
Honeywell

SERIES 60 (LEVEL 6)

SOFTWARE

SOFTWARE OVERVIEW AND
SYSTEM CONVENTIONS

GCOS/BES2

Honeywell SOFTWARE OVERVIEW AND
SYSTEM CONVENTIONS

SERIES 60 (LEVEL 6) GCOS/BES2

SUBJECT:

Introduction to Series 60 (Level 6) GCOS/Basic Executive System 2
Software.

SOFTWARE SUPPORTED:

DATE:

This manual supports Release 0200 of Series 60 (Level 6) GCOS/Basic
Executive System (BES2) software. See the Subject Directory for a
list of other publications that support this release.

July 1976

ORDER NUMBER:

AU50, Rev. 0

PREFACE

This manual introduces the Series 60 (Level 6) GCOS/Basic Executive

System 2 (BES2) software provided for the Series 60 (Level 6) 6/30 models

hardware. Unless stated otherwise herein, the term BES will be 'used to refer to

the GCOS/BES2 software; the term Level 6 will indicate the specific models of

Series 60 (Level 6) on which the described software executes.

Section 1 presents a brief introduction to the configurable hardware,

hardware features, and software components. It contains descriptions of related

BES documents.

Section 2 describes, in more detail, system software components.

Section 3 describes the general considerations involved in testing and

executing application programs.

Section 4 specifies the various system conventions relating to data and

file organizations and formats, character set and conversion tables, programming

and error reporting.

Appendix A is a list of the system modules as they are distributed, along

with their names and approximate sizes.

Appendix B shows minimum equipment requirements and indicates additional

usable equipment.

Appendix C is a glossary of BES terms.

~ 1976, Honeywell Information Systems Inc. File No.: IS13

AU50

GCOS/BES2 SUBJECT DIRECTORY

This subject directory is designed to assist the user in finding information

about specific topics related to GCOS/BES2. Topics are listed alphabetically;

each topic is accompanied by the order number of each manual in which the topic

is described. At the end of the Subject Directory, all GCOS/BES2 manuals are

listed according to the alphabetic/numeric sequence of their order numbers.

Subject

Allocate Disk File (Utility Set 1)

Application Development (Overview)•...............

ASCII Character Set and Conversion Tables•....•

Assembling Programs

Assembler Diagnostic Flags .. .

Assembly Source Language•.....................................

BAS I C•...•...........................•..................•..

Bootstrap Generator•...........•...•.•....•......•.............

Bootstrapping and Loading .•......................................•...

Buffer Manager .•...••.••..•.....••........••......•.........•........

Building an Online Application•...............................

Card Loader

Clock Manager•...........•..................................

COBOL Compilation•...•......................•...........••••

COBOL Source Language••.........•....•..•...........•..•...

COBOL Statements•...............•.••..•.........•.•

COBOL Compiler Diagnostic Messages ..•..................•.............

COBOL Operating Procedures ...•.........•.••.••.••.•....•• ~ ..•.•..••..

Command Processor .••...........•.•........••.............•.•.•..••...

Communications•.........•.............

Compare Disk Volumes/Files/Members (Utility Set 3)••........•.••

Configuration Load Manager .•..•....•......•...•.•.......••..•.....•.•

Console Messages (Error and Informational)••....••••..••.....•.

Control Panel •••.•.....•..••.....•........•..•.......••..••••.•••.•..

Copy Disk Volume/File/Member (Utility Set 3) ..••••••••...••...•••..••

Cross-Reference Program•.....•.•.....•..•.....•.••••.•.•.••.

iii

Order No.

AU47

AU50

AU50

AU48

AU43

AU43

AU44

AU47

AU46

AU45

AU49

AU46

AU45

AU48

AU42

AU42

AU42

AU46

AU48

AU45

AU47

AU49

AU46

AU46

AU47

AU48

AU50

Subject

Debugging (Offline)•..••..•...••.......•••.•..••...•.....•.••••.

Debugging (Online)•.............••.....•••..•.••.•••

Delete Disk File/Member (utili ty Set 1) ..•........•...•.•...•....••..

Disk Conventions•....•..•...•.•.........•.....•......••.••.

Disk Loader •.•...•.•..•.•.•••....•...••.••..•........•..••••••.••••••

Dump s .•.•............•.....•..•....•..•.....•.....•.••..•.•.•.•.•..•.

Dump Edi t .•..•.•••.•....•••..•.•...•..••..•...••..••••••••..•..•.•...

Editor •.......•.......•...•...........••..•.•...••.•••....•...•...•••

Equipment Requirements ..•.•.•...•...........•.•..•.....••••.•.•.••..•

Error Reporting by Online Applications •..•••••••.......••..••..•••..•

Error Reporting by System Software •.•••••••••••..•.••.••.••.••.•••..•

Execu ti ve Components .•..••...•.••...•.•••...••.•.•.••..••..••.••.••••

File Manager•......•.........••..•..•.•.•.•..•••••.•.•......

File Naming Conven tions•...••........••.••.•.•••.•.••••.••.•..

Floating-Point Simulator•...•..•..•.•.....•••.•.••.....•..••.....

FORTRAN Compilation••....•........•......•.•..•........•.•.•.•.

FORTRAN Compiler Diagnostic Messages•.••..•.••.•...•.....••••..•.

FORTRAN Intrinsic Functions

FORTRAN Source Language •..•.•...••.•.....•....••.......•••...•..•..••

FORTRAN Statements and Procedures ••.................••.............•.

Glossary of System Terms•••....•......•....•.••••..•.•.••.•••

Hexadecimal Numbering System••.......•.......•..•.••..•.•••.••.

Initialize Disk Volume/File (utility Set 1) ••••••••••••••••••••••••••

Input/Output Drivers•........•............•.....•.......•......•

Linker ..•..

List Disk Volume/File Description (utility Set 1)

Loaders•.•..•..•..•.••.•...........•..........•.....

Macro Facility Usage•......•..•.••.•.•.......•....•

Macro Preprocessor•...•.......................••...•.............

Offline Applications•.•.....•..•..••.•....••.••....•...•..•.•

Operating Procedures•••.....•••••.••....•.•..••.•••....••...•••.

Operator Interface Manager•••.....•......•.....•..•......•.•.•..

Over lay Loader•...••••......••...••.••..•.•...•..•..•..•.••.

Paper Tape Loader •...............•...•.................•..........••.

Planning an Online Application•••..•.•..•..•.•••.•••.••••..•••••

Print Disk File/Member (utility Set 2) .•....•..••.....•....•.....••.•

Program Development Tools•.......•............•.•...•.•..•..

Program Naming Conventions .•.•...•.•.••.......•..••....•.......••..•.

Program Patch ...••.•••.•.•.•....•...•......••.....•.••.•.....•.•..•.•

Punch Disk File/Member to Paper Tape (utility Set 2) ...•.•...........

Rename Disk Volume/File/Member (utility Set 1)•..•...........

iv

Order No.

AU47

AU49

AU47

AU50

AU46

AU47

AU47

AU48

AU50

AU46

AU46

AU45

AU45

AU50

AU45

AU48

AS32

AS32

AS32

AS32

AU50

AU43

AU47

AU45

AU48

AU47

AU46

AU43

AU48

AU45

AU46

AU45

AU45

AU46

AU49

AU47

AU48

AU50

AU47

AU47

AU47

AU50

Subject Order No.

Replace Memory Values (utility Set 1)•••...••.•................ AU47

Scientific Branch Simulator•...•.••..••............•.....• AU45

Software Release Materials (Contents)•...••.•................ AU50

System Conventions•........•......••..••.••..••.•..•••.•••..•..•. AU50

System Software and Documentation (Overview)•••.•..••••......... AU50

Task Manager ••......•..................•.......••.•....•...•......... AU 45

Trace Trap Handler•......•.•........•....•.•.•.••........•.. AU45

Transfer Input to Disk File/Member (utility Set 2) •••...•••......•••• AU47

Trap Handling (Offline)•...•...•.•.....•... AU46

Trap Handling (Online)•..........•..................... AU45

utili ty Programs•................•....••....•....•....•.. AU47

The following publications constitute the Series 60 (Level 6) GCOS/BES2

manual set. They support Release 0200 of Series 60 (Level 6) GCOS/BES2 and

fully describe its major components.

Order
Number Manual Title Revision Date

AS32 Series 60 (Level 6) GCOS/BES FORTR~N Reference 1 July 1976
Manual

AU4l Series 60 (Level 6) GCOS/BES2 COBOL Reference 0 July 1976
Manual

AU43 Series 60 (Level 6) GCOS/BES2 Assembly Language 0 July 1976
Reference Manual

AU44 Series 60 (Level 6) GCOS/BES2 BASIC Reference 0 July 1976
Manual

AU45 Series 60 (Level 6) GCOS/BES2 Executive and 0 July 1976
Input70utput

AU46 Series 60 (Level 6) GCOS/BES2 0Eerator's Guide 0 July 1976

AU47 Series 60 (Level 6) GCOS/BES2 Utility Programs 0 July 1976

AU48 Series 60 (Level 6) GCOS/BES2 Program Develop- 0 July 1976
ment Tools

AU49 Series 60 (Level 6) GCOS/BES2 Plannin~ and 0 July 1976
Building an Online AEplication

AU50 Series 60 (Level 6) GCOS/BES2 Software Overview 0 July 1976
and System Conventions

v AU50

In addition to the GCOS/BES2 manual set, the following manual is required

by GCOS/BES2 users as a general hardware reference:

Order
Number

AS22

Manual Title

Honeywell Level 6 Minicomputer Handbook

Revision Date

o January 1976

The following manual provides detailed information regarding programming for

the Multiline Communications Processor:

Order
Number

AT97

Manual Title

Series 60 (Level 6) MLCP Programmer's Refer
ence Manual

vi

Revision Date

o June 1976

AU50

Section 1

Section 2

CONTENTS

Introduction
Hardware •••••••••••••••••••••••••••••••••••
Firmware/Hardware Features •••••••••••••••••••
Operating Environments •••••••••••••••••••••••

Offline Environment ••••••••••••••••••••••••
Online Environment •••••••••••••••••••••••••

Communications e e to e e

Software Document Set ••••••••••••••••••••••••

System Software Components •••••••••••••••••••••
Program Development Tools ••••••••••••••••••••

Program Development Sequence •••••••••••••••
Co~~and Processor ••••••••••••••••••••••••••
Editor
Macro Preprocessor •••••••••••••••••••••
Assembler
FORTRAN Compiler •••••••••••••••••••••••••••
COBOL Compiler •••••••••••••••••••••••••••••
BASIC Interpreter ••••••••••••••••••••••••••
Linker•.......................
Cross-Reference Program ••••••••••••••••••••

utili ty Programs •••••••••••••••••••••••••••••
Utili ty Set 1 ...••....••.•••.•......•......
utility Set 2 ••••••••••••••••••••••••••••••
Utility Set 3 ••••••••••••••••••••••••••••••
Dump Edit •...•••••.•.•.•..•••••••.••••••...
Bootstrap Generator ••••••••••••••••••••••••
Offline Debugger •••••••••••••••••••••••••••
Program Patch•...•......••............

MLCP Software ...••••••••.••.•••••.••••.......
MLCP Loader ••••••••••••••••••••••••••••••••
MLCP Macro Routines ••••••••••••••••••••••••

Executive Modules ••••••••••••••••••••••••••••
Task Manager •••••••••••••••••••••••••••••••
Clock Manager ••••••••••••••••••••••••••••••
Overlay Loader •••••••••••••••••••••••••••••
Operator Interface Manager •••••••••••••••••
Buf fer Manager •••••••••••••••••••••••••••••

Input/Output Modules •••••••••••••••••••••••••
File Manager .••••••••••••••••••.••••••••.•.
FORTRAN Run-Time I/O Routines (FRIOR) a •••••

COBOL Run-Time I/O Routine •••••••••••••••••
Device Drivers ••• ~ •••••••••••••••••••••••••

Online Diskette Driver •••••••••••••••••••
Online Cartridge Disk Driver •••••••••••••
Online Printer Driver ••••••••••••••••••••
Online Card Reader Driver ••••••••••••••••
Online KSR Driver ••••••••••••••••••••••••
KSR Terminal Driver ••••••••••••••••••••••
Online ASR Driver ••••••••••••••••••••••••
VIP 7700 Terminal Driver •••••••••••••••••
BSC 2780 Driver ••••••••••••••••••••••••••
Offline Device Drivers •••••••••••••••••••

Online Debug Program •••••••••••••••••••••••••
Trap Handlers •••••.•.••••••••••••••••••••••••

vii

Page

1-1
1-1
1-3
1-4
1-4
1-6
1-7
1-7

2-1
2-1
2-1
2-3
2-4
2-4
2-5
2-5
2-6
2-6
2-7
2-7
2-7
2-8
2-8
2-8
2-9
2-9
2-9
2-9
2-9
2-9
2-9
2-10
2-11
2-11
2-11
2-11
2-12
2-12
2-12
2-13
2-13
2-13
2-14
2-15
2-15
2-15
2-15
2-15
2-15
2-16
2-16
2-16
2-16
2-17

AU50

Section 2 (cont)

Section 3

Section 4

Appendix A

Appendix B

Appendix C

Figure 1-1.
Figure 1-2.
Figure 2-1.
Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 4-1.
Figure 4-2.
Figure 4-3.
Figure 4-4.
Figure 4-5.
Figure 4-6.
Figure 4-7.
Figure 4-8.

CONTENTS (cont)

FORTRAN Run-Time Routines ••••••••••••••••••
Configuration Load Manager •••••••••••••••••••
Loaders

Application Program Checkout and Execution •••••

System Conventions •••••••••••••••••••••••••••••
Media Conventions ••••••••••••••••••••••••••••

Disk Data Format and Organization ••••••••••
Bootstrap Record •••••••••••••••••••••••••
Intermediate Loader Records ••••••••••••••
Vol ume Label •••••••••••••••••••••••••••••
Volume Index of Defective Sectors ••••••••
Volume Allocation Bit Map ••••••••••••••••
Volume Directory •••••••••••••••••••••••••
Disk Data File Organization ••••••••••••••

Paper Tape Data Format and Organization ••••
Card Data Format and Organization ••••••••••
Character Set and Code Conversion ••••••••••

Programming Conventions ••••••••••••••••••••••
Module and File Name Conventions •••••••••••
Calling Sequences ••••••••••••••••••••••••••

System Service Requests ••••••••••••••••••
External Procedures ••••••••••••••••••••••

Register Conventions and Usage •••••••••••••
Data Types •••••••••••••••••••••••••••••••••

Real Aritmletic Binary Data Types ••••••••
Short Fixed-Point Binary •••••••••••••••
Long Fixed-Point Binary ••••••••••••••••
Short Floating-Point Binary ••••••••••••

String Data Types ••••••••••••••••••••••••
Bit String •••••••••••••••••••••••••••••
Character String •••••••••••••••••••••••

Arrays
Error Reporting Conventions ••••••••••••••••••

Organization of Distribution Media •••••••••••••

Equipment Requirements •••••••••••••••••••••••••
Minimum Equipment for Program Development ••••
Minimum Equipment for Online Applications ••••
Peripheral and Communications Equipment ••••••

Glossary

ILLUSTRATIONS

Level 6 Hardware •••••••••••••••••••••••••••••••••
BES Software•..•.•........................•.•
Application Program Development Sequence •••••••••
Offline Debugging of an Application Program ••••••
Execution of an Online Application Program •••••••
Online Checkout of an Application Program ••••••••
Interrelationship of Disk Volume Structures ••••••
File Status/Type Word ••••••••••••••••••••••••••••
Multi-Extent Dynamic File ••••••••••••••••••••••••
Relative File Organization on Diskette (Example) •
Paper Tape Data Organization •••••••••••••••••••••
Paper Tape File Organization •••••••••••••••••••••
ASCII Mode Format for Card Data ••••••••••••••••••
Verbatim Mode Format for Card Data •••••••••••••••

viii

Page

2-18
2-18
2-19

3-1

4-1
4-1
4-1
4-3
4-3
4-3
4-5
4-5
4-6
4-9
4-11
4-14
4-15
4-18
4-18
4-19
4-19
4-20
4-21
4-22
4-23
4-23
4-23
4-24
4-24
4-24
4-24
4-24
4-24

A-l

B-1
B-1
B-1
B-1

C-l

1-2
1-5
2-2
3-2
3-3
3-4
4-3
4-7
4-9
4-10
4-12
4-13
4-14
4-15

AU50

Figure 4-9.
Figure 4-10.

Table 4-1.
Table 4-2.
Table 4-3.
Table 4-4.
Table 4-5.
Table 4-6.
Table 4-7.

Table 4-8.
Table 4-9.
Table 4-10.

Table 4-11.
Table 4-12.
Table A-I.
Table A-2.

Table A-3.
Table B-1.

ILLUSTRATIONS (cont)

Card File Organization •••••••••••••••••••••••••••
Argument List

TABLES

Disk Volume Control Structures •••••••••••••••••••
Volume Label Contents ••••••••••••••••••••••••••••
Volume Directory Record Contents •••••••••••••••••
Remote Extent Record Contents ••••••••••••••••••••
Paper Tape Special Characters ••••••••••••••••••••
Hollerith to ASCII Equivalence Codes •••••••••••••
Standard Character Set and ASCII to Hexadecimal

Conver s ion ...•..•.•••.•.••••...•••...••.......•
System Module Name Prefixes ••••••••••••••••••••••
System-Program-Assigned Suffixes •••••••••••••••••
Register Usage by Executive and Input/Output

Modules •••••••••••.••••••••••••••••••••••••••••
Summary of Data Types ••••••••••••••••••••••••••••
Summary of Error Reporting Conventions •••••••••••
System Software Modules on Diskette ••••••••••••••
System Software in Source Module Format on

Diskette •••••••••••••••••••••••••••••••••••••••
System Software on Cartridge Disk ••••••••••••••••
Usable Peripheral and Communications Equipment •••

ix

Page

4-15
4-20

4-2
4-4
4-6
4-7
4-13
4-16

4-18
4-19
4-19

4-21
4-23
4-25
A-I

A-lO
A-IO
B-2

AU50

SECTION 1

INTRODUCTION

The Basic Executive System (BES) consists of system software that supports

the development of your application programs, and the execution of your appli

cation programs within minimum hardware configurations.

