the operand if the result of the most recent 
scientific'comparison sets the SG-bit in the SI-register to O. 

Action if Branch Occurs: 
If the J-bit in the Ml-register contains a binary 1, the trace procedure is entered via 
trap vector 2. Upon completion, the trace procedure automatically branches to the 
address specified by the operand. In this case, or if the J-bit contains a binary 0, the 
instruction sequence starting at the location specified by the operand is executed. 

If the Scientific Information Processor (SIP) is not installed on this system, the 
Scientific Branch Simulator is entered via trap vector 5. 

SBLEZ 

Instruction: 
Branch if scientific accumulator equal to or less than 0 

Type: 
BR 

Source Language Format: 

{
$sn} 

~SBLEZ~ ;'n' 

Description: 

{ 

direct-IMA } 
, direct-P-relative-address 

short-displacement-address 

Branches to the location specified in the second operand if the scientific accumulator 
identified in the first operand contains a floating-point value algebraically equal to or 
less than O. 

ASSEMBLY LANGUAGE INSTRUCTIONS 5-81 AU43 



SBLEZ / SBLZ / SBNE 

Action if Branch Occurs: 
If the J-bit in the Ml-register contains a binary 1, the trace procedure is entered via 
trap vector 2. Upon completion, the trace procedure automatically branches to the 
address specified by the operand. In this case, 0r if the J-bit contains a binary 0, the 
instruction sequence starting at the location specified by the operand is executed. 

If the Scientific Information Processor (SIP) is not installed on this system, the 
Scientific Branch Simulator is entered via trap vector S. $Sl is the only scientific 
accumulator register supported by the simulator. 

SBLZ 

Instruction: 
Branch if scientific accumulator less than ° 
Type: 
BR 

Source Language Format: 

{
$sn} 

b.SBLZb. ;'n' {

direct-IMA } 
, direct -P-rela tive-address 

short-displacement-address 

Description: 
Branches to the location specified in the second operand if the scientific accumulator 
identified in the first operand contains a negative floating-point value. 

Action if Branch Occurs: 
If the J-bit in the M I-register contains a binary 1, the trace procedure is entered via 
trap vector 2. Upon completion, the trace procedure automatically branches to the 
address specified by the operand. In this case, or if the J-bit contains a binary 0, the 
instruction sequence starting at the location specified by the operand is executed. 

If the Scientific Information Processor (SIP) is not installed on this system, the 
Scientific Branch Simulator is entered via trap vector S. $SI is the only scientific 
accumulator register supported by the simulator. 

SBNE 

Instruction: 
Scientific branch on not equal 

Type: 
BI 

Source Language Forma t 

{

direct-IMA } 
b.SBNEb. direct -P-relative-address 

short -displacemen t -address 

ASSEMBLY LANGUAGE INSTRUCTIONS 5-82 AU43 



SBNE / SBNEU / SBNEZ 

Description: 
Branches to the location specified in the operand if the result of the most recent 
scientific comparison sets either the SL- or SG-bit of the SI -register to 1. 

Action if Branch Occurs: 
If the I-bit in the Ml-register contains a binary 1, the trace procedure is entered via 
trap vector 2. Upon completion, the trace procedure automatically branches to the 
address specified by the operand. In this case, or if the I-bit contains a binary 0, the 
instruction sequence starting at the location specified by the operand is executed. 

If the Scientific Information Processor (SIP) is not installed on this system, the 
Scientific Branch Simulator is entered via trap vector 5. 

SBNEU 

Instruction: ' 
Scientific branch on not exponent underflow 

Type: 
BI 

Source Language Format: 

{

direct-IMA } 
6SBNEU6 direct-P-relative-address 

short-displacement-address 

Description: 
Branches to the location specified in the operand if the result of the most recent 
scientific comparison sets the EU-bit of the SI-register to O. 

Action if Branch Occurs: 
If the I-bit of the Ml-register contains a binary 1, the trace procedure is entered via 
trap vector 2. Upon completion, the trace procedure automatically branches to the 
address specified by the operand. In this case, or if the I -bit contains a binary 0, the 
instruction sequence starting at the location specified by the operand is executed. 

SBNEZ 

Instruction: 
Branch if scientific accumulator not equal to 0 

Type: 
BR 

Source Language Format: 

{ 
$Sn } {direct-IMA } 

6SBNEZ~ X'n' , direct-P-relative-address 
n short-displacement-address 

ASSEMBLY LANGUAGE INSTRUCTIONS 5-83 AU43 



SBNEZ / SBNPE / SBNSE 

Description: 
Branches to the location specified in the second operand if the scientific accumulator 
identified in the first operand contains a floating-point value not algebraically equal to 
o. 

Action if Branch Occurs: 
If the J-bit in the M I-register contains a binary I, the trace procedure is entered via 
trap vector 2. Upon completion, the trace procedure automatically branches to the 
address specified by the operand. In this case, or if the J-bit contains a binary 0, the 
instruction sequence starting at the location specified by the operand is executed. 

If the Scientific Information Processor (SIP) is not installed on this system, the 
Scientific Branch Simulator is entered via trap vector 5. $SI is the only scientific 
accumulator register supported by the simulator. 

SBNPE 

Instruction: 
Scientific branch on not precision error 

Type: 
BI 

Source Language Format: 

{

direct-IMA } 
ilSBNPEil direct -P-relative-address 

short -displacemen t -address 

Description: 
Branches to the location specified in the operand if the result of the most recent 
scientific comparison sets the PE-bit of the SI-register to O. 

Action if Branch Occurs: 
If the J-bit of the M I-register contains a binary I, the trace procedure is entered via 
trap vector 2. Upon completion, the trace procedure automatically branches to the 
address specified by the operand. In this case or if the J -bit contains a binary 0, the 
instruction sequence starting at the location specified by the operand is executed. 

SBNSE 

Instruction: 
Scientific branch on not significance error 

Type: 
BI 

Source Language Format: 

{

direct-IMA } 
ilSBNSM direct-P-relative-address 

short -displacemen t -address 

ASSEMBLY LANGUAGE INSTRUCTIONS 5-84 AU43 



SBNSE / SBPE / SBSE 

Description: 
Branches to the location specified in the operand if the result of the most recent 
scientific comparison sets the SE-bit of the SI-register to 0. 

Action if Branch Occurs: 
If the J-bit in the Ml-register contains a binary 1, the trace procedure is entered via 
trap vector 2. Upon completion, the trace procedure automatically branches to the 
address specified by the operand. In this case, or if the J-bit contains a binary 0, the 
instruction sequence starting at the location specified by the operand is executed. 

SBPE 

-Instruction: 
Scientific branch on precision error 

Type: 
BI 

Source Language Format: 

{

direct-IMA } 
flSBPEfl direct-P-relative-address . 

short -(lisplacement -address 

Description: 
Branches to the location specified in the operand if the result of the most recent 
scientific comparison sets the PE-bit of the -SI-register to 1. 

Action if Branch Occurs: 
If the J-bit of the Ml-register contains a binary 1, the trace procedure automatically 
branches to the address specified by the operand. In this case, or if the J-bit contains a 
binary 0, the instruction sequence starting at the location specified by the operand is 
executed. 

SBSE 

Instruction: 
Scientific branch on significance error 

Type: 
BI 

Source Language Format: 

{

direct-IMA } 
flSBSM direct-P-relative-address 

short -displacement -address 

Description: 
Branches to the location specified in the operand if the result of the most recent 
scientific comparison sets the SE-bit of the SI-register to 1. 

ASSEMBLY LANGUAGE INSTRUCTIONS 5-85 AU43 



SBSE / SCL / SCR 

Action if Branch Occurs: 
If the J -bit of the M I-register contains a binary I, the trace procedure is entered via 
trap vector 2. Upon completion, the trace procedure automatically branches to the 
address specified by the operand. In this case, or if the J-bit contains a binary 0, the 
instruction sequence starting at the location specified by the operand is executed. 

SCL: 

Instruction: 
Single-shift closed -left 

Type: 
SHS 

Source Language Format: 

llSCIh { ~~:. } ,intemal-value-expression 

Description: 
Shifts the contents of the R-register identified in the first operand left the number of 
bit positions specified in the internal value expression. The bits shifted out of the 
register are placed in the bit positions vacated by shifted bits as they are shifting. 

The internal value expression must be ~ ° and < 15. 
If the internal value expression equals 0, the contents are shifted left the number 
derived by using the value in bits 12 through 15 of general register Rl. 

SCR 

Instruction: 
Single-shift closed-right 

Type: 
SHS 

Source Language Format: 

{ 
$Rn} 

llSCM ;'n' ,in temal-value-expression 

Description: 
Shifts the contents of the R-register identified in the first operand right the number of 
bit positions specified in the internal value expression. The bits shifted out of the 
register are placed in the bit positions vacated by shifted bits as they are shifting. 

The internal value expression must be ~ ° and < 15. 
If the internal value expression equals 0, the contents are shifted right the number 
derived by using the value in bits 12 through 15 of general register R 1 . 

ASSEMBLY LANGUAGE INSTRUCTIONS 5-86 AU4? 



SCM 

Instruction 
Scientific compare 

Type: 
DO 

Source Language Format: 

{ 

$Sn ( 
.6SCM.6. ~'n' j ,address-expression 

Description: 
Compares the contents of the scientific accumulator identified in the first operand to 
the floating-point or integer value in the location specified in the second operand. 

Scientific Indicator Settings: 
SG: Set to 1 if contents of the scientific accumulator are greater than the contents 
of the location; otherwise, set to O. . 
SL: Set to 1 if contents of the scientific accumulator are less than the contents of 
the location; otherwise, set to O. 
PE: Set to 1 if nonzero bits are lost during right shift for scaling before 
comparison; otherwise, set to O. 

If the Scientific Information Processor (SIP) is not installed on this system, the 
instruction causes the Floating-Point Simulator to be entered via trap vector 3. Since 
the SI-register is not available if the SIP is not installed, the I-register is used as .a 
substitute. The contents of the I-register are affected as follows: 

o If the contents of the register are greater than the contents of the location, the 
G-bit is set to 1; otherwise, it is set to O. 

o If the contents of the register are less than the contents of the location, the L-bit 
is set to 1; otherwise, it is set to O. 

o If the content of bit 7 of the register is not equal to the content of bit 7 of the 
location, the U-bit is set to 1; otherwise, it is set to O. 

The address expression can take any of the forms described earlier in this section under 
"Addressing Techniques" except for the following: 

=$Bn register addressing 
Short displacement addressing 
Specialized addressing 

If register addressing is used, the valid forms are: 

=$Sn 

=$Sn 

If =$R7 is specified, the 32-bit value contained in the 
register pair formed by R6 and R7 becomes the operand. 

($S 1 is the only scientific accumulator register supported 
by the simulator.) 

ASSEMBLY LANGUAGE INSTRUCTIONS 5~7 

SCM 

AU43 



SCM / SCZD 

If immediate operand addressing is used, you must provide a floating-point constant or 
string constant in suitable floating-point format. 

If the second operand is =$R4, =$R5, =$R6, or =$R7, the integer value contained in 
the specific R-register is internally converted to floating-point format before it is 
compared to the S-register specified by the first operand. 

SCZD 

Instruction: 
Scientific compare to zero (short-precision) 

Type: 
SO 

Source Language Format: 
~SCZD~address-expression 

Description: 
Compares the short-precision floating-point value in the specified location or scientific 
accumulator to O. 

Scientific Indicator Settings: 
SL: Set to 1 if contents of the location are less than 0; otherwise, set to O. 
PE: Set to 1 if nonzero bits are lost during right shift for scaling before 
comparison; otherwise, set to O. 

If the Scientific Information Processor (SIP) is not installed on this system, the 
instruction causes the Floating-Point Simulator to be entered via trap vector 3. Since 
the SI-register is not available if the SIP is not installed, the I-register is used as a 
substitute. 

The contents of the I-register are affected as follows: 

o If the contents of the specified location do not equal 0, the G-bit is set to I; 
otherwise, it is set to O. 

o The L-bit is set to O. 
o If bit 7 of the specified location equals I, the U-bit is set to 1; otherwise, it is set 

to O. 

The address expression can take any of the forms described earlier in this section under 
"Addressing Techniques," except for the following: 

:~~~} register addressing 

Short displacement addressing 
Specialized addressing 

The only valid form of register addressing is: 

=$Sn ($Sn is the only scientific accumulator register supported by the simulator.) 

If immediate operand addressing is used, you must provide a floating-point constant or 
string constant in suitable floating-point format. 

ASSEMBLY LANGUAGE INSTRUCTIONS 5-88 AU43 



SCZQ / SDI 

SCZQ 

Instruction: 
Scientific compare"to 0 (long-precision) 

Type: 
SO 

Source Language Format: 

~SCZQ~address-expression 

Description: 
Compares the floating-point value in the specified location or scientific accumulator to 
o. 

Scientific Indicator Settings: 
SL: Set to 1 if contents of the location are less than 0; otherwise, set to O. 
PE: Set to 1 if nonzero bits are lost during right shift for scaling before 
comparison; otherwise, set to O. 

The address expression can take any of the forms described earlier in this section under 
"Addressing Techniques," except for the following: 

:~:} register addressing 

Short displacement addressing 
Specialized addressing 

The only valid form of register addressing is: 
=$Sn 

If immediate operand addressing is used, you must provide a string constant in suitable 
floating-point format. 

SDI 

Instruction: 
Store Double word integer 

Type: 
SO 

Source Language Format: 
~SDI~address-expression 

Description: 
Stores the contents of register R6 into the location specified by the address expression 
and the contents of register R7 into the next location. 

The address expression can take any of the forms described earlier in this section under 
"Addressing Techniques," except for the following: 

ASSEMBLY LANGUAGE INSTRUCTIONS 5-89 AU43 



SOI/ SOV 

=$Rn register addressing NOTE: =$R3 and =$R5 are legal. 
=$Bn} 

=$Sn 

Short displacement addressing 
Specialized addressing 

SOV 

Instruction: 
Scien tific divide 

Type: 
DO 

Source Language Format: 

!'.SDV L':. { ~~:. } ,address-expression 

Description: 
Divides the contents of the scientific accumulator identified in the first operand by the 
contents of the location, scientific accumulator, or R-register specified in the second 
operand. The result is saved in the scientific accumulator (except for the remainder, 
which is ignored). 

If the Scientific Instruction Processor (SIP) is not installed on this system, the 
Floating-Point Simulator is entered via trap vector 3. $Sl is the only scientific 
accumulator register supported by the simulator. 

The address expression can take any of the forms described earlier in this section under 
"Addressing Techniques," except for the following: 

=$Bn register addressing 
Short displacement addressing 
Specialized addressing 

If register addressing is used, the valid forms· are: 

=$R g } 
=$Sn 

=$Sn 

If =$R7 is specified, the 32-bit value contained in the 
register pair formed by R6 and R7 becomes the operand. 

If immediate operand addressing is used, you must provide a floating-point constant or 
string constant in suitable floating-point format. 

If the second operand is =$R4, =$R5, =$R6, or =$R7, the integer value contained in 
the specific R-register is internally converted to floating-point format before it is 
divided into the S-register specified by the first operand. 

ASSEMBLY LANGUAGE INSTRUCTIONS 5-90 AU43 



SDV / SLD 

Scientific Indicator Settings: 
EU: Set to 1 on exponent underflow; otherwise, set to O. 
PE: Set to 1 if nonzero bits are lost during right shift; otherwise, set to O. 

SLD 

Instruction: 
Scientific load 

Type: 
DO 

Source Language Format: 

l-.SLDl:. {~~~. } ,address-expression 

Description: 
Loads the contents of the location, scientific accumulator, or R-register identified in 
the second operand into the scientific accumulator identified in the first operand. 

If the Scientific Instruction Processor (SIP) is not installed on this system, the 
Floating-Point Simulator is entered via trap vector 3. $SI is the only scientific 
accumulator register supported by the simulator. 

The address expression can take any of the forms described earlier in this section under 
"Addressing Techniques," except for the following: 

=$Bn register addressing 
Short displacement addressing 
Specialized addressing 

If register addressing is used, the valid forms are: 

=$Sn 

If =$R7 is specified, the 32-bit value contained in the 
register pair formed by R6 and R7 becomes the operand. 

If immediate operand addressing is used, you must provide a floating-point constant or 
string constant in suitable floating-point format. 

If the second operand is =$R4, =$RS, =$R6, or =$R7, the integer value contained in 
the specific R-register is internally converted to floating-point format before it is 
loaded to the S-register specified by the first operand. 

Scientific Indicator Settings: 
EU: Set to 1 on exponent overflow; otherwise, set to O. 
PE: Set to 1 if nonzero bits are lost during right shift; otherwise, set to O. 

ASSEMBLY LANGUAGE INSTRUCTIONS 5-91 AU43 



SML 

SML 

Instruction: 
Scientific multiply 

Type: 
DO 

Source Language Format: 

{$sn} 
llSMU ~/n' ,address-expression 

Description: 
Multiplies the contents of the scientific accumulator identified in the first operand by 
the contents of the location, scientific accumulator, or R-register specified in the 
second operand. The result is saved in the scientific accumulator. 

If the Scientific Instruction Processor (SIP) is not installed on this system, the 
Floating-Point Simulator is entered via trap vector 3. $Sl is the only scientific 
accumulator register supported by the simulator. 

The address expression can take any of the forms described earlier in this section under 
"Addressing Techniques," except for the following: 

=$ Bn register addressing 
Short displacement addressing 
Specialized addressing 

If register addressing is used, the valid forms are: 

=$Sn 

=$Sn 

If =$R7 is specified, the 32-bit value contained in the 
register pair formed by R6 and R7 becomes the operand. 

If immediate operand addressing is used, you must provide a floating-point constant or 
string constant in suitable floating-point format. 

If the second operand is an R-register the integer value contained in the specific 
R-register is internally converted to floating-point format before it is multiplied to the 
S-register specified by the first operand. 

Scientific Indicator Settings: 
EU: Set to 1 on exponent underflow; otherwise, set to O. 
PE: Set to 1 if nonzero bits are lost during right shift; otherwise, set to O. 

ASSEMBLY LANGUAGE INSTRUCTIONS 5-92 AU43 



SNGD / SNGQ 

SNGD 

Instruction: 
Scientific negate (short-precision) 

Type: 
SO 

Source Language Format: 

LlSNGDLladdress-expression 

Description: 
Negate the short-precision floating-point number at the location or scientific 
accumulator specified in the operand. 

If the Scientific Instruction Processor (SIP) is not installed on this system, the 
Floating-Point Simulator is entered via trap vector 3. 

The address expression can take any of the forms described earlier in this section under 
"Addressing Techniques," except for the following: 

:~~} register addressing 

Short displacement addressing 
Specialized addressing 

The only valid form of register addressing is: 

=$Sn ($Sl is the only scientific accumulator register supported by the simulator.) 

SNGQ 

Instruction: 
Scientific negate (long-precision) 

Type: 
SO 

Source Language Format; 
LlSCGQLladddress-expression 

Description: 
Negate the long-precision floating-point number at the location or scientific accu
mulator specified in the operand. 

The address expression can take any of the forms described earlier in this section under 
"Addressing Techniques," except for the following: 

=$Bn} . dd . =$ Rn regIster a ressmg 

Short displacement addressing 
Specialized addressing 

ASSEMBLY LANGUAGE INSTRUCTIONS 5-93 AU43 



SNGQ / SOL / SOR 

The only valid form of register addressing is: 

=$Sn ($S 1 is the only scientific accumulator register supported by the simulator.) If 
immediate operand addressing is used, you must provide a floating-point constant or 
string constant in suitable floating-point format: 

SOL 

Instruction: 
Single-shift open-left 

Type: 
SHS 

Source Language Format: 

{ 
$Rn} 

llSOU ~'n' ,j.nternal-value-expression 

Description: 
Shifts the contents of the R-register identified in the first operand left the number of 
bit positions specified in the internal value expression. The bit positions vacated by the 
shift are filled with binary O's. 

The contents of the I-register are affected as follows: 

o C-bit contains the last binary digit shifted out of the R-register. 

The internal value expression must be ~ 0 and ~ 15. 
If the internal value expression equals 0, the contents are shifted right the number 
derived by using the value in bits 12 through 15 of general register R 1 . 

SOR 

Instruction: 
Single-shift open-right 

Type: 
SHS 

Source Language Format: 

[:'sORll { ~~} ,internal-value-expression 

Description: 
Shifts the contents of the R-register identified in the first operand right the number of 
bit positions specified in the internal value expression. The bit positions vacated by the 
shift are filled with binary O's. 

The contents of the I-register are affected as follows: 

ASSEMBLY LANGUAGE INSTRUCTIONS 5-94 AU43 



SOR / SRM / SSB 

o C-bit contains the last binary digit shifted out of the R-register. 

The internal value expression must be ~ ° and ~ 15. 
If the internal value expression equals 0, the contents are shifted right the number 
derived by using the value in bits 12 through 15 of general register Rl. 

