

LEVEL 6 GCOS COMMUNICATIONS PROCESSING

SERIES 60 (LEVEL 6) COMMUNICATIONS PROCESSING

SUBJECT

Descriptions and User Procedures for Communications Processing Software

SPECIAL INSTRUCTIONS

This revision supersedes Revision 0 of the manual dated January 1978. Change bars are omitted because of extensive reorganization in sections and content that are too numerous to identify separately.

SOFTWARE SUPPORTED

This manual supports Release 0110 of the Series 60 (Level 6) GCOS 6 MOD 400 Operating System. See the Manual Directory of the latest GCOS 6 MOD 400 System Concepts manual (Order No. CB20) for information as to later releases supported by this document.

ORDER NUMBER CB03, Rev. 1

July 1978

Honeywell

PREFACE

This manual describes the operation and use of GCOS communications software for Honeywell-supported Series 60 (Level 6) communications devices and protocols. The term GCOS as used in the manual refers to GCOS 6 software. The term Level 6 refers to a specific series of Series 60 (Level 6) hardware models on which GCOS software is executed.

Section 1 is a brief overview of GCOS software in general and its communications subsystem.

Section 2 summarizes the Monitor and file system macro calls and services.

Sections 3 and 4 discuss the use of communications with COBOL and FORTRAN application programs, respectively.

Section 5 describes the use of communications in assembly language applications, using the GCOS file system interface.

Section 6 describes the use of communications in assembly language applications, using GCOS physical I/O for more direct access to data structures and physical devices.

Sections 7, 8, 9, and 10 describe the operation and use of Honeywell line protocol handlers for teleprinter-type (TTY), visual-information projection (VIP), polled VIP emulator (PVE), and binary synchronous communication (BSC) device/protocols, respectively.

Appendix A provides more details about communications subsystem functions. Appendix B contains tables of possible values for the STTY command and \$STTY macro call. Appendix C describes the system's resource control table (RCT), used as an interface between the software and the devices that use it. Appendix D contains various examples, intended for illustration only, of communications application programs for COBOL, FORTRAN, and assembly language.

Appendix E lists communications control characters and character code sets. Appendix F lists the various device control characters and corresponding device keys. Appendix G describes how to obtain a dump of the multiline communications processor's (MLCP) and/or the dual communications processor's (DLCP) memory.

How to Use the Manual

The following are general guidelines to using the manual according to the reader's interests and responsibilities:

Sections	Applicable To:
1	All users
2, 3, 4, 5	Applications programmers/analysts using higher-level languages
6	Those responsible for system building; applications programmers/analysts using assembly language
7, 8, 9, 10	All users, but according to the device or protocol being used
Appendix G	All users.
Remaining appendixes	Users of corresponding numbered sections

MANUAL DIRECTORY

The following publications comprise the GCOS 6 manual set. The Manual Directory in the latest GCOS 6 MOD 400 Systems Concepts manual (Order No. CB20) lists the current revision number and addenda (if any) for each manual in the set.

Order Number

Manual Title

CB01	GCOS 6 Program Preparation
CB02	GCOS 6 Commands
CB03	GCOS 6 Communications Processing
CB04	GCOS 6 Sort/Merge
CB05	GCOS 6 Data File Organizations and Formats
CB06	GCOS 6 Systems Messages
CB07	GCOS 6 Assembly Language Reference
CB08	GCOS 6 System Service Macro Calls
CB09	GCOS 6 RPG Reference
CB10	GCOS 6 Intermediate COBOL Reference
CB20	GCOS 6 MOD 400 System Concepts
CB21	GCOS 6 MOD 400 Program Execution and Checkout
CB22	GCOS 6 MOD 400 Programmer's Guide
CB23	GCOS 6 MOD 400 System Guilding
CB24	GCOS 6 MOD 400 Operator's Guide
CB25	GCOS 6 MOD 400 FORTRAN Reference
CB 26	GCOS 6 MOD 400 Entry-Level COBOL Reference
CB27	GCOS 6 MOD 400 Programmer's Pocket Guide
CB28	GCOS 6 MOD 400 Master Index
CB30	Remote Batch Facility User's Guide
CB31	Data Entry Facility User's Guide
CB32	Data Entry Facility Operator's Quick Reference Guide
CB33	Level 6/Level 6 File Transmission Facility User's Guide
CB34	Level 6/Level 62 File Transmission Facility User's Guide
CB35	Level 6/Level 64 (Native) File Transmission Facility
	User's Guide
CB36	Level 6/Level 66 File Transmission Facility User's Guide
CB37	Level 6/Series 200/2000 File Transmission Facility User's
	Guide
CB38	Level 6/BSC 2780/3780 File Transmission Facility User's
	Guide

Order <u>Number</u>	Manual Title
CB39	Level 6/Level 64 (Emulator) File Transmission Facility User's Guide
CB40	IBM 2780/3780 Workstation Facility User's Guide
CB41	HASP Workstation Facility User's Guide
CB42	Level 66 Host Resident Facility User's Guide
CB43	Terminal Concentration Facility User's Guide

The following documents provide general hardware information:

Order <u>Number</u>

Manual Title

AS 22	Honeywell Level 6 Minicomputer Handbook
AT04	Level 6 System and Peripherals Operation Manual
AT97	MLCP Programmer's Reference Manual
FQ41	Writable Control Store User's Guide

v

CONTENTS

Section 1

Communications Overview	1-1
GCOS Software Overview	1-1
GCOS 6 File System	1-2
Physical Input/Output (Physical	
I/O)	1-2
GCOS Communications Subsystem	
Overview	1-2
Communications Supervisor	1-3
Line Protocol Handler (LPH)	1-3
Multiline Communications Pro-	
cessor (MLCP) and MLCP Driver .	1-4
Communications Subsystem Interface	
With Applications Programs	1-4
File System Interface	1-4
Physical Input/Output	
Interface	1-5
TTY and VIP Line Protocol Handler	-
Device Support	1-5
BSC and PVE Host-Communications	
Support	1-5
File System Functions and Macro	
Routines	2-1
File Management Macro Calls	2-1
Data Management Macro Calls	2-2
Storage Management Macro Calls	2-2
File Information Block (FIB)	2-3
FIB Format and Contents	2-3
Program View Entry in the FIB	2-6
FIB Displacement Definitions	2-6
File System Considerations in	
Communications	2-10
Defining File/Terminal	
Characteristics	2-12

Section 2

Page

Section 3

Communications Via COBOL 3-1 Interactive Devices and Files 3-1 3 - 1File System Considerations Source Program Entries in 3-1 Communications Specifying Files in the Source 3-1 Program 3 - 2Use of ASSOC or GET Commands Assigning a File to a Device/ Terminal 3 - 2SELECT and ASSIGN Examples 3 - 3Carriage Control 3-3 3 - 4Printer Emulation Specifying Asynchronous or Synchronous Read and Write Execution 3 - 4Synchronous Read and Write Operation (Call "ZCSYNC") ... 3 - 4Asynchronous Read and Write Operation (Call "ZCASN") 3 - 4WAIT for Completion --Asynchronous Input and Output . 3-5 Binary Synchronous Communication (BSC) With COBOL 3-8 BSC Data Transmission Conventions 3-8 BSC Data Codes 3-8 3-8 BSC Data Transmission Modes . BSC 2780 and BSC 3780 3-8 Macro Call Procedures for BSC 2780 in Basic Transmission Mode 3-9 Macro Call Procedures for BSC 2780 in Advanced Data Transmission Mode 3-11 Macro Call Procedures for BSC 3780 in Advanced Data Transmission Mode 3-11 4-1 Communication Via FORTRAN Interactive Devices and Files 4-1 FORTRAN Program Execution With Communications 4-1 Assigning Interactive Devices at 4-1 Execution Changing Terminal's File Characteristics 4 - 1FORTRAN File Status Check (ZFSTIN

Section 4

4 - 2

Page

and ZFSTOT)

Section 4 (cont)

Section 5

CALL Statement for ZFSTIN or	
ZFSTOT	4-2
ZFSTIN and ZFSTOT Programming	
Examples	4-4
Assembly Language Communications Using	
the File System	5-1
File System Considerations	5-1
File-Processing Macro Calls in	
Assembly Language Applications	5-1
Get File (\$GTFIL) Macro Call	
Guidelines	5-1
Open File (SOPFIL) Macro Call	
Guidelines (month) Magna	5-2
Test File (STIFIL, STOFIL) Macro	F 0
Whith File (SWIFTL SWOFTL) Magro	5-2
Call Guidelines	5-2
Device Dependent Macro Call	J-2
Procedures	5-3
Device Modes and Device Types	5-3
Macro Call Procedures for Data	
Entry Terminals	5-4
Macro Call Procedures for Output	
Only Terminals	5-5
Macro Calls for a Single Inter-	
active Terminal	5-7
Macro Call Procedures for Multiple	F 0
Binary Synchronous Communication	5-9
(BSC)	5-11
BSC Data Transmission	5 11
Convention	5-11
BSC Data Codes	5-11
BSC Data Transmission Modes .	5-11
BSC 2780 and BSC 3780	5-11
Macro Call Procedures for BSC 2780	
in Basic Transmission Mode	5-12
Macro Call Procedures for BSC 2780	
in Advanced Data Transmission	F 1'C
Mode	5-16
macro Call Procedures for BSC 3780	
Mode	5-20
	5 20

Page

S	e	С	t	i	0	n	6
~	~	~	-	-	v		

Ű

Assembly Language Communications	
Using Physical Input/Output	6-1
Communications Subsystem	
Conventions	6-1
Using Physical I/O	6-2
Data Structures	6-3
Resource Control Table (RCT)	6-4
Input/Output Request Block	
(IORB)	6-4
IORB Software Status Word	
(I_ST)	6-8
Communications Function Codes	6-9
Wait Online Function (Code 0)	6-9
Write Function (Code 1)	6-10
Read Function (Code 2)	6-10
Connect Function (Code A)	6-10
Disconnect Function (Code B)	6-11
Requesting Communications	
Functions	6-11
Physical I/O Macro Calls for	
Communications	6-12
TTY Line Protocol Handler	7-1
General TTY Line Protocol Handler	
Operation	7-1
TTY Message Formats	7-1
TTY Character Mode and Buffered	
Mode Transmission	7-2
TTY Character Mode	7-2
TTY Buffered Mode (VIP 7200 and	
7800)	7-3
VIP 7200 and 7800 Hardware	
Switch Options With Character	
or Buffered Mode	7-3
VIP 7200 and 7800 Function and	
Control Kevs	7-4
TTY Line Protocol Handler Time-Out	
Intervals	7-4
Using the TTY Line Protocol	
Handler	7-5
TTY-Specific IORB Values	7-5
Control and Characteristics of TTY	
Input Data	7-7
TTY Control Byte (Input)	7-8
TTY Nontransparent Input	7-8
TTY Transparent Input	7-8
TTY Line Feed (LF) and Carriage	
Return (CR) Input Sequence	7-8
Necetin (en) input bequence	, 0

Section 7

Keyboard Input Character and

Section 7 (cont)

Section 8

Line Control 7-8 TTY Display of Input Characters 7-9 TTY Input in Buffered Mode (VIP 7200 and 7800 Only) 7-9 Control and Characteristics of TTY Output Data 7-9 TTY Control Byte (SEND) 7-9 End-of-Message (EOM) Sequence on TTY Output 7-10 TTY Detection of BRK Characters 7-10 TTY Output in Buffered Mode ... 7-11 VIP Line Protocol Handler 8-1 General VIP Line Protocol Handler Operation 8-1 Software Functional Support for the VIP 8 - 1User-Supplied Software Functions for VIP Support 8-2 8 - 2VIP Time-Out Intervals Using the VIP Line Protocol Handler 8-3 VIP-Specific IORB Values 8-3 VIP Polling Options 8-6 VIP Poll Interval 8-7 VIP Poll Duration (Time-Out) .. 8-7 VIP Line Protocol Handler Poll Functions 8-7 Control and Characteristics of VIP Input (Keyboard/Screen) 8-7 8-7 VIP Input Message Header VIP Hardware Function Codes ... 8-8 VIP Input Data 8-8 Control and Characteristics of VIP Output 8-8 VIP Output Message Header 8-8 VIP Control Byte (SEND) 8-8 8-9 VIP Output Data VIP Keyboard/Screen Output 8-10 Editing Control VIP Read-Only Printer Editing Sequence 8-10 VIP Read-Only Printer Form Feed Sequence 8-11

Page

Section	8	(cont)	Error Processing by VIP Line Protocol HandlerProtocol Handler Processing Nonpolled VIP Errors	8-11 8-14
Section	9		Polled VIP Emulator (PVE) Line Protocol Handler General PVE Operation Using the PVE Line Protocol	9-1 9-1
			Handler PVE-Specific IORB Values VIP Protocol Message Structure for	9-2 9-2
			PVE Control and Characteristics of PVE	9-5
			Input	9-6
			PVE Input Message Header	9-6
			PVE Hardware Function Codes	9-6
			Control and Characteristics of PVE	9-7
			Output	9-7
			DVE Jourpul Message Header	9-7
			Message Status (STA)	9-7
			PVE Output Data	9 - 7
			PVE Line Protocol Handler Time-Out	
			Intervals	9-8
			Error Reporting by PVE Line Protocol	
			Handler	9-8
Section	10)	BSC 2780/3780 Line Protocol Handler .	10-1
			General BSC Line Protocol Handler	10.1
			BSC Transmit and Receive	10-1
			Operations	10-1
			BSC Data Transmission Modes BSC Basic Data Transmission	10-2
			Mode BSC Advanced Data Transmission	10-2
			Mode	10-2
			BSC 2780 and BSC 3780 Differences .	10-3
			BSC 2780/3780 Features	10-3
			BSC Two-Buffer Feature	10-3
			BSC Temporary Text Delay (TTD)	
			Feature BSC Wait Before Acknowledge (WACK)	10-5
			Feature	10-6
			BSC Reverse Interrupt (RVI)	10.7
			realure	10-/

100 Fts

Section 10 (cont)

BSC End of Transmission (EOT) Feature 10 - 8BSC Line Protocol Handler Time-Out Interval 10-9 BSC Features Specific to 3780 ... 10-10 BSC 3780 Conversational Reply Feature 10 - 10BSC 3780 Two-Buffer Feature ... 10 - 10BSC 3780 Transmission/Receipt of BSC Control Characters ... 10-10 Using the BSC 2780/3780 Line Protocol Handler 10 - 12BSC-Specific IORB Values 10 - 12Specifying Use of BSC 2780 and/or 3780 to the System 10-13 Formats and Characteristics of BSC Input Data 10 - 1410-15 BSC Control Byte (Receive) ASCII Input for BSC 10-16 EBCDIC Input for BSC 10 - 16Transparent EBCDIC Input for 10 - 17BSC Formats and Characteristics of BSC Output Data 10-17 BSC Control Byte (SEND) 10-18 BSC ASCII Output 10 - 1910 - 19BSC EBCDIC Output BSC Transparent EBCDIC Output . 10 - 20A-1 Communications Subsystem Communications Supervisor A-1 Line Protocol Handlers (LPHs) A-1 Multiline Communications Processor A-3 (MLCP) Multiline Communications Processor Driver A-3 A-3 Modem Support A-4 Auto Call Unit Communications Subsystem Operation Example A-4 Communications Subsystem Error and Correction Procedures A-8 A-8 Parity Error Check Block Error Check A-8 Longitudinal Redundancy Check (LRC) A-8

Appendix A

A-8

Page

xii

Cyclic Redundancy Check (CRC) .

ĺ

etter die.

Appendix	A	(cont)	BSC Block Check Character (BCC) Time-Out Check	A-8 A-9
Appendix	в		Changing Terminal's File Characteristics	B-1
Appendix	с		Resource Control Table (RCT)	C-1
Appendix	D		Sample Application Programs COBOL Program Examples COBOL TTY or VIP Application	D-1 D-1
			Example Commands in the COBOL Example . File Assignments in COBOL	D-1 D-1
			Example Error Messages in COBOL	D-2
			Example	D-2
			Status Codes in COBOL Example . Execution of COBOL TTY or VIP	D-3
			Program Example	D-3
			COBOL BSC Application Example	D-12
			TTY	D-16
			Assembly Language Example for TTY or VIP Using Physical I/O	D-19
	-			
Appendix	E		and Character Sets	E-1
			Control Characters	E-1
			Special Graphic Characters	E-2
Appendix	F		Device-Specific Control Characters	F-1
Appendix	G		Dump Routine (DUMCP) for Multiline	
			Communications Processor (MLCP)	G-1
			Linking the Bound Unit Containing	C 1
			DUMCP	G-1
			Bound Unit	G-2
			Linking DUMCP With the Applica-	
			tion Program	G-3
			STRTDO Entry Point in Using	
			STRTD1 Entry Point in Using	6-4
			DUMCP	G-5
			STRTD2 Entry Point in Using	
			DUMCP	G-7

Pag e

xiii

Appendix G (cont)	DUMC P	Dump Formats	G-7
	DUMCP	Programming	G-8

ILLUSTRATIONS

Figure	2-1.	File Information Block (FIB)	2-4
Figure	2-2.	Format of File Information Block (FIB)	0 7
	0 0	for Data Management	2-1
rigure	2-3.	Format of File Information Block (FIB)	2_0
Figure	~ 」	IOF Storage Management	2-9
Figure	3-1.	COBOL SELECT and ASSIGN Examples	3-3
rigure	3-2.	Simplified COBOL Program Logic for Multiple Interpative Terminals	26
Figure	2 2	Simplified Dream Logia for 2790 BSC	3-10
Figure	3-3.	Simplified Program Logic for 2700 BBC.	2 1 2
Figure	5-4.	Simplified Program Logic for Singlo	3-12
rigure	5-1•	Interactive Terminal	ΕO
Figure	F 0	Cimplified Decrem Logic for Multiple	5-8
rigure	5-2.	Interpative Terminals	E 10
Figure	E 2	Cimplified Dream Logic for DCC 2790	5-10
rigure	5-5.	in Basia Transmission Mode	5-12
Figure	5-1	Simplified Program Logic for 2780 BSC	5-15
rigure	J-4•	in Advanced Transmission Mode	5-17
Figure	5-5	Simplified Program Logic for BSC 3780	5-17
rigure	J-J•	in Advanced Transmission Mode	5-22
Figure	6-1	Communications Input/Output Request	5 66
rigure	0 1.	Block (IOBB)	6-5
Figure	7-1.	TTY Message Formats	7-2
Figure	7-2.	Control Byte for TTY Line Protocol	, ,
		Handler	7-10
Figure	8-1.	VIP Control Byte (Send)	8-9
Figure	9-1.	Typical PVE Configuration	9-2
Figure	9-2.	VIP Protocol Message Structure for	
		PVE	9-6
Figure	10-1.	Example of BSC Communication	10-3
Figure	10-2.	BSC Two-Buffer Feature in Record	
- j		Transmission	10-4
Figure	10-3.	BSC Temporary Text Delay (TTD) Sequence	
J		Example	10-6
Figure	10-4.	BSC Wait Before Acknowledge (WACK)	
5		Sequence Example	10-7
Figure	10-5.	BSC Reverse Interrupt (RVI) Sequence	
2		Example	10-8
Figure	10-6.	Example of Conversational Reply in BSC	
-		3780 Transmission Sequence	10-11
Figure	10-7.	BSC Input Data Format and Contents	10-15
-		-	

ILLUSTRATIONS (cont)

Figure	10-8.	Control Byte (Receive) for BSC Line	
-		Protocol Handler	10-15
Figure	10-9.	Format and Content of BSC Output	10-18
Figure	10-10.	Control Byte (Send) for BSC Line	
		Protocol Handler	10-18
Figure	A-1.	Simplified Flow - Communications	
-		Subsystem	A-6
Figure	C-1.	Format of Communications Resource	
-		Control Table (RCT)	C-2
Figure	D-1.	COBOL TTY or VIP Application Example	D-4
Figure	D-2.	COBOL BSC Application Example	D-13
Figure	D-3.	FORTRAN Application Example for TTY	D-17
Figure	D-4.	Assembly Language Example for TTY or	
		VIP Using Physical I/O	D-20
Figure	G-1.	DUMCP Dump Example	G-9

TABLES

All and

Table 2-1.	. Contents of File Information Block	
	(FIB)	2-4
Table 2-2.	. Contents of FIB for Data Management	2-8
Table 2-3.	• Contents of FIB for Storage	
	Management	2-10
Table 5-1.	 Arguments for Get File (\$GTFIL) Macro 	
	Call	5-2
Table 5-2.	Program View Bit Settings for \$OPFIL	
	Macro Call	5-3
Table 5-3.	 Macro Call Procedures for Data Entry 	
	Terminals	5-4
Table 5-4.	Macro Call Procedures for Output Only	
	Terminals	5-5
Table 5-5.	Macro Call Procedures for Single Inter-	
mahla r c	active Terminal	5-7
Table 5-6.	Macro Call Procedures for Multiple	ΕO
mable 5 7	Terminals for DCO 2700 in	5-9
lable 5-7.	Macro Call Procedures for BSC 2/80 in	E 1/
$Table E_0$	Magra Call Progedures for PSC 2790 in	5-14
Table 5-0.	Advanced Transmission Mede	5-19
Table 5-9	Macro Call Procedures for BSC 3780 in	7-10
Table 5 5.	Advanced Transmission Mode	5-24
Table 6-1	Return Status Frror Codes for Logical	5 24
10010 0 1.	Result of I/O Request	6-3
Table 6-2.	Contents of Communications Input/Output	0.0
	Request Block (IORB)	6-6
Table 6-3.	Software (I ST) Status Codes	6-8
Table 6-4.	. Communications LPH Function Codes	6-9

TABLES (cont)

Table	7-1.	TTY Line Protocol Handler Time-Out	
		Intervals	7-4
Table	7-2.	Function Codes in I CT2 of the IORB	7-5
Table	7-3.	TTY Device-Specific Word I DVS in the	
		TORB	7-5
Tabla	7_1	TORD	1 3
Table	/-4.		
			/-/
Table	8-1.	VIP Line Protocol Handler Time-Out	
		Intervals	8-3
Table	8-2.	Function Codes in I CT2 of the IORB	8-4
Table	8-3.	VIP Device-Specific Word I DVS in the	
	• ••		8_1
m - 1 - 1 -	0.4		0-4
Table	8-4.	VIP Software Status word 1 ST in the	~ ~
		10RB	8-6
Table	8-5.	VIP Receive-Only Printer Editing	
		Sequence	8-10
Table	8-6	VIP Receive-Only Printer Form Feed	
Table	0-0.	Coguerge	0 1 1
	<u> </u>	Sequence	8-11
Table	8-7.	Errors Reported by VIP Line Protocol	
		Handler	8-12
Table	8-8.	MLCP Error Condition Reported by VIP	
		Line Protocol Handler	8-13
Tablo	9_1	Function Codes in I CT2 in IOPB	<u>0_3</u>
	9-1.	PUB Device Openific Walt DVC in the	55
lable	9-2.	PVE Device-Specific word I_DVS in the	
		IORB	9-3
Table	9-3.	PVE Software Status Word I ST in the	
		IORB	9-5
Table	9-4	PVE Time-Out Intervals	9-8
Table	9_5	France Departed by DVF Line Protocol	
Table	9-J•	Handley	0 0
		Handler	9-9
Table	10-1.	Function Codes in I_CT2 Field in the	
		IORB	10-12
Table	10-2.	BSC Device-Specific Word I DVS in the	
		TORB	10-12
mahla	10-2	PCC Caftware Status Word I CT in the	10 12
Table	10-3.	TODD	10.14
	_		10-14
Table	B-1.	Possible Argument Values for STTY	
		Command and \$STTY Macro Call	B-2
Table	C-1.	Communications-Specific Items in the	
		RCT	C-3
Tabla	C-2	Torminal Attributes and Status Word	C J
Table	C-2.	D CMC of the DCM	<u> </u>
	·	R STS OI THE RCT	C-3
Table	E-1.	ASCII/Hexadecimal Character	
		Equivalents	E-2
Table	E-2.	EBCDIC/Hexadecimal/Binary Character	
		Equivalents	E-3
Table	F_1	TTV Nonalphanumoria Control	5
rante	r — T •		
		Unaracters	H' 1

CB03

Pag e

TABLES (cont)

Table F-2.	VIP Nonalphanumeric Control Characters	F-2
Table F-3.	BSC Nonalphanumeric Control	
Table C-1	Characters Perister Values and DUMCP Dump	F-3
	Contents	G-6
Table G-2.	Register \$R2 at Dump Execution - DUMCP	
	Linked to Application	G-7

A Carlor and a

. . .

,

SECTION 1

COMMUNICATIONS OVERVIEW

GCOS SOFTWARE OVERVIEW

ź

The GCOS 6 Operating System includes the Monitor, file system, physical input/output (P I/O), and communications software.

The Monitor controls loading of user programs, supports execution of user applications tasks, and provides system services for users to control execution of separate tasks. Monitor functions are obtained through commands, through system macro calls, and through statements in higher level languages.

The operating system has two levels of interface with remote and local terminals; they may be accessed indirectly through the sequential file interface of the file system's file management facility, or directly through the system's physical I/O facility.

The file system, which is based on a tree-like hierarchical directory/pathname structure, provides software to create and maintain that structure, to create and manage files, and to provide the logical transfer of data between an application and an external device. These functions are available through commands, and for an assembly language programmer, through the system service macro calls of the file system.

The physical input/output (or physical I/O) driver software (for peripheral devices), and similar line protocol handler software (for communications devices) work at the physical hardware level. Physical I/O is used with assembly language programs to call device drivers and line protocol handlers directly.

Communications software, through the file system, uses system service macro calls for communications data operations with all languages. For assembly language applications, communications software, through physical I/O, provides the data operations that are provided by the file system, plus additional controls over terminal functions at the hardware physical level. The <u>System Concepts</u> manual describes the file system and file system structure in detail, and is necessary in understanding system terms, directory/pathname structures, and system functions that may be referred to in this manual.

GCOS 6 File System

The file system includes an extensive set of logical input/ output access methods that handle logical input/output for all supported peripheral devices and terminals. The file system provides sequential file processing for communications, treating communications devices as sequential files. A file is the basic, or lowest level structural unit that can be referred to in the file system software. Within the file system, a file can be generally defined as a peripheral device, as a terminal device, or as an aggregate of data.

Section 2 summarizes the file system macro calls and data structures that are used in communications processing. Sections 3, 4, and 5 discuss the file system interface in communications processing in COBOL, FORTRAN, and assembly language, respectively.

Physical Input/Output (Physical I/O)

Physical I/O provides all services that are available through the file system, plus other services that permit user control over data structures that affect terminals' hardware and operating characteristics. With the physical I/O interface, assembly language applications can call line protocol handlers directly, rather than through the indirect interface provided by the file system.

GCOS COMMUNICATIONS SUBSYSTEM OVERVIEW

GCOS communications software can be considered as a functional group of components known as the communications subsystem, which when specified at system building, defines the communications environment of the operating system.

The communications subsystem interacts with the Monitor to service applications programs, and provides all the communications software needed with Honeywell-supported communications devices, so that the user need not write his own. Communications software is user-driven, responding to connects, reads, or writes issued by user programs. Through the request I/O (\$RQIO) macro calls, the communications subsystem provides a common physical I/O interface with user programs. The communications subsystem comprises the communications supervisor, the line protocol handlers (one for each class of supported communication device), the multiline communications processor (MLCP) driver, and the MLCP itself.

Appendix A describes the overall functions of the communications subsystem in more detail. The line protocol handlers for specific devices and protocols are described in Sections 7 through 10.

Communications Supervisor

The communications supervisor, which resides in the central processor's main memory, provides the interface at the physical I/O level to communications applications programs. It queues user programs' requests for services, activates the appropriate line protocol handler, interacts with a user application through system software when a transaction is complete, and services connect/disconnect requests and timeouts for line protocol handlers.

Line Protocol Handler (LPH)

A communications protocol is a set of conventions for transmitting data over a communications line. A line protocol handler (usually referred to as an LPH) is the memory-resident reentrant and interrupt-driven program that transfers data between a communications device and the application program or system that uses that device. Each LPH supports a specific class of device, e.g., teleprinter-compatible terminal (TTY), or supports a communications protocol, e.g., binary synchronous communications (BSC). Other functions of an LPH are:

- Handling error recovery (by parity or block control check)
- Initializing the LPH and the channel control program of the multiline communications processor
- o Processing interrupts, timeouts, and I/O requests
- o Handling affirmative or negative acknowledgments

Defined at system building, an LPH can be any of the following:

TTY

18 M

Supports asynchronous terminal devices generically classified as teleprinter-compatible (TTY), including certain ASR, KSR, and visual information projection (VIP) terminals. Supports synchronous VIPs and receive-only printers (ROPs)

PVE

VTP

Services the polled VIP emulator (PVE), or keyboard/ screen features of the VIP 7700 operating according to the polled VIP protocol

BSC

Supports a station (device) operating under binary synchronous communication (BSC) 2780 or 3780 compatible protocol.

Appendix A has a more detailed description of line protocol handler functions.

The user may write his own line protocol handler provided it conforms to the same internal interface requirements used by the Honeywell-supplied line protocol handlers.

Multiline Communications Processor (MLCP) and MLCP Driver

The multiline communications processor includes a channel control program (CCP) for each class of supported device. The MLCP driver, which resides in main memory when defined at system building, sets up and processes input/output orders from the line protocol handlers, and services MLCP interrupts. The <u>Series 60</u> (Level 6) MLCP Programmer's Reference Manual describes the multiline communications processor in detail.

Communications Subsystem Interface With Applications Programs

FILE SYSTEM INTERFACE

The file system interface, operating between the application program and the terminal, provides, through communications software, system service file management macro calls that:

- o Open the file
- o Read data from the file (or device)
- o Write to the file (or device)
- o Test for completion of processing
- o Wait for completion of processing
- o Close the file

COBOL and FORTRAN run-time routines issue these macro calls according to the corresponding input/output statements in the compiled programs (see Sections 3 and 4). File system services are available also to assembly language programs (see Section 5).

Section 2 describes these system services macro calls and data structures briefly, the System Service Macro Calls manual describes all GCOS 6 macro calls and related data structures in detail.

PHYSICAL INPUT/OUTPUT INTERFACE

The physical I/O interface permits direct user control over communications processing. The physical I/O interface can be used only with assembly language programs, which can call a line protocol handler directly rather than indirectly through the file system interface.

Physical I/O macro calls used in communication between an application and line protocol handler are:

- o Request I/O transfer (\$RQIO)
- o Input/output request block, generate (\$IORB)
- o Set terminal characteristics (\$STTY)

Section 6 discusses physical I/O, the macro calls, and data structures in more detail.

TTY and VIP Line Protocol Handler Device Support

Asynchronous devices supported by the TTY line protocol handler are referred to throughout the manual as teleprintercompatible or TTY devices.

Synchronous devices supported by the VIP line protocol handler are referred to throughout the manual as VIP devices. The VIP designation applies also to receive-only printers (ROPs) associated with a VIP terminal.

BSC and PVE Host-Communications Support

Binary synchronous communications (BSC) permits communication between a Level 6 and another computer system that supports the 2780/3780 protocols.

The polled VIP emulator (PVE) permits a Level 6 computer to communicate with another Level 6, Level 66, or any other Honeywell host system.

Sections 9 and 10 have detailed descriptions of the BSC and PVE line protocol handlers.

SECTION 2

FILE SYSTEM FUNCTIONS AND MACRO ROUTINES

This section discusses those macro routines and related data structures that pertain to communications processing and are often referred to throughout this manual. The <u>System Service</u> <u>Macro Calls</u> manual describes in detail the format, functional description, and arguments for each macro routine, and corresponding data structures.

The macro routines summarized and listed in this section have the following file system functions, which are organized according to the following major functional groups:

- o File/management
- o Data management
- o Storage management

The file management macro routines provide service functions at the file level (i.e., reserving files, opening and closing files, testing the status of I/O activity, etc.). Data management macro routines supply service functions at the record level, such as read, write, delete, and rewrite. Storage management macro routines furnish service functions such as read and write at the block (unit of transfer) level. Since terminal files are are considered to be simple, unblocked sequential files, storage and data management functions are equivalent.

FILE MANAGEMENT MACRO CALLS

The file management macro calls let the user manipulate his files within the file system hierarchy (described in the System Concepts manual). File management macro functions that apply to communications processing are:

o Get a file (reserve a file for processing) (\$GTFIL)

- o Open a file (\$OPFIL)
- o Close a file (\$CLFIL)

- o Remove a file from processing (\$RMFIL)
- o Associate a logical file number with a pathname (\$ASFIL)
- o Dissociate a logical file number from a pathname (\$DSFIL)
- o Get information about a file (\$GIFIL)
- o Test the status of an outstanding I/O activity (terminal)
 (\$TIFIL/\$TOFIL)
- Wait for the completion of an asynchronous I/O activity (terminal) (\$WIFIL/\$WOFIL)

The file reservation function (get-file) can be done outside program execution by the GET command.

DATA MANAGEMENT MACRO CALLS

The data management macro calls allow manipulation of logical records within a file. The macro calls that apply to communications processing are:

- o Write a record (\$WRREC)
- o Read a record (\$RDREC)

Arguments required by these functions are passed in a file information block (FIB), described later in this section. The macro calls to generate and change FIBs and to define FIB offsets are discussed in the System Service Macro Calls manual.

Before any data management macro calls can be executed, the terminal file must have been reserved and opened with the LFN supplied in the FIB (get file (\$GTFIL) and open file (\$OPFIL) macro calls).

STORAGE MANAGEMENT MACRO CALLS

The storage management macro calls provide a primitive interface for transferring blocks directly between the user buffer and a file. Storage management itself is used by data management to perform input/output.

The complexities of blocking and deblocking logical records, and conforming at the same time to the various file organizations and formats, recommend against using storage management when dealing with I/O at the logical record level. To ensure maximum efficiency in terms of space and access, let the system (i.e., data management) handle the records. However, for unblocked records or large blocks with simple fixed-length records to be blocked by the user, the storage management macro calls can be used to perform I/O transfers between the user buffer and the file.

Storage management macro functions are:

- o Read a block (\$RDBLK)
- o Write a block (\$WRBLK)
- o Wait for the completion of an I/O activity (\$WTBLK)

FILE INFORMATION BLOCK (FIB)

Some macro routines, particularly for data and storage management, use a data structure called the file information block (FIB), which provides the interface between a user program and the system for data and storage management. In order for the file to be accessed, there must be one FIB for each file.

The \$FIB macro call is used to build a file information block, alter its contents, or to provide labels for its entries.

The FIB must be provided to each of the following macro calls:

\$OPFIL:	open file
\$CLFIL:	close file
\$TIFIL:	test file for input
\$TOFIL:	test file for output
\$RDREC:	read record
\$WRREC:	write record
\$RDBLK:	read block
\$WRBLK:	write block

FIB Format and Contents

Figure 2-1 shows the format of the FIB; Table 2-1 shows its contents.

Figure 2-2 shows the format of the FIB for data management applications; Table 2-2 shows its contents.

Figure 2-3 shows the format of the FIB for storage management applications; Table 2-3 shows its contents.

2-3

		0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0	F_ LFN	LOGICAL FILE NUMBER
1	F_PROV	PROGRAM VIEW
2 3	F_URP/F_UBP	
4	F_IRL/F_BFSZ	INPUT RECORD LENGTH/BUFFER SIZE
5	F_ORL/F_BKSZ	OUTPUT RECORD LENGTH/BLOCK SIZE
6	F_LIRT/F_BKN01	RECORD TYPE RANGE/BLOCK NUMBER
7	F_HIRT/F_BKN02	RECORD TYPE RANGE/BLOCK NUMBER
8	F_ORT	RESERVED
9	F_IKP	
10		
11	F_IKF/F_IKL	INPUT KEY FORMAT/INPUT KEY LENGTH
12	F_ORA1	(LEFT) OUTPUT RECORD ADDRESS
13	F_ORA2	(RIGHT) OUTPUT RECORD ADDRESS
14	F_RFU	RESERVED
10		

Figure 2-1. File Information Block (FIB)

Item	Label	Bit(s)	Contents			
0	F_LFN	0-15	Logical file number (LFN)			
1	F_PROV	0	Access level - set on for storage management, off for data management.			
		1-4	Process rules - bit 1 for \$RDREC/ \$RDBLK, bit 2 for \$WRREC/\$WRBLK, bit 3 for \$RWREC, bit 4 for \$DLREC.			
		5-9	Key type – bit 5 for primary keys, bit 8 for relative keys, bit 9 for simple keys (bits 6 and 7 must be 00).			
		10	Record class - set on for fixed-length records only, off for fixed- and variable-length records.			
		11	Record visibility - set on if deleted records are to be visible, off if invisible.			
		12	Key storage alignment - set on if stor- age area begins at odd-byte boundary, off if even-byte boundary.			

Table 2-1. Contents of File Information Block (FIB)

Table 2-1 (cont). Contents of File Information Block (FIB)

(

(

Item	Label	Bit(s)	Contents				
l (cont)	F_PROV (cont)	13	Record storage area/buffer alignment - set on if record storage area (or buf- fer) begins on odd-byte boundary, off if even-byte boundary.				
		14	Transcription mode - set on if data transferred in binary transcription mode, off if ASCII mode.				
		15	Synchronous/asynchronous indicator - set on if \$RDBLK/\$WRBLK calls executed asynchronously, off if executed synchronously.				
2	F_URP/	0-31	Start address of user record area data				
3	r_OBP		area (storage management).				
4	F_IRL/ F_BPSZ	0-15	Input record length (data management) or transfer size (storage management).				
5	F_ORL/ F_BKSZ	0-15	Output record length (data management) or block size (storage management).				
6	F_LIRT/ F_BKN01	0-15	<pre>must be 0000 for data management; is the left half of the block number (F_BKN01) for storage management.</pre>				
7	F_HIRT/ F_BKN02	0-15	Must be FFFF for data management; is right half of the block number for storage management.				
8	F_ORT	0-15	Must be 0000.				
9	F_IKP	0-31	Start address of user key area.				
11	F_IKF/ F_IKL	0-7	Input key format (0 for none specified, l for primary key, 2 for simple key)				
		8-15	Input key length.				
12	F_ORA1	0-15	Output record address (left half).				
13	F_ORA 2	0-15	Output record address (right half).				
14	F_RFU	0-31	Reserved for future use.				

2-5

Program View Entry in the FIB

The FIB's program view entry (item 1 in the FIB) describes to the file system how the file is to be accessed, and what the file looks like from the programmer's point of view. The file system uses the FIB's contents to ensure that the file is accessed only as intended.

The bits in the program view entry are read when the file is opened. After the file is opened, the user can change only bits 11, 12, and 13. Other bits cannot be changed until the file is closed and then reopened.

Table 2-1 above shows the contents of the program view entry indicated as item 1 and labeled F PROV. The System Service Macro Calls manual describes the program view entry in detail, with reference to its usage for specific file system services and macro calls.

FIB Displacement Definitions

Displacement definition macro calls are used to refer to specific locations in the FIB and in the various macro call argument structures. These calls define standard displacement tags.