The objectives of BES are to provide a system that:

• Supplies programs and utilities to assist application program
development

• Supports real time operations

• Provides communications support

• Is time and interrupt driven

• Allows device independent programming

• Supports program overlay capability

• Handles multiple user tasks

• Provides configurable memory-resident executive software

A variety of system programs provide you with the means to develop your

application and configure your execution environment. BES supplies:

• Four programming languages

• Program development tools

• Utility programs

• Memory configuration program

The modular design of BES execution time software enables you to design

and select the minimal operating environment suited to your application. BES

provides:

• Peripheral and communications device support

• Executive control routines

• File management routines

• Input/output routines

HARDWARE

Figure 1-1 shows the hardware resources that can be used in a Level 6

configuration. (A minimum configuration is given in Appendix B.) For a

complete description of central processor, peripheral and communications device

hardware, refer to the Minicomputer Handbook.

1-1 AU50

I-'
I
tv

E;
VI
o

CENTRAL
PROCESSOR

MEMORY MDC

§
[7

CARD READER

Figure I-I.

MSC
MLCP

Level 6 Hardware

GPDMAI

BSC 2780 LINES

t

KSR TERMINAL

LEVEL 6
COMPUTER

LEVEL 66
COMPUTER

Memory is available in mUltiples of 8K words up to 64K words. A Multiple

Device Controller (MDC) controls consoles, printers, diskettes, paper tape

teleprinters, and card readers; a Mass Storage Controller (MSC) controls car

tridge disks. The consoles are the KSR (keyboard send-receive) and ASR

(automatic send-receive when not using paper tape) teleprinters, CRT (cathode

ray tube) keyboard console, and typewriter console.

The Multiline Communications Processor (MLCP) is a user-programmable

communications controller that handles asynchronous KSR-like terminals, synch

ronous Visual Information Projection (VIP) System 7700 terminals, and for

communicating with other Level 6 or Level 66 communications computers, it

handles lines that use the Binary Synchronous Communications (BSC) 2780 communi

cations protocol transmitting at rates up to 9600 bits per second. The KSR-like

terminals are the KSR and CRT terminals. The figure also illustrates that

data transfers occur over communication lines either hard-wired, dedicated,

or dial-up. The VIP 7700 is an interactive display terminal with line cursor

control to edit text prior to transmission; forms control, to display a form

on the screen for formatted data entry; and function code keys to transmit a

function code to be interpreted by the receiver, e.g., attention function.

The general purpose direct memory access interface (GPDMAI) is a user

programmable controller that allows the attachment of non-Honeywell peripheral

devices. It requires a user-written driver.

FIRMWARE/HARDWARE FEATURES

BES software is supported by firmware and hardware features that contribute

to overall system efficiency by reducing memory space occupied by software and

by increasing the speed of certain operations above what it would be if they

were managed by software alone. Some of these features are described below.

Sixty four interrupt priority levels are provided, of which the highest

ones are reserved for specific system functions, the lowest one is the "system

idle" level and all others are available for assignment to devices and pro

gram tasks. A task may be characterized as the execution of a sequence of

instructions that has a starting point and an ending point and performs some

identifiable function; a task can initiate another task for execution or

terminates itself by calling task management functions. Multiple tasks op

erate idenpendent of and asynchronous to each other. The task at the highest

active interrupt priority level is the one in execution. If in order for the

higher priority level task to execute, a task at a lower priority level must

be interrupted, the context of the lower priority task is saved (e.g., the

hardware registers and program counter). When the task at the higher priority

1-3 AU50

level terminates, the context of the task at the lower priority level is

restored, and it executes. Interrupting a task, saving the context of a task,

selecting and starting the highest priority level task, and restoring the con

text of a task are done without software involvement.

Another feature is the trap handling function. This function causes an

immediate control transfer to the designated software routine upon the detec

tion of conditions such as program errors, hardware errors, arithmetic overflow,

and uninstalled optional instructions.

OPERATING ENVIRONMENTS

BES system software provides two operating environments; the offline

environment primarily for program development, and the online environment for

application program execution. Figure 1-2 identifies the environments in which

system software operates, and shows individual BES modules grouped by function.

Offline Environment

The offline software consists of independent system programs that are

used to develop your application programs and to prepare your files. These

system programs operate in an environment designed to efficiently process a

series of system programs, one program at a time.

Briefly, the available program development tools are: the Command

Processor, to sequence the execution of requested system programs; the Editor,

to create and correct a source program, written in one of the provided pro

gramming languages and stored in a source program module; the language pro

cessors, to create a relocatable object module from a source program module;

the Linker, to produce an executable load module by combining one or more

object modules; and the Cross-Reference Program, to produce a cross reference

list of all identifiers used in an assembly language program.

The language processors are: a FORTRAN Compiler that supports the pro

posed 1976 American National Standards Institute FORTRAN subset, a COBOL

Compiler patterned after the low-level 1974 American National Standard COBOL,

an expanded BASIC Interpreter, and a Macro Preprocessor and Assembler for the

BES assembly language. Note, the BASIC Interpreter is a self contained sub

system that enables you to prepare and execute a BASIC program without using

the Editor, Linker or Executive.

1-4 AU50

OFFLINE ENVIRONMENT

PROGRAM DEVELOPMENT TOOLS INPUT/OUTPUT DRIVERS

• Command Processor • Card Reader

• Editor • Printer(5)

• Macro Preprocessor • KSR COnsole

• Assembler • ASR Teleprinter

• FORTRAN Compiler • Diskette

• COBOL Compiler • Cartridge Disk

• BASIC Interpreter

• Linker OTHER SOFTWARE

• Cross-Reference Program • MLCP Macro Routines

UTILITY PROGRAMS

• Utility Set 1
initial ize volume/file,
allocate, delete, list,
dump, replace, rename

• Utility Set 2
print, dump logical file,
dump disk area,
disk to paper tape,
card/paper tape to disk

• Utility Set 3
copy, compare

I
• Bootstrap Generator

• Dump Edit

• Offline Debugger

• Program Patch

ONLINE ENVIRONMENT ON LINE/OFFLINE

EXECUTIVE MODULES OTHER SOFTWARE • Disk Loader

• Task Manage;r • Online Debug Program • Paper Tape Loader

• Clock Manager • Trace Trap Handler • Card Loader

• Operator Interface • FORTRAN Run-Time • MLCP Loader
Manager Routines

• Configuration Load

• Buffer Manager • Floating-Point Manager
Simulator

• Overlay Loader

• Scientific Branch

INPUT/OUTPUT MODULES Simulator

• File Manager

• FORTRAN Run-Time I/O
Routines (FRIOR)

• COBOL Run-Time I/O
Routines

• Drivers
Card Reader
Printer(s)
KSR Console
ASR Teleprinter
Diskette
Cartridge Disk

• Communications Drivers
KSR Terminal
VIP 7700 Terminal
BSC 2780

Figure 1-2. BES Software

1-5 AU50

BASIC is an easy to use programming language designed for the entry level

programmer; FORTRAN is intended for scientific application programming and

COBOL for business application programming.

To facilitate program development and application execution a full set

of utilities is provided for preparing and maintaining disk volumes and files,

transferring data between media, copying and verifying disk data, debugging

application programs, and patching object or load modules on disk. Two disk

devices are supported, diskette and cartridge disk.

Input/output drivers are supplied to transfer data between a program and

a peripheral device supported in the offline environment.

The MLCP macro routines can be used to interface new communications equip

ment. They are used by system programmers to write the channel control pro

grams, which control the flow of data between the central processor and com

munications devices.

Online Environment

Application programs are executed in an online environment that you con

figure. The principle characteristic of the online environment is that is can

respond to interrupts from external devices, internal hardware (e.g., the

real-time clock), or software, and execute the program task at the highest

active interrupt priority level. The system software controlling this en

vironment is contained in routines that the application program must explicitly

call, if it wants to exercise multi task control. The software modules special

to the online environment will now be described briefly.

The Executive modules are: the Task Manager, to schedule and synchronize

tasks including other executive and input/output system tasks; the Clock

Manager, to service real-time clock interrupts and provide task scheduling

after timed intervals; the Operator Interface Manager, to control dialogue

between an application program and system operator; the Buffer Manager, to

control the dynamic allocation of preselected blocks of memory to an applica

tion program; the Overlay Loader to load, during execution, application

memory image segments to a designated portion of memory.

Physical I/O drivers are provided for all peripheral and communications

devices to transfer data between memory and devices. These include inter

active consoles that are connected to the MDC, and interactive terminals that

are connected to the MLCP to transfer data over communications lines. To

further simplify I/O programming, File Manager routines, that perform logical

I/O operations on files, are provided for all devices. Both the I/O drivers

and the File Manager are implemented as reentrant routines. The FORTRAN and

1-6 AU50

COBOL Run-Time Input/Output Routines use the File Manager to support file I/O

and data formatting.

The Online Debug Program and Trace Trap Handler are available for testing

programs in the online environment.

FORTRAN Run-Time Routines are mathematical routines, bit string manipUla

tion routines, and routines to implement task management capabilities.

The Floating-Point Simulator and the Scientific Branch Simulator provide

software simulation for scientific instructions.

Loaders are provided to load executable load modules from peripheral

devices into memory. The Configuration Load Manager uses these loaders when

it configures the online environment by loading the application load modules,

building Executive data structures, and initiating program execution. The MLCP

Loader loads the channel control programs into the MLCP.

COMMUNICATIONS

COIDIDunications software provides you with easy to use interfaces to KSR,

CRT, VIP 7700, and BSC 2780 communications devices, identical to those provided

for peripheral devices. Code written for communications can be used to access

peripheral devices, enabling you to select I/O devices for production runs and

for program checkout. The BSC 2780 is treated by the software like other

devices and is considered to transfer unbuffered files in either direction, but

in a nonconversational mode.

SOFTWARE DOCUMENT SET

This overview manual is intended to introduce you to BES software. Most

of the information presented here is of a general nature, and contains

references to the more detailed treatment of particular subjects in the other

manuals in the set.

Some of the information in this overview is not to be found in any other

manual in the set. The material in Section 4 on media and system conventions,

and that in Appendix A about system software modules is unique to the overview.

Briefly, the contents of the other documents in the set are:

• Honeywell Level 6 Minicomputer Handbook - Descriptions of hard
ware models, central processor, processor architecture and fea
tures, instruction set, registers, peripheral devices, software,
various controllers and system features, as well as maintenance
and site preparation information •

• Assembly Language Reference manual - Complete description of all
instructions, instruction formats, control statements, types of
addressing, types of data handled, and macro language statements.

1-7 AU50

• FORTRAN Reference manual - Complete description of all state
ments, instruction formats, types of files and data handled.
FORTRAN run-time support routines (intrinsic functions, task
ing, I/O).

• COBOL Reference manual - Complete description of the general
features of COBOL programs, language elements, language syntax,
the four major divisions of a COBOL program, specific format
descriptions of all COBOL statements (including programming
examples incorporating each statement), and the types of files
and data handled.

• BASIC Reference manual - Complete description of all BASIC
statements, statement formats, mathematical functions and opera
ting procedures. Includes a description of the loading procedure.

• Program Development Tools manual - Detailed descriptions of the
Command Processor, Editor, Linker, Cross-Reference Program; for
mats and arguments for all commands used for these programs,
diagrams and examples of use of the development tools. Includes
a description of the loading procedure and optional functions of
the Assembler, FORTRAN and COBOL Compilers, and Macro Pre
processor.

• utility Programs manual - Detailed descriptions of each utility
set and its functions, the commands and operands associated with
its use; examples of each function and sample printouts. Con
tains a separate list of all operands used by the utility pro
grams, a definition of the operands, and a list of associated
functions. Contains descriptions of the Offline Debugger, Pro
gram Patch, Dump Edit, and Bootstrap Generator.

• Executive and Input/Output manual - Complete descriptions of all
Executive modules: the Task, Clock Buffer, Operator Interface
Managers, and Overlay Loader, as well as File Manager and Com
munications; all online and offline device drivers; the Trace
Trap Handler, Floating-Point Simulator, and Scientific Branch
Simulator.

• Operator's Guide - Descriptions and examples of all control panel
and system console procedures required by an operator to start up
a system, load programs and execute them, display values on the
control panel, change these values. This manual includes des
criptions of the Disk, Paper Tape, and Card Loaders, and a com
plete list of error messages issued by all system software.

• Planning and Building an Online Application - Description of the
elements involved in designing an online application. Details
the actions of the Configuration Load Manager (CLM) in special
izing and combining Executive modules to satisfy user require
ments; defines all CLM commands and parameters. Describes the
Online Debug Program.

1-8 AU5Q

SECTION 2

SYSTEM SOFTWARE COMPONENTS

Before an application program can be executed, it must be written using

the program development tools provided by the offline environment. The assembly

language programmer must know the online functions that are available if task

scheduling or file I/O is used in the program, since these online functions are

called directly by assembly language code. A COBOL or FORTR~N program must

execute in the online environment, but all interfaces with online functions are

provided in language statements; no direct calls to these functions are made.

This section describes features of the offline and online components.

PROGRAM DEVELOPMENT TOOLS

The program development tools are the language processors, Editor, and

Linker system programs which are executed in the offline environment. Another

system program, the Command Processor, controls the sequencing and loading of

these programs. The program development tools require a minimum configuration

consisting of a console, two diskette drives or a cartridge disk, and 16K words

of memory.

Program Development Sequence

Figure 2-1 shows the program development sequence for application programs

other than BASIC, which is described in the BASIC language manual. All disk

volumes are assumed to have been initialized and files allocated prior to the

development sequence shown in the figure.

To explain the sequence, the following paragraphs describe the preparation

of an assembly language application program. You can use a KSR command input

device to enter commands to the Command Processor that it prepare the Editor for

execution. After each command, control returns to the KSR until you request to

load the Editor. The Command Processor activates the Disk Loader to load the

Editor. You interact with the Editor to enter source language statements. The

Editor builds a source module and stores it on disk. When the Editor terminates,

control returns to the Command Processor (not illustrated) and you can request

the Assembler for execution.

2-1 AU50

COMMAND
INPUT
DEVICE

COMMAND
PROCESSOR

DISK
LOADER

EDITOR

LANGUAGE
PROCESSORS

LINKER

COMMAND
INPUT
DEVICE

APPLICATION
SOURCE
MODULE

APPLICATION
AND LIBRARY
OBJECT MODU LES

COMMAND
INPUT
DEVICE

APPLICATION
LOAD
MODULES

Figure 2-1. Application Program Development Sequence

2-2 AU50

To run the Assembler, enter the appropriate commands (similar to those used

for the Editor) to the Command Processor. In particular, the source module file

is identified. The Assembler is loaded, it reads the source module from disk,

and assembles the program to create an object module. If the program is in

error, you must correct the source module, using the Editor, before processing

can be continued.

After all the programs to be executed are assembled, the Linker is loaded

and links the object modules, from one or more disks, into a load module, which

is suitable for loading and execution.

In summary, the procedure used for obtaining system program functions is

to enter commands to the Command Processor to prepare the specified system

program for execution, until you request that it be loaded. The system program

runs and performs its function. Then control returns to the Command Processor,

and you can request another system program.

The above example used an interactive KSR as the command input device.

Other devices, such as CRT, card reader, or disk can be used. However, the

latter two provide command input files and cannot be used interactively. For

example, in a card reader command input file to the Editor, the cards will con

tain Editor commands followed by other cards with additional source statements

or corrections to statements in the source file.

Included in the "language processor" function of Figure 2-1 is the Macro

Preprocessor which is required to process an assembly language application

source module containing macro calls. Such a source module must be processed

by the Macro Preprocessor, which creates on disk another application source

module with assembly language source code replacing the macro calls. The

latter source module is the new input module to the Assembler.

The following paragraphs describe the program development components.

Command Processor

The Command Processor is provided to sequence the execution of program de

velopment system programs in the offline environment.

Before a system program can be executed, commands must be issued to the

Command Processor describing the files to be used by the system program, files

such as the program file on which the system program resides (e.g., the file

containing the Assembler); the data input file to the system program (e.g.,

assembly language source file); and the output file from the system program

2-3 AUSO

(e.g., assembled object module). Another command loads the system program and

initiates execution. This command also is used to pass arguments to the system

program; e.g., lithe suppress all listingsll or IIlist errors onlyll arguments to

a language processor. The Command Processor accepts typeins from a console,

and command files from the disk or card reader.

A description of the Command Processor commands and those used with each

system program (except the Basic Interpreter) are contained in the Program De

velopment Tools manual.

Editor

The Editor is a system program that enables you to create and/or correct

the source text of macro routines or assembly language, FORTRAN, or COBOL

programs.

Editor accepts its source text input from disk and writes the corrected

source text output to disk; it can take the command file that directs its op

eration from a console, card reader, or disk.

Editor can also be used to add a new source program to disk from punched

cards or console typeins.

See the Program Development Tools manual for details of all the Editor

commands for locating, substituting, deleting, and inserting statements in

source programs.

Once your application program has been written, and necessary editing op

erations have been completed, it must be processed by one of the following

language processors.

Macro Preprocessor

The Macro Preprocessor provides a convenient method for including in an

assembly language source module a specified sequence of source statements.

This capability simplifies the coding of source modules and enables you to

standardize the coding of frequently used statement sequences. Each of these

statement sequences is contained in a macro routine which can be created and

stored on disk macro libraries by the Editor, or is located at the beginning

of the assembly language source module.

Wherever the sequence of statements is to be included in the source program,

a macro call is written. Prior to assembly, a source module containing macro

calls must be processed by the Macro Preprocessor to SUbstitute a corresponding

sequence of source statements for each macro call.

2-4 AU50

The Macro Preprocessor requires a minimum of 16K words of memory, a disk

that may be used for both input and output, and a console.

A description of the Macro Preprocessor commands is contained in the Assembly

Language manual.

Assembler

The Assembler is a system program that processes assembly language source

code, translates these statements into object code acceptable to the Linker, and

produces a listing of the source statements and their associated machine code

equivalents, suitably flagged for error conditions.

The Assembler is a two-pass program that runs in a minimum configuration of

16K. The first pass generates the symbol table in the Assembler's resident

table area; the second pass generates the object module and/or a listing, as

requested.

The Assembler is invoked by a co~~and entered through a console. It accepts

source statement input from disk. Assembler output, both the object module and

the listing, may be written to disk. Alternatively, the listing may be assigned

directly to a printer.

The code for analyzing the options passed to the Assembler, as well as

that required for initializing the symbol table, is overwritten by the operation

of the Assembler. For this reason, only one source program can be assembled for

each load of the Assembler.

A description of the assembly language instructions is contained in the

Assembly Language manual.

