
(
SERIES 60 (LEVEL 6)

GCOS 6 COMMANDS
ADDENDUM A

SUBJECT

Index to the Manual

SPECIAL INSTRUCTIONS

Insert the attached pages (see Collating Instructions) into Revision 1 of the
manual dated June 1978.

Note:
Insert this title page behind the manual cover to indicate update of the
manual with Addendum A.

SOFTWARE SUPPORTED

This update supports Release 0110 of the Series 60 (Level 6) GCOS 6 MOD 400
Operating System. See the Manual Directory of the latest GCOS 6 MOD 400
System Concepts manual (Order No. CB20) for information as to later releases
supported by this manual.

ORDER NUMBER

CB02A, Rev. 1 July 1978

21357
3778
Printed in U.S.A. Honeywell

COLLATING INSTRUCTIONS

To update the manual, remove old pages and insert new pages as follows:

Remove

© 1978, Honeywell Information Systems Inc.

Insert

i-I through i-B,
at end of manual

File No.: IS13
7/78

CB02A

..

(-\

./

SUBJECT

SERIES 60 (LEVEL 6)

GCOS 6 COMMANDS

Detailed Description of Series 60 (Level 6) GCOS 6 Command Language

SOFTW ARE SUPPORTED

This publication supports Release 0110 of the Series 60 (Level 6) GCOS 6
MOD 400 Operating System; see the Manual Directory of the latest GCOS 6
MOD 400 System Concepts manual (Order No. CB20) for information as to
later releases supported by this manual.

ORDER NUMBER

CB02, Rev. 1 June 1978

Honeywell

Preface

This manual describes the GCOS 6 command language. Unless stated
otherwise, the term GCOS refers to the GeOS 6 software; the term Level 6
refers to the Series 60 (Level 6) hardware on which the software executes.

Section 1 of the manual provides an introduction to the command language.
It summarizes the commands according to function, describes the command
line format, explains the development of File System pathnames, and covers
the use of the Break key in interrupting command execution.

Section 2 describes the format and function of each command. For ease of
reference, the commands are presented in alphabetical order.

Appendix A contains detailed information that pertains to a limited number
of commands. It describes the use of additional command line arguments,
discusses terminal characteristics at login, and defines the pathname colon
convention.

Appendix B describes the directives used with the Intersystem Link (1SL)
command.

Appendix C describes the directives used with the File Change command.

Appendix D defines the standard GCOS 6 character set and its hexadecimal
equivalents.

© 1978, Honeywell Information Systems Inc. File No.: 1813 CB02

/

(

:(

(-'-\

. /

MANUAL DIRECTORY

The following publications comprise the GCOS 6 manual set. The Manual Directory in the
latest GCOS 6 MOD 400 Systems Concepts manual (Order No. CB20) lists the current revision
number and addenda (if any) for each manual in the set.

Order
No.

CB01
CB02
CB03
CB04
CB05
CB06
CB07
CB08
CB09
CB10
CB20
CB21
CB22
CB23
CB24
CB25
CB26
CB27
CB28
CB30
CB31
CB32
CB33
CB34
CB35
CB36
CB37
CB38
CB39
CB40
CB41
CB42
CB43

Manual Title

GCOS 6 Program Preparation
GCOS 6 Commands
GCOS 6 Communications Processing
GeOS 6 Sort/Merge
GCOS 6 Data File Organizations and Formats
GeOS 6 System Messages
GCOS 6 Assembly Language Reference
GeOS 6 System Service Macro Calls
GCOS 6 RPG Reference
GCOS 6 Intermediate COBOL Reference
GCOS 6 MOD 400 System Concepts
GCOS 6 MOD 400 Program Execution and Checkout
GCOS 6 MOD 400 Programmer's Guide
GCOS 6 MOD 400 System Building
GCOS 6 MOD 400 Operator's Guide
GCOS 6 MOD 400 FORTRAN Reference
GCOS 6 MOD 400 Entry-Level COBOL Reference
GCOS 6 MOD 400 Programmer's Pocket Guide
GCOS 6 MOD 400 Master Index
Remote Batch Facility User's Guide
Data Entry Facility User's Guide
Data Entry Facility Operator's Quick Reference Guide
Level 6/Level 6 File Transmission Facility User's Guide
Level 6/Level 62 File Transmission Facility User's Guide
Level 6/Level 64 (Native) File Transmission Facility User's Guide
Level 6/Level 66 File Transmission Facility User's Guide
Level 6/Series 200/2000 File Transmission Facility User's Guide
Level 6/BSC 2780/3780 File Transmission Facility User's Guide
Level 6/Level 64 (Emulator) File Transmission Facility User's Guide
IBM 2780/3780 Workstation Facility User's Guide
HASP Workstation Facility User's Guide
Level 66 Host Resident Facility User's Guide
Terminal Concentration Facility User's Guide

In addition, the following documents provide general hardware information:

Order
No.

AS22
AT04
AT97
FQ41

Manual Title

Honeywell Level 6 Minicomputer Handbook
Level 6 System and Peripherals Operation Manual
MLCP Programmer's Reference Manual
Writable Control Store User's Guide

MANUAL DIRECTORY iii CB02

(

Section 1. GCOS 6 Command
Concepts

Functional Summary of Commands 1-1
CommandLineFormat 1-4

Argument 1-5
Positional Argument 1-·5
KeywordArgument 1-5.
Control Argument 1-5

Spaces in Command Lines 1-5
Parameters 1-5

FileSystemPathnames 1-5
Definition of a File 1-6
DefinitionofaDirectory 1-6
Directory or File Name Construction 1-6
PathnameConstruction 1-6
AbsolutePathname 1-7
Relative Pathname and Working

Directory 1-7
Device Pathnames 1-7

Device Files (Other Than Disk and
Tape 1-7

TapeFiles 1-7
Disk Device Files 1-8
Device Pathname Examples 1-9

Special Utility Program Pathname
Conventions 1-9

Star Name Convention 1-9
Equal Name Convention 1-11

User Program Activation 1-13
Activating a User Program 1-13
ExtendingtheCommandSet 1-14

Standard 110 Files 1-14
Command-in File 1-14
User-in File 1-14
User-out File 1-14
Error-outFile 1-15

File Concurrency 1-15
Concurrency of Standard 110 Files 1-15
Concurrency of Utility and Program

Preparation Files 1-15
Conditions for Command Processor

Termination 1-15
Keyboard Input Line Control 1-15

Correcting the Current Line 1-16
Deleting the Current Line 1-16
Declaring a Control Character a Data

Character 1-16
Task Interruption (Break) 1-16

Break Function Usage 1-16
BreakProcedures 1-17
Unwind and Program Interrupt

Command Considerations 1-18
Examples of Break Usage 1-18

v

Contents

Section 2. GCOS 6 Commands
Abort Group (ABORT_GROUP Command) .2-1
Assembler (ASSEM Command) 2-2
Associate Path (ASSOC Command) 2-4
Bye (BYE Command) 2-5
Change Working Directory (CWD

Command) 2-6
COBOL (COBOL Command) 2-8
COBOL! (COBOL Command) 2-10
Compare (CPA Command) 2-12
Copy (CPCommand) 2-15
Copy Data Exchange (IBM) (CPDE

Command) .. 2-20
Create Directory (CD Command) 2-21
Create File (CF Command) 2-23
Create Group (CG Command) 2-26
Create Mailbox .. 2-28
Create Task (CT Command) 2-29
Create Volume (CV Command) 2-31
Create Volume Data Exchange (IBM)

(CVDE Command) 2-35
Deferred Print (DP Command) 2-36
Delete Access Control List. 2-38
Delete Common Access Control List 2-39
Delete Group (DG Command) 2-40
DeleteTask(DTCommand) 2-41
Dissociate Path (DISSOC Command) 2-41
DumpEdit(DPEDITCommand) 2-42
Editor (ED Command) 2-44
Enter Batch Request (EBR Command) 2-45
Enter Group Request (EGR Command) 2-46
Enter Task Request (ETR Command) 2-48
Execution Command (EC Command) 2-50
Export PAM File (EX_PAM Command) 2-54
File Change (FC Command) 2-55
File Dump (FD Command) 2-56
File Out (FO Command) 2-58
FORTRAN (FORTRAN Command) 2-59
Get File (GET Command) 2-62
Import PAM File (1M_PAM Command) 2-68
Invoke RBT Task Group (RBT Command) ... 2-69
1St.. Configurator (ISLCON Command) 2-69
Linker (LINKER Command) 2-70
List Access Control List 2-71
List Common Access Control List 2-72
List Creation Date (LCD Command) 2-74
List Data Exchange (IBM)

(LSDE Command) 2-75
List Names (LS Command) 2-77
ListSearchRules(LSRCommand) 2-79
List Working Directory (L WD

Command) 2-80
Login(LCommand) 2-81

CB02

Macro Preprocessor (MACROP Command) .. 2-84
Merge Files (MERGE Command) 2-85
Message (MSG Command) 2-85
Modify External Switches (MSW

Command) 2-86
Modify File (MF Command) 2-87
New Process (NEW --PROC Command) 2-88
Patch(PATCHCommand) 2-88
Print (PR Command) 2-89
Ready Off(RDF Command) 2-91
Ready On (RDN Command) 2-91
Release (RL Command) 2-92
Remove File (REMOVE Command) 2-93
RenameFile(RENAMECommand) 2-94
ResetMap(RSCommand) 2-95
Restore (RESTORE Command) 2-96
RPG (RPG Command) 2-97
Save (SAVE Command) 2-99
Set Access Control List (SET ----.ACL or SA) ... 2-100
Set Autodial Telephone Number (SDL

Command) 2-105
Set Common Access Control List (SCA

SET_CACL) 2-106
Set Terminal Characteristics (STTY

Command) 2-108
Sort File (SORT Command) 2-109
SpawnGroup(SGCommand) 2-110
SpawnTask(STCommand) 2-112
StatusGroup(STGCommand) 2-114
Time (TIME Command) 2-115
Tape Positioning (TPOS Command) 2-116
Transmit File (TRAN Command) 2-117
TransmitFile(TRANBCommand) 2-119
Transmit File (TRANHCommand) 2-121
WalkSubtree(WSCommand) 2-123

Appendix A. Additional Command
Considerations

Additional Command Line Arguments
(ARG) A-1

ArgumentPassing A-1
Input Command Line Parameter

Substitution A-1
EC File Execution Command A-2
Group Activation Request Commands . A-3

Terminal Characteristics at Login A-4
NoncommunicationsTerminal A-4
Communications Terminal A-5

Pathname Colon Convention A-5

Appendix B. Intersystem Link (ISL)
Directives

ISLLoaderFiieCreation B-1
ISL Configurator B-1

ISLCON B-1
Sample Intersystem Link B-2
ISL Configuration Directives B-4

ISL Directive B-4
DUMP Directive B-4
LCHAN, RCHAN Directives B-5
LCP,RCPDirectives ... ~ B-6
LMEM, RMEM Directives B-6
QUIT Directive B-8

vi

Appendix C. File Change Directives
File Change Command C-1
File Change Directives C-1

READ Directive C-2
PRINT Directive C-2
CHANGE Directive C-2
WRITE Directive C-3
QUIT Directive C-3

Sample File Change Commands C-4

Appendix D. ASCII and EBCDIC
Character Set

Figures

2-1 Typical Directory/File Structure 2-7
2-2 Default Block and Logical Record

Size Calculation. 2-67
2-3 Block and Logical Record Size

Validity Checking 2-67
B-1 Sample Intersystem Link B-2
B-2 ISL Hardware Configuration B-3

Tables

1-1 Functional Summary of
GCOS 6 Commands 1-1

1-2 System Programs Supporting the
UW (Unwind) Command 1-17

D-1 ASCII/Hexadecimal
Equivalents D-2

D-2 EBCDIC/Hexadecimal/Binary
Equivalents D-3

CB02

"-

(

Section 1

GCOS 6 Command Concepts

The GCOS 6 command processor enables users to define and control application tasks. The
processor reads commands from a sequential input file (which may be an interactive terminal
or a prestored command file) and causes each requested function to be executed in a serial
manner.

Functions performed by the commands include file maintenance, inteIjob control, intrajob
control, file assignment, asynchronous task operation, and operator communication.

Batch applications are always controlled by the command processor. Concurrent online
applications, while not required to use the command processor, will in most cases find its use to
be advantageous.

FUNCTIONAL SUMMARY OF COMMANDS

The GCOS 6 command repertoire is divided into the following functional groups:

• Execution control
• Resource control
• File and directory control
• Program preparation

• Utilities
• Interactive operations
Table 1-1 lists the commands according to function.

TABLE 1-1. FUNCTIONAL SUMMARY OF GCOS 6 COMMANDS

Command Command Name Function

EXECUTION CONTROL COMMANDS: These commands cause the creation, execution,
suspension, and deletion of tasks and task groups from the system.

Abort group

Associate path

Create group

Create task

Delete group

Delete task

Dissociate path

Enter group
request

Enter task request

Execution
command

Modify external
switches

ABORT_GROUP Suspends, terminates, and deletes the task group.

ASSOC Associates a pathname with a logical file number (LFN).

CG

CT

DG

DT

DISSOC

EGR

ETR

EC

MSW

Allocates and initializes all data structures that define a task
group.

Creates within the task group the definition of a task.

Marks the task group as eligible to be deleted when it be­
comes dormant.

Deletes the indicated task.

Removes the association between the indicated LFN and
the associated pathname.

Activates the lead task for execution or, if the lead task is
active, queues the request.

Activates the task for execution or, if the task is active,
queues the request.

Invokes the command processor to read commands from a
.EC file.

Modifies external switches associated with a task group.

GCOS 6 COMMAND CONCEPTS 1-1 CB02

I
I

I
I

TABLE 1·1. (CONT.) FUNCTIONAL SUMMARY OF GCOS 6 COMMANDS

Command

New process

RBT task group
invocati'On

Spawn group

Spawn task

Command Name Function

NEW_PROC

RBT

SG

ST

Suspends all tasks of this task group and restarts the lead
task with the original arguments.

Invokes the remote batch terminal task group and associates
it with a logical stream.

Creates, requests the execution of, and then deletes a task
group.

Creates, requests the execution of, and then deletes a task
within the issuing task group.

Status group STG Supplies the status of the issuing task group.

RESOURCE CONTROL COMMANDS; These commands cause the reservation and removal
of files (e.g., tape or disk files or volumes, disk directories, printers, card readers, and terminal
devices).

Get file

Remove file

GET

REMOVE

Reserves a file.

Cancels the reservation of a file.

FILE AND DIRECTORY CONTROL COMMANDS; These commands manipulate and pro-
vide access to files and directories within the file system.

Change working CWD Changes the working directory of the task group to the indi-
directory cated path.

Create directory CD Creates a directory referenced by the indicated pathname.

Create file CF CreateR the indicated disk file.

Create mailbox CMBX Creates a mailbox to contain message queues.

Delete ACL DA Removes entries from the access control list (ACL) of a file or
directory.

Delete CACL DCA Removes entries from the common access control list of a file
or directory.

File out FO Changes a user-out file to a specified file or resets it to its
default value.

List ACL LA Lists entries of the access control list for a file or directory.

List CACL LCA Lists entries of the common access control list (CACL) for a
specified directory.

List names LS Lists entries and (optionally) their attributes within a spec-
ified directory.

List search rules LSR Lists currently defines search rules for the task group.

List working LWD Prints the absolute pathname of the working directory.
directory

Modify file MF Modifies the attributes of the indicated file.

Release file RL Deletes a file from the File System and releases space allo-
cated to it.

Rename file RENAME Renames a directory entry with a name unique within that
directory.

Set ACL SA Adds new entries or changes access mode of existing entries
in a given access control list (ACL).

Set CACL SCA Adds new entries or changes access mode of existing entries
in a given common access control list (CACL).

Set terminal STTY Changes the file characteristics of a terminal.
characteristics

Walk Subtree WS Executes a command line in a given directory and in all
subordinate directories. Prints pathname of every directory
referenced on error ___ out.

GCOS 6 COMMAND CONCEPTS 1-2

!

"

(

~-

CB02

c

TABLE 1-1. (CONT_) FUNCTIONAL SUMMARY OF GCOS 6 COMMANDS

Command Command Name Function

PROGRAM PREPARATION COMMANDS: These commands allow the user to create and
modify source programs, and to create a bound unit from one or more resulting object files.

Assembler ASSEM Assembles the specified assembly language program.

COBOL COBOL Compiles the specified entry-level COBOL source program.
(entry-Ievell

COBOL
(intermediate)

Editor

FORTRAN

Linker

Macro
Preprocessor

COBOLI

ED

FORTRAN

LINKER

MACROP

Compiles the specified intermediate COBOL source program.

Allows the user to create or modify any text file.

Compiles the specified FORTRAN source program.

Processes one or more object files to create a bound unit.

Expands assembly language macro calls and %INCLUDE
statements into assembly language source statements.

Report Generator RPG Compiles the specified Report Generator program.

UTILITY COMMANDS: These commands allow the user to perform various functions on
records, files, volumes, and directories (including creating volumes, copying, comparing,
dumping, and sorting).

Compare CPA Compares the contents of one file or volume with another file
or volume.

Copy CP Copies a file or volume and its file system attributes.

Copy Data CPDE Copies IBM files to Honeywell files or vice versa.
Exchange

Create volume CV Creates or modifies a volume to the GCOS 6 file system
standard.

Create Volume CVDE Sets up an unformatted diskette to be acceptable on IBM
for Data equipment.
Exchange

DPRINT DP Queues a request for deferred printing.

Edit system dump" DPEDIT Transfers to the user-out file the contents of a previously
written memory dump file, or contents of current memory.

Export PAM file" EX_PAM Copies one or more sequential files to a BESI or BES2
partitioned file.

File change" FC Changes the contents of a disk sector or control interval.

File dump FD Prints selected logical records within a specified file.

Import PAM file" 1M_PAM Transfers one or more BESI or BES2 partitioned file
members to the file system.

ISL configura tor" ISL Generates a loader to load Intersystem Link (ISL) address
maps and masks.

List creation date LCD Lists the creation dates of a file or files in a directory.

List Data LSDE Lists by file name the contents of an IBM diskette.
Exchange

Merge MERGE Merges the records of one or more sequential files.

Patch PATCH Modifies an object or image text file.

Print PR Prints an indicated file.

Reset map" RS Reconstructs the volume bit map and lists the number of
unused sectors available for allocation on a disk volume.

Restore RESTORE Restores files previously saved by the SAVE command.

GCOS 6 COMMAND CONCEPTS 1-3

I

I

I

I

CB02

I

I

TABLE 1-1. (CONT.) FUNCTIONAL SUMMARY OF GCOS 6 COMMANDS

Command

Save

Set Autodial
telephone numbera

Sort

Tape Position

File Transmission

Command Name Function

SAVE

SDL

SORT

TPOS

TRAN

Saves specified disk directories or files.

Specifies a telephone number to be used by the Autodial
facility when dialing a terminal to place a line in operation.

Sorts the records on a sequential file.

Manipulates the position of a magnetic tape.

Transmits files between a Level 6 system and a Level 66
system.

TRANB Transmits files between a Level 6 system and a
non-Honeywell system capable of using the IBM 2780
protocol.

TRANH Transmits files between a Level 6 system and a Level 6, 62,
64 or Series 200/2000 system.

INTERACTIVE COMMANDS: These commands allow the user to establish and terminate
access to the system, request the execution of a batch task group, send messages to the system
operator, and display the current time.

Enter batch EBR Places a request for the command processor executing in the
request batch task group.

Login LOGIN Allows a user to gain access to the system.

Messagea MSG Allows a user to send messages to the system operator.

Ready message off RDF Suppresses printing of the ready message.

Ready message on RDN Restores printing of the ready message.

Terminate group BYE Terminates the user's session and releases any resources
request reserved for him.

Time TIME Displays the current time.

a This command is made available for use only with the Mod 400 Operating System.

The remainder of this section describes certain aspects of the GCOS 6 operating system, an
understanding of which is necessary to effectively use the GCOS 6 commands. The manual
System Concepts describes the system in greater detail and should be referred to for a more
complete understanding of system terms, structures, and components.

COMMAND LINE FORMAT

Commands are read and interpreted by the command processor, which executes as the lead
task in the batch task group, or can execute as the lead task in an online task group. Each
command causes a task to be spawned within this task group to perform the requested function
(e.g., create a task within an existing group, enter a group request, dump a file). When the
execution of a command terminates, control is returned to the command processor, which can
then accept another command.

A command line to the pi'ocessur is a string of up to 127 ASCII characters in the form:

command-name [argl ... argn] [;command-name [argl ... argn]] ...

where command-name is the path name of the bound unit that performs the command's
function. Each subsequent arg entry is an argument whose functions are described in follow­
ing sections. The user can enter multiple commands in the same line by separating the
individual commands with a semicolon.

A single command line (127 characters) can be entered on more than one physical line. To
specify that command input is to be continued on a subsequent line, the user must enter an
ampersand (&) as the last character in the input line. The first character of a continued

GCOS 6 COMMAND CONCEPTS 1-4 CB02

/

\

'"

i(··

command line may not be a blank. There is no limit on the number of physical lines that can be
used to enter one command line; the total number of characters in the command line, however,
cannot exceed 127. A physical line consisting solely of an ampersand (&) signals the processor
that a current command line is to be ignored.

ARGUMENT

An argument of a command is an individual item of data passed to the task of the named
command. Some commands require no arguments; others accept one or more as indicated in
the syntax of each command description. Optional arguments are enclosed in brackets; e.g.,
[path]. There are positional and keyword arguments (see below).

Other types of arguments are the additional arguments that follow the -ARG keyword,
available in some commands, and those following path in the EC command. They represent
data that is to be used in the task group being activated and are discussed in Appendix A.

POSITIONAL ARGUMENT

A positional argument is an argument whose position in the line indicates to which variable
the item of data is applied. It can occur in a command line immediately after the command
name or as the last argument following the control arguments, as in the LIST names com­
mand.

KEYWORD ARGUMENT

A keyword argument is a fixed-form character string preceded by a hyphen, thus -ECL. It
can be alone, as in -WAIT, or it can be followed by a value, as in -FROM xx.

CONTROL ARGUMENT

A control argument is an additional argument or keyword argument whose value specifies a
command option; e.g., the pathname of an alternate input or output file. In the command
syntax descriptions in this manual, control arguments are denoted by the term "ctLarg";
the argument descriptions define the specific keywords for that command. Unless otherwise
noted, a control argument is optional, as indicated by enclosing brackets; i.e., [ctLarg]. A
required control argument is so described in the syntax definition, without enclosing brackets.

Except when the last argument of a command line is a positional argument, keywords of
control arguments can be entered in any order in the line, following the initial positional
arguments.

SPACES IN COMMAND LINES

Arguments in command lines are separated from each other by spaces. Unless otherwise
indicated, a space in a command line syntax represents one or more space characters, or one or
more horizontal tab characters, or a combination of these. Spaces can be embedded within an
argument by enclosing the argument in single (') or double (") quote characters. If the
enclosing character is also required within the argument, it is represented by two successive
characters, thus: .. NAME= SMITH"" AREA 203".

PARAMETERS

Arguments are the user-selected items of data passed to a task. In the activated task, which
is written in a generalized manner to handle any set of data passed to it, this data is known as
parameters. If the activated task expects positional parameters, the order of the parameters
passed to it must be in the same order as the task's positional parameters.

FILE SYSTEM PATHNAMES

The GCOS 6 File System is a tree-structured hierarchy through which each volume of
storage is identified to the system. The basic element of this structure is the file. A special file,
called a directory, contains information about other files.

GeOS 6 COMMAND CONCEPTS 1-5

I

CB02

DEFINITION OF A FILE

A file is any unit of storage outside the central processor which can supply data to or receive
data from a task. A file can be a peripheral device such as a printer, card reader, or terminal, or
it can be a collection of data stored within a directory structure on a magnetic (tape or disk)
storage device. A source unit, object unit, listing, or bound unit is stored as a source unit file,
object unit file, list file, or bound unit file, respectively.

DEFINITION OF A DIRECTORY

A directory is a file that contains information about other "subordinate" storage system
entries, which in turn may represent other directories or data files. An entry named in a
directory is subordinate to that directory and is "contained" within it. The information in the
containing directory describes physical and logical attributes of the subordinate files.

The directory at the base of a tree structure is the root directory. Its name is the same as the
name (volume id) of the volume where it resides.

When first created, a volume has only a root directory, within which names and attributes
of subordinate directories can be created later.

All references to directories and files begin either explicitly or implicitly with a root
directory name.

DIRECTORY OR FILE NAME CONSTRUCTION

A directory or file name can consist of the following ASCII characters:
• Uppercase letters (A through Z)
• Decimal digits (0 through 9)
• Underscore character (_)

• Period (.)
• Dollar sign ($)

Any name must begin with a letter or the dollar sign ($). The underscore is used to join two
or more words that the system is to interpret as one name; e.g., DATE_TIME. The period
separates a name from its alphabetic or numeric suffix characters. For example, in the name of
a COBOL source file called COBPROG.C, COBPROG is any user specified name, arid C is the
required suffix, indicating to the system that this is a COBOL source file.

The length of a root directory name or volume identifier can be from one to six (nonblank)
characters. A directory (other than the root) or a file name can have from one to twelve
(nonblank) characters. A specified file name must provide for any possible suffix that might be
appended by the system so that the overall length of the name does not exceed twelve
characters.

PATHNAME CONSTRUCTION

A pathname is a string comprising one or more directory names and possibly one file name.
All subordinate names of directories or files within a directory must be unique. The pathname
describes the access path to the entity to be acted on. A pathname begins with a root directory
name, followed by zero, one, or more directory names (and possibly a file name), in the order of
their hierarchy.

The progressive relationship among pathname elements in the hierarchy is indicated by the
following symbols:

• Circumflex C) - denotes a root directory only; must precede the root dire~tory name,
with no intervening space (e.g., VOLOll) .

• Greater-than symbol (» - indicates movement in the hierarchy away from the root.
Connects two directory names or a directory name and a file name. Can also be the first
character in a pathname, in which case it is immediately subordinate to the root directory
of the system volume. Each successive symbol in the string indicates a change of one
directory level; the name immediately following the symbol is at the next subordinate

GCOS 6 COMMAND CONCEPTS 1-6

/

CB02

level from the name immediately preceding it. Reading a pathname from left to right
shows the access through the tree structure, away from the root, to the last element in the
pathname. For example, ifthe root directory VOLOll contains the directory name DIRl,
then the pathname for DIRI is A VOLOll>DIR1. However, if directory DIRI in turn
contains the file FILEA, then the pathname for FILEA is A VOLOll>DIRl>FILEA. The
> symbol is never followed by a space; nor is it preceded by a space except as the first
character in a pathname .

• Less-than symbol «) - Indicates movement in the hierarchy toward the root and a
change of one level in that direction. Additional < symbols show successive level changes.

The last element in a pathname is the name of the entity that is to be acted on, and may
denote either a directory name or a file name, according to the action to be performed.

Total length of any pathname, including all hierarchical symbols cannot exceed 58 charac­
ters, except that a working directory pathname cannot exceed 44 characters.

ABSOLUTE PATHNAME

An absolute pathname begins with a directory name preceded by a circumflex () or a
greater-than symbol (». With a circumflex, the pathname is a full pathname; with a greater­
than symbol, the first element of the pathname is immediately subordinate to the root
directory of the system volume.

RELATIVE PATHNAME AND WORKING DIRECTORY

A relative pathname is one that does not begin with a circumflex or greater-than symbol. For
a relative pathname that does not begin with a less-than symbol, the first (or only) name in the
pathname identifies a directory or file immediately subordinate to a directory known as the
working directory. The working directory is the user's current position in the file system
hierarchy.

The simplest form of a relative pathname has only one element, which is the name of the
desired entry in the working directory.

The following are examples of relative pathnames and the full pathnames they represent
when the working directory path name is

> UDD> PROJI > USERA
and the system was initialized from the volume SYSO 1.

DEVICE PATHNAMES

Reference to any device is through the Symbolic Peripheral Device (SPO) directory, which is
subordinate to the system root.

DEVICE FILES (OTHER THAN DISK AND TAPE)

The general form of a device file pathname is:
>SPD>dev_name

where de v_name is the symbolic name defined for the card reader, punch, printer, or terminal
device during system building.

Device files are always reserved for exclusive use (i.e., the reserving task group has read
and write access but other users are not allowed to share the file).

TAPE FILES

The general form of a tape file (device) pathname is:
>SPD >dev -Ilame[>volid[>filename]]

where dev-Ilame is the symbolic name defined for the tape device during system building,
volid is the name of the tape volume, and filename is the name of the file on the volume.

Tape devices are always reserved for exclusive use (i.e., the reserving task group has read
and write access but other users are not allowed to share the file).

GCOS 6 COMMAND CONCEPTS 1-7 CB02

RELATIVE PATHNAME

DELTA
OLD>DELTA
<USERB>ALPHA
«PROJ2>USERA>DEL TA
<

USERA

I L-

DELTA

OLD

DELTA

DISK DEVICE FILES

J

PROJ1

1
USERB

I
ALPHA

FULLPATHNAME

IISYS01>UDD>PROJ1>USERA>DEL TA
IISYS01>UDD>PROJ1>USERA>OLD>DEL TA
II SYS01 >UDD>PROJ1 >USER B>ALPHA
IISYS01>UDD>PROJ2>USERA>DEL TA
II SYS01 >UDD>PROJ1

SYS01

I

UDD

I I
J

PROJ2

I

USERA

I
DELTA

The general form of a disk device-level access pathname is:
>SPD>dev-Ilame[>volid]

where dev-Ilame is the symbolic name defined for the disk device during system building and
volid is the name of the disk volume.

This pathname format is used only when access to the entire volume is required (such as
during a volume copy or a volume dump).

If the volid is not supplied, reservation of the disk is exclusive (i.e., the reserving task group
has read and write access but other users are not allowed to share the file). This pathname
form is used when creating a new volume.

If the volid is specified, reservation is read/share (i.e., the reserving task group has read
access only; other users may read and write). This pathname format is used when dumping
selected portions of a volume without regard to the hierarchical file system tree structure.

GCOS 6 COMMAND CONCEPTS 1-8

/

CB02

(-~

DEVICE PATHNAME EXAMPLES

Several examples of device pathnames are shown below.

Device
Line printer
Exclusive tape volume
File on an exclusive tape volume
Exclusive diskette
Nonexclusive cartridge
disk volume

Pathname
>SPD>LPT01
>SPD> MT902> VOL3
>SPD>MT902>VOL3>FILEA
>SPD>DSK02
>SPD>RCD01>V23X

SPECIAL UTILITY PROGRAM PATHNAME CONVENTIONS

Two special pathname conventions, star name and equal name, can be used with certain
utility programs to reduce significantly the number of commands required to perform a series
of operations. The star name convention can be used with the COPY, COMPARE, LIST
NAMES, RELEASE, and LIST CREATION DATE commands. The equal name convention can
be used with the COpy and COMPARE commands. Refer to Section 2 for a full description of
these commands.

STAR NAME CONVENTION

The star name convention can be used with the COPY, COMPARE, LIST NAMES, RE­
LEASE, and LIST CREATION DATE commands to perform an operation on a group of files
without having to enter separate commands for each file in the group. A star name functions in
the same way as an entry name. The star name convention matches a star name with entry
names in a single directory to identify a group of entries with common components. For
example, if a directory contains the names of three files, PROG1.C, PROG1.0, and PROG1.L,
all three files could be listed by the single command:

LS PROG1.*
instead of the three commands:

LS PROG1.C
LS PROG1.0
LS PROG1.L

The following rules apply to star names:
1. The star name convention applies only to the final entry name of a pathname.
2. The star name entry can be composed of up to 12 ASCII characters, none of which can be

the less-than «), greater-than (», or circumflex (A) character. .
3.

4.

5.

6.

7.

8.

Each star name must be made up of non null components, separated by periods. Thus, a
star name cannot begin with a period, end with a period, or contain two or more
consecutive periods.
When a question mark (?) character is used in a star name, the? is treated as a special
character. The? matches any character that appears in the corresponding component
and letter position of the entry name.
Each asterisk (*) character used in a star name matches any number of characters
(including none) appearing in the corresponding component and letter positions of the
entry name.
Only one asterisk can appear in each star name component, except that a double
asterisk (double star) can appear if used as defined in rule 7.
A double asterisk can be used to match any number of whole components (including
none) in the corresponding position of the entry name. Only one double asterisk is
allowed in a star name.
The asterisk can be considered to represent any number of characters; the question
mark can be considered to represent one character.

GCOS 6 COMMAND CONCEPTS 1-9 CB02

Two sets of examples of use follow. The first set shows the use of star names as entry name
arguments. The second shows the use of star names in determining the pathname.

The following examples illustrate the use of the star name convention as the entry name
argument of a command. The examples are based on the following generalized pathname:

> UDD >directory~tar_name __ --...- '---. component1.component2.componentn

Example 1:
LS **

Lists all entries in the working directory.
Example 2:

LS *.*.WORK
Lists all 3-component entry names, whose last component is WORK, in the working
directory.

Example 3:
LS WOR?**

Lists all entries in the working directory that have a 4-character first component whose
first three characters are WOR.

Example 4:
LS *.WOR?**

Lists all entries in the working directory that have a 4-character second component
whose first three characters are WOR.

The following examples show the use of the star name convention in determining the actual
pathname of a command. The examples are based on the following assumptions (D means
directory, S means source file):

• The directory volid has the following entries:
Entry Name Type
VOLID D
FILE 1 S
FILE2 S
DIR1 D
FILE 3 S
DIR2 D
FILE4 S

• Directory DIR1 has the following entries:
Entry Name Type
FILE A S
FILEB S
DIRA D
FILEC S

• Directory DIR2 has the following entries:
Entry Name Type
FILEX S
DIRX D
DIRY D
FILEY S
FILEZ S

Example 1:
LS -PN A volid>**

Lists all entries (all is the default since no argument other than path is included) in all
directories within the directory volid. This form of the LS command lists only the contents of

GCOS 6 COMMAND CONCEPTS 1-10 CB02

, ,

directories; it does not enumerate the files. The pathname ~ volid>** informs the command of
which directory to list. The pathname of the directory to be listed does not end with a specific
entry name, but with a star name. Therefore, all directory entries within volid that conform to
that star name will be listed. The listing will consist of:

DIRECTORY: DIR1

. (list of DIR1)

DIRECTORY: DIR2

(list of DIR2)

Example 2:
LS -PN ~ volid>** -FILE

Lists only the files within the directories within the directory volid. The listing will consist of:
DIRECTORY: DIR1

FILE A
FILEB
FILEC

DIRECTORY: DIR2
FILE X
FILEY
FILEZ

Example 3:
LS -PN volid>*2

Lists only the directory DIR2. The listing will consist of:
DIRECTORY: DIR2

(list of DIR2)

EQUAL NAME CONVENTION

The equal name convention can be used with the COPY and COMPARE commands to
construct the output pathname entry name when the input pathname entry name has been
resolved. Use of the equal name convention allows the user to employ the star convention in
the input pathname and the equal name in the output pathname to copy or compare several
files.

The names of the output files are constructed through the equal name convention, using
either a standard input pathname entry name or an input pathname entry name that is built
with the star convention.

The following rules apply to equal names:
1. An equal name is an entry name; it is composed of up to 12 ASCII characters (including

spaces), none of which can be the less-than «) or greater-than (» character.
2. An equal name is composed of one or more nonnull components. Thus, an equal name

cannot begin with a period, end with a period, or contain two or more consecutive
periods.

3. When a percent character (%) appears in an equal name component, it is treated as a
special character. The % character represents the character in the corresponding com­
ponent and letter position of the entry name. An error occurs if the corresponding
character does not exist.

4. Each equal-sign character (=) that appears in an equal name component is treated as a
special character. The equal sign represents the corresponding component of the entry
name identified by the star name. An error occurs if an equal sign appears in a
component that contains a percent character. Only one equal sign can appear in each

GCOS 6 COMMAND CONCEPTS 1-11 CB02

equal name component, except that a double equal sign can appear ifused as defined in
rule 5.

5. An equal name component that consists of only a double equal sign (= =) is treated as a
special component. The double equal sign component represents all components of the
entry names that are identified by the star name and that have no other corresponding
components in the equal name. Since the double equal sign represents (corresponds to)
components ofthe entry name identified by the star name, the equal name will have the
same number of components as the entry name. Only one double equal sign can appear
in an equal name.

The following examples show typical uses of the equal name convention. The examples
assume two directories, DIR1 and DIR2. DIR1 is to be copied to DIR2. DIR2 is initially empty.
DIR1 contains three files:

FILEA.xyz
FILEB.xyz
TESTC.xyz

Example 1:
CP ADIR1>** ADIR2>==

Copies three files from DIR1 to DIR2. DIR2 contains:
FILE A. xyz
FILEB.xyz
TESTC.xyz

Example 2:
CP ADIR1 >*.xyz ADIR2 >=.abc

Copies all three files, changing the second component to abc. DIR2 contains:
FILEA.abc
FILEB.abc
TESTC.abc

Example 3:
CP ADIR1 >*.xyz DIR2>TEST%.=.x

Copies all files. changing the first and second components and adding a third. DIR2 contains:
TESTA.xyz.x
TESTB.xyz.x
TESTC.xyz.x

The following examples have the same assumptions as examples 1 through 3, except that
DIR1 is assumed to contain the following files:

A.B.C.D
X.ABC.O
WXYZ.A

Example 4:
CP ADIR1>*.* ADIR2>=.=

DIR2 contains WXYZ.A

Example 5:
CP ADIR1>*.B.** ADIR2>=.=.K.X

DIR2 contains A.B.K.X

Example 6:
CP AD1R1 >*.*C.** ADIR2>K.X%Z.*.W

DIR2 contains K.XBZ.O.W

GCOS 6 COMMAND CONCEPTS 1-12 CB02

USER PROGRAM ACTIVATION

This subsection discusses two interrelated topics: the means by which the user activates his
programs and the means by which he extends the system-supplied command set.

ACTIVATING A USER PROGRAM

The most direct way to activate a user program is to enter the program's bound unit
pathname as the first (or only) argument in an input line (command line) to the command
processor.

When the command processor reads the input line, it places the arguments of the line into a
parameter block, in the order in which they appear in the line. Thus, the first entry in the
parameter block is the pathname argument.

The command processor then spawns a task to load and execute the bound unit specified by
the first argument in the line. When the program begins execution, register $B7 contains the
address of the parameter block.

When entering the command line to activate the program, the user should be aware of the
following conventions:

• Arguments: Only assembly language programs can handle arguments following the
bound unit pathname argument.

• Absolute and Relative Pathnames: The first (or only) argument in the command line can
be an absolute or relative pathname.
An absolute pathname can always be used. A relative pathname can be used if the bound
unit is in one of three directories searched by the loader. These directories are:
- The working directory of the task group.

The system directory specified by the -LIBI argument of the CHANGE SYSTEM
DIRECTORY operator command. -LIBI indicates the first system directory to be
searched.
The system directory specified by the -LIB2 argument of the CHANGE SYSTEM
DIRECTORY operator command. -LIB2 indicates the second system directory to be
searched.

• Entry Points: The bound unit can have a suffix in the form ?entry, where entry is a
symbolic start address within the root segment. If no suffix is given, the default start
address (established when the bound unit was linked) is used.

Example 1:

AVOLOl>TESTA>ROTAl
This command line uses an absolute pathname to cause the bound unit ROTAI to be loaded
and executed at its default start address.

Example 2:
ROTAI

This command line uses a relative pathname to load and execute the bound unit ROTAI at its
default start address. The working directory is A VOLOl>TESTA.

Example 3:
AVOLOl>TESTB>CODAl?ENTRY3 1 2 3

This command line loads and executes the bound unit CODAl at the symbolic start address
ENTRY3. The arguments 1,2, and 3 are placed in the parameter block after the pathname
argument. CODAl must be an assembly language program which has been written to obtain
arguments (e.g., 1, 2, and 3) from the parameter block whose address is in $B7.

Example 4:
CODAl?ENTRYl

This command line causes the bound unit CODAl (relative pathname) to be loaded and
executed at the symbolic start address ENTRYl. The working directory is A VOLOl>TESTB.

GCOS 6 COMMAND CONCEPTS 1-13 CB02

EXTENDING THE COMMAND SET

The user can extend the set of commands provided with the operating system by adding
commands that meet his particular requirements.

Each new command is the name of the load module used in the execution ofthe command.

Normally, the user places the load module into one of the system search directories (i.e.,
those directories defined by the -LIBI and -LIB2 arguments of the CHANGE SYSTEM
DIRECTORY command).

The procedure for activating a user program, as described above, is also the means by which
the user extends the command set.

Example 1:
AVOL02>PROD>PAYPRT 118 315 7722

This user command prints payroll data for selected departments. The arguments specify that
data for departments 118, 315, and 7722 is to be printed

Example 2:
INVENT>TTlOOI
INVENT>TTI00A

These user commands list the number of 12-volt batteries (TTlOOl) and manual choke as­
semblies (TTlOOA) currently on hand in the users warehouse. The system directory has been
defined by the -LIBl argument of the CHANGE SYSTEM DIRECTORY command to be
ZSYS51.

STANDARD 1/0 FILES

The following four files are always associated with the command processor:
• Command-in file
• U ser-in file
• User-out file
• Error-out file
The functions and characteristics of these files are described in the following paragraphs.

