

SUBJECT

SERIES 60 (LEVEL 6)

GCOS6
SORT/MERGE

Detailed Description of Series 60 (Level 6) GCOS 6 Sort/Merge

SOFIW ARE SUPPORTED

This publication supports Release 0100 of the Series 60 (Level 6) GCOS 6
MOD 400 Operating System; see the Manual Directory of the latest GCOS 6
MOD 400 System Concepts manual (Order No. CB20) for information as to later
releases supported by this manual.

This manual includes update pages issued as Addendum A in
June 1978.

ORDER NUMBER

CB04, Rev. 0 January 1978

Honeywell

Preface

This manual describes the GCOS 6 Sort/Merge. Unless stated otherwise, the
term GCOS refers to the GCOS 6 software; the term Level 6 refers to the
Series 60 (Level 6) hardware on which the software executes.

Section 1 summarizes the capabilities of the Sort and Merge programs.

Section 2 describes the Sort language, including the invoking SORT
command and the Sort Description that particularizes the sort application.

Section 3 describes the Sort Report and error messages generated during
execution of the Sort program.

Section 4 describes the Merge language.

Section 5 describes the Merge Report and error messages.

Section 6 describes the operating procedures for invoking Sort and Merge and
submitting the Sort and Merge Descriptions. This section also includes sample
sort and merge runs.

Section 7 explains sorting using subroutine calls.

Appendix A specifies Sort and Merge memory requirements.

Appendix B is the ASCII collating sequence.

Appendix C describes a debug mode.

© 1978, Honeywell Information Systems Inc. File No.: 1853 CB04

c

(

MANUAL DIRECTORY

The following publications comprise the GCOS 6 manual set. The Manual
Directory in the latest GCOS 6 MOD 400 Systems Concepts manual (Order No.
CB20) lists the current revision number and addenda (if any) for each manual in
the set.

Order
No.

CB01
CB02
CB03
CB04
CB05
CB06
CB07
CB08
CB09
CB10
CB20
CB21
CB22
CB23
CB24
CB25
CB26
CB27
CB28
CB30
CB31
CB32
CB33
CB34
CB35
CB36
CB37
CB38
CB39

CB40
CB41
CB42
CB43

Manual Title

GCOS 6 Program Preparation
GCOS 6 Commands
GCOS 6 Communications Processing
GCOS 6 SortlMerge
GCOS 6 Data File Organizations and Formats
GCOS 6 System Messages
GCOS 6 Assembly Language Reference
GCOS 6 System Service Macro Calls
GCOS 6 RPG Reference
GCOS 6 Intermediate COBOL Reference
GCOS 6 MOD 400 System Concepts
GCOS 6 MOD 400 Program Execution and Checkout
GCOS 6 MOD 400 Programmers Guide
GCOS 6 MOD 400 System Building
GCOS 6 MOD 400 Operators Guide
GCOS 6 MOD 400 FORTRAN Reference
GCOS 6 MOD 400 Entry-Level COBOL Reference
GCOS 6 MOD 400 Programmers Pocket Guide
GCOS 6 MOD 400 Master Index
Remote Batch Facility User's Guide
Data Entry Facility Users Guide
Data Entry Facility Operator's Quick Reference Guide
Level 61Level 6 File Transmission Facility User's Guide
Level 61Level 62 File Transmission Facility User's Guide
Level 61Level 64 (Native) File Transmission Facility User's Guide
Level 61Leve166 File Transmission Facility User's Guide
Level 61Series 20012000 File Transmission Facility Users Guide
Level 61BSC 278013780 File Transmission Facility Users Guide
Level 61Level 64 (Emulator) File Transmission Facility User's
Guide
IBM 278013780 Workstation Facility Users Guide
HASP Workstation Facility Users Guide
Level 66 Host Resident Facility Users Guide
Terminal Concentration Facility User's Guide

In addition, the following documents provide general hardware information:

Order
No.

AS22
AT04
AT97
FQ41

Manual Title

Honeywell Level 6 Minicomputer Handbook
Level 6 System and Peripherals Operation Manual
MLCP Programmers Reference Manual
Writable Control Store Users Guide

iii
6178

CB04A

I

I

(

c

Section 1. Sort and Merge Capabilities
Smnmary of Features Applicable to Both

Sort and Merge 1-1
Smnmary of Features Applicable Only to

Sort.................. 1-1
Summary of Features Applicable Only to

Merge.............................. 1-2
System Requirements 1-2
General Description of Sort and Merge. . .. 1-2

Record Keys 1-2
Record Selection. .. 1-2
Record Arrangement 1-2
Key Sort Output 1-2
Reports Generated by Sort and Merge .. 1-3
Files Required for Sort and Merge

Execution .. 1-3

Section 2. Sort Language
SORT Command......................... 2-1
Sort Description 2-2

Syntax of Sort Description 2-2
Notational Symbols in Sort Description. 2-3
Comments in Sort Description 2-3
FILES Statement (For Sort) 2-3
INCL and OMIT Statements (For Sort) . 2-4
KEYS Statement (For Sort) 2-6
ARRange Statement (For Sort) 2-8

Typical Sort Usage. 2-10

Section 3. Reports and Messages
Issued by Sort

Sort Report. .. 3-1
Basic Sort Report.. 3-1
Expanded Sort Report (Including Sort

Description) .. 3-1
Error Messages Issued by Sort. 3-2

Section 4. Merge Language
MERGE Command. .. 4-1
Merge Description 4-2

FILES Statement (For Merge) 4-2
INCL and OMIT Statements (For Merge) 4-2
KEYS Statement (For Merge) 4-3
ARRange Statement (For Merge) 4-3

Typical Merge Usage......... 4-4

Section 5. Reports and Messages
Issued by Merge

Merge Report. .. 5-1
Basic Merge Report. 5-1

v

Contents

Expanded Merge Report (Including Merge
Description) .. 5-1

Error Messages Issued by Merge 5-3

Section 6. Operating Procedures for
Sort and Merge

Preparing Files for Sort and Merge 6-1
Sort Work File 6-1
Sort and Merge Output Files 6-1
Disposition of Files. 6-2
Sort and Merge Logical File Numbers .. 6-2

Creating the Sort and Merge Descriptions. 6-2
Invoking the Sort and Merge Programs. . .. 6-2
Submitting the Sort and Merge

Descriptions. .. 6-3
Specifying Sort or Merge Description File

in -IN Argument of SORT/MERGE
Command. .. 6-3

Submitting Sort or Merge Description
When -IN Argument Omitted from
SORT/MERGE Command 6-3

Procedure for Entering Sort or Merge
Description Interactively 6-4

Sample Sort Runs. .. 6-4
Sample Merge Run 6-6

Section 7. Sorting Using Subroutine
Calls

Sort Subroutine Calls 7-1
Subroutine Call Arguments 7-2

Dope Vectors....................... 7-2
Arguments Common to Sort Subroutine

Calls............... 7-2
Initialize Sort Call 7-3
Release Record Call 7-5
Commence Sort Call 7-6
Return Record Call 7-6
Abort Sort Call. .. 7-7

Sequencing of Sort Subroutine Calls 7-8
Program Preparation. 7-8

Linking Requirements 7-8
File Requirements .. 7-9

Return Codes and Error Messages 7-9
Example of Sorting Using Subroutine

Calls.............. 7-10

Appendix A. Sort and Merge Memory
Requirements

Sort Memory Usage. .. A-I
Merge Memory Usage. A-2
Sort Subroutine Memory Usage '" A-2
Sort Subroutine LRN'S A-2

CB04

Appendix B. ASCII Collating Sequence

Appendix C. Debug Mode
Executing the Sort Program in Debug

Mode C-l
Executing the Merge Program in Debug

Mode C-3

Tables

2-1 Key Field Data Types 2-7
3-1 Format of Sort Report (Including

Basic Sort Report and Sort
Description) 3-2

5-1 Format of Merge Report (Including
Basic Merge Report and Merge
Description) 5-2

7-1 Sort Description 7-4
7-2 Key Field Data Types 7-5
B-1 ASCII Collating Sequence B-1
C-l Format of Full Sort Report

(Including Debug Mode Items) C-l
C-2 Additional Items Included in Merge

Report If Debug Mode Is in
Effect C-3

vi CB04

c

Section 1

Sort and Merge Capabilities

The Sort and Merge utility programs provide file sorting and file merging capabilities,
respectively. Sort arranges records from an input file in an order based on the values of record
key fields defined by the user, and places the ranked records in the specified output file. Merge
combines the records of up to six sequentially ordered input files. Information supplied by the
user defmes the specific function to be performed. The general characteristics of Sort and Merge
are summarized in this section.

Note:
A sorting function may also be invoked from COBOL, FORTRAN and assembly
language programs (see Section 7).

SUMMARY OF FEATURES APPLICABLE TO BOTH SORT AND MERGE

Sort and Merge incorporate these features:

• Up to 16 key fields may be specified; they may be contiguous, separated, or overlapped.
Keys may be specified as being in ascending or descending order according to the ASCII
collating sequence.

• Key field data types may be any of the following:

- Character string.

- Single- or double-word signed binary.

- Unpacked decimal: unsigned or signed. with the sign leading, trailing, or trailing
overpunched.

- Packed decimal: unsigned or signed trailing.

• Record selection (i.e., the inclusion or exclusion of records as input to Sort or Merge) is
based on record content only or on record content and a specified value.

• Compound record selection permits LOGICAL AND and/or INCLUSIVE OR relationships.

• Output records may be rearrangements of input record fields.

• Commands and statements may be en~ered through a terminal, card reader, or disk file.

• Input file(s) may have sequential, indeJ.ed, or relative organization. Output file must be on
disk, and its organization must be sequential.

• The input and output files need not have the same record attributes.

• Records with duplicate keys may be deleted.

• A report comprising statistical information is directed to the console or a printer.

SUMMARY OF FEATURES APPLICABLE ONLY TO SORT

Sort incorporates the following features:

• Sort uses a disk work file; the work file may be permanent or temporary.

• The work file uses a minimal amount of disk file space; i.e., it is approximately 1.2 times
the size required to support the output file.

• The input, output, and work files may reside on the same device.

• Records with duplicate key fields can be ordered on a first-in, first-out (FIFO) basis.

• The output record may consist of the input record address followed by the key fields or it
may consist only of the input record address (i.e., the ADDROUT file).

SORT AND MERGE CAPABILITIES 1-1
6/78

CB04A

I

SUMMARY OF FEATURES. APPLICABLE ONLY TO MERGE

Merge incorporates the following features:

• Up to six sequentially ordered input files may be merged.

• A single input flle may be used, thus providing a flle restructuring capability.

• Input flles need not have the same file or record attributes, except for the key and record
selection fields.

• Ifduplicate recQrds are found (i.e., they have the same key field), the records are written to
the output file in the order in which the files containing them appear in the input file list;
this is the Merge FIFO rule.

SYSTEM REQUIREMENTS

The minimum system requirements are:

• 8K words of memory for execution of Sort or Merge.

• One KSR-like device.

• Disk work file for Sort.

• Devices for supported input and output files.

GENERAL DESCRIPTION OF SORT AND MERGE

Sort and Merge are utility programs that execute under either an online task group or a batch
task group in the operating system environment.

The command SORT or MERGE is submitted to the command processor to invoke Sort or
Merge, respectively.

Sort and Merge Descriptions are submitted to the Sort and Merge programs respectively; they
designate which files will be used by Sort/Merge and the keys on which sorting/merging are to be
based.

RECORD KEYS

Sort arranges records from an input file according to the values of record key fields, and places
the ranked records in the specified output file. Merge combines the records of up to six sequen
tially ordered input files. Up to 16 key fields within each record can be used in ranking the input
records: 1 major key field and 15 minor key fields. Records are ordered first according to the
major key; then all records containing the same major key are sorted/merged according to the
minor keys in the sequence dictated by the Sort/Merge Description.

RECORD SELECTION

Records can be selected or omitted as input to Sort or Merge through record selection. Record
selection may be based on the meeting of conditions defined by comparison operations between
two fields within a record or between a field of a record and a specified value. The conditions for
record selection are specified in INCL or OMIT statements, which are described later in this
manual. A maximum off our conditions may be specified; they may be within a single statement
or be interspersed among up to four statements.

RECORD ARRANGEMENT

The bytes of the input record(s) that will constitute the output records, and the order in which
these bytes will occur can be specified for Sort and Merge. Up to 16 byte string descriptions may
be specified.

KEY SORT OUTPUT

Sort output can consist of a field giving the input record address and be followed by the sort r
keys or it can consist only of the input record address. .~ ..

SORT AND MERGE CAPABILITIES 1-2 CB04

REPORTS GENERATED BY SORT AND MERGE

Sort generates a Sort Report, containing statistical information on the sort operation; Merge
generates a Merge Report containing statistical information on the Merge operation. The scope
of the Sort or Merge Report is determined by the arguments specified in the invoking SORT or
MERGE command.

FILES REQUIRED FOR SORT AND MERGE EXECUTION

Sort and Merge can accept records to be sorted or merged from the following input files that
can be accessed sequentially: card files, labeled tape files, or disk files. Ranked output records
are delivered to any previously created disk file that has a sequential or relative organization.

Sort requires a temporary or permanent disk work file. If the work file is temporary, it is
created during execution of Sort and is deleted when execution of Sort terminates. If the work
file is permanent, it must have been previously created on a single volume. (See "Preparing
Files for Sort and Merge" in Section 6.)

Sort and Merge accept statements to specialize the application from a file designated in the
invoking SORT or MERGE command, respectively, or by default, from the user-in file. During
execution, Sort and Merge issue error messages to the error-out file and a Sort or Merge Report
to the user-out file.

SORT AND MERGE CAPABILITIES 1-3 CB04

(

~ ..

(-

Section 2

Sort Language

The Sort program is invoked through specification of the SORT command. The SORT
command provides information to specialize the Sort program for a particular execution,
including identification of:

• The file containing the Sort Description.

• The amount of memory to be made available to Sort.

• An optional request for key sort output.

The SORT command is associated with a Sort Description, which contains additional
information for specializing the Sort, including specification of:

• The input, output, and work files to be used by Sort.

• One or more key fields to be used in ranking records.

• The criteria to be us~d to determine which records of the input file will be sorted.

• The arrangement of the output record.

The SORT command and Sort Description are described in detail below, including format and
language requirements and examples of usage. This section also presents examples of typical
sort usage and related sort input streams.

SORT COMMAND

The SORT command invokes the Sort program. Any pathname specified in the SORT
command can be either a full pathname or a relative pathname related to the current working
directory. (Refer to the System Concepts manual for a description of the use of pathnames.)

The format of the SORT command is:

SORT [ctLarg]

[ctLarg]

Control arguments. Any or all of the following optional control arguments can be used:

-IN path

Specifies the name of the file containing the sort descriptors for this sort. Ifnot specified,
the user-in file is used.

{-SIZE n}
-SZn

Indicates the number of l024-word memory modules to be available to the sort. In a SAF
system, the value ofn can be from 8 to 5610, inclusive. In a LAF system, n can be from 8 to
6810, inclusive. An invalid value can cause an illegal memory error code to be displayed. If
not specified, the default value is 8.