FORTRAN Compiler

The FORTRAN Compiler translates FORTRAN source statements into an object

module ready for processing by the Linker, or optionally, into a source module

of assembly language statements for processing by the Assembler. The compiler

is a single-pass processor that operates in a minimum of 16K words of memory.

The compiler is invoked by a command entered through a console; it accepts

its source input from disk and produces its object module or assembly language

source module on disk. It also produces a listing of the source text (with

imbedded diagnostics and a memory map) that is directed either to a disk for

printing later, or to a printer.

2-5 AU50

Routines for data conversion and input/output (sequential and direct ac

cess), as well as routines for FORTRAN intrinsic functions are available in

object text format to be linked, as needed, to FORTRAN programs. Additionally,

FORTRAN offers the following Instrument Society of America (ISA) extensions:

bit string manipulation on values of integer data, and seven subroutines to

implement task management capabilities.

A description of the FORTRAN language statements and run-time routines is

contained in the FORTRAN manual.

COBOL Compiler

The COBOL Compiler translates COBOL source statements into an object mod

ule ready for processing by the Linker. The compiler is a mUltipass processor

that operates in a minimum of 16K words of memory.

The compiler is invoked by a command entered through a console; it accepts

its source input from disk, and produces its object module on disk. It also

produces a listing of the source text (with imbedded diagnostics and a memory

map) that is directed either to a disk for printing later, or to a printer.

Additionally, COBOL offers the following: support of relative files and

random access capability, the CALL statement, and debug lines.

A description of the COBOL language statements is contained in the COBOL

manual.

BASIC Interpreter

The BASIC Interpreter provides interactive facilities to create, modify,

store, retrieve, and execute programs written in the BASIC language. An im

portant part of the Interpreter's program exectuion function is its ability to

process disk data files that have been prepared by either BES BASIC or BES

FORTRAN programs. It operates in 16K words of memory.

By fully utilizing the program and file processing facilities available

in the BASIC Interpreter, you can operate within a self contained BASIC-oriented

environment for most of the more elementary data processing and problem-solving

requirements and applications. Both program libraries and data files can be

created and maintained on disk for this purpose.

The Interpreter is invoked by a command entered through a console; input

is from a console or disk. Diagnostics and execution results are displayed on

the console.

2-6 AU50

A description of BASIC program preparation, execution initiation, and

language statements is contained in the BASIC manual.

Linker

The Linker combines object modules that are the output of a compiler or the

Assembler, and converts them to a format acceptable for loading. It resolves

external references, and can process one or more object modules to produce a

single load module, or several load modules, in one execution. For planned

overlays it produces a root load module plus overlay modules.

The Linker is controlled by command statements that are entered either

through a console, card reader, or from a member of a disk file. It accepts

the object modules it processes from disk; it writes its output (load modules)

to a disk.

Linker also produces listings containing a link map and error messages that

can be written to a console, a disk, or a printer.

A description of the Linker commands is contained in the Program Develop

ment Tools manual.

Cross-Reference Program

The Cross-Reference Program can be used to produce an alphabetic list of

all symbolic names (i.e., labels and identifiers) in an assembly language source

module. The program lists for each symbolic name its line references in the

source module, and it flags an undefined symbol or a multiply-defined label.

Input to the Cross-Reference Program is in source module form and from disk.

Output is a listing to a printer or console.

A description of the Cross-Reference Program operating instructions is

contained in the Program Development Tools manual.

UTILITY PROGRAMS

The system programs designated as utilities provide a variety of services

including disk volume preparation and maintenance, file handling, data transfer

from one type of medium to another, and program patching. These programs ex

ecute only in the offline environment, and are loaded from disk using the

Command Processor.

Many of the utility functions are concerned with files on disk. As ex

plained in Section 4 of this manual, two file types are supported: relative and

partitioned. Relative files contain fixed-length records that can be accessed

either sequentially or directly. Partitioned files, used only by BES system

2-7 AU50

programs, contain variable-size members such as source modules, object modules,

list modules, or load modules. Utility functions handle relative files with

deletable records or mUltiple extents, but cannot create files with these prop

erties.

Brief descriptions of the utilities follow; for complete details, see the

utility Programs manual.

utility Set I

Utility Set I performs disk volume and file preparation and maintenance.

One of its functions is to initialize new disk volumes for use by system file

handling routines. Volume initialization consists of writing volume directory

information on track 0 of the volume.

formatting provided by this program.)

(See Section 4 for the information and

Other functions are:

• Initialize a disk volume

• Allocate space for new files

• Initialize partitioned files

• Delete files, or members

• Rename a volume, a file, or a member

• List the name, location, or size of all files, freespace and
defective sectors of a disk

• Dump from a disk to a memory area, or from memory to: disk, KSR,
or printer. Replace one area of memory with a specified value
before writing to a device.

Utility Set 2

Utility Set 2 provides data transfer functions. These are:

• Print contents of a file or member containing format control
characters

• Dump contents of a file or member on a logical record basis

• Dump contents of a disk on a sector basis

• Transfer a member from disk to paper tape

• Transfer cards or paper tape to disk member

utility Set 3

utility Set 3 provides for copying and verifying of disk data. It will:

• Copy a volume, file or member from one disk to another

• Compare the new volume, file, or member with the original to verify the
accuracy of the copy operation

2-8 AU50

Dump Edit

Dump Edit prints from a diskette a memory dump previously dumped there.

Bootstrap Generator

Bootstrap Generator creates a bootstrap record containing parameters to be

subsequently used during bootstrapping and loading.

Offline Debugger

The Offline Debugger is an interactive, offline utility used for program

testing and temporary error correction. The console dialogue consists of

commands submitted by the operator, and responses displayed on a console in the

form of informational and error messages. Debugger can display memory and

register contents, and allows the operator to modify them. The "breakpoint"

feature causes activation of Debugger during the execution of your program at

the location where a breakpoint is set.

Program Patch

The Program Patch utility allows the alteration of either object or load

module text. Patches may be created, added, deleted, or listed by using th~

appropriate commands to the utility.

MLCP SOFTWARE

The Honeywell-supplied software support for the Multiline Communications

Processor consists of the MLCP Loader and the MLCP macro routines.

MLCP Loader

The MLCP Loader resides in main memory linked to a user-written program,

and is responsible for loading the channel control programs and control struc

tures into the random access memory (RAM) portion of the MLCP, for the purpose

of processing the communications data stream of an application.

MLCP Macro Routines

There are a number of macro routines available for writing the channel

control programs and other control structures for handling communications data

streams. These macro routines are processed by the Macro Preprocessor prior to

assembly. For a detailed description of the MLCP software, refer to the MLCP

Programmer's Reference Manual.

2-9 AU50

EXECUTIVE MODULES

A set of Executive functions is provided to enable your application program

to schedule the execution of its tasks. There are three reasons for wanting to

control the execution of tasks: (1) to obtain better utilization of the hard

ware and, consequently, faster execution; (2) to be able to respond to a real

time event that must interrupt the currently executing task; and (3) to enable

tasks to contend for control of the central processor.

Better hardware utilization is possible by running system resources

simultaneously, since the system resources, namely, the central processor,

real-time clock, peripheral devices, and communications devices operate inde

pendently of each other. In your application program, every resource that is

to run simultaneously can be associated with a different task and the tasks

scheduled for simultaneous execution. For example, the function of one task

of an application can be to perform input/output, and that of another, to use

the real-time clock functions.

For real-time applications, events can be associated with tasks. A differ

ent task can be requested to process the external interrupt from each unique

device or the internal interrupt from the real-time clock. Each different task

can be associated with a different priority level, and the task at the highest

active priority level will be executed. The Planning and Building an Online

Application manual lists the priority levels recommended for system resources.

An application, consisting of several tasks, might require that tasks con

tend for the central processor and that one task be executed prior to or instead

of another. For example, a task whose function is monitoring the flow of a

liquid can be programmed to always suspend from execution a task whose function

is file update. This is done by associating the monitoring task with a higher

priority level than the file update task. Then even when both tasks are active,

the monitoring task executes.

The functions provided by the Executive components are implemented as sub

routines that an assembly language application program must call. (The BES

FORTRAN includes subroutines that provide tasking functions.) For example, to

request that a task be scheduled, the assembly program must code a call to the

Task Manager's task request routine, passing to that routine the entry point

of the task.

The Executive components provide the tools for execution control. The

degree of execution control that exists during execution is determined by the

sequence of the requests to the Task Manager to schedule tasks plus the prior

ity level at which each task executes. The following paragraphs describe the

functions of the Executive components.

2-10 AUSO

A description of the Executive module functions is contained in the

Executive and Input/Output manual.

Task Manager

Task Manager functions are used by an application program to schedule its

tasks for future execution, dispatch the next one for immediate execution, and

synchronize the execution of two tasks, where one is waiting for the completion

of the other.

A task can use the Task Manager to request that another specified task be

activated. During the request or later in execution, the requesting task can

ask that it be put in a wait state, until the called task completes execution.

This enables the requesting task to synchronize its execution with the com

pletion of the called task. When a task completes, it asks to be terminated.

Other functions are described in the Executive and Input/Output manual.

Clock Manager

Clock Manager functions are used by an application program to initiate

tasks based on the passage of time.

A task can use the Clock Manager to connect to a clock-timer routine in

order to initiate another task, either once or cyclically, after a specified

period of time. If it does not want a requested time-out to occur, the task

can disconnect the request. A task can suspend its own execution for a spec

ified period of time; it can request the time-of-day and date in ASCII format.

Overlay Loader

The Overlay Loader can be used during execution, by a program whose size

is greater than the total available memory space, to overlay specified areas

of memory with different application code.

Code loaded at configuration time can call the Overlay Loader during ex

ecution, to load an overlay mamber. Specified in the call is the overlay number

that each overlay member was given during linking, a relocation address needed

for a relocatable overlay, and the start address of the overlay. Additional

overlays can be loaded in any order by a call from a loaded overlay or from

the originally loaded code.

Operator Interface Manager

Operator Interface Manager functions can be used by an application program

to control dialog between itself and the operator's console (i.e., a console

or KSR-like terminal). The operator's console displays messages to the operator

and accepts operator responses. You can write your own attention character

processing routine to supplement the one provided.

2-11 AU50

A program can request that a message be typed at the console for informa

tion to the operator. A different request is possible that types a message at

the console, prompting a response from the operator. Outstanding requests are

queued, but can be answered in any order. Messages that the operator has not

responded to can be recalled and displayed. The output to a screen display can

be slowed down.

Buffer Manager

Functions of the optional Buffer Manager can be used by an application

program to manage memory that is to be used for work space. During online con

figuration you can divide work space memory into pools, each containing memory

blocks of a particular size.

A program can use the Buffer Manager to get a block of memory for work

space by specifying the size of the block; when it is no longer needed the

block can be returned to the pool.

INPUT/OUTPUT MODULES

The BES modules that provide data input and output services include a

File Manager (logical file and data access functions), FORTRAN and COBOL Run

Time Input/Output Routines (FORTRAN data formatting, and input/output for

FORTRAN and COBOL object programs), and device drivers (physical read/write

and error handling for all available devices). File Manager works at the pro

gram's logical level with files and records; I/O drivers work at the hardware

physical level. See the Planning and Building an Online Application manual for

further discussion of these differences.

The interface to communications can be through an I/O device driver or

File Manager. For both interfaces, the BSC 2780 line protocol is handled by

system software. Your application program does not have to include any pro

tocol handling code.

A description of the input/output module functions is contained in the

Executive and Input/Output manual.

File Manager

File Manager functions are used by an application program to manipulate

files on peripheral or communications devices. File Manager provides the

following features:

• Supports all device types including communications

• Allows double as well as single buffering

• Provides for blocking and deblocking of logical records

• Locates the requested disk file by name (thus, the program need
not know the physical location of its data)

2-12 AU50

• Supports disk relative files with fixed length records; each
record in the file is uniquely identified by a nonnegative
integer which specifies the record's ordinal position in the
file

• Supports relative files with deletable records

• Supports both sequential and direct access to a relative file

• Allows you to create a relative file during execution without
previously allocating the disk space (referred to as a dynamic file)

• Permits extension of a dynamic file during execution

• Supports dynamic files with mUltiple extents

• Allows a dynamic file to be a temporary disk work file which is
deleted when the file is closed

A task can use the File Manager to open a file. When it is a communica-

tions file, opening the file includes a logical line connect. Depending on the

device type, a task can read or write logical records. A disk relative file

can be rewound to the beginning of the file, or positioned to the end of data;

it can also be backspaced or forward spaced. When no further access to a file

is desired, the file is closed. A task, during execution, can create and later

delete a relative disk file.

FORTRAN Run-Time I/O Routines (FRIOR)

These reentrant routines provide for data transfer, device manipulation,

and the processing of data as specified in FORTRAN FORMAT statements. FRIOR

is a highly modular package, and only those routines required by a particular

FORTRAN program are included when that program is linked. The FRIOR routines

use the File Manager to accomplish open, close, and position file functions, and

to read and write formatted and unformatted records. They contain data conver~

sion routines to edit integer, real, logical, and character data for formatted

input and output. Diagnostic messages are produced to inform the user of in

appropriate or inconsistent input/output statements.

COBOL Run-Time I/O Routine

This routine provides a logical I/O interface for the transfer and pro

cessing of data at object program execution time. The routine is linked with

the object program and uses the File Manager to open, close, and position files,

and to read and write records to peripheral or communication devices. Diagnostic

messages are produced to inform the user of inappropriate or inconsistent

input/output statements.

Device Drivers

The device drivers are device-specific components that perform all data

transfers between system and application programs and their respective input/

output devices. There are drivers for all Honeywell-supplied I/O devices.

2-13 AU50

Separate, but functionally equivalent, versions of drivers for peripheral de

vices are provided to operate in the online and offline environments.

In the online environment, device drivers interact with the Execute modules,

and receive requests for service via the Task Manager. They use device inter

rupts to signal the termination of data transfers and special "attention" con

ditions. The online drivers are reentrant programs capable of supporting the

concurrent operation of several devices of the same type. When processing a

device interrupt or an input/output service request, the driver runs at the

priority level assigned to the particular device being addressed. Online dri

vers are designed to provide fully simultaneous operation of the Level 6 cen

tral processors with mUltiple input/output operations.

Assembly language application programs can call the device drivers directly,

or can use them indirectly by calling the File Manager. (COBOL and FORTRAN

object programs use the File Manager.) All drivers have similar calling se

quences, and use a standard format input/output request block for communication

with the calling program.

You are required to use the logical connect function prior to requesting

other communications I/O functions; the disconnect function provides a logical

disconnect. However, the system software will ignore the connect/disconnect

function requests if the application program uses a peripheral instead of a

communications device. (The File Manager and COBOL OPEN/CLOSE implicitly

provide the connect/disconnect functions.)

ONLINE DISKETTE DRIVER

The Online Diskette Driver provides simultaneous data transfers to

diskettes on separate controllers or device-pacs. Although a device-pac can

do only one data transfer at a time, the driver queues a second data transfer

request; a data transfer to a second diskette device on the same device-pac

appears simultanelus to the application program. Seek operations are always

overlapped with program execution.

A task can use the Diskette Driver to read a specified number of bytes

from the beginning of a sector into a program-specified buffer. Similarly, a

buffer containing a specified number of bytes can be written to the beginning

of a sector on diskette.

2-14 AU5Q

ONLINE CARTRIDGE DISK DRIVER

The properties and functions of the online Cartridge Disk Driver are similar

to those of the online Diskette Driver.

ONLINE PRINTER DRIVER

The online Printer Driver supports both the line printer and serial printer.

A task can use the Printer Driver to write a buffer to the printer. It handles

variable-length output records and program-supplied vertical format control

parameters.

ONLINE CARD READER DRIVER

The Card Reader Driver translates punched card input into ASCII bytes

(ASCII mode) or column binary into binary words (verbatim mode). It reads and

reports the end-of-file card. A task can use the Card Reader Driver to read a

card into memory.

ONLINE KSR DRIVER

The online KSR Driver supports the consoles. It provides "delete-character"

and "delete-line" input editing, and reports lengthy device inactivity after

input is begun but not completed. It handles program-supplied vertical format

control parameters similar to those of the line printer. End of a keyboard

transfer is indicated by a carriage return or by exceeding a fixed character

count. A task can use the KSR Driver to read keyboard input or to write

to the printer or display.

KSR TERMINAL DRIVER

The KSR Terminal Driver is similar in function to the online KSR Driver.

In addition, before using a KSR-like terminal over communications lines, a

logical line connection must be made. When the line is no longer needed, you

can logically disconnect or optionally, hang up the phone.

ONLINE ASR DRIVER

The online ASR Driver, for the peripheral ASR device, supports ASR paper

tape operations in addition to keyboard and printer KSR operations. It reads

and punches paper tape in 7-bit ASCII or 8-bit binary mode; it allows char

acters that control the paper tape reader to be transferred by preceding them

with an escape character. A program can use the ASR Driver to read or write

paper tape, and write an end-of-file mark.

2-15 AU50

VIP 7700 TERMINAL DRIVER

The VIP Driver supports the VIP Communications device keyboard and screen

with the same functionality available in the KSR Terminal Driver.

BSC 2780 DRIVER

The BSC Driver supports half duplex communications lines using the BSC

2780 protocol. It handles program to program transmission of ASCII or EBCDIC

character data between a Level 6 and the Level 66 Remote Job Entry subsystem.

Additionally, between two Level 6 systems, file transmission of transparent

EBCDIC data or any bit pattern is possible (i.e., it allows bit patterns that

control the BSC line to be transmitted, by preceding them with an escape

character) .

A program can use the BSC Driver to logically connect the BSC line. It

can read or write up to two system-buffered transmission records. When trans

mission is completed, the line is logically disconnected.

OFFLINE DEVICE DRIVERS

Offline device drivers, used in BES system programs that operate in the

offline environment, are provided for all supported noncommunications devices.

These drivers provide functions similar to those of the online drivers. How

ever, they are not reentrant and do not use interrupts, but they do provide a

limited capability to overlap processing with I/O activities.

ONLINE DEBUG PROGRAM

The Online Debug Program is an interactive program that executes under

Executive control, and is used for application program testing and memory code

modification. It uses the operator's console (i.e., a console or KSR-like

terminal) for command input and display output. In one configuration, the

Online Debug Program is loaded in planned overlays, thereby conserving memory

space; in another version it must be memory resident. It is loaded during

configuration together with the program tasks being tested. A debug command

activates a specified level, and the task executing at that level can be

tested.