COMMAND-IN FILE

The command-in file for the command processor is the file from which command lines are
read. Specifically, it is the device or file named by the ilL-path argument when a request is
entered against a task group in which the command processor is executing as the lead task.
The command-in file can, at times, be assigned temporarily to another device or file, as during
the execution of the EC command. At the termination of execution of such a command, the
command-in file reverts to the original device or file.

USER-IN FILE

The user-in file is the file from which a command function, during its execution, reads its
own input. When a task group request has been processed, and as long as no alternate user-in
file is specified as an argument in a subsequent command, the user-in file remains the same as
the command-in file. At the termination of a command that names an alternate user-in file, the
user-in file reverts to its initial assignment.

USER-OUT FILE

The user-out file is the file to which a task group normally writes its output. Certain system
components (for example, compilers) also write to list files (path.L) or to the output file defined
in the -COUT argument of their command. The user-out file is initially established by the

GCOS 6 COMMAND CONCEPTS 1-14 CB02

(

-OUT argument ofthe EBR, EGR, and SG commands. (Thus, originally it is the same device as
the error-out file device.) The user-out file can be reassigned to another device by use of the
FILE OUT command or the New User Out ($NUOUT) macro call. This reassignment remains in
effect for the task group until another reassignment occurs.

ERROR-OUT FILE

The error-out file is the file to which the command processor, and any commands invoked by
it, write information related to error conditions they detect. The error-out file is the same as
the initial user-out file; it cannot be reassigned by a command or command argument.

FILE CONCURRENCY

The following paragraphs describe the concurrency used for standard 110 files, utility files,
and program preparation files. See the GET command for a description of concurrency control.

CONCURRENCY OF STANDARD I/O FILES

Standard I/O files are reserved when a task group is spawned or requested. All nondisk
standard 110 files are reserved for exclusive use. References to these files from within a task
group will succeed; attempts to reserve the files from other task groups will fail. Although the
operator terminal must be reserved with shared concurrency to allow read and write access by
multiple groups, it can be used as a standard I/O file without any concurrency conflicts.

Disk standard I/O input files are reserved to allow multiple readers with no writers; disk
standard I/O output files are reserved for exclusive use.

CONCURRENCY OF UTILITY AND PROGRAM PREPARATION FILES

Files reserved by specifying the out_path value in the -COUT argument are reserved with
exclusive concurrency. Thus, multiple tasks from the same task group can write to the same
output file. The output file, however, is not sharable with tasks of other task groups. For this
reason, the operator terminal cannot be referenced through the -COUT argument.

CONDITIONS FOR COMMAND PROCESSOR TERMINATION

The command processor will terminate itself as the lead task of a group if any of the
following occur:

• &Q is entered to the command-in file.
• End of file is encountered in the command-in file.
• An I/O error is encountered during a read from the command-in file from a noninteractive

device. If the device is interactive, the system will retry the read.
• It cannot acquire user pool memory for data input from command-in buffer.
• If cannot acquire user pool memory to execute an ampersand over lay function - &P, &N,

etc.

• An error is encountered in attempt to load an ampersand-related overlay.
• An error is encountered using any ampersand directive.

KEYBOARD INPUT LINE CONTROL

The terminal user has the ability to correct or delete erroneous input lines and to declare
control characters to be data characters.

1-15

CORRECTING THE CURRENT LINE

To correct a character in the current line, the user presses the @ key.

Pressing the @ key deletes the previously typed character and displays an @ symbol. Each
succeeding @ entry deletes another character, moving from right to left to the beginning of the
line. For each deletion, the @ symbol is printed.

Examples:
RENAMR@E

Results in the line:
RENAME

RWNAME@@@@@ENAME
Results in the line:

RENAME

DELETING THE CURRENT LINE

To delete the current line, the user presses and holds the CTRL (Control) key and presses X.

Entering CTRL X deletes the current line and displays the *DEL* message on the next line;
these actions are followed by a carriage return. .

Example:
GOT" BPPKS CTRL X

Results in the line:
DEL

followed by a carriage return. The user can now enter the correct line.

DECLARING A CONTROL CHARACTER A DATA CHARACTER

To declare that a control character (e.g., @, CTRL X, CR, and "'-.) is to be accepted as a data
character, the user presses the back slash ("'-.) key before entering the character.

The back slash is interpreted by the system as an escape character.

Example:
EGR AX TEST-A -ARG >SPD>CRDOO -CT M"'-.@R2

The last argument required by the previously specified lead task is M@R2. If the back slash
had not been entered, the character M would have been deleted.

TASK INTERRUPTION (BREAK)

The terminal user can interrupt or "break" a running task in order to reenter commands,
temporarily halt the task, or terminate the task. The break can be activated by pressing the
BRK (Break) or INTERRUPT key, as appropriate. (See the Operator's Guide for the procedures
necessary to interrupt a task from the operator terminal.)

BREAK FUNCTION USAGE

Typically, a break from the interactive command-in terminal can be used to interrupt:
• Any program running in a task group whose lead task is the command processor.
• Any program invoked through a $CMDLIN (process command line) macro call issued by

the lead task.
The break cannot be used with a program that is designated as the lead task in a CREATE

GROUP or SPAWN GROUP command. The break can be used only under the following
conditions:

• When entering from an interactive command-in terminal.
• When used to interrupt a program invoked from the lead task and by a command to the

command processor.

GCOS 6 COMMAND CONCEPTS 1-16 CB02

(
I

\~

BREAK PROCEDURES

A break is effective' only with an active, running task. If the command processor is inactive,
waiting for imput, pressing the Break key will have no effect.

To effect a break (task interrupt) in a running task:
1. Press the Break key
2. The system then:

a. Truncates (possibly) the current output line
b. Suspends temporarily the active task
c. Puts the lead task into "break mode"
d. Issues the break prompter message ** BREAK**

3. Enter a response according to one or more of the following shown in a, b, c, or d below.
a. Enter any command. When the entered command is other than SR, BYE,

NEW_PROC, UW, or PI (described later in this subsection), the lead task again
enters break mode and issues another ** BREAK** prompter message, requesting
another response. This may be followed by another command, or by one of the
response commands described later in this subsection.

b. Enter one of the following break mode responses to the **BREAK** message.
(1) SR (Start) - Resumes execution of the suspended task; i.e., acts as though the

break had not been made.
(2) BYE (Bye) - Aborts and deletes the current task group request.
(3) NEW--PROC (New Process) - Aborts the current task group request and re­

starts the task group using the same arguments as specified in the original group
request.

Any of these commands terminates the current break (i.e.; there will be no
other **BREAK** message after the command is executed).

c. Enter UW (Unwind). If the current task is a Honeywell-supplied system program
shown in Table 1-2, it terminates itself and returns all its resources.
The break responses indicated in 3a and 3b above are also usable with these
programs. Note that the programs must be running in a task group whose lead task
is the command processor.
If the terminated task was invoked following a break, the lead task reenters
breakmode, issues another **BREAK** prompter message, and awaits a response.
If the terminated task did not follow a break, processing continues as though the
task terminated normally.
A UW command issued to any system program other than one listed in Table 1-2
results in a 0343 or 0344 error return, followed by another **BREAK** prompter
message.

d. Enter PI (Program Interrupt). Linker and Editor output is suppressed and a return
is made to the directive input level.

TABLE 1-2. SYSTEM PROGRAMS SUPPORTING THE UW (UNWIND) COMMAND

Command Name Function Command Name Function

ASSEM Assembler LCD List Creation Date
COBOL COBOL Compiler LINKER Linker"
CP Copy LS List Names
CPA Compare MACROP Macro Preprocessor
CV Create Volume MERGE Merge
DP Dump Edit PR Print
ED Editor" SORT Sort
FC File Change STG Status Group
FD File Dump

"Both Editor and Linker also support the PI (Program Interrupt) command.

GCOS 6 COMMAND CONCEPTS 1-17 CB02

The PI command is meaningful only to the Editor and Linker when running in a
task group whose lead task is the command processor. The commands described in
3a, 3b, and 3c above are also usable with these programs.
PI suppresses output resulting from the Linker MAP directive or from the Editor
P-type directives.

UNWIND AND PROGRAM INTERRUPT COMMAND CONSIDERATIONS

The unwind (UW) and program interrupt (PI) commands are effective in user application
programs only when the task to be interrupted has previously been enabled for the necessary
trap. The user program must include the $TRPHD and $ENTRP macro calls for the simulated
trap.

EXAMPLES OF BREAK USAGE

Example 1:
The Editor is executing a print directive and, during output, the user presses the Break
key, thereby stopping further output. After the **BREAK** message appears, the user
responds with PI, which returns the program to directive input level. A response of UW,
instead of PI, would have terminated the Editor.

Example 2:
An LS (list names) command is executing with output going to the user terminal. The
user wants to change the output path to the line printer. One possible method is:

1. Press the Break key.
2. System responds to **BREAK**
3. Enter FO >SPD>LPT01

Lead task enters break mode
File out command

specifying a line printer
4. FO execution terminates; the system issues another **BREAK** message.

5. Enter SR (start) command. Resume execution of the LS command.

Another possible method is:
1. Press the Break key.
2. System responds with **BREAK**
3. Enter the UW command
4. Enter FO >SPD>LPT01

5. Enter LS

Example 3:

Lead task enters break mode.
The current LS task terminates itself.
File out command specifying a line

printer
Start the list names (LS)

program from the beginning.

This example shows successive nested break functions. Though representing a continu­
ous procedure, the example is shown in numbered sequences for clarity.

1. The first sequence includes a command to the command processor to invoke the
Editor, then to read and print the file PATH1. The Break key is pressed to
interrupt the output, which was found to be from the wrong file.

2. Following issuance of the **BREAK** message, the user enters LS:(list names) to
obtain a display ofPATH2 file names. He presses the Break key again to interrupt
that LS command in order to change the pathname from PATH2 to PATH3.

3. A new LS command is entered to list the files for PATH3; however, the preceding
LS command (for PATH2) is not terminated, but remains suspended. The required
file is found at the beginning of the listing, the rest of the P ATH3 list is not needed,
so the user presses the Break key to interrupt listing of PATH3.

GCOS 6 COMMAND CONCEPTS 1-18 CB02

c

The following command sequences are keyed to preceding numbered descriptions.
1. Enter RDN The system will print RDY: as each com-

Enter ED
Enter R PATH!
Enter !,&P
Editor issuing print lines
Press the Break key
System issues **BREAK**

mand completes execution.
Activates the Editor
Read the file PATH!
Print the file PATH!

Causes a break in printing
Command processor is in break mode
List the PATH2 directory 2. Enter LS -PN PATH2

System printing the list
Press the Break key

User determines list is for wrong directory
Causes a break in the LS command for

System issues **BREAK**
3. Enter LS -PN PATH3 -FILE

System issuing the list

Press the Break key
System issues ** BREAK**

PATH2
Command processor is in break mode
List files in PATH3 directory
User finds desired file, no more output

needed
Causes break in LS command for PATH3
Command processor is in break mode

Subsequent actions are described as separate alternatives in Example 4 below.
Example 4:

This example consisting of five discrete actions, continues from Example 3, and in
particular shows the use of the UW command to terminate successively activated tasks
(i.e., unwind stacked tasks). Each part of the example is a separate procedure, indepen­
dent from the others, and shows an alternative method of continuing with Example 3.

1. Start again at command level.
Enter NEW -.FROC Aborts all prior tasks; the command pro­

cessor is ready for input.
2. Return to the Editor directive input level.

Enter UW LS command for PATH3 terminates itself.
System issues ** BREAK** Since the LS for P ATH3 followed a break,

Enter UW
System issues ** BREAK**

Enter PI

Enter next Editor directive

the command processor reenters command
mode.

LS command for PATH2 terminates itself.
Since the LS for PATH2 followed a break,

the command processor reenters command
mode.

Editor is ready for the next Editor input
directive.

3. Return to command level by terminating in turn each previously activated task.
Enter UW LS command for PATH3 terminates itself.
System issues **BREAK**
Enter UW
System issues ** BREAK**
Enter UW
System issues RDY:
Enter next command

GCOS 6 COMMAND CONCEPTS 1-19

Command processor enters break mode.
LS command for PATH2 terminates itself.
Command processor enters break mode.
The Editor terminates itself.
Prompter message at command level.

CBO?,

4. Complete the printout of PATHl file.
Enter UW
System issues **BREAK**
Enter UW
System issues **BREAK**
Enter SR

Editor issues print lines.
5. Delete current task group request

Enter BYE

GCOS 6 COMMAND CONCEPTS 1-20

LS command for PATH3 terminates itself.
Command processor enters break mode.
LS command for PA TH2 terminates itself.
Command processor enters break mode.
Restarts printing out of P ATHl from point

of interrupt.

Deletes all task group request structures ex­
cept the lead task. Another. task group re­
quest is required to activate the lead task.

(
\,--

CB02

(

(~",

, ,

Section 2

GCOS 6 Commands

This section describes the commands by which a user exercises control over the GCOS 6
operating system. For the purpose of this section, a user is defined as any person who
communicates with the operating system through a peripheral device that is the input file to
the command processor (e.g., a card reader, a sequential disk file, or an MDC- or MLCP­
connected terminal). This device is known as a user terminal.

In general, the commands listed in this section form a common set that can be used to direct I
processing under either Mod 400 or Mod 600 operating system software. In certain cases, a
command (or command argument) is intended for use in a specific environment. Those com­
mands (or command arguments) that do not form part of the common set are accompanied by a
notation indicating the specific environment in which they are intended to be used.

This section contains complete descriptions of the formats, arguments, control arguments,
and functions of the commands. In cases in which the command formats contain arguments,
one or more illustrative examples of command use are given.

The command descriptions are arranged in alphabetic order to facilitate references to
specific commands. A summary list of the commands, grouped by functional categories, is
given in Section l.

The following symbology is used in this section:
• Square brackets [] indicate an optional entry.
• Braces { } enclose information from which a choice must be made.
• The character Ll indicates a space.

ABORT GROUP

Command Name: ABORT_GROUP

Suspend, terminate, and delete the indicated online task group.

FORMAT:

ABORT_GROUP [id]

ARGUMENT DESCRIPTION:

[id]

The group identification of a task group previously created by a CG command specifying
the same id. If this argument is omitted, the issuing task group is aborted.

FUNCTION DESCRIPTION:

The ABORT GROUP command causes the suspension and termination of an existing online
task group, whether active or dormant. It removes the data structures which define and control
the execution of the task group, and returns all memory used by the group to the appropriate
memory pool. Any files open during the execution of the task group are closed. Any requests
pending against the group are cancelled. The action of the ABORT GROUP command is thus
similar to the DELETE GROUP command, except that the latter must wait until the task
group becomes dormant, while the former takes effect as soon as all outstanding imput or
output orders are complete.

This command can be issued only from an online task group.

Example:
ABORT_GROUP AX

A task group identified as AX is terminated.

GCOS 6 COMMANDS 2-1 CB02

ASSEMBLER

ASSEMBLER

Command Name: ASSEM

Assemble the source program unit represented by the indicated file name, applying the
specified options.

FORMAT:

ASSEM path [ctLarg]

ARGUMENT DESCRIPTION:

path
Pathname of the source unit file to be assembled. Omit the suffix.

ct1~rg
None or any number of the following control arguments may be entered, in any order:

-COUT ouLpath
Listing will be written to the file ouLpath; a suffix (.L) is not appended to the file name.
If this argument is omitted, the listing will be written to the file path.L in the working
directory.
Note:

Path is the simple pathname, excluding the suffix appended by the Assembler.

{
-LAF}
-SAF
-SLIC

Addressing mode in which source unit will be assembled. -LAF designates long-address
form; -SAF designates short-address form; -SLIC designates that the source unit will be
able to execute in either SAF or LAF.

Default: The mode configuration in which the Assembler is executing (must be SAF or
LAF).

{-LlST-ERRS}
-LE

Specifies that only those source lines containing assembly errors, together with their
error codes, are to be listed.

Default: If omitted, and -NL is not specified, the complete source program is listed,
including error codes, if any.

{-CROSS-REF}
-XREF

Produces a cross-reference listing, even if -NL or -LE is specified. The listing is appended
to the source listing. If there is no source listing the cross-reference listing will still be
produced.

f-~?--LISTl
l-Nu J

Suppresses source listing.

Default: Source listing produced.

{-NO_OBJ}
-NO

Suppresses object text unit output.

Default: Object text unit is generated as the file path.O in the working directory.

GCOS 6 COMMANDS 2-2 ClJ02

,/

,/
(
\ '.

(

ASSEMBLER

Note:
Path is the simple pathname, excluding the suffix appended by the Assembler.

{-SIZE nn}
-SZ nn

nn designates the maximum number of 1024-word memory blocks that may be used
for the Assembler's symbol table. nn must be numeric and be from 01 through 99.

Default: 1024 words (one block).

FUNCTION DESCRIPTION:

The ASSEMBLER command is used to invoke the GCOS 6 assembler component.

The path argument can assume any of the acceptable forms of a pathname; a simple name
indicates that a source program unit residing in the working directory is to be assembled.
Wherever it exists, it must be suffixed with .A, indicating that it is an assembly language
source unit. The path argument must be given without the .A suffix; the Assembler
appends the suffix prior to searching the directory for the source unit.

If the -COUT control argument is not specified, the source listing (if requested) and/or
cross-reference listing (if requested) are written to a file created by the Assembler in the
working directory, having a file name of the form path.L. The path portion is the last or
only element in the path argument. The file can be subsequently listed on a line printer
by using the PRINT utility command. If a different file is specified by using the -COUT
argument, ouLpath is the name of the file containing the listing. The Assembler does
not append a .L suffix to out_path.

The object text unit generated by the assembler is written to a file created by the
assembler, whose name is of the form path.O and which is contained in the working
directory.

If files of the form path.L and path.O already exist, they are overlaid by the output
generated by the current assembly.

A full description of the operation and use of the Assembler is contained in the Assembly
Language manual.

Example:
ASSEM MYPROG -SIZE 5 -COUT >SPD>LPT01 -XREF

An assembly language source program, MYPROG.A, residing in the current working directory
is to be assembled. The source listing and errors are to be written to the printer LPT01, and the
object text unit is to be written to the file MYPROG.O in the working directory. IfMYPROG.O
already exists as a result of a previous assembly, it is overlaid with the new object text unit.
Five 1024-word blocks of memory are to be used for symbol resolution during the assembly. A
cross-reference listing is appended to the source listing on printer LPTOl.

GCOS 6 COMMANDS 2-3

I

CB02

ASSOCIATE PATH

ASSOCIATE PATH

Command Name: ASSOC

Associate the specified pathname and logical file number.

FORMAT:

ASSOC lfn path

ARGUMENT DESCRIPTION:

lfn

The logical file number by which a task is to refer to a file.

path

The pathname of the file to which the task is to refer.

FUNCTION DESCRIPTION:

The ASSOCIATE PATH command permits a task group to refer to files by the use of a
standard interface known as a logical file number (LFN). The LFN serves as a "bridge" across
which an input or output statement in a user program can gain access to an external file
without the need to know its full pathname. This command corresponds to the Monitor macro
call $ASFIL.

Conventions by which user files are identified and referred to in source programs are depen­
dent upon the language processor by which the source program is compiled or assembled. Each
processor relates an internal file identification by one means or another to a number (theLFN)
which can be used in an ASSOC command to equate the internal file identification to an
external pathname.

The task group within which an ASSOC command is to be issued must have been created
specifying (or defaulting to) an LFN argument value large enough to include the highest LFN
which is expected to be given in any ASSOC command issued during the life of the task group.
This requires a knowledge of what programs are to be executed within the group and the
numerical LFN values which these programs have generated.

The path argument can specify a simple, relative or absolute pathname. If a simple name is
specified, the file is assumed to reside in the user's working directory. The pathname is then
expanded to include the user's working directory. If, for example, the user's working directory
is A SYS01>USERA and the path argument is OLD>DELA, the expanded pathname,
A SYS01>USERA>OLD>DELA, is saved. No check is made at the time the ASSOC command
is issued as to whether a file exists or note.

An incomplete pathname (e.g., OLD» can also be associated with the LFN. With the above
user's working directory, the pathname is expanded to A SYS01>USERA>OLD. The path­
name will be completed when a CREATE FILE or GET command is issued using the colon (:)
option in the path argument. See Appendix A for information on the pathname colon option.

Example:
ASSOC 12 MYFILE

A file defined in a user program has been assigned a logical file number 12 by the language
processor that compiled the program (e.g., the COBOL Compiler). A file, MYFILE, exists in the
issuing task group's working directory. The ASSOC command relates the LFN (12), by which
the program's input and output statements refer to the user file, to the external file whose
pathname is A VOL01>USERA>MYFILE.

GCOS 6 COMMANDS 2-4

"-. ..

CB02

ASSOCIATE PATH/BYE (TERMINATE CURRENT GROUP REQUEST)

Note:
In COBOL, the symbolic name by which the file is identified and referred to in the
program (e.g., INPUT_DATA) bears no relationship to the name by which it is
referred to by the File System.

BYE (TERMINATE CURRENT GROUP REQUEST)

Command Name: BYE

Terminate the execution of the current request in the issuing task group.

FORMAT:

BYE

ARGUMENT DESCRIPTION:

No arguments are required or permitted with this command.

FUNCTION DESCRIPTION:

The BYE command causes the cessation of execution of the issuing task group. It removes all
group requests defining and controlling data structures except those associated with the lead
task, and returns all associated memory to the task group's memory pool. Any files that are
open and in use by this task group are closed.

If the user has gained access to the system through the login procedure, typing BYE causes the
message LOGOUT to be displayed at the user's terminal.

If the group was spawned or if there are no pending group requests and the group is marked for
deletion, the group structures are deleted. If there is another queued group request it is
executed.

GCOS 6 COMMANDS 2-5 CB02

CHANGE WORKING DIRECTORY

CHANGE WORKING DIRECTORY

Command Name: CWD
Change the working directory to the specified path.

FORMAT

CWD path

ARGUMENT DESCRIPTION:

path

The pathname of the new working directory. It may be a relative name or a full pathname,
but cannot exceed 44 characters.

FUNCTION DESCRIPTION:

The CHANGE WORKING DIRECTORY command enables the user to move his point of
reference to some other directory level within his own project's directory or to some specified
point within an entirely different directory. Moving the reference point in a directory enables a
task to refer, using simple names, to entities in the directory at levels other than the level
established when the task was activated initially, or to entities which exist in some other
directory.

If a relative pathname is given as an argument, the effect is to change the reference point
within the current directory hierarchy. That is, if a. user issued the command CWD MANU­
ALS, there is assumed to exist a directory pathname within the hierarchy being used by this
task. After the CWD command is executed, files that exist within the MANUALS subdirectory
can be referred to by the task using simple file names.

It is also possible to traverse the hierarchy in the opposite direction, that is, in a direction
toward the root. This is done by specifying as the argument the character < (less than sign)
preceding the pathname. Thus it is possible to revert to the original directory level after
having issued the CWD command described above by issuing a second command, CWD <.
Each occurrence of the < sign moves the point of reference one level up (toward the root).

If an absolute pathname (one that begins with the> or A sign) is given as an argument, the
effect is to move the point of reference directly to the specified point in the named directory. This
directory mayor may not be the same as the one being used by the issuing task.

The system issues a mount message when a disk volume containing the new working directory
is not mounted. The task is suspended until the volume is mounted or the operator cancels the
mount request.

Example:
Assume the directory structure shown in Figure 2-1. A task group whose user id is
SMITH.AUTHORS is active and is at the directory level >UDD>AUTHORS>SMITH, estab­
lished when the task group was activated.

A sequence of CWD commands such as that shown below is issued. A description of the
resulting action is given opposite each co~-rnand.
Command
CWD BOOKS

Geos 6 COMMANDS

Resulting Action
The point of reference is moved to the BOOKS subdirectory
level (one level below the default SMITH level). Files named
A, B, and Q can now be referred to by their simple names.
The system supplies >UDD>AUTHORS>SMITH>BOOKS
from the working directory in the construction of full
pathnames for the three files.

2-6 CB02

("

-'

CHANGE WORKING DIRECTORY

UDD

AUTHORS

SMITH JONES

BOOKS

NOTE: RECTANGLES DENOTE DIRECTORIES; CIRCLES DENOTE DATA FI LES.

CWD <

CWD >UDD>
AUTHORS>JONES
or CWD <JONES

GCOS 6 COMMANDS

Figure 2-1. Typical Directory/File Structure

The point of reference is moved up one level, back to the
original SMITH level. The files named A and B in the
SMITH directory (not the same files as A and B at the
BOOKS subdirectory) can now be referred to by simple
names.
The absolute form of the pathname moves the point of refer­
ence directly to the JONES directory level. The second form
achieves the same result by moving up one level to AU­
THORS and then down one level to JONES.

2-7 CB02

COBOL

I

COBOL

Command Name: COBOL

Compile the entry-level COBOL source program unit represented by the indicated file name,
applying the specified compiler options.

FORMAT:

COBOL path [ctl_arg]

ARGUMENT DESCRIPTION:

path

Pathname ofthe source unit file to be compiled. Omit the suffix. The name must be the same
as that specified in the PROGRAM ID clause of the COBOL source program.

[ctLarg]

Control arguments; none or any number of the following control arguments may be entered,
in any order:
-COUT ouLpath

Listing will be written to the file ouLpath; a suffix is not appended to the file name. If
this argument is omitted, the listing will be written to the file path.L in the working
directory. If a file other than the printer is requested, the file must already exist.

Note:
Path is the simple pathname, excluding the suffix appended by the COBOL com­
piler.

-DB

Compile debugging lines as comments, ignoring the WITH DEBUGGING MODE clause.

{-NO_OBJ}
-NO
Suppress object unit output.
Default: Object unit output produced as the file path.O in the working directory.

Note:
Path is the simple pathname, excluding the suffix appended by the COBOL Com­
piler.

{-SIZE nn}
-SZ nn

Requests nn additionall024-word blocks of memory for complier tables. nn must be from
04 to 64. The additional memory specified in this argument is used instead of the original
table size, and permits the COBOL Compiler to improve performance when compiling
large programs. If you request more memory than is available, the compiler uses the
available amount of memory. If specified, at least 3072 words must be available; other­
wise, the compiler will use the default memory size (3000 words). If this argument is not
specified, the. compiler has approximately 3,000 words of memory for table space.

Note:
The following control arguments are listing options. Only one listing option may be
specified at a time. Further, ifno listing option is chosen, and -NL is not specified, the
complete source program (along with any error codes) is listed. This is the default for all
listing options shown here.

GCOS 6 COMMANDS 2-8 CB02

(,

COBOL

-LD

List data map, source text, errors and file map.

-LIST-ERRORS

-LE

Specifies that only the error list is to be printed.

-LIST_OBJ

-LO

List source text, data map, errors, file map and object code. This argument may not be
used at the same time that -NO[OBJ] is being used.

-NO_LIST

-NL

Suppress all listings.

FUNCTION DESCRIPTION:

The COBOL command is used to invoke the GCOS 6 entry-level COBOL Compiler component.
The entry-level COBOL Compiler and the object programs it generates are in short address
form (SAF); neither is reentrant; and neither uses Commercial Instruction Processor (CIP)
instructions.

The path argument can assume any of the acceptable forms of a pathname; a simple name
indicates that a source program unit residing in the working directory is to be compiled.
Wherever it exists, it must be suffixed with a .C suffix, indicating that it is a COBOL language
source unit. The path argument must be given without the .C suffix; the compiler appends the
suffix prior to searching the directory for the source unit.

If the -COUT control argument is not specified, the requested listings are written to a file
created by the compiler in the working directory, having a file name ofthe form path.L. The
path portion is the last or only element specified in the path argument. This file can be
subsequently listed on a line printer by using the PRINT utility command. If a different file is
specified by using the -COUT argument, the listings are written to a user-created file whose
pathname is out path.

The object text unit generated by the compiler is written to a compiler-created file whose name
is of the form path.O, and is contained in the working directory.

If files of the form path.L and path.O already exist in the current working directory, they are
overlaid by the output generated by the current compilation.

Note:
The COBOL Compiler always issues a typeout, of the number of errors found, to the
error-out file.

Example:
COBOL CBPROG -NO_OBJ -LD -COUT >SPD> LPTO1

A COBOL source program, CBPROG.C, is to be compiled. The source text file is located in the
working directory. Listings are to include source statements, error diagnostics and a data map,
and are to be written to the line printer LPTOl. No object text unit is to be generated.

GCOS 6 COMMANDS 2-9

*

CB02

COBOLI

I

COSOLI

Command Name: COBOLI

Compile the intermediate-level COBOL source program unit represented by the indicated file
name, applying the specified compiler options.

FORMAT:

COBOLI path [ctl_arg]

ARGUMENT DESCRIPTION:

path
Pathname of the source unit file to be compiled. Omit the suffix. The name must be the same
as that specified in the PROGRAM ID clause of the COBOL source program.

[ctl_arg]
Control arguments; none or any number ofthe following control arguments may be entered,
in any order:

-COUT out_path
Listing will be written to the file out_path; a suffix is not appended to the file name. If
this argument is omitted, the listing will be written to the file path.L in the working
directory. If a file other than the printer is requested, the file must already exist.
Note:

Path is the simple pathname, excluding the suffix appended by the COBOL! compiler.

-DB
Compile debugging lines as comments, ignoring the WITH DEBUGGING MODE clause.

{-NO_OBJ}
-NO
Suppress object unit output.
Default: Object unit output produced as the file path.O in the working directory.
Note:

Path is the simple pathname, excluding the suffix appended by the COBOL! Com­
piler.

{-SIZE nn}
-SZ nn

Requests nn additional1024-word blocks of memory for compiler tables. nn must be from
15 to 64. The additional memory specified in this argument is used instead of the original
table size, and permits the COBOLI Compiler to improve performance when compiling
large programs. If you request more memory than is available, the compiler uses the
available amount of memory. If specified, at least 15000 words must be available;
otherwise, the compiler will use the default memory size (14000 words). If this argument
is not specified, the compiler has approximately 14000 words of memory for table space.

Note:

-LD

The following control arguments are listing options. Only one listing option may be
specified at a time. Further, if no listing option is chosen, and -NL is not specified,
the complete source program (along with any error codes) is listed. This is the
default for all listing options shown here.

List data map, source text, errors and file map.

-LIST_ERRORS

GCOS 6 COMMANDS 2-10 CB02

(

COBOLI

-LE
Specifies that only the error list is to be printed.

-LIST_OBJ

-LO

List source text, data map, errors, file map and object code.

-NO_LIST

-NL

Suppress all listings.

-XREF

Specifies that a cross reference listing is to be produced. A listing option other than -NL
must be specified.

FUNCTION DESCRIPTION:

The COBOLI command is used to invoke the GCOS 6 intermediate-level COBOL Compiler.
The compiler has the following characteristics:

• Runs in a long address form (LAF) or short address form (SAF) environment (SAF/LAF
independent code (SLIC) format).

• Does not require the Commercial Processor hardware of the Commercial Simulator.

• Is not reentrant.
The object programs generated by the compiler have the following characteristics:

• Run in a LAF or SAF environment (SLIC format).
• Require either the Commercial Processor hardware or the Commercial Simulator.
• Are reentrant.

The path argument can assume any of the acceptable forms of a pathname; a simple name
indicates that a source program unit residing in the working directory is to be compiled.
Wherever it exists, it must be suffixed with a .C suffix, indicating that it is a COBOL language
source unit. The path argument must be given without the .C suffix; the compiler appends the
suffix prior to searching the directory for the source unit.

If the -COUT control argument is not specified, the requested listings are written to a file
created by the compiler in the working directory, having a file name of the form path.L. The
path portion is the last or only element specified in the path argument. This file can be
subsequently listed on a line printer by using the PRINT utility command. If a different file is
specified by using the -COUT argument, the listings are written to a user-created file whose
pathname is out path.

The object text unit generated by the compiler is written to a compiler-created file whose name
is of the form path.O, and is contained in the working directory.

If files of the form path.L and path.O already exist in the current working directory, they are
overlaid by the output generated by the current compilation.

Note: *
The COBOLI Compiler always issues a typeout, of the number of errors found,
to the error output file. .

Example:
COBOLI CBPROG -LD -COUT >SPD>LPTOl

A COBOL source program., CBPROG.C, is to be compiled. The source text file is located in the
working directory. Listings are to include source statements; error diagnostics and a data map,
and are to be written to the line printer LPTOl. No object text unit is to be generated.

GCOS 6 COMMANDS 2-11 CB02

COMPARE

COMPARE

Command Name: CPA

Compare the contents of one file or volume with that of another file or volume.

FORMAT:

CPA path new [ctl-llrg]

ARGUMENT DESCRIPTION:

path

Indicates the name of the file or volume to be compared. Can be any valid form of path name;
can use the star name convention (see Section 1)

new
Indicates the name of the file or volume against which that specified by the path argument
is to be compared. Can be any valid form of pathname; can use the equal name convention
(see Section 1).

[ctl-llrg]

One or more control arguments chosen from the following list.

{-VOLUME}
-VOL

Indicates that an entire volume is to be compared, a track at a time, with another entire
volume. If this argument is specified, the path and new arguments must be of the
form >SPD>dev-.name [>voUd]. If voUd is present, the volume name is verified.
Inclusion of the -VOL argument means that the volid, bad track index, and the first
sector of the volume directory are compared, but differences are not noted. When he
specifies -VOL, the user knows that these sectors are different.

Omission of the -VOL argument means that the volid, bad track index, and the first
sector of the volume directory are compared, and differences are noted. Omission of the
-VOL argument also results in slower comparing of the volumes; comparing is done a
sector at a time.

-CI
Indicates that a compare by control interval is to be performed. This argument can be
specified under any of the following conditions:
1. The path argument represents a Series 60-compatible file and the new argument

represents either a file of the same organization or a magnetic tape.
2. The path argument represents a magnetic tape containing control intervals from a

type "I" COPY (refer to the COPY command description), and the new argument
represents a Series 60-compatible file of the type copied to the tape.

3. Both path and new parameters represent magnetic tape files.

{-LIMIT nn}
-LI nn

Specifies that only nn records or control intervals are to be compared (if end of file is not
encountered first).

{-FROM nn}
-FM nn

Specifies that the first nn-l records or control intervals of the file are to be bypassed
before beginning the compare.

GCOS 6 COMMANDS 2-12

/

\.

CB02

(

(

COMPARE

{ -PRINT nn }
-PR nn

Specifies that only the first nn miscompared records are to be printed. The compare
operation terminates when the end of the file or volume is encountered.

In addition to the actual data printed in hexadecimal on miscompares, the address and
record length of the two records is printed. For fixed relative files and all volumes, the
address is the relative record number within the file. For other file organizations, the
format is xxxxyy, where xxxx is the CI number and yy is the record number within the
CI.

{-VERBATIM}
-VBT

This argument is available for use only when processing under Mod 400 operating
system software.

If a card input file is present, it will be read in binary transcription mode. The end-of-file
indicator is an 11-9-8-5 punch in column 1, followed by one or more spaces and one blank
card.

FUNCTION DESCRIPTION:

The COMPARE command compares two files or volumes, record by record or control interval
by control interval, and, if specified by the -PR control argument, writes the contents of any
miscompared records on the user output file. If the two files or volumes are identical (do not
miscompare), no response is returned to the terminal and nothing is printed. If a user is at an
interactive terminal and his user output file is the terminal, he can direct the written output to
another device, such as a line printer, by issuing an appropriate FILE OUT command prior to
issuing the COMPARE command. At the termination of the CPA command, a message is
issued to the user output file, giving the number ofmiscompared records or control intervals, if
the number is nonzero.

If a volume compare is to be performed, the path and new parameters must represent the
pathnames of peripheral devices. The dev_name portion of the pathname is the symbolic
name (e.g., DSK01) given to the device in question at system building. The vol_id portion of
the arguments represents the identification of the volumes to be compared.

When an entire volume is to be compared, any of the following configurations can be used:
Volume to be Compared Volume to be Compared Against
Disk Disk
Disk
Tape
Tape

Tape
Disk
Tape

The compare is executed physically; the logical organization of the volume is not considered.
Comparing is done track by track.

A file compare can be performed logically or physically. A compare by control interval is a
physical compare; a compare that is done by other than control interval is a logical compare.

A logical compare allows the comparing of any file organization, provided the file characteris­
tics are otherwise compatible. For example, a file containing variable length records cannot be
compared to a file containing fixed length records.

A physical compare (compare by control interval) is done in physical sequence. Control
intervals are compared one at a time; logically deleted records are not considered.

If a multireel tape file has been produced (see the COPY command) and the tapes are to be
compared against a disk volume, the -VOL argument cannot be specified. The compare must be
done as a file compare. In the file compare, the pathname of the tape volumes must be of the
form >SPD>dev-Ilame>voUd>fllename, where dev_name and vol_id are as previously

GCOS 6 COMMANDS 2-13

I

CB02

COMPARE

described and filename is the name assigned by the user to the tape file when it was produced.
For example:

CPA: >SPD>MT900> VOLOO>FILEAB SPD>RCDOO>ZSYS51

Since no -VOL argument is present; the volume is processed as though it were a file. The HDRs
on each tape volume contain a file sequence number. Therefore, the input reels must be
mounted in the order in which they were created. When the end of an input reel is encoun­
tered, the system will request another input volume. As soon as that volume is mounted,
processing will continue.

Note that the disk volume could also be compared against the tape volumes. The same
considerations apply.

Example 1:
CPA FILEA FILEB

Compare two files in the working directory.

The full pathnames ·of FILEA and FILEB are constructed using elements of the working
directory. The files are compared record by record and a summary message is issued.

Example 2:
FO >SPD>LPT01
CPA FILEA >UDD>BOOKS>JONES>FILEA -PR 20

FILEA in the working directory is compared to FILEA in the directory
>UDD>BOOKS>JONES. The first 20 miscompared records are written to the line printer
LPT01 along with the total number of unequal records.

GCOS 6 COMMANDS 2-14 CB02

(

('

COpy

COpy

Command Name: CP

Copy a file or volume.

FORMAT:

CP path [new] [ctl_arg]

ARGUMENT DESCRIPTION:

path
Specifies the name of the file or volume to be copied. Can be any valid form of path name; can
use the star name convention (see Section 1).

[new]
Specifies the new pathname of the file or volume being copied. Can be any valid form of
pathname; can use the equal name convention (see Section 1).

[ctl_arg]
- One or more control arguments chosen from the following list.

{-VOLUME}
-VOL

Indicates that an entire volume is to be copied a track at a time. If this argument is
specified, the path argument must be of the form >SPD>dev_name>voL..id. The new
argument must be of the form >SPD>dev_name[>voL..id] where, for dIsk volumes,
voL..id cannot be included.

Inclusion of the -VOL argument means that the volid, bad track index, and the first
sector of the volume directory are preserved on the output disk volume.

Omission of the -VOL argument means that the input volume is to be copied completely
to the output disk volume. (In other words, the volid, bad track index, and first sector of
the volume directory are copied from the input volume to the output volume.) Omission of
the -VOL argument also results in slower copying of the volume; copying is done a sector
at a time.

-CI
Indicates that a copy by control interval is to be performed. This argument can be
specified under any of the following conditions:
1. The input is a Series 60-compatible file and the output is a file of the same type or a

magnetic tape.
2. The input is a magnetic tape created by a copy under condition 1 above, and the

output is a Series 60-compatible file of the same organization as that which was
copied to the tape.

3. Both the path and new arguments represent magnetic tape devices. In this case the
copy will be to end of volume.

Note:
In order to copy a keyed (relative, etc.) file to another keyed file without losing
deleted or null records, the -CI option should be used; otherwise only active records
are copied.

{-VERBATIM}
-VBT

This argument applies only to card input or output files and specifies that cards are to be
read or punched in verbatim mode. The end-of-file indicator is an 11-9-8-5 punch in
column 1 followed by one or more spaces, and one blank card.

GCOS 6 COMMANDS 2-15 CB02

COpy

FUNCTION DESCRIPTION:

The COPY command permits the creation of backup copies of files or volumes; either on
magnetic tape or on a disk device. It can also be used to create copies of files in the same
directory or in other directories.

The path and new arguments may express or imply the same directory portion of the file's
pathname. If they do, the file name portions of both must be different. If the path and new
arguments represent different directories, the file name portions of both may be the same, but
the same requirement exists regarding the uniqueness of the file name in the directory
represented by the new argument.

If a volume copy is to be performed, the path and new arguments must represent the
pathnames of peripheral devices. The dev-.name portion of the pathname is the symbolic
name (e.g., DSKOl) given to the device at system building. The vol_id portion of the path
argument is the volume identification of the volume being copied. However, the vol_id cannot
be included in the disk volume new argument. If the new argument names a magnetic tape
device and the pathname includes the vol_id portion, the volume label is read and verified.
The copied data then follows the volume label; i.e., the volume label is preserved. If the vol_id
portion is omitted, copying begins at the current position on the tape (normally beginning of
tape). In this case, the tape volume label, if any, is not preserved. A subsequent COMPARE of
this unlabelled volume must be done without including a vol_ld in the pathname.

The file created by the COPY command is created just large enough to hold the data, and no
larger.

When an entire volume is to be copied, any of the following configurations can be used:

Input Volume Output Volume

Disk Disk
Disk Tape
Tape Disk
Tape Tape

If the output is a disk volume, that volume must have been formatted. If the output is a tape
volume, a single file output volume is created. The copy is executed physically (input record
equals output record); the logical organization of the input volume is not considered. Copying
is done track by track.