-PD
Indicates that a listing of the Sort Description is to be produced on the user-out file.
(Only the first 71 characters of the line will be displayed.)

-FF
When duplicate records are encountered, order them on a first-inlfirst-out (FIFO) basis.

-DL
When duplicate records are encountered, delete all but one of them. If -FF has also been
specified, all but the first occurrence of the duplicate will be deleted. If -FF has not been
specified, the choice of which duplicate record is retained is arbitrary.

SORT LANGUAGE 2-1
6178

CB04A

I

-AK
The output record will begin with a 4-byte input record address, followed by the sort keys,
in the order in which they were specified.1 If the output file is a BES file with a record size
comprising more bytes than 4 plus the number of bytes in the sort keys, the remaining
bytes are not specified.

-AD
The output record will be a 4-byte input record address. 1 If the output file is a BES file
comprising more than four bytes, the remaining bytes are not specified.

Note:
Either -AK or -AD may be specified, but not both.

Example 1:
The SORT command and Sort Description are to be submitted in the command-in file. The
sort program itself will be found according to your search rules (see command LIST
SEARCH RULES (LSR) in the Commands manual). The amount of memory requested for
Sort execution is 8K words. The invoking command is:

SORT

Example 2:
The Sort program is stored on volume MY APPL; the Sort Description is in the file identified
by the relative pathname SOl related to the current working directory. The Sort
Description is to be printed in the Sort Report. The amount of memory to be allocated to
support Sort execution is 20K words. The invoking SORT command is:

"MY APPL>SORT -IN SD1 -SZ 20 -PO

SORT DESCRIPTION

The Sort Description consists of the following statements, which supply information to
specialize the Sort for a particular application:

• FILES statement: (Required) Specifies the input, output, and work files for the Sort
application.

• INCUOMIT statement(s): (Optional) Specify which records of the Sort input file will be
processed.

• KEYS statement: (Required) Describes the key fields to be used for sorting records.

• ARRange statement: (Optional) Designates the placement of input record byte strings
within the output record.

The Sort Description is required. The FILES statement must be first. If INCL or OMIT
statement(s) are used, they must precede the KEYS and optional ARRange statements.

General language requirements for the Sort Description are given below, followed by format
descriptions for each statement.

SYNTAX OF SORT DESCRIPTION

A Sort Description consists of a sequence of words organized into statements. Each statement
must begin with a function keyword followed by a delimiting colon (for example, FILES: or
KEYS:), and end with a semicolon. The body of each statement consists of one or more words. A
statement can begin at any location on a line and may extend over more than one line. No limit
exists on the number of statements (or portions of statements) per line.

In the Sort language, a word is any string of nondelimiter characters preceded by and
terminated by a space, comma, horizontal tab, parenthesis, new line, or delimiter (a colon or
semicolon). In addition, the delimiters (colon and semicolon) are themselves regarded as words ..
A pathname is considered to be one word, whether it is a full or relative pathname. A word in the

1 This feature is supported only if the input file is relative or sequential. If the input file is relative, the address is a 4-byte
relative record number. Otherwise, the address is a data management-defined simple key (see the "Keys" section in the
Data File Organizations and Formats manual).

SORT LANGUAGE 2-2 CB04

t ..

Sort Description cannot be divided between two lines or records (i.e., it cannot be started on one
line or record and completed on the next line or record). Words of the Sort Description to be
processed must be contained in the first 80 characters of a line.

Parentheses can be used to enclose any word or words in the statement to enhance readability.
Note:

In the statement format descriptions given below, where words are separated by a
space, the space may be replaced with a comma.

NOTATIONAL SYMBOLS IN SORT DESCRIPTION

The following notational conventions are used in the format descriptions of statements:

Convention Meaning

UPPERCASE CHARACTERS Required word; must be used in the form specified.

lowercase characters Symbolic name; must be replaced by user-supplied word or
words.

Brackets [] The item enclosed in the brackets is optional.

Braces { } An enclosed entry must be selected.

Ellipses ... The immediately preceding portion of the format may be
repeated one or more times.

COMMENTS IN SORT DESCRIPTION

Any string of characters that is preceded by and terminated by a slash (I) will be treated as a
comment in the Sort Description. Comments cannot be inserted within a word of the Sort
Description. If an incomplete comment is detected, an error message is issued and the Sort is
terminated.

FILES STATEMENT (FOR SORT)

The Fn...ES statement specifies the files to be processed by Sort. The pathnames specified in
the FILES statement can be full pathnames or relative pathnames related to the current
working directory.

The format of the FILES statement is:

FILES:-IF path,-OF path[,-WF path];

-IF path
Specifies the pathname of the file containirg input records to be sorted. Required argument.

-OF path
Specifies the pathname of the output file. I 'he output file must be a disk file created prior to
execution of the Sort. Required argumenl..

-WF path
Defines the file to be used as a permanent work file by Sort. The work file must be a disk file
created before Sort is executed. If this argument is not specified, Sort creates a temporary
work file within the current working directory; the file is deleted when Sort terminates.
Unless the file to be sorted is small, for performance reasons a permanent work file is
recommended.
Optional argument.

Example 1:
The file INFILE contains records to be sorted; the file OUTREC is the file on which sorted
records are to be written. These two files are on the same volume and are identified by
relative pathnames related to the current working directory. The work file used by Sort is
WORK2, which resides on the volume SRTWK. The FILES statement is:

FILES:-IF INFILE,-OF OUTREC,-WF "SRTWK>WORK2;

SORT LANGUAGE 2-3
6/78

CB04A

I

Example 2:
The single file ITSV23, containing input records, resides on the tape volume SRTI64; the
tape is mounted on unit number 00. The output file OUTLIB resides on the disk volume
ZlO054. The Sort work file SWK01 is on the volume Zl0193. The FILES statement is:

FILES: -IF >SPD>MT900>SRT164>ITSV23
-OF "Zl0054>OUTLm,-WF "Zl0193>SWK01;

INCL AND OM" STATEMENTS (FOR SORT)

The INCL and OMIT statements cause input file records to be processed by Sort only if they
meet certain condition(s). You can designate the criteria to be used by Sort for determining
which record(s) will or will not be processed by specifying the INCL or OMIT statement,
respectively. If INCL or OMIT is not specified, all input file records are processed.

Depending on which arguments are entered, two fields within a record are compared or a field
is compared to a specified value. Within a single execution of Sort, either one to four INCL
statements or one to four OMIT statements may be specified. Within a single sort, a maximum of
four conditions may be specified; they may be within a single statement or be interspersed
among up to four statements.

The order in which INCL or OMIT statements are specified determines the order in which
records are tested. If a record meets all of the conditions specified in a single statement, it is not
tested against the condition(s) specified in any subsequent statements. If the condition(s) are
met, the specified record is processed (if INCL was used) or not processed (if OMIT) was used.

The format of the INCL and OMIT statements is:

{ ~~I~} :criteria_description [AND criteria_description ... J;

The format of the criteria description is determined by the type of comparison being specified:

Comparing two fields within a record:
data _ type(size),position boperator,position 2

Comparing a field to a specified value:
data_ type(size),position b operator,'literal'

data_type
Data type of the key field is specified by a predefined code. See Table 2-1 later in this section
for data types that can be used, and the code associated with each type. Required argument.

size
Size of the key field expressed as a decimal integer. The size is the number of data type units
that constitute the field, excluding the unit that contains a separate sign. The units may be
bit, four-bit, or byte elements. Any word separators, including parentheses, can be used
with the integer representing size. (In the above format, parentheses have been inserted for
readability.) Required argument.

position 1

Position of the beginning byte of the key field to which another key field or a literal value is
being compared; the position is relative to the beginning of the record. Expressed as a
decimal integer. The record is considered to be aligned on a byte boundary, with the first
byte of the record being numbered 1. Required argument.

operator
Type of comparison that will be made between two specified fields or a specified field and a
specified value; must be one of the following:

EQ - Equals
NE - Is not equal to
LT - Is less than

SORT LANGUAGE 2-4 CB04

('

(~

LE - Is less than or equal to
GT - Is greater than
GE - Is greater than or equal to

Required argument.

position 2

Position of the beginning byte of the key field that is being compared to the key field
designated in position l' The position is relative to the beginning of the record and is
expressed as a decimal integer. The record is considered to be aligned on a byte boundary,
with the first byte of the record being numbered 1. Optional argument.

literal
Alphanumeric character string constituting the value to which the key field designated in
position 1 will be compared; must be delimited by single quotes. If the literal is a positive
numeric value, a plus sign (+) need not be used.

Note:
A literal may span more than one line. If a literal begins at the beginning of a line
or part of a literal is at the beginning of a line, that line may not begin with
the characters QT, QUIT, or IS.

If a literal is to be compared to a character string, the literal must comprise the same
number of characters as that field, including trailing blanks. (The number of characters is
designated in the size argument.)

Note:
A single quote may be included as part of the character string literal by using two
contiguous single quotes wherever a single quote is desired. For example,
the literal DEPT. 'AA' is written 'DEPT. "AA"'.

If a literal is to be compared to a field that is a numeric data type, the literal is converted to
the appropriate numeric data type. If the literal is shorter than the size specified in the size
argument, the converted literal is right-justified with leading zeros; if the literal is longer
than the size specified, it is an error condition.
Within a single Sort Description, a maximum of 128 characters may be entered for all of the
specified literals. Optional argument.

Example 1:
Statement with One Condition:
This statement requests that a character string (CHAR) comprising 5 units «5» that begins
on the fourth byte ofthe record (4) be compared to the value ABCDE ('ABCDE'). If they are
equal (EQ), the record will be processed (lNCL) by Sort.

INCL:CHAR(5),4,EQ,'ABCDE';

Note that in this example commas are used as delimiters whereas in Example 2 spaces are
used as delimiters.

Example 2:

Statement in which Two Conditions Must be Met:
In this statement, both of the specified conditions must be met (AND); otherwise, the record
is not processed by Sort. A signed binary field (BIN) comprising 15 units «(15» that begins
on the fourth byte of the record (4) must be less than (LT) a field with the same attributes
that begins on the tenth byte (10). The value of a signed decimal overpunch field (DEC)
must be equal to (EQ) the value +26 ('26').

INCL:BIN(15) 4 LT 10 AND DEC(2) 15 EQ '26';

Note the mandatory use of single quote delimiters for the numeric literal.

Example 3:
Statements in which One o~ Two Conditions Must be Met:
Since the following conditions are not within a single statement separated by AND, the
record is not processed (OMIT) if either of the specified conditions is met.

SORT LANGUAGE 2-5 CB04

I

The first statement designates that a signed, packed decimal field (PDEC) comprising five
units «5» that begins on the third byte of the record (3) be compared to the value -12345; if
the PDEC field is greater than (GT) -12345, the record is not processed (OMIT) by Sort. If
this condition is met, the second statement is not processed; otherwise, a signed decimal
field with a trailing but separate sign (TDEC) comprising four units «4» that begins on the
tenth byte of the record (10) is compared to the value 1024. If the TDEC field is less than (LT)
1024, the record is omitted (OMIT) from Sort processing.

OMIT:PDEC(5),3,GT,'-12345';
OMIT:TDEC(4),10,LT,'1024';

KEYS STATEMENT (FOR SORT)

The KEYS statement defines key fields in the input records to be used in sequencing the
records in the output file. The statement consists of a series of 1 to 16 key descriptions, each of
which specifies a single key field. The key descriptions must be specified in order, the first
describing the major key and the last describing the least significant minor key. Key fields can
be overlapping. In files with variable length records, the smallest record to be sorted must
contain all the key fields. A record that does not contain all key fields will not be included in the
sort. Each key description indicates whether the values for that key field are to be ranked in
ascending or descending order.

Note:
Ifboth KEYS and ARRange are specified, the key field(s) must be contained within the
specified ARRange field (see "ARRange Statement (For Sort)" below}.

The format of the KEYS statement is:

KEY[S]:key _ description[,key _ description ...];

Each key description has the following format:

data _ type(size),position[,D]

data_type
Data type of the key field is specified by a predefined code. See Table 2-1 for data types that
can be used, and the code associated with each type. Required argument.

size
Size of the key field expressed as a decimal integer. The size is the number of data type units
that constitute the field, excludingthe unit that contains a separate sign. The units may be
bit, four-bit or byte elements.
Any word separators, including parentheses, can be used with the integer representing size.
(In the above format, parentheses have been inserted for readability.) Required argument.

position

D

Position of the beginning byte of the specified key field, relative to the beginning of the
record. Expressed as a decimal integer. The record is considered to be aligned on a byte
boundary, with the first byte of the record being numbered 1. Required argument.

Descending order of values of the specified key field to be used in ranking the records.
Optional argument. Default value is ascending order.

SORT LANGUAGE 2-6
6/78

CB04A

I~
I
.",-

(

(~,

TABLE 2-1. KEY FIELD DATA TYPES

Data Typea Code Unit Size Space Occupied

Character string CHAR 8-bit 1 to length n bytes
byte of record

Signed binary BIN 1 bit 15 or 31 2 or 4 bytes
Signed decimal DEC 8-bit 1 to 31 n bytes
(units overpunched) digit
Signed decimal TDEC 8-bit 1 to 30 n+l bytes
(trailing separate sign) digit
Signed decimal LDEC 8-bit 1 to 30 n+l bytes
(leading separate sign) digit
Unsigned decimal UDEC 8-bit 1 to 31 n bytes

digit
1 to 30b Packed decimal PDEC 4-bit Ifn is even,

(trailing sign) digit (n+2)/2
Ifn is odd,
(n+1)/2

Packed decimal UPDEC 4-bit 1 to 30b If n is even, n/2
(unsigned) digit If n is odd, (n + 1)/2

aData is not validated. Therefore, if a record contains invalid data, results are unspecified. Invalid data is data that does
not conform to the data type specified in the KEYS statement.

bPacked decimal fields each must fully occupy an integral number of bytes and be byte-aligned. If padding is necessary,
the first half-byte of the field must be 0000; this padding half-byte is optionally included in the size argument.

Example 1:
The following statement defines the two key fields according to which input records are to
be sorted: a field consisting of the first seven bytes of the record, and one that comprises the
18th and 19th bytes of the record. The first key is to be arranged in ascending order, and the
second key in descending order. (Note the free interchange of commas and spaces in the
example.)

KEYS:CHAR(7),1 CHAR(2),18,D;

Example 2:
A file consists of six records labeled REC1-REC6. Each record is five bytes long. The
following KEYS statement specifies that the records are to be sorted according to two key
fields: the first byte of the record and the last byte of the record.

KEYS:CHAR(l),1,CHAR(l),5,D;

As shown below, the records are ranked in ascending order according to the value of the first
byte (the major key); then records having identical major keys are arranged in descending
order based on the value of the last byte (the minor key).