A programmer at the operator's console enters commands for immediate exe

cution, or for storage on disk for later execution. Breakpoints can be set

to trap at selected task code locations. At breakpoints, memory and register

values can be displayed and changed. In this way, a task can be executed, the

values of its variables checked as execution proceeds, code modified, and if

necessary, variable values changed in order to test the sequence of code up to

the next breakpoint.

2-16 AU50

A description of the Online Debug Program commands is contained in the

Planning and Building an Online Application manual.

TRAP HANDLERS

A trap is a control transfer made to a predefined location in response to

some event that occurs during program execution. Unlike interrupts, which are

responses to events that are either unrelated to, or at least asynchronous with,

the currently executing program, trap conditions are caused by the executing

program.

Level 6 hardware can be enabled to recognize and trap many classes of

conditions arising during program execution. Some of these classes are:

• Monitor call (with the MCL instruction)

• Trace (with the BRK instruction)

• Scientific instruction simulation

• Integer arithmetic overflow

• Unprivileged use of a privileged operation

• Reference to unavailable resources

• Program logic error

• Noncorrectable memory error (parity)

See the Executive and Input/Output manual for trap handling details.

BES software provides trap handling facilities for the Trace Trap Handler,

the Floating-Point Simulator, and the Scientific Branch Simulator. All other

occurrences that result in a trap, cause a halt in processing unless supported

by a user-written routine.

Briefly, the Trace Trap Handler maintains a history of specific system

parameters such as the program counter (P-register), the system status register

(S-register), memory location contents, data and address registers for each

"break trap" instruction used in the program.

The Floating-Point Simulator provides software simulation of floating

point instructions (add, subtract, multiply, divide, compare, load, store,

swap, and negate) that are generated by the FORTRAN Compiler or the Assembler.

The Scientific Branch Simulator provides software simulation of floating

point branch instructions (branch on bit settings of scientific indicator

register or scientific accumulator values) .

2-17 AU50

FORTRAN Run-Time Routines

BES software includes a large set of FORTRAN mathematical and bit string

manipulation routines. These intrinsic functions are available in object mod

ule format, so that they can be linked on an as-needed basis to perform a

variety of operations on behalf of a FORTRAN program. Some of the operations

performed by these routines are:

• Conversion to and from integer and real values

• Truncation

• Determining the nearest whole number

• Transferring a sign

• Choosing: the largest value; the smallest value

• Finding: the length of a character entity; the square root; the
natural logarithm; the common logarithm

• Compute selected plane and sperical trigonometric functions

• Bit string manipulation operations on integer data:
inclusive OR, exclusive OR, product, complement, shift,
clear or set a bit, and test a bit value.

FORTRAN routines are available to implement the management of tasks.

Functions are provided to:

• Build task control blocks

• Initiate a task after a designated period of time

• Suspend a task

• Return a task control block

See the FORTRAN manual for details about these routines.

CONFIGURATION LOAD MANAGER

After program development is completed, the Configuration Load Manager is

used to load and initialize an online application and start execution. It uses

supplied information to define system characteristics, and to build the data

structures that the Executive software uses to control the processing of tasks.

The commands accepted by CLM are those that set up data structures for the

task manager, file manager, devices, trap handling, communications, as well as

for the clock variables, and a list of the load modules to be included in the

complete system.

The action of the CLM takes place in two phases: the configuration phase,

and the loading phase. During configuration, the system data structures are

created and stored in main memory, and the load list is created for use in the

next phase.

2-18 AU50

During the loading phase, the various Executive and application modules

are brought into memory. Each module contains permanently resident code, and

may contain some temporary code for initialization of the module. The temporary

code, if any, is executed immediately and then overwritten by the permanet code

of the next loaded module. Symbolic references from one load module to another

are resolved during the loading phase.

If a program is to use overlays during execution, the action of CLM during

the loading phase is to bring each overlay module into the area of memory that

it will occupy during execution, and then write it onto a disk file in a fast

loadable form.

When all modules have been loaded and the overlay file, if any, has been

written, control is given to the highest active priority level, and execution

begins.

LOADERS

Each input device has a loader associated with it to load executable pro

grams (load modules) from the device into memory, and to turn control over to

a program.

Programs can be loaded from disk i paper tape (ASR) , or card reader. In

itially, a read-only memory (ROM) bootstrap loader brings the loader in from

the devic~and starts it. System programs used for program development are

always loaded by the Disk Loader, operating in conjunction with the Command

Processor. All loaders can be used with CLM to load online programs.

The loader reads the load module control information, and relocates and

loads the code into memory. It also "backpatches" some types of forward and

external references that could not be resolved by the Linker. When loading is

completed, the loader turns control over to the loaded program.

2-19 AU50

J

SECTION 3

APPLICATION PROGRAM CHECKOUT AND EXECUTION

Although it is beyond the scope of this manual to give precise procedures

for developing specific types of applications, there are general considerations

that depend on the kinds of services required by an application that can be

described.

After the systems analysis and design for the application has been done,

and the actual hardware configuration has been decided upon (i.e., the memory

size, and kinds and numbers of peripheral devices), you are ready to develop

your application programs.

Section 2 describes the program development procedure. This section pre

sents flow diagrams indicating the debug and execution procedures.

The following considerations should be kept in mind while reading the flow

charts in this section:

• All disk volumes must be initialized and static file space allocated,
using offline utility programs, before files are usable by applica
tion and system software.

• All program development has been done offline (without Executive
software).

• Application programs, whether they are written in FORTRAN, COBOL,
assembly language, or a combination, are normally executed with
the online Executive software, and use the task, I/O, and clock
management facilities of that environment. (Some simple assembly
language application programs can be executed offline, see the
Executive and Input/Output manual.)

• Initial checkout of applications programs can be done in an offline
environment with the Debugger utility program; see the Utility
Programs manual. Checkout in an online environment requires the
Online Debug Program; see the Planning and Building an Online
Application manual.

Figure 3-1 shows the offline debugging process for an application program.

The assumption is made that the individual modules of an application can be

debugged initially without the presence of the Executive modules.

3-1 AU50

DEBUGGER

COMMAND
PROCESSOR

APPLICATION
PROGRAM

DISK
LOADER

Figure 3-1. Offline Debugging of an Application Program

In order to run an application, you establish a specialized software environ

ment for your application when you configure the Level 6 system. Configuration

parameters define these devices, files, executive and I/O routines, and trap

handlers that are required to support the application. After the application

program is loaded and started, it issues system service calls to invoke most

executive and I/O functions; however, some functions are requested implicitly or

are controlled by the operator.

Figure 3-2 shows the execution process for an application program that has

been developed to run in an online environment using some of the services

available from Executive software modules. Configuration Load Manager accepts

information specifying system characteristics, Executive modules to be loaded,

and the application program to be executed.

3-2 AU50

CLM
COMMANDS

/

TASK
MANAGER

CLOCK
MANAGER

OPERATOR
INTERFACE
MANAGER

BUFFER
MANAGER

Figure 3-2.

CONFIGURATION
LOAD MANAGER

OVERLAY
LOADER

APPLICATION
PROGRAM

DISK
LOADER

FilE
MANAGER

INPUT /OUTPUT
DRIVERS

Execution of an Online Application Program

3-3 AU50

Figure 3'-3 shows the online debugging process for an application program.

The Online Debug Program sets application program breakpoints and trace traps.

It transfers debug execution results to a console or KSR-like terminal.

CONSOLE/TERMINAL

CONFIGURE
APPLICATION
AND ONLINE
DEBUG PROGRAMS

ONLINE
DEBUG
PROGRAM

APPLICATION
PROGRAM

-"-

COMMAND FILE
(OPTIONAL)

Figure 3-3. Online Checkout of an Application Program

3-4 AU50

SECTION 4

SYSTEM CONVENTIONS

The standard media formats and system conventions described below provide

the basis for an orderly exchange of information between system and application

programs, a consistent file system interface for all programs, and a coherent

means of developing application programs.

MEDIA CONVENTIONS

Standard data representation formats for data on disk, card, and paper

tape are described in the following pages. The term disk includes diskette and

cartridge disk devices.

Disk Data Format and Organization

The volume layout, data formats, and file organizations for cartridge disk

and diskette are identical. Differences are noted for device-dependent para

meter values.

Data is physically organized on cartridge disk into sectors of 256 bytes.

There are 24 sectors per track, two tracks per cylinder, and on each volume

204 cylinders for low density packs (100 tracks per inch) or 408 cylinders for

high density packs (200 tracks per inch).

Data is physically organized on the diskette into sectors of 128 bytes.

There are 26 sectors per track, and 77 tracks per volume.

Contiguous space allocated to a file is referred to as an extent, which

consists of an integral number of contiguous sectors. A file can be composed

of more than one extent (i.e., physical space for a file need not be con

tiguous), and logically consists of logical records. A multiextent file, and

the relationship between sectors and the logical records of a relative file

are illustrated below.

Before data can be written on a new disk, the volume must be prepared to

receive it. This initialization of the volume is done by means of an offline

utility program that creates a set of standard structures detailing the volume

layout and contents.

4-1

Prior to program execution, a file could be allocated by using an offline

utility. Such a file is static, one that cannot be extended dynamically during

execution. A dynamic file, that can be extended during execution, must be

created during online execution using File Manager, and must not be allocated

offline.

The control structures provided by the volume initialization utility are

summarized in Table 4-1.

Table 4-1. Disk Volume Control Structures

Location Length Updated By
Structure Track Sector (Sectors) (Utility Function)

Bootstrap 00 00 1

Record

Intermediate 00 01-06 6

Loader Records

Volume Label 00 07 1 Rename (RN) , Initialize
(IN)

Volume Index 00 08 1 Alloca te (AL) , Delete (DL) ,
of Defective Initialize(IN)
Sectors

Volume Allocation 00 09-10 2 LA,DL,IN

Bit Map

Volume Directory 00 11-23 13
a

IN ,AL"DL,
(cartridge disk) Rename (RN) , Copy(CP)

Volume Directory 00 11-2Sa lSa RN,CP,IN,AL,DL
(diskette)

aDefault values; they can be modified when the volume is initialized.

The interrelationship of the various control and data structures on a disk

is illustrated graphically in Figure 4-1. The location of each structure is

enclosed in parentheses, the first value is the track number and the second

value the volume-relative sector number. Partitioned files are BES files

used by and available only to system programs, whereas applications use rela

tive files. Succeeding paragraphs describe the control structures given

in Table 4-1.

4-2 AU50

VOLUME
INDEX OF
DEFECTIVE
SECTORS
(00,08)

VOLUME LABEL
(00,07)

VOLUME
ALLOCATION
BIT MAP
(00,09-10)

VOLUME DIRECTORY

RELATIVE FILE A

VALID DATA : UNSUSED
• SPACE

PARTITIONED FI LE B

MEMBER MEMBERS AND
INDEX FREE SPACE

Figure 4-1. Interrelationship of Disk Volume Structures

BOOTSTRAP RECORD

The bootstrap record is created by the Bootstrap Generator in specialized

form on sector 0 of track 0 of a disk. The bootstrap record consists of a

program- that is loaded by a ROM bootstrap loader. This program, in turn, loads

intermediate loader records.

INTERMEDIATE LOADER RECORDS

Loader records are placed in sectors 1 through 6 of track 0 of the volume

being initialized, and constitute an intermediate loader that loads and

specializes the disk loader when needed.

VOLUME LABEL

The volume label occupies sector 7 of track 0; it contains the volume

identifier and specific information about the volume and the data recorded on

it. The structure is created by utility Set 1; its contents are shown in

Table 4-2. The volume-relative or relative sector number is the position of

a sector relative to the beginning of the volume, starting with relative

sector number o.

4-3 AU50

Table 4-2. Volume Label Contents

Number
Entry Byte of Bytes Contents Explanation

o 0 4 VOLI Identifies this record as a volume
label.

1 4 6 Volume identifier A 1- to 6-character ASCII name
uniquely identifying this volume.

2 10 1 Accessability A blank signifies public access.
byte

3

4

5

6

7

8

9

10

11

12

13

14

15

11

37

51

76

78

79

80

82

83

84

85

86

88

26

14

25

2

1

1

2

1

1

1

1

2

2

Owner identifier

Sector sequence
code

G

Cylinders/
Volume

Cylinders/
Volume
(diskette only)

Tracks/Cylinder

Sectors/Track

Sectors/bit of
allocation map

Sector size

4-4

Reserved.

A l4-character ASCII owner identi
fier. Default value is 14 blanks.

Reserved.

Defines physical sequencing of sectors
on a track. A blank indicates se
quential order.

Reserved.

Indicates a standard BES ASCII label.

The number of cylinders per volume
(hexadecimal) :

OOCC - Single density cartridge disk

0198 - Double density cartridge disk

004D - Diskettea

The number of cylinders per diskette
volume (hexadecimal):

4D - Diskette

00 - Cartridge disk

The number of tracks per cylinder
(hexadecimal) :

01 - Diskette

02 - Cartridge disk

The number of sectors per track
(hexadecimal) :

lA - Diskette

18 - Cartridge disk

The number of sectors represented by
each bit in the bit allocation map:

01 - Diskette

08 - Cartridge disk

The number of bytes in a sector
(hexadecimal) :

0080 - Diskette

0100 - Cartridge disk

Reserved

AU50

I

Table 4-2, (cont). Volume Label contents

Entry Byte

16 90

17 92

18 94

19 96

20 98

21 100

22 102

I

Number
of Bytes

2

2

2

2

2

2

26

154

I

Contents

0008

Defective sector
index size

0009

Allocation bit
map size

Start of volume
directory

I V,?lume directory
Slze

Zeros

Zeros

I

Explanation

The relative sector number location of
the defective sector index.

The number of bytes in the defective
sector index (hexadecimal):

0080 - Diskette

0100 - Cartridge disk

The location of the volume allocation
bit map, given by the relative sector
number.

The number of bytes in the volume al
location bit map (hexadecimal):

0100 - Diskette

0200 - Cartridge disk

The location of the first sector of
the volume directory, given by the
relative sector number (hexadecimal).
This value is set by a parameter in
the Initialize utility.

Default: OOOB

The number of bytes in the volume
directory (hexadecimal). This value
is set by a parameter in the initial
ize utility.

Default: 0780 - Diskette

ODOO - Cartridge disk

Reserved (diskette)

Reserved (cartridge disk)

a For diskette volumes initialized by BES 1 4tilities, this value is all
ASCII blanks.

VOLUME INDEX OF DEFECTIVE SECTORS

This element, defined by entries 16 and 17 of the volume label, is used

by Utility Set 1 to record defective sectors, up to 64 for diskette and up to

128 for cartridge disk. Each word in the index contains either zeros, or the

relative sector number of the defective sector.

VOLUME ALLOCATION BIT MAP

This element, defined by entries 18 and 19 of the volume label, indicates

sector usage on a disk volume. Each bit of this element corresponds to one

sector on diskette or a group of eight sectors on cartridge disk. If the value

of the bit is 0, the sector or group of sectors is available; otherwise it is

in use.

AU50

VOLUME DIRECTORY

The volume directory, defined by entries 20 and 21 of the volume label, is

a relative file consisting of 32-byte directory records that contain the attri

butes for each file on a disk, and 32-byte remote-extent records that describe

the extents of a multi-extent file. Table 4-3 gives the format of a directory

record and Table 4-4 gives that of a remote-extent record. A hexadecimal FFFE

in the first word of a record indicates a remote-extent record; a zero or FFFF

indicates that the record is available for use either as a directory or

remote-extent record. In a directory record the first word is the first two

ASCII characters of a file name. The directory can be placed anywhere on a

volume, but must be in sequenctial sectors.

Entry Byte

0 0

1 12

2 14

3 16

4 20

5 22

6 24

7 26

8 28

9 30

Table 4-3. Volume Directory Record Contents

Number
of Bytes

12

2

2

4

2

2

2

2

2

2

Contents

File name

File Status/
Type word

Record length

Relative end
of data

First extent
location

First extent
range

Second extent
location

Second extent
range

Third extent
location or re-
mote-extent
record location

Third extent
range

4-6

Explanation

A 12-character ASCII name that is com
pared to a name specified in an OPEN
statement.

Individual bits of this word describe
file status and type. See Figure 4-2
for definition.

Record length in bytes.

Total number of bytes in the file
containing valid data.

Relative sector number of the first
extent.

Number of sectors in the first extent.

Relative sector number of second ex
tent, dynamic files only. If value
is 0, extent is not used.

Number of sectors in the second
extent. Used only for dynamic files.

If value is 0, extent is not used.

If a data file consists of three
extents, this is the third extent lo
cation.

If a data file consists of more than
three extents, this value is the rel
ative record number of a remote
extent record of the directory file.

If a file consists of three extents,
this is the third extent range.

If a file consists of more than three
extents, this value is O.

AU50

Entry Byte

0 0

1 2

2 4

3 6

4 8

S 10

6 12

7 14

8 16

9 18

10 20

11 22

o 2 4 5 6 7 8 10 11 12 15

o e I RFU d o FILETYPE

Bit 0: s = 0 if file is shareable; s = 1 if nonshareable.
Bit 1: 0 indicates fixed-length records.

Bit 2: If this file is a directory, m = 1 indicates that this is the major directory for the volume.

Bit 4: r = 1 if deletable records are permitted in this file; r = 0 if they are not permitted.

Bit 5: 1 indicates that nonsequential access to this file is permitted.

Bit 6: 1 indicates that read access to this file is permitted.

Bit 7: 1 indicates that write access to this file is permitted.

Bit 8: e = 1 if the file can be extended dynamically; e = 0 if it is static and cannot be extended.

Bit 10: d = 1 if the file is a directory; otherwise, d = 0

Bit 11: 0 indicates that this is a disk file.

Bits 12-15: File type values are: 0010 for a relative file, 0011 for a partitioned file, 0000 for a directory,

0101 for a relative file with deletable records.

Figure 4-2. File Status/Type Word

Table 4-4. Remote Extent Record Contents

Number
of Bytes Contents Explanation

2 FFFE Remote extent record identification
code.

2 Reserved.

2 First extent 10- Relative sector number of the first
cation extent described in this record.

2 First extent Number of sectors in the first ex-
range tent.

2 Second extent Relative sector number of the second
location extent described in this record.

2 Second extent Number of sectors in the second
range extent.

2 Third extent 10- Relative sector number of the third
cation extent described in this record.

2 Third extent Number of sectors in the third extent.
range

2 Fourth extent Relative sector number of the fourth
location extent described in this record.

2 Fourth extent Number of sectors in the fourth
range extent.

2 Fifth extent Relative sector number of the fifth
location extent described in this record.

2 Fifth extent Number of sectors in the fifth extent.
range

4-7 AUSO

Table 4-4 (cont). Remote Extent Record Contents

Number
Entry Byte of Bytes Contents Explanation

12 24 2 Sixth extent loca- Relative sector number of the sixth
tion extent described in this record.