A file copy can be performed logically or physically. A copy by control interval is a physical
copy; a copy done other than by control interval is a logical copy.

A logical copy rebuilds the output file, omitting deleted records and, for indexed sequential
files, also regenerates the index. A logical copy allows the copying of any file organization to
any other file organization, provided the file characteristics are otherwise compatible. For
example, a file containing variable length records cannot be copied to a file containing fixed
length records. However, a file can be copied to tape and then copied from the tape to a disk.
For example, an indexed sequential file can be copied (unloaded) to tape and the resulting
sequential tape file can be copied to another indexed sequential file.

1;, .. physical copy (copy by control interval) is done in physical sequence. The first control
interval on the input volume becomes the first control interval on the output volume. The copy
function reads and writes one control interval at a time; logically deleted records are not
recognized as such and thus are copied.

When magnetic tape volume copies are performed, the tape volumes are assumed to have the
following format:

GCOS 6 COMMANDS 2-16

(~

"-"

CB02

(

COpy

VaLl (Volume label)

* (File mark, beginning of data)

data

* (File mark, end of data)

HDR and EOF labels are not maintained by the tape volume copy"

When magnetic tape file copies are performed, the tape volumes are assumed to conform to the
following format:

Empty tape:

VaLl
HDRx

*
*

Tape with data files:

VaLl
HDRx

*

data

*
EOFx

*
*

(File mark)} E d f 1
F "l k) novo ume (lemar

(File mark, delimit data)

(File mark, end of data)

F "l k) end of recorded
(lemar}" "
F "l k mformatIOn

(1 e mar)

Note that a second file written to the above tape results in the following:

VaLl
HDRx

*

data

*

GCOS 6 COMMANDS 2-17 CB02

COpy

EOFx

*
HDR1

*

data

*
EOFx

*
*

The double file marks indicate the end of recorded information. The file copy will load the next
file into the tape by beginning its copying on the second of the two file marks.
If a disk volume is to be copied to magnetic tape and the copy will require several output tape
volumes, the -VOL argument cannot be specified. The copy must be done as a file copy. In the
file copy the pathname of the output volume must be of the form >SPD>dev-Ilame>vol_
id>filename, where dev_name and voLid are as previously described and filename is the
name chosen by the user to be assigned to the output tape file. For example:

CP >SPD>RCDOO>ZSYS51 SPD>MT900>VOLOO>FILEAB
Since no -VOL argument is present, the volume is processed as though it were a file. When a
tape reel iffull, the system requests that another volume be mounted. As soon as the volume is
mounted, processing continues. In effect, a multireel file has been created.

Whan the tape volumes are to be copied back to disk, the same procedures are followed. The
-VOL argument cannot be used; the input pathname must contain a filename. For example:

CP >SPD> MT900> VOLOO> FILEAB SPD> RCDOO
The output disk volume will receive its volid, bad track index, and first sector of the volume
directory from the tape; none of the output disk will be preserved.

The file HDRs on each volume contain a file sequence number. Therefore, the input reels
must be mounted in the same order in which they were created. When the end of an input reel
is encounted, the system will request another input volume. An soon as that volume is
mounted, processing will continue.

Example 1:
CP FILE A FILEB

Copy a file within the working directory. The full pathnames of FILEA and FILEB are
constructed using elements of the working directory. The result of this copy is the existence of
two identical files under different names.

Example 2:
CP FILE A > UDD> BOOKS>JONES> FILEA

Copy a file from the working directory to another directory on the system volume. FILEA in
the working directory is copied to the directory> UDD> BOOKS>JONES, retaining the same
name, FILEA, assuming that the file name does not already exist in that directory.

Example 3:
CP SUB--DIR1>FILEA . VOL003>UDD>BOOKS>JONES>FILEB

Copy a file from a subdirectory in the working directory to a directory on another volume.

GCOS 6 COMMANDS 2-18 CB02

(

('-
J

COpy

FILE A, one directory level below the working directory, is copied to the directory
>UDD>BOOKS>JONES on a volume whose volume id is VOL003. It is assigned the name
FILEB in the new directory.

Example 4:
CP >SPD>DSK03>VOLOOI >SPD>DSK05 -VOL

Copy the contents of one mass storage volume to another (like) mass storage volume. The
contents of the volume VOLOOl, mounted on the device represented by symbolic device name
DSK03, are copied to the volume mounted on the device represented by symbolic device name
DSK05.

GCOS 6 COMMANDS 2-19 CB02

COpy DATA EXCHANGE (IBM)

COpy DATA EXCHANGE (IBM)

Command Name: CPDE

Copy and translate an IBM file (diskette) to a HONEYWELL file or vice versa onto or from an
IBM diskette; or copy one IBM volume (diskette) to another IBM volume (diskette).

FORMAT:

CPDE path 1 path2 [ctLarg]

ARGUMENT DESCRIPTION:

path 1 Specifies the input path name of the file or volume (diskette) to be translated. The
star name convention (see Section 1) can be used with this argument.

path2
Specifies the output path name of the file or volume (diskette) to be produced. The equal
names convention can be applied to this argument.
Note:

An IBM file (data set) must be accessed through a path of the form
>SPD> DSKxx> Volid>dat~set_name.

[ctl~rg]

One of the two control arguments listed below may be selected.

-VOL
Specifies that the copy is to be IBM volume (diskette) to IBM volume (diskette).

Note:
Only volume copies of diskette to diskette (IBM) are accommodated by the -VOL
argument.

-TYPE x
Specifies that a file copy is to be performed, as well as the type of file copy that has been
selected. The two options are:

x= 1 (IBM file to HONEYWELL file)
x= 2 (HONEYWELL file to IBM file)

Note:
The -TYPE argument is ignored if the -VOL argument is specified (i.e., for IBM to
IBM volume copies).

FUNCTION DESCRIPTION:

The purpose of the CPDE utility is to transport IBM EBCDIC files to HONEYWELL files
before processing under Level 6. The reverse process allows a complementary capacity for
transporting Honeywell files to IBM files. The translation involves EBCDIC (IBM) to ASCII
(HONEYWELL) or vice versa, and has no facility for moving packed decimal data.

GCOS 6 COMMANDS 2-20 CB02

/'
(

(

CREATE DIRECTORY

CREATE DIRECTORY

Command Name: CD
Create a new directory identified by the specified pathname.
FORMAT:

CD path

ARGUMENT DESCRIPTION:

path
The pathname of the new directory to be created.

FUNCTION DESCRIPTION:

The CREATE DIRECTORY command can be used under any circumstances in which the
creation of a new subdirectory within an existing directory is required. On a newly created
volume, whose directory consists of only the root entry (volid) the command can be used to
introduce the UDD directory level, as well as any number of project- and user-level entries (see
example 4, below). On a volume which already contains user directories, this command can be
used to introduce new user-level entries within a project-level directory, or new project-level
entries within the UDD-Ievel directory.

The form of the path entry of this command is the factor which determines the level of the
directory being created. If it is a simple name, the name is concatenated with the entries
constituting the working directory, resulting in a new directory one level below that of the
working directory. A pathname consisting of more than one element results in the creation of
the directory named by the last pathname element, and requires that all preceding directories
named already exist (see examples 3 and 4, below).

Example 1:
CD SMITH1

Create a directory within the working directory. If the current working directory is
>UDD>BOOKS>SMITH, the resulting directory is >UDD>BOOKS>SMITH>SMITHl.

Example 2:
CD <JONES

Create a new user-level directory at the same level as the working directory, and one subdi­
directory is > UDD> BOOKS>SMITH, the resulting new directory is> UDD> BOOKS>JONES.

Example 3:
CD <JONES
CD <JONES>JONESI

Create a new user-level directory at the same level as the workIng directory, and one subdi­
rectory. If the working directory is >UDD>BOOKS>SMITH, the resulting directory is
>UDD>BOOKS>JONES>JONESl. Note that two steps are required, since two directory
levels are being created.

Example 4:
CD 'USER03>UDD

Create a new user directory of user directories on another volume which has only a volume-id,
USER03. Additional project/user directories can be created on the new volume by issuing pairs
of commands of the form

CD USER03>UDD>project
CD USER03>UDD>project>person

for each new directory desired. Or, if a command
CWD USER03>UDD

GCOS 6 COMMANDS 2-21 CB02

CREATE DIRECTORY

is issued first, the additional project/user directories can be created using pairs of commands of
the form

CD project
CD project>person

GCOS 6 COMMANDS 2-22 CB02

j

CREATE FILE

CREATE FILE

Command Name: CF

Create the specified disk file.

FORMAT:

CF path [ctLarg]

ARGUMENT DESCRIPTION:

path
Specifies the pathname of the file to be created. See Appendix A for the colon (:) pathname
options.

[ctl_arg]
One or more control arguments chosen from the following list.

-LFN lfn
The logical file number by which a task is to refer to this file. It is a decimal value from 0
through 255. If present, the file is reserved after creation; if not present, the file is not
reserved.

-F_REL
Creates a BES compatible fixed relative file without deletable records.

-N-REL
Creates a BES compatible fixed relative file with deletable records.

-SEQ
Creates a Series 60-compatible sequential file, with fixed or variable length spanned
records, that is processed sequentially.

-REL
Creates a Series 60-compatible relative file, with fixed or variable length records, that
can be processed sequentially or directly by relative keys .

. {-INDEX}
-IX

Creates a Series 60-compatible indexed sequential record file, with fixed or variable
length records, which can be processed sequentially or directly by symbolic keys.

{-CLSIZE n}
-CSZ n

The number of bytes in a control interval for -SEQ, -REL and -INDEX type files. The
value of n must be a multiple of 256 bytes. If not specified, the default is 512 bytes.

{-REC_SIZE n}
-RSZ n

The number of bytes per record for -F_REL, and -N~EL type files. For -SEQ, -REL,
and -INDEX type files it specifies the maximum record size in bytes. If not specified, the
default is 256 bytes.

{-SIZE n}
-SZ n

The initial size of the file in units of control intervals for -SEQ, -REL, and -INDEX type
files, or in units of records for -F-REL and -N-REL type files. Default is no initial
allocation.

{-INC_SIZE n}
-ISZ n

The number of units by which the file size is to be incremented whenever it must be

GCOS.6 COMMANDS 2-23 CB02

CREATE FILE

expanded to accommodate more data. If not specified, the value of n is the same as that
specified for -SIZE. If -SIZE is not specified, n is set to 40 physical sectors.

{-MAX_SIZE n}
-MSZ n

The maximum size which this file can attain, in units of control intervals for -SEQ, -REL,
and -INDEX type files, or in units of records for -F-REL and -N-REL type files. It must
be set equal to the initial size, as specified by the -SIZE control argument, if a BES1-
readable file is being created. If this argument is not specified, the file can expand to the
physical limit of the volume.

{-KEY_OFFSET n}
-KO n

The byte offset of the first byte of the key field within the record. The first byte of a record
is byte 1. This argument is required for -INDEX type files.

{-KEY_SIZE n}
-KSZ n

The number of bytes constituting the key field. This argument is required for -INDEX
type files.

{-FILI._PC n}
-FPC n
The ratio of data bytes to total bytes to be put into each control interval when creating an
-INDEX type file, expressed as a percentage. If not specified, the default value is 100.

-LOF nnn
For -INDEX type files nnn specifies the frequency oflocal overflow control intervals to be
allocated when the indexed file is loaded; e.g., if nnn is 10, one local overflow control
interval will be allocated after each tenth data control interval is allocated. Default is no
local overflow.

{-KEY_TYPE x}
-KT x

Key component data type for -INDEX type files. Specifies the key component data type.
The value of x is C for character data and D for decimal data. Default is C.

FUNCTION DESCRIPTION:

The CREATE FILE command reserves space in the file system for the specified file in
accordance with the control arguments supplied in the command. It establishes a pathname
whose form is dependent upon the form of the path argument and the elements of the working
directory.

If a simple name is specified as the path argument, it is appended to the ehiments of the
working directory to form the full pathname of the file. If a relative name is given, any
directories expressed or implied by that relative name must exist, as must any directories
expressed if the path argument is an absolute pathname.

The CF command, in effect, creates an "empty" file, which can be subsequently loaded by
output statements or macro calls in user programs.

The initial shareability and permission attributes of the created file are such that the file may
be referred to from both online and batch tasks, and may be read from and written to by any
task. These attributes can be modified through the use of the MODIFY FILE command if
different attributes (e.g., write protection) are desired.

The control arguments -F-REL, -N_REL, -SEQ, -REL, and -INDEX are mutually exclusive.
If none is specified a -SEQ type file is created.

Example 1:
CF FILE01 -SEQ -CLSIZE 1024 -SIZE 100

GCOS 6 COMMANDS 2-24 CB02

(

CREATE FILE

Create a file at the current level in the working directory. If the working directory is
>UDD>BOOKS>JONES, the full pathname of the created file is
> UDD> BOOKS>JONES> FILEOl. It is a sequential file whose control interval size is 1024
bytes and whose initial size is 100 control intervals. It can be incremented in steps of 100
control intervals up to the physical limit of the volume (default values for -ISZ and -MSZ
control arguments).

Example 2:
CF SUB_DIRl>MYFILE -IX -SIZE 50 -KO 9 -KSZ 6 -MSZ 200

Create a file in an existing directory one level below the current level in the working directory.
Given the same working directory as in the previous example, the full pathname of the created
file is >UDD>BOOKS>JONES>SUB_DIRl>MYFILE. It is an indexed file whose initial
size is 50 control intervals of 512 bytes, and whose increment size and maximum size are 50
and 200 control intervals, respectively. The first byte ofthe record key is the ninth byte of the
record (the first byte of a record is byte 1), and the key is six bytes long.

The values provided with the -SIZE and/or the -INC_SIZE arguments cannot cause the I
extent to exceed 8191 physical sectors. The actual limits, in terms of actual supplied value,
depend upon the type of device and the -CI_SIZE.

GCOS 6 COMMANDS 2-25 CB02

CREATE GROUP

CREATE GROUP

Command Name: CG

Perform the initialization functions necessary to the initiation of an online task group.

FORMAT:

CG id base_Ivl [ctl_arg]

ARGUMENT DESCRIPTION:

id
The group identification of the new task group. It is a 2-character name that cannot have the
$ as its first character.

base_Ivl
A base priority level, relative to the system level, at which all tasks in this task group will
execute. A base level of 0, if specified, is the next higher level above the last system priority
level. The sum of the highest system physical level plus 1, and the base level of the group,
and the relative level of a task within that group must not exceed 62 10•

[ctl_arg]
One or more control arguments chosen from the following list.

{-EFN root }
-EFN root? entry

The name of a bound unit root segment to be loaded as the lead task if it is not already
loaded and linked as sharable. The root segment name can be suffixed with?entry, where
entry is a symbolic start address within the root segment. If ?entry is not given, the start
address established when the bound unit was linked is assumed.

-ECL
The root segment of the command processor is to be loaded as the lead task.

-LRN n
Specifies the highest logical resource number (LRN) that will be referred to by any task
in the task group. The maximum value is 252. The default value is the highest LRN used
by the system.

-LFN n
Specifies the highest logical file number (LFN) used by any task in the task group. The
maximum value is 255. The default value is 15. Refer to the ASSOCIATE PATH or GET
FILE command.

-POOL id
The name of the memory pool from which all dynamic memory required by this task
group is to be taken. id is a 2-character ASCII pool identifier; if specified, id must have
been defined at system building. If this argument is not specified, the issuing task group's
memory pool is used. The -POOL id argument is intended for use under the Mod 400
executive only.

Note:
-EFN or -ECL, but not both, can be specified. If neither is specified, -ECL is assumed.

FUNCTION DESCRIPTION:

The CREATE GROUP command causes the initialization and allocation of all data structures
used by the system to define and control the execution of the task group. It causes the loading
of the root segment of the lead task of the task group. It does not cause the system to activate
any task within the task group.

GCOS 6 COMMANDS 2-26 CB02

(

CREATE GROUP

This command can be issued only from an online task group.
Example:

CG AX 5 -EFN MAIN_PG?ENTRYI -LRN 8 -POOL A2
A task group identified as AX is created. The lead task of the group is the program MAIN_PG,
whose execution is to be started at the symbolic address ENTRYl. No task in the group will
execute at a relative priority level lower than 5, nor refer to a logical resource number higher
than 8. Memory will be obtained from a pool identified as A2 at system building.

GCOS 6 COMMANDS 2-27 CB02

CREATE MAILBOX

CREATE MAILBOX

Command Name: CMBX

Create a mailbox to contain the message queues used in communicating between task groups.

FORMAT:

CMBX name [ctLarg]

ARGUMENT DESCRIPTION:

name
Name of mailbox (up to 12 characters). Can be an absolute or simple pathname.
Note:

To use a simple pathname the user must have previously created a mailbox root
directory named MDD.

[ctl_arg]
The following control arguments must be specified.

-MEM pool-id
Indicates that message queuing is to be performed in memory; queuing is done in the
memory pool identified by pool id.

-OW
Specified that mailbox is to have one-way capability.

FUNCTION DESCRIPTION:

The CMBX Command creates a directory corresponding to the mailbox name and a file
($MBX) within that directory defining the mailbox attributes. When a task group sends a
message to another task group, it sends to a named mailbox; when a task group receives a
message from another task group, it receives from a named mailbox. Under Mod 400 the only
queuing supported is memory queuing. It is advisable for the user to dedicate a memory pool
for messages.

Before the user issues a CMBX command, he should have created a mailbox root directory to
contain the simple names of the mailboxes. (If the mailbox root directory is not named MDD,
then simple pathnames cannot be used in the CMBX command.)

The user should set access on the mailboxes such that the task group sending a message has
list access on the directory defining the mailbox and the task group receiving the message has
read access on the $MBX file for the mailbox.

Refer to the System Service Macro Calls manual for details on the intergroup message facility
macro calls.

Example:
CD >MDD
CREATE.-MBX >SMITH -MEM -SIZE 100

Create the mailbox root directory named MDD. Create a mailbox whose directory name is
>MDD>SMITH and whose file name is >MDD>SMITH>$MBX. Queuing is to occur in
memory; the queue size is 100 bytes.

GCOS 6 COMMANDS 2-28

/~

\. /
""'-- -"

CB02

(

(~

CREATE TASK

CREATE TASK

Command Name: CT

Perform the initialization functions necessary to the initiation of a task within the issuing task
group.

FORMAT:

ARGUMENT DESCRIPTION:

1m
The logical resource number (LRN) by which the issuing task group can refer to the created
task. It cannot exceed the value specified by the -LRN control argument in the CREATE
GROUP command which created the group of which this task is a member.

rel_lvl
The priority level, relative to the task group's base priority level, at which the created task
is to execute.

ctl_arg
One or more control arguments chosen from the following list.

{-EFN root }
-EFN root?entry

The name of the bound unit root segment to be loaded for execution. The root segment
name can be suffixed with ?entry, where entry is a symbolic start address within the root
segment. If no suffix is given, the default start address, established when the bound unit
was linked, is assumed.

{-SHARE 1m [ssa]}
-SHR 1m [ssa]

This argument is available for use only when processing under Mod 400 operating
system software.

The same bound unit in the same task group is used as for the task identified by 1m. (This
task must have been previously defined by a CREATE TASK command specifying this
1m.) ssa is the symbolic start address within the root segment of the task 1m. If none is
given, the root segment's default start address, established when the shared bound unit
was linked, is assumed.

Note:
In any invocation of the CT command, -EFN or -SHARE, but not both, must be
specified.

FUNCTION DESCRIPTION:

The CREATE TASK command causes the allocation and initialization of the data structures
which define and control the execution of a task. It causes the loading of the root segment
specified by the -EFN control argument. If does not activate the task (the ENTER TASK
REQUEST command is required to perform activation).

One or more CT commands can be issued to create one or more tasks within the task group.
These tasks can be requested for execution concurrently or serially by entering the appropriate
control argument in the ETR command which is used to activate each task. Refer to the
description of the ETR command.

GCOS 6 COMMANDS 2-29 CB02

CREATE TASK

Example:
CT 10 2 -EFN PROG10
CT 11 3 -EFN PROG 11
CT 12 2 -SHARE 10 ENTRY2

Three tasks are made known to the issuing task group. Their logical resource numbers (LRNs)
are 10, 11, and 12. Task 10 is to execute at priority level 02 relative to the base priority level
established when the task group was created. Task 11 is to execute at relative level 03, and
task 12 is to execute at the same relative level as task 10. If the task group's base level was
resolved to 20, then the three tasks execute at physical priority levels of 22, 23, and 22,
respectively. Task 12 is to share the same bound unit as task 10; however, execution of task 12
begins at a different point in the bound unit, specified by the label ENTRY2, (task 10's entry
point is the default entry point established when PROG10 was linked). Subsequent ENTER
TASK REQUEST commands cause the execution of the above tasks to begin (refer to the
description of the ETR command).

GCOS 6 COMMANDS 2-30

/--- ~'"

CB02

(

(

CREATE VOLUME

CREATE VOLUME

Command Name: CV

Create or modify a volume.

FORMAT:

CV path ctl_arg

ARGUMENT DESCRIPTION:

path
The pathname of the device upon which the volume to be created is mounted. The form of the
pathname is

>SPD >dev ----.name [>vol_id]
If vol_id is present, the volume name is verified.

ctl_arg
Only one control argument from the following, except that either the -DBLOC or -SIZE
argument, or both, may be specified only with the -FORMAT argument.

{FORMAT vol~d [t] [nn]}
-FT vol_id [t] [nn]

Assign voUd as the volume id and the d sk volume major directory name. For a disk
volume, preformat the volume by initializing all sectors to zero, checking for bad sectors,
and creating the olume id, the volume major directory, the bit map and the defective
sector index.

For a storage module volume, give it logical sector size nn, wherenn may be 8, 16, 32, or
64. Default is 8 for all storage module device types except 2363, for which it is 16.

The t character defines the format of a magnetic tape volume where possible values are 1,
2, 3, or H (default is 3) which specify the following formats:

1 - American National Standard Institute level 1
2 - American National Standard Institute level 2
3 - American National Standard Institute level 3
H Honeywell derivative of American National Standard Institute level 3.

If used when formatting a disk volume, the optional t character is ignored.

{-DLOC aaaa}
-DL aaaa

This argument is available for use only when processing under Mod 400 operating
system software.

Causes the disk volume directory to start at sector aaaa. The value aaaa can be decimal,
or a hexadecimal number X'hhhh' in which 'hhhh' represents four hexadecimal digits.
This argument can be used only when -FORMAT is specified and may be used when -SIZE
is specified.

{-SIZE ssss}
-SZ ssss

This argument is available for use only when processing under Mod 400 operating
system software.

Causes the disk volume directory length to be established as ssss physical sectors. The
value ssss can be decimal, or a hexadecimal number X'hhh' in which 'hhh' represents
three hexadecimal digits. This argument can be used only when -FORMAT is specified
and may be used when -DLOC is specified.

GCOS 6 COMMANDS 2-31 CB02

CREATE VOLUME

{-BOOT [X'hhhh']'}
-BT [X'hhhh'] :

This argument is available for use only when processing under Mod 400 operating
system software.

Create bootstrap records and write them to volume-relative sectors 0 through 6. The
existing volume id and major directory name are not modified. The X'hhhh' field defines
certain bootstrap options as described in the function description. If used, this value
becomes permanent and cannot be overridden at startup.

-ISL [X'hhhh']
Create Intersystem Link (lSL) bootstrap records and write them to volume-relative
sectors 0 through 6. The existing volume id and major dIrectory name are not
modified. The X'hhhh' field defines certain bootstrap options as described in the function
description.

{-MDUMP nn}
-MD nn

This argument is available for use only when processing under Mod 400 operating
system software.

Create a memory dump bootstrap record and write it to volume-relative sector O. The
existing volume id and major directory name are not modified, nn specifies the number of
4096-word modules to be dumped. .

Create a file na~ed DUMPFILE on the volume, large enough to contain a dump ofnn 4K
modules of memory. Put a MDUMP record on sector 0 of the volume that will dump nn
4K modules of memory into DUMPFILE, to be printed subsequently by DPEDIT. The default
value of nn is 6.

{-RENAME y}
-RN Y

Change the volume id and major directory name to that specified by y. y is a one- to
six-character ASCII string. A tape volume cannot be renamed.

FUNCTION DESCRIPTION:

The CREATE VOLUME command initializes a tape or disk volume in one of several ways. A
previously unused disk volume can be assigned a volume identification through the use of the
-FORMAT control argument. This argument, in addition to initializing all tracks on the
volume and verifying their integrity, writes a volume label record containing the volume
identifier specified by the vol_id field in this argument. It also establishes this identifier as
the volume major (root) directory name. Thus, if vol~d is given the value USEROl, the
volume label contains this value as the volume identifier, and the root directory pathname for
this volume is ~ USEROl.

A volume which has already been assigned a volume identifier as described above can be
supplied with a bootstrap routine in one of two forms. The -BOOT control argument causes a
standard system bootstrap routine to be written on the volume, the ISL argument causes a
standard ISL bootstrap routine to be wTitten. The X'hhhh' field of theSe two arguments is used
to define the channel of the disk device containing the directive files and routines used during
system initialization, and to define certain bootstrap-and initialization options. The field
consists of four hexadecimal digits whose bit configuration is broken down as follows:

hl h2 h3 h4

----XXXX XXXX XXXX XXXX
• JII. I '---.----'

CHN RFU OPT

GCOS 6 COMMANDS 2-32 CB02

~--­

/

/'---"""

(

CREATE VOLUME

CHN
Ten bits (bits ° through 9) which specify the channel number of the initialization device
(e.g., 0400, 1280). The fourth digit of the channel number is always zero, and the values that
can be assumed by the third digit are 0, 4, 8, and C (hexadecimal).

RFU
These bits (bits 10 through 12) are reserved for future use and must be zero.

OPT
These bits (bits 13 through 15) establish the bootstrap/initialization options as follows:

Ifbit 13 = 1: Halt at the conclusion ofthe system bootstrap routine, and before entering
the operating system initialization code.
Ifblt 14 = 1: Use the Honeywell-supplied directive file on the device specified by CHN.
If bit 15 = 1: Bootstrap from the fixed cartridge disk device specified by CHN.

The -MDUMP control argument causes a special record, which is the memory dump routine,
to be written on the volume. A file, DUMPFILE, is allocated with a sufficient number of
sectors to contain the number of memory words specified by the xx field of the -MDUMP
argument.

A volume already having a volume identifier can be given a new identifier through the use
of the -RENAME control argument. This causes the volume identifier field of the
volume header record, and the root directory name, to be changed to the identifier specified
by the y field of this argument.

The CV command must specify the pathname of the peripheral device (cartridge disk,
diskette, storage module, or tape) upon which the volume to be initialized is mounted. The
dev-Ilame portion of the path argument is the symbolic name of this device as defined at
system building. The vol_id field of the path argument, if used, indicates that the volume
already has a volume identifier, and that this identifier is to be checked for agreement with
a specified identifier. If the two identifiers do not agree, an error message is used and the
command is terminated. The vol~d field of the path argument does not assign an identifier
or root directory name to the volume; this can only be done by using the -FORMAT control
argument.
The system recognizes unique voUds. If disk volumes of the same vol~d are used, it is
necessary to rename one of the volumes before the system accepts it. Simply follow the
procedure for an unformatted volume, and invoke CV -RENAME rather than -FORMAT.
Mount the volume only at the appropriate remount message and processing (i.e., the volume
rename) will continue. If the CV is attempted and another volume is the same vol~d is
mounted, a dismount message will be issued after the vol~d is written on the volume. If
the -MDUMP option is requested, the create volume will issue a Create File macro call
which will attempt to place the new file on the duplicate named volume, not on the one just
created.

Only one of the parameters -BOOT, -MDUMP, -FORMAT and -RENAME may be specified I
at a time.

To format an unformatted diskette, wait until a "mount" message is encountered after CV
has been loaded and begun execution. At this point, mount the unformatted pack and
processing will continue.

To format an unformatted removable cartridge disk or storage module, keep the disk in the
"off' condition until the "Mount" message is received after CV has been loaded and exe­
cuted. At this point, cycle-up the disk and processing will continue.

To format an unformatted fixed cartridge disk, proceed in the same way as for the removable
disk except when the fixed disk is on the same channel as the executing removable system
pack. For the latter case, at the mount message simply cycle down and up the cartridge unit
and processing will continue.

GCOS 6 COMMANDS 2-33 CB02

CREATE VOLUME

To set up a volume label on a magnetic tape, use the following command form:

CV>SPD>sympd [>vol_id1] -FT voLid2 x

where "x" is a hexadecimal character which may be 1, 2, 3 or H and which is used as the last
character of the tape header record. The default for this is 3. If the optional character is used
when a disk is formatted, it is ignored.
Ignore the error message 020107(26 cccc 0100 000) encountered when using unformatted
volumes. .

Example 1:
CV >SPD>DKS03 -FT USRDTA

A volume mounted on the device identified at system building as DSK03 is to be formatted and
assigned the identifier and root directory name USRDTA. If this volume is to contain only user
data (Le., it is not to be used for system initiation or dumping of memory), no further
initialization is required. That is, no bootstrap records need be created for this volume. Other
directories can be established under the root directory USRDTA by subsequent use of the
CREATE DIRECTORY command.

Example 2:
CV >SPD>DSK02 -FT DMPVOL
CV >SPD>DSK02>DMPVOL -MD 04

A volume mounted on the device identified as DSK02 is to be formatted and assigned the
identifier and root directory name DMPVOL. This volume is to be used for dumping memory,
and is therefore (by the second CV command) given a memory dump bootstrap record. Dumps
are to contain four 4096-word modules of memory. The second command also specifies that the
previously assigned volume identifier is to be verified prior to creation of the memory dump
bootstrap record.

Use of the optional volume id as part of the pathname insures that the proper volume is
mounted, thus avoiding concurrency errors.

Finally, this utility automatically reserves the innermost cylinder on every disk pack (except
diskette) for T&V usage.

GCOS 6 COMMANDS 2-34

./

\,,-

CB02

(

('

CREATE VOLUME DATA EXCHANGE (IBM)

CREATE VOLUME DATA EXCHANGE (IBM)

Command Name: CVDE

Create a volume (diskette) for data exchange which will be acceptable on IBM equipment.

FORMAT:

CVDE path [ctl_arg]

ARGUMENT DESCRIPTION:

path
The path name of the device upon which the volume (diskette) to be created is mounted. The
form of the path name is

>SPD>sympd [>vol-id]

[ctl_arg]
The only control argument accompanying the CVDE command is as follows:

-FT vol_id
Specifies the volume id being assigned to the volume (diskette) being created.

FUNCTION DESCRIPTION:

The purpose of the CVDE command is to set an unformatted volume (diskette) to a 3740-like
format to make it acceptable on IBM equipment.

GCOS 6 COMMANDS 2-35 CB02

DEFERRED PRINT

DEFERRED PRINT

Command Name: DP

Queue a request for deferred printing for the indicated file.

FORMAT:

DP path [ctl_arg]

ARGUMENT DESCRIPTION:
path

The pathname of the file whose contents are to be printed

[clLarg]
One or more control arguments chosen from the following list:

{-LIMIT nn}
-LI nn

Specifies the number of records to be printed if end of file is not encountered before the
value of nn is satisfied. If not specifiied, all records in the file are printed.

{-COPIES n}
-CPn

Specifies the number of copies to be printed, i.e., the number of times the file is to be
printed for this invocation. Default is 1.

{-SPACE n}
-SP n

This argument indicatyes that the file is not a true print file with print control characters
in its records. Each record is printed on one or more print lines. The value of n specifies
the line spacing between records, and can be either 1 or 2. 1 specifies single spacing (no
blank line). 2 specifies double spacing (one blank line). The default value for n is 1. Ifthis
parameter is not specified, the first record byte is treated as a printer control character,
i.e.; the file is assumed to be a print file. S~e the control byte description for the printer
driver in the System Service Macro Calls manual.

{-FORTRAN}
-FTN

The print file was created by a FORTRAN object program and has print control charac-
ters of the FORTRAN type.

{-FROM nn}
-FM nn

Indicates that the first nn records of the file are to be skipped before printing begins. If
not specified, printing starts at beginning of file.

{-LINE LEN nn}
-LL nn

Specifies the number of characters to be printed per line. If a longer line is read from the
file, it is folded at the indicated print position. If not specified, the value of nn is 68.

{-RELEASE}
-RL

Specifies that, at the completion of printing, the file is to be released.

-DESTINATION string
-DS string

GCOS 6 COMMANDS 2-36

''-./

CB02

DEFERRED PRINT

Use the value of the specified "string" for the destination field of the printing heading
sheet. For spaces to be included in the destination field, the supplied character string
must be enclosed in quotes. This field can be up to 13 characters long. If the -DS
argument is omitted, the person id is printed.

-HEADING string
-HE string

Use the value of the specified "string" for the heading field of the printing heading sheet.
For spaces to be included in the heading field, the supplied character string must be
enclosed in quotes. This field can be up 26 characters long. If the -HE argument is
omitted, the account id is printed.

FUNCTION DESCRIPTION:

DPRINT verifies the path name and control arguments and then enters a request for a
deferred file print to $P. After the print request has been submitted, the user is allowed to log
off without losing the print.

GCOS 6 COMMANDS 2-37

I

CB02

DELETE ACCESS CONTROL LIST

DELETE ACCESS CONTROL LIST

Command Namem~LETE~CL}
Delete entries from the ACL of a file or directory.
FORMAT:

m~LETE~CL}[path user_id] [ctLarg]

ARGUMENT DESCRIPTION:

path
Specifies the pathname of a file or directory. If this argument is omitted or if -WD is entered,
the working directory is specified. If it is omitted, user_id cannot be specified.

user_id
Specifies an access control name that must be of the form person account mode. All ACL
entries with matching names are deleted. (For a description ofthe matching strategy, refer
to the SET~CL command.) Ifpath is specified, user_id'should also be specified. Ifuser_id
is omitted, the systeID-id of operator. system.* is used.

[ctl_arg]
One or more control arguments from the following list.

{~~LL}
Causes all ACL entries to be deleted. This argument overrides user_id, if both are
specified.

{-BF }
-BRIEF

Suppresses the message "USER NAME NOT ON ACL"

FUNCTION DESCRIPTION:

This command removes entries from the access control list (ACL) of a file or di rectory. The user
must have modify access to the containing directory in order to delete entrIes.

If the command is invoked with no arguments, it deletes the entry for the user's person.
account.* on the ACL of the working directory.

GCOS 6 COMMANDS 2-38 CB02

(----'

(

(-

DELETE COMMON ACCESS CONTROL LIST

DELETE COMMON ACCESS CONTROL LIST

Command Name:{g~tETE_CACL}
Delete entries from the CACL of a directory.

FORMAT:

{g~tETE_CACL}[path user_id] [ctl_arg]

ARGUMENT DESCRIPTION:

path
Specifies the pathname of a directory. If this argument is omitted or if -WD is entered, the
working directory is specified. If it is omitted, user_id cannot be specified.

user_id
Specifies an access control name that must be of the form person. account. mode. All CACL
entries with matching names are deleted. (For a description of the matching strategy, refer
to the SET-ACL command.) If path is specified, user_id should also be specified. If user~d
is omitted, the systeIIL-id of operator. system.* is used.

[ctLarg]
One or more control arguments from the following list.

{:!LL}

Causes all CACL entries to be deleted. This argument overrides user_id, if both are
specified.

{'-DIR }
-DIRECTORY

Causes directory CACL entries to be deleted

-FILE

Causes file CACL entries to be deleted

{-BF }
-BRIEF

Suppresses the message "USER NAME NOT ON CACL"

FUNCTION DESCRIPTION:

This command removes entries from the common access control list (CACL) of a directory. The
user must have modify access to the containing directory in order to delete entries.

If the command is invoked with no arguments, it deletes the entry for the user's person.
account.* on the file CACL of the working directory. If -DIR and -FILE are both specified, both
directory and file CACL entries are deleted. If neither is specified, only file CACL entries are
deleted.

GCOS 6 COMMANDS 2-39 CB02

DELETE GROUP

DELETE GROUP

Command Name: DG

Mark the online task group as eligible for deletion when it becomes dormant.

FORMAT:

DG id

ARGUMENT DESCRIPTION:

id
The group identification of a task group previously created by a CG command specifying the
same id. The default is to delete the issuing task group.

FUNCTION DESCRIPTION:

The DELETE GROUP command removes all data structures constructed by the CG command
issued previously with this id. No more ENTER GROUP REQUEST commands can be issued
for this task group after the DG command has been executed. The DG command takes effect
immediately if the task group is dormant when the command is issued. If it is active (Le., if its
code is being executed and/or there are still requests in this task group's request queue), the
DG command takes effect when execution terminates and there are no more requests in the
queue.

When a task group is deleted, the memory occupie.d by the data structures defining the group,
and any memory associated with the execution of the group, is returned to the appropriate
memory pool and is available for use by other task groups.

This command can be issued only from an online task group.

GCOS 6 COMMANDS 2-40 CB02

(

DELETE TASK /DISSOCIATE PATH

DELETE TASK

Command Name: DT

Mark the online task as eligible for deletion of its definition from the task group when the task
becomes dormant.

FORMAT:

DT lrn

ARGUMENT DESCRIPTION:

lrn
The logical resource number of the task to be deleted.

FUNCTION DESCRIPTION:

The DELETE TASK command removes from the task group all of this task's defining and
controlling data structures, and returns this task's memory to the task group's memory pool. If
the task is currently dormant, it is immediately deleted from its task group. If it is not
dormant, the task is deleted when it terminates and no more task requests are queued against
it. After this command is issued, no more task requests (ETR) will be accepted for this task
without again creating the task.

Example:
DT 12

The task whose logical resource number is 12 is to be deleted.

DISSOCIATE PATH

Command Name: DISSOC

Break the association between the indicated logical file number and the external file name
(pathname), established by a previous ASSOCIATE PATH command.

FORMAT:

DISSOC Ifn

ARGUMENT DESCRIPTION:

Ifn
The logical file number whose association with an external file name is to be broken.

FUNCTION DESCRIPTION:

The DISSOCIATE PATH command is used when a task has no further need for the association
between the specified logical file number (LFN) and the related external file name. It frees the
LFN so that another task, which requires the same LFN to be associated with a different
external file name, can have this relation made by the use of another ASSOC command.

The DISSOC command has no effect on a file which is reserved or open at the time the
command is issued; i.e., it does not dissociate the file from the LFN. (This is done by a
REMOVE command.) It merely breaks the connection between a name and the LFN which
was established by ASSOCIATE PATH.

Example:
. DISSOC 12

The external file name associated with LFN 12 is broken. Existing connections between the
LFN and file name at the time of the dissociate action continue until the file is removed.

GCOS 6 COMMANDS 2-41 CB02

DUMP EDIT
I [MOD 400 ONLY]

DUMP EDIT

Command Name: DPEDIT

Transfer to the user-out file the contents of a previously written memory dump file. The
user-out file must be a device that provides 132 print positions.

FORMAT:

DPEDIT [path] [ctl_arg]

ARGUMENT DESCRIPTION:

path
Pathname of the memory dump file to be printed.

ctLarg
Zero, one, or more of the following control arguments may be entered, in any order:

{-NO_LOGICAL}
-NL

No logical dump of system control structures produced.
Default: Logical dump produced.

{-NO_PHYSICAL}
-NP

No physical dump of memory produced.
Default: Physical dump produced.

{-GROUP id [id] . . . [id]}
-GP id [id] . . . [id]

Produces only group-related information within a logical dump for the group(s) indicated
by id; id is the 2-character group identifier.

{-FROM X'address'}
-FM X'address'

Low-memory address of area that will appear in physical dump; must be a physical
address specified in hexadecmal.
Default: Absolute O.

-TO X'address'
High-memory address of area that will appear in physical dump; must be a physical
address specified in hexadecimal.
Default: Physical high memory address of the dump file.

{-MEMORY}
-MEM

Produces a dump of main memory. If both the path argument and this argument are
specified, the path argument is ignored.
Default: A dump is produced of the file specified in the path argument.

Note:
Either the path argument or the -MEMORY control argument must be specified.

FUNCTION DESCRIPTION:

The DUMP EDIT command causes the transfer to the user-out file of the contents of the
memory dump file obtained through the MDUMP utility described in the Program Execution
and Checkout manual. This file is allocated at the time a volume is created with a memory
dump bootstrap record, and comprises sufficient sectors to contain the number of 4096-word
memory modules specified when the volume was created. Refer to example 2 in the description
of the CREATE VOLUME command.

GCOS 6 COMMANDS 2-42 CB02

(

DUMP EDIT
[MOD 400 ONLY]

The transfer of data from memory to the memory dump file must have been previously
performed by a bootstrap operation which specified the channel to which the device containing
the memory dump volume was attached.

The memory dump output produced by the DPEDIT command comprises a logical portion and
a physical portion. The former consists of an edited printout of system and user control
structures such as a system summary, memory pool data, file system structures, task control
blocks, dedicated memory locations, and group control blocks. The physical portion consists of
a memory image printout encompassing the memory locations explicitly or implicitly specified
by the -FROM and -TO arguments or their defaults. This portion of the dump is printed in both
hexadecimal and ASCII representation, with duplicate line suppression. Any hexadecimal
digit pairs which have no printable ASCII equivalents are represented by ASCII period (.)
characters.