SRM 

Instruction: 
Store register masked 

Type: 
DO 

Source Language Format: 

{ 

$Rn, 
llSRMll X'n' ( 

n J 

,address-expression,mask 

Description: 
AND's the contents of the R-register identified in the first operand with the mask; 
AND's the contents of the location or R-register specified by the address expression 
with the complement of the mask; then inclusively OR's the values obtained from the 
two AND's. Then, stores the result in the second operand. 

See the AND and OR instructions described in this section. 

If the mask =0, the contents of Rl are used in place of the mask. 

The address expression can take any of the forms described earlier in this section under 
"Addressing Techniques," except for the following. 

:~ ~~ } register addressing 

Short displacement addressing 
Specialized addressing 

SSB 

Instruction: 
Scientific subtract 

Type: 
DO 

Source Language Format: 

{
$sn} 

llSSBll ;'n' ,address-expression 

ASSEMBLY LANGUAGE INSTRUCTIONS 5-95 AU43 



SSB / SST 

Description: 
Subtracts the contents of the location, scientific accumulator, or R-register identified 
in the second operand from the contents of the scientific accumulator specified in the 
first operand. The result "is saved in the scientific accumulator. 

If the Scientific Instruction Processor (SIP) is not installed on this system, ,the 
Floating-Point Simulator is entered via trap vector 3. $SI is the only scientific 
accumulator register supported by the simulator. 

The address expression can take any of the forms described earlier in this section under 
"Addressing Techniques," except for the following: 

=$Bn register addressing 
Short displacement addressing 
Specialized addressing 

If register addressing is used, the valid forms are: 

=$R g \ 
=$Sn 

=$Sn 

If =$R7 is specified, the 32-bit value contained in the 
register pair formed by R6 and R7 becomes the operand. 

If immediate operand addressing is used, you must provide a floating-point constant or 
string constant in suitable floating-point format. 

If the second operand is an R-register, the integer value contained in the specific 
R-register is internally converted to floating-point format before it is subtracted from 
the S-register specified by the first operand. 

Scientific Indicator Settings: 
EU: Set to 1 on exponent underflow; otherwise, set to O. 
PE: Set to 1 if nonzero bits are lost during right shift; otherwise, set to O. 

SST 

Instruction: 
Scientific store 

Type: 
DO 

Source Language Format: 

{
$sn} 

.6SST.6 ;'n' ,address-expression 

ASSEMBLY LANGUAGE INSTRUCTIONS 5-96 AU43 



SST / ss" 
Description: 
Stores the contents of the scientific accumulator identified in the first operand in the 
location, scientific accumulator, or R-register specified in the address expression. 

If the Scientific Instruction Processor (SIP) is not installed on this -system, the 
Floating-Point Simulator is entered via trap vector 3. $Sl is the only scientific 
accumulator register supported by the simulator. 

The address expression can take any of the forms described earlier in this section under 
"Addressing Techniques," except for the following: 

=$ Bn register addressing 
Short displacement addressing 
Specialized addressing 

If register addressing is used, the valid forms are: 

=$Sn 

=$~n 

If =$R7 is specified, the 32-bit value contained in the 
register pair formed by R6 and R 7 becomes the operand. 

If immediate operand addressing is used, you must provide a floating-point constant or 
string constant in suitable floating-point format. 

If the second operand is an R-register, the floating-point value contained in the specific 
scientific accumulator is converted to integer format before it is stored into the 
specified R -register. 

Scientific Indicator Settings: 
EU: Set to 1 on exponent underflow; otherwise, set to O. 
SE: Set to I if resultant floating-point value has a zero fraction; otherwise, set to O. 
PE: Set to 1 if nonzero bits are lost during right shift; otherwise, set to O. 

SSW 

Instruction: 
Scientific swap 

Type: 
DO 

Source Language Format: 

{$sn} 
D.SSW D. ;'n' ,address-expression 

Description: 
Swaps the contents of the scientific accumulator identified in the first operand with 

ASSEMBLY LANGUAGE INSTRUCTIONS 5-97 AU43 



ssw / STB 

the contents of the location, scientific accumulator, or R-register specified in the 
address expression. 

If the Scientific Instruction Processor (SIP) is not installed on this system, the 
Floating-Point Simulator is entered via trap vector 3. $Sl is the only scientific 
accumulator register supported by the simulator. 

The address expression can take any of the forms described earlier in this section under 
"Addressing Techniques," except for the following: 

=$Bn register addressing 
Short displacement addressing 
Specialized addressing 

If register addressing is used, the valid forms are: 

=$R tl } 
=$Sn 

=$Sn 

If immediate operand addressing is used, you must provide a floating-point constant or 
string constant in suitable floating-point format. 

If an R-register is specified as the second operand, the value specified by the first 
operand is internally converted to integer format, and the value specified by the second 
operand is internally converted to floating-point. These converted values are then 
interchanged. 

=$Rn} . t dd . =$Sn regIs er a ressmg 

Short displacement addressing 
Specialized addressing 
Immediate operand addressing with an internal value expression 

Scientific Indicator Settings: 
EU: Set to 1 on exponent underflow; otherwise, set to O. 
SE: Set to 1 if resultant floating-point value has a zero fraction; otherwise, set to O. 
PE: Set to 1 if nonzero bits are lost during right shift; otherwise, set to O. 

STB 

Instruction: 
Store B-register 

Type: 
DO 

Source Language Format: 

ASSEMBLY LANGUAGE INSTRUCTIONS 5-98 AU43 



STB / STH 

L'lSTBLl {~~:'} ,address-expression 

Description: 
Stores the contents of the B-register identified in the first operand in the location or 
B-register identified in the address expression. 

The address expression can take any of the forms described earlier in this section under 
"Addressing Techniques," except for the following: 

=$Rn} . t dd . =$ Sn regIs er a ressIng 

Short displacement addressing 
Specialized addressing 
Immediate operand addressing with an internal value expression 

STH 

Instruction: 
Store R-register halfword (byte) 

Type: 
DO 

Source Language Format: 

LlSTII.Ll {~~n~} ,address-expression 

Description: 
Stores the rightmost byte of the R-register identified in the first operand into the 
location specified in the address expression as follows: 

o If the address expression specifies the =$Rn addressing form, the byte is stored 
in the rightmost byte of the specified R-register. 

o If the address expression specifies memory addressing without indexing, the byte 
is stored in the leftmost byte of the word found at the specified location. 

o If the address expression specifies memory addressing with indexing, the index 
register is aligned to count bytes relative to the leftmost byte of the word 
specified. The R-register byte is thus stored in the memory byte thus addressed. 

The address expression can take any of the forms described earlier in this section under 
"Addressing Techniques," except for the following: 

:~~~} register addressing 

Short displacement addressing 
Specialized addressing 

ASSEMBLY LANGUAGE INSTRUCTIONS 5-99 AU43 



STM / STR 

STM 

Instruction: 
Store M-register 

Type: 
DO 

Source Language Format: 

{
$Mn} 

.6.STM.6. ;'n' ,address-expression 

Description: 
Stores the 8-bit M-register identified in the first operand in the right half-word of the 
location or R-register specified in the address expression; the left half-word of the 
location is filled with l's. 

The address expression can take any of the forms described earlier in this section under 
"Addressing Techniques," except for the following: 

=$Bn} . t dd . =$Sn regt.s er a ressmg 

Short displacement addressing 
Specialized addressing 

STR 

Instruction: 
Store R-register 

Type: 
DO 

Source Language Format: 

{ 
$Rn} 

.6.STR.6. ;'n' ,address-ex pression 

Description: 
Stores the contents of the R-register identified in the first operand in the location 
identified in the address expression. 

The address expression can take any of the forms described earlier in this section under 
"Addressing Techniques," except for the following: 

=$Bn} . dd . =$Sn regIster a ressIng 

Short displacemen t addressing 
Specialized addressing 

ASSEMBLY LANGUAGE INSTRUCTIONS 5-100 AU43 



STS / SUB 

STS 

Instructions: 
Store S-register 

Type: 
SO 

Source Language Format: 
~STS~address-expression 

Description: 
Stores the contents of the system status (s) register in the location or R-register 
identified in the address expression. 

The address expression can take any of the forms described earlier in this section under 
"Addressing Techniques," except for the following: 

-$B~ ) :$ S~ f register addressing 

Short displacement addressing 
Specialized addressing 

SUB 

Instruction: 
Subtract from R-register 

Type: 
DO 

Source Language Format: 

lISUBL1 {~~ } ,address-expression 

Description: 
Subtracts the contents of the location or R-register identified in the address expression 
from the contents of the R-register specified in the first operand. The result is saved in 
the first operand R -register. 

The address expression can take any of the forms described earlier in this section under 
"Addressing Techniques," except for the following: 

:~~~} register addressing 

Short displacement addressing 
Specialized addressing 

ASSEMBLY LANGUAGE INSTRUCTIONS 5-101 AU43 



SUB / SWB / SWR 

The contents of the I-register are affected as follows: 

o If the result is more than 215 -1 (32767) or less than _2 15 (-32768), the OV-bit is 
set to 1; otherwise, it is set to O. 

o If, during the subtraction, a carry occurs, the C-bit is set to 1; otherwise, it is set 
to O. 

SWB 

Instruction: 
Swap B-register 

Type: 
DO 

Source Language Format: 

lISWBt. {~~:'} ,address-expression 

Description: 
Swaps the contents of the B-register identified in the first operand with the contents of 
the location or B-register specified in the address expression. 

The address expression can take any of the forms described earlier in this section under 
"Addressing Techniques," except for the following: 

:~~ } register addressing 

Short displacement addressing 
Specialized addressing 
Immediate operand addressing with an internal value expression 

SWR 

Instruction: 
Swap R -register 

Type: 
DO 

Source Language Format: 

lISWM {~~:.} ,address-expression 

Description: 
Swaps the contents of the R-register identified in the first operand with the contents of 
the location or R-register specified in the address expression. 

ASSEMBLY LANGUAGE INSTRUCTIONS 5-102 AU43 



SWRjWDTFjWDTNjXOH 

The address expression can take any of the forms described earlier in this section under 
"Addressing Techniques," except for the following: 

:~~~} register addressing 

Short displacement addressing 
Specialized addressing 
Immediate operand addressing 

WDTF 

Instruction: 
Watchdog timer off 

Type: 
GE 

Source Language Format: 
f1WDTFf1 

Description: 
Disables the watchdog timer interrupt (i.e., level I interrupt). 

The P-bit in the S-register must be set to I (i.e., the central processor must be in the 
privileged state) for this instruction to be executed. If not, the unprivileged use of a 
privileged operation is signified by a trap to trap vector 13. 

WDTN 

Instruction: 
Watchdog timer on 

Type: 
GE 

Source Language Format: 
~WDTN~ 

Description: 
Enables watchdog timer interrupt (i.e., level 1 interrupt). 

The P-bit in the S-register must be set to 1 (i.e., the central processor must be in the 
privileged state) for this instruction to be executed. If not, the unprivileged use of a 
privileged operation is signified by a trap to trap vector 13. 

XOH 

Instruction: 
Half-word (byte) exclusive OR with R-register 

Type: 
DO 

ASSEMBLY LANGUAGE INSTRUCTIONS 5-103 AU43 



XOH!XOR 

Source Language Format: 

MOHf'. {~~ } ,address-expression 

Description: 
Exclusively OR's the contents of the R-register identified in the first operand with the 
contents of the byte specified in the address expression. 

Prior to the operation, the byte operand is internally expanded to word length by 
extending the sign through the eight high-order bit positions. The byte selected to 
participate in the operation is determined by the format of the address expression, as 
follows: 

o Register Addressing (=$Rn): The rightmost byte of the register is selected. 
o Memory Addressing Without Indexing; Immediate Memory Addressing: The 

leftmost byte of the word at the designated memory address is selected. 
o Memory Addre~sing With Indexing: The memory address indicates a starting 

point. The index register contains an arithmetic value to be added to the starting 
point. The value specifies the number of bytes before or after the starting point 
needed to reach the byte selected for the operation. 

The following chart illustrates the result of exclusively ORing bits: 

First operand bit: 0 a 1 1 

Second operand bit: 1 a 1 a 

Result: 1 a a 1 

The address expression can take any of the forms described earlier in this section under 
"Addressing Techniques," except for the following: 

=$ Bn register addressing 
=$Sn 
Short displacement addressing 
Specialized addressing 

XOR 

Instruction: 
Exclusive OR with R-register 

Type: 
DO 

Source Language Format: 

{
$Rn} 

LDCOM ;'n' ,address-expression 

ASSEMBLY LANGUAGE INSTRUCTIONS 5-104 AU43 



Description: 
Exclusively OR's the contents of the R-register identified in the first operand with the 
contents of the location or R-register specified in the address expression. The result is 
saved in the first operand R-register. 

The following chart illustrates the result of exclusively ORing bits: 

First operand bit: a a 1 1 

Second operand bit: 1 a 1 a 

Resu It: 1 0 0 1 

The address expression can take any of the forms described earlier in this section under 
"Addressing Techniques" except for the following: 

:~~~} register addressing 

Short displacement addressing 
Specialized addressing 

ASSEMBLY LANGUAGE INSTRUCTIONS 5-105 

XOR 

AU43 





SECTION 6 

MACRO FACILITY 

The Macro Preprocessor is a program development tool that provides a ~onvenient 
method for including in a source module specified sequences of statements that are 
specified in a macro routine. 

A macro routine is a block of source code that is written only once and can be 
included multiple times within a given source module. A single statement, known as a 
macro call, is specified in the source module each time the sequence of statements is to 
be included. A source module containing one or more macro calls is called an 
unexpanded source module. Macro routines can be at the beginning of a source module 
or in a macro library; those occurring within a source module are called inline macro 
routines. 

NOTE: Honeywell provides a library of macro routines that support MLCP 
programming. (See the Software Overview and System Conventions, and 
the MLCP Programmer's Reference Manual.) 

The Macro Preprocessor produces an expanded source module which is used as 
input to the Assembler. The expanded source module may contain an error flag for 
each nonfatal error. 1 (Nonfatal error flags are described in Appendix F.) If a fatal error 
occurs, processing terminates, an error message is issued through the system console, 
and control returns to the Command Processor.· (Error messages issued by the Macro 
Preprocessor are described in the Operator's GUide.) 

ORDER OF STATEMENTS WITHIN A SOURCE MODULE 

Statements within a source module must be in the order listed below: 

1. TITLE assembler control statement. 
2. LIBM macro control statements and/or macro routines delimited by MAC and 

ENDM macro control statements. 
(Optional) LIST or NLST Assembler control statement. 

NOTE: LIBM statements, macro routines, and a LIST or NLST statement can 
be intermixed. 

3. Statements that constitute the body of the source module; includes macro calls. 
4. END Assembler control statement. 

Macro control statements and macro calls are described in this section. Assembler 
control statements are described in Section 4. 

MACRO ROUTINES 

A macro routine can be either generalized or specialized. A generalized macro 
routine causes a fixed expansion in the source module. A specialized macro routine 
permits specified values to be included in the expanded source module. 

1 The expanded source module includes error flags only if the IC argument was specified in the load command to the 
Command Processor. (See "Input to Command Processor Before Macro Preprocessor is Loaded" in Section 7 of 
the Program Development Tools manual.) 

MACRO FACILITY 6-1 AU43 



MAC / WITHOUT PARAMETERS / ENDM 

The following information is described below. 

o Creating a macro routine 
o Specializing a macro routine 
o Including protection operators 
o Situating a macro routine 

Creating a Macro Routine 
A macro routine must be preceded by a MAC macro control statement and 

followed by an ENDM macro control statement. 

MAC Macro Control Statement, Without Parameters 
Tne MAC statement assigns a name to a macro routine; it must immediately precede 

every macro routine. MAC must be the last entry on the source line, or it must be 
immediately followed by a comma and an optional comment. 

Format: 
ma cro-name.6MAC [ ,comment] 

macro-name 
Name of the macro routine; must be a valid symbolic name. To include the macro 
routine within a source module, specify the macro name in a macro call. 

NOTE: _ A macro routine can be specialized by including macro parameters in the 
MAC statement. (See "MAC Macro Control Statement, Including Param
eters" later in this section.) 

Contents of Macro Routine 
A macro routine can include: 

o Macro control statements, excluding MAC and ENDM 
o Macro functions 
o Assembler control statements, excluding END 
o Assembly language statements 

Macro control statements and macro functions are described in this section. Assembler 
control statements and assembly language statements are described in Sections 4 and 5, 
respectively. 

ENDM Macro Control Statement 
The ENDM statement designates the end of a macro routine, it must immediately 

follow each macro routine. 

Format: 
[label] .6ENDM 

label 
Symbolic name that identifies the ENDM statement. 

Specializing a Macro Routine by Parameter Substitution 
In a given macro routine, up to 35 different macro parameters can be referenced. 

Parameters are named PI to P9 and PA to PZ. Each parameter name must be preceded 

MACRO FACILITY 6-2 AU43 



ENDM / MAC WITH PARAMETERS 

by a substitution operator (question mark) to indicate that substitution will occur; i.e., 
a value will be substituted. 

Macro parameters can be assigned values in the MAC statement and/or in macro 
calls. 

When a macro call is specified, each macro parameter reference in the requested 
macro routine is replaced with the parameter's value. If a parameter was assigned a 
value in the MAC statement and then assigned a different value in the macro call, the 
value specified in the macro call is included. If no value was specified in the MAC 
statement or in the macro call, the parameter is equal to a null ASCII character string; 
i.e., ". 

MAC Macro Control Statement, Including Parameters 
The MAC statement assigns a name to a macro routine and optionally assigns values 

to macro parameters. 

Format: 
macro-name6MAC [6Pj [=V]] [, Pk[=V]] ... 

macro-name 

Pn 

=v 

Name of the macro routine being created; must be a valid symbolic name. 

Macro parameter name; can be PI to P9 or PA to PZ. Parameter names can be 
specified in any order. 

NOTE: It may be impossible to specify all parameters on one source line. 
Parameters can be continued on the next line by replacing the last comma 
with a semicolon. (See "Assembly Language Source Statement Formats" in 
Section 3.) 

Value of macro parameter; can be any alphanumeric characters. 

NOTE: To include a comma, space or horizontal tab as part of a parameter value, 
specify that character within apostrophes. 

If a value is not specified, the corresponding parameter remains equal to a null 
ASCII character string. 

Example: 

This example illustrates an unexpanded source module that inclll:des a MAC statement 
with parameters. The resulting expanded source module includes those parameter 
values. 

Unexpanded source module: 

TITLE EXMPL 

SAMPLE MAC P3=5; 
PB= 16. 1 

LDV$Rl =?P3} 

LOR $R2=?PB 

FINI ENDM 

SAMPLE 

MACRO FACILITY 

Designates beginning of macro routine and 
assigns values to parameters P3 and PB 

Statements to be included in source module 

Designates end of macro routine 

Macro call requesting macro routine named 
SAMPLE 

6-3 AU43 



MAC WITH PARAMETERS 

Expanded source module: 

TITLE EXMPL 

LDV $Rl -5 } . ,- Macro call replaced by contents of macro 
LOR $R2,='6,' routine named SAMPLE 

Protection Operators 
Protection operators are brackets; they enclose one or more characters that are not 

to be interpreted by the Macro Preprocessor. Protection operators can be included in 
macro routines and/or in statements that constitute the body of a source module. 

NOTE: Brackets illustrated in each command's Format are not protection 
operators; they enclose optional characters. 

Example: 

This example illustrates an unexpanded source module, which includes protection 
operators, and the resulting expanded source module. 

Unexpanded source module: 

TITLE EXMPL 

SAMPLE MAC P7=3 

NEWA[?]P7 

NEWB ?P7 

ENDM 

[SAMPLE] 

SAMPLE 

Designates ·beginning of macro routine and 
assigns value to parameter P7 
Substitution operator will not be inter
preted by Macro Preprocessor, so no value 
will be substituted 
Reference to P7 will be replaced with its 
value 
Designates end of macro routine 

Not interpreted as macro call because name 
of macro routine is enclosed within protec
tion operators 
Macro call; in the expanded source module 
will be replaced by contents of macro rou
tine named SAMPLE 

Expanded source module: 

MACRO F ACJLITY 

. TITLE EXMPL 

SAMPLE 

NEWA ?P7] 

NEWB 3 
Contents of macro routine named SAMPLE 

6-4 AU43 



MAC WITH PARAMETERS 

Protection operators cannot extend over operand or argument delimiters; to protect 
adjacent operands or arguments, enclose each one individually in brackets. 

Example 1: 

FOO~[AB] ,[CD] 

The above macro call FOO designates that parameter PI equals [AB] and parameter P2 
eq uals [CD] . 

Example 2: 

FOO~[AB,CD ] 

The above macro call FOO is not equivalent to the macro call illustrated in example 1. 
The macro call in example 2 specifies that parameter PI equals [AB and parameter P2 
equals CD] . 