13 26 2 Sixth extent Number of sectors in the sixth
range extent.

14 28 2 Seventh extent Relative sector number of the seventh
location or extent described in this record.
remote-extent If more extents are required for a record location data file, this entry is the relative

record number of the next remote-
extent record.

IS 30 2 Seventh extent Number of sectors in the seventh
range extent.

This value is a if entry 14 points
to a remote-extent record.

A static file is a single extent file with no entries in its directory

record of Table 4-3, beyond entry S. A dynamic file can consist of more than

one extent, and the directory record in Table 4-3 has entries to locate up to

three extents of one file. When more than three extent location entries are

required, entry 8 contains the relative record number within the directory file

of a remote-extent record in which the third and up to seven extent location

entries can be entered; another remote-extent record is used, if more extents

are required.

The directory for the volume illustrated in Figure 4-3 contains records

for three files of which the file B extent entries are shown. Entries for

extents 1 and 2 point to assigned disk space; entry 8 contains the relative

record number of a remote-extent record. Entries 2 and 4 of the remote-extent

record point to extents 3 and 4 of file B, whereas the contents of entry 6,

0000, indicates that there are no more extents.

4-8 AUSO

EXTENT 2

DIRECTORY EXTENT 1

I I L
FILE A > DIRECTORY I RECORD-O

I

FILE B

EXTENT 1
>' DIRECTORY

RECORD -,
EXTENT 2 I

0003 I EXTENT 4

J J

FILE C DIRECTORY
> RECORD-2

I
I

I' EXTENT 3

EXTENT 4
> REMOTE-EXTENT

00000000
RECORD -3

. o)
EXTENT 3

Figure 4-3. Multi-Extent Dynamic File

DISK DATA FILE ORGANIZATION

The organization of application data files on disk supported by File

Manager is known as relative file organization. A relative file is logically

divided into fixed-length records where each record can be identified by its

position relative to the beginning of the file. Within one progra~, a rela

tive file can be accessed sequentially, by reading or writing the next

sequential logical record, or directly by reading or writing any record by

supplying a relative record number (i.e., its relative record position in the

file) •

Given a relative record number and the known fixed record size, File

Manager calculates the physical position in the file where the record occurs.

However, when using direct access, each program must contain its own technique

for determining the relative record number of the desired record.

4-9 AU50

A program cannot read data beyond the last record position ever written.

If it tries, the end-of-data status is returned in the File Manager status word.

A program cannot write beyond a static file's "end-of-allocated-space" or

beyond the current maximum record value set after open, whichever comes first.

However, in a dynamic file it can append (write) additional records.

Figure 4-4 depicts a single extent relative file on diskette containing

twelve 80-byte records. The file begins and ends on a sector boundary since a

file extent contains an integral number of sectors. Relative records 1, 3, 4,

6, 9, and 11 span sector boundaries; relative record 4 also spans a track

boundary. The end of relative record 7 coincides with the end of track 9,

sector 01; both are 640 bytes from beginning of the file. Since the end of

record 11 does not coincide with the boundary of sector 04, the nondata portion,

the last 120 bytes, of the sector is filled with zeros.

TRACK SECTOR RECORD

23 0

8

24 2

3
25

4

00 5

6
01

7

9 8
02

9

03 10

11

04

Figure 4-4. Relative File Organization on Diskette (Example)

Using Figure 4-4 as a sample file, a program accesses relative record 6 of

the file directly by providing File Manager with the relative record number 6.

Record 7 can then be accessed sequentially by requesting the next record or

directly by requesting record 7. Either type of access can continue to be used,

as suits the application. To access a record out of sequence, direct access

must be used.

4-10 AU50

To provide a program with a requested record, File Manager reads a sector

or part of a sector as required, deblocks it (breaks it into its logical re

cords), and places the requested record in the program's buffer. To obtain

relative record 4 of the file in Figure 4-4, File Manager reads sector 25 of

track 8 and extracts the first 64 bytes of relative record 4, and places them

in the program's buffer. Then it reads the first 16 bytes of track 9 sector 00

directly into the end of the program's buffer. By comparison, if physical I/O

is used to read the file, the application program must read in the sectors and

deblock them.

File Manager supports two types of relative files: one allows and the

other does not allow deleted records. A nondeletable-record file consists

solely of data. When this file type is created, it is the program's responsi

bility to populate the file with meaningful data. A program cannot delete

records from such a file.

Each record in a dele table-record file contains two nondata bytes to in

dicate deleted record status. Consequently, if a file's record size is chosen

to be one sector, the number of bytes available for data is 126 on diskette

and 254 on cartridge disk. When the file type is created, each record position

is flagged as deleted. The delete status is changed when a record is written

with data. Data of a record whose status is deleted will be read into the

program's buffer, and a "deleted record detected" status error is returned.

It is the program's responsibility to check for deleted records. (The COBOL

I/O routine ignores deleted records on a sequential "read next" request and

only reads nondeleted records; if a direct request for a deleted record is

made, it returns an invalid key condition.)

Paper Tape Data Format and Organization

Data punched on ASR paper tape is organized into blocks as shown in

Figure 4-5 below. Each block consists of:

• A preamble that identifies the beginning of the block

• User-supplied data

• An end-of-block mark

Data residing on paper tape may be read or punched in either binary or

ASCII format. The differences between these two formats are also shown in

Figure 4-5. For example, the preamble for an ASCII block consists only of

NUL characters, whereas the binary format preamble contains the filler char

acter SOH, that separates the NUL characters from the text.

4-11 AU50

PREAMBLE END-OF-BLOCK MARK

~------------~~--------------
II

I

) NUL NUL NUL NUL SOH DATA RS CKl CK2 CR LF DC4 DEL ~
~'-----v----I

USER CHECKSUM IS
VISIBLE OPTIONAL
DATA

BINARY FORMAT

PREAMBLE END-OF-BLOCK MARK
~ __________ ~r~ ____________ ~

) NUL NUL NUL NUL DATA RS CKl CK2 CR LF DC4 DEL) ,
~-----..-......
USER CHECKSUM IS
VISIBLE OPTIONAL
DATA

ASCII FORMAT

ENO-OF-FILE BLOCK FORMAT

Figure 4-5. Paper Tape Data Organization

The special characters appearing in the preamble and the end-of-file

frames are described in Table 4-5. These characters have special control

functions and should not be used within the data text portion of a block. If

they do appear as part of the text, they must be "escaped," that is, altered,

to prevent the triggering of unwanted operations during data transmission.

Note that one end-of-file (EOF) block (Figure 4-6) indicates the end of

file; two consecutive EOF blocks indicate end of file and end of recorded

data.

4-12 AU50

Table 4-5. Paper Tape Special Characters

Hexadecimal Escaped
Character Equivalenta Valuesa Meaning

NUL 00 (30) Filler used in the preamble

EOT 84 (B4) ASR control; stops reader when echoed

ENQ or WRU 05 (35) ASR control; stops reader when echoed

LF OA (3A) Console control: line feed used in the
end-of-block frames

CR 8D (BD) Console control: carriage return, used

I

in end-of-block frames

DCl or X-ON 11 (21) ASR control: turns reader on when echoed

DC2 or TAPE 12 (22) ASR control: turns punch on when echoed

DC3 or X-OFF 93 (A3) ASR control: turns reader off when
echoed

DC4 or~ 14 (24) ASR control: turns punch off when echoed

GS lD (2D) First character of EOF record

RS IE (2E) Separates data characters from checksum
characters

@ CO (FO) Used to cancel the previous Iv entered
character

CAN 18 (28) Used to cancel line just entered from
keyboard

jorl FC (CC) Used to indicate that the following
characters are II escaped"

DEL FF (CF) Used in the end-of-block frames

aShown with even parity; only low seven bits are significant (e.g., 8D or
OD represent CD) and become, when escaped, BD or 3D respectively.

BLOCK
N

!

BLOCK BLOCK END OF BLOCK BLOCK BLOCK BLOCK END OF END OF

N+1 N+2 FILE M M+1 M+2 M+3 FILE FILE
BLOCK BLOCK BLOCK

'~' II • • v
FILE:A FILEB

1 EOF BLOCK I~~DICATES THE 2 CONSECUTIVE EOF
END OF FILE (AI. BLOCKS INDICATE

THE END OF FILE (B)
AND THE END OF
RECORDED DATA

Figure 4-6. Paper Tape File Organization

4-13

,

AU50

Note further, that there are two additional special characters that do not

require "escaping": SOH, with the hexadecimal value 81, used as a filler char

acter in the preamble, and the backslash (~) with the hexadecimal value of SC,

that indicates the following character to be a binary constant.

Card Data Format and Organization

Data residing on cards may be read in either of two formats: ASCII, or

verbatim. These formats are illustrated in Figures 4-7 and 4-8. Table 4-6

shows the Hollerith and ASCII equivalence codes.

The end-of-file indicator for a card deck consists of a card containing

the ASCII character "GS" punched in column 1 (the Hollerith equivalent is:

11-9-8-5 punch in column 1); two consecutive EOF cards indicate the end of the

card deck as shown in Figure 4-9.

COLUMN COLUMN
N N+1 .--12

11

o

2

3

4

5

6

7

3

9

HOLLERITH
TO ASCII
TRANSLATOR

N+2

I

I
I
I
I I L __

I

BYTES I N 2
READ I __ ~ __ _

NOTES: 1. This translator will provide a status indicator which
will be set whenever an illegal Hollerith code is read.

2. The translator shown above is in the card reader
attachment.

Figure 4-7. ASCII Mode Format for Card Data

4-14 AU50

COLUMN COLUMN
N N+1

I

12

11

0

1

2

3
4 I

5 I
6 I
7 I
8 I

9 I
I

034 • 15 I---J---------
I ~~:gs I 0 1

0
1

0
1011211110 11 1

2
1

3 \4\5\61 7 \81 9 1 1 ______ --

V
WORD N

I

WORD N+1

NOTE: All hole punches are legal in this mode.

Figure 4-8. Verbatim Mode Format for Card Data

2 CONSECUTIVE EOF

J CARDS INDICATE
4- THE END OF FILE (BI

AND THE END OF THE
CARD DECK

~ 1 END OF FILE CARD
INDICATES THE
END OF FILE (AI

Figure 4-9. Card File Organization

Character Set and Code Conversion

Table 4-7 shows the standard BES character set, and the ASCII to hex

adecimal conversion values.

The standard printable 64-character set consists of:

• Letters A through Z

• Numerals 0 through 9

• Special characters: "#$%& I () +,_./ < > ? [] \ *
@ " SP (space)

4-15 AU50

.t:::.
I

I-'
O'l

~
c::
lJ1
o

Table 4-6. Hollerith to ASCII Equivalence Codes

,- --------T-----------T------T --- --- T----T- -----T- -- -- --T--- --- -T-- . --- - --- T-------- ----T------ --T----------T -----------"'- -- -- ----. -T-------------"T-----------,
1>810 10 10 10 10 10 10 Ie I' II /1 II /1 I' II 11 /
b' I 0 I 0 I 0 I 0 / I I' I 1 I 1 I u I C I 0 I 0 I 1 I 1 I 1 I 1 I
1>610 10 l' I 1/01 C I I l' I C 10 11 11 I ° 10 11 /1 I
b5 I 0 I I I 0 I I I 0 I I / a I I / 0 I I I 0 1 I I 0 I I I 0 I' I

~!~~~~~;~~~~~~~[~~~~~=~~~[~;~~~[~~~~~r~;~r~;~~~L~;~~~~r~~~~~~L~;~~~~~~I~;~==~~~~~r~~~~~~~L~~~~~~~~~~L~;~=~~~~~r~~~~~~~~~~r~;~~~~~~~~~J~~;~=~~=~~~~
I I I P;UL I ~U ISP I ° I iI I PI' I F I / I I I I I I I I
100 00 10 J12-0-9-8- 1112-11-9-8-IINO PCHIO 18-4 111-7 18-' 112-11-7111-0-9-8-1112-11-0-9-8-1112-0-9-1 112-11-9-8 112-11-0-9-6112-11-8-7 1'2-11-0-8 112-1'-'1-~-. 10 I : --------r-- --1;~~ -------1~~-------t~ ---7tl~ --- --t~---1 ;-----t ~- --- --1 ~--- -- -1----- -- ---t------ -----1------- --t----------t----------t-----------1----- -- ------t------~ -~- ~- -~- ----1
10001 l' 112-9-1 111-9-1 112-8-71, 1,2-1111-8 112-0-1112-11-81°-9-1 19-1 1'2-0-9-21"-8-' 112-11-0-9-71"-0-8-1 112-11-0-'1 112- 11 -,-:-: II I
1_ -- - -- --t----f -- --- -----f----------t---- --+- --- --t- ---f- - - -- -f - - - - ---t --- --- -t-- -- -- - - -- t------------f-- -----t------- - ---f -------- ---f- - -- -- --- - -+ ---- -------- -t-- -- -- - - -- ----t- - - --~
I I I S'IX I DC 2 I" 12 I B I" I b I r. I I I I I I I I I I
,0010 12 112-9-2 111-9-2 18-7 12 112-21"-9 \12-0-2 \12-11-910-9-2 111-9-8-2 112-0-9-3 111-0-9-2 112-11-0-9-8111-0-8-2 1'2-11-0-8-2 112- 11 -9-·-{ 12 I
t----- - - -t-----t----------t----------t------f--- - --t- --- t - -----t - ---- --t-------t----------I-----------t---------t-----------t-----------t-------- ---t----- - -- - --- -t-- -- - - -- -- --- .. -----j
I I I E'IX I DC J I' / 3 I C I" I cis / / I I I I I I ,/
ICOll \3 112-9-3 111-9-3 18-3 I) /';-3/0-; 11;:-C-) 111-0-2 10-9-) 19-) 112-0-9-~ /11-0-9-3 112-0-8-1 1"-0-6-3 112-11-0-8-) 112.1'-'-"-- 13 I
1- -- - - -··-f--- --t- ---------t-----------f--- ---t- - - - --t - - - - t- - - --- t - ---t --- - ---f--------- -. ------------+--------t-----------f----------t- ----------t------ -------t---- - -- -----+- . --- j
I I I rCT IOC" IS 14 10 / Tid I t I / I 1 I 1 I I I /
IC100 I" 1'1-7 I'-8-~ 111-8-314 1'2-'10-3 112-0-4/11-0-310-9-4 19-. 112-0-'-S /11-0-9-4 112-0-8-2 11,-0-8-4 112-11-0-8-4 /11-0-9-1-2 /4 I
t-- ------t---- -t----------t-------f------t---- --t- - ·-f - -- ---t--- -- --t--- - ---t ---- - - - -- - t------- f---------f--------- -f-----------f---- -------t-------------t-- -- ---- ----~--- -- j
I I I £~ I NAIl 1 I 15 I E I U /.. I u I / I / I I / I '/
10101 15 10-'-8-5 19-8-5 10-8-4 IS 112-SI0-4 1'2-0-5 11'-C-4 1"-9-'> /9-5 112-0-'-6/11-0-9-5 /12-0-8-3 111-0-~-S 11~-11-0-8-5 111-0-~-~-~ ," /
~- -----t-----+----------f ------ -----+----- -t------t-- --+- -- -- -t-- -- - --+-- -- --t- - -- - -- -- - t------- ----- f--------t---- -----f------ ---.. -+- -- - - - --- - -t--------- ---of -- -- -- - - ---- --t - - - - - ~
I I lACk I sYN I' I & I F I v I f I v / / I I / / I I I I
10110 16 10-9-8-6 1'1-2 112 16 /12-6Ia-~ 112-0-6111-0-51'::'-9-6 19-6 112-C-9-7111-0-9-6 112-0-8-4 111-0-8-6 112-11-0-8-6 111-0-<;-'-- It /
1-- --- ---+ ----- +---------f---------t------t--- - --+- - -- t-- -- - -+ - - - - . - +- -----t- ---------t------------f-------- -f---- ------t----- -- . - - t - ---- --- ---f----- --- -----t---- -- - - -- -- - t-- ---~
I I I BEl I E'IB I' f"1 I G / W I a I w / / 1 I I I I I ,/
Ie'" 17 10-9-8-7 10-9-6 18-5 /7 1'2-7/C-~ 112-C-7 /11-G-6 /11-9_7 112-9-8 112-0-9-8111-0-9-7 112-0-8-5 111-0-8-7 112-11-0-8-7 /11-0-~-"-= '7 I
1- ------- t--- -+----------+---------- -t------t------t---- t------+ -------+-------+ ---------- t----------f--------t---------t----------- t----- --- ---t---- ------- -- t- - - - - - - - - - - - -. - -- --~
I I I as I CAN I (18 I H I x I r. I x I I I I I I I / / I
/1000 18 111-'1-& 111-9-8 112-&-518 /1;-810-7 1'2-0-8 /11-C-7 10-9-& 19-9 112-8-1 1'1-0-9-8 112-0-8-6 /12-11-0-8-11'2-0-9-8-:< /11-C-}-"-, " I
I------f----t- -------f------f------t------f----t------ t-------t- -- .. --+--- ------- t----------- -+------ - f-- -- -------+--------- --t----- --- - --f-- -- - - ---- ---t-- - - -- -- -----~ -----j
I I I HT I EM I) I 9 I I I Y 11 I y / I I I I I I I / /
11001 19 112-'1-5 111-9-8-1 111-8-519 112-9/0-8 112-0-9111-0-810-9-8-1 19-9-1 112-11-9-110-8-1 1'2-0-8-7 112-11-0-1 112-0-9-8-3 111-0-9-8-7 I' /
t--------t---t----------f- ---------f-----f------t----t--- ---I· - - ---t -- -----f--------··-t--------- -f-------t-----------f----------t-----------t-------- - ----+---- -- -- -----.,.- .. ---~
I I II F I sus I • I : I J I Z 1 j 1 % I / I / I I I / 'I
/1010 1'0 10-9-5 /9-8-7 111-8-418-2 /11-1/0-9 112-11-1111-0-910-9-&-2 19-8-2 /12-11-9-21'2-11-0 112-11-8-1 112-11-0-2 1'2-0-9-8-4 112-11-O-;·'--2:'C /
I-----t--- -f---------t--------- -f-- ---- f- -- - --f-- -- f - ----- t-.- - -- - - t------f---------- -+ --------+-------t---------t-----------t----------t - ----- -------t---------- -t-----j
I I I VT I ESC I • I ; I K I I I k I (I I I I I I I I '\
11011 111 112-'1-8-3 10-'1-7 112-8-6111-8-6/11-2112-8-2112-11-2112-0 10-Q-@-3 19-8-3 112-11-9-3112-11-0-9-11 12-11-8-2 1'2-11-0-3 112-0-9-8-5 112-11-IJ.-"-t-! I" /
1------ f---- -t - --------f - ---------t------t------f- -- -t--- ---t - - -- --t--- - ---+--- ---- ---t---------f--------f------- - -f-----------f----- ----- -t ------ -- -----+----- ----- -+--- --~
I I / H I FS I. 1< /' I' 11 I : I I I / / I I I / I
/1100 112 /12-9-8-4 111-9-8-4 10-8-3112-8-4111-310-9-21'2-11-3112-11 10-9-8-4 1'2-9-_ /12-11-'-'/12-11-0-9-2/12-11-8-3 1'2-11-0-'1 1'2-0-9-8-6 1'2-11-0- - ... , /
1--------t--- -t----------f ------ -- -- -f--- -- - t----- -f - - -t- ---- -f - - -- ---t-----f - - ------ --1----------- t---- - - ---f- - - - --- - - -t--- ---- - ---t--- - ---- --f-------- - --- -t- -- --- --,- - -- -+- .• ---i
I I I Cfl I GS 1 - I ; I H II I- II I I I I I I' I I I I
11101 113 112-'-8-5 111-9-8-5 111 18-6 ,11-11\11-8-2112-11-.,11-0 112-9-8-1 111-9-4 112-11-9-5112-11-0-9-)112-11-8-4 112-11-0-5 /12-0-9-8-7 112-1I-0-"-"-~I'l I
I--------t----t---------f-------- -f--- - --f---· --+ ---- t - -- -- -t --- - ---+----- -f-- --------1------- ----- t------- -- t---- -----f -- - - ----- --f- --- - - --- --f ---- ---- - ----t--- --- - - -.- - --.- -- --i
I I I so I RS I • I> I ~ /" (i'j n / "" I I I / I / I I / I ""0 114 112-'-8-6 111-9-8-(, 112-8-310-8-61'1-5/11-8-""2.11-5111-0-' 112-9-8-2 /9-8-6 /12-11-9-6112-11-0-9-4112-11-8-5 /12-11-0-6 1'2-11-9-8-2 112-11-0-·-!-~.'" I
1------f----+---------+----- -- - - -t- - - - - - f-- - - - -f - -- - -+ - - --- t- -- - - -- f -- - ----f- - -- -- - -- - t--- ---- ----- -+ ------ - - - t--- ------f ---- -- -- - -~t- -- - - ---- --f - - - - - --- -----+--------- ---+--- --j
I I lSI I US 1/ I? 10 I 10 IOEL I I / I I / I / £0 ; I