Input Record Output Record
Byte

1 2 3 4 5

Byte Key Field

I 2 3 4 5 Values

REC1 X X 9 9 9 I X X I 9 9 9 X9

REC2 Z 3 Z 5 I I X Y I I Z 3 X3

REC3 X Y 1 Z 3 I X 3 I 2 9 I Xl

REC4 X 3 2 9 I [Y Y I 4 X 4 Y4

REC5 Y Y 4 X 4 I Y 7 I 9 6 2 Y2

REC6 Ly 7 9 6 2 I Z 3 I Z 5 I Zl

SQRT LANGUAGE 2-7 CB04

Example 3:
The following example illustrates the specification of a signed decimal key field:

KEYS:DEC(5),20;

This indicates the field is signed decimal with trailing overpunch. The length of the field is
five digits and starts on the 20th byte of the record. Five bytes of space are occupied.

Example 4:
This example illustrates a key field that is signed decima~ with separate leading sign.

KEYS:LDEC(4),2,D;

The length of the field is four digits, starting on the second byte and occupying five bytes.
The ordering sequence is descending.

Example 5:
This example shows the specification of a signed binary field:

KEYS:BIN(15),4;

The length of the field is 15 bits, starting on the fourth byte of the record and occupying two
bytes.

Example 6:
In this example a signed, packed decimal key field is specified:

KEYS: PDEC(9),3;

The length specified is nine digits, starting on the third byte of the record and occupying five
bytes.

ARRANGE STATEMENT (FOR SORT)

The ARRange statement specifies which bytes ofthe input record willbe in the output record.
This statement consists of one to 16 byte string descriptions, which may overlap. The order in
which these descriptions are specified determines the placement of the strings in the output
record. Each key field must be contained within a single byte string. A byte string may contain
multiple key fields. The ARRange statement cannot be used if a key sort has been requested (Le.,
the -AK or -AD argument was specified in the SORT command).

The format of the ARRange statement is:

ARR:(length),position[,(length),position ...];

(length)
Number of bytes constituting the byte string.

position
Position within the input record of the beginning of the byte string; the first byte of the
record is considered position 1.

Example 1:
The output record will comprise 29 bytes. The first five bytes of the output record will be
taken from the input record, starting in position 10. The remainder of the output record will
consist of 24 bytes, which begin in position 42 of the input record.

ARR:(5),10(24),42;

Example 2:
The output record will comprise 18 bytes. The first eight bytes will be taken from the input
record, starting in position 27. The next 10 bytes of the output record will be taken from the
input record, starting in position 24. Note that the bytes in positions 27 through 33 of the
input record will occur twice in the output record because the byte string descriptions
overlap.

ARR:(8),27,(10),24;

SORT LANGUAGE 2-8 CB04

(

C ..

Example 3:
This example illustrates an ARRange statement used in conjunction with INCL and KEY
statements.

The input file comprises the following records:

Byte A B C

Record 1 4 y 10

Record 2 3 X 15

Record 3 7 Z 24

Record 4 5 y 14

Record 5 1 y 11

The statements specified are:

INCL:CHAR(1),2,EQ,'Y' AND CHAR(1),1,LT,'7';
KEY:CHAR(1),l,D;
ARR:(1),3,(1),2,(1),1;

D

Z

W

Z

N

Z

The INCL statement has two conditions. The first condition specifies that the second byte of
each record must be equal to Y; this condition eliminates records 2 and 3. The second
condition specifies that the first byte of each remaining record must have a value less than
7; records 1, 4, and 5 also meet this condition.

The KEY statement designates that each record (records 1,4, and 5) be sorted in descending
order according to the first byte.

The results are:

Byte A B C

Record 4 5 Y 14

Record 1 4 y 10

Record 5 1 Y 111]
The ARRange statement specifies that the bytes should be arranged as follows: byte that is
in the third position should be in the first position, byte that is in the second position should
stay where it is, and the byte that is in the first position should be in the third position. The
resulting output file is:

Byte C B A

Record 4 14 y 5

Record 1 10 y 4

Record 5 11 y 1

6/78
SORT LANGUAGE 2-9 CB04A

I

I

TYPICAL SORT USAGE

The following two examples illustrate typical sort usage and related Sort input streams.

Example 1:
This example defines the SORT command and Sort Description to be specified to meet the
following sorting requirement: Records in the file EMDATA on the volume EMPVOL are to
be sorted by department number, and then by name under each department number. The
layout of the key fields in the input record is shown below.

1 6 7 20 21 34 35

I DEPT. NO. I LAST NAME I FIRST NAME laTHER DATA

The ordered output records are to be written to the file EMFILE on the same volume. The
work fIle to be used by Sort is WK7 on volume WKVOL.

In this example, 12K words of memory are requested for Sort execution. The following
SORT command and Sort Description are to be read from a single file:

Example 2:

SORT -SZ 12
FILES: -IF 1\ EMPVOL>EMDATA,-OF 1\ EMPVOL>EMFILE
-WF "WKVOL>WK7;
KEYS:CHAR(6),1,CHAR(14),7,CHAR(14),21;
QUIT

Records in the input file INDATA are to be sorted according to the following key fields in the
record: bytes 8 through 13,11 through 15, and 3 through 8 (the first byte of the record being
numbered 1). Output records are to be written to the file PARAMS. Both files are identified
by simple pathnames relative to the current working directory. The work file SWK is on the
volume WKLIB.

The amount of memory requested for Sort execution is 8K words. The Sort Description, in
the file SD on the volume WKLIB, is to be printed in the Sort Report. The following
command invokes Sort:

SORT -IN 1\ WKLIB>SD -PD
The Sort Description in the file SD is as follows:

Example 3:

FILES: -IF INDATA, -OF PARAMS, - WF "WKLIB>SWK;
KEYS:CHAR(6), 8,CHAR(5), 1l,CHAR(6), 3;

Records in the input file PAYROLL are to be sorted according to the following key fields: an
unsigned packed decimal field comprising two bytes that has a value less than 2883, and a
character string comprising 30 bytes. Output records are to be written to the file TAXES.
Both files are identified by simple pathnames relative to the working directory. A
temporary work file is to be used.

The amount of memory requested for Sort execution is 16K words. The Sort Description,
which is in the file TXA on the volume ANNTAX, is to be printed in the Sort Report.

The following command invokes Sort:

SORT -SZ 16,-PD -IN 1\ ANNTAX>TXA

The Sort Description in the file TXA is as follows:

FILES:-IF PAYROLL,-OF TAXES;
INCL:UPDEC(4),6,LT,'2883';
KEYS:UPDEC(4),6,CHAR(30),50;

SORT LANGUAGE 2-10
6/78

CB04A

(

Section 3

Reports and Messages
Issued by Sort

Sort delivers a Sort Report to the user-out file on completion of the sorting process. In addition,
Sort issues error messages, as appropriate, to the error-out file. The Sort Report and error
messages are discussed in this section.

SORT REPORT

The Sort program always delivers a Sort Report to the user-out file unless Sort is terminated
because of parameter diagnostic errors. The contents of the Sort Report are determined by the
control arguments specified in the invoking SORT command.

BASIC SORT REPORT

If no control argument related to the contents of the Sort Report appears in the SORT
command, the report issued by Sort is always a basic Sort Report. The basic Sort Report
identifies the input and output files, provides statistical information on the records processed,
and indicates whether error messages were issued during execution of the sort application. The
items in the basic Sort Report (explained in Table 3-1 later in this section) are as follows:

SORT -version number -date/time linked
INPUT FILE: pathname
RECORDS READ nnnnnn
OUTPUT FILE: pathname
RECORDS WRITl'EN nnnnnn
RECORDS DELETED nnnnnn
FATAL ERROR IN SORT
WARNING ERROR IN SORT

(Conditional message)
(Conditional message)

All items of the basic Sort Report are supplied whenever the Sort Report is printed, whether or
not additional items are included.

EXPANDED SORT REPORT (INCLUDING SORT DESCRIPTION)

The optional control argument -PD can be specified in the invoking SORT command to extend
the contents of the Sort Report. The argument -PD means "print Sort Description." If -PD is
specified, the complete Sort Description as originally submitted is printed at the beginning of
the Sort Report, followed by the other items of the Sort Report.

Table 3-1 illustrates the format of the expanded Sort Report which is delivered to the user-out
f:Jle if the -PD option was specified in the SORT command. The pathnames cited in Table 3-1 are.
full pathnames, obtained after the files to which they refer are opened.

REPORTS AND MESSAGES
ISSUED BY SORT 3-1

6/78
CB04A

I

I

I

TABLE 3-1. FORMAT OF SORT REPORT (INCLUDING BASIC SORT REPORT AND SORT
DESCRIPTION)

Sort Report Item

****SORT DESCRIPI'ION****
Sort Description statements

Sort -version number
-date/time linked

INPUT FILE: pathname

RECORDS READ nnnnnn

OUTPUT FILE: pathname

RECORDS WRITTEN nnnnnn

RECORDS DELETED nnnnnn

FATAL ERROR IN SORT

WARNING ERROR IN SORT

Example

Comment

Each line of the Sort Description is entered exactly as originally
submitted to Sort. (Included only if -PD specified in SORT command.)

Header for main body of Sort Report. (Always included; part of basic
Sort Report.)

Full pathname of input file as returned by the system. (Always
included; part of basic Sort Report.)

Number of data records read from the Sort input file. (Always
included; part of basic Sort Report.)

Full pathname of Sort output file as returned by the system. (Always
included; part of basic Sort Report.)

N umber of data records written to the output file. (Always included;
part of basic Sort Report.)

Number of records deleted by the Sort program when the -DL
argument is specified or due to record selection based on INCL or
OMIT statements. (Always included; part of basic Sort Report.)

Written to the user-out file only if a fatal error message has been sent
to the error-out file. (When issued, considered part of basic Sort
Report.)

Written to the user-out file only if one or more warning error
messages have been sent to the error-out file. This message is issued if
the RECORD TOO SMALL error message was previously generated.
(When issued, considered part of basic Sort Report.)

A typical Sort Report delivered to the user-out file is shown below. The invoking SORT
command for this sort application contains the control argument -PD.

**** SORT DESCRIPTION ****
FILES:-IF IOFILE -OF OUFILE -WF WKFILE;
KEYS:CHAR(6) 13 ;
SORT -version number -date/time linked

INPUT FILE: "SORTVL>IOFILE
RECORDS READ 001000
OUTPUT FILE: " SORTVL>OUFILE
RECORDS WRITTEN 001000
RECORDS DELETED 000000

ERROR MESSAGES ISSUED BY SORT

A complete list of error messages generated by Sort and delivered to the error-out file appears
in the System Messages manual.

As soon as the Sort program is invoked, it begins to scan all elements ofthe SORT command
and the Sort Description. If it detects an error, it issues an error message describing that error.
Sort scans the entire Sort Description and issues error messages as appropriate. Sort then
terminates if it detected one or more errors in the Sort Description.

REPORTS AND MESSAGES
ISSUED BY SORT 3-2

. 6/78
·CB04A

(

For syntax errors, Sort generates an error message consisting of a coded number and the
words PARAMETER SYNTAX ERROR. This message is followed by a secondary message that
either identifies the error or presents a string of characters that can be interpreted as follows:

• First word of string indicates location of error

• Remaining words of string indicate words that Sort is unable to scan intelligently. All
word separators are reduced to blanks.

Example:
The following KEYS statement is submitted:

KEYS:CHAR(A),4,CHAR(3),10,CHA(4),15;

The error messages Sort issues as a result of scanning this line are:

313121 PARAMETER SYNTAX ERROR
3131FF A 4
313121 PARAMETER SYNTAX ERROR
3131FF CHA 4 15

REPORTS AND MESSAGES
ISSUED BY SORT 3-3 CB04

Section 4

Merge Language

The Merge program is invoked through specification of the MERGE command. The MERGE
command provides information to specialize the Merge program for a particular execution,
including identification of the file containing the Merge Description.

The Merge Description contains additional information for specializing the Merge, including
specification of:

• The input and output files to be used by Merge

• One or more key fields to be used for merging records

• The criteria to be used to determine which records of the Merge input file(s) will be merged

• The record arrangement of the output file

The MERGE command and the statements that constitute the Merge Description are
described in detail below. This section also includes examples of typical Merge usage.

MERGE COMMAND

The MERGE command invokes the Merge p' ogram. Any pathname specified in the MERGE
command can be either a full pathname or a relative pathname related to the current working
directory. (Refer to the System Concepts manual for a description of the use of pathnames in
commands.)

The format of the MERGE command is:

MERGE [ctLarg]

[ctLarg]
Control arguments. Any or all of the following optional control arguments can be used:

-IN path
Specifies the name of the file containing the Merge Description for this merge. If not
specified, the user-in file is used.

-PD
Indicates that a listing ofthe Merge Description is to be produced on the user-out file. (Only
the first 71 characters of each line will be displayed.)

-DL
Designates that if Merge encounters records that have the same key, only the first record
defmed by the Merge FIFO rule is written to the output file (see the -IF path argument of
"FILES Statement (For Merge)" later in this section).

Example 1:
The MERGE command and Merge Description are to be submitted in the command-in file.
The Merge program will be found according to your search rules (see the LIST SEARCH
RULES (LSR) command in the Commands manual). The invoking command is:

MERGE

Example 2:
The Merge program is stored on the volume MY APPL; the Merge Description is identified
by the relative pathname MD. If Merge encounters records that have the same key, only one
ofthe records is written to the output file; the others are deleted. The invoking command is:

"MYAPPL>MERGE -IN MD -DL

MERGE LANGUAGE 4-1 CB04

MERGE DESCRIPTION

The Merge Description consists of the following statements, which supply information to
specialize the Merge for a particular application:

• FILES statement: (Required) Specifies the input and output files for the Merge
application.

• INCUOMIT statement(s): (Optional) Specify which records of the Merge input file(s) will
be processed.

• KEYS statement: (Required) Describes the input file fields to be used for merging files.

• ARRange statement: (Optional) Designates the placement of input record byte strings
within the output record.

The Merge Description is required. The FILES statement must be first. If INCL or OMIT
statements are used, they must precede the KEYS and optional ARRange statements. The
syntax of the Merge Description is the same as that for the Sort Description (see "Syntax of Sort
Description" and "Comments in Sort Description" in Section 2).

FILES STATEMENT (FOR MERGE)

The FILES statement specifies the pathnames of the input file(s) to be processed by Merge,
and the output file. There may be one through six input files. Pathnames specified in the FILES
statement can be full pathnames or relative pathnames related to the current working
directory.

The format of the FILES statement is:

FILES:-IF path[,path ...],-OF path;

-IF path
Specifies the pathname(s) of the input file(s) to be processed by Merge. Up to six input file
pathnames may be specified. If duplicate records are found (i.e., they have the same key
field), the records are written to the output file in the order in which the files containing
them appear in the input file list. Required argument.

-OF path
Specifies the pathname of the output file. The output file must be a disk file created prior to
execution of Merge. Required argument.

Example:
Three files to be merged reside on different volumes; the first file is relative to the current
working directory. The output file resides on the same volume as the input file. The FILES
statement is:

FILES:-IF BRANCHl, 1\ DISTOl>BRANCH2,
1\ DIST02>BRANCH3,-OF SUMM;

INCL AND OM" STATEMENTS (FOR MERGE)

The INCL and OMIT statements cause input file records to be processed by Merge only if they
meet certain condition(s). You can designate the criteria to be used by Merge for determining
which record(s) will or will not be processed by specifying the INCL or OMIT statement,
respectively. For a more detailed description of these statements, see "INCL and OMIT
Statements (For Sort)" in Section 2.