If any part of a label or operation code is protected, the entire label or operation 
code is protected. 

Example: 

LAB[EL]LD[R] ~$RI,=IOO 

The above statement is considered to have label and operation code. 

Protection operators do not appear in expanded source modules unless the 
operators are embedded in other protection operators. Embedded protection operators 
are removed from the expanded source module only if that module is reprocessed by 
the Macro Preprocessor. One level of embedded protection operators is removed each 
time the expanded source module is reprocessed. 

Example 1: 

NEWA[?] P7 

The above statement would appear in the expanded source module as NEW A ?P7. 

Example 2: 

DC A [BC[DEF] GHJ I' 

The above statement would appear in the expanded source module as 
DC'A BC [DEF] GHI '. Only the outermost protection operators are removed, unless 
the expanded source module is then reprocessed by the Macro Preprocessor. 

Situating Macro Routines 
Macro routines can be in the source module in which they are requested by macro 

call(s) and/or in macro libraries on a diskette volume. A macro library is a partitioned 
file whose members are macro routines. Each member must be a single macro routine 
that is referenced in a macro call by its member name. Its member name must be 
identical to the label of its MAC statement. There can be multiple macro libraries, but 
all libraries must be on the same diskette volume. 

MACRO FACILITY 6-5 AU43 



MAC WITH PARAMETERS / LIBM 

All macro routines within a source module must be at the beginning of the module. 
(See "Order of Statements Within a Source Module" earlier in this section.) 

To place a macro routine in a macro library, use the Editor insert command or the 
XF command of Utility Set 2. (These commands are described in the Program 
Development Tools manual and the Utility Programs manual, respectively.) 

If the source module to be processed by the Macro Preprocessor includes macro 
calls that request library-resident macro routines, before loading the Macro Preproc
essor you must specify in an AT 06 command to the Command Processor the volume 
name of the diskette that contains macro libraries. (See "Input to Command Processor 
Before Macro Preprocessor is Loaded" in Section 7 of the Program Development Tools 
manual.) A LIBM statement must be included in the source module for each macro 
library that contains macro routines that will be requested in that module. 

LIBM Macro Control Statement 
The LIBM statement specifies the name of a macro library and indicates whether all 

or only specified macro routines in that library will be made available so that they can 
be requested in subsequent macro calls. If applicable, you must specify LIBM 
statement(s) at the beginning of the source module. 

Format: 
LIBM6library [,macro-name] ... 

library 
Name of the macro library that contains macro routine(s). 

macro-name 
Name(s) of macro routine(s) in the macro library that may be requested in macro 
call(s); must be a valid symbolic name. The names must be different from the names 
of inline macro routines. If the same name is specified, the inline macro routine is 
used. 

Default: All macro routines in the specified macro library may be included in the 
expanded source module by subsequent macro calls. 

MACRO CALLS 

A macro call is a statement that causes a specified macro routine to be included in 
the source module and optionally assigns or reassigns values to parameters in that 
macro routine. The macro routine is included in the expanded source module at the 
location of the macro call. 

If a parameter is assigned a value only in the macro call or in both the macro call 
and the MAC statement, the value in the macro call is used. If a parameter is not 
assigned a value in the macro call but it was assigned a value in the MAC statement, 
that value is used. If it was not assigned a value in either location, its default value is a 
null ASCII character string. 

If no parameter values are included in a macro call, the macro-name must be the last 
entry on the source line, or it must be immediately followed by a comma and an 
optional comment. 

Format: 
[labe1]6macro-name[6P1 -value[, [P2 -value] J ... J 

label 
Symbolic name that identifies the macro call. 

MACRO FACILITY 6-6 AU43 



macro-name 
Name of the macro routine to be included in the expanded source module; this 
name must correspond to a name designated in a MAC macro control statement. 

P n-value 
Value of macro parameter; can be any alphanumeric characters. 

NOTE: To include a comma, space, or horizontal tab as part of a parameter value, 
specify that character within apostrophes. 

In a macro call, parameters are positional; i.e., their values must be specified so that 
they correspond to parameters PI to P9 and PA to PZ. A comma must be specified 
for each parameter whose value is not specified. All parameters beyond the last 
specified parameter's value are considered to be omitted. 

NOTE: It may be impossible to specify all parameter values on one source line. 

Example: 

Parameter values can be continued on the next line by replacing the last 
comma with a semicolon. (See "Assembly Language Source Statement 
Formats" in Section 3.) 

This example illustrates an unexpanded source module in which parameters are 
assigned values only in a MAC statement, only in a macro call, and in both a MAC 
statement and a macro call. The resulting expanded source module illustrates the 
inclusion of the macro routine and the appropriate parameter values. 

Unexpanded source module: 

TITLE MCl 

SAMPLE MAC P3=1,P5=8 Designates beginning of macro routine 
and assigns values to parameters P3 
and P5 

DC ?P3,?P2 

* NEWB?P5 

FINI ENDM Designates end of macro routine 

NUVAl SAMPLE ,2",5 1,15 Macro call that assigns value to 
parameter P2, and assigns different 
value to parameter P5; i.e., P2 
equals 2, and P5 equals 51,15 

Expanded source module: 

TITLE MCl 

DC 1,2 

* NEWB5 1, 15 

MACRO FACILITY 

First parameter value was assigned in 
MAC statement; second parameter value 
was assigned in macro call 

Since different values were assigned to 
P5 in the MAC statement and in the macro 
call, the value in the macro call is 
used 

6-7 AU43 



Nested Macro Call 
A nested macro call is a macro call that occurs within a macro routine. Whenever a 

nested macro call is encountered, processing of the current macro routine stops; i.e., all 
of its macro parameters are saved, and the' nested macro call is processed. The nested 
macro call has its own macro parameters. After the nested macro call is processed, 
processing of the previous macro routine resumes at the point of termination. 

Macro calls may be nested to as many levels as memory permits. Each level consists 
of one macro routine that calls another. For example, if macro routine A contains a 
macro call to macro routine B, one level of nesting exists. If macro routine B contains a 
macro call to macro routine C, two levels of nesting exist. 

Example: 

This example illustrates an unexpanded source module that contains a nested macro 
call and the resulting expanded source module. 

Unexpanded Source Module 

TITLE NSTD 
MACROl MAC 

NEWA 
NEWB 
ENDM 

MACR02 MAC 
NEWX 
NEWY 
MACROl 
NEWZ 
ENDM 

MACR02 

Nested macro call 

Macro call 

Expanded Source Module 

TITLE NSTD 

NEWX 
NEWY 
NEWA} 
NEWB Contents of nested macro call 
NEWZ 

Recursive Macro Calls 
A recursive macro call is a nested macro call that calls either the routine within 

which the call is located or another routine in the nest that eventually calls the original 
routine. A recursive macro call must be designed to reach its ENDM statement exactly 
once per call to it. An example of a recursive call is the case in which a macro routine 
processes parameter I and then if parameter 2 is present, calls itself with ?P2 for 
parameter I, ?P3 for parameter 2, etc.; that is, each parameter has been shifted one 
position left. A recursive macro call is processed the same as any other nested macro 
call. The depth of recursion is limited only by the amount of memory available to the 
Macro Preprocessor. 

MACRO FACILITY 6-8 AU43 



CONTROLLING EXPANSIONS 

When a macro call requests a given macro routine, it need not always result in the 
same expansion. Values in that routine may vary, and the statements to be included in 
the source module may vary. This flexibility is accomplished by including macro 
variables and conditional macro control statements in the macro routine. 

Macro Variables 
There are two types of macro variables: local and global. A local variable can be 

assigned a value only in the macro routine in which it is referenced. A global variable 
can be assigned a value anywhere in the source module; e.g., in the macro routine in 
which it is referenced, in any other macro routine in the source module, or in 
statements that constitute the body of the source module. 

Variables have fixed names; oI1-ly their values can be altered. Global variables are 
named G 1 to G9 and GA to GZ. Local variables are named LI to L9 and LA to LZ. To 
designate in a macro routine that substitution will occur, precede each variable name 
with a substitution operator (question mark); e.g., ?Gl. When the macro routine is 
processed, the Macro Preprocessor will replace each reference to a variable with its 
value. 

A variable can be assigned an alphanumeric or numeric value by specifying the 
SETA or SETN macro control statement, respectively. 

SET A Macro Control Statement 
The set alphanumeric macro control (SETA) statement assigns an alphanumeric 

value to a local or global macro variable. If you assign a value to a variable and then 
redefine the variable in a subsequent SETA or SETN statement, the last value specified 
is used.2 

When assigning a value to a global macro variable, you can specify SETA anywhere 
within the source module. When assigning a value to a local macro variable, you must 
specify SETA in the macro routine in which the variable is referenced. 

Format: 
variable6SET A value 

variable 
Name of the local or global macro variable that is being assigned a value; must be LI 
to L9, LA to LZ, GI to G9, or GA to GZ. 

value 
Must be alphanumeric. (See "Designating Alphanumeric Values" at the end of this 
section.) 

Example: 

This example illustrates an unexpanded source module in which macro variables are 
assigned values in SETA statements. The resulting expanded source module includes 
those macro variable values. 

2When a nested macro call is encountered, values of local variables, and parameters in the current macro routine are 
saved and are still applicable after the nested macro call is processed. 

MACRO FACILITY 6-9 

SETA 

AU43 



SETA / SETN 

Unexpanded source module: 

TITLE VALUE 

SAMPLE MAC Designates beginning of macro routine 

L4 SETA DE Assigns value to L4 
L5 SETA BC Assigns value to L5 
L4 SETA IA"I?L5,[12 1] Assigns different value to L4 

DC ?L4 

ENDM Designates end of macro routine 

SAMPLE Macro call 

Expanded source module: 

TITLE VALUE 

DC ABC,121 Last value specified for L4 is used; 
apostrophes included only if they 
were enclosed within protection 
operators 

Apostrophes Within SETA Statements 
The operand of the SETA statement begins at the first character after the operation 

code that is neither a blank, horizontal tab, nor] (close protection) character. The 
operand terminates at the end of the statement or at the first blank or horizontal tab 
not within apostrophes after the beginning of the operand. 

Unprotected apostrophes within the operand of the SETA statement are not 
considered part of the variable's value and are removed from the operand before the 
operand's value is assigned to the macro variable. For example: 

G66SETMXYZ'6'123 
GT6SETA6XYZ['6'] 123 

assigns the value XYZ6123 to the global variable G6 
assigns the value XYZ ['6'] 123 to the global variable 
GT 

SETN Macro Control Statement 
The set numeric macro control (SETN) statement assigns a numeric value to a local 

or global macro variable. If you assign a value to a variable and then redefine the 
variable in a subsequent SETN or SETA statement, the last value specified is used. 3 

When assigning a value to a global macro variable, you can specify SETN anywhere 
within the source module. When assigning a value to a local macro variable, you must 
specify SETN in the macro routine in which the variable is referenced. 

3 When a nested macro call is encountered, values of local variables and parameters in the current macro routine are 
saved and are still applicable after the nested macro call is processed. 

MACRO FACILITY 6-10 AU43 



Format: 
variable.6.SETN value 

variable 
Name of the local or global macro variable that is being assigned a numeric value; 
must be LI to L9, LA to LZ, GI to G9, or GA to GZ. 

value 
Must be numeric. (See "Designating Numeric Values" at the end of this section.) 

The operand of the SETN statement begins at the first character after the operation 
code that is neither a blank nor a horizontal table. The operand terminates at the end 
of the statement or at the first blank or horizontal tab not within apostrophes after the 
beginning of the operand. For example: 

G L.6.SETN.6.2 2+8 
GA.6.SETN.6.6+' .6.0' 

Example: 

assigns the value 30 to the global variable GL. 
assigns the value.6.6 (2036 in hexadecimal) to the global 
variable GA. 

This example illustrates an unexpanded source module in which macro variables are 
assigned values in SETN statements. The resulting expanded source module includes 
those macro variable values. 

Unexpanded source module: 

TITLE EXMPL 

SAMPLE MAC 

L5 SETN 3 

Designates beginning of macro routine 

Assigns value to L5 

L6 SETN 2*(?L5*?G2}+1 Assigns value to L6 

DC ?L6 

FIN! ENDM 

G2 SETN 2 

SAMPLE 

Expanded source module: 

TITLE EXMPL 

DC 13 

Designates end of macro routine 

Assigns value to G2 

Macro call 

Conditional Macro Control Statements 
Conditional macro routine that covers many situations. Depending on the 

conditions at a given time, only certain statements are processed. 

MACRO FACILITY 6-11 

SETN 

AU43 



SETN / FAIL / GOTO / IF 

Conditional macro control statements are listed and described below: 

o FAIL 
o GOTO 
o IF 
o NULL 

FAIL Macro Control Statement 
The FAIL statement is used to ensure that conditions are logically consistent; it 

does not affect expansions. The Macro Preprocessor issues a Z error flag for each FAIL 
statement. 

Format: 

[label] 6FAIL 

label 
Symbolic name that identifies FAIL statement. 

NOTE:: If an assembly control FAIL statement is desired within a macro routine, it 
must be protected. 

GOTO Macro Control Statement 
The GOTO statement causes the Macro Preprocessor to stop processing the macro 

routine or to resume processing at a specified statement. The statement at which 
processing will resume can be in any location within the macro routine; i.e., it need not 
be subsequent to the GOTO statement. 

Format: 

[label] 6GOT06 { * } 
skip-label 

label 

* 
Symbolic name that identifies the GOTO statement. 

Causes Macro Preprocessor to stop processing the macro routine; i.e., the current 
line is considered an ENDM macro control statement. Processing resumes at the 
statement that follows the current macro call. 

skip-label 
Symbolic name of statement at which Macro Preprocessor should resume 
processing. 

IF Macro Control Statement 
The IF statement causes the Macro Preprocessor to evaluate characters in either one 

or two operands to determine if a specified condition exists. If the condition exists, the 
Macro Preprocessor stops processing the macro routine or resumes processing at a 
specified statement that is subsequent to the IF statement. If the condition does not 
exist, the next sequential instruction is processed. 

MACRO FACILITY 6-12 AU43 



Formats: 
Evaluating characters in one operand: 

[label] ~IF {
P} . 

[N] N * 
aDZ l'.operand, {SkiP-label} 

EV 

label 
Symbolic name that identifies the 'IF statement. 

[N]P 
(Not) positive. 

[N]N 
(Not) negative. 

[N] Z 

(Not) zero. 

OD 
Odd. 

EV 
Even. 

operand 
Character(s) being evaluated; must be numeric. (See "Designating Numeric Values" 
at the end of this section.) 

* 
If condition in IF statement is true, causes Macro Preprocessor to stop processing 
macro routine; i.e., the current line is considered an ENDM macro control 
statement. Processing resumes at the statement that follows the current macro call. 

skip-label 
If condition in IF statement is true, designates symbolic name of statement at 
which Macro Preprocessor should resume processing. 

Comparing characters in two operands: 

[Ia belll'.IF [N 1 {~} l'.operan d 1 , operand2 , { :kiP-la bel} 

label 
Symbolic name that identifies the IF statement. 

[N]G 

(N ot) greater than. 

[N]L 

(Not) less than. 

[N]E 
(Not) equal to. 

MACRO FACILITY 6-13 

IF 

AU43 



IF 

operand I operand2 

* 

Character strings being compared; must be alphanumeric. (See "Designating 
Alphanumeric Values" at the end of this section.) 
Starting with the leftmost character, the Macro Preprocessor compares each 
character in operandI to the character in the corresponding position in operand2 . 

The characters - are compared until either a pair of unequal characters is 
encountered, or all of the characters have been compared. If the operands are 
different lengths, the rightmost characters of the shorter operand are considered to 
be ASCII blanks. (Table 2-2 describes the hexadecimal values of ASCII characters.) 

If condition in IF statement is true, causes Macro Preprocessor to stop processing 
macro routine; i.e., the current line is considered an ENDM macro control 
statement. Processing resumes at the statement that follows the current macro call. 

skip-label 
If condition in IF statement is true, designates symbolic name of statement that 
Macro Preprocessor should process next. 

NOTE: If an assembly control IF statement is desired within a macro routine, it 
must be protected. 

Example 1- Evaluating characters in one operand: 

Unexpanded Source Module: 

TITLE CONDl 

BGN MAC 

I FOU 1, TAGl 

[FAll] 

TAGl DC 1 

IFOD 2.TAGl 

[FAIL] 

TAGl DCl 

FINI ENDM 

BGN 

Expanded Source Module: 

TITLE CONDl 

TAGl DC 1 

FAIL 

MACRO FACILITY 6-14 AU43 



IF / NULL 

TAGl DC 1 

Example 2-Comparing characters in two operands: 

Unexpanded Source Module: 

TITLE TWO 

INCL MAC 

IFE AB,AB,TAGl 

[FAIL] 

TAGl DC 1 

IFE AB,CD,TAGl 

[FAIL] 

TAGl DC 1 

FINI ENDM 

INCL 

Expanded Source Module: 

TITLE TWO 

TAGl DC 1 

FAIL 

TAGl DC 1 

NULL Macro Control Statement 
The NULL statement has no effect on the processing of macro routines. Processing 

continues with the next sequential instruction. 
This statement is often used to define a label referenced by an IF or GOTO 

statement. 

Format: 
[label] 6NULL 

MACRO FACILITY 6-15 AU43 



NULL 

label 
Name of the label being defined. 

NOTE: If an assembly control NULL statement is desired within a macro routine, 
it must be protected. 

MACRO FUNCTIONS 

Macro functions have the following capabilities: 

o Determine number of characters that are in a specified character string (AL 
function) 

o Convert a numeric value to its hexadecimal equivalent (CH function) 
o Search a character string for an embedded character string (IX function) 
o Determine which character· within a character string is the first character that is 

the first character of another character string (SR function) 
o Specify which characters within a character string should be included in the 

. source statement (SS function) 
o Permit parameters and variables to be referenced by their positions (V function) 
o Determine which character within a character string is the first character that is 

not in another character string (VR function) 

Macro functions can be specified in any location(s) of statements in macro routines. 
Within one statement there can be multiple macro functions; these functions can be 
nested. Nested macro functions are processed from the innermost function to the 
outermost function. 

Fonnat of Macro Functions 
Macro functions are described alphabetically on the subsequent pages. As indicated 

in their formats, each function is preceded by a substitution operator (question mark) 
and its arguments are enclosed within one set of parentheses. Most functions require 
that you specify either a numeric or an alphanumeric value. Methods of specifying 
these values are described at the end of this section under "Designating Numeric 
Values" and "Designating Alphanumeric Values." 

Macro functions require one, two, or (optionally) three arguments. 

First Argument 
The first argument of a macro function begins with the first character foilow.ipg the 

open parenthesis, ( , after the function name. For a macro function which accepts only 
a single argument, the argument is terminated with the first unprotected close 
parenthesis, ) , not enclosed within apostrophes. For a macro function which accepts 
more than one argument, the first argument is terminated by the first unprotected 
comma not enclosed within apostrophes. 

Examples: 

?AL(6XY(5)6) . 
?SS(AB6C',5',4 ) 

The argument to the AL function is 6XY(5)6. 
The first argument to the SS function is AB6C',5'. 

Middle Argument 
The middle argument of a macro function begins with the first character following 

the comma which terminated the previous argument and ends with the first 
unprotected comma not enclosed within apostrophes. 

MACRO FACILITY 6-16 AU43 



Example: 

?SS(AEIOU(Y),(12-2)/5,3) The middle argument to the SS function is (12-2)/5. 

Last Argument 
The last argument of a macro function begins with the first character following the 

comma which terminated the previous argument. The last argument is terminated by 
the first unprotected close parenthesis not within apostrophes following the macro 
function name. 

Examples: 

?IX(LM6')'P A')'P) 
?SS(AIB2C3D4,(1 +3)/2) 
?SS(AB[C,D] ,[C)]) 

The last argument to the IX function is 6')'P. 
The last argument to the SS function is (1 +3)/2. 
The last argument to the SS function is [C)] . 

Length Attribute Macro Function 
The length attribute (AL) function causes the Macro Preprocessor to designate the 

number of characters that are in a specified character string. If a null ASCII character 
string is specified, the Macro Preprocessor returns a zero. 

Format: 
?AL(arg) 

arg 
Character string whose length is to be determined; must be alphanumeric. 

Example: 

?AL(?L5+?P5) 

If variable L5 equals 2AB, and parameter P5 equals 5B, the above function will be 
replaced with 6. 

Hexadecimal Conversion Macro Function 
The hexadecimal conversion (CH) function converts a numeric integer constant to 

its hexadecimal equivalent. 

Format: 
?CH(argl ,arg2) 

argl 
Numeric value to be converted to hexadecimal. 

arg2 
Numeric value that specifies the format of the hexadecimal representation, as 
described below: 

Value of arg 2 

Not Specified 
o 

MACRO FACILITY 

Meaning 

Hexadecimal integer constant with no insignificant zeros. 
Value in argl is converted to an unsigned hexadecimal 
integer. The value returned is the ASCII representation of the 
significant digits of the unsigned hexadecimal integer. 