The \$TFIB macro call defines tags for the FIB for the following macro calls:

> Open file (\$OPFIL) Close file (\$CLFIL) Test file (\$TIFIL, \$TOFIL) Read record (\$RDREC) Write record (\$WRREC) Rewrite record (\$RWREC) Delete record (\$DLREC) Write block (\$WRBLK) Wait block (\$WTBLK)

Word	Label							
0	F_FLN	LOGICAL FILE NUMBER						
1	F_PROV	PROGRAM VIEW						
2	F_UR P	USER RECORD POINTER						
3								
4	F_IRL	INPUT RECORD LENGTH						
5	F_ORL	OUTPUT RECORD LENGTH						
6	F_RFU1 RESERVED							
7	F_IRT INPUT RECORD TYPE							
8	F_ORT OUTPUT RECORD TYPE							
9	F_IKP INPUT KEY POINTER							
10								
11	F_IKF/F_IKL	INPUT KEY FORMAT INPUT KEY LENGTH						
12	F_ORA OUTPUT RECORD ADDRESS							
13								
14	F_RFU2							
15		RESERVED						

Figure 2-2. Format of File Information Block (FIB) for Data Management

Table 2-2. Contents of FIB for Data Management

Word	Label	(Bits)	Contents	Applicable Macros
0	F_LFN	0-15	Logical file number (LFN)	
1	F_PROV	0	Access level - OFF to indcate to access via data management	\$0PFIL
		1-4	Access rules - Bit 1: ON if \$RDREC will be issued Bit 2: ON if \$WRREC will be issued Bits 3, 4: does not apply - set to OFF	\$OPFIL
		5-9	Do not apply - set OFF	
		10	Record length verification - ON when expecting fixed length record and OFF for variable length record	\$RDREC
		11-12	Do not apply - set OFF	
		13	User record area alignment - ON if user record record area begins on odd-byte boundary, off if even-byte boundary.	\$RDREC \$WRREC
		14-15	Do not apply - set OFF	
2,3	F_URP	0-31	Start address of user record area	\$RDREC \$WRREC
4	F_IRL	0-15	Input user record area size in bytes	\$RDREC
5	F_ORL	0-15	Output user record area size bytes	\$RDREC
			Actual record size in bytes filled by data management on each macro call	\$RDREC \$WRREC
6	F_RFU1	0-15	Reserved - set to O	
7	F_IRT	0-15	Do not apply - set to FFFF	
9	F_ORT	0-15	Do not apply - set to O	

Word	Label	Bit	s)		Contents	Applicable Macros
9,10	F_IKF	• 0-:	0-31		ot apply - set to 0	
11	F_IKF F_IKT	7 0-7 8-1	.5	Do no Do no	ot apply - set to 0 ot apply - set to 0	
12,13	F_ORI	. 0-:	0-31		ut record address ne sequence number lled by data management each macro call	\$RDREC \$WRREC
14,15	F_RFU	12 0-3	1	Reser	rved - set to O	
		Word	L	abel	·	
		0	F_	LFN	LOGICAL FILE	
		1	F_	PROV	PROGRAM VIEW	
		2	F_	UBF	USER BUFFER POINTER	
		3				
		4	F_	BFSZ	USER BUFFER SIZE	
		5	F_	BKSZ	USER BLOCK SIZE	
		6	F_	BKNO	BLOCK NUMBER	
		7				
		8	F_	RFU3		
		9				
		10			RESERVED	
		11				
		12				
		13				
		14				
		15				

1. Carlo - Car

Table 2-2 (cont). Contents of FIB for Data Management

Figure 2-3. Format of File File Information Block (FIB) For Storage Management

Table	2-3.	Contents	of	FIB	for	Storage	Management
-------	------	----------	----	-----	-----	---------	------------

Word	Label	Bit(s)	Contents	Applicable Macros
0	F_LFN	0-15	Logical File Number (LFN)	
1	F_PROV	0	Access level - ON (to indicate access via storage management)	\$OPFIL
		1-4	Access Rules: Bit 1: ON IF \$RDBLK will be issued Bit 2: ON if \$WRBLK will be issued Bits 3-4: Does not apply - set to OFF	\$OPFIL
		5-12	Do not apply - set to OFF	
		13	User buffer area alignment – ON if user buffer area begins on odd-byte boundary, OFF if even_byte boundary	\$RDBLK \$WRBLK
		14-15	Do not apply - set to OFF	
2,3	F_UBP	0-31	Start address of user buffer area	\$RDBLK \$WRBLK
4	F_BFSZ	0-15	User buffer size in bytes	\$RDBLK \$WRBLK
			Actual transfer size in bytes filled by storage management on each macro call	\$RDBLK \$WRBLK
5	F_BKSZ	0-15	Do not apply - set to 256	
6,7	F_BKNO	0-31	Block Number - does not apply Line sequence number filled by storage management on macro call	\$RDBLK \$WRBLK
8-15			Reserved - set to 0	

FILE SYSTEM CONSIDERATIONS IN COMMUNICATIONS

The file system provides device independent facilities so that terminals can be reserved, removed, opened, closed, read and written just like standard sequential files. In addition, asynchronous I/O facilities are provided for efficient processing in

a multiterminal environment. Asynchronous I/O refers to the capability of the file system to perform I/O between a terminal and a system buffer while the application program executes in parallel. Facilities are available for the application program to test whether or not the I/O is complete and, alternatively, to give up control of the central processor until the I/O is comlete. This buffering capability is a device attribute and can be set at system build time or dynamically via the STTY command. The system buffer is actually acquired when the terminal is opened and returned when it is closed.

From the application program point of view:

- o An application program can be written to be device independent. The terminals, whether or not buffered, whenever a logical read or write is issued, control returns only to the application program when data has been moved to or from the application area. Buffering improves performance by providing the same level of asynchronous I/O as for unit record devices like the card reader or line printer -that is, while the application is processing one message the file system may be reading the next. This kind of application is efficient in a single terminal environment.
- o A more complex level of asynchronous I/O is necessary when the application program must interact with multiple terminals, establish its own polling priorities and run efficiently with high response time. One example is the traditional online/batch environment where, when terminal input is available, the online task has highest priority with respect to CP time, memory, etc., with batch processing operating efficiently while online processing is dormant. Facilities are available to schedule I/O without waiting for its completion, to continue task execution in parallel with the I/O transfer, to test to see if the I/O is complete, and to wait until I/O is complete.
- For interactive terminals an open causes an asynchronous physical connect to be performed while the application continues executuion. The application can then test to determine if the connect is complete and input is availble, or if the device is ready for output.
- Before reading, the application task can test the file 0 status to see if a read can be done without stalling task execution. File status remains busy until the system buffer is full (i.e., the anticipatory read is complete). When the file status is not busy the application can issue a read with the assurance of receiving data immediately. The anticipatory read allows an application to control input from more than one terminal, each of which represents a data entry terminal. By testing the status of the system buffer before a read (FORTRAN, assembly) or by checking for the 9I status after a COBOL READ, the application will not be stalled and it can continue to poll other terminals. The user can establish the order of the tests and thus the polling priority.
- The application can also wait for input from a list of terminals. CP time is then made available to lower priority tasks until input is available from one or more terminals in the list.
- A buffered write operation to a terminal works on behalf 0 of the application program in the same logical manner as the read, that is, the program is allowed to execute in parallel with the physical transfer to the device. Each write call is completed by moving data from the application area to the file system buffer (with detabbing if required), initiating the output transfer and returning control to the application program. If the program performs a second write while the system buffer is still in use for the previous transfer, the application is stalled until the buffer is available and new data moved into it again. The application can avoid the stalling the execution by testing the status of the system buffer before issuing a write (FORTRAN, assembly) or by testing for the 9I status return after a WRITE in COBOL.
- o The application program can also issue a wait for output to a list of terminals. CP time is then made available to lower priority tasks until output is complete to one or more terminals in the list.

DEFINING FILE/TERMINAL CHARACTERISTICS

There are these considerations in defining terminal file characteristics for the file system. The first deals with a file's operational characteristics (with respect to the device) when the system is first build. The DEVICE directive permits the user to specify among others the default record size of the file and the use of an intermediate buffer (this option is specified by the buffered/unbuffered argument). Buffered device operation is advantageous in synchronous operations against a file, and is mandatory in asynchronous operations against a file.

The second consideration involves the secondary specialization of a file's device's operational characteristics. This specialization can be done at system build by using the STTY directive, from the user's terminal via an STTY command, and during program execution with the \$STTY macro call. In each case the \$STTY macro call or STTY command permits the following:

- o Modification of default record size.
- Specification of the device-specific word which determines the operational characteristics of the device (e.g., whether a control byte is used or a disconnect will force a queue abort).
- Specification of the file indicator word which determines the operational characteristics of the file system (e.g., if the file system is to support input and/or output operations, and whether these operations are synchronous/asynchronous).

The final consideration deals with specifying selected file characteristics at open time. Of particular interest is the program view word of the file information block (FIB), which defines whether the file system is to support input and/or output operations against a file.)

SECTION 3

COMMUNICATIONS VIA COBOL

The file system interface (see Sections 1 and 2) provides the logical transfer between the COBOL program and an external device (terminal or another computer). The COBOL run-time routines issue file system macro calls according the the corresponding input/output statements in the compiled programs.

INTERACTIVE DEVICES AND FILES

The operating system defines communications devices and local TTY terminals in COBOL communications processing as "interactive."

Interactive devices can be considered as logical repositories of sequential files in COBOL. Data is read or written with the same COBOL read/write interface as for a file on a noninteractive device.

FILE SYSTEM CONSIDERATIONS

Aside from the use of various COBOL I/O statements the user should be aware of other considerations in using the file system within a communications environment. These considerations are detailed in Section 2.

SOURCE PROGRAM ENTRIES IN COMMUNICATIONS

This subsection refers to certain COBOL source program entries in the context of COBOL communications. The appropriate <u>COBOL Reference</u> manual describes COBOL source program language in detail.

Specifying Files in the Source Program

The user must describe every file with a separate SELECT statement in the FILE-CONTROL paragraph of the Environment Division. File organization and access mode must be stated as sequential.

Each file must have a unique name and, and in the ASSIGN clause, be identified by a 2-character COBOL internal file name (IFN) consisting of a combination of the letters A through I and the digits 0 through 9; one letter must be included. The logical file number (LFN) is specified in the ASSOC or GET commands (before execution) to connect the COBOL internal file name to the external file. This LFN is the same as the COBOL internal file name with letters A through I replaced by the digits 0 through 9. For example, a COBOL IFN of 0C would correspond to an LFN of 03 and an IFN of 0D to an LFN of 04, as in the commands.

> ASSOC 03 >SPD>VIP1 GET 04 >SPD>TTY1

Use of ASSOC or GET Commands

In addition to connecting the internal file name to the external file, the GET command reserves the interactive file for processing until it is removed via the REMOVE command. GET allows the user to guarantee exclusive use of the file prior to program execution and maintain use of the file until the corresponding REMOVe command.

ASSOC, on the other hand, merely connects the internal file name to the external file, without reserving it for use. Each COBOL OPEN statement will cause the file to be reserved exclusively while each COBOL CLOSE statement will remove this reservation.

In a multi-user environment the use of ASSOC command may cause an OPEN to fail because some other user has reserved the file exclusively while the GET command guarantees that OPEN will not fail as a result of some other user's reservation request.

ASSIGNING A FILE TO A DEVICE/TERMINAL

A device-type name of MSD used in the ASSIGN clause of the SELECT statement is the way that the user informs COBOL that the internal file is assigned to a terminal/device file.

For data entry applications (TTY or VIP) the file should be opened in INPUT mode.

For output-only terminals such as the Receive Only Printer (ROP) the file should be opened in OUTPUT mode. Bidirectional devices, such as the BSC 2780 can be opened in INPUT mode or OUTPUT mode but not for both INPUT and OUTPUT at the same time.

For interactive applications (TTY, VIP or BSC3780), the file can be opened in I-O mode allowing both input and output operations.

SELECT and ASSIGN Examples

Figure 3-1 shows an example of a FILE-CONTROL paragraph with SELECT and ASSIGN statements for the input file COMIN and the output file COMOUT. The internal file name for COMIN is OC and for COMOUT is OD. Before the program is executed, the user must associate these files with the appropriate device(s) with either an ASSOC or GET command. In this example, the commands could be:

> GET 03 >SPD>TTY1 GET 04 >SPD>TTY1

Although these are different files, they can be associated with the same interactive device, i.e., TTY1, by matching the logical file numbers (03 and 04 for the device pathname >SPD>TTY1) with the internal file name 0C and 0C, respectively.

FILE-CONTROL

SELECT COMIN

ASSIGN TO OD-MSD ORGANIZATION IS SEQUENTIAL WITH VLR ACCESS MODE IS SEQUENTIAL FILE STATUS IS IN-STAT.

SELECT COMOUT

ASSIGN TO OD-PRINTER ORGANIZATION IS SEQUENTIAL WITH VLR ACCESS MODE IS SEQUENTIAL FILE STATUS IS OUT-STAT.

Figure 3-1. COBOL SELECT and ASSIGN Examples

Carriage Control

Some devices can be configured such that print carriage control is visible on output to the application program. If the device-type name is MSD, then the application program controls the carriage directly by inserting a program-accessible control byte as the first character in each output record. This byte is the first character in each level-Ol record description entry for the output file. It is counted as part of the record area and is directly accessible through statements in the COBOL application program.

Printer Emulation

The user can pretend the device is a printer and more automatically control the carriage. If the device-type name is PRINTER in the ASSIGN clause then COBOL will automatically generate the carriage control byte as a result of an ADVANCING phase in the WRITE statement. This one byte print control character is inserted before each data record being written to the file. It is not counted as part of the record area and is not directly accessible tot he application program.

Specifying Asynchronous or Synchronous Read and Write Execution

If the device is configured with the asynchronous I/O attribute then READ and WRITE statements may be executed synchronously or asynchronously, as indicated by the programmer through calls to the COBOL run-time routines ZCASYN (asynchronous execution) or ZCSYNC (synchronous execution). If neither call is specified, reads and writes are executed asynchronously.

A separate call to ZCSYNC or to ZCASYN is not necessary for each read or write, but when first issued, remains effective until changed by another call. However, if the same run unit is to execute several COBOL programs, each program must separately define its own synchronous or asynchronous condition.

SYNCHRONOUS READ AND WRITE OPERATION (CALL "ZCSYNC")

In synchronous operation, the COBOL routine issues a read or write order without any file status checks. This causes the application program to be put in the wait state until the read or write operation is complete, thus allowing other tasks to be executed.

The source language for synchronous read and write execution is:

CALL "ZCSYNC"

Synchronous operation is not very useful in a multiterminal environment since each read or write to a terminal must be satisfied before the next terminal can be processed.

ASYNCHRONOUS READ AND WRITE OPERATION (CALL "ZCASN")

In asynchronous operation COBOL READ/WRITE run-time routines issue a test-file call prior to issuing a read or write order. For READ orders, a 9I return status is returned to the application if no data is available to be read. Likewise, for a WRITE order, a 9I status is returned to the application if the device is busy with the previous output. This permits the COBOL program to support terminal I/O without giving up control of the central processor until the I/O is complete.

WAIT for Completion -- Asynchronous Input and Output

In a multi-terminal system the user can control asynchronous read and write operations by calling the COBOL run-time routines ZCWIN and ZCWOUT.

A call to ZCWIN results in a wait file (\$WIFIL) macro call which waits until input is available from one or more of the specified terminals.

A call to ZCWOUT results in a wait-file (\$WOFIL) macro call which waits until output is complete to one or more of the specified terminals.

The <u>System Service Macro Calls</u> manual describes the wait file macro calls, their format and arguments, in detail. Note that the macro call arguments are similar to the values for the data-name description for the CALL statements (see below).

The source language to call ZCWIN or ZCOUT is:

CALL {"ZCWIN" USING data-name

Data-name is defined as follows:

大小学

01	dat	a-name
	02	out-LFN USAGE COMP-1.
	02	list-length USAGE COMP-1.
	02	LFN-entry-1 USAGE COMP-1.
		•
		•
		•
	02	LFN-entry-n USAGE COMP-1.

The values for out-LFN, list-length, LFN-entry-l and LFN-entry-n are identical to those for the wait file (\$WIFIL and (\$WOFIL) macro calls, and are passed by the ZCWIN or ZCWOUT routine to the file system.

When CALL "ZCWIN" is specified, the list of LFNs may refer only to hose devices for which READ statements have been issued. When call "ZCWOUT" is specified, the list of LFNs can refer only to those devices for which WRITE statements have been issued.

When an input/output operaton is completed on any device in the list of LFNs, the application program resumes execution following the CALL statement. The LFN for the device for which input/output is complete is stored in the out-LEN data item.

3 - 5

Figure 3-2 provides simplified program logic for processing multiple terminals. The call to "ZCWIN" stalls program execution until input is available from at least one of the terminals.

Figure 3-2. Simplified COBOL Program Logic for Multiple Interactive Terminals

The following is an example of a COBOL program which processes two terminals which have been configured to allow asynchronous input and synchronous output operations. The call to ZCWIN gives up control of the central processor until input is available from one of the terminals.

FILE-CONTROL.

SELECT COM1

ASSIGN TO OC-MSD ORGANIZATION IS SEQUENTIAL WITH VLR ACCESS MODE IS SEQUENTIAL FILE STATUS IS C1-STAT.

SELECT COM2

ASSIGN TO OD-MSD ORGANIZATION IS SEQUENTIAL WITH VLR ACCESS MODE IS SEQUENTIAL FILE STATUS IS C2-STAT.

PROCEDURE DIVISION.

OPEN I-O COM1. OPEN I-O COM2.

RD1.

ile:

CALL "ZCWIN" USING FLN-LIST. READ COM1. IF C1-STATE "91" GO TO RD2. IF C1-STATE "00" GO TO WR1. GO TO ERROR.

RD2.

READ COM2. IF C2-STAT "00" GO TO WR2. GO TO ERROR.

WR1.

WRITE COMLL. IF CL-STAT "00" GO TO RDL. GO TO ERROR.

WR2.

WRITE COM2. IF C2-STAT "00" GO TO RD1. GO TO ERROR. Before program execution, specify these commands to connect the LFNs to the specific terminal files.

> GET 3 >SPD>TTY1 (for IFN 0C-MSD) GET 4 >SPD>TTU2 (for IFN 0D-HSD)

Binary Synchronous Communication (BSC) With COBOL

Binary Synchronous Communication (BSC), operating in 2780 or 3780 mode, permits a COBOL program to transmit data over communications lines from one Level 6 system to another Level 6, to a Level 66 system, or to a non-Honeywell host system.

BSC DATA TRANSMISSION CONVENTIONS

BSC Data Codes

Data can be in alphanumeric ADCII, alphanumeric EBCDIC, or binary format. In communication between Level 6 and remote host, each system must use the same code set (either ASCII or EBCDIC). When EBCDIC is used, the application programs must know whether transmission is nontransparent or transparent (i.e., BSC control characters are interpreted as data).

BSC Data Transmission Modes

There are two BSC transmission modes: basic and advanced.

In basic transmission mode there is no control byte. The absence of a control byte limits the functionality of the protocol (e.g., an application cannot send or receive two message blocks or cannot initiate a reverse interrupt (RVI) sequence).

In advanced transmission mode there is a control byte which is the first byte in the program's input or output buffer. The control byte is used to control the transmission of data and is used to convey information concerning the receipt of data. With the control byte, the application has complete control over the transmission and reception of data to a remote host.

BSC 2780 and BSC 3780

BSC 2780 is a subset of BSC 3780. Technical differences between the two protocols can be summarized as a set of extensions to the 2780 protocol which are as follows:

- o The ability to receive a conversational reply without a preliminary bid sequence.
- o The ability to receive and transmit selected BSC control characters.

From a user's point of view the differences between the two protocols can be summarized below:

- o BSC 2780
 - Specified at system building time by the BSC device directive.
 - Operates in basic or advanced mode.
 - The file system supports bidirectional usage of BSC 2780 communication line. A CLOSE/OPEN sequence must be initiated prior to the reversal of the communication line.
- o BSC 3780
 - Specified a system building time by the XBSC directive.
 - Operates only in advanced mode.
 - The file system supports interactive usage of the BSC 3780 communication line. To terminate a transmission the application must initiate an EOT sequence by setting the appropriate bit within the control byte. An ETX message transmission sequence can also be terminated if the other application sends a conversational reply. The receipt of conversational reply is indicated by a bit setting within the transmit control byte. The receipt of a conversational reply forces the application to issue a read order to receive the conversational response. The termination of a read sequence is indicated by the AT END condition.

Macro Call Procedures for BSC 2780 in Basic Transmission Mode

The following conditions apply in the use of binary synchronous communications in basic data transmission mode:

- An application cannot send an RVI (reverse interrupt) control character through the file system.
- BSC devices in basic transmission mode cannot initiate double (ITB) message transmission (see Section 10).
- An application can send only the ETB (end of transmission block) BSC control character, not the ETX (end of text) BSC control character.
- An application can send data in either transparent or nontransparent mode.

- o An application can send EOT (end of transmission) control characters by a CLOSE call.
- o BSC operation assumes that the detab option is set off.

Figure 3-3 illustrates the necessary logic to support a BSC 2780 application in basic transmission mode.

3-10

Macro Call Procedures for BSC 2780 in Advanced Data Transmission Mode

In the BSC advanced data transmission mode, the first byte of the application program's input or output buffer is a control byte that controls or supplies information about read/write operations. This byte can indicate, for example, whether data is to be transferred in transparent or nontransparent mode, or whether an ETB (end of transmission block) or ETX (end of text) control character is to be sent or received. Section 8 describes the control byte formats.

The following conditions apply in using the file system in 2780 binary synchronous communications in advanced data transmission mode:

It is not necessary to send EOT control characters through the control byte since the user must close the file in output mode before attempting to read. Closing the file forces BSC if not in idle mode, to send an EOT control character.

Macro Call Procedures for BSC 3780 in Advanced Data Transmission Mode

100

The first byte of the application program's input or output buffer is a control byte. The control byte controls or supplies information about read/write operations.

The following conventions apply in using 3780 binary synchronous communication in advanced data transmission mode:

- The receipt of an optional conversational reply is indicated by a bit setting in the transmit control byte.
 (This can occur if the application has transmitted the last (ETX) block of a message). The application must issue a read in order to receive the conversational response.
- o The termination of a transmit sequence is signaled (via control byte) by the transmission of an EOT control character following the last block of a message. Once this has been done a read macro call will be needed to receive transmissions from the remote system. (It is not necessary to close and reopen the file to turn the line around).
- o The termination of a receive sequence is indicated by the AT END condition. A transmission sequence can be reinitiated by issuing another write macro call. (It is not necessary to close and reopen the file to turn the line around).

o A line turnaround (receipt of an EOT) is indicated at the AT END condition. At this point the application can use the line for data transmission by issuing another write request. It is also possible to receive an EOT control character which indicates the abortion of the current transmission sequence by the remote host. Such an occurrence is indicated by an AT END condition. If this occurs the application must close the line.

Figure 3-4 illustrates the necessary logic to support a BSC 3780 application.

Figure 3-4. Simplified Program Logic for BSC 3780

Figure 3-4 (cont). Simplified Program Logic for BSC 3780

 \sum

SECTION 4

COMMUNICATION VIA FORTRAN

The file system interface (see Sections 1 and 2) provides the logical transfer between the FORTRAN program and an external device (terminal or another computer) in FORTRAN communications. The FORTRAN run-time routines issue file system macro calls according to the corresponding input/output statements in the compiled programs.

INTERACTIVE DEVICES AND FILES

1 (A)

The operationg system defines communications devices and local TTY terminals in FORTRAN communications processing as "interactive." Interactive devices can be considered as logical repositories of sequential files in FORTRAN. Data is read or written with the same FORTRAN read/write interface as for a file on a noninteractive device.

FORTRAN PROGRAM EXECUTION WITH COMMUNICATIONS

Assigning Interactive Devices at Execution

Before the compiled FORTRAN program can be executed, the user must specify the actual interactive device for the specified file, using the system command ASSOC (associate path). The logical file number (LFN) specified in the command must be the same as the unit specifier (u) that was included in the control information list (clist) in the FORTRAN input/output statement READ, WRITE, or PRINT for that file. See the FORTRAN Reference manual for descriptions of FORTRAN statements and the unit specifier. See the Commands manual for descriptions of the ASSOC and other system commands.

Changing Terminal's File Characteristics

The user can change the file characteristics of a terminal e.g., line length (or record size), detabbing, device type (input, output, etc.,) with the system command STTY (set terminal characteristics), or with the \$STTY macro call. This permits the

user to modify the characteristics established at system building, and is issued before program execution.

Appendix B shows possible values for the device-specific word and file-indicator word arguments of the STTY command and \$STTY macro call.

FORTAN FILE STATUS CHECK (ZFSTIN AND ZFSTOT)

Before a FORTRAN file can be used in communications, the FORTRAN statement OPEN must be specified before any other input/ output statement.

The FORTRAN subroutines ZFSTIN (for input files) and ZFSTOT (for output files) enable the application program to check the status of the input or output communications device (file) before issuing a READ or WRITE statement.

When the program issues an I/O request statement (a READ or WRITE), it stalls until that request is completed.

The FORTRAN subroutines ZFSTIN and ZFSTOT, when called before an I/O request is issued, check the availability of the communications device (file), and can prevent the problem of program inactivation or program execution due to file or device unavailability.

The subroutine ZFSTIN checks the status of the input file, ZFSTOT checks the output file. Their use monitors the status of the files without loss of program control and prevents the imposition of file system waits.

A CALL statement to either subroutine should be issued before the application issues any I/O requests to ascertain (1) whether the file (device) is available, and (2) any device error status.

The subroutine ZFSTIN or ZFSTOT, when called, issues a request to the file system, which in turn (without waiting for any pending I/O request to be completed) returns status information about the file's availability. When the file is not busy, the file system will return status information about the previous I/O request.

CALL Statement for ZFSTIN or ZFSTOT

The CALL statement for subroutine ZFSTIN or ZFSTOT is specified as:

CALL {ZFSTIN (lfn,arg) ZFSTOT

The logical file number, in an ASSOC systems command, that identifies the unit specifier (\underline{u}) for the file to be checked.

arg

8. **1**100

lfn

The symbolic integer variable into which the file system will return one of the following statis values:

00010

File is available (READ or WRITE can be issued). The last request, if a READ or WRITE, was successful.

512₁₀

Request rejected; undefined LFN was used, or the file system is not available.

 516_{10}

File is busy (READ or WRITE in progress). If ZFSTIN, then a READ is in progress and not yet complete. If ZFSTOT, the previous WRITE is not yet complete.

519₁₀

File is not open; last request was not successful. Issuance of another READ or WRITE will result in an error return.

A call to ZFSTIN or ZFSTOT made to a noncommunications file always results in a 000 (not busy) status return. Such a call allows a user to debug the application program by first using noncommunicsatons files, then write the program so that it can use either communications or noncommunications files.

The FORTRAN subroutine ZFSTIN, when called before issuing a READ request, checks for the availability of input. It prevents the loss of program control until data is available in a file system buffer. When ZFSTIN indicates that the file is not busy then a READ can be issued to move the data just read from the file system to the application program area.

The FORTRAN subroutine ZFSTOT, when called before issuing a WRITE request, checks to see if previous output is complete and the terminal is free to accept more data. When ZFSTOT indicates that the file is not busy then a WRITE can be issued to move data from the application program area to a file system buffer and schedule it to be written to the terminal.

ZFSTIN and ZFSTOT Programming Examples

The following are examples of (1) coding that causes the program to stall when input from a terminal is not completed before a second READ is issued, and (2) a call to subroutine ZFSTIN to check the file status before the second READ is issued. Note that in each case the first FORTRAN statement is OPEN.

Example 1:

	OPEN (UNIT=8)
	READ(8,100)IN
	READ(8,199)IN
100	FORMAT(12)

Example 2:

	OPEN(UNIT=8)
	READ(8,200)IN
50	CALL ZFSTIN(8,ISTAT)
	IF(ISTAT .EQ. 0) GO TO 100
	IF(ISTAT .EQ. 512) GO TO 900
	IF(ISTAT .EQ. 519) GO TO 900
	GO TO 50
100	READ(8,200)IN
200	FORMAT(15)
900	WRITE(4,910)
910	FORMAT(ERROR FOUND)

Appendix D contains an example of a FORTRAN communications program.

4 - 4

SECTION 5

ASSEMBLY LANGUAGE COMMUNICATIONS USING THE FILE SYSTEM

This section discusses the use of file system macro calls in writing communications programs.

FILE SYSTEM CONSIDERATIONS

Aside from the use of macro calls, the user should be aware of other considerations in using the file system within a communications environment. These considerations are detailed in Section 2.

FILE-PROCESSING MACRO CALLS IN ASSEMBLY LANGUAGE APPLICATIONS

The following describe the use of the get file (\$GTFIL), open file (\$OPFIL), test file (\$TIFIL and \$TOFIL), and wait file (\$WIFIL and \$WOFIL) macro calls in assembly language communications processing with the file system.

Get File (\$GTFIL) Macro Call Guidelines

The get file function reserves a file for processing and connects a file to a logical file number (LFN). The LFN is used in other file system calls (\$OPFIL, \$RDREC, \$WRREC, etc.) to reference the file in question. Normally the get file function is involved via a GET command outside of program execution.

The arguments for the get file (\$GTFIL) macro call in an assembly language communications program must have the values shown in Table 5-1.

5-1

Table 5-1. Arguments for Get File (\$GTFIL) Macro Call

Argument	Argument Value		
Pathname pointer	Must point to a pathname of a communica- tions device (e.g., >SPD>TTY01)		
Concurrency control	According to how the application uses the device (normally zero for exclusive use)		
Remaining arguments	Zero		

Open File (\$OPFIL) Macro Call Guidelines

The open file function allocates buffer space (if required) and physically connects the device or terminal.

The open file macro call \$OPFIL, when used in communications, must include the location of the file information block (FIB) which in turn must contain a valid program view item.

Table 5-2 indicates bit settings in the program view item for the \$OPFIL macro call, such settings are dependent on the actions taken by the communications application program.

Test File (\$TIFIL, \$TOFIL) Macro Call Guidelines

Before the application issues a \$RDREC or \$RDBLK macro call, it can issue the test input file (\$TIFIL) macro call to check whether input is available. Note that when the operator terminal is checked, the \$TIFIL macro call always returns a not busy status.

Before the application issues a \$WRREC or \$WRBLK macro call, it can issue the test output file (\$TOFIL) macro call to check whether the preceding output operation was completed.

Wait File (\$WIFIL, \$WOFIL) Macro Call Guidelines

The use of the wait file macro call will permit an application to wait for the completion of an outstanding read or write order. The wait file macro call can be used against a set of multiple terminals or devices. Test and wait file macro calls differ in terms of when control is returned to the calling routine. A test file call will return immediately with a busy or not busy status. An application can block the execution of lower level tasks with repeated test file calls to a busy file. Such problems can be avoided by issuing a wait macro call in lieu of successive test macro calls.

\$WIFIL is used to wait for input from any device/terminal; \$WOFIL to wait for completion of output to any device/terminal. Table 5-2. Program View Bit Settings for \$OPFIL Macro Call

Bit Number	Actions by Assembly Language Application Program	Set Bit(s) To	
0	Will use read record (\$RDREC) and write record (\$WRREC) macro calls		
	Will use read block (\$RDBLK) and write block (\$WRBLK) macro calls	1	
l (road	Will read data from the device (see note l)	1	
bit)	Will not read data from the device	0	
2 (write	Will write data to the device (see note 1)		
bit)	Will not write data to the device	0	
3 through 12		0	
13	As appropriate (see Table 2-1)	0 or 1	
14		0	
15	Synchronous/asynchronous indicator (see note 2)	0	
Notes:	 Bit value must be consistent with device type used. 	being	
	 When application uses \$RDBLK or \$WRBLK macro c execution of the calls indicates asynchronous. 	alls,	

Device Dependent Macro Call Procedures

The following subsections describe the procedures for issuing device dependent file system macro calls.

Device Modes and Device Types

There are four basic processing modes for communications devices:

Input only (TTY or VIP data entry applications); Output only (receive only printer application (ROP); Bidirectional - either the device is opened for input or output, but not both applications (BSC 3780); Interactive (TTY, VIP or BSC 3780 applications).

Macro Call Procedures for Data Entry Terminals

Table 5-3 shows the procedure for using file system macro calls in communications application involving data-entry terminals.

Table	5-3.	Macro	Call	Procedures	for	Data	Entry	' Terminals
-------	------	-------	------	------------	-----	------	-------	-------------

Procedure Step	Action by Application Program	System Actions
1	Issue \$GTFIL macro call (see Table 5-1)	Bit 2 program view
2	Issue &OPFIL macro call (see Table 5-2) with 1 set to 1, bit 2 set to 0.	Issues asynchronous connect, returns a normal status to the program.
3	Issue \$WIFIL macro call to wait unil connect is complete and input is available. (With multiple devices, the \$WIFIL macro call can be issued with a list of LFNs, effectively giving up con- trol until input is available from one or more devices in the list.)	Will return when a read has been satis- fied.
	Otherwise, if application is to do other processing (not giving up control), issue \$TIFIL macro call.	If connect is not complete return a busy status. If connect is complete, issue an asynchro- nous read and return a busy status until read is complete.
4	If not busy status is re- turned, issue \$RDREC or \$RDBLK macro call.	With read operation complete, move data from system buffer to application's buffer, issues another asynchronous read, and returns a normal status to the program.
5	If an error status is re- turned, exit from the procedure.	

Table 5-3 (cont). Macro Call Procedures for Data Entry Terminals

Procedure Step	Action by Application Program	System Actions
6	When read is successful, return to step 3 to request more data from the device.	
7	When application process- ing completed, issue \$CLFIL macro call.	Issues a disconnect.

Macro Call Procedures for Output Only Terminals

-649

Table 5-4 shows the procedure for using macro calls in communications applications involving output only terminals.

Table 5-4. Macro Call Procedures for Output Only Terminals

Procedure Step	Action by Application Program	System Actions
1	Issue \$GTFIL macro call (see Table 5-1).	
2	Issue \$OPFIL macro call (see Table 5-2) with bit 1 set to 0, bit 2 set to 1.	Issues a asynchronous connect, returns a nor- mal status to the program.
3	Issue \$WOFIL macro call to wait until connect is com- plete and output can be transmitted. (With multiple devices, the \$WOFIL macro call can be issued with a list of LFNs, effectively giving up control until output can be sent to one or more of the devices in the list.	Will return when output can be transmitted
	Otherwise, if the application is to do other processing (not give up control), issue a \$TOFIL macro call.	If connect is not com- plete return a busy status. If connect is complete return a not busy status if output can be transmitted.

Procedure Step	Action by Application Program	System Actions
4	If not busy status is re- turned, issue \$WRREC or \$WRBLK macro call.	Moves data from appli- cation buffer to sys- tem buffer. Issues asynchronous write and returns a normal sta- tus to the applica- tion.
5	If error status is returned, exit from the procedure.	
6	When write is successful, return to step 3 to trans- mit more data to the device.	Issues disconnect ac- cording to device type.

Table 5-4 (cont). Macro Call Procedures For Output Only Terminals

Macro Calls For a Single Interactive Terminal

440 4

Table 5-5 describes the procedures for using macro calls in communications applications involving only one interactive terminal which has been configured for synchronous input/output operation.

Figure 5-1 illustrates the procedure's flow.

Table 5-5. Macro Call Procedures for Single Interactive Terminal

Procedure Step	Action by Application Program	System Actions
1	Issue \$GTFIL macro call (see Table 5-1)	
2	Issue \$OPFIL macro call (see Table 5-2) with program view bit 1 set to 1, program view bit 2 set to 1.	
To read f	rom the terminal followed by a wr	ite to the terminal:
3	Issue \$RDREC or \$RDBLK macro call. (This effectively gives up control until the read is satisfied.) If error status returned, exit from the procedure.	Data is read directly into the application buffer.
4	Process the data just read.	
5	Issue \$WRREC or \$WRBLK. (This effectively gives up control until the write is complete.) If an error status is re- turned, exit from the proce- dure.	Data is written directly from the application buffer
6	If additional input is ex- pected refer to step 3.	
7	When application processing is complete, issue \$CLFIL macro call.	Issues a disconnect.

Figure 5-1. Simplified Program Logic for Single Interactive Terminal

Macro Call Procedures for Multiple Interactive Terminals

Table 5-6 describes the procedures for using macro calls in communications applications involving multiple terminals.

Figure 5-2 illustrates the procedure's flow.

「市」「

Table 5-6. Macro Call Procedures for Multiple Terminals

Procedure Step	Action by Application Program	System Actions
1 .	Issue \$GTFIL macro call to each terminal (see Table 5-1).	
2	Issue \$OPFIL macro call to each terminal (see Table 5-2 with program view bit 1 set to 1, bit 2 set to 1.	Issues asynchronous connect, returns nor- mal status to the program.
To read fr	om a terminal followed by a write	e to a terminal:
3	Issue \$WIFIL macro call with a list of LFNs. (This will ef- fectively give up control until input is available from one or more terminals in the list.)	Will return when a read is complete and data is available. Returns the LFN of the first terminal in the list for which data is available.
4	Issue \$RDREC or \$RDBLK macro call.	Moves data from sys- tem buffer to appli- cation's buffer, issues another asyn- chronous read, and returns a normal sta- tus to the program.
5	If an error status is re- turned, process the error.	
6	Process the data just read.	
7	Issue \$WRREC or \$WRBLK macro can. (This will give up con- trol unitl output can be sent to terminal.)	Waits until output can be sent; moves data from the application's buffer to system bu fer and issues an asynchronous write.
8	If additional input is ex- pected from any terminal see step 3.	

5-9

Procedure Step	Action by Application Program	System Actions
9	When application processing is complete, issue \$CLFIL call.	Issues disconnect.

Table 5-6 (cont.) Macro Call Procedures for Multiple Terminals

Figure 5-2. Simplified Program Logic for Multiple Interactive Terminals

Binary Synchronous Communication (BSC)

Binary synchronous communication (BSC), operating in 2780 or 3780 mode, permits a program to transmit data over communications lines from one Level 6 to another Level 6, or a Level 66 system, or to a non-Honeywell host system.

BSC DATA TRANSMISSION CONVENTIONS

BSC Data Codes

1

Data can be in alphanumeric ASCII, alphanumeric EBCDIC, or binary format. In communication between Level 6 and a remote host, each system must use the same code set (either ASCII or EBCDIC). When EBCDIC is used, the application programs must know whether transmission is nontransparent or transparent (i.e., BSC control characters are interpreted as data).

BSC Data Transmission Modes

There are two BSC transmission modes: basic and advanced.

In basic transmission mode there is no control byte. The absence of a control byte limits the functionality of the protocol (e.g., an application cannot send or receive two message blocks or cannot initiate a reverse interrupt (RVI) sequence).

In advanced transmission mode there is a control byte which is the first byte in the program's input or output buffer. The control byte is used to control the transmission of data and to convey information concerning the receipt of data. With the control byte the application has almost complete control (subject to limitations imposed by the protocol) over the transmission and reception of data to and from a remote host. (The control byte formats are detailed in Section 10).

BSC 2780 and BSC 3780

BSC 2780 is a subset of BSC 3780. Technical differences between the two protocols can be summarized as a set of extensions to the 2780 protocol which are as follows:

 The ability to receive a conversational reply without a preliminary bid sequence. The ability to receive and transmit selected BSC control characters.

From a user's point of view the differences between the two protocols can be summarized as follows:

BSC 2780

- Specified at system building time by the BSC device directive.
- o Operates only in advanced mode.
- The file system supports bidirectional usage of BSC 2780 communications line. A CLOSE/OPEN sequence must be initiated prior to the reversal of the communication line.

BSC 3780

- Specified at system building time by the XBSC directive.
- o Operates only in advanced mode.
- The file system supports interactive usage of the BSC 0 3780 communications line. To terminate a transmission the application must initiate an EOT sequence by setting the appropriate bit within the control byte. An ETX message transmission sequence can also be terminated if the other application sends a conversational The receipt of conversational reply is indireply. cated by a bit setting within the transmit control The receipt of a conversational reply forces bvte. the application to issue a file system read order to receive the conversational response. The termination of a read sequence is indicated by a EOF return code (021F) and by the EOT bit being set in the receive control byte. (Note that the terms EOF (end of file) and EOT (end of transmission) are synonymous).

Macro Call Procedures for BSC 2780 in Basic Transmission Mode

The following conditions apply in the use of the file system in binary synchronous communications in basic data transmission mode:

- An application cannot send an RVI (reverse interupt) control character through the file system.
- BSC devices in basic transmission mode can operate only in single-buffer mode (see Section 10).

- An application can send only the ETB (end of transmission block) control character, not the ETX (end of text) character.
- An application can send data in either transparent or nontransparent mode.
- An application can send EOT (end of transmission) control characters <u>only after</u> it has issued a \$CLFIL macro call.
- o BSC operation assumes that the detab option is set off.

Table 5-7 shows the procedure for using macro calls in applications that use BSC in basic data transmission mode.

「「「「

Figure 5-3 illustrates a simplified program logic for these procedures.

Figure 5-3. Simplified Program Logic for BSC 2780 in Basic Transmission Mode

Table 5-7. Macro Call Procedures for BSC 2780 in Basic Transmission Mode

Procedure Step	Action by Application Program	System Actions	
1	Before a file is first opened issue \$GTFIL macro call (see Table 5-1).		
To read data from a BSC line:			
2	Issue \$OPFIL macro call (see Table 5-2, with program view bit 1 set to 1, program view bit 2 set to 0.	Issue asynchronous connect; returns a status to the program.	
3	Issue \$WIFIL macro call to wait until connection is com- plete and input available. If application is to do other procesisng (not give up con- trol) issue \$TIFIL macro call.	If connect is not complete, \$TIFIL re- turns a busy status or, issues an asyn- chronous read and returns a busy status until read is complete.	
4	Issue \$RDREC or \$RDBLK macro call. If error status other than EOF (end of file) is re- turned, exit from the pro- cedure. (An EOF status in- dicates that EOT (end of transmission) control character was received, indicating sender completed its transmission.	Moves data from system buffer to the applica- tion's buffer, and again issues an asyn- chronous read. If there are no errors, returns a normal status.	
5	Test for EOF return status. If status is normal, do other processing and return to step 3 if more data expected.		
6	If application is to send data, issue \$CLFIL macro call and continue with step 7. If application is not to send or receive data, issue \$CLFIL macro call and continue with other processing.		