The format of the INCL and OMIT statements is:

{~~I~} :criteria_description [AND criteria_description ...];

MERGE LANGUAGE 4-2 CB04

r
(
~ ..

The fonnat ofthf' criteria description is determined by the type of comparison being specified:

Comparing two fields within a record:

data.type(size),positionh operator,position2

Comparing a field to a specified value:

data_type(size),position hoperator, 'literal'

For descriptions of the arguments, see "INCL and OMIT Statements (For Sort)" in Section 2.

Example:
Four files are being merged. Records are included in the merging process only if they have
the following characteristics: a character string comprising four bytes beginning on the
15th byte of the record is greater than an equivalent field starting on the sixth byte, and a
6-digit decimal field (overpunch sign) starting on the 40th byte has a value greater than
-100. If the above conditions are not met, a record is included if it has a 4-digit signed packed
decimal field with a padded half byte (all four bits are 0) starting on the 24th byte and is less
than or equal to 16.

INCL:CHAR(4),15,GT,6 AND DEC(6),40,GT,'-100';

INCL:PDEC(4),24,LE, '16';
Note:

If the convention supporting byte-aligned packed decimal fields is followed
(Le., all four padding bits are 0), the second statement may be written as:
INCL:PDEC(5),24,LE,'16';

KEYS STATEMENT (FOR MERGE)

The KEYS statement describes the key fields of the input records to be used for merging
records. The statement consists of a series of 1 to 16 key descriptions; each specifies a single key
field. The key descriptions must be specified in order; the first describes the major key and the
last describes the least significant minor key. Key fields can be overlapping. Each key
description indicates whether the values for that key field are ranked in ascending or
descending order.

The fonnat of the KEYS statement is:

KEY[SJ:key _description[,key _description ... J;

Each key description has the following format:

da~type(size),position[,DJ

For descriptions of the arguments, see "KEYS Statement (For Sort)" in Section 2.

Example:
The following statement defines the two key fields to be used for merging records of the
input files: a field consisting of the first seven bytes of the records, and one that comprises
the 18th and 19th bytes of the record. The first key is arranged in ascending order, and the
second key in descending order.

KEYS:CHAR(7),1 CHAR(2),18,D;

ARRANGE STATEMENT (FOR MERGE)

The ARRange statement specifies which bytes of the input record will be in the output record.
This statement consists of one to 16 byte string descriptions, which may overlap. The order in
which these descriptions are specified determines the placement of the strings in the output
record. Each key field must be contained within a single byte string. A byte string may contain
multiple key fields.

The format of the ARRange statement is:

ARR:(length),position[,(length),position ... J;

MERGE LANGUAGE 4-3 CB04

I

(length)
Number of bytes constituting the byte string.

position
Position within the input record of the beginning of the byte string; the first byte of the
record is considered position 1.

Example:
The output record will comprise 29 bytes. The first five bytes of the output record will be
taken from the input record, starting in position 10. The remainder of the output record will
consist of 24 bytes, which begin in position 42 of the input record.

ARR:(5),10(24),42;

TYPICAL MERGE USAGE

The following examples illustrate typical Merge usage.

Example 1:
The files MASS, CONN, and PENN are to be merged. MASS and CONN reside on the same
volume, which contains the current working directory. PENN is on the volume COR. The
files are to be merged to an output file ALL, which is on the volume ULT. Two key fields
describe the sequence of the records on the input files: a signed decimal field (with a trailing
separate sign) that begins on the fifth byte and occupies seven bytes, and a character string
that begins on the first byte and occupies only that byte.

Both the MERGE command and the Merge Description are in the command-in file.

MERGE
FILES:-IF MASS,CONN, "COR>PENN,-OF "ULT>ALL;
KEYS:TDEC(6),5,CHAR(l),1;
QT

Example 2:
The files STAN and LAUREL, which reside on different volumes, are to be merged into an
output file whose simple pathname CHARLIE is relative to the current working directory.
The input files are arranged in descending order according to a character string field.

Only records that have a binary field value less than 200 are to be merged. If records with
equal key fields are encountered, only the first record defined by the Merge FIFO rule is
written to the output file; the other records are deleted. For example, if duplicate records are
found on STAN and LAUREL, the one in STAN is written to the output file.

The Merge Description is in the file MD on the volume CINAPP.

The invoking command is:

MERGE -IN "CINAPP>MD -DL
The Merge Description is:

FILES:-IF "PARM>STAN, "FOX>LAUREL,-OF CHARLIE;
INCL:BIN(15),20,LT,'200';
KEYS:CHAR(6),4,D;

Since the Merge Description is in the file "CINAPP>MD, the word QUIT or QT is not
required.

Example 3:
A single ordered file SOLD is to be restructured so that the output file DUAL only contains
records in which each character string field is greater than or equal to AAABBB. The
output record is to comprise four byte strings extracted from the associated input record.

MERGE LANGUAGE 4-4
6178

CB04A

The MERGE command and the Merge Description are in the command-in file.

MERGE
FlLES:-IF /\ MYAPP>SOLD,-OF /\ YRAPP> DUAL;
INCL:CHAR(6),20,GE, 'AAABBB';
KEYS:PDEC(3),6,CHAR(4),20,D;
ARR:(6),20,(10),6,(4),1,(8),40;
QT

Note that the key fields are contained within the byte string declarations for the ARRange
statement.

MERGE LANGUAGE 4-5 CB04

Section 5

Reports and Messages
Issued by Merge

Merge delivers a Merge Report to the user-out file on completion of the merging process. In
addition, Merge issues error messages as appropriate, to the error-out file. The Merge Report
and error messages are discussed in this section.

MERGE REPORT

The Merge program always delivers a Merge Report to the user-out file unless Merge is
terminated because of parameter diagnostic errors. The contents of the Merge Report are
determined by the control arguments specified in the invoking MERGE command.

BASIC MERGE REPORT

Ifno control argument related to the contents of the Merge Report appears in the MERGE
command, the report issued by Merge always is a basic Me~ge Report. The basic Merge Report
identifies the input and output files, provides statistical information on the records proc
essed, and indicates whether error messages were issued during execution of the merge
application. The items in the basic Merge Report (explained in Table 5-1 later in this section)
are as follows:

MERGE -version number -date/time linked

INPUT FILE 1: pathname

INPUT FILE n: pathname
OUTPUT FILE: pathname
RECORDS READ 1: nnnnnn

RECORDS READ n: nnnnnn
TOTAL READ: nnnnnn
RECORDS WRITTEN: nnnnnn
RECORDS DELETED: nnnnnn
FATAL ERROR IN MERGE (conditional message)

All items in the basic Merge Report are supplied whenever the Merge Report is printed, whether
or not additional items are included.

EXPANDED MERGE REPORT (INCLUDING MERGE DESCRIPTION)

The optional control argument -PD can be specified in the invoking MERGE command to
extend the contents of the Merge Report. The argument -PD means "print Merge Description." If
-PD is specified, the complete Merge Description as originally submitted is printed at the
beginning of the Merge Report, followed by the other items of the Merge Report.

REPORTS AND MESSAGES
ISSUED BY MERGE 5-1

6178
CB04A

I

I

I

Table 5-1 illustrates the format of the expanded Merge Report which is delivered to the
user-out fil~ if the -PD option was specified in the MERGE command. The pathnames cited in
Table 5-1 are full pathnames, obtained after the files to which they refer are opened.

TABLE 5-1. FORMAT OF MERGE REPORT (INCLUDING BASIC MERGE REPORT AND
MERGE DESCRIPTION)

Merge Report Item Comment

****MERGE DESCRIPTION****
Merge Description statements Each line of the Merge Description is entered exactly as

originally submitted to Merge. (Included only if _"OD specified
'in MERGE command.)

MERGE -version number
-date/time linked

INPUT FILE n: pathname

OUTPUT FILE: pathname

RECORDS READ n: nnnnnn

TOTAL READ: nnnnnn

Header for main body of Merge Report. (Always included; part
of basic Merge Report.)

Full pathname of input file n, as returned by the systexr...
(Always included; part of basic Merge Report.)

Full pathname of Merge output file as returned by the
system. (Always included; part of basic Merge Report.)

Number of records read from input file n. (Always included;
part of basic Merge Report.)

Total number of data records read from the Merge input files.
(Always included; part of basic Merge Report.)

RECORDS WRITTEN: nnnnnn Number of data records written to the output file. (Always
. ncl~ded; part of basic Merge Report.)

RECORDS DELETED: nnnnnn" Number of records deleted by the Merge program. (Always
included; part of basic Merge Report.)

FATAL ERROR IN MERGE Written to user-out file only if a fatal error message has been
sent to the error-out file. (When issued, considered part of
asic Merge Report.)

Example
A typical expanded Merge Report delivered to the user-out file is shown below. The
invoking MERGE command for this merge application contains the control argument -PD.

****MERGE DESCRIPTION****
FILES: -IF FIRST,SECOND,-OF RESULT;
KEYS: CHAR (6) 13;
MERGE -version number -date/time linked
INPUT FILE 1: /I. COMB>FIRST
INPUT FILE 2: /I. COMB>SECOND
OUTPUT FILE: /l.ICOMB>RESULT
RECORDS READ 1: 000100
RECORDS READ 2: 000150

TOTAL READ: 000250
RECORDS WRITTEN: 000250
RECORDS DELETED: 000000

REPORTS ANI) MESSAGES
ISSUED BY MERGE 5-2

6/78
CB04A

(

ERROR MESSAGES ISSUED BY MERGE

Merge scans the MERGE command and the Merge Description, as they are entered, and
issues appropriate error messages, if any. If one or more errors are detected in the Merge
Description, execution of Merge terminates.

For syntax errors, Merge generates an error message comprising a coded number and the
words PARAMETER SYNTAX ERROR. For a description of parameter syntax errors, see
"Error Messages Issued by Sort" in Section 3.

A complete list of error messages generated by Merge and delivered to the error-out file
appears in the System Messages manual.

REPORTS AND MESSAGES
ISSUED BY MERGE 5-3 CB04

/-

.,-.-

(

Section 6

Operating Procedures
for Sort and Merge

This section describes the procedures for creating disk files for Sort and Merge, and preparing
and submitting the commands and statements that invoke and particularize Sort and Merge for
specific applications. Also included in this section are sample sort and merge runs.

PREPARING FILES FOR SORT AND MERGE

The Sort and Merge output files must have been created as disk files (on a storage module,
cartridge disk, or diskette) before Sort or Merge execution, respectively. If a permanent file is to
be used as the Sort work file, it too must be created before execution of Sort. The CREATE FILE
(CF) command (described in the Commands manual) is normally used to create a disk file.
Preparation and disposition of the work and output files are described below.

SORT WORK FILE

Sort requires a single-volume disk work file. ;·0 meet Sort requirements, it is recommended
that the following be specified in the command that creates the work file:

CF path -SIZE n

The formula for determining the initial allocation size n of the file is as follows:

n = 1.2 * (size of output file in sectors)
s

where s equals 4 for diskette or 2 for other disk devices. The value of n is rounded up.

During Sort execution, if the initial work file size allocation n is insufficient for the size of the
file to be sorted, an attempt is made to expand the work file (see the -INC.-SIZE argument of the
CREATE FILE command in the Commands manual). If the file cannot be incremented, Sort is
terminated.

Example:
The output file will occupy 822 sectors on a cartridge disk. The control interval size is 512
bytes. The size of the work file is calculated as follows:

n = 1.2 * 8~2

= 493.2 or 494 rounded up

The command to create the work file is:

CF /\ VLSORT> WKSRT -SIZE 494
The work file, once created, can be considered a permanent work file. It can be used for any

sort application for which it has sufficient capacity. However, it cannot be used by two Sort
programs concurrently.

SORT AND MERGE OUTPUT FILES

Your requirements determine the characteristics of the Sort and Merge output files. The
attributes of the output file may differ from those of the input flle(s). The only restriction on

OPERATING PROCEDURES FOR
SORT AND MERGE 6-1 CB04

output fIle organization is that it cannot be indexed. If the sequential file specified for output
already contains records prior to execution of the Sort/Merge, these records are overwritten by
SortlMerge output. The output file must be created prior to the execution of Sort/Merge.

If the output records have a predefined size that differs from the size ofthe input records, the (
following occurs when the output record is written: '-

Results Record Size

input <output The input record contents are left justified; the remainder of the output record
is set to spaces unless the output record type is variable.

input>output The input record contents are left justified; truncation occurs as required.

DISPosrr/ON OF FILES

The shareability attribute of the work file is exclusive-use only. While the input and output
files' shareability attribute is defaulted to exclusive-use only, this can be overridden by means of
the GET command which is described in the Commands manual. Because input and output
buffers are drawn from either the user's or the system's memory, depending on the shareability
attribute of the respective files, the user normally assigns the same attribute to both files. If the
attribute is exclusive-use only, buffers are drawn from the user's memory; otherwise, system
memory is used.

The input file can be rewritten as the output file of the Sort.

The Sort input, output, and work files can reside on the same volume; however, for best
performance, it is advisable to have the work file reside on a separate volume whenever possible.
If the input file and output file do not reside on the same volume, the output volume need not be
mounted when Sort is invoked; mounting can be deferred until the output file is needed. When
the volume containing the input file is being used exclusively by Sort, the volume containing the
output fIle can be mounted on the device from which the input volume has been demounted.

The Merge input and output files can reside on the same volume(s). All volumes must be
simultaneously mounted.

SORT AND MERGE LOGICAL FILE NUMBERS

Logical file numbers (LFN s) for the Sort input, output, and work files are dynamically
obtained from the system; similiarly, LFN s for the Merge input and output files are dynamically
obtained from the system. Sort and Merge do not use reserved LFN s. Sort uses three user
available LFNs, whereas Merge requires two through seven user-available LFNs.

CREATING THE SORT AND MERGE DESCRIPTIONS

The Sort and Merge Descriptions can be entered interactively or stored in the user-in file.

The Editor can be used to create a SortlMerge Description file on a disk volume. The name of
the Description file is specified in the Editor write directive (W). When the Editor processes the
quit directive (Q), it supplies an end-of-file indicator to the Description file. (For a description of
the Editor, see the Program Preparation manual. Information on using the Editor appears in the
Programmer's Guide.)

Termination of the Description must be indicated by specification of the single word QUIT (or
QT) on a separate line, unless an end-of-file indicator appears at the end of the Description file.

INVOKING THE SORT AND MERGE PROGRAMS

To invoke the Sort or Merge program via the command processor, enter the SORT or MERGE
command, respectively. The principal means of submitting these commands are:

1. Invoking Sort or Merge interactively: The SORT and MERGE commands can be
submitted by hand through a terminal. During activation of the online task group under
which Sort or Merge is to be executed, the terminal must be specified as the file from

OPERATING PROCEDURES FOR
SORT AND MERGE 6-2 CB04

(

which commands and your input are to be read. (See the Commands manual for a
description of the ENTER GROUP REQUEST command, which causes an online task
group to be activated.)