Additional information concerning the Dump Edit utility program is contained in the Program
Execution and Checkout manual.

Example 1:
DPEDIT DUMPER> DUMPFILE -FROM X'0400' -NL

Print the contents of the memory dump file, DUMPFILE, located on the volume DUMPER.
Memory locations between 0400 16 and the end of the dump file are printed. The logical portion
of the dump is to be omitted. The memory dump is printed on whatever device is currently
serving as the user-out device (a wide-carriage, 132 characters per line, user terminal if no
FILE OUT commands have been previously issued).

Example 2:
FO >SPD>LPT01
DPEDIT DUMPER> DUMPFILE

Print the contents of the same dump file as in example 1 above. In this case, because of the FO
command which precedes the DPEDIT command, the output is printed on a printer designated
as LPTOl. Both logical and physical portions of the dump are printed, and the physical dump
encompasses locations zero through the end of the dump file.

GCOS 6 COMMANDS 2-43 CB02

EDITOR

EDITOR

Command Name: ED

Add, delete, or modify selected lines of a source unit file.

FORMAT

ED [ctl.-arg]

ARGUMENT DESCRIPTION:

[ctl_arg]
One or more control arguments chosen from the following list.

-IN path
Specifies the file from which Editor directives are to be read and to which Editor output is
to be directed. If not specified, directives are obtaIned from the current user-in file and
output is sent to the task group's user-out file (as specified during the group request).

{-LINE-LEN n}
-LL n

Specifies the maximum line length to be acted upon by the Editor. If not specified, n
assumes the value of 80.

{PROMPT}
opT

Stipulates that the prompt characters "E?" (no carriage return) are to be printed to the
user_in file upon completion of the previous Editor directive. If the user_in is other
than a terminal-like device, the opT argument is ignored.

-NBS
Specifies "no blank suppression." This argument stipulates that the Editor does not
suppress trailing blanks on the input line.

FUNCTION DESCRIPTION:

The EDITOR command is used to invoke the Editor component. Execution of the Editor is
normally intended for the batch task group, as. is the execution of most ofthe other components
used in a program development activity.

A full description of the operation and use of the Editor is contained in the Program Prepara­
tion manual.

GeOS 6 COMMANDS 2-44 CB02

(

ENTER BATCH REQUEST

ENTER BATCH REQUEST

Command Name: EBR

Enter into the batch request queue a request for the execution of the command processor.

FORMAT:

EBR ilL-path [ctl_arg]

ARGUMENT DESCRIPTION:

ilL-path
Name of the file from which the command processor is to read its commands.

[ctl_arg]
One or more of the following arguments can be entered.

-OUT out_path
Defines the pathname of the file to receive user output (user-out file) and error output
(error-out file) from the batch task group. If this argument is not specified, one of the
following assumptions is made:

• If ilL-path specifies a disk file, out_path is ilL-path.AO
• If ilL-path specifies an interactive terminal, out_path is ilL-path
• If ilL-path specifies an input-only device, out_path is null

-WD path
Specifies that path is to be used as the working directory. This argument is set to null if
not specified

-ARG arg arg . . . arg
Indicates that additional arguments required by the task group during execution follow.
These additional arguments are passed to the command processor to be used as necessary,
and are substituted for parameters in the command-in file. If used, the -ARG control
argument must appear last. Refer to Appendix A for an explanation of the use of
additional arguments.

FUNCTION DESCRIPTION:

The EBR command initiates execution of the command processor as the lead task in the batch
task group previously created by the CB command. When the task group is dormant at the
time the EBR command is issued, execution hegins immediatly. When the group is not
dormant, the request for execution is queued for execution when the task group becomes
dormant (i.e., when the current batch request is terminated).

The command processor will first execute the EC file working-directory >START_UP.EC (ifit
exists). The working directory is the one specified in the optional -WD path argument.
Whether or not these files exist, the command processor remains active expecting more
commands.

Since the command processor obtains its commands from the file named in the ilL-path
argument, that file must begin with a command, although it may contain other items (such as
Editor directives) that the called command function may require for execution.

Example:
EBR CMND-.lN -WD VOLA>JR

The batch task group is to be activated. It will receive its input from the file identified as
CMND-.lN; it will direct its output to the file CMND-.lN.AO. The working directory will be
AVOLA>JR.

GCOS 6 COMMANDS 2-45 CB02

ENTER GROUP REQUEST

ENTER GROUP REQUEST

Command Name: EGR

Activate the lead task of an online task group previously created by a CREATE GROUP
command.

FORMAT:

EGR id [ilL-path] [ctl~rg]

ARGUMENT DESCRIPTION:

id
The group identification of a task group previously created by a CG command specifying the
same id.

[in_path]
The name of the file from which commands and user input are to be read by the task group
during execution. This argument is set to null if not specified. It is required if the CG
command specified the control argument -ECL.

[ctl_arg]
One or more control arguments chosen from the following list.

-OUT out_path

Defines the pathname of the file to receive user output (user_out file) and error output
(error_out file) from the task group. If this argument is not specified, one of the followIng
assumptions is made:

• If ilL-path specifies a disk file, out_path is ilL-path.AO
• If ilL-path specifies an interactive terminal, out_path is ilL-path
• If ilL-path is not specified, out_path is null
• If ilL-path specifies an input-only device, out_path is null

-WD path
Specifies that path is to be used as the working directory pathname. This argument is set
to null if not specified.

-ARG arg arg ... arg
Indicates that additional arguments required by the task group during execution follow.
These additional arguments are passed to the lead task to be used as necessary, and are
substituted for parameters in the command-in file. If used, the -ARG control argument
must appear last. Refer to Appendix A for an explanation of the use of additional
arguments.

FUNCTION DESCRIPTION:

The EGR command initiates execution of the lead task of a task group previously created by a
CG command. If the task group is dormant when the EGR command is issued, task execution
begins immediately. When the group is not dormant, the request for execution of the lead task
is queued. Execution will take place when the task group becomes dormant. (This situation
occurs when an earlier EGR command activates the task group and execution has not yet
terminated.)

Execution of the lead task begins at the point implied by the -EFN argument.

When the command processor is the lead task, it first executes the EC file working­
directory >START_UP.EC (if this file exists). The working directory used is that specified in
the -WD path argument. Whether or not these files exist, the command processor remains
active expecting more commands. After the START_UP.EC file is executed, execution begins

GCOS 6 COMMANDS 2-46 CB02

(

ENTER GROUP REQUEST

with the reading of the file named in the ill-path argument. That file must begin with a
command, although it may contain other items required for execution of the called command
function.

Example:
EGR AX MPG_DATA -WD >UDD>SERVICES>SMITH -ARG '01112/78 1l00AM'

The task group identified as AX in a previous CG command is to be activated. The task group
expects its input data to come from a file named MPG_DAT A in the issuer's working
directory; the group will write its output to a file named MPG_DAT A.AO in some working
directory. The working directory for group AX will be >UDD>SERVICES>SMITH. The lead
task expects one argument, a date and time item. The item is enclosed in quotation marks
because it contains an embedded space but is to be interpreted as a single argument.

GCOS 6 COMMANDS 2-47 CB02

ENTER TASK REQUEST

£NTER TASK REQUEST

Command Name: ETR

Allocate and initialize a task request block and place it on the request queue of the indicated
task.

FORMAT:

ETR lrn [ctl_arg]

ARGUMENT DESCRIPTION:

lrn
A logical resource number specified in a previous CREATE TASK command.

[ctl~arg]

One or more control arguments chosen from the following list.

-WAIT
Specifies that the command processor is to wait upon completion of the requested task
before resuming execution.

-ARG arg arg. . . arg
Indicates that additional arguments required by the task during execution follow. These
additional arguments are passed to the requested task to be used as necessary and are
substituted for parameters in the command-in file. If used, the -ARG control argument
must appear last. Refer to Appendix A for an explanation of the use of additional
arguments.

FUNCTION DESCRIPTION:

The ENTER TASK REQUEST command is used to activate a task which was previously
defined by a CREATE TASK command specifying the same logical resource number (LRN) as
that named in this command.

The ETR command causes the construction of a standard task request block (TRB) , which
consists of the elements described in the System Service Macro Calls manual. Additional
entries to accommodate task-specific arguments specified by the -ARG control argument are
appended to the TRB as required.

Multiple tasks can be made to execute concurrently within a given task group by issuing
multiple CT and ETR commands.

Tasks can also be made to execute serially; i.e., one task going to completion before a
subsequent task begins execution. The -WAIT control argument is the mechanism that
controls concurrency of execution. Judicious use of this argument can also result in a mixture
of concurrent and serial execution (see example 3, below).

When all the created and requested tasks have terminated, the structures built by the CT and
ETR commands can be removed by a BYE command. For a created group, a BYE command
removes all structures other than those of the lead task (the command processor). After this
action has occurred, the next group request, if any, can be honored. For a spawned group, the
BYE command causes the group to be removed from the system.

In each of the following examples three tasks are assumed to have been previously created by
the CT commands shown in the example in the description of the CT command, namely:

CT 10 2 -EFN PROG 10
CT 11 3 -EFN PROG11
CT 12 2 -SHARE 10 ENTRY 2

Any other prerequisite commands (e.g., file creation, association of LFNs to pathnames) are
also assumed to have been issued.

GCOS 6 COMMANDS 2-48

(
'~_/

CB02

ENTER TASK REQUEST

Example I:
The three tasks are such that there are no dependencies among them, so they can be run
concurrently. The following ETR commands are issued to activate them.

ETR 10
ETR 11
ETR 12

Example 2:
The three tasks are required to be executed in a particular sequence, determined by the order
in which the ETR commands are issued. The following ETR commands are used to activate
them.

ETR 10 -WAIT
ETR 12 -WAIT
ETR 11

In this case, execution of task 12 must await completion of task 10, and task 11 must likewise
await completion of task 12. Since task 11 does not specify -WAIT, another (unrelated) activity
can be initiated in parallel with the execution of task 11. Note, however, that if a BYE
command follows the last ETR command, task 11 will probably not complete, since the BYE
command takes effect even if a task within the task group is active.

Example 3:
Two of the tasks have a dependency between them and the third is independent of the other
two. The following sequence of ETR commands can be used to activate them.

ETR 11
ETR 10 -WAIT
ETR 12

In this case, because task 11 does not specify -WAIT, both task 11 and task 10 are activated to
run concurrently, but task 12 is dependent upon the completion of task 10. As in the previous
example, another activity can be initiated concurrently with the execution of the third task.

GCOS 6 COMMANDS 2-49 CB02

EXECUTION COMMAND

I

EXECUTION COMMAMD

Command Name: EC

invoke the command (EC) processor to read commands from a designated file.

FORMAT:

EC path [ctl_arg]

ARGUMENT DESCRIPTION:

path
The name of a file, path.EC, that contains commands and EC directives.·

[ctl_arg]
The list of additional character string arguments, arg arg. . . arg, that are to be substi­
tuted for substitutable parameters in the input lines of the command-in file. The pathname
of the EC file is substituted for all occurrences of &0 in the command-in file, the first
additional argument for all occurrences of &1, the second additional argument for all
occurrences of &2, and so forth. Refer to Appendix A for a further explanation of the use of
additional arguments.

FUNCTION DESCRIPTION:

The function of the command processor is to read from a previously created file a series of
commands and EC directives. The command processor provides a mechanism whereby a
sequence of routinely performed functions can be executed without the need for manually
entering the commands.

The file whose name is path.EC is a sequentially processed file that contains the ASCII images
of one or more commands and EC directives. These images are interpreted by the EC processor
and acted upon as described in the following paragraphs.

When a command is encountered, it is passed to the command processor for interpretation and
execution. The syntax of the command, as read from the file path.EC, must be identical to that
which would have been entered from a terminal device, were the function to have been
requested manually. All arguments and control arguments must be supplied as specified in the
individual command descriptions.

When a command execution terminates, control is returned to the command processor, which
then reads the next line from the file.

The EC file can also contain EC control directives that are not passed to the command
processor, but are interpreted and acted upon by the EC directive routines. These directive
lines are identified by a character string beginning with & and followed by a A (space or tab
character). They provide control over certain operational aspects of the command processor
and provide a degree of control over the logic of execution of the series of commands. Any
ampersand directive other than those described below is treated as an &QA directive, except
that a nonzero error status code is returned to the task that invoked the EC command (see the
System Messages manual).

The EC control directives are described in detail in the following paragraphs.

&A
This directive signifies a comment line and is not further processed. The directive is visible
to the user only if he obtains a listing of the EC file. The & A directive can be used (for
example) to describe the function performed by the commands contained in the file.

&AA path
This directive causes the file specified by path to be attached as the user_in file. If path is
omitted, the current command-in file is assumed to be the user_in file.

GCOS 6 COMMANDS 2-50

/

CB02

EXECUTION COMMAND

&DIl
This directive restores the user-in file to that which existed when the EC file was invoked.

&FIl
Command line printing is to be turned off; i.e., command lines are not to be written to the
user-out file. This is the default; command lines are not normally written to the user-out file.

&NIl
Command line printing is to be turned on. Each command line read from the EC file is
written to the user-out file before being passed to the command processor. The & directives
lines are not written.

&PIl
The entire line, except for the &PIl, is written to the user-out file. Printing of &PIl lines
occurs regardless of whether command line printing is on or off.

&G labell
This directive, in conjunction with the &L directive provides a "go to" capability, and in
conjunction with the IF-THEN-ELSE directive provides a conditional execution of com­
mands within the EC file. The next command to be processed is the command immediately
after the first &L directive that defines the label.

&L labell
This directive defines a label that may be the object of a &G (or a conditional goto)
statement. The label begins with the first non-blank (or tab) character after the &L and its
length is restricted only by the inputn line length.

&IFIl [EQUALIl [RETCODE]llhhhh] Il&THEN [{~:~ labell}] [1l&ELSE [{~:~ labeI2}]]

This directive causes the command processor to interrogate the status code (RETCODE)
returned by the command executed immediately before the &IF directive. The subsequent
processing depends on whether or not the status code entered by the user matches that
returned by the previous command.

[EQUALIl[RETCODE]llhhhh]

Caution:
This argument including the double set of brackets must be entered when this directive
is specified. This argument is an active function and the brackets are a part of it.
Elsewhere, brackets denote optionality.

The hexadecimal number hhhh designates a status code. One to four digits may be entered.
If less than four digits are entered, the field is left filled with zeros.

&THEN{~:~ labell}

If the status codes match, processing ceases or continues on the line following the labell
statement, depending on t the option selected. If the options are omitted, processing
continues on the next line.

&ELSE{ ~:~ label2}

If the status codes do not match, processing ceases or continues on the line following the
label2 statement, depending on the option selected. If the options are omitted, processing
continues on the next line.

&QIl

The execution of the current EC file is terminated, and control is returned to the invoking
task. Implicit &QIl directives may be executed, as described above, by invalid & directives

GCOS 6 COMMANDS 2-51 CB02

EXECUTION COMMAND

I

I

or because of error status codes returned by the interpretation or execution of a command
line. To ensure proper termination of the EC command, every EC file should have the &Qa
directive as its last entry.

Example 1:
A user is developing a program named TEST. Several recursions of source unit correction,
assembly, and link are required before the program is operational. The original source unit
TEST.A has already been created using the Editor. An EC file PROG_DEV.EC has also been
previously created, and contains the following commands and EC directives.

EC directives.
& LlEDIT, ASSEMBLE, AND LINK PROGRAM 'TEST'
&paBEGIN EDITOR
&A
ED
(Editor directives) a
&IF Ll[EQUALSa&STATUSaO]a&THEN a&ELSE&&GaLABEL1
&paBEGIN ASSEMBLY
ASSEM TEST -COUT>SPD>LPT01
&IF Ll[EQUALSa&STATUSaO]a&THEN a&ELSEa&&GaLABEL1
&PaBEGIN LINK
LINKER TEST -COUT>SPD>LPTOl -IN PATHl
&IF a[EQUALSa&ST ATUSaO]a&THEN a&ELSEa&&GaLABEL1
&PLlLINK COMPLETE
&GaLabe12
&LaLabell
&P aERROR ENCOUNTERED IN DEVELOPMENT SEQUENCE; EC TERMINATED.
&LaLabel2
&Qa

In order to execute the correction, assembly and link sequence the user has only to enter the
command

EC PROG-DEV
The command processor appends the .EC suffix to PROG-DEV and searches the current
working directory for the resulting file name PROG_DEV.EC. Each command is preceded by
an &Pa directive which causes a typeout to the user-out file informing the user of his
step-by-step progress through the sequence. The &IFa directives following each command line
would cause an exit from the sequence if execution of the command resulted in an error
reported by a non-zero error status code. The &P message after LABELl would be written to
the user-out file, indicating to the user that some error condition has been detected.

Example 2:
Execution of the program 'TEST' created in example 1 above requires the creation of a work
file for use by the program. This file is also to be deleted after the program is finished its
execution. The following EC file, called EX_TEST.EC has been created to perform this
sequence of functions:

&LlEXECUTE PROGRAM 'TEST'
&PaCREATE WORK FILE 'TESTOl'
CF TESTOl -SEQ -SZ 100
&PLlEXECUTE'TEST'
TEST arg 1. . • argn
FD TESTOl
RL TESTOl

GCOS 6 COMMANDS 2-52

/

CB02

EXECUTION COMMAND

&PAEXECUTION OF 'TEST' COMPLETE
&Qd

In this case, the user enters the command
EC EX_TEST

which, in the same manner as in example 1, invokes the EC processor and turns control over to
the sequence of commands and directives contained in the EC file. The work file TEST01 is
created, the program 'TEST' is invoked, supplying any arguments (arg 1 ••• argn) which may
be necessary to its execution, a dump of the work file is requested, and the file is then released
(deleted).

GCOS 6 COMMANDS 2-53 CB02

EXPORT PAM FILE·
I [MOD 400 ONLY]

EXPORT PAM FILE

Command Name: EX_PAM

Copy one or more sequential files to a BESl and BES2 partitioned file.

FORMAT:

EX-PAM path pam [mem)] [-R]

ARGUMENT DESCRIPTION:

path
The pathname of a directory containing one or more files to be exported.

pam
The name of the BESl and BES2 partitioned file to which the sequential files are to be
exported.

[memd
The simple names of one or more files, immediately contained within path, to be copied to
the partitioned file as members. If not specified, all files within path are copied.

[-R]
Indicates that if any member named by the memi argument already exists in the file named
by pam, it is to be replaced.

FUNCTION DESCRIPTION:

The EX_PAM command permits the transfer of sequential files contained within the File
System to BESl and BES2 partitioned access method (PAM) files. Each sequential file, when
copied to the PAM file, becomes a member in the PAM file, and has its name entered into the
member index portion of the PAM file.

The path argument names the File System directory which immediately contains the files to
be transferred; i.e., if the named directory contains subdirectories which themselves contain
files, these latter files are not affected by the EX-P AM command. If no memi arguments are
given, each file which is immediately subordinate to the directory named in the path argument
is transferred. The pam argument names the BESl and BES2 partitioned file which is to
contain the transferred files. This file must have been previously created as a BES Y2 offline
activity. Three steps are involved in the creation of this file.

1. The volume which is to contain the PAM file can be initialized using the Initialize
function of Utility Set 1 or can be created by GCOS 6. (If the volume has already been
initialized and the file is to be added to the volume, this step is omitted.)

2. The file must be allocated using the Allocate function of Utility Set 1. Sufficient sectors
must be allocated to contain the expected files and the accompanying member index.

3. The file allocated in step 2 must be initialized as a partitioned file using the Initialize
function of Utility Set 1. The number of members specified must be large enough to
accommodate the expected number of transferred files.

The user can refer to the BES2 Utility Programs manual (Order Number AU 4 7) for full details
regarding the allocation and initialization of partitioned fiies.

Because ofthe eight-character limit in the length of a BESl and BES2 partitioned file member
name, the first eight characters of each file to be transferred must be unique. File names longer
than eight characters are truncated to eight characters.

Example:

EX-PAM MYDIR 'BESVOL>BESFIL FILEA FILEB FILEC

Three files contained in the directory MYDIR are to be transferred to the partitioned file
BESVOL>BESFIL. The files, FILE A, FILEB, and FILEC, are sequential files and are added
as members to the previously created PAM file as new members.

GCOS 6 COMMANDS 2-54

"'-.. ./

CB02

('

FILE CHANGE
[MOD 400 ONLY] I

FILE CHANGE

Command Name: FC

Change the contents of a disk sector or control interval.

FORMAT:

FC path

ARGUMENT DESCRIPTION:

path
Pathname of the file whose contents are to be changed. A peripheral device pathname
indicates that sectors are to be changed. A file pathname indicates control intervals are to be
changed.

FUNCTION DESCRIPTION:

The FC command is used to modify a file in accordance with directives submitted to the FC
processor. A complete description of the FC directives and the file change function is presented
in Appendix C.

GCOS 6 COMMANDS 2-55 CB02

FILE DUMP

FILE DUMP

Command Name: FD

Transfer the contents of the specified area of a disk or magnetic tape volume to the user-out
file.

FORMAT:

FD path [ctl_arg]

ARGUMENT DESCRIPTION:

path
The pathname of the file or volume whose contents are to be dumped. The form of the
pathname to dump a volume is

>SPD>dev~ame[>vol_id]

If the vol~d is specified, the volume name is verified. To dump a file, a simple, relative, or
absolute pathname may be used.

[ctl_arg]
One or more control arguments chosen from the following list:

{-FROM xx}
-FM xx

The dump starts with record xx which can be a decimal number or a hexadecimal number
in the form X'hhhhh', where 'hhhhh' represents up to five hexadecimal digits.

{-LIMIT nn} (
-LI nn

Dump the number of records specified by nn. If end of file is encountered before nn records '", /
are dumped, the dump terminates at end of file, nn can be a decimal number or a
hexadecimal number in the form X'hhhhh', where 'hhhhh' represents up to five hexadec-
imal digits.

-CI
The dump is to be taken at the control interval level. If the path argument specifies a
magnetic tape file or volume, the dump is taken at the physical block level. 7-track
magnetic tape is only dumped in -CI mode.

-NWD
A magnetic tape volume is not to be rewound before opening it for the dump. This
argument is valid only if -CI is also specified.

-BACK nn
A magnetic tape volume is to be backspaced nn blocks before dumping. This argument is
valid only if -CI is also specified.

-HEX
Print only the hexadecimal representation of the file or volume content.

-ALPHA
Print only the ASCII representation of the file or volume content.

-OCTAL
Applicable only to 7-track magnetic tape. Print each frame from the tape as two octal
characters.

-PACK
Applicable only to 7-track magnetic tape. File dump is to read the magnetic tape in 664
(packed) mode.

GCOS 6 COMMANDS 2-56

/ '-,

CB02

FILE DUMP

Note:
If no -HEX, -ALPHA, or -OCTAL argument is specified, hexadecimal and ASCII
output will be printed.

FUNCTION DESCRIPTION:

The FILE DUMP command permits the user to obtain a printed listing of a disk or magnetic
tape file or volume. The maximum number of characters of pathname that will appear on a
heading depends on the number of options that appear on the header. Whether a file or a
volume is to be dumped is determined by the form of the path argument. A disk file dump can
be obtained by using any of the acceptable forms of a pathname. A disk volume dump or a
dump of a magnetic tape file or volume is obtained by specifying the pathname in the form

>SPD>dev_name[>voLid]
The dev-.-name portion of the path argument is the symbolic device name assigned at system
building. The vol_id portion, if used, specifies that the volume name is to be verified before
initiating the dump.

The output from the FD command is written to whatever file or device is currently assigned as
the user-out file. For 7-track tape files, the entire contents of the tape are dumped (i.e., a
physical dump occurs) subject to the -FROM and -LI argument values.

Example 1:
FD MYFILE

A user file named MYFILE is to be dumped in its entirety. The output is written in both
hexadecimal and ASCII representation.

Example 2:
FD >SPD>MTU01 -NWD -BACK 5 -LIMIT 10 -CI

A portion of a magnetic tape volume is to be dumped. The volume is that defined at system
building as MTUOl. Ten physical blocks are to be dumped after backspacing the tape five
blocks. The -NWD argument is used to prevent rewinding of the tape, and, in conjunction with
the -BACK and -LIMIT arguments, effectively causes a dump of five blocks on either side of the
tape's current position.

GCOS 6 COMMANDS 2-57 CB02

FILE ouT

FILE OUT

Command Name: FO

Change the destination to which user output is sent.

FORMAT:

FO [path]

ARGUMENT DESCRIPTION:

[path]
The name of the new user-out file. If this argument is omitted, the user-out file reverts to
that established at task group initiation.

FUNCTION DESCRIPTION:

The FILE OUT command defines a new device or file to which user output generated by a task
is written. The file or device is reserved with exclusive concurrency except that the operator
terminal is reserved with shared read/write access.· When a task group is initiated, the file
which is to receive this output is established by the -OUT control argument of the ENTER
GROUP REQUEST, ENTER BATCH REQUEST, or SPAWN GROUP command. Error output
is also written to the same file. The FO command makes it possible for a series of group
requests to write their output information to separate files or devices. It does not affect the
destination of error output; this is always written to the originally defined file. The user of the
FO command with no argument resets the destination of user output to that of error output as
defined in the EGR, SG, or EBR command.

Example:
FO REPORT_OUT

The output generated by the issuing task is to be redirected to a file named REPORT_OUT in
the working directory.

GCOS 6 COMMANDS 2-58 CB02

~ -
/

(-

FORTRAN
•

FORTRAN
Command Name: FORTRAN

Compile the FORTRAN source program unit represented by the indicated file name, applying
the specified compilation options.

FORMAT:
FORTRAN path [ctl_arg]

ARGUMENT DESCRIPTION:
path

Pathname of the source unit file to be compiled. Omit the suffix (.F).
[ctl_arg]

None or any number of the following control arguments can be entered, in any order.
-AS

Output is assembly language text contained in the file path. A. This file can be used with
the -SAF option as input to the Assembler. Modifications may be required to assemble the
file with the -LAF option (see the Assembly Language manual).

-COUT out_path
Listing will be written to the file out_path; a suffix is not appended to the file name. If
this argument is omitted, the listing will be written to the file path.L in the working
directory.

-FS
The compiler will not define the size of the work area when compiling a subroutine, nor
will it cause the implicit initialization of the work area when the subroutine is executed.
See note 3, below.

-HS
The source unit comprises Hollerith code or the source unit was created using a Series
200/2000 or Model 716 Central Processor.

{-LIST -.-ERRS}
-LE

Specifies that only those source lines containing compilation errors, together with their
error codes, are to be listed.

Default: If omitted, and -NL is not specified, the complete source program is listed,
including error codes, if any.

{-LIST_OBJ}
-LO

List object output. Object text listings in assembly language format will be interspersed
with source text listings.

Default: Object text is not listed.
Note:

This argument is not meaningful when used with the -AS argument.

{-NO_LIST}
-NL

Suppress all listings.

Default: If omitted and -LE (or -LIST-.-ERRS) is not specified, the complete source
program is listed, including error codes (if any).

{-NO_OBJ}
-NO

Suppress generation of the object text unit. (This option should not be used with the -AS
argument.)

Default: If omitted and -AS is not specified, an object text unit is produced as file path.O.

GCOS 6 COMMANDS 2-59

I

I

CB02

FORTRAN
•

-SI
One word is allocated for each integer and logical variable (short integer and logical
variables).

Default: Two words are allocated for each integer and logical variable.

Note:
This argument affects space allocation only. The range of integer and logical
variables is the same regardless of whether the argument is specified.

{-SIZE nn}
-SZ nn

nn designates the maximum number of 1024-word blocks of memory that the compiler
can use for tables. If the requested amount of memory is not available, the compiler will
use the available amount of memory.

Default: One block (l024 words).

-UC
Suppress generation of embedded links to any subroutines referenced by a CALL state­
ment, and functions other than intrinsic functions.

-UZ
Suppress generation of embedded links to system subroutines (i.e., all subroutines begin­
ning with the letters ZF).

-WRKn
Establishes the size in words of the object me workspace for FORTRAN programs; n
specifies the number of words and must be a 1- to 4-digit decimal number from 1 through
9999. See Note 3 below.

Default: 356 words.

{-LAF}
-LA

Specifies that long address form (LAF) object text is to be generated.

Default: Short address form (SAF) object text is generated.

Note:
This argument is not meaningful when used with the -AS argument,

FUNCTION DESCRIPTION:

The FORTRAN command is used to invoke the FORTRAN Compiler component.

The path argument can assume any of the acceptable forms of a pathname, although normally
it would be a simple name, indicating that a source program unit which resides in the working
directory is to be compiled. Wherever it exists, it must be suffixed with a .F suffix, indicating
that it is a FORTRAN language source unit. The path argument must be given without the .F
suffix; the compiler appends the suffix prior to searching the directory for the source unit.

If the -COUT control argument is not specified, the source and object listings (if specified) are
written to a file created by the compiler in the working directory; having a file name of the
form path.L, the path portion being the last (or only) element specified in the path argument.
This file can be subsequently listed on a line printer by using the PRINT utility command. If a
different file is specified by using the -COUT argument, the listings are written to the file
whose pathname is ouLpath. The compiler does not append an .L suffix.

The object text unit generated by the compiler is written to a file whose name is of the form
path.O, and is contained in the working directory.

If files ofthe form path.L and path.O already exist in the working directory, they are overlaid
by the output generated by the current compilation.

GCOS 6 COMMANDS 2-60 CB02

(

('

FORTRAN

Notes:
1. Either LO or NL may be specified, but not both. If neither is specified, the

compiler produces a listing of the source text and diagnostics.
2. The FORTRAN Compiler always issues a typeout, of the number of errors

found, to the error-out file.
3. Most FORTRAN programs call input/output routines and intrinsic functions,

the majority of which utilize a workspace. Prior to the invocation of anyone of
these modules (routines or functions) the workspace must be initialized. The
FORTRAN compiler automatically generates a workspace declaration and the
prologue code for initialization of the workspace in each main program and each
subprogram for which the -FS argument is not specified (the -FS argument is
ignored if specified for a main program). Use of the -FS argument implies that
the subprogram either does not need the workspace or depends upon another
program to declare and initialize the workspace.
To avoid execution time errors involving use of the workspace, the declarations
of modules linked together in a bound unit must be identical. Therefore, if you
want to create general purpose subroutines to be used in applications which
require workspace areas of various sizes, you should compile the subroutines
with the -FS argument.
In some applications, variations in the workspace size may be necessary to
increase or decrease the default imput/output buffer space of 128 words. The
-WRK argment is used to make this modification. For details, refer to the
FORTRAN Reference manual.

4. The compiler is designed for batch compilations. That is, many source modules
can be passed to the compiler under one file name and each source module will
be compiled separately. The compiler expects an END statement in each source
module, followed be either an end-file or a new source module. In addition, the
SI, WRK, FS and HS arguments can be passed to the compiler as part of the
source module, rather than as arguments of the FORTRAN command. Argu­
ments specified in the FORTRAN command apply to all source modules in the
batch. Including these arguments in the source module permits them to be
varied on a module-by-module basis. To include these arguments in a source
module, enter each as a ::;pecial comment immediately following the PRO­
GRAM, SUBROUTINE or FUNCTION statement for the module. The general
form is:

Example:

For example,

lSI
C*OPT = WRK = n

FS
HS

C*OPT = WRK = 400

Note that the work area size argument requires an equals(=) sign when it is
specified as part of a source module. More than one argument can be specified,
but each requires a separate comment line.

FORTRAN FTPROG -LIST_OBJ -SI -COUT >SPD>LPT01
A FORTRAN source program, FTPROG.F, residing in the working directory, is to be compiled.
The source and error listings are to be written to the printer LPT01, and the object text unit is
to be written to the file FTPROG.O in the working directory. Short-form integer and logical
variables are to be generated.

GCOS 6 COMMANDS 2-61 CB02

GET· FILE

GET FILE

Command Name: GET

Reserve a file (Le., a tape or disk file, a disk directory, a card reader, a printer, or a terminal
device). Establish an association between the reserved file and a logical file number (LFN) if
such an association has not already been established.

FORMAT:

Format 1 (Disk Files):
GET [path] [Ifn] [disk file ctl_arg]

Format 2 (Labeled Tapes, Card Readers, Printers, and Terminal Devices):
GET [path] [Ifn]

Format 3 (Unlabeled and Output Tape Files):
GET [path] [Ifn] [unlabeled/output tape file ctl_arg]

Format 4 <Disk Directories):
GET [path] [Ifn] [disk directory ctl_arg]

ARGUMENT DESCRIPTION:

path
Pathname of the file being reserved; can be any valid file- or device-level access pathname.
This argument is not required if the lfn argument is supplied and a relationship between
path and lfn has been established previously.

lfn
Logical file number (LFN) by which the file is to be referenced during access. When
supplied, the lfn argument must be a decimal value in the range 0 through 255. Within a
task group, an LFN can be used to access only one pathname at a time.

disk file ctl_arg
Any, all, or none of the following may be specified in any order:

-MOUNT
Specifies that a mount request should be displayed on the operator terminal if the
required volume is not mounted. If this argument is not specified, and the file or volume is
not mounted, a 020C (volume not found) message will be displayed.

-NBF n
Specifies the number of buffers to be allocated for I/O when the file is opened for access.
This argument applies only to disk files and volumes that are accessed at the record level.
The default is one buffer for files whose organization is other than indexed sequential and
two buffers for indexed sequential files.

-LOCK
Indicates that record locking is to be performed when this file is accessed. A 022E (record
lock concurrency conflict) message is issued if the file is already in use without locking,
and reservation is denied. Once a file is reserved with locking, it cannot be reserved by
another user unless this argument is specified.

-LRSZ n
Specifies the logical record size (in bytes) for fixed-relative files without deletable records;
n is a decimal number from 0 through 65535. The default is the value specified when the
file was created.

-ACCESS {~} .
Specifies the desired file access concurrency (i.e., how the task group intends to access the

GCOS 6 COMMANDS 2-62 CB02

GET FILE

file and in what way it is willing to share access to the file with other task groups). None,
one, or both of the following keywords can be specified.

-ACCESS {~}
Indicates how the task group intends to access the file. R mans read access; W means
both read and write access. If the keyword is omitted, or if only the keyword is specified
(R or W omitted), the default is W.

-SHARE {~J
Indicates how the task group is willing to share the file (i.e., what it will allow other
users in other task groups to do concurrently). R means read access only; W means
both read and write access; N means neither read nor write access. If the keyword is
omitted, or if only the keyword is specified (R, W, or N omitted), the default value is R.

unlabeled/output tape file ctl_arg
Any, all, or none of the following may be specified, in any order:

-FSN {~}
Provides the tape file sequence number that indicates the relative position of an existing
file on an ANSI tape volume. The value of n can be any decimal number from 1 through
254, specifying the relative position of the file on the volume. If -FSN * is specified, the
entire volume is searched for the file. The default condition is that the desired file is next
on the volume, relative to the current position of the volume.

-BKSZ n
Specifies the block size (in bytes). For files with fixed length records, n is a multiple of the
record size plus the 6-character binary block sequence number (if specified). For files with
variable length records, the block size can be any value, but should be at least as large as
the maximum record size plus the 4-character logical record header and the 6-character
binary sequence number (if specified). n is a decimal number in the range 0 through
65535. Computation of the default value depends on the -LRSZ, -TDF, and -BSN argu­
ment values. See Figure 2-2.

-LRSZ n
Specifies the logical record size (in bytes). For files with variable length records, this is
the maximum record size. This value does not include the 4-byte logical record header; it
includes only the data portion ofthe record. n is a decimal number in the range 0 through
65535. Computation of the default value depends on the -BKSZ, -TDF, and -BSN argu­
ment values. See Figure 2-2.

-TLF fmt
Indicates the tape label format. The value for fmt must be one of the following:

STD - Standard labels
NONE - Unlabeled

The default value is STD.

-TDT type
Indicates the tape data type. The value for type must be one of the following:

ANSI - ANSI level 3
H - Honeywell

The default value is ANSI.

-TDF fmt
Indicates the tape data format. The value for fmt must be one of the following:

GCOS 6 COMMANDS 2-63 CB02

GET FILE

F - Fixed length records
D - Variable length records (decimal size count)
U - Undefined records

The default value is D.

-BSN
Indicates that each block on the tape has a 6-character block sequence number in the first
six characters of the block. For input, a block sequence number is assumed to be present.
For output, a block sequence number will be inserted. If this argument is omitted, block
sequence numbers are neither expected when reading nor inserted when writing.

-TRP n
Indicates the tape retention period in days. n is a decimal value from 0 through 65535.

The default value is 0, meaning no retention period.
disk directory ctl_arg

Both of the following may be specified; -SHARE N must be specified.

-MOUNT
Specifies that a mount request should be displayed on the operator terminal if the
required volume is not mounted. If this argument is not specified, and the file or volume is
not mounted, a 020C (volume not found) message will be displayed.

-SHARE N
Users in other task groups have neither read nor write access to this directory.

FUNCTION DESCRIPTION:

The GET command is used to reserve a tape file, disk file, disk directory, card reader, printer,
or terminal device. The reservation is made at the task group level. The GET command stays
in force until negated by a REMOVE command. Get File ($GTFIL) and Remove File ($RMFIL)
macro calls that are executed by programs run during the period in which the GET command
is in force do not affect the conditions established by the GET command.

If a file is referred to by more than one LFN, a GET command is required for each LFN. A GET
command can be used to change attributes established by a previous GET command for the
same LFN, provided the file is not currently opened in the same task group from which the
GET is issued. Establishment of all reservation attributes must precede the opening of the file.

If an LFN is not supplied, the pathname is reserved for the task group. The LFN must be
supplied by a Get File ($GTFIL) macro call issued by the task that will access the file.

If the volume id portion (root) of the pathname identifies a volume that is mounted, but a
subordinate directory (or the file name itself) is not found on the volume, a 0209 (named file or
directory not found) message is displayed, regardless of the specification of the -MOUNT
argument.

If an operator terminal is not included in the system, or if messages to the operator terminal
have been suppressed (through a $CMSUP macro call), a GET command issued to reserve a
volume that is not mounted results in the display of a 020C (volume not mounted) message on
the user terminal.

By increasing the number of buffers, I/O time can be significantly reduced for a file being
accessed randomly. When accessing a record of a file, the File System first checks all buffers
allocated for the file to determine whether the desired record is already in memory.

The record lock facility requires added effort on the part of the user when programs that share
files are constructed. The -LOCK argument alone is not sufficient to guarantee interference
protection. For a more detailed discussion of record locking, refer to the $GTFIL and $ULREC
macro calls in the System Service Macro Calls manual.
The -LOCK argument allows the user to initiate multiuser interference protection mecha­
nisms for shared file access. When more than one user (task group) shares access to a file, or

GCOS 6 COMMANDS 2-64 CB02

GET FILE

when cooperating tasks within a task group share access to a file, the task groups and tasks
can be protected from interferring with one another when they attempt to access the same area
of the file.

Lock requests are valid only for disk resident files. Directories and device files cannot be
reserved with lock. Files reserved with lock can only be opened for access at the record level.

If the user who first reserves the file requests locking, all subsequent reservations of the file
must also request locking. If the user who first reserves the file does not request locking, no
subsequent reservation of the file can request locking unless the concurrent access option
specifies read access only, with read/write sharing (-ACCESS R -SHARE W). The user who
makes this specification can read the file but cannot write into it. Further, no data integrity is
guaranteed for his read operations.

The -ACCESS and -SHARE arguments are indicators of how the user will access the file and to
what degree he will allow others to share the file concurrently. The concurrency arguments are
more explicitly described below.

Argument Meaning
-ACCESS R I will read only
-ACCESS W
-SHARE R
-SHARE W
-SHARE N
Omitted

I will read and write
Others can read only
Others can read and write
Others can neither read nor write
If the file is already reserved, the last
concurrency specified is used. If the
file is not already reserved, -ACCESS W
-SHARE N is used.

Although there are a number of combinations of the concurrency arguments, some of which
produce identical results, the forms shown below describe all concurrent access possibilities.

Argurnent(s) Meaning
-ACCESS R I will read; others can read; no one can write
-ACCESS R -SHARE W
-SHARE N
-ACCESS
-SHARE
Omitted

I will read; others can read and write
I will read and write; others can do nothing
I will read and write; others can only read
I will read and write; others can read and write
If the file is already reserved, the last
concurrency specified is used. If the file
is not already reserved, -ACCESS W -SHARE N is used.

If a directory is reserved exclusively (i.e., with the -SHARE N argument), all subdirectories
and files inferior to the directory are held exclusively. For example, GET' volid -SHARE N
reserves the entire volume for exclusive use by the requesting task group.

The concurrency arguments do not apply to disk volume (device-level) reservations. If the
pathname is of of the form >SPD>dev_name>volid, the reservation is performed as though
-ACCESS R -SHARE W had been specified. If the pathname is ofthe form >SPD>dev--.-name,
the reservation is performed as though -SHARE N had been specified.

The concurrency arguments do not apply to tape file or volume reservation. Regardless of the
pathname form used, the reservation of tapes is always performed as though -SHARE N had
been specified.

With the exception of -FSN, tape-specific arguments apply only if the tape is being opened (see
the $OPFIL macro call in the System Service Macro Calls manual) in RENEW mode or the file
is unlabeled. (In these cases, there- are no -labels.) If labels are present and the file is opened in
PRESERVE mode, the label contents override the arguments supplied in the GET command.