6-17 

AL/CH 

AU43 



CH fIX 

>0 

<0 

Examples: 

Condition 

arg2 not specified 
arg2 =0 
arg2 >0 
arg2 

Index Macro Function 

Hexadecimal integer constant. The value of arg2 designates 
the number of character positions; can be 1 to 4. 
The value specified in arg2 designates the number of 
character positions; can be -1 to -4. The value in argl is 
converted to an unsigned hexadecimal integer. The value 
returned is the ASCII representation of the specified number 
of characters. 

Function 
Specified Result 

?CH(10) X'A' 
?CH(10,0) A 
?CH(10,1) X'A' 
?CH(10,2) X'OA' 
?CH(10,3) X'OOA' 
?CH(10,4) X'OOOA' 
?CH(10,-l) A 
?CH(10,-2) OA 
?CH(10,-3) OA 
?CH(10,-4) OOOA 

The index (IX) function causes the Macro Preprocessor to search a specified 
character string for the occurrence of an embedded character string. 

Format: 
?IX(arg l ,arg2) 

argl 
Character string being searched; must be alphanumeric. 

arg2 
Embedded character string for which the Macro Preprocessor will search; must be 
alphanumeric. 

The value returned specifies the character position within argl of the first 
(leftmost) character of the embedded character string. If arg2 is not contained within 
argi or arg2 is a null ASCII character string (e.g., "), a zero is returned. 

Example: 

?IX(ABCDE5,CDE5) 

The above statement causes the Macro Preprocessor to search ABCDE5 for the 
character string CDE5. Since the embedded character string starts in the third character 
position of ABCDE5, the Macro Preprocessor replaces the index function with a 3. 

MACRO FACILITY 6-18 AU43 



Search Macro Function 
The search (SR) function causes the Macro Preprocessor to determine which 

character of a specified character string is the first (leftmost) character that is also 
included in another specified character string. 

Format: 
?SR(argl ,arg2) 

argl 
Character string that contains character(s) for which the Macro Preprocessor will 
look; must be alphanumeric. 

arg2 
Character string that will be searched in order to locate a certain character; must be 
alphanumeric. 

The Macro Preprocessor includes in the source module the character position of the 
leftmost character in argl that is also in arg2 . 

If argl or arg2 is a null ASCII character string, or if no characters in argl are also in 
arg2,-zero is returned. 

Example 1: 

?SR(CHARSUBSTRING,STRING) 

The above macro function causes the Macro Preprocessor to determine the leftmost 
character- of CHARSUBSTRING that is also in STRING. Since the character R is the 
leftmost character of CHARSUBSTRING that is also in STRING and it is in the fourth 
character position of CHARSUBSTRING, the macro function is replaced with 4. 

Example 2: 

?SR(FAB2,'BCAI ') 

The above macro function causes the Macro Preprocessor to determine the leftmost 
character of F AB2 that is also in 'BCA1'. Since A is the leftmost character in F AB2 
that is also in 'BCAl', and it is in the second character position of FAB2, the macro 
function is replaced with 2. 

Example 3: 

?SR(BA3 ,?L 1 ) 

The above macro function causes the Macro Preprocessor to determine the leftmost 
character of BA3 that is also in local variable l. If Ll equals 23A, A is the first 
character that is also in Ll. Since A is in the second character position of BA3, the 
Macro Preprocessor includes 2 in the source statement. 

Substring Macro Function 
The substring (SS) function causes the Macro Preprocessor to include in the source 

statement a specified number of characters of a specified character string, beginning 
with the character that is in a specified character position. 

MACRO FACILITY 6-19 

SRI SS 

AU43 



SS IV 

Format: 
?SS(argl , arg2 [,arg3]) 

argl 
Character string that contains the characters to be included in the source statement; 
must be alphanumeric. 

arg2 
Character position of the first character in argl that is to be included; must be 
numeric. 

arg3 
Number of characters to be included. 

Default: The character whose character position was specified in arg2 ,and all 
subsequent characters of argl . 

If argl is a null ASCII character string, arg3 is ~ 0, or the value specified in arg2 is 
greater than the length of argl , a null ASCII character string is included in the source 
statement. 

Example I: 

?SS(?P2, ?LS ,3) 

If P2=ABCDE and LS=2, the above function designates that the source statement 
include three characters of ABCDE, starting with the character in the second character 
position. BCD would be included. 

Example 2: 

?SS(?P2, ?LS) 

If P2=ABCDE and LS=2, the above function designates that the source statement 
include all characters of ABCDE, starting with the character in the second character 
position. BCDE would be included. 

Example 3: 

G6 SETA ?SS(AB.6C',S',4) yields 
G6 SETA C',S' , which leaves C,S in G6. 

Vector Orientation Macro Function 
The vector orientation (V) function permits macro parameters and macro variables 

to be referenced by their positions rather than by their names. 

Format: 

P 
Parameter 

MACRO FACILITY 6-20 AU43 



L 
Lo cal variab Ie. 

G 
Global variable. 

arg 
Numeric value that identifies a parameter or variable; must be from I to 35. 

Example: 

?SS(?VP(10),2,3) 

The above function illustrates usage of the vector orientation function within a 
substring (SS) function. Tile function ?VP(10) identifies parameter PA. If PA= 
ABCDE, the above substring function is replaced with BCD. 

Verify Macro Function 
The verify (VR) function causes the Macro Preprocessor to specify which character 

in a specified character string is the first character that is not in another specified 
character string. 

Format: 
?VR(argl ,arg2 ) 

argl 
Character string that will be searched; must be alphanumeric. 

arg2 
Character string that contains the characters for which the Macro Preprocessor is 
going to look; must be alphanumeric. 

The Macro Preprocessor designates the character position of the leftmost character 
in argl that is not found in arg2. If arg 1 is a null ASCII character string, or if every 
character in argl occurs in arg2 , zero is designated. 

Example I: 

?VR(STRIN GSUBSTRIN G ,STRIN GCHARSTRING) 

The above macro function causes the Macro Preprocessor to specify the leftmost 
character in STRINGSUBSTRING that is not in STRINGCHARSTRING. Since U is 
the leftmost character in STRINGSUBSTRING that is not in STRINGCHARSTRING 
and it is in the eighth character position of STRINGSUBSTRING, the Macro 
Preprocessor replaces the function with 8. 

Example 2: 

?VR(?P3,?G5) 

If parameter P3 has a value of ABC3D, and global variable G5 has a value of AD3, the 
first character of P3 that is not in G5 is B, the second character of P3. Therefore, the 
Macro Preprocessor replaces the function with a 2. 

MACRO FACILITY 6-21 

V/VR 

AU43 



EXAMPLE ILLUSTRATING MACRO FACILITY 

Figure 6-1 illustrates a sample unexpanded source module and an Assembler listing 
of the resulting expanded source module. 

T 1 TU:. 

*INCLUDE IN-LINt ~ACkO ~UUTINEH. 
* 
POLY MAC 
*THIS MACku GlNERATlS CooE TO CUMPuTE 
*Y=X**N + X**(~-1) + ••• + x + 1. 
*X IS DESI~NATtD dY PA~AMtrER 1. 
*y IS DESIGNATED ~Y PA~A~tTER 2. 
*~ IS DESIGNATED ~Y PAHAMtTEH J. 

* l*J 
LOV ;liN 1 , 1 

G2 SUN 1PJ NUMdEk O~ FAcruRS. 
Tt::STN Hl lG2,STUREX COMPLETE? 
l*) 

FACTOR ?~l NO ••• NtSTED CALL ~UR ANUTHE~ FACTUR. 
(*] 
b2 SUN 16~-1 otC~EASE FACTOk COUIIITEH. 

GUru TEST I'll 

STO~O STH ~Kl,:P2 STO~E POL~NQMIAL VALUE. 
tNDM 

* 
* 
FACTOR MAC 

* *THIS MACHU GtNE~ATES CODE WHICH MULTIPLltS (~~1) BY T~E 
*CONTENTS 0F THE LUCATIU~ UESIGNATED ~Y PAHA~tTEH 1, ANU 
*AODS 1 TU THE Pr<OOUC T • 
* 

MUL $~l,?Pl 

AOv iH 1,1 
ENUM 

* 
* 
fVtOVE.R MAC P4=U 
* 
*THIS MACHO GE~EHATES C~UE ~HICH PtRFUH~S A "~EMOkY TO ME~ORY" 

*MOvE OF DATA. 
*IF PAHANllEH 4 IS NON-ltRO, THE. COUE. ~lLL MOvE dYTtS. 
*IF PARAMETtH 4 IS lE~u, THE COUE hILL MUVE ~URUS. (UEFAULT OPTION) • 
• PARAMETER 1 S~ECIFIES THE SOUHCE AOO~E~S • 
• PARAMETlH 2 SPECIFIES THE DESTINATION ~DD~E.SS. 
*PARAMETEH 3 SPECIFIES THE NUMbER OF U~lT~ (tiYTES Ok ~ORUS) TO MOvE. 
* IFNZ !P4,dYT~OV BYTES Ok ~OkUS? 

* *MOvE wORDS ••• 
LL SE.T A LUR USE LOCAL VARIARLES TO Dt:.FINE DES!wED OPCUDES. 
LS SETA ST~ 

GOTO SAME:. 

* *MOVE BrTE:.S ••• 
bYTMOV NULL 
LL SETA LDH 
LS SETA 5TH 

* SAME i~ULL 

[*1 
(*) 

.us~ VECIOH FUNCTION Tu Su~STITuTE ~AkA~ETE~&. 
LAd idl,1vP(1) 
LAb $~2,?VP(~) 

CL =$101 1 
*NtxT STATt~ENT ~ILL HAVE:. A UNI~uE LA~tL. 
NXT1Ll ?LL $R3,$~1.)~1 

1LS ~R3,$d2.+$kl 

*GET UNIT COUNT AS A HEX INTEGEH. 
CMH $~1,:iCH(1VP(3)) 

Figure 6-1. Sample Unexpanded Source Module and Assembler Listing of Resulting Expanded Source Module 

MACRO FACILITY 6-22 AU43 



.USE DEFAULT VALUE OF ~LOtiAL VARIABLt, ~1. 
aE >?Gl +2 
d >NXT?Ll 

.THE FULLU~lNG NULL IS FU~ THt ASSE.MbLt~. 

lNULLJ 

• 
• 
• MAKE 
• 
kl:.LZRO 

uSE 

l:NDM 

OF THE IN-LINE MAC~O UEFINITIUNS DEFINED ABOvE. • 

$Rl,2 
$Rl,X 

LDV 
STR 
POLY X,Y,~ COMPUTE y=x •• S+X •• 4+X •• 3+X •• 2+X+l, FOR X=2. 

• 
"'OvER AJ b,11,1 MOVE 11 BYTES FROM A TO b. 

• 
HLT 

X RESV 1 
Y RESV' 1 
A ~t.sv 20 
t:I t<ESV 20 

E~t) UStMAC,RELlRO 
EUF 

::ASSEM3LER LISTING OF RESULTING EXPANDEIJ SOURCE rvoDULE 

uSEMAC Lb ASSEMBLER-OlIO PAGE 0001 

000001 TITLE USEMAC 
000002 • 
000003 ·INCLUDE IN-LINE MACRO ROUTINES. 
000004 • 
000005 * 
000000 
000007 * 
000008 • 
000009 • 
000010 * 
000011 .MAKE USE OF THf:. IN-LINE MACRO DEFINITIONS DEFINED ABOVE. 
000012 * 000013 0000 lC02 kELlKO LDV ~R 1,2 
000014 0001 9F'40 001F SHe iR 1, X 
000015 * 
0000Ib 0003 1 COl LDV $1'<1,1 
000017 * 
00001~ 0004 90'40 00lC MUL $F< 1, X 
000019 0000 lEOl ADV iF< 1,1 
000020 * 
000021 * ooooa 0007 9d'40 0019 MUL $R 1, X 
000023 0009 1E.Ol ADV $R 1,1 
000024 * 000025 * 
000020 OOOA 9dLlO 0010 I-iUL ik1r X 
000027 oooe lEOl ADv 3>Rl,1 
00002d • 
000029 * 
000030 0000 9i:140 0013 MuL iRl,X 
000031 OOOF ItOl ADV $1<1,1 
000032 * 000033 * 
000\.134 0010 9640 0010 MUL iF< 1, X 
00003~ 0012 lE.01 AIJV $R 1,1 
000030 * 
000037 0013 9;; 40 OOOE: STOJ./Ex Sllo/ $R1,Y STORE POLYNu~IAL VALUE. 
000030 * 
000039 * 
OOOOqO * 
0000'41 0015 9bCO OOOu LAb ~81,A 

0000'42 0017 Adeo OOlF LAb $82,B 
00OOq3 0019 8751 CL =$Rl 
00OOQ4 OOlA b09l NXT007 LDH $R3,SlBl.SRl 
000045 0018 B7uE. STH $R3, $b2. UR 1 

Figure 6-1 (cont). Sample Expanded Source Module and Assembler Listing of Resulting Expanded Source Module 

MACRO FACILITY 6-23 AU43 



000040 OOlC 9Q70 
00U047 001t:: OQ02 
000048 OOlF OFFti 
000049 
000050 
000051 
000052 
000053 0020 OuOO 
000054 0021 
000055 0022 
0OOO5b 0023 
000057 0037 
00005t! 0041:3 0000 

0000 ERR COUNT 

OOOB eMf< 
BE 
B 
NULL 

I\' 

I\' 

I\' 

HU 
X RtSV 
y RES V 
A RESV 
B RES\! 

ENO 

$loll,:X'B' 
>$+2 
>NXT007 

1 
1 
20 
20 
USEMAC,RELZRO 

Figure 6-1 (cont). Sample Expanded Source Module and Assembler Listing of Resulting Expanded Source Module 

PROGRAMMING CONSIDERATIONS 

1. In an unexpanded source module, each macro control statement and each other 
type of statement that contains error flag(s} can comprise up to 74 characters. 
Each other line can comprise up to 80 characters. Subsequent characters are 
truncated. 

2. Input to the Macro Preprocessor may be either uppercase or lowercase 
characters. All lowercase characters in ASCII, hexadecimal, and bit string 
constants, and in hexadecimal integer constants remain lowercase characters; all 
other lowercase characters within the source module are converted to uppercase. 

3. When an expanded source module is assembled, the Assembler issues an error 
. flag for each statement that contains a null ASCII character string. 

4. If insufficient memory exists, memory can be conserved by: 
a. Assigning some or all macro routin~s to macro libraries. 
b. Limiting the level of nested macro calls. 
c. Limiting the size of macro parameter and variable values. 
d. Reducing attach table size. 
e. Including the OA argument in the load command to the Command Processor. 

(See the Program Development Tools manual.) 
f. Specifying in LIBM macro control statement only those macro routines that 

will be requested in subsequent macro calls. 

Initialized Values of Macro Variables 
Each local macro variable is initialized to be a null ASCII character string, except 

for the following: 

Ll 

L2 

L3 

Unique 3-character string. Each time there is a macro call, the value of Ll is 
incremented by 1; can be from 001 to ZZZ. This variable permits a statement in a 
macro routine to have a unique label each time the routine is requested in a macro 
call; e.g., if the label of a statement is SMP?Ll, the label would be SMPOOI the first 
time the routine is requested, and SMP002 the second time the routine is requested. 

Numeric value that designates the level of nesting in the current macro call. If the 
macro call does not include a nested macro call, L2 equals O. 

Numeric value that designates the number of the last parameter that was assigned a 
value in the current macro call. If the macro call does not include any parrmetrers, 
L3 equals O. 

MACRO FACILITY 6-24 AU43 



L4 
Label of the current macro call. If no label is specified, L4 equals a null ASCII 
character string. 

Global macro variable G 1 is initialized to equal $. Each other global variable is a 
null ASCII character string. These values remain in effect unless they are reassigned in 
SETA or SETN macro control statements. 

Designa ting Numeric Values 
When an operand or argument requires a numeric value, the value must be from 

-32768 to +32767. (See "Truncation/Padding of String Constants" in Section 2 to 
determine how characters are truncated, if necessary.) A numeric value can be specified 
as follows: 

o Decimal integer constant (e.g., 31764, +4652) 
o Hexadecimal integer constant (e.g., +X'2F' ,X'7000') 
o Substitution operator followed by macro variable name whose contents are the 

source language representation of a decimal or hexadecimal integer constant 
(e.g., ?G3, ?L4) 

o Substitution operator followed by macro parameter name whose contents are 
the source language representation of a decimal or hexadecimal integer constant 
(e.g., ?P2) 

o Substitution operator followed by a macro function that returns a numeric value 
o Expression that combines any of the above character strings by including 

arithmetic operators (e.g., 3 1 764+(?G3)) 

Designating Alphanumeric Values 
When an operand or argument requires an alphanumeric value, you can specify any 

type of alphanumeric character string, including the following: 

o Substitution operator followed by macro variable name 
o Substitution operator followed by macro parameter name 
o Substitition operator followed by macro function 
o Expression that combines any of the above character strings by specifying them 

adjacent to each other 

MACRO FACILITY 6-25 AU43 





APPENDIX A 

PROGRAMMER'S REFERENCE 
INFORMATION 

This appendix provides, in a summarized form, information about the internal 
representation of the assembly language instructions, the operations they perform, and 
other useful data for coding and debugging your program. 

SUMMARY OF HARDWARE REGISTERS 

Figure A-I is a list of Level 6 registers and their formats. The length of each register 
is shown in bits. 

Name Fo rma t 

Bit: 0 15 

Program Counter ADDRESS OF CURRENT I 
(P-Register) INSTRUCTION 

Bit: 0 

Address Registers 

I ( B 1 through B7) 

Bit: 0 

General Registers 

I ( R 1 through R7) 

Bit: 0 
Mode Control 
Register (Ml) 

1 

J 

15 

ANY ADDRESS 
I 

15 

ANY DATA 
I 

7 

T 

~Overflow trap (trap vector 6) 
for Rl through R7, respectively 

~Trace trap (trap vector 2) 
enabled for JMP and branch 
instructions 

Figure A-I. Level 6 Hardware Registers 

PROGRAMMERS REFERENCE 
INFORMATION A-I AU43 



System Status 
Register 

( S ) 

Bit: 0 
Indicator 
Register 

( I ) 

Name 

Bit: 
Scientific Accumulator 
Registers 
($Sl through $S3) 

0 

nterrupt level of 
current program 

'----.... Processor identi..; 
fication (set 
automatically) 

------------~~l = System in 
privileged 
state 

C 

7 8 9 10 11 12 13 14 15 

Format 

6 7 8 

S 

C B G 

) 

Result of 
last compare 

------~l I/O command 
accepted 

63 

I 

Bit test 
indicator 

Carry 
Overflow 

Magnitude of the mantissa. 

Sign (O=positive, l=negative) 
of the mantissa 

Characteristic (excess 64 
power-of-16 exponent) of 
the number 

Figure A-I (cont). Level 6 Hardware Registers 

PROGRAMMERS REFERENCE 
INFORMATION A-2 AU43 



Bit: 

Scientific Indicator 
Register ( S I) 

Bit: 

SIP Mode Register 
(M4) 

Bit: 
SIP Trap Mask Register 
(M5) 

PROGRAMMERS REFERENCE 
INFORMATION 

0 

0 

o 

2 3 4 5 6 7 

Result of last 
scientific compare: 
Less than 
Greater than 
Precision error 
(trap 22) 
Significance error 
(trap 21) 
Exponent underflow 
(trap 1 9) 

2 3 4 5 6 7 

M L 1 ALl ML2 A L2 ML3 A L3 

SAl SA2 SA3 

R/T: Round/Truncate Mode 
o - Truncate 
1 - Round 

ML·: Memory Length (Length of main memory data 
field to or from which data is transferred 
via a scientific accumulator (SA)) 
o - Two words 
1 - Four words 

AL: Accumulator Length (Length of scientific 
accumulator data field to or from which 
data is transferred to/from main memory, 
a hardware register, or another SIP 
register) 

2 

o - Two words 
1 - Four words 

3 4 5 6 7 

'-----~Precision Error Trap Mask 

~------~Significance Error Trap Mask 

'------------------~Exponent Underflow Trap Mask 

Figure A-I (cont). Level 6 Hardware Registers 

A-3 AU43 



ASSEMBLY LANGUAGE INTERNAL FORMATS BY TYPE 

Each of the seven types (i.e., generic, branch-{)n-register, etc.) of assembly language 
instructions is stored in memory in a predefined format, as shown in Figure A-2. 