Table 5-7 (cont). Macro Call Procedures for BSC 2780 in Basic Transmission Mode

Procedure Step	Action by Application Program	System Actions
	To write data to a BSC .	line:
7	Issue \$OPFIL macro call (see Table 5-2) with program view bit 1 set to 0, program view bit 2 set to 1.	
8	Issue \$TOFIL macro call to test that connection is com- plete.	
	If file was already opened, and closed without a phone hangup, the line is still connected; \$TOFIL is not required.	
9	Issue \$WRREC or \$WRBLK macro call. If an error status is re- turned, exit from the proce- dure.	If no writes are pend- ing, moves data from application's buffer to system buffer, issues asynchronous write to the BSC line, and returns a normal status.
10	Issue \$WOFIL macro call to wait for completion of pre- viously scheduled output. Issue \$TOFIL to continue other processing while write is in progress.	If the write is not complete \$TOFIL re- turns a busy status.
11	Can now issue another \$WRREC or \$WRBLK macro call, or issue a \$CLFIL macro call if the preceding write macro call was the last one, or if \$CLFIL macro call was issued, and more data is to be read from the line, return to step 2.	When \$CLFIL macro call is issued, the system: sends an EOT (end of transmission) character if the BSC is in send or receive mode for that line. Sends nothing if the BSC line is idle.

1943
Macro Call Procedures for BSC 2780 in Advanced Data Transmission Mode

In the BSC advanced data transmission mode, the first byte of the application program's input or output buffer is a control byte that controls or supplies information about read/write operations. This byte can indicate, for example, whether data is to be transferred in transparent or nontransparent mode, or whether an ETB (end of transmission block) or ETX (end of text) control character is to be sent or received. (Section 10 details the usage of BSC control characters).

The following condition applies in using the file system in 2780 binary synchronous communications in advanced data transmission mode:

o It is not necessary to send EOT control characters through the control byte since the user must close the file in output mode before attempting to read. Closing the file forces the BSC, if not in idle mode, to send an EOT control character.

Table 5-8 shows the procedure for using macro calls in applications that use BSC lines in 2780 advanced data transmission mode.

Figure 5-4 illustrates the program logic for these procedures.

5-16

金融

Figure 5-4. Simplified Program Logic for 2780 BSC in Advanced Transmission Mode

Procedure Step	Action by Application Program	System Actions
1	Before the file is first opened issue \$GTFIL macro call.	
	To read data from a BSC 27	80 line:
2	Issue \$OPFIL macro call (see Table 5-2) with program view bit 1 set to 1, program view bit 2 set to 0.	Issues an asynch- ronous connect; re- turns a normal status to the program.
3	Issue \$WIFIL macro call to wait unit! connect is complete and input is available. If application is to do other processing (not give up control), issue \$TIFIL macro call.	If connect is not complete, returns a busy status, \$TIFIL issues an asynchronous read, and returns a busy status unit1 the the read is complete.
4	Issue \$RDREC or \$RDBLK macro call. If error status other than EOF (end-of-file) is returned, exit from the pro- cedure. (An EOF status indi- cates that an EOT (end of transmission) control character was received, de- noting that the sender has completed its transmission.)	Moves the data from the system buffer to the application's buffer, and again issues an asynchronous read. If there are no error, returns a nor- mal status.
5	Test for EOF return status. If return status is normal, an application can check for ETB or ETX control characters, or for transparent or non- transparent processing, and return to step 3.	
6	When EOF or EOT status is re- turned, and more data is ex- pected, return to step 3.	

Table 5-8. Macro Call Procedures for BSC 2780 in Advanced Transmission Mode

Table 5-8 (cont). Macro Call Procedures for BSC 2780 in Advanced Transmission Mode

Procedure Step	Action by application Program	System Actions
7	If application is to send data, issue a \$CLFIL macro call and continue with step 8. If application is not to send or receive data, issue \$CLFIL macro call and con- tinue with other processing.	
	To write data to a BSC 1	ine:
8	Issue \$OPFIL macro call (see Table 5-2) with program view bit 1 set to 0, program view bit 2 to set to 1.	
9	Issue \$WRREC or \$WRBLK macro call. Application can set control byte to control trans- mission (send ETB or ETX con- control characters, or send in normal or transparent EBCDIC mode).	If no writes are pending, moves the data from the applica- tion's buffer, issues an asynchronous write to the BSC line, and returns a normal status.
10	Issue \$WOFIL macro call to wait for completion of pre- viously scheduled output. Issue \$TOFIL to continue other processing while write is in progress.	If the write is not complete \$TOFIL re- turns a busy status.
11	If an error status is re- turned, close the file and exit from the procedure.	
12	Can now test for RVI-received bit in the control byte of the record that was just sent. If the bit is set on, can either:	
	a. Close the file and return to step 2, or	
	b. Ignore the RVI condition and continue to write.	

A BANK

(

Table 5-8 (cont). Macro Call Procedures for 2780 BSC in Advanced Transmission Mode

Procedure Step	Action by Application Program	System Actions
13	After the write is complete, the application can:	
	written, issue another \$WRREC or WRBLK by return- ing to step 9, or	
	If more data is expected, issue a \$CLFIL macro call and return to step 2, or	
	Simply issue a \$CLFIL macro call and exit the procedure.	

Macro Call Procedures for BSC 3780 in Advanced Data Transmission Mode

The first byte of the application program's input or output buffer is a control byte. The control byte controls or supplies information about read/write operations.

The following conventions apply when using the file system with 3780 binary synchronous communication in advanced data transmission mode:

- The receipt of an optional conversational reply is indicated by a bit setting in the transmit control byte.
 (This can occur if the application has transmitted the last (ETX) block of a message). The application must issue a read macro call in order to receive the conversational response.
- The termination of a transmit sequence is signaled (via control byte) by the transmission of an EOT control character following the last block if a message. Once this has been done, a read macro call will be needed to receive transmissions from the remote system. (It is not necessary to close and reopen the file to turn the line around.)
- o The termination of a receive sequence is indicated by the receipt of an EOF return status or an EOT status in the receive control byte. A transmission sequence can be reinitiated by issuing another write macro call. (It is not necessary to close and reopen the file to turn the line around).

A line turnaround (receipt of an EOT) is indicated by an 021F EOF return code (and the setting of the EOT bit in the receive control byte). At this point the application can use the line for data transmission by issuing another write request. It is also possible to receive an EOF/EOT status, which indicates the abnormal termination of transmit/receive sequence. (This can occur for a variety of reasons, most notably hardware problems.) Such an occurrence is also indicated by an 021F return code. The application can differentiate between these end-of-file conditions by considering when the EOF status was rereceived. For example, two applications agree that the last record of a message transmission is demarked by an ETX control character. If the transmission is terminated by the receipt of an EOT and the last record of the transmission was not marked with an ETX control character, the application can assume that the transmitter aborted the transmission sequence. If such a condition is detected, the application must close the line by issuing a close file macro call (all other file system requests will be rejected.

Table 5-9 shows the procedure for using macro calls that use BSC lines in 3780 advanced data transmission mode.

Figure 5-5 illustrates the program logic for these procedures.

Figure 5-5.

. Simplified Program Logic for BSC 3780 in Advanced Transmission Mode

Figure 5-5 (cont).

Simplified Program Logic for 3780 BSC in Advanced Transmission Mode

	Advanced Transmission N	lode
Procedure Step	Action by Application Program	System Action
1	Before the file is first opened, issue \$GTFIL macro call (see Table 5-1).	
	To read data from a BSC]	line:
2	Issue \$OPFIL macro call (see Table 5-2) with program view bit 1 set to 1, program view bit 2 set to 1.	Issues an asynchronous connect; returns a normal status to the program.
3	Issue \$WIFIL macro call to wait until connect is com- plete and input is available. If application is to do other processing (not give up control), issue \$TIFIL macro call.	If connect is not com- plete, \$TIFIL returns a busy status. If connect is complete, issues an asynchronous read, and returns a busy status until the read is complete.
4	Issue \$RDREC or \$RDBLK macro call. If error status other than EOF (end-of-file) is returned, exit from the pro- cedure. (An EOF status indi- cates that an EOT (end of transmission) control charac- ter was received, denoting that the sender has completed its transmission.	Moves the data from the system buffer to application's buffer, and again issues an asynchronous read. If there are no errors, returns a normal status.
5	Test for EOF return status. If return status is normal, the application can check for ETB or ETX control characters, or for transparent or non- transparent processing, and return to step 3.	
6	If the application has data to send continue with step 8.	
7	If the applicastion has no data to send, issue a \$CLFIL macro call and continue with other processing.	

Table 5-9. Macro Call Procedures for BSC 3780 in Advanced Transmission Mode

Procedure Step	Action by Application Program	System Action				
	To write data to a BSC 1	line:				
8	If the application wishes to send the last (ETX) block of message, continue with step l6.					
9	Issue \$WRREC or \$WRBLK macro call. Application can set control byte to control transmission of an ETB con- trol character. If an error status is returned close the file and exit from the pro- cedure.	If no writes, moves the data from the application's buffer to the system buffer, issues an asynchronous write to the BSC line, and returns a normal status.				
10	If application is to do other processing (not give up con- trol) issue \$TOFIL. Else, issue \$WOFIL macro call to give up control of the central processor until the write is completed.	If the write is not complete, returns a busy status. Returns a not busy status when the write is complete.				
11	Can now test the transmit con- trol byte for the receipt of a conversational reply. If the bit is set on, initiate another read sequence by re- turning to step 3.					
12	Can now test for RVI-received bit in the control byte of the record that was just sent. If the bit is set on, can either:					
	a. Close the file and ini- tiate another read sequence by returning to step 3, or					
	b. Ignore the RVI condition and continue to write.					

Table 5-8 (cont). Macro Call Procedures for BSC 3780 in Advanced Transmission Mode

Г <u> </u>		
Procedure Step	Action by Application Program	System Action
13	If there is any more data to transmit, continue with step 8.	
14	If data is expected from the remote host, initiate another read sequence by returning to step 3.	
15	Transmission and reception se- quences are complete. Issue a \$CLFIL macro call and exit from the procedure.	
16	Issue \$WRREC or \$WRBLK macro call. Application can set control byte to control trans- mission of an ETX control character. If an error status is returned close the file and exit from the procedure.	Moves the data from the application's buffer to the system buffer, issues an asynchronous write to the BSC line, and re- turns a normal status.
17	If application is to do other processing (not give up con- trol) issue \$TOFIL. Else issue \$WOFIL macro call to give up control of the central processor until the write is completed.	If the write is not complete, returns a busy status. Returns a not busy status when the write is completed.
18	Continue with common proces- sing of transmit sequence by continuing with step 12.	

Table 5-9 (cont). Macro Call Procedures for BSC 3780 in Advanced Transmission Mode

SECTION 6

ASSEMBLY LANGUAGE COMMUNICATIONS USING PHYSICAL INPUT/OUTPUT

The physical input/output (I/O) interface permits more direct user control over communications processing than does the file system.

Used only with assembly language programs, the physical I/O interface enables communications applications to:

- Call appropriate line protocol handlers (LPH) more directly through the communications subsystem rather than through the file system.
- Control the data structure, specifically the input/output request block (IORB), that directly controls device operations and/or characteristics. (See "Data Structures" below for description of the IORB.)

COMMUNICATIONS SUBSYSTEM CONVENTIONS

The following conventions apply to use of the communications subsystem:

- The I/O request block (IORB) is the standard control structure used by an LPH of the communications subsystem.
- Use the request I/O (\$RQIO) macro call in the application program to request an I/O transfer.
- o The B4 register contains the address of the IORB supplied by the application program; the IORB contains the logical resource number (LRN) of the device to be used.
- o The I/O-specific words of the IORB (I_CT2 through I_DVS)
 are not modified by the line protocol handler.

6-1

 The communications subsystem maps the hardware return status into the software status word I_ST of the application's IORB before the line protocol handler gives up control.

Table 6-1 lists the return error status codes that indicate logical result of an I/O request.

USING PHYSICAL I/O

Two fields within the IORB specify the operation to be performed.

- The function code (Table 6-4), indicated by bits C through F of I CT2 in the IORB (see Table 6-2), specifies the particular operation.
- 2. The I_DVS item in the IORB, used with the function code, specializes the input/output order.

For example, in TTY processing, the user can specify a write request (function code 1), with or without a carriage return at end-of-message, as indicated by the C-bit of the I_DVS (see Table 7-3).

To request execution of an I/O operation, the application, with the \$RQIO macro call, must transfer control to the physical I/O interface. At the time of the request the \$B4 register must contain the address of the IORB being requested. The \$RQIO macro routine executes the I/O operations, then returns to the requesting application.

The IORB may define either synchronous or asynchronous control. When the IORB specifies synchronous I/O (W (wait) bit in I_CT1 reset), return to the calling application is delayed by the Monitor until the I/O operation is complete. On return, the return status field of the IORB, and the \$R1 register, will contain one of the status codes shown in Table 6-1.

When the IORB specifies asynchronous I/O (W (wait) bit set in I CT1), control returns immediately without waiting for I/O completion, and the instruction at the return point is executed as soon as the system queues the IORB. To obtain the return status (in \$R1 register), when using asynchronous I/O, the application should issue a \$WAIT macro call.

At completion of the I/O operation, the application should first check the \$Rl register to see that the I/O request was successful. Any error will be defined there. Hardware errors will be indicated in the IORB software status word I_ST (see Table 6-3).

Residual range, indicated in the IORB, shows how much of the requested data was transferred. With a write request, the residual range value is the number of bytes remaining to be transmitted. With a read request, the residual range value is the number of bytes remaining to be received. The residual range value in I RSR of the IORB is meaningful only when the A-bit in the I_ST item (Table 6-3) of the IORB has been set on.

Code Number (Hexadecimal)	Meaning			
0 1 2	No error, operation complete Request block already busy (T=1) Invalid LRN			
3 4 5 6	Illegal walt Invalid arguments Device not ready Device time-out			
8	Hardware error, check IORB status word (see Table 6-3) Device disabled [®] File mark encountered			
A B C	Controller unavailable Device unavailable ^b Inconsistent request ^c			
F EOT received (for BSC 3780 only) This status is returned on an I/O request when the application has disabled the logical resource and				
for a communications resource, when the result of either a connect or disconnect for this logical resource is pending.				
^b When these codes are found in I_CTl (IORB), or in \$R1 on a resume after wait, look at I_ST (IORB) to iden- tify the specific error. The status B is returned with every read or write IORB that has been aborted by a disconnect request with queue abort.				

Table	6-1.	Return	Status	Erro	r Co	odes	for
		Logical	Result	of	I/0	Requ	lest

This status indicates illogical device requests: read or write before connect, duplicate connect or disconnect requests; write after disconnect.

DATA STRUCTURES

Two data structures control the interactions among an application program, its line protocol handlers, and the devices it uses: (1) the input/output request block (IORB), and (2) the resource control table (RCT). The IORB is the interface between the application and line protocol handler; the RCT is the interface between the line protocol handler and its devices.

This section describes the input/output request block (IORB) in general. Later sections describe device-specific fields in the IORB for the TTY, VIP, PVE, and BSC line protocol handlers.

Resource Control Table (RCT)

The device's resource control table (RCT) contains a channel number and level entry, whose values were initially defined at system building. The logical resource number (LRN) supplied by the application in the IORB serves as an index into a system logical resource table (LRT), which in turn contains a pointer to the RCT entry defining the device, as illustrated below.

Thus, with the logical resource number, a line protocol handler can indirectly access the RCT entry that defines the specific device that the application is to use.

Appendix C describes the resource control table (RCT).

Input/Output Request Block (IORB)

The IORB is the standard means for requesting a physical I/O service. Generated by the input/output request block macro call (\$IORB), the IORB contains all the information that an application requesting an I/O service must specify to define the operation to be performed. In addition, the IORB includes the following:

- o Logical resource number (LRN) that identifies the I/O device being addressed.
- Location and size of the buffer to be used for physical I/O transfers.
- o Information returned by the line protocol handler to the application, concerning results of the I/O request.

Figure 6-1 shows the format of the IORB. Table 6-2 defines the separate entries in the IORB. Later sections in the manual describe the device-specific word (I DVS) and software status word I ST for each line protocol handler.

The IORB as described here is as it appears for NOTES: 1. short address format (SAF) central processors, namely with one-word items. For long address format (LAF) processors, the same structure would have two-word entries for all pointers.

- 2. The labels (I CT1, I ADR, etc.) used in the IORB are only for easier presentation. The labels cannot be used for programming purposes.
- 3. The asterisk (*) in the formulas in the "Item" column of Table 6-2 is a multiplication sign.
- The shaded fields in Figure 6-1 are for system 4. The field I FCS is used only by the use only. VIP and PVE line protocol handlers. Fields not shaded must be initialized by the application requesting the I/O operation.

When the IORB is used with a \$ROIO macro call, the device named in the IORB should have been initially reserved. The logical resource number (LRN) required by the IORB can be obtained by issuing a get file information (\$GIFIL) macro call. See the description of the request I/O (\$RQIO) macro call in the System Service Macro Calls manual for details.

<pre>{ -\$AF I_RRB -1 I_SEM </pre>	0 1 2 3 4 5 6 7 REQUEST BLOCK POINTE	8 ER/SE	9 MAPH	IORE	IBI	С <u> </u>		E	F
0	RESERVED FOR SYS	STEM	USE A	S A P	OINTE	R			
\$AF I_CT1	RETURN STATUS		w	U ·	s	0	R	D	1
1+\$AF I_CT2	LRN	0	в	Р	0	F	UNCT	ION	
2+\$AF I_ADR	BUFFER ADDRESS								
2+2*\$AF I_RNG	RANGE								
3+2*\$AF I_DVS	DEVICE SPECIFIC WORD								
4+2*\$AF I_RSR	RESIDUAL RANGE								
5+2*\$AF I_ST	STATUS WORD								
6+2*\$AF I_FCS	FUNCTION CODE 1 (VIP AND PVE) FUNCTION CODE 2 (VIP AND PVE)								

Figure 6-1. Communications Input/Output Request Block (IORB)

Item	Label	(Bits)	Contents
-\$AF -1	I_RRB/ I_SEM	0 through 15 (SAF) 0 through 31 (LAF)	Depending on the condition of the S- or R-bits of I CT1, this word contains a request block pointer (R-bit on), or a semaphore name (S-bit on). Set by user; used by system at termination of request.
0		0 through 15 0 through 31	Reserved for system use; one-word pointer (SAF); two-word pointer (LAF).
\$AF	I_CT1	0 through 7	Return status. (See Table 6-1).
		8 (T)	This bit is set (on) while the re- quest using this block is execut- ing; it is reset when the request terminates. The system controls this bit; user should not change it.
		9 (W)	Wait bit - set if the requesting task is not to be suspended pend- ing the completion of the request that uses this block.
		A (U)	User bit - user may or may not use this bit; system does not change it.
		B (S)	Release semaphore indicator. Values: 0=No release, 1=Release, on time-out, of item named in named in I_RRB.
· · · · ·	· · ·	с	Must be zero.
		D (R)	Return request block indicator. Values: 0=No dispatch, l=Dispatch of request block named in I_RRB, after timeout of this request. System executes \$RQTSK, using I_RRB upon task termination.
		E (D)	Delete I/O request block. Values: O=No delete, l=Return memory to the pool where IORB is the first entry of its memory block.

Table 6-2. Contents of Communications Input/Output Request Block (IORB)

Tal	b1	e (5-	2	((co	n:
-----	----	-----	----	---	-----	----	----

t). Contents of Communications Input/Output Request Block (IORB)

Item	Label	(Bits)	Description
\$AF (cont)	I_CT1 (cont)	F	I/O bit - must be set.
1+\$AF	I_CT2	0 through 7	Logical resource number (LRN); identifies device to be used.
		8	Reserved for later use.
		9 (B)	Byte index; 0=buffer begins in leftmost byte of word, l=buffer begins in rightmost byte.
		A (P)	Reserved for system use.
		В	Reserved for later use.
		C through F	Function code. See Table 6-4.
2+\$AF	I_ADR	0 through 15	Buffer address; SAF mode, l-word pointer.
		0 through 31	Buffer address, LAF mode; 2-word pointer.
2+2*\$AF	I_RNG	0 through 15	Range – number of bytes to be transferred.
3+2*\$AF	I_DVS	0 through 15	Device-specific information.
4+2*\$AF	I_RSR	0 through 15	Residual range. Indicates the number of bytes <u>not</u> transferred. Filled in by the system on comple- tion of the order.
5+2*\$AF	I_ST	0 through 15	Status word. Reflects the mapping of the hardware status into soft- ware status format. See Table 6-3.
6+2*\$AF	I_FCS	0 through 7 8 through 15	Function code 1 (VIP and PVE only). Function code 2 (VIP and PVE only).
L	· ·	1	

CB03

6-7

IORB Software Status Word (I_ST)

The line protocol handler maps into the IORB software status word I_ST (see Table 6-3) the return status of the hardware, obtained from the device status field R_STTS of the resource control table (RCT). (Appendix C describes the resource control table.)

The bit settings in the software status word I ST indicate to the application the status of the hardware, as shown in Table 6-3.

The meanings of bit settings in the software status word I ST for specific devices are shown in tables in later sections that describe the line protocol handlers for those devices.

Bit in IORB's I_ST	Meaning When Bit Set On
0	_
1	VIP, PVE read error
2	Data service rate error
3	Lost line bid; RVI received (BSC only)
4	Communication control block service error
5	No stop bit on character input (TTY only); con- versational reply received (BSC 3780 only)
6	Long record
7	For BSC: 0=ITB/ETB received; l=ETX received For VIP and PVE: poll failure
8	For VIP and PVE: NAK limit reached
9	For VIP and PVE: Checksum or parity error limit reached
А	Nonzero residual range
В	Phone disconnect
С	BSC only: End-of-transmission (EOT) received

Table 6-3. Software (I ST) Status Codes

Table 6-3 (cont). Software (I ST) Status Codes

Bit in IORB's I_ST	Meaning When Bit Set On
D	For VIP: page overflow For BSC: transparent message received
E	For VIP: busy or not available For BSC: NAK limit reached
F	Nonexistent resource; bus parity error; fatal uncorrectable memory error

COMMUNICATIONS FUNCTION CODES

100

All line protocol handlers perform similar functions for the devices and applications they service. These functions are performed by the line protocol handler's request and interrupt processing codes.

An application can request specific functions by providing a function code in the IORB supplied when it requests I/O service. The application uses the last four bits of its IORB's I_CT2 entry (see Figure 6-1) to enter the function code for the functions summarized in Table 6-4.

The connect and disconnect functions may be used with noncommunications devices (processed as no-ops) for program compatibility; i.e., no matter how connected to the Level 6 system, all TTY devices and noninteractive (e.g., card reader and printer) devices can be controlled by the same application program. This is useful for program development and test purposes.

Function Code in IORB	Communications Function
0	Wait online
1	Write
2	Read
A	Connect
B	Disconnect

Table 6-4. Communications LPH Function Codes

Wait Online Function (Code 0)

The wait online function, is used to synchronize task operation with device availability, and allows a caller to wait until a device becomes ready for use, or until a specific time interval has passed before using it. When an LPH receives a service request from a task using the wait online function code in the IORB that is supplied (0000 in the last four bits of I_CT2), and the device is not ready, the driver sets a timer for 5 minutes and suspends. When the LPH is reactivated, either by a ready interrupt from the device or by a time-out, it deactivates the timer, checks the device-ready bit in the hardware status word and places a 0 or 6 value in the return status field of the IORB depending on the condition of that bit. See the return status codes for the \$RQIO (request I/O) macro call; the rightmost hexadecimal character is placed in the return status field. See Table 6-1.

The wait online function should not be issued to a device that is currently ready for use unless it is expected to become temporarily unavailable.

NOTE: For compatibility with higher level languages, using the wait for operation complete macro call (SWAIT) results in an immediate return of 0.

Write Function (Code 1)

This function allows data to be written to a specific device. When a line protocol handler (LPH) receives a write request, it transfers the indicated data from the application's buffer to the device, according to the specifications supplied in the device-specific word of the application's IORB.

Read Function (Code 2)

This function allows data to be read from a specific device. When the LPH receives a read request, it transfers data from the device to the application's buffer, according to the information supplied in the device-specific word of the application's IORB.

Connect Function (Code A)

The connect function provides a logical and physical connection between an application program and a communications device.

As a logical function, the connect function is a request to use the specified communications device. If that resource is being used, an error return results. In that case the application must determine whether that resource is sharable (as established by the installation's procedures), and proceed accordingly.

As a physical function, the connect function establishes a physical path to the communications device associated with the specified logical resource number (LRN). This implies, when the device is to be connected over a switched line, that the system software should answer the telephone on the line associated with that device. The request times out after five minutes. If the connect function is not completed, the system will not process any requests for communication devices, and will return an error status.

The connect function must be requested before any other function, since communications devices are configured into the system in a disconnected state.

Disconnect Function (Code B)

The disconnect function provides both the logical (normal and abnormal) and physical disconnection between the application and a communications device.

As a logical function, the disconnect function indicates that the use of the designated device is to be terminated.

For a logical disconnect, issue a disconnect request (function code B) with a queue abort (E-bit in I_DVS set on), and no phone hangup (F-bit in I_DVS set on). (See Table 7-3.) At this point, any pending read or write requests are returned to the application program with a B status (device unavailable). Continued use of the device requires that the application program issue a connect.

As a physical function, the disconnect function must specify the physical disconnection of a line.

Requesting Communications Functions

1

The following is the sequence for an application to request a transaction with a communications resource:

- 1. Set up an IORB with the connect function (code A).
- Call the physical I/O interface (request I/O macro call \$RQIO).
- 3. When the connection is complete, supply the appropriate IORBs for those operations that the application will perform.
- 4. Perform the functions, e.g., read, write, and/or wait online required by the application's logic.
- 5. When application processing is complete, supply an IORB with the disconnect function (code B) and issue the request I/O macro call (\$RQIO) to execute the function.

PHYSICAL I/O MACRO CALLS FOR COMMUNICATIONS

The input/output request block (\$IORB) and request I/O (\$RQIO) macro calls provide direct communication from a communications application to the appropriate line protocol handler (LPH). The <u>System Service Macro Calls</u> manual describes these and related macro calls in detail.

SECTION 7

TTY LINE PROTOCOL HANDLER

The TTY line protocol handler supports asynchronous terminal devices, generically classified as teleprinter-compatible (TTY), that include certain ASR, KSR, and visual information projection (VIP) terminals.

A basic TTY terminal consists of either a printer and keyboard or a VIP 7100/7200/7800 display and keyboard. (Paper tape is not supported.) Each type of TTY terminal has an asynchronous communications interface that permits operation at up to 9600 baud.

GENERAL TTY LINE PROTOCOL HANDLER OPERATION

TTY Message Formats

Figure 7-1 illustrates TTY message formats. On input, the application receives only the text portion of the message. On output messages, the application can control print format with a control byte that is specified as the first character of the output buffer (in the IORB device-specific word I DVS, described later). At connect, read, or write, the application can, with the I DVS word, dynamically specify which message format is to be used.

7-1

	ТЕХТ	CR, ETX, EOT; OI	R BUFFER FULL	INPUT
DYNAMIC CONTROL BYTE	TEXT		EOM	ουτρυτ
	ТЕХТ		EOM	OUTPUT
DYNAMIC CONTROL BYTE		TEXT		OUTPUT
	ТЕХТ			OUTPUT

Figure 7-1. TTY Message Formats

TTY Character Mode and Buffered Mode Transmission

TTY CHARACTER MODE

Transmission for all TTY terminals is usually in character mode (one character at a time), a characteristic of the hardware that provides that:

- o The TTY line protocol handler does all editing of data before any transmission.
- o Multiple input lines are not allowed at the same time.

TTY BUFFERED MODE (VIP 7200 AND 7800)

For VIPs 7200 and 7800 only, the buffered mode, available as a hardware option, permits:

- o The TTY line protocol handler to process multiple lines of input at the same time.
- o The operator to do local editing of data before it is transmitted.
- o The application to instruct the TTY line protocol handler not to edit input data.

Buffered mode permits the TTY line protocol handler to process a write order while a read order is pending. A "quasi full duplex" operation gives the line protocol handler the ability to have the application send to the terminal, sequences that cause the terminal to send information back to the application's buffer.

Buffered quasi full duplex operates as follows:

- When the channel control program (CCP) of the multiline communications processor (MLCP) is currently processing a write order to the terminal, a subsequent read or write operation is not given to the CCP until the current write order completes.
- 2. When the CCP is processing a read order and the next following order is a write order, that write order is processed while the read order is active.
- 3. When the write order (2 above) completes and the read order has not yet completed, a subsequent read or write order will not be processed until the read is completed. When the read order is completed before the write order, actions in 1 above take effect.
- 4. When the read order is completed, the line protocol handler returns to its original state, i.e., no orders pending. The line protocol handler can initiate read or write orders to the CCP.

VIP 7200 AND 7800 HARDWARE SWITCH OPTIONS WITH CHARACTER OR BUFFERED MODE

The TTY line protocol handler supports the following VIP 7200/7800 hardware switch options for character mode or buffered mode as follows:

7-3

Character Mode

Buffered Mode

Character/buffered mode switch on character mode.

Character/buffered mode switch on buffered mode.

Parity switch on even.

Full/half duplex switch on full.

Parity switch on even.

Full/half duplex switch on full. Page/line switch as necessary. End-of-message (EOM) character internal switch set to ETX or EOT (<u>not</u> to CR).

VIP 7200 AND 7800 FUNCTION AND CONTROL KEYS

Function and control keys on the VIP 7200 and 7800 are supported only in buffered mode.

When issuing a write request that will cause an automatic response by the terminal, the application must first issue an asynchronous read request, then issue a write request that contains a control message to the terminal.

TTY Line Protocol Handler Time-Out Intervals

Table 7-1 lists the TTY line protocol handler's time-out intervals for the LPH functions.

Table 7-1. TTY Line Protocol Handler Time-Out Intervals

Line Protocol Handler Function	Tim	e-Out Interval
Connect	Five minutes	
Read	Character mode:	five minutes after receipt of the first character of the message;
	Buffered mode:	five minutes after the line protocol handler receives the request.
Write	Thirty seconds	

USING THE TTY LINE PROTOCOL HANDLER

TTY-Specific IORB Values

The TTY-specific IORB item I_CT2, device-specific word I_DVS, and software status word I_ST are shown and defined in Tables 7-2, 7-3, and 7-4, respectively. Section 6 describes the general form of the IORB.

Table 7-2. Function Codes in I CT2 of the IORB

Function Code	Definition	Use
0 1 2 A B	Wait online Write Read Connect Disconnect	Used by the line protocol handler to complete the description of the requested I/O function

Table 7-3. The Device-Specific Word I DVS in th	the LORB
---	----------

Bit Number	Bit Setting	Meaning of Bit Setting
0	0	Must be zero.
1	0	Must be zero.
	For	connect call only (function code A)
2	0	Do not use Auto Call Unit.
	1	Use Auto Call Unit.
3	0	Must be zero.
4	0	First byte in buffer on output is a control byte.
	1	First byte in buffer on output is a data byte.
For read call only (function code 2)		
5	0	Input data is in nontransparent mode.
	1	Input data is in transparent mode.
6	0	Must be zero.

7-5

l			
Bit Number	Bit Setting	Meaning of Bit Setting	
For write call only (function code 1)			
7	0	Stop output immediately on detecting a BRK received from the terminal.	
	1	Continue output when BRK detected.	
. 8	0	Must be zero.	
9	0	Must be zero.	
	· F	or read call only (function code 2)	
A	0	Do not echo keyboard input.	
	1	Echo keyboard input.	
For read and write calls (function codes 2, 1)			
В	0	No LF (line feed) at end of message.	
	1	LF (line feed) at end of message.	
с	0	CR (carriage return) at end of message.	
		No CR (carriage return) at end of message.	
For connect call only (function code A)			
D	0	Data transfer is in character mode.	
	1.	Data transfer is in buffered (block) mode.	
For disconnect call (function code A)			
Е	0	Abort (dequeue) all IORBs on the request queue.	
	1	Process outstanding requests on the request queue.	
F	0	Hang up phone after disconnect.	
	1	Do not hang up phone after disconnect.	

Table 7-3 (cont). TTY Device-Specific Word I_DVS in the IORB

Table 7-4. TTY Software Status Word I ST in the IORB

Bit	Meaning When Bit Set to l
0	N/A
1	N/A
2	Data service rate error
3	N/A
4	Communications control block (CCB) service error
5	No stop bit in character input
6	Long record
7	N/A
8	N/A
9	N/A
A	Nonzero residual range
В	Phone hang-up
с	N/A
D	N/A
Е	N/A
F	Fatal error: bus parity or memory error
Although nonexistent resource, bus parity, and uncorrectable memory errors are combined in bit F, each occurrence is noted separately in the resource control table (RCT). See Figure C-1.	

Control and Characteristics of TTY Input Data

噬

This subsection describes user control over the characteristics of TTY input data, and applies to character-mode processing unless otherwise noted.

7-7

TTY CONTROL BYTE (INPUT)

The description of the TTY control byte for output (see "TTY Control Byte (Send)" below) applies also to the TTY line protocol handler's control byte for input.

TTY NONTRANSPARENT INPUT

TTY input is nontransparent when the application sets to 0 bit 5 of the IORB's device-specific word I_DVS (Table 7-3). Input is accepted until the end-of-range or a CR (carriage return), ETX (end of text), or EOT (end of transmission) control character, whichever is first, is reached. The line protocol handler does not transmit the CR, ETC, or EOT control character as part of the message.

TTY TRANSPARENT INPUT

TTY input text is transparent when the application sets to 1 bit 5 of the device-specific word I DVS at read time (Table 7-3). All input data, including and control characters, is stored in the buffer until end-of-range is reached.

TTY LINE FEED (LF) AND CARRIAGE RETURN (CR) INPUT SEQUENCE

The application can specify at read time a sequence of LF and CR characters, with the B- and C-bits of the IORB's devicespecific word I DVS, as indicated in Table 7-3. When the message is received successfully, the specified character combinations are retransmitted back to the terminal.

KEYBOARD INPUT CHARACTER AND LINE CONTROL

When an input character with a parity error is received, the line protocol handler sends a BEL character back to the terminal. The user must then retype that input character if it is to be included in the text being sent to the application.

The user can correct or delete erroneous characters or lines and can declare control characters to be data characters, as described below.

To correct one or more characters in the current line, i.e., before the CR is pressed, press the @ key. This deletes the character that immediately preceded the @ character, and displays the @ symbol. Each succeeding @ entry deletes another character, moving from right to left to the beginning of the line.

To delete the current line, i.e., before the CR is entered, press and hold the CTRL (control) key and press X. This deletes the current line, displays the message *DEL* on the next line, and results in a carriage return. The user can then enter a correct line. To declare a control character (e.g., @, CTRL X, CR, and) be accepted as a data character (transparent mode) press the back slash () key before entering that control character. The system interprets the back slash as an escape character. In transparent mode, <u>all</u> input characters are data characters and have no editing functions.

TTY DISPLAY OF INPUT CHARACTERS

The user can cause an input character to be sent back to the terminal (displayed on the screen or typed on the console) by setting to 1 the A-bit of the device-specific word I_DVS (Table 7-3). For full duplex printers, the application need specify that characters be returned only when they are to be echoed by the system software.

TTY INPUT IN BUFFERED MODE (VIP 7200 AND 7800 ONLY)

When the application at connect time sets to 1 the D-bit of the device-specific word I DVS, input is accepted until an ETX or EOT control character or end-of-range is encountered.

When the application sets bit 5 of I_DVS to 1 at read time, TTY input in buffered mode is transparent, i.e., there is no editing. When the bit 5 is set to 0, TTY input in buffered mode is nontransparent, i.e., control characters are edited.

As in character mode, the application can specify an LF and CR sequence, as described above under "Line Feed (LF) and Carriage Return (CR) Input Sequence."

Control and Characteristics of TTY Output Data

This subsection describes user control of the characteristics of TTY output data and is applicable to character-mode processing unless otherwise stated.

TTY CONTROL BYTE (SEND)

The TTY line protocol handler's control byte, included as the first character of the application's buffer, controls the message's head-of-form sequence. At connect time, the application specifies the control byte by setting to 0 bit 4 of the IORB's device-specific word I DVS (Table 7-3).

Figure 7-2 shows the format and content of the TTY control byte.

Figure 7-2. Control Byte for TTY Line Protocol Handler

END-OF-MESSAGE (EOM) SEQUENCE ON TTY OUTPUT

The EOM sequence is controlled by the B- and C-bits of the IORB's device-specific word I DVS (Table 7-3), as specified by the application at write time. The TTY line protocol handler sends an EOM sequence according to the following B- and C-bit values:

I_DVS Bits

B	<u>C</u>	EOM Sequence
0 ·	0	CR, DEL
0	1	None
1	0	LF, CR, DEL
1	1	LF, DEL

At read time, the application can specify the same B- and Cbit values in order to send an EOM sequence back to the terminal when the message is successfully received.

TTY DETECTION OF BRK CHARACTERS

When the application sets to 0 bit 7 of the device-specific word I_DVS at write time, the line protocol handler will immediately stop all output when it detects a BRK key character in the input stream from the terminal. The line protocol handler ignores the BRK character when bit 7 is set to 1, until the write order is completed.

TTY OUTPUT IN BUFFERED MODE

Control and characteristics for TTY output in buffered mode are the same as described above for character mode. However, in processing in buffered mode (VIP 7200/7800 only) the line protocol handler processes all physical I/O requests in the same sequence as they are received. If there is already an outstanding read request, only a subsequent write request can be initiated before the read request is satisfied or the time-out for that read request is elapsed.

SECTION 8

VIP LINE PROTOCOL HANDLER

The vIP line protocol handler supports synchronous VIP (visual information projection) terminals, and the synchronous receive-only printers (ROP).

The basic VIP comprises a cathode ray tube (CRT) display screen and keyboard, with a synchronous communications interface, with operating speeds as follows:

VIP	Baud Rate
7760	9600
7700R	Up to 9600
7700	Up to 4800

GENERAL VIP LINE PROTOCOL HANDLER OPERATION

Software Functional Support for the VIP

A MARK

The following VIP line protocol handler software functions support the basic VIP terminal:

- o Poll and select communications procedures
- o Nonpoll communications procedures
- o Point-to-point and multipoint configuration support
- o Switched and private line operation
- o Auto-answer for switched network operation
- Modem, direct connect, and modem bypass interconnection modes
- Message transfer to and from a CRT (1920-character format)
- o Fully addressable CRT entry marker control
- o Pre-editing (control byte) and post-editing (I DVS)
- o Transfer of hardware function code to and from the application
- o Error recovery procedures

The following functions support added terminal options:

- o User-controlled CRT forms mode
- o Message transfer to receive-only printer (ROP)

User-Supplied Software Functions for VIP Support

The application program must supply the following functions to support data exchange between the VIP and the application:

 User-specified device arguments, (polling interval, and at system building, station addresses)

For messages to the VIP terminal, the application should provide:

- o Optional; hardware function codes (1, 2)
- o Complete message text
- Optional; pre-editing and post-editing characters within message text
- Mandatory; complete forms definition message text for forms mode

For messages received from the VIP, the application must provide:

- o Interpretation of hardware function codes (1, 2)
- o Message processing
- o Interpretation of format codes (LF, CR, HT) in the message text

VIP Time-Out Intervals

Table 8-1 lists the time-out intervals used by the line protocol handler for the connect, read, and for ROP write functions for the listed devices. The line protocol handler will try and retry the connect, read, and write functions until the indicated time-out period has elapsed. Table 8-1. VIP Line Protocol Handler Time-Out Intervals

Function	Time-Out Interval	(Device)		
Connect	5 minutes	Communications supervisor		
	Tries connect one time, returns B status	Nonpolled Polled		
	Tries five times			
	Tries indefinitely	Tributary station		
Read	None			
	10 minutes	of bits 0 and 1 in I_DVS		
	Indefinite	(Sec Table 0-5)		
Write (ROP)	15 seconds	Screen (nonpolled)		
	l second	Screen (polled)		
	21 seconds	TN1200, 7717		
	95 seconds	TN 300, 7714, 7716 (300 baud)		
	180 seconds	TN300, 7714, 7716 (150 baud)		
	190 seconds	TN 300, 7714, 7716 (110 baud)		
	190 seconds	TTY33, TTY35		
NOTE:	Based on 1920-character display screen.			