GCOS 6 COMMANDS 2-65 CB02

GET FILE

When a tape file name is specified, an existing file is to be opened; the file name is checked in
the following manner:

• If the -FSN argument is not specified, the File System checks the next file on the volume
for a matching file name.

• If the -FSN argument is specified in the form -FSN n (where n is a decimal number from 1
through 254), the File System checks the nth file on the volume for a matching file name.

Note:
When the -FSN n argument is specified, the tape volume is positioned to the nth file
before the file name is checked.

• If the -FSN argument is specified in the form -FSN *, the File System checks all files on
the tape for a matching file name, beginning at the current position of the volume.

The maximum file name length is 12 characters.

For tape files, the default block size (-BKSZ) and logical record size (-LRSZ) are computed as
shown in Figure 2-2. When the block and record sizes are supplied, they are checked for
validity as shown in Figure 2-3.

Example 1:
GET A BOOKS>FILEB 22 -MOUNT -NBF 2 -ACCESS W -SHARE N

The file whose pathname is 'BOOKS> FILEB is reserved and associated to logical file number
22. If the volume is not mounted, a mount message is issued. Two buffers are allocated. All
tasks in this task group have read and write access; tasks in other task groups cannot share
the file. Therefore, if the file is already reserved for another task group, reservation will be
denied. Otherwise, the file is reserved and reservation requests by any other task group will be
denied.

Example 2:
GET. BOOKS>FILEB -SHARE W -LOCK

The file whose pathname is A BOOKS> FILEB is reserved. The pathname and an LFN have
previously been associated. Tasks in this task group have the default read/write access; tasks
in other task groups may also be granted read or write access. Record locking is in effect for
access to this file. If this is the first request for the file, no other task group or task in this group
can reserve the file unless it specifies -LOCK. If the file is already reserved without -LOCK
having been specified, this request will be denied.

Example 3:
GET A BOOKS> FILEB 30

The file whose pathname is A BOOKS>FILEB and logical file number 30 are associated. If this
file reservation follows a previous reservation, with the same pathname, the reservation
options do not change. If this file is being reserved for the first time, it can be read from or
written to in this task group, but it is not shared by other task groups.

Example 4:
GET >SPD> DSK03> VOL001 12

A disk volume whose pathname is >SPD> DSK03> VOL001 is reserved and associated with
logical file number 12. The disk volume can be read by this task group and can be read from or
written to by other task groups.

Example 5:
GET,>SPD>MT902>VOL3>FILE_2 -FSN * -BKSZ 326 -LRSZ 80 -TDF F -BSN

The magnetic tape file whose pathname is >SPD>MT902>VOL3>FILE_2 is reserved. The
entire tape volume is to be searched for FILE_2. FILE-Z is a fixed length sequential file
whose block size is 320; the value 326 is specified for -BKSZ since the tape has a block sequence
number (-BSN). The logical record size is 80; there are 4 records per block. The tape has
standard labels; its data type is ANSI; and its data format is fixed length records.

GCOS 6 COMMANDS 2-66 CB02

BKSZ NOT SPECIFIED

LRSZ NOT SPECIFIED

YES

BSN
YES

NO

BKSZ = n

GCOS 6 COMMANDS

BKSZ NOT SPECIFIED

LRSZ SPECIFIED

BKSZ SPECIFIED

LRSZ NOT SPECIFIED

NO

LRSZ = n

Figure 2-2. Default Block and Logical Record Size
Calculation

BKSZ SPECIFIED

LRSZ SPECIFIED

>-=-Y-=E=-S_~ ERR OR

OK

ERROR

'>--'" ERROR

Figure 2-3. Block and Logical Record Size Validity
Checking

2-67

GET FILE

ERROR

ERROR

CB02

IMPORT PAM FILE
I [MOD 400 ONL YJ

IMPORT PAM FILE

Command Name: 1M_PAM

Transfer one or more BESl and BES2 partitioned file members to the File System.

FORMAT:

I~PAM pam path [memJ ... [-RJ

ARGUMENT DESCRIPTION:

pam
The name of the BESl and BES2 partitioned file from which members are to be transferred.

path
The name of a directory into which the BESl and BES2 file members are to be transferred.

[memj]
The names of one or more partitioned file members which are to be tra.nsferred to the File
System.

[-RJ
Indicates that if a file named by a mem! argument already exists in the directory named by
path, it is to be replaced.

FUNCTION DESCRIPTION:

The I~PAM command permits the transfer of one or more BESl and BES2 partitioned
access (PAM) file members into the File System. A PAM file member, when transferred,
becomes a variable sequential file contained within the directory specified by the path argu­
ment.

The pam argument names the PAM file which contains the members to be transferred and
has the format' volid>partitionedJle-Ilame. The file has been previously created using
BESl and BES2 offline procedures.

The path argument names the File System directory which is to contain the files transferred to
it. It must have been previously created through the use of the CREATE DIRECTORY
command.

Each of the mem! arguments, if any are specified, names a member of the PAM file, specified by
the pam argument, which is to be transferred to the File System. If no mem! arguments are
specified, every member contained in the file is transferred and becomes a sequential file.

If the -R control argument is not specified, and if a GCOS 6 file whose name is specified by a
mem! argument already exists in the file system, an error message is issued.

Example:
1M_PAM 'BESVOL>BESFIL MYDIR MEMOl MEM02 MEM03 -R

Three PAM file members, MEMOl, MEM02, and MEM03, contained in the partitioned file
'BESVOL>BESFIL, are to be transferred into the File System directory MYDIR. If the file
system already contains any files whose names are the same as those of the specified members,
they are to be replaced.

GCOS 6 COMMANDS 2-68 CB02

INVOKE RBT TASK GROUP /ISL CONFIGURATOR

INVOKE RBT TASK GROUP

Command Name: RBT

Invoke a remote batch terminal (RBT) task group and associate it with a logical stream.

FORMAT:

RBT lrn
ARGUMENT DESCRIPTION:

lrn
The logical resource number (defined at system building) that specifies the stream to be used
for remote batch operations.

FUNCTION DESCRIPTION:

See the System Building manual for further details on the use of this command. A complete
description of remote batch operations is given in the Remote Batch Facility User's Guide.

ISL CONFIGURA TOR [MOD 400 ONLY]

Command Name: ISLCON

Generate an ISL loader to load Intersystem Link (ISL) address maps and masks.

FORMAT:

ISLCON path [{~~!~}J

ARGUMENT DESCRIPTION:

path
The pathname of the volume for which the loader file is to be written.
For SAF mode, pathname is • volume_name>ISL-ROUTINES.
For LAF mode, pathname is' volume_name>ISL_ROUTINEL.

FUNCTION DESCRIPTION:

The ISLCON command is used to invoke the ISL Configurator which obtains ISL configuration
directives from the user-in file. It generates an executable loader program that will load ISL
address maps and masks during ISL configuration. The ISL loader is written to the file
specified in the "path" argument. A description of the ISL directives is contained in Appendix
B of this Manual.

Example:
ISLCON • V20022 -SAF

The ISL loader is to be built. ISL configuration directives are obtained from the user input file
and written to the file' V20022> ISL-ROUTINES.

GCOS 6 COMMANDS 2-69

I

CB02

LINKER

I

I

I

I

LINKER
Command Name: LINKER
Create a bound unit from one or more object text units, applying the specified options.

FORMAT:
LINKER name [ctl_arg]

ARGUMENT DESCRIPTION:
name

Pathname ofthe created bound unit file. The pathname can be a simple, relative or absolute
name. If the specified file already exists, it is overlaid with the new bound unit.

[ctl_arg]
One or more control arguments chosen from the following list:

-IN path
Specifies the pathname of the file containing the linker directives. The file can be read
from a disk device, a card reader, or a terminal device. If not specified, the file named in
the ilL.-path argument of this task group's EGR, SG, or EBR command is used.

-COUT out_path
This argument is available for use only when processing under Mod 400 operating
system software.
Specifies the name of the file to which the map listing will be written. The map listing can
be written to a disk device, a printer, or a terminal device. If this argument is not
specified, the listing is written to the file name.M in the same directory as the output file,
overlaying any existing file by that name.

l-SAF}
-LAF
-SLIC

When processing under Mod 600 operating system software, the bound unit always
executes in LAF mode.
Indicates the addressing mode in which the bound unit is to execute. -SAF indicates short
(I-word address form); -LAF indicates long (2-word address form); -SLIC indicates the
bound unit is to be capable of executing in both SAF and LAF mode.

I-SIZE nn}
-sz nn

This argument is available for use only when processing under Mod 400 operating
system software.
Designates the maximum number of 1024-word memory modules available for the
Linker symbol table; nn must be from 01 through 32. If this argument is not specified,

-VERBOSE
All directives are output to the list file.

-NOMAP
Suppresses the generation of the list file.

-PT
Prompt character requested. If this argument is omitted, no prompt character is given.

-W

-R

Work files are not to be deleted. If this argument is omitted, work files are deleted when
no longer required.

Code and data are to be segmented. If this argument is omitted, no segmenting of code
and data is performed.

FUNCTION DESCRIPTION:
A complete description of the Linker is provided in the Program Execution and Checkout
manual.

GCOS 6 COMMANDS 2-70

j

CB02

(

(/:

LIST ACCESS CONTROL LIST

LIST ACCESS CONTROL LIST

List entries on access control list of a file or directory.

Command Name:{t~T_ACL}
FORMAT:

{t~T_ACL} [path] [user_id] [ctl_arg]

ARGUMENT DESCRIPTION:

path
Specifies the pathname ofa file or directory. If this argument is omitted or if -WD is entered,
the working directory is specified. If it is omitted, user_id cannot be specified.

user_id
Specifies an access control name that must be of the form person. account. mode. All ACL
entries with matching names are listed. (For a description of the matching strategy, refer to
the SET_ACL command.) If user_id is omitted, the user's person.account.* is used.

ctl_arg
One or more control arguments from the following list.

-A
-ALL
Causes the entire ACL to be listed. Ifuser_id is omitted, -A or -ALL need not be specified. If
user_id is specified and -A or -ALL is also specified, the entire ACL is listed.

-BF
-BRIEF
Suppresses the message A"USER NAME NOT ON ACL"

FUNCTION DESCRIPTION:

The LIST_ACL command causes the entries on the access control list (ACL) of a file or
directory to be listed. To use the command, the user must have list access to the directory
containing the ACL.

If the command is invoked with no arguments, the entire ACL on the working directory is
listed.

If user_id is specified (and -A or -ALL is not), the ACL entries that match the access control
name are listed.

Example:

LIST_ACL SYSOl>UDD>PROJl>FILEAA

The entire ACL contained on FILEAA is listed.

GCOS 6 COMMANDS 2-71 CB02

LIST COMMON ACCESS CONTROL LIST

LIST COMMON ACCESS CONTROL LIST

Command Name{t~S~_CACL}
List the entries on the common access control list (CACL) in the specified directory.

FORMAT:

ARGUMENT DESCRIPTION:

path
Pathname of the directory containing the CACL entries. If this argument is -WD, or if this
argument is omitted, the working directory is used. If the argument is omitted, user_id
cannot be specified.

user_id
An access control name having the following format:

person. account. mode

All CACL entries with matching names are listed. If user_id is omitted, all CACL entries
are listed.

[ctl_arg]
The following optional control arguments can be chosen:

Causes all entries on the requested CACL to be listed. If user_id is omitted, this
argument is redundant; if both are specified, this argument overrides user_id.

{-DIR }
-DIRECTORY

Specifies that directory CACL entries are to be listed. If -FILE (see below) is also
specified, both file and directory CACL entries are listed. If neither -DIR nor -FILE is
specified, all CACL entries are listed.

-FILE
Specifies that file CACL entries are to be listed. If -DIR is also specified, both file and
directory CACL entries are listed. If neither -DIR nor -FILE is specified, all CACL
entries are listed.

{-BF }
-BRIEF

Suppresses the message "USER NAME NOT ON CACL"

FUNCTION DESCRIPTION:

The LIST COMMON ACCESS CONTROL LIST command causes the entries on the common
access control list (CACL) in the specified directory to be listed. Directory CACL entries, file
CACL entries, or both, can be listed. The user must have list access to the directory referred to
by path.

Ifthis command is invoked with no arguments, all CACL entries on the working directory are
listed.

GCOS 6 COMMANDS 2-72 CB02

c

LIST COMMON ACCESS CONTROL LIST

Ifuser_id is specified (and -A or -ALL is not), the CACL entries that match the access control
name are listed. An explanation of the way in which names are matched is given in the
description of the SET_ACL command.

Example:

LIST_CACL -WD JONES.INTFIN.* -DIR

The directory CACL entries in the working directory that have JONES as the person,
INTFIN as the account and any value as the mode are listed.

GCOS 6 COMMANDS 2-73 CB02

LIST CREATION DATE

LIST CREATION DATE

Command Name: LCD

List the creation date of a named file or of selected files in a named directory.

FORMAT:

LCD path
ARGUMENT DESCRIPTION:

path
Pathname of file or directory. The pathname can be absolute or can be relative to the
working directory. This argument can also be a star name designating a group of files (see
Section 1).

FUNCTION DESCRIPTION:

The LCD command is used to list the creation dates of source files, object files, list files, and
bound units. The command is applicable only to files with creation dates. If the path argument
refers to a directory, only those files with creation dates will be listed.

The information provided by the LCD command depends on the type of file, as follows:

Type of File Information Listed
Source
Object

List

Bound unit

Examples:
LCD ALPHA.A

Revision operand and comment line from TITLE statement
Address mode, revision operand, assembly date/time, and Assembler
identification
Address mode, revision operand, assembly date/time, and Assembler
identification
Creation date/time and address mode

List the creation date of the assembly language source file ALPHA.
LCD >UDD>JOHNXl>PROGl

List the creation date of the bound unit PROG l.
LCD 'VOLOl>UDD>CALDERA

List the creation dates of all files contained in directory CALDERA that have creation dates
LCD **

List the creation dates of all files contained in the working directory that have creation dates.
LCD *.0

List the creation dates of all object files in the working directory.

GCOS 6 COMMANDS 2-74

/

CB02

(/

LIST DATA EXCHANGE (IBM)

LIST DATA EXCHANGE (IBM)

Command Name: LSDE

List by file name the contents of an IBM diskette.

FORMAT:

LSDE [ctl_arg]

ARGUMENT DESCRIPTION:

[ctl_arg]
Arguments accompanying the LSDE command are listed below.

-PN
Define the directory from which the entries are to be listed. Only one path name may/need
be specified since an IBM diskette has only one directory. -PN is followed by the pathname.
Note:

-PN must be present when a path name is included and must be followed by that
pathname. In the case of LSDE the path cannot be defaulted, and it must be of the
form:

>SPD> DKSxx>volid>data_set_name
-BF

Print only a brief list of the contents of the specified diskette.

-DTL
Print a detailed list of contents of the specified diskette.

Note:
If neither the -BF nor the -DTL arguments are specified, a normal listing is printed
(see examples).

FUNCTION DESCRIPTION:

The purpose of the LSDE command is to make it possible to list, by file name, the files
contained on a 3740-like diskette. Having only a single directory, the entire contents of the
volume can be listed with the path name specified only once.

EXAMPLES:l

(Normal List)
VOLUME: xxxxxx ... (path of DE volume)
data set name: xxxxxx

boe
xxx xxx

eoe
xxxxxx

I where:
x = a decimal integer

boe = beginning of extent
eoe = end of extent
eod = end of data

type = file type (s= sequential)

eod
xxxxxx

Multi-Vol stipulates whether the file is contained on a single volume or more than one. A value of"s" indicates that
the file is on a single volume. A value of "c" indicates that the file is continued on another volume. A value of "1"
indicates that this is the last volume of a multiple volume file.

"Vol seq" indicates the volume sequence number:

01= first volume
02= second volume

GCOS 6 COMMANDS 2-75 CB02

LIST DATA EXCHANGE (IBM)

data set name: xxxxxx

hoe
xxxxxx

data set name: xxxxxx

hoe
xxxxxx

(Brief List)

eoe
xxxxxx

eoe
xxxxxx

VOLUME: xxxxxx ... (path of DE volume)
data set name: xxxxxx

xxxxxx
xxxxxx

xxxxxx

(Detailed List)
VOLUME: xxxxxx ... (path of DE volume)
data set name: xxxxxx

hoe
xxxxxx

type
x

multi vol
xx

create date
xxxxxx

eoe
xxxxxx

sector size
xxxx

eod
xxxxxx

eod

xxxxxx

eod
xxxxxx

rec size
xxx

vol seq
xx

exp date
xxxxxx

GCOS 6 COMMANDS 2-76

"" .-...-/

CB02

LIST NAMES

LIST NAMES

Command Name: LS

Display the names of one or more elements contained in the specified directory, along with
their types, attributes, and sizes.

FORMAT:

ARGUMENT DESCRIPTION:

[ctl-flrg]
One or more control arguments chosen from the following list:

-PN path
Specifies the directory from which entries are to be listed. If this argument is omitted,
entries contained in the working directory are listed. Can be any valid form of path name;
can use the star name convention (see Section 1).

-FILE
Indicates that only file entries are to be displayed. Ifnone of the control arguments -FILE,
-DIR, or -ALL are specified, -ALL is the default.

-DIR
Indicates that only directory entries (i.e., directories subordinate to the specified direc­
tory path) are to be displayed.

-ALL
Indicates that both file and directory entries subordinate to the specified directory are to
be displayed.

-BRIEF
-BF

List only the name, type and total number of sectors of each entry are to be displayed.

{-DETAIL}
-DTL

Specifies that the file type and attributes of each entry are to be displayed.
[entry_name]
Specifies the name of the entry to be displayed. If this argument is omitted, all entries ofthe
type(s) specified by control arguments are displayed.

FUNCTION DESCRIPTION:
The LIST NAMES command permits the user to obtain a listing of the file and/or directory
entries contained within a given directory. It also displays various attributes of file entries: file
type, starting sector, number of sectors, and record length.

The following list gives the possible file type designators and their meanings.

Type Meaning
R1 BES fixed relative, static allocation, no deletable records.
R2
R4
R5
D
S
R
ID
I

*
GCOS 6 COMMANDS

BES fixed relative, dynamic allocation, no deletable records.
BES fixed relative, static allocation, dele table records.
BES fixed relative, dynamic allocation, deletable records.
Directory.
Variable sequential.
Relative.
Indexed (data area).
Indexed (index area).
Organization not recognized.

2-77 CB02

LIST NAMES

Example 1:
LS -PN ZOOBOO START_UP.EC

List the attributes ofthe file START_UP.EC, contaned in the directory ZOOBOO. The following
display is returned to the user-out file.

DIRECTORY: 'ZOOBOO

ENTRY NAME TYPE
STARTING NUMBER OF RECORD
SECTOR SECTORS LENGTH

S 35A 10 100

Example 2:
LS -DTL -PN 'ZOOBOO XXXXXX

List in detail the file type and attributes of the file XXXXXX contained in the directory
ZOOBOO. The following is written to the user-out file:

STARTING NUMBER OF RECORD
ENTRY NAME TYPE SECTOR SECTORS LENGTH

CRDFILE01 S 24 A 100

CURRENT ALLOCATION MAX
ALLOCATION INCREMENT ALLOCATION
SIZE SIZE

**************** **************** *******************
4 A 0

CI SIZE LOGICAL FREE SPACE
REC SIZE PERCI

**************** **************** *******************
100 100 0

LAST CI LOADED

4

**
Note:

A Maximum Allocation Size of 0 means the file length is unlimited (i.e. physical
limit of the media).
LAST CI LOADED refers to the logical end of data.
Free Space Per CI refers to the percentage of a data control interval (CI) which was
initially left free for later file expansion (i.e. no data was initially loaded into it).

GCOS 6 COMMANDS 2-78 CB02

LIST RESEARCH RULES

LIST SEARCH RULES

Command Name: LSR

Display the search rules currently defined for the issuing task group.

FORMAT:

LSR

ARGUMENT DESCRIPTION:

No arguments are required or permitted with this command.

FUNCTION DESCRIPTION:

The LIST SEARCH RULES command writes to the user-out file the full pathnames of the
directories used by the loader in its search for bound units.

The search rules define three directory pathnames and the sequence in which they are used
during a search. The first of these is the issuing task group's working directory, if specified.
The second is the system directory LIBI. The third is the system directory LIB2. The
pathnames associated with LIBI and LIB2 can be changed by the CHANGE SYSTEM DI­
RECTORY operator command. The pathnames returned by the LSR command always reflect
the current directory pathnames.

Example:
Assume that the issuing task group's initial working directory is ~ SYSVOL, that the pathname
value for LIBI and LIB2 is ~ SYSVOL>SYSLIBl, and that no CWD or CSD commands have
been issued. The LSR command returns:

SYSVOL
SYSVOL>SYSLIBI

~ SYSVOL>SYSLIBI

Assume now that a CSD NEW--DIR -LIB2 command has been executed at some point prior
to the issuing of the LSR command. The LSR command now returns

SYSVOL
SYSVOL>SYSLIBI
SYSVOL> NEW _DIR

Geos 6 COMMANDS 2-79 CB02

LIST WORKING DIRECTORY

LIST WORKING DIRECTORY

Command Name: LWD

List the full pathname of the current working directory.

FORMAT:

LWD

ARGUMENT DESCRIPTION:

No arguments are required or permitted with this command.

FUNCTION DESCRIPTION:

The LIST WORKING DIRECTORY command is used to obtain the full pathname of the
working directory currently being used by the issuing task group. It is useful to be able to
determine the identity of the working directory after having made several changes of working
directories through the use of CHANGE WORKING DIRECTORY commands. The LWD
command causes the full pathname ofthe working directory to be written to the user-out file in
the form

vol_id>dirl' ..
The ellipsis indicates that one or more subordinate levels may be included in the pathname of
the working directory, depending on the nature of previously-issued CWD commands. Also,
again depending on previous CWD commands, the person and/or project entries may not be
included in the path.

Example:
Assume that a task group's initial working directory is 'SYSVOL>UDD>Al>JOE, as estab-
lished at task group initiation. .
A CWD EC_DIR command has been previously issued. The LWD command returns

, SYSVOL>UDD>Al>JOE>EC~IR
If, starting with this working directory, a CWD > command is issued, a subsequent LWD
command would return

, SYSVOL>UDD>Al>JOE

GCOS 6 COMMANDS 2-80 CB02

(

LOGIN

LOGIN

Command Name: L

The login command is used to gain access to the system. The login command is entered from
any terminal not designated as a direct-login terminal or an abbreviated-login terminal. (To
determine the type of terminal he is at, the user should contact the installation supervisor.)
The login command causes a task group associated with the user's terminal to be spawned.
Once he has access to the system, the user cannot again invoke login unless he first uses the
BYE command or the task group is otherwise terminated.

FORMAT:

L [login_id] [destinatioIL-id] [ctl_arg]

ARGUMENT DESCRIPTION:

logiIL-id
Establishes the identity ofthe user who is attempting to gain access to the system. Provides
the user identification for the spawned task group. The logiIL-id argument consists offrom
one to three fields having the following meanings:

person
person. account
person.account.mode

person - Name of person who may access system; can be from 1 through 12 characters. (For
example, WDSMITH could be the value for the person field.)

account - Name of an account under which the user is to work; can be from 1 through 12
characters. (For example, JSINVENTORY could be used as the value for the
account field.)

mode - Provides a further identification of the user; can be from 1 through 3 characters.
(For example, VER could be used as the value for this field.)

[destination_id]
Optional argument that permits the user to login as a secondary user of an existing task
group. (It is necessary that the running task group have previously issued a request for a
secondary user terminal; the request for a secondary user terminal is entered by means of a
Request Terminal macro vall; see the GCOS6 System Service Macro Calls manual for the
format of the Request Terminal macro call.) To login as a secondary user of a user-created
applications program, the user enters the value nn, where nn is the task group id of the task
group in which the application is running. To login as a secondary user of task group $T
(Terminal Concentrator), see the Terminal Concentration Facility User's Guide. When
destinatioIL-id is specified, no control arguments can be selected. If the secondary login
capability is not desired, then destinatioIL-id is omitted.

ctl_arg
One or more of the following control arguments can be selected:

{-PO path [id]}
-PO * id

Used to override the default lead task and group id/pool id specifications for the task
group spawned as a result of this login procedure.

path

id

Pathname ofthe bound unit to be executed as the lead task of the spawned task group.
If this argument is omitted, the lead task is the command processor.

Group idlpool id of the spawned task. The group id and the pool id are represented by
the same 2-character value. If this argument is not specified, the group id is a

GCOS 6 COMMANDS 2-81 CB02

LOGIN

I
2-character value whose left (first) character was specified when the Listner compo­
nent was activated (the Listner is described in the Operator's Guide) and whose right
(second) character is the next unused character in sequence 0 through 9 and A
'through Z, as selected by the system. The First character of the id cannot be $.

-HD path
Used to specify the working directory for the task group spawned as a result of the login
procedure.

path
Pathname of the initial working directory for the spawned task group. If this argu­
ment is omitted, the working directory pathname is null.

-LRN n
Used to override the default maximum logical resource number (LRN) value for the task
group spawned as a result of this login procedure.

n
Maximum LRN value to be used for the spawned task group. (The maximum possible
LRN value is 252.) If this argument is omitted, the maximum LRN value is the highest
value in the system group.

-LFN n
Used to override the default logical file number (LFN) value for the task group spawned
as a result of the login procedure.

n
Maximum LFN value to be used for the spawned task group. (The maximum possible
LFN value is 255.) If this argument is omitted, the maximum LFN value is 15.

-ARG arg arg. . . arg
Used to pass additional arguments to the lead task of the task group spawned as a result
ofthis login procedure. These additional arguments are passed to the spawned task in an
extention ofthe task request block, and are substituted for parameters in the command­
in file. If used, the -ARG control arguments must appear last. Refer to Appendix A for an
explanation of the use of additional arguments.
The arguments will appear in the task request block extension in the following manner:
• Argument 1 will always be null.
• If the lead task is the command processor, argument 2 will be the pathname of the

user-in file (i.e., >SPD>dev-Ilame) and arguments 3 through n will be the arguments
following -ARG.

• If the lead task is not the ECL processor, arguments 2 through n will be those
arguments following -ARG.

FUNCTION DESCRIPTION

The login procedure allows the user to gain access to the system from a terminal. If the user is
at a direct-login terminal, he does not use this command; rather, he is logged on automatically
when his terminal is connected to the system. If the user is at a terminal that allows login
abbreviation, he simply types the single character abbreviation. Both direct login and login by
abbreviation are installation-specific features. To determine the type of terminal he is at, the
user should contact the installation supervisor.

The user's terminal can be a noncommunications terminal (MDC-connected) or a communica­
tions terminal (MLCP-connected). At login initialization, the typeouts that appear at the
terminal vary according to whether it is a communications or noncommunications terminal.
See Appendix A for further information.

If the user enters an incorrect argument, the following message is displayed on the terminal:
LOGIN: 39xx (optional message from error message library)
RETRY - LOGIN INCORRECT

GCOS 6 COMMANDS 2-82 CB02

(

LOGIN

The user should retype the entire command or type BYE to terminate the session.

If a fatal error relating only to the user's terminal occurs, the following message is displayed:
LOGIN: 39xx (optional message from error message library)
HANGUP - FATAL ERROR

The user's terminal will be disconnected.

If no error conditions are encountered, the login procedure spawns the group to be associated
with the user's terminal. The group id (and pool id) of the spawned task is determined by the
value specified (for defaulted to) in the -PO path id argument. If the system-generated group id
is in use, or a corresponding memory pool does not exist, another group idlpool id pair will be
generated and another group will be spawned with this group id.

The spawned task group receives all but three of its arguments from the login line. Those
arguments not received from the login line are base level, user-in, and user-out. The base level
argument is received from the terminal login characteristics file (described in the Operator's
Guide). The user-in and user-out arguments are generated as >SPD>dev_name, where
dev-Ilame is a name known to the file manager for the terminal for which the login process is
spawning the group.

If the login is not a direct login, memory used for the login will be returned to the memory pool
when no longer needed.

The following examples illustrate use of the login command.

Example 1:
L JONESAC.PAYROLL2

The user logs in from a terminal using a full login command. The login id, which will be used
in the identification of the spawned task group, is JONESAC (person) PAYROLL2 (account).
The spawned task group will take all system defaults.

Example 2:
L SMITH2 -PO PROG1 -LFN 117

The user logs in from a terminal using a full login command. This command overrides two
system defaults for the spawned task group. The lead task is to be the user-written procedure
PROG1 and not the command processor. The maximum LFN value is to be 117 instead of 15.

Example 3:
F

The user logs in from a terminal allowing login by abbreviation. The login argument set
identified by the abbreviation F will be processed by the login procedure and a task group will
be spawned for the terminal.

GCOS 6 COMMANDS 2-83

I

CB02

MACRO PREPROCESSOR

I

MACRO PREPROCESSOR

Command Name: MACROP

Expand assembly language macro calls and %INCLUDE statements into assembly language
source statements, applying the indicated options.

FORMAT:

MACROP path [ctl_arg]

ARGUMENT DESCRIPTION:

path
The pathname of the file which contains the unexpanded source statements. The file's .P
suffix must not be included in the path argument; it is appended by the macro preprocessor
prior to searching for the source unit.

[ctl_arg]
Zero, one or more control arguments chosen from the following list:

{-INCLUDE_CONTROLS}
-IC

Instructs the Macro Preprocessor to incorporate as comment statements in the expanded
source output all macro control statements and inline macro definitions.
If a statement is in error, the Macro Preprocessor flags the statement, converts it to a
comment statement, and writes it to the expanded source file.

If this argument is omitted, these comment statements are omitted.

{-SIZE nn}
-SZ nn

Designates the maximum number of 1024-word blocks of memory that the Macro Prepro­
cessor can use for work space; nn must be a decimal representation from 01 through 99. If
this argument is not specified, two blocks (2048 words) of memory are used.

{-MACRO CALLS}
-MC

Causes all macro call statements as comments in the output.

FUNCTION DESCRIPTION:

The MACROP command is used to invoke the Macro Preprocessor component.

The input path argument can assume any of the acceptable forms of a pathname; a relative
name indicates that a source program unit residing in the working directory is to be expanded.
Whereever the source program unit exists, it must have the .P suffix. However, the path
argument in the command cannot have the .P suffix. The output is always directed to file
path.A in the working directory.

The MACRO Preprocessor always writes to the error-out file the number of errors encoun­
tered. Specification of the -IC argument enables the user to examine the statements that
generated errors.

A full description of the operation and use of the Macro Preprocessor is contained in the
Assembly Language manual.

GCOS 6 COMMANDS 2-84

\

"'-. -"

CB02

MERGE FILES/MESSAGE

MERGE FILES

Command Name: MERGE

Merge the records of up to six files.

FORMAT:

MERGE [ctl_arg]

ARGUMENT DESCRIPTION:

[ctl_arg]
One or more control arguments chosen from the following list.

-IN path
Specifies the name of the file containing the merge descriptors for this merge. If not
specified, the user-in file is assumed to contain the merge descriptors.

-PD
Indicates that a listing of the merge descriptors is to be produced on the user-out file.
(Only the first 71 characters of the line will be displayed,) Hnot specified, no list is issued.

-DL
When duplicate records are encountered, delete all occurrences of the records except the
first.

FUNCTION DESCRIPTION:

The MERGE command provides the capability of merging the records of up to six files
according to specifications supplied in a merge descriptor file.

A complete description of the operation and use of the merge component is contained in the
Sort/Merge manual.

MESSAGE [MOD 400 ONLY]

Command Name: MSG

Send a message from a user command device to the operator terminal.

FORMAT:

MSG message

ARGUMENT DESCRIPTION:

message
The message to be sent. If the message contains embedded blanks, it must be enclosed in
double quotes (") or apostrophes (').

FUNCTION DESCRIPTION:

The MSG command is used whenever it is necessary for a task group to convey some item of
information or a request for operator action to the system operator. The source of the message
is whatever file or device is designated as command input for the sending task group at the
time the message is sent; the message is displayed on the operator terminal.

Example:
MSG "PLEASE ABORT BATCH REQUEST"

Send a message to the operator requesting an abort ofthe current batch request. The operator
responds by entering an ABR operator command.

GCOS 6 COMMANDS 2-85

I

CB02

MODIFY EXTERNAL SWITCHES

MODIFY EXTERNAL SWITCHES

Command Name: MSW

Modify selected external switches associated with the issuing task group.

FORMAT:

MSW ctl_arg

ARGUMENT DESCRIPTION:

ctl_arg
One or more control arguments chosen from the following list:

-ON Si[Si] ...
Set the external switch indicated by Si ON. Each Si is a hexadecimal digit from 0 through
F.

-OFF Si[Si] . . .
Set the external switch indicated by Si OFF. Each Si is a hexadecimal digit from 0
through F.

-ALL v
Set all switches to the value v. The value v can be either ON or OFF.

FUNCTIONAL DESCRIPTION:

The MODIFY EXTERNAL SWITCHES command enables the issuing task group to modify the
external switches by which it can control its execution. An external switch can be thought of as
a hardware switch on a control panel, which can be set on or off manually by an operator.
There is a separate switch word associated with each task group created, giving each group the
capability of addressing 16 switches. A user program can contain instructions or statements
which interrogate the settings of one or more of these switches, and can use these settings to
control the execution logic of the program.

Example:
MSW -ON 25 -OFF 7B

In the issuing task group, external switch numbers 2 and 5 are to be set ON, and external
switch numbers 7 and B are to be set OFF.

GCOS 6 COMMANDS 2-86 CB02

("\
\~.J

MODIFY FILE

MODIFY FILE

Command Name: MF

Modify the attributes of the specified file.

FORMAT:

MF path ctl_arg

ARGUMENT DESCRIPTION:

path
The pathname of a file whose attributes are to be changed.

ctl_arg
One or more control arguments chosen from the following list. At least one is required; there
are no defaults.

{-SHARE}
-SHR

Specifies that the named file is to be made accessible to the batch task group.

{-NONSHARE}
-NS

Specifies that the named file is to be made inaccessible to the batch task group.

{-READ}
-RD

Specifies that no users are given permission to write to the named file; only reading is
permitted.

{-WRITE}
-WR

Specifies that users are permitted access to the named file in the output, update, or extend
mode.

Note:
The arguments within the argument pairs -SHARE and -NONSHARE, and
-READ and -WRITE, are mutually exclusive.

The MODIFY FILE command allows the accessibility and permission attributes of a file to be
modified. When a file is first created (refer to the CREATE FILE command in this section); it is
accessible to both online and batch task groups. It can also be read from and written to by any
task. Its initial attributes are thus SHARE/WRITE.

If a file is made inaccessible to the batch task group (through the use of the -NS control
argument), no access of any kind by the batch task group is permitted. Furthermore, direc­
tories can be given the -NS attribute; in this case the directory and all subdirectories and files
contained within it are inaccessible to the batch task group.

Read protection can also be given a file by the use of the -RD control argument. This argument
makes the file a read-only file, preventing any task groups, online or batch, from writing to the
file. It can still be read by online tasks and, unless the -NS argument has also been specified, by
batch tasks as well.

Attributes assigned to nondisk files by this command remain in effect only for the current
initialisation of the system. If the system is reinitialized, attributes for these files revert to
SHARE/WRITE. The MF command can be issued only from an online task group.

If the file to be modified is currently reserved by a task group, the request is denied.
Example:

MF >UDD>PROJl>USERA>FILEOl -NS
A file is to be made inaccessible to the batch task group. The read/write protection remains
unchanged.

GCOS 6 COMMANDS 2-87 CB02

NEW PROCESS/PATCH

NEW PROCESS

Command Name: NEW -PROC

Abort the current task group request and restart the task group using the same arguments as
specified in the original group request.

FORMAT:

NEW_PROC

ARGUMENT DESCRIPTION:

Arguments are neither required nor permitted with this command.

FUNCTION DESCRIPTION:

The NEW _PROC command suspends all tasks of this task group. It removes all task struc­
tures (except the lead task - the command processor), returns all memory to the task group's
memory pool, and closes and releases all files. In effect, the task group is deleted and restarted
with the original arguments.

PATCH

Command Name: PATCH

Patch an object or image text file.

FORMAT:

PATCH path [ctl_arg]

ARGUMENT DESCRIPTION:

path
The pathname of the object or image text file to be patched. An object text pathname must
end with the .0; No suffix is used for an image text file unless one was assigned when the
image text unit was linked.

[ctl_arg]
One of the following control arguments can be specified:

-IN path
The pathname of the file which contains the patch directives. If not specified, the
directives are read from the current user-in file.

{-PROMPT}
-PT

Can be specified only if directives are read from the user-in file. Caases the PATCH
processor to issue a P? prompting sequence each time it is ready to receive an input line.
If this argument is omitted, no prompting sequence is printed.

FUNCTION DESCRIPTION:

The PATCH command permits the selective modification of an object or image (bound unit)
text file, in accordance with directives submitted to the PATCH processor. A complete descrip­
tion of the directives and operation of the PATCH command, as well as several examples of its
use, appear in the Program Execution and Checkout manual.

Patching a Monitor component while it is executing is not recommended. The results of such
patching are unspecified. (

/~-

GCOS 6 COMMANDS 2-88 CB02

('

(

PRINT

PRINT

Command Name: PR

Print the contents of the indicated file. 2

FORMAT:

PR path [ctl_arg]

ARGUMENT DESCRIPTION:

path
The pathname of the file whose contents are to be printed.

[ctl arg]
One or more control arguments chosen from the following list:

{-LIMIT nn}
-LI nn

Specifies the number of records to be printed if end of file is not encountered before the
value of nn is satisfied. If not specified, all records in the file are printed.

{-COPIES n}
-CP n

Specifies the number of copies to be printed; i.e., the number of times the file is to be
printed for this invocation. Default is 1.

{-SPACE n}
-SP n

This argument indicates that the file is not a true print file with print control characters
in its records. Each record is printed on one or more print lines. The value of n specifies
the line spacing between records, and can be either 1 or 2. 1 specifies single spacing (no
blank line). 2 specifies double spacing (one blank line). The default value for n is 1. If this
parameter is not specified, the first record byte is treated as a printer control character,
i.e.; the file is assumed to be a print file. See the control byte description for the printer
driver in the System Service Macro Calls manual.

{-FORTRAN}
-FTN

The print file was created by a FORTRAN object program and has print control charac-
ters of the FORTRAN type.

{-FROM nn}
-FM nn

Indicates that the first nn records of the file are to be skipped before printing begins. Ifnot
specified, printing starts at beginning of file.

{-LINE_LEN nn}
-LL nn

Specifies the number of characters to be printed per line. If a longer line is read from the
file, it is folded at the indicated print position. If not specified, the value of nn is 68.

{-RELEASE}
-RL

Specifies that, at the completion of printing, the file is to be released.

FUNCTION DESCRIPTION:

The PRINT command is used to write to the current user-out file the contents of a file
formatted according to the system print file conventions. Such a file contains, for each record to

2 See also Deferred Print command earlier in this section.

GCOS 6 COMMANDS 2-89 CB02

PRINT

be printed, a printer forms control byte. This byte is in the first character position of each
record, and serves to control the line spacing associated with each print line, as well as
head-of-form spacing.

Print files written by the various language processors are suffixed with a .L unless otherwise
directed by the processor's -COUT control argument. This suffix must be included in the
pathname specified by the path argument when the PRINT command is used to print these
types offiles. These files always contain forms control bytes. User programs which write files
destined to be printed using this command are responsible for supplying the appropriate forms
control bytes in their output records. Files written by user programs are not required to be
terminated with the .L suffix.

Print files written by FORTRAN object programs utilize a special set offorms control bytes. If
the PRINT command includes the -FTN control argument, these bytes are translated into
equivalent standard forms control actions before the line is printed. If the -FT control argu­
ment is not specified for these files, resulting form spacing will probably not reflect that which
was intended by the programmer.

Theoretically, any file can be printed by using the PRINT command. However, since the first
byte of each record is interpreted as a forms control indicator, the line spacing which results
from the printing of a nonprint file is unspecified. The -SP control argument, in addition to
specifying the spacing between records, also negates the interpretation of the first byte as a
control byte. Each record is printed on as many single-spaced lines are are required and the
line spacing between records then occurs as specified by the -SP argument. When the -SP
argument is used, the first byte of each record appears in the print line.

The user can request the printing of only a part of a file by the appropriate combination of -FM
and -LI control arguments, which define, respectively, the point in the file at which printing is
to begin and the number of lines to be printed.

When the output ofthe PRINT command is directed to a high-speed printer, the use of the -LL
control argument specifying the physical line length of the printer is recommended, since the
length of an output record whose ultimate destination is such a device is likely to be longer
than the default 68 characters. If the argument is not specified, each such line will be folded at
the 68th character. If a line is folded, the continuation line starts with a IC.

When an entire file is being printed (no -FROM or -LIMIT argument), the first page offile data
is automatically preceded by a header page containing the pathname and the current date. No
header page precedes the file data of a partial file.

When end-of-file is encountered, an end-of-file message is printed on the page following the
last page of file data.

Example 1:
PR T ABLIST -CP 2 -FT

Two copies of the print file written by a FORTRAN program are to be printed. The file contains
print lines less than 68 characters long; hence, the -LL argument is not required. The printed
output is written on whatever device is currently associated with the user output file.