Generic (GE): 

Branch-on-indicator (BI): 

Shift (SHS and SHL): 

Branch-on-register (BR): 

Short value immediate (SI): 

Input/output (10): 

10 AND IOH 

IOLD 

Single operand (SO): 

Double operand (DO): 

Bit: 

l 
1 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 0 0 0 0 0 0 0 FUNCTION 

0 0 0 0 OPCODE I DISPLACEMENTa 

0 REGISTER 0 0 0 0 TYPE, DIRECTION, 
NUMBER DISTANCE 

---

0 REGISTER OPCODE I DISPLACEMENTa NUMBER 

0 REGISTER OPCODE VALUE NUMBER 

1 0 0 0 OPCODE I DATA ADDRESS 
SYLLABLE 

ADDITIONAL WORD, IF REQUI~ED BY ADDRESS 
SYLLABLE AS DEFINED BELOW 

EMBEDDED CONTROL WORD WORD lj 
a a a a a a a a I CONTROL 

ADDRESS SYLLABLE 
ADDITIONAL WORD, IF NECESSARyD 

1 a a a OPCODE ADDRESS SYLLABLE 

ADDITIONAL WORD, IF REQUIREob 

IMBEDDED CONTROL WORD ) 
a a a a a a a a I CONTROL WORD }( 

ADDRESS SYLLABLE ( 
ADDITIONAL WORD, IF NECESSAR~ ) 

a a 0 a a a a a a I RANGE ADDRESS 
SYLLABLE 

ADDITIONAL WORD, IF NECESSAR¥> 

1 a a o I OPCODE I ADDRESS SYLLABLE 

ADDITIONAL WORD, IF NECESSARyb 

1 I 
REGISTERI 
NUMBER OPCODE I ADDRESS SYLLABLE 

ADDITIONAL WORD, IF NECESSAR¥> 

a1f the displacement value specified is 0, the location 
to be branched to is specified in the next sequential word; if 
it is 1, the next sequential word specifies the displacement 
(in words) from the address of this instruction; otherwise, 
the displacement value specified is the displacement, in 
two's complement form, from the current instruction to the 
destination. 

Figure A-2. Internal Formats of Assembly Language Instructions 

PROGRAMMERS REFERENCE 
INFORMATION A4 AU43 



boepending on the form of the address expression used in the 
source code, the generated address syllable may occupy one 
or two words, as follows: 

o If the address expression was of the immediate memory, 
immediate operand, or P-relative address forms, the 
hexadecimal address of the location specified, the dis
placement to it, or the value of the operand itself is 
contained in the next sequential word or words. 

o If the address expression was of the B-relative address 
form, the address of the location is derived by per
forming the operation(s) specified in Table A-3. 

o If the address expression was of the register addressing 
form, the value or address is contained in the specified 
register. 

For those instruction types that show register number in bits 
1 through 3~ this is the number of register specified in the 
first operand of the multiple-operand instruction that re
quires a register in the first operand. 

Figure A-2 (Cont). Internal Formats of Assembly Language Instructions 

HEXADECIMAL REPRESENTATION OF INSTRUCTIONS 

Tal?le A -1 illustrates the hexadecimal representation of the assembly language 
instructions as they appear in a printout. These representations are derived from the 
formats of the various types described under HAssembly Language Internal Formats by 
Type," (Figure A-2. 

In the table, when O+addsyl or O+x is specified, it indicates that the last byte is a 
7-bit byte preceded by a binary 0; 8+addsyl or 8+x indicates a 7-bit byte preceded by a 
binary 1. In either case, only the last seven bits are significant. addsyl is defined in 
Table A-2; x is the displacement in a branch instruction, as defined under "Assembly 
Language Internal Formats by Type," (Figure A-2); d is the shift displacement, in bits. 

TABLE A-I. INTERNAL PRESENTATION OF ASSEMBLY LANGUAGE INSTRUCTIONS 

First 
Hexadecimal 
Digit 

0 

PROGRAMMERS REFERENCE 
INFORMATION 

Second 
Hexadecimal 
Digit 

0 

2 
2 
3 
3 
4 
4 
5 
5 
6 

Third 
Hexadecimal 
Digit 

0 

O+x 
8+x 
O+x 
8+x 
O+x 
8+x 
O+x 
8+x 
O+x 

A-5 

Fourth 
Hexadecimal 
Digit Instruction Type 

0 HLT 
1 MCL 
2 BRK 
3 RTT GE 
4 RTCN 
5 RTCF 
6 WDTN 
7 WDTF 
x BL 
x BGE 
x BG 
x BLE 
x BOV Bf 
x BNOV 
x BBT 
x BBF 
x BCT 

AU43 



TABLE A-I (CONT). INTERNAL REPRESENTATION OF ASSEMBLY LANGUAGE INSTRUCTIONS 

First 
Hexidecimal 
Digit 

0 

1-3 

4 

5 

6 

7 

1-7 

PROGRAMMERS REFERENCE 
INFORMATION 

Second 
Hexadecimal 
Digit 

6 
7 
7 
8 
8 
9 
9 
A 
A 
B 
B 
F 
F 
4 

5 

6 

4 

5 

6 

4 

4 

4 

0 

7 
7 

Third 
Hexadecimal 
Digit 

8+x 
O+x 
8+x 
O+x 
8+x 
O+x 
8+x 
O+x 
8+x 
O+x 
8+x 
O+x 
8+x 
O+x 
8+x 
O+x 
8+x 
O+x 
8+x 
O+x 
8+x 
O+x 
8+x 
O+x 
8+x 
O+x 
8+x 
O+x 
8+x 
O+x 
8+x 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
A 
B 
C 
D 
E 
F 
O+x 
8+x 

A-6 

Fourth 
Hexadecimal 
Digit Instruction Type 

x BCF 
x BlOT 
x BIOF 
x BAL 
x BAGE 
x BE 
x BNE 
x BAG 
x BALE 
x BSU 
x BSE 
x NOP 
x B 
x SBLZ BI 

x SBGEZ 
x SBEZ 
x SBNEZ 
x SBGZ 
x SBLEZ 
x SBL 
x SBGE 
x SBEQ 
x SBNE 
x SBG 
x SBLE 
x SBPE 
x SBNPE 
x SBSE 
x SBNSE 
x SBEU 
x SBNEU 
d SOL 
d SCL 
d SAL 
d OCL 
d SOR 
d SCR 
d SAR 
d OCR 

d DOL SHS 

d DAL SHL 

d DOR 

d DAR 
x BDEC BR 
x BINC 

AU43 



TABLE A-I (CONT). INTERNAL REPRESENTATION OF ASSEMBLY LANGUAGE INSTRUCTIONS 

First 
Hexadeciaml 
Digit 

1-7 

8 

C 

9-F 

PROGRAMMERS REFERENCE 
INFORMATION 

Second 
Hexadecimal 
Digit 

8 
8 
9 
9 
A 
A 
B 
B 

C 
D 
E 
F 

0 
1 
1 

2 
2 
3 
6 
7 
7 
8 
8 
9 
9 
A 
A 
B 
B 
C 
C 
D 
D 
E 
E 
F 
F 

C 
8 
D 
9 

0 
0 
1 
2 
2 
3 
3 
4 
4 

Third Fourth 
Hexadecimal Hexadecimal 
Digit Digit 

O+x x 
8+x x 
O+x x 
8+x x 
O+x x 
8+x x 
O+x x 
8+x x 

imme d value 
immedvalue 
immedvalue 
immedvalue 

O+addsyl 
O+addsyl 
8+addsyl 

O+addsyl 

I 

8+addsyl 
8+addsyl 
O+addsyl 
O+addsyl 
8+addsyl 
O+addsyl 
8+addsyl 
O+addsyl 
8+addsyl 
O+addsyl 
8+addsyl 
O+addsyl 
8+addsyl 
O+addsyl 
8+addsyl 
O+addsyl 
8+addsyl 
O+addsyl 
8+addsyl 
O+addsyl 
9+addsly 

O+addsyl 
8+addsyl 
O+addsyl 
8+addsyl 

O+addsyl 
8+addsyl 
8+addsyl 
O+addsyl 
8+addsyl 
O+addsyl 
8+addsyl 
O+addsyl 
8+addsyl 

A-7 

Instruction Type 

BLZ 
BGEZ 
BEZ BR 
BNEZ 
BGZ 
BLEZ 
BEVN 
BODD 

LDV 
CMV 

SI 
ADV 
MLV 

10 
10H 10 
10LD 

NEG 
LB 
JMP 
CPL 
CL 
CLH 
LBF 
DEC SO 
LBT 
CMZ 
LBS 
INC 
LBC 
ENT 
STS 
LDI 
SDI 
CMN 
LEV 
CAD 
SAVE 
RSTR 

SCZQ 
SCZD 
SNGQ 
SNGD 

MTM 
LDH 
CMH 
SUB 
LLH DO 

DIV 
LNJ 
OR 
ORH 

AU43 



TABLE A-I (CONT). INTERNAL REPRESENTATION OF ASSEMBLY LANGUAGE INSTRUCTIONS 

First Second Third Fourth 
Hexadecimal Hexadecimal Hexadecimal Hexadecimal 
Digit Digit Digit Digit Instruction Type 

9-F 5 O+addsyl AND 
5 8+addsyl ANH 
6 O+addsyl XOR 
6 8+addsyl XOH 
7 O+addsyl STM 
7 8+addsyl STH 
8 O+addsyl LDR 

9-B 8 8+addsyl SLD 

D-F 8 8+addsyl SCM 

9-F 9 O+addsyl CMR 

9-B 9 8+addsyl SAD DO 
D-F 9 8+addsyl SSB 

A O+addsyl ADD 
A 8+addsyl SRM 

9-F B O+addsyl MUL 
B 8+addsyl LAB 

9-B C O+addsyl SML 

D-F C O+addsyl SDV 

C 8+addsyl LDB 
D 8+addsyl CMB 

9-F E O+addsyl SWR 
E 8+addsyl SWB 
F O+addsyl STR 
F 8+addsyl STB 

TABLE A-2. ADDRESS SYLLABLES 

mmm rrr = 000 rrr = ddd 

i = 0 i = I i = 0 i = I 

000 < location *< location $Bn *$Bn 

001 < 10cation.$RI *< 10cation.$R I $Bn.$RI *$Bn.$RI 

DID < location.$R2 *< location.$R2 $Bn.$R2 *$Bn.$R2 

OIl < location.$R3 *< location.$R3 $Bn.$R3 *$Bn.$R3 

100 location *location $Bn.value *Bn.value 

101 reserved reserved { =$Rn} $Bk.-$RI $Bq.+$RI 
=$Bn 

110 reserved reserved -$Bn $Bk.-$R2 $Bq.+$R2 

111 { =Iocation} reserved +$8n $Bk.-$R3 $Bq.+$R3 
=value 

NOTE: An address syllable can be represented as mmmirrr, which are the last seven bits in the 
word; n can be any number between 1 and 7 and is equal to rrr for rrr=FO; k is a number within the 
range 1 through 3 and is equal to rrr for rrr = 1,2,3; and q is a number within the range 1 through 3 
and is equal to rrr4 for rrr = 4, 5, 6, 7. For more imformation about these address expressions, see 
"Addressing Techniques" in Section 5. 

PROGRAMMERS REFERENCE 
INFORMATION A-8 AU43 



VALID ADDRESS EXPRESSIONS 

Table 4-3 lists all of the valid address expressions and shows graphically how each 
derives the effective address of the data to be used in the operation. 

The various types of symbolic names, constants, and expressions (other than 
address expressions) are described in detail in Section 2. 

TABLE A-3. SUMMARY OF VALID FORMS OF ADDRESS EXPRESSIONS 

Addressing 
Technique 

Register 
Addressing 

Immediate Direct 
Memory 
Addressing 

Indirect 

Indexed 
Direct 

Indexed 
Indirect 

Immediate 
Operand 
Addressing 

P-Register 
Addressing Direct 

Indirect 

B-Register Direct 
Addressing Indirect 

Indexed 
Direct 

Indexed 
Indirect 

Direct + 
Displacement 

PROGRAMMERS REFERENCE 
INFORMATION 

Address 
Expression 
Form 

=$Rn 
=$Bn 
=$Sn 

{ locexpreSSiOn} 

< {~} templabel 

{ locexpreSSiOn} 

*< {+} 
- templabel 

{ locexpreSSiOn} n 
< {+} .$R 2 

- templabel 3 

{ locexpreSSiOn} f} 
*< {+} .$R 2 

- templabel 3 

=locexpression 

=hexstringconstant 

= {intvalexpression} 
extvallabel 

{ intlocexpreSSiOn} 

{~} templabel 

{ intiOCeXpreSSiOn} 

* {~} templabel 

$Bn 

*$Bn 

$Bn.$R W 

*$Bn.$R U} 

$B {intValeXpression} 
n. extvallabel 

A-9 

Generation of 
Effective Address 

.B!!=..M, 
~=EA 
Sn = EA 
-~ 

location = EA 

,location = EA 

location + R m = EA 

---.:.....;.... 

,location + ~ U} . = EA 

Address of current address 
syllable + 1 = EA 

internal location = EA 

internal location, = EA 

.fu!.. = EA 

~ = location 
Jocation, = EA 

m~ Bn + R EA 
'---' 

, , 

Bn = location 
'----oJ 

.location + R m ~ EA 

~ 

~+value= EA 

AU43 



TABLE A-3 (CONT). SUMMARY OF VALID FORMS OF ADDRESS EXPRESSIONS 

Addressing 
Technique 

Address 
Expression 
Form 

B-Register Indirect + 
{

in tValeXpreSSiOn}' 
*$Bn. extvallabel Addressing Displacement 

(Cont.) 
Push -$Bn 

Pop +$Bn 

Indexed Push 

Indexed Pop $B m .+$R U} 

Short 
Displacement 

{ 

intlocexpression} 

> t} templabel 

Special 
_ {intvalexpression} 

> - extvallabel 

Interrupt Vector $N I int-val expression I 
. ext-val-label 

NOTE: The symbols used in this table have the following meanings: 

~ - Contents of . . . ate 

EA - Effective Address < -
+- - Replaces the ... (the element pointed at) > -
locexpression -location expression (any type) <= 
templabel - temporary label 
hexstringconstant - hexadecimal string constant 
intvalexpression - internal value expression 
int-val-Iabel-internal value label 
extvallabel - external value label 
intiocexpression - internal location expression 

Generation of 
Effective Address 

.lli!. + value = location 
location = EA 

l!!!,= 
Bn +---

ill!1- 1) 
EA 

EA 
@g,+ 1) 

location = EA 

Word following the word(s) 
containing op code + first 
operand address syllable = EA 

IV + value = EA 

Indirection indicator 
Immediate memory addressing 
Short displacement addressing 
Specified Addressing 
Component separator 
(indexing and displacement) 

All other notations represent standard usage as defined in the preface of this manual or 
required Assembler-specific symbols. 

PROG RAMMERS REFERENCE 
JNFORMMTION A-lO AU43 



APPENDIX B 

HEXADECIMAL 
NUMBERING SYSTEM 

Level 6 stores all data in memory in the form of binary digits. However, to save 
space in printouts, this data is always shown in its hexadecimal equivalent (unless an 
ASCII memory dump is requested). This appendix explains how to convert from 
hexadecimal to decimal and vice versa, as well as how to perform hexadecimal 
arithmetic operations. 

Table B-1 shows the comparison between binary (i.e., base 2), decimal (i.e., base 
10), and hexadecimal (i.e., base 16) symbols. 

TABLE B-1. COMPARISON OF BINARY, DECIMAL, 
AND HEXADECIMAL SYMBOLS 

Binary Decimal Hexadecimal 

0000 0 0 
0001 1 
0010 2 2 
0011 3 3 
0100 4 4 
0101 5 5 
0110 6 6 
0111 7 7 
1000 ·8 8 
1001 9 9 
1010 10 A 
1011 11 B 
1100 12 C 
1101 13 D 
1110 14 E 
1111 15 F 

In the course of coding your assembly language program, it is possible to define 
jata as a decimal, hexadecimal, or binary number, or an ASCII symbol, as illustrated in 
Table B-4. However, in memory, all data is stored in binary. 

Data that is defined as ASCII in the source program is stored as the binary 
equivalent of the ASCII symbol, and shown in the printout as the hexadecimal 
equivalent of the stored binary value. 

Numeric data, on the other hand, is converted to hexadecimal, and stored as the 
binary equivalent of the hexadecimal digit. 

Table B-2 illustrates how the value 32 is stored in memory depending on how it is 
defined in the source program (i.e., depending on whether it is defined as an ASCII 
value, binary value, decimal value, or hexadecimal value.) In addition, it shows how the 
stored value would appear in an ASCII or hexadecimal printout. 

HEXADECIMAL 
NUMBERING SYSTEM B-1 AU43 



TABLE B-2. STORAGE AND PRINTOUT OF THE VALUE 32 

Qata Type Stored in Memory Hex Printout ASCII Printout 

A'32' 0011001100110010 3332 32 
X'32' 0000000000110010 0032 .2 
Z'32' 0011001000000000 3200 2. 
32 (Dec) 0000000000100000 0020 .Space 
B'001l0010' 0011001000000000 3200 2. 

As you can see in this table, hexadecimal and binary are identical. In addition, it 
illustrates how an ASCII symbol is .expanded according to Table B-4. Finally, it shows 
a decimal value that is first converted to its hexadecimal (i.e., binary) equivalent and 
then stored in memory. 

The following pages explain how to compute the conversions and how to do 
hexadecimal arithmetic. 

DECIMAL-TO-HEXADECIMAL CONVERSION 

The system automatically converts all decimal data to its binary (i.e., hexadecimal) 
equivalent when storing it in memory. It then operates on that binary data. 

You can determine how a decimal number will be stored in memory as follows: 

1. Divide the decimal number by 16. The remainder becomes the low-order (i.e., 
rightmost) hexadecimal digit. 

2. Divide the whole number result of the last division by 16. The remainder 
becomes the next-highest-order hexadecimal digit. 

3. Continue this process until the whole number result of a division is O. The 
remainder becomes the highest-order (i.e., leftmost) hexadecimal digit. 

For example, to determine the hexadecimal equivalent of the decimal number 
47,40 I, do the following: 

1. Divide 47,401 by 16. 
The result is 2962. The remainder is 9. 

2. Divide 2962 by 16. -
The result is 185. The remainder is 1. 

3. Divide 185 by 16. 
The result is I I. The .remainder is -2.. 

4. Divide 11 by 16. 
The result is O. The remainder is 11. 

Using Table B-1, you can see that in hexadecimal 11 is represented by B. Thus, the 
hexadecimal equivalent of 47401 1 0 is B929. 

HEXADECIMAL-TO-DECIMAL CONVERSION 

The type of conversion you will most commonly be confronted with will be from 
hexadecimal to d~cimal because, unless you specifically request an ASCII memory 
dump, printouts of memory will always be in hexadecimal. To identify ASCII data 
readily, look for repetition of the first character in a byte. For example, 

HEXADECIMAL 
NUMBERING SYSTEM 

3132 3333 3335 3637 xxxx xx ... --------

B-2 AU43 



is a list of ASCII numbers (Le., 1, 2, 3, 3, 3, 5, 6, 7, in the example). In most other 
cases, the hexadecimal symbols will appear to be quite random. If the stored 
hexadecimal symbols represent numeric data, you can convert it to decimal as follows: 

1. Multiply the decimal equivalent (see Table B-1) of the high-order (i.e., leftmost) 
hexadecimal digit by 16. 

2. Add the decimal equivalent of the next-lowest-order hexadecimal to the result of 
step 1. 

3. ·Multip1y the result of step 2 by 16. 
4. Repeat steps 2 and 3 until you reach the last hexadecimal digit. 
5. Simply add the decimal equivalent of the last hexadecimal digit to the result of 

the last previous multiplication. 

For example, to convert the hexadecimal value 1C8A to its decimal equivalent, do 
the following: 

,l. Multiply 1 by 16. 
The result is 16. 

2. Add 12 (i.e., C = 1210 ). 

The result is 28. 
3". Multiply 28 by 16. 

The result is 448. 
4. Add 8. 

The result is 456. 
5. Multiply 456 by 16. 

The result is 7296. 
6. A~d 10 (Le., A = 1010 ). 

The result is 7306. 

Thus, the decimal equivalent of 1 C8A1 6 is 7306. 

Alternatively, you may use Table B-3 to convert hexadecimal numeric data to its 
decimal equivalent. 