USING THE VIP LINE PROTOCOL HANDLER

VIP-Specific IORB Values

The VIP-specific input/output request block (IORB) item I CT2, device specific word I DVS, and software status word I ST, are shown in Tables 8-2, 8-3, and 8-4, respectively. Section 6 describes the general form of the IORB.

Table 8-2. Function Codes in I_CT2 of the IORB

Function Code	Definition	Use
0	Wait online	Used by the line protocol handler
1	Write	the requested I/O function.
2	Read	
A	Connect	
В	Disconnect	

Table 8-3. VIP Device-Specific Word I_DVS in the IORB

Bit Number(s)	Bit Setting	t ing Meaning of Bit Setting			
For connect call only (function code A)					
0,1	00	Time-out after 10-minute interval.			
	01	No time-out on read requests (i.e., indefinite).			
	10	Immediate time-out, no time-out interval.			
	11	Reserved for later use by the system.			
2	0	Do not use Auto Call Unit.			
	1	Use Auto Call Unit.			
3	0	Set cursor to home position on page overflow.			
	1	Do not set cursor to home position on page overflow.			
4	0	Include control byte in first byte of buffer.			
	1	Do not include control byte in buffer.			
5, 6, 7		Logical <u>poll</u> interval (polled lines only):			
	000	Poll continuously.			
	001	l-second poll interval.			
	010	2-second poll interval.			

Bit Number(s)	Bit Setting	Meaning of Bit Setting			
5, 6, 7	011	3-second poll interval.			
(Cont)	100	4-second poll interval.			
	101	5-second poll interval.			
	110	15-second poll interval.			
	111	30-second poll interval.			
8	0	There are no hardware function codes.			
	1.	There are hardware function codes.			
9	0	Must be zero.			
А	0	Must be zero.			
	For w	rite call only (function code l)			
В	0	No LF (line feed) at end of message.			
	1	Issue LF (line feed) at end of message.			
С	0	Issue CR (carriage return) at end of message.			
	1	Do not issue CR (carriage return) at end of message.			
	For dis	connect call only (function code B)			
D	0	Must be zero.			
Е	0	Abort (dequeue) all IORBs on the request queue.			
	l	Process all outstanding requests on the request queue.			
F	0	Hang up phone after disconnect.			
	1	Do not hang up phone after disconnect.			

Table 8-3 (cont). VIP Device-Specific Word I_DVS in the IORB

Table 8-4. VIP Software Status Word I_ST in the IORB

Bit	Meaning When Bit Set to l		
0	N/A		
1	Read error		
2	Data service rate error		
3	N/A		
4	Communications control block (CCB) service error		
5	N/A		
6	Long record		
7	Poll failure		
8	NAK limit reached		
9	Excessive checksum/parity errors		
A	Nonzero residual range		
В	Phone hang-up		
С	N/A		
D	Uncorrectable page overflow		
E	Busy received		
F	Fatal error: bus parity or memory error		
Although nonexistent resource, bus parity, and uncorrectable memory errors are combined in bit F, each occurrence is noted separately in the resource control table (RCT). See Figure C-1.			

VIP Polling Options

Polling (the line protocol handler's continuous request to the VIP terminal on a polled line for data) is subject to two kinds of control, a polling interval and a poll duration.

The application, at connect time, must specify the arguments for the poll interval and poll duration, by setting the appropriate bits in the IORB's device-specific word I DVS (Table 8-3).

VIP POLL INTERVAL

The VIP poll interval specifies the minimum period of time between each successive request (poll) by the line protocol handler for data from a VIP terminal. The line protocol handler will poll the VIP once for each read request, and when the request is not satisfied, again after the specified poll period elapses.

For example, with a 1-second poll interval, the line protocol handler will issue the same read request every second. For a zero poll interval, the line protocol handler will poll the VIP continuously.

The application specifies the poll interval according to the bit settings of the bits 5, 6, and 7 in the device-specific word I DVS of the IORB, as shown in Table 8-3.

VIP POLL DURATION (TIME-OUT)

Poll duration, or the time-out interval, is the maximum time that the line protocol handler will wait for polled data from the VIP, before discontinuing the read attempt and read request. Possible time-out intervals are immediate (i.e., after only one poll); 10 minutes; and indefinite (i.e., the VIP is polled continuously, with no time-out, until requested data is received). The application specifies the poll duration or time-out interval with the bits 0 and 1 in the device-specific word I_DVS, according to the bit values shown in Table 8-3.

VIP LINE PROTOCOL HANDLER POLL FUNCTIONS

Within the controls specified in the poll argument values by the application, the line protocol handler provides all necessary polling functions, e.g., how terminals share a common line, or which terminal is processed next, etc. When the application bypasses these line protocol handler poll functions, i.e., by specifying immediate time-out after only one poll, the application must then provide for proper operation and coordination among all terminals on the line.

Control and Characteristics of VIP Input (Keyboard/Screen)

VIP INPUT MESSAGE HEADER

The line protocol handler strips the message header from the input data, except for the hardware function codes, and does not include the header in the application's buffer.

VIP HARDWARE FUNCTION CODES

VIP hardware function codes are listed in the appropriate hardware device manuals.

These codes, provide a special message labeling capability to be used by the application.

The application can include two function codes in the message header of each text message to or from a terminal by setting to 1 bit 8 of the IORB's device-specific word I DVS (see Table 8-3) at connect time. The line protocol handler then inserts the two user-specified hardware function codes at read time into the IORB's item I FCS (see Figure 6-1 and Table 6-2).

VIP INPUT DATA

The line protocol handler places into the application's buffer all data, between the STX and ETX control characters, received from the VIP terminal. The data is inserted into the buffer in 7-bit ASCII, with the most significant bit always zero. The LPH strips the ETX and LRC (longitudinal redundancy check character, see Appendix A) from the data and does not include them in the buffer.

Control and Characteristics of VIP Output

This subsection pertains to VIP output and is applicable to the keyboard, display screen, or read-only printer (ROP) as indicated.

VIP OUTPUT MESSAGE HEADER

The VIP line protocol handler supplies the output message header, but not the hardware function codes. Those may be supplied by the application as described above under "VIP Hardware Function Codes."

At write time, when the hardware codes are specified, they are placed in the I_FCS item of the IORB. When they are not specified, i.e., the bit 8 of I_DVS set to 0 at connect time, the line protocol handler will insert two spaces, instead of function codes 1 and 2, into the I_FCS item (see Figure 6-1 and Table 6-2).

VIP CONTROL BYTE (SEND)

The VIP control byte is specified when the application sets to 0 the bit 4 of the device-specific word I_DVS at connect time. The line protocol handler then places the control byte as the first character of the application's buffer. The control byte controls the output form feed sequence according to its bit settings as shown in Figure 8-1. The line protocol handler provides the output ETX control character and the LRC (longitudinal redundancy check) character.

Figure 8-1. VIP Control Byte (Send)

VIP OUTPUT DATA

The application's output data must be 7-bit ASCII (the eighth bit is ignored). Any ASCII control characters, if included in the application's data, are not transmitted.

For keyboard/display screens, the line protocol handler sends a CR, LF sequence when the application's buffer contains the hexadecimal character X'05' (NL).

For the read-only printer (ROP) the line protocol handler sends a CR, LF sequence (according to the type of ROP) shown below, when the application's buffer contains the X'05' character (NL).

ROP Type	Line Sequence		
TN1200, 7717	CR, LF, 36 DELs		
7714, 7716, TN 300, TTY 35	CR, LF, 9 DELS		
ТТҮ 33	CR, LF		

VIP KEYBOARD/SCREEN OUTPUT EDITING CONTROL

The line protocol handler sends LF and CR editing characters for VIP keyboard/screen devices according to the values of the Band C-bits of the device-specific word I DVS (Table 8-3). The application specifies these bit values at write time to send the CR and LF characters, as follows:

I DVS	Bits	Editing
		Characters
B	<u>C</u>	Sent
0	0	CR
0	1	None
1	0	LF, CR
1	1	LF

VIP RECEIVE-ONLY PRINTER EDITING SEQUENCE

The line protocol handler sends an output editing character sequence for the receive-only printer (ROP) according to the values of the B- and C-bits of the device-specific word I_DVS (Table 8-3). The application specifies these bit values at write time to send the ROP output editing sequence, according to the ROP type, as shown in Table 8-5.

Table 8-5. VIP Receive-Only Printer Editing Sequ	ence
--	------

ROP Types	I_DVS B	Bits C	Output Editing Sequence
TN1200, 7717	0	0	CR, 36 DELS
7714, 7716, TN 300, TTY 35	0	0	CR, 9 DELS
ТТҮ 33	<u>,</u> 0	0	CR
All	0	1	None
TN1200, 7717	1	0	LF, CR, 36 DELS
7714, 7716, TN 300, TTY 35	1	0	LF, CR, 9 DELS
ТТҮ 33	1	0	LF, CR
TN1200, 7717	1.	1	LF, 36 DELS
7714, 7716, TN 300, TTY 35	1 1	1	LF, 9 DELS
TTY 35	1	1	LF

VIP RECEIVE-ONLY PRINTER FORM FEED SEQUENCE

The VIP line protocol handler sends an output form feed sequence according to the ROP type and whether the ROP has the hardware form feed option, as shown in Table 8-6.

Table 8-6. VIP Receive-Only Printer Form Feed Sequence

ROP Type	Output Form Feed Sequence				
Without form feed feature					
TN1200, 7717	LF, 36 DELs (both three times)				
7714, 7716, TN 300	LF, 9 DELs (both three times)				
ТТҮ 35	LF, 9 DELs (both three times)				
TTY 33	LF, three times				
With form feed feature					
7717, TN1200	FF, 240 DELS				
7714, 7716, TN 300 FF, 65 DELS					
ттү 35	FF, 65 DELS				

ERROR PROCESSING BY VIP LINE PROTOCOL HANDLER

Table 8-7 lists the errors reported by the VIP line protocol handler for any VIP configuration. It also lists corresponding return status error codes (see Table 6-1), corresponding bits in the VIP software status word I_ST (see Table 8-4), and possible recovery actions.

Table 8-8 lists the MLCP-specific error condition according to particular VIP configurations, the corresponding error codes, and bits in the I ST.

Table 8-7. Errors Reported by VIP Line Protocol Handler

Error Condition	Posted Error Return Status ^ª	I_ST Bit ^b	Possible Recovery	Comments
Error during open	В	As reported	Retry nine times	
"Not available" message received	7	Е	None	
Page overflow not corrected	7	D	None, or retry once	
Invalid range in IORB	4	None	None	
Read time-out	7	3	10-minute retry	
NAK limit reached	7	8	· · · · · · · · · · · · · · · · · · ·	
Busy received	7	E		
Purged due to imme- diate close	В	None		
Station disabled	В	None		
Fatal error at inter- rupt level	В	None		
Data service rate error	0 (transmit) 7 (receive)	2 2, 8	Not applicable Retry nine times	Not fatal
Communication control block service rate error	7	4,8		
Long record	0	6	None (ACK sent to VIP)	Not fatal
Illegal character	0 (transmit)	7	Replace illegal char- acter with delete characters	Bad character in application's buffer
Sequence error, or Poll failure	7 (receive)	7,8		
Phone hang up	В	В	None	
Nonexistent resource, or Bus parity error, or Unrecoverable memory error	В	None	No retry possible	
Excessive checksum or parity error	В	8,9	Retry nine times	
	······································	[*] See Table	6-1.	
		^b See Table	8-4.	

Table 8-8. MLCP Error Condition Reported by VIP Line Protocol Handler

Error Condition	VIP Configuration ^a	Posted Error Return Status ^b	I_ST Bit ^c	Possible Recovery Action	Comments
No interrupt from MLCP	P, C (except open)	В	7	Retry five times	Poll failure
	P, C (open only)	В	7	None	CCP/MLCP failure
	NP, C	В	7	None	VIP lockup
	NP,	В	7	None	VIP inaccessible
^a VIP configuration codes are:					
P - polled; NP - not polled; C - control station					
^b See Table 6-1.					
^c See Table 8-4.					

8-13

PROCESSING NONPOLLED VIP ERRORS

When the VIP does not send a Q-frame within 15 seconds after the data connection is made (i.e., DSR (data set ready) on), the line protocol handler posts the connect IORB with a return status of 6 (see Table 6-1) and with all I ST bits set to 0.

When the VIP sends a message within 15 seconds after the data connection is made (i.e., DSR on), and the message is erroneous (missed EOT character, parity error), the line protocol handler posts the connect IORB with a return status of B and with all I ST bits set to 0.

In either case, the application can reissue the connect request without first issuing a disconnect directive.

When, after a successful connect, the application loses communication with the VIP and there are no outstanding requests on the VIP queue, the application will not be notified until the VIP line protocol handler receives the next read or write request.

SECTION 9

POLLED VIP EMULATOR (PVE) LINE PROTOCOL HANDLER

The PVE line protocol handler allows a Level 6 system to be connected to a communications link that operates according to the polled VIP protocol. The line can be half or full duplex, may be dedicated or switched, and operates at up to 9600 baud.

The computer that controls the communications link is known as the control station (CS), which may be any Honeywell host system that supports the VIP protocol.

GENERAL PVE OPERATION

A Call

The PVE appears to the control station as a VIP terminal, and is the tributary station. Each PVE supports up to 32 tributary stations per line, as designated at system building.

To the control station, each PVE tributary station is known externally by a poll address, and internally to a Level 6 control station, by a logical resource number (LRN). There is a one-toone relationship between the poll address and the LRN.

An application program in a Level 6 system communicates with the control station by issuing read and write requests to the appropriate LRN. Similarly, the control station sends and receives as though it is communicating with a polled VIP that has the appropriate poll address.

Figure 9-1 illustrates a typical PVE configuration.

Figure 9-1. Typical PVE Configuration

When the PVE receives a select request with the LRNassociated poll address, it forwards the message to the control station to satisfy the application's read request. When the PVE receives a poll request for the LRN-associated poll address, it forwards the message to the control station to satisfy the application's write request. Thus the application provides the equivalent of the screen and keyboard, with read and write requests, respectively.

The PVE line protocol handler supports only the screen and keyboard features of the VIP.

USING THE PVE LINE PROTOCOL HANDLER

PVE-Specific IORB Values

The PVE-specific IORB item I_CT2, device-specific word I_DVS, and software status word I_ST are shown in Tables 9-1, 9-2, and 9-3, respectively. Section 6 describes the general form of the IORB.

9-2

Table 9-1. Function Codes in I_CT2 in IORB

Function Code	Definition	Use
0	Wait online Write	Used by the line protocol handler to complete the description of the requested I/O function
2	Read	
A	Connect	
В	Disconnect	

Table 9-2. PVE Device-Specific Word I_DVS in the IORB

Bit Number	Bit Setting	Meaning of Bit Setting
0	0	Must be zero.
1	0	Must be zero.
	For co	nnect call only (function code A)
2	0	Do not use Auto Call Unit
	1	Use Auto Call Unit
3	0	Must be zero.
4	0	
5	0	
6	0	
7	0	
8	0	Does not support VIP function codes.
	1	Supports VIP function codes.
9	0	Must be zero.
A	0	Include received DEL characters in buffer.
	1	Strip received DEL characters.
В	0	Must be zero.

9-3

Bit Number	Bit Setting	Meaning of Bit Setting
С	0	Must be zero.
D	0	Must be zero.
E,F		LPH response to application when LPH receives data but no read IORB available
	00	Send NAK.
	01	Send ACK. VIP
	10	Return busy status. Codes
	11	Send NAK (same as 00).
	For dis	sconnect call only (function code B)
Е	0	Abort (dequeue) all IORB's on request queue.
	1	Process all outstanding requests on request queue.
F	0	Hang up phone after disconnect.
	1	Do not hang up phone after disconnect.

Table 9-2 (cont). PVE Device-Specific Word I_DVS in the IORB

Bit	Meaning When Bit Set to l		
0	N/A		
1	N/A		
2	Data service rate error		
3	N/A		
4	Communications control block (CCB) service error		
5	N/A		
6	Long record		
7	0 = ETX character received 1 = ETB character received		
8	NAK limit reached		
9	Excessive checksum/parity errors		
A	Nonzero residual range		
В	Phone hang-up		
с	N/A		
D	N/A		
E	N/A		
F	Fatal error: bus parity or memory error		
Although nonexistent resource, bus parity, and uncorrectable memory errors are combined in bit F, each occurrence is noted separately in the resource control table (RCT). See Figure C-1.			

Table 9-3. PVE Software Status Word I_ST in the IORB

VIP Protocol Message Structure for PVE

Figure 9-2 shows two VIP protocol message structures for PVE.

SYN		SYN
SYN		SYN
SYN	OR	SYN
SYN	(OPTIONAL)	EOT
EOT		

Figure 9-2. VIP Protocol Message Structure for PVE

Control and Characteristics of PVE Input

PVE INPUT MESSAGE HEADER

The PVE line protocol handler strips the message header, between the SOH and STX control characters, and does not include it in the application's buffer.

PVE HARDWARE FUNCTION CODES

PVE hardware function codes are listed in the appropriate hardware device manuals.

These codes provide a special message-labeling capability to be used by the application.

The application can include two function codes in the message header of each text message by setting to 1 the bit 8 of the IORB's device-specific word I DVS (see Table 9-2) at connect time. The line protocol handler then inserts the two userspecified hardware function codes at read time into the IORB's item I FCS (see Figure 6-1 and Table 6-2).

PVE INPUT DATA

The line protocol handler places into the application's buffer all data between the STX and ETX control characters. The data is inserted into the buffer in 7-bit ASCII, with the most significant bit always zero. The LPH strips the ETX and LRC (longitudinal redundancy check character, see Appendix A) from the data and does not include them in the buffer.

It also strips DEL characters when the application, at connect time, sets to 1 the A-bit of the device-specific word I_DVS (Table 9-2).

By setting the E- and F-bits of I DVS as shown in Table 9-2, the application can control the response that the line protocol handler sends when it receives data from the application, but no read IORB is available.

Control and Characteristics of PVE Output

PVE OUTPUT MESSAGE HEADER

The PVE line protocol handler normally supplies the output header, between the SOH and STX control characters. The applicacation may specify hardware function codes (1, 2) as described above under "PVE Hardware Function Codes." At write time, when specified, the codes are extracted from the I_FCS item of the IORB. When the codes are not specified, (bit 8 of I_DVS set to 0 at connect time), the line protocol handler will supply two spaces, instead of the codes, into I FCS.

PVE TERMINAL ADDRESS (ADR) AND MESSAGE STATUS (STA)

The PVE line protocol handler supplies an ADR (terminal address) of X'60' (keyboard/screen) and an STA (message status) of NUL to the application.

PVE OUTPUT DATA

The application's output data must be 7-bit ASCII. The most significant bit is used by the line protocol handler during transmission of odd parity.

Output data must not include the ASCII control characters SOH, STX, ETB, ETX, EOT, or SYN.

The line protocol handler supplies output ETX control characters and longitudinal redundancy check characters (LRCs) (described in Appendix A).

PVE LINE PROTOCOL HANDLER TIME-OUT INTERVALS

Table 9-4 lists the time-out intervals used by the line protocol handler for the connect, read, and write functions. The line protocol handler will attempt or reattempt the functions until the indicated time-out period has elapsed.

In addition to the interval in the table, there is also a gross time-out of one minute, which expires when the control station ceases to poll or select any tributary station.

Function	Time-Out Interval
Connect	Five minutes
Read	Indefinite
Write	Indefinite

Table 9-4. PVE Time-Out Intervals

ERROR REPORTING BY PVE LINE PROTOCOL HANDLER

Table 9-5 lists the errors reported by the PVE line protocol handler. It also lists corresponding return status error codes (see Table 6-1) and corresponding bits in the software status word I ST (see Table 9-3).

Error Condition	Posted Error Return Status	I_ST Bit	Comments
No interrupt from MLCP	6	7	Poll failure or CCP/MLCP failure
NAK limit reached	7	8	Write failure
Purged due to immediate close	В	None	
Station disabled	В	None	
Fatal error interrupt level	В	None	
Data service rate error	0 (send) 7 (receive)	2 2, 8	Not fatal
Communication control block service rate error	7	4,8	
Long record	0	6	Not fatal
Phone hang-up	В	В	
Nonexistent resource, or Bus parity error, or Unrecoverable memory error	В	None	

Table 9-5. Errors Reported by PVE Line Protocol Handler

SECTION 10

BSC 2780/3780 LINE PROTOCOL HANDLER

The BSC (binary synchronous transmission) 2780/3780 line protocol handler (LPH) supports BSC 2780 and BSC 3780 point-topoint, nontransparent or transparent EBCDIC, or nontransparent ASCII transmission between a Level 6 system and another host system (subject to certain restrictions).

The 3780 protocol is very similar to the standard 2780 protocol and unless specifically stated otherwise, the rest of this section and the term BSC pertain to both.

GENERAL BSC LINE PROTOCOL HANDLER OPERATION

When a station (device or computer) at either end of a communication line has a message to send, it requests use of the line by sending a ENQ bid message. (See Appendix E for definition of ENQ and other control characters.) The receiving station must respond with an ACK/O sequence before the sending station can transmit a data message.

BSC Transmit and Receive Operations

A station that has control of the line, i.e., the right to transmit, is known as the <u>master</u> (primary)¹ station. The station that relinquishes control, i.e., will receive, is the <u>slave</u> (secondary) station.

When the first data message from the master station is successfully received, the slave station responds with an ACK/1 sequence. Acknowledgments for subsequent remaining messages alternate between ACK/0 and ACK/1. The master/slave status for each respective station remains in effect until the master station gives up control by sending an EOT (end-of-transmission) character (which is not acknowledged by the slave station).

¹Primary and secondary are arguments of the CLM BSC directive used when the system is being built.

When a bidding station does not receive an ACK/O response within a specified interval (time-out period), it sends another ENQ message. At the same time, or at nearly the same time, the other station may be sending an ENQ message, bidding for the line. Thus both stations may be bidding with neither receiving an ACK response. This is known as line contention. Line contention can be avoided by designating one station as the primary and and the other as secondary when the system is built. Then when the designated primary station receives an ENQ response to its bid message, it retransmits the ENQ message to the secondary station, which in turn ignores its own bid request and responds to the primary station with an ACK or NAK.

The BSC line protocol handler allows a receiving station to reply to a data message with an RVI (reverse interrupt) message if it has an urgent requirement to transmit data.

Figure 10-1 illustrates bids and other interactions between a master and slave station.

BSC Data Transmission Modes

BSC operates in either basic data transmission mode or in advanced data transmission mode, according to whether a control byte is included in the data being transmitted. (See "BSC Control Byte (Receive)" and "BSC Control Byte (Send)" later in this section.)

BSC BASIC DATA TRANSMISSION MODE

In basic data transmission mode, there is no control byte included in the data being transmitted along the communications line.

BSC ADVANCED DATA TRANSMISSION MODE

In advanced data transmission mode, the application includes a control byte (that is not part of the data). The control byte indirectly controls the operation of the line protocol handler (e.g., sending an ETB or ETX), or conveys information about a data transfer (e.g., whether transparent text was received).

BSC 2780 AND BSC 3780 DIFFERENCES

The 3780 protocol differs from the 2780 protocol in that the 3780 protocol has a set of extensions that provide:

- o The ability to receive a conversational reply.
- o The ability to receive two records and to transmit a single record, when the two-buffer option is selected at connect time.
- o The ability to receive and transmit selected BSC control characters in nontransparent mode.

BSC 2780/3780 FEATURES

The following discussions in this subsection include references to BSC-specific fields in the input/output request block IORB (see Table 6-2) and to control bytes, and precede their descriptions. See Tables 10-2 and 10-3 later in this section for descriptions of the device-specific word I DVS and software status word I ST, respectively. Control bytes are described under "Control Byte (Receive)" and "Control Byte (Transmit)."

BSC Two-Buffer Feature

With the two-buffer feature, the use of the second buffer reduces line turnaround time, i.e., two records can be transmitted with only one acknowledgment. However, there are these disadvantages:

- o When a line (parity) error occurs, both records must be retransmitted.
- One transmission requires two writes be issued, which are not posted until an acknowledgment is received.
- Four buffers are necessary to operate the line efficiently.

Figure 10-2 shows record transmissions with and without the two-buffer feature.

STXITB BCC SYN SYN STX ETB BCC ACK0
WITH TWO-BUFFER FEATURE
STXETB BCC
АСКО
STX ЕТВ ВСС
ACK1
WITHOUT TWO-BUFFER FEATURE

Figure 10-2. BSC Two-Buffer Feature in Record Transmission

Before selecting the two-buffer feature, compare the advantage of better line utilization against the disadvantages of a more complex program and increased buffer usage, and consider the following:

- In BSC 2780 with the two-buffer option, two records can be received or transmitted (using an ITB (intermediate text block) sequence).
- 2. In BSC 3780, with the two-buffer option two records can be received, using an ITB sequence, and single records can be transmitted. This implies that an application using BSC 3780 must be able to receive up to two records at any one time, but can only initiate single-record transmission.

3. The two-buffer feature cannot be used with synchronous reads, because the intermediate files being received may be terminated by an ETX record. If the ETX record is the first of the two records being read, the second read (synchronous) would not be posted to the system.

For example:

READ (asynchronous) . process . READ (synchronous) . process . The following sequence is better: READ (asynchronous) READ (asynchronous) WAIT (1) . process . READ (asynchronous) WAIT (2) . process

BSC Temporary Text Delay (TTD) Feature

The following describes the sequence of the temporary text delay (TTD) feature.

- When a master station receives an ACK, and no output request block (IORBs) are queued, that station waits two seconds for one IORB (or two IORBs when there are two buffers) to be queued.
- The master station then sends the temporary text delay (TTD) control character sequence (STX, ENQ) to the slave station.
- 3. When the slave station responds with a NAK, the master station checks whether the application has queued the appropriate write requests. If the write requests are not queued, the master station continues the TTD sequence until the application issues the necessary write requests.

 If the EOT or ETX bit (A-bit or D-bit) in the I_DVS word of the IORB is set (Table 10-2), one write request will effect transmission.

Figure 10-3 is an example of the temporary text display sequence.

Figure 10-3. BSC Temporary Text Delay (TTD) Sequence Example

BSC Wait Before Acknowledge (WACK) Feature

A BSC slave station will send ACK/0 and ACK/1 responses to messages satisfactorily received, provided there is at least one outstanding read request (two with the two-buffer feature), in addition to the request being processed.

- When no read request is queued, the slave station posts the current read, waits two seconds for read requests to be queued, then sends a WACK response (DLE; DLE,), indicating to the master station that the last message was received, but the slave station cannot accept more data.
- The master station waits (time-out), then sends an ENQ message.
- 3. If a read request was queued during the time-out, the slave station responds with an ACK, and the master station can send its next data message.
- If no read request was queued during the time-out, the slave station waits another two seconds, and when necessary sends another WACK sequence.

Figure 10-4 is an example of the wait before acknowledge (WACK) sequence.

Figure 10-4. BSC Wait Before Acknowledge (WACK) Sequence Example

BSC Reverse Interrupt (RVI) Feature

高速

When a slave station is processing read requests, and must unexpectedly transmit an urgent message, that station must issue a reverse interrupt (RVI) message, which informs the master station that the slave station is requesting control of the line.

On receiving an RVI character, the master station should empty its buffers and give up control of the line. However, the master station does not have to acknowledge the RVI by giving up control.

The application program can request the BSC line protocol handler to send an RVI character, by either of the following methods:

- Use the control byte. The application issuing read requests issues a transmit request with bit 5 of the control byte set to 1 (see Figure 10-10), and with the urgent message in the application's buffer.
- 2. Use the device-specific word I_DVS of the IORB. The application issuing read requests issues a transmit request with the B-bit of I_DVS set to 1 and with the urgent message in the application's buffer.

The application issuing write requests can detect an RVI character by any of these methods:

- Test bit 3 of the control byte after a successful write request is posted. A bit setting of 1 indicates that the RVI for that IORB was received.
- Test bit 3 of the IORB's software status word I_ST. A bit setting of 1 indicates the RVI was received.

Figure 10-5 is an example of a reverse interrupt (RVI) sequence.

Figure 10-5. BSC Reverse Interrupt (RVI) Sequence Example

BSC End of Transmission (EOT) Feature

The appliation program, by any of the following methods (1, 2, or 3), can cause the BSC line protocol handler to send an endof-transmission (EOT) message:

- la. At connect time, specify use of the control byte by setting to 0 bit 4 of the IORB's device-specific word I DVS.
- b. When bit 4 of the first byte of the application's buffer (control byte, specified at write time) is set to 1, the BSC line protocol handler will send an EOT control character after the data in the application's buffer is successfully transmitted.

- 2a. When the control byte is not specified at connect time, set to 1 the A-bit of the IORB's device-specific word I DVS at write time.
- b. The BSC line protocol handler will send an EOT control character after the data in the application's buffer is successfully transmitted.
- 3a. After successful completion of a write request, issue a disconnect with or without a queue abort, and no physical disconnect.
- b. The master station will send an EOT character and give up its master status.
- c. However, when another IORB is queued for write, that station will again request its master status.

The application can detect receipt of an EOT control character in either of the following ways:

- If the control byte was specified at connect time, bit 4 of the control byte, of the read request on which the EOT was received, will be set to 1.
- If the control byte was not specified at connect time, bit 12 of the software status word I_ST, of the request on which the EOT character was received, will be set to 1.

With either method, the line protocol handler does not post any read requests that were queued before the EOT character was detected. To remove read requests from the queue, the application must issue a disconnect with a queue abort. The line protocol handler always posts the IORB with a device unavailable (B) return status (Table 6-1). The BSC line may or may not be available for further use, depending on whether or not an EOT character was sent abnormally.

BSC Line Protocol Handler Time-Out Interval

ALC: NY

On a read, the time-out interval in waiting for a linerequest bid is 10 minutes.

For a read or write request, when no response is received, the time-out interval is 12 seconds.

Once a station has successfully bid for a line, the time-out interval for subsequent reads (from the slave station) or writes (from the master station) is 12 seconds.

BSC Features Specific to 3780

BSC 3780 CONVERSATIONAL REPLY FEATURE

The conversational reply feature permits a 3780 application, after transmission of an entire message (whose last record is denoted by an ETX rather than an ETB), to selectively receive a message from a host computer without a preliminary line bid sequence.

The conversational reply sequence serves as the affirmative reply to the last message transmission block, and as a break or interrupt to later transmissions. The line protocol handler indicates to the application receipt of a conversational reply sequence in bit 5 of the IORB software status word I_ST, and/or in bit 2 of the control byte of the ETX write order.

In the following example, a 3780 application attempts to transmit three 2-record messages to a remote host computer. The transmission sequence is interrupted by the receipt of a conversational reply, which occurs after transmission of the second message. After the complete conversational reply (containing one or more records) is received, transmission of the third message can resume, following completion of a successful line bid sequence. Figure 10-6 illustrates the example sequence.

The application's use of the conversational reply feature requires that the application issue the requisite number of read orders (dependent on one- or two-buffer mode) before the transmission of a text block that terminates with an ETX sequence. If the application does not issue the required read(s), the last text block is not transmitted, and the line protocol handler will initiate a temporary text delay (TTD) sequence until the necessary read orders are issued. If the application does not transmit an ETX sequence, it need not issue supporting read order(s).

BSC 3780 TWO-BUFFER FEATURE

The discussion under "BSC Two-Buffer Feature" earlier in this section applies also to BSC 3780 operation.

BSC 3780 TRANSMISSION/RECEIPT OF BSC CONTROL CHARACTERS

In BSC 2780 nontransparent mode, detection of any BSC control characters within a message would abort the transmission or reception of that message.

In 3780 nontransparent mode, selected, noncritical BSC control characters, i.e., STX, SOH, DLE, NAK, and EOT, can be successfully transmitted and received.

Figure 10-6. Example of Conversational Reply in BSC 3780 Transmission Sequence

Sec. 2.

10-11

USING THE BSC 2780/3780 LINE PROTOCOL HANDLER

BSC-Specific IORB Values

The BSC-specific IORB item I_CT2, device-specific word I_DVS, and software status word I_ST, are shown and defined in Tables 10-1, 10-2, and 10-3, respectively. Section 6 has a general description of the IORB.

Table 10-1. Function Codes in I_CT2 Field in the IORB

Function Code	Definition	Use
0	Wait online	Used by the line protocol handler
1	Write	the requested I/O function.
2	Read	
A	Connect	
В	Disconnect	

Table	10-2.	BSC	Device-S	pecific	Word	Ι	DVS	in	the	IORB
				-						

Bit Number	Bit Setting	Meaning of Bit Setting
0	0	Must be zero.
l	0	Must be zero.
	For	connect call only (function code A)
2	0	Do not use Auto Call Unit.
	1	Use Auto Call Unit.
3	0	Must be zero.
4	0	Use control byte.
	1	Do not use control byte.
5	0	Must be zero.
6	0	Must be zero.
7	0	Must be zero.

Bit Number	Bit Setting	Meaning of Bit Setting
	For co	nnect call only (function code A) (cont)
8	0	Use single buffer per transfer.
	1	For 2780: use two buffers per send/receive.
		For 3780: use two buffers per receive.
9	0	Use BSC 2780 protocol.
	1	Use BSC 3780 protocol.
	For	write call only (function code 1)
A	0	Do not send EOT after this transmission.
	1 ·	Send EOT after this transmission.
В	0	Do not send RVI if station in slave status.
	1	Send RVI if station in slave status.
с	0	Send data in nontransparent mode.
	1	Send data in EBCDIC transparent mode.
D	0	Send ITB or ETB characters following the data.
	1	Send ETX characters following the data.
	Ford	disconnect call only (function code B)
Е	0	Abort (dequeue) all IORBs on request queue.
	ĺ	Process outstanding requests on request queue.
F	0	Disconnect line on completion.
	1	Do not disconnect line on completion.

「「「「」」

Table 10-2 (cont). BSC Device-Specific Word I_DVS in the IORB

Specifying Use of BSC 2780 and/or 3780 to the System

The inclusion of BSC 2780 and/or 3780 in the system is done at system building. The application can select and use either 2780 or 3780 according to the setting of bit 9 in the devicespecific word I_DVS in the IORB (see Table 10-2).
Bit	Meaning When Bit Set to l	
0	N/A	
1	N/A	
2	Data service rate error	
3	Lost line bid; RVI received	
4	Communications control block service error	
5	Conversational reply received (3780 only)	
6	Long record	
7	0 - ITB and/or ETB characters received 1 = ETX character received	
8	N/A	
9	N/A	
A	Nonzero residual range	
В	Phone hang-up	
с	EOT character received	
D	Transparent message received	
Е	NAK limit reached	
F	Fatal error: bus parity or memory error	
Although nonexistent resource, bus parity, and uncorrectable memory errors are combined in bit F, each occurrence is noted separately in the resource control table (RCT). See Figure C-1.		

Table 10-3. BSC Software Status Word I_ST in the IORB

Formats and Characteristics of BSC Input Data

The formats and characteristics of BSC input data for both ASCII and EBCDIC are described and illustrated below.

Figure 10-7 shows the format and contents of BSC input data received from another computer.

CB03

SOM (CONTROL BYTE)		EOM	всс
--------------------	--	-----	-----

SOM (START OF MESSAGE)

A ONE- OR TWO-CHARACTER SEQUENCE THAT IS STRIPPED BY THE BSC LPH.

CONTROL BYTE

THE CONTROL BYTE, IF SPECIFIED, IS THE FIRST BYTE OF THE APPLICATION'S DATA.

DATA

INFORMATION STORED IN THE APPLICATION'S BUFFER AND SPECIFIED AT READ TIME.

EOM (END OF MESSAGE)

A ONE- OR TWO-CHARACTER SEQUENCE THAT IS STRIPPED BY THE BSC LPH.

BCC

AN LRC CHARACTER OR CRC CHARACTER THAT IS INSERTED BY THE BSC LPH.

Figure 10-7. BSC Input Data Format and Contents

BSC CONTROL BYTE (RECEIVE)

When bit 4 of the IORB's device-specific word I DVS is set to 0 at connect time (see Table 10-2), the BSC line protocol handler uses the first byte of the application's buffer as the control byte. Figure 10-8 shows the control byte's format and content.

0 1 2 3 4 5 6 7

BITS 0 THROUGH 3

NOT APPLICABLE; NOT EXAMINED

BIT 4=0

DATA STORED IN APPLICATION'S BUFFER

BIT 4=1

EOT RECEIVED; NO DATA STORED IN APPLICATION'S BUFFER

BIT 5

NOT APPLICABLE; NOT EXAMINED

BIT 6=0

DATA RECEIVED IN NONTRANSPARENT MODE

BIT 6=1

DATA RECEIVED IN TRANSPARENT MODE

BIT 7=0 ITB OR ETB RECEIVED

BIT 7=1

ETX RECEIVED

Figure 10-8. Control Byte (Receive) for BSC Line Protocol Handler

CB03

ASCII INPUT FOR BSC

ASCII input characteristics and format (Figure 10-7) are as follows:

- SOM (start-of-message) consists of the STX control character only.
- 2. The control byte (if specified at connect time) is stored in the first byte of the applications' buffer, and indicates the end-of-message (EOM) sequence. When bit 7 is 0, it indicates detection of an ITB or ETB control character; when 1, it indicates detection of an ETX character. Note that bit 7 of both the control byte and of I ST are specified.
- 3. Data must be 7-bit ASCII with odd parity. The BSC line protocol handler strips the parity bit and resets it to zero when it stores it in the application's buffer.
- 4. The EOM sequence, one of the three control chracters ITB, ETB, or ETX, is indicated by bit 7 of the IORB software status word I ST after a successful read is posted. See Table 10-3 for bit 7 indicators.
- 5. The BCC (block check character) is described in Appendix A.

EBCDIC INPUT FOR BSC

EBCDIC input format and characteristics are as follows:

- SOM (start-of-message) consists of the STX control character only.
- 2. The control byte (if specified at connect time) is stored in the first byte of the application's buffer, and indicates the end-of-message (EOM) sequence, as follows:

Bit 4 = 1 End of transmission (EOT) detected. Bit 7 = 0 ITB or ETB character detected. Bit 7 = 1 ETX character detected.

- 3. Data must be 8-bit EBCDIC; it will not have any BSC control characters.
- 4. The EOM sequence, one of the control characters ITB, ETB, or ETX, is indicated by bit 7 of the IORB software status word I ST after a successful read is posted. See Table 10-3 for bit 7 indicators.

5. The BCC (block check character) is described in Appendix A.

TRANSPARENT EBCDIC INPUT FOR BSC

Transparent EBCDIC input format and characteristics are as follows:

- 1. SOM (start-of-message) consists of the <u>two-character</u> sequence DLE, STX.
- The control byte, if specified at connect time, is stored in the first byte of the application's buffer, and indicates the EOM (end-of-message) sequence according to the bit 7 setting (Figure 10-8).
- 3. Data may be any EBCDIC character, including BSC control characters.
- 4. EOM (end-of-message) sequence may be one of the following, indicated by bit settings of the IORB software status word I_ST, after a successful read has been posted:

I ST Bits

D	<u>7</u>	Resulting EOM Sequence
1	0	DLE, ITB
1	0	DLE, ETB
1	1	DLE, ETX

5. The block check character (BCC) is described in Appendix A.

Formats and Characteristics of BSC Output Data

Formats and characteristics of BSC output data (both ASCII and EBCDIC) are described and illustrated below.

Figure 10-9 shows the format and content of BSC data transmitted to another computer.

					1
SOM	(CONTROL BYTE)	DATA	EOM	BCC	
L					J

SOM

A ONE- OR TWO-CHARACTER SEQUENCE THAT IS INSERTED IN FRONT OF THE DATA BY THE BSC LPH.

CONTROL BYTE

THE CONTROL BYTE, IF SPECIFIED, IS STORED IN THE FIRST BYTE OF THE APPLICATION'S BUFFER.

EOM

A ONE- OR TWO-CHARACTER SEQUENCE THAT IS INSERTED BY THE BSC LPH.

BCC

AN LRC CHARACTER OR CRC CHARACTER THAT IS INSERTED BY THE BSC LPH.

DATA

INFORMATION THAT IS TRANSMITTED FROM THE APPLICATION'S BUFFER BY THE BSC LPH.