2. Invoking Sort or Merge from an EC file: The SORT or MERGE command can be stored in a
file created by the Editor and identified by the pathname path.EC. When the pathname of
the EC file is specified in an EXECUTION COMMAND (EC), the command is read and
passed to the command processor for execution. (The EXECUTION COMMAND is
described in the Commands manual.)

3. Invoking Sort or Merge from a batch command file: The SORT or MERGE command can
be stored in a file from which the command processor reads its commands during
execution of a batch task group. The pathname of the file must be specified in the ilLpath
argument of the ENTER BATCH REQUEST (EBR) command that causes the batch task
group to be executed. (The ENTER BATCH REQUEST command is defined in the
Commands manual.)

SUBMIlTING THE SORT AND MERGE DESCRIPTIONS

SPECIFYING SORT OR MERGE DESCRIPTION FILE IN
-IN ARGUMENT OF SORT/MERGE COMMAND

The invoking SORT or MERGE command designates the file from which the Sort or Merge
program will read the Sort or Merge Description, respectively. If the -IN path argument is
specified in the SORTIMERGE command, the pathname in that argument identifies the file
containing the Description.

SUBMITTING SORT OR MERGE DESCRIPTION WHEN -IN
ARGUMENT OMITTED FROM SORT/MERGE COMMAND

If the invoking SORT/MERGE command does not include an -IN argument, the SortlMerge
Description is read from the file currently being used as the user-in file. The location of the
current user-in file is related to the means used to submit the SORT/MERGE command (see
"Invoking the Sort and Merge Programs" above). Listed below are various means by which the
SORT and MERGE commands can be submitted to the system and the location of the current
user-in file in each case.

1. SORT or MERGE command entered interactively: If the SORT or MERGE command
without the -IN argument is entered by hand through a terminal, normally the
SortlMerge Description is also entered interactively through the terminal. (A description
ofthe procedure for entering the Description interactively is given later in this section.)

2. SORT or MERGE command in EC file: If the SORT or MERGE command without the -IN
argument is stored in and read from an EC file, the related description can be located in
one of two places:

a. In the EC file, following the SORT/MERGE command. The EC control directive &A
must appear in the EC file, on a separate line preceding the SORT/MERGE command,
so that the EC file can be substituted for the user-in file.

b. In the current user-in file (in the online dimension, normally the user's terminal). The
EC file must not contain the EC control directive &A on a line preceding the
SORTIMERGE command.

(For a description of the use ofEC control directives with the EC file, see the EXECUTION
COMMAND in the Commands manual.)

3. SORTor MERGE command in a batch command file: If the SORT or MERGE command
without the -IN argument is stored in and read from a file whose pathname is specified in
the ilLpath argument of the ENTER BATCH REQUEST (EBR) command, normally the
Description is also stored in and read from that file.

OPERATING PROCEDURES FOR
SORT AND MERGE 6-3 CB04

PROCEDURE FOR ENTERING SORT OR MERGE DESCRIPTION INTERACTIVELY

To enter the Sort or Merge Description through a user's terminal, perform the following steps:

1. After being invoked, the Sort and Merge programs issue the following message on the
terminal:

ENTER {SORT } DESCRIPTION
MERGE

In response, enter the Sort or Merge Description manually, line by line.

2. At the completion of the Description, enter the characters QUIT (or QT) at the beginning
of a separate line, to indicate termination of the Description.

3. As the Sort or Merge program processes each line of the Description, it issue", an error
message to the error-out file for each error in syntax or number of parameters that it
detects. The program continues to request Description lines until it encounters the word
QUIT (or QT). If the program detects no errors, it continues to execute. Otherwise, it
returns to the command level.

4. If Sort or Merge terminates because of a fatal error, you can revise and resubmit the SORT
or MERGE command and Sort/Merge Description.

5. Should an error occur during typing of the Description on the terminal, you can terminate
SortlMerge by typing !SA as the first characters on the next line. Once the program reads
these characters, it suppresses subsequent error messages, causes the hexadecimal value
FFFF to be supplied to register R1, and returns control to the command level.

6. When Sort or Merge is executing from an EC file and !SA is entered through the terminal
to terminate the program, control is returned to the EC file. Normally, the next command
is automatically read from that file. However, under certain conditions, control can be
transferred from the EC file before the next command is read. For an exit from the EC file
to occur before the end of the EC file, the EC control directive &IFA must exist in the EC
fIle on the line immediately following the SORT or MERGE command. The following
complete &IFA control directive must have been stored on that line:

&IFA [EQUALSA&STATUSAO]A&THENA&ELSEA&QUIT

This directive causes the error status code in register R1 to be interrogated. The above
control statement is interpreted as follows:

If the error status code is zero (0), continue with the next command or directive line;
otherwise, quit.

Because specifying !SA causes the error status code to contain a nonzero value, EC file
execution is terminated. (The use of the &IFA control directive is described under the
EXECUTION COMMAND in the Commands manual.)

SAMPLE SORT RUNS

The examples given below illustrate the input streams required to cause two sort runs to be
executed. Included in each example is the resulting Sort Report. These examples assume that
system startup has occurred and the appropriate online or batch task group under which Sort is
to execute has been created and activated. Refer to the System Building manual for system
startup procedures and to the Commands manual for commands required to create and activate
task groups. Sample terminal sessions involving execution of programs appear in the
Programmer's Guide.

Example 1:
The SORT command and the Sort Description are both to be entered through an interactive
terminal. The amount of memory requested to support Sort execution is 16K words.

Files used by Sort include:

c

1. An input file on volume DSKOll referred to oy the pathname I\DSKOll>AC>PAY. (

OPERATING PROCEDURES FOR
SORT AND MERGE 6-4 CB04

(

.. ~

2. An output file on the same volume referred to by a pathname
"DSKOll>TAXD>WAGE.

3. The Sort work file SRTWK on volume WDIR01.

Two record keys are to be used in sorting: a 10-character field beginning in the seventh byte
of the record, and a two-character field beginning in the third byte. The latter key is to be
sequenced in descending order.

The following terminal typeout shows the interactive dialog required to invoke and run the
Sort program, and the resulting Sort Report. Entries supplied by the user are labeled (u)
and those supplied by the system are labeled (s) in the margin to the left of the listing.
(These labels do not appear on an actual listing.)

(u) SORT -SIZE 16 (Invoking SORT command)
(s) ENTER SORT DESCRIPTION
(u) FILES:-IF "DSKOll>AC>PA Y

(System request for Sort Description statement)
(Sort Description statement)

-OF "OSKOll >TAXD>WAGE -WF"WDIR01>SRTWK;
(u) KEYS:CHAR(10),7,CHAR(2),3,D;
(u) QUIT
(s) SORT -version number -date/time linked
(s) INPUT FILE: "DSKOll>AC>PAY
(s) RECORDS READ 2000
(s) OUTPUT FILE: "DSKOll>TAXD>WAGE
(s) RECORDS WRITTEN: 2000
(s) RECORDS DELETED: 0

Example 2:

(Sort Description statement)
(Terminate Sort Description)
(Sort Report header)
(Item of basic Sort Report)
(Item of basic Sort Report)
(Item of basic Sort Report)
(Item of basic Sort Report)
(Item of basic Sort Report)

In this example, the Editor is used to create a file (SRTDES) containing the Sort Description
under the curre~lt working directory. Commands to invoke the Editor and Sort are
submitted through a terminal. The resulting Sort Report, which includes a listing of the
Sort Description statements, is to be printed on the terminal (designated as the user-out
flle).

The Sort work file (WKFILE) is under the current working directory. The input file
(RECIN) and output file (RECOUT) are on the same volume (VOL234). Keys to be used in
ranking the input records are as follows (the first byte of the record being numbered 1):

1. A 12-character field starting in byte 3

2. A 31-character field starting in byte 20 (to be sorted in descending order)

3. A five-character field starting in byte 6

The amount of memory to be allocated for Sort execution is 20K words.

The Editor directives required to create the Sort Description file are listed below, followed
by the invoking SORT command, and the resulting Sort Report. (Refer to the Program
Preparation manual for detailed information on the Editor.) The originator of each of the
following entries is indicated in the left margin: (u) for user; (s) for system. (These labels do
not appear on an actual listing.)

(u) ED
(u) I
(u) /SRTDES/
(u) FILES:-IF "YOL234>RECIN

-OF "YOL234 >RECOUT -WF WKFILE;
(u) KEYS:CHAR(12) 3,

CHAR(31) 20 D, CHAR(5) 6;
(u) !F
(u) W SRTDES
(u) Q
(u) SORT -IN SRTDES -SZ 20 -PD
(s) ****SORT DESCRIPTION****
(s) /SRTDES/

OPERATING PROCEDURE FOR
SORT AND MERGE

(Invoking the Editor)
(Editor insert directive) .
(Comment line giving file name)
(Sort Description statement)

(Sort Description statement)

(Terminate insert and enter Edit mode)
(Editor write directive naming the Sort Description file)
(Quit; exit from Editor)
(Invoking SORT command)
(Initial entry of Sort Report)

6-5
6178

CB04A

I

I

I

I
I

(s) FILES:-IF "VOL234 > RECIN I
-OF "VOL234 >RECOUT -WF WKFILE; (

(s) KEYS:CHAR (12) 3, ((Listing of Sort Description statements in Sort Report)

CHAR (31) 20 D, CHAR (5) 6; J
(s) SORT -version number -date/time linked
(s) INPUT FILE: "VOL234 >RECIN
(s) RECORDS READ 500
(s) OUTPUT FILE: "VOL234>RECOUT
(s) RECORDS WRITTEN: 500
(s) RECORDS DELETED: 0

SAMPLE MERGE RUN

Example;

(Sort Report header)
(Item of basic Sort Report)
(Item of basic Sort Report)
(Item of basic ort Report)
(Item of basic Sort Report)
(Item of basic Sort Report)

The MERGE command and the Merge Description both are to be entered through an
interactive terminal. Files used by Merge include:

1. Input file on volume ZSVOLC referred to by the pathname "ZSVOLC>APPLE.
2. Second input file on volume VL6469 referred to by the pathname " VL6469> PEAR.
3. Output file on volume ZSVOLC referred to by the pathname "ZSVOLC>PLUM.I

The following single key is used to merge the two input files: a character string comprising
six bytes starting on the first byte of the record.

The following terminal typeout shows the interactive dialog required to invoke and run the
Merge program, and the resulting Merge Report.

MERGE
ENTER MERGE DESCRIPTION
FILES:-IF "'ZSVOLC>APPLE "'VL6469>PEAR -OF "ZSVOLC>PLUM;
KEYS: CHAR 6 1;
QT
MERGE -version number -date/time linked
INPUT FILE 1: A ZSVOLC> APPLE
INPUT FILE 2: A VL6469 > PEAR
OUTPUT FILE: AZSVOLC>PLUM
RECORDS READ 01:000241
RECORDS READ 02:000137
TOTAL READ:000378
RECORDS WRITTEN: 000378
RECORDS DELETED: 000000
END MERGE

OPERATING PROCEDURES FOR
SORT AND MERGE 6-6

6/78
CB04A

c/

Section 7

Sorting Using Subroutine Calls

An application program may use a sequence of subroutine calls to sort records. To use these
calls, link an interface module to your program, which may be written in COBOL, FORTRAN,
or GeOS 6 assembly language. The sorting functions are performed by a dynamically loaded
bound unit, SORTC. A call passes each record, and these records are sorted using a disk work
file. After the calling program is notified that the sort has completed, call for the return of each
record in sorted order. Prior to passing records to be sorted, call for the initialization of the sort
by specifying the maximum amount of memory to be used, record and work file attributes, and
the sort key fields. The disk work file may be temporary or permanent. The minimum memory
requirement for Sort is 8K words.

Key fields have the following characteristics:

• Up to 16 key fields may be specified; they may be contiguous, separated, or overlapped.

• Keys may be sorted in ascending or descending order according to the ASCII collating
sequence.

• Key field data types may be any of the following:

- Character string

- Single- or double-word signed binary

- Unpacked decimal: unsigned or signed with the sign leading, trailing, or trailing over- I
punched

- Packed decimal: unsigned or signed trailing

One major and up to 15 minor keys may be specified. Records are ordered first according to the
major key; then all records containing the same major key are sorted according to the minor
keys, in the sequence dictated by the sort description, which is described later in this section.

SORT SUBROUTINE CALLS

The function of each call is described briefly below; following are more detailed descriptions.
Normally each function is required, except for abort sort. At the completion of each call, the
subroutine is closed; i.e., control returns inline to the calling program immediately following the
call.

• Initialize sort
(ZSSRT)

• Release record
(ZSREL or ZSRELD)

• Commence sort
(ZSCOMM)

• Return record
(ZSRET or ZSRETD)

• Abort sort
(ZSEND)

SORTING USING
SUBROUTINE CALLS

Establishes the environment, according to the sort description,
for the sorting process.

Passes a record to Sort.

Performs the sorting process.

Returns the next sorted record to the calling program.

- Terminates execution of Sort prematurely, provided all records
have not been returned.

7-1
6/78

CB04A

SUBROUTINE CALL ARGUMENTS

DOPE VECTORS

Each subroutine call is. associated with an argument list. Some arguments are passed using
dope vectors. In the detailed descriptions of subroutine calls, it is indicated for each argument
whether a dope vector is used.

The higher level programmer must be aware that the only types of data declarations that
cause a dope vector to be used are:

• COBOL - An argument declared as elementary DISPLAY. (In COBOL it may be
necessary to use an 01 level elementary REDEFINES to a group item that is to
be referenced with a dope vector.)

• FORTRAN - An argument declared as CHARACTER.

If the application program using the sort subroutine calls is written in assembly language, the
GCOS 6 standard calling sequence must be followed; i.e., arguments are passed through an
argument list referenced by register B7. Depending on the form of data that is passed, the
address pointers in the argument list either point directly to the data or to a dope vector, which
in turn points to the data. The main intent of dope vectors is to permit data items that are not
aligned on word boundaries to be passed. A dope vector consists of three contiguous words in the
following format:

o 15
length of argument

byte offset of argument

word address of argument

The initialize Sort call requires that the sort description argument be passed with a dope vector.
Consequently, the assembly language name used for the sort description argument must
reference a dope vector that in turn points to the sort description. It is the assembly language
programmer's responsibility to build the dope vector.

ARGUMENTS COMMON TO SORT SUBROUTINE CALLS

The :fIrst two arguments are the same for each of the five calls. The first argument specifies a
work area within your program, and the second argument specifies the field used for storing the
return code at the completion of a call. Both arguments are described in detail below.

work area (wor~area)
This argument specifies the name of the work area declared within your program. During
the execution of Sort, the work area must be available for the exclusive use of Sort. The work
area must be word-aligned, and must occupy at least 21 words. It is not passed using a dope
vector.

Throughout the sort, the work area retains the sort's context; therefore, the same argument
value must be used for all calls associated with a specific sort. When a call is made to
initialize the sort, the first word of the work area must be the binary equivalent of 4096. It is
changed during the sort process, but it is reset to 4096 when the sort terminates.

report status (returll.-code)
This argument is the name of a 16-bit binary integer return code field used by Sort to report
status to the caller. Unlike the work area argument, it is not necessary to specify the same
argument value in all calls made during a sort. If the application program is written in
COBOL, the status code should be declared as COMPUTATIONAL-I. If the program is
written in FORTRAN, the status code should be declared as INTEGER. This argument is
not passed using a dope vector.