Example 2:
PR COBPRINT -LL 132

The print file from a program which writes 132-character print records is to be printed. If the
current user output device is not a line printer, the PR command can be preceded by an FO
(FILE OUT) command naming a line printer (LPTnn) as the output device.

GCOS 6 COMMANDS 2-90

" /

CB02

if -

READY OFF /READY ON

READY OFF

Command Name: RDF

Suppress the 'ready' message printed at the completion of each command.

FORMAT:

RDF

ARGUMENT DESCRIPTION:

No arguments are required or permitted with this command.

FUNCTION DESCRIPTION:

The READY OFF command suppresses the printing of a message issued by the system at the
completion of execution of each command. The message informs the user that the system is
prepared to accept another command.

The initial state of the ready function at the conclusion of task group initiation or the
beginning of EC execution is OFF.

If the RDF command is issued from within an EC file when execution of the EC file is
completed, the system reverts to the ON/OFF state which was in effect when the EC command
was invoked.

The function must be requested with the command name shown; i.e., RDF.

READY ON

Command Name: RDN

Activate the printing of the ready message at the completion of each command.

FORMAT:

RDN

ARGUMENT DESCRIPTION:

No arguments are required or permitted with this command.

FUNCTION DESCRIPTION:

The READY ON command activates the printing of a message, RDY:, issued by the system at
the completion of execution of each command. The message informs the user that the command
processor is prepared to accept another command.

The initial state of the ready function at the conclusion of task group initiation or the
beginning of EC execution is OFF.

If the RDN command is issued from within an EC file, when execution of the EC file is
completed the system reverts to the ON/OFF state which was in effect when the EC command
was invoked.

The "RDY:" message invoked by the RDN command is transmitted to the user_out file, even if
it is not a terminal. User_out is altered by the FILE OUT command. IfRDN is in effect, it will
not issue the "RDY:" message after & statements.

The function must be requested with the command name shown; i.e., RDN.

GCOS 6 COMMANDS 2-91 CB02

RELEASE

RELEASE

Command Name: RL

Release the space occupied by the named directory or file to the File System.

FORMAT:

RL [-FILE]
-DIR path ...

ARGUMENT DESCRIPTION:

path
Specifies the pathnames of one or more file system entries to be released. Can be any valid
form of pathname; can use the star convention (see Section 1).

-FILE
Indicates that the entries to be released are files. This is the default if neither -FILE nor
-DIR is specified (see Example 2, below).

-DIR
Indicates that the entries to be released are directories.

FUNCTION DESCRIPTION:

The RELEASE command, when issued to release a file, removes all ofthe file's attributes from
the directory within which it is immediately contained. All of the space which was allocated to
the file is returned to the File System. If the file is open at the time the RL command is issued,
the file is not released. If the file is reserved for use by another task group (i.e., another task
group has issued a GET command specifying this pathname), the file is released after that task
group has closed the file and issued a REMOVE command.

When used to release a directory, the RL command removes all of the directory's attributes
from the immediately superior directory. All of the space which was allocated to the directory
is returned to the File System. The directory to be released must be "empty"; i.e., it cannot
contain entries representing subdirectories or files. If it is not empty, it is not deleted.

Example 1:
RL -FILE FILE01

The file, FILE01, in the working directory is released if it is not in use or reserved by another
task.

Example 2:
RL SUB-DIR1>FILE02

The file, FILE-2, in a directory SUB-DIR1, immediately subordinate to the working direc­
tory, is released if it is not in use or reserved by another task.

Example 3:
RL -DIR SUB_DIR1

The directory, SUB-DIR1 immediately subordinate to the working directory, is released,
provided it is empty.

GCOS 6 COMMANDS 2-92 CB02

/' " !
I

~-

(.....

REMOVE FILE

REMOVE FILE

Command Name: REMOVE

Cancel a previous file reservation.

FORMAT:

Format 1 (Pathname):
REMOVE path [ctl_arg]

Format 2 (Logical File Number):
REMOVE lfn [ctl_arg]

ARGUMENT DESCRIPTION:

path
The pathname of a file whose reservation is to be cancelled. The reservation of all logical file
numbers (LFNs) associated with the pathname will be cancelled. This argument applies
only to Format 1.

lfn
The logical file number (LFN) of the file whose reservation is to be cancelled. This argument
applies only to Format 2.

[ctl_arg]
The following control argument can be specified.

-FORCE
Force the cancellation of all reservations associated with this pathname, even if the file is
still open.

FUNCTION DESCRIPTION:

The REMOVE command cancels the reservation of a file effected by a previously issued GET
command. If the file is open, the remove action will not take effect and an error will be
displayed. Either a specific LFN or all LFNs associated with this pathname are to cancelled.
The -FORCE argument forces the cancellation to occur even if the file is still open. Subsequent
access to this file will return an "unknown or illegal LFN" error (0206).

Example 1:
REMOVE BOOKS>FILEB

The reservations of all LFNs associated with the file whose pathname is BOOKS>FILEB in
the current working directory are cancelled. Cancellation does not occur if the file is open.

Example 2:
REMOVE 22 -FORCE

The reservation ofthe file associated with LFN 22 is cancelled. Cancellation occurs even ifthe
file is still open.

GCOS 6 COMMANDS 2-93 CB02

RENAME FILE

RENAME FILE

Command Name: RENAME

Assign a new name to an existing file. or directory.

FORMAT:

RENAME oldname newname

ARGUMENT DESCRIPTION:

oldname
The present pathname of the file or directory to be renamed. Can use starname convention.
(See Section 1.)

newname
A simple name unique within the directory containing oldname. Can use equal name
convention. (See Section 1).

FUNCTION DESCRIPTION:

The RENAME command is used to change the name of an existing file or directory.

The oldname parameter can be a simple, relative, or absolute pathname. The only requirement
is that the specified file exist in the expressed or implied directory. If a simple name is given,
the file must exist in the working directory. If a relative or absolute pathname is given, the file
must exist in the directory derived from the given pathname.

Whatever directory is established by the oldname argument is the one in which the file will
reside under its new name. The new file name must be one which does not already exist in that
directory, in accordance with the requirement that, within a given directory, all file names
must be unique.

Example 1:
Assume a working directory> UDD> BOOKS>SMITH, and that in this directory there is a file
AB. The command

RENAME AB CD
changes the pathname of the affected file from

> UDD> BOOKS>SMITH> AB to > UDD> BOOKS>SMITH>CD.
Example 2:

Assume that within the working directory in example 1 .is a subdirectory CHANGES, which
contains a file AB_CHANGES. The command

RENAME CHANGES>AB_CHANGES CD_CHANGES
implies the directory> UDD> BOOKS>SMITH>CHANGES, since the oldname argument is
in the form of a relative pathname. The pathname of the file within this directory is changed to
> UDD>"BOOKS>SMITH>CHANGES>CD_CHANGES.

GCOS 6 COMMANDS 2-94 CB02

(,

-- _/

RESET MAP
[MOD 400 ONLY]

RESET MAP

Command Name: RS

Reconstruct the bit map on a disk volume or list the number of unused logical sectors available
for allocation on the volume.

FORMAT:

RS path [ctl_arg]

ARGUMENT DESCRIPTION:

path
Specifies the name ofthe volume whose unused sectors are to be listed or whose bit map is to
be reset. The form of path is >SPD>dev_name>[>vol_id]. If vol_id is present, the
volume name is verified.

ctl_arg
The only control argument is the following:

-AVAIL
List the number of available (unused) sectors on the named volume. When -AVAIL is
specified, the bit map is not reset, only this list operation is performed.

FUNCTION DESCRIPTION:

The RESET MAP command with the -A V AIL argument lists the number oflogical sectors that
the volume bit map indicates as being available for allocation. Using the logical sector size
specified in the volume label, the number is converted to physical sectors. The following
message is issued:

VOLUME vol_id HAS A V AILABLE sss LOGICAL SECTORS = pppp PHYSICAL
SECTORS

The bit map is not modified.

The file system maintains a map which represents the locations of available blocks of disk
storage on a volume. The map for each volume is stored on the volume itself. It reflects
information contained in directories and subdirectories relating to the locations and extents of
the files residing on the volume. If necessary, the RS command can also be used to construct a
new available-sector map. It interrogates all directories and subdirectories on a volume for file
location and extent information and, using this information, constructs a new map.

The message (12121D), A LOGICAL SECTOR OF THE FILE 'VOLID' WAS PREVIOUSLY
ALLOCATED, will be issued by the RESET MAP program when the volume major directory of
a cartridge disk is in its default location. This message should be ignored.

GCOS 6 COMMANDS 2-95 CB02

RESTORE
[MOD 400 ONLY]

RESTORE

Command Name: RESTORE

Restore the specified files previously saved by the SAVE utility.

FORMAT:

RESTORE save-file name [starting directory]
ARGUMENT DESCRIPTION:

save-file name
Specifies the pathname of the file to be restored (i.e. the output file from the previous SAVE).

[starting directory] .
Specifies the pathname of the directory on the output volume where the restore is to begin.
This directory must exist. It is not created by the RESTORE utility. If no directory name is
specified, the RESTORE utility uses the pathname stored in the save-file by the SAVE
utility.

FUNCTION DESCRIPTION:

The RESTORE command restores a file or directory structure saved by the SAVE command. If
a file or directory exists by the same name as the one being restored, it is overwritten with the
ACL remaining intact. Otherwise, the file is created with ACL data from the saved file. Any
unsaved files or directories in the specified directory (or in subordinate directories during the
restore) are preserved since the restored data is appended. When the RESTORE command is in
effect, the volume is reserved with write exclusive access.

GCOS 6 COMMANDS 2-96 CB02

RPG

RPG

Command Name: RPG

Compile the RPG source program unit represented by the indicated file name, applying the
specified compiler options.

FORMAT:

RPG path [ctl_arg]

ARGUMENT DESCRIPTION:

path
Pathname of the source unit file to be compiled (without the .R suffix). ".R" is automatically I
appended before searching for the source unit-file.

[ctl_arg]
None or any number of the following control arguments can be entered, in any order.

{-COUT}
-C out_path

Listing will be written to the file ouLpath; a suffix is not automatically appended to the
file name; out_path may specify the line printer. If this argument is omitted, the listing I
will be written to the file source.L in the working directory (source is the simple name of
the source unit file to be compiled).

{-LIST_OBJ}
-LO

List data map and object text, in addition to the source text, the diagnostics and the
Linker command file listings.

{-NO-LIST}
-NL

Suppress all listings.

{-NO_OBJ}
-NO

Suppress object unit output.

Default: Object units are produced in the working directory as a number of files, each
having the .0 suffix and a compiler-generated name. If a particular .0 file already exists
in the working directory, it is overwritten by the output of the current compilation.

{-SIZE nn}
-SZ nn

nn designates the maximum number of 1024-word blocks of additional memory that the
RPG Compiler may use for tables; nn must be from 04 to 28.

Default: 03

FUNCTION DESCRIPTION:

The RPG command is used to invoke the RPG Compiler component.

The path argument can assume any of the acceptable forms ofa pathname, although normally
it may be a simple name, indicating that a source program unit which resides in the current
working directory is to be compiled. Wherever the file exists, it must have a .R suffix,
indicating that it is an RPG language source unit. The path argument must be given without
the .R suffix; the compiler appends the suffix prior to searching the directory for the source
unit.

GCOS 6 COMMANDS 2-97

I

CB02

RPG

I

If the -COUT control argument is not specified, the listings are written to a file created by the
compiler in the working directory, having a file name of the form source.L. If a different file is
specified by using the -COUT argument, the listings are written to the file whose pathname is
ouLpath. In either case, the file can later be output to a line printer, by using the PRINT
utility command. The compiler does not append a .L suffix.

If a file of the form source (our out_path) already exists in the working directory, it is overlaid
by the output of the current compilation.

Notes:
1. Either -LO or -NL can be specified, but not both. If neither is specified, the

compiler produces a listing of the source text, the diagnostics, and the Linker
command file.

2. The RPG compiler always writes the number of diagnostics produced on the
error-out file.

Example:
RPG RGPROG -COUT RGPROG_LST -LIST_OBJ

An RPG source program, RGPROG.R, located in the working directory, is to be compiled.
Listings are to contain source statements, error diagnostics, data map, object code and Linker
commands and are to be written to a file named RGPROG_LIST, in the working directory.

GCOS 6 COMMANDS 2-98 CB02

(

SAVE

SAVE

Command Name: SAVE

Save the specified disk directories and/or files.

FORMAT:

SAVE file/directory name output file [-LEV n]

ARGUMENT DESCRIPTION:

file/directory name
Specifies the pathname of the directory where the save is to begin, or specifies the pathname
of the file(s) to be saved.

output file
Specifies a device, a tape file or a disk file where the data being saved is to be recorded. If the
specified file already exists, it will be opened in renew-mode, replacing any previously
existing data in the file. If the disk file does not exist, it will be created.

[-LEV n]
For directory saves, "n" specifies how many levels of directories are to be included in the
save-file. This parameter is ignored for file saves. If omitted, all subdirectories are included
in the save (default). A value of 1 for "n" directs the utility to save only the file entries in the
specified directory, which excludes all subordinate directories and files.

FUNCTION DESCRIPTION:

The SAVE utility provides a backup facility and volume reorganization capabilities. Its
function is complemented by the RESTORE utility described in this manual.

GCOS 6 COMMANDS 2-99 CB02

SET ACCESS CONTROL LIST

SET ACCESS CONTROL LIST

Command Name: SET_ACL or SA

Manipulate the access control list (ACL) of a file or directory by adding new entries or
changing the access mode of existing entries.

FORMAT:

ARGUMENT DESCRIPTION:

path
Pathname of the file or directory containing the ACL. If this argument is -WD, the working
directory is used.

access_mode
Specifies an access mode for the directories or files. (Path specifies whether a directory or file
is being operated upon.)

Any or all of the following values may be specified for files:
R - Read access
E - Execute access
W - Write access

Any or all of the following values may be specified for directories:
L - List access
M - Modify access
C - Create access

One of the following values may be specified for files or directories; if used, it must be the
only entry:

N - Null access
a - Null access

user_id
An access control name having the following format:

person account mode
Existing ACL entries that have matching access control names receive the access mode
specified by the <access_mode> argument.

If no matching entry is found, the entry is added to the ACL, provided that each component
of the access control name resolves to a literal value.

If the user_id argument is not specified, the current user id is employed, with the following
format:
person.account.*

ctl_arg
The following optional control arguments can be chosen:

{-DIR }
-DIRECTORY

Specifies that only directory values are to be allowed for the access_mode argument; if
this argument is not specified, the first access_mode value specified sets the default.

-FILE
Specifies that only file values are to be allowed for the access_mode argument; if
this argument is not specified, the first access_mode value sets the default.

GCOS 6 COMMANDS 2-100

\"-.. /

CB02

(

(

SET ACCESS CONTROL LIST

FUNCTION DESCRIPTION:

Access control lists (ACL's) and common access control lists (CACL's) are an optional system
feature that afford variable types of protection for mass storage directories and files.

ACL's can be set for any or all directories and files on mass storage volumes. An ACL for a
directory indicates which users can create, modify, and/or list directories or files immediately
subordinate to this directory. An ACL for a file indicates which users can read, write, and/or
execute (if it is an executable entity) the file.

CACL's can be set at any or all directories on mass storage volumes. They are classified in two
types: directory CACL's and file CACL's. A directory CACL indicates access rights for all
directories immediately subordinate to the directory at which the directory CACL is set; a
directory CACL is thus equivalent to an identical ACL being set for each of the immediately
subordinate directories. A file CACL indicates access rights for all files immediately subordi­
nate to the directory at which the file CACL is set; a file CACL is thus equivalent to an
identical ACL being set for each of the immediately subordinate files.

The access rights defined by a directory CACL entry or by a file CACL entry can be overridden,
on an individual basis, by ACL entries set on specific, immediately subordinate directories and
files.

ACL's are set for directories and files by means of S~T_ACL commands. ACL's are listed by
LIST_ACL commands and are deleted by DELETE_ACL commands. CACL's are set at
directories by SET_CACL commands. CACL's are listed by LIST_CACL commands and are
deleted by DELETE_CACL commands.

It is important to realize that although ACL's and CACL's provide astatic description of which
users may gain access to specific directories and files and what type(s) of access they have,
ACL's and CACL's do not, of themselves, guarantee a user access to a directory or file at all
times. Concurrency constraints may at some times prevent a user from gaining access to a
directory or file to which he is otherwise entitled to access by virtue of an ACL or CACL. (For
instance, if user A has obtained access to a given file with exclusive concurrency control, other
users cannot gain concurrent access to this file even though existing ACL or file CACL
otherwise would permit them access to this file.)

Once established by a SET _ACL command, an ACL for a given directory or file consists of one
or more entries, each of which contains a user_id and an access privilege. The same is true of a
directory CACL and a file CACL established at a given directory by a SET_CACL command.

The user_id in an ACL or CACL entry consists of the three elements shown below:

person. account. mode

Note the correspondence between the elements of this user_id and the identity established
for a user as he logs in to the system. The significance of this correspondence is that, in an
environment that employs access control, a user's access to directories and files is directly
related to his person_id.account.mode identity as established as he logs in to the system.

An important feature of the user_id in an ACL or CACL entry is that any or all elements of
the user_id may be expressed by an asterisk. The asterisk is equivalent to "any" and thus
permits varying degrees of generality or comprehensiveness for the access privilege specified
in the same ACL or CACL entry. The following examples illustrate this point:

1. A user_id expressed as SMITH.ACCT1.* applies the accompanying access privilege
to SMITH under ACCTI in ANY mode.

2. A user_id expressed as * .ACCT2.* applies the accompanying access privilege to ANY
user under ACCT2 in ANY mode.

3. A user~d expressed as HIRSCH.*.* applies the accompanying access privilege to
HIRSCH under ANY account and in ANY mode.

4. A user_id expressed as *.*.* applies the accompanying access privilege to ANY user
under ANY account in ANY mode.

5. All other combinations are also legal.

GCOS 6 COMMANDS 2-101 CB02

SET ACCESS CONTROL LIST

As described later in this appendix under "Access Rights Checking," a hierarchical scheme -
relative to how "explicitly" a user_id is expressed - governs whether the access privilege
specified in an ACL entry will be overridden by the access privilege specified in a related
directory CACL or file CACL entry.

The access privilege in an ACL entry for a file, and in a file CACL, can be set to one, two, or
three of the elements shown below.3 Permissible combinations are R, E, RE, RW, and RWE.

R - The user or users designated in this entry can read the file or files affected.
W - The user or users designated in this entry can write the file or files effected. (Write

access to a file requires read access as well.)
E - The user or users designated in this entry can execut the file of files affected (provided

the file is an executable entity).

The access privilege in an ACL entry for a directory, and in a directory CACL, can be set to
one, two, or three of the elements shown below. Permissible combinations are C, L, LM, LC,
and LMC.

C - The user or users designated in this entry can create files and directories immediately
subordinate to the directory or directories affected.

M - The user or users designated in this entry can modify files and directories immediately
subordinate to the directory or directories affected. (Modify access to a directory
requires list access as well.)

L - The user or users designated in this entry can list files and directories immediately
subordinate to the directory or directories affected.

When checking access rights, the system first compares the user's login identity (per­
sOIL-id.account.mode) against the entries in the ACL (if any) of the target directory or file.

• If a direct match is found (possible only if all elements of an ACL entry's user_id are
explicitly stated-i.e., no asterisks), the user's access privilege is established by that ACL
entry.

• If a direct match is not found, the system searches the ACL entries to find the one of the
highest priority that includes the user's login identity. The priorities are shown below in
decreasing order of priority.

highest - person. account. mode
person.account.*
person.* .mode
person.* .*
* .account.mode
* .account.*
..mode

lowest - *.*.*
When the system finds the highest priority ACL entry that includes the user's login
identity (e.g., the user's login identity is ROTH.ACCT6.1NT and the system finds an ACL
entry whose user_id is * .ACCT6.*), the system searches the related directory CACL or
file CACL (if any) trying to find a CACL entry of higher priority that includes the user's
login identity. If the system does find such an entry in the related directory CACL or file
CACL, the user's access privilege to the target directory or file is as established therein. If
no directory CACL or file CACL exists or if one exists but it does not contain an entry of
higher priority that includes the user's login identity, the user's access privilege is as
established in the target directory's or file's highest priority ACL entry that includes the
user's login identity.

• If the target directory or file contains no ACL entry that includes the user's login identity
the directory CACL or file CACL (if any) is searched for the highest priority entry that

3 Alternatively, the access privilege can be set to N' (no access). IfN is specified, it must be the only access privilege
element.

GCOS 6 COMMANDS 2-102 CB02

(

SET ACCESS CONTROL LIST

includes the user's login identity. The user's access privilege to the target directory or file
will be as established therein. (if the user's login identity is not included in either an ACL
entry for the target directory or file or in an entry in a related directory CACL or file
CACL, he has no access privilege in a protected access environment.)

The following general guidelines and examples should prove helpful to your understanding of
some of the basic characteristics of ACL's and CACL's.

For the purpose of the general guidelines, first consider a directory structure as depicted below.
Assume that this is a protected access environment.

+ DIRECTORY _1

* ~ DIRECTORY _2 -l-

To Perform This
Action at DIRECTORY_2

create an immediately
subordinate directory or file

list any immediately
subordinate directory or file

release an immediately
subordinate directory or file

User Requires This Type
of Access Privilege

C (create) access in an ACL for DIRECTORY _2 or in a directory
CACL at DIRECTORY_1

L (list) access in an ACL for DIRECTORY _2 or in a directory CACL
at DIRECTORY_1

M (modify) access in an ACL for DIRECTORY_2 or in a directory
CACL at DIRECTORY_1

Now assume that a DIRECTORY_3 and FILE_3 have been created immediately subordinate
to DIRECTORY_2 as shown below.

t
DIRECTORY _1

+ ~

To Perform This Action User" Requires This Type
at DIRECTORY _3 or FILE_3 of Access Privilege

set-ACL M (modify) access in an ACL for DIRECTORY _2 or in a directory
CACL at DIRECTORY_1

list-ACL L (list) access in an ACL for DIRECTORY _2 or in a directory CACL
at DIRECTORY_1

delete-ACL M (modify) access in an ACL for DIRECTORY_2 or in a directory
CACL at DIRECTORY_1

set-common-ACL" M (modify) access in an ACL for DIRECTORY_3 or in a directory
CACL at DIRECTORY_2

list-common-ACLb L (list) access in an ACL for DIRECTORY _3 or in a directory CACL
at DIRECTORY_2

delete-common-ACLh M (modify) access in an ACL for DIRECTORY_3 or in a directory
CACL at DIRECTORY_2

a This user need not necessarily be the one who created DIRECTORY_3 and/or FILE_3.
b Only at DIRECTORY_3.

GCOS 6 COMMANDS 2-103 CB02

SET ACCESS CONTROL LIST

The following examples illustrate a hypothetical case in which an account administrator has
created several files and directories and then proceeds to set access privilege for account users.
The examples illustrate a number of features of ACL's and CACL's but they are by no means
comprehensive.

A number of other approaches to setting access privilege might be used.

Example 1:

ACCT1
I

FILE_Y

I
DIRECTORY_2

I

DOE.ACCTI.* RW
COX.ACCTI.* N

This example shows that the account administrator of ACCT1 has done the following:
1. He has created a file CACL entry at DIRECTORY _1 allowing all users of ACCT1 (in

any mode) to read all files immediately subordinate to DIRECTORY_I. (Exceptions
are noted below.)

2. He has set an ACL entry at FILE_ Y allowing DOE to read and write the file. Thus
DOE's access privilege to FILE_ Y exceeds that of other users of ACCTI.

3. He has set an ACL entry at FILE_ Y denying COX any access to the file. Thus COX's
access privilege to FILE_ Y is less than that of other users of ACCTI.

Both DOE and COX, like other users of ACCT1, have read access privilege to FILE_X and to
START_UP.EC.

Note that although there is no ACL set directly at FILE_X or at START_UP.EC, no user
except those in ACCT1 has access privilege to them because of the file CACL entry set at

DIRECTORY_I. .1.
Example 2:

ACCT1 ACL DEAN.ACCTI.* CML
___l1 ___ D_I_R-_C_A_C_L_.....,DEAN.ACCTI.* CML

v
DIRECTORY _2

i'
DIRECTORY _3

I
'l­

FILE~

This example shows that although DEAN under ACCT1 (in any mode) is the only user who can
create DIRECTORY_3 and FILE_Z by virtue of the directory CACL entry at ACCT1), once
they have been created, any user could create directories and files subordinate to DIREC­
TORY_3 and any user could set directory CACL or file CACL at DIRECTORY_3. These
capabilities are available to all users because no directory CACL has been set at DIREC­
TORY _2. (This may be perfectly acceptable.)

If DEAN were to set a directory CACL entry for himself at DIRECTORY _2 before creating
DIRECTORY_3 or FILE_Z, he could deny the above mentioned capabilities to all other
users.

In any case, because of his access privilege at a higher level, DEAN could, by setting
appropriate access privilege for himself, "undo" anything undesirable that a user had done at
or below DIRECTORY _3.

GCOS 6 COMMANDS 2-104 CB02

(

SET AUTO DIAL TELEPHONE NUMBER
[MOD 400 ONL Yl I

SET AUTODIAL TELEPHONE NUMBER

Command Name: SDL

Insert the specified telephone number into the first entry in the autodial telephone number list
for the specified line. This telephone number will be used first when the autodial facility
attempts to establish a connection on the (switched circuit) line.

FORMAT:

SDL
{ Channel}

file phone-Ilumber

ARGUMENT DESCRIPTION:

channel
Four hexadecimal digits that define the lO-bit (left-justified) channel number of the line
whose telephone number list is to be altered.

file
Volume-level access pathname (e.g., >SPD>file_name) of the line (device) whose tele­
phone number list is to be altered.

phone_number
The telephone number to be inserted in the first entry ofthe autodial telephone number list
for the line. The value for phone_number is an ASCII string of 1 through 16 characters
chosen from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -, and *.

FUNCTION DESCRIPTION:

During system building, the user can specify that the communications autodial facility be
applied to one or more communications lines. For each line that is to employ autodialing, the
user constructs a list of telephone numbers. The first entry in this list is left empty by the
system. The other entries are filled in according to the user's specifications.

The SDL command allows the user to dynamically insert a telephone number into the first
entry in the list for a particular line. When the autodial handler is invoked, this telephone
number will be dialed first in the attempt to establish a connection with the terminai(s) on the
line. If no successful connection is established, the next entry (telephone number) in the list is
dialed, and so on until a successful connection is made or every number in the list has been
dialed. (Each telephone number is dialed 3 times at 40-second intervals.)

Example:
SDL >SPD>TTYI 1-617-667-3111

The telephone number 1-617-667-3111 is inserted in the first entry in the autodial telephone
number list used in dialing terminal TTYl.

GCOS 6 COMMANDS 2-105 CB02

SET COMMON ACCESS CONTROL LIST

SET COMMON ACCESS CONTROL LIST

Command Name {~i~_CACL}
SCA

Manipulate the file or directory common access control list (CACL) of a directory by adding a
new entry or changing the access mode of existing entries.

FORMAT:

{SCA } SET_CACL path access_mode user_id [ctLarg]

ARGUMENT DESCRIPTION:

path
Pathname of the directory containing the CACL. If this argument is -WD, the working
directory is used.

access_mode
Specifies an access mode valid for directories or files (depending on whether a file or
directory CACL is being added or changed).

Any or all of the following values may be specified for files:
R - Read access
E - Execute access
W - Write access

Any or all of the following values may be specified for directories:

L - List access
M - Modify access
C - Create access

One of the following values may be specified for files or directories; when the value is used,
it must be the only entry.

N - Null access
"/!l" - Null access

user_id
An access control name having the following format:

person. account. mode
Existing CACL entries that have matching access control names receive the access mode
specified by the access_mode argument.

If no matching entry is found, the entry is added to the CACL, provided that each compo­
nent of the access control name resolves to a literal value.

If the user_id argument is not specified, the current user id is employed, with the following
format:

person.account.*

[ctl_arg]
The following optional control arguments can be chosen:

{-DIR }
-DIRECTORY

Specifies that only directory values are to be allowed for the access mode argument. If
this argument is unspecified, the first access_mode value specified sets the default.

GCOS 6 COMMANDS 2-106 CB02

(

SET COMMON ACCESS CONTROL LIST

-FILE
Specifies that only file values are to be allowed for the access mode argument. If this
argument is unspecified, the first access_mode value specified sets the default.

FUNCTION DESCRIPTION:

The SET COMMON ACCESS CONTROL LIST command is used to modify the file or directory
common access control list (CACL) of a directory by adding a new entry or changing the access
mode of an existing entry. A file CACL contains the access control entries to be applied to all
files described in the specified directory. A directory CACL contains the access control entries
to be applied to all directories described in the specified directory. See "Function Description"
for the Set Access Control List (SA) command for further information.

GCOS 6 COMMANDS 2-107 CB02

SET TERMINAL CHARACTERISTICS

SET TERMINAL CHARACTERISTICS

Command Name: STTY

Change the file characteristics of a terminal.

FORMAT:

STTY device_name [ctl_arg]

ARGUMENT DESCRIPTION:

device_name
The symbolic name of the terminal as defined at system building (one to six characters).

ctl_arg
One or more arguments chosen from the following list. If an argument is unspecified, the
corresponding current value for the file remains in effect.

-LL n
A decimal integer specifying the desired line length. This value excludes the length of the
control byte.

-DSW xxxx
A 4-character hexadecimal value specifying the device-specific word. See the Communi­
cations Processing manual for information on device-specific words.

-DETAB f ON}
lOFF

Sets detabbing on or off.

Prepares the device to receive asynchronous (A), synchronous (S), or nonbuffered syn­
chronous (N) input.

-OUT{~l
Prepares the device to transmit asynchronous (A), synchronous (S), or nonbuffered
synchronous (N) output.

-TYPE{~}
Sets the device type to input-only (1), output-only (0), or bidirectional (E).

FUNCTION DESCRIPTION:

The STTY command allows the user to modify the file characteristics associated with a
terminal that is not currently reserved. The original file characteristics, established at system
building, can be altered to reflect the user's needs. Refer to the Communications Processing
Manual for details on the use of the STTY command.

Example:
STTY TTYYA -LL 120 -DSW 910 -IN S -OUT S -TYPE B

This command sets the file characteristics of the terminal whose device name is TTYY A to a
line length of 120 characters, a device-specific word of 910, and a device type of bidirectional.
The terminal is to accept synchronous input and send synchronous output.

GCOS 6 COMMANDS 2-108 CB02

SORT FILE

SORT FILE

Command Name: SORT

Sort the records in a file.

FORMAT:

SORT [ctl_arg]

ARGUMENT DESCRIPTION:

[ctl_arg]
One or more control arguments chosen from the following list:

-IN path
Specifies the name of the file containing the sort descriptors for this sort. If not specified,
the user-in file is used.

{-SIZE n}
-SZ n

Indicates the maximum number of l024-word memory modules to be available to the
sort. The value ofn can be from 8 to 48 (decimal) for SAF mode and from 8 to 68 (decimal)
for LAF mode. An invalid value can cause an illegal memory error code to be displayed. If
this argument is not specified, 8 memory modules are used.

-PD
Indicates that a listing of the sort descriptors is to be produced on the user-out file. (Only
the first 71 characters of the line will be displayed.) If this argument is not specified, no
list is issued.

-FF
When duplicate records are encountered, order them on a first-inJfirst-out (FIFO) basis.

-DL
When duplicate records are encountered, delete all but one. If -FF has also been specified,
all but the first occurrence of the duplicate records will be deleted.

-AK
Output from the sort will be records constructed of the sort keys concatenated in the
sequence of specification, prefixed by a record address. The record address is either a
simple key or a relative record number, as applicable to the file sorted.

-AD
Output from the sort will be a record constructed of only the record address of its position
in the original input file.

FUNCTION DESCRIPTION:

The SORT command provides the capability of sorting a data file according to specifications
supplied in a sort descriptor file.

The arguments -AK and -AD cannot both be specified in the same SORT command.

A complete description of the operation and use of the sort component is contained in the
Sort/Merge manual.

GCOS 6 COMMANDS 2-109 CB02

SPAWN GROUP

SPAWN GROUP

Command Name: SG

Create, request the execution of, and then delete a task group.

FORMAT:

SG id base_Ivl [ill-path] [ctLarg]

ARGUMENT DESCRIPTION:

id
The group identification of the task group to be spawned. It is a 2-character name that
cannot have the $ as its first character.

base_Ivl
A base priority level, relative to the system level, at which all tasks in this task group will
execute. A base level of 0, if specified, is the next higher level above the last system priority
level. The sum of the highest system physical level plus 1, and the base level of the group,
and the relative level of a task within that group must not exceed 62 10•

in_path
The name of the file from which commands and user input are to be read by the task group
during its execution. The file name is set to null if the ill-path argument is not specified;
ill-path must be specified if the control argument -ECL (see below) is used or implied.

[ctl_arg]
One or more control arguments chosen from the following list:

-OUT out_path

Defines the pathname of the file which is to receive user output from the task group. Ifnot
specified, one of the following assumptions is made:

• If ill-path specifies a disk file, ouLpath is ill-path.AO
• If ill-path specifies an interactive terminal, ouLpath is ill-path
• If ill-path is not specified, out_path is null
• If ill-path specifies an input-only device, out_path is null.
-WD path

Specifies that path is to be used as the working directory pathname. This argument is set
to null if not specified.

{-EFN root }
-EFN root?entry

The name of a bound unit root entry which is to be the lead task. The root segment name
can be suffixed with ?entry, where entry is a symbolic start address within the root
segment. If ?entry is not given, the start address established when the bound unit was
linked is assumed.

-ECL
The root segment of the command processor is to be loaded as the lead task.

-LRN n
Specifies the highest logical resource number (LRN) which will be referred to by any task
in the task group. The maximum value is 252. The default value is the highest LRN used
by the system.

-LFN n
Specifies the highest logical file number used by any task in the spawned task group. The
maximum value is 255. If -LFN is not specified, n assumes the value 15.

GCOS 6 COMMANDS 2-110

'-. _/

CB02

(

(~ /

SPAWN GROUP

-POOL id
id is a two-character ASCII identifier and is the name of the memory pool from which all
memory required by the spawned task group is to be taken. If specified, id must have been
defined at system building time. If not, the issuing task group's memory pool is used.

-ARG arg arg. . . arg
Indicates that additional arguments required by the spawned task group during execu­
tion follow. These additional arguments are passed to the lead task ofthe spawned group
to be used as necessary, and are substituted for parameters in the command-in file. If
used, the -ARG control argument must appear last. Refer to the Appendix A for an
explanation of the use of additional arguments.

Note:
-EFN or ECL, but not both, can be specified. If neither is specified, -ECL is assumed
and the in_path argument is required.

FUNCTION DESCRIPTION:

The SPAWN GROUP command combines the functionality of'the CREATE GROUP, ENTER
GROUP REQUEST, and DELETE GROUP commands. It implicitly causes the execution of
these three functions in sequence (i.e., it allocates and creates the data structures required to
define and control the execution of the task group, places a request against the group, thereby
activating it, and, when execution terminates, removes all controlling data structures and
returns memory used by the task group to the appropriate memory pool).

Because of the sequencing of the functions described above the SG command relieves the user
of the issuing task group of the need to be aware of when the spawned task group terminates.
The user need take no explicit action to return the terminating group's resources to the system
to make them available for use by other task groups. A user may, for example, spawn a task
group for another user who wishes to use the Editor or perform a file dump. This task group
exists only for the length of time required to perform its function; when it terminates it is
deleted automatically.

The issuing task group can itself be a spawned task group, spawned by an operator command
or by a command issued by another online task group. In either case, it has the command
processor as its lead task.

The SG command can be issued only by an online task group.

GCOS 6 COMMANDS 2-111 CB02

SPAWN TASK

SPAWN TASK

Command Name: ST

Create, request the execution of, and then delete a task within the issuing task group.

FORMAT:

ST rel_Ivl ctl-arg

ARGUMENT DESCRIPTION:

reUvl
The priority level, relative to the task group's base priority level, at which the spawned task
is to execute.

ctl-lirg
One or more control arguments chosen from the following list:

{-EFN root }
-EFN root?entry

The name of a bound unit root segment which is to be executed. The root segment name
can be suffixed with ?entry, where entry is a symbolic start address within the root
segment. If no suffix is given, the default start address, established when the bound unit
was linked, is assumed.

{-SHARE 1m [ssa]}
-SHR 1m [ssa]

The same bound unit is used as for the task identified by 1m in the same task group. (This
task must have been previously defined by a CREATE TASK command specifying this
1m.) ssa is the symbolic start address within the root segment of the task 1m. If none is
given, the default start address of the root segment 1m established when it was linked, is
assumed.

-WAIT
Specifies that the task issuing this command is to await completion of the spawned task
before resuming execution.

-ARG arg arg ... arg
Indicates that additional arguments required by the spawned task during execution
follow. These additional arguments are passed to the spawned task in an extension of the
task request block and are substituted for parameters in the command input file. Ifused,
the -ARG control argument must appear last. Refer to Appendix A for an explanation of
the use of additional arguments.

Note:
In any invocation of the ST command, -EFN or -SHARE, but not both, must be
specified.

FUNCTION DESCRIPTION:

The SPAWN TASK command combines the iunctions oithe CREATE TASK, ENTER TASK
REQUEST, and DELETE TASK commands in that it constructs all requisite structures for
theexecution of the task, activates the task, and then deletes it.

When the spawned task issues a Terminate macro call (see the System Service Macro Calls
manual), all controlling data structures associated with the task are removed, and the memory
they occupied is returned to the task group's memory pool.

A spawned task is not assigned a logical resource number. It is therefore "local" to (i.e., visible
only to) the spawning task. It cannot be requested or referred to by any other task, nor can its
memory space or code be shared. It can, however, share that of another ta!'lk which was

GCOS 6 COMMANDS 2-112

i / "

~

CB02

SPAWN TASK

assigned an LRN by means of a previously issued CREATE TASK command. The -SHARE
control argument indicates that this sharing is to occur.

Multiple tasks can be made to execute concurrently within a given task group by issuing
multiple ST commands. Tasks can also be made to execute serially; i.e., one task going to
completion before a subsequent task begins execution. The -WAIT control argument is the
mechanism which controls concurrency of execution. Judicious use of this argument can also
result in a mixture of concurrent and serial execution (see example 3, below)

Example 1:
Three tasks which have no dependencies among them are to be executed. They can be
activated concurrently by issuing the following commands:

ST 2 -EFN PROGA
ST 3 -EFN PROGB
S1' 4 -SHARE 10

Each of the first two spawned tasks executes its own bound unit in its own memory space. The
third shares the code and memory space of a previously created task identified by logical
resource number 10. If the task group's base level was specified as 2 when the group was
created, the three tasks execute at relative priority levels 4, 5, and 6, respectively.

Example 2:
The three tasks above have dependencies among them which require them to be executed
serially. They are activated by the following commands:

ST 2 -EFN PROGA -WAIT
ST 3 -EFN PROGB -WAIT
ST 4 -SHARE 10

Tasks 2, 3, and 4 execute sequentially in this example. Since the third task does not specify
-WAIT, another activity can be initiated to run concurrently with it.

Example 3:
The first two of the three tasks are unrelated, but there is a dependency between the second
and third tasks. The following commands can be used:

ST 2 -EFN PROGA
ST 3 -EFN PROGB -WAIT
ST 4 -SHARE 10

This sequence causes the first two tasks to be activated to run concurrently. Since the second
task specifies the -WAIT argument, it must terminate execution before the third task can
begin. The first task mayor may not still be running at this time. As in the previous example,
another activity can be initiated to execute concurrently with the third task.

GCOS 6 COMMANDS 2-113 CB02

STATUS GROUP

STATUS GROUP

Command Name: STG

Display the status of the issuing task group.

FORMAT:

STG [ctLarg]

ARGUMENT DESCRIPTION:

[ctl_arg]

One or more control arguments chosen from the following list.

-TASKS
Specifies that the status of each task in the issuing task group is to be listed. This is the
default if no control arguments are present.

-FILES
Requests the names of all files that are currently associated with the issuing task group,
their types, concurrencies, LFNs, and whether they are open or closed.

FUNCTION DESCRIPTION:

The STATUS GROUP command writes to the user-out file a summary of the current status of
the issuing task group. In addition to information pertinent to the group as a whole, two other
categories of status information are displayed: one relating to tasks within the group and the
other relating to files currently associated with the group.

The following items provide status information relative to the task group as a whole:
• Task group identification

.• Current state of the task group:
B - Batch, not rolled out
A-Active

• Memory pool identification (if not a batch group)
• Current user identification (user_id for batch task group is person.account.ABS)
• Full pathname of error-out file
• Full pathname of user-out file

Task-specific status information consists of the following group of items for each task:
• Task logical resource number (if a created task) or the letters ST (if a spawned task)
• Task priority level
• Current state of the task:

D-Dormant
W-Waiting
A-Active
X - Being terminated

• First six characters of the task's bound unit name
• Full pathname of the command-in file
• Full pathname of user-in file

File-specific status information consists of the following group of items for each file:
• Full pathname of the file
• Concurrency of the file, represented by a decimal digit in the range 1 through 5. The

significance of the digits for the issuing task group and for other tas~ groups is as follows:

GCOS 6 COMMANDS 2-114 CB02

I

\

"'-

(

STATUS GROUP/TIME

Significance for Significance for
Digit Issuing Task Group Other Task Groups
1 Read only Read only
2 Read only Read or write
3 Read or write No read, no write
4 Read or write Read only
5 Read or write Read or write

• File type. The rightmost six bits of the status word form a hexadecimal value for the file
type (i.e., the left hexadecimal digit ofthe formed value can only represent {) through 3).
See the Command In macro call in the System Service Macro Calls manual for the file type
descriptions.