Figure 10-9. Format and Content of BSC Output

BSC CONTROL BYTE (SEND)

When bit 4 of the IORB's device-specific word I_DVS is set to 0 at connect time (see Table 10-2), the BSC line control handler uses the first byte of the application's buffer as the control byte. Figure 10-10 shows the format and content of the BSC line protocol handler's control byte for sending data.

0	1	2	3	4	5	6	7

BITS 0, 1

NOT APPLICABLE, NOT USED BIT 2=1

CONVERSATIONAL REPLY RECEIVED

BIT 3=1 RVI RECEIVED (RETURN STATUS ONLY)

BIT 4=1

SEND THE DATA THAT IS IN YOUR BUFFER AND, AFTER IT HAS BEEN ACKNOWLEDGED, SEND EOT

BIT 5=1 SEND AN RVI RESPONSE ON THE NEXT ACKNOWLEDGMENT OF A READ

BIT 6=0

SEND NONTRANSPARENT EBCDIC BIT 6=1

SEND TRANSPARENT EBCDIC OR ASCII

BIT 7=0 SEND ITB OR ETB

BIT 7=1

SEND ETX

Figure 10-10.

. Control Byte (Send) for BSC Line Protocol Handler

CB03

BSC ASCII OUTPUT

ASCII output characteristics and format are as follows:

- SOM (start-of-message) consists of only the STX character.
- The control byte, when specified, is assumed to be the first byte of the application's buffer, and indicates the EOM (end-of-message) sequence, which is either ITB, ETB, or ETX, designated as follows:
 - a. Bit 6 must be 0.
 - b. Bit 7 = 0. Send ITB or ETB. ITB is sent when the record is odd numbered (1, 3, 5, etc.) and the twobuffer feature is used.

Bit 7 = 1. Send ETX.

If the control byte is not specified, the EOM sequence is defined by I DVS as described in 4 below.

- 3. Data must be 7-bit ASCII; it cannot have any BSC control characters.
- 4. EOM, which is either ITB, ETB, or ETX, can be indicated by the control byte (see 2 above) or by the C- and Dbits of the IORB device-specific word I_DVS (Table 10-2) as follows:
 - a. C-bit must be zero.
 - b. D-bit = 0. Send ITB or ETB. ITB is sent when the record is odd-numbered (1, 3, 5, etc.) and the twobuffer feature is used.

D-bit = 1. Send ETX.

5. BCC (block check character) is described in Appendix A. BSC EBCDIC OUTPUT

EBCDIC output characteristics and format are as follows:

- SOM (start-of-message) consists of only the STX character.
- The control byte, when specified, is assumed to be the first byte of the application's buffer, and indicates the EOM (end-of-message) sequence, which is either ITB, ETB, or ETX, designated as follows:

CB03

- a. Bit 6 must be 0.
- b. Bit 7 = 0. Send ITB or ETB. ITB is sent when the record is odd-numbered (1, 3, 5, etc.) and the twobuffer feature is used.

Bit 7 = 1. Send ETX.

If the control byte is not specified, the EOM sequence is defined by I_DVS as described in 4 below.

- 3. Data may be 8-bit EBCDIC; it cannot have any BSC control characters.
- 4. EOM (end-of-message), which is either ITB, ETB, or ETX, can be indicated by the control byte (see 2 above) or by the C- and D-bits of the IORB device-specifid word I_DVS (Table 10-2) as follows:

a. C-bit must be zero.

b. D-bit = 0. Send ITB or ETB. ITB is sent when the record is odd-numbered (1, 3, 5, etc.) and the twobuffer feature is used.

D-bit = 1. Send ETX.

5. BCC (block check character) is described in Appendix A.

BSC TRANSPARENT EBCDIC OUTPUT

Transparent EBCDIC output characteristics and format are as follows:

- SOM (start-of-message) consists of the two-character sequence DLE, STX.
- The control byte, when specified, is assumed to be the first byte of the application's buffer, and indicates the EOM (end-of-message) sequence, which is either DLE ITB; DLE ETB; or DLE ETX, designated as follows:

a. Bit 6 must be 0.

b. Bit 7 = 0. Send DLE ITB or DLE ETB. DLE ITB is sent when the record is odd-numbered (1, 3, 5, etc.) and the two-buffer feature is used.

Bit 7 = 1. Send DLE ETX.

If the control byte is not specified, the EOM sequence is defined by I DVS as described in 4 below.

- 3. Data may be any EBCDIC character, including any BSC control characters.
- 4. EOM, which can be either DLE ITB; DLE ETB; or DLE ETX, can be indicated by the control byte (see 2 above) or by bit 4 and bit D of the IORB device-specific word I_DVS (Table 10-2) as follows:
 - a. Bit 4 must be 1.
 - b. D-bit = 0. Send DLE ITB or DLE ETB. DLE ITB is sent when the record is odd-numbered (1, 3, 5, etc.) and the two-buffer feature is used.

D-bit = 1. Send DLE ETX.

5. BCC (block check character) is described in Appendix A.

 \bigcirc

APPENDIX A

COMMUNICATIONS SUBSYSTEM

Communications software, as discussed in this manual, is a functional package referred to as the communications subsystem, and which comprises:

- o Communications supervisor
- o Line protocol handlers (LPHs)
- o Multiline communications processor (MLCP)
- o Multiline communications processor driver

COMMUNICATIONS SUPERVISOR

The communications supervisor is the physical I/O interface between a communications application program and the device/files it uses. It provides the following services, similar to those provided by the Monitor, to an application:

- Validates and queues, on a first-in/first-out basis, an application's requests for services, then activates the appropriate line protocol handler.
- Dequeues requests for services, and through system software, interacts with the application when the requested I/O service is completed or an unexpected event occurs.
- o Services time-outs for the line protocol handlers.
- Controls modems in detecting phone connects and disconnects.
- o Disconnects phones when requested by the application.

LINE PROTOCOL HANDLERS (LPHs)

The line protocol handlers transfer data between a communications device and the application that uses it. The communications subsystem and its line protocol handlers do the following:

- o When the system is bootstrapped:
 - Validate specifications for device types by reading the device's identification sequence
 - Initialize the device by sending to it the priority level at which it is to operate
- Validate the application's input/output request block (IORB) fields
- Convert user-supplied functions into device-specific instructions, initiating the I/O operation
- o Modify channel numbers to even or odd values, according to whether the function is input or output
- o Set a timer in order to detect a device fault
- o Detect and process ATTENTION signals
- Read return status indicators from a device to ascertain result of an I/O operation
- o Process error recovery, when possible
- o Process unsolicited interrupts
- Build the return status word indicating logical result of the I/O request, and through the Monitor, passing that value to the application program
- Pass a value indicating the logical conclusion of the I/O request, through the Monitor, to the application program.
 (Table 6-1 lists the return status codes).
- o Report the following errors and statuses:
 - Convert hardware return status into the standard software status and insert it into the software status word I ST of the application's IORB (see Table 6-3).
 - Place the residual range value (see Table 6-2) into the I RSR entry of the IORB.

MULTILINE COMMUNICATIONS PROCESSOR (MLCP)

The MLCP includes a channel control program (CCP) that is associated with each line protocol handler (see Figure A-1).

Through the appropriate hardware device-pac, the channel control program controls transmission of data over communication lines. Its functions are:

- Process characters by storing them in, then extracting them from, a buffer
- o Insert and delete (or strip) headers and trailers
- Insert and delete control characters preceding or following a message to or from a remote terminal or host computer.

The <u>MLCP Programmer's Reference Manual</u> describes the MLCP and related programming information.

MULTILINE COMMUNICATIONS PROCESSOR DRIVER

The MLCP driver receives MLCP orders from the line protocol handler and activates the appropriate channel control program (see above and Figure A-1) to process the orders. The driver also:

- Processes a line protocol handler's requests for control functions or for data
- Services interrupts from the MLCP and passes them to the line protocol handler

MODEM SUPPORT

For asynchronous devices, the communications subsystem supports the direct-connect feature, and provides the following modem support:

- o Bell System Data Sets, Types 103A, 113F, or 202
- o Honeywell modem bypass
- o Any user-defined (at system building) modem type

For synchronous communications, the communications subsystem supports the direct-connect feature, and provides the following modem support:

- o Bell System Data Sets, Types 201A, 201B, 201C, 203, or 208A
- o Honeywell modem bypass

o User-defined (at system building) modem types

AUTO CALL UNIT

When included in the system (at system building) an Auto Call Unit (autodial feature) performs the following to initiate a line connection with a remote device:

- 1. The system attempts to dial a line, using a list of telephone numbers supplied at system building, the first entry on the list being zero. The first number to be dialed can then be specified with a set dial (\$SDL) macro call or with the set ACU telephone number (SDL) command. If the first number on the list is not specified (by the macro call or command), the system skips to the next number on the list.
- 2. Dials each number on the list three times at 40-second intervals until the list is exhausted or a connection made, whichever comes first.
- 3. Checks that a connection to a modem is made.
- 4. Passes control to the application.

The Auto Call Unit supports Data Auxiliary Set Automatic Calling Units 801A and 801C.

Two data set options are required to use the Auto Call Unit:

- o The option that terminates the call, through the data set, after the DSS (data set status change) goes on.
- o The option that stops the ACR timer when the DSS goes on.

COMMUNICATIONS SUBSYSTEM OPERATION EXAMPLE

The following example, and Figure A-1, broadly indicate the interaction of the communications subsystem's components in the processing of a connect, write and then disconnect request. The operations described apply to either the file system or physical I/O interface, without reference to a specific device or line protocol.

Example:

- 1. The communications supervisor takes the application's connect request through the file system or physical I/O interface, then passes it to the phone monitor within the multiline communications processor.
- 2. The phone monitor makes a line connection to the device.
- 3. The appropriate line protocol handler processes the logical connection.
- 4. The communications supervisor passes the application's subsequent write request to the line protocol handler, which translates the request into MLCP driver orders.
- 5. The line protocol handler calls the MLCP driver, which issues the orders to the MLCP.
- 6. The channel control program in the MLCP processes the write order, transmitting the data to the device, during which the line protocol handler suspends itself.
- 7. When the MLCP senses completion of the data transfer, the channel control program returns an interrupt that is initially processed by the communications supervisor and the MLCP driver.
- The MLCP driver reactivates the line protocol handler (at the interrupt level) to minimally process the interrrupt.
- 9. When processing is completed, control passes to the MLCP driver.
- 10. If additional processing is necessary, the line protocol handler can schedule itself, on a noninterrupt basis, to do postinterrupt processing of the interrupt.
- 11. The application's disconnect request is processed the same as a connect request:
 - a. As requested by the communications processor, the channel control program disconnects the physical connection.
 - b. The line protocol handler does the necessary logical disconnect processing.

CB03

Figure A-1. Simplified Flow - Communications Subsystem

A-6

СВ03

A. a.

DS = DATASET MB = MODEM BYPASS

Figure A-1 (cont). Simplified Flow - Communications Subsystem

A-7

СВ03

COMMUNICATIONS SUBSYSTEM ERROR AND CORRECTION PROCEDURES

GCOS uses the following procedures including parity checking, block checking, and time-out, to detect errors occurring over communication lines.

Parity Error Check

The system sends a parity (check) bit with each transmitted character. The parity bit, plus the number of character bits set to 1, will always be an odd- or even-numbered total for every character, according to whether transmission is synchronous or asynchronous. The standard for synchronous transmission is odd parity (total is an odd number); for asynchronous transmission it is even parity (total is an even number).

Block Error Check

GCOS uses two kinds of block error checking, the longitudinal redundancy check (LRC) and the cyclic redundancy check (CRC). Their check characters are known as block check characters (BCC), and the checking calculation result is a block checksum.

LONGITUDINAL REDUNDANCY CHECK (LRC)

The LRC is a form of parity check that is applied to the entire message. The system appends an LRC character, which is an exclusive OR of the message characters, to every message.

The VIP and PVE line protocol handlers use the LRC method.

CYCLIC REDUNDANCY CHECK (CRC)

The CRC method is block oriented. The system transmits data without appending a parity bit on every character. The system computes the CRC character(s) with special algorithms applied to the data to be checked, then appends these characters to the message.

Only the BSC line protocol handler uses the CRC method.

BSC BLOCK CHECK CHARACTER (BCC)

In ASCII transmission, the 8-bit block check character BCC is the result of an exclusive OR operation on all bits received, beginning with the first character following the STX, and ending with the ITB, ETB, or ETX control character. It is based on the polynomial X^8 + 1.

In EBCDIC transmission the block check character (BCC) is 16 bits, and is calculated by the system with the checking polynomial 1. + X^2 + X^{15} + X^{16} .

Time-Out Check

After sending a message, the transmitting device/computer waits for an acknowledgment from the receiving device. When there is no acknowledgment after a specific interval, the sender retransmits the message.

When there is no acknowledgment after a specified number of transmissions, the sender takes whatever action is programmed into the system.

Some procedures provide that the receiving device, on receipt of erroneous data, request retransmission from the sender, using the ACK/NAK response method. (See Appendix E for ACK/NAK definitions.) In this procedure, the sending device waits for an ACK or NAK response (or elapse of the time-out interval) before continuing the communication.

A-9

. \bigcirc

APPENDIX B

CHANGING TERMINAL'S FILE CHARACTERISTICS

Before an application is executed, the user can change the file characteristics of a terminal, e.g., line length or record size, detabbing, device type (input, output, etc.), with the system command STTY (set terminal characteristics) or with the \$STTY macro call.

This permits the user to modify those terminal characteristics established at system building.

Table B-1 shows examples of possible values for the devicespecific word and file-indicator word arguments of the STTY command and the \$STTY macro call (described in the <u>Commands</u> and System Service Macro Calls manuals, respectively).

The table indicates the following:

- Column 1 Device/file operational mode; for BSC, whether advanced or basic data transmission mode.
- Column 2 Input/output operations specified by the corresponding argument values; defined at the bottom of the table.
- Column 3 Argument values for the device-specific word (I_DVS) for the named device, in hexadecimal. See the appropriate device-specific IORB field value tables in Sections 7 through 10.
- Column 4 File-indicator word argument values, in hexadecimal.
- NOTE: For BSC, the leading control byte allows EOT, ETB/ ETX, and RVI control characters, and transparent mode, to be sent.

Table B-1. Possible Argument Values for STTY Command and \$STTY Macro Call

Device/File Operational Mode	Input/Output Operations (See Below)	Device-Specific Argument Value	File Indicator Argument Value
	For TTY		
Interactive	CR, LF, E, CB, PH, QA	0030	3180
Interactive	CR, LF, E, CB, QA	0031	3180
Interactive	CR, LF, E, PH, QA	0830	3180
Interactive	CR, LF, E, QA	0831	3180
Forms	PH, QA, PG	0000	3180
Forms	QA, PG	0C 0D	3180
Printer Emulation	CR, E, CB, PH, QA	0020	5180
Printer Emulation	CR, E, CB, QA	0021	5180
Data Entry	PH, QA, TR	0C08	3180
Data Entry	QA, TR	0C 0 9	3180
	For VIP		
Interactive	CR, LF, PO, CB, PH, QA, TM, PL	0110	3180
Interactive	CR, LF, PO, CB, QA, TM, PL	0111	3180
Interactive	CR, LF, PO, PH, QA, TM, PL	0910	3180
Interactive	CR, LF, PO, QA, TM, PL	0911	.3180
Forms	QA, PL	1909	5180
Forms	PH, QA, PL	1908	3180
Forms	QA, PL	1909	3180
Printer Emulation	CR, CB, PH, QA	0000	5180
Printer Emulation	CR, CB, QA	0001	5180
Receive-only printer	CR, CB, PH, QA	0000	5180
Receive-only printer	CR, CB, QA	0001	5180

B-2

Table B-1 (cont). Possible Argument Values for STTY Command and \$STTY Macro Call

Device/File Operational Mode	Input/Output Op (See Belo	perations (w)	Device-Specific Argument Value	File Indicator Argument Value	
	For PVE (polled VIP emulator)				
	CR, CB, QA		0001	3180	
	CR, CB, PH, QA, FC		0080	3180	
	I	for BSC			
Advanced	CB, PH, QA		0000	2980	
Advanced	CB, QA		0001	2980	
Basic	РН, QA, ЕТВ		0800	2980	
Basic	QA, ETB		0801	2980	
Basic	PH, QA, TR, ETB		0808	2980	
Basic	QA, TR, ETB		0809	2980	
CR - Carriage ret	urn	TR - Trans	sparent text		
LF - Line feed		FC - Hardw	ware function code:	s present	
E - Echo input c	haracters	PO - Page (bome	overflow recovery		
CB - Control byte					
PH - Physical dis		out on read	lignered		
QA - Queue abort		if no	onpolled line)	(Ignored	
PG - Page transfer (forms mode) ETB - Send ETB/ETX characte			S		

CB03

. .

APPENDIX C

RESOURCE CONTROL TABLE (RCT)

The resource control table (RCT) is the interface between the line protocol handler and its devices. For each line protocol handler and device, the system builds an RCT that contains the characteristics uniquely describing that device.

The RCT contains the physical data that the line protocol handler needs to interface with the device. The RCT also includes a work area where every line protocol handler can save whatever values, pointers, etc., that it needs.

1

Figure C-l shows the format of an RCT for communications devices. Table C-l defines the communications-specific items in the RCT. Table C-2 defines the terminal attributes and status field (R STS).

INDICATING THAT THE CONNECT/DISCONNECT FUNCTIONS ARE ALLOWED.

Figure C-1.

Format of Communications Resource Control Table (RCT)

Table C-l.	Communicati	ions-Specific	Items	in the	RCT

Item	Description	Use
R_STTS	Hardware status	Device hardware status; mapped into software status word I_ST of the (IORB) (see Table 6-3).
R_STS	Terminal attributes and status	See Table C-2 below.
R_MSG		Bits 0 through 7: Count of messages sent to and received from the termi- nal (maximum 256). For VIP devices, count includes certain control mes- sages exchanged on the line, thus does not represent the number of text messages. Bits 8 through F: Count of NAKs sent to and received from the termi- nal (maximum 256).

Table C-2. Terminal Attributes and Status Word R_STS of the RCT

·

Bit	Meaning When Bit Set On
0-9	Reserved for system and later use
A	Device disabled by the system
В	Input possible
с	Output possible
D	Device connected
E	Device physically enabled
F	Device logically enabled

C-3

APPENDIX D

SAMPLE APPLICATION PROGRAMS

COBOL PROGRAM EXAMPLES

*

COBOL TTY or VIP Application Example

The COBOL source program listing in Figure D-l is an example of an interactive application that involves either VIP or TTY devices.

This program (named CARCOM) processes commands entered from the operator terminal, and includes input/output operations to two communications terminals (either TTY or VIP). An input and output file is assigned to each device. The program uses the operator terminal for entering commands and for receiving error messages. Input/output processing messages are displayed on the line printer.

COMMANDS IN THE COBOL EXAMPLE

The program processes the following interactive commands received from the operator terminal. The command COMND is entered from either terminal 1 or terminal 2 (see "File Assignments" below).

Command	Program Action
OPEN filename	Opens the file
CLOSE filename	Closes the file
ROUTE	Routes terminal output to other terminals as input
GO	Exits command mode, looks for input from terminals
COMND (entered from terminal 1 or 2)	Exits terminal input mode; returns to operator terminal in command mode
STOP	Stops execution

FILE ASSIGNMENTS IN COBOL EXAMPLE

The program CARCOM uses the following file names and corresponding logical file numbers (LFNs):

File Name	LFN	Device
COMIIN	3	Input terminal l
COMIOT	4	Output terminal l
COM2IN	5	Input terminal 2
COM2OT	6	Output terminal 2
PRINTER	1	Printer

ERROR MESSAGES IN COBOL EXAMPLE

When appropriate, the COBOL example CARCOM displays these messages, in the formats:

1	(OPEN)			(COM1IN)			
	CLOSE	ERROR	FILE	COMIOT	ZZ	-	FILE	STATUS
ĺ	READ			COM2IN	}			
	WRITE			COM2OT]			

zz = File status code

Program actions resulting from these messages are:

OPEN or CLOSE message:

Returns control to the operator terminal

READ or WRITE message:

Tries the I/O operation four times; then close the file and return control to the operator terminal

STATUS CODES IN COBOL EXAMPLE

The program CARCOM includes checks that verify operation of COBOL error returns and information status returns. The check codes are:

- 9I For a read operation, indicates there is no data. For a write operation, indicates that the device is busy.
- 95 Record length error.

EXECUTION OF COBOL TTY OR VIP PROGRAM EXAMPLE

When the program begins to execute, the operator terminal displays the message:

TYPE COMMANDS, THEN GO.

At least two files on the same device must be open to proceed to the next level of command input. At this level, the program displays the message:

COMMANDS?

The operator may then enter commands to: (1) open files; (2) close files; (3) route (message switch); (4) activate the read/write loop; or (5) stop.

NOTE: Activating the read/write loop deactivates command input from the console and causes the application to check open terminals for input.

To return to the command level, the operator types COMND from an active terminal.

A typein from a remote terminal is echoed back to that terminal and displayed on the second terminal.

GCD86 Source	COROL PROGRAM
1	TDENTIFICATION DIVISION.
5	PROGRAM-TD. CARCOM.
. 3	* COBOL COMMUNICATIONS
4	ENVIRUNMENT DIVISION.
5	CUNFIGURATION SECTION. Source-computer - His-serves () Level - (
7	OBJECT_COMPUTED HTS-SERIES-OU LEVEL-6
, 8	*
ğ	TNPUT-OUTPUT SECTION.
10	FILE-CONTROL.
11	SELECT COMIIN
12	ASSIGN TO OC-MSD,
13	ORGANIZATION IS SEPUENTIAL WITH VLP,
14	ACCESS MODE TS SEQUENTIAL,
15	FILE STATUS IS IN1-STAT.
16	SELECT COMIDT
17	ASSIGN 10 DD-MSD,
10	ACCERR MODE TR REGUENTIAL
20	FILE STATUS TS SERVENTIAL,
21	SELECT COMPIN
22	ASSIGN IN DE-MSD,
23	ORGANIZATION IS SEQUENTIAL WITH VLR,
24	ACCESS MODE TS SEQUENTIAL,
25	FILE STATUS IS IN2-STAT.
26	SELECT COMPOT
27	ASSIGN TO OF-MSD,
28 30	ACCESS MODE IS SEMUENTIAL,
30	FILE STATUS IS OTDESTAT
31	SELECT PRINTELLE
32	ASSIGN TO DA-PRINIER,
33	ORGANIZATION IS SEDUFNTIAL,
34	ACCESS MODE TS SEQUENTIAL,
35	FILE STATUS TS PRI-STAT.
36	
5/	DATA DIVISION.
70 70	X FILE SECTION
40	
41	PLOCK CONTAINS 1 RECORDS,
42	LAPEL RECORDS ARE OMITTED.
43	*
44	01 TN1-REC PIC X(RO).
45	*
46	
47	HAREL PECODOS ADE OMITIEN
. 49	*
50	01 OUTCOM1-REC.
51	02 CTL1 PTC X.
52	02 OTI-REC PTC X(RO).
53	*
54	FD COMPTN
55	HLUCK CUNIAINS 1 RECORDS,
0 57	LANEL RELURUS ARE MMILLEN. Al TNO-DEC DIC V(RA)
58	A THE THE CALCER ALTON ALTON .
59	FD COM201
60	BLOCK CONTAINS 1 RECORDS,
61	LAREL RECORDS ARE OMITTED.

Figure D-1. COBOL TTY or VIP Application Example

CB03

62	01	
47	· · · 1	
03		
04		
65	*	
66	FD	PRINTFILE
67		BLOCK CONTAINS 1 RECORDS.
68		LABEL RECORDS ARE OMITTED
40	01	
70		
70	- ×	
/1	WOR	KJNG-STURAGE SECTION.
72	01	CTITLE.
73		02 FILLFR PIC XX VALUE SPACES.
74		02 FILLER PIC X(15) VALUE "COBOL COMM TEST".
75	01	CCMND1.
76		02 FILLER PIC XX VALUE SPACES.
77		02 FILLER PIC X(27) VALUE "TYPE FILE COMMANDS. THEN GO"
78		A FILER DIG YY VALUE SPACES
70	A 1	
90	01	
80		02 FILLER PIC XX VALUE SPACES.
*1		02 FILLER PIC X(8) VALUE "COMMAND?".
82 8	01	HEAD1.
A3		02 FILLER PIC X(52) VALUE SPACES.
84		02 FILLFR PIC X(15) VALUE "COBOL COMM TEST".
85		02 FILLER PIC X(53) VALUE SPACES.
85		02 FILLER PIC X(53) VALUE SPACES
86	01	
97		
~ / A A		THE FILLER FILL A(D) VALUE PRACES.
00		THE PILLER PIL XIZI) VALUE "**** INPUT MSG FILE: ".
MY		OZ HDR2FIL PIC X(6) VALUE SPACES.
90	01	HDR3.
91		02 FILLER PTC X(6) VALUE SPACES.
92		02 FILLFR PTC X(28) VALUE "**** OUTPUT MSG FTLF: "
93		02 HDR3FIL PIC X(6) VALUE SPACES.
94	01	I DADCOMP.
95	•	02 FILLER PIC XX VALUE SPACES
96		AD FILLER STR. AN THERE OF HERE
⁷⁰	••	VE FILEFR FIL ALIST VALUE EVAN CUMPLETE".
47	01	
48		n2 CMDELD.
99		03 GOLFLD PIC X(2) VALUE SPACES.
100		03 FILLFR PIC X(3) VALUE SPACES.
101		02 FILLFR PIC X VALUE SPACES.
102		02 FILFLD PIC X(6) VALUE SPACES.
103	01	CONINI REDEFINES CONTN.
104	-	02 FILLER PIC X(5)
105		
105	• •	
100	01	DONTATION DECENTRY VALUE ODACED
107		12 TEMPO PIL XXX VALUE SPACES.
108		VE FILLEN PIC XX VALUE SPACES.
109		02 DESCELD PIC X(20) VALUE SPACES.
110		02 FILLFR PIC XX VALUE SPACES.
111		02 NTYRFD PIC 9999 VALUE ZFRO.
112		02 FILLER PIC X(30) VALUE SPACES.
113	01	TN1-STAT PTC XX VALUE SPACES
114	01	ATT-STAT PTC XX VALUE SPACES
115	01	
112	1	THE THE AN VALUE SPACES.
110	"1	THE STAT FIL XX VALUE SPACES.
117	01	PRI-STAT PIC XX VALUE SPACES.
118	01	RDR-STAT PTC XX VALUE SPACES.
119	01	JNVF-STAT PTC XX VALUE SPACES.
120	*	
121	77	RKFY-I PIC 999 VALUE ZFRO.
122	77	DO-TT PTC XX VALUE "CO"
123	77	
124	77	
125	77	ULUSTIE FIU AUDI VALUE "ULUGE". 10405 die V(4) Value "ULUGE".
142	11	LUMUR MIG X(4) VALUR "LNAD".
Figure	D-1	(cont). COBOL TTY or VIP Application Example
-		•••••••••••••••••••••••••••••••••••••••

D-5

CB03

Figure D-1 (cont). COBOL TTY or VIP Application Example

VALUE "ENF". FNDER PTC X(4) 176 77 VALUE "COMIIN". X(6) 127 77 TN1 PTC 77 OT 1 PTC X(6) VALUE "COMIDT". 128 VALUE "COMPIN". 129 77 IN2 PTC X(6) VALUE "COMPOT". X(6) 130 77 012 PTC 77 RDRF PIC X(6) VALUE "CAPDIN". 131 PIC VALUE "INVETE". 132 77 TNVF X(6) WHO-ORD PTC 9 133 77 VALUE ZERO. 77 WHO-ERR PTC 9 VALUE ZERO. 134 PIC 99 VALUE ZERO. 135 77 FILCOUNT RTFFLG PIC 99 VALUE ZERO. 77 136 137 77 ROUTE PTC X(5) VALUE "ROUTE". VALUE "COMND". PIC 138 77 COMDNM X(5) KEYER PIC VALUE "RELATIVE KEY ". 77 X(13) 139 VALUE "INVALTD KEY= ". 140 77 RDKYNM PIC x(13) VALUE "O ". PIC ORDERCMD 141 77 XX VALIE "II " HPDATCMD PIC XX 142 77 VALHE "D ". DISPITM PIC 143 77 XХ X VALUE "A". 144 77 CCCHAR PIC NOTIFY PIC 9999 VALIE 9999. 145 77 PTC 99 VALUE 7ERO. 146 77 SWITCHI VALUE 7ERO. 99 PTC 147 77 SWITCH2 VALUE ZERA. 148 77 TNVSWTCH PIC 99 149 77 TRNSWTCH PIC 99 VALUE ZERO. 99 PTC VALUE ZERO. 150 77 STATTNI PTC 151 77 STATOTI 99 VALUE 7ERO. 77 PTC 99 VALUE ZERO. 152 STATIN2 99 VALUE ZERO. PIC 153 77 STATOT2 VALUE ZERO. 154 77 FRSUM1TN PIC 99 155 FRSUM101 PIC 99 VALUE ZERO. 77 PIC 99 VALHE ZERO. 156 77 FRSUM2TN 90 157 77 FRSUM201 PIC VALUE ZERO. 158 77 SUM9T1 PIC 9(4) VALUE ZERO. PIC 9(4) VALUE ZERO. 159 77 SUM912 160 77 OTYSUB PIC 59999 VALUE 7ERO. 161 77 NMCKRSLT PIC 9 VALUE 7ERO. MAXNUM PIC 9999 VALUE ZERO. 77 162 MAXITMNO PIC 999 VALUE 200. 163 77 9999 VALUE 1000. MAXQTY PIC 77 164 77 CHKNUM PIC 9999 VALUE ZERO. 165 166 167 01 INSPECTI. TNCMD PTC Y(5) VALUE SPACES. 02 168 FILLER PIC X(75) VALUE SPACES. 169 02 170 01 NPNSPL. FILLFR 171 PIC XX VALUE SPACES. 02 PIC 172 02 OFLNAM X(6) VALUE SPACES. PIC XX VALUE SPACES. FILLFR 173 05 02 FILLFR PIC X(6) VALUE "OPFNFD". 174 OPERDSPL. 175 01 FILLER PIC XX VALUE SPACES. 176 02 PIC X(19) VALUE "OPEN FRROR FILE: ". 177 02 FILLFR X(6) VALUE SPACES. PIC 178 ٥2 OFLNER PIC 02 FILLER X(6) VALUE SPACES. 179 180 0.5 FILLFR JIG. X(8) VALUE "STATUS= ". PIC KEYERR XX VALUE SPACES. 181 02 182 PDFRMSG. 01 FILLFR PIC XX VALUE SPACES. 183 02 X(19) VALUE "READ FRRUR FILE: ". 184 FILLFR PIC 02 RDFRFII. PTC X(6) VALUE SPACES. 185 02 PIC X(6) VALUE SPACES. 186 02 FILLFR FILLER PIC VALUE "STATUS= ". 187 05 X(8) RDERSTAT PIC XX VALUE SPACES. 188 02 WRFRMSG. 189 01

FILLER X(19) VALUE "WPITE ERROR FILE: ". 05 PIC WRERFIL. PTC X(6) VALUE SPACES. 02 VALUE SPACES. FILLER PIC X(6) 05 VALUE "STATUS= ". FILLER PIC 02 X(8) VALUE SPACES. 02 WRERSTAT PIC XX CLOSPL. 01 PIC XX VALUE SPACES. FILLFR 02 X(6) VALHE SPACES. PIC 02 CELNAM FILLFR PIC XX VALUE SPACES. 02 X(6) VALUE "CLOSED". ыlс FILLER 02 CLERMSG. 01 FILLFR XX VALUE SPACES. 02 ٥IC X(19) VALUE "CLOSE ERROR FILE: " FILLER PIC 02 CELNER PIC X(6) VALUE SPACES. 02 PIC VALUE SPACES. 02 FILLER X(6) X(8) VALUE "STATUS= ". FILLFR PIC ν5 CKEYERR PTC YX VALUE SPACES. 02 01 RANFTL. 02 PIC FILLFR XY VALUE SPACES. X(16) VALUE "ILLEGAL ETLENAME". PIC ٥٥ FILLER 01 RANCMD. 02 FILLER PIC XX VALUE SPACES. X(15) VALUE "ILLEGAL COMMAND". FILLER PIC 02 NOTESUM. 01 02 FILLFR PIC XX VALUE SPACES. X(6) VALUE "FILE: ". FILLFR PIC 02 FRR9T PIC X(A) VALUE SPACES. 02 FILLFR PÍr X(6) VALUE SPACES. ٥٥ X(10) VALUE "STATUS= 91". FILLFR PIC 02 01 STOPCOP. XX VALUE SPACES. FILLER PIC 02 X(10) VALUE "STOP COPOL". 02 FILLFR PIC KEY-MSG. 01 02 FILLER PIC X(16) VALUE "FILE KEY STATUS ". RAD-KEY PIC XX VALUE SPACES. 02 02 FILLFR PTC X(12) VALUE " TEST FAILED". PROCEDURE DIVISION. PHEADS. MOVE CCCHAR TO CTL1. MOVE CCCHAR TO CTL2. DISPLAY CTITLE. OPEN OUTPUT PRINTFILF. MOVE HEAD1 TO PRT-REC. WRITE PRT-REC AFTER ADVANCING PAGE. PCMD1. DISPLAY COMNDI. MOVE SPACES TO CONTN. ACCEPT CONTN. TE CMDELD IS EQUAL TO OPNETL GO TO OPENIT. TE CMDELD TS EQUAL TO CLOSET. GO. TO CLOSET. DISPLAY BADCMD. NO TO POMDI. PCMD2. DISPLAY COMND2. MOVE SPACES TO CONTN. ACCEPT CONTN. TE CMDELD TS EQUAL TO OPNETL ON TO OPENIT. TE CMDELD TS EQUAL TO CLEETL GO TO CLOSIT. TE CMDELD TS EQUAL TO ROUTE GO TO SETROUTE. TE CMOELD TS EQUAL TO DO-IT GO TO READI.

FILLFR

02

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

506

207

208

209

210

211

212

213

214

215

216

217

218

219 220

221

272

223

224

225

276 277

228 229 230

231

232 233

234

235

236 237

238 239

240 241

242

243

244 245

246

247 248

249

250

251

252

PIC

XX VALUE SPACES.

Figure D-1 (cont). COBOL TTY or VIP Application Example

CB03

253	DISPLAY BADCMD.
254	GO TO PEMDA.
274	
273	TIPENTI .
256	TE ETLELDI IS EQUAL TO INI GO TO OPINI.
367	TE ETLELDI IS EDUAL TO OTA CO TO OPOTA
231	
258	TE FILFLOI IS EQUAL TO IN2 GO TO UPIM2.
259	TF FTLFLD1 IS FQUAL TO OT2 GO #0 OPOT2.
260	DISPLAY BADETL.
261	TE ETI COUNT OPEATED THAN 1 CO TO DOMDO
201	TO TO DONNA OR ALL THAN INDU TO TOUR 2.
202	GU TU PLMD1.
263	OPINI.
264	OPEN INPUT COMIIN.
265	TE TN1-STAT = "00" OP TN1-STAT = "95":
265	
200	MOVE 1 TO STATINT;
267	MOVE 1 TO SWITCHIS
268	MOVE IN1 TO OFLNAM;
269	GO TO OPMSG
270	
270	MOVE INI IN OFFICER .
271	MOVE IN1-STAT TO KEYERR.
272	GO TO OPERMG.
273	OPOT1_
27/1	OPEN OUTPUT COMICT
279	
213	1 + 0 + 1 = 5 + 4 + 2 = 0 + 0 + 0 + 0 + 1 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2
276	MOVE 1 TO STATUTI;
271	MOVE OT1 TO OFLNAM:
278	GD TO OPMSG.
279	MOVE OT 1 TO DELNER
200	
200	MOVE UTINSTATI TO RETERM.
281	GO TO OPERMG.
282	OPIN2.
283	OPEN INPUT COMPIN.
284	TE INDESTAT = " (A) OP TNDESTAT = "95":
295	
203	
540	MOVE 1 TO SWITCH2;
287	MOVE IN2 TO OFLNAM;
288	GO TO OPMSG.
289	MOVE IN2 TO DELNER.
200	MOVE INC-STAT TO KEYERD
2 - 0	
241	GU TU UPFRMG.
292	npnt2.
293	OPEN OUTPUT COM201.
294	TE OT2-STAT = "00" OP OT2-STAT = "95";
205	MOVE 1 TO STATUTO
273	
290	MUVE UIZ III OFINAM:
297	GO TO OPMSG.
298	MOVE OT2 TO OFLNER.
299	MOVE OT2-STAT TO KEYERR.
300	CO TO OPERMG
300	
501	
302	DISPLAY OPPSPL.
303	ADD 1 TO FTLCOUNT.
304	TE ETLCOUNT GREATER THAN 1 GO TO POMD2.
205	
303	
506	UPP KMG.
307	DISPLAY OPERDSPL.
308	TE ETLCOUNT GREATER THAN 1 GO TO PCMD2.
309	GO TO POMDI.
210	
510	
511	TE FILFLO IS EQUAL TO INT GO TO CLINI.
312	TE ETLELD IS EQUAL TO OTH GO TO CLOTH.
313	TE ETLELD IS EQUAL TO THE GO TO CLINE.
314	TE ETLELD IS EQUAL TO OTO GO TO CLOTO
240	DISDIAN BADOMO
212	UIDELAT DAVENU.