HEXADECIMAL 
NUMBERING SYSTEM 

HI 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
A 

TABLE B-3. HEXADECIMAL/DECIMAL CONVERSION 

Word 

Byte Byte 

Decimal H2 Decimal H3 Decimal H4 Decimal 

0 0 0 0 0 0 0 
4096 1 256 1 16 1 1 
8192 2 512 2 32 2 2 

12288 3 768 3 48 3 3 
16384 4 1024 4 64 4 4 
20480 5 1280 5 80 5 5 
24576 6 1536 6 96 6 6 
28672 7 1792 7 112 7 7 
32768 8 2048 8 128 8 8 
36864 9 2304 9 144 9 9 
40960 A 2560 A 160 A 10 

B-3 AU43 



TABLE B-3 (CONT). HEXADECIMAL/DECIMAL CONVERSION 

Word 

Byte Byte 

HI Decimal H2 Decimal H3 Decimal 

B 45056 B 2816 B 176 

C 49152 C 3072 C 192 

D 53248 D 3328 D 208 

E 57344 E 3584 E 224 

F 61440 F 3840 F 240 

NOTE: HI is the first hexadecimal digit 

H2 is the second hexadecimal digit 

II3 is the third hexadecimal digit 

H4 is the fourth hexadecimal digit 
first and second digits of a byte 

H4 Decimal 

a- II 

C 12 

D 13 

E 14 

F 15 

If HI is a through 7, the number is positive and you compute the decimal equivalent of 
the given hexadecimal number by summing the decimal equivalent of HI, H2, H3, and 
H4. 

NOTE: For a signed integer byte, use H3 and H4 only. 

If HI is 8 through F, the number is negative, and you must find the two's complement 
before using the table. You can compute the two's complement by subtracting the 
hexadecimal number from 10000 (hexadecimal) or by changing all a's to 1 and all 1 's 
to a and then adding a binary 1. You can then find the decimal equivalent directly 
from the table, appending a minus sign to the final result.' 

HEXADECIMAL-TO-ASCII CONVERSION 

If the stored data is an ASCII value, it can be translated by converting the 
hexadecimal value in the printout to its ASCII equivalent using Table B-4. 

For example, the locations that contain the start of your program should have the 
following hexadecimal representation: 

5449 544C 4520 hhhh hh ... 

By pairing the digits (e.g, 54) and locating the character in the table where these two 
digits intersect, you can ascertain the ASCII equivalent of the stored hexadecimal 
value. Remembering that the first hexadecimal digit corresponds to the HI row and 
that the second digit corresponds to the H2 column, the above representation 
transla tes to: TITLE~. 

If you wish to ascertain the hexadecimal equivalent of an ASCII character, simply 
locate the character in the table and record the HI H2 values at the top and left of the 
table. 

HEXADECIMAL 
NUMBERING SYSTEM B-4 AU43 



TABLE B4. HEXADECIMAL/ASCII CONVERSION 

H2 01 1 

0 NUL DLE 

I SOH DCI 
2 STX DC2 

3 ETX DC3 
4 EOT DC4 
5 ENQ NAK 
6 ACK SYN 
7 BEL ETB 
8 BS CAN 
9 HT EM 
A LF SUB 
B VT ESC 
C FF FS 
D CR GS 
E SO RS 

F SI US 

Control Characters 

NUL Null 
SOH Start of Heading 
STX Start of Text 
ETX End of Text 
EOT End of Transmission 
ENQ Enquiry 
ACK Acknowledge 
BEL Bell 
BS Backspace 
HT Horizontal Tab 
LF Line Feed 
VT Vertical Tab 
FF Form Feed 
CR Carriage Return 
SO Shift Out 
SI Shift In 
DLE Data Link Escape 
DC 1 Device Control 1 
DC2 Device Control 2 
DC3 Device Control 3 
DC4 Device Control 4 

HEXADECIMAL 
NUMBERING SYSTEM 

2 

SP 

! 

" 

# 
$ 

% 
& 
, 

( 

) 

* 
+ 
, 
-

I 

HI 

3 4 5 6 

0 @ P 

I A Q a 

2 B R b 

3 C S c 

4 D T d 

5 E U e 

6 F V f 

7 G W g 

8 H X h 

9 I Y i 

J Z j 

, K [ k 

< L \ 1 

= M ] m 

> N ~ n 

? 0 - 0 

B-S 

7 

p 

q 

r 

s 

t 

u 

v 

w 

x 

Y 
z 
{ 

f 

Jl 
DEL 

AU43 



NAK Negative Acknowledge 
SYN Synchronous Idle 
ETB End of Transmission Block 
CAN Cancel 
EM End of Medium 
SUB Substitute 
ESC Escape 
FS File Separator 
GS Group Separator 
RS Record Separator 
US Unit Separator 
SP Space 
DEL Delete 

HEXADECIMAL ADDITION 

Table B-5 illustrates a hexadecimal addition table. When using this table, whenever 
there is a result that has a 1 preceding a hexadecimal value, that 1 represents a carry. 
When a carry occurs in an arithmetic operation, the C-bit in the I-register is set to 1; if 
the carry results in the high-order digit being lost because the result field is not large 
enough to contain the result, the OV -bit in the I-register is set to 1. 

TABLE B-S. HEXADECIMAL ADDITION TABLE 

1 2 3 4 5 6 7 8 9 A B C D E F 

1 2 3 4 5 6 7 8 9 A B C D E F 10 
2 3 4 5 6 7 8 9 A B C D E F 10 11 

3 4 5 6 7 8 9 A B C D E F 10 11 12 
4 5 6 7 8 9 A B C D E F 10 11 12 13 
5 6 7 8 9 A B C D E F 10 11 12 13 14 
6 7 8 9 A B C D E F 10 11 12 13 14 15 
7 8 9 A B C D E F 10 11 12 13 14 15 16 
8 9 A B C D E F 10 11 12 13 14 15 16 17 
9 A B C D E F 10 11 12 13 14 15 16 17 18 
A B C D E F 10 11 12 13 14 15 16 17 18 19 
B C D E F 10 11 12 13 14 15 16 17 18 19 lA 
C D E F 10 11 12 13 14 15 16 17 18 19 lA IB 
D E F 10 11 12 13 14 15 16 17 18 19 lA IB lC 
E F 10 11 12 13 14 15 16 17 18 19 lA IB lC ID 
F 10 11 12 13 14 15 16 17 18 19 lA IB lC ID IE 

The following example illustrates how the table can be used in hexadecimal 
addition: 

augend 
addend 

A2B5 
+494F 

The result of adding F and 5 is 14. Therefore, 4 becomes the low-order digit in the 
sum; 1 is carried. Then, B + 4 + 1 = 10; as before, 0 becomes the next-lowest-order 
digit, and 1 is carried. Then, 9 + 2 + 1 = C; there is no carry. Finally, A + 4 = E, with 
no carry. The sum of the hexadecimal numbers shown above is EC04. 

HEXADECIMAL 
NUMBERING SYSTEM B-6 AU43 



During this addition, the C-bit in the I-register was set to 1; however (assuming that 
the result field allowed a I-word result), since the addition of the high-order digits did 
not result in a carry (which would have meant that the carried digit would have been 
lost), the OV-bit was not set to 1 (i.e., it was set to 0). 

HEXADECIMAL SUBTRACTION 

Hexadecimal subtraction is the opposite of hexadecimal addition. Instead of carries, 
it is necessary to borrow. When you borrow a 1 from the next-highest-order digit of a 
minuend, it is the equivalent of adding 16 to the minuend of the digit you are 
subtracting from. The following example illustrates this concept: 

minuend 3A 
subtrahend -IB 

Since B is higher than A, it is necessary to borrow 1 from the 3, and adding 16 to A 
(i.e., 16 + 10 = 26), and subtracting B (i.e., 11) from the result, obtaining 15 (but since 
this is hexadecimal arithmetic, you must change the 15 to F); then, you must subtract 
1 from 2 (don't forget that 1 was borrowed from the 3); the result of this operation is 
IF. 

HEXADECIMAL MULTIPLICATION 

To do hexadecimal multiplication, you can use Table B-6. As when multiplying in 
any numbering system, you must record the low-order digit and add the remainder 
(i.e., the high-order hexadecimal digit shown in the table) to the result of the 
multiplication of the next-lowest-order hexadecimal digit. 

TABLE B-6. HEXADECIMAL MULTIPLICATION TABLE 

;1 2 3 4 5 6 7 8 9 A B C D E F 
1 2 3 4 5 6 7 8 9 A B C D E F 
2 4 6 8 A C E 10 12 14 16 18 lA lC IE 
3 6 9 C F 12 15 18 IB IE 21 24 27 2A 2D 
4 8 C 10 14 18 lC 20 24 28 2C 30 34 38 3C 
5 A F 14 19 IE 23 28 2D 32 37 3C 41 46 4B 
6 C 12 18 IE 24 2A 30 36 3C 42 48 4E 54 SA 
7 E 15 lC 23 2A 31 38 3F 46 4D 54 5B 62 69 
8 10 18 20 28 30 38 40 48 50 58 60 68 70 78 
9 12 IB 24 2D 36 3F 48 51 SA 63 6C 75 7E 87 

-'" 
A 14 IE 28 32 3C 46 50 SA 64 6E 78 82 8C 96 
B 16 21 2C 37 42 4D 58 63 6E 79 84 8F 9A AS 
C 18 24 30 3C 48 54 60 6C 78 84 90 9C A8 B4 

D lA 27 34 41 4E 5B 68 75 82 8F 9C A9 B6 C3 
E lC 2A 38 46 54 62 70 7E 8C 9A A8 B6 C4 D2 
F IE 2D 3C 4B SA 69 78 87 96 AS B4 C3 D2 El 

For example, to multiply the following hexadecimal digits: 

multiplicand 2A5 
multiplier x 3 

Using the table, 3 x 5 = F, and there is no remainder. Then, 3 x A = 1 E; E is 
recorded, and the remainder (i.e., 1) is saved to be added to the result of the 

HEXADECIMAL 
NUMBERING SYSTEM B-7 AU43 



multiplication of the next digit. So, 3 x 2 = 6, plus the remainder of I = 7. The result 
of this arithmetic operation is 7EF. 

HEXADECIMAL DIVISION 

Due to the complexity of this type of operation, it is suggested that you convert the 
hexadecimal digits to decimal, perform the division, and then convert the answer to 
hexadecimal. 

HEXADECIMAL 
NUMBERING SYSTEM B-8 AU43 



APPENDIX C 

SAMPLE ASSEMBLY 
LANGUAGE PROGRAM 

The following sample program illustrates many of the aspects of the assembly 
language described in this manual. For a defmition of the fields that appear in the 
listing, refer to the Program Development Tools manual. 

CHKf'lML Lb ASSEM~LER-OI00 

000001 
000002 
000003 
000004 
00000':) 
OOOOOb 
000007 
000008 
000009 0100 
000010 
000011 0000 A!l1l3 
000012 0002 B8A3 
000013 0003 ~oC3 
000014 0005 9873 
000015 0006 1D02 
000016 0(107 0981 
000017 0009 q843 
000018 
000019 OOOB CBCO 
000020 OOOD D380 
000021 OOOF 1981 
000022 
000023 0011 1CIE 
0000211 0012 2COO 
000025 0013 8HCO 
000026 0015 CBCO 
000027 0017 D380 
000028 0019 1981 
000029 0011:' 3CFF 
000030 001C 3EOl 
000031 0010 B970 
000032 001F 0301 
000033 0021 CCoO 
0000311 0023 CBCIl 
00003~ 0025 F830 
000036 0027 F91l4 
000037 0029 0973 
000038 002A EBCO 
000039 002C 0830 
00004U 002f nco 
0000£11 0030 EBCO 
0000112 0032 D804 
0000113 0033 nco 
0000114 0035 CBCIl 
0000115 0037 EbCO 
000046 0039 1.>804 
0000117 OC3A nco 
00001.18 003C CBCII 
000049 003E EBCO 
000050 00110 D804 
000051 00111 nco 
000052 00113 CBC4 
000053 0045 EBCO 
000054 00£17 DAOII 
000055 00/,j8 nco 
000051> 
000057 OO£lA lClE 
000058 004B 2COO 
00005Q OOIlC BBCO 
OOOObO OOIlE CBCO 

SAMPLE ASSEMBLY 
LANGUAGE PROGRAM 

FFEF 

FFEC 

Cu7C 
00U7 

007'1 
0000 
OOoF 

0081 
006F 
0000 
OObo 

0000 
OOIlE 
0000 t\ 

OOIC 
0000 
0003 

007A 
0000 K 
0027 
0077 

0022 
0001 
0073 

0018 
0001 
OObF 

001u 
0001 
006B 

OOOl.) 

0057 
003b 

PAGE 0001 

TITLE CHKN~1L 

* PPOGRA~ COMPARES TEST RESULTS O~ TEST MODULES WHOSE ADDRESSES ARE 
* STOKbJ IN $COMM TO THE EXPEC1ED TEST RESULT~ AS DESCRIBED IN TABLOC 

XVAL is:r-lAX 
XLOC TABLOC 
XLOC nOSOl 
XLOC ZlOSI':R 
XLOC ZIOSCO 
C(lMf1 X, 1 no' 

* GET FILENAME AND CH.HJt'EL NO 
ShIT UH~ SRc,563.-17 

LAR $jj~,$~3.$R2 

LAU . ..;tJ3,.'!>tH.-20 SE T u3 TO LIST fILE AT 
LOR $Rl,+!r:R3 SET fB TU FILE~JAME: 

U1V $R1,2 
BNE ERNLST NO LIST FILE ATTACHED 
LUll 5Rl,5H3.7 SET RI TO CHANNEL NO. 

* OPEN LI ST fILE 
LAB SAil, LSTDCH 
LNJ ~B5,<ZIOSOL OPEtI; ROlJTINE 
BNEl $Rl,EHOPEN 

* WRITE MEADER ~~5G 

lDIi $Rl,X'tt' MSG LENGTH 
LD\I ~R2,)('0' 

LAt3 ;bH3,.~HUFOl MSG ADDRESS 
LAH $t:l",LSTDC8 
LNJ $B5,<ZIOSIo'jR ~RnE ROUTINE 
BM:! $Rl,fRHOR 
L[)\I :bR3, -x' 1 ' 

TLOOP ADV 'DR3, X' 1 ' 
CMR SI-l3,=T5TMAX CHECKED ALL TEST RESULTS ? 
BG ENLJTST 
LDB $84, <$Cm~M. $1<3 
LAR $HIl, SH4. X' 1(,' C~EAH STATUS BLOCK PTR 
LDR $1-1'" < UIiLCC. ~R 3 GET EXPECTED VALUE 
011< $R7,$BII.X'3' COMPARE TO ACTUAL STATWD 
BE >TLOOP TEST OK - CHECK NEXT TEST 
LAH $Bo,,,,(3(JF2A 
LDI-I $R5,dCOMM.$P3 
LNJ $87, DUMPr;D CO'JVE!H TEST ADOI.' TO ASCII 
LAb ;pBI>, \~fjUF 28 
LDR ·:bR5, $B4 
LIIjJ SB 7, Duf4PI"JD CONVEI"T SYML VALUE TO ASCII 
LAB $~4,$B4.X'1' 

LAB $tln, ,'jBUF 2C 
LOR JiR5,:i)BII 
UJJ Stl7.DUMP~D CONVERT TEST ~UM TO ASCII 
LAB $[\4,$BII.X'1' 
L"B $Ho,MHJF2D 
LDR $R~,!bbll 

LNJ $H7,DUfl.pr;D CONVERT SYMV VALUE TO ASCII 
LAb $114,$I1<1.X'I' 
LAti ~H!), \~BUF 2E 
LDR $1-I5,$BII 
LNJ JiA7,I)UMPI';O CONVERT STATUS WORD TO ASCII 

* ~IR lTE. VALlJES 
LDV $IU, X, IE' MSG LENGTH 
LDV :II1-I2,X'0' 
LAB $H3, \'JHUf 20 MSG ADURESS 
LAB SHU,LSTDCB 

C-l AU43 



CHK~jML Lo 

OOOObl 0050 D3ALl 
0000b2 0052 1981 
0000b3 005£1 83CO 
000064 
OOOOoS 
OOOObb 00"=,0 4CFC 
0000b7 0057 CFLlO 
000008 00S9 7COtl 
OOOObQ OO'lA 4COO 
000070 005A 508" 
000071 005C £IUO 
000072 0051) C9£10 
000073 005F 0380 
00007£1 OObO lIE07 
000075 00b1 F45~ 

000070 OObt RACO 
000077 OOb£l 0000 
000078 00b5 7088 
OOOOH OObb OFFII 
000080 00b7 EFllb 
000081 OObq FF,lIb 
000082 OObl:i 8387 
000083 OObC 0000 
00000£1 0000 003'1 
000085 
000080 OOoE lCOA 
000087 OOoF 2COO 
000088 0070 813CO 
000089 0072 CIjCO 
0000'10 00711, D380 

'000091 0076 1981 
000092 
000093 0078 CBCO 
00009£1 007A 0380 
000095 007C 1 'HI 1 
000090 007E 0000 
000097 007F 0000 
000098 0080 0000 
000099 0081 0000 
000100 0082 0000 
000101 0083 0000 
000102 008£1 0000 
000103 0085 0000 
0001011 00Q5 11120 

0090 7110C 
0097 oF03 
0098 2020 
0099 71173 
OOCIA 79bD 
0098 2020 
009C 7£1bE. 
0090 7SbD 
009E 2020 
009F 7117b 
OOAO blbC 
OOAI 2020 
00A2 7473 
00A3 77b£l 

00010~ OOAII £1120 
00010b 00A5 2U20 

CHK"'~L Lb 

OOAb 2020 
00A7 2020 

000107 00A8 2020 
OOA9 <2020 
OOAA 2020 

000108 OOAB 2020 
OOAC 2020 
OOAL> 2020 

000109 OOAE 2020 
OOAF 2020 
OOBO 2020 

000110 0081 2020 
0082 2020 
0083 20?0 

000111 00811 1112U 
OOI:lS b50E 
OOBb 01120 
0087 71105 
00b8 7371l 

000112 001:19 
0000 ERR (OUNT 

SAMPLE ASSEMBLY 
LANGUAGE PROGRAM 

ASSEr."eLER-OIOIJ 

OuOli 
0021:: 
FFC7 

uOuO 

0000 T 
T 

FFf5 

T 
0000, 
0001 

00113 
0012 
oono 
iJOOH 

OOOC 
0000 
OOOb 

ASSEMRLEIoI-OIOO 

PAGE 0002 

L~;J $13'l,<.1..IOSI'II-/ I';RITf ROUTINE 
HNI:.Z :l.Rl,lRVAL 
JMP TLO(JP 

* ROUTINE ACCt::PTS ,~ V~LLJE IN RS Ar-.O PUTS ITS ASe II E.QUIVnnn 
* IN THf r~o WO~WS POP,TEU TO HY i:-b 
LlIlMP~'.[) l(W ~p.iI,-x'a' SEl COuNTE.R 

STR ~R4,+:f,C 

LDV $r/7,X'O' 
j,A LDV :t;R4,X'n' 

DUL 3R5,1I 
AoV SRLI,X'30' 
CMr~ $R£I,+~F 

BLf >+$E 
!iI;lV $f(:j, x' C 7' 

:bE 01< :DR7,=$RIl 
INC +$L 
BCT >+$[) 
DOL !IIR7,8 
8 >-$A 

$0 STR SRb,SHb.X'O' 
STR $k7,::;110.X'I' 
J""p :i>H7 RETURN TO CAL LEW 

$( DC Z' t)' 

$F DC 1'0039' 
'" ~IRIH. Et-JD TEST 
ENDTST LDIJ $Rl, x' A' ~'SG LENGTH 

LllV iRI.,X'O' 
LAIj $~3, •• BUF03 IIoISG ADDRESS 
LAB $1j1l,LSTDCB 
LNJ :bU'j,<ZIOS~W ~vRITE ROLITWE 
,..r...El $Rl,EREND 

'" CLOSE LIST FILl: 
LAB SBIl,LSToC8 
LNJ !OH5, <lIOSCO CLOSE ROUTINE 
HNEZ $Rl,ERCLS 
HLT 

EROPI:.N !-iLl 
ERH[)R HLl 
EkVAL HLl 
E~ENf) HLT 
E.RCLS HU 
ERNLST HU 
LSlo(b RESV Ib,O 
vi8l1FUI DC '1\ tloc tsyrr tnum . t va 1 tswd' 

Voil:lUF20 DC ' A , 
nBUF2A DC 

PAGE 0003 

VoibUF2f:1 DC 

WBUF2C or. 

WHlIr21J DC 

wt;LJF2E DC 

;,I:lUF03 DC 'A I"nrl test' 

nw r.IH<tJML 

C-2 AU43 



APPENDIX D 

DEBUGGING ASSEMBLY 
LANGUAGE PROGRAMS 

There are two ways to debug and -correct programs written in assembly language. 
One is by using the Debugger (see the Utility Programs manual); the other is by reading 
and interpreting the contents of memory through a memory dump (which can be 
obtained with the disk/memory transfer utilities, also described in the Utility Programs 
manual). 

DEBUGGER 

This utility program is intended for use during program development phases as a 
tool for program testing and error detection. 

The Debugger operates in interactive mode, maintaining a dialogue with the console 
operator. It gives him visibility of all memory locations and addressable registers, and 
the ability to modify the contents of either. The ability to perform memory searches is 
provided, as well as the ability to display memory areas in both hexadecimal and ASCII 
notations. 