SORTING USING
SUBROUTINE CALLS 7-2 CB04

(

ZSSRT

INrrlALIZE SORT CALL

The initialize sort function loads the Sort bound unit SORTC into memory, processes the sort
description, opens a work file, obtains memory for Sort, and specializes the sort process.

The formats for the initialize Sort call are:

COBOL

CALL "ZSSRT" USING worLarea, retuI"n-code, sort_description

FORTRAN

CALL ZSSRT (worLarea,returll....-code,sort description)

Assembly language

CALL ZSSRT,work_area,return_code,sort_description

worurea
Name of a work area within your program to be used by this sort. The work area must
comprise a minimum of21 words of memory; the first word must be initialized to the binary
equivalent of 4096. (For a more detailed description, see "Arguments Common to Sort
Subroutine Calls" earlier in this section.) This argument must not be passed with a dope
vector. Required argument.

returD-code
Name of the 16-bit binary integer return code field used by Sort to report status and errors.
(For a more detailed description, see "Arguments Common to Sort Subroutine Calls" earlier
in this section.) This argument must not be passed with a dope vector. Required argument.

sorLdescription
The sort description describes the key fields according to which records will be sorted,
designates the amount of memory to be used by the sort, specifies the type and length of
records to be sorted, and indicates whether the work file is temporary or permanent. This
information must be specified as a character string. The meaning of each byte is described
in Table 7-1; there are no default values.

Note:
If a value must be a specified number of digits, leading zeros are used, ifnecessary.

This argument must be passed with a dope vector. Required argument.

SORTING USING
SUBROUTINE CALLS 7-3 CB04

I

ZSSRT

TABLE 7-1. SORT DESCRIPTION

Byte Value Meaning

0-1 dd Size, in units oflK of the memory to be.used by the sort; expressed as two decimal
digits (e.g., 16). Must be from 08 to 69 (see "Sort Subroutine Memory Usage" in
Appendix A).

2 0 Reserved for sort use.

3-4 Work file indicator.
00 Temporary work file is to be used.
01-99 Preallocated permanent work file is to be used; the value specifies the logical file

number of the permanent work file.

5 Record type.
F Fixed-length records (i.e., each record is the length specified in bytes 6 through

10).
V Variable-length records (i.e., the records vary in length up to the maximum given

in bytes 6 through 10).

6-10 ddddd Record length (in bytes); expressed as five digits.

11-12 Data type of the major key field (see Table 7-2 for detailed descriptions).
CH Character string.
BN Signed binary.
DC Signed decimal (units overpunched).
TD Signed decimal (trailing separate sign).
LD Signed decimal (leading separate sign).
UD Unsigned decimal.
PD Packed decimal (trailing sign).
UP Packed decimal (unsigned).

13-15 ddd Space occupied, in bytes, ·by the major key field; expressed as three digits. To
determine permitted space values, see the "Space Occupied" column of. Table 7-2,

16-20 ddddd Position of the beginning byte of the specified key field, relative to the beginning
ofthe record; expressed as five digits. The record is considered to be aligned on a
byte boundary, with the first byte of the record being numbered 1.

21 Order in which records will be ranked.
A Ascending order.
D Descending order.

22 Optional descriptions of up to 15 minor key fields; for ~ach key field, specify the
equivalence of bytes 11 through 21.

n The last byte of the sort description must be two blanks.

The key field descriptions must be in order; the first describes the major key, and the last
describes the least significant minor key. Key fields can be overlapping. In files with variable
length records, the smallest record to be sorted must contain all the key fields. A record that does
not contain all key fields will not be included in the sort, and the calling program is notified that
the record is too small. Each key description indicates whether the values for that key field are to
be ranked in ascending or descending order.

SORTING USING
SUBROUTINE CALLS 7-4

6178
CB04A

(

~

/
(

(

ZSSRT/ZSREL/ZSRELD

<,

TABLE 7-2. KEY FIELD DATA TYPES

Abbreviated Space
Data Type" Code Unit Size (n)b Occupiedc

Character string CH 8-bit byte 1 to length n bytes
of record

Signed binary BN I-bit 15 or 31 2 or 4 bytes
Signed decimal DC 8-bit digit 1 to 31 n bytes
(units overpunched)
Signed decimal TD 8-bit digit 1 to 30 n+l bytes
(trailing separate sign)
Signed decimal LD 8-bit digit 1 to 30 n+l bytes
(leading separate sign)
Unsigned decimal UD 8-bit digit 1 to 31 n bytes
Packed decimal PD ' 4-bit digit 1 to 3Dd ifn is even,
(trailing sign) (n+2)/2

ifn is odd,
(n+l)/2

Packed decimal UP 4-bit digit 1 to 30 d ifn is even,
(unsigned) nl2

ifn is odd,
(n+l)/2

-

aData is not validated. Therefore, if a record contains invalid data, results are unspecified. Invalid data
is data that does not conform to the data type specified in bytes 11 and 12 of the sort description.

"The size is the number of data type units that constitute a field, excluding the unit that contains a
separate sign.

cWhen the space occupied value is specified in the sort description, be sure to allow for the sign field.
dPacked decimal fields each must fully occupy an integral number of bytes and be byte-aligned. If
padding is necessary, the first half byte of the field must be 0000; this is optionally included in the size
field (i.e., bytes 13 through 15 of the sort description).

RELEASE RECORD CALL

The release record function releases a record so that it can be processed by Sort. The number of
times this function is requested coincides with the number of records to be sorted; e.g., if 12
records are to be sorted, the release record function must be requested 12 times.

The formats for the release record call are:

COBOL

CALL {"ZSREL" }
"ZSRELD"

USING work_area, return_code, record_id[, record_length]

FORTRAN

CALL {ZSREL }
ZSRELD

(work_ area,return_code,record_ id [,record_length])

Assembly language

{ZSREL } . CALL ZSRELD ,work_area,return_code,record_ld[,record_length]

ZSREL
Indicates that the record is to be passed without a dope vector.

ZSRELD
Indicates that the record is to be passed with a dope vector.

work....area
Name of the work area used in the ZSSRT call. Required argument.

SORTING USING
SUBROUTINE CALLS 7-5 CB04

ZSREL / ZSRELD / ZSCOMM / ZSRET / ZSRETD

retunLcode
Name of the I6-bit binary integer return code field used by Sort to report status and errors.
This argument must not be passed with a dope vector. Required argument.

reconLid
Name of the area in which the record to be released is stored. If your declaration of this area
requires that the argument be passed using a dope vector, then the call ZSRELD must be
used; otherwise, the call ZSREL must be used. Required argument.

reconLlength
Ifrecord lengths are variable, assign to this argument the length of the record, in bytes. The
size of the record length field is one word. In COBOL, the record length is declared
COMPUTATIONAL-I. In FORTRAN, the record length is declared INTEGER. Optional
argument.

COMMENCE SORT CALL

The commence sort function performs the sorting process after all records have been released
to Sort.

The formats for the commence sort call are:

COBOL

CALL "ZSCOMM" USING woriLarea, retur~code

FORTRAN

CALL ZSCOMM (woriLarea, retu~code)

Assembly language

CALL ZSCOMM,work_area,return_code

worlLarea
Name of the work area used in the ZSSRT call. Required argument.

retlll'n-code
Name of the I6-bit binary integer return code field used by Sort to report status and errors.
This argument must not be passed with a dope vector. Required argument.

RETURN RECORD CALL

The return record function returns the sorted records, one at a time, to the application
program. Unless the abort sort function is used, the number of times the return record function
is requested must coincide with the number of records released. Before the last record is
returned, Sort closes the work file and the memory occupied by Sort is released.

The formats for the return record call are:

COBOL

{"ZSRET" } CALL "ZSRETD" USING work_area, return_code, record_ar, record....Jength

FORTRAN

{ZSRET } CALL ZSRETD (work_area,return_code,record _ar,record_length)

Assembly language

{ZSRET } CALL ZSRETD ,work_area,return_code,record _ar,record_length

SORTING USING
SUBROUTINE CALLS 7-6 CB04

c,

(

f
l·
"

(/

ZSRET / ZSRETD / ZSEND

ZSRET
Indicates that the record area (specified in the recortL.ar argument) is to be passed witlwut a
dope vector.

ZSRETD
Indicates that the record area (specified in the recortL.ar argument) is to be passed with a
dope vector.

work.....area
Name of the work area used in the ZSSRT call. Required argument.

retUrILcode
Name of the I6-bit binary integer return code field used by Sort to report status and errors.
On a normal return of the last record, the value of the return code is the binary equivalence
of 5. This argument must not be passed with a dope vector. Required argument.

recortL.ar
N arne of the area into which the record will be returned. The record may be released to and
returned to the same area (i.e., the name specified in this argument may be the same as the
name specified in the recortL.id argument of the release record call). If your declaration of
this area requires that the argument be passed using a dope vector, then the call ZSRETD
must be used; otherwise, the call ZSRET must be used. Required argument.

recortL.length
Length of the record, in bytes, returned by Sort. The size of the record length field is one
word. In COBOL, the record length is declared COMP-I. In FORTRAN, the record length is
declared INTEGER. Required argument.

ABORT SORT CALL

The abort sort function may be used to terminate execution of Sort before all of the records
have been returned. The system will perform functions normally done after the last record is
returned; i.e., the work file is closed (and released ifit is a temporary file), and the memory used
by Sort is released.

The formats for the abort sort call are:

COBOL

CALL "ZSEND" USING work_area, 1 turn_code

FORTRAN

CALL ZSEND (work_area, return_code)

Assembly Language

CALL ZSEND, work_area,return_code

work_area

Name of work area used in the ZSSRT call. Required argument.

retuI"n-code

Name of the I6-bit binary integer return code field used by Sort to report status and errors.
This argument must not be passed with a dope vector. Required argument.

SORTING USING
SUBROUTINE CALLS 7-7 CB04

SEQUENCING OF SORT SUBROUTINE CALLS

Normally Sort functions are requested in the following order:

1. Initialize sort
2. Release record
3. Commence sort
4. Return record

The abort sort function may be requested at any point between sort initialization and the
returnof the last record.

The release record call must be issued for each record to be sorted. The return record call
mustbe executed for each sorted record to be returned.

Only certain sequences of calls are permitted:

Previous Call

None

Calls That May Follow

Initialize Sort
Initialize sort
Release record
Commence sort
Return record
Abort sort or
return record

Release record, commence sort, abort sort
Release record. commence sort, abort sort
Return record, abort sort
Return record, abort sort
Initialize Sort

PROGRAM PREPARATION

UNKING REQUIREMENTS

The application program that contains the Sort subroutine calls must be explicitly linked to
the interface module ZSINT.O.

Example 1:
In this example, the Linker is loaded, and the application module APP is linked to the
interface module ZS-INT to form the bound unit BOUND.

LINKER BOUND
LINK APP,ZS-INT
MAP
QUIT

Example 2:
This example illustrates how to compile a COBOL application module CCB201 and link it
to the interface module ZS-INT. In this example there is a request to change to the working
directory identified by the pathname ,.. SRTVL5>SETC210. The source module CCB201
is located within the working directory. The COBOL command includes the list data map
option. The LINKER command designates that a bound unit named CCB201 will be
created, LAF mode will be in effect, and Linker output will be produced on the printer. The
directory ZCRT contains COBOL runtime routines. The interface module ZS-INT.O is
located in SYSLffi2. In the following interactive dialog, entries supplied by the user are
labeled (u) and those supplied by the system are labeled (s) in the margin to the left of the
listing. (These labels do not appear on an actual listing.)

(u) C~JO "SRTVL5>SETC210
(5) ROY:
(u) COBOL CCB2Q1 -LD -COUT>SPD>LPTJJ
(5) COBOL 0201
(5) 0000 ERRORS
(5) END COMPILATION
(5) ROY:
(u) LIJ~KER CCB201 -COUT>SPO>LPTOO -LAF

SORTING USING
SUBROUTINE CALLS 7-8 CB04

(

~/

(/

(5) LINKER 210 BU=CCB201 LINKED ON: 1977/11/02 1846:42.1 -LAF
(u) LIB AZSYS51>SYSLIB2>ZCRT;LIB2 AZSYS51>SYSLIB2;
(u) LINK CCB201, ZS INT;MAP;QT

(s) LAF OR SLIC ZSREL.O NT FND
(5) LAF OR SLIC ZSSRT.O NT FfJD }

(s) LAF OR SLI C ZSCOMM.O NT FND THESE ERROR ~1ESSAGES CAN BE IGlJORED
(s) LAF OR SLIC ZSRET.O NT FND
(s) LAF OR SLIC ZSEND.O NT FND
(s) ROOT CCB201
(s) LINK DONE
(s) ROY:

FILE REQUIREMENTS

Be sure that SORTC, the Sort bound unit, resides in a library that can be located via the
system's search rules (see the LIST SEARCH RULES command (LSR) in the Commands
manual).

Sort requires a temporary or permanent disk work file. The work file size must be approx
imately 1.2 times the size of the average record multiplied by the number of records to be sorted.

If a temporary work file is used, it is dynamically created on the volume containing the
current working directory. It is released at the completion of the sort.

If the work file is perma.nent, the work file LFN must be associated with the work file
pathname before the sort is initiated. When the sort is completed, the work file is removed by
Sort via the REMOVE-FILE macro call, which is described in the System Service Macro Calls
manual.

During execution, Sort issues error messages to the error-out file.

RETURN CODES AND ERROR MESSAGES

Return codes are issued as I6-bit binary integers to report status and errors. Return codes and
their meanings are given below. Unless noted otherwise, an appropriate message also is issued
to the error-out file. As indicated below, most return codes are associated with particular sort
functions. Within a sort function, a return code may have more than one meaning.

Usage

General

Initialize sort

Release record

Decimal
Representation
of Return Code

o

1
2

1

2

1

3
4

Commence sort 1

SORTING USING
SUBROUTINE CALLS

Meaning

Requested function has been performed successfully
(no message is issued).
System error.
Error in call sequence.

Work file not found.
Open error on work file.
Value or length inconsistency - rightmost key byte.
Linkage error; Sort cannot be executed.
Invalid argument.

Work file too small.
Read error on work file.
Write error on work file.
Record too small (no message is issued).
Record too large (no message is issued).

Read error on work file.
Write error on work file.
Linkage ,error; Sort cannot be executed.

7-9
6178

CB04A

I
I

I

Decimal
Representation

Usage of Return Code Meaning

Return record 1 Read error on work file.
Write error on work file.
Data gain sort error.
Output records from sort are out of sequence.
Data has been lost within sort.
Close error on work file.

5 Sort has been terminated. The last record has been
returned by the current return call (no message is
issued).

6 The last record has been returned, but the sort has not
been successfully terminated; e.g., close error on work
file or failure to return the memory used by Sort.

Abort sort 1 Linkage error; Sort cannot be executed. Close error on
work file.

EXAMPLE OF SORTING USING SUBROUTINE CALLS

This example illustrates a COBOL source program that includes Sort subroutine calls.