Figure D-1 (cont). COBOL TTY or VIP Application Example

CB03

316	TE ETLECTINT GREATER THAN 1 GO TO PEMP2.
317	SO TO PCMD1.
318	
319	CLOSE COMITN.
124	
320	$1 + 1 \times 1 + 5 \times 1 + 2 = 0 \times 0 \times 1 + 2 \times 1 + $
321	MOVE ZERO TO SWITCHIE
322	MOVE ZERO TO STATINI:
323	MOVE INT TO CELNAM;
324	GO TO CLOPMSC.
325	MOVE IN1 TO CELNER.
326	MOVE INI-STAT TO CKEYERR.
327	GO TO COPERMG.
328	FLOTI.
329	LUSE COMINT.
330	TF OT1-STAT = "OO";
331	MOVE ZERN TO STATUTI:
332	MOVE OT1 TO CELNAM;
333	GO TO CLOPMSG.
334	MOVE OT TT CFLNER.
335	MOVE OT1-STAT TO CKEYERR.
336	GO TO COPERMG.
337	CLIN2.
338	CLOSE COM2TN.
339	TF IN2-STAT = "00";
340	MOVE ZFRO TO SWITCH2;
341	MOVE ZFRO TO STATIN2;
342	MOVE IN2 TO CELNAME
343	GO TO CLOPMSG.
344	MOVE IN2 TO CELNER.
345	MOVE IN2-STAT TO CKEYERR.
346	ED TO COPERMG.
347	CL012.
348	CLOSE COM201.
349	TF OT2-STAT = "ON";
350	MOVE ZERO TO STATUT2;
351	MOVE OT2 TO CEINAMI
352	RO TO CLOPMSE.
353	MOVE OTZ TO CEINER.
354	MOVE OTZ-STAT TO CKEYFPR.
355	CO TO COPERMO.
356	CLOPMSG.
357	DISPLAY CLOSPL.
358	SURTPACT 1 FROM FILCOUNT.
359	TE ETLEUINT GREATEP THAN 1 GO TO PEMD2.
360	CO TO PCMD1.
361	COPERMG.
362	NISPLAY CLERMSG.
363	TE ETLOUINT GREATER THAN 1 GO TO POMP2.
364	CO TO PCMD1.
365	SETROUTE.
366	TF STATIN1 = 1 AND STATUT2 = 1 GN TO DKSF1.
367	TF STATIN2 = 1 AND STATUT1 = 1 GO TO OKSFL.
368	
369	
370	
5/1	MUVE 1 10 RIFFLG.
572	GU TH PCMUZ.
5/5	MEADI.
574	IF FILTUINI = 7ERU GO IU PEMP1.
575	TE SWLTCHT = ZERN GU IN WEAD?.
5/6	MUVE SPACES TO INTERFC.
5//	MEAD COMTINAT END GO TO DONFIT.
578	TE IMIESTAT # "UN" GO TO GOUDRI.
5/9	14 TAT-2141 = "41";
Figure	D-1 (cont). COBOL TTY or VIP Application Example
-	

A State
380	CO TO READ?.
381	MOVE ZERO TU SUMOII.
382	MOVE IN1-STAT TO RDERSTAT.
383	MOVE IN1 TO PDERFIL.
384	DISPLAY RDERMSG
3.4	ADD 1 TO ERSUMITA
386	TE EPSUMI IN NOT LESS IMAN 4 GO TO CLINI.
3.97	DEVID
288	TE SWITCH2 = ZERO GO TO PEADL.
389	MOVE SPACES TO INZERFC.
390	PEAD COMPIN AT END GO TO DONELT.
391	TE IN2-STAT = "00" GO TO GOODR2.
392	TE IN2-STAT = "9T":
292	GO TO PEAD1.
394	MOVE ZERO TO SUMPLE.
195	MOVE INZ-STAT TO RDERSTAT.
396	MOVE INZ TO ROFRETL.
397	DISPLAY RDERMSG.
398	ADD 1 TO ERSUMPTN
399	TE EPSHMALN NOT LESS THAN 11 GO TO CLINA.
400	GO TO READI.
401	G000R1.
402	MOVE ZERO TO ERSUMITIN.
403	MOVE ZERN TO SUMPIT.
404	PERFORM PRTINI THRU CHK9TPT1.
405	MOVE IN1-REC TO INSPECTI.
406	TE INCHO IS EQUAL TO COMONY OU TO POMOP.
407	TE RTEFLG TS NOT EQUAL TO PERO;
408	MOVE IN1-RFC TO OT2-PEC;
409	GO TO WRITE2.
410	MOVE IN1-RFC TO OT1-REC.
411	GO TO WRTTF1.
412	PRTIN1.
413	MOVE IN1 TO HDP2FIL.
414	MOVE HDRP TO PRT-RFC.
415	WRITE PRI-PEC.
416	MOVE SPACES TO PRI-RFC.
417	MOVE IN1-RFC TO PRT-PEC.
418	CHK9TPT1.
419	WRITE PRI-REC.
420	TF PPI-STAT = "91" GT TO CHROIPIT.
421	WRITE OUTCOME DEC
422	WRITE OUTCOMPERED.
425	IF UTA-STAT - "UT" GU TU WETTUR.
424	IF ULLESTAL = "91" G" TU PALIEL. Nove otlestat to woldstat
425	MOVE OTISTATIO WEEPSTRI.
420	NISDLAY WDEDMSC
429	
429	TE FREIMANT NOT LESS THAN 4 CO TO CLOTA.
430	ON TO READ?
431	WRT10K.
432	MOVE ZERO TO ERSUMIDT.
433	PERFORM PRIOTI THEIL CHESTPOL.
434	GO TO READ?.
435	PRTOT1.
436	MOVE OT1 TO HDR3FIL.
436 437	MOVE OT1 TO HDR3FIL. Move Hdr3 to PPI-rfc.
436 437 438	MOVE OT1 TO HDR3FIL. Move Hdr3 to PPI-RFC. Wrttf Prt-Pec.
436 437 438 439	MOVE OT1 TO HDR3FIL. Move HDR3 to PPI-RFC. Wrttf Prt-PEC. Move spaces to Prt-RFC.
436 437 438 439 440	MOVE OT1 TO HDR3FIL. MOVE HDR3 TO PPI-RFC. WRTIF PRT-PEC. MOVE SPACES TO PRT-RFC. MOVE OT1-RFC TO PRT-PEC.
436 437 438 439 440 441	MOVE OT1 TO HDR3FIL. MOVE HDR3 TO PPT-RFC. WRTTF PRT-PEC. MOVE SPACES TO PRT-RFC. MOVE OT1-RFC TO PRT-PEC. CHK9TPO1.
436 437 438 439 440 441 442	MOVE OT1 TO HDR3FIL. MOVE HDR3 TO PPI-RFC. WRTTF PRT-PEC. MOVE SPACES TO PRT-RFC. MOVE OT1-RFC TO PRT-PEC. CHK9TPD1. WRTTF PRT-PEC.

Figure D-1 (cont). COBOL TTY or VIP Application Program

COUD55. 444 445 MOVE ZERO TO EPSUMPIN. MOVE ZERA TO SUMAIP. 446 447 PERFORM PRTINS THRU CHROTPTS. 448 MOVE IN2-REC TO INSPECTI. TE INCMD IS FOUNT TO COMDNM GO TO PCMD2. 449 450 TE RTEFLG IS NOT EQUAL TO PERO: 451 MOVE IN2-RFC TO OTI-PEC; 452 GO TO WRITEL. 453 MOVE IN2-RFC TO OT2-REC. 454 GO TO WRITES. 455 PRTIN2. 456 MOVE INS TO HDRSEIL. MOVE HORP TO PRT-RFC. WRTTF PRT-REC. 457 458 MOVE SPACES TO PRT-RFC. 459 MOVE IN2-RFC TO PRT-REC. 460 CHKOTPT2. 461 WRTTE PRT-REC. 462 TE PRT-STAT = "9T" GO TO CHK9IPIP. 463 WRTTF2. 464 WRITE NUTCOMP-PEC. 465 TE OT2-STAT = "00" GO TO WRT20K. 466 TF OT2-STAT = "9T" GO TO WRITE?. 467 MOVE OT2-STAT TO WREPSTAT. 468 MOVE OTE TO WRERFIL. DISPLAY WRERMSG. 469 470 471 ADD 1 TO ERSUMPOT. 472 TE ERSHMPOT NOT LESS THAN A GO TO CLOTP. 473 RO TO READI. 474 WRT20K. 475 MOVE ZERO TO EPSHMPOT. PEPFORM PRTOTE THRU CHK9TPOL. 476 FO TO READI. 477 478 PRTOT2. 479 MOVE OT? IN HDP3FIL. MOVE HORY TO PRI-REC. WRITE PRI-REC. 480 481 MOVE SPACES TO PRI-REC. 482 483 MOVE OTZ-REC IN PRT-REC. 484 CHK9TPO2. WRTIF PRT-PEC. 485 486 TE PRI-STAT = "91" GO TO CHKOIPOP. POMETT. 487 488 DISPLAY STOPFOR. 489 STOP RUN. END COROL 490 NO DIAGNOSTICS GCOS6 COROL FTLE MAP LINF LFN IFN 03 0r-MSD COMIIN 0103 80 11 16 04 0D-MSD COMIDT 01FR 81 05 OF-MSD 0224 CUWSIN 80 21 0F-MSD COMPOT 0240 26 06 81 0A-PRINTEP 31 01 PRINTFILE 0276 120

Figure D-1 (cont). COBOL TTY or VIP Application Example

D-11

COBOL BSC Application Example

The source program listing in Figure D-2 is an example of a COBOL communications program to test BSC file transmission by:

- 1. Generating records
- 2. Transmitting the records over one communication line
- 3. Reading them back over another communication line for comparison

The program name is BSCTST. When executed, it displays the following error messages, as appropriate:

Error format 1:

BSC	TEST	FILE-	INPUT OUTPUT	PROBLEM-	OPEN CLOSE READ WRITE	STATUS	-	ZZ

zz=9I - Device busy zz=00 - Program may read or write

Program action: Issues reads and writes four times; then the file is closed and the program terminated.

Error format 2:

BSC - TEST - NO MATCH RECORD nnnn

Program action: Reading application does not receive the expected record; records out of sequence or garbled.

File is closed and the program terminated.

GENS6 SOURE	Г () Р () I Р К Л (Р & М
1	TDENTIFICATION DIVISIUN.
5	PROGPAM-TD. HSCTST.
3	* THIS TS A PROGRAM WHICH TESTS HELE FLEE TRANSMISSION -
4	A IT POFS SO BY GENERATING PERUPOS , SENDING THEY DUIT
5	* AND HPINGING THEM HACK IN FOR COMPARISON
6	* FOR A MORE DETATLED DESCRITION DEFED TO THE GODS A.1
7	* TEST SPECTETCATTON FOR COROL COMMUNICATTONS
в	ENVIPONMENT NIVISION.
9	CONFTGURATION SECTION.
1.0	SUMMER-COMPUTED. HTS-SEMTED-AU LEVEL-A.
11	MR.TECT-COMPUTER. HTS-SERTER-KU LEVEL-K.
12	•
13	TNPUT-OUTPHT SECTION.
14	FILE-CONTROL.
15	•
16	SELECT T-UNTPUT
17	ASSIGN TO OI,
18	OKCAMIZATION IS SEQUENTIAL ATTH VLD,
19	ACTESS IS SEQUENTIAL,
20	FILE STATUS TS LUI-STAT.
21	SELECT 1-INFUT
22	ASSIGN TO A0.
25	NEGANIZATION 15 SECUENTIAL WITH VER.
24	ACTESS IS SEQUENTIAL.
25	F11E STATUS 15 14-STAL.
26	
1 4	DATA DIVISTUM.
28	
79	FILE SECTION.
50 7 -	
51 7 ()	MLUCK DOMINING 1 RECORDS,
77	IAMEL PERUPUS ARE STANDAPU.
<u>כ</u> ר ייד	01 101-4FL P[L 4(80).
14 1 5	- F ₁) T=Ti ₄ PUT
36	REDEK CONTAINS & RECORDS.
27	
ZØ	01 TN-RFC PTC x(A0)
20	k som noger i se kildinge k
40	WUPKING-SIDRAGE SECITUM
41	* · · · · · · · · · · · · · · · · · · ·
42	77 TN-STAT PIC YX VALUE SPACES.
43	77 OUT-STAT PLC XX VALUE SPACES.
14	77 MAX+CNT PTC 9999 VALUE 1001.
45	77 W-TNPUT PTC X(6) VALUE "TNPUT ".
46	77 W-DUTPUT PJC X(6) VALUE "OUTPUT".
47	77 W-NPEN PICY(5) VALUE "OPEN ".
48	77 W-PLOSE PTC X15) VALUE "PLOSE".
49	77 W-READ PIC X(5) VALUE "READ ".
50	77 W-WRTTE PTC X(S) VALUE "WRTTE".
51	01 TESI-RFC.
52	02 FILLER PIC X(12) VALHE "TEST RECORD ".
53	02 TR-CNT PIC 9999 VALUE 7EPO.
54	02 FILLER PIC X(54) VALUE SPACES.
55	02 FILLER PTC X(10) VALUE "*******".
56	01 FOF-REC.
57	NP FILLEP PIC Y(3) VALUE "FOF".
58	102 FILLER PIC X(77) VALUE SPACES.
59	01 FR-MSG1.
	Figure D-2 COBOL BSC Application Example

D-13

VALUE "BSC TEST- FILE- ". 02 FILLER PTC X(16) 60 02 F-FIIE P]L Y(A) VALUE SPACES. 61 PTC X(10) VALUE " PRUBLEM- ". FILLER 62 02 02 F-TYPE PTC X(5) VALUE SPACES. 02 FTLLER PTC X(9) VALUE "STATUS- ". 63 FTILFR blu X(o) 64 F-SIAT VALUE SPACES. PTC XY 65 02 66 01 FR-MSG2. N2 FILER PIC Y(28) VALUE "RSC TEST- NU MATCH, PECORD- ". 67 BAD-PEC pjr 0(4) VALUE ZEPUES. 02 68 FUT-MSR. 69 01 N2 FTELEP PIR X(9) VALUE "RSR FUT- ". 70 N2 FINAL-CAT MIC 9(4) VALUE ZEPOES. 71 NO FILIER PIR Y (20) VALUE " PERUPOS TRANSMITTED". 72 73 PROCEDHRE DIVISION. 74 75 HSEKFEP. 76 MOVE ZERNES TO TRACNT. OPEN-UP. 77 78 **NPEN INPUT T-INPUT.** TE IN-STAT NOT LOUAL "OU"; MOVE W-OPEN TO E-TYPE: 79 80 RU IN TN-FPR. NPEN UNTPUT T-NUTPHT. A 1 TE UNT-STAT NOT FUNAL "ON": MOVE N-OPEN TO E-TYPE; 82 GO IN NUT-FHP. A 3 84 85 MASIFK. 86 ADD 1 TO IR-CHT. 87 AB MUVE IFST-RED TO OUT-REC. 89 PEAD1. READ T-IMPHT AT END; MOVE TR-CNT TO FINAL-CNT; 90 ۹1 NISPLAY FOR-MSR; GO TO CLUSE-UP. TE IN-SIAT = "OU"; CO.TO COMPARE. 92 TH IN-STAT = "91"; 60 TO WPITH1. 03 94 MAVE W-READ TO E-IMPE. GU IN TH-ERK. ٥5 96 WRTTF1. WRITE OUT AFEC. 97 TH UNT-STAT = "UN": GU IN COMPARE. 98 TE DUT-STAT = "91": OG TO WRITET. 99 MINE N- NPITE 10 F-TYPE. 100 CI TO OUT-FHR. 101 COMPARE. 102 TE IN-PER TS EDUAL IN TEST-REL: GO IN MASIEW. 103 TE (011-REC = EDE-REC: 50 10 010552. 104 MUVE TRACKT TO BAD-RED. 105 MISHIAY FRANSUS. 106 CH IN STOR-FC. 107 108 109 110 TH-FPH. MOVE N-IMPHIT IN F-FILE. 111 MOVE IN-STAT TO FASTAT. 112 CO TO OP-MSG. 115 NUT-FRP. 114 MOVE A-OUTPOT TO E-FTLE. 115 MUVE UNI-STAT TO E-STAT. 116 NP-MSG. 117 DISPLAY FR-MSG1. 118 119 RU TO STOP-PR. 120 CIOSE-UP. 121 122 LUNSE T-TNPUT.

Figure D-2 (cont). COBOL BSC Application Example

123	TE IN-STAT IS NOT FUHAL "ON": MO	VE W-CLUSE TO F-TYPES
124	GO TO TN-FRR.	
125	CO TO STOP-PC.	
126	rlnsf?.	
127	CLOSE T-OUTPUT.	
128	TE OUT-STAT IS NOT EQUAL "OU"; M	OVE WHOLDSE TU HHIVPE;
129	GO TO OUT-FRP.	
130	GU-TO MASTER.	
131		
132	STOP-PC.	
133	STOP RUN.	
134	END CUPUL.	
NO DTAGNOSTICS		
GC056 C0801		
FTLF MAP		
LINE LEN IEN		
16 09 UT-S	1-011PUT	UNYE HO
21 10 A0-M	SD T-INPIT	00C7 H0

Figure D-2 (cont). COBOL BSC Application Example

FORTRAN Application Example for TTY

The FORTRAN source program (program name FORCL4) listing shown in Figure D-3 is an example of a FORTRAN application program involving a TTY remote device.

The program processes eight message groups before terminating. It first issues four data messages to the remote terminal and to the operator terminal. It issues the write requests from alternate data buffers to ascertain the status of the interfaces among the file system, FORTRAN Compiler, and the communications subsystem. When the four initial message groups are complete, the program requests input data from the operator terminal.

After the operator enters a message, the operator terminal displays the message and an acknowledgment message. When the fourth message is received, the application program terminates.

Every input message, which is preceded by a blank or NUL character that is not displayed, may have up to 59 ASCII characters.

The system continually monitors the status register, displaying error condition codes or status messages on the operator terminal. For example, a condition indicating no data available (buffer busy) at the remote device, lasting more than 20 seconds, causes a status return code of 516_{10} . The program continues the read attempt since that status is not an error condition. The read statement is issued only after a status code 0 ₁₀ is returned to indicate that data is available (buffer not busy).

```
1977/04/20 1540:00.3
                                                                          PAGE: 02
FORCL4
            GCOS6-1 FORTRAN REV: 0101
                                           D
   44 C
           OUTPUT MESSAGES TO REMOTE DEVICE (LFN 9)
   45 C
           4 MESSAGES ISSUED TO DEVICE AND LFN4
   46 C
   47 C
           FROM ALTERNATING BUFFERS
   48 C
       70
             WRITE(9,80)CW3,N
   49
             FORMAT(1X, A48, I2)
   50
       80
             WRITE(4,80)CW3,N
   51
             GO TO 20
   52
   53
        90
             WRITE(9,80)CW4,N
             WRITE(4,80)CW4,N
   54
             IF(N .EQ. 4) GO TO 15
   55
   56
             GO TO 20
   57 C
           INPUT FROM REMOTE DEVICE (LFN A)
   58 C
           4 MESSAGES ALLOWED
   59 C
   60 C
                SPACE 1 CHARACTER AND TYPE UP TO 59 CHARACTERS
   61 C
                FOLLOWED BY A CARRIAGE RETURN
   65 C
                TYPE SECOND MESSAGE WHEN DEVICE
                                                    TYPES
   63 C
                "MESSAGE X RECD"
   64 C
   65 C
             READ(8,110)CR1
   66
       100
             FORMAT(1X,60A1)
   67
       110
             WRITE(4,110)CR1
   68
   69
        112
             CALL ZESTOT(9, ISTAT)
             IF(ISTAT .FQ. 0)GO TO 114
   70
   71
             GO TO 112
       114
             WRITE(9,115)N
   72
             FORMAT(1X, 'MESSAGE ', T2, ' RECD')
   73
        115
   74
             IF(N .NE. 8)G0 T0 20
             GO TO 130
   75
             READ(8,110)CR2
   76
        120
             WRITE(4,110)CR2
   77
             CALL ZESTOT(9, ISTAT)
   78
        121 -
   79
             IF(ISTAT .EQ. 0)G0 TO 125
   80
             GO TO 121
   81
        125 WRITE(9,115)N
             IF(N .NE. 8)GO TO 20
   82
   83 C
      C CLOSE UNITS AND EXIT
   84
   85 C
            CALL ZESTOT(9, ISTAT)
   86
       130
             JF(ISTAT .FQ. 0) GO TO 140
   87
             GO TO 130
   88
   89
        140
            CLOSE(UNIT=8)
             CLOSE (UNIT=9)
   90
   91
             STOP
   92
             END
        DIAGNOSTICS
      0
```

Figure D-3. FORTRAN Application Example for TTY

D-17

ORCL4	GC056-1 FORTRAN REV: 0101 D 1977/04/20 1540:00.3 PAGE: 01
1 C	FORTRAN COMMUNICATION PROGRAM - FORCL4
2 C	
5 C -	ILLUSIRATES USE OF ZESTIN AND ZESTUI
4 L 5 C	WRITES // MESSACES TO THE OPERATOR'S TERMINAL (LEN'//)
6 C	AND SEND TO A REMOTE DEVICE (TE TTY) ON EN O VIA MICH
7 0	FOLLOWED BY A READ OF 4 MESSAGES FROM THE SAME REMOTE
8 Č	DEVICE (IE, TTY) ON LEN 8. ALL MESSAGES ARE DISPLAYED
9 C	ON THE OPERATOR'S CONSOLE, AND RECEIVED MESSAGES ARE
10 C	ACKNOWLEDGED ON THE REMOTE DEVICE
11 C	DEVICE STATUS IS REPORTED USING,
12 C	CALL ZESTIN(I,J) FOR INPUT, AND
13 C	CALL ZFSTOT(I,J) FOR OUTPUT.
14 C	
15	PROGRAM FÖRCL4
16	CHARACTER *48 CW3,CW4
17	CHARACTER CR1(60), CR2(60)
18	DATA CW3/'THIS IS COMM. OUTPUT TO THE TTY - MESSAGE NUMBER'/
19 C	
20	J = 0
21	
22	
2/1	
25	
26	
27 15	
28 0	
29 C	CHECK COMMUNICATION DEVICE STATUS
30 C	USING ZFSTIN OR ZFSTOT ROUTINE
31 C	
35 50	N = N + 1
33 25	J = 0
34 30	IF(K.EQ.8)CALL ZFSTIN(K,ISTAT)
35	JF(K.FQ.9)CALL ZFSTOT(K,ISTAT)
36	IF(ISTAT .EQ. 0) GO TO (70,90,70,90,100,120,100,120),N
37	IF(TSTAT - 516)50,40,50
38 40	J = J + 1
59	1 + (J - LT - 10000) = 00 = 10 = 50
40 50	WRITEL470UJN/13TAT Format/49 Lotatie DTN MESSACE NO 1 TO 1 STATUS TVDET T#1
41 00	FURMALLIAN DIALUD KIN PEDDAUG NU. $PLEP$ DIALUD LIFE $PLEP$
46 .	IT LIDIAT .EW. JUJ UU U 23

F

Figure D-3 (cont). FORTRAN Application Example for TTY

Assembly Language Example for TTY or VIP Using Physical I/O

Figure D-4 shows an assembly language source program (SENDER), using Physical I/O, that tests TTY or VIP terminals by sending character strings to the terminals.

The user enters SENDER 07 to test a TTY terminal, or SENDER 0A to test a VIP terminal. The values 07 and 0A are the logical resource numbers (LRNs) of the TTY and VIP, respectively.

The program will halt on the first instruction, and will continue when the Execute button is pressed.

	title	sender	
*			
	libm	exec_lib	
	xdef	sender	
*			
sender	hlt		
	ldv	\$r3,0	\$r3 <- default lrn
	ldr	\$r7+\$b7	\$r7 <- parameter count
	CmV	\$17.2	test parameter count < 2
	bl	>+\$a	
	ldb	\$b6+\$b7	\$b6 <- a(p1 char count)
	ldr	\$r6+\$b6	\$r6 <- p1 char count
	ldb	\$b5,+\$b7	\$b5 <- a(p2 char count).
	ldr	\$r5++\$b5	\$r5 <- p2 char count
	ldv	\$r1,2	\$ r1 <- 2 = invalid lrn
	C m v	\$15,2	test char count > 2
	bg	exit	
	ldv	sr1,0	\$r1 <- 0
	LLh	\$r1,\$b5,\$r1	\$r1 <- 1st char (ascii)
	ldh	\$r3, <tab.\$r1< td=""><td>\$r3 <- 1st char (hex)</td></tab.\$r1<>	\$r3 <- 1st char (hex)
	blz	\$r3/exit	test for bad char
	ldv	\$r1,1	\$ r1 <- 1
	tth	\$r1,\$b5,\$r1	srt <- 2nd char (ascii)
	ldh	\$r1, <tab.\$r1< td=""><td>\$r1 <- 2nd char (hex)</td></tab.\$r1<>	\$r1 <- 2nd char (hex)
	blz	\$r1/exit	test for bad char
	sol	\$r3,4	\$r3 <- \$r3 × 16
	or	\$r3,=\$r1	\$r3 <- hex lrn
Sa	ldv	Sr42-14	<pre>\$r4 <- iorb count</pre>
	lab	\$b4,iorb00	\$b4 <- a(1st iorb)
\$b	sth	\$r3,\$b4.\$af+1	\$r3 -> lrn
	SRQIO,		•
	nop	>\$+2	trace
	bnez	Sr1,>exit	test for error
	lab	\$b4,\$b4,\$af*2+6	\$b4 <- a(next iorb)
	binc	\$r4,>-\$b	test iorb count = o
	ldv	\$r1,0	\$r1 <- 0 = success
exit	ldr	\$r2,=\$r1	\$r2 <- error code
	ST RMRQ,		
*			
iorb00	resv	\$af,0	
	dc	x • 01 •	
	dc	x '0a'	
	resv	Saf.O	
	dc	0	
	dc	ō	
	dc	0	
	dc	ō	
iorb20	resv	Safe0	
	dc	x * 41 *	
	dc	x * 41 *	
	dc	<msa20< td=""><td></td></msa20<>	
	dc	43	
	dc	x • 20 •	
	dc	0	
	dc	Ō	
iorb28	resv	- Safe0	
	dc	x • 41 •	· .
	dc	x • 41 •	

Figure D-4. Assembly Language Example for TTY or VIP Using Physical I/O

	dc	<msq28< td=""></msq28<>
	de	43
	de	
		x 20
	aç	0
	dc	0
iorb30	resv	\$af≠0
	dc	x*01*
	dc	x ° 41 °
	dc	< m s g 30
	dc	43
	dc	x * 20 *
	de	0
	de	õ
	00	6 • f 0
101020	resv	
	ac	X 4 1 4
	dc	x 41
	dc	<msg38< td=""></msg38<>
	dc	43
	dc	x * 20 *
	dc	0
	dc	0
iorb40	resv	Saf,0
	dc	x 41
	de	
	de	2 ma a / 0
		(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
	o c	4.5
	ac	x · 20 ·
	dc	U
	dc	0
iorb48	resv	\$af,0
	dc	`x " 01 "
	dc	x *41 *
	dc	<msg48< td=""></msg48<>
	dc	43
	dc	x * 20*
	dc	0
	dc	ů.
ioch50	00 60 6 4	Saf a D
101030	resv	Ja1/0
		X 41
	ac	X 41 ·
	dc	<msg>U</msg>
	dc	43
	dc	x * 20 *
	dc	0
	dc	0
iorb58	resv	Saf,0
	dc	x * 41 *
	dc	x '41 '
	dc	<ms.358< td=""></ms.358<>
	dc	43
	de	
		x 20°
	ac	U O
	dc	U
iorb60	resv	\$af>0
	dc	x * 01 *
	dc	x * 41**
	dc	<msg60< td=""></msg60<>
	dc	43
	dc	x * 20 *
	dc	0
	de	ō
	~ ~	-

Figure D-4 (cont).

Assembly Language Example for TTY or VIP Using Physical I/O

D-21

iorb68	resv	\$af>0
	dr	x*41*
	de	v · 41 ·
	0L	4
	ac	
	dc	4.5
	dc	x * 20 *
	dc	0
	de	0
i		
101010	resv	
	dc	x • 01 •
	dc	x*41*
	dc	<msq70< th=""></msq70<>
•	dc	43
	de	
	u.	
	ac	0
14 C	dc	0
iorb78	resv	\$af,0
	dc	x " 41 "
	dr	v * 4 1 *
	de	A
	uc	
	dc	43
	dc	x * 20 *
	dc	0
	dc	0
inch00	745	Safa0
1010//	de	
	u.	
	ac	X-00-
	resv	Sateu
	dc	0
	dc	x * 03 *
	dr.	0
	de	Ŏ
msg20	dc	x*42*
	text	20 21 22 23 24 25 26 27 1
	dc	z * 202020202120222023202420252026202720*
msa28	dc	x * 41 *
	tevt	128 29 24 28 20 20 2F 2F 1
	uc	
msg 50	dc	x*41*
	text	30 31 32 33 34 35 36 37 1
	dc	z * 202030203120322033203420352036203720*
msa38	dc	x * 41 *
	text	1 38 39 34 38 30 3D 3F 3F 1
	de	* 1 2 0 2 0 3 0 2 0 2 0 3 0 3 0 2 0 3 0 3
msg40	ac	
	text	40 41 42 43 44 45 46 47
	dc	z * 202040204120422043204420452046204720*
msq48	dc	x * 41 *
	text	*48 49 4A 4B 4C 4D 4F 4F *
	de	
	ut .	
msg>U	d¢	X 41 4
	text	50 51 52 53 54 55 56 57
	dc	z ' 202050205120522053205420552056205720'
msa58	dc	x ° 4 1 °
	tovt	ISB 50 54 58 57 50 5F 5F I
	de	-13030583050305-3055305-305-3054301
- / 0	ac	Z * CUCUJOCUJYCUJOCUJOCUJCCUJOCUJECUJICU*
msgou	ac	X 41 *
	text	'6U 61 62 63 64 65 66 67 '
	dc	z * 202060206120622063206420652066206720*
msa68	dc	x*41*
	tavt	168 69 64 68 60 60 6F 6F 1

Figure D-4 (cont).

Assembly Language Example for TTY or VIP Using Physical I/O

	dc	z * 2020682069206a206b206c206d206e206f20*
msg70	dc	x * 41 *
	text	•70 71 72 73 74 75 76 77 •
	dc	z'202070207120722073207420752076207720*
msg78	dc	x*41*
	text	'78 79 7A 7B 7C 7D 7E 7F '
	dc	z * 2020782079207a207b207c207d207e207f20*
*		
tab	dc	z'80808080' 00 01 02 03
	dc	z'80808080' 04 05 06 07
	dc	z'80808080' 08 09 0A 0B
	dc	z'80808080' OC OD OE OF
	dc	z'80808080' 10 11 12 13
	dc	z 80808080 14 15 16 17
	dc	z'80808080' 18 19 1A 1B
	dc	z'80808080' 1C 1D 1E 1F
	dc	z'80808080' 20 21 22 23
	dc	z'80808080' 24 25 26 27
	dc	z'80808080' 28 29 2A 2B
	dc	z'80808080 2C 2D 2E 2F
	dc	z'00010230' 30 31 32 33
	dc	z'04050607' 34 35 36 37
	dc	z'08098080' 38 39 3A 3B
	dc	z'80808080' 3C 3D 3E 3F
	dc	z'800a0b0c' 40 41 42 43
	dc	z OdDeDf80 44 45 46 47
	dc	z'80808080' 48 49 4A 4B
	dc	z 80808080 4C 40 4E 4F
	dc	z *80808080 * 50 51 52 53
	dc	z 80808080 54 55 56 57
	dc	z'80808080' 58 59 5A 5B
	dc ·	z'80808080' 5C 5D 5E 5F
	dc	z'800a0b0c' 60 61 62 63
	dc	z'0d0e0f80' 64 65 66 67
	dc	z*80808080* 68 69 6A 6B
	dc	z*80808080* 6C 6D 6E 6F
	dc	z*80808080* 70 71 72 73
	dc	z 80808080 74 75 76 77
	dc	z"80808080" 78 79 7A 7B
	dc	z 80808080 7C 7D 7E 7F

end

sender, sender

D-23

Figure D-4 (cont).

Assembly Language Example for TTY or VIP Using Physical I/O

.

APPENDIX E

ASCII AND EBCDIC CONTROL CHARACTERS AND CHARACTER SETS

Tables E-1 and E-2 illustrate the ASCII and EBCDIC character sets, respectively. In addition to the ASCII characters, Table E-1 shows the hexadecimal equivalents; Table E-2 shows the binary and hexadecimal equivalents of the EBCDIC character set.

Following are lists of the control characters and special graphic characters that appear in the two tables:

CONTROL CHARACTERS

ACK BEL BS BYP CAN CC CR CU1 CU2 CU3 DC1 DC2 DC3 DC4 DEL DS EM EO EO EO EO ETX FF	Acknowledge Bell Backspace Bypass Cancel Cursor Control Carriage Return Customer Use 1 Customer Use 2 Customer Use 3 Device Control 1 Device Control 2 Device Control 3 Device Control 4 Delete Data Link Escape Digit Select End of Medium Enquiry Eight Ones End of Transmission Escape End of Transmission Block End of Text Form Feed	IFS IGS IL IRS IUS LC LF NAK NUL PF PN RES FRS SMM SO SOS SP SUB SYN	Interchange File Separator Interchange Group Separator Idle Interchange Record Separator Interchange Unit Separator Lowercase Line Feed Negative Acknowledgment New Line Null Punch Off Punch On Restore Reverse Line Feed Reader Stop Shift In Set Mode Start of Manual Message Shift Out Start of Heading Start of Significance Space Start of Text Substitute Synchronous Idle
ETX	End of Text	SUB	Substitute
FF	Form Feed	SYN	Synchronous Idle
FS	Field Separator	TM	Tape Mark
GE	Graphic Escape	UC	Uppercase
GS	Group Separator	US	Unit Separator
HT	Horizontal Tab	VT	Vertical Tab

E-1

SPECIAL GRAPHIC CHARACTERS

- € Cent Sign
- . Period, Decimal Point
- < Less-than Sign
- (Left Parenthesis
- + Plus Sign
- Logical OR
- & Ampersand
- ! Exclamation Point
- \$ Dollar Sign
 * Asterisk
-) Right Parenthesis
- ; Semicolon
- Logical NOT
- Minus Sign
- / Slash
- Vertical Line
- Comma
- % Percent
- Underscore
- Circumflex

> Greater-than Sign ? Question Mark ∖ Grave Accent : Colon # Number Sign @ At Sign ' Prime, Apostrophe = Equal Sign " Quotation Mark \sim $\tilde{T}ilde$ { Opening Brace ∫ Hook ₩ Fork } Closing Brace Neverse Slant **d** Chair | Long Vertical Mark [Opening Bracket] Closing Bracket

Table E-1. ASCII/Hexadecimal Character Equivalents

	H1											
H2	0	1	2	3	4	5	6	7				
0	NUL	DLE	SP	0	0	Р		р				
1	SOH	DC1	!	1	Α	Q	a	q				
2	STX	DC2	"	2	В	r	b	r				
3	ETX	DC3	#	3	С	S	с	S				
4	EOT	DC4	\$	4	D	Т	d	t				
5	ENQ	NAK	%	5	E	U	е	u				
6	ACK	SYN	&	6	F	v	f	v				
7	BEL	ETB	,	7	G	W	g	w				
8	BS	CAN	(8	н	X	h	x				
9	НТ	EM)	9	Ι	Y	i	у				
Α	LF	SUB	*	:	J	Z	j	Z				
В	VT	ESC	+	;	K	ſ	k	{ ·				
С	FF	FS	,	<	L	\backslash	1					
D	CR	GS	-	=	М]	m	}				
Е	SO	RS		>	N	\land	n	~				
F	SI	US	1	?	0		0	DEL				

s 4, 5, 6, 7	adecimal Digit																	
ition	Hcx		0)			0	1			Í	0			1	1		Bit Positions 0,1
Pos	cond	00	01	10	11	00 ·	01	10	11	00	01	10	11	00	01	10	11	Bit Positions 2,3
Bil	<u>s</u>	0	1	2	3	4	5	6	7	8	9	A	B	С	D	E	F	First Hexadecimal Digit
0000	0	NUL	DLE	DS		SP	&	-						{a	}a	\ ^a	0	
0001	1	SOH	DC1	SOS				1		a	· i	ھ∽		A	J		1	1
0010	2	STX	DC2	FS	SYN					b	k	s .		В	К	s	2	
0011	3	ETX	ТМ							c	1	t	1	С	L	Т	3	1.
0100	4	PF	RES	BYP	PN				1	d	m	u		D	м	U	4	1
0101	5	НТ	NL	LF	RS		1		1	e	n	v		E	N	V.	. 5	1
0110	6	LC .	BS	ETB	UC					f	0	N.		F	0	w	6	·
0111	7	DEL	IL .	ESC	EOT					g	р.	x		G	Р	·X	7	
1000	8	GE ^a	CAN							h	q	у		Η·	Q	Y	8	
1001	9	RLF ^a	EM						۱ ^a	i	r	z		I.	R	Z,	9	
1010	A	SMM	сс	SM		\$!	;a	:	1			T		· ·		a	1
1011	В	VT	CU1 ^a	CU2 ^a	CU3 ^a	•	S	,	#			1	1		1			1

(a

ī

÷ ..

%

>

?

S^a

۲a

1a

EO^a

^aThis character is not supported in the 2780 character set.

IFS

IGS

IRS

IUS

SO

E

ENQ

ACK

BEL

<

(

+

*

)

;

٦

DC4

NAK

SUB

1100 С FF

1101 D CR

1110

1111 F SI

Q.

APPENDIX F

DEVICE-SPECIFIC CONTROL CHARACTERS

This appendix lists the nonalphanumeric control characters for devices supported by the communications subsystem.

NOTE: A slash between two characters indicates that both keys are pressed simultaneously, e.g., CTRL/H indicates that the CTRL key and H key are passed at the same time.

Character	Hexade Val	cimal ue	Function	Key Strokes					
ENQ	05		Answer back	CTRL/E					
BEL	07		Ring Bell	CTRL/G					
BS	08		Backspace (nondestructive cursor backward)	CTRL/H					
LF	0A		Line feed	CTRL/J					
FF	0C		Form feed (clear screen)	CTRL/L					
CR	0D		Carriage return	CTRL/M					
DC2	12		Nondestructive cursor forward	CTRL/R					
SP	20		Space	CTRL/P or space bar					
NOTES:	l. In up th	I. In a terminal with lowercase capability, uppercase characters require the use of the shift.							
	2. DC	2 is a	n option for VIP 7100/7200	only.					

Table F-1. TTY Nonalphanumeric Control Characters

F-1

Character	Hexadecimal Value	Function	Key Strokes
BS	08	Backspace.	CTRL/H
НТ	. 09.	Horizontal tab.	CTRL/I
LF	0A	Line feed.	CTRL/J or LINE FEED
FF	0C	Form feed.	CTRL/L
CR	0 D	Carriage return.	CTRL/M or RETURN
DC1	11	Reverse line feed.	CTRL/Q
DC 2	12	Forward space (nondestructive cursor forward).	CTRL/R
DC 3	13	Defines next two characters as line character position.	CTRL/S
DC4	14	Page return.	CTRL/T
ESC	18	First of several 2-character sequences used for VIP control.	·[
FS	1C	First character of a 2-character sequence to define beginning of a fixed field.	λ
GS	lD	Defines start of variable field.]
SP	20	Space.	CTRL/P or space bar
	5E	Defines start of blank field.	

Table F-2. VIP Nonalphanumeric Control Characters

Character	Hexadecimal Value	Function	Key Strokes						
NUL	00	Nontransparent data	CTRL/@						
SOH	01 Nontransparent data; last record of file		CTRL/A						
STX	02	Transparent data	CTRL/B						
ETX	03	Transparent data; last record of the file	CTRL/C						
NOTE: Table applies only to advanced data transmission mode, and describes control byte for line control. The control byte is neither sent nor received over the line.									

Table F-3. BSC Nonalphanumeric Control Characters

 \bigcirc

APPENDIX G

DUMP ROUTINE (DUMCP) FOR MULTILINE COMMUNICATIONS PROCESSOR (MLCP)

The Honeywell program DUMCP, which is provided in source and object format, dumps the contents of memory (all or part) of the multiline communications processor (MLCP). DUMCP has the following functions:

- In the dump, shows formatted lists of line control tables, communications control blocks, and communications channel programs.
- Can print the dump on the operator terminal, line printer, or serial printer.
- o Can be used by the programmer for:
 - Aid in debugging application programs
 - Documenting problems
 - Pinpointing hardware, software, or firmware difficulties

DUMCP cannot run in the batch task group (\$B).

DUMCP uses one MLCP channel to transfer dump data from the MLCP to main memory (in block-mode read). The user must therefore specify that MLCP channel and the channel of the output device that will produce the dump.

LINKING THE BOUND UNIT CONTAINING DUMCP

The bound unit that contains DUMCP can be invoked in either of two ways:

o It may be loaded and activated as a self-contained unit, by the operating system. o It may be activated by the application program, at one of three starting locations, when the application is linked with DUMCP.

Linking DUMCP as a Self-Contained Bound Unit

To execute the bound unit that contains only DUMCP, the user must load the Linker (with the LINKER command), specifying the following Linker directives (see <u>Program Execution and Checkout</u> manual):

SYS

(Optional) Designates that the bound unit can be a system task in the system task group.

LINKN DUMCP

Requests that the object bound unit DUMCP be linked.

VDEF RDMLCP, X'nnnn'

Designates nnnn as the MLCP channel for block-mode read.

VDEF DMPOUT, X'nnnn'

Designates nnnn as the channel number of the device where the dump is to be printed, which must be an operator terminal, line printer, or serial printer.

MAP

Requests a link map.

OUIT

Terminates execution of the Linker when the bound unit has been created.

- NOTES: 1. More than one bound unit may be linked, each with its own unique name, depending on the type of system and on the MLCP channel to be used for the dump routine.
 - When the purpose of the dump is to diagnose a channel error, that channel (value nnnn) should not be designated to be used by the dump routine.

Example:

In this example, a linked version of DUMCP is placed on the volume Z10107. First the working directory is changed to one that contains the object module DUMCP.O; then the Linker is called, according to the Linker directives shown below:

CWD ^Z10107>SOURCE LINKER DUMCP -COUT >SPD>LPT00 -SZ 8

The user need not specify a relocation base or start address. The bound unit can then be executed.

Any error will result in an error message, and/or error code, issued at execution time to the operator terminal. The System Messages manual describes DUMCP error messages.

Linking DUMCP With the Application Program

Either of the following methods can be used to specify values for the dump output device and for the block-mode read channel that will transfer dump data from the MLCP to main memory:

1. Add the following assembly language XDEF external label definition statements to the source module DUMCP.P:

XDEF (DMPOUT,Z'nnnn')

nnnn designates the channel of the output device

XDEF (RDMLCP,Z'nnnn')

nnnn designates the block-mode read channel,

or

2. During linking, specify the following VDEF directives:

VDEF DMPOUT, X'nnnn'

The value nnnn designates the channel of the output device.

VDEF RDMLCP,X'nnnn'

The value nnnn designates the block-mode read channel.

When Linker directives are specified to create the bound unit, enter LINKN DUMCP to request that the object unit DUMCP be linked. After DUMCP is linked to the application, the dump routine can be entered in any of three ways (described below) according to whether the entry point is specified as STRTDO, STRTD1 or STRTD2.

In any case, the application must include an XLOC (define external locations) instruction; i.e., XLOC STRTD0, XLOC STRTD1 XLOC STRTD2.