See the Utility Programs manual for a detailed description of the Debugger. 

READING AND INTERPRETING MEMORY DUMPS 

The remainder of this appendix describes how to read and interpret the contents of 
memory as they appear in a memory dump (see Figure D-I). 

It is possible to interpret the hexadecimal portion of the dump illustrated in 
Figure D-I, as follows: 

1. Since the ASCII portion of the dump shows no meaningful data, it is apparent 
that the assembler lang:uage program contains no string constants in the locations 
illustrated. Therefore, the hexadecimal digits probably represent assembly 
language instructions. 

2. Break each word down into its binary equivalent. For example, C840 in location 
003C becomes 1100 lOOO a I 00 0000. 

3. Using Table A-I, we find that C indicates that the instruction is probably a 
double operand (DO) instruction. 

4. Continuing to use Table A-I, we find that the 8 plus a binary a in the eighth bit 
position indicates that the instruction is probably LDR. 

003B/ 
0043/ 

23FB C840 1B4A ABCO 1B49 B802 B970 5154 
0983 83C8 0095 2C02 8804 8804 B2A2 3020 

# •• @.J ••• I •••• QT 

~ 

t ---------------~~----------------HEXADECIMAL PORTION 

ADDRESS (IN HEXADECIMAL) 
OF THE FIRST HEXADECIMAL 
WORD (4-DIGIT BLOCK) IN 
THE HEXADECIMAL PORTION 
OF THE DUMP 

DEBUGGING ASSEMBLY 
LANGUAGE PROGRAMS 

Figure D-l. ASCII/Hexadecimal Memory Dump 

D-l 

= . . . . . . . . . . . . . . --------------ASCII PORTION (DOTS 
(.) INDICATE THAT 
THE ASCII EQUIVALENT 
OF THE HEXADECIMAL 
DIGIT IS A NONPRINT
ABLE CHARACTER) 

AU43 



5. By checking the table under "Assembly Language Internal Formats by Type" in 
Appendix A, it is possible to interpret the contents of the binary representation 
illustrated in step 2, above. That is, bits 1-3 identify the first operand register; in 
this case $R4 (the LDR instruction requires that the first operand register be an 
R -register. 

6. Then, using Table A-2, it is possible to interpret the contents of the address 
syllable portion of the binary data shown in step 2; i.e., 100 0000. Using the 
table, the biJ1ary data corresponds to the columns as follows: mmmirrr. Thus, 
mmm = 100, i = 0, and rrr = 000. In that block, we find that the second operand 
is in the form of a location label. 

7. We now know that the instruction is: LDR $R4,label. Thus, the address 
expression is the P + Displacement form of addressing. 

8. Checking the description of that form of addressing in Section 5 (see 
"Addressing Techniques"), we see that the displacement between the address of 
this instruction plus 1 and the address of the label is loaded into the next 
consecutive word (i.e., location 003D). In this dump, the displacement is 1 B4A. 

9. The effective address of the data to be loaded into $R4 is in location IB86 (i.e., 
(3C ± 1) ± IB4A)). 

Following is a complete list, by address, of the instructions shown in Figure D-l. 
You can perfect your ability to read memory dumps by interpreting the dump and 
comparing your results to those listed below. The procedure, until you become 
proficient, is basically as described above. After you have had the opportunity to read 
and interpret dumps several times, many of the steps can be skipped, as you will be 
able to interpret the data without checking all of the tables and descriptions identified 
above. As you can see by the nine steps described above, it is imperative that you 
understand the addressing techniques described in Section 5 (including how they are 
stored in memory), and how to interpret the address syllable. 

Location 

003B 

003C 

003D 

003E 

003F 

0040 

0041 

0042 

0043 

0044 

0045 

0046 

0047 

0048 

0049 

004A 

DEBUGGING ASSEMBLY 
LANGUAGE PROGRAMS 

Instruction/Meaning 

Has no meaning in the context in which it appears; it is probably an 
address associated with the instruction in location 003A. 

LDR $R4,label 

Displacement between this location and the location containing the 
label identified in the LDR instruction. 

LAB $B2,label 

Displacement between this location and the location containing the 
label identified in the LAB instruction. 

LDR $R3,$B2 

CMR $R3,='QT' 

Value to be compared to the contents of $R3 in the CMR instruction. 

BNE $B3 

JMP *label 

Displacement between this location and the location containing the 
effective address (see "Indirect P-Relative Addressing" in Section 5). 
LDV $R2,X'20' 

DEC =$R4 

DEC =$R4 

LLH $R3, *B2.$R2 

CMV $R3,X'20' 

D-2 AU43 



APPENDIX E 

SOURCE CODE ERROR 
NOTIFICATION 
BY ASSEMBLER 

Columns 1 through 4 of the Assembler listing can contain up to four alphabetic 
characters (flags) which indicate possible errors in the source language statement. 
Columns 5-10 contain a six-digit decimal number corresponding to a sequential count 
of the source statements read. The error flags that can be produced by the Assembler 
are as follows: 

FLAG MEANING 

A Operand field format error 
C Numeric conversion error 
D Out of range short displacement 
E Illegal address expression 
F Illegal forward reference 
H Improper header 
L Label field format error 
M Multiply-defined symbol 
N No matching left parenthesis 
o Illegal operation code 
P Assembler control statement operand error 
Q Address <0 or ~3 2K 
R Illegal register reference 
S Improper statement format 
T Truncation warning constant/string constant 
U Undefined symbol 
X Expression too complex 
Z Conditional assembly error 

SOURCE CODE ERROR 
NOTIFICATION BY ASSEMBLER E-l AU43 





APPENDIX F 

SOURCE CODE ERROR 
NOTIFICATION 
BY MACRO PREPROCESSOR 

The Macro Preprocessor issue's error flags for nonfatal errors in the source code only 
if the IC argument was specified in the load command to the Command Processor. (See 
"Input to Command Processor Before Macro Preprocessor is Loaded" in the Program 
Development Tools manual.) If the IC argument was specified, each statement that 
contains a nonfatal error appears in the expanded source module as a comment and is 
preceded by the appropriate error flag(s). 

An error flag is an alphabetic character that denotes the cause of an error. There can 
be up to four error flags ·per statement; subsequent errors are not designated. In a 
listing, column I contains an asterisk, columns 2 through 5 contain the error flag(s), 
column 6 is blank, and subsequent columns contain the source statement and other 
pertinent information. Error flags that can be produced by the Macro Preprocessor are 
listed below. 

Error Flag 

A 
C 
E 

I 
J 

L 
M 
N 
o 
S 
T 
V 
X 
Z 

Meaning 

Operand field format error 
Numeric conversion error 
Illegal expression 
Invalid macro routine, MAC statement, or ENDM statement 
Macro function error 
Label field format error 
Multiple inline macro routines were assigned the same name 
No matching left parenthesis 
Illegal operation code 
Improper statement format 
Truncation warning 
Variable/parameter error in macro call or MAC statement 
Expression too complex 
Conditional processing error 

SOURCE CODE ERROR NOTIFICATION 
BY MACRO PREPROCESSOR F-l AU43 





APPENDIX G 

RESERVED SYMBOLIC NAMES 

The following is an alphabetic list of all symbolic names (labels and identifiers) that 
have been defined within the BES Assembler and may not be redefined by the user. 

Reserved 
Symbolic 
Name 

$ 
$AF 
$Bl,$B2, .. $B7 
$IV 
$Ml,$M2, ... $M7 
$Rl,$R2, ... $R7 
$SI,$S2,$S3 

Definition 

Current location 
Address format 
Base registers 1 through 7 
Interrupt vector for current priority level 
Mode control registers I through 7 
General registers 1 through 7; index registers 1 through 3 
Scientific registers I through 3 

All reserved symbols added to future versions of Level 6 Assemblers will begin with a 
dollar sign ($). It is therefore recommended thatuser-defined labels not begin with $. 

RESERVED SYMBOLIC NAMES G-t AU43 





INDEX 

ADD 
ADD, 5-24 

ADDITION 
HEXADECIMAL ADDITION, B-6 
A HEXADECIMAL ADDITION TABLE 

(TBL), B-6 

ADDRESS 
ADDRESS EXPRESSIONS, 2-12 
ADDRESS SYLLABLE (TBL), A-8 
ADDRESS (Bn) REGISTERS, 1-4 
SPECIALIZED ADDRESS 

EXPRESSIONS, 5-22 
SUMMARY OF VALID FORMS OF 

ADDRESS EXPRESSIONS (TBL), A-I 

ADDRESSING 
ADDRESSING TECHNIQUES, 5-7 
B-RELATlVE ADDRESSING, 5-14 
B-RELATlVE POP ADDRESSING, 5-19 
B-RELATlVE PUSH ADDRESSING, 5-19 
DIRECT B-RELATIVE ADDRESSING; 5-14 
DIRECT B-RELATlVE PLUS DISPLACEMENT 

ADDRESSING, 5-17 
DIRECT IMMEDIATE MEMORY 

ADDRESSING, 5-8 
DIRECT P-RELATIVE ADDRESSING, 5-12 
IMMEDIATE MEMORY ADDRESSING, 5-7 
IMMEDIATE OPERAND ADDRESSING, 5-10 
INDEXED B-RELATIVE POP 

ADDRESSING, 5-20 
INDEXED B-RELATlVE PUSH 

ADDRESSING, 5-20 
INDEXED DIRECT B-RELATlVE 

ADDRESSING, 5-16 
INDEXED DIRECT IMMEDIATE MEMORY 

ADDRESSING, 5-19 
INDEXED INDIRECT B-RELATlVE 

ADDRESSING, 5-16 
INDEXED INDIRECT IMMEDIATE MEMORY 

ADDRESSING, 5-10 
INDIRECT B-RELATlVE ADDRESSING, 

5-15 
INDIRECT B-RELATlVE PLUS 

DISPLACEMENT ADDRESSING, 5-17 
INDIRECT IMMEDIATE MEMORY 

ADDRESSING, 5-9 
INDIRECT P-RELATlVE ADDRESSING, 5-13 
INTERRUPT VECTOR ADDRESSING, 5-23 
P-RELATlVE ADDRESSING, 5-12 
REGISTER ADDRESSING, 5-7 
SHORT DISPLACEMENT ADDRESSING, 5-22 

ADV 
ADV, 5-24 

ANH 
ANH, 5-25 

ARITHMETIC 
ARITHMETIC OPERATIONS, 5-1 

ASCII 
ASCII STRING CONSTANTS, 2-4 

ASCII/HEXADECIMAL 
ASCII/HEXADECIMAL MEMORY DUMP 

(FIG), D-l 

ASSEMBLER 
ASSEMBLER CONTROL STATEMENTS, 

4-1, 4-3 
ASSEMBLER FUNCTIONS (FIG), 1-1 
ASSEMBLER-RELATED UTILITY 

PROGRAM, 3-3 
BES ASSEMBLER, 3-3 

ASSEMBLY 
ASSEMBLY LANGUAGE INSTRUCTION 

TYPES, 5-3 
ASSEMBLY LANGUAGE INSTRUCTIONS, 

5-1, 5-24 
ASSEMBLY LANGUAGE INTERNAL 

FORMATS BY TYPE, A-4 
ASSEMBLY LANGUAGE SOURCE 

STATEMENT FORMATS, 3-1 
ASSEMBLY LANGUAGES, 1-1 
DEBUGGING ASSEMBLY LANGUAGE 

PROGRAMS, D-l 
ELEMENTS OF BES ASSEMBLY 

LANGUAGE, 2-1 
INTERNAL FORMATS OF ASSEMBLY 

LANGUAGE INSTRUCTIONS (FIG), A-4 
INTERNAL REPRESENTATION OF ASSEMBLY 

LANGUAGE INSTRUCTIONS (TBL), A-5 
SAMPLE ASSEMBLY LANGUAGE 

PROGRAM, C-l 

ASSEMBLY-CONTROL 
ASSEMBLY-CONTROLLING 

STATEMENTS, 4-1 

B 

BAG 

CONDITIONAL ASSEMBLY-CONTROL 
STATEMENTS, 4-2 

B, 5-26 

BAG, 5-27 

BAGE 
BAGE, 5-27 

BAL 
BAL, 5-28 

BAI:E 
BALE, 5-28 

i-I AU43 



BBF 
BBF, 5-29 

BBT 
BBT, 5-29 

BCF 
BCF, 5-30 

BCT 
BCT, 5-30 

BDEC 
BDEC, 5-31 

BE 
BE, 5-31 

BEVN 
BEVN, 5-32 

BEZ 
BEZ, 5-32 

BG 
BG, 5-33 

BGE 
BGE, 5-33. 

BGEZ 

BGZ 

BI 

BGEZ, 5-33 

BGZ, 5-34 

BRANCH ON-INDICATOR (BI) 
INSTRUCTIONS, 5-3 

BINARY 
COMPARISON OF BINARY DECIMAL AND 

HEXADECIMAL SYMBOLS (TBL) , B-1 

BINC 
BINC, 5-34 

BIOF 
BIOF, 5-35 

BlOT 
BlOT, 5-35 

BIT 
BIT STRING CONSTANTS, 2-5 

INDEX 

B-RELATIVE ADDRESSING 
B-RELATlVE ADDRESSING, 5-14 
B-RELATIVE POP ADDRESSING, 5-19 
B-RELATlVE PUSH ADDRESSING, 5-19 
DIRECT B-RELATIVE ADDRESSING, 5-14 
DIRECT B-RELATIVE PLUS 

BL 

BLE 

DISPLACEMENT ADDRESSING, 5-17 
INDEXED B-RELATlVE POP 

ADDRESSING, 5-20 
INDEXED B-RELATlVE PUSH 

ADDRESSING, 5-20 
INDEXED DIRECT B-RELATlVE 

ADDRESSING, 5-16 
INDEXED INDIRECT B-RELATIVE 

ADDRESSING, 5-16 
INDIRECT B-RELATIVE 

ADDRESSING, 5-15 
INDIRECT B-RELATlVE PLUS 

DISPLACEMENT ADDRESSING, 5-17 

BL, 5-36 

BLE, 5-36 

BLEZ 
BLEZ, 5-37 

BLZ 
BLZ, 5-37 

BNE 
BNE, 5-37 

BNEZ 
BNEZ, 5-38 

BNOV 
BNOV, 5-38 

BODD 
BODD, 5-39 

BOOLEAN 
BOOLEAN OPERATIONS, 5-1 

BOV 
BOV, 5-39 

BR 
BRANCH-ON-REGISTER (BR) 

INSTRUCTIONS, 5-4 

i-2 

BRANCH 
BRANCH OPERATIONS, 5-2 

BRANCH-ON-INDICATOR 
BRANCH-ON-INDICATOR (BI) 

INSTRUCTIONS, 5-3 

AU43 



BRANCH-ON-REGISTER 
BRANCH-ON-REGISTER (BR) 

INSTRUCTIONS, 5-4 

BRK 
BRK, 5-40 

BSE 
BSE, 5-40 

BSU 
BSU, 5-41 

CAD 
CAD, 5-41 

CALL 
CALL, 4-3 

CALLING 
CALLING EXTERNAL PROCEDURES, 3-2 
CALLING SYSTEM SERVICES, 3-2 

CL 
CL, 5-42 

CLH 
CLH, 5-42 

CLST 
CLST, 4-4 

CMB 
CMB, 5-43 

CMH 
CMH, 5-43 

CMN 
CMN, 5-44 

CMR 
CMR, 5-45 

CMV 
CMV, 5-45 

CMZ 
CMZ, 5-46 

CODES 
MNEMONIC CODES, 2-1 

COMM 
COMM, 4-4 

COMMON 
COMMON LOCATION EXPRESSIONS, 2-11 

INDEX 

CONDITIONAL 
CONDITIONAL ASSEMBLY-CONTROL 

STATEMENTS, 4-2 

CONSTANTS 
ASCII STRING CONSTANTS, 2-4 
BIT STRING CONSTANTS, 2-5 
CONSTANTS, 2-3 
DECIMAL INTEGER CONSTANTS, 2-6 
FIXED-POINT CONSTANTS, 2-6 
FLOATING-POINT CONSTANTS, 2-7 
HEXADECIMAL INTEGER CONSTANTS, 2-6 
HEXADECIMAL STRING CONSTANTS, 2-4 
INTEGER CONSTANTS, 2-6 
STRING CONSTANTS, 2-4 
TRUNCATION/PADDING OF STRING 

CONSTANTS, 2-5 

CONTROL 
ASSEMBLER CONTROL STATEMENTS, 

4-1, 4-3 
CONTROL OPERATIONS, 5-2 

C01NERSION 
DECIMAL-TO-HEXADECIMAL 

CONVERSION, B-2 
HEXADECIMAL-TO-DECIMAL 

CONVERSION, B-2 
HEXADECIMAL-TO-ASCII CONVERSION, 

B-4 

COUNTER 
PROGRAM COUNTER (P-) REGISTER, 1-4 

CPL 
CPL, 5-47 

CTRL 
CTRL, 4-4 

DAL 
DAL, 5-47 

DAR 
DAR, 5-48 

DATA 
LEVEL 6 DATA REPRESENTATIONS, 1-1 
FLOATING-POINT DATA, 1-4 
SIGNED INTEGER DATA, 1-2 
UNSIGNED DATA, 1-3 

DATA-DEFINING 
DATA-DEFINING STATEMENTS, 4-1 

DC 
DC, 4-5 

DCL 
COMPARE DCL, 5-48 

COMPARE OPERATIONS, 5-2 

i-3 AU43 



DCR 
DCR, 5-49 

DEBUGGER 
DEBUGGER, D-l 

DEBUGGING 

DEC 

DEBUGGING ASSEMBLY LANGUAGE 
PROGRAMS, D-l 

DEC, 5-50 

DECIMAL 
COMPARISON OF BINARY DECIMAL AND 

HEXADECIMAL SYMBOLS (TBL) , B-1 
DECIMAL INTEGER CONSTANTS, 2-6 

DEClMAL-TO-HEXADEClMAL 
DEClMAL-TO-HEXADEClMAL 

CONVERSION, B-2 

DEFINING 
DEFINING BES SYMBOLIC NAMES 

(TBL), 2-3 

DISPLACEMENT ADDRESSING 
DIRECT B-RELATIVE PLUS DISPLACEMENT 

ADDRESSING, 5-17 
INDIRECT B-RELATlVE PLUS 

DISPLACEMENT ADDRESSING, 5-17 
SHORT DISPLACEMENT ADDRESSING, 5-22 

DIV 
DIV, 5-50 

DIVISION 

DO 

DOL 

HEXADECIMAL DIVISION, B-8 

DOUBLE OPERAND (DO) 
INSTRUCTIONS, 5-4 

DOL, 5-51 

DOR 
DOR, 5-52 

DUMP 
ASCII/HEXADECIMAL MEMORY DUMP 

(FIG), D-l 

DUMPS 
READING AND INTERPRETING MEMORY 

DUMPS, D-l 

ELEMENTS 
ELEMENTS OF GCOS/BES ASSEMBLY 

LANGUAGE, 1-2 

INDEX 

END 
END, 4-6 

ENDM 
ENDM MACRO CONTROL STATEMENT, 6-2 

ENT 
ENT, 5-53 

EQU 
EQU, 4-6 

ERROR NOTIFICATION 
SOURCE CODE ERROR NOTIFICATION 

BY ASSEMBLER, E-l 
SOURCE CODE ERROR NOTIFICATION 

BY MACRO PREPROCESSOR, F-l 

EXPRESSIONS 

i-4 

ADDRESS EXPRESSIONS, 2-12 
COMMON LOCATION EXPRESSIONS, 2-11 
EXPRESSIONS, 2-8 
EXTERNAL LOCATION EXPRESSIONS, 2-11 
INTERNAL LOCATION EXPRESSIONS, 2-10 
INTERNAL VALUE EXPRESSIONS, 2-9 
LOCATION AND VALUE 

EXPRESSIONS, 2-9 
LOCATION EXPRESSIONS, 2-10 
SPECIALIZED ADDRESS EXPRESSIONS, 

5-22 
VALID ADDRESS EXPRESSIONS, A-9 

EXTERNAL 
CALLING EXTERNAL PROCEDURES, 3-2 
EXTERNAL LOCATION EXPRESSIONS, 

2-11 

FAIL 
FAIL, 4-7 
FAIL MACRO CONTROL STATEMENT, 6-12 

FORMATS 
ASSEMBLY LANGUAGE INTERNAL 

FORMATS BY TYPE, A-4 
ASSEMBLY LANGUAGE SOURCE 

STATEMENT FORMATS, 3-1 

FUNCTIONS 
ASSEMBLER FUNCTIONS (FIG), 1-1 

GE 
GENERIC (GE) INSTRUCTIONS, 5-5 

GENERAL 
GENERAL (Rn) REGISTERS, 1-5 

GENERIC 
GENERIC (GE) INSTRUCTIONS, 5-5 

GO TO 
GO TO MACRO CONTROL STATEMENT, 

6-12 

AU43 



HARDWARE 
HARDWARE REGISTERS, 1-4 
HARDWARE CONSIDERATIONS, 1-4 
SUMMARY OF HARDWARE REGISTERS, A-I 

HEXADEelMAL 
COMPARISON OF BINARY DECIMAL AND 

HEXADECIMAL SYMBOLS (TBL), B-1 
HEXADECIMAL ADDITION, B-6 
HEXADECIMAL DIVISION, B-8 
HEXADECIMAL INTEGER CONSTANTS, 2-6 
HEXADECIMAL MULTIPLICATION, B-7 
HEXADECIMAL NUMBERING SYSTEM, B-1 
HEXADECIMAL REPRESENTATION OF 