GCOSb COROL vFRSION S?OO
SOURCE PROGRAM

1
2
3
II
5
b
7
8
q

10
11
12
13
HI
15
Ib
17
18
1q

IDENTIFICATION DIVISION.
P~OGRAM-ID. SORTEX.
FNVIRONMFNT nlVISIO~.

CONFIGURATION StCTrON.
SOURCE-COMPUTER. LFVEL-b.
OBJECT-COMPUTER. LEVEL-b.
TNPUT-OUTPIJT SHTIn~.
FILE""COr-.,TROL.

5ELECI INPllI-FILF
ASSIGN TO O\)-M~IJ

nRGANI7ATlnN I~ SEQuFNTIAL
WITH VLk
ACCI:SS MOVF IS SFIJllENTTAL
FILE STATU5 IS FIU-S1AlIiS.
SELECT OUTPUT-FILE
AS5IGN In OI:-M5D
O~GAN17ATION is SEQUENTIAL
WITH VLR
ACCESS MODF IS SFQUENTIAL
FII E STATUS IS FTLF-SIATUS.

.f)ATA DIVISION.
FlU· SFCTION.
FD INPUT-FILE

IAREL RECORD IS ST~r-.,OARD.

01 TNPUT-RECORD.
02 IST-RYTE PTC x.
02 SIll:-~YTFS PTC 9Q.
O? FILLFR PTCTUPI: X(77).

FO nUTPUT-FILF
lAREL PECURD IS STAr-.,nAPO.

01 nUTPlIr-kFCOkO.
O? FILLFR PIC X(HO).

01 hORVTE-RFCORn.
O? FIlL~R PIC X(bO).

01 RORYTE-RFCORO.
02 FltLE~ PTC X(HO).

WuPKING-SIO~AGF SI:CTTON.

0t/Ol101

20
21
22
?3
211
25
?b
?7
28
2q
~o

31
32
B
~11

35
36
37
38
3q

01 FIl.E-STATUS PICTURF xx VAUlt: SPACE.
01 SORT-SPACI: .•

SORTING USING
SUBROUTINE CALLS 7-10

0000 PAGE 0001 .

CB04

~.

"---'

(-

lIO
III
III
43
lIli
LIS
lI6
III
Ilt!
lief

"0
"1
<;2

"d

"II
"" <;6

o? FIllFK cnMP-I VALUF +409h.
O? FIllF~ cn~P-I nccu~s 20 TIM(S.

01 SOR 1-t>~~AN1~ I FkS.
(J? M{:MURY-STlF PIr Q9 vALllt 10.
O? FILL PIC X vllLll1: "N".
O? ~/()RK-FTLF-L~~J PIr lIx \/Alll£: "00".
O? R £: r URi) - 1 Y f' F PI r I(v A L 0 F "v".
02 ~Ar-RtrORU-STlF Pif Q9Q9Q VAIuF RD.
O? CHARACTER-TyPE Ptc XI(VAL UF "CH".
O? I<!:Y-Sllt PIC 9Q" vAlliE 5.
o? ICty-qEf,INS PTC 9 Q 9Q'I IIAlIIt 4.
O? SuRl-UROFR prc x vAllI1: "11".
o? nU;L-tl\lll J-'TC xxx vllLllt "

01 SURI-CAlL-NAMt RFUFFTNFS ~nHT-PAPAMtTtRS
PIC: 11(1'» •

01 Pr.CIJPlJ-lFNr.IH rOMp-I VALli!: lFlW.
01 RE.TURN-cnDE IISA(,F (OMp-l.
PknCFQllRF f'lIVISlnrv.
riRST-PARA.

OPFr~ PIiPIIl I~!PIIl-FTlF.

<;7
<;M
<;9
hO
61
hi'
h3
nil
65
no
h7
h8
nQ
70
71
72
73
74
75
70
77
78
79
110
III
112
113
114
liS
116
117
88
IIQ

90

CALL "7SQRT" U5I~(' Sn~T-SPhLF RETUPN-CnllF ~ORI-C~LL-NAMt.

NOD.IAGNOST:f:CS

PtAu-PAtHGPAPrl.
PE AD p.IP\lr-~ Tl.F AT £:t.J1J GO TU srlflT-PARAr.kAPH.
MuVE S'lF~RYTEq TU HFcnHn-LtNGTH.
H lqT-~Ylf Fl.IIAI "A" GO TO RFAO-PARAGRAPH.
rAll "7SPtl" USIt.JG snRT-SPACF R~TURN-COlJF

TNPUT-RtrORO ~FCOfH)-LtNGTH.
H id::TtIR~I-ClJnt NOT EQUAL lFHn Gu TO FNf)-!'lUPT-PARAbRAPH.
~u 10 RtAU-PAkA6RAPH.

SURT-PAHAGRAPH.
CALL "7SrOMfV\" IISTNG SURT-SPACE HFTURN-CC!OL
H HFTUfm-conl:. NOT EQUAL ZFfW GO Tn FNf)-SlIRT-PAHAGRAPH.

nUTPII]-PAHAGRAPH.
OPFIIJ OUTPUT OUTPl.IT-FTlE.

INRTTF-PARAGRAPH.
CALL "7S P tT" USl~IG SOIH-SPACE Pr.TURJIJ-CO()F

nUTP!Il-HF[nf<() RECORll-lENGTH.
TF HETURN-Con~ EQUAL TO 1 GO Tn FNf)-SURI-PARAGRAPh.
H kFTIIRN-Cont EQUAL In ? GO TO ENf)-SURT-f>~RAGRAPH.

H RfcnHI)-II:.IIIGTH tAUAL bfl WRITE 60HYTI:.-RECORO.
If RECO~I)-lEN6TH EQUAL RO WRIIF R(JByTt-HECORO.
IF HFTIJR~I-C:Unt FlJIIAI. TU 5 GO TO LAST-PAkA.
GO TO WRTTE-PARAGRAPH.

FND-SORI-PAR~GRAPH.

DISPLAY "AHNOkMAI FNn-OF-snRT".
DISPLAY "RF IIIHN-COOE IS -> " f/FTURN-conf.

LAST-PARA.
ClOSF INPUT-FILl:..
ClOSf OUTPlJT-fIlE.
STOP RUN.

fNI) COROl.

SORTING USING
SUBROUTINE CALLS 7-11 CB04

Appendix A

Sort and Merge Memory Requirements

SORT MEMORY USAGE

Sort has the following memory requirements:

• Executable code: 4K words.

• Input buffer requirements: i words. For disk files to be used exclusively by Sort, i equals the
control interval size; if the files are shareable, i equals o. For tape, i equals the amount of
data between interblock gaps.

• Task group overhead: lK words.

• Work area of w words.

The total Sort memory requirement(s) is calculated by the following:

s=5K+w+i
Note:

The input buffer and part of the Sort work area are released before the output buffer is
acquired. Therefore, the output buffer is not explicitly included in the above
fonnulas. (See "Disposition of Files" in Section 6.)

The minimum requirement for w is given by the formula:

w= 5(r + 14) words
2

where r represents the maximum input record size (in bytes). If the record is variable in length,
four bytes should be added to the value ofr. Sort performance is enhanced by allowing w to be
larger than the minimum.

When the ARRange statement is used, the minimum requirement for w is given by the
formula:

5(a+14) + r
w= 2

where a is the size, in bytes, of the arranged record, and r is the maximum input record size, in
bytes.

The control argument -SIZE n (or -SZ n) in the SORT command specifies the maximum
amount of memory to be allocated to the Sort to support the Sort executable code and the work
area w, as follows:

n=4K+w

If the value specified in the -SIZE argument results in a requirement for more memory than
the amount of memory available in the memory pool associated with the task group, Sort will
not be aborted provided sufficient memory is available for the Sort to be executed.

The recommended minimum value for -SIZE is 8. You may, if necessary, attempt to specify
smaller values of memory size down to a lower minimum of6; in this case, however, using the
formula given under "Sort Work File" (see above) to calculate work file size may result in
underestimation of the space required.

SORT AND MERGE
MEMORY REQUIREMENTS A-I CB04

I

I

. MERGE MEMORY USAGE

Merge has the following user memory requirements:

• EXecutable code: 5K words.

• Input file support: If the input files are not shareable, each input file"requires the control
interval size of the file (in words) plus 52 words; otherwise, no user
memory is required.

• Output file support: If the output file is not sharable, it requires the control interval size
(in words) plus 52 words of memory; otherwise, no user memory is
required.

• Work area: The amount of memory required depends on whether there is an ARRange
statement. In the following formulas,

w = Work area
n = Number of files to be merged
i = Size of largest record to be merged
r -= . size of output record
a = Size of the "arranged" record

- No ARRange statement:
- Fixed-length records, w = n(i) +r
- Variable-length records, w = n(i + 1) + (r+ 1)

_ ARRange statement included:

w + n(a)+i+r

• Task overhead: 1K words.

SORT SUBROUTINE MEMORY USAGE

Sort requires a minimum of 8K words of memory more than that required by the application
program. In the Sort Description of the initialize sort call, the size field specifies the amount of
memory the sort will attempt to use: 4K is used by Sort subroutines, and the remainder is
dynamically requested as a work area. The amount of memory actually obtained from the user's
pool must be suflicient to support the sort. The minimum size of the work area (w) is determined
by the following formula:

w= 5(r+14) words
2

r = Maximum input record size, in bytes.
Note:

If the record is variable in length, add 4 bytes to the value r.

If the work area is larger than the minimum required size, Sort performance is enhanced.

When determining a value for the size field, consider any increase in user memory require
ments due to the actions of the application program ~r the sort has been initialized. For
example, if you open a nonsharable output file between sort initialization and termination, the
size value must be restricted so there is sufficient user memory space for necessary data
management buffer and control structures.

SORT SUBROUTINE LRN'S

The user task group must be configured to include an extra LRN entry for the Sort.

SORT AND MERGE
MEMORY REQUIREMENTS A-2

6178
CB04A

(1 ...

C

(

(/

AppendixB

ASCII Collating
Sequence

Table B-1 gives the ASCII character collating sequence and the corresponding hexadecimal
representation for each character.

TABLE B-1. ASCII COLLATING SEQUENCE

Corresponding Corresponding
Order in ASCII Hexadecimal Order in ASCII Hexadecimal
Sequence Character Number Sequence Character Number

NUL 00 33 SP 20
Cawest) 34 21

2 SOH 01 35 22
3 STX 02 36 # 23
4 ETX 03 37 $ 24
5 EOT 04 38 % 25
6 ENQ 05 39 & 26
7 ACK 06 40 27
8 BEL 07 41 (28
9 BS 08 42) 29

10 HT 09 43 * 2A
II LF OA 44 + 2B
12 VI OB 45 2C
13 FF OC 46 2D
14 CR OD 47 2E
15 SO OE 48 2F
16 SI OF 49 0 30
17 DLE 10 50 31
18 DCl 11 51 2 32
19 DC2 12 52 3 33
20 IX3 13 53 4 34
21 DC4 14 54 5 35
22 NAK 15 55 6 36
23 SYN 16 56 7 37
24 ETB 17 57 8 38
25 CAN 18 58 9 39
26 EM 19 59 3A
27 SUB lA 60 3B
28 ESC IB 61 < 3C
29 FS IC 62 = 3D
30 GS ID 63 > 3E
31 RS IE 64 ? 3F
32 US IF 65 @ 40

ASCII COLLATING SEQUENCE B-1 CB04

TABLE B·1 (CONT). ASCII COLLATING SEQUENCE

Corresponding Corresponding
Order in ASCII Hexadecimal Order in ASCII Hexadecimal
Sequence Character Number Sequence Character Number ('

61'> A 41 98 a 61 "'--j
67 8 42 99 b 62
68 C 43 100 c 63
69 0 44 101 d 64
70 E 45 102 e 65
71 F 46 103 f 66
72 G 47 104 g 67
73 H 48 105 h 68
74 49 106 69
75 J 4A 107 j 6A
76 K 48 108 k 6B
77 L 4C 109 6C
78 M 40 110 m 60
79 N 4E 111 n 6E
80 a 4F 112 0 6F
81 P 50 113 p 70
82 Q 51 114 q 71
83 R 52 115 72

84 S 53 116 s 73
85 T 54 117 74
86 U 55 118 u 75
87 V 56 119 v 76
88 W 57 120 w 77 /

89 X 58 121 x 78
90 y 59 122 y 79
91 Z 5A 123 z 7A
92 [5B 124 7B
93 \ 5C 125 7C
94] 5D 126 70
95 1\ 5E 127 7E
96 5F 128 DEL 7F
97 60 (highest)

. ASCn COLLATING SEQUENCE B·2 CB04.

(

Appendix C

Debug Mode

EXECUTING THE SORT PROGRAM IN DEBUG MODE

To execute the Sort program in debug mode, specify the control argument -DB in the invoking
SORT command. When Sort recognizes the debug mode request, it includes additional informa
tion on the internal operation of Sort in the Sort Report it issues to the user-out file.

All items in the full Sort Report are listed in Table C-l; this complete report is issued if both
the -PD and -DB control arguments were included in the SORT command. Items that appear in
the Sort Report because the debug option was specified are described in Table C-l. Items in
Table C-l that are not related to the debug mode of operation are described in Section 3, under
"Sort Report."

TABLE C-l. FORMAT OF FULL SORT REPORT (INCLUDING DEBUG MODE ITEMS)

Sort Report Item

**** SORT DESCRIPTION ****
Sort Description statements
SORT -version number -date/time linked

INPUT FILE: pathname

START ASSIGN hhmm: ss.ttt

START PRESRT hhmm:ss.ttt

STRING - ssssss x BEG - aaaaaa
END - bbbbbb SWA - cccccc

RECORDS READ nnnnnn

PRESORT RECORDS WRITTEN nnnnnn

PRESORT RECORDS DELETED nnnnnn

PRESORT BLOCKS WRITTEN nnnnnn

MERGE ORDER nnnnnn

DEBUG MODE

Commenta

Included only if -PD specified in SORT command.

Part of basic Sort Report.

Part of basic Sort Report.

Starting time b of assignment phase (indicates the
time immediately before assignment phase is called).
Printing of time deferred until debug request is
recognized by Sort. (Included only if debug mode
requested in SORT command.)

Starting time b of Presort phase. (Included only if
debug mode requested.)

.This message is issued for each string written to the
work file by Presort. Numbers are represented as
follows:

ssssss-String number.
x-Sequence of string is N for normal, I for
inverted.
aaaaaa-Block or internal sort control interval
number of first block in string.
bbbbbb-Block number of last block in string.
cccccc-Number of sort work file area.
(Included only if debug mode requested.)

Part of basic Sort Report.

Number of records written by the Presort to work file.
(Included only if debug mode requested.)

Number of records deleted by the Presort (e.g.,
records with duplicate keys when -DL argument is
specified in the SORT command). (Included only if
debug mode requested.)

Number of blocks written by the Presort to the work
file. (Included only if debug mode requested.)

Number of the merge order. (Included only if debug
mode requested.)