STRTDO ENTRY POINT IN USING DUMCP

When entry point STRTDO is used, DUMCP will halt at first entry. The user must then set certain register (see below) through the control panel before execution of DUMCP is resumed. These register values override the channel numbers specified in the source program or when DUMCP was linked with the application.

NOTE: Register values for dumping the DLCP (dual line communications processor) of the Model 23 Central Processor are shown separately.

Register Value to be Entered

- \$R4 Channel number of dump output device
- \$R5 Channel number used for block-mode read
- \$R6 0000; or first memory address of area to be dumped
- \$R7 OFFF (13FF for Model 23); or the last memory address of area to be dumped
- \$B5 Return address. If no value is entered, default is that the current address is returned to the system.

The values in the registers control the contents of the dump, as shown in Table G-1.

The format of the entry to specify entry point STRTDO is:

JMP < STRTD0

The dump routine dumps the MLCP (DLCP) memory to the specified device. Register \$R2 (Table G-2) indicates results of the dump. When the dump is completed, control returns to the application at the instruction pointed to by register \$B5.

STRTD1 ENTRY POINT IN USING DUMCP

When using entry point STRTD1, the user must set certain registers (see below) before starting to execute the dump. These register values override the channel numbers specified in the source program or when DUMCP was linked with the application.

NOTE: Register values for dumping the DLCP of the Model 23 Central Processor are shown separately.

Register Value to be Entered

- \$R4 Channel number of output device for the dump
- \$R5 Channel number used for the block-mode read
- \$R6 0000; or the first memory address of area to be dumped
- \$R7 OFFF (13FF for Model 23); or the last memory address of area to be dumped

The values in the registers control the contents of the dump, as shown in Table G-1.

See Figure G-1 for detailed example of dump formats and contents.

G-5

Register and Contents	Resulting Dump Contents
\$R6 0000 \$R7 0FFF 13FF (Model 23)	Fully formatted dump, comprising line con- trol tables, communications control pro- grams, and communications control blocks
\$R6 0000 \$R7 01FF	Line control tables only
\$R6 0E00 \$R7 0FFF (Model 23) \$R6 1200 \$R7 13FF	Communications control blocks only
\$R6 Other <u>than:</u> 0000, or 0E00 1200 (Model 23)	Unformatted dump of MLCP area within the addresses (byte addresses) specified in \$R6 and \$R7
\$R7 Less than: 0FFF 13FF (Model 23)	

Table G-1. Register Values and DUMCP Dump Contents

The format of the entry specifying entry point STRTD1 is:

LNJ \$B5,<STRTD1

The dump routine immediately dumps MLCP (or DLCP) memory to the specified device. The contents of R2 (see Table G-2) will indicate a successful dump or an error condition. When the dump is completed, control returns to the application program at the instruction pointed to by register \$B5.

Table G-2. Register \$R2 at Dump Execution - DUMCP Linked to Application

Register \$R2 Contents	Meaning
0	Dump successfully completed; no errors.
1	Invalid MLCP channel numbers.
2	Device other than operator terminal or serial/line printer specified as the output device.

STRTD2 ENTRY POINT IN USING DUMCP

STRTD2 should be used when the block-mode read channel (RDMLCP) and the output-device channel number (DMPOUT) values, specified in XDEF statements or in Linker VDEF directives (see above) are to be used without change. Registers need not be changed prior to the dump request.

The format of the entry specifying entry point STRTD2 is:

LNJ \$B5,<STRTD2

The contents of register R^2 (see Table G-2) will indicate successful dump or an error condition.

When the dump is completed, control returns to the application program at the instruction pointed to by \$B5.

DUMCP DUMP FORMATS

Formatted dumps of the MLCP comprise the following areas, whose formats are shown in Figure G-1 below.

- o Line control table (LCT) area, byte locations 0000 through 01FF. The LCT has 64 bytes, each shown in eight groups (four for Model 23) for easier reading.
- Channel control program (CCP), byte locations 0200 through 0DFF (llFF for Model 23). The format shows 16 bytes per line for easier reading.

- Communication control block (CCB) area, byte locations
 0E00 through 0FFF (1200 through 13FF for Model 23).
 There are four CCBs per channel. CCBs 0 through 3 are for the receive channel, CCBs 4 through 7 for the send channel. The dump shows the address, range, control byte, and status for each CCB. An R following an address indicates that the address field refers to the right byte of a word. When there is no R following the address, the the address refers to the left byte.
 - NOTE: CCBs are used in the following order: For the receive channel, CCB 1 is used first, CCB 0 used last. For the send channel, CCB 5 is used first, CCB 4 used last.

DUMCP PROGRAMMING

The following DUMCP programming considerations apply:

- The application source program contains a macro call, making it necessary to preprocess the source through EXEC LIB when reassembly is required.
- When possible, use an inactive MLCP channel for the block-mode read channel, because the channel specified will be initialized and corresponding channel control block list reset.
- 3. To allow variations of RDMLCP and DMPOUT values, it may be convenient to line more than one iteration of the dump, with different names.
- 4. When a printer whose channel number was designated is not ready or is disabled, the DUMCP program loops until the printer's READY button is pressed.
- 5. DUMCP does not provide trap handling.
- DUMCP executes at interrupt level 3. Therefore, its execution preempts all system activities including clock functions.

60086	MC	P DUMP RI	EV 3					
RAM READ	FROM (CHAN. FC9	0					
LCT	LIN0	LIN1	LIN2	LIN3	LIN4	LIN5	LIN6	LIN7
0000	FC	- FC	00	00	00	00	0.0	00
0001	00	00	00	00	00	00	00	00
0002	00	£6	υO	00	0 0	00	00	00
0003	00	00	00	00	0.0	00	00	00
0004	0.0	00	00	00	00	00	00	00
0005	00	02	00	0.0	0.0	00	00	00
0006	00	53	00	00	00	00	00	00
0007	00	81	0.0	0.0	00	00	00	00
0008	00	0.0	00	00	00	00	00	00
0009	01	00	00	00	00	0.0	00	00
0010	00	30	0.0	00	00	00	00	00
0011	0.0	00	00	0.0	00	00	00	00
0012	0.0	00	00	00	00	00	00	00
0013	.00	06	00	00	. 00	00	00	00
0014	00	00	00	00	00	00	00	00
0015	00	00	00	00	00	00	00	00
0016	0.0	00	00	00	00	00	00	00
0017	00	00	00	00	00	00	00	00
0018	00	F 5	00	00	00	00	00	00
0019	00	מכ כם	00	00	00	00	00	00
0020	00	02	00	00	00	00	00	00
0022	00	00 D0	00	00	00	00	00	00
0022	00	03	00	00	00	00	00	00
0024	00	06	00	00	00	00	00	00
0025	00	82	00	0.0	00	00	00	00
0026	00	06	0.0	00	00	00	00	00
0027	00	86	00	00	00	00	00	00
0028	00	00	00	00	.0.0	00	00	00
0029	00	00	00	00	00	00	00	00
0030	00	0.0	0.0	00	00	00	00	00
0031	00	17	00	00	. 00	00	00	00
0032	FC	FC	00	00	00	00	00	00
0033	00	00	0`0	00	00	00	00	00
0034	E6	E6	0.0	0.0	00	00	00	00
0035	0.0	00	0.0	00	00	00	00	00
0036	00	00	00	00	00	00	00	00
0037	02	00	00	00	00	00	00	00
0038	82	82	00	00	00	00	00	00
0039	50	20	00	00	0.0	00	00	00
0040	00	00	00	00	0.0	00	00	00
0041	0.0	00	00	00	00	00	00	00
0042	30	00	0.0	00	0.0	00	00	00
0043	31	00	00	00	00	00	00	00
0044	00	00	00	00	00	.00	00	00
0045	0E	0E	00	. 00	00	00	00	00
0046	00	00	00	00	00	00	00	00
0047	00	00	00	00	00	00	00	00
0048	00	A 0	00	0.0	00	00	00	00
0049	00	00	00	00	00	00	00	00
0050	53	43	00	00	00	00	00	00
0051	03	44	00	00	00	00	00	00
0052	00	00	00	00	00	00	00	00
0053	82	82	00	00	00	00	00	00
0054	A O	60	00	00	00	00	00	
0055	05	U A	00	00	00	00	00	00
0050	06 7/	U6	00	00	00	00	00	00
VU5/	16	/ 0					UU.	00

Figure G-1. DUMCP Dump Example

0550	51	10	90	00	51	1E	02	ΕO	A5	F0	61	E0	97	E0	58	ΕO
0560	09	E 0	95	E 0	95	ΕO	95	ΕO	95	51	1F	50	10	92	FF	F1
0570	07	50	1 D	92	FF	F1	EB	FO	43	03	50	3 A	92	FF	E1	09
0580	01	82	52	3D	F1	0 B	ΕO	F9	01	A 0	52	3D	F1	03	E0	F9
0590	51	1 F	50	1 C	92	FF	E 1	10	50	1 F	92	82	E1	07	92	20
05A0	E 1	03	ΕO	BE	04	E0	BD	50	1 F	92	10	F1	89	01	AO	ΕO
0580	ΕA	E 0	AF	Ε0	81	ΕO	AD	ΕO	AF	E 0	2 A S	50	1 F	04	50	3A
0500	92	00	E 1	0 F	01	A 0	55	03	F2	13	01	A O	55	04	F2	0D
05D0	E O	09	01	A 0	55	03	93	7F	F2	03	02	06	50	11	94	40
05E0	51	11	02	06	51	1 F	50	1 E	92	FF	F1	25	50	10	92	FF
05F0	E 1	03	E0	BE	50	1 D	92	FF	E 1	11	90	FF	51	1 D	E0	86
0600	E 0	09	ΕO	ΆE	ΕO	BO	ΕO	AC	E O	AE	90	00	51	1 D.	E 0	F3
0610	01	50	3 A	92	FF	F1	1 E	A 0	92	70	E 1	36	92	61	E1	36
0620	92	7C	E1	36	51	1F	50	1 C	92	00	E1	DB	50	ĨF	92	02
0630	E 1	3 A	ΕO	D 3	82	92	B 0	E 1	19	92	31	E1	19	92	BC	E1
0640	19	51	1 F	50	1 C	92	00	E 1	8E	50	1F	92	82	E 1	1 D	ΕO
0650	B6	90	05	E0	07	90	06	E0 :	03	90	04	11	50	10	94	02
0660	51	10	90	00	51	1 E	51	1 D	02	E 0	9E	90	FF	51	1E	90
0670	00	51	1 D	E0	90	00	00	80	81	82	84	84	84	84	84	84
0680	84	82	00	80	81	00	00	00	81	83	85	85	00	00	00	00
0690	00	00	00	00	00	00	80	00	00	00	00	84	86	83	00	00
06A0	00	00	00	00	00	82	00	00	00	00	00	00	00	00	00	00
** ALL	ZER	0S	**													
0600	00	00	00	00	0.0	00	00	0.0	00	0.0	00	15	05	04	3C	30
0600	31	00	00	0.0	00	00	00	00	00	00	00	00	00	00	00	00
** ALL	ZER	05	* *													

CCB AREA

ССВ	ADDRESS	RANGE	CONTROL	STATUS
LINE	0			
0000	000000	0000	00	0000
0001	005747	01F4	00	000E
2000	003E71R	0000	80	1000
0003	000000	0000	0 0	0000
0004	0045E9	0000	86	1000
0005	0045C3	0000	C 6	1000
0006	0045F9	0000	D 2	1000
0007	006FF7	0000	80	F000
LINE	1		• •	
0000	000000	0000	00	0000
0001	003E98R	0000	80	5200
0002	006DF3R	0001	80	50A0
0003	000000	0000	00	0000
0004	000000	0000	00	0000
0005	000000	0000	00	0000
0006	000000	0000	00	0000
0007	000000	0000	00	0000
LINE	2			
0000	000000	0000	00	0000
0001	000000	0000	00	0000
0002	000000	0000	0.0	0000
0003	000000	0000	00	0000
0004	000000	0000	00	0000
0005	000000	0000	00	0000
0006	000000	0000	00	0000
0007	000000	0000	00	0000
LINE	3			
0000	000000	0000	00	0000
0001	000000	0000	00	0000
2000	000000	0000	00	0000

Figure G-1 (cont). DUMCP Dump Example

0058 0059 0060 0061 0062 0063		00 00 FF 16 06 C6		00 00 16 06 C6				00 00 00 00 00 00		00 00 00 00 00 00		00 00 00 00 00 00		00 00 00 00 00 00		00 00 00 00 00 00
CCP 0200 0210 0220 0230 0240 0250	00 E0 90 56 54 01	00 FE 00 38 30 50	90 E0 51 E0 02 34	00 7C 23 0B E0 92	51 E0 51 E7 FF	08 17 24 09 E0 E1	50 50 90 51 11	34 3D 82 07 50 50	34 34 51 E0 1C 3B	50 90 14 0C 92 E2	02 C1 32 E0 FF 07	36 51 01 03 F1 90	50 14 F0 E0 05 02	14 32 E9 56 90 63	32 01 50 90 10 01	01 06 37 04 60 E0
0260 0270 0280 0290 0240 0280 0280	15 05 08 77 E0 50	90 90 10 E0 05 3B E0	02 02 92 9A 60 05 47	62 60 10 E0 01 52 90	01 01 E1 71 E0 3C	E0 50 1D E0 E4 E1 61	0F 3A E0 8A 50 13	50 92 02 E0 1C 50 E0	3B FF 10 69 92 3A	E2 F1 61 E0 FF 92 90	07 21 01 AD F1 FF	90 50 F3 10 05 E1	02 1C EF 63 90 07 38	61 92 E0 01 10 90 E0	01 FF 18 F3 60 1F	E0 F1 E0 FC 01 63
02D0 02E0 02F0 0300 0310 0320	80 26 07 91 00 30	51 61 90 F0 E1 93	30 01 03 28 05 80	50 E0 63 E0 50 92	37 25 01 95 24 80	92 90 E0 E0 60 02	0B 17 13 3C 01 F1	E1 63 90 E0 90 D8	13 01 03 7A FF E0	50 E0 61 50 60 D4	3A 1F 01 23 01 50	92 50 E0 60 60 3A	FF 3A 0D 01 01 92	F1 92 E0 50 60 FF	07 FF 97 3A 01 E1	90 E1 E0 92 50 0A
0330 0340 0350 0360 0370 0380 0390	50 01 E1 50 50 E0 82	3D 06 17 30 3A E7 51	62 F0 50 94 92 E0 14	01 E7 37 80 FF 2E 32	62 50 56 51 E1 50 E0	01 37 3E 30 07 3D	62 93 62 E0 90 34	01 08 01 96 10 90	06 92 90 50 62 00 94	50 08 FF 37 01 51 82	3D E1 60 56 E0 1E 51	60 25 01 3E D1 90	01 50 60 90 00	60 3A 01 01 10 51	01 92 60 E0 60 17	60 FF 01 E9 01 94
03A0 03B0 03C0 03D0 03E0 03F0	1E 01 3D F5 1F 5D	E0 50 E1 51 93 E0	03 17 FB 1F C0 5B	E0 56 E0 50 F2 E0	F2 18 0D 3A 69 5F	90 E0 50 92 50 E0	80 0F 3A FF 1F 5F	51 E0 92 E1 56 E0	14 CC FF 07 1A 55	32 E0 E1 50 E0 01	90 D1 F3 1F 63 A0	00 E0 01 93 E0 51	51 09 A2 7F 65 1F	03 01 52 51 E0 93	51 A0 3D 1F 6D C0	04 52 E1 50 E0 F2
0400 0410 0420 0430 0440 0450 0460	15 05 85 1A 37 CD 0F	50 E0 E0 50 E0 50	1F 43 81 0F 1F 49 34	56 E0 01 E0 04 E0 92	1A 63 A2 67 93 49 FF	E0 50 51 E0 7F E0 F1	0F 1F 1F 0B E3 49 05	E0 04 93 E0 DA E0 50	49 E3 40 61 11 53 1F	E0 8A F2 E0 E0 E0	0B 11 17 71 D9 3F	E0 E0 E0 E0 90 50	4D DD 1F 05 D3 FF 1F	E0 E0 93 E0 E0 51 E0	49 A7 7F 61 39 1E D5	E0 E0 E0 E0 E0 E0
0470 0480 0490 04A0 04B0 04C0	3A 1D 90 65 FF 09	92 92 00 E0 F1 50	FF FF 51 CD 09 11	F1 F1 1E E0 50 94	AF DD 51 E3 1D 80	E0 E0 1D E0 92 51	83 E9 02 BB 00 11	50 50 E0 F1 E0	1C 10 B3 A7 03 07	92 94 E0 E0 50	FF 02 67 A1 EB 10	E1 51 E0 51 50 94	03 10 63 1F 1F 01	E0 90 E0 50 92 51	F1 07 38 1C 03 10	50 11 E0 92 E1 90
04E0 04F0 0500 0510 0520 0530	00 03 1E 5D 00 1F E0	E0 E0 E1 92 CC	C3 0B 5D 09 05 50	51 90 E0 E0 50 E1 10	01 E3 55 10 0E 94	EU 11 E0 51 92 80	50 81 1F FF 2D 51	10 E0 50 E1 E1 10	94 AD 1E 03 0A 02	51 02 E0 92 E0 50 E0	51 A7 FF 88 10 C3	10 E0 F1 90 94	02 A7 2F 00 04 1F	72 90 50 51 51 92	00 AB 1C 1D 10 05	F 1 51 52 50 02 E1

Figure G-1 (cont). DUMCP Dump Example

0003	000000	0000	00	0000
0004	000000	0000	00	0000
0005	000000	0000	00	0000
0006	000000	0000	00	0000
0007	000000	0000	00	0000
LINE	4			
0000	000000	0000	00	0000
0001	000000	0000	00	0000
2000	000000	0000	00	0000
0003	000000	0.000	00	0000
0004	000000	0000	00	0000
0005	000000	0000	00	0000
0006	000000	0000	00	0000
0007	000000	0000	00	0000
LINE	5			
0000	000000	0000	00	0000
0001	000000	0000	00	0000
2000	000000	0000	00	0000
0003	000000	0000	0.0	0000
0004	000000	0000	00	0000
0005	000000	0000	00	0000
0006	000000	0000	00	0000
0007	000000	0000	00	0000
LINE	6			
0000	000000	0000	00	0000
0001	000000	0000	00	.0000
0002	000000	0000	00	0000
0003	000000	0000	0.0	0000
0004	000000	0000	00	0000
0005	000000	0000	00	0000
0006	000000	0000	00	0000
0007	000000	0000	00	0000
LINE	7			
0000	000000	0000	00	0000
0001	000000	0000	00	0000
0002	000000	0000	00	0000
0003	000000	0000	00	0000
0004	000000	0000	0.0	0000
0005	000000	0000	00	0000
0006	000000	0000	00	0000
0007	000000	0000	00	0000

Figure G-1 (cont). DUMCP Dump Example

G**-**12

ACKNOWLEDGE, WAIT BEFORE BSC WAIT BEFORE ACKNOWLEDGE (WACK) FEATURE, 10-6 ADVANCED TRANSMISSION MODE, BSC ASSEMBLY PROGRAMS MACRO CALLS BSC 2780 ADVANCED MODE, 5-16 ASSEMBLY PROGRAMS MACRO CALLS BSC 3780 ADVANCED MODE, 5-20 BSC 3780 CONVENTIONS - ADVANCED MODE, 5-20 BSC ADVANCED DATA TRANSMISSION MODE, 10-2COBOL MACRO CALL PROCEDURES BSC 2780 IN ADVANCED MODE, 3-11 COBOL MACRO CALL PROCEDURES BSC 3780 IN ADVANCED MODE, 3-11 MACRO CALL PROCEDURES FOR BSC 2780 IN ADVANCED MODE (TBL), 5-18 MACRO CALL PROCEDURES FOR BSC 3780 IN ADVANCED MODE (TBL), $5\!-\!24$ PROGRAM LOGIC FOR 2780 BSC IN ADVANCED MODE (FIG), 5-17 PROGRAM LOGIC FOR BSC 3780 IN ADVANCED MODE (FIG), 5-22ASCII ASCII AND EBCDIC CHARACTERS, F-1 ASCII INPUT FOR BSC, 10-16 BSC ASCII OUTPUT, 10-19 ASCII/HEXADECIMAL CHARACTERS ASCII/HEXADECIMAL CHARACTER EQUIVALENTS (TBL), E-2 ASSEMBLY ASSEMBLY COMMUNICATIONS WITH PHYSICAL INPUT/OUTPUT (P I/O), 6-1 ASSEMBLY EXAMPLE TTY OR VIP USING PHYSICAL I/O (FIG), D-20 ASSEMBLY LANGUAGE COMMUNICATIONS WITH FILE SYSTEM, 5-1 ASSEMBLY LANGUAGE EXAMPLE FOR TTY OR VIP PHYSICAL I/O, D-19 ASSEMBLY PROGRAMS BINARY SYNCHRONOUS COMMUNICATION (BSC), 5-11 ASSEMBLY PROGRAMS BSC DATA TRANSMISSION CONVENTION, 5-11 ASSEMBLY PROGRAMS DEVICE MODES AND DEVICE TYPES, 5-3 ASSEMBLY PROGRAMS DEVICE DEPENDENT MACRO CALLS, 5-3 ASSEMBLY PROGRAMS FILE SYSTEM CONSIDERATIONS, 5-1 ASSEMBLY PROGRAMS MACRO CALLS BSC 2780 ADVANCED MODE, 5-16 ASSEMBLY PROGRAMS MACRO CALLS BSC 2780 BASIC MODE, 5-12 ASSEMBLY PROGRAMS MACRO CALLS BSC 3780 ADVANCED MODE, 5-20

ASSEMBLY (CONT) ASSEMBLY PROGRAMS MACRO CALLS DATA ENTRY TERMINALS, 5-4 ASSEMBLY PROGRAMS MACRO CALLS MULTIPLE TERMINALS, 5-9 ASSEMBLY PROGRAMS MACRO CALLS OUTPUT ONLY TERMINALS, 5-5 ASSEMBLY PROGRAMS MACRO CALLS SINGLE TERMINAL, 5-7 \$GTFIL MACRO CALL IN ASSEMBLY APPLICATIONS, 5-1 \$OPFIL MACRO CALL IN ASSEMBLY APPLICATIONS, 5-2**\$TIFIL \$TOFIL MACRO CALL IN** ASSEMBLY APPLICATIONS, 5-2 \$WIFIL \$WOFIL MACRO CALL IN ASSEMBLY APPLICATIONS, 5-2 USING PHYSICAL I/O IN ASSEMBLY PROGRAMS, 6-2 ASSIGN CLAUSE, COBOL COBOL ASSIGN CLAUSE, 3-2 COBOL SELECT AND ASSIGN EXAMPLES, 3-3 ASSIGNING COBOL, ASSIGNING A FILE TO A DEVICE/TERMINAL, 3-2 FORTRAN, ASSIGNING INTERACTIVE DEVICES AT EXECUTION, 4-1 ASSOC COMMAND IN COBOL COBOL ASSOC OR GET COMMANDS, 3-2 ASYNCHRONOUS ASYNCHRONOUS INPUT/OUTPUT, 2-11 COBOL ASYNCHRONOUS OPERATION (CALL "ZCASN"), 3-4 COBOL ASYNCHRONOUS OR SYNCHRONOUS EXECUTION, 3-4 COBOL WAIT FOR COMPLETION -ASYNCHRONOUS I/O, 3-5 AUTO CALL UNIT AUTO CALL UNIT, A-4 BASIC TRANSMISSION MODE, BSC ASSEMBLY PROGRAMS MACRO CALLS BSC 2780 BASIC MODE, 5-12 BSC 2780 CONVENTIONS - BASIC MODE, 5-12 BSC BASIC DATA TRANSMISSION MODE, 10-2 COBOL MACRO CALL PROCEDURES BSC 2780 IN BASIC MODE, 3-9 MACRO CALLS FOR BSC 2780 IN BASIC MODE (TBL), 5-14 PROGRAM LOGIC FOR BSC 2780 IN BASIC MODE (FIG), 5-13 BCC

BSC BLOCK CHECK CHARACTER (BCC), A-8
BLOCK BLOCK ERROR CHECK, A-8 BSC BLOCK CHECK CHARACTER (BCC), A-8 COMMUNICATIONS INPUT/OUTPUT REQUEST BLOCK (IORB) (FIG), 6-5 FILE INFORMATION BLOCK (FIB) FOR DATA MANAGEMENT (FIG), 2-7 FILE INFORMATION BLOCK (FIB), 2-3 FILE INFORMATION BLOCK (FIB), FOR STORAGE MANAGEMENT (FIG), 2-9 INPUT OUTPUT REQUEST BLOCK (IORB), 6-2, 6-4 BOUND UNIT, DUMCP LINKING BOUND UNIT CONTAINING DUMCP, G-1 LINKING DUMCP AS SELF-CONTAINED BOUND UNIT, G-2 BRK CHARACTER TTY DETECTION OF BRK CHARACTER, 7-10 BSC ASCII INPUT FOR BSC, 10-16 ASSEMBLY PROGRAMS BSC 2780 AND BSC 3780, 5-11 ASSEMBLY PROGRAMS MACRO CALLS BSC 2780 ADVANCED MODE, 5-16 ASSEMBLY PROGRAMS MACRO CALLS BSC 2780 BASIC MODE, 5-12 ASSEMBLY PROGRAMS MACRO CALLS BSC 3780 ADVANCED MODE, 5-20 BSC 2780 AND BSC 3780 DIFFERENCES, 5-12, 10-3 BSC 2780 CONVENTIONS - BASIC MODE, 5-12 BSC 2780/3780 FEATURES, 10-3 BSC 2780/3780 LINE PROTOCOL HANDLER, 10-1 BSC 3780 CONVERSATIONAL REPLY FEATURE, 10-10 BSC 3780 TRANSMISSION/RECEIPT OF BSC CONTROL CHARACTERS, 10-10 BSC 3780 TWO BUFFER FEATURE, 10-10 BSC AND PVE HOST-COMMUNICATIONS SUPPORT, 1-5 BSC ASCII OUTPUT, 10-19 BSC BASIC DATA TRANSMISSION MODE, 10-2BSC BLOCK CHECK CHARACTER (BCC), A-8 BSC CONTROL BYTE (RECEIVE), 10-15 BSC CONTROL BYTE (SEND), 10-18 BSC DATA TRANSMISSION MODE, 10-2 BSC DEVICE-SPECIFIC WORD I_DVS IN IORB (TBL), 10-12 BSC EBCDIC OUTPUT, 10-19 BSC END OF TRANSMISSION (EOT) FEATURE, 10-8 BSC INPUT DATA, 10-14 BSC LINE PROTOCOL HANDLER OPERATION, 10-1

BSC (CONT) BSC LINE PROTOCOL HANDLER TIME-OUT, 10-9 BSC MASTER STATION, 10-1 BSC NONALPHANUMERIC CONTROL CHARACTERS (TBL), F-3BSC OUTPUT DATA, 10-17 BSC REVERSE INTERRUPT (RVI) FEATURE, 10-7 BSC SLAVE STATION, 10-1 BSC SOFTWARE STATUS WORD I ST IN IORB (TBL), 10-14 BSC TEMPORARY TEXT DELAY (TTD) FEATURE, 10-5 BSC TRANSPARENT EBCDIC OUTPUT, 10-20 BSC TWO-BUFFER FEATURE, 10-3 BSC WAIT BEFORE ACKNOWLEDGE (WACK) FEATURE, 10-6 BSC WITH COBOL, 3-8 COBOL BSC APPLICATION EXAMPLE, D-12 COBOL BSC DATA CODES, 3-8 COBOL BSC DATA TRANSMISSION, 3-8 COBOL MACRO CALL PROCEDURES BSC 2780 IN ADVANCED MODE, 3-11 COBOL MACRO CALL PROCEDURES BSC 2780 IN BASIC MODE, 3-9 COBOL MACRO CALL PROCEDURES BSC 3780 IN ADVANCED MODE, 3-11 EBCDIC INPUT FOR BSC, 10-16 EXAMPLE OF BSC COMMUNICATION (FIG), 10-3 EXAMPLE OF CONVERSATIONAL REPLY BSC 3780 TRANSMISSION (FIG), 10-11 LINE CONTENTION - BSC, 10-2 PROGRAM LOGIC FOR 2780 BSC IN ADVANCED MODE (FIG), 5-17 PROGRAM LOGIC FOR 2780 BSC (FIG), 3-10 PROGRAM LOGIC FOR BSC 2780 IN BASIC MODE (FIG), 5-13PROGRAM LOGIC FOR BSC 3780 IN ADVANCED MODE (FIG), 5-22 PROGRAM LOGIC FOR BSC 3780 (FIG), 3-12 SPECIFYING BSC 2780 AND/OR 3780 TO THE SYSTEM, 10-13 TRANSPARENT EBCDIC INPUT FOR BSC, 10-17 USING BSC 2780/3780 LINE PROTOCOL HANDLER, 10-12 BUFFERED MODE TTY BUFFERED MODE (VIP 7200 AND 7800), 7-3 TTY CHARACTER MODE AND BUFFERED MODE TRANSMISSION, 7-2 TTY INPUT IN BUFFERED MODE (VIP 7200 AND 7800), 7-9 TTY OUTPUT IN BUFFERED MODE, 7-11

BUFFERING, SYSTEM SYSTEM BUFFERING, 2-11 BYTE, CONTROL BSC CONTROL BYTE (RECEIVE), 10-15 BSC CONTROL BYTE (SEND), 10-18 CONTROL BYTE FOR TTY LINE PROTOCOL HANDLER (FIG), 7-10TTY CONTROL BYTE (INPUT), 7-8 TTY CONTROL BYTE (SEND), 7-9 VIP CONTROL BYTE (SEND), 8-8 CARRIAGE COBOL CARRIAGE CONTROL, 3-3 TTY LINE FEED (LF) AND CARRIAGE RETURN (CR) INPUT, 7-8 CHANNEL CONTROL PROGRAM (CCP) CHANNEL CONTROL PROGRAM, A-3 CHARACTER ASCII/HEXADECIMAL CHARACTER EQUIVALENTS (TBL), F-2 BSC BLOCK CHECK CHARACTER (BCC), A-8 BSC NONALPHANUMERIC CONTROL CHARACTER (TBL), F-3 CONTROL CHARACTER AS DATA CHARACTER, 7-9 EBCDIC/HEXADECIMAL/BINARY CHARACTER EQUIVALENTS (TBL), E-3 TTY CHARACTER MODE, 7-2TTY CHARACTER MODE AND BUFFERED MODE TRANSMISSION, 7-2TTY KEYBOARD INPUT CHARACTER CONTROL, 7-8 TTY NONALPHANUMERIC CONTROL CHARACTER (TBL), F-1 VIP NONALPHANUMERIC CONTROL CHARACTER (TBL), F-2 CHARACTERISTICS, TERMINAL CHANGING TERMINAL'S FILE CHARACTERISTICS, B-1 DEFINING FILE/TERMINAL CHARACTERISTICS, 2-12 FORTRAN, CHANGING TERMINAL'S FILE CHARACTERISTICS, 4-1 CHARACTER/LINE CORRECTION TTY INPUT CHARACTER/LINE CORRECTION AND DELETION, 7-8 CHARACTERS ASCII AND EBCDIC CHARACTERS, F-1 BSC 3780 TRANSMISSION/RECEIPT OF BSC CONTROL CHARACTERS, 10-10 DEVICE-SPECIFIC CONTROL CHARACTERS, F-1 TTY DETECTION OF BRK CHARACTERS, 7-10 TTY DISPLAY OF INPUT CHARACTERS, 7-9

CHECK BLOCK ERROR CHECK, A-8 BSC BLOCK CHECK CHARACTER (BCC), A-8 CYCLIC REDUNDANCY CHECK (CRC), A-8 FORTRAN FILE STATUS CHECK (ZFSTIN AND ZFSTOT), 4-2 LONGITUDINAL REDUNDANCY CHECK (LRC), A-8 PARITY ERROR CHECK, A-8 TIME-OUT CHECK, A-9 COBOL BSC WITH COBOL, 3-8 COBOL ASSIGN CLAUSE, 3-2 COBOL, ASSIGNING FILE TO DEVICE/ TERMINAL, 3-2 COBOL ASSOC OR GET COMMANDS, 3-2 COBOL ASYNCHRONOUS OPERATION (CALL "ZCASN"), 3-4 COBOL ASYNCHRONOUS OR SYNCHRONOUS EXECUTION, 3-4COBOL BSC 2780 AND BSC 3780, 3-8 COBOL BSC APPLICATION EXAMPLE, D-12 COBOL BSC DATA CODES, 3-8 COBOL BSC DATA TRANSMISSION, 3-8 COBOL CARRIAGE CONTROL, 3-3 COBOL CONVENTIONS, 3-8 COBOL FILE SYSTEM CONSIDERATIONS, 3-1 COBOL INTERNAL FILE NAME (IFN), 3-2COBOL MACRO CALL PROCEDURES BSC 2780 IN ADVANCED MODE, 3-11 COBOL MACRO CALL PROCEDURES BSC 2780 IN BASIC MODE, 3-9 COBOL PRINTER EMULATION, 3-4 COBOL PROGRAM EXAMPLES, D-1 COBOL PROGRAM LOGIC FOR MULTIPLE INTERACTIVE TERMINALS (FIG), 3-6 COBOL SELECT AND ASSIGN EXAMPLES, 3-3 COBOL SOURCE PROGRAM ENTRIES IN COMMUNICATIONS, 3-1 COBOL, SPECIFYING FILES IN SOURCE PROGRAM, 3-1 COBOL SYNCHRONOUS OPERATION (CALL "ZCSYNC"), 3-4 COBOL TTY OR VIP APPLICATION EXAMPLE, D-1 COBOL WAIT FOR COMPLETION -ASYNCHRONOUS I/O, 3-5 COMMUNICATIONS WITH COBOL, 3-1 CODE, FUNCTION CONNECT FUNCTION (CODE A), 6-11 DISCONNECT FUNCTION (CODE B), 6-11 READ FUNCTION (CODE 2), 6-10 WAIT ONLINE FUNCTION (CODE 0), 6-9 WRITE FUNCTION (CODE 1), 6-10

CODES COMMUNICATIONS FUNCTION CODES, 6-9 FUNCTION CODES IN I CT2 of IORB (TBL), 7-5, 8-4, 9-3, 10-12 PVE HARDWARE FUNCTION CODES, 9-6 RETURN STATUS ERROR CODES FOR I/O REQUEST (TBL), 6-3 SOFTWARE (I ST) STATUS CODES (TBL), 6-8 VIP HARDWARE FUNCTION CODES, 8-8 COMMAND, STTY ARGUMENT VALUES FOR STTY COMMAND AND \$STTY MACRO CALL (TBL), B-2 COMMUNICATIONS-SPECIFIC RCT COMMUNICATIONS-SPECIFIC ITEMS IN RCT (TBL), C-3 CONNECT FUNCTION CONNECT FUNCTION (CODE A), 6-11 CONTROL BSC 3780 TRANSMISSION/RECEIPT OF BSC CONTROL CHARACTERS, 10-10 BSC CONTROL BYTE (RECEIVE), 10-15 BSC CONTROL BYTE (SEND), 10-18 BSC NONALPHANUMERIC CONTROL CHARACTER (TBL), F-3 COMMUNICATIONS RESOURCE CONTROL TABLE (RCT) (FIG), C-2 CONTROL BYTE FOR TTY LINE PROTOCOL HANDLER (FIG), 7-10 CONTROL CHARACTER AS DATA CHARACTER, 7-9 DEVICE-SPECIFIC CONTROL CHARACTERS, F-1 PVE CONTROL STATION, 9-1 RESOURCE CONTROL TABLE (RCT), 6-4, C-1 TTY CONTROL BYTE (INPUT), 7-8 TTY CONTROL BYTE (SEND), 7-9 TTY KEYBOARD INPUT CHARACTER CONTROL, 7-8 TTY KEYBOARD INPUT LINE CONTROL, 7-8TTY NONALPHANUMERIC CONTROL CHARACTER (TBL), F-1 VIP CONTROL BYTE (SEND), 8-8 VIP NONALPHANUMERIC CONTROL CHARACTER (TBL), F-2 CONVERSATIONAL REPLY, BSC BSC 3780 CONVERSATIONAL REPLY FEATURE, 10-10 CORRECTION COMMUNICATIONS SUBSYSTEM ERROR AND CORRECTION PROCEDURES, A-8 TTY INPUT CHARACTER/LINE CORRECTION AND DELETION, 7-8 CR (CARRIAGE RETURN) TTY LINE FEED (LF) AND CARRIAGE

RETURN (CR) INPUT, 7-8

CYCLIC CYCLIC REDUNDANCY CHECK (CRC), A-8 DATA BSC INPUT DATA, 10-14 BSC OUTPUT DATA, 10-17 COBOL BSC DATA CODES, 3-8 COBOL BSC DATA TRANSMISSION, 3-8 COBOL BSC DATA TRANSMISSION MODES, 3-8 CONTROL CHARACTER AS DATA CHARACTER, 7-9 DATA MANAGEMENT MACRO CALLS, 2-2 MACRO CALLS FOR DATA ENTRY TERMINALS (TBL), 5-4PHYSICAL I/O DATA STRUCTURES, 6-3 PVE INPUT DATA, 9-7 PVE OUTPUT DATA, 9-7 TTY INPUT DATA, 7-7TTY OUTPUT DATA, 7-9 VIP INPUT DATA, 8-8 VIP OUTPUT DATA, 8-9 DELAY, TEXT BSC TEMPORARY TEXT DELAY (TTD) FEATURE, 10-5 DELETION, INPUT CHARACTER TTY INPUT CHARACTER/LINE CORRECTION AND DELETION, 7-8 DEVICE ASSEMBLY PROGRAMS DEVICE MODES AND DEVICE TYPES, 5-3TTY AND VIP LINE PROTOCOL HANDLER DEVICE SUPPORT, 1-5 DIFFERENCES, BSC 2780/3780 BSC 2780 AND BSC 3780 DIFFERENCES, 10-3, 5-12 DISCONNECT FUNCTION DISCONNECT FUNCTION (CODE B), 6-11 DISPLACEMENT DEFINITIONS (FIB) FIB DISPLACEMENT DEFINITIONS, 2-6 DISPLAY, TTY TTY DISPLAY OF INPUT CHARACTERS, 7-9 DLCP DUMP ROUTINE (DUMCP) FOR MLCP AND DLCP, G-1 DRIVER, MLCP MULTILINE COMMUNICATIONS PROCESSOR (MLCP) AND DRIVER, 1-4, A-3DUMCP (MLCP DUMP) DUMCP DUMP FORMATS, G-7 DUMCP PROGRAMMING, G-8 DUMP ROUTINE (DUMCP) FOR MLCP AND

DLCP, G-1

DUMCP (MLCP DUMP) (CONT) LINKING BOUND UNIT CONTAINING DUMCP, G-1 LINKING DUMCP WITH APPLICATION PROGRAM, G-3 REGISTER VALUES AND DUMCP DUMP CONTENTS (TBL), G-6 STRTDO ENTRY POINT IN USING DUMCP, G-4 STRTD1 ENTRY POINT IN USING DUMCP, G-5 STRTD2 ENTRY POINT IN USING DUMCP, G-7 EBCDIC ASCII AND EBCDIC CHARACTERS, F-1 BSC EBCDIC OUTPUT, 10-19 BSC TRANSPARENT EBCDIC OUTPUT, 10-20 EBCDIC INPUT FOR BSC, 10-16 TRANSPARENT EBCDIC INPUT FOR BSC, 10-17 EBCDIC/HEXADECIMAL/BINARY EBCDIC/HEXADECIMAL/BINARY CHARACTER EQUIVALENTS (TBL), E-3 EDITING VIP KEYBOARD/SCREEN OUTPUT EDITING, 8-10 VIP RECEIVE-ONLY PRINTER EDITING, 8-10 EMULATION, PRINTER COBOL PRINTER EMULATION, 3-4 EMULATOR, POLLED VIP POLLED VIP EMULATOR (PVE) LINE PROTOCOL HANDLER, 9-1 END-OF-MESSAGE SEQUENCE END-OF-MESSAGE (EOM) SEQUENCE TTY OUTPUT, 7-10ENQ MESSAGE ENQ BID MESSAGE, 10-1 EOM SEOUENCE END-OF-MESSAGE (EOM) SEQUENCE TTY OUTPUT, 7-10EOT FEATURE BSC END OF TRANSMISSION (EOT) FEATURE, 10-8 ERROR BLOCK ERROR CHECK, A-8 COMMUNICATIONS SUBSYSTEM ERROR AND CORRECTION PROCEDURES, A-8