INSTRUCTIONS, A-S 
HEXADECIMAL STRING CONSTANTS, 2-4 
HEXADECIMAL SUBTRACTION, B-7 

HEXADEClMAL-TO-ASCII 
HEXADEClMAL-TO-ASCII CONVERSION, 

B-4 

HEXADEClMAL-TO-DEClMAL 
HEXADEClMAL-TO-DEClMAL CONVERSION, 

B-2 

HLT 
HLT, 5-53 

IDENTIFIERS 
IDENTIFIERS, 2-2 

IF 
IF, 4-7 
IF MACRO CONTROL STATEMENT, 6-12 

INC 
INC, 5-53 

INDEXED ADDRESSING 
INDEXED B-RELATIVE POP 

ADDRESSING, 5-20 
INDEXED B-RELATlVE PUSH 

ADDRESSING, 5-20 
INDEXED DIRECT B-RELATIVE 

ADDRESSING, 5-16 
INDEX~D DIRECT I~~DIATE MEMORY 

ADDRESSING, 5-9 
INDEXED INDIRECT B-RELATIVE 

ADDRESSING, 5-16 
INDEXED INDIRECT IMMEDIATE MEMORY 

ADDRESSING, 5-10 

INDICATOR 
INDICATOR (1-) REGISTER, 1-6 

INDEX 

INDIRECT ADDRESSING 

i-5 

INDEXED INDIRECT B-RELATlVE 
ADDRESSING, 5-16 

INDEXED INDIRECT IMMEDIATE MEMORY 
ADDRESSING, 5-10 

INDIRECT B-RELATlVE 
ADDRESSING, 5-15 

INDIRECT B-RELATlVE PLUS 
DISPLACEMENT ADDRESSING, 5-17 

INDIRECT IMMEDIATE MEMORY 
ADDRESSING, 5-9 

INDIRECT P-RELATIVE 
ADDRESSING, 5-13 

INPUT/OUTPUT 
INPUT/OUTPUT OPERATIONS, 5-2 
INPUT/OUTPUT (10) INSTRUCTIONS, 

5-5 

INSTRUCTION TYPES 
ASSEMBLY LANGUAGE INSTRUCTION 

TYPES, 5-3 

INSTRUCTIONS 
ASSEMBLY LANGUAGE INSTRUCTIONS, 

5-1, 5-24 
BRANCH-ON-INDICATOR (BI) 

INSTRUCTIONS, 5-3 
BRANCH-ON-REGISTER (BR) 

INSTRUCTIONS, 5-4 
DOUBLE OPERAND (DO) 

INSTRUCTIONS, 5-4 
GENERIC (GE) INSTRUCTIONS, 5-5 
HEXADECIMAL REPRESENTATION OF 

INSTRUCTIONS, A-5 
INPUT/OUTPUT (10) 

INSTRUCTIONS, 5-5 
INTERNAL FORMATS OF ASSEMBLY 

LANGUAGE INSTRUCTIONS (FIG), A-4 
INTERNAL REPRESENTATION OF 

ASSEMBLY LANGUAGE INSTRUCTIONS 
(TBL), A-5 

SHIFT (SHS AND SHL) 
INSTRUCTIONS, 5-5 

SHORT-VALUE-IMMEDIATE (SI) 
INSTRUCTIONS, 5-6 

SINGLE OPER~ND (SO) 
INSTRUCTIONS, 5-6 

INTEGER 
DECIMAL INTEGER CONSTANTS, 2-6 
HEXADECIMAL INTEGER CONSTANTS, 2-6 
INTEGER CONSTANTS, 2-6 
SIGNED INTEGER DATA, 1-2 

INTRODUCTION 
INTRODUCTION, 1-1 

AU43 



INDEX 

10 

I 
LLR 

INPUT/OUTPUT (10) INSTRUCTIONS, 5-5 LLR, 5-66 
10, 5-54 

lOR 
lOR, 5-55 

IOLD 
IOLD, 5-56 

I-REGISTER 
INDICATOR (1-) REGISTER, 1-6 

JMP 
JMP, 5-57 

LAB 
LAB, 5-57 

LABELS 
LABELS, 2-2 
RESERVED LABELS, 2-3 
USER-DEFINED LABLES, 2-2 

LB 
LB, 5-58 

LBC 
LBC, 5-58 

LBF 
LBF, 5-59 

LBS 
LBS, 5-60 

LBT 
LBT, 5-61 

LDB 
LDB, 5 .... 61 

LDR 
LDH, 5-62 

LDI 
LDI, 5-63 

LDR 
LDR, 5-63 

LDV 
LDV, 5-64 

LEV 
LEV, 5-64 

LIBM 
LIBM MACRO CONTROL STATEMENTS, 

LIST 
LIST, 4-8 

6-6 

LIST-CONTROLLING STATEMENTS, 4-1 

i-6 

LNJ 
LNJ, 5-67 

LOAD 
LOAD OPERATIONS, 5-2 

LOCATION EXPRESSIONS 

MI 

COMMON LOCATION EXPRESSIONS, 2-11 
EXTERNAL LOCATION EXPRESSIONS, 

2-11 
INTERNAL LOCATION EXPRESSIONS, 

2-10 
LOCATION AND VALUE 

EXPRESSIONS, 2-9 

MODE CONTROL (1) REGISTER, 1-5 

MACRO 
CONDITIONAL MACRO CONTROL 

STATEMENTS, 6-11 
CONTENTS OF MACRO ROUTINE, 6-2 
CREATING A MACRO ROUTINE, 6-2 
ENDM MACRO CONTROL STATEMENT, 6-2 
EXAMPLE ILLUSTRATING MACRO 

FACILITY, 6-22 
FAIL MACRO CONTROL STATEMENT, 6-12 
FORMAT OF MACRO FUNCTIONS, 6-16 
GO TO MACRO CONTROL STATEMENT, 

6-12 
HEXADECIMAL CONVERSION MACRO 

FUNCTION, 6-17 
IF MACRO CONTROL STATEMENT, 6-12 
INDEX MACRO FUNCTION, 6-18 
INITIALIZED VALUES OF MACRO 

VARIABLES, 6-24 
MAC MACRO CONTROL STATEMENT, 

INCLUDING PARAMETERS, 6-3 
MAC MACRO CONTROL STATEMENT, 

WITHOUT PARAMETERS, 6-2 
MACRO CALLS, 6-6 
MACRO FACILITY, 6-1 
MACRO FUNCTIONS, 6-16 
MACRO ROUTINES, 6-1 
MACRO VARIABLES, 6-9 
NEXTED MACRO CALL, 6-8 
NULL MACRO CONTROL STATEMENT, 6-15 
RECURSIVE MACRO CALL, 6-8 
SEARCH MACRO FUNCTION, 6-19 
SETA MACRO CONTROL STATEMENT, 6-9 
SETN MACRO CONTROL STATEMENT, 6-10 
SITUATING MACRO ROUTINES, 6-5 
SPECIALIZING A MACRO ROUTINE BY 

PARAMETER SUBSTITUTION, 6-2 
SUBSTRING MACRO FUNCTION, 6-19 
VECTOR ORIENTATION MACRO 

FUNCTION, 6-20 
VERIFY MACRO FUNCTION, 6-21 

AU43 



MAC 

MCL 

MAC MACRO CONTROL STATEMENT, 
INCLUDING PARAMETERS, 6-3 

MAC MACRO CONTROL STATEMENT, 
WITHOUT PARAMETERS, 6-1 

MCL, 5-67 

MEMORY DUMP 
ASCII/HEXADECIMAL MEMORY DUMP 

(FIG), D-l 
READING AND INTERPRETING MEMORY 

DUMPS, D-l 

MLV 
MLV, 5-67 

MNEMONIC 
MNEMONIC CODES, 2-1 

MODE CONTROL 
MODE CONTROL (Ml) REGISTER, 1-5 

MODIFY 
MODIFY OPERATIONS, 5-2 

MTM 
MTM, 5-68 

MUL 
MUL, 5-69 

MULTIPLICATION 
HEXADECIMAL MULTIPLICATION, B-7 

NEG 
NEG, 5-69 

NLST 
NLST, 4-9 

NOP 
NOP, 5-70 

NORMALIZATION 
NORMALIZATION, 2-8 

NULL 
NULL, 4-9 
NULL MACRO CONTROL STATEMENT, 6-15 

OPERATIONS 
ARITHMETIC OPERATIONS, 5-1 
BOOLEAN OPERATIONS, 5-1 
BRANCH OPERATIONS 5-2 
COMPARE OPERATIONS, 5-2 
CONTROL OPERATIONS, 5-2 
INPUT/OUTPUT OPERATIONS, 5-2 

INDEX 

i-7 

OPERATIONS (CONT) 
LOAD OPERATIONS, 5-2 
MODIFY OPERATIONS, 5-2 
SCIENTIFIC OPERATIONS, 5-3 
SHIFT OPERATIONS, 5-3 
STORE OPERATIONS, 5-3 
SWAP OPERATIONS, 5-3 

ORDER OF STATEMENTS 

OR 

ORDER OF STATEMENTS IN SOURCE 
PROGRAM, -3-2 

ORDER OF STATEMENTS WITHIN A 
SOURCE MODULE, 6-1 

OR, 5-70 

ORG 
ORG, 4-9 

ORH 
ORH, 5-71 

PADDING STRING CONST~~TS 
TRUNCATION/PADDING OF STRING 

CONSTANTS, 2-5 

P-
PROGRAM COUNTER (P-) REGISTER, 1-4 

P-RELATIVE ADDRESSING 
DIRECT P-RELATIVE ADDRESSING, 5-12 
INDIRECT P-RELATIVE 

ADDRESSING, 5-13 
P-RELATIVE ADDRESSING, 5-12 

POS ADDRESSING 
B-RELATIVE POP ADDRESSING, 5-19 
INDEXED B-RELATIVE POP 

ADDRESSING, 5-20 

PROCEDURES 
CALLING EXTERNAL PROCEDURES, 3-2 

PROGRAM(S) 
ASSEMBLER-RELATED UTILITY 

PROGRAM, 3-3 
DEBUGGING ASSEMBLY LANGUAGE 

PROGRAMS, D-l 
ORDER OF STATEMENTS IN SOURCE 

PROGRAM, 3-2 
SAMPLE ASSEMBLY LANGUAGE 

PROGRAM, C-l 

PROGRAM-LINKING 
PROGRAM-LINKING STATEMENTS, 4-2 

PROGRAMMING CONSIDERATIONS 
PROGRAMMING CONSIDERATIONS, 3-1 

AU43 



SCIENTIFIC INSTRUCTION PROCESSOR 
(SIP) PROGRAMMING CONSIDERATIONS, 
3-3 

PROTECTION 
PROTECTION OPERATORS, 6-4 

PUSH ADDRESSING 
B-RELATIVE PUSH ADDRESSING, 5-19 
INDEXED-B-RELATIVE PUSH 

ADDRESSING, 5-20 

REFERENCES 
PROGR~R'S REFERENCE INFORMATION, 
A-I 

REFERENCES, 2-13 

REGISTER(S) 
ADDRESS (Bn) REGISTERS, 1-4 
GENERAL (Rn) REGISTERS, 1-5 
HARDWARE REGISTERS, 1-4 
INDICATOR (1-) REGISTER, 16-
MODE CONTROL (Ml) REGISTER, 1-5 
PROGRAM COUNTER (P-) REGISTER, 1-4 
REGISTER ADDRESSING, 5-7 
SUMMARY OF HARDWARE REGISTERS, A-I 
SYSTEM STATUS (S-) REGISTER, 1-5 

REPRESENTATION 
DATA REPRESENTATION, 1-1 
HEXADECIMAL REPRESENTATION OF 

INSTRUCTIONS, A-5 
INTERNAL REPRESENTATION OF ASSEMBLY 

LANGUAGE INSTRUCTIONS (TBL), A-5 

RESERVED 
RESERVED LABELS, 2-3 
RESERVED SYMBOLIC NAMES,6-1 

RESV 
RESV, 4-10 

Rn 
GENERAL (Rn) REGISTERS, 1-5 

RSTR 
RSTR, 5-72 

RTCF 
RTCF, 5-73 

RTCN 
RTCN, 5-73 

RTT 
RTT, 5-73 

SAD 
SAD, 5-74 

INDEX 

SAL 
SAL, 5-75 

SAR 
SAR, 5-75 

SAVE 
SAVE, 5-76 

SBE 
SBE, 5-77 

SBEU 
SBEU, 5-77 

SBEZ 
SBEZ, 5-78 

SBG 
SBG, 5-78 

SBGE 
SBGE, 5-79 

SBGEZ 
SBGEZ, 5-79 

SBGZ 
SBGZ, 5-80 

SBL 
SBL, 5-80 

SBLE 
SBLE, 5-81 

SBLEZ 
SBLEZ, 5-81 

SBLZ 
SBLZ, 5-82 

SBNE 
SBNE, 5-82 

SBNEU 
SBNEU, 5-83 

SBNEZ 
SBNEZ, 5-83 

SBNPE 
SBNPE, 5-84 

SBNPSE 
SBNPSE, 5-84 

SBPE 
SBPE, 5-85 

SBSE 
SBSE, 5-85 

i-8 AU43 



INDEX 

SCIENTIFIC 
SCIENTIFIC ACCUMULATOR (Sn) 

REGISTERS, 1-6 
SCIENTIFIC INDICATOR (SI) REGISTER, 

1-6 
SCIENTIFIC INFORMATION PROCESSOR 

(SIP) REGISTERS, 1-6 
SOFTWARE SIMULATION OF THE SCIENTIFI 

INFORMATION PROCESSOR, 1-8 

SCL 
SCL, 5-86 

SCM 
SCM, 5-87 

SCR 
SCR, 5-86 

SCZD 
SCZD, 5-88 

SCZQ 
SCZQ, 5-89 

SDI 
SDI, 5-89 

SDV 
SDV, 5-91 

SETA 
SETA MACRO CONTROL STATEMENT, 6-9 

SETN 
SETN MACRO CONTROL STATEMENT, 6-11 

SHIFT 

SHL 

SHIFT OPERATIONS, 5-3 
SHIFT (SHS AND SHL) INSTRUCTIONS, 

5-5 

SHIFT (SHS AND SHL) INSTRUCTIONS, 
5-5 

SHORT DISPLACEMENT ADDRESSING 
SHORT DISPLACEMENT ADDRESSING, 5-22 

SHORT-VALUE-IMMEDIATE 
SHORT~VALUE-IMMEDIATE (SI) 

INSTRUCTIONS, 5-6 

SHS 
SHIFT (SHS AND SHL) 

INSTRUCTIONS, 5-5 

i-9 

SI 
SHORT-VALUE-IMMEDIATE (SI) 

INSTRUCTIONS, 5-6 

SIGNED 
SIGNED INTEGER DATA, 1-2 

SIP 
SCIENTIFIC INFORMATION PROCESSOR 

(SIP) REGISTERS, 1-6 
SCIENTIFIC INSTRUCTION PROCESSOR 

(SIP) PROGRAMMING CONSIDERATIONS, 
3-3 

SIP MODE (M4) REGISTER, 1-7 
SIP TRAP MASK (M5) REGISTER, 1-7 

S-
SYSTEM STATUS (S-) REGISTER, 1-5 

SLD 
SLD, 5-91 

SML 
SML, 5-92 

SNGD 
SNGD, 5-93 

SNGQ 
SNGQ, 5-93 

SOFTWARE SIMULATION 

SOL 

SOFTWARE SIMULATION OF THE 
SCIENTIFIC INFORMATION 
PROCESSOR, 1-8 

SOL, 5-94 

SOR 
SOR, 5-94 

SOURCE 
ASSEMBLY LANGUAGE SOURCE 

STATEMENT FORMATS, 3-1 
ORDER OF STATEMENTS IN SOURCE 

PROGRAM, 3-2 
SOURCE CODE ERROR NOTIFICATION 

BY ASSEMBLER, E-l 
SOURCE CODE ERROR NOTIFICATION 

BY MACRO PREPROCESSOR, F-l 

SPECIALIZED ADDRESS EXPRESSION 
SPECIALIZED ADDRESS 

EXPRESSIONS, 5-22 

AU43 



SRM 
SRM, 5-95 

SSB 
SSB, 5-95 

SST 
SST, 5-96 

SSW 
SSW, 5-97 

STATUS 
SYSTEM STATUS (S-) REGISTER, 1-5 

STB 
STB, 5-98 

STH 
STH, 5-99 

STM 
STM, 5-100 

STORAGE-ALLOCATION 
STORAGE-ALLOCATION STATEMENTS, 4-2 

STORE 
STORE OPERATIONS, 5-3 

STR 
STR, 5-100 

STRING CONSTANTS 

STS 

SUB 

ASCII STRING CONSTANTS, 2-4 
BIT STRING CONSTANTS, 2-5 
HEXADECIMAL STRING CONSTANTS, 2-4 
STRING CONSTANTS, 2-4 
TRUNCATION/PADDING OF STRING 

CONSTANTS, 2-5 

STS, 5-101 

SUB, 5-101 

SUBTRACTION 
HEXADECIMAL SUBTRACTION, B-7 

SWAP 
SWAP OPERATIONS, 5-3 

SWB 
SWB, 5-102 

SWR 
SWR, 5-102 

INDEX 

SYMBOLIC NAMES 
DEFINING BES SYMBOLIC NAMES 

(TBL), 2-3 
RESERVED SYMBOLIC NAMES, 6-1 
SYMBOLIC NAMES, 2-1 

SYMBOL-DEFINING 
SYMBOL-DEFINING STATEMENTS, 4-2 

SYMBOLS 
COMPARISON OF BINARY DECIMAL AND 

HEXADECIMAL SYMBOLS (TBL) , B-1 

SYSTEM SERVICES 
CALLING SYSTEM SERVICES, 3-2 

TEXT 
TEXT, 4-10 

TITLE 
TITLE, 4-10 

TRUNCATION 
TRUNCATION/PADDING STRING 

CONSTANTS, 2-5 

UNSIGNED DATA 
UNSIGNED DATA, 1-3 

USER-DEFINED LABELS 
USER-DEFINED LABELS, 2-2 

UTILITY PROGRAM 
ASSEMBLER-RELATED UTILITY 

PROGRAM, 3-3 

VALUE EXPRESSIONS 
INTERNAL VALUE EXPRESSIONS, 2-9 
LOCATION AND VALUE 

EXPRESSIONS, 2-9 

WDTF 
WDTF, 5-103 

WDTN 
WDTN, 5-103 

XDEF 
XDEF, 4-11 

XLOC 
XLOC, 4-12 

XOH 
XOH, 5-103 

XOR 
XOR, 5-104 

XVAL 
XVAL, 4-12 

i-10 AU43 



HONEYWELL INFORMATION SYSTEMS 
Technical Publications Remarks Form 

TITLE 
SERIES 60 (LEVEL 6) 
GCOS/BES2 
ASSEMBLY LANGUAGE 

ERRORS IN PUBLICATION 

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION 

ORDER No·1 AU43, REV. 0 

DATED !-1 __ J_U_L_Y_19_7_6 __ 

r\. Your comments-will be promptly investigated by appropriate technical personnel and action will be taken D lI' as required. If you require a written reply, check here and furnish complete mailing address below. 

FROM: NAME __________________________________________ __ DATE ______________ __ 

TITLE ____________________ ~ ____________________ ___ 

COMPANV ________________________________________ __ 

ADDRE~, ________________________________________ __ 



ATTENTION: PUBLICATIONS, MS 486 

Business Reply Mail 
Postage Stamp Not Necessary if Mailed in the United States 

Postage Will Be Paid By: 

HONEYWELL INFORMATION SYSTEMS 
200 SMITH STREET 
WALTHAM, MA 02154 

Honeywell 

FIRST CLASS 
PERMIT NO. 39531 
WALTHAM,MA 
02154 



Honeywell 
Honeywell Information Systems 

In the U.S.A.: 200 Smith Street, MS 486, Waltham, Massachusetts 02154 
In Canada: 2025 Sheppard Avenue East, Willowdale, Ontario M2J 1W5 

In Mexico: Avenida Nuevo Leon 250, Mexico 11, D.F. 

16047, 2876, Printed in U.S.A. AU43, Rev. 0 