C-l
6/78

CB04A

I

TABLEC.l(CONT). FORMAT OF FULL SO:6T REPORT (INCLUDING DEBUG MODE ITEMS)

Sort Report Item Comment a

RECORDS IN PRESOR:T MEMORY nnnnnn

WORK BUFFER·SIZE (BYTES) nnnnnn

WORK BLOCK SIZE (BYTES) nnnnnn

WORK RECORD SIZE (BYTES) r..nnnnn

INPUT RECORD SIZE (BYTES) nnnn

START MERGE hhmm:ss.ttt

OUTPUT FILE: pathname

RECORDS WRITTEN nnnnnn

RECORDS DELETED nnnnnn

FATAL ERROR IN SORT

WARNING ERROR IN SORT

END SORT hhmm:ss.ttt

Number of records that can be stored in the presort
record storage area. (Included only if debug mode
requested.)

Size of work file buffer in bytes. (Included only if
debug mode requested.)

Size of work file block in bytes. (Included only if
debug mode requested.)

Size, in bytes, of record handled internally by Sort.
(Included only if debug mode requested.)

Size of input record in bytes. (Included only if debug
mode requested.)

Starting time b of the merge phase. (Included only if
debug mode requested.)

Part of basic Sort Report.

Part of basic sort Report.

Part of basic Sort Report.

Issued only if fatal error message sent to error-out
file. (When issued, considered part of basic Sort
Report.)

Issued only if one or more warning error messages
sent to error-out file. (When issued, considered part of
basic Sort Report.)

Time b at which Sort terminates. (Included only if
debug mode requested.)

a For detailed descriptions ot items listed in this table that are not debug mode items, refer to Section 3, "Reports and
Messages Issued by Sort."

b Time is expressed as follows:
hh-hours
mm-minutes
ss--seconds
ttt-thousandths of seconds

This time is taken from the system internal clock (see the SET DATE command in the Commands manual).

An example of a full Sort Report containing debug mode items and the Sort Description is
given below.

Example:
In this example, the current working directory is SRTI02. Sort is invoked as follows:

SORi -IN SRTOES -SZ 10 -PO -DB

Sort then reads the following Sort Description from the file SRTDES:

DEBUG MODE

FILES:-IF IDSF07 -OF ODSF02 -WF WDSF02;
KEYS:CHAR (8) 22. CHAR (6) 30~
CHAR (5) 99 D. CHAR (4) 36;

C-2 CB04

("

The resulting Sort Report, which includes debug mode items and a listing of the Sort
Description, is given below.

**** SORT DESCRIPTION ****
FILES: -IF IDSF07 -OF ODSF02 -WF WDSF02;
KEYS: CHAR (8) 22. CHAR (6) 30.
CHAR (5) 99 D. CHAR (4) 36;
SORT version number date/time linked
INPUT FfLE: ~SRTI02>IDSF07
START ASSIGN
START PI<ESRT
STRING-OOOOOl N BEG-OOOOOO END-000027 SWA-OOOOOl
RECORDS READ 000357
PRESORT RECORDS WRITTEN 000357
PRESORT RECOI<DS DELETED 000000
PRESORT BLOCKS WRITTEN 000028
MERGE ORDER 000005
RECORDS IN PRESORT MEMORY 000071
WORK BUFFER SIZE (BYTES) 001548
WORK BLOCK SIZE (BYTES) 001664
WORK RECORD SIZE (BYTES) 000118
INPUT RECORD SIZE (BYTES) 000113
START MERGE
OUTPUT FILE: ASRTI02>ODSF02
RECORDS WRITTEN 000357
RECORDS DELETED 000000
END SORT

EXECUTING THE MERGE PROGRAM IN DEBUG MODE

To execute the Merge program in debug mode, the control argument -DB must be specified in
the invoking MERGE command. If the -DB argument is specified, the Merge Report contains the
items listed in Table C-2, as well as those in the basic Merge report (see Section 5).

TABLE C-2. ADDITIONAL ITEMS INCLUDED IN MERGE REPORT IF DEBUG MODE IS IN
EFFECT

Merge Report Item

START ASSIGN hhmm:ss.ttt

START MERGE hhmm:ss.ttt

END MERGE hhmm:ss.ttt

aTime is expressed as follows:
hh-Hours
mm-Minutes
ss--Seconds
ttt-Thousandths of seconds

Comment

Starting time of assignment phase (indicates the time immediately
before assignment phase is called). Printing of time deferred until
debug request is recognized by Merge.

Starting time of the merge.

Time" at which Merge terminates.

This time is taken from the system internal clock (see the SET DATE command in the Commands manual).

DEBUG MODE C-3
6/78

CB04A

I

(

(

INDEX

ABORT
ABORT SORT CALL, 7-7

ARGUMENTS
ARGUMENTS COMMON TO SORT SUBROUTINE

CALLS, 7-2
SUBROUTINE CALL ARGUMENTS, 7-2

ASCII
ASCII COLLATING SEQUENCE, B-1

BASIC REPORTS
BASIC MERGE REPORT, 5-1
BASIC SORT REPORT, 3-1

COMMENCE
COMMENCE SORT CALL, 7-6

COMMENTS
COMMENTS IN SORT DESCRIPTION, 2-3

DATA TYPES
KEY FIELD DATA TYPES, 1-1
KEY FIELD DATA TYPES (TBL) , 2-7,

7-5

DEBUG MODE
ADDITIONAL ITEMS INCLUDED IN MERGE

REPORT IF DEBUG MODE IS IN EFFECT
(TBL) , C-3

DEBUG MODE, C-l
EXECUTING MERGE PROGRAM IN DEBUG

MODE, C-3
EXECUTING SORT PROGRAM IN DEBUG

MODE, C-l

DOPE VECTORS
DOPE VECTORS, 7-2

ERROR MESSAGES
ERROR MESSAGES, 5-3
RETURN CODES AND ERROR MESSAGES,

7-9
SORT ERROR MESSAGES, 3-2

ERROR-OUT FILE
ERROR-OUT FILE, 1-3

EXPANDED REPORTS
EXPANDED MERGE REPORT, 5-1
EXPANDED SORT REPORT, 3-1

FIFO RULE
FIFO RULE, 1-2
MERGE FIFO RULE, 1-2

FILES
DISPOSITION OF FILES, 6-2
FILES REQUIRED FOR SORT AND MERGE

EXECUTION, 1-3
FILES STATEMENT (FOR MERGE), 4-2
FILES STATEMENT (FOR SORT), 2-3
PREPARING FILES FOR SORT AND MERGE,

6-1
SORT AND MERGE OUTPUT FILES, 6-1

INCL STATEMENT
INCL AND OMIT STATEMENTS (FOR

MERGE), 4-2
INCL AND OMIT STATEMENTS (FOR

SORT), 2-4

INITIALIZE
INITIALIZE SORT CALL, 7-3

KEY FIELD
KEY FIELD DATA TYPES, 1-1
KEY FIELD DATA TYPES (TBL), 2-7,

7-5
KEY SORT OUTPUT, 1-2

KEYS
KEYS STATEMENT (FOR MERGE), 4-3
KEYS STATEMENT (FOR SORT), 2-6
MAJOR KEY, 1-2
MINOR KEY, 1-2
RECORD KEYS, 1-2

LINKING
LINKING REQUIREMENTS, 7-8

LITERAL
LITERAL, 2-5

LOGICAL FILE NUMBERS
SORT AND MERGE LOGICAL FILE

NUMBERS, 6-2

LRN'S
SORT SUBROUTINE LRN'S, A-2

MAJOR KEY
MAJOR KEY, 1-2

MEMORY
MERGE MEMORY USAGE, A-2
SORT AND MERGE MEMORY REQUIREMENTS,
A-I

SORT MEMORY USAGE, A-2
SORT SUBROUTINE MEMORY USAGE, A-2

MERGE

i-I

ARRANGE STATEMENT (FOR MERGE), 4-3
CAPABILITIES, 1-1
EXECUTING MERGE PROGRAM IN DEBUG

MODE, C-3
FEATURES APPLICALBE ONLY TO MERGE,

1-2
FEATURES APPLICABLE TO BOTH SORT

AND MERGE, 1-1
FIFO RULE, 1-2
FILES, 1-3, 6-1
FILES STATEMENT (FOR MERGE), 4-2
GENERAL DESCRIPTION OF MERGE, 1-2
INCL AND OMIT STATEMENTS (FOR

MERGE), 4-2
INVOKING MERGE PROGRAM, 6-2
KEYS STATEMENT (FOR MERGE), 4-3
:L..ANGUAGE, 4-1
LOGICAL FILE NUMBERS, 6-2
MEMORY, A-2

CB04

MERGE (CONT'D)
MERGE COMMAND, 4-1, 6-4
MERGE DESCRIPTION, 4-2, 6-2, 6-3
MERGE REPORT, 5-1, C-3
OPERATING PROCEDURES FOR MERGE,

6-1
OUTPUT FILE, 6-1
REPORTS AND MESSAGES ISSUED BY

MERGE, 1-3, 5-1
SAMPLE MERGE RUN, 6-6
USAGE, 4-4

MESSAGES
ERROR MESSAGES, 5-3
REPORTS AND MESSAGES ISSUED BY

MERGE, 5-1
RETURN CODES AND ERROR ME SSAGES ,

7-9
SORT ERROR MESSAGES, 3-2

MINOR KEY
MINOR KEY, 1-2

OMIT STATEMENT
INCL AND OMIT STATEMENTS (FOR

MERGE), 4-2
INCL AND OMIT STATEMENTS (FOR

SORT), 2-4

OUTPUT
KEY SORT OUTPUT, 1-2
SORT AND MERGE OUTPUT FILES, 6-1

RECORD
RECORD ARRANGEMENT, 1-2
RECORD KEYS, 1-2
RECORD SELECTION, 1-2
RELEASE RECORD CALL, 7-5
RETURN RECORD CALL, 7-6

RELEASE
RELEASE RECORD CALL, 7-5

REPORTS
ADDITIONAL ITEMS INCLUDED IN MERGE

REPORT IF DEBUG MODE IS IN EFFECT
(TBL) , C-3

BASIC MERGE REPORT, 5-1
BASIC SORT REPORT, 3-1
EXPANDED MERGE REPORT, 5-1
EXPANDED SORT REPORT, 3-1
FORMAT OF FULL SORT REPORT (TBL) ,
C-l

MERGE REPORT, 5-1
REPORTS AND MESSAGES ISSUED BY

MERGE, 1-3, 5-1
REPORTS AND MESSAGES ISSUED BY

SORT, 1-3, 3-1
SORT REPORT, 3-1

RETURN CODES
RETURN CODES AND ERROR MESSAGES,

7-9

INDEX

RETURN RECORD
RETURN RECORD CALL, 7 - 6

SORT
ARRANGE STATEMENT (FOR SORT), 2-8
CAPABILITIES, 1-1
COMMENTS IN SORT DESCRIPTION, 2-3
ERROR MESSAGES, 3-2
EXECUTING SORT PROGRAM IN DEBUG

MODE, C-l
FEATURES APPLICABLE ONLY TO SORT,
1-1

FEATURES APPLICABLE TO BOTH SORT
AND MERGE, 1-1

FILES REQUIRED FOR SORT EXECUTION,
1-3, 6-1

FILES STATEMENT (FOR SORT), 2-3
GENERAL DESCRIPTION OF SORT, 1-2
INCL AND OMIT STATEMENTS (FOR SORT),

2-4
INVOKING THE SORT PROGRAM, 6-2
KEY SORT OUTPUT, 1-2
KEYS STATEMENT (FOR SORT), 2-6
LANGUAGE, 2-1
LOGICAL FILE NUMBERS, 6-2
MEMORY, A-I
NOTATIONAL SYMBOLS IN SORT

DESCRIPTION, 2-3
OPERATING PROCEDURES FOR SORT, 6-1
OUTPUT FILE, 6-1
REPORTS AND MESSAGES ISSUED BY

SORT, 1-3, 3-1
SAMPLE SORT RUNS, 6-4
SORT COMMAND, 2-1, 6-4
SORT DESCRIPTION, 2-2, 6-3
SORT REPORT, 3-1, C-l
USAGE, 2-10
WORK FILE, 1-1, 1-3, 6-1

SORTING USING SUBROUTINE CALLS
EXAMPLE OF SORTING USING SUBROUTINE

CALLS, 7-10
SORTING USING SUBROUTINE CALLS, 7-1

SUBROUTINE CALLS
ARGUMENTS, 7-2
EXAMPLE OF SORTING USING SUBROUTINE

CALLS, 7-10
SEQUENCING OF SORT SUBROUTINE CALLS,

7-8
SORT SUBROUTINE CALLS, 7-1, 7-8
SORT SUBROUTINE LRN'S, A-2
SORT SUBROUTINE MEMORY USAGE, A-2

. SYMBOLS

i-2

NOTATIONAL SYMBOLS IN SORT
DESCRIPTION, 2-3

SYNTAX
SYNTAX OF SORT DESCRIPTION, 2-2

U~ER-IN FILE
USER-IN FILE, 1-3

CB04

(

USER-OUT FILE
USER-OUT FILE, 1-3

VECTORS
DOPE VECTORS, 7-2

WORK FILE
SORT WORK FILE, 1-1, 1-3, 6-1

INDEX

CB04

(

;;
It

(~

(

I ,~

.J

l?
Z.
o
.J <,
I
::J
U

I
I
I
I
I
I
I
I
I
I
I
I

\~

I
• I

I
I
I

• I

«(
I
I
I
I
I
I

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

TITLE
SERIES 60 (LEVEL 6)

GCOS 6 SORT/MERGE

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

ORDER NO., CB04, REV. 0

DATED I JANUARY 1978

r\ Your comments will be promptly investigated by appropriate technical personnel and action wIll be taken 0 II as required. If you require a written reply, check here and furnish complete mailing address below.

FROM: NAME _________________________________ __ DATE __________ __

TITLE ________________________________ _

COMPANV _________________________________ _

ADDRE~ __ _

- .. -----~-----

\

PLEASE FOLD AND TAPE-
NOTE: U. S. Postal Service will not deliver stapled forms

~./
(:J
2
o
-'
<{

I
:::l
U

I
I
I
I
I
I ~.
I -'
I (:J

I 2

--~--------------~-----------~~

ATTENTION: PUBLICATIONS, MS 486

Business Reply Mail
Postage Stamp Not Necessary if Mailed in the United States

Postage Will Be Paid By:

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM. MA 02154

FIRST CLASS
PERMIT NO. 39531
WALTHAM,MA
02154

I Cl

I 6
I LL

J
I
I
I
I
I
I
I

\"'---
I
I
I
I
I
I
I
I LU
I 2

I -'
I ~

--- ~g

Honeywell

I <{

IS
o
LL

•

}-./
I
I
I
I
I
I

c

c

c

¥4 A&il A.W4BA '.44 ? $;; F ;:::;::;. _ ;a;:a¥ 434 ,P .. """"'"

Honeywell
Honeywell Information Systems

In the U.S.A.: 200 Smrth Street. MS 466. Waltham. Massachusetts 02154
In Canada: 2025 Sheppard Avenue.East. Willowdale. OntariO M2J 1 W5

In Mexico: Avenida Nuevo Leon 250, Mexico 11. D.F.

21435,2878, Printed in U.S.A.

/'"

~.,.

c'
CB04, Rev. 0