• Logical file number if one is associated with the file, otherwise spaces.
• Open/closed status of the file; 0 for open, C for closed.

If there are no files currently associated with the task group, a single item, NO FILES, is
returned. The group status information is always returned when this command is used. The
task-specific information is returned if no control arguments are given, or if explicitly re­
quested by the -TASKS argument. If the -FILES argument is specified, the file-specific, but not
the task-specific, information is given.

TIME

Command Name: TIME

Display the current date and time in ASCII format.

FORMAT:

TIME

ARGUMENT DESCRIPrION:

No arguments are required or permitted with this command.

FUNCTION DESCRIPrION:

The TIME command returns the current date and time of day in an ASCII character string of
the form

yyyy/mmldd hhmm:ss.mmm
yyyy-Year
mm-Month

dd - Day of month
hhmm - Hours and minutes

ss-Seconds
mmm - Milliseconds

The information returned by the TIME command depends on the accuracy of the data entered
in the SET DATE operator command.

GCOS 6 COMMANDS 2-115 CB02

TAPE POSITIONING

TAPE POSITIONING

Command Name: TPOS

Position magnetic tape forward or backward to a specific block or file.

FORMAT:
TPOS path [nth] [ctLarg]

ARGUMENT DESCRIPTION:

path
The path name of the device on which the magnetic tape is mounted.

[nth]
Position the tape to the nth file on the tape, where n is a decimal number. The nth value is
optional since it does not apply to all of the accompanying control arguments.

Note:
The default for tape positioning with the TPOS command is file by file. Some of the
control arguments in the list below supply alternative positioning capabilities that
must be specified.

[ctl_arg]
One or more arguments from those listed below may be chosen. The additional argument
must be a qualifier of the initial argument.

-FWn
Space tape forward n files or blocks, where n is a decimal number.

-BK n
Space tape backward n files or blocks.

-BLOCK
Space the tape by block rather than by the default of files.

-TM
Space the tape by tape marks rather than by the default of files.

-RWD
Rewind the tape to BOT (beginning of tape).

-UNL
Unload the tape.

-EOT
Position the tape to the logical EOT (end of tape).

-FF
Position the tape forward, from the current position, to the specified file
(name).

FUNCTION DESCRIPTION:

The T APE-.POS command offers the capability of positioning a magnetic tape in a variety of
ways. In addition to the standard file-by-file positioning procedure, the tape may be positioned
to a specific block, tape mark or file name. The facility for positioning tapes by tape mark (-TM)
makes it possible to control the positioning of a magnetic tape that has been constructed by
other than the standard data management interface. Thus, a user who knows how a tape is
constructed in terms of tape mark references can position the tape to anyone of these points.
Positioning the tape by blocks can be done successfully only within a file. Block processing will

/

not cross tape marks, either forward or backward. ('

_j

GCOS 6 COMMANDS 2-116 CB02

TRANSMIT FILE (TRAN)

TRANSMIT FILE (LEVEL 6, 66)

Command Name: TRAN

Transmit or receive a file to/from a remote Honeywell Level 6 or 66 system.

FORMAT:

TRAN [ctLarg]

ARGUMENT DESCRIPI'ION:

Control arguments are chosen from the following:

mode
A character string composed of up to three characters chosen from the three character sets
described below.

I
Specifies that the Level 6 is to act as the initiator.

{~}
Specifies whether the Level 6 is to send data or receive data, as follows:
S-Send data
R - Receive data
The default value is R.

Specifies whether the communications line is to remain connected or is to be disconnected
upon normal termination of the file transfer, as follows:
C - Line remains connected
D - Line is disconnected
The default value is D.

-Lsys-.id
Specifies the remote system involved in the file transfer, as follows:

-L66 ~ Level 66

-L6 - Level 6

-N {~~PD>dev.-name}
Specifies the logical resource number or pathname used to access the communications
line, as follows:
lrn

Logical resource number (LRN) used to access the line.
>SPD>dev.-name

Pathname associated with the LRN used to access the line.

The default value is -N 00.

-Imm d pa~e
Initiator (Level 6) pathname of file being sent/received (see the Systems Concepts manual).

GCOS 6 COMMANDS 2-117 CB02

TRANSMIT FILE (TRAN)

Optional keyword values of the -I argument are:
S - The Level 6 file type is sequential.
R - The Level 6 file type is relative.
F - File type is fixed-relative with nondeletable records.
A - Data type is the 104 ASCII subset.
B - Data type is the 64 ASCII subset.
8 - Data type is binary.

For Level 6 to Level 6 file transmission, the acceptor argument description is as follows:

-A{~H~} & pathname

Optional keyword values of the -A argument for Level 6 to Level 6 file transmission are
identical to those for the -I argument as described above:

For Level 6 to Level 66 file transmission, the argument description is as follows:

- .
Optional keyword values of the -A argument for Level 6 to Level 66 file transmission are as
follows:

S - The file type on the Level 66 is UFF sequential.
R - The file type is UFF relative (with non-deletable records).
G - The file type is GFRC SSF.
A - Data type is the 104 ASCII subset.
B - Data type is BCD.
8 - !Data type is COMP1 or COMP2 binary (8 of 9 bit)
N - The file is to be created (new file) by the acceptor.
o - The file already exists (old file) and is to be sent or received, as appropriate, by the

acceptor.
Note:

Ifneither N nor 0 is specified, the default value depends on the direction of transfer.

-SR nnnnn
Specifies the record number within the file at which file transmission is to begin. Applies
only when a file transmission is restarted. nnnnn is a decimal number from 0 through
99999. The default value is O.

FUNCTION DESCRIPTION:

See the Level 61Level66 File Transmission manual for full details on performing a file transfer.

GCOS 6 COMMANDS 2-118 CB02

(

(/

TRANSMIT FILE (TRANB)

TRANSMIT FILE (Sse 2780/3780)

Command Name: TRANB

Transmit or receive a file to/from a remote nonHoneywell system capable of using the IBM
2780/3780 protocol.

FORMAT:

TRANB [ctl~rg]

ARGUMENT DESCRIPTION:

Control arguments are chosen from the following:

mode
A character string composed of up to three characters chosen from the three character sets
described below.

I
Specifies that the Level 6 is to act as the initiator.

{~}
Specifies whether the Level 6 is to send data or receive data, as follows:
S - Send data.
R - Receive data.
The default value is R.

{~}
Specifies whether the communications line is to remain connected or is to be disconnected
upon normal termination of the file transfer, as follows:
C - Line remains connected.
D - Line is disconnected.
The default value is D.

-Lsys_id [path]
Specifies the remote system involved in the file transfer and whether a preliminary
transfer file is to initiate the transmission, as follows:
-L278 - NonHoneywell system using IBM 2780 protocol.
-L378 - NonHoneywell system using IBM 3780 protocol.

path - Pathname_of the preliminary transfer file to be used to initiate the transfer.

N'{~~PD>dev,name }
Specifies the logical resource number or pathname used to access the communications
line, as follows:
1m

Logical resource number (LRN) used to access the line.
>SPD>dev~ame

Pathname associated with the LRN used to access the line.
The default value is -N 00.

-I{~}a pathname

Specifies the pathname to be used by the initiator (Level 6) to access the file to be sent or
received.

GCOS 6 COMMANDS 2-119

I
CB02

TRANSMIT FILE (TRANB)

C

p

Invokes the "cut" facility; splits the file records into SO-character chunks for transmis­
sion to a nonHoneywell system.

Invokes the "paste" facility; combines the SO-character record chunks received from a
nonHoneywell system to form fixed-length records.

FUNCTION DESCRIPTION:

See the Level 61BSC278013780 File Transmission manual for full details on performing a file
transfer. .

GCOS 6 COMMANDS 2-120

/ "

CB02

TRANSMIT FILE (TRANH)

TRANSMIT FILE (62, 64; SERIES 200/2000)

Command Name: TRANH

Transmit or receive a file to/from a remote Honeywell Level 6, Level 62, Level 64, or Series
200/2000 system.

FORMAT:

TRANH [ctLarg]

ARGUMENT DESCRIPTION:

Control arguments are chosen from the following:

mode
A character string composed of up to three characters chosen from the three character sets
described below.

{~}
Specifies whether this Level 6 is to act as the initiator or the acceptor of the file to be
transmitted, as follows:
I - Act as initiator.
A - Act as acceptor.
The default value is A.

{~}
Specifies whether this Level 6 is to send data or receive data, as follows:
S - Send data.
R - Receive data.
The default value is R.

{~}
Specifies whether the communications line is to remain connected or is to be disconnected
upon normal termination of the file transfer, as follows:
C - Line remains connected.
D - Line is disconnected.
The default value is D.

-Lsys-id
Specifies the remote system involved in the file transfer, as follows:
-L62 - Level 62
-L64 - Level 64
-L2K - Series 2000

N{lrn }
- >SPD>dev-Ilame

Specifies the logical resource number or pathname used to access the communications
line, as follows:

GCOS 6 COMMANDS 2-121 CB02

TRANSMIT FILE (TRANH)

1m
Logical resource number (LR.N) used to access the line.

>SPD>dev-Ilame
Pathname associated with the LRN used to access the line.

The default value is -N 00.

-I path
Specifies the pathname to be used by the initiator (Level 6) to access the file to be sent or
received.

-A path
Specifies the pathname to be used by the acceptor to access the file to be sent or received.

-SR nnnnn
Specifies the record number within the file at which file transmission is to begin. Applies
only when a Level 6 to Level 6 file transmission is restarted. nnnnn is a decimal number
from 0 through 99999. The default value is O.

FUNCTION DESCRIPTION:

See the appropriate File Transmission manual for full details on performing a file transfer.

GCOS 6 COMMANDS 2-122 CB02

WALK SUBTREE

WALK SUBTREE

Command Name: WS

Execute command line in specified directory and in all subordinate directories. Print; the path
of every directory referenced, on error_out.

FORMAT:

WS path command line [ctl arg]

ARGUMENT DESCRIPTION:

path
The starting node. This must always be the first argument. If -WD is specified, the working
directory becomes the starting node.

command line
The command line to be executed. Since the entire command line is treated as a single
argument, it must be enclosed in quotes if embedded separators are included.

[ctLarg]
Control arguments are optional and can appear in any order following the command line.
-FIRST n

Makes n (where "n" is a decimal number) the first level in the file system hierarchy at
which the command line is to be executed. By definition, the normal starting node is
level 1.
Default: -FIRST 1

-LAST n
Makes n the lowest level in the file system hierarchy at which the command line is to be
executed.
Default: -LAST 99999, i.e., all levels.

{-BRIEF}
-BF

Suppresses printing to error_out of the names of the directories in which the command
line is executed.
Default: Do not suppress printing directory names to error_out

{-BOTTOM-UP}
-BU

Causes execution of the command line to begin at the last level of the storage system
hierarchy and to proceed upward to the first level.
Default: Begin at the highest level and proceed downward to the lowest level.

Note:
The WS command establishes a program interrupt handler. If the user "BREAKS"
out of the WS command and immediately types PI (program interrupt, see BREAK
Procedures in Section 1), his working directory will be changed to the directory he
was in when the WS command was typed.

GCOS 6 COMMANDS 2-123 CB02

(

Appendix A

ADDITIONAL COMMAND CONSIDERATIONS

This appendix provides added information in the following areas:
• Additional command line arguments
• Terminal characteristics at login
• Pathname colon convention

ADDITIONAL COMMAND LINE ARGUMENTS (ARG)

A mechanism exists to handle additional arguments entered in command lines dealing with
task activation; if the activated task is a user application, the arguments are passed to the task
for processing. Parameter substitution of command line arguments is handled for noninterac­
tive command-in files and for user-in files that are the same as noninteractive command-in
files.

ARGUMENT PASSING

The arguments following the keyword -ARG in the EGR, EBR, SG, ETR, L, and ST
command are passed to the activated task.

When the activated task is the command processor, the argument list is used for parameter
substitution.

When the activated task is a program preparation or utility function, the task uses the
values in the argument list for its own required arguments.

When the activated task is a user application (that is to be passed arguments), the task
must contain an assembly language routine that examines the argument list in the task's
parameter block. The parameter block is a variable size augment to the task request block.
Parameter blocks and task request blocks are described in the System Service Macro Calls
manual.

Example 1:
EGR AX -WD ~ VOL>JR -OUT >SPD> LPTOO -ARG -IN >SPD>CRDOO -LL 80
A previous CG command has identified ED (for Editor) as the name of the bound unit root
segment to be loaded as the lead task. The arguments supplied to the Editor (viz., input
file pathname and maximum line length) are included in the argument list for the EGR
command.

Example 2:
EGR AX-WOA VOL>JR-OUT>SPD> LPTOO-ARG FILEA > UDD> BOOKS> FILEA-PR 20

A previous CG command has identified CPA (the Compare utility program) as the name
of the bound unit root segment to be loaded as the lead task. The first and second
arguments in the argument list are used for the first and second positional arguments in
the Compare command line. The third argument in the list is an optional keyword
argument passed to the Compare utility program.

INPUT COMMAND LINE PARAMETER SUBSTITUTION

A substitutable parameter in the command-in file is an ASCII character string in the form
&n, where n is one or more digits (e.g., &0, &1, etc.) The digit indicates the position in the
argument list of the data element to be substituted. The first argument is substituted for &0,

ADDITIONAL COMMAND
CONSIDERATIONS A-I CB02

the second for &1, and so forth. Depending on the case, the first argument can be path or the
first additional argument.

If the argument list is smaller than the number of substitutable parameters present in the
command-in file, the null parameter is substituted for all parameters not supplied in the
argument list. For example, ifXY&1Z is the substitutable line, it becomes XYZ after substitu­
tation with the null parameter for &l.

Parameter substitution enables a user to change parameters in a non interactive EC file.
For example, this technique can be applied when an EC command line is an abbreviation for a
set of parameterized functions. Parameter substitution occurs for all lines read from the
command-in file. Parameter substitution also occurs for all lines read from the user-in file
when &A is present in the EC file.

Nesting of argument lists is supported when a command line with additional arguments
specifies a command file that, in turn, contains a command line with additional arguments
that specifies a command file, and so forth. At each level of nesting, the argument list to be
used for the parameterized command file is taken from the arguments in the command line
that specifies the command file.

EC FILE EXECUTION COMMAND

The EC command has the following format:
EC path [argl arg2 ... argnJ

In the parameterized command-in file, path is substituted for all occurrences of &0, argl is
substituted for all occurrences of &1, and so forth. To parameterize directives to system
software (e.g., to the Linker) in the EC file, an &A directive must precede the command line
that activates the system software. This technique changes the user-in file so that it is
identical to the command-in file which is the EC file.

Example 1:
Task group AX has been created previously with the command processor as its lead task.
To execute the EC file, the user enters the following command lines:

EGR AX >SPD>CONSOLE -WD AVOLA>JR
EC AS~NK TEST >SPD>LPTOI -NL TEST.L START-.AD DIR>SEC

The contents of the EC file ASM_LNK.EC are:
ASSEM &1 -COUT &2 &3
&A
LINKER &1 -COUT &4
parameterized linker directives

After substitution, the command lines contain:
ASSEM TEST -COUT >SPD>LPTO1 -NL
&A
LINKER TEST -COUT TEST.L
parameterized linker directives

Af'-I.t:r the EGR command is executed, the user-in and command-in flies are the operator
terminal. After the EC command is executed, the user-in file is still the terminal, but the
command-in file is AS~LNK.EC. The &A directive in the EC file is required to change the
user-in file so that it is the same as the command-in file (AS:tvLLNK.EC). If the &A directive
is not included, Linker directives are read from >SPD>CONSOLE. TEST is substituted for all
occurrences of &1, >SPD>LPT01 for &2, -NL for &3, and TEST.L for &4. The first parameter
(&0) is not used. The ST ART-.AD and DIR>SEC arguments are substituted for parameters in
Linker directives.

Example 2:
The command line is:

EC ASMBL TEST -COUT TEST.L -SAF

ADDITIONAL COMMAND
CONSIDERATIONS A-2 CB02

-'-... /

. /

The contents of the EC file ASMBL.EC are:
&P6START ASSEMBLY OF &1
ASSEM &1 &2 &3 &4 &5 &6 &7 &8
&PAEND ASSEMBLY
&Qa

After substitution, the command lines contain:
&PaSTART ASSEMBLY OF TEST
ASSEM TEST -COUT TEST.L -SAF
PAEND ASSEMBL Y
&Qa

ASMBL is not substituted for any parameter. Since the first parameter (&1) is a positional
parameter, the first argument must always refer to path TEST in the example. Entries for the
keyword parameters can appear in any order in the argument list, or not appear at all.

Example 3:
If the command line in Example 2 was mistakenly entered as:

EC ASMBL TEST -COUT -SAF
After substitution, the ASSEM command line would contain:

ASSEM TEST -COUT -SAF
The positional argument following -COUT is missing; the next argument (-SAF) will be
substituted in its place, resulting in an incorrect command line.

GROUP ACTIVATION REQUEST COMMANDS

The following commands have parameter substitution performed on the command-in files
read by the lead task:

EBR ill-path [ctLarg -ARG argl argr... argnJ
EGR id [ill-path] [ctLarg -ARG argl arg2 ... argo]
SG id base-Ivl ill-path [ctLarg -ARG argl arg2 ..
L [logill-id] [destinatioll-id] [ctl_arg -ARG argl arg2

argnJ
argnJ

The lead task can be the command processor or an applications task; each has its own rules
for parameter substitution.

If the command processor is the lead task, ill-path is substituted for all occurrences of &0,
the first argument following -ARG for &1, the second argument for &2, and so forth.

If an applications task is the lead task, the first argument following -ARG is substituted for
all occurrences of &0, the second for &1, and so forth.

Example 1:
The command line is:

EBR TRYEDT -OUT >SPD>LPTOI -WD ~VOLA>JR -ARG TRYCOM 1 100

The contents of the noninteractive file TRYEDT are:
&PAEDIT COMMANDS ARE IN &0
ED
R &1
&2,&3
QT
BYE

After substitution, the command lines contain:
&PAEDIT COMMANDS ARE IN TRYEDT
ED
R TRYCOM

ADDITIONAL COMMAND
CONSIDERATIONS A-3 CB02

1,100P
QT
BYE

The command processor is the lead task. TRYEDT is substituted for &0, TRYCOM for
&1, 1 for &2, and 100 for &3.

Example 2:
This example illustrates the nesting of arguments in successive command lines. The task
group activation command line is: .

EGR AX MPG-DATA -WD AVOLA>JR -ARG TEST -NL TEST.L

The first line of the noninteractive command-in file, MPG-DATA, is:
EC AS~LNK &1 >SPD>LPT01 &2 &3 START~D DIR>SEC

The contents of the EC file AS~NK.EC are:
ASSEM &1 -COUT &2 &3
&A
LINKER &1 -COUT &4
parameterized linker directives

After the first substitution, the EC command line is:
EC AS~NK TEST >SPD>LPT01 -NL TEST.L START~ DIR>SEC

After the next substitution, using the argument list in the EC command, the command lines in
AS~NK.EC are:

ASSEM TEST -COUT >SPD>LPT01 -NL
&A
LINKER TEST -COUT TEST.L
parameterized linker directives

In summary, a previous CG command has created the AX task group whose lead task is the
command processor. The additional arguments in the EGR command are substituted for the
parameters in the command-in file, MPG-DATA. After the EGR command is processed, the
command-in file and user-in file is MPG-DATA. After the EC line is processed, the
command-in file is AS~NK.EC and the user-in file is still MPG-DATA.

Linker reads its directives from the user-in file; if the directives are to be parameterized, they
must be in the command-in file. Therefore, the &A directive is used to change the input file
read by the Linker from MPG-DATA to ASM~NK.EC; the arguments in the EC line apply
to parameterized lines in the EC file, AS~NK.EC.

After the lines in ASM-LNK.EC are processed, the command-in and user-in files revert back
to MPG_DAT A. For parameterized command lines that follow the first EC line in
MPG-DATA, the argument list is that of the EGR command.

TERMINAL CHARACTERISTICS AT LOGIN

The user's terminal can be a noncommunications terminal (MDC-connected) or a communi­
cations terminai (MLCP-connected). Both types of terminais are monitored by the iistener
component of the system. The listener performs certain operations that affect the states of the
various types of terminals. Typeouts that appear on the terminal vary according to whether it
is a noncommunications or a communications terminal.

NONCOMMUNICATIONS TERMINAL

The following are characteristics of a noncommunications terminal:
• If the terminal is not ready when the listener is activated, no initial output messages are

displayed when the terminal comes on line .
• When the listener is activated, direct login terminals that are on line display the message

of the day. A task group is spawned for each such terminal, using preset information. If
the lead task of the spawned task group is the command processor, the START_UP.EC

ADDITIONAL COMMAND
CONSIDERATIONS A-4

/' ' ! .

CB02

(

file (if present in the user's working directory) is executed. If the lead task is other than
the command processor, that task is executed. When the lead task terminates, the
message of the day is displayed and a task group is again spawned.

• When the listener is activated, terminals allowing login by abbreviation and terminals
requiring the full login command display the message of the day followed by a user login
prompter message, identifying the system and giving the data and time, as follows:

LOGIN system--.id -REV rrrr yy/mmJdd hhmm.ss.t
system_id

Identification of the system (e.g., GCOS6/MOD 400)
rrrr

Software release number (e.g., 0110).
yy/mmJdd

Date: yy is last two digits of year; mm is month (from 01 for January to 12 for
December); dd is day of month (from 01 to 31).

hhmm:ss.t
Time: hh is hour (from 00 to 23); mm is minute (from 00 to 59); ss is second (from 00 to
59); and t is tenths of second (from 0 to 9).

Once the prompter message is displayed, the user can type in the login command
(abbreviation or full command). When the lead task terminates, the message ofthe day is
displayed, followed by the login prompter message.

COMMUNICATIONS TERMINAL

The following are characteristics of a communications terminal:
• Even though a communications terminal is not ready when the listener is activated, a

message is displayed when the terminal comes on line.
• When the listener is activated, the same operations are done for communications termi­

nals as are done for noncommunications terminals, with the exceptions noted below for
lead task termination.

• When the lead task terminates the session:
- The LOGOUT message is displayed.
- A terminal connected by phone and having the hangup option is disconnected. The

user must dial in again to use the terminal.
- A terminal connected through a modem bypass and a terminal connected by phone

and not having the hangup option display the message of the day. If the terminal is a
direct login terminal, a login task group is spawned. If the terminal allows login by
abbreviation or requires a full login, the login prompter message is displayed.

PATHNAME COLON CONVENTION

The pathname colon convention allows the user to employ the GET or CREATE FILE
command to append additional ASCII characters to a pathname that has been previously
associated with an LFN <logical file number) through the ASSOCIATE PATH command.

The pathname associated through the ASSOCIATE PATH command will be completed
when a CREATE FILE or GET command is issued using the colon (:) option in the path
argument. The effect of the colon is to cause the system to replace the colon by the previously
associated pathname (i.e., to perform character string concatenation).

The following examples illustrate the use and effect of the colon option. The examples
assume that the user's working directory is 'SYS01>USERA when the ASSOCIATE PATH
command is issued and is 'SYS01>USERB when the GET or CREATE FILE command is
issued.

ADDITIONAL COMMAND
CONSIDERATIONS A-5 CB02

Associated
Pathname
none
none
none
none
DELA
DEL
, VOLl>UDD>FILEl
'VOL2>
VOL2

ADDITIONAL COMMAND
CONSIDERATIONS

. GET/CREATE
Pathname
:OLD>DELA
OLD>DELA
none
:~

none
:B
:~

:FILE02
:>FILE02

A-6

Result
SYSOl>USERB>OLD>DELA
SYSOI > USERB>OLD> DELA
SYSOl>USERB
SYSOl>USERB
SYSOl>USERA>DELA
SYSOl>USERA>DELB
VOLl>UDD>FILEl
VOL2>FILE02
VOL2>FILE02

CB02

(

Appendix B

Intersystem Link (ISL) Directives

An Intersystem Link (lSL) is a hardware element interconnecting two busses, thereby
permitting the same functions between two units on different busses as between two units on
the same bus. For example, an ISL can provide shared memory capability, central processor to
central processor interrupts, dual access to controllers, or simple bus extention. Linked sys­
tems can contain multiple busses linked by multiple ISLs. This appendix describes the ISL
directives. The ISL system building procedures are described in the System Building manual.
For a description of the ISL hardware, see the Minicomputer Handbook.

ISL directives enable a user to specify the settings for the ISL masks and tables for each ISL
twin. The ISL Configurator, which is a software component initiated through a command,
processes these directives and writes to a file (lSL~OUTINEx) the ISL loader program that
contains the 110 orders necessary to load the ISL masks and tables. The ISL Configurator does
not load the ISL; it generates the ISL loader.

ISL LOADER FILE CREATION

The ISL loader is in a file that is created by the ISL Configurator (assuming that the file
does not already exist). If the ISL Configurator creates the file, the default file size is 15
records, each of 256 bytes.

A user has the option to create the ISL file using the CREATE FILE utility described in
Section 2 of this manual. The create file command is on one of the forms

CF vol~d>IS~OUTINES -F~EL [ctl_arg]
for SAF mode or

CF-" vol_id>ISL_ROUTINEL -F~EL [Ctl_arg]
for LAF mode.

The file IS~OUTINEx is in the major directory of the specified volume. It must be a fixed
relative file with a minimum allocation of five records specified through the control arguments.
If any ISLs are to be dumped, three additional records are required. Additional file space can
be estimated from the number of words needed to implement each of the following ISL
configuration directives:

ISL - 6 words
LMEM +/RMEM +
LMEM -/RMEM­
LCHAN/RCHAN
LCP+/RCP+
LCP-/BCP-

ISL CONFIGURATOR

- 6 words
-12 words
- 6 words
-12 words
-12 words

The ISL Configurator is a software component that runs under the operating system. It
reads ISL directives from the user-in file and generates an ISL loader. The Configurator is
invoked by the ISLCON command described below.

ISLCON

Command Name: ISLCON

Generate an ISL loader to load Intersystem Link (lSL) address maps and masks.

FORMAT:

ISLCON path [{~~:}]

INTERSYSTEM LINK
(ISL) DIRECTIVES B-1 CB02

ARGUMENT DESCRIPTION:
path

The pathname of the volume on which the ISL loader file is to be written.

FUNCTION DESCRIPTION:

The ISLCON command is used to invoke the ISL Configurator which obtains ISL configuration
directives from the user-in file. It generates an executable loader program that will load ISL
address maps and masks during ISL configuration. The ISL loader is created in the volume
major directory specified in the path argument.

Example:

ISLCON ' V20022> ISL-ROUTINES

Generation of the ISL loader is to be done. ISL configuration directives are obtained from
the user-in file and written to the file 'V20022>ISL_ROUTINES.

SAMPLE INTERSYSTEM LINK

Figure B-1 shows a sample Intersystem Link defined by the ISL configuration directives.
Figure B-2 is a diagram of a possible hardware configuration corresponding to the ISL
directives.

INTERSYSTEM LINK
(lSL) DIRECTIVES

ISLCON 'ISLIN-SAF
?
ISL X '2000' , DUMP
?
DUr.,p X' 1380'
?
LMEi'l1+ 4,0
?
LMEM+ 5,1
?
U"E~1+ 7,3
?
LMEM+ 6,2
?
LMEI'''- 0,4
?
U"E~1- 1,5
?
LMEM- 2,6
?
LMH1- 3,7
?
LCHAN X'0600'
?
LeHAN Xi 0680 i

?
LeHAN X'0700'
?
LeHAN X'0780'
?
RCP+ X'0040',X'0000'
?
QUIT

Figure B-1. Sample Intersystem Link

B-2 CB02

~H

c=nZ
t~
t:;l::O
Hrn
::0-<
t<.Jrn
0>-,3

~~
t<.Jt"' rnH

Z
~

ttl
~

o
ttl
o
t>:l

~,
\,

DEVICE

DISKETTE 1
DISKETTE 2
DISKETTE 3
DISKETTE 4
KSR 1
KSR 2
PRINTER
ISL

CP

32K
MEMORY
o TO 32K

MDC

CHANNEL NO.

0400
0480
0600
0680
0500
0700
0780

2000,2001

BUSA

,..,.."

LOCAL
TWIN

BUS B

REMOTE
TWIN

Figure B-2. ISL Hardware Configuration

32K
MEMORY
33K TO 64K

~

ISL CONFIGURATION DIRECTIVES

The ISL Configurator interprets the following ISL configuration directives which are used
to initialize ISLs, and designate central processors, memory addresses and channel numbers
on local and remote busses linked by ISL twins:

• ISL (Initializes an ISL)
• LMEM (Indicates a desired memory address on a local bus)
• RMEM (Indicates a desired memory address on· a remote bus)
• LCHAN (Indicates a desired channel number on a local bus)
• RCHAN (Indicates a desired channel number on a remote bus)
• LCP (Indicates a desired central processor on a local bus)
• RCP (Indicates a desired central processor on a remote bus)
• DUMP (Indicates channel number to which ISL address maps and masks are to be

printed)

• QUIT (Indicates the end of ISL configuration input stream)

ISL

Directive Name: ISL

The ISL (Intersystem Link) directive causes an ISL (consisting of local and remote ISL twins),
on a designated channel, to be initialized. There is one ISL directive for each ISL (i.e., pair of
twins).

FORMAT:

ISL X'channel'[,DUMP]

ARGUMENT DESCRIPTION:

X'channel'
Specifies a four digit hexadecimal channel number (i.e., I6-bits) for both local and remote
ISL twins constituting an ISL. The actual channel number occupies only the high-order 10
bits (i.e., bits 0 through 9).

[DUMP]
Causes the ISL loader to print information loaded into ISL masks and address tables after
configuration. A maximum of ten ISLs can be dumped.

FUNCTION DESCRIPTION:

All memory and channel specifications following the ISL directive refer to the designated ISL
on its respective channel. There is no limit on the number of ISLs that can be configured.

Initially, channel and memory hit bits and channel translate table elements are set to off (i.e.,
0); however, memory address translate table elements are set to on (i.e., 1).

An ISL(s) twin(s) connected to a local bus must be configured prior to a twin{s) connected to a
remote bus because a channel on a remote bus cannot be referenced without having the
appropriate hit bit set in the channel number RAM (Random Access Memory) of the local ISL
twin.

Example:
ISL X'2000', DUMP

DUMP

Directive Name: DUMP

Specifies the channel number to which the contents of ISL masks and address maps will be
printed.

FORMAT:

DUMP X'nnnn'

INTERSYSTEM LINK
(ISL) DIRECTIVES B-4 CB02

(-'

ARGUMENT DESCRIPTION:

X'nnnn'
nnnn is a four digit hexadecimal channel number (i.e., 16 bits) used to indicate the channel
number to which the contents of the ISL address maps and masks will be printed. It must
represent either a printer or KSR that uses the first character of its buffer as a control
character.

FUNCTION DESCRIPTION:

ISL directives that specify the DUMP argument will be dumped to the channel specified in the
DUMP directive. If this is to occur, there must be one and only one DUMP directive. Only ten
ISLs can be dumped.

Example:
ISL X'0600', DUMP

DUMP X'1380'
In this example, a local and remote ISL pair are assigned to channel 0600 16 (with the DUMP
option) through the ISL directive. The contents of this ISL pair's address maps and masks will
be printed on a line printer assigned to channel 1380 16•

LCHAN, RCHAN

Directive Name: LCHAN, RCHAN

Sets to "on" the channel hit bit corresponding to the desired channel on either the local or
remote twin.

FORMAT:

{i~~~~} X'nnnn'

ARGUMENT DESCRIPTION:

LCHAN
Indicates a channel whose hit bit is to be set "on" in the local twin.

RCHAN
Indicates a channel whose hit bit is to be set "on" in the remote twin.

X'nnnn'
nnnn is a four digit hexadecimal channel number (i.e., 16 bits) for either a local or remote
ISL twin. The actual channel number is indicated only in the high-order 10 bits (Le., bits 0
through 9 of the 16-bit hexadecimal channel number nnnn).

FUNCTION DESCRIPTION:

This directive causes the channel hit bit, specified by the high-order 10 bits of the 16-bit
channel number, to be set to 1 (i.e., on) in the channel number RAM (Random Access Memory)
of either the local ISL twin or the remote ISL twin (depending on choice of either the LCHAN
or the RCHAN directives, respectively).

Example:

Bits:

INTERSYSTEM LINK
(ISL) DIRECTIVES

LCHAN X'0600'

o 1 2 3 4 5 6 7 8 9110 11 12 13 14 15
0000011000000000

\. J
T

High-order 10 bits

B-5 CB02

In this example, the channel hit bit will be set to 1 (i.e., on) in entry 24 of the local channel
number RAM of the local ISL twin.

LCP,RCP
Directive Name: LCP, RCP /-

Sets the channel hit bits and channel address translate values for central processors on either .~ /
local or remote busses.

FORMAT:

{ ig~:} LCP- X'nnnn', X'cccc'
RCP-

ARGUMENT DESCRIPTION:

LCP
Indicates a CP to be entered into the local twin.

RCP
Indicates a CP to be entered into the remote twin.

X'nnnn'
nnnn is a four digit hexadecimal channel number (i.e., 16 bits) for either a "local" or
"remote" associated ISL "twin" associated with either a "remote" or "local" CPo The actual
channel number is indicated only in the high-order 10 bits (i.e., bits 0 through 9 of the 16-bit
channel number nnnn) and is left-justified. nnnn must be in the range of 0000 16 to OOOF 16'

X'cccc'
ecce is a four digit hexadecimal number (i.e., 16 bits) representing a value setting for the
channel translate table cell associated with channel nnnn. cccc must be in the range of
0000 16 to OOOF \6'

FUNCTION DESCRIPTION: / ".

The LCP+ directive causes the channel hit bit, specified by the high-order 10 bits of the 16-bit '" ./
hexadecimal channel number, to be set to 1 (i.e., on); it also causes the channel translate table
cell (associated with the channel number for either a local or remote CP) to be set to a specified
value. RCP+ performs the same function for the remote twin.

The LCP- directive causes the channel hit bit, specified by the high-order 10 bits ofthe 16-bit
hexadecimal channel number, to be set to 0 (i.e., om; it also causes the channel translate table
cell (associated with the channel number for either a local or remote CP) to be set to a specified
value. The only instance in which LCP- might be specified without a corresponding RCP+
specification involves a system in which an IOLD from on CP is intended to cause an interrupt
to a CP different from the issuing CP upon completion of the data transfer. RCP- performs the
same function for the remote twin.

Example:

Bits:

LCP X'0040', X'OOOO'

o 1 2 3 4 5 6 7 8 9110 11 12 13 14 15
0000000001000000
~ ______ ~T~=-~~~J

Higli-order 10 bits

In this example, the binary value of bit 9 (i.e., 1) determines that the channel hit bit will be set
to 1 (Le., on) in entry 1 of the channel number RAM of the local ISL twin associated with the
local CPo The channel translate table cell (associated with the channel number for the local
CP) will be set to a value of 0000.

LMEM,RMEM

Directive Names: LMEM, RMEM

INTERSYSTEM LINK
(lSL) DIRECTIVES B-6 CB02

(

Indicate a desired memory address on local and remote busses by setting a hit bit, which
indicates the desired address, in a memory mask RAM.

FORMAT 1:
LMEM + hhhh,tttt

FORMAT 2:
LMEM - hhhh,tttt

FORMAT 3:
RMEM+ hhhh,tttt

FORMAT 4:
RMEM - hhhh,tttt

ARGUMENT DESCRIPI'ION:

LMEM+
Indicates that the specified hit bit in the memory mask RAM of the local twin is to be set on
and the memory address translate table element is to be set to the specified value.

LMEM-
Indicates that the specified hit bit in the memory mask RAM ofthe local twin is to be set off
and the memory address translate table element is to be set to the specified value.

RMEM+
Same as LMEM + except that the action occurs at the remote twin.

RMEM-
Same as LMEM - except that the action occurs at the remote twin.

hhhh
Hit bit in memory mask RAM of local or remote twin; is a decimal value from 0 through
1023.

tttt
Address value of memory address translate table element in associated local or remote twin;
is a decimal value from 0 through 1023.

FUNCTION DESCRIPI'ION:

The LMEM + and RMEM + directives set the hit bits and values in the local or remote twin
exactly as specified. The LMEM - and RMEM - directives not only set hit bits and values in
the twin specified but also can set a "mirror image" ofthe hit bits and values in the other twin.
The hit bit specified in one twin is made the memory address translate value for the other twin;
the memory address translate value for this twin is made the hit bit for the other twin. This
feature is designed for passing dummy memory address values to the other twin. To prevent
the "mirroring effect", before a LMEM- is issued, the memory address table element in the
other twin must first be set to a value different from 3FF.

The values for hhhh and tttt are decimal from 0 through 1023.

FORMAT 1:

This form of the directive causes the hit bit represented by hhhh in the memory mask RAM
(Random Access Memory) of a local ISL twin to be set to 1 (i.e., on) and the memory address
translate table element, associated with memory mask RAM, will be set to the value repre­
sented by tttt.

Example:
LMEM+ 1,5

In this example, hit bit 1 is set to 1 (i.e., on) by substituting the value 1 for hhhh and indicating
the plus (+) sign, immediately following the LMEM directive, which sets hit bit 1 on. The
memory address translate table element is set to an address value of 5 by substituting the
value 5 for tttt.

INTERSYSTEM LINK
(lSL) DIRECTIVES B-7 CB02

FORMAT 2:

This form of the directive causes the hit bit represented by hhhh in the memory mask RAM
(Random Access Memory) of a local ISL twin to be set to 0 (i.e., off) and the memory address
translate table element, associated with the memory mask RAM, will be set to the value
represented by tttt.

lfthe remote ISL twin's hit bit (represented by tttt, in the case of the remote ISL twin) is 0 (i.e.,
off) and its memory address translate table element is an initialized state (i.e., all I bits or
3FFIO), the hit bit tttt will be set to I (i.e., on) and the memory address translate table element
tttt will be set to hhhh in the remote ISL twin.

Example:
LMEM- 7,3

In this example,the local ISL hit bit 7 is set to 0 (i.e., off) by substituting the value 7 for hhhh
and indicating the minus (-) sign, immediately following the LMEM directive, which sets hit
bit 7 to off. The local ISL memory address translate table element is set to an address value of3
by substituting the value 3 for tttt. If the remote ISL twin's hit bit (represented by ttt, in the
case of the remote ISL twin) is 0 (i.e., off) and its memory address translate table element is in
an initialized state (i.e., all I bits or 3FF 16) hit bit 3 of the remote ISL twin will be set to I (i.e.,
on) and the memory address table translate element will be set to 7 in the remote ISL twin.
This action involving the other ISL twin is referred to as "mirroring".

FORMAT 3:

This form of the directive causes the hit bit represented by hhhh in the memory mask RAM
(Random Access Memory) of a remote ISL twin to be set to I (i.e., on) and the memory address
translate table element, associated with the memory mask RAM, to be set to the value
represented by tttt.

Example:
RMEM+ 0,4

In this example, hit bit 0 is set to I (i.e., on) by substituting the value 0 for hhhh and indicating
the plus (+) sign, immediately following the RMEM directive, which sets hit bit 0 on. The
memory address translate table element is set to an address value of 4.

FORMAT 4:

This form of the directive causes the hit bit represented by hhhh in the memory mask RAM
(Random Access Memory) of a remote ISL twin to be set to 0 (i.e., off) and the memory address
translate table element, associated with the memory mask RAM, to be set to the value
represented by tttt.

If the local ISL twin's hit bit (represented by tttt, in the case of the remote ISL twin) is 0 (i.e.,
off) and its memory address translate table element is in an initialized state (i.e., all I bits or
3FF 16), the hit bit tttt will be set to I (i.e., on) and the memory address translate table element
tttt will be set to hhhh in the local ISL twin.

EXAMPLE:
RMEM- 2,6

In this example, the remote ISLhit bit 2 is set to 0 (i.e., off) by substituting the value 2 for
hhhh and indicating the minus (-) sign immediately following the RMEM directive which sets
hit bit 2 off. The remote ISL memory address translate table element is set to an address value
of 6.

If the local ISL twin's hit bit (represented by tttt) is 0 (i.e., off) and its memory address
translate table element is in an initialized state (i.e., all I bits or 3FF lJ, hit bit 6 of the local
ISL twin will be set to I (i.e., on) and the memory address table translate element will be set to
2 in the local ISL twin. This action involving the other ISL twin is referred to as "mirroring".

QUIT

Directive Name: QUIT

INTERSYSTEM LINK
(lSL) DIRECTIVES B-8 CB02

The QUIT directive is the last configuration directive in the user input file.

FORMAT:

QUIT

ARGUMENT DESCRIPTION:

Not applicable.

FUNCTION DESCRIPTION:

When this directive is encountered, it signifies the end of the ISL configuration input stream;
the ISL configurator terminates.