ERROR (CONT) ERROR PROCESSING VIP LINE PROTOCOL HANDLER, 8-11 ERROR REPORTING PVE LINE PROTOCOL HANDLER, 9-8 MLCP ERROR REPORTED BY VIP LINE PROTOCOL HANDLER (TBL), 8-13 NONPOLLED VIP ERRORS, 8-14 PARITY ERROR CHECK, A-8 RETURN STATUS ERROR CODES FOR I/O REQUEST (TBL), 6-3EXAMPLE ASSEMBLY LANGUAGE EXAMPLE FOR TTY OR VIP PHYSICAL I/O, D-19 BSC REVERSE INTERRUPT (RVI) EXAMPLE (FIG), 10-8 BSC TEMPORARY TEXT DELAY (TTD) EXAMPLE (FIG), 10-6 BSC WAIT BEFORE ACKNOWLEDGE (WACK) EXAMPLE (FIG), 10-7 COBOL BSC APPLICATION EXAMPLE, D-12 COBOL TTY OR VIP APPLICATION EXAMPLE, D-1 COMMUNICATIONS SUBYSTEM OPERATION EXAMPLE, A-4 EXAMPLE OF BSC COMMUNICATION (FIG), 10-3 EXAMPLE OF CONVERSATIONAL REPLY BSC 3780 TRANSMISSION (FIG), 10-11 FORTRAN APPLICATION EXAMPLE FOR TTY, D-16 EXAMPLES COBOL PROGRAM EXAMPLES, D-1 COBOL SELECT AND ASSIGN EXAMPLES, 3-3COBOL SELECT AND ASSIGN EXAMPLES (FIG), 3-3FORTRAN ZFSTIN AND ZFSTOT EXAMPLES, 4-4EXECUTION COBOL ASYNCHRONOUS OR SYNCHRONOUS EXECUTION, 3-4 FORTRAN EXECUTION WITH COMMUNICATIONS, 4-1 FEED, LINE AND FORM TTY LINE FEED (LF) AND CARRIAGE RETURN (CR) INPUT, 7-8 VIP RECEIVE-ONLY PRINTER FORM FEED, 8-11 FIB FIB DISPLACEMENT DEFINITIONS, 2 - 6FIB FOR DATA MANAGEMENT (TBL), 2 - 8FIB FORMAT AND CONTENTS, 2-3

FIB (CONT) FILE INFORMATION BLOCK (FIB), 2-3 FILE INFORMATION BLOCK (FIB) FOR STORAGE MANAGEMENT (FIG), 2-9 FILE INFORMATION BLOCK (FIB) (FIG), 2-4 PROGRAM VIEW ENTRY IN THE FIB, 2-6 PROGRAMMER'S VIEW OF FIB, 2-6 FILE CHANGING TERMINAL'S FILE CHARACTERISTICS, B-1 COBOL, ASSIGNING A FILE TO A DEVICE/TERMINAL, 3-2 COBOL INTERNAL FILE NAME (IFN), 3-2 FILE ASSIGNMENTS IN COBOL EXAMPLE, D-2 FILE INFORMATION BLOCK (FIB FOR DATA MANAGEMENT (FIG), 2-7 FILE INFORMATION BLOCK (FIB), 2-3 FILE INFORMATION BLOCK (FIB) FOR STORAGE MANAGEMENT (FIG), 2-9FILE MANAGEMENT MACRO CALLS, 2-1 FILE SYSTEM AND MACRO ROUTINES, 2-1 FILE SYSTEM IN COMMUNICATIONS, 2-10 FILE SYSTEM INTERFACE WITH APPLICATIONS, 1-4FORTRAN, CHANGING TERMINAL'S FILE CHARACTERISTICS, 4-1 FORTRAN, FILE STATUS CHECK (ZFSTIN AND ZFSTOT), 4-2 GCOS ¢ FILE SYSTEM, 1-2 TEST FILE STATUS, 2-12 FORTRAN COMMUNICATIONS WITH FORTRAN, 4-1 FORTRAN APPLICATION EXAMPLE FOR TTY, D-16 FORTRAN, ASSIGNING INTERACTIVE DEVICES AT EXECUTION, 4-1 FORTRAN CALL STATEMENT FOR ZFSTIN OR ZFSTOT, 4-2FORTRAN, CHANING TERMINAL'S FILE CHARACTERISTICS, 4-1 FORTRAN EXECUTION WITH COMMUNICATIONS, 4-1 FORTRAN FILE STATUS CHECK (ZFSTIN AND ZFSTOT), 4-2 FORTRAN INTERACTIVE DEVICES AND FILES, 4-1FORTRAN ZFSTIN AND ZFSTOT EXAMPLES, 4-4FUNCTION COMMUNICATIONS FUNCTION CODES, 6-9

CONNECT FUNCTION (CODE A), 6-11 DISCONNECT FUNCTION (CODE A), 6-11 FUNCTION CODES IN I CT2 OF IORB (TBL), 7-5, 8-4, 9-3, 10-12 FUNCTION (CONT) PVE HARDWARE FUNCTION CODES, 9-6 READ FUNCTION (CODE 2), 6-10 VIP 7200 AND 7800 FUNCTION AND CONTROL KEYS, 7-4 VIP HARDWARE FUNCTION CODES, 8-8 WAIT ONLINE FUNCTION (CODE 0), 6-9 WRITE FUNCTION (CODE 1), 6-10 GET ARGUMENTS FOR GET FILE (\$GTFIL) MACRO CALL (TBL), 5-2 COBOL ASSOC OR GET COMMANDS, 3-2 GTFIL ARGUMENTS FOR GET FILE (\$GTFIL) MACRO CALL (TBL), 5-2 \$GTFIL MACRO CALL IN ASSEMBLY APPLICATIONS, 5-1 HARDWARE PVE HARDWARE FUNCTION CODES, 9-6 VIP 7200 AND 7800 HARDWARE SWITCH, 7-3 VIP HARDWARE FUNCTION CODES, 8-8 HEADER, MESSAGE PVE INPUT MESSAGE HEADER, 9-6 PVE OUTPUT MESSAGE HEADER, 9-7 VIP INPUT MESSAGE HEADER, 8-7 VIP OUTPUT MESSAGE HEADER, 8-8 IFN COBOL INTERNAL FILE NAME (IFN), 3-2I CT2 FUNCTION CODES IN I CT2 OF IORB (TBL), 7-5, 8-4, 9-3, 10-12 I DVS BSC DEVICE-SPECIFIC WORD I DVS IN IORB (TBL), 10-12 PVE DEVICE-SPECIFIC WORD I DVS IN IORB (TBL), 9-3 TTY DEVICE-SPECIFIC WORD I DVS IN IORB (TBL), 7-5 VIP DEVICE-SPECIFIC WORD I DVS IN IORB (TBL), 8-4 I ST BSC SOFTWARE STATUS WORD I ST IN IORB (TBL), 10-14 IORB SOFTWARE STATUS WORD (I ST), 6-8 PVE SOFTWARE STATUS WORD I ST IN IORB (TBL), 9-5SOFTWARE (I_ST) STATUS CODES (TBL), 6-8 VIP SOFTWARE STATUS WORD I ST IN IORB (TBL), 8-6

INPUT ASCII INPUT FOR BSC, 10-16 BSC INPUT DATA, 10-14 EBCDIC INPUT FOR BSC, 10-16 INPUT OUTPUT REQUEST BLOCK (IORB), 6-2 PVE INPUT, 9-6 TRANSPARENT EBCDIC INPUT FOR BSC, 10-17 TTY DISPLAY OF INPUT CHARACTERS, 7-9 TTY INPUT DATA, 7-7TTY INPUT IN BUFFERED MODE (VIP 7200 AND 7800), 7-9 TTY NONTRANSPARENT INPUT, 7-8 TTY TRANSPARENT INPUT, 7-8 VIP INPUT DATA, 8-8 VIP INPUT (KEYBOARD/SCREEN), 8-7 INPUT/OUTPUT ASYNCHRONOUS INPUT/OUTPUT, 2-11 INPUT/OUTPUT REQUEST BLOCK (IORB), 6-4 PHYSICAL INPUT/OUTPUT INTERFACE WITH APPLICATIONS, 1-5 PHYSICAL INPUT/OUTPUT (PHYSICAL I/O), 1-2INTERFACE FILE SYSTEM INTERFACE WITH APPLICATIONS, 1-4 PHYSICAL INPUT/OUTPUT INTERFACE WITH APPLICATIONS, 1-5 PHYSICAL I/O COMMUNICATIONS INTERFACE, 6-1 INTERNAL FILE NAME, COBOL COBOL INTERNAL FILE NAME (IFN), 3-2INTERRUPT, REVERSE BSC REVERSE INTERRUPT (RVI) FEATURE, 10-7 INTERVAL PVE TIME-OUT INTERVALS (TBL), 9-8 VIP TIME-OUT INTERVALS, 8-2 VIP POLL INTERVAL, 8-7 IORB BSC-SPECIFIC IORB VALUES, 10-12 COMMUNICATIONS INPUT/OUTPUT REQUEST BLOCK (IORB) (FIG), 6-5 INPUT OUTPUT REQUEST BLOCK (IORB), 6-2, 6-4 IORB SOFTWARE STATUS WORD (I ST), 6-8 PVE-SPECIFIC IORB VALUES, 9-2 TTY-SPECIFIC IORB VALUES, 7-5 VIP-SPECIFIC IORB VALUES, 8-3 KEYBOARD TTY KEYBOARD INPUT CONTROL, 7-8

KEYBOARD/SCREEN VIP INPUT (KEYBOARD/SCREEN), 8-7 VIP KEYBOARD/SCREEN OUTPUT EDITING, 8-10 LF (LINE FEED) TTY LINE FEED (LF) AND CARRIAGE RETURN (CR) INPUT, 7-8 LINE BSC 2780/3780 LINE PROTOCOL HANDLER, 10-1 ERROR PROCESSING VIP LINE PROTOCOL HANDLER, 8-11 ERROR REPORTING PVE LINE PROTOCOL HANDLER, 9-8 LINE CONTENTION - BSC, 10-2 LINE PROTOCOL HANDLER (LPH), 1-3 LINE PROTOCOL HANDLERS (LPHS), A-1 POLLED VIP EMULATOR (PVE) LINE PROTOCOL HANDLER, 9-1 TTY AND VIP LINE PROTOCOL HANDLER DEVICE SUPPORT, 1-5 TTY KEYBOARD INPUT LINE CONTROL, 7-8 TTY LINE FEED (LF) AND CARRIAGE RETURN (CR) INPUT, 7-8 TTY LINE PROTOCOL HANDLER, 7-1 USING BSC 2780/3780 LINE PROTOCOL HANDLER, 10-12 USING PVE LINE PROTOCOL HANDLER, 9-2 USING TTY LINE PROTOCOL HANDLER, 7-5USING VIP LINE PROTOCOL HANDLER, 8-3VIP LINE PROTOCOL HANDLER, 8-1 VIP LINE PROTOCOL HANDLER POLLING, 8-7 LINKING, DUMPC LINKING BOUND UNIT CONTAINING DUMCP, G-1 LINKING DUMCP AS SELF-CONTAINED BOUND UNIT, G-2 LINKING DUMCP WITH APPLICATION PROGRAM, G-3 LOGIC, PROGRAM COBOL PROGRAM LOGIC FOR MULTIPLE INTERACTIVE TERMINALS (FIG), 3-6 PROGRAM LOGIC FOR 2780 BSC IN ADVANCED MODE (FIG), 5-17 PROGRAM LOGIC FOR 2780 BSC (FIG), 3-10 PROGRAM LOGIC FOR BSC 2780 IN BASIC MODE (FIG), 5-13PROGRAM LOGIC FOR BSC 3780 IN ADVANCED MODE (FIG), 5-22 PROGRAM LOGIC FOR BSC 3780 (FIG), 3-12 PROGRAM LOGIC FOR SINGLE INTERACTIVE TERMINAL (FIG), 5-8 PROGRAM LOGIC MULTIPLE INTERACTIVE TERMINALS (FIG), 5-10

CB03

LONGITUDINAL CHECK MACRO CALLS (CONT) LONGITUDINAL REDUNDANCY CHECK (LRC), A-8 LPHMASTER STATION LINE PROTOCOL HANDLER (LPH), 1-3, A-1 MESSAGE LRC LONGITUDINAL REDUNDANCY CHECK (LRC), A-8 MACRO CALL ARGUMENT VALUES FOR STTY COMMAND AND \$STTY MACRO CALL (TBL), B-2 ARGUMENTS FOR GET FILE (\$GTFIL) MACRO CALL (TBL), 5-2 COBOL MACRO CALL PROCEDURES BSC 2780, 3-9 PVE, 9-5 COBOL MACRO CALL PROCEDURES BSC 3780, 3-11 MLCP FILE SYSTEM AND MACRO ROUTINES, 2-1 DLCP, G-1 \$GTFIL MACRO CALL IN ASSEMBLY APPLICATIONS, 5-1 \$OPFIL MACRO CALL IN ASSEMBLY APPLICATIONS, 5-2 PROGRAM VIEW FOR \$OPFIL MACRO CALL (TBL), 5-3MODE REQUEST IO (\$RQIO) MACRO CALL, 6-1, 6-2 7800), 7-3 STORAGE MANAGEMENT MACRO CALLS, 2-2STIFIL STOFIL MACRO CALL IN ASSEMBLY APPLICATIONS, 5-2 \$WIFIL \$WOFIL MACRO CALL IN ASSEMBLY APPLICATIONS, 5-2 MACRO CALLS MODEM ASSEMBLY PROGRAMS DEVICE-DEPENDENT MACRO CALLS, 5-3 ASSEMBLY PROGRAMS MACRO CALLS BSC MULTILINE 2780 ADVANCED MODE, 5-16 ASSEMBLY PROGRAMS MACRO CALLS BSC 2780 BASIC MODE, 5-12 ASSEMBLY PROGRAMS MACRO CALLS BSC 3780 ADVANCED MODE, 5-20 ASSEMBLY PROGRAMS MACRO CALLS DATA (IFN), 3-2ENTRY TERMINALS, 5-4 ASSEMBLY PROGRAMS MACRO CALLS MULTIPLE TERMINALS 5-9 ASSEMBLY PROGRAMS MACRO CALLS OUTPUT ONLY TERMINALS, 5-5 ASSEMBLY PROGRAMS MACRO CALLS NONPOLLED ERRORS SINGLE TERMINAL, 5-7 DATA MANAGEMENT MACRO CALLS, 2-2 FILE MANAGEMENT MACRO CALLS, 2-1 MACRO CALLS IN ASSEMBLY APPLICATIONS, 5-1 SOPFIL MACRO CALL MACRO CALLS PROCEDURES FOR BSC 2780 IN ADVANCED MODE (TBL), 5-18 (TBL), 5-3 MACRO CALLS PROCEDURES FOR BSC 3780 **\$OPFIL MACRO CALL IN ASSEMBLY** IN ADVANCED MODE (TBL), 5-24 APPLICATIONS, 5-2

PHYSICAL I/O MACRO CALLS FOR COMMUNICATIONS, 6-12 BSC MASTER STATION, 10-1 ENQ BID MESSAGE, 10-1 PVE INPUT MESSAGE HEADER, 9-6 PVE OUTPUT MESSAGE HEADER, 9-7 PVE TERMINAL ADDRESS (ADR) AND MESSAGE STATUS (STA), 9-7 TTY MESSAGE FORMATS, 7-1 TTY MESSAGE FORMATS (FIG), 7-2 VIP INPUT MESSAGE HEADER, 8-7 VIP OUTPUT MESSAGE HEADER, 8-8 VIP PROTOCOL MESSAGE STRUCTURE FOR DUMP ROUTINE (DUMCP) FOR MLCP AND MLCP ERROR REPORTED BY VIP LINE PROTOCOL HANDLER (TBL), 8-13 MULTILINE COMMUNICATIONS PROCESSOR (MLCP) AND DRIVER, 1-4, A-3 TTY BUFFERED MODE (VIP 7200 AND TTY CHARACTER MODE, 7-2TTY CHARACTER MODE AND BUFFERED MODE TRANSMISSION, 7-2 TTY INPUT IN BUFFERED MODE (VIP 7200 AND 7800), 7-9 TTY OUTPUT IN BUFFERED MODE, 7-11 MODEM SUPPORT, A-3 MULTILINE COMMUNICATIONS PROCESSOR AND DRIVER, 1-4, A-3 NAME, COBOL INTERNAL COBOL INTERNAL FILE NAME NONALPHANUMERIC CONTROL CHARACTERS NONALPHANUMERIC CONTROL CHARACTERS (TBL), F-1 NONPOLLED VIP ERRORS, 8-14 NONTRANSPARENT INPUT TTY NONTRANSPARENT INPUT, 7-8 PROGRAM VIEW FOR \$OPFIL MACRO CALL OUTPUT ASSEMBLY PROGRAMS MACRO CALLS OUTPUT ONLY TERMINALS, 5-5 BSC ASCII OUTPUT, 10-19 BSC EBCDIC OUTPUT, 10-19 BSC OUTPUT DATA, 10-17 BSC TRANSPARENT EBCDIC OUTPUT, 10-20 END OF MESSAGE (EOM) SEQUENCE TTY OUTPUT, 7-10 MACRO CALLS FOR OUTPUT ONLY TERMINALS (TBL), 5-5 PVE OUTPUT, 9-7 PVE OUTPUT DATA, 9-7 PVE OUTPUT MESSAGE HEADER, 9-7 TTY OUTPUT DATA, 7-9 TTY OUTPUT IN BUFFERED MODE, 7-11 VIP KEYBOARD/SCREEN OUTPUT EDITING, 8-10 VIP OUTPUT, 8-8 PARITY ERROR CHECK PARITY ERROR CHECK, A-8 PHYSICAL INPUT/OUTPUT (P I/O) ASSEMBLY COMMUNICATIONS WITH PHYSICAL INPUT/OUTPUT (P I/O), 6-1 PHYSICAL INPUT/OUTPUT INTERFACE WITH APPLICATIONS, 1-5 PHYSICAL INPUT/OUTPUT (PHYSICAL I/O), 1-2 PHYSICAL I/O COMMUNICATIONS INTERFACE, 6-1 PHYSICAL I/O DATA STRUCTURES, 6-3 PHYSICAL I/O MACRO CALLS FOR COMMUNICATIONS, 6-12 USING PHYSICAL I/O IN ASSEMBLY PROGRAMS, 6-2 POINT, ENTRY FOR DUMCP STRTDO ENTRY POINT IN USING DUMCP, G-4 STRTD1 ENTRY POINT IN USING DUMCP, G-5 STRTD2 ENTRY POINT IN USING DUMCP, G-7 POLL VIP POLL DURATION (TIME-OUT), 8-7 VIP POLL INTERVAL, 8-7 POLLED VIP EMULATOR (PVE) POLLED VIP EMULATOR (PVE) LINE PROTOCOL HANDLER, 9-1 POLLING VIP LINE PROTOCOL HANDLER POLLING, 8-7 VIP POLLING OPTIONS, 8-6 PRIMARY STATION PRIMARY STATION AT SYSTEM

BUILD, 10-2

PRINTER COBOL PRINTER EMULATION, 8-4 VIP RECEIVE-ONLY PRINTER EDITING SEQUENCE, 8-10 VIP RECEIVE-ONLY PRINTER FORM FEED SEQUENCE, 8-11 PROCEDURES, MACRO CALL COBOL MACRO CALL PROCEDURES BSC 2780 IN ADVANCED MODE, 3-11 COBOL MACRO CALL PROCEDURES BSC 2780 IN BASIC MODE, 3-9 COBOL MACRO CALL PROCEDURES BSC 3780 IN ADVANCE MODE, 3-11 COMMUNICATIONS SUBSYSTEM ERROR AND CORRECTION PROCEDURES, A-8 MACRO CALL PROCEDURES FOR BSC 2780 IN ADVANCED MODE (TBL), 5-18 MACRO CALL PROCEDURES FOR BSC 3780 IN ADVANCED MODE (TBL), 5-24 PROGRAM CHANNEL CONTROL PROGRAM, A-3 PROGRAM VIEW ENTRY IN THE FIB, 2-6 PROGRAM VIEW FOR \$OPFIL MACRO CALL (TBL), 5-3PROTOCOL HANDLER BSC 2780/3780 LINE PROTOCOL HANDLER, 10-1LINE PROTOCOL HANDLER (LPH), 1-3, A-1 POLLED VIP EMULATOR (PVE) LINE PROTOCOL HANDLER, 9-1 TTY AND VIP LINE PROTOCOL HANDLER DEVICE SUPPORT, 1-5 TTY LINE PROTOCOL HANDLER, 7-1 USING BSC 2780/3780 LINE PROTOCOL HANDLER, 10-12 USING PVE LINE PROTOCOL HANDLER, 9-2USING TTY LINE PROTOCOL HANDLER, 7-5USING VIP LINE PROTOCOL HANDLER, 8-3 VIP LINE PROTOCOL HANDLER, 8-1 PVE (POLLED VIP EMULATOR) BSC AND PVE HOST-COMMUNICATIONS SUPPORT, 1-5 ERROR REPORTING PVE LINE PROTOCOL HANDLER, 9-8 POLLED VIP EMULATOR (PVE) LINE PROTOCOL HANDLER, 9-1 PVE CONTROL STATION, 9-1 PVE DEVICE-SPECIFIC WORD I DVS IN IORB (TBL), 9-3 PVE HARDWARE FUNCTION CODES, 9-6 PVE INPUT, 9-6 PVE INPUT DATA, 9-7 PVE INPUT MESSAGE HEADER, 9-6 PVE LINE PROTOCOL HANDLER TIME-OUT, 9-8

INDEX

PVE (POLLED VIP EMULATOR) (CONT) PVE OUTPUT, 9-7 PVE OUTPUT DATA, 9-7 PVE SOFTWARE STATUS WORD I ST IN IORB (TBL), 9-5 PVE-SPECIFIC IORB VALUES, 9-2 PVE TERMINAL ADDRESS (ADR) AND MESSAGE STATUS (STA), 9-7 PVE TIME-OUT INTERVALS (TBL), 9-8 PVE TRIBUTARY STATION, 9-1 PVE CONFIGURATION (FIG), 9-2 USING PVE LINE PROTOCOL HANDLER, 9-2VIP PROTOCOL MESSAGE STRUCTURE FOR PVE, 9-5 RCT RESOURCE CONTROL TABLE (RCT), 6-4, C-1 READ FUNCTION READ FUNCTION (CODE 2), 6-10 RECEIVE-ONLY VIP RECEIVE-ONLY PRINTER EDITINC (TBL), 8-10 VIP RECEIVE-ONLY PRINTER FORM FEED (TBL), 8-11 REDUNDANCY CHECK CYCLIC REDUNDANCY CHECK (CRC), A-8 LONGITUDINAL REDUNDANCY CHECK (LRC), A-8 REGISTER REGISTER \$R2 AT DUMP EXECUTION -DUMCP LINKED TO APPLICATION (TBL), G-7 REGISTER VALUES AND DUMCP DUMP CONTENTS (TBL), G-6 REPLY, CONVERSATIONAL IN BSC BSC 3780 CONVERSATIONAL REPLY FEATURE, 10-10 REQUEST BLOCK COMMUNICATIONS INPUT/OUTPUT REQUEST BLOCK (IORB) (FIG), 6-5 INPUT OUTPUT REQUEST BLOCK (IORB), 6-2, 6-4REQUEST I/O REQUEST IO (\$RQIO) MACRO CALL, 6-1, 6-2 RETURN STATUS ERROR CODES FOR I/O REQUEST (TBL), 6-3RESOURCE CONTROL TABLE (RCT) RESOURCE CONTROL TABLE (RCT), 6-4, C-1

RETURN RETURN STATUS ERROR CODES FOR I/O REQUEST (TBL), 6-3 TTY LINE FEED (LF) AND CARRIAGE RETURN (CR) INPUT, 7-8 REVERSE INTERRUPT BSC REVERSE INTERRUPT (RVI) FEATURE, 10-7 R_STS IN RCT TERMINAL ATTRIBUTES IN STATUS WORD R_STS OF RCT (TBL), C-3 ROUTINE DUMP ROUTINE (DUMCP) FOR MLCP AND DLCP, G-1 FILE SYSTEM AND MACRO ROUTINES, 2 - 1\$RQIO MACRO CALL REQUEST IO (\$RQIO) MACRO CALL, 6-1, 6-2 RVI (REVERSE INTERRUPT) BSC REVERSE INTERRUPT (RVI) FEATURE, 10-7 SELECT COBOL SELECT AND ASSIGN CLAUSE EXAMPLES, 3-3 SEND CONTROL BYTE BSC CONTROL BYTE (SEND), 10-18 TTY CONTROL BYTE (SEND), 7-9 VIP CONTROL BYTE (SEND), 8-8 SEQUENCE END-OF-MESSAGE (EOM) SEQUENCE TTY OUTPUT, 7-10 VIP RECEIVE-ONLY PRINTER EDITING SEQUENCE, 8-10 VIP RECEIVE-ONLY PRINTER FORM FEED SEQUENCE, 8-11 SLAVE STATION BSC SLAVE STATION, 10-1 SOFTWARE STATUS WORD (I ST) BSC SOFTWARE STATUS WORD I ST IN IORB (TBL), 10-14 IORB SOFTWARE STATUS WORD (I ST), 6-8 PVE SOFTWARE STATUS WORD I ST IN IORB (TBL), 9-5 SOFTWARE (I_ST) STATUS CODES (TBL), 6-8 TTY SOFTWARE STATUS WORD I ST IN IORB (TBL), 7-7 VIP SOFTWARE STATUS WORD I ST IN IORB (TBL), 8-6

SOURCE PROGRAM, COBOL COBOL SOURCE PROGRAM ENTRIES 'IN COMMUNICATIONS, 3-1 COBOL, SPECIFYING FILES IN SOURCE PROGRAM, 3-1 STATION BSC MASTER STATION, 10-1 BSC SLAVE STATION, 10-1 PRIMARY STATION AT SYSTEM BUILD, 10-2 PVE CONTROL STATION, 9-1 PVE TRIBUTARY STATION, 9-1 SECONDARY STATION AT SYSTEM BUILD, 10-2 STATUS FORTRAN FILE STATUS CHECK (ZFSTIN AND ZFSTOT), 4-2PVE TERMINAL ADDRESS (ADR) AND MESSAGE STATUS (STA), 9-7 RETURN STATUS ERROR CODES FOR I/O REQUEST (TBL), 6-3 SOFTWARE (I ST) STATUS CODES (TBL), 6-8 TEST FILE STATUS, 2-12 STORAGE MANAGEMENT FIB FOR STORAGE MANAGEMENT (TBL), 2-10 FILE INFORMATION BLOCK (FIB) FOR STORAGE MANAGEMENT (FIG), 2-9 STORAGE MANAGEMENT MACRO CALLS, 2-2STRUCTURES, PHYSICAL I/O PHYSICAL I/O DATA STRUCTURES, 6-3 STTY COMMAND AND \$STTY MACRO CALL ARGUMENT VALUES FOR STTY COMMAND AND \$STTY MACRO CALL (TBL), B-2 SUBSYSTEM, COMMUNICATIONS COMMUNICATIONS SUBSYSTEM, A-1 COMMUNICATIONS SUBSYSTEM CONVENTIONS, 6-1 GCOS COMMUNICATIONS SUBSYSTEM OVERVIEW, 1-2 SIMPLIFIED FLOW - COMMUNICATIONS SUBYSTEM (FIG), A-6 SUPERVISOR, COMMUNICATIONS COMMUNICATIONS SUPERVISOR, 1-3, A-1 SUPPORT BSC AND PVE HOST-COMMUNICATIONS SUPPORT, 1-5 MODEM SUPPORT, A-3 SOFTWARE SUPPORT FOR VIP, 8-1 TTY AND VIP LINE PROTOCOL HANDLER

DEVICE SUPPORT, 1-5

SUPPORT (CONT) USER-SUPPLIED SOFTWARE FOR VIP SUPPORT, 8-2 SWITCH VIP 7200 AND 7800 HARDWARE SWITCH, 7-3 SYNCHRONOUS COBOL ASYNCHRONOUS OR SYNCHRONOUS EXECUTION, 3-4COBOL SYNCHRONOUS OPERATION (CALL "ZCSYNC"), 3-4 SYSTEM ASSEMBLY LANGUAGE COMMUNICATIONS WITH FILE SYSTEM, 5-1 ASSEMBLY PROGRAMS FILE SYSTEM CONSIDERATIONS, 5-1 COBOL FILE SYSTEM CONSIDERATIONS, 3-1 FILE SYSTEM AND MACRO ROUTINES, 2-1 FILE SYSTEM IN COMMUNICATIONS, 2-10 FILE SYSTEM INTERFACE WITH APPLICATIONS, 1-4 GCOS 6 FILE SYSTEM, 1-2 PRIMARY STATION AT SYSTEM BUILD, 10-2 SECONDARY STATION AT SYSTEM BUILD, 10-2 SPECIFYING BSC 2780 AND/OR 3780 TO THE SYSTEM, 10-13 SYSTEM BUFFERING, 2-11 TERMINAL'S CHARACTERISTICS, CHANGE CHANGING TERMINAL'S FILE CHARACTERISTICS, B-1 FORTRAN, CHANGING TERMINAL'S FILE CHARACTERISTICS, 4-1 TERMINAL ASSEMBLY PROGRAMS MACRO CALLS SINGLE TERMINAL, 5-7 MACRO CALLS FOR SINGLE INTERACTIVE TERMINAL (TBL), 5-7 PROGRAM LOGIC FOR SINGLE INTERACTIVE TERMINAL (FIG), 5-8 PVE TERMINAL ADDRESS (ADR) AND MESSAGE STATUS (STA), 9-7 TERMINAL ATTRIBUTES AND STATUS WORD R STS OF RCT (TBL), C-3 TERMINALS ASSEMBLY PROGRAMS MACRO CALLS DATA ENTRY TERMINALS, 5-4 ASSEMBLY PROGRAMS MACRO CALLS MULTIPLE TERMINALS, 5-9 ASSEMBLY PROGRAMS MACRO CALLS OUTPUT ONLY TERMINALS, 5-5 COBOL PROGRAM LOGIC FOR MULTIPLE INTERACTIVE TERMINALS (FIG), 3-6 MACRO CALLS FOR DATA ENTRY TERMINALS (TBL), 5-4

TERMINALS (CONT) MACRO CALLS FOR MULTIPLE TERMINALS (TBL), 5-9 MACRO CALLS FOR OUTPUT ONLY TERMINALS (TBL), 5-5 PROGRAM LOGIC MULTIPLE INTERACTIVE TERMINALS (FIG), 5-10 TEST STATUS TEST FILE STATUS, 2-12 TEXT DELAY BSC TEMPORARY TEXT DELAY (TTD) EXAMPLE (FIG), 10-6BSC TEMPORARY TEXT DELAY (TTD) FEATURE, 10-5**\$TIFIL MACRO CALL** \$TIFIL \$TOFIL MACRO CALL IN ASSEMBLY APPLICATIONS, 5-2 TIME-OUT BSC LINE PROTOCOL HANDLER TIME-OUT, 10-9PVE LINE PROTOCOL HANDLER TIME-OUT, 9-8 TIME-OUT CHECK, A-9 TTY LINE PROTOCOL HANDLER TIME-OUT, 7-4VIP POLL DURATION (TIME-OUT), 8-7 VIP TIME-OUT INTERVALS, 8-2 **\$TOFIL MACRO CALL** \$TIFIL \$TOFIL MACRO CALL IN ASSEMBLY APPLICATIONS, 5-2 TRANSMIT, BSC BSC TRANSMIT AND RECEIVE OPERATIONS, 10-1 TRANSPARENT INPUT AND OUTPUT BSC TRANSPARENT EBCDIC OUTPUT, 10-20 TRANSPARENT EBCDIC INPUT FOR BSC, 10-17 TTY TRANSPARENT INPUT, 7-8 TRIBUTARY STATION, PVE PVE TRIBUTARY STATION, 9-1 TTY CONTROL BYTE FOR TTY LINE PROTOCOL HANDLER (FIG), 7-10 END-OF-MESSAGE (EOM) SEQUENCE TTY OUTPUT, 7-10 FORTRAN APPLICATION EXAMPLE FOR TTY, D-16 TTY AND VIP LINE PROTOCOL HANDLER DEVICE SUPPORT, 1-5 TTY CHARACTER MODE, 7-2TTY CHARACTER MODE AND BUFFERED MODE TRANSMISSION, 7-2 TTY CONTROL BYTE, 7-8, 7-9

TTY (CONT) TTY DETECTION OF BRK CHARACTERS, 7-10 TTY DEVICE-SPECIFIC WORD I DVS IN IORB (TBL), 7-5 TTY DISPLAY OF INPUT CHARACTERS, 7-9 TTY INPUT CHARACTER/LINE CORRECTION AND DELETION, 7-8TTY INPUT DATA, 7-7TTY INPUT BUFFERED MODE (VIP 7200 AND 7800), 7-9 TTY KEYBOARD INPUT CHARACTER/LINE CONTROL, 7-8 TTY LINE FEED (LF) AND CARRIAGE RETURN (CR) INPUT, 7-8 TTY LINE PROTOCOL HANDLER, 7-1 TTY LINE PROTOCOL HANDLER TIME-OUT, 7-4TTY MESSAGE FORMATS, 7-1 TTY NONALPHANUMERIC CONTROL CHARACTER (TBL), F-1 TTY NONTRANSPARENT INPUT, 7-8 TTY OUTPUT DATA, 7-9 TTY OUTPUT IN BUFFERED MODE, 7-11 TTY SOFTWARE STATUS WORD I ST IN IORB (TBL), 7-7TTY TRANSPARENT INPUT, 7-8 USING TTY LINE PROTOCOL HANDLER, 7-5 TWO-BUFFER FEATURE, BSC BSC 3780 TWO-BUFFER FEATURE, 10-10 BSC TWO-BUFFER FEATURE, 10-3 BSC TWO-BUFFER FEATURE IN RECORD TRANSMISSION (FIG), 10-4 VIEW, PROGRAM

PROGRAM VIEW ENTRY IN THE FIB, 2-6 PROGRAM VIEW FOR \$OPFIL MACRO CALL (TBL), 5-3 PROGRAMMER'S VIEW OF FIB, 2-6

VIP

ERROR PROCESSING VIP LINE PROTOCOL HANDLER, 8-11 MLCP ERROR REPORTED BY VIP LINE PROTOCOL HANDLER (TBL), 8-13 NONPOLLED VIP ERRORS, 8-14 SOFTWARE SUPPORT FOR VIP, 8-1 TTY AND VIP LINE PROTOCOL HANDLER DEVICE SUPPORT, 1-5 USER-SUPPLIED SOFTWARE FOR VIP SUPPORT, 8-2 USING VIP LINE PROTOCOL HANDLER, 8-3 VIP 7200 AND 7800 FUNCTION AND CONTROL KEYS, 7-4 VIP 7200 AND 7800 HARDWARE SWITCH, 7-3VIP CONTROL BYTE (SEND), 8-8 VIP DEVICE-SPECIFIC WORD I DVS IN IORB (TBL), 8-4

VIP (CONT) VIP HARDWARE FUNCTION CODES, 8-8 VIP INPUT DATA, 8-8 VIP INPUT MESSAGE HEADER, 8-7 VIP INPUT (KEYBOARD/SCREEN), 8-7 VIP KEYBOARD/SCREEN OUTPUT EDITING, 8-10 VIP LINE PROTOCOL HANDLER, 8-1 VIP LINE PROTOCOL HANDLER POLLING, 8-7 VIP LINE PROTOCOL HANDLER TIME-OUT (TBL), 8-3 VIP NONALPHANUMERIC CONTROL CHARACTER (TBL), F-2VIP OUTPUT, 8-8 VIP POLL, 8-7 VIP POLLING OPTIONS, 8-6 VIP RECEIVE-ONLY PRINTER EDITING (TBL), 8-10 VIP RECEIVE-ONLY PRINTER FORM FEED (TBL), 8-11 VIP SOFTWARE STATUS WORD I ST IN IORB (TBL), 8-6 VIP TIME-OUT INTERVALS, 8-2 VIP-SPECIFIC IORB VALUES, 8-3 WACK BSC WAIT BEFORE ACKNOWLEDGE (WACK) FEATURE, 10-6 WAIT BSC WAIT BEFORE ACKNOWLEDGE (WACK) FEATURE, 10-6COBOL WAIT FOR COMPLETION -ASYNCHRONOUS I/O, 3-5 WAIT ONLINE FUNCTION (CODE 0), 6-9 \$WIFIL MACRO CALL \$WIFIL \$WOFIL MACRO CALL IN ASSEMBLY APPLICATIONS, 5-2 \$WOFIL MACRO CALL \$WIFIL \$WOFIL MACRO CALL IN ASSEMBLY APPLICATIONS, 5-2 WORDS IN IORB BSC DEVICE-SPECIFIC WORD I DVS IN IORB (TBL), 10-12 BSC SOFTWARE STATUS WORD I ST IN IORB (TBL), 10-14 IORB SOFTWARE STATUS WORD (I ST), 6-8 PVE DEVICE-SPECIFIC WORD I DVS IN IORB (TBL), 9-3 PVE SOFTWARE STATUS WORD I ST IN IORB (TBL), 9-5TTY DEVICE-SPECIFIC WORD I DVS IN IORB (TBL), 7-5VIP DEVICE-SPECIFIC WORD I DVS IN IORB (TBL), 8-4

VIP SOFTWARE STATUS WORD I_ST IN IORB (TBL), 8-6 WRITE FUNCTION WRITE FUNCTION (CODE 1), 6-10

ZCASN CALL IN COBOL COBOL ASYNCHRONOUS OPERATION (CALL "ZCASN"), 3-4

ZCSYNC CALL IN COBOL COBOL SYNCHRONOUS OPERATION (CALL "ZCSYNC"), 3-4

ZFSTIN CALL IN FORTRAN FORTRAN CALL STATEMENT FOR ZFSTIN OR ZFSTOT, 4-2 FORTRAN FILE STATUS CHECK (ZFSTIN AND ZFSTOT), 4-2

ZFSTOT CALL IN FORTRAN FORTRAN CALL STATEMENT FOR ZFSTIN OR ZFSTOT, 4-2 FORTRAN FILE STATUS CHECK (ZFSTIN AND ZFSTOT), 4-2

.

HONEYWELL INFORMATION SYSTEMS

Technical Publications Remarks Form

- CUT ALONG LINE -

1

TITLE	SERIES 60 (LEVE	EL 6)		RDER NO.	CB03, REV. 1	
		DNS PROCESSING		DATED	JULY 1978	
RRORS IN I	PUBLICATION					
		· · · · · · · · · · · · · · · · · · ·				
				•		
GGESTION	IS FOR IMPROVEMENT T	O PUBLICATION				
	. •					
	. · ·	· · ·		• • •		
	. ·					
	· ·					
	· ·					
	· ·					
Your co	omments will be promptly ired. If you require a writte	investigated by appropriate technical personnel en reply, check here and furnish complete mail	and action will	be taken		
Your co as requi	omments will be promptly ired. If you require a writte	investigated by appropriate technical personnel en reply, check here and furnish complete maili	and action will ing address below	be taken		
Your ca as requi	omments will be promptly ired. If you require a writte	investigated by appropriate technical personnel en reply, check here and furnish complete maili	and action will ing address below	be taken v. DAT	Ε	
Your co as requi FROM	omments will be promptly ired. If you require a writte I: NAME	investigated by appropriate technical personnel en reply, check here and furnish complete mail	and action will ing address below	be taken v.	Ε	

PLEASE FOLD AND TAPE --NOTE: U. S. Postal Service will not deliver stapled forms

Business Reply Mail Postage Stamp Not Necessary if Mailed in the United States

Postage Will Be Paid By:

HONEYWELL INFORMATION SYSTEMS 200 SMITH STREET WALTHAM, MA 02154

ATTENTION: PUBLICATIONS, MS 486

Honeywell

FOLD ALONG LINE

FOLD ALONG LINE

FIRST CLASS PERMIT NO. 39531 WAI THAM MA

02154

CUT ALONG LINE -

Honeywell Information Systems In the U.S.A.: 200 Smith Street, MS 486, Waltham, Massachusetts 02154 In Canada: 2025 Sheppard Avenue East, Willowdale, Ontario M2J 1W5 In Mexico: Avenida Nuevo Leon 250, Mexico 11, D.F.

21378, 2.5778, Printed in U.S.A.