! ~ ~~-_-1~ ___ ~:: ~= ~= ~_.l~~ =~=~=~ __ .l~=~ ___ l~=~= ~ _l~~ =~l~= ~=~_! ~~:2 ~~12:= ~=~J ~~=~= ~ =! __ 1~2= ~=~~ _____ l~:= 2~=~~12:=~ ~=~= ~= ~12~~ 2= ~= ~ __ l~ ~= 2~ =~=~ __ L'':=~ ~ = ~= ~=~_J~ ~=~~= ~= ~= ~= ~~~ ~---!
(D may be' I •

ill "",v be''''

CD !he tq> line in each entry to the tabu, represents an assigned character (c:oluIns a to 7).

!he bortta line l.n each crtzy 15 the ~ card hol. ... 1llltl:em.

The 96-character set contains the following additional characters (when

they are used where only 64 characters are supported, the corresponding upper

case characters are displayed or read):

• Letters a through z

• Special characters: '{I}~ DELI

The 128-character set contains the following additional control characters.

NUL
2

SOH

STX

ETX
2

EOT

ENQ
2

ACK

BEL

BS

HT
LF2

VT

FF
2

CR

SO

SI

DLE

DCl)2

DC2 ~
DC3 (

DC4)

NAK

SYN

ETB

CAN
2

EM

SUB

ESC

FS

GS 2

Rs2

US

NULL
Start of heading; filler character for paper tape

Start of text

End of text

End of transmission

Inquiry

Acknowledge

Bell

Backspace

Horizontal tabulation

Line feed

Vertical tabulation

Form feed

Carriage return

Shift-out

Shift-in

Data link escape

Device control characters

Negative acknowledge

Synchronous idle

End of transmission block

Cancel

End of medium

Substitute

Escape

File separator

Group separator

Record separator

unit separator

1. 1 d f DEL 1S a contro character use or paper tape.

2 These characters have particular uses for paper tape.

4-17 AU50

Table 4-7. Standard Character Set and ASCII to Hexadecimal Conversion

ASCII character = Two 8-bit hexadecimal digits: Hl H2

HI

0 1 2 3 4 5 6 7

0 NUL DLE SP 0 @ P \ P
1 SOH DCl ! 1 A Q a q

2 STX DC2 " 2 B R b r

3 ETX DC3 # 3 C S c s

4 EOT DC4 $ 4 D T d t

5 ENQ NAK % 5 E U e u

6 ACK SYN & 6 F V f v
H2 7 BEL ETB , 7 G W g w

8 BS CAN (8 H X h x

9 HT EM) 9 I Y i Y

A LF SUB * J Z j z

B VT ESC + K [k I
C FF FS < L \ 1 I , I

D CR GS - = M 1 m I
E so RS > N 1\ n f'v

F SI us / ? 0 - 0 DEL

PROGRAMMING CONVENTIONS

The following conventions are provided so that you can design your appli

cation programs to interface smoothly with Executive software.

The register conventions are particularly important since Executive soft

ware uses certain registers without saving the contents. If your programs use

the same registers, you must save the information for later use by your own

program.

Module and File Name Conventions

System software module names begin with a Z character; to avoid possible

duplication, no application program should use Z as the first character in a

module or symbol name. System module names are six characters in length; the

second character defines the major category to which the module belongs.

Table 4-8 lists the categories of system software and the first two characters

of the name.

The names of program modules that are processed by program development

tools (compiler, assembler, and so on), are given a suffix by the particular

component doing the processing. Table 4-9 lists these suffixes.

See the Program Development Tools manual for information about using the

module suffixes.

4-18 AU50

Table 4-8. System Module Name Prefixes

category Name Prefix

Executive ZX

Input/Output ZI

File Manager ZY

Configuration Load Manager ZG

Assembler ZA

FORTRAN Compiler ZF

COBOL Compiler ZC

BASIC Compiler ZB

1-1acro Preprocessor zp
Linker ZL

Editor ZE

Utilities ZU

Conununications ZQ

Table 4-9. System-Program-Assigned Suffixes

Module Type Suffix

Assembly language source module .A

FORTRAN language source module .F

COBOL language source module .C

BASIC language source module .B

List module .L

Link maps .M

Object module .0

Macro routine source module .P
(unexpanded)

calling Sequences

There are standard calling sequences for invoking system services, and

for calling external procedures.

SYSTEM SERVICE REQUESTS

Requests for system services (Executive and Input/Output) are made by

assembly language programs when the appropriate "link and jump" statement is

used that specifies the entry point of the required service routine. The

format of a system service request is:

LNJ $B5,<entry

where "entry" is the external label of the entry point of the particular service

routine required; register B5 is always used to store the calling program's

return point.

4-19 AU50

Programs written in higher level languages may also request system ser

vices. When they do, the compiler of the language involved translates the

source language statement into a code sequence of the required format.

If the system service used by a program returns information to the program

the use of registers both by the application program and by the system modules

becomes important. It may be necessary for the application program to save the

contents of some of the registers it uses, if the system service uses the same

ones. See "Register Conventions and Usage" below.

EXTERNAL PROCEDURES

External procedures are those that are assembled or compiled separately

from the invoking procedure. These procedures may be either functions, that

is, procedures returning a single value to the caller, or subroutines, namely,

procedures that alter data contained in an area common to both the procedure

and its caller. For example, the FORTRAN mathematial routines (sine, cosine,

etc.) are external procedures. You may also write external procedures.

The calling sequence for external procedures (generated by the CALL

statement in assembly language and FORTRAN) has the following format:

LAB $B7,list
LNJ $B5,<entry

where "list" represents the label assigned to the argument list, and "entry"

is the external label of the subroutine's entry point. The argument list con

tains the addresses of the parameters to be processed by the called procedure.

A standard assembly language or FORTRAN CALL statement causes the argument list

to be placed "inline" (immediately after the LNJ instruction); however, a

user-written assembly language program could call external procedures using

out-of-line argument lists.

An external procedure should always assume that register B5 contains the

address of the caller's return point, and register B7 points to an argument

list having the format shown in Figure 4-10.

o

1$87-

R S U:
m:

9 10

RSU 1 m

POINTER TO FIRST ARGUMENT

POINTER TO LAST ARGUMENT

Reserved for system use (must not be modified by called procedure)
Number of words in the argument list (m = 1 if there are no argument
pointers)

Figure 4-10. Argument List

4-20

15

AU50

Register Conventions and Usage

There are 18 visible registers provided for the use of system and user

programs. They are:

• Rl through R7 - general registers

• Bl through B7 - address registers

• p - the program counter

• S - the status register

• I - the indicator register

• Ml - the mode control register

All registers are 16 bits in length. (See the Assembly Language manual for a

detailed description of these registers.)

The Executive and Input/Output modules generally use the following regis

ters without preserving their contents: I, Rl, R2, R6, R7, B3, B4, and B5. If

any of the information in these registers is of value to the application pro

gram, then the program should save the register contents before making an

Executive or Input/Output service request.

The contents of the remaining registers (S, R3, R4, R5, Bl, B2, B6, B7,

and Ml) are not altered by any of the system services.

Table 4-10 summarizes the usage of registers by Executive and Input/Output

modules.

Table 4-10. Register Usage by Executive and Input/Output Modules

Register contents Using Component(s)

Rl Return status Drivers (card reader, printer etc.)
Task Manager

R2

R3

R6

Function code

Error information

Arguments

Logical File Number

File Manager

File Manager, other system services

System services

File Manager

Arguments System services

System console channel number Error reporting routines

Error information

Software status word

Record length, number of
bytes transferred, number
of records to be spaced or
skipped

4-21

FORTRAN run-time routines

Error reporting routines

File Manager

AU50

Table 4-10 (cont). Register Usage by Executive and Input/Output Modules

Register Contents

R7 File status

B3

B4

B5

B6

B7

P

S

I

Ml

Data Types

Channel number of a device
associated with an I/O
error

Arguments

Address of value to be used
as a record number

IORB address

Address of the path name
of a file

Address of a buffer

Return address

Address of the FORTRAN
workspace

Argument list address

Address of the next in
struction

System status information

Program status indicators

Trap enable control bits

Using Component(s)

File ,Manager

Error reporting routines

System services

File Manager

System services

File Manager

Buffer Manager

System services, external subrou
tines

FORTRAN Run-Time routines

FORTRAN Run-Time routines (also
user-written external procedures)

Executing programs

Task Manager, other system services

System services

Trap handling routines

The following data types are those recognized by the BES software. Refer

to the Assembly Language, COBOL, BASIC, or FORTRAN manuals for the specific means

of defining the various data types within each language.

Table 4-11 lists the data types available for each language, and relates

them to the formats required by Level 6 hardware as described in the Assembly

Language manual.

. 4-22 AU50

Table 4-11. Summary of Data Types

Language Usage
Data Type Assembly FORTRAN BASIC COBOL Hardware Format

Short Fixed-
point Binary X

:} (Integer)
- - Signed integer word

Long Fixed- - - - Signed integer
point Binary double-word

Short Float- X X (Real) X - Signed integer
ing point double-word
Binary

Bit String X (Hex, X (Logical) - - Unsigned word,
or bi t) double-word

Character X (ASCII, X (Character, X X (Character, Unsigned byte, word,
String nonvarying) nonvarying) double-word, etc.

Array - X - X All of the above

Unpacked
decimal - - - X Byte strings

Structure - I - - I
X Ordered set of all

of above

REAL ARITHMETIC BINARY DATA TYPES

Short Fixed-Point Binary

Data of this type is stored aligned on a word boundary. Its precision, P,

is: O<p< 16, and it is represented as a two's complement binary integer stored

in a 16-bit word of the form:

o
I SIGN - --

16-p BITS

SIGN:

ZEROS= PLUS

ONES= MINUS

DATA

p BITS

Long Fixed-Point Binary

15

Data of this type is stored aligned on a word boundary. Its precision, P,

is: 15 <p< 32, and it is represented as a two's complement binary integer

stored in a pair of 16-bit words of the form:

o

I SIGN - --

32-p BITS

SIGN:

ZEROS= PLUS

ONES= MINUS

15 16 31

DATA

p BITS

4-23 AU50

Short Floating-Point Binary

Data of this type is stored aligned on a word boundary. Its precision, p,

is: O<p< 24, and it is represented as a binary fraction m, a sign bit s, and

an excess 64 binary integer characteristic c, stored in a pair of 16-bit words

of the form:

o 6 7 8 15 16 31

m

r--ASSUMED BINARY POINT

The characteristic c is not stored in memory as a negative number; if the first

bit is a 0, the other bits are stored as the complement of the true value; if

the first bit is 1, the characteristic is stored as a binary integer.

The value zero is represented when m = 0, s = 0, and c = 0. For all other

values, m satisfies the relationship: 1/16 < m< 1. The value represented by

this data type is: _IS x m x 16(c-64).

STRING DATA TYPES

Bit String

Data of this type is stored on a word boundary and occupies n consecutive

bits of an integral number of words. The bit positions of the string are

numbered from left to right such that bit position 0 is the leftmost bit, and

bit position n-l is the rightmost bit.

Character String

Data of this type may be stored aligned on a word boundary, occupying an

integral number of words, or it may be stored unaligned and occupying n con

secutive bytes. Each byte contains a single 7-bit ASCII character, right

justified within the byte. The unused bit of each byte must be zero.

ARRAYS

An array is an n-dimensional, ordered cOllection of scalar data, each

element of which has identical attributes.

ERROR REPORTING CONVENTIONS

Error reporting conventions vary depending upon whether or not a particular

system has a console available. For those systems using a console, error

messages are normally printed out on the console printer; error information is

contained in registers in those systems operating without a console.

4-24 AU50

Components issue four different types of error messages:

• Physical I/O error

• Logical I/O errors

• Component-specific errors

• Informational messages

Excluding informational messages, all other messages are preceded by

either a 4- or a 6-digit hexadecimal code. Some components such as the CLM

and the loaders issue 4-digit codes regardless of whether the message is

printed out or is contained in a register. In general, printed messages are

preceded by 6-digit codes. The general format of this code is xxyyzz, where:

xx - Is the component number
yy - Is the error category
zz - Is the specific error code

Table 4-12 summarizes the error codes issued by systems running with and

without a console. The specific error codes are tabulated in the Operator's

Guide.

Table 4-12. Summary of Error Reporting Conventions

Operating Control Panel
Situation Printout (Register Rl)

xxyyzz l6zz (loader)

xx = 10 (Assembler)
11 (Linker)
12 (utility Sets)
14 (FORTRAN Compiler)
17 (Command Processor)

System 18 (Cross-Reference Program)
Programs 19 (Editor)

21 (Program Patch)
23 (Macro Preprocessor)
25 (Dump Edi t)
26 (COBOL Compiler)
30 (Bootstrap Generator)

yy = 00 (Logical I/O)
01 (Physical I/O)
OF (Component-specific)

l3zz (CLM) l6zz (loaders)

xxyyzz

xx = 15 (FORTRAN Run-Time routines)
20 (Operator Interface Manager)

Online- 22 (File Manager)

with console 27 (COBOL Run-Time Routines)
80-FF (User-defined)

yy = 01 (Physical I/O)
02 (Logical I/O)

4-25 AU50

Table 4-12 (cant). Summary of Error Reporting Conventions

Operating Control Panel
Situation Printout (Register Rl)

Online- 16zz (loader)
without console 13zz (CLM)

20zz (all other messages)

NOTE: During online operation without a console, if register Rl contains
20zz, the error code xxyyzz can be found by taking the value (ad-
dress of a buffer area) in register B4 and examining the location
pointed to by that register. See the Operator's Guide for the
procedure for examining selected areas of memory.

4-26 AU50

APPENDIX A

ORGAHIZATION OF DISTRIBUTION MEDIA

The following tables provide information about the system software as it

distributed on diskette and cartridge disk.