INTERSYSTEM LINK
(lSL) DIRECTIVES B-9 CB02

Appendix C

File Change Directives

The File Change (FC) command is used to change the contents of a disk file. Changes can be
made to a sector or control interval in the named file.

The FC command invokes the FC processor, which reads directives entered from the
terminal. Each FC directive is summarized below and described in detail later in this appen­
dix.

Directive N arne Function
R Read a specified sector or control interval.
P Print the contents of the last sector or control interval read.
C Verify the contents of specified locations in the specified sector or control

interval. Place the new values of these locations in an FC processor
buffer.

W Write the new values in the FC processor buffer to the specified locations
in the sector or control interval.

Q Terminate execution of the FC processor.

FILE CHANGE COMMAND

The FC processor is invoked by the FC command.

FORMAT:

FC path

ARGUMENT DESCRIPTION:

path
N arne of the file to be changed. A peripheral device pathname indicates sectors are to be
changed. A file pathname indicates control intervals are to be changed.

EXAMPLE:
FC >SPD> DSK03

This command invokes the FC processor to apply changes to sectors on disk DSK03.
FC • VOL01>UDD>JONES>FILE~

This FC command invokes the FC processor to apply changes to control intervals in file
FILE~.

FILE CHANGE DIRECTIVES

Once the FC processor is invoked, the user can issue the File Change directives from his
terminal.

Each FC directive consists of a directive name only or a directive name followed by one or
more arguments. If more than argument is to be specified in a single directive, the directive
name must be followed by a space and each argument (except the last) must be followed by a
comma.

The FC directives can be entered in any order, except for the Quit directive, which must be
entered last. Normally, the directives are entered in the order Read, Print, Change, and Write.

FILE CHANGE DIRECTIVES C-l CB02

READ

The Read directive (R) reads a sector or control interval of the file specified in the path
argument of the FC command. The sector or control interval specified in the Read directive is
the sector or interval that will be operated upon by the following directives until another Read
directive is issued or the Quit directive is entered.

FORMAT:

ARGUMENT DESCRIPTION:

adrt
Specifies a relative sector or control interval number within the file; is expressed as one to
six right-justified hexadecimal digits.

EXAMPLE:
R A

Read the tenth sector or control interval in the file named by the path argument of the FC
command.

PRINT

The Print directive (P) causes the printing of the contents of the sector or control interval
read by the last read directive. The sector or control interval contents are placed on the
user_out file.

FORMAT:

P

ARGUMENT DESCRIPTION:

No arguments are used with this directive.

EXAMPLE:
P

If the last Read directive was R A, print the contents of the tenth sector or control interval of
the file named in the path argument of the FC command.

CHANGE

The Change directive (C) is used to verify the current value of the specified location in the
sector or control interval and then replace that value with a new value. The sector or control
interval whose location(s) is to be changed is that sector or control interval specified in the
preceding Read directive.

Each new value is stored in a buffer in the FC processor. The location(s) in the control
interval or sector are not overwritten until a Write directive is given (see "Write" below).

Within a single Change directive, verification values can be specified for any or all loca­
tions. If any verification value fail~ to match the value at its location, none of the changes are
placed in the FC processor buffer.

FORMAT:

C Jadrt,(vervalJ,newvalt[, ... , vervaln,newvaln]) [,Jadr2'
(vervalt,newvall [, ... , vervaln,newvalnJ) , ... ,!adrm(vervalhnewvaI 1

[, . . . , vervalmnewvaln])]

FILE CHANGE DIRECTIVES C-2 CB02

Note:
One or more lines of arguments may be specified. When two or more lines of
arguments are entered, the last character on each line must be a valid hexadecimal
character. Individual fields, values, and addresses must not be split between lines.

ARGUMENT DESCRIPTION:

ladrn
Relative location at which the first (or only) change value will be applied. Each address
consists of one to four right-justified hexadecimal characters. Each address must be
preceded by the 1 (stroke) character. The relative location must not exceed the size of the
sector or control interval. Subsequent change values (if any) are applied to succeeding
locations.

vervaIn
Verification value; one to four hexadecimal characters specifying the value that should
now be present in the location to which the change will be made. Each verification value
must be immediately followed by a change value (see the newvaln argument below). The
verification value(s) and the change value(s) associated with each address value must be
enclosed in parentheses.

newvaln
The new value (change value) to be inserted at a location, thereby replacing the contents
of that location. The value must be from one to four hexadecimal characters.

EXAMPLE:
C 125,(42,52),I31,(4D,4F,37 ,39,41,42)

Assuming that this is the tenth control interval of the file named by the argument of the FC
command, change position 25 16 from B to R, position 31 16 from M to 0, position 32 16 from 7 to 9,
and position 33 16 from A to B.

WRITE

The Write directive (W) is used to write the current buffer to the sector or control interval
position(s) in the file. All changes to sectors or control intervals specified in the preceding
Change directives are stored in a buffer in the FC processor. The Write directive causes these
changes to be written in the specified locations in the sectors or control intervals. A Write
directive must be issued before changes are made to a new sector or control interval.

FORMAT:

W

ARGUMENT -DESCRIPTION:

No arguments are used with this directive.

EXAMPLE:
W

Assuming that the Change directive was
C 125,(42,52) ,131,(4D,4F ,37 ,39,41,42)

The W directive causes position 25 16 to be change to R, 31 16 to M, 32 16 to 9, and 3316 to B.

QUIT

The Quit directive (Q) informs the FC processor that no further directives will be forthcom­
ing. This directive causes execution of the FC processor to terminate. The user is returned to
command level.

FORMAT:

Q

FILE CHANGE DIRECTIVES C-3 CB02

ARGUMENT DESCRIPTION:

No arguments are used with this directive.

SAMPLE FILE CHANGE COMMANDS

In the following example, the volume label of a cartridge disk is to be changed.
FC >SPD> DSK03 (Sector change)
R 7 (Read sector 7)
P
C IA,(30,31)

(Print sector 7 on user-out file)
(Change tenth location from 0 to 1)

W (Write change to sector 7)
Q (Terminate)

In the following example, changes are to be made to data file FILE_A, which has 100
control intervals, each with 240 positions. The second and tenth 'control intervals are to be
changed. In both intervals, the first position should be 0 instead of A.

FC VOL01>UDD>JONES>FILE...--A, (Control interval change)
R 2 (Read second control interval)
P (Print second control interval

on user-out file)
C 11,(41,30) (Change A to 0)

W (Write change)
R A (Read tenth control interval)
P (Print tenth control interval

on user-out file)
C 11,(41,30) (Change A to 0)

W (Write change)
Q (Terminate)

FILE CHANGE DIRECTIVES C-4

/ -"
" -_/

CB02

(

(/

Appendix D

ASCII and EBCDIC Character Sets

Tables D-l and D-2 illustrate the ASCII and EBCDIC character sets, respectively. In
addition to the ASCII characters, Table D-l shows the hexadecimal equivalents; Table D-2
shows the binary and hexadecimal equivalents of the EBCDIC character set.

Following are lists of the control characters and special graphic characters that appear in
the two tables:

Control Characters
ACK Acknowledge EOT End of Transmission PF Punch Off
BEL Bell ESC Escape PN Punch On
BS Backspace ETB End of Transmission Block RES Restore
BYP Bypass ETX End of Text RLF Reverse Line Feed
CAN Cancel FF Form Feed RS Reader Stop
CC Cursor Control FS Field Separator SI Shift In
CR Carriage Return GE Graphic Escape SM Set Mode
CUI Customer Use I GS Group Separator SMM Start of Manual Message
CU2 Customer Use 2 HT Horizontal Tab SO Shift Out
CU3 Customer Use 3 IFS Interchange File Separator SOH Start of Heading
DCI Device Control I IGS Interchange Group Separator SOS Start of Significance
DC2 Device Control 2 IL Idle SP Space
DC3 Device Control 3 IRS Interchange Record Separator STX Start of Text
DC4 Device Control 4 IUS Interchange Unit Separator SUB Substitute
DEL Delete LC Lowercase SYN Synchronous Idle
DLE Data Link Escape LF Line Feed TM Tape Mark
DS Digit Select NAK Negative Acknowledgment UC Uppercase
EM End of Medium NL New Line US Unit Separator
ENQ Enquiry NUL Null VT Vertical Tab
EO Eight Ones

Special Graphic Characters
t Cent Sign ? Question Mark

Period, Decimal Point Grave Accent
< Less-than Sign Colon

Left Parenthesis # Number Sign
+ Plus Sign (it At Sign

Logical OR Prime, Apostrophe
& Ampersand Equal Sign

Exclamation Point Quotation Mark
$ Dollar Sign Tilde

* Asterisk Opening Brace
Right Parenthesis Hook
Semicolon Fork
Logical NOT y Closing Brace
Minus Sign "- Reverse Slant
Slash Chair
Vertical Line Long Vertical Mark
Comma Opening Bracket

% Percent Closing Bracket
Underscore Circumflex

> Greater-than Sign

ASCII AND EBCDIC
CHARACTER SETS D-I CB02

ASCII AND EBCDIC
CHARACTER SETS

,

H2

0

I

2

3

4

5

'6

7

8

9

A

B

C

D

E

F

TABLE D-I. ASCII/HEXADECIMAL EQUIVALENTS

HI

0 I 2 3 4 5 6 7

NUL DLE SP 0 @ P p

SOH DCI ! I A Q a q

STX DC2. " 2 B R b r

ETX DC3 # 3 C S c s

EOT DC4 $ 4 D T d t

ENQ NAK % 5 E U e u

ACK SYN & 6 F V f v

BEL ETB
,

7 G W g w

BS CAN (8 H X h x

HT EM) 9 I Y i y

LF SUB * : J Z j z

VT ESC + ; K [k {
FF FS , < L "- I

CR GS - = M] m ~
SO RS > N /\ n -
SI US / ? 0 - 0 DEL

D-2 CB02

TABLE D-2. EBCDIC/HEXADECIMAL/BINARY EQUIVALENTS

on e
"" ..; " 00 01 ...,

'" '" c " 0 " +:l :r:
£ ..., 00 01 10 11 00 01 10 c

§. ~ 0 1 2 3 4 5 6 !!2..

0000 0 NUL DLE DS SP & -

0001 1 SOH DC1 SOS I

0010 2 STX DC2 FS SYN

0011 3 ETX TM

0100 4 PF RES BYP PN

0101 5 HT NL LF RS

0110 6 LC BS ETB UC

0111 7 DEL IL ESC EaT

1000 8 GE" CAN

1001 9 RLF" EM

1010 A SMM CC SM t ! I"
1011 B VT CUI" CU2" CU3' $

1100 C FF IFS DC4 < * '«

1101 D CR IGS ENQ NAK I I -

1110 E SO IRS ACK + >

1111 F SI IUS BEL SUB ?

"This character is not supported in the 2780 character set.

ASCII AND EBCDIC
CHARACTER SETS

10 11 } Bit Positions 0, 1

11 00 01 10 11 00 01 10 11 } Bit Positions 2, 3

7 8 9 A B C D E F }First Hexadecimal Digit

{" }" '\.." 0

a j :1 A J 1

b k s B K S 2

c I t C L T 3

d m u D M U 4

e n v E N V 5

f 0 w F 0 W 6

g p x G P X 7

h q y H Q Y 8

'\.." i r z I R Z 9

I"

(a "

~ "

" EO"

D-3 CB02

,
•

(

INDEX

ABORT
ABORT GROUP ABORT~GROUP COMMAND,
2~1

ABSOLUTE
ABSOLUTE PATHNAME, 1~7

ACCESS
DELETE ACCESS CONTROL LIST, 2~38

DELETE COMMON ACCESS CONTROL LIST,
2~39

LIST ACCESS CONTROL LIST, 2-71
LIST COMMON ACCESS CONTROL LIST,

2-72
SET ACCESS CONTROL LIST (SET ACL OR

SA), 2-100 -
SET COMMON ACCESS CONTROL LIST (SCA

SET_CACL), 2-106

ACTIVATING
ACTIVATING A USER PROGRAMk 1-13

ACTIVATION

ARG

GROUP ACTIVATION REQUEST COMMANDS,
A-3

USER PROGRAM ACTIVATION, 1-13

ADDITIONAL COMMAND LINE ARGUMENTS
ARG, A-I

ARGUMENT
ARGUMENT PASSING, A-I
CONTROL ARGUMENT, 1-5
KEYWORD ARGUMENT, 1-5

ARGUMENTS
ADDITIONAL COMMAND LINE ARGUMENTS

ARG, A-I

ARGUMENT
POSITIONAL ARGUMENT, 1-5

ASCII
ASCII AND EBCDIC CHARACTER SETS,

D-l

ASCII/HEXADECIMAL
ASCII/HEXADECIMAL EQUIVALENTS, D-2

ASSEMBLER
ASSEMBLER (ASSEM COMMAND), 2-2

AUTODIAL
SET AUTODIAL TELEPHONE NUMBER (SDL)

COMMAND, 2-105

BATCH
ENTER BATCH REQUEST (EBR COMMAND),

2-45

BLOCK
BLOCK AND LOGICAL RECORD SIZE

VALIDITY CHECKING 2-67
DEFAULT BLOCK AND LOGICAL RECORD

SIZE CALCULATION, 2-57

7/78

BREAK

BYE

BREAK FUNCTION USAGE, 1-16
BREAK PROCEDURES, 1-17
EXAMPLES OF BREAK USAGE, 1-18

BYE (BYE COMMAND), 2-5

CACL
SET COMMON ACCESS CONTROL LIST (SCA

SET_CACL), 2-106

CALCULATION
DEFAULT BLOCK AND LOGICAL RECORD

SIZE CALCULATION, 2-67

CHARACTER
ASCII AND EBCDIC CHARACTER SET, D-l
DECLARING A CONTROL CHARACTER A

DATA CHARACTER, 1-16

CHARACTERISTICS
TERMINAL CHARACTERISTICS AT LOGIN,

A-4

CHECKING
BLOCK AND LOGICAL RECORD SIZE

VALIDITY CHECKING, 2-67

COBOL
COBOL (COBOL COMMAND), 2-8 ,

COBOLI
COBOLI (COBOL! COMMAND), 2-10

COMMAND

i-I

ABORT GROUP ABORT GROUP COMMAND, 2-1
ADDITIONAL COMMAND CONSIDERATIONS,

A-I
ADDITIONAL COMMAND LINE ARGUMENTS

(ARG), A-I
ASSEMBLER (ASSEM COMMAND), 2-2
ASSOCIATE PATH (ASSOC COMMAND), 2-4
BYE (BYE COMMAND), 2-5
CHANGE WORKING DIRECTORY (CWD

COMMAND), 2-6
COBOLI (COBOLI COMMAND), 2-10
COBOL (COBOL COMMAND), 2-8
COMMAND LINE (FORMAT), 1-4
COMPARE (CPA COMMAND), 2-12
CONDITIONS FOR COMMAND PROCESSOR

TERMINATION, 1-15
COpy DATA ENCHANGE (IBM) (CPDE

COMMAND), 2-20
COpy (CP COMMAND), 2-15
CREATE DIRECTORY (CD COMMAND), 2-21
CREATE FILE (CF COMMAND), 2-23
CREATE GROUP (CG COMMAND), 2-26
CREATE TASK (CT COMMAND), 2-29
CREATE VOLUME DATA EXCHANGE (IBM)

(CVDE COMMAND), 2-35
CREATE VOLUME (CV COMMAND), 2-31
DEFERRED PRINT (DP COMMAND), 2-36
DELETE GROUP (DG COMMAND), 2-40
DELETE TASK (DT COMMAND), 2-41
DISSOCIATE PATH' (DISSOC COMMAND), 2-41

CB02A

INDEX

COMMAND (CONT)
DUMP EDIT (DPEDIT COMMAND), 2-42
EC FILE EXECUTION COMMAND, A-2
EDITOR (ED COMMAND), 2-44
ENTER BATCH REQUEST (EBR COMMAND),

2-45
ENTER GROUP REQUEST (EGR COMMAND),

2-46
ENTER TASK REQUEST (ETR COMMAND),

2-48
EXECUTION COMMAND (EC COMMAND),

2-50
EXPORT PAM FILE (EX PAM COMMAND,

2-54 -
EXTENDING THE COMMAND SET, 1-14
FILE CHANGE COMMAND, C-l
FILE CHANGE (FC COMMAND), 2-55
FILE DUMP (FD COMMAND), 2-56
FILE OUT (FO COMMAND), 2-58
FORTRAN (FORTRAN COMMAND), 2-59
GET FILE (GET COMMAND), 2-62
IMPORT PAM FILE (1M PAM COMMAND) ,

2-68 -
INPUT COMMAND LINE PARAMETER

SUBSTITUTION, A-I
INVOKE RBT TASK GROUP (RBT COMMAND),

2-69

COMMAND (CONT)
SPAWN TASK (ST COMMAND), 2-112

. STATUS GROUP (STG COMMAND), 2-114
SYSTEM PROGRAMS SUPPORTING THE UW

(UNWIND) COMMAND, 1-17
TAPE POSITIONING (TPOS COMMAND),

2-116
TIME (TIME COMMAND), 2-115
TRANSMIT FILE (TRAN COMMAND), 2-117
TRANSMIT FILE (TRANB COMMAND),

2-119
UNWIND AND PROGRAM INTERRUPT

COMMAND CONSIDERATIONS, 1-18
WALK SUBTREE (WS COMMAND), 2-121

COMMAND-IN
COMMAND-IN FILE, 1-14

COMMANDS
FUNCTIONAL SUMMARY OF COMMANDS, 1-1
FUNCTIONAL SUMMARY OF GCOS 6

COMMANDS, 1-1
GCOS 6 COMMANDS, 2-1
GROUP ACTIVATION REQUEST COMMANDS,

A-3
SAMPLE FILE CHANGE COMMANDS, C-4

ISL CONFIGURATOR (ISLCON COMMAND), COMMON
2-69 DELETE COMMON ACCESS CONTROL LIST,

LINKER (LINKER COMMAND), 2-70 2-39
LIST CREATION DATE (LCD COMMAND), LIST COMMON ACCESS CONTROL LIST,

2-74 2-72
LIST DATA EXCHANGE (IBM) (LSDE SET COMMON ACCESS CONTROL LIST (SCA

COMMAND), 2-75 SET CACL) , 2-106
LIST NAMES (LS COMMAND), 2-77 -
LIST SEARCH RULES (LSR COMMAND), COMMUNICATIONS

2-79 COMMUNICATIONS TERMINAL, A-5
LIST WORKING DIRECTORY (LWD

COMMAND), 2-80
LOGIN (L COMMAND), 2-81
MACRO PREPROCESSOR (MACROP

COMMAND), 2-84
MERGE FILES (MERGE COMMAND), 2-85
MESSAGE (MSG COMMAND), 2-85
MODIFY EXTERNAL SWITCHES (MSW

COMMAND), 2-86
MODIFY FILE (MF COMMAND), 2-87
NEW PROCESS (NEW PROC COMMAND) ,

2-88 -
PATCH (PATCH COMMAND), 2-88
PRINT (PR COMMAND), 2-89
READY OFF (RDF COMMAND), 2-91
READY ON (RDN CO~~~ND), 2-91
RELEASE (RL COMMAND), 2-92
REMOVE FILE (REMOVE COMMAND), 2-93
RENAME FILE (RENAME COMMAND), 2-94
RESET MAP (RS COMMAND), 2-95
RESTORE (RESTORE COMMAND), 2-96
RPG (RPG COMMAND), 2-97
SAVE (SAVE COMMAND), 2-99
SET AUTODIAL TELEPHONE NUMBER (SDL

COMMAND, 2-105
SET TERMINAL CHARACTERISTICS (STTY

COMMAND), 2-108
SORT FILE (SORT COMMAND), 2-109
SPAWN GROUP (SG COMMAND), 2-110

7/78

COMPARE
COMPARE (CPA COMMAND)! 2-12

CONCEPTS
GCOS 6 COMMAND CONCEPTS, 1-1

CONCURRENCY
CONCURRNECY OF STANDARD I/O FILES,

1-15
CONCURRENCY OF UTILITY AND PROGRAM

PREPARATION FILES, 1-15
FILE CONCURRENCY, 1-15

CONDITIONS
CONDITIONS FOR CO~~~ND PROCESSOR

TERMINATION, 1-15

CONFIGURATION
ISL CONFIGURATION DIRECTIVES, B-4
ISL HARDWARE CONFIGURATION, B-3

CONFIGURATOR
ISL CONFIGURATOR, B-1

CONFIGURATOR (ISLCON)

i-2

ISL. CONFIGURATOR (ISLCON COMMAND),
2-69

CB02A

,
•

INDEX

CONSTRUCTION
DIRECTORY OR FILE CONSTRUCTION,
1-6

PATHNAME CONSTRUCTION, 1-6

CONTROL
CONTROL ARGUMENT, 1-5
DECLARING A CONTROL CHARACTER A

DATA CHARACTER, 1-16
DELETE ACCESS CONTROL LIST, 2-38
DELETE COMMON ACCESS CONTROL LIST,

2-39
KEYBOARD INPUT LINE CONTROL, 1-15
LIST ACCESS CONTROL LIST, 2-71
LIST COMMON ACCESS CONTROL LIST,

2-72
SET ACCESS CONTROL LIST (SET ACL

OR SA), 2-100 -
SET COMMON ACCESS CONTROL LIST (SCA

SET_CACL), 2-106

CONVENTION(S)

COpy

EQUAL NAME CONVENTION, 1-11
PATHNAME COLON CONVENTION, A-5
SPECIAL UTILITY PROGRAM PATHNAME

CONVENTIONS, 1-9
STAR NAME CONVENTION, 1-9

COpy DATA EXCHANGE (IBM) (CPDE
COMMAND), 2-20

COpy (CP COMMAND), 2-15

CORRECTING
CORRECTING THE CURRENT LINE, 1-16

CREATE
CREATE DIRECTORY (CD COMMAND), 2-21
CREATE FILE (CF COMMAND), 2-23
CREATE GROUP (CG COMMAND), 2-26
CREATE MAILBOX, 2-28
CREATE TASK (CT COMMAND), 2-29
CREATE VOLUME DATA EXCHANGE (IBM)

(CVDE COMMAND), 2-35
CREATE VOLUME (CV COMMAND), 2-31

CREATION
ISL LOADER FILE CREATION, B-1
LIST CREATION DATE (LCD COMMAND),

2-74

DATE (LCD)
LIST CREATION DATE (LCD COMMAND),

2-74

DECLARING
DECLARING A CONTROL CHARACTER A

DATA CHARACTER, 1-16

DEFAULT
DEFAULT BLOCK AND LOGICAL RECORD

SIZE CALCULATION, 2-67

DEFERRED
DEFERRED PRINT (DP COMMAND), 2-36

7/78 i-3

DEFINITION
DEFINITION OF A DIRECTORY, 1-6
DEFINITION OF A FILE, 1-6

DELETE
DELETE ACCESS CONTROL LIST, 2-38
DELETE COMMON ACCESS CONTROL LIST,

2-39
DELETE GROUP (DG COMMAND), 2-40
DELETE TASK (DT COMMAND), 2-41

DELETING
DELETING THE CURRENT LINE, 1-16

DEVICE
DEVICE FILES (OTHER THAN DISK AND

TAPE), 1-7
DEVICE PATHNAME EXAMPLES, 1-9
DEVICE PATHNAMES, 1-7
DISK DEVICE FILES, 1-8

DISK
DISK DEVICE FILES, 1-8

DISSOCIATE
DISSOCIATE PATH (DISSOC COMMAND),

2-41

DPEDIT

DUMP

DUMP EDIT (DPEDIT COMMAND), 2-42

DUMP DIRECTIVE, B-4
DUMP EDIT (DPEDIT COMMAND), 2-42
FILE DUMP (FD COMMAND), 2-56

EBCDIC
ASCII AND EBCDIC CHARACTER SET,

D-1

EBCDIC/HEXADECIMAL/BINARY
EBCDIC/HEXADECIMAL/BINARY

EQUIVALENTS, D-3

EC
EC FILE EXECUTION COMMAND, A-2

EDIT (DPEDIT)
DUMP EDIT (DPEDIT COMMAND), 2-42

EDITOR (ED)
EDITOR (ED COMMAND), 2-44

ENTER
ENTER BATCH REQUEST (EBR COMMAND),

2-45
ENTER GROUP REQUEST (EGR COMMAND),

2-46
ENTER TASK REQUEST (ETR COMMAND),
2-48

EQUAL
EQUAL NAME CONVENTION, 1-11

CB02A

INDEX

EQUIVALENTS
ASCII/HEXADECIMAL EQUIVALENTS, D,....2
EBCDIC/HEXADEClMAL/BINMY

EQUIVALENTS, D-3

ERROR-OUT.
ERROR-OUT FILE, 1-15

EXAMPLES
EXAMPLES OF BREAK USAGE, 1-18
DEVICE PATHNAME EXAMPLES, 1-9

EXCHANGE (IBM)
LIST DATA EXCHANGE (IBM) (LSDE

COMMAND), 2-75
COPY DATA EXCHANGE (IBM) (CPDE

COMMAND), 2-20
CREATE VOLUME DATA EXCHANGE (IBM)

(CVDE COMMAND), 2-35

EXECUTION
EC FILE EXECUTION COMMAND, A-2
EXECUTION COMMAND (EC COMMAND),

2-50

EXPORT
EXPORT PAM FILE (EX PAM COMMAND) ,

2-54

EXTENDING
EXTENDING THE COMMAND SET, 1-14

EXTERNAL

FILE

MODIFY EXTERNAL SWITCHES (MSW
COMMAND), 2-86

COMMAND-IN FILE, 1-14
DEFINITION OF A FILE, 1-6
DIRECTORY OR FILE CONSTRUCTION,
1-6

EC FILE EXECUTION COMMAND, A-2
ERROR-OUT FILE, 1-15
FILE CHANGE COMMAND, C-l
FILE CHANGE DIRECTIVES, C-l
FILE CHANGE (FC COMMAND), 2-55
FILE CONCURRENCY, 1-15
FILE DUMP (FD COMMAND), 2-56
FILE OUT (FO COMMAND), 2-58
FILE SYSTEM PATHNAMES, l-S
ISL LOADER FILE CREATION, B-1
SAMPLE FILE CHANGE COMMANDS, C-4
USER-IN FILE, 1-14
USER-OUT FILE,

FILES
CONCURRENCY OF STANDARD I/O FILES,

1-15
CONCURRENCY OF UTILITY AND PROGRAM

PREPARATION FILES, 1-15
DEVICE FILES (OTHER THAN DISK AND

TAPE, 1-7
DISK DEVICE FILES, 1-8
STANDARD I/O FILES, 1-14
TAPE FILES, 1-7

7/78

FILE (SORT)
SORT FILE (SORT COMMAND), 2-109

FILE (TRAN)
TRANSMIT FILE (TRAN COMMAND), 2-117
TRANSMIT FILE (TRANB COMMAND), 2-119

FORMAT
COMMAND LINE FORMAT, 1-4

FORTRAN

GCOS

GET

FORTRAN (FORTRAN COMMAND), 2-59

FUNCTIONAL SUMMARY OF GCOS 6
COMMANDS, 1-1

GCOS 6 COMMAND CONCEPTS, 1-1
GOCS 6 COMMANDS, 2-1

GET FILE (GET COMMAND),2-62

GROUP
GROUP ACTIVATION REQUEST COMMANDS,

A-3

HARDWARE
ISL HARDWARE CONFIGURATION, B-3

IMPORT
IMPORT PAM FILE (IM PAM COMMAND),

2-68

INPUT
INPUT COMMAND LINE PARAMETER

SUBSTITUTION, A-I
KEYBOARD INPUT LINE CONTROL, 1-15

INTERRUPT
UNWIND AND PROGRAM INTERRUPT COMMAND

CONSIDERATIONS, 1-18

INTERRUPTION (BREAK)
TASK INTERRUPTION (BREAK), 1-16

INTERSYSTEM

I/O

ISL

i-4

INSTERSYSTEM LINK ISL DIRECTIVES,
B-1

SAMPLE INTERSYSTEM LINK, B-2

CONCURRENCY OF STANDARD I/O FILES,
1-15

INTERSYSTEM LINK ISL DIRECTIVES,
B-1

ISL CONFIGURATION DIRECTIVES, B-4
ISL CONFIGURATOR, B-1
ISL CONFIGURATOR (ISLCON COMMAND),

2-69
ISL DIRECTIVE, B-4
ISL HARDWARE CONFIGURATION, B-3
ISL LOADER FILE CREATION, B-1

CB02A

/

, \

,.

(-

(

(/

INDEX

ISLCON
ISLCON, B-1

KEYBOARD
KEYBOARD INPUT LINE CONTROL, 1-15

KEYWORD
KEYWORD ARGUMENT, 1-5

LCHAN/RCHAN
LCHAN DIRECTIVES, B-5
RCHAN DIRECTIVES, B-5

LCP/RCP

LINE

LINK

LCP DIRECTIVES, B-6
RCP DIRECTIVES, B-6

ADDITIONAL COMMAND LINE ARGUMENTS
ARG, A-1

COMMAND LINE FORMAT, 1-4
CORRECTING THE CURRENT LINE, 1-16
DELETING THE CURRENT LINE, 1-16
INPUT COMMAND LINE PARAMETER

SUBSTITUTION, A-1
KEYBOARD INPUT LINE CONTROL, 1-15

INTERSYSTEM LINK ISL DIRECTIVES,
B-1

SAMPLE INTERSYSTEM LINK, B-2

LINKER

LIST

LINKER (LINKER COMMAND), 2-70

DELETE ACCESS CONTROL LIST, 2-38
DELETE COMMAN ACCESS CONTROL LIST,

2-39
LIST ACCESS CONTROL LIST, 2-71
LIST COMMON ACCESS CONTROL LIST,

2-72
LIST CREATION DATE (LCD COMMAND),

2-74
LIST DATA EXCHANGE (IBM) (LSDE

COMMAND), 2-75
LIST NAMES (LS COMMAND), 2-77
LIST SEARCH RULES (LSR COMMAND),

2-79
LIST WORKING DIRECTORY (LWD

COMMAND), 2-8Cl

LMEM/RMEM
LMEM DIRECTIVES, B-6
RMEM DIRECTIVES, B-6

LOADER
ISL LOADER FILE CREATION, B-1

LOGICAL
BLOCK AND LOGICAL RECORD SIZE

VALIDITY CHECKING, 2-67
DEFAULT BLOCK AND LOGICAL RECORD

SIZE CALCULATION, 2-67

7/79 i-5

LOGIN
TERMINAL CHARACTERISTICS AT LOGIN,

A-4i COHMAND, 2-81

MACRO
MACRO PREPROCESSOR (MACROP COMMAND),

2-84

MAILBOX
CREATE MAILBOX, 2-28

MAP
RESET MAP (RS COMMAND), 2-95

MERGE
MERGE FILES (MERGE COMMAND), 2-85

MESSAGE
MESSAGE (MSG COMMAND), 2-85

MODIFY

NAME

MODIFY EXTERNAL SWITCHES (MSW
COMMAND), 2-86

MODIFY FILE (MF COMMAND), 2-87

EQUAL NAME CONVENTION, 1-11
STAR NAME CONVENTION, 1-9

NONCOMMUNICATIONS
NONCOMMUNICATIONS TERMINAL, A-4

OFF (RDF)
READY OFF (RDF COMMAND), 2-91

ON (RON)
READY ON (RON COMMAND), 2-91

OUT (FO)
FILE OUT (FO COMMAND), 2-58

PAM
EXPORT PAM FILE (EX_PAM COMMAND) ,

2-54
IMPORT PAM FILE (1M_PAM COMMAND) ,

2-68

PARAMETER
INPUT COMMAND LINE PARAMETER

SUBSTITUTION, A-1

PASSING
ARGUMENT PASSING, A-1

PATCH
PATCH (PATCH COMMAND), 2-88

PATHNAME
ABSOLUTE PATHNAME, 1-7
DEVICE PATHNAME EXAMPLES, 1-9
PATHNAME COLON CONVENTION, A-5
PATHNAME CONSTRUCTION, 1-6
RELATIVE PATHNAME AND WORKING

DIRECTORY, 1-7
SPECIAL UTILITY PROGRAM PATHNAME

CONVENTIONS, 1-9

CB02A

INDEX

PATHNAMES
DEVICE PATHNAMES, 1-7
FILE SYSTEM PATHNAMES, 1-5

POSITIONAL
POSITIONAL ARGUMENT, 1-5

POSITIONING (TPOS)
TAPE POSITIONING (TPOS COMMAND),

2-116

PREPROCESSOR (MACROP)
MACRO PREPROCESSOR (MACROP COMMAND),

2-84

PRINT
PRINT DIRECTIVE, C-2

PRINT (PR)
PRINT (PR COMMAND), 2-89

PROCESSOR
CONDITIONS FOR COMMAND PROCESSOR

TERMINATION, 1-15

PROGRAM
ACTIVATING A USER PROGRAM, 1-13
CONCURRENCY OF UTILITY AND PROGRAM

PREPARATION FILES, 1-15
SPECIAL UTILITY PROGRAM PATHNAME

CONVENTIONS, 1-9
UNWIND AND PROGRAM INTERRUPT

COMMAND CONSIDERATIONS, 1-18
USER PROGRAM ACTIVATION, 1-13

PROGRAMS

QUIT

SYSTEM PROGRAMS SUPPORTING THE UW
(UNWIND) COMMAND, 1-17

QUIT DIRECTIVE, B-8, C-3

RBT
INVOKE RBT TASK GROUP (RBT

COMMAND), 2-69

RCHAN
RCHAN DIRECTIVES, B-6

RCP DIRECTIVES, B-6

READ
READ DIRECTIVE, C-2

RECORD
BLOCK AND LOGICAL RECORD SIZE

VALIDITY CHECKING, 2-67
DEFAULT BLOCK AND LOGICAL RECORD

SIZE CALCULATION, 2-67

RELATIVE
RELATIVE PATHNAME AND WORKING

DIRECTORY, 1-7

RELEASE (RL)
RELEASE (RL COMMAND), 2-92

RENAME FILE
RENAME FILE (RENAME COMMAND, 2-94

REQUEST
GROUP ACTIVATION REQUEST COMMANDS,

A-3

REQUEST (EBR)
ENTER BATCH REQUEST (EBR COMMAND),

2-45

REQUEST (EGR)
ENTER GROUP REQUEST (EGR COMMAND),

2-46

REQUEST (ETR)
ENTER TASK REQUEST (ETR COMMAND),

2-48

RESET
RESET MAP (RS COMMAND), 2-95

RESTORE
RESTORE (RESTORE COMMAND, 2-96

RMEM

RPG

SA

RMEM DIRECTIVES, B-6

RPG (RPG COMMAND), 2-97

SET ACCESS CONTROL LIST (SET ACL
OR SA), 2-100

SAMPLE

SAVE

SAMPLE FILE CHANGE COMMANDS, C-4
SAMPLE INTERSYSTEM LINK, B-2

SAVE (SAVE COMMAND), 2-99

SEARCH

SET

LIST SEARCH RULES (LSR COMMAND),
2-79

ASCII AND EBCDIC CHARACTER SET, D-l
EXTENDING THE COMMAND SET, 1-14
SET ACCESS CONTROL LIST (SET ACL OR

SA), 2-100 -
SET AUTODIAL TELEPHONE NUMBER (SDL

COMMAND), 2-105
SET COMMON ACCESS CONTROL LIST (SCA

SET CACL), 2-106
SET TERMINAL CHARACTERISTICS (STTY

COMMAND), 2-108

SIZE
BLOCK AND LOGICAL RECORD SIZE

VALIDITY CHECKING, 2-67
DEFAULT BLOCK AND LOGICAL RECORD

SIZE CALCULATION, 2-67

7/78 i-6 CB02A

; ,

\ /

,

(

INDEX

SORT
SORT FILE (SORT COMMAND), 2-109

SPACES
SPACES IN COMMAND LINES, 1-5

SPAWN
SPAWN GROUP (SG COMMAND), 2-110
SPAWN TASK (ST COMMAND), 2-112

SPECIAL
SPECIAL UTILITY PROGRAM PATHNAME

CONVENTIONS, 1-9

STANDARD
CONCURRENCY OF STANDARD I/O

FILES, 1-15
STANDARD I/O FILES, 1-14

STAR
STAR NAME CONVECTION, 1-9

STATUS
STATUS GROUP (STG COMMAND), 2-114

STRUCTURE
TYPICAL DIRECTORY/FILE STRUCTURE,

2-7

SUBSTITUTION
INPUT COMMAND LINE PARAMETER

SUBSTITUTION, A-I

SUBTREE (WS)
WALK SUBTREE (WS COMMAND), 2-121

SUMMARY
FUNCTIONAL SUMMARY OF COMMANDS,

1-1
FUNCTIONAL SUMMARY OF GCOS 6

COMMANDS, 1-1

SWITCHES (MSW)

TAPE

TASK

MODIFY EXTERNAL SWITCHES (MSW
COMMAND), 2-86

DEVICE FILES (OTHER THAN DISK AND
TAPE), 1-7

TAPE FILES, 1-7
TAPE POSITIONING (TPOS COMMAND),

2-116

ENTER TASK REQUEST (ETR COMMAND),
2-48

INVOKE RBT TASK GROUP (RBT COMMAND),
2-69

TASK INTERRUPTION (BREAK), 1-16

TASK (CT)
CREATE TASK (CT COMMAND), 2-29

TASK (DT)
DELETE TASK (DT COMMAND), 2-41

7/78 i-7

TASK (ST)
SPAWN TASK (ST COMMAND), 2-112

TELEPHONE
SET AUTODIAL TELEPHONE NUMBER (SDL

COMMAND), 2-105

TERMINAL
COMMUNICATIONS TERMINAL, A-5
NONCOMMUNICATIONS TERMINAL, A-4
SET TERMINAL CHARACTERISTICS (STTY

COMMAND), 2-108
TERMINAL CHARACTERISTICS AT LOGIN,

A-4

TERMINATION
CONDITIONS FOR COMMAND PROCESSOR

TERMINATION, 1-15

TIME
TIME (TIME COMMAND), 2-115

TRANSMIT
TRANSMIT FILE (TRAN COMMAND), 2-117
TRANSMIT FILE (TRANB COMMAND), 2-119

UNWIND
UNWIND AND PROGRAM INTERRUPT COMMAND

CONSIDERATIONS, 1-18

USER-IN
USER-IN FILE, 1-14

USER-OUT
USER-OUT FILE, 1-14

UTILITY
CONCURRENCY OF UTILITY AND PROGRAM

PREPARATION FILES, 1-15
SPECIAL UTILITY PROGRAM PATH NAME

CONVENTIONS, 1-9

UW (UNWIND)
SYSTEM PROGRAMS SUPPORTING THE

UW (UNWIND) COMMAND, 1-17

VALIDITY
BLOCK AND LOGICAL RECORD SIZE

VALIDITY CHECKING, 2-67

VOLUME
CREATE VOLUME DATA EXCHANGE (IBM)

(CVDE COMMAND), 2-35

VOLUME (CV)
CREATE VOLUME (CV COMMAND), 2-31

WALK
WALK SUBTREE (WS COMMAND), 2-121

WORKING
CHANGE WORKING DIRECTORY (CWD

COMMAND), 2-6
LIST WORKING DIRECTORY (LWD

COMMAND), 2-80

CB02A

WORKING (CONT)
RELATIVE PATHNAME AND WORKING

DIRECTORY, 1-7

WRITE
WRITE DIRECTIVE, C-3

7/78

INDEX
,

i-8 CB02A

I
I
I
I
I

(,-JJ

, Z
::i
l'J
Z
o
..J
<t
t­
:J
U

I
I
I
I

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

TiTlE SERIES 60 (LEVEL 6)
GCOS 6 COMMANDS

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

ORDER NO·1 CB02, REV. 1

DATED I JUNE 1978

r\ Your comments will be promptly investigated by appropriate technical personnel and action will be taken 0 lI' as required. If you require a written reply. check here and furnish complete mailing address below.

FROM: NAME __ _ DATE ______________ _

TITlE ______________________________________ _

COMPANy ________________ ~ ____________________ ___

ADDRE~ ______________________________________ _

PLEASE FOLD AND TAPE -
NOTE: U. S. Postal Service will not deliver stapled forms

UJ
Z
...J

<.:>
z
o
...J
<I:
r­
:>
u

I
I
I
I
I UJ

I z
I ...J

I ~

--- 1c~

FIRST CLASS
PERMIT NO. 39531
WALTHAM,MA
02154

I Cl

I 6
I u.

I
I
I
1
1
I

Business Reply Mail I
Postage Stamp Not Necessary if Mailed in the United States 1_

-- (~

ATTENTION: PUBLICATIONS, MS 486

Postage Will Be Paid By:

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

'),--j

------ 1

I
I
I
I
1
I
I
I UJ

I z
I~
I z

--~g

Honeywell

I <I:

I 9
IS:
I
I
I
I
I
J
I
I
I
I
I
I C,-,

II /

c

o

Honeywell
Honeywell Information Systems

In the U.S.A.: 200 Smith Street, MS 486, Waltham, Massachusetts 02154
In Canada: 2025 Sheppard Avenue East, Willowdale, Ontario M2J 1 W5

In Mexico: Avenida Nuevo Leon 250, Mexico 11, D.F.

20965,3678, Printed in U. S.A.

----------_ .. _--- ------_._----------------

c

o

c
CB02,Rev.1