Diskette
VOLID

S20001

S20002

Table A-I. System Software Modules on Diskette

Module
Software Module Name

File Name: PROGFILE (Load Modules)

Assembler

Command Processor

'Cross-Reference Progra~

Bootstrap Generator

Offline Debugger

Dump Edit

Macro Preprocessor

Editor

Linker

Disk Loader

Offline Trap Handler

Program Patch

Utility Set 1

Utility Set 2

Utility Set 3

I ASM

CMDPRC

IXREF
BTGEN

DEBUG

DPEDIT

MACRO

EDIT

LINKER

DSKLDR

TRPHND

PATCH

UTILLI

UTILL2

UTILL3

File Name: PROGFILE (Load Modules)

Command Processor

Disk Loader

Offline Trap Handler

Communications CLM Data Structure Cleanup

Buffer Manager

Executive

File Manager

Map Utility

A-I

CMDPRC

DSKLDR

TRPHND

ZGQCDS

ZXBMOI

ZXEX03

ZYFM02

ZXMAP

Approximate
Size in Words

l6Ka ,b

8Kb

16Ka ,b

16K

2000
8Ka ,b

16Kb

l6Ka ,b

16Ka ,b

800

150

16Kb

16Kb

16Kb

16Kb

8Kb

800

150

60

100

2300

3200

200

AU50

Diskette
VOLID

S20002
(cont)

Table A-I (cont). System Software Modules On Diskette

Software Module
Module

Name

File Name: PROGFILE (Load Modules)

Online ASR Driver

Online Card Reader Driver

Cartridge Disk Driver

Online Diskette Driver

Online KSR Driver

Online Printer Driver

Configuration Load Manager

CLM Overlays

Online Debugger (Overlay version)

Debug Overlays

Online Debugger (Resident version)

ZIASR

ZICDR

ZICDSK

ZIDSK

ZIKSR

ZILPT

CLM

CLM2'
CLMFIL
CLMST2
CLMOLK
CLMBUF
CLHSTI
CLMOLA
C$CLMBUF
C$CLMSTI
C$CLMFIL
D$CLMFIL
D$CLMST2
D$CLMBUF
D$CLMSTI

ZDBG

ZDBGOO
ZDBGOI
ZDBG02
ZDBG03
ZDBG04
ZDD305
ZDBG06
ZDBG07
ZDBG08
ZDBG09
ZDBGIO
ZDBGll
ZDBG12
ZDBG13
ZDBG14
ZDBG15
ZDBG16
ZDBG17

ZDBGI

File Name: OBJFILE (Object Modules)

Online ASR Driver ZIADON.O

Online Card Reader Driver

Operator Interface Manager (for console)

Operator Interface Manager (for control
panel)

Online Diskette Driver

Online KSR Driver

A-2

ZICDON.O

ZIOIM.O

ZIOIMP.O

ZIDKON.O

ZIKDON.O

Approximate
Size in Words

1200

125

225

175

450

125

8Kb

1100

3000

AU50

Diskette
VOLID

S20002
(cont)

Table A-I (cont). System Software Modules On Diskette

Software Module
Module

Name

File Name: OBJFILE (Object Modules)

Online Cartridge Disk Driver

Common Subroutines for Online Drivers

Online Printer Driver

Buffer Manager Initialization

Buffer Manager

Clock Manager (basic)

Clock Manager Time and Date Routine

Executive Initialization

Trace Trap Handler

Task Manager

Error Handler

Overlay Loader

Offline Diskette Driver

I
Offline KSR Driver

Offline ASR Driver

Offline Card Reader Driver

Offline Printer Driver

Offline Debugger

Offline Cartridge Disk Driver

Map Utility

File Name: CLMMAP (Link Maps)

ZIDCON.O

ZIOSUB.O

ZIPRON.O

ZXBIN.O

ZXBMR.O

ZXCMGR.O

ZXCTDA.O

ZXIN03.0
ZXSEM.O

ZXTRCM.O

ZXTSKM.O

ZUERR.O

ZXOVLY.O

ZIFDD.O

I ZIKDFF.O I
ZIADFF.O

ZICDRF.O

ZIPRTF.O

DEBUG.O

ZICDD.O

ZXMAP.O

Link map of Executive ZXEX03.M

Linker Command File for Executive

Link map of Cartridge Disk Driver

Link map of Online ASR Driver

Link map of Online Card Reader Driver

Link map of Online Debug Program
(resident version)

Linker Command File for Online Debug
Program (resident version)

Link map of Online Debug Program (overlay
version)

Linker Command File for Online Debug
Program (overlay version)

A-3

ZXEX03.S

ZICDSK~'M

ZIASR.M

ZICDR.M

ZDBGI.M

ZDBGI.S

ZDBG.M

ZDBG.S

Approximate
Size in Words

AU50

Diskette
VOLID

S20002
(cont)

S20003

Table A-I (cont). System Software Modules on Diskette

Software Module
Module

Name

File Name: CLMMAP (Link Maps)

Link maps of Online Debug Program Overlays ZDBGOO.M
ZDBGOl.M
ZDBG02.M
ZDBG03.M
ZDBG04.M
ZDBG05.M
ZDBG06.M
ZDBG07.M
ZDBGOS.M
ZDBG09.M
ZDBGIO.M
ZDBG12.M
ZDBG13.M
ZDBG14.M
ZDBG15.M
ZDBG16.M
ZDBG17.M

Link map of Online Diskette Driver

Link map of Online Printer Driver

Link map of Online KSR Driver

Link map of Buffer Manager

Linker Command File for Buffer Manager

Link map of Map Utility

Link map of File Manager

Linker Command File for File Manager

ZIDSK.M

ZILPT.M

ZIKSR.M

ZXBMOl.M

ZXBMOl.S

ZX..fI1AP. M

ZYFM02.M

ZYFM02.S

File Name: PROGFILE (Load Modules)

Command Processor CMDPRC

Offline Debugger DEBUG

Disk Loader DSKLDR

FORTRAN Compiler FORTRAN

Floating-Point Simulator ZFPSIM

Scientific Branch Simulator ZFBSIM

Offline Trap Handler TRPHND

File Name: OBJFILE (Object Modules)

Absolute value ZFABS.O

Arccosine ZFACOS.O

Truncation ZFAINT.O

Natural logarithm ZFALOG.O

Common logarithm ZFALIO.O

Choosing largest value ZFAMAO.O

Choosing largest value ZFAMAl.O

Choosing smallest value ZFAMIO.O

A-4

Approximate
Size of Words

SKb

2000

SOO
16Ka ,b

400

250

150

AU50

Table A-I (cont). System Software Modules on Diskette

Diskette Module Approximate
VaLID Software Module Name Size of Words

S20003 File Name: OBJFILE (Object Modules)
(cont)

Choosing smallest value ZFM,nl.O

Remaindering ZFAMOD.O

Nearest whole number ZFANIN.O

Arcsine ZFASIN.O

Arctangent ZFATAN.O

Arctangent ZFATA2.0

Cosine ZFCOS.O

Hyperbolic cosine ZFCOSH.O

Positive difference ZFDIM.O

Exponential ZFEXP.O

Type conversion ZFFLOA.O

Absolute value ZFIABS.O

I I
Positive difference ZFIDIM .. O

Type conversion ZFIFIX.O I

I

Type conversion ZFINT.O

Transfer of sign ZFISIG.O

Length (character) ZFLEN.O

Choosing largest value ZFMAXO.O

Choosing largest value ZFMAXI.O

Choosing smallest value ZFMINO.O

Choosing smallest value ZFMINI.O

Remaindering ZFMOD.O

Nearest integer ZFNINT.O

Transfer of sign ZFSIGN.O

Sine ZFSIN.O

Hyperbolic sine ZFSINH.O

Square root ZFSQRT.O

(Used by SQRT and EXP only) ZFSTWO.O

Tangent ZFTAN.O

Hyperbolic tangent ZFTANH.O

Character move and compare ZFCFIO.O

Computed GO TO ZFGFIO.O

Direct access I/O ZFDFIO.O

Formatted I/O ZFEFIO.O

Integer to Integer exponentiation ZFXFIO.O

Real to Integer exponentiation ZFYFIO.O

Real to Real exponentiation ZFZFIO.O

A-5 AU50

Diskette
VOLID

S20003
(cont)

S200l4

Table A-I (cont). System Software Modules on Diskette

Software Module
Module

Name

File Name: OBJFILE (Object Modules)

Internal (storage) file I/O

Object Time Error routine

Device manipulation I/O

Unformatted I/O

Pause

Sequential Access I/O

General I/O

Return buffer space

Product

Exclusive OR

Set up space for Control Blocks

Inclusive OR

Shift

Complement

Return buffer space

Initiate task after time interval

Acquire permanent buffer space

Obtain date

Obtain time of day

Initiate task at specified time of day

Suspend task

File status

Bit set

Bit clear

Bit test

Acquire temporary buffer space

ZFIFIO.O

ZFIOTE.O

ZFMFIO.O

ZFNFIO.O

ZFPFIO.O

ZFSFIO.O

ZFUFIO.O

DQUEUE.O

ZFIAND.O

ZFIEOR.O

ZFINBD.O

ZFIOR.O

ZFISHF.O

ZFNOT.O

ZFSPWN.O

START.O

ZFXBDP.O

DATE.O

TIME.O

TRNON.O

WAIT.O

ZFSTAT.O

ZFIBSE.O

ZFIBCL.O

ZFIBTE.O

ZFXBDT.O

File Name: CLMCOMM (Load Modules)

MLCP Loader ZQMLIN

Communications Supervisor ZQEXEC

MLP Driver ZQMLON

CLM Action Routines COMM

CLM Clean up C$COMM

CLM Directory D$COMM

TTY Line Protocol Handler ZQPTTY

VIP Line Protocol Handler ZQPVIP

BSC Line Protocol Handler ZQPBSC

A-6

Approximate
Size of Words

AU50

Table A-I (cont). System Software Modules on Diskette

Diskette Module Approximate
VOLID Software Module Name Size of Words

S20014 File Name: MACLIB (Communications Hacro Source Modules)
(cont)

Macro Prototype A14

Code Generation macro BYTE

MLCP Op-code macro B

MLCP Op-code macro BET

MLCP Op-code macro BZT

MLCP Op-code macro BLCT

MLCP Op-code macro BLBT

MLCP Op-code macro BART

MLCP Op-code macro BS

MLCP Op-code macro BEF

MLCP Op-code macro BZF

MLCP Op-code macro BLCF

MLCP Op-code macro BLBF

I
I MLCP Op-code macro BARF

I MLCP Op-code macro GNB

MLCP Op-code macro IN

MLCP Op-code macro OUT

MLCP Op-code macro SEND

MLCP Op-code macro RECV

MLCP Op-code macro NOP

MLCP Op-code macro WAIT

MLCP Op-code macro SFS

MCLP Op-code macro CCH

MLCP Op-code macro DEC

MLCP Op-code macro RET

MLCP Op-code macro SR

MLCP Op-code macro SI

MLCP Op-code macro LD

MLCP Op-code macro ST

MLCP Op-code macro C

MLCP Op~code macro AND

MLCP Op-code macro OR

MLCP Op-code macro XOR

MLCP Op-code macro TLU

MLCP Op-code macro LOC

MLCP Op-code macro ORG

MLCP Op-code macro MORG

MLCP Op-code macro DATA

A-7 AU50

Diskette
VOLID

S20016

S20017

Table A-I (cont). System Software Modules on Diskette

Software Module
Module

Name

File Name: PROGFILE (Load Modules)

Disk Loader

Command Processor

Offline Debugger

Trap Handler

Compiler driver and I/O module

DSKLDR

CMDPRC

DEBUG

TRPHND

COBOL

Lexical phase ZCLEX

Data Division syntax phase ZCDD

Identification/Environment Division syntax
phase ZCID

Allocation phase ZCALOC

Data map listing phase ZCMAP

Replacement phase ZCRS

Diagnostic listing phase ZCDIAG

Procedure Division syntax phase ZCPD

Code generator phase ZCGEN

File Name: ZCRT (object Modules)

All I/O statements ZCRTIO.O

ADD statement ZCRTAU.O

Class alphabetic condition

Numeric comparisons

DIVIDE statement

Move edited

Convert decimal to binary

Sign handling

Alphanumeric comparisons

MULTIPLY statement

CLASS NUMERIC condition

SUBTRACT statement

Move numeric

ACCEPT statement

DISPLAY statement

STOP RUN statement

Run time errors

ZCRTBU.O

ZCRTCU.O

ZCRTDU.O

ZCRTEU.O

ZCRTFU.O

ZCRTGU.O

ZCRTLU.O

ZCRTMU.O

ZCRTNU.O

ZCRTSU.O

ZCRTVU.O

ZCRTPU.O

ZCRTYU.O

ZCSTOP.O

ZCRTER.O

File Name: PROGFILE (Load Modules)

Disk loader

BASIC interpreter

Command processor

A-8

DSKLDR

BASIC

CMDPRC

Approximate
Size of Words

800

8Kb

2000

150
16Ka ,b

800
16Kb ,c

AU50

Table A-I (cont). System Software Modules on Diskette

Diskette Module Approximate
VOLID Software Module Name Size of Words

S20017 File Name: PrtOGFILE (Load Modules)
(cont)

Offline trap handler TRPHND 150
Offline debugger DEBUG 2000

aAutomatically uses memory up to 64K

bMinimum memory required

CAutomatically uses memory up to 32K
I

A-9 AU50

Table A-2. System Software in Source Module Format on Diskette

Diskette
VOLID Contents

S20004

S20005

S20006

S20007

S20008

S20009

S20010

S20011

S20012

S20013

S20015

S20018

S20019

S20020

S20021

S20022

Assembler

Offline Drivers, I/O Service for system programs

Editor, Cross-Reference Program, Offline Debugger, Dump Edit

Diskette Loader, Offline Trap Handler, Command Processor, Program
Patch, Bootstrap Generator

utility Set 1, utility Set 2, Utility Set 3 subroutines

configuration Load manager

Task Manager, Clock Manager, Operator Interface Manager, Trace Trap
Handler, Error Handler, Buffer Manager, Online Driver Subroutines,
Executive Initialization Routines, Online Drivers, Map utility,
Overlay Loader

File Manager

FORTRAN Compiler

FORTRAN Run-time I/O Routines, FORTRAN Functions, Floating-Point
Simulator, Scientific Branch Simulator

Macro Preprocessor

Online Debug Program

utility Set 1, Utility Set 2, Utility Set 3 Main Programs, Linker

Communications

Communications

Communications

Table A-3. System Software on Cartridge Disk

Cartridge
Disk
VOLID Contents

S20051 Executable modules ordered by
customer (200TPI cartridge disk)

S20052 Source modules ordered by customer
(200TPI cartridge disk)

S20053 Executable modules ordered by
customer (lOOTPI cartridge disk)

S20054 Source modules ordered by customer
and (lOOTPI cartridge disk)

S20055

A-10 AU50

APPENDIX B

EQUIPMENT REQUIREMENTS

MINIMUM EQUIPMENT FOR PROGRAM DEVELOPMENT

The following equipment is required for program development:

• 6/34 or 6/36 Central Processor with a full control panel and
at least 16K words of memory.

• Dual diskette (DIU9102) or cartridge disk (CDU9101, CDU9102,
CDU9103, or CDU9104) attached through a Multiple Device
Controller or Mass Storage Controller, respectively.

• Console device (TTU9101, TTU9102, DKU9101, DKU9102, or
TWU9101) attached through a Multiple Device Controller.

• A printer is desirable but not required (PRU9101, PRU9102,
PRU9103, PRU9104, PRU9105, or PRU9106).

MINIMUM EQUIPMENT FOR ONLINE APPLICATIONS

The following equipment is required for online applications:

• 6/34 or 6/36 Central Processor with at least 8K words of
memory.

• Program load device: diskette or cartridge disk attached through a
Multiple Device Controller or Mass Storage Controller, respect
ively. An ASR-33 can be used as a load device. However, loading
an'online application from paper tape is slow. A card reader is
also available, but the card loader can be used only for specially
supplied Honeywell-written applications.

• A console device is desirable but not required; the console
can be attached through a Multiple Device Controller or a
Multiline Communications Processor.

PERIPHERAL AND COMMUNICATIONS EQUIPMENT

Table B-1 lists the peripheral and communications equipment that can be

used.

B-1 AU5Q

Table B-1. Usable Peripheral and Communications Equipment

Type Number Description

D1U9l0l

D1U9l02

CDU9l0l

CDU9l02

CDU9l03

CDU9l04

CRU9l0l

CRU9l02

CRU9l03

CRU9l04

CRF9l0l

PRU9l0l

PRU9l02

PRU9l03

PRU9l04

PRU9l05

PRU9l06

PRF9l02

TWU9l0l

TTU9l0l

TTU9l02

DKU9l0l

DKU9102

MLC9l01

MLC9l02

MLC9l03

DCM9l0l

DCM9l02

DCM9l03

DCM9l04

Single diskette

Dual diskette

Cartridge disk, low density, removable disk (1.25
million words)

Cartridge disk, low density, fixed and removable
disk (2.5 million words)

Cartridge disk, high density, removable disk (2.5
million words)

Cartridge disk, high density, fixed and removable
disk (5.0 million words)

Punched card reader, 300 cpm

Punched and marked card reader, 300 cpm

Punched card reader, 500 cpm

Punched and marked card reader, 500 cpm

51-column card option for CRU's 9101, 9102, 9103,
9104

Serial printer, 60 lpm, 64-character set

Serial printer, 60 lpm, 96-character set

Line printer, 240 lpm, 96-character set

Line printer, 300 lpm, 64-character set

Line printer, 480 lpm, 96-character set

Line printer, 600 lpm, 64-character set

l2-channel vertical format unit option for PRU's
9103, 9104, 9105, 9106

Typewriter console, 30 characters per second

Teleprinter console (ASR-33)

Teleprinter console (KSR-33)

CRT/keyboard console, 64-character set

CRT/keyboard console, 96-character set

Multiline Communications Processor, with Communications
Pac for eight asynchronous lines

Multiline Communications Processor, with Communications
Pac for eight synchronous lines

Multiline Communications Processor only - requires
Communications-Pac(s) depending on choice of line speeds

Communications-Pac, two asynchronous lines, with cable

Communications-Pac, one asychronous line, with cable

Communications-Pac, two synchronous lines, with cable

Communications-Pac, one synchronous line, with cable

B-2 AU50

APPENDIX C

GLOSSARY

address, absolute

A nonrelocatable reference to a storage location.

algorithm

A set of well-defined rules for the solution of a problem.

application configuration

The process by which user-written programs are combined with BES soft
ware under the direction of the Configuration Load Manager to produce
an online application.

application program

User-written business, industrial, or scientific program.

argument

An independent variable that is passed to a system program or subrou
tine.

ASCII (American Standard Code for Information Interchange)

ASR

This is the code established as an American Standard by the American
Standards Association.

Automatic send-receive unit. A combination teleprinter receiver and
transmitter with transmission capability either from the keyboard or
paper tape, and reception capability to paper tape or printer. See
KSR.

attach table

A structure built by the Command Processor from information supplied to
it in attach (AT) commands. Contains file information for programs to
be executed.

backpatching

A software technique that resolves forward and/or external references
within programs.

Binary Synchronous Communications (BSC)

Uniform procedure, using a standardized set of control characters and
control character sequences, for synchronous transmission of binary
coded data between stations in a communications system.

bootstrap routine

A routine, contained in a single record, that is read into memory by a
ROM bootstrap loader (see below), which can read a complete loader pro
gram into memory.

C-l AU50

breakpoint

Refers either to the assembly language instruction BRK, or to the point
in a program where such an instruction is placed for the purpose of
interrupting execution and activating a debugging program.

buffer

BTT

byte

A storage area used to compensate for the differences in the flow
rates of data transmitted between peripheral devices and memory.

Basic timer table. A 16-word control block containing the four basic
timers, their reset values, and pointers to the connected clock timer
blocks (CTB's). Resides within the Clock Manager module.

A sequence of eight adjacent binary digits operated upon as a unit.

calling sequence

Standard code sequence by which system services or external procedures
are requested.

checksum

An optional verification technique for paper tape read and punch opera
tions. During a punch operation, the checksum computation consists of
adding each pair of bytes of user text into a word area that has been
initialized to zero. The overflow from any carry is added to the least
significant position. The checksum value is escaped (see below), if
necessary, and punched out following the RS delimiter after the related
text bytes.

During a read operation, the checksum value is restored, if it had
been escaped, before the checksum comparison is made. An error is
reported if the checksum value does not agree with the computed value,
or if the checksum value is missing.

clock frequency

The line frequency, in cycles per second, that is the basis (coupled
with the scan cycle) for calculating the real-time clock-generated
interrupts. possible values are: 50 or 60 Hz. The default value is
60 Hz (U.S. standard).

clock scan cycle

The time in milliseconds between clock-generated interrupts. possible
values depend on the line frequency, and are integral multiples of 8.3
ms at 60 Hz or 10 ms at 50 Hz.

command input device

Any device used to submit commands to system programs and Configura
tion Load Manager.

communications device

A device that transfers data over communications lines and is con
nected through the MLCP (e.g., KSR-like terminals, VIP 7700).

console

CTB

Any of the following peripheral devices attached through the MDC:
KSR teleprinter, ASR teleprinter (when used without paper tape),
CRT console, and typewriter console.

Clock timer block. The control structure used by the Clock Manager
to control the clock-related processing of tasks.

C-2 AU50

device driver

A software component that performs all data transfers to and from a
specific type of peripheral or communications device.

device-pac

The adapter between an MSC or MDC controller, and peripheral device
(e.g., printer, diskette drive).

direct access

The method for reading or writing a record in a relative file by
supplying its relative record number.

directory record

disk

A record in the volume directory containing a description of a file.

A generic name for mass storage devices such as diskette and cart
ridge disk.

displacement

DDB

A value that is added to the contents of an address register to give
the effective address.

Directory descriptor block. An FDB (see entry below) describing a
directory file.

dynamic file

A file that is created during online execution. Dynamic files can be
expanded, contracted, or deleted during execution.

EOQ header table

End of queue header table. This table contains pointers to the last
block in each task request queue.

escaping

The process of altering paper tape special characters that appear in
the data portion of a message text so that they do not perform their
usual control functions. The process involves performing an exclusive
OR of the special character against the hexadecimal value 30 for
encoding (escaping) as well as decoding (restoring) the character.
During the punching operation, the escaped character is preceded by an
escape control character (the hexadecimal value 7C) so that when the
data is read, the control character will trigger the restoring of the
next character to its original value.

extent

Contiguous allocated space on a disk.

external procedure

FCB

A routine that is assembled or compiled separately from the program
that calls it.

File control block. A data structure constructed by the Configuration
Load Manager for use by the File Manager. An FCB is pointed to by an
entry in the logical file table, and in turn, points to a file
descriptor block.

C-3 AU50

FOB

File descriptor block. A data structure constructed by the Configura
tion Load Manager for use by the File Manager. An FOB is pointed to
by an FCB, and in turn, points to a volume descriptor block for a
particular file.

file name

A 1- to l2-character name assigned to a collection of related data
records. For a file on disk this name is assigned when the file is
statically allocated or dynamically created. For a nondisk file, this
name is assigned by the OEVFILE command to the Configuration Load
Manager. See "pathname" below.

FRIOR

FORTRAN Run-Time Input/Output Routines. A set of reentrant routines
that work in conjunction with the File Manager to perform device
manipulation, data transfer and processing for FORTRAN object programs.

function

A procedure that returns a single value to its caller. Contrast with
"subroutine."

GPOMAI

HMA

General purpose direct memory access interface. A programmable con
troller that permits attachment of non-Honeywell peripheral devices.

High memory address.

initial system console

The console assigned as the system console during bootstrapping and
loading; this device is the one through which the operator initially
communicates with the system program that has just been loaded (see
also "system console").

input/output device

A peripheral or communications device.

interrupt

The initiation, by hardware, of a routine intended to respond to an
external (device-originated) or internal (software-originated) event
that is either unrelated to, or asynchronous with, the executing
program.

interrupt vector

IORB

A pointer to a priority level specific memory area called an interrupt
save area. There is one vector for each priority level, in dedicated
memory locations.

Input/output request block. A control structure used for communication
between a program and an I/O driver.

ISA

KSR

Interrupt save area. An area used to store the context of an inter
rupted task. There is one ISA for each priority level in use.

A keyboard send-receive teleprinter.

C-4 .AU50

KSR-like terminal

LFN

A KSR teleprinter or CRT keyboard terminal that transfers data over
communications lines and is connected to the MLCP.

Logical file number. A number that becomes associated with a file when
it is opened. LFN's are used in all references to the file until it is
closed.

LFT

Logical file table. A data structure constructed by the Configuration
Load Manager for use by the File Manager. It contains an entry for
each logical file number.

loader

Device-specific software component that loads programs into memory
from disks, cards, or ASR paper tape.

loader communication area

An area within the loader in which key information is stored for the
subsequent loading of the various system programs.

load module

LRN

LRT

MBZ

A program, or portion of a program, that can be loaded as a single
entity by a loader. Load modules are produced by the Linker and are
stored as individual members of partitioned files.

Logical resource number. A number assigned to either a task or a
device, and associated to a given priority level.

Logical resource table. A data structure built by the Configuration
Load Manager and containing an entry for each logical resource number
used in a configured application.

Must be zero.

Multiple device controller for peripheral devices other than cartridge
disk.

member

A source, object, load, or list text module that exists on a disk as a
subfile of a partitioned file.

member name

MLCP

MSC

A 1- to 8-character alphanumeric identifier of a member of a parti
tioned file.

Multiline communications processor.

Mass storage controller for cartridge disks.

multi-extent file

A file consisting of more than one extent, possibly noncontinguous.

C-5 AU50

Next available trap save area pointer.

object module

A relocatable program unit produced by a single execution of the
FORTRAN or COBOL Compilers, or the Assembler, and requiring further
processing by the Linker before it is executable. Object modules are
stored as individual members of partitioned files.

offline

An execution environment not controlled by BES Executive software.

online

An interrupt-driven application execution environment controlled by
BES Executive software.

operator's console

A console specified for use in interactive communication between the
operator and Honeywell-supplied software; used with Configuration Load
Manager and online applications, (see also "system console"). For
online applications, a KSR-like communications terminal can be
assigned as the operator's console.

overlay

A section of a program that can be loaded during execution to overlay
an area of memory. Used when there is insufficient memory to accom
modate all the code of a program.

partitioned file

patch

A file composed of individually accessible subfiles (members) with
unique member names. Partitioned files are used to store programs as
source, object and load modules.

A portion of code used to correct an existing object or load module on
disk or in memory.

pathname

A character string that identifies a file when it is opened. The
pathname for disk files consists of a 1- to 6-character volume name,
followed by a mandatory "greater than" sign, followed by a 1- to 12-
character file name. The pathname for nondisk files consists of a I
to 12-character file name.

peripheral device

PPT

A noncommunications device connected through the MDC or MSC (e.g.,
card reader, console, disk).

Pool parameter table. A structure built by the CLM for use by the
Buffer Manager.

priority level

Refers to the 64 numeric values that may be assigned to tasks and
devices for purposes of controlling processing. Values range from 0
to 63; the lowest values (highest priorities) are reserved for system
tasks; level 63 is the system idle level.

priority level activity indicators

Each bit of a 4-word area in memory is used to indicate whether or not
a task is active at that level. When the bit is "off," no task is
active at that level.

C-6 AU50

program counter

The p-register. Contains the address of the current instruction.

program name prefixes

BES system software modules are named using a standard 2-character
prefix. The first character is a HZ"; the second character is unique
and defines the major category to which the module belongs, e.g., "X"
for Executive modules, "I" for I/O modules, and so on.

program name suffixes

range

RCT

BES system programs assign specific suffixes to the programs they
process, so that it is possible to distinguish among the various
source, object, list, and load modules on a library. The suffix is a
"point-letter" such as ".0" for object modules, ".A" for assembly
language source modules, and so on.

The number of bytes transferred during an I/O operation.

Resource control table. A control structure created by the CLM for use
by the Task Manager to control task processing.

reentrant routine

A property of a routine that during execution does not alter itself;
thus a reentrant routine can be entered and reused at any time.

relative file

A disk file that is logically divided into fixed-length records, where
each record can be identified by its position relative to the begin
ning of the file. It may be accessed directly by record number, or
sequentially.

relative record number

A number representing the position of a record relative to the
beginning of a file. The initial record is relative record number O.

relative sector number

The position of a sector relative to the beginning of a disk volume.
For example, the relative sector number of the first sector on track 2
of a diskette is 52. The initial sector of a volume is relative
sector number O.

relocation factor

A number that is added to the origin of a program to provide the
loading address for the program. The relocation factor is also added
by the loader to every relocatable address within the program.

remote-extent record

A record in the volume directory pointing to extents of a multi-extent
file.

request block

See IORB and TRB.

request queue

A threaded list of request blocks.

request queue header table

See "EOQ header table" and "SOQ header table."

C-7 AU50

return address

RFU

The address of the instruction in a program to which control is
returned after a branch to a subroutine. By convention, this address
is usually stored in register B5.

Reserved for future use.

residual range

The difference between the number of bytes requested and the number of
bytes transferred during an I/O operation.

ROM bootstrap loader

RSU

A firmware routine (activated by pushing the Load key on the control
panel) that reads the first record from a desIgnated input device into
memory.

Reserved for system use.

sector

A l28-byte portion of a diskette track or 256-byte portion of a cart
ridge disk track.

sequential access

The method for reading or writing a record in a file by requesting
the next record in sequence.

shareable file

Any file that is usable by more than one task concurrently.

SOQ header table

Start of queue header table. This table contains pointers to the first
block in each task request queue.

source module

A program written in a source language for processing by a compiler or
an assembler. Source modules are stored as individual members of
partitioned files.

start address

The labeled address in a program at which execution begins.

static file

A file for which disk space has been allocated by using the allocate
utility. Static files are not expandable or shrinkable during execu
tion but can be deleted.

subroutine

Any procedure that alters data in an area common to both the subrou
tine and its caller. Contrast with "function."

system console

A console through which the operator communicates with a system pro
gram. The system console can be reassigned to a like device through
an EX command to the Command Processor.

system program

Any of the program development tools or offline utility programs.

C-8 AU50

task

A task may be characterized as the execution of a sequence of
instructions that has a starting and ending point and performs some
identifiable function. Multiple tasks operate independent of and
asynchronous to each other, but synchronize their operation by having
one task either initiate another task for execution, wait for the
completion of another task, or terminate itself. These tasking
operations are obtained by calling task management functions.

transparent mode transmission

trap

In this mode, data consisting of bytes having any bit configuration,
even one that would usually affect the communications controller, can
be transmitted over communications lines.

A control transfer caused by an executlng program. The transfer is
made to a predefined location in response to an event that occurs
during processing.

trap handler

TRB

TSA

A routine designed to take a particular action in response to a
specific trap condition.

Task request block. This data structure is used by one task to
request another task and communicate with it.

Trap save area. An area in memory in which certain information is
stored when a trap occurs.

trap vector

VDB

A pointer to a trap handler. There is one vector for each possible
trap condition, in dedicated memory locations.

Volume descriptor block. A control structure built by the CLM for use
by the File Manager. It contains information about the volume direc
tory and volume contents.

volume allocation bit map

A control structure on every disk volume that indicates sector usage
on the volume.

volume directory

A control structure on every disk that carries information about all
the files on the volume.

volume index of defective sectors

A control structure on every disk volume that indicates which, if any,
are the defective sectors on the volume.

volume label

A control structure on every disk volume that contains the volume
identifier and other characteristics of this volume.

volume relative sector number

See "relative sector number."

C-9 AUSO

ASCII
CODE, 4-16
HEXADECIMAL TO ASCII, 4-18

ASR DRIVER
ASR DRIVER, 2-15

ASSEMBLER
ASSEMBLER, 2-5

BASIC
BASIC INTERPRETER, 2-6

BOOTSTRAP
GENERATOR, 2-9
RECORD, 4-3

BSC 2780
BSC 2780 DRIVER, 2-15

BUFFER MANAGER
BUFFER MANAGER, 2-12

CALLING SEQUENCE
CALLING SEQUENCE, 4-19

CARD
FORMATS, 4-14
READER DRIVER, 2-15

CARTRIDGE DISK
CARTRIDGE DISK DRIVER, 2-15

CHARACTER SET
CHARACTER SET, 4-15

CLOCK MANAGER
CLOCK MANAGER, 2-11

COBOL
COMPILER, 2-6
RUN-TIME I/O ROUTINES, 2-13
STANDARDS, 1-4

CODE
ASCII, 4-16
HEXADECIMAL, 4-18
HOLLERITH, 4-16

COMMAND PROCESSOR
COMMAND PROCESSOR, 2-3

COMMUNICATIONS
COMMUNICATIONS, 1-7
DEVICE DRIVERS, 2-15, 2-16

CONFIGURATION LOAD MANAGER
CONFIGURATION LOAD MANAGER, 2-18

CONVENTIONS
ERROR REPORTING, 4-24
MEDIA, 4-1
MODULE AND FILE NAME, 4-18
REGISTER, 4-21

CROSS-REFERENCE PROGRAM
CROSS-REFERENCE PROGRAM, 2-7

INDEX

DATA
SEE FILES
TYPES, 4-22

DEBUG
OFFLINE DEBUGGER, 2-9
ONLINE DEBUG PROGRAM, 2-16

DELETED RECORDS
DELETED RECORDS, 4-11

DEVICE DRIVERS
ASR, 2-15
BSC 2780, 2-15
CARD READER, 2-15
CARTRIDGE DISK, 2-15
DISKETTE, 2-14
KSR, 2-15
KSR TEru4INAL, 2-15
OFFLINE, 2-16
ONLINE, 2-13
PRINTER, 2-15
VIP 7700, 2-16

DISKETTE
DISKETTE DRIVER, 2-14

DISK
DATA FILE ORGANIZATION i 4-9
FORMATS, 4-1

DUMP EDIT
DUMP EDIT, 2-9

DYNAMIC FILE
DYNAMIC FILE, 4-2, 4-8

EDITOR
EDITOR, 2-4

ERROR
ERROR REPORTING, 4-24

EXECUTIVE
EXECUTIVE, 2-10

EXTENT
EXTENT, 4-1

FILE MANAGER
FILE MANAGER, 2-12

FILE
DYNAMIC, 4-2, 4-8
PARTITIONED, 2-7
RELATIVE, 2-7, 4-9
STATIC, 4-2, 4-8
STATUS WORD, 4-7

FORTRAN
COMPILER, 2-5

i-I

RUNTIME I/O ROUTINES, 2-13
RUNTIME ROUTINES, 2-18
STANDARDS, 1-4

AU50

HARDWARE
HARDWARE, 1-1
MINIMUM REQUIREMENTS, B-1

HEXADECIMAL
HEXADECIMAL TO ASCII, 4-18

HOLLERITH
HOLLERITH CODE, 4-16

INPUT/OUTPUT
INPUT/OUTPUT, 2-12

KSR
KSR DRIVER, 2-15
KSR TERMINAL DRIVER, 2-15

LANGUAGES
ASSEMBLY, 2-5
BASIC, 2-6
COBOL, 2-6
DESCRIPTION, 1-4
FORTRAN, 2 - 5
MACRO PREPROCESSOR, 2-4

LINKER
LINKER, 2-7

LOADERS
LOADERS, 2-19

MACRO PREPROCESSOR
MACRO PREPROCESSOR, 2-4

MLCP
MLCP, 2-9

MODULE
NAMES, 1-5
ON DISTRIBUTION MEDIA, A-I
PREFIXES SUFFIXES, 4-19

OFFLINE
OFFLINE ENVIRONMENT, 1-4

ONLINE
ONLINE ENVIRONMENT, 1-6

OPERATOR INTERFACE MANAGER
OPERATOR INTERFACE MANAGER, 2-11

OVERLAY
OVERLAY LOADER, 2-11

PAPER TAPE
PAPER TAPE FORMATS, 4-11

PARTITIONED FILE
PARTITIONED FILE, 2-7

PRINTER
PRINTER DRIVER, 2-15

INDEX

PRIORITY
PRIORITY LEVELS, 1-3

PROGRAM DEVELOPMENT TOOLS
PROGRM4 DEVELOPMENT TOOLS, 2-1

PROGRM~ING CONVENTIONS
PROGRAMMING CONVENTIONS, 4-18

PROGRAM PATCH
PROGRAM PATCH, 2-9

RELATIVE FILE
RELATIVE FILE, 2-7, 4-9

REMOTE EXTENT
REMOTE EXTENT, 4-6

SECTOR
SECTOR, 4-1

STATIC FILE
STATIC FILE, 4-2, 4-8

TASK
DEFINITION, 1-3
MANAGER, 2-11

TRAP HANDLER
TRAP HANDLERS, 2-17

UTILITIES
UTILITIES, 2-7

VIP 7700
VIP 7700 DR!VER, 2-16

VOLUME

i-2

ALLOCATION BIT MAP, 4-5
CONTROL STRUCTURES, 4-2
DIRECTORY, 4-6
INDEX OF DEFECTIVE SECTORS, 4-5
LABEL, 4-3

AU50

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

TITLE
SERIES 60 (LEVEL 6) GCOS/BES2
SOFTWARE OVERVIEW AND
SYSTEM CONVENTIONS

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

ORDER No·1 AU50 , REV. 0

DATED I JULY 1976

L--------_~
r\. Your comments will be promptly investigated by appropriate technical personnel and action will be taken D lI' as required. If you require a written reply, check here and furnish complete mailing address below.

FROM: NAME __ __ DATE ______________ __

TITLE __ ___

COMPANY __ _

ADDRE~ __ __

ATTENTION: PUBLICATIONS, MS 486

Business Reply Mail
Postage Stamp Not Necessary if Mailed in the United States

Postage Will Be Paid By:

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

Honeywell

FIRST CLASS
PERMIT NO. 39531
WALTHAM,MA
02154

Honeywell
Honeywell Information Systems

in the U.S.A.: 200 Smith Street. MS 486. Waltham. Massachusetts 02154
In Canada: 2025 Sheppard Avenue East. Willowdale. Ontario M2J 1 W5

In Mexico: Aventda Nuevo Leon 250. Mexico 11. D.F.

16343, 1876, Printed in U.S.A. AU50, Rev. °